AUTOMATIC VEHICLE)NITORING SYSTEMS STUDY Report of Phase 0

Vol. 2. Problem Definition and Derivation of AVM System Selection Techniques

(NASA-CR-153207) AUTOMATIC VEHICLE

MONITORING SYSTEMS STUDY. REPORT OF PHASE
O. VOLUME 2: PROBLEM DEFINITION. AND
DERIVATION OF AVM SYSTEM SELECTION
TECHNIQUES (Jet Propulsion Lab.) 108 p G3/81. 30308

Prepared by

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California 91103

Prepared for

National Science Foundation Washington, D.C.

REPRODUCED BY
NATIONAL TECHNICAL
INFORMATION SERVICE
US DEPARTMENT OF COMMERCE
SPRINGFIELD, VA. 22161.

June 30, 1976

PREFACE

This document on Automatic Vehicle Monitoring Systems presents the results of work supported by the National Science Foundation. It was sponsored under an interagency agreement with the National Aeronautics and Space Administration through Contract NAS 7-100. Points of view and opinions stated in this document are those of the authors and do not necessarily represent the official position of the sponsoring agency.

FOREWORD

This report was prepared for distribution to public safety planners for the purpose of providing them with a compact source of information regarding improvements in efficiency and cost benefits obtainable with various classes of operational and proposed automatic vehicle monitoring (AVM) systems. An AVM system can contribute to emergency patrol effectiveness by reducing response times and by enhancing officer safety as well as by providing essential administrative control and public relations information. This complete report and the Executive Summary (Vol. 1) were prepared by the Jet Propulsion Laboratory of the California Institute of Technology using the results of studies sponsored by the National Science Foundation.

Special computer programs are described which can simulate and synthesize AVM systems tailored to the needs of small, medium and large urban areas. These analyses can be applied by state and local law enforcement agencies and by emergency vehicle operators to help decide on what degree and type of automation will best suit their individual performance requirements and also the possible reduction in the number of vehicles needed which could substantially reduce operating expenses.

G. R. Hansen

ACKNOWLEDGEMENTS

Appreciation is extended to the Users Group Advisory Committee (UGAC) members for their friendly cooperation and help in the conduct of this study and their professionalism in representing their respective cities and police departments.

Lieut	Robert Zıppel	Anaheim
-------	---------------	---------

Capt. Daniel Sullivan, Los Angeles

Sgt. Howard Ebersole, Ofc Louis Lozano

Lieut James Lance Long Beach
Chief Raymond McLean Montclair

Lieut Allen Stoen Monterey Park

Ofc. Luke Villareal Pasadena
Lieut. Robert L. Walker, San Diego
Sgt. Robert E. Ristau

We should also like to thank the Chiefs of Police of the UGAC cities for their interest in the study effort:

Chief David Michel Anaheim

Chief Edward M. Davis Los Angeles
Chief William Mooney Long Beach
Chief Raymond McLean Montclair

Chief Raymond Warner (dec) Monterey Park

Chief Robert McGowan Pasadena Chief Raymond Hoobler (ret) San Diego

G. R. Hansen

CONTENTS

		Page
EXEC	UTIVE SUMMARY	1
I.	Introduction	1
II.	Summary of AVM Systems Study Results	2
III.	Classes of AVM Systems	5
IV.	Vehicle Location Technologies and Costs	14
v.	Vehicle Polling and Location Performance	25
PART	ONE. AVM COST BENEFIT INFORMATION BASE	1-1
I.	Performance and Costs of Proved AVM Techniques	1-1
II.	Vehicle Polling Techniques and Location Performance	1-12
III.	Urban Characteristics That Affect AVM Costs	1-15
IV.	AVM System Accuracies and Cost Benefits	1-20
v.	Computer Programs for Analyses of AVM Needs	1-23
R	eferences and Bibliography	1-26
PART	TWO. AVM DATA FOR USER GROUP ADVISORY	
	COMMITTEE CITIES	2-1
I.	Cost Benefits of AVM Systems for Seven Cities	2-I
II.	Anaheim, CA, City AVM Cost Benefit Analysis Tables	2-4
III.	,	2-5
IV.	·	2-7
v.	•	2-8
VI.		2-10
VII.		2-11
VIII.	Los Angeles, CA, City AVM Cost Benefit Tables	2-14
PART	THREE. ANALYTICAL TECHNIQUES FOR ESTIMATING AVM SYSTEM ACCURACY	3-1
I,	Vehicle Location Accuracy for Class I and III Systems	3-1
II.	Markov Chain Model of Vehicle Location by Means of Proximity Sensors for Class II and IV Systems	3-17
PART	FOUR. AM BROADCAST AND BURIED LOOP FEASIBILITY ANALYSES FOR AVM USE	4-1
I.	Vehicle Location by Means of AM Broadcasting Station Carrier Signals	4-1
II.	Vehicle Location by Means of Buried Loops	4-25

ABSTRACT

A set of planning guidelines is presented to help law enforcement agencies and vehicle fleet operators decide which automatic vehicle monitoring (AVM) system could best meet their performance requirements. Improvements in emergency response times and resultant cost benefits obtainable with various operational and planned AVM systems may be synthesized and simulated by means of special computer programs for model city parameters applicable to small, medium and large urban areas. Design characteristics of various AVM systems and the implementation requirements are illustrated and costed for the vehicles, the fixed sites and the base equipments. Vehicle location accuracies for different RF links and polling intervals are analyzed. Actual applications and coverage data are tabulated for seven cities whose police departments actively cooperated in the JPL study. Volume 1 of this Report is the Executive Summary. Volume 2 contains the results of systems analyses.

G. R. Hansen

AUTOMATIC VEHICLE MONITORING SYSTEMS STUDY

EXECUTIVE SUMMARY

Prepared by

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California 91103

Prepared for

National Science Foundation Washington, D.C.

CONTENTS

EXEC	UTIVE SUMMARY I	Page
I.	INTRODUCTION	1
II.	SUMMARY OF AVM SYSTEMS STUDY RESULTS	
	C. Program Recommendations	4
III.	CLASSES OF AVM SYSTEMS	5 5 8
IV.V.	VEHICLE LOCATION TECHNOLOGIES AND COSTS	
	FIGURES	
Figure	Number I	Page
1. 2.	Class O Manual Monitoring, No AVM	9
3.4.5.6.	Class II AVM; Autonomous Signposts Throughout Urban Area Class III AVM; Sparsely Distributed Special RF Sites Class IV AVM; Monitored Signposts Throughout Urban Area AVM Systems Showing Common and Unique Equipments for	11 12
4. 5. 6.	Class II AVM; Autonomous Signposts Throughout Urban Area Class III AVM; Sparsely Distributed Special RF Sites Class IV AVM; Monitored Signposts Throughout Urban Area AVM Systems Showing Common and Unique Equipments for Vehicles, Signposts, and Base Station	11 12 13
4. 5. 6.	Class II AVM; Autonomous Signposts Throughout Urban Area Class III AVM; Sparsely Distributed Special RF Sites Class IV AVM; Monitored Signposts Throughout Urban Area AVM Systems Showing Common and Unique Equipments for Vehicles, Signposts, and Base Station	11 12 13 16 Page 15

AUTOMATIC VEHICLE MONITORING SYSTEMS

George R. Hansen

I. INTRODUCTION

In this report, the results of the first phase of a three-phase program to aggregate existing information on Automatic Vehicle Monitoring (AVM) Systems are presented in terms of performance, urban characteristics, operating modes, and cost in a way that will assist prospective AVM User Agencies to make valid comparisons and selections from among the many competing AVM techniques and AVM Systems. This phase (Phase 0) of the study was performed by the Jet Propulstion Laboratory (JPL) for the National Science Foundation (NSF). As originally conceived by NSF and JPL, the AVM Systems study program would include the following three phases:

- Phase 0 Problem Definition and Derivation of AVM System Selection Techniques (in this Report)
- Phase I Critical Research and Verification of the Efficacy of AVM

 System Selection Techniques Through Computerized System

 Simulation.
- Phase II Proof of Concept Experiment Demonstrating the Efficacy of Selected AVM Systems in Urban Environments.

In brief, the Phase 0 research was concentrated in three areas: (1) Compilation of a broad information base on AVM technology and urban characteristics, (2) adaptation of computerized analytical techniques needed in the AVM System selection process and in cost benefit trade-offs, and (3) application of AVM System selection process by manual iteration to small, medium and large model cities.

Frequent reference is made in this Report to "AVM techniques" and "AVM Systems". The term "AVM technique" is used to denote the technology required to acquire a fix on a vehicle, while "AVM System" is used to denote the integration of all functional elements required to locate and keep track of vehicles in some automated fashion.

II. SUMMARY OF AVM SYSTEMS STUDY RESULTS

A. WORK ACCOMPLISHED IN PHASE 0

A broad range of information concerning automatic vehicle monitoring (AVM) was compiled from the existing literature, including: (1) Various vehicle location sensing techniques, (2) all functional elements of the total AVM system, and (3) various sized cities with representative geography, topology, demography and urbanology. The information obtained from the literature was supplemented by data obtained directly from police department representatives of seven Southern California cities that participated in the User Group Advisory Committee (UGAC).

Several computerized analytical techniques were developed. City models representative of those characteristics that affect AVM selection were developed for use in the general cost benefit solutions. An analytical technique for predicting vehicle polling rates achievable for the various location sensing techniques in a full AVM system configuration was also developed. Algorithms were developed to estimate the accuracies achievable by a large variety of AVM systems using the probabilistic distributions for three independent variables: (1) vehicle speed, (2) inherent accuracies of location sensing techniques, and (3) vehicle polling intervals.

Preliminary analyses were performed to determine first-order cost estimates for AVM Systems as a function of the various vehicle location sensing techniques when used in small, medium and large cities. Preliminary analyses of the accuracies achievable with various AVM systems were also performed. Various AVM system configuration options were developed, and promising options were examined for possible cost benefits to seven UGAC cities.

B. PRELIMINARY CONCLUSIONS

1. AVM Class should indicate effects on urban environment. From the viewpoint of the prospective AVM system user, the traditional classifications of vehicle locating systems (i.e., piloting, deadreckoning, triangulation, trilateration, and proximity) do not necessarily reflect the impact of an AVM installation on the local urban scene. It is believed that the prospective user's needs would be better met if vehicle monitoring classifications were based on system element types and functions as follows:

Class 0 Manual Monitoring. No AVM

Class I AVM. No modification to the urban environment.
(existing RF links)

Class II AVM. Autonomous signposts throughout urban area

Class III AVM. Sparsely distributed special RF sites

Class IV AVM. Monitored signposts throughout urban area

- 2. AVM cost benefits obtainable by medium and large cities. The preliminary cost analysis indicates that the cost benefit break-even point occurs for a medium sized city with an area of about 100 km² (40 mi²) and with roughly 50 vehicles. In other words, cities larger in size could expect a positive and increasing benefit with size, up to a certain point. Conversely, cities below this medium size probably would not realize any cost benefit. This conclusion was based on 5-year estimates of AVM system costs and savings.
- 3. No cost benefits derived from monitored signpost systems. None of the Class IV systems produced a cost benefit for the cities studied, generally because the rental rates on telephone lines raise the equipment costs excessively.
- 4. AVM System accuracies greater than technique accuracies. In general, the 95% total system accuracy can be expected to be significantly greater than the inherent accuracy of the location sensing technique. Usually the system accuracy is no less than three times the inherent technique accuracy.

- 5. Vehicle polling intervals determine AVM system accuracies. It appears that the polling interval will dominate system accuracy and that the polling interval can only be shortened at the expense of RF resources dedicated to AVM purposes. Because of the present and predicted future demand on RF resources, this is one area that demands optimization.
- 6. Critical research required for verification of selection technique.

 The results of the first phase of the AVM study effort should be used with caution and should not be construed as specific recommendations at this point. The second phase of the analytical work should be completed to verify the results of the first phase.

C. PROGRAM RECOMMENDATIONS

- 1. It is recommended that the second phase (Phase I) of the AVM Systems study proceed.
- 2. It is further recommended that mission agencies such as the Law Enforcement Assistance Administration (LEAA) and/or the Department of Transportation (DOT) sponsor the Proof of Concept Experiment, or third phase. The tests presently planned jointly by the city of Los Angeles and DOT could effectively serve this purpose. This could be accomplished by closely coordinating the analytical techniques developed in this study with the Los Angeles Police Department, the Southern California Rapid Transit District, LEAA and DOT and making the analytical tools available to the city for use in the design of the experiment.

III. CLASSES OF AVM SYSTEMS

A. CLASSIFICATION RATIONALE

Traditionally, AVM systems have been classified in the literature according to the method used to locate the vehicle within an urban area. Recognizing that all AVM systems have certain elements in common and that some systems have unique elements, an alternate classification scheme was developed for the purpose of this study. This classification not only implies the type of AVM system but also suggests the physical impact that the system elements and functions will have on the local urban environment. The following groupings of system elements suggested the classification scheme:

Functional Elements Common to All AVM Systems

- (1) Existing communications system.
- (2) Vehicle polling subsystem.
- (3) Landline data links.
- (4) Telemetry data/polling handler.
- (5) Telemetry link (common to most).
- (6) In-vehicle equipment, such as data processor, telemetry data encoder, polling processor, and signpost sensor
- (7) Vehicle location computer.
- (8) Information display subsystem.

Functional Elements Unique to Specific AVM Systems

- (9) Autonomous signposts; signpost sensor in vehicle (Class II).
- (10) Fixed synchronized RF transmitter sites (Class III).
- (11) Monitored signposts, vehicle sensor on signpost (Class IV).

A discussion of each of these AVM functional elements follows:

- 1. Existing communications system. As a practical consideration, AVM systems will probably be integrated with the existing voice communication and vehicle polling RF links, especially for the telemetered location data between the vehicle and the dispatch center.
- 2. Vehicle polling subsystem. This interrogation device or procedure enables the vehicle location computer (VLC), described in Element 7, to know which vehicle corresponds to which set of location data. Polling may be either an operating procedure or an active element that allows the dispatcher to obtain locations of specific vehicles.
- 3. Landline data link. This data link is a landline supplying data to the VLC (Element 7). It may either be relatively short, leading from the telemetry data/polling handler (Element 4) to the VLC, or it may be quite extensive, collecting data from monitored signposts throughout the covered urban area, or it may be somewhere in between these in its extent, bringing data from a relatively small number of fixed RF sites.
- 4. Telemetry data/polling handler. This device is included because AVM systems deal with data that are different (e.g., digital) in character from that used by the dispatcher in voice communication with the vehicles. Furthermore, if the vehicle polling subsystem (Element 2) provides for selective polling, then there are likely to be corresponding additional requirements on the communication system.
- 5. Telemetry link. Since it is tacitly assumed that the AVM system will not restrict the mobility of the fleet vehicles, some kind of communication-at-a-distance is essential. In some systems, the telemetry link is assumed to share or be in addition to the RF link now used for voice communications. In other systems the telemetry path might be between the vehicles and sparsely distributed synchronized RF sites. In still other AVM systems, the telemetry path may be relatively short, being only from the vehicles to signposts distributed throughout the urban area. In that case, the transmission medium could conceivably be sonic, optical, or even magnetic, instead of radio.

- 6. <u>In-vehicle equipment</u>. Depending on the AVM system, some or all of the four following devices may be carried in the vehicle.
- a. Vehicle data processor. This device receives raw vehicle location data either from the officer or from signpost sensors. It does whatever data processing is done on-board, then adds the vehicle identification data, and passes this information along to the telemetry data encoder, described next.
- b. Vehicle telemetry data encoder. This device puts the vehicle location data supplied by the vehicle data processor into the telemetry link (Element 5).
- c. Vehicle polling processor. This device enables the vehicle to respond properly when polled, and may range in complexity from a clock to an RF signal decoder.
- d. Signpost sensor. Where the densely distributed autonomous signpost concept is used (Class II), the signpost sensor must be carried in the vehicle. This sensor is required to read the signpost ID/location. Location data may be acquired by coded optical, infrared, sonic, or magnetic means besides radio.
- 7. Vehicle location computer (VLC). This device transforms the vehicle location data into location points or coordinates for use by the information display subsystem (Element 8). It also informs the display subsystem as to the identity of the vehicle to which the location data belongs. The VLC may also interface with the Computer-Aided Dispatch System.
- 8. <u>Information display subsystem.</u> This device indicates to the dispatcher where the vehicles are currently located (or were when last polled). It may also identify the vehicle's status. As in the case of manual aids used for vehicle location in Class 0, the possible range of complexity and sophistication may range from a simple printer to an elaborate electro-optical device supported by a computer. It should be noted that the display subsystem is virtually independent of the location technique used.

- 9. Autonomous signposts used in Class II AVM. Each autonomous wayside or buried signpost has a location ID and must be recognizable and readable by the signpost sensor in the vehicle. The signpost telemetry link to the vehicle may be by radio, pulsed light, infrared, sonic, or magnetic means.
- 10. Fixed synchronized RF transmitter sites used in Class III AVM.

 These RF sites are a relatively small number of special-purpose transmitters which broadcast synchronized signals that can be used to determine the locations of receivers on vehicles by means of navigation techniques. The characteristics of these signals could be FM phase, pulse, or noise correlation. Some of these sites may also receive retransmitted signals from the monitored vehicles.
- 11. Monitored signposts used in Class IV AVM. Each monitored wayside or buried signpost requires a vehicle sensor that will transmit the vehicle's ID data received and also identify its own location to the central collection station. These signposts may sense vehicle motion, or they may detect pulsed light, infrared, or ultrasonic signals or receive RF signals through buried antennas.

B. AVM CLASS DESCRIPTIONS

The vehicle location system classes, based on their physical impact on the urban environment, are shown in the following list and are described in greater detail in subsequent paragraphs and accompanying figures. For reference, the traditional vehicle location classifications are noted as indentures.

- (1) Class 0 Manual Monitoring. No AVM
 - (a) Piloting
- (2) Class I AVM. No Modification to Urban Environment (Existing RF Links)
 - (a) Officer Update
 - (b) Dead Reckoning
 - (c) Navigation (Using Existing RF Beacons)
- (3) Class II AVM. Autonomous Signposts Throughout Urban Area

- (4) Class III AVM. Sparsely Distributed Special RF Sites
 - (a) Triangulation
 - (b) Trilateration
- (5) Class IV AVM. Monitored Signposts Throughout Urban Area
 - (a) Vehicle Proximity
- 1. Class 0 Manual Monitoring; No AVM. This baseline (piloting) class is included in the listing of vehicle location techniques purely for comparative purposes. In Class 0, the location monitoring methods (Figure 1) range from those relying solely on the dispatcher's memory, through manually updated mechanical and visual aids, to keyboard-updated computer displays which keep current each vehicle's location and status based on verbal or digital communications between dispatcher and vehicle.
- 2. Class I AVM with no modifications to urban environment. All AVM systems require the installation of certain equipment in the command center to accomplish the automation of vehicle monitoring. All AVM systems also require the installation of some device in or on the monitored vehicles. But systems in Class I require nothing further, though they perforce utilize RF resources.

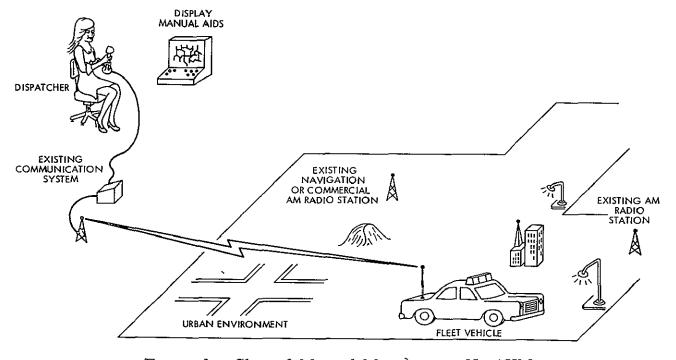


Figure 1. Class 0 Manual Monitoring, No AVM

A typical Class I AVM configuration is shown in Figure 2. Each AVM command center must contain a display subsystem, a vehicle location computer, a vehicle polling subsystem, and a telemetry data/polling handler, which are described in Section IV. Each vehicle requires location sensors, a data processor, a telemetry data encoder, and a polling processor. Class I AVM systems are based upon a variety of location techniques and algorithms which include the following: (a) Officer update techniques, in which the functions of the vehicle's sensors and its data processor are performed by an occupant of the vehicle. (b) Deadreckoning systems are included if the requisite updating does not require the installation of fixed location reference equipment in the environment. (c) If the AVM systems use existing navigation beacons or AM broadcasting stations, they are also included in Class I because the required stations are assumed to be part of the urban environment.

3. Class II AVM with autonomous signposts throughout urban areas. The defining characteristic of Class II AVM systems is the installation of autonomous signposts in strategic wayside or buried locations at intersections throughout the covered urban area. These location reference sites are autonomous in that they communicate their identity only to the vehicles and not to the command center.

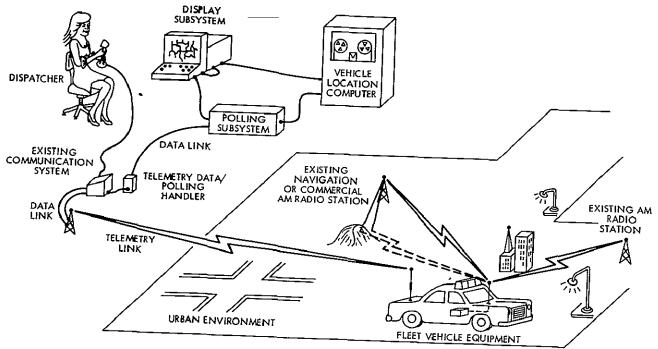


Figure 2. Class I AVM; No Modifications to Urban Physical Environment

The location information provided by the signposts to the vehicle may be either an identification code or the geographic coordinates of the location. Since the vehicle location accuracy provided by systems in Class II is dependent upon signpost spacing, greater accuracy can be achieved in critical areas by locally increasing the signpost density to one per intersection or per lane. A typical Class II system configuration is shown in Figure 3. Signpost systems can be "pure", in that all location information is derived from the fact that a monitored vehicle is (or was) near a signpost; or they can be "hybridized", with the fact of signpost proximity used either to augment, calibrate, or reinitialize the determination of vehicle locations obtained by other means, such as odometers. If a hybrid system does not require a data link in the environment, it is placed in Class II. If the hybrid system requires a data link from the signposts but no special-purpose fixed RF sites, it belongs in Class IV. If it has both a data link in the field and special-purpose fixed sites, it is in Class III.

4. Class III AVM with sparsely distributed special RF sites. This AVM class includes those systems that require the installation of a relatively small number of special purpose fixed RF sites, where a "fixed site" either broadcasts or receives over a relatively large urban area with a radius of 5 to 11 km (3 to 7 miles).

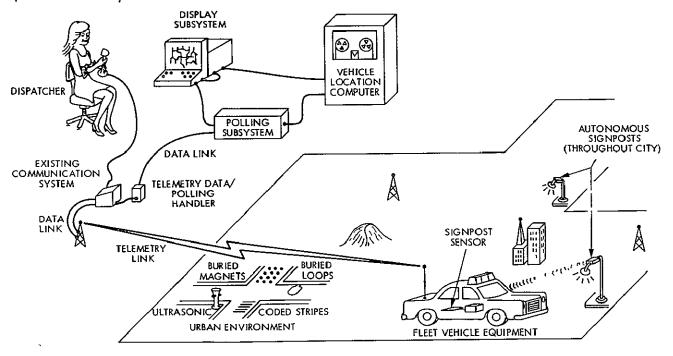


Figure 3. Class II AVM, Autonomous Signposts Throughout Urban Area

Data links in the environment are required to maintain synchronization for triangulation or trilateration purposes. Since the number of fixed sites is relatively small, these data synchronization links could be microwave rather than landline. Figure 4 shows a typical Class III configuration. It is optional only in Class III systems whether the telemetry link from the vehicle be along the existing communication system or through the special-purpose RF sites. In either case, RF resources are utilized for that link.

5. Class IV AVM with monitored signposts throughout urban area. Systems in this class contain monitored signposts installed in strategic wayside or buried locations throughout the covered urban area for the purpose of sensing the proximity and identity of signals transmitted from vehicles. A Class IV data link does not share the use of RF resources with the existing communication system but uses telephone lines, which may make this class of AVM systems very attractive for some applications. A typical Class IV system configuration is shown in Figure 5.

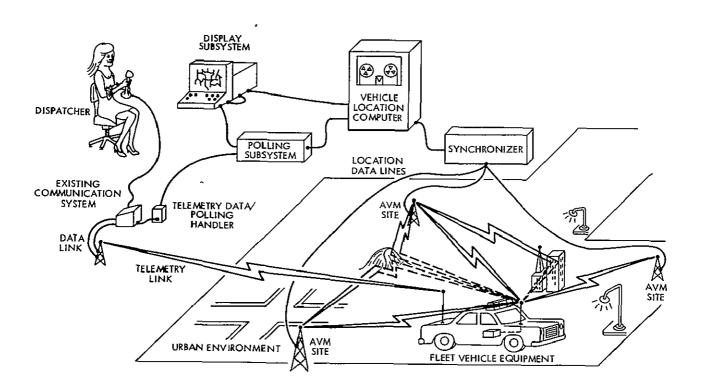


Figure 4. Class III AVM; Sparsely Distributed Special RF Sites

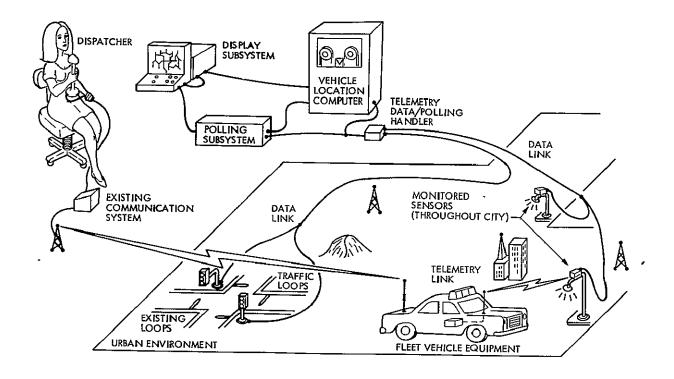
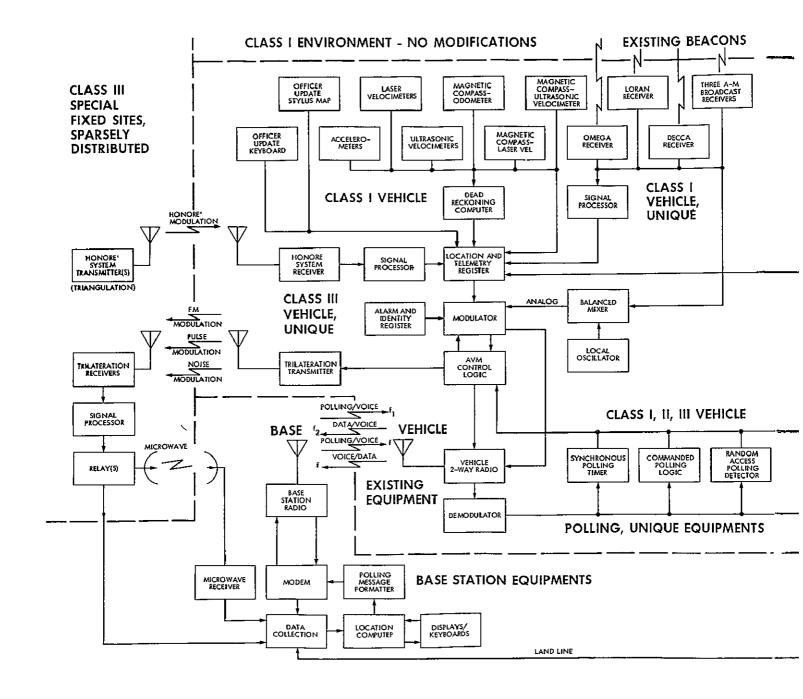


Figure 5. Class IV AVM, Monitored Signposts Throughout Urban Area

IV. VEHICLE LOCATION TECHNOLOGIES AND COSTS

A. PROVED AVM TECHNIQUES


This section contains a narrative description and a compilation of the cost and performance parameters of operational or proved techniques used for automatic vehicle monitoring (AVM). Schemes primarily intended for vehicle identification, such as those used in rail freight or extensions of point-of-sale methods are not included. In this report, the vehicle monitoring techniques are categorized into five broad classes, based on system element types and functions: Class 0, Manual Monitoring, no augmentation of location information; Class I AVM, no additions to the urban environment; Class II AVM, densely distributed autonomous signposts; Class III AVM, sparsely distributed special transmitting/receiving fixed RF sites; and Class IV AVM, densely distributed monitored signposts. In Table 1, the proved vehicle location methods are listed by AVM Class along with estimated costs (as of 1974) for unique system-required equipments installed in each vehicle and at each signpost or special fixed site.

1. Functional diagram correlating various AVM techniques. In order to make equipment and cost comparisons, a functional block diagram combining the elements that make up all of the AVM techniques was generated. This block diagram (Figure 6) demonstrates the equipment and functional commonality among the various techniques. In most techniques, the functional elements can also be physically identical, such as the location/vehicle ID/status register. Variations in costing such elements are due to other factors, such as achievable location precision, fleet size, and amount of status telemetry desired which all affect register length but are technique independent.

Figure 6 illustrates the numerous optional methods available for performing the vehicle location function which make AVM system comparisons difficult. For example, the various Class I techniques can either process the location data on the vehicle or transmit the raw data to the base station. In the Class III techniques, the vehicles may be polled either through the normal 2-way radio or through a special telemetry link used for vehicle location purposes.

Table 1. AVM Classes, Systems and Costs of Functional Elements Installed

AVM Class and System	Elemen	t Costs, \$	AWA Characa A Cantana	Element Costs, \$			
AVW Class and System	Vehicle	Fixed Site	AVM Class and System	Vehicle	Fixed Site		
Class 0. Manual Monitoring No Vehicle Location Inform	Augmenta atıon	tion of	Class II Autonomous Signposts T Urban Area	'hroughout			
Class I. No Modifications to Urbar (Existing RF Links)	Environm	ment (1) Active signposts		<u> </u>			
(1) Officer update systems	 		Low frequency	145	165		
(a) Keyboard entry	120	0	Citizen band, VHF	145	145		
(b) Stylus map	2535		X-band beacon	160	275		
•	2535	0	(b) Ultrasonic signposts	170	160		
(2) Dead reckoning systems	—		(c) Optical, infrared	170	155		
(a) Two accelerometers	500	o	(d) Buried antennas	135	120		
(b) Two velocimeters			(2) Passive signposts				
(b) Iwo velocimeters			(a) Buried Magnets	95	110		
' Laser, orthogonal	715	0-	(b) Reflective patterns	ļ — ļ			
Laser/compass	805	0	Coded on signposts	580	85		
Ultrasonic	485	0	Coded on roadway	135	125		
• • • • • • • • • • • • • • • • • • • •	403	0	(c) Buried resonant loops	135	95		
(c) Odometer/compass		——	Class III. Sparsely Distributed S	pecial RFS	ites		
Magnetic compass	285	0	(1) Trilateration systems				
Gyro compass		ا ه ا	(a) Phase TOA				
(3) Navigation, existing beacons		·	Narrow-band	100	5, 000		
(5) Navigation, existing beacons	_		Wide-band	2,965	11,000		
(a) OMEGA systems			(b) Pulse TOA	1,435	14, 500		
Differential	1580	o	(c) Interferometer, noise	885	9, 000		
Relay OMEGA	455		(2) Triangulation systems				
•	455	0	(a) Rotating beams (HONORÉ)				
(b) LORAN (A, C, or D)	_		(b) Direction finding	50	27, 500		
Differential	2680	0	Class IV Monutored Signposts T	hroughout			
Relay LORAN	505		Class IV Monitored Signposts Throughout Urban Area				
ŕ		_	(1) Radio receivers				
(c) DECCA System	1010	0	(a) Wayside	135	260		
(d) AM Broadcast stations	365	0	(b) Buried antennas	145	265		
			(2) Ultrasonic receptors	185	280		
			(3) Optical, infrared detectors	185	270		
] [

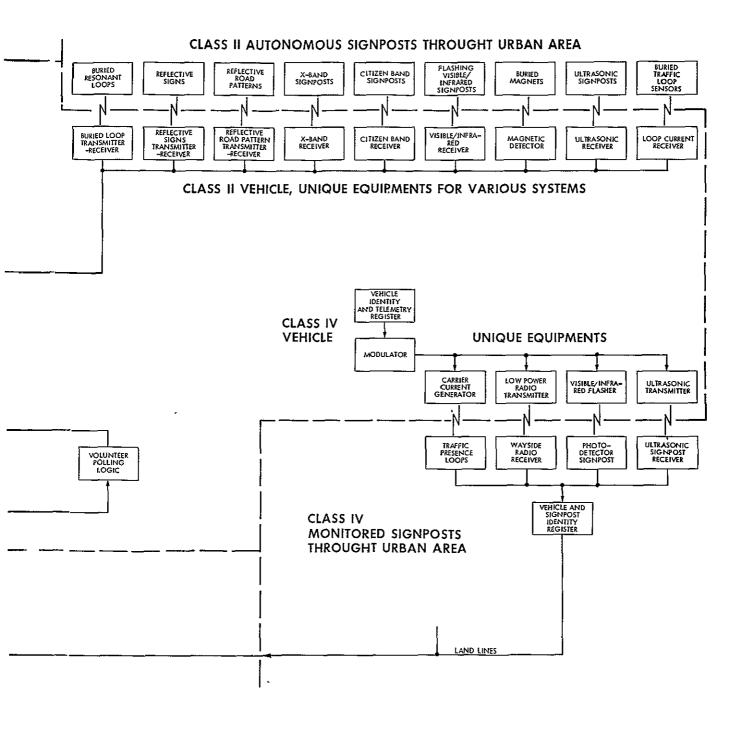


Figure 6. AVM Systems Showing Common and Unique Equipments for Vehicles, Signposts, and Base Stations

Class I, II, and III techniques may use any of the various vehicle polling techniques. Polling does not apply to the Class IV monitored signposts. The consideration of which polling method is to be used may depend heavily on whether or not equipments requiring digital communication have already been installed.

2. Technical and cost parameters. Virtually every technical performance and cost estimate parameter of a particular vehicle location technique is system-dependent. The AVM system accuracy, the numbers of fixed sites, the message lengths, the data rates, the base station computing, the information displays, software, and RF channel requirements are all functions of the particular application. Some functional elements and performance factors can be determined to a limited extent, such as the cost and coverage radius of the various signposts, RF beacons and traffic presence sensors in Classes II, III, and IV; and also the cost and minimum message requirements of the vehicle sensors and data processors in Class I.

In order that cost estimates could be made for the various AVM techniques, extremely simplified block diagrams of the unique functional elements associated primarily with the vehicle location process were developed. That is, only the vehicle sensor and AVM fixed sites associated with the particular technique were considered. These cost figures accompany each of the descriptions and considerations of the method in the following section.

B. AVM COST CONSIDERATIONS

In addition to the costs associated with the vehicular and fixed site functional elements required for the basic location process, there are the costs of yearly maintenance and vehicular radio additions or modifications for transmitting and receiving AVM signals. Estimates of the vehicular costs (as of 1974) for each class of AVM are presented in Table 2. In this table, the radio cost and the radio modification columns represent optional choices. That is, the radio modification cost is not applicable where a separate radio for AVM signals is selected.

The costs for fixed sites equipment, installation, operational maintenance, data link, and mileage charges per mile per month are summarized in Table 3 for Classes II, III, and IV.

Table 2. Vehicle Equipment Costs* for All AVM Classes and Systems

!!EHCOST	•	UHL C	OSTS PE	P ∪EHICLE	Itt 4.	
TECHNIQUE CLASS I	SENSOP	PPOC.	PADIO	PAD.MOD	IdST	011
FEYBOAPD STYLUS MAP 2-ACCELEPOMETEPS LASEP VELOCIMTP ULTPASOMIC VELO COMPASS ODOMETEP COMPASS LASEP VEL CMPSS U-SOMIC VEL OMEGA LOPAN DECCA AM-STATIONS DIFF. OMEGA DIFF. LOPAN DIFF. AM-STA. PELAY OMEGA PELAY LOPAN CLASS II	45 2465 466 506 276 265 385 2566 266 230 2506 2506 315 375 425	40 35 1000 1000 1000 1000 1000 0 0 0 0	1200 1200 1200 1200 1200 1200 1200 1200	50 50 200 200 200 200 200 200 200 150 150	35 35 166 135 166 156 166 36 36 36 36 36 36	15 25 160 150 150 30 30 75 75 60 100 100
BUPIED PES. LOOPS PEFLECTING SIGNS PEFLECTING POAD ::-BAND POST HF. WHF POST LF POST LIGHT I-P POST BUPIED MAGNETS ULTPASONIC POST TPAFFIC SENSOP CLASS III	90 430 75 120 105 100 95 50 95	0 0 0 0 0 0 0	1200 1200 1200 1200 1200 1200 1200 1200	50 50 50 50 50 50 50 50	;5 150 50 ;0 -0 -5 -5 -5 40	15 20 15 10 10 15 25 0 25
NAP-BAND FM PHASE WID-BAND FM PHASE PULSE T-O-APPIMAL NOISE COPPELATION DIPECTION FINDEP CLASS IM	60 2875 2575 785 35	ម ម ម ម ម	1200 9 0 9 9	165 30 0 0 0	40 90 150 100 15	25 25 25 25 9
TRAFFIC LOOPS WAYSIDE PADIO PHOTO I-P DETECT ULTPASONIC DETECT	80 75 115 125	9 9 9 9	0 0 0	3 9 9	65 40 70 65	10 10 15 15

^{*} Costs as of 1974.

Table 3. Fixed Site Costs* for Class II, III, and IV AVM Systems

FI: EDCOST		AUL COST PE	EP SITE IOP	UHIT: IH	\$ LIHE
TECHNIQUE	EOUIP	INST	11-0		PENT
CLASS I FENBOARD	9	Ŋ	អ្វី	0	ម
3TYLUS MAP	Ð	Ð	ğ	j	Ö
2-ACCELEPONETEPS	õ	õ	õ	õ	ū
LASEP MELOCINTP ULTPASONIC MELO	១ ១	ე მ	មិ មិ	0 0	0 0
COMPASS ODOMETER	Ũ	Ö	Ð	9	Õ
COMPASS LABER MEL	g	ភ្	3	ยี	0
CMPSS U~SOMIC MEL	0 Э	ម ម្	0 0	Ü Ö	<u>ű</u> Ú
ONEGA Lopari		ម ស្វ	3	j	0
JECCA	9	9	J	Ü	ij
AN-STATIONS DIFF: ONEGA	მ მ	ឮ ឮ	3 0	<u>8</u> 3	.₫ *.a
DIFF: UNEGA DIFF: LOPAN	j	0	j	0 0 0	ů ů
⊃IFF∙ ÅN—5TA•	អ៊	- <u>1</u>	មិ	อ	ij
PELAY ONEGA PELAY LOPAN	១ ១	0 5	() ()) ច	ៀ ភ្
CLASS II	F1	ر	ย	£	발
BUPIED PES. LOOPS	13	17	មិ	Ĵ	Ð
PEFLECTING SIGNS PEFLECTING POAD	55 5	3J 39	5 25	Ū J	Ū Ō
::-3AHD POST	230 230	3-9 4-5	15	9 J	ŭ
HF. MHF POST	1៦មី	45	15	ឭ	ũ
LF POST LIGHT I~P POST	125	45 35	15	មី ទ	<u>i_1</u>
SUPIED MACHETS	901 S	37 37	25 9	<u>0</u> 0	j 8
ULTPASONIC POST	35	a5	1Ū	១	8
TPAFFIC SEMSOP CLASS III	95	<u>.</u> 40	Ð	Ð	Ø
HAP-BAND FN PHASE	4500	500	500	25	5
WID-BAND FM PHASE	9500	1500	500	2979	Ð
PUĹSE T-O-APPIMAL NOISE COPPELATION	12999 7599	2500 1500	500 500	2000 2000	8 8
DIRECTION FINDER	, วยย 26899	1500 1500	200 1200	25	9 5
CLASS I''					-
TPAFFIC LOOPS WAYSIDE PADIO	165 160	113 113	18 35	13 13	- ∓
PHOTO I~P DETECT .	160 170	113	25 25	13 13	다 구
ULTPASONIC DETECT	150	113	25	13	4

^{*} Costs as of 1974.

Additional costs associated with each AVM technique when configured as a system are the base station costs and the vehicle polling system costs, given in Table 4. The base station is assumed to include the vehicle location computer, the peripherals, the dispatcher displays, software, and yearly operational maintenance.

1. Vehicle cost parameters. Vehicle costing for an AVM system is a straightforward multiplicative process of determining the total cost to equip all vehicles in the fleet with the appropriate AVM sensor, data processor, vehicle polling equipment, and radio modification; motorcycles are not considered. If a separate radio link is deemed necessary for AVM purposes, then this additional cost must be added.

If the vehicle fleet has already been equipped with digital message entry devices (DiMED), keyboards, hard-copy printers, gas-plasma or cathode-ray displays, then some of the functional elements required for an AVM system have been established. Prior installation of digital message equipment was not considered in the costing of vehicular equipment.

2. <u>Fixed site costs.</u> Site costs unique to AVM systems are considered only in Classes II, III and IV. In determining the system costs, the number of installed units must first be determined. The design algorithms for fixed sites are dependent on the density distributions of intersections, road segments, and lanes, and on the area to be covered.

Most of the Class II AVM techniques that rely on radio ID signals are configured and costed on the basis of one autonomous signpost per intersection. The exception is the HF signpost which is configured on the basis of one unit for each four intersections because of the greater coverage radius. The reflective pattern signs techniques require two installations for each road segment because of the geometry constraints between vehicle and sign, whereas the traffic presence sensors require one installation for each road segment because of the nature of the normal installation. Buried loops and magnets require an installation per lane in each road segment. In addition, each installation is actually a multiple installation; i.e., there must be sufficient loops or magnets to provide adequate coding for each road segment. The cost estimates for fixed sites were based on an average of 2.4 lanes for each road segment, i.e., about 1 four-lane road for each 6 two-lane roads.

Table 4. Base Station Costs for All AVM Classes and Systems

BASECOST

AUL BASE STATION COSTS IN THOUSANDS OF \$

TECHNIQUE	SrtL.	COMPUT MED	TEP LGE	IMST	#-Ü	DISP	SML	SOFTHAI MED	PE LGE
CLASS I	51 IL	1 11-20	ا	#11 m 1	O 11	21-21			
LEMBOAPD	30	40	60	10	100	3	10	20	30
STYLUS MAP	30 30	÷0	59	10	100	3	19	20	30
2-ACCELEFONETEPS	-0 -0	60	80	10	100	3	25	25	50
LASER VELOCINTA	-ŏ	60	30	10	100	ą	25	35	50
ULTPASONIC MELO	- <u>0</u> +Ů	69	80	10	100	į	25	3 5	50
COMPASS ODOMETER	÷ថិ	69	30	10	100	3	25	35	50
COMPASS LASEP MEL	B	60	30	10	100	nnnnnnnnn	25	35	50
CMPSS U-SOHIC MEL	4Đ	60 60	3 0	19	100	3	25	35	4Ð
OriEGA	30 30	50	7g	10	199	3	20	30	÷ij
LOPAN	30	ΞŐ	÷ō	10	100	3	20	38	÷Ū
DECCA	39	59	7.ā	19	100	3	20	30	40
A,1-STATIOHS	30	50	79	10	100	3	20	30	÷Ö
DIFT. ONEGA	33	<u>-</u> 50	[–] ព្	10	100	3	20	30	÷ឦ
DIFF. LOPAN	30	30	70	15	1.00	3	20	30	41
DIFF- 8M-STA-	30	59	70	ΔŪ	100	3	20	36	÷J
PELAY DIEGA	30	50	7ឆ្នាំ	19	100	3	20	30	-Ū
PELA'' LOPAH	30	50	ិម៌	10	199	3	20	30	÷Ū
CLASS II									
BUPIED PES. LOOPS	20	49	60	10	1ូម៉ី	00000000	19	20	30
PEFLECTING SIGNS	30	40	60	10	100	3	10	20	30
PEFLECTING POAD	30	41]	60	1មិ	1មិមិ)	1ច	3.FI	30
,'-3AND POST	3-3	40	ંઇ	19	100	3	10	20	30
HF: MHF FOST	30	ਜ਼ਹੀ	ōΘ	19	100	3	10	20	30
∟r Post	30	ֆ	50	10	100	3	10	20	30
LIGHT I-P POST	30	40	69	13	199	3	1មី	20	30
BUPICO MAGHETS	30	_ <u>Ľ</u> j	60	19	100	3	10	20	30
ULTRASONIC POST	30	ΨŪ	មិមិ	10	100	3 3	19	20	39
TPACFIC SEMSOP	30	루 턴	68	1ម	100	3	19	20	30
CLASS III						_			=
MAR-SAND FM PÄASE	33	80	137	8	100	3.	20	4Ð	60
UID-BAHD FM PHASE	나년	70	70	10	200	3	25	50	100
PULSE T-O-APPIMAL	166	250	250	10	175	3	35	70 70	199
MOISE COPPELATION	190	250	250	10	175	3	35	7g	199
DIPECTION FINDER	15	30	60	10	150	3	15	30	60
CLASS I''		_				- .	4.5	20	***
TPAFFIC LOOPS	39	÷ម្ចី	69	10	100	3	10	20 20	30 36
uayside PADIO	30	48	60	10	100	3	10	20 30	36 20
PHOTO I-P DETECT	30 20	40	6មិ	10	100	<u> </u>	10	20 36	30 20
ULTFASONIC DETECT	30	40	មម	19	100	3	10	26	39

Costs as of 1974.

The number of loops at each lane segment was that sufficient to provide a unique base-2 code for each road segment. The number of magnets used is half this value since spaces can be used to provide approximately half the coding bits (magnet for "one", space for "zero").

Since the Class III synchronized RF sites are more sparsely distributed, their numbers are estimated on the basis of urban area for the selected phase and pulse time-of-arrival techniques. The radius of coverage for narrow-band and pulse systems, based on prior tests and experiments, is set at 5 km (3 miles). In addition, the requirement that, wherever possible, four or more antennas should cover the given area is imposed. This procedure provides data for least-squares computation as opposed to the analytic "flat earth" solution of vehicle location. The wide-band antenna coverage radius is set at 11 km (7 miles), based on prior tests. Design algorithms were established from the rectangular model cities data as follows:

Number of narrow-band and pulse sites =
$$6 + \frac{\text{area in km}^2}{10}$$

Number of wide-band sites =
$$4 + \frac{\text{area in km}^2}{40}$$

The number of fixed sites in the southern California UGAC cities was determined from geometrical gridlined overlays superposed on outline maps of the cities. The outline and site locations for the cities are depicted in figures that accompany Part 2 of this Report. A minimum number of fixed sites for noise correlation and direction finding was established, recognizing that this number is probably insufficient for all but the smallest cities.

Class IV monitored signposts were configured and costed on the same basis as the equivalent Class II devices. Telephone line rental is, however, included in the site costs where applicable as the line should be considered an equipment cost as opposed to an operation cost.

3. <u>Base station costs.</u> Base station equipment costs were estimated on the basis of both urban area coverage and fleet size. The station's computer costs were estimated on the basis of area, and the software costs were based on fleet size. This separation of cost elements is only partially defensible. It is assumed that a minicomputer is usually used to support the AVM function with varying amounts of bulk storage (disc) to accommodate the city map for output display.

Exceptions are in the Class III time-of-arrival (TOA) methods, where larger machines are assumed. The pulse and noise-correlation techniques also require a larger computer with more speed and versatility than can be provided by a minicomputer because of the inherent capability of servicing many more vehicles per unit time and the need to accommodate a large number of inputs in real time. The software estimate based on fleet size is also difficult to justify totally. Much reliance was placed on prior work estimates and on the judgements of systems analysts.

Three estimates each of base station computer and software costs were made based on model city parameters for small, medium and large cities. For the UGAC cities, the costs were determined based on the urban areas and the total fleet size, excluding motorcycles, using linear interpolation.

Display equipment costs are included in the base station costs on the basis of the actual number of dispatchers in the case of UGAC cities. For the model cities, the costs are estimated on the basis of 1 display console for each 50 vehicles or less.

- 4. <u>Installation costs</u>. Equipment installation costs were obtained by multiplying the cost per unit vehicle and the cost per fixed site installation by the appropriate number of units. Toegether with the base station installation cost, they make up the tabulated total cost. A constant cost value is assumed for the base station, which is a rounded average value of prior estimates made in conjunction with AVM deomonstration tests.
- 5. Operation and maintenance costs. The estimates of O M costs for equipment installed in vehicles, at fixed sites, and the base station are based on experience values for both mobile and fixed equipments. In the base station, the principal cost element is for operation and maintenance personnel. Three persons (one per shift) were assumed in all AVM techniques to provide software support or equipment service. Although this assumption may not be justifiable, it was believed that AVM is a comparitively new technology which will probably interface with computer-aided dispatching and digital message systems and that additional service personnel would be required for a substantial time period after the initial installation.

V. VEHICLE POLLING AND LOCATION PERFORMANCE

Four classes of vehicle polling are considered for AVM Systems:

(1) Synchronous, (2) Commanded or random access, (3) Synchronous with

Command capability, and (4) Volunteer or contention. All four techniques are
generally applicable to Class I and II AVM Systems. Synchronous polling and
synchronous with command are used mainly in Class III Systems. For the Class

IV monitored signpost systems, which use land lines, polling by radio is not
applicable in the context used in this description.

All polling techniques are suitable for half-duplex (base station and vehicle on the same frequency), but when the base station relays all vehicle transmissions or when each vehicle monitors all other vehicles, then the Volunteer technique can only be used on full-duplex (base and vehicle on different frequencies).

- 1. Synchronous polling. In this technique, each vehicle transmits location data at a preselected time within the fleet polling sequence. Equipment on the vehicle keeps track of the start of the sequence and internally determines when its time to respond occurs. The cost of the vehicle polling equipment installed (as of 1974) is about \$270.
- 2. Synchronous with command capability. This polling technique allows the base station to modify the position of each vehicle in the polling sequence. The cost of the vehicle equipment installed is about \$365.
- 3. Commanded or random access polling. In this technique, the base station sends a request to each vehicle whenever location data is required. This technique is the most flexible but requires more use of available RF time.
- 4. Volunteer polling. This contention method requires that each vehicle determine whether the channel is "clear" before transmitting. The cost of vehicle equipment installed is about \$170.

These vehicle polling techniques were evaluated with both a simple one-time radio message transmission and with redundant transmissions where every message is sent twice. The digital message rate is set at 1500 bps. Where equivalent RF channels are assumed, a channel spacing of 25 kHz is used. Message lengths are about 20 bits, or occupy about 15 millisec transmission time. Delays due to equipment turn-on times reduce the achievable polling rate.

PART ONE: AVM COST BENEFIT INFORMATION BASE

G.R. Hansen

CONTENTS

			Page
PART	ONF.	AVM COST BENEFIT INFORMATION BASE	1-1
I.	Per	formance and Costs of Proved AVM Techniques	1-1
	Α.	Class O Manual Monitoring: No AVM	1-1
	B.	Class I AVM: No Modification to Urban Environment	1-1
	c.	Class II AVM: Autonomous Signposts Throughout Urban Area	1-5
	D.	Class III AVM: Sparsely Distributed Special RF Sites	1-8
	E.	Class IV AVM: Monitored Signposts Throughout Area	1-10
II.	Veh	icle Polling and Location Performance	1-12
	A.	Vehicle Polling Techniques and Costs	1-13
	B.	Vehicle Polling and RF Link Evaluations	1-13
	c.	Location Performance Parameters	1-14
III.	Urb	an Characteristics That Affect AVM Costs	1-15
	Α.	City Model Parameters for AVM System Design	1-15
	В.	Small Model City AVM Cost Summary Tables	1-17
	C.	Medium Model City AVM Cost Summary Tables	1-18
	D.	Large Model City AVM Cost Summary Tables	1-19
IV.	AVI	M System Accuracies and Cost Benefits	1-20
	A.	System Parameters That Affect AVM Costs	1-20
	В.	Estimated Cost Savings Based on Urban Parameters	1-20
v.	Con	nputer Programs for Analyses of AVM Needs	1-23
	A.	AVM System Synthesis Computer Program	1-23
	B.	AVM System Simulation Computer Program	1-25
Re	efer en	ces	1-26
В	ıblıogr	aphy	1-26
		AVM DATA FOR USER GROUP ADVISORY ITEE (UGAC) CITIES	2-1
PART A'		E. ANALYTICAL TECHNIQUES FOR ESTIMATING STEM ACCURACY	3-1-
PART Al		. AM BROADCAST AND BURIED LOOP FEASIBILITY SES FOR AVM USE	4 -1

FIGURES

Fig. No.		Page
1-1.	Class I AVM Officer Update Option, Using Keyboard Entry	1-1
1-2	Class I AVM Officer Update Option, Using Stylus Map	1-2
1-3	Class I AVM Kinematic Sensor Using Two Accelerometers	1-3
1-4	Class I AVM Orthogonal Laser Velocimeter	1-3
1-5	Class I AVM Magnetic Compass with Laser Velocimeter	1-3
1-6	Class I AVM Magnetic Compass with Ultrasonic Velocimeter	1-3
1-7	Class I AVM Magnetic Compass with Odometer	1-4.
1-8	Class I AVM Normal and Differential OMEGA Navigation	1-4
1-9	Class I AVM Relay OMEGA Navigation System	1-4
1-10	Class I AVM Normal and Differential LORAN Navigation	1-4
1-11	Class I AVM Relay LORAN Navigation System	1-5
1-12	Class I AVM DECCA Navigation System	1-5
1-13	Class I AVM AM Broadcasting Station Navigation Systems	1-5
1-14	Class II AVM Low-Frequency Wayside Radio Signposts	1-6
1-15	Class II AVM Citizên Band or VHF Wayside Radio Signposts	1-6
1-16	Class II AVM X-Band Wayside Radio Signposts	1-6
1-17	Class II AVM Autonomous Ultrasonic Signposts	1-7
1-18	Class II AVM Flashing Visible or IR Light Signposts	1-7
1-19	Class II AVM Active Buried Antenna Traffic Sensors	1-7
1-20	Class II AVM Buried Magnets as Location Identifiers	1-7
1-21	Class II AVM Sensor of Reflective Patterns on Signposts	1-8
1-22	Class II AVM Sensor of Reflective Patterns on Roadway	1-8
1-23	Class II AVM Sensor of Passive Buried Resonant Loops	1-8
1-24	Class III AVM Narrow-Band FM Phase TOA Trilateration	1-9
1-25	Class III AVM Wide-Band FM Phase TOA Trilateration	1-9
1-26	Class III AVM Pulse TOA Fixed Site T_{r} ilateration	1-9
1-27	Class III AVM Noise Correlation TOA Trilateration	1-9
1-28	Class III AVM Direction Finding from Special RF Sites	1-10
1-29	Class IV AVM Monitored Wayside Radio Receivers	1-10
1-30	Class IV AVM Monitored Traffic Presence Sensors	1-10
1-31	Class IV AVM Monitored Ultrasonic Wave Receptors	1-11
1-32	Class IV AVM Monitored Photo or IR Detectors	1-11
1-33	Vehicle Synchronized Polling for AVM Classes I, II, III	1-12
1-34	Vehicle Commanded Polling for AVM Classes I, II, III	1-12
1_35	Vehicle Volunteer Polling for AVM Class II Systems	1_13

FIGURES (CONT)

Fig. No.		Page
1-36	Vehicle Polling Intervals vs 95% AVM System Accuracy	1-21
1-37	Concept for AVM System Synthesis Computer Program	1-24
1-38	Concept for AVM System Simulation Computer Program	1-27
	TABLES	
Table No.		Page
1-1	Vehicles Polled/Second/RF Channel For 0 Sec	1-13
1-2	Vehicles Polled/Second/RF Channel For 0.01-Sec Turn-On	1-13
1-3	Vehicles Polled/Second/RF Channel For 0.03-Sec Turn-On	1-14
1-4	Vehicles Polled/Second/RF Channel For 0.1-Sec Turn-On	1-14
1-5	Vehicles Polled/Second/RF Channel For 0.3 Sec Turn-On	1-14
1-6	Location Performance Parameters for All AVM Classes and Systems	1-16
1-7	Model City Parameters That Affect AVM Costs	1-16
1-8	Small Model City Parameters Used in AVM Cost Analysis	1-17
1-9	Small Model City AVM Cost Summary	1-18
1-10	Small City Vehicle Polling	1-18
1-11	Medium Model City Parameters Used in AVM Cost Analysis	1-18
1-12	Medium Model City AVM Cost Summary	1-18
1-13	Medium City Vehicle Polling	1-19
1-14	Large Model City Parameters Used in AVM Cost Analysis	1-19
1-15	Large Model City AVM Cost Summary	1-19
1-16	Large City Vehicle Polling	1-19
1-17	Small Model City Cost Benefits from AVM System Usage	1-22
1-18	Medium Model City Cost Benefits from AVM System Usage	1-22
1-19	Large Model City Cost Benefits from AVM Systems Using One RF Channel	1-22
1-20	Large Model City Cost Benefits from AVM Systems Using Two RF Channels	1-22
1-21	Operating Sequence of AVM System Synthesis Computer Program	1-23
1-22	City and Fleet Input Data for AVM System Synthesis Program	1-23

I. PERFORMANCE AND COSTS OF PROVED AVM TECHNIQUES

Costs and performance parameters of 36 operational or proved techniques used for automatic vehicle monitoring (AVM) are described and illustrated in this section. Schemes that are primarily intended for vehicle identification, such as those used in rail freight or extensions of point-of-sale methods are not included. In this Report, the vehicle monitoring techniques are categorized into five broad classes, based on system element types and functions: Class O Manual Monitoring, with no augmentation of location information; Class I AVM, with no additions to the urban environment, Class II AVM, using densely distributed autonomous signposts, Class III AVM, using sparsely distributed special transmitting/receiving fixed RF sites, and Class IV AVM, using densely distributed monitored signposts. Estimated special equipment and installation costs are as of 1974.

A. Class 0 Manual Monitoring. No AVM

This is the baseline vehicle location technique against which other systems should be compared. A manual monitoring system consists of a dispatcher, an existing real-time communication system, and a fleet of vehicles. The dispatcher's knowledge of vehicle locations depends upon voice communications with the officers in the vehicles. Even in the manual vehicle monitoring class, there are several options that affect both performance and costs. The dispatcher can, for example, rely strictly upon his knowledge of each vehicle's designated location or patrol area and its subsequent assignments. Alternatively, he can use some of his RF resources (channels and air time) to interrogate and obtain actual vehicle locations vocally.

A relatively wide range of options is available to the dispatcher for use with Class O non-automated vehicle monitoring. The simplest visual location aid is just a map on which the assigned beat areas are permanently marked, the dispatcher relying on his memory to locate the vehicles on the map. Numbered magnets or lights may be used which may be updated manually to augment his memory. Elaborate electropotical display devices are available, which indicate each vehicle's last known location, status, and anticipated destination, all driven by manual input.

The dollar cost of a purely manual vehicle management system is almost bound to be competitive, but the use of RF resources could be prohibitive, and the attainable dispatching performance is also an open question. With an AVM system, the closest available vehicle can quickly be dispatched in response to a service request. Analyses indicate that response times are reduced and fleet efficiency is increased by up to 7%, permitting a reduction in fleet size and in operating costs.

B. <u>Class I AVM.</u> No Modification to Urban Environment

- 1. Officer update. Vehicle location data may be encoded automatically by means of manually operated devices installed in the vehicle, such as keyboards or stylus maps.
- a. Keyboard entry. This manual data input technique for providing automatic vehicle location data at the base requires the officer to enter some code or identifying numerical sequence on a digital keyboard (Fig. 1-1). keyboard can be either the device being used for sending digital messages or a separate unit. The location code can relate to a particular street segment and/or intersection and would probably be four or five digits in length. The vehicle location code is transmitted to the base station either by "Touch-Tone" or some other digital modulation techniques. Volunteer or random-access vehicle polling is most suitable for this technique. The AVM system accuracy is dependent on the code used; that is, either (1) the nearest intersection if only streets or intersections have codes, (2) a particular block on a street if each segment is coded, or (3) the location in a block if street segment is followed by address digits of closest property parcel. The automatic computational requirement is a table look-up function to translate the code to a geographical location. While this AVM technique is low in cost, particularly if a digital message entry device (DiMED) is already installed, it is extremely slow and requires much memorization on the part of the patrolling officers. If the car is out of the normal beat, either a map or street guide would have to be used by the officer for reference to determine the code.

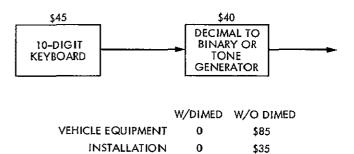
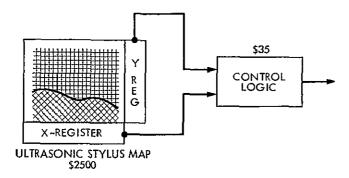



Fig. 1-1. Class I AVM Officer Update Option, Using Keyboard Entry

b. Stylus map. This officer update technique is a manual method whereby the patrolling officer indicates his vehicle's location by pressing the appropriate spot on a special map (Fig. 1-2) with a stylus. The map-and-holder combination encodes the spot where the pressure is applied, and the digital code is sent to the base station. The location polling process can be either in response to a request or volunteered

as part of a transmission from the vehicle. Location accuracy is dependent on the scale of the map and on the holder encoding technique. For example, a 20 x 25 cm (8 x 10 in.) portion of a 7.5-minute U.S. Geological Survey topographic map (scale 1 24000) would cover an area of 6 x 4.8 km (3.6 x 3 mi). If this information were encoded by 5 binary bits (1 in 32) on each axis for a 10-bit location code, then the location could be achieved within a rectangle of about 190 x 150 meters (600 x 500 ft). By increasing the encoding to 12 bits or using a map with half the scale, the size of the vehicle's location rectangle could be decreased by one-half in each dimension. Maps of other beats would probably be required by each officer together with some means of identifying when these maps were in use. The base station computation requirement is a table look-up function to translate the code to a geographical location.

VEHICLE EQUIPMENT \$2500 INSTALLATION \$ 35

Fig. 1-2. Class I AVM Officer Update Option, Using Stylus Map

- 2. <u>Kinematic sensors</u>. Changes in vehicle location may be sensed either by accelerometers, velocimeters, or odometers.
- a. Two accelerometers. Dead reckoning, which can measure the change in location of a vehicle, can be mechanized with two accelerometers (Fig. 1-3). These devices would measure the rate of change of velocity of the vehicle in the horizontal plane of the vehicle in both the foreand-aft and sideways directions. The outputs of the two accelerometers can be used to compute velocities attained as well as changes in direction and distance during a selected time interval. The computations can be performed on-board the vehicle and the results transmitted to the base station, or the outputs of the accelerometers can be encoded and transmitted directly to the base station.

A U-turn made at a speed of 10 m/sec (23 mph) in a 4-lane street about 18 m (60 feet) wide is about the limit of vehicle turning performance. This turn would result in about a 0.8-g indication of lateral motion for just over 3 seconds. If the accelerations are sampled and transmitted every 0.03 second, then the 16 data bits each time would lead to a data rate of 4800 bits/sec. Based on personal rapid transit studies, the "comfort"

zone of vehicle operation is in the less than 0.2-g range. If most accelerations experienced by the vehicle are maintained in this 0.2-g region, then a 1% full-scale error during a low-g maneuver causes these normal measurements to be in error by 4% or more.

- b. Orthogonal laser velocimeters. This kinematic sensor technique is based on prior work by G. Stavis (Ref. 1), which used a laser velocimeter (Fig. 1-4) and compass (Fig. 1-5). In this scheme, the laser would be used to measure not only the forward velocity of the vehicle, but also that velocity component which occurs during turns and is at a right angle to the foreand-aft motion. All portions of the vehicle which are not located on the turning axis experience some side velocity during a turn. The sign and magnitude of this velocity component is a function of the distance from and location with respect to the turning axis. If both forward and side velocities are measured at the same point remote from the turning radius, then the velocities at this point provide a means to keep track of the vehicle motion. The operation of the laser velocimeter is based on the speckle pattern observed in the reflection of coherent laser light from a surface that moves relative to the source. The speckles tend to move in the opposite direction to the relative motion between the laser source and the reflecting surface. By passing the reflected laser light through a diffraction grating and then to a photodetector, a signal can be derived with a frequency that is a direct measure of the velocity of the reflecting surface. The velocity measured is that at right angles to the rulings on the grating. Two photo detectors and two gratings with the rulings at right angles provide the means to measure the two components of motion of a single laser spot. Investigators in the cited work (Ref. 1) indicate that a laser velocimeter's dynamic range is of the order of 2500 to 1 and that the maximum and minimum measurable velocities are primarily a function of the rulings on the grating. For example, a vehicle velocity range of 50 m/sec to 2 cm/sec (115 mph to 0.05 mph) could be accommodated, and turning rates of 0.01 radian/sec (0.6 0/s) could be detected. Maximum data bit rates of about 5000/sec for speed and 100/sec for turning may require in-vehicle computation.
- c. Ultrasonic velocimeters. The use of ultrasonic waves for intrusion detectors, motion sensors, and distance measuring is well established. The doppler frequency shift of a reflected sound wave from the road surface can form the basis of a velocimeter (Fig. 1-6). An ultrasome wave directed at an angle at the road surface will reflect a doppler-shifted frequency proportional to the cosine of the angle of incidence times the surface velocity. For example, if a 33-kHz frequency is chosen which has a wave length of about 1 cm directed at a 45-degree angle to the road surface and traveling at 50 m/sec (115 mph) will yield a doppler shift of about 10%. If a dynamic range of 2000:1 can be achieved, a minimum velocity of 2.5 cm/sec (0.05 mph) can be detected. If the velocimeters are mounted on each side of the vehicle and the differential velocities are measured to the same 2.5 cm/sec, then minimal directional changes of 12 mrad (about 0.7 deg) can be detected. This precision is on the order of that achieved with the differential odometer, described later.

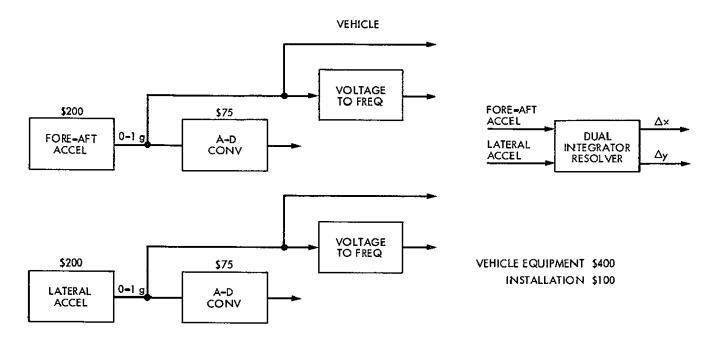


Fig. 1-3. Class I AVM Kinematic Sensor Using Two Accelerometers

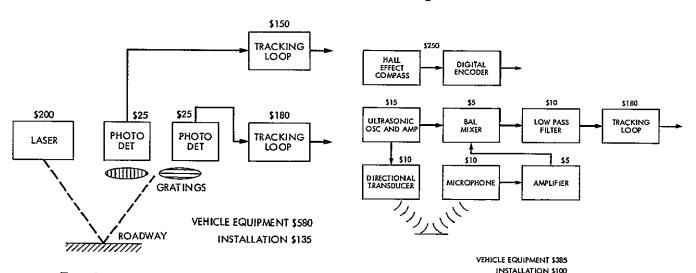


Fig. 1-4. Class I AVM Orthogonal Laser Velocimeter

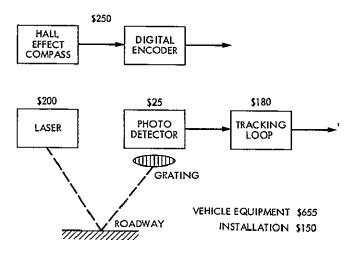


Fig. 1-5. Class I AVM Magnetic Compass with Laser Velocimeter

Fig. 1-6. Class I AVM Magnetic Compass with Ultrasonic Velocimeter

d. Odometer-Compass. Dead reckoning with compass and odometer (Fig. 1-7) has been tested, built and furnished to several armed forces (U.S., Canada, Britain) as a means of keeping track of military vehicles in off-road situations. The systems have all achieved some measure of success, and all have included onboard computation to indicate position in northings and eastings (Y- and X-coordinates). Accuracies within 0.6 to 2% of the distance travelled have been demonstrated. Error sources are the inaccuracies in the odometer measurement and compass heading. The odometer is affected by tread wear and wheel slip maneuvering. Compass heading is influenced by local anomalies, and proposed filtering techniques have included measuring the steering gear angle, vertical component of the field, and limiting direction change as a function of vehicle speed. At present, gyro compasses are not suited for vehicular applications.

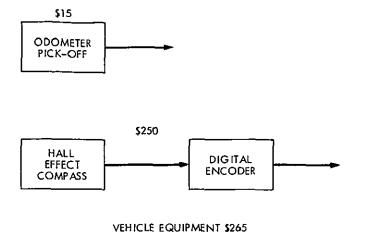
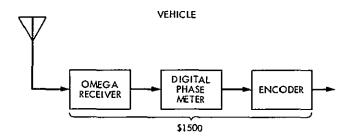
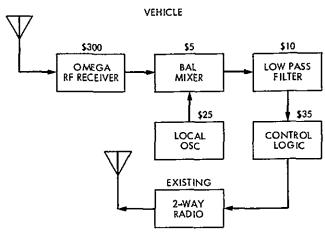



Fig. 1-7. Class I AVM Magnetic Compass with Odometer

INSTALLATION \$ 20

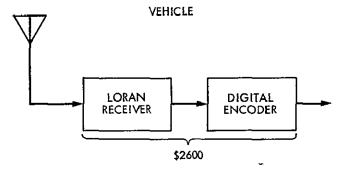
- 3. Wide-area navigation. The three principal wide-area navigation schemes use synchronized radiolocation beacons. They are hyperbolic techniques which operate in three different modes: OMEGA, LORAN, and DECCA.
- a. OMEGA. This navigation scheme (Fig. 1-8) uses very low frequency (10-13 kHz) time-multiplexed RF signals. The relative phase of the



VEHICLE EQUIPMENT \$1500 INSTALLATION \$ 80

Fig. 1-8. Class I AVM Normal and Differential OMEGA Navigation

signals, transmitted on the same frequency in sequence from several sites, defines a set of lines of position (LOP). At the intersection point of the LOPs is the receive location. There are ambiguities in position since the phase patterns repeat every 15 km-or so. Differential OMEGA is a technique for reducing the effects of local anomalies. A fixed receiver at a precisely known location is used to remove these anomalies over a 15 to 30 km radius through continuous monitoring of the received signals.


b. <u>Relay OMEGA</u>. In this technique (Fig. 1-9), the vehicle rebroadcasts the raw OMEGA signals on another frequency to the base station. The base station then measures the phase differences and computes the LOPs. This is a time-consuming operation as each vehicle would have to transmit the entire OMEGA sequence lasting several seconds.

VEHICLE EQUIPMENT \$375
INSTALLATION \$ 80

Fig. 1-9. Class I AVM Relay OMEGA Navigation System

c. LORAN. This technique (Fig. 1-10) uses combined pulse and phase time-multiplexed RF signals for determining LOPs. Pulsed signals from three or more stations are transmitted 10 to

VEHICLE EQUIPMENT \$2600 INSTALLATION \$ 80

Fig. 1-10. Class I AVM Normal and Differential LORAN Navigation

- 33 times a second in coded groups. The receiver measures the time of arrival difference from given pairs of signals to determine the LOP. No ambiguity exists, and each LOP is unique geographically. Differential LORAN also uses fixed site receivers to remove local propagation anomalies.
- d. Relay LORAN. In this system (Fig. 1-11), the received signals are retransmitted to a base station for time differencing. Some bandwidth compression is required and is used in a technique called LOCATES in order to retransmit the 90 to 110 kHz LORAN over voice communication channels. The 20-kHz bandwidth signals are reduced to 3 to 7 kHz for retransmission. The higher repetition rates of LORAN make relaying more feasible than in OMEGA.

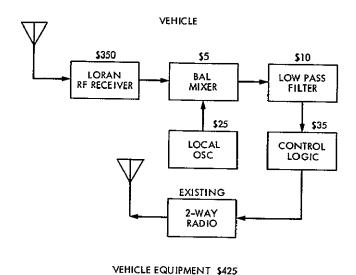
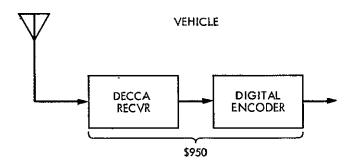
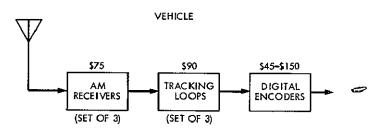



Fig. 1-11. Class I AVM Relay LORAN Navigation System

INSTALLATION \$ 80

e. <u>DECCA</u>. The DECCA system (Fig. 1-12) is a continuous-wave phase-difference technique in which each transmitter operates on a different, but harmonically related, signal to other transmitters. The location is determined by simultaneous reception and comparison of the phase of the signals. Since the LOPs determined by the phase measurements are not unique, special signals are transmitted frequently to enable the determination of the correct one.



VEHICLE EQUIPMENT \$950 INSTALLATION \$ 60

Fig. 1-12. Class I AVM DECCA Navigation System

f. AM Broadcasting stations as radiolocation beacons. Carrier signal frequencies, being transmitted from three commercial broadcasting stations located around a city's perimeter, can each be separately received and multiplied by relatively low-cost in-vehicle equipment to synthesize a new common frequency. These three identical frequencies can be made relatively phase coherent. Virtual hyperbolic patterns of navigational LOPs are generated by the signals received

from each pair of AM stations. These LOPs can serve as the basis for a reliable AVM system (Fig. 1-13). A vehicle's starting position is first noted and recorded at the central command base. When the vehicle moves, the phase differences produced in the three signal frequencies are measured on-board, and the number of times that the phase pattern is repeated can be counted on-board. This digital information is then sent to the base where a minicomputer converts it to the vehicles new geographical location. In Part Four of this report, this AVM system is described in detail.

	NORMAL	DIFFERENTIAL
VEHICLE EQUIPMENT	\$200	\$3 15
INSTALLATION	\$ 50	

Fig. 1-13. Class I AVM AM Broadcasting Station Navigation Systems

C. Class II AVM: Autonomous Signposts Throughout Urban Area

All autonomous signpost location techniques rely on the vehicle coming near or passing over an instrumented geographical location. The instrument, located at an intersection or road segment, is usually a continuously radiating device sending out a uniquely coded message, either radio, light, IR, ultrasound, or magnetic. The vehicle is equipped with a suitable receptor to receive and store the message for subsequent retransmission to the base station and in this way inform the base as to the last instrumented location passed.

1. Radio frequency signposts. Most of the techniques use RF signals as the medium for the short-range link from wayside or roadway signpost to vehicle. These signals, which may range from low frequencies (190 kHz) through VHF to X-band (10 GHz), require the equipment shown in Figs. 1-14, 1-15, 1-16. Elevated locations for the signposts are usually selected to achieve a larger coverage area, freedom from blocking by large vehicles, and to lessen the probability of vandalism. Vehicle location accuracies of the Class II AVM systems are a function of the radius of influence and density of the signposts, and similarly the message repetition rate from the post must increase as the radius of influence decreases to ensure complete message reception by a fast moving vehicle.

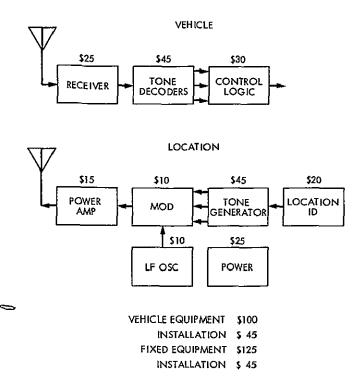


Fig. 1-14. Class II AVM Low-Frequency Wayside Radio Signposts

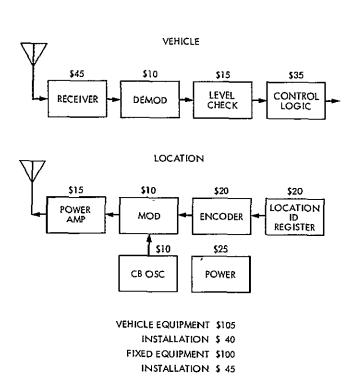


Fig. 1-15. Class II AVM Citizen Band or VHF Wayside Radio Signposts

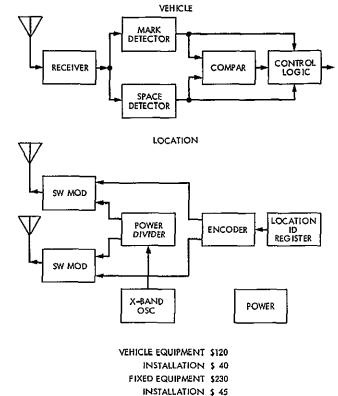
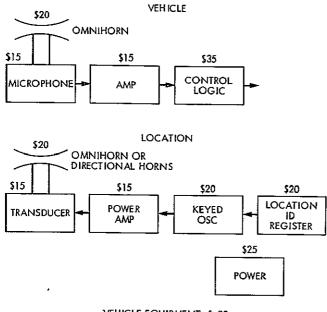
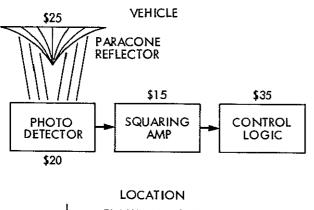
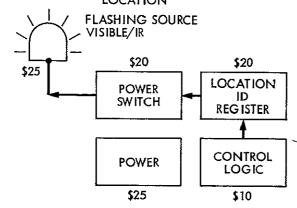



Fig. 1-16. Class II AVM X-Band Wayside Radio Signposts


Since active electronic signposts require some primary power source, difficulties may be encountered in general applications if reliance is placed on either street lighting circuits or traffic signals. In some applications, alternate power sources will be necessary. Options other than utility power are long-lived batteries, solar, and radioisotope sources.


- 2. Ultrasonic and photo or IR signposts. Ultrasonic and light radiation are possible practical approaches to the message link to avoid further RF congestion and interference to other services. The ultrasonic waves (Fig. 1-17) are similar in length to X-Band RF (less than 1 cm), and "horn" antennas can be designed for focusing sound to a desired coverage area. The flashing light approach (Fig. 1-18), either visible or infrared, is also a practical short-range information transfer method. Both of these techniques are, however, somewhat hindered by weather conditions, particularly fog, rain, and wind.
- 3. Buried active antennas. The buried antenna approach using existing traffic-presence sensor loops as electronic signposts (Fig. 1-19) is currently being tested in San Francisco and New York as a toll authority billing technique for equipped buses. In these systems, the antenna (buried loop) interrogates continually and receives responses from instrumented buses so that the buses may be billed for toll fees without having to stop. The use of traffic sensor loops as antennas is a practical implementation for electronic signposts and has an added advantage in that weather-proof enclosures and power are available in the traffic signal controller.

VEHICLE EQUIPMENT \$ 85 INSTALLATION \$ 85 FIXED EQUIPMENT \$115 INSTALLATION \$ 45

Fig. 1-17. Class II AVM Autonomous Ultrasonic Signposts

VEHICLE EQUIPMENT \$ 95

INSTALLATION \$ 75

FIXED EQUIPMENT \$100

INSTALLATION \$ 55

Fig. 1-18. Class II AVM Flashing Visible or IR Light Signposts

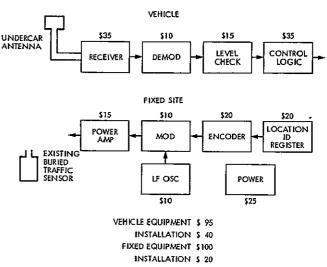


Fig. 1-19. Class II AVM Active Buried Antenna Traffic Sensors

4. Buried magnet autonomous location identifiers. Buried permanent magnets are used to provide a means of passive proximity location identification (Fig. 1-20). In this concept, rows of permanent magnets are installed along vehicle lanes to provide a means of inducing a voltage in a sensing coil mounted on the vehicle. The magnets could be either placed in drilled holes in the pavement or propelled into the surface by using an explosive-actuated concrete fastener tool. Magnets in the rows have either N or S poles up to provide binary identification of the location. The sense coil in a forward moving vehicle would detect signals of different polarities depending on the vehicle direction across the magnetic field. Reasonably strong magnets must be used, both to be detected in the presence of the earth's field, which is about 0.5 gauss, and to withstand added spacing that could be created by street resurfacing.



Fig. 1-20. Class II AVM Buried Magnets as Location Identifiers

5. Reflective paint patterns on signposts and roadways. Other passive techniques require that the vehicle continually interrogate the area travelled either by low-frequency RF or light radiation. In the case of the reflective wayside sign (Fig. 1-21) or pattern on the road (Fig. 1-22), the vehicle must be in a fairly precise position to

receive a response — less in the case of the road pattern than the wayside sign.

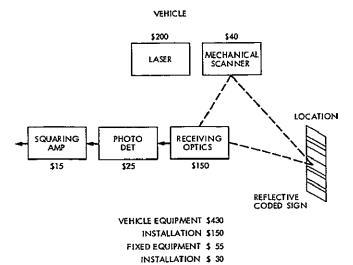
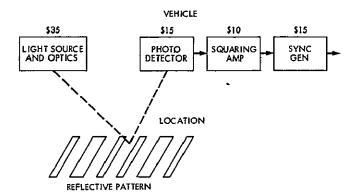



Fig. 1-21. Class II AVM Sensor of Reflective Patterns on Signposts

VEHICLE EQUIPMENT \$ 75
INSTALLATION \$ 60
FIXED EQUIPMENT \$ 5
INSTALLATION \$120

Fig. 1-22. Class II AVM Sensor of Reflective Patterns on Roadway

6. Passive buried loops. The passive buried loop (Fig. 1-23) requires that the vehicle, equipped with under-car antennas, pass over and excite the loops to obtain a response. Results of a detailed analysis of the buried loop coupling are included in Part Four of this report.

D. Class III AVM. Sparsely Distributed Special RF Sites

This class of AVM systems encompasses those vehicle location techniques of the trilateration rho-rho (range-range) and triangulation thetatheta (angle-angle) types with sparsely distributed RF sites primarily intended for medium or small urban area coverage, 7 km (4 mi) to 11 km (7 mi) radius.

1. <u>Trilateration Systems</u>. Included in the rho-rho systems are trilateration techniques which measure the time-of-arrival (TOA) of a signal emanating from a vehicle at several fixed receiving sites. Each pair of time differences

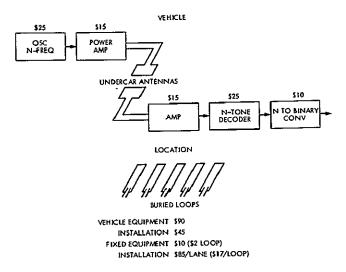
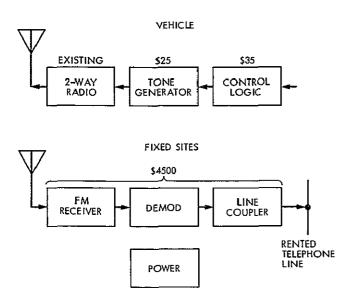


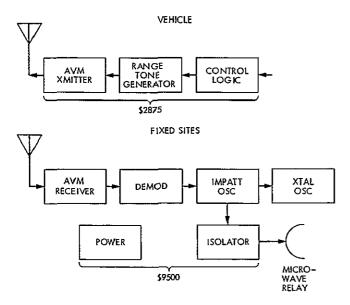
Fig. 1-23 Class II AVM Sensor of Passive Buried Resonant Loops

forms a hyperbolic line-of-position (LOP). The intersection of these LOPs establishes the position of the vehicle. This information may be sent to the base station from the site by leased telephone lines or by microwave transmissions.


Hyperbolic trilateration methods tested have used either a pulsed (or keyed) carrier from the vehicle or an audio-tone frequency modulating a carrier. The pulse systems measure the TOA of the signal and establish the range differences directly. The tone trilateration systems measure the relative phase of the audio tone at the receiving sites, and the phase difference measurement then determines the range difference.

The tested tone phase TOA trilateration methods used 2.7 kHz and approximately 18 kHz frequencies whose phase patterns repeat at 111 km and 16 km, respectively. These AVM systems have been termed narrow-band (Fig. 1-24) and wide-band (Fig. 1-25) since the first can be accommodated in a narrow-band FM voice channel (25 kHz) while the second requires eight times the bandwidth or four adjacent channels (100 kHz). In comparison, the pulse TOA method (Fig. 1-26) utilizes up to 10 MHz of bandwidth to preserve the leading edge of the pulse.

Another wide-band trilateration method is based on interferometer techniques. As currently envisaged, each vehicle would transmit a carrier signal modulated with either white or P-N sequence noise (Fig. 1-27). These signals would again be received at the several sites, and by correlation computation the time differences of arrival would be established. Since only the signals from one vehicle would show substantial correlation, it would be possible but not necessary to have all vehicles broadcasting the noise modulated signals simultaneously. The effects of multipath on trilateration techniques have been analyzed and modeled by George Turin (Ref. 5).


2. Triangulation Systems. The direction finding methods proposed would measure the azimuth angle of the vehicle signal at several fixed sites (Fig. 1-28). The intersection of the extension of these bearing angles would be the position of the vehicle. Multipath in this method would probably cause uncertainty in the angle of arrival of the vehicle signal leading to

approximately the same accuracy limitations as those for trilateration. Of the Class III AVM systems delineated, the direction finding and narrow-band phase TOA would allow the use of the normal vehicle transceiver. The pulse, wideband phase, and noise modulation TOA methods would require an additional AVM transmitter.

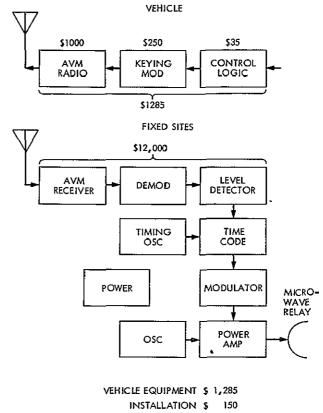

VEHICLE EQUIPMENT \$ 60
INSTALLATION \$ 40
FIXED SITE EQUIPMENT \$4,500
INSTALLATION \$ 500

Fig. 1-24. Class III AVM Narrow-Band FM Phase TOA Trilateration

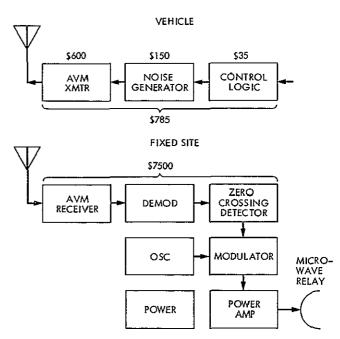

VEHICLE EQUIPMENT \$2875 (CUBIC)
INSTALLATION \$ 90
FIXED SITE EQUIPMENT \$9500
INSTALLATION \$1500

Fig. 1-25. Class III AVM Wide-Band FM Phase TOA Trilateration

FIXED SITE EQUIPMENT \$12,000 INSTALLATION \$ 2,500

Fig. 1-26. Class III AVM Pulse TOA Fixed Site Trilateration

VEHICLE EQUIPMENT \$ 785 INSTALLATION \$ 100

FIXED SITE EQUIPMENT \$7500

INSTALLATION \$1500

Fig. 1-27. Class III AVM Noise Correlation TOA Trilateration

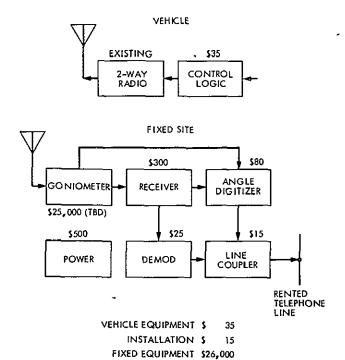


Fig. 1-28. Class III AVM Direction Finding from Special RF Sites

E. Class IV AVM, Monitored Signposts Throughout Urban Area

INSTALLATION \$ 1,500

This class of AVM techniques is an inversion of the Class II autonomous wayside or buried signposts and removes the data collection link responsibility from the vehicle. In Class IV AVM, a vehicle-to-signpost link (Fig. 1-29) is maintained, but the information flow is the vehicle's identity to the monitored signpost. data link to the base station or central collection point is based either on telephone lines rented from the local utility of on call-box lines for police and fire use. Since individual lines from each signpost are usually not considered economically practical, it is usually proposed to group the signposts on "party lines". The "party line" approach requires that each signpost not only transmit the vehicle ID data received but also identify itself to the central collection point at the base station. The telephone line is an additional complication to the Class IV installation, and a prime power connection is still required.

A technique of using the buried loop-sensors, which actuate traffic signals, as receiving antennas (Fig. 1-30) can be used in the monitored Class IV as in the autonomous Class II signpost method. This is an especially attractive approach if the signals are centrally controlled because dedicated communication lines are usually already installed. Ultrasonic as well as photo/IR detectors could also be used on monitored signposts (Figs. 1-31, 1-32).

In Class IV, the vehicle polling function is replaced either by line-finding, as is used in normal telephone service, or by a continual scanning of the lines to find an "off hook" indication that a signpost on one of the party lines has information to forward.

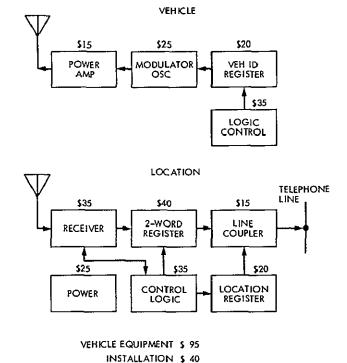


Fig. 1-29. Class IV AVM Monitored Wayside Radio Receivers

INSTALLATION \$100

LOCATION SENSOR \$160 CB, X, MF-BAND

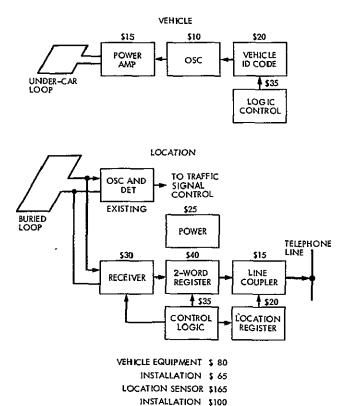


Fig. 1-30. Class IV AVM Monitored Traffic Presence Sensors

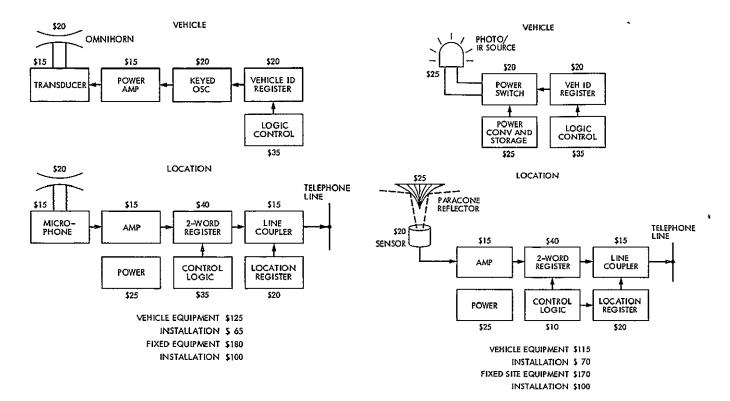
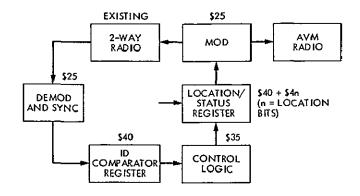


Fig. 1-31. Class IV AVM Monitored Ultrasonic Wave Receptors

Fig. 1-32. Class IV AVM Monitored Photo or IR Detectors

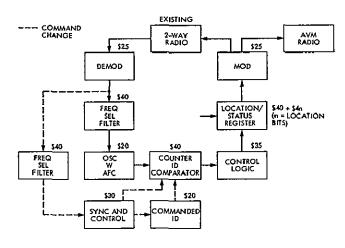
II. VEHICLE POLLING AND LOCATION PERFORMANCE

A. Vehicle Polling Techniques and Costs


Four general classes of vehicle polling are considered for AVM Systems: (1) Synchronous, (2) Commanded or random access, (3) Synchronous with command capability, and (4) Volunteer or contention. All four techniques are generally applicable to Class Land II AVM systems. Synchronous polling and synchronous with command are used mainly in Class III AVM systems with sparsely distributed special signposts. Volunteer polling is usually considered only for low-density Class II autonomous signpost systems. For the Class IV monitored signpost systems which use land-lines, vehicle polling by radio is not applicable in the context used here.

All of the polling techniques are suitable for half-duplex (base station and vehicle on the same frequency), but when the base station relays all vehicle transmissions or when each vehicle monitors all other vehicles, then volunteer polling can only be used on full-duplex (base and vehicle on different frequencies).

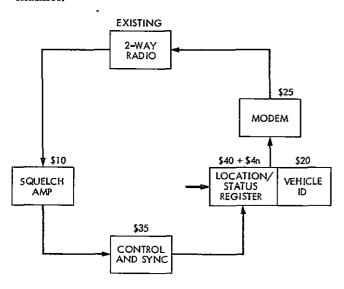
In Class I and II AVM systems where the currently installed 2-way radio is to be used for AVM purposes, speed-up modifications are required. These changes to antenna switching, transmitter stabilization time, and squelch delay are necessary to reduce the substantial guard time required between transmissions from vehicles adjacent in the polling sequence or to reduce the transition time interval from receive to transmit in Commanded or random access polling.


A modification of the Volunteer polling method only allows location data to be transmitted as a precursor or brief interruption of voice transmissions, but this technique has limited application. Interrupted speech as a technique in other polling methods relies on very short transmit onoff-on sequences for a vehicle currently using voice when another vehicle responds with data.

- 1. Synchronous polling. In this technique, each vehicle transmits location data at a preselected time within the polling sequence. The equipment on the vehicle keeps track of the start of the polling sequence and internally determines when the appropriate time to respond occurs. The functional elements of Synchronous polling are shown in Fig. 1-33. The fact that the start of the polling sequence must be periodically transmitted to each vehicle for correction purposes leads to the capability of the base station to modify the time when the vehicles are to respond in the polling epoch.
- 2. Synchronous with command capability. This technique allows the base station to modify the position of each vehicle in the polling sequence. The additional functional elements for the command option are shown in Fig. 1-34 connected by dashed lines to the elements required for synchronous polling.

VEHICLE EQUIPMENT (\$165 + \$4n)
INSTALLATION \$40
FAST TURN-ON SQUELCH MODIF
\$50

Fig 1-33. Vehicle Synchronized Polling for AVM Classes I, II, III



VEHICLE EQUIPMENT \$315 + \$4n INSTALLATION \$ 50

Fig. 1-34. Vehicle Commanded Polling for AVM Classes I, II, III.

- 3. Commanded or random access polling. Commanded polling requires that the base station send a request to each vehicle whenever location data is required. This random access technique is the most flexible but requires substantially more use of available RF time than the synchronous method or the synchronous with command capability. The elements required for the commanded polling method are shown in Fig. 1-34.
- 4. Volunteer polling. This contention method of sending location data requires that each vehicle determine if the channel is "clear" before transmitting. A mechanization is shown in Fig. 1-35. Some technique of providing a random delay in each vehicle after determining that the channel is clear and before transmitting is usually necessary

to preclude certain vehicles from dominating the channel.

VEHICLE EQUIPMENT \$130 + \$4n INSTALLATION \$30

Fig. 1-35. Vehicle Volunteer Polling for AVM Class II Systems

B. Vehicle Polling and RF Link Evaluations

The three vehicle polling techniques: Synchronous (SYN), Volunteer (VOL), and Random (RAND) or commanded were evaluated with both a simple one-time radio message transmission and with redundant transmission, where every message is sent twice. In all cases, the digital message rate is set at 1500 bps. Where equivalent RF channels are assumed, a channel spacing of 25 kHz is used.

Any delays in the polling processes will tend to reduce the number of vehicles which can be accommodated by an RF channel. Therefore all of the delays are lumped into one parameter called turn-on time. Thirty two of the Class I, II and III AVM techniques were evaluated in both the simple and redundant modes of the three polling methods. The range of turn-on times examined was from 0 to 0.3 second, in five steps. This range is sufficient to estimate the performance of full-duplex radios with separate antenna circuits relative to half-duplex with electromechanical antenna transfer relays. Tables 1-1 through 1-5 are compilations of the vehicles polled per second per RF channel. Each table includes a theoretical maximum entry which is the 1500 bps rate divided by the number of bits in the location message. Included under Class II techniques are small and large entries as the location message length is a function of the number of instrumented intersections, therefore data are provided for both small and large urban areas. Since the Class III techniques in general are not amenable to volunteer (VOL) polling methods, no VOL calculations were made for this class. Also, with the exception of direction finding and narrow-band phase location, transponder type radio equipment is required which does not have the same order of delays.

Table 1-1. Vehicles Polled/Second/RF Channel For 0 Sec Turn-On

CAPS TECHNOUE CLASS I KE 730/RAP STYLUS HAP STYLUS HAP S-ACCELEPOHETEPS LUSEP VELOCITIF ULTRISHIC VELO COUPASS/ORITER COUPASS/	PEP SECOND F THEO THEO THEO THEO THEO THEO THEO THEO		IPLE	DITH DI: PRIO 72 54 53 53 63 63 63 63 63 63 63 63 63 63 63 63 63	7FEPEN 31N 69 734 54 54 54 54 23 23 23 24 29 1	FEDU	NG PAPE PAPE Co 232 232 232 232 232 232 21 19 21 18 21	
TECHNITOUE CLASS II EUPIED RES LOOPS REFLECTING SIGNS REFLECTING PORD X-DHND POST HF, UNF POST LE POST LIGHT/I-R FOST SUPIED NAGMETS ULTPHSONIC POST TPAFFIC SENSOR	THEO INAL INAL INAL INAL INAL INAL INAL INAL	SYN CN L150 44 150 44 150 167 167 167 167 167 167 150 167 167 167 167 167 167 167 167 167 167	STRPLE NOL GRANT NOL GRANT NOL GRANT NOL GRANT NO. 1888 5-7 1895 5-7 1805 5-7 1805 5	PAND CHILG 198 54 188 54 110 102 110 103 116 105 116 105 116 105 116 105 105 116 105 105 105 105 105 105 105 105 105 105			OL I	#25\~\$6\$6688\$\$\$8685\%\\\$\$\$ #2
CLASS III TECHNIQUE NAR-BRID FN PHASE HID-BRID FN PHASE PULSE T-O-ARPIVAL HOISE CORRELATION DIRECTION FINDER	DIH RF CHANNELS 1 4 400 200 1	67 409 1000 1000	SIMPLE VNC F 7 0 1 0 106	AND 47 10	QI IO	86 \$1710 34 206 10000 1600	10	T HND 25 U00 000 3

Table 1-2. Vehicles Polled/Second/RF Channel For 0.01-Sec Turn-On

	PEP SECOND	PEP PF	CHARNE	, WITH	DIFFEREN	POLL	106	
TECHNIQUE	THEO	SI	LIPLE			ΓEΣ	UIDAIT	
CLASS I	113.	CVH	UUL	PAHO	SAR	VOL		
PET BOAPD	137	53	42	30	~i	27	15	
CTYLUS NAP	દ4	76	35	26	30	22	13	
2 ACCELEPONETEPS	103	52	34	-8	35	24		
LASER VELOCINTP	-14	ف.	37	Ĉ7	45	3.	ľ۰۰	
ULTRASONIC PELU	103	52	ડુલ	20	-5	24		
CONFASS/ODDINETER	168	52	Ğ9	ēš	35	24		
COMPASS/LASER UEL	108	52	34	28	35	2-,		
CHPS3/U-SURFIC UEL	195	52	39	28	35	ē,	i-	
ONECA	56	36	29	20	55	17	iz	
Է ՆԲԲՈՄ	⊶ 7	35	27	21	13	i e		
DELCH	50	34	23	22	2ນ	16		
AM-STATIONS	125	Se.	~ i	29	3-4	36		
DIFF UNECA	5⊦	-6	29	23	52	īĒ	12	
DIFF LOPAN	·,-	02 37	27	21	19	Ìь		
DIFF RII-STA	SS	37	20	C3	ಚ	10		
PELM OHEGA	i	1	1	ī	-ī	- ì		
PELR: LUPHN	ā	3	à	ō	ē	Ē	ē	
	-	•	-	-	_	-	-	
TECHRIONE	THEO		CHIPLE			PEDII	THREM	
CLHSS II	机吊木	SM	110F	Fri(I)	\$6	H	VOL 16	¢ (5
	SILLE	SI1/LC	SI1/LG	SHZLG	SIL	LG S	IIVLG CIL	ኒር
BUPIED RES LOOPS	15ย	60	52	ى ح		43	35	18
	24	46	35	26		30	ČŽ	13
PEFLECTING SIGHS	150	60	52	35		13	35	18
	31	16	35	26		36	2.5	1.3
PEFLECTING POAD	150	16 n0	35 52	26 35		36 13	22 55	13 13
PEFLECTING POAD			35 52 35	35	i	13	25	13
PEFLECTING POAD	150	⊢ 0	52	35 46		13 J0	55 72	13 15
	150 34	ьű	52 35	35 46 35		13 -0 46	25 22 27	13
	150 84 167	₩ 63	52 35 5-, 3-	35 46 35 27		13 -0 45 -31	55 22 57 22	13 1 13 14
AND POST	150 34 167 59	10 63 17	52 35 5- 35 58	35 26 25 27 37		13 -0 46 -31 52	05 22 07 22 41	13 15 15 14 14
AND POST	150 34 167 59 215	70 53 17 69 50	52 35 5-, 3-	35 26 25 27 37 24		13 50 46 31 52 34	25 27 28 41 24 24	13 15 13 14 14
A-JAND POST HF, VHF POST	150 84 167 59 215 100	10 53 17 69	52 53 54 58 58 58	35 26 25 27 37 23		13 -0 46 -31 52	25 22 27 28 41 24 37	13 15 15 14 14 14
A-JAND POST HF, VHF POST LF POST	150 34 167 59 215 188 167 99	7 537 69 55 57	52 55 56 58 58 58 58 58 58	35 20 25 27 37 23 15 27		13 00 46 31 52 34 75 31	25 26 27 28 41 27 37 28	13 15 17 17 18 14 18
A-JAND POST HF, VHF POST	150 24 167 29 215 100 167 52 167	2 + 37 4 6 5 37 3	52 35 5-4 58 58 54 36 54	35 46 25 27 37 24 15 27 35		13 -0 46 -31 -52 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6	55 26 27 28 41 27 28 37 28 37 38 37	13 13 14 14 14 15 14
A-JAND POST HF, VHF POST LF POST	150 34 167 59 215 190 167 39	2 5 3 7 4 5 5 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7	52 35 5- 35 58 58 54 36 54 36	35 25 27 37 23 25 27 35 27		13 -0 -4 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5	25 52 54 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	13 15 14 14 14 15 11 18
A-JAND POST HF, VHF POST LF POST LIGHT*I-P POST	150 34 167 59 215 190 167 59 167 59	2 + 3 7 4 5 5 5 7 5 7 8 5 6 5 6 7 5 7 5 7 8	58 55 56 58 58 58 58 58 58 58	35 25 27 37 24 25 27 35		13 -00 -46 -31 -52 -75 -75 -46 -31 -46 -43 -43	52652445252525 5265244552525	13 10 10 14 14 16 11 18 11
A-JAND POST HF, UHF POST LF POST LIGHT/I-P POST BURIED MAGNETS	150 34 167 59 215 196 167 59 167 69 150 84	2 + 3 + 4 6 5 6 7 5 7 8 4 6 5 6 7 5 7 8 4 6 7 8 7 8 7 8 7 8 7	58 55 56 58 58 58 58 58 58 58 58 58 58 58 58 58	35 20 37 37 23 25 25 25 25 25 26		13 50 46 31 52 34 31 34 31 34 31 32 34 31 32 34 31 32 34 31 31 32 34 34 34 34 34 34 34 34 34 34 34 34 34	288584488888888888888888888888888888888	13 15 15 14 14 15 11 18 11 13
A-JAND POST HF, VHF POST LF POST LIGHT*I-P POST	150 34 167 59 215 190 167 59 150 69 150	5 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3	535565855555555555	35 40 55 27 37 24 25 25 25 25 25 25 25 25		13 00 46 31 52 37 13 46 31 40 40 70	5525244552553255	13 13 13 14 14 15 18 11 18 13 13
A-JAHD POST HF, UHF POST LF POST LIGHT'I-P PUST 20RIED HAGNETS ULTRASUNIC POST	150 34 167 59 215 190 167 59 167 59 150 84 167	5 5 8 7 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4	53546585485685548	35 45 37 37 37 35 27 35 27 35 27		13 00 45 43 53 73 73 73 73 73 73 73 73 73 73 73 73 73	80888888888888888888888888888888888888	13 12 14 14 14 15 11 18 13 13 14
A-JAND POST HF, UHF POST LF POST LIGHT/I-P POST BURIED MAGNETS	150 34 167 59 215 190 167 39 150 89 150 84 167 09	5 1848 48 18 18 18 18 18 18	555 46585585555555688	35 45 27 37 24 25 25 25 26 25 27 35 26 35 27		13 00 45 43 53 75 75 75 75 75 75 75 75 75 75 75 75 75	3868888888888388	13 12 14 14 14 15 11 18 13 13 14 18
A-JAHD POST HF, UHF POST LF POST LIGHT'I-P PUST 20RIED HAGNETS ULTRASUNIC POST	150 34 167 59 215 190 167 59 167 59 150 84 167	5 5 8 7 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4	53546585485685548	35 45 37 37 37 35 27 35 27 35 27		13 00 45 43 53 73 73 73 73 73 73 73 73 73 73 73 73 73	80888888888888888888888888888888888888	13 12 14 14 14 15 11 18 13 13 14
A-JAND POST HF, UNF POST LF POST LIGHT/I-P PUST 2URIED HAGNETS ULTRASUNIC POST TRAFFIC SENSOP	150 34 167 59 215 190 167 39 150 89 150 84 167 09	5 1848 48 18 18 18 18 18 18	555 46585585555555688	35 45 27 37 24 25 25 25 26 25 27 35 26 35 27		13 00 45 43 53 75 75 75 75 75 75 75 75 75 75 75 75 75	3868888888888388	13 12 14 14 14 15 11 18 13 13 14 18
A-JAHD POST HF, UHF POST LF POST LIGHT'I-P PUST 20RIED HAGNETS ULTRASUNIC POST	150 34 167 29 215 186 187 39 187 39 157 39 157	5 1848 48 18 18 18 18 18 18	\$\forall 6\forall 8\forall 8\f	35 46 37 27 24 35 27 35 27 35 27 35 27 35 27		130 441 52 4 451 53 451 651 751 750	8384888888848888	13 12 14 14 14 15 11 18 13 13 14 18
A-JAND POST HF, UNF POST LF POST LIGHT/I-P PUST 2URIED HAGNETS ULTRASUNIC POST TRAFFIC CENSOP CLASS III	150 24 167 29 215 167 39 150 84 167 39	2	\$\forall 5 6 8 8 8 8 8 8 8	35 46 55 27 37 24 35 35 26 57 35 26 57 35 26 57 35		130 441 52 4 451 53 451 651 751 750	3868888888888388	13 12 14 14 14 15 11 18 13 13 14 18
A-JAND POST HF, UNF POST LF POST LIGHT'I-P PUST RUFIED HAGNETS ULTRASURIC POST TRAFFIC SENSOP CLASS III TECHNIQUE	150 34 167 39 315 100 167 39 167 39 150 20 150	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	\$\$448888884888888888888888888888888888	35 46 57 37 27 35 27 35 26 57 35 26 57 35 26		13 0 0 43 1 52 4 43 1 53 4 53 1 53 1 53 1 53 1 53 1 53	55 25 25 25 25 25 25 25 25 25 25 25 25 2	13 10 17 14 15 18 11 18 13 14 19 10
A-AND POST HF, UNF POST LF POST LIGHT/I-P PUST BURIED HAGNETS ULTRASURIC POST TRAFFIC CEUSOP CLASS III TECHNIQUE HAP-BRHD FIL PHASE	150 24 167 29 215 167 39 150 84 167 39	7 7 3 1 4 5 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7	\$\$448884848888888888888888888888888888	35 20 37 37 27 35 27 35 26 27 35 26 27 35 26 27 35 26 27		13 00 641 52 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	58 27 28 11 24 37 28 37	13 10 14 14 15 16 17 18 18 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19
A-AND POST HF, VHF POST LF POST LIGHT'I-P PUST RUFLED HAGNETS ULTRASURIC POST TRAFFIC SENSOP CLASS III TECHNIQUE HAP-BURGETH PHASE HIP-SEND FIT PHASE	150 34 167 29 215 100 167 39 167 39 150 250 150 150	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	\$\$5.668856685668888888888888888888888888	35 455 455 455 455 455 455 455 455 455 4		13 00 641 52 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	58 27 28 11 24 37 28 37	13 10 14 14 15 14 18 13 13 14 10 10
A-AND POST HF, UNF POST LF POST LIGHT/I-P PUST BURIED HAGNETS ULTRASUNIC POST TRAFFIC CENSOP CLASS III TECHNIQUE HAP-BRID FII PHASE HID-BRID FII PHASE	150 24 167 29 215 100 205 100 207 207 207 207 207 207 207 2	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	\$34488484848888888888888888888888888888	35 do 35 do 35 do 35 do 35 do 35 do 37 32 37 32 37 35 35 35 35 35 35 35 35 35 35 35 35 35		13 0 0 43 1 52 4 43 1 53 4 53 1 53 1 53 1 53 1 53 1 53	55 22 27 22 27 22 27 22 27 22 27 22 27 22 27 22 27 22 27 22 27 22 27 27	13 13 14 4 4 14 18 18 18 18 18 18 18 18 18 18 18 18 18
A-AND POST HF, UNF POST LF POST LIGHT'I-P PUST 2URIED HAGNETS ULTRASUNIC POST TRAFFIC DEUSOP CLASS III TECHNIQUE HAP-BRID FIT PHASE PULSE T-O-APPLIAL HOUSE COPPELATION	150 34 167 159 215 1100 167 39 167 39 150 867 150 150 150 150	29 29 27 4 50 67 7 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8	525465885485465858586585858585858585858585	35,055,057,057,057,057,057,057,057,057,05		13 00 64 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	55 22 27 22 41 2-7 22 32 22 27 22 27 22 27 22 27 22 27 22 27 27	13 13 14 4 4 14 18 18 18 18 18 18 18 18 18 18 18 18 18
A-AND POST HF, UNF POST LF POST LIGHT/I-P PUST BURIED HAGNETS ULTRASUNIC POST TRAFFIC CENSOP CLASS III TECHNIQUE HAP-BRID FII PHASE HID-BRID FII PHASE	150 24 167 29 215 100 205 100 207 207 207 207 207 207 207 2	29 29 27 4 50 67 7 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8	\$34488484848888888888888888888888888888	35 do 35 do 35 do 35 do 35 do 35 do 37 32 37 32 37 35 35 35 35 35 35 35 35 35 35 35 35 35		13 00 45 13 15 15 15 15 15 15 15 15 15 15 15 15 15	CSS SSS SSS SSS SSS SSS SSS SSS SSS SSS	13 13 14 4 4 14 18 18 18 18 18 18 18 18 18 18 18 18 18

Table 1-3. Vehicles Polled/Second/RF Channel For 0.03-Sec Turn-On

Table 1-5. Vehicles Polled/Second/RF Channel For 0.3 Sec Turn-On

CARO PEP SECONO PER RE CHANNEL WITH DIFFERENT POLITICO
TECHNIQUE THEO SIMPLE PEDUNDANT

CHPS TECHRIQUE	FER SECOND		CHANNEL MFLE	nith di	FFERENT I	POLLING PEDUNDA:	ит
CLH3\$ I	HAK	SAH	HOL	PAHO	Syri	UOL P	AHO
KENBOHRD STYLUS DHP	137 34	67 64	23 21	14 13	23 19	15 17	-
2-HCCELEPOHETERS	100	26	22	14	21	17	-
LASER VELOCINTR ULTERSONIC VELO	94 188	కు కం	55 55	15 1-	51 50	15	<u> </u>
CURTHSS/ODORETER	168	40	55	14	21	17	-
COMPASS/LHSEP VEL	198 193	26 26	55	14 14	21 21	17	7
OHEGA	.56	21	19	12	lo	13	ė
Lorah Decca	47 50	20 20	13 18	15	(+ 15	12 12	6
AN-STATIONS	125	27	23	14	55	17	7
DIFF ONEGH DIFF LOPAN	56 77	2i .0	19 13	12 12	16 1 •	13 13	É
DIFF, RIF-STH	53	55	19	12	16	13	ь
RELAY ONEGA PELAY LOPAN	1 3	1 3	1 3	·3	1 2	1 2	1 0
	ŭ	•	J	•	-	-	-
TECHNIQUE	THEO		SITUPLE			HACHDC35	
CLHSS II	MHX SN/LG	SYN SN/LG	VOL SM/LG	RAND SN/LG	SYH SH/L(YOL SH/LG	PAND CN/LG
TURIED RES LOOPS	150 84	28	26	15 13	24	- 21	Ş
PEFLECTING SIGHS	150	28 24	51 56	15 13	į. 19	. 21	• 87
REFLECTING PORD	150	23	51 52	15	24	21	ź
A-BAND POST	8+ 167	28 24	26	13 15	19 24	25	်
HF, THE POST	89 215	25 29	57 21	13 15	19 26	23	prorpror
LF PUST	10u 167	25 28	26 22	14 15	26 24		8
LIGHT/I-P POST	ეფ 167	25 28	21 26	13 15	5:		7
	39	25	21	10	19	16	ž
BUPIED INCHETS	150 34	28 24	26 41	15 13	24 13		7
ULTPRSONIC POST	167 39	28 25	26 21	15 13	24 19		7878787
TPAFFIC SCHSOR	150	28	56	15	24	21	ė
	84	5+	21	13	19	15	Ē.
CLASS III			CAPS	FEP SECO	CHD		
LECHITOUE	MIN PP CHAMILELS		SIMPLE	Atto		LEDUNG	
NHP-2HID FII PHASE	CHHARELS	53		11111111111111111111111111111111111111		S.IIC 17	KAND I-
UID-BAND FIT PHASE PULSE T-0-HRRIVAL	4 400	31 1000t		26		29 0000	21 19900
NOISE CORRELATION	203	1800	10	30		1000	1666
DIRECTION FINDER	1	5	i	5		3	3

CLASS I	110 -	SYN	VOL	CNAS	SYN	VOL F	THILD
VE 120APD	107	-	4	2	4	4	1
STYLUS IMP	ہن	4	*	4	-	5	ł
C-ACCELEROHETERS	108	4	-	3	**	**	1
LASER VELOCINIS	44	4	t	ź	**	J	1
ULTRASONIC VELO	193	7	4	2	•	**	1
COMPASS/020METEP	163	~	*	جے	-	•	1
COMPHSS/LHSEP VEL	168	~	4	5	-	4	1
CIRCS-VI-SONIC VEL	198	•	4	2	=	*	į.
ONEGR LORHII	56 97	**	7	3	3	4	:
DECCA	50	••	i		3 3 3	333+3051	:
AN-STATIONS	125		4	5		3	i
DIFF ONEGR	5 ₆	7	7	5	7	3	î
DIFF LOFUN	4 7	Ľ.		.5	676 Ca.	ž	i
DIFF HII-STA	Šá	4	4	ě	š	3	ī
RELA: ONECA	1	1	1	ī	1	Ī	1
PELH? LOPAN	3	2	2	2	خ	2	1
			· · · - ·		_		_
TECHNIQUE	THEO		SIMPLE			EDUHDUR	
CLRSS II	11146 311/1.G	SYN SYVLG	SIVAG	rand Sivlg	STATE SHZLO	UOL STATE	PM0 3146
BUPIED RES LOOPS	150	211 CC	SIVEG	2	SIPLU	. 21hro	
POLICE RES COOLS	24	4	7	ج	-		
PEFLECTING SIGNS	150	4		5			
PERCECTING STORE	240 34	4		ē			. ĩ
PEFLECTING ROAD	150	ä		พยายนาย พยายนายนายนายนายนายนายนายนายนายนายนายนายน			. 1
	الدب	٠,		3	-	, 3	1
K-BAND POST	167		**	2	•		. 1
	39	+	4	2	-	, 3	. 1
HF, UNIF PUST	215	4	**	2	-	3	
	163	ڪ	7	2	4	. 3	1
LF POST	167	4	7	5	**		1
	09	7		- 2	- 1		
LIGHT- I-R POST	167 دس	4	~		4		
BUPIED HAGNETS	150	4	3	3	7		
English Thomas	100	4	7	÷	7	. 3	. 1
ULTPRSUITE POST	167	7	4	ž		-	ī
4 2	33			2	4	. 3	1
TPAFFIC SENSOR	150	-	-	2	4		1
	٥.	4	~	c	4	3	
				FEP SEC	Diver		
CLHSS III	IIII PF		SHIPLE	FEP SEU	UIID	PEDUM	ot I'r
TECHNIQUE	CHAHRELS			AND		JYNC	JAM PAND
HRP-SRNS FIL PHRSE	i i	_				-117C	rain C
MID-BAND FM PHASE	å		i	7		3	3
PULSE T-0-HPRIVAL	460	10996		ina m	1	0000	10000
HOISE CORPELATION	200	1000		100		1000	1000
DIPECTION FINDER	- i		2	2		2	2

Table 1-4. Vehicles Polled/Second/RF Channel For 0.1-Sec Turn-On

CARS	PER SECURIO			. WITH DI	FFÆPENT F		
TECHNIQUE	THEO		INPLE			PEDUNDA	
CLASO I	IIHA.	SYH	ŲυL	LUM	SAL	nOf E	AHD
I ENBOAPB STYLUS MAP	137 34	10	9	5 5	*		3
C-HCCELERONETERS	103	10	9	ž	3	e S	3
LASEP PELOCINTR	100	10	•	2	7	š	ž
ULTPROOFIC VELO	100	18	9	5	i	8	2
COMPASS/ODOMETER	108	iö	á	ž	ä	8	3
COMPASS/LASER VEL	163	10	9	š		ŭ	2
CHPSS/U-SORIC VEL	163	10	ž	Š	3	ž	3
ONEGA	56	- 4	ý	รั	é	홀	š
E0PHH	47	9	9	Š	9 8 0	-	š
DECCH	50	4	¥	งงงงงงงงงงงงงง	<u>ي</u> ۽	•	**************
HK-STATIQUS	125	lu		5	4	57.2	3
DIFF ONLGR	5⊵	4	4	5	8 3	7	3
DIFF LOPAN	→?	4	8	5	3	>	4
DIFF AU-STA	58	9	9	5	3	?	3
PELH. UNEGA	1	Ī	ī	1	1	1	1
PELH: LOPAN	3	3	3	5	5	2	1
TECHNIQUE	THEO		CIMPLE		P	EDUNDAN	r
CLASS II	HAY	اتات	UOL	FRID	SW	TUL	FHID
	31/4/6	SHIZEG	SIVLG	SIVLG	SMALG		SHILE
BUPIED PES LOOPS	158	19	10	5			
	~ 1	J	7	5	4		ં
REFLECTING SIGNS	150	เย	16	5	- 3		3
	ساق		9	5	4		3
REFLECTING ROAD	150	10	10	5	4		•
DOIN BOOK	5∓ 167	10	10	5	á	9	3
A-BAHD POST	29	10	10	2	9	3	3
RE, UHE POST	215	16	10	9	10	3	3
NE) VIR FOST	160	10	10	ž	3		3
LF POST	167	โบ้	10	Ä	á	3	₹.
21 1001	S9		ž	š	9	n	- 3
LIGHT/I-P PAST	167	រប	10	Š	4		3
	હવ	3	3	5	4	0139	ū
SUPIED MACHETS	150	10	10	5	4	٩	3
	ξ·•		9	5	9	8	3
ULTRACONIC PUST	167	10	10	5	9	9	3
TRAFFIC SENSOR	კი 150	10	10	ଉପଜରେଜ୍ଞାର ସମ୍ବର୍ ଶ ବର୍ଷ ବର୍ଷ ବର୍ଷ	9	990	******************************
IMPRETO SEISON	34	10	10	5		- ?	3
	• •			-	-	•	3
CLHS\$ III				PEP SECO	HD		
	MIN PF		SIMPLE			REDUNE	
TECHNIOUS	CHANNELS			and GMB	\$	Sitio	RNHD
HRP-BRID FILEHHSE	1		4	ч		٥,	-
UID-ZHND FN PHASE	-80	16996 16996		iu na		10	10000
PULCE T-O-APRIVAL NOISE CORRELATION	500	1060				9999 1609	10000 1000
DIRECTION FINDER	200 1						5 1000
DIFECTION FIRST	•	*	•	•		5	c

Message lengths of most vehicle polling techniques are about 20 bits or occupy about 15 milliseconds or less of transmission time at the selected bit rate. Turn-on times of this order will therefore reduce the achievable polling rate to less than half the theoretical value. Turn-on times quickly dominate the polling rates at values above 0.03 second.

Class IV AVM systems, with monitored signposts, do not require radio polling. The vehicle
polling function is replaced either by line finding,
as is used in "normal" telephone service, or by
a continual scanning of "party lines" to find an
"off-hook" indication on one of the party lines
that one of a group of signposts has some information to forward regarding the ID of a fleet vehicle
that is passing its vicinity.

C. Location Performance Parameters

Several technical performance parameters of individual vehicle location techniques, including accuracy, quantity of location data, and fix time, affect both the design and expected performance of complete AVM systems. Accuracy of the location information is the parameter which usually elicits the most interest. This ultimate achievable accuracy for a given technique is, however, almost always degraded when the technique is configured into an AVM system. The reduction in location accuracy is caused by the vehicle's motion, the delay in vehicle-to-base transmission, the computer processing time to relate the vehicle data received to a physical location, and

the delay in displaying the location on a map or other computer output device. In dead-reckoning systems, the location error is cumulative, and the accuracy is proportioned to a percentage of the distance travelled (% dist).

The amount of location data which must be sent to or from the vehicle is another parameter that affects performance. Not only is it a function of the location technique, but also of the number of vehicles in the system, the area of the urban coverage, the density of streets or intersections in the area, and the dimensions of the urban area in each direction. The quantity of location data, together with the polling technique used and the availability of RF channels, determines the delays in receiving vehicle data at the base, which in turn affects the AVM system accuracy.

Another parameter is the "fix" time required for the vehicle to receive or generate whatever raw data is required for the new location to be determined elsewhere, which is primarily technique dependent. Similarly the interval between successive messages from the vehicle is also technique dependent. That is, no new location information will be forthcoming until a definite time period or travelled distance has elapsed or has been accumulated.

A tabular compilation of four location performance characteristics has been developed from several sources such as test data, prototype demonstrations, and performance estimates by both system developers and other evaluators. In Table 1-6, the performance values for the location accuracy or radius, the amount of location data, and the fix time parameters are listed for the four AVM classes and 36 systems. An explanation of each parameter follows:

- 1. Accuracy. This tabular entry represents either the estimated or test-result accuracy of vehicle location for Class I and Class III AVM systems. Since the accuracy cannot always be stated as a single value, a range of values is given in some cases. In the case of Class II and IV signpost systems, the term accuracy is inappropriate, and the term radius is used.
- 2. <u>Radius</u>. In Class II, III, and IV AVM systems, this radius figure represents the estimated coverage of the individual signpost or the special purpose fixed site.
- 3. Fixtime. This value is the time in seconds required for the vehicle to receive or generate new location data. In Class I AVM systems, the fix time is determined by the updating rate of the vehicle sensors or the repetition rate of the navigational aid. In Class II or IV systems, the fix time is a comparative number only and represents the time interval required such that a vehicle near the signpost will receive at least two location messages while moving at a speed of 50 m/sec (113 mph). In Class III systems, the fix time represents only the time of transmission of a location signal from the vehicle to the special RF site.

4. Location data. This tabulated number represents the minimum quantity of raw data required to locate an individual vehicle. In Class I AVM dead-reckoning methods, the location data figure is the combined number of bits required to represent a change in vehicle position to the indicated accuracy. In Class I navigational aids, the figure is either the number of bits required to indicate the time or phase differences of the received signals or the actual RF bandwidth (BW) required in the relay systems. In Class II or IV AVM systems, the location data value is the number of bits required to uniquely identify each signpost or each vehicle, respectively. The Class III location data is the RF bandwidth required for the tone, pulse, or noise location signal.

III. URBAN CHARACTERISTICS THAT AFFECT AVM COSTS

A. City Model Parameters For AVM System Design

In order to develop a basis for AVM System cost comparisons, it was necessary to establish baseline system design parameters applicable to each technique. To make these designs somewhat realistic, three model cities were developed, based on the populations and physical parameters of the seven representative UGAC cities in Southern California. Characteristics of the small, medium, and large model city are given in Table 1-7. The justification or rationalization for the model city parameters and the other factors considered in the system design are as follows:

- 1. City Shape. One characteristic of the model cities that is difficult to justify is shape. In this Report, the assumption is made that the cities are rectangular with a 2-to-1 aspect ratio. The development of most cities either along a river, railway, or coastal harbor usually results in one dimension being significantly greater than the other. The choice of a rectangle is believed to be more realistic than the square or circular city sometimes chosen.
- 2. <u>Urban area.</u> The areas chosen for the three city models are 10, 100, and 1000 km² (4, 40, and 400 mi²), which compare with Montclair and Monterey Park as the smallest cities, Anaheim, Pasadena, and Long Beach as the medium cities, and Los Angeles and San Diego as the large cities. (See Part Two of this Report, p. 2-1.)
- 3. Population. The populations of the model cities are based on population densities in the actual cities, which average 3000 people per square kilometer (7800/mi²).
- 4. Vehicle fleet size. Two classifications of vehicles are assumed for each city. These are the patrolling vehicles and the total number of instrumented vehicles. An assumption is made that one-half the fleet is patrolling while the remainder is involved in investigation.

Table 1-6. Location Performance Parameters for All AVM Classes and Systems

			<u> </u>	
Technique	Accuracy or Radius	Value used, (m)	Location Data, bits or BW	Fix Time,
CLASS I AVM	Accuracy	 		,
Keyboard update Stylus map update 2-Accelerometers Laser velocimtr Ultrasonic velo Compass/odometer Compass/laser vel Cmpss/u-sonic vel OMEGA navigation LORAN navigation DECCA navigation AM-Stations nav Diff OMEGA nav Diff LORAN nav Diff AM-Stations Relay OMEGA nav Relay LORAN nav	10-100 m 30 m 2% dist 0.5% dist 3% dist 1% dist 10.6% dist 0.8% dist 1600 m 0.4 m/km 0.5 m/km 150-250 m 160 m 120-400 m 150-250 m 200-600 m 800 m	(33) (30) (34) (13) (40) (20) (15) (17) (1600) (160) (200) (200) (160) (400) (250) (500) (800)	6-20 bits 14-20 14 16 14 14 14 14 27 32 30 12 27 32 21-32 3 kHz BW 10 kHz BW	2-5 s 3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 3-10 0.062 0 0-3 3-10 0.062 0-3 3-10 0.062
Buried res loops Reflecting signs Reflecting road X-Band signposts HF, VHF signpost LF Signposts Light/IR post Buried magnets Ultrasonic post Traffic sensor	Radius m 10 10 3 12-100 15-100 100 30 10 20 10		10-18 bits 10-18 10-18 9-17 7-15 9-17 9-17 10-18 9-17	1-2 s 1-2 1-2 1-2 2-5 1-2 1-2 1-2 1-2
CLASS III AVM Nar-band FM phase Wid-band FM phase Pulse T-O-Arrival Noise correlation Direction finder	Accuracy 800-1300 m 1000-1500 100 m 100 m 3% dist	(1000) (1200) (100) (100) (700)	3 kHz BW 15-40 kHz 10 MHz 5-10 MHz 3 kHz	0.015 s 0.01 0.0001 0.001 0.2-1
CLASS IV AVM Traffic loops Wayside radio Photo/IR detect Ultrasonic detect	Radius, m 10 100 30 20		N/A N/A N/A N/A	1-2 s 1-2 1-2 1-2

Table 1-7. Model City Parameters That Affect AVM Costs

Parameter	Small	Medium	Large
Area, km ²	10	100	1000
Dimensions, km	2.2 × 4.5	7.1×14.2	22.3×44.7
Vehicles, patrol/total	5/10	v 50/100	500/1000
Intersections*	350	3500	35000
Road segments × lanes	1600	16800	168000
Road distance, km	125	1245	12450
Telephone lines, km	83	828	8275
Population	30,000	300,000	3,000,000

- 5. <u>Intersections</u>. The number of intersections in each city is based on two business area street densities. They are based on actual measurements of randomly selected areas of the UGAC cities, and the values assumed are 30/km² for 75% of the area and 50/km² for 25% of the area.
- 6. Road distance. For the purposes of the models, the blocks are assumed to have the same aspect ratio as the city, namely 2:1, and to be in a regular array. An average of 2.4 lanes for each road segment was assumed, based on UGAC city averages.
- 7. Telephone line distance. Class IV AVM systems require land line monitoring; and for the purposes of comparison, an equal division of sensors is assumed of up to a maximum of 100 sensors for each phone "party" line. These party lines are assumed to parallel the long streets so that the total mileage of lines is about two-thirds of the total road distance.
- 8. Building distribution and topography. A uniform low-rise building distribution is assumed for location accuracy comparison purposes. The topography of the model cities is assumed to be essentially flat without "blind" radio areas or special areas that might unduly affect any particular technique.
- 9. Radio. The only information sent from the vehicle in this comparison is that required for location, either as a binary message or equivalent RF bandwidth for the Class I, II, and III systems. Radio modifications are also assumed to enable automatic message transmission. Additionally, transmitter turn-on stabilization time, squelch delay, and antenna transfer are assumed constant at several values.
- 10. Model city AVM cost and performance summaries. Tables 1-8 through 1-16 summarize the AVM system costs in each of three model cities, small, medium, and large, for each of thirty six location techniques and for three polling methods.
- a. Small city summary. The costs of all AVM techniques in the small city model are dominated by the operation-and-maintenance (O-M) cost with the result that there is a great similarity in total costs regardless of the vehicle location technique. The Class II and IV system costs are higher because the signposts and the associated costs are relatively greater than the vehicle costs (see Tables 1-8, 1-9, 1-10).
- b. Medium city summary. The costs of AVM Class I in the medium city model show an increase which is almost all due to vehicular equipment. The Class II costs increase by a greater factor due again to signposts. The site costs of the buried resonant loops are substantially higher than those of any other Class II technique because of installation costs. The more sparsely distributed RF posts, either HF or VHF, do not impact the total cost to the extent of the techniques which use a post at each intersection. In the Class III techniques that require pulse or wideband equipment, the vehicular equipment accounts for about one-third the total cost.

In Class IV techniques, the telephone line rental which is included in the site cost is the primary cost factor (see Tables 1-11, 1-12, 1-13).

c. Large city summary. The AVM costs in the large model city show the same trend with Class II techniques (save for two exceptions) costing some 2 to 4 times the Class I techniques and about twice the cost of Class III systems. The Class II techniques systems costs are reducible by less dense placement of posts (see Tables 1-14, 1-15, 1-16).

The method of vehicle polling has only a slight impact on AVM system costs in any of the techniques in any of the model cities. Applications of the AVM cost analysis to actual cities in Southern California are presented in Part Two of this Report (p. 2-1).

B. Small Model City AVM Cost Summary Tables

Table 1-8. Small Model City Parameters
Used in AVM Cost Analysis

APEA IS 4 SOUAPE MILES.

EAST NEST DISTANCE IS 1.4 MILES.

HOPTH SOUTH DISTANCE IS 2.3 MILES.

TOTAL ROAD MILEAGE IS 77 MILES.

THE NUMBER OF INTERSECTIONS IS 350:

THE ESTIMATED NUMBER OF RORD SEGMENTS IS 700.

THEPE APE 10 CAPS IN THE FLEET

AND THERE ARE 0 NOTOPO/CLES.

THE NUMBER OF VEHICLES ON EACH SHIFT IS:

CIEST SHIFT MAX. 5

CIRST SHIFT MIN- 5

SECOND EHIFT MAX. 5

SECOND SHIFT MIN. 5

THIRD EHIFT MAY 5

THIRD SHIFT MIN. 5

THE CITY WOULD PEOUIRE 4 WIDE-BAND OR

PULSE T-0-A ANTENNA SITES AND 6 MARPON

BAND ANTENNA SITES WITH 7 AND 3 MILE COVERAGE PADII.

Table 1-9. Small Model City AVM Cost Summary

SMALL HODEL CITY CLASS I							TOTALS	
		TROUS	ANDS OF	2 -				
TECHNIQUE	CARS	SITES	BASE	TRMI	0-81	UOL	SYNC	RENDOM
KEYBORRD	2	G	44	11	101	158	15ъ	15ь
STYLUS MAP	26	ŏ	-44	ii	iei	182	181	181
2-ACCELEROMETERS	16	ŏ	-68	ii	iĕi	198	200	200
LRSEP VELOCINTR	18	ŏ	ρğ	iż	102	202	204	283
ULTRASONIC UELO	13	ě	69	iï	102	196	193	198
COIPASS/ODOHETER	15	ĕ	69	ii	161	196	1,5	190
CUMPASS/LASEP VEL	19	ĕ	69	12	ioi	202	264	203
CHPSS/U-SCHIC VEL	Î6	ĕ	69	iī	iøi	194	201	200
ONEGR	27	ĕ	54	ii	iõi	195	197	1 37
LOPAN	55	ĕ	54	ii	161	196	198	198
DECCA	12	ŏ	54	ii	101	179	1,2	181
AJI-STATIONS	- 4	ĕ	54	îi	101	171	173	173
DIFF ONEGA	27	ĕ	54	ii	101	195	197	197
DIFF LUPAN	28	ŏ	54	11	101	196	198	198
DIFF AM-STA	Š	ŭ	54	ii	161	ižž	17-	175
PELAY ONEGA	6	ŏ	54	ii	iõi	170	172	176
PELRY LOPAN	š	ě	54	îî	101	17-	172	176
CLHSS 11	•	_				*17		
EURIED PES LOOPS	-	168	44	297	101	612	615	610
REFLECTING SIGHS	3	77	44	54	100	289	290	287
REFLECTING ROAD	ž	. 9	44	ьi	13	259	260	257
-SAND POST	5	8i	***	27	1⊌6	250	261	258
HF, VHF POST	- 5	ğ	44	15	102	172	173	171
LF PUST	5	-4	44	â7	106	553	224	-21
LIGHT/I-P POST	5	35	-4	30	189	222	555	220
PURIED MACHETS	1	17	77.7	45	100	รบร	209	206
ULTPASONIC POST	ā	행	- 4-	71	108	285	285	503
TPAFFIC SENSOR	พฤดพนพญ คพอ	67	44	59	161	253	253	-5i
CLASC III	_	٠.	, ,	-				
HAR-BAND FILEHASE	3	29	57	12	164	283	205	205
HID-ZAND FM PHASE	39	47	69	17	233	354	367	367
PULSE T-0-AFPIVAL	26	84	139	27	179	454	456	457
HOISE CORPELATION	-8	29	139	16	177	370	371	371
DIRECTION FINDER	ĭ	79	34	15	154	282	281	231
CLASS IV	_	-		=				
TRRFFIC LOOPS	1	264	44	186	109	162	462	-02
DHYSIDE PADIO	1	170	44	90	118	422	462	422
PHOTO-I-R DETECT	2	99	-,4	Šī	199	363	203	363
ULTPASONIC DETECT	2	193	-4	51	109	397	367	507

Table 1-10. Small City Vehicle Polling

-λtLE	3HT	и	SCHUDBE	ΤÛ	PFILL	1114	HHD	[1][44	UHITS	DEPLU:ED

CLHOS I	TOTAL		つよういし			ないにいていいしょう	
TECHHILUE	FLEET	೯೧೮	10/1	เหลา	ortic.	THE	PHNJ
ドE.120Mb3	1 "0"	0.54	ย 55	Libe	e 57	મ ન્યા	1 13
		05	تڌ ب	1 30	0 57	વે હ≉ા	1 13
STALUS MAP	. i2	A 55	a 57	i us	Ų €̃⊾	0.55	117
		11 JU	ĕĴ	109	ಆ ರಚ	n ob	; <u>i</u> ~
C-ACCELEPONETERS	1 00	6 55	ც 56	1 + 7	H 🔊	FI 100	1 15
		ಆ ಎನ	೮ ೨೬	1 97	051	خيره ن	1 15
LHSEP PICLOCITYP	1 11	u SS	ช 57	1 ~6	Ütl	٤٠٤	i le
		U 35	U 57	1 0.	0 (1	کا 🛈	1 10
ULTEASONIC PELO	1 (1,5	U 55	ەتبان	1 97	9.54	0 Ge	1 l.
		3 55	u S>	1 97	J 51	چين و	1 15
CUNPASS/000#ETEP	1 93	ย 55	ช 55	1 67	0.54) ⇔	i 15
		ს მწ	0 5ь	1 47	115-1	1 ts.	i 15
COMPASS-LASER MEL	1 04	⊎ 55	ช 56	1 0	b 53	11 6-4	1 15
••••		ک را	0.5⊳	1 07	ð 59	0 62	1 15
CHPSS/U-SOHIC PEL	1. ⊌~	ษ 55	0.5⊳	1 97	0 59	ಚ ಅವ	1 15
		U 53	0.56	1 97	J 54	11 to	1 1.
OFFICE	£ 13	0.5⊀	8 60	1 12	کا ل	11 71	1 03 1 20 1 20
		0.54	U 60	1 1.	H 68	e 71	1 43
LGPAH	1 21	U bl	9 62	1 13	9 71	u 7-	i 55
		បទរ	0.62	L 13	9 71	당 …	1.22
DECCA	1 39	ยษ	U 61	1 13	u 70	ນຕວ	1 .5
2000-		8 60	U 61	1 13	u 70	0.70	1 25
HR-CTHT10PS	1 63	U 54	9 55	1 07	0 53	0 61	1 13
141 01111111111111111111111111111111111	• • •	0.54	0.55	1 07	0.53	Uol	1 10 1 43 1 23
DIFF ONECH	1 13	ð 5º	ย่อยิ	iiè	0 60	0.71	ili
21		a 59	คือบ	1 12	0.63	0.71	ذق ا
DIFF LOPAN	1 21	U bl	Ø 6€	1 13	0.71	0 4	127
2411 601141		U 61	ě 62	1 13	ů ři	0.7~	i Z-
DIFF NI-STA	1 17	9 54	9 20	1 11	U 6"	0.70	i L3
DIF7 14. 511.		ű Ša	0 60	i ii	กัด้า	e 70	1 43
RELAY CHEGA	101 110	50 ວັນ	50 51	51 03	100 50	108 53	101 05
PELITI CITEDI		5u 5u	50 51	51 03	180 56	100 53	161 05
PELHY LOPAN	33	2 17		5 64	3 83	2 89	- 34
PELMI COPMI	4 30	3 17	212	2 69	3 00	္ နိ	- 54
CLHSC 11			,		5 05	~ ~~	- 5
STRIED RES LUGPS	1 0	8 53	S5 و	1 00	u 57	0.54	1 1.
34 ED 152 COM 5		0 53	0.5	1 05	9 57	U 59	1 12
REFLECTING SIGNS	1 97	0 50	0 55	1 06	ŏ 57	มัธร	1 12
KELECTING STORES		0 55	6 55	1 00	0 57	υ 5-i	1 12
REFLECTING PUND	1 07	ย์ 53	ย์วีรี	I ve	0 57	0.59	i iž
REPLECATING FOND	2 0.	ĕ 53	0.55	1 86	ě š7	ğ 59	1 12
A-SAND POST	1 06	0 53	0.57	1 96	U 56	6 Pd	i ii
V-34017 5021	1 00	953	6 54	106	656	0.59	iii
	1.65	n 25	0 54	1 05	0.55	0.57	i 16
HE, WHE POST	1	9 55	H 5-	îĕš	0 55	0 57	1 10
LE DAGE	1 145	ษี 5ัง	0.54	1 00	0 56	9 Sq	i ii
LF POST	,	3 53	B 54	1 06	0 56	U 59	iii
A POWER OF TO BOOT	1 146	ครั้ง	ยร์จ	1 00	056	U 59	1 11
LICHT/I-P POST	1 60	0 53	Đ 5 -	1 00	0 56	057	111
SINKS WANTS	1 97	853	8 55	î 06	U 57	9 50	i iż
DURISE INCHETS	1 01	မို ဆိ	0 55	1 66	0 57	0.39	1 12
IN THE SECURE OF SECT	7 Oc	9 53	U 5-	1 46	8 56	9 5-	1 11
ULTRASONIC FOOT	1 00	9 Ju	บ 54	1 06	0 %	ม 59	111
TENTETO CENCOS	1.06	e 53	0.54	1 96	0 5c	2 5 G	1 11
TEHEFIC SENSOP	1 00	v 53	U 54	1 06	0.50	0.24	iii
		0 33	U 194	4 00	0 36		1 11

C. Medium Model City AVM Cost Summary Tables

Table 1-11. Medium Model City Parameters
Used in AVM Cost Analysis

AREA IS 40 SOUAPE MILES.

EAST WEST DISTANCE IS 4.41 MILES.

NORTH SOUTH DISTANCE IS 6.62 MILES.

TOTAL POAD MILEAGE IS 774 MILES.

THE HUMBER OF INTERSECTIONS IS 3500:

THE ESTIMATED NUMBER OF ROAD SEGMENTS IS 7000.

THERE ARE 100 CARS IN THE FLEET

AND THEPE APE O NOTORCYCLES-

THE NUMBER OF VEHICLES ON EACH SHIFT IS:

FIRST SHIFT MAX. 50

FIRST SHIFT MIN. 50

SECOND SHIFT MAX: 50

DECOND SHIFT MIN- 50

THIRD SHIFT MAX. 50

THIRD SHIFT DIM- 50

THE CITY WOULD REQUIRE 5 HIDE-BAND OP

PULSE T-O-A ANTENNA SITES AND 10 NAPROLL

SAND ANTENNA SITES WITH 7 AND S MILE COVERAGE RADII.

Table 1-12. Medium Model City AVM Cost Summary

MEDIUM MODEL CIT, CCHSS I							705.10	
, 66133 1		TUNE	HUDS OF	1			TOTHLS	
FECHRIQUE	CAPS	SITES	ZASE	INST	0-11	1101.	37.00	FRHDOO
KE/30HbD	17	9	603E	1131	165	515	196	136
STILUS HAP	255	ñ	5,	i-	100	+5 1	400	
2-HCCELEPONETERS	160	9	92					₩ 30
LASER VELOCINTA	173	õ	102	40 25	116 115	308	413	-13
ULTPASONIC VELO	127	ĕ				√ 05	155	⇒50
COMPASS/ODOMETER	147	9	1112	15 50	115	000	400	395
COMPASS/LASEP UEL		,, D	165		10-	331	465	395
	186		102	25	100	438	+6-6	452
CHPSS/U-SOHIC VEL	159	0	102	20	109	460	430	≃0
UMEGR LOPAH	278	9	<u>27</u>	18	168	-99	525	519
	200	9	37	15	108	509	505	531
DECCA	115	Ų	87	ie	100	3-2	368	363
AN-STATIONS	40	Ä	87	15	106	264	233	5.9
DIFF ONEGA	270	9	37	18	108	499	518	519
DIFF LORAN	230	Ü	87	18	108	509	523	531
DIFF AN-STA	47	0	87	15	106	271	590	300
PELA: ONEGA	53	U	87	18	110	284	268	363
RELHY LOPPH	5∂	U	37	18	110	289	273	313
CLASS II	_							
BUFIED PES LOOPS	14	2144	67	3728	102	ь110	6120	6094
PEFLECTING SIGNS	-8	770	⊳ 7	445	172	1518	1528	1502
REFLECTING POAD	13	84	6 7	520	522	1221	1231	1205
K-2AND POST	12	895	67	172	154	1230	1240	1214
HE, WHE POST	16	68	67	54	115	35∻	360	438
LF POST	15	438	₽ 7	172	154	862	371	346
LIGHT/I-R POST	15	350	67	210	199	849	857	832
BURIED MACHETS	10	219	67	452	100	ರಿಕಿನ	973	C47
ULTRHSONIC POST	14	595	67	614	173	1478	1487	1462
TRAFFIC SENSUR	15	ახ5	67	294	101	1158	1167	1142
CLASS III								
MAP-BAND FM PHASE	53	-+8	127	17	168	322	3 +7	349
WID-BAND FM PHASE	291	50	127	27	2บ5	797	733	735
PULJE T-O-ARRIVAL	258	140	327	50	183	957	982	985
NOISE CORRELATION	79	29	327	25	179	654	663	665
DIRECTION FINDER	4	79	67	16	15-	331	319	319
CLRSS IV								
TRAFFIC LOOPS	×	3193	67	966	105	4404	4424	4424
MA:SIDE RADIO	8	2766	ь7	805	276	3921	3921	3921
PHOTONI-R DETECT	12	1740	67	413	189	2-20	2429	2420
ULTRASONIC DETECT	13	1775	67	412	189	2455	2455	2455

Table 1-13. Medium City Vehicle Polling

CYCLE TIME IN SECONDS TO POLL MAN AND MIN UNITS DEPLOYED

CLHSS I	TOTAL		SIMPLE			PEDUIDHIT	
TECHNIQUE	FLEET	SAIC	_000	RAND	SYNC	UOL	56MD
KEYBOARD	10 73	5 37 5 37	5 69 5 69	10 83 10 83	5 73 5 73	6 20	11 67
STYLUS INP	11 20	5 60	5 83	11 07	5 73 6 20	ნ 20 ნ 67	11 67 12 13
2-ACCELEPONETERS	16 63	5 68	5 83 5 33 5 70	11 07	P 56	5 67	12 13
Z-HUCELEPONE IERS	i⊎ 9 3	5 47 5 47	5 70 5 70	16 93 18 33	5 % 5 93	5 40 5 40	11 87 11 87
LIGSEP MELOCINTP	11 07	5 50	5 77	11 00	ь 07	6 53	12 00
ULTRHSONIC VELO	10 93	5 50 5 47	5 77 5 70	11 00 10 93	ь 07 5 93	5 53 6 √0	12 08 11 87
OCIMIOGIAOEEO	10 .5	5 47 5 -7	5 70	16 73	5 93	6 -10 5 -10	11 87 11 87
COMPROS/ODOMETER	10 93	5 47	5 70	10 93	5 93	⊳ →Ø	11 67
COMPROS/LHSEP VEL	10 93	5 47 5 47	5 70 5 70	10 93 10 %	5 93 5 93 5 93	6 40 5 48	11 87 11 37
	10 10	5 47	5 70	10 93	કું છે	6 48	11 87
CMPCS/U-SONIC VEL	10 93	5 47	5 70	10 93	5 93	6 40	11 87
ONEGA	11 80	5 47 5 40	5 7ช 6 13	10 93 11 37	\$ 33 6 23	5 40 7 27	11 37 12 73
4.207	11 00	5 90	6 13	11 37	ამმ ამმ		12 73
LUPRK	12 13	ь 0 7	6 30	11 53	7 13	~ ພ	13 97
35000		P 05	6 50	11 53	7 13	7 60	10 07
DECCA	12 60	6 110 6 00	6 23 6 23	11 47 11 √7	7 00 7 00	7 47 7 47	12-93 12-93
AM-STATIONS	16 89	ს მმ 5 ⊷8	ნ 23 5 ხ≎	10 87	5 80	7 47 6 27	11 73
		S -10	5 63	10 87	5 80	n 27	11 73
DIFF ONEGH	11 30	5 40 5 90	u 13 6 13	11 57	P 30	7 27 7 27	12 73 12 73
DIFF LOPHE	12 13	5 70	6 13 6 39	11 37 11 53	6 80 7 13	7 27 7 60	12 73 13 97
		6 07	630	ii Šš	7 13	7 68	13 97
DIFF AN-CTA	11 73	5 87	6 IA	11 33	o 73	7 26	12 67
PELRY OHECA	1010 86	5 67 565 69	505 23	11 30 510 47	6 73 1885 00	7 20 1005 47	12 67 1010 93
reem orear	1010 00	505 00	505 23	510 47	1605 00 1605 60	1895 47 1885 47	1010 93 1010 93
RELAY LORAN	43 33	21 67	21 90	27 13	39 33	28 86	44 27
CLHSS II		21 67	21 90	27 ls	38 33	38 30	-4 27
BUPIED PES LOOPS	10 87	5 43	5 67	10 98	5 87	b 33	11 80
		5 43	5 67	10 90	5 87	633	11 00
REFLECTING SIGNS	18 87	5 73	5 67	10 90	5 87	p 33	11 60
PEFLECTING PORD	107	5 43 5 43	5 67 5 67	16 20	5 87	ხ 33 ხ 33	11 30
PERCECTING PONS	10 87	5 43 5 -3	5 67 5 67	10 90 10 90	5 87 5 07	ხ 33 ხ 33	11 80 11 30
A-DHID POST	10 ಕರ	5 40	5 63	10 37	5 80	6 27	11 73
		5 40	5 60 5 57	10 37	5 80	ь 27	11 73
HF, THE POST	10 67	5 33 5 33		10 S0	5 67	ь 13	11 60
LF PUST	10 00	5 40	5 57 5 63 5 63	10 80 10 87	5 67 5 60 5 60	ь 13 ь 27	11 60 11 73
		5 40	5 63	10 87		6 č7	11 73
LIGHT I-P POST	16 20	5 40 5 -8	5 63 5 63	19 87	5 60	6 27	11 73
BURIED HACKETS	10 37	5 ⊣8 5 ⊣3	5 63 5 67	10 87 10 90	5 60 5 07	e 33	11 73 11 80
		5 +3	5 67	16 40	5 67	6 33	11 30
ULTRACONIC POUT	10 00	5 44	5 63	10 27	5 50	6 £ <u>7</u>	11.70
TPATFIC SENSOP	10 80	5 -0 5 -0	5 63 5 63	10 07 10 87	5 60 5 60 5 07 5 07 5 00 5 30 5 30	6 d7	11 73
	.5 00	5 -6	5 63	10 87	5 30	6 27 6 27	11 73
12					- 30		

D. Large Model City AVM Cost Summary Tables

Table 1-14. Large Model City Parameters Used in AVM Cost Analysis

APEA IS 400 SOURFE MILES.

CAST WEST DISTANCE IS 13.9 MILES.

HORTH SOUTH DISTANCE IS 27.8 NILES.

TOTAL ROAD MILEAGE IS 7736 MILES.

THE NUMBER OF INTERSECTIONS IS 35000:

THE ESTIMATED NUMBER OF ROAD SEGMENTS IS 70000.

THERE ARE 1900 CARS IN THE FLEET

AND THERE ARE O MOTOPCYCLES.

THE NUMBER OF VEHICLES ON EACH SHIFT IS:

FIRST SHIFT MAY. 500

FIRST SHIFT MIN. 500

SECOND SHIFT MAX. 500

SECOND SHIFT MIN. 500

THIRD SHIFT MAX- 500

THIPD SHIFT HIN. 500

Table 1-14. Large Model City Parameters Used in AVM Cost Analysis (Cont'd)

THE CITY WOULD REQUIPE 29 WIDE-BAND OR

PULSE T-O-A ANTENNA SITES AND 106 NARROW

BAND ANTENNA SITES WITH 7 AND 3 MILE COVERAGE RADII.

Table 1-15. Large Model City AVM Cost Summary

LHRGE HOBEL CITY								
CLACS I							TOTALS	;
_			o egins					
TECHNIQUE	CAPS	SITES	BASE	INST	0-M	VOL	SYNC	RANDOM
KE YZORRD	135	0	121	45	115	576	416	416
STYLUS MAP	2550	ø	121	45	125	3061	2841	2841
2-HCCELEPONETERS	1600	9	161	110	200	2231	2428	2378
LASEP VELOCINTR	1780	ě	161	145	250	2496	2693	2643
ULTRASONIC VELO	1270	Θ	161	110	250	1951	2148	2898
COMPASS/QUONETER	1465	0	161	34	140	1956	2196	2093
COMPHSS/LASEP VEL	1855	9	161	160	190	2526	2766	2063
CMPSS/U-SOMIC VEL	1585	9	151	110	198	2196	2436	2333
011ECR	2700	0	141	90	175	32-6	3531	3469
LGRAN	2888	G	141	90	175	0366	3631	3539
DECCR	1150	•	1-1	70	175	1696	1961	1911
AM-STATIONS	+99	U	141	69	160	921	1111	1064
DIFF- ONEGA	2799	0	141	90	175	3266	3456	3469
DIFF LORAH	C890	0	141	98	175	3366	3556	3539
DIFF AN-STA	465	0	1-1	68	168	985	1176	1276
RELAY OHEGA	525	ø	141	98	268	1116	956	1356
relay loran	575	9	141	99	260	1166	1005	106
CLASS II								
BURIED RES LOOPS	148	28560	121	486-97	115	77793	77798	77543
REFLECTING SIGNS	480	7700	121	4360	820	13641	13736	13461
PEFLECTING ROAD	125	8-8	121	5110	4315	10671	10766	18511
X-BAND POST	170	8050	121	1625	635	10761	10856	10681
HF, VHF POST	155	575	121	444	242	1996	2091	1336
LF POST	150	4375	121	1639	640	7876	7171	691b
LIGHT/I-R POST	145	3569	121	2010	1000	6936	7931	6776
BUPIED MAGNETS	100	2056	121	5767	100	9104	9199	8944
ULTPASONIC POST	135	5950	121	6045	825	13236	13331	13076
TRAFFIC SENSOR	145	650	121	2850	116	10035	18131	987ь
CLASS III								• •
NAR-BAND FM PHASE	225	499	558	1:01	178	1231	1481	1506
UID-BAND FM PHASE	2905	336	202	1-1-4	249	3820	4086	+161
PULSE T-0-APRIVAL	2575	1484	382	425	253	5119	5369	5394
NOISE CORRELATION	785	29	382	115	202	1672	1762	1787
DIRECTION FINDER	35	80	151	30	154	569	449	449
CLASS IV								
TRAFFIC LOOPS	80	68763	121	9567	950	79481	79481	79481
HAYSIDE RADIO	75	61233	121	7960	1860	71249	71249	71249
PHOTONI-R DETECT	115	41140	121	4035	990	46401	46401	46481
ULTRASONIC DETECT	125	41490	121	4030	990	46756	16756	46756

Table 1-16. Large City Vehicle Polling

CICLE TIME IN SECONDS TO POLL MAK AND MIN UNITS DEFLOYED

CLASS I	TÚTHL		SHPLE			CESUIDAN	-
TECHNIQUE	FLEET	\$60	HOL	FRH	5110		PHHD
YEYBOAPD	167 33	50 b?	57 00	110 53	57.00	E 619	120 67
STALUS MHP	112 00	<u> 5</u> 3 67	57 00	110 33			12U 67
STIEUS TIRP	115.08	56 00 56 00	59 33 59 33	110 67 116 67			100 -0
2-ACCELEPONETERS	189 33	54 67	50 60	111 03			125 33
		54 67	53 66	111 33	59 33		122 67 122 67
LHSER VELOCITY	11 0 67	55 33	50 o7	112 60	60 67		12+ 101
ULTPASONIC MELO	4	55 33	50 67	112 66		67 3°	12- 00
OLIFASOMIC MELO	10-33	5+ 67 5+ 67	58 60 58 60	111 33			122 67
COMPHGS/600METER	189 33	54 67	58 00	111 33 111 33	59 33 59 33		155 %
		54 67	50 00	111 33	59 53	ા હ€ 00 હ€ છહ	122 67
COMPACC/LHSER WEL	109 03	54 67	58 00	111 33	59 33	65 08 65 08	122 67 128 67
		⊊ 6 <u>?</u>	53 QU	111 33	5-4 €3	65 Gi	185 65
CHPSS/U-SOMIC VEL	199 33	5 67	50 W	111 33	59.30	66 60	142 67
OPECA	116 00	5 + 67 5 4 ⊌9	50 00 62 03	111 33	29 33	96 W	102 6
5.4011	110 10	54 BB	62 C3	115 A7 115 b7	63 00 63 00	_~ 67	131 32
LOPHN	121 33	90 67	6+ 60	117 30	71 33	77 57	131 Ju 134 67
		60 67	57 66	117 33	1 33	.8 90	134 67
DECCA	120 00	⇔10 ଜଣ	63 33	116 67	70 09	76 67	130 35
HII-STATIONS		Pa) 69	⊎ 3 33	116 67	70 98	76 67	103 33
MI-STRITONS	10თ მა	54 00 5+ Fe	57 33	110 67	୍ର ହ	64 67	181 03
DIFF OMEGA	116 69	59 00	57 33 62 33	110 67 115 67	58 Per	<u>⊳</u> ~ 67	121 03
		59 00	55 33	115 67	68 69 68 64	74 67 74 67	101 33 131 33
DIFF LOPAN	I21 33	6U 67	64 69	117 33	71 55	78 00	134 67
P455 011 000		69 o ²	⊳4 00	117 33	71 33	78 00	13- 67
DIFF AM-STA	117 33	53 67	PS 80	115 03	b? <i>3</i> 3	7, 100	130 67
PELHY ONEGR	10100-00	50 50 60 5050 00	5653 33	115 33	67 33	74 99	100 67
	10100 00	5050 us	5623 33	5106 67 5106 67			10113 05
PELB: LOPAN	433 33	216 67	550 09	270 33	-33 3≾	390 00	10113 30 746 67
		216 67	550 00	273 33	ÖÖ 33	390 00	4-6 67
CLACS II BUPIED PES LOOPS							
BUPIED PES LOOPS	III აქ	55 b7	59 60	112 33	61 C3	∾ಕ ಕಟ	12+ 67
REFLECTING SIGNS	111 33	55 67 55 67	59 00 59 00	115 33	∿1 33	eS ⊍0	124 67
	00	55 67	59 Ou	115 33	61 33 61 33	68 00 63 00	124 67 124 67
REFLECTING FOAD	111 33	55 67	รัว ก็ยั	115 30	61 33	60 00 60 00	124 67
		55 b?	59 60	112 33	e1 33	E-2 HÚ	124 67
V-BAND POST	110 67	55 03	58 v7	112 60	60 67	67 33	124 00
HF> UHF POST	109 33	55 33 54 67	53 67 58 60	112 00	60 67	67 33	124 60
74.7 7 7551	105 33	5+ 67	50 On	111 33 111 33	59 13 59 30	66 AO	102 67
LF PUST	110 67	55 33	58 67	112 00	69 6	67 33	120 67 12- 88
		55 33	SG 67	112 00	50 67	67 33	124 60
LIGHT/I-R PUST	110 67	55 33	53 67	112 00	60 67	67 33	124 00
BUPIED MAURETS	111 03	55 33 55 67	50 67	112 00	⊷u 67	67 33	124 00
	.11 03	35 67 35 67	59 00 59 00	115 03	61 33	60 UU	124 67
ULTPRSONIC POST	110 67	55 33	58 67	112 00	61 33 60 67	63 00 67 03	12- 67
		55 33	5č 67	112 00	F0 67	67 53	124 86 124 86
TPAFFIC SENSOR	110 67	\$5 C3	58 67	115 00	60 67	67 00	10- 00
13		55 53	58 67	110 00	69 b7	67 ∝ 67 33	12- 00
10							

IV. AVM SYSTEM ACCURACIES AND COST BENEFITS

A. System Parameters That Affect AVM Costs

The prediction of the expected accuracies of AVM systems is essentially a probabilistic problem. Actually there are two distinct problems, one a precursor to the other, depending on the class of AVM system. Classes I and III are loosely referred to as "random route" systems because the techniques have the capability of vehicle location anywhere within their surveillance areas. Classes II and IV are called "fixed route" systems because the location capability exists only in the vicinities of signposts that are distributed along the wayside or on the roadway at intersections within the covered area. Besides the inherent range of uncertainty in the location measurements provided by individual AVM techniques, Classes I and III are subject to another location error, which is the shift in the moving vehicle's position during the interval between the instant of polling and the display of location data at the base. On the other hand, Class II and IV techniques provide location information only at the time when the vehicle passes within the sensing radius of a wayside or buried signpost. This information is the best available until the time that the vehicle enters the sensing radius of another signpost. A measure of this uncertainty in location is required to determine the "inherent" accuracy of the signpost AVM techniques. This is particularly true when the signposts are less than maximally dense; that is, when the signposts are placed two or more intersections apart.

It is intuitively reasoned that if the signpost sensors in Classes II and IV are placed at each intersection, then the location of any vehicle can be found to plus-or-minus one block. It also follows that if the sensors are placed in a diamond pattern at every other block in each direction, then the accuracy is plus-or-minus two blocks. This reasoning is valid only if every passage through instrumented intersections by all vehicles is known. If the polling technique or RF channel loading is such that this data frequency cannot be assured, then the achievable accuracy is not as well known. A tutorial treatment of the less dense signpost placement by Markov, or randomwalk, processes is included in Part Three of this Report. The analysis technique leads to a prediction of the mean and variance of the distance traveled by a vehicle starting at an unsensed intersection before it passes a sensed intersection. The results of this technique for various signpost densities are as follows:

Ratio (Sensed/Unsensed)	Mean	Variance
1/1	1	1
3/8	1.778	1.778
3/9	2	2

The second approach to the system accuracy prediction considers not only the inherent error in the vehicle location technique but also the additional inaccuracies introduced by the delays in

successive pollings of the vehicles and by the computation of location when the vehicles in the fleet are moving at various speeds. In Part Three of this Report, the analysis, the method of solution, and the tabular results are presented.

The technique for predicting the location accuracy was used to generate the family of curves in Fig. 1-36. These contours of system accuracy correlate the independent variables of the polling interval and the standard deviation of the inherent error. The accuracy contour yields the 95% confidence interval for vehicle fleets that move with an exponential velocity distribution such that more than half the vehicles are moving at speeds less than 15 mph (6.67 m/s). It can be seen from the curves that either the polling interval or the inherent error can quickly dominate the achievable system accuracy if either is very large. The curves are shown for the system accuracy interval of 100 to 1000 meters (0.1 to 0.6 mile). The curves for less than 100 and greater than 1000 meters are repetitions of those shown and can be derived with subtraction or addition of a unit constant on both axes (equivalent to division or multiplication of the interval or deviation by a factor of 10).

B. Estimated Cost Savings Based on Urban Parameters

- System accuracy estimation. The accuracy to be expected from any given AVM system in a locality is estimated by a step-by-step process. First, from the data provided for the particular city, the maximum and minimum number of vehicles deployed is obtained. Next, the number of bits in the location message required from each vehicle for each technique is determined. The time required to poll the deployed vehicles with a 0.1-sec radio turn-on time is then computed for the redundant mode of the random polling process. This value yields very conservative (or pessimistic) polling intervals for the two values of vehicles deployed. These intervals together with the value obtained from the table of technique accuracies provide the entries to the graph of system accuracies. These curves are prestored in the computer program. A rather simple linear interpolation program yields a maximum and minimum estimation of the 95% confidence level of system accuracy for the maximum and minimum vehicle deployments. The location accuracies used are usually greater than the standard deviation value.
- 2. Vehicles saved estimation. Based on the prior work of Larson (Ref. 2), Knickel (Ref. 3), and Doering (Ref. 4), a quantitative measure of efficiency increase in responding to calls for service should be determinable from the accuracy of the AVM system. One of the approaches to this problem is to compare a situation where, in response to a call for service, the dispatcher always sends the vehicle responsible for a beat to that where the location of the vehicles is known and the "closest" vehicle is dispatched to the scene.

The efficiency comparison is made either in the excess time required or the excess distance travelled by the beat vehicles relative to the closest located vehicles. The conclusions of this approach are generally that a vehicle location accuracy of about 1/5 the beat-side dimension is

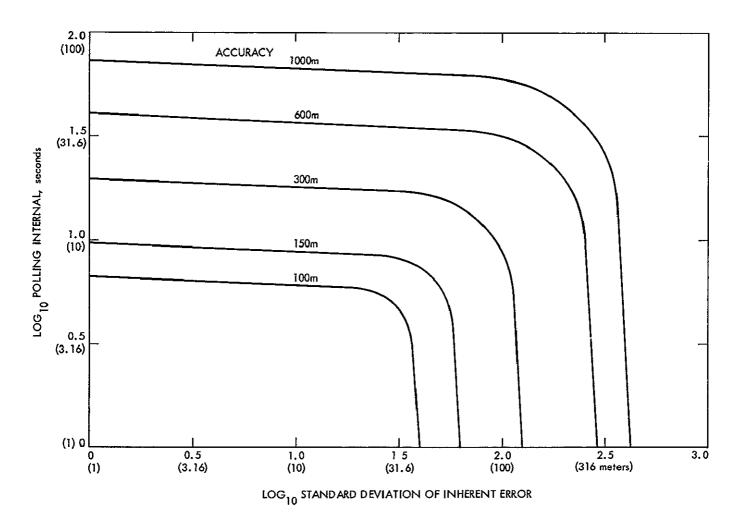


Fig. 1-36. Vehicle Polling Intervals vs 95% AVM System Accuracy

sufficient. Additionally the service improvement is found to be about 7% for the locator system dispatches versus the "center of mass" or beat vehicle dispatches.

The more recent study of Doering (Ref. 4), however, compares response time performance in a situation with differing absolute accuracy values of the AVM system and a given fleet size with the number of vehicles required to provide the same response time with no AVM. Doering's study indicated that, in the area studied (the city of Orlando, Florida), 34 vehicles in the AVM fleet where the accuracy is 240 meters (800 ft) would provide a response time which would require 35.8 vehicles in a non-AVM fleet. Extrapolation of the curves presented by Doering indicates that 8 to 10% fewer vehicles in an AVM system fleet with perfect (0 feet) accuracy can provide the same response performance as the larger number of vehicles in a non-AVM fleet. Extrapolation in the direction of less accurately known location, indicates that there is little improvement in response time with location accuracies of 450 meters (1500 ft) or more. It may be coincidental that this value is about 0.3 km (0.2 mile), which is 1/5 the average beat side dimension in the Orlando simulation studies. A plot of the increase required in a non-AVM vehicle fleet to equal AVM vehicles response time performance versus accuracy shows a linearly decreasing value as the AVM accuracy decreases.

For the purposes of this study, a 7% increase in efficiency is assumed for a perfect AVM system, with the percentage decreasing linearly to zero at an AVM accuracy of 0.2 times the average beat side length. The average beat is calculated by dividing the area by the number of vehicles deployed.

For maximum and minimum deployments, the efficiency increase assumption yields different values for the same AVM technique accuracy. In cases where the minimum deployment is substantially lower than the maximum, the apparent beat size may be increased to the point where an AVM technique which yields no efficiency increase with maximum deployment may display a marked improvement in response. Additionally, the minimum deployment decreases the polling time interval which provides an additional improvement in system accuracy.

The calculation of cars saved is based on a reasonable reciprocity assumption that fewer cars with AVM can yield the same performance as that obtained now with a given fleet size. The number of cars saved is determined by multiplying the percentage efficiency value, obtained from the beat dimension and system accuracy, by the number of vehicles deployed. Savings of less than one vehicle are allowed by the calculation. As stated before, the factors tending to increase efficiency are such that, in some cases, the number of cars

saved with minimum deployment exceeds that for maximum deployment with a given technique.

3. Estimated 5-year cost saving. The 5-year saving calculation, presented in Tables 1-17 through 1-20 is an attempt to place a dollar value on the efficiency increase which might in turn indicate possible choices of candidate AVM systems. The calculation assumes that each car saved is worth \$150,000 annually, which is primarily salaries and overhead (as of 1974). This is an average value for a 1-man car based on 5 salaries and 100% overhead. The saving for small, medium, and large cities is a straightforward multiplication of the maximum of the cars saved times the annual value of the car minus the O-M costs of the AVM technique. The value

Table 1-17. Small Model City Cost Benefits from AVM System Usage

SHALL INDEL CI	τ.						
04-EE 1-02-EE -01	тен н	CERMOTES	OF UE	HICLES AND	ESTIM	GROLF CETE	CAPTINGS
		THEO		SISTEN	VEHIC	CLEC	ESTIMATED
CLASS I	ULT MATE	PEHICLES		CCUPAC	االد	ED C3	2 (THP
	ALCUPHCY	SAMED	thex	HIH	HHZ	pHi	SHOTHE
1 EYZOGF D	33	. 0	36	3>	9.5	6.2	~_55
STYLUS (1H42)	39	ŏ	-5	~~	3.2	υē	7355
2-BCCFFCLUISTE		ŏ	ون	උශ්	ΰē	úΞ	7358
LASEP PELUCIPIT		ŭ	34	ž,	ษ์ 3	ยัง	-235
ULTPHSUNIC VEL		č	1) [161	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ŭž	" 360
CULIPAS > ODDINETI		ŭ		149	ŏż	ii L	7055
CUMPHSS/LHCEP I		ě	20	Ša	ěΞ	តិនិ	T2\$9
CHPGs/U-SOHIC		ŏ	4 3	4 3	Šõ	υē	355
ONECH	وانحا	د	2635	3033	ŏō	อีอี	 U
LOPAN	160	ถ้	575	370	ŏŏ	ěě	ь
DECCH	200	ย์	540	770	บ o	ย์อั	ŏ
ยก-ราสายขอ	200	j	144	444	ยัยั	υď	- Ñ
DIFF ONEGA	1.0	õ	370	370	ப் ம்	ยับ	Ü
DIFF LOPHII	0	ŏ	จั _∪ ยั	960	มีข	őő	ŏ
DIFF HU-JA	250	ũ	537	507	คือ	ūē	ē
RELATION CITEGRA	รีบัง	ย์	17-5	17-5	n a	0.6	Ū
RELA: LOPHII	-80	ม	2075	2075	иē	ย์ย์	Ä
CLHSC II	•••	•			•	= =	
	OPS 18	6	27	27	63	03	7230
REFLECTING SIG		ŏ		27	и 5	บ 3	∵15
REFLECTING PON		ú	19	19	03	0.3	-,~⊌
A-BHND FOOT	1.5	ě	52	C2	93	63	_342
HF, UHF FOST	ĪŠ	й	38	3 3	U 3	0.0	265
LF POST	130	ย์	2-1	2-1	0 0	មូម	Ð
LIGHT/1-P PUST	30	й	⁻5	75	0 2 0 3	92	_3 4 2
BUPIED MACHETS		9	12	17	υO	0.0	-275
ULTPASONIC POS	T CO	0	-9	 9	0 8	3.2	-398
TPAFFIC SEUSOP	10	អ		27	0.3	03	7200
CLASS III							
HAP-BHID FII PH	ASE 1600	Ð	2301	2331	JU	0.0	U
HID-BAND FIT PH		ē	2769	2769	9 9	9 U	0
PULSE T-U-HPPI		U	itt	166	0 1	U 1	7020
NOISE COPPELAT	IUN 100	ø	1 4 5	135	0 1	0 1	- 810
DIFECTION FINDS	EP 700	ы	1713	1715	0 0	U O	0
CLASS 19							_
TPRFFIC LUUPS	16	н	26	2ა	0 3	#3	T320
DENSIDE PHOTO	100	Θ,	534	234	8 0	១ខ	_ ម
PHOTONI-P DETER		9	72	70	0.2	02	_39 5
ULTPRSONIC BET	ECT 20	0	48	43	0.5	9 2	_342

Table 1-18. Medium Model City Cost Benefits from AVM System Usage

MEDIUM INDEL Cat?							
	STÉL HI	LUPHCIES		HICLES AND			
		THEO		Justen	VEHIC		estinated
	3TH11	VEHICLES		CCUPACT	SRU	ED	S-1LHP
TECHNIQUE DCCG	IPAC1	CHUED	MAX	HEN	HHA	11211	ÇAUJNG
NF *208K2	ಎ		143	1 -19	10	រូប	2.0
STYLUS HAT	ca.	3	2 3 6	216	ij٩	a o	160
2-INCLELEFORETERS	34	Э	283	263	1.0	19	400
LASEP VELOCIMIE	13	3	199	139	1.0	1.8	175
ULTPHSONIC VELO	-0	3000000	204	20+	1.0	1 ម	175
COMPHUS QUONETEP	20	S	lah	139	1.0	1 8	230
COMPRESSALHSER HEL	15	5	198	193	10	1 0	205
CHPCS/U-SUNIC VEL	17	3	149	143	10	1 ช	205
UTLCA	1500	5	~077	⊌77	0.0	0.0	ø
LOPHH	160	3	448	+83	0 6	99	Ð
DECCA	501	1	495	~92	e u	Qυ	0
AN-STATIONS	00ء	1	490	-90	υĐ	មិម	Ō
DIFF WIEGA	160	5	-98	403	ษษ	មម	Ü
DIFF LOPAN	~U0	e	1131	1101	មម	0 0	6
DIFF MITSTH	≥50	ម	592	542	00	0 и	6
FEILIN ONEGA	5.00	0 1	7459	17-59	00	υO	0
RELH: LOPAN	300	ы	2322	2322	90	9 9	U
CLHSS 11							
SUPTED PES LOOPS	10		194	134	1 1	1 1	315
PEFLECTING SIGNS	10	٤	I ++	1.54	1 1	1 1	-35
PEFLECTING POAD	\$	3	187	137	1 2	12	-1-ië
V-SHIID PUST	12	3	194	194	1 1	1 I	55
HE, WHE COST	15	3	193	193	1 1	1 1	250
LF POST	150	2	270	270	02	9.2	~620
LICHT/I-P POST	OB.	3	200	20u	10	10	T2v0
BUPIED NAGHETS	1	3	184	109	12	1 0	–ს8
ULTPHOONIC POST	- 20	3	197	197	1 1	1 1	~-0
TPHFFIC SENSOR	16	3	193	1⊣3	11	1 1	320
CLISS III							
NAP-BAND FIT PHASE	1000	G	2607	2⊾07	00	U 8	0
MID-BAND FIT PHACE	1200	U	3043	3933	មេ	0 0	. 0
PULSE T-O-HPPIVAL	100	2	135	195	12	12	-15
NOICE COPPELATION	100	2	207	267	09	09	_550
DIPECTION FINDER	~0⊎	o	1918	1910	υQ	0 ម	U
CLACO IV							
TREEFIC LUOPS	16	3	23	23	3 2	32	<u>1</u> 475
UNYSIDE PADIO	100	2	C09	20 3	0 9	6 9	⁻⁷ U5
PHOTONI-P DETECT	30	3	61	61	27	2.7	1630
ULTPASONIC DETECT	59	3	45	-3	S 4	29	1208

obtained is then multiplied by 5 years for the total saving.

The 5-year saving is positive only if the value of the car saving exceeds the annual O-M cost. The calculation is performed for a given technique only if a car saving is indicated, and the result is presented regardless of sign. No calculation is performed if no car saving is indicated.

A simple summation of savings rather than a present worth of an anuity calculation is justified on the basis that it is less speculative and might be more nearly correct if salaries rise at a percentage rate which exceeds the rate of return that can be realized on 5-year municipal investments. The 5-year saving estimation is presented solely for AVM system comparison purposes.

Table 1-19. Large Model City Cost Benefits from AVM Systems Using One RF Channel

LIGGE 140CL CI			_				
	El 18		, 411 V	EHICLES AND			
		កស្ល		S. STEN		CLEU	CETIMATED
	ILT MATE	DENICLES		HICCUPHEN		CE	CHIEFIP
	RCCUFHCY	CHITED	ua.	11[11	164	EII4	JHF1HG
i e : BOMPD	33	31	2054	2057	មេខ	ยย	Ų
STYLUC DRP	ن.	31	2133	د13ء	ยย	ម្	Ú
2-HCCELLFONETCI		31	2095	2075	ษษ	ឲ្យ	ø
LHSEP PELOCINI	P 13	33	2053	5923	មម	បថ	61
ULTPROBLIC VELI	បំ វម	ತ⊍	21Us	2166	ថ្ង	HO	9
CUIERS3-000HETI		30 30	سال النامة	3962	υO	11 U	U
CUMPRISS/LINGER !		33	2⊍	20***	ŲИ	UB	U
COPCS-U-JUNIO	TEL 1	Ç3	೨೮೮೨	2002	11 11	3 44	A
ODEGI∗	1600	ย	ت الراك	4433	0.0	ยย	ម
LUPAN	log	16	2-11	2-11	9 0	บุบ	Ą
JECCH .	ഉപ്പ	11	2403	2403	0.0	nυ	U.
MI-STATIONS	200	11	2126	210o	ยย	មម	ย
DIFF CHECH	160	lb	2051	2351	0.0	ឲ្រ	Ċ
DIST LURGH	(ارات	ı.	5315	2512) й	ūο	Ü
DIFL HIT-STA	250	ŝ	2371	2071	ůн	èй	ง
PELHY UDEGO	รียอ		4555	174655	មិច	ย์ย	Ü
PELHY LUPAN	280	ŭ	7261	~L6!	ьü	วัก	Ú
CLIDS II		-			•	•	=
	DPS IU	31	053ء	€053	0 4	8 0	11
PEFLECTING SIG		3-	2353	LH33	ກັບ	ย์ย์	Ú
PEFLECTING POR		35	1930	1 - 03	őŏ	ษับ	ŭ
>-DAND POST	15	3-	2ง53	2653	บัติ	ห้อั	ŏ
HE OHE POST	15	33	-1044	204+	ថម	0 ម	Ū
LE POST	189	23	210-3	2188	ěŏ	มัย	ŏ
LIGHT/I-R POST	ີ້ວັງ	31	2110	2110	ěΰ	ŏÃ	ย
ZUPIED MUNIFIC	4	35	19 7	1997	ខិម	นัก	Ě
ULTOHSONIC POS		33	2035	23.5	6 6	9 11	ī
TRREFIC SENJOR	19	34	2042	2+0.	ñ ñ	ยับ	i
CLA. III	10	04	LOTE	LOYL	٠.	• •	•
HAP-BAND FILEH	ASE 1000	9	2916	2916	តម	0.0	0
		ű	304	234	กับ	มือ	ü
NID-BHND FN PHI PULSE T-0-APPI		23	207	207	9.7	37	6116
HOISE COPPELAT		23	232	555	- á	ŝà	4370
		0	2182	3135	ย์อ	ก็อ	49-0 U
DIFECTION FINDS	1K 703	v	2105	2136	0.0	11 10	v
	4-5	3-,	21	21	D2 47	38	1 4550
TPAFFIC LOOPS	18	23	137	15	15.5	16.2	150
MIGSIDE RADIO	lite						150 16200
PHOTONI-P DETEC		31	55	55		<i>2</i> 0.2	
ULTERCONIC DETE	ect 20	33	34	39	38.5	30 €	17700

Table 1-20. Large Model City Cost Benefits from AVM Systems Using Two RF Channels

LIPGE HODEL CI	TYS						
	JASTEN A	CCUPACIES	10 , UE	HICLES AND	ESTIM	HTED \$1¢0u	SHUTHGS
	•	THEO		SYSTEM	UEHI	CLES	CSTINATED
CLHSC I	3THILL TJU	VEHICLES	£	CCHRACY	SA	JE D	5-YEAP
TECHNITIALE	HCCURHCY	SAVED	1184	nin	IIA.	11164	SHUING
KEA30H8D	33	31	917	917	19 O	ยย	Θ
STYLUS HAP	36	31	945	945	0.0	ÜÜ	Ū
2-ACCELEPONETE		31	931	931	0 ย	ยย	- Ġ
LIGER PELOCINT		33	917	917	0.0	99,	ē
ULTERSONIC VEL		ŠÕ	935	935	0.0	0 0	ŭ
COMPRISC/ODUMET		33	418	913	6 9	9.0	ě
COMPRSS/LHSEP		33	912	315	ត់ថ	0.0	ō
CHPSC/U-30ItIC		33	JI5	915	ษอิ	3 6	Ü
01EuA	1660	ับ	2966	3966	ōĕ	0 is	ŏ
LUFBH	100	16	1194	1194	คือ	ด์ตั	õ
DECCA	260	ii	1190	1190	00	ย์ย์	Ū
AN-STATIONS	284	ĨĨ	965	965	9 9	છતા	ĕ
DIFF ONEGR	Ibu	16	1163	1163	ยิย	ย์ค์	ŏ
DIFF LOPAH	400	ō	11-4	11-4	0.0	ย์ติ	ė
DIFF BIT-STH	259	5	1173	1173	0.0	0.0	ō
PELHY ONEGO	500		79750	79750	ā ā	ěй	Ú·
PELA: LOPAH	850	Ü	3857	3357	u 0	ė ė	ò
CLASS II		_					=
	JPS 10	3+	415	915	0.0	9.9	U
REFLECTING SIG		34	415	715	0 0	ÓŠ	ē
PEFLECTING POR		35	337	087	θIJ	0 0	Ü
K-BRHD POST	12	3-	915	915	0 U	υŒ	ព
HF, UHF FOST	15	33	912	915	9 6	A B	Ð
LF POST	140	23	900	966	6.6	0.0	ē
LIGHT/I-F POST	30	31	937	937	0.0	0.0	Ū
PUPIED MIGNETS		35	894	894	0.0	0.0	θ
ULTERSORIC POST	r 20	33	927	927	00	0.0	Ó
TRAFFIC SENSOP	10	34	711	911	ψĐ	0.0	Ð
CLASS III							
HRP-BEND FIL PHE		ย	2819	2819	0 0	8.0	0
NID-SEND FIT PRE		6	Ce97	3297	00	0.0	9
PULSE T-0-ARPI		23	207	207	97	97	6A10
NOISE CORPELATI		23	232	232	ь З	5 8	4040
DIRECTION FINDS	R 700	IJ	1355	1055	ůυ	9.6	Ú
CLASS IV							
TRAFFIC LOOPS	19	34	21		C2 4	36 4	1955⊎
HHYSIDE RHDIO	100	23	187	187	12 2	12 2	7150
PHOTONI-R DETEC	∵T 3⊍	31	55		58 5	23 2	16260
ULTRACONIC DETE	CT 20	33	3₽	09	38.5	39.5	17700

V. COMPUTER PROGRAMS FOR ANALYSES OF AVM NEEDS

The cost estimates for the AVM techniques are in almost all cases precisely that — estimates as of 1974. They have the additional shortcoming that large-scale production is assumed, which accounts for the generally low system cost amounts. Therefore, additional studies are necessary to refine these estimates in view of the rapidly changing technology and costs.

Although the cost estimation procedure for AVM systems in model cities is a valid technique, it does not take into account the individual differences of real cities. That is, the system engineering aspect where the vagaries of a particular city and operational methodology are considered has not been included. The AVM system cost estimation and particularly the performance estimation and resultant estimated savings are essentially averaging processes. Since each city differs in details from each other city, and the AVM system cost, performance, and impact depend on these differences, final selection of an AVM system will require an individual analysis such as those presented in Part Two.

An individualized analysis for a particular city requires the two following steps: (1) Synthesis of AVM systems corresponding to each of the desired concepts as they would be configured for the physical, political, and cost environment of that city, and (2) evaluation of the effects of each of those systems. The process of synthesizing a particular AVM system is a straightforward but tedious task, requiring detailed technical knowledge that may not be readily available in real cities. It can be made easily available, however, by the development of an AVM system synthesis computer program, as is described later. The expected effects can then be assessed by using the resultant systems in a system simulation computer program, which is described in more detail in Section B. Since these two programs were planned to be developed in Phase One of this AVM Systems Study project, they do not yet exist.

A. AVM System Synthesis Computer Program

The synthesis program will be based on design algorithms, equations, cost estimates, and the AVM data base developed in Phase Zero of this Study. These program components include antenna siting algorithms for time-of-arrival systems, message length equations for different location technique and polling combinations, accuracy estimation equations for various reporting intervals or sign-post densities, and life-cost equations. A preliminary concept of the basic elements of the AVM system synthesis computer program is shown in Figure 1-37. A concept of the operations sequence in using the synthesis program is presented in Table 1-21. Salient features of the synthesis program are listed in the following subsections.

1. City and fleet data for AVM System
Synthesis Program. The synthesis program will
first summarize the data provided from the input
file. The purpose of this step is to provide the
user with an opportunity to review the input
before actually running the synthesis program.
Table 1-22 lists some of the parameters that will
be included in the data input summary.

Table 1-21. Operating Sequence of AVM System Synthesis Computer Program

Step 1. The user will supply the values of those parameters that describe his particular city. Some of the data may be fairly extensive, for example, geocoding data or DIME file type information which describes the city street/block system in detail. For information of this type a computer-readable data file will be used. An auxiliary program, separate from the AVM system synthesis program, will be developed to facilitate the interactive development of the data file.

Step 2. The synthesis program will read the data file and determine the AVM system configurations suited to the city. If any data is missing or incomplete, the program will indicate which systems cannot be evaluated and provide an opportunity to modify the data file.

Step 3. The program will present basic comparison data for each system configuration option.

Step 4. After selecting the viable configuration options, the program will shift to a "trade-off" or compromise mode in which the user can access further detail and investigate the options available within a particular choice of system concept.

Table 1-22. City and Fleet Input Data for AVM System Synthesis Program

City name AAAAAAAAAAAAAAAAAAAAAAAA Area monitored. XX.X sq miles Maximum X and Y dimensions: XX.XX mi, by XX.XX miles Street length XXX.X miles Number of intersections: NNNN Number of road segments: NNNN Number of vehicles instrumented: NNNN Average number of vehicles each shift: NN, NN, NN Number of beats per shift: NN, NN, NN Shift hours: HH-HH, HH-HH, HH-HH Number of dispatcher consoles: N Utilization factor by shift: FF%, FF%, FF% (This is the fraction of time available to respond to calls for service). Average call for service time by shift: нн, нн, нн RF channel utilization factor: P%, P%, P% RF channel assigned N Planned: N LORAN coverage in area?: Y-N; DECCA?: AM stations in area K--, W--, K--, W--

- 2. AVM Configuration options for AVM System Synthesis. Each of the AVM options identified by the selection process will be described briefly in narrative form. Each will be tagged with an identity code for later use. Then for each of the applicable options, the following gross data will be presented for comparison:
- a. <u>Cost estimates.</u> Total system cost, "present value. "\$XX XXX XXX (These figures

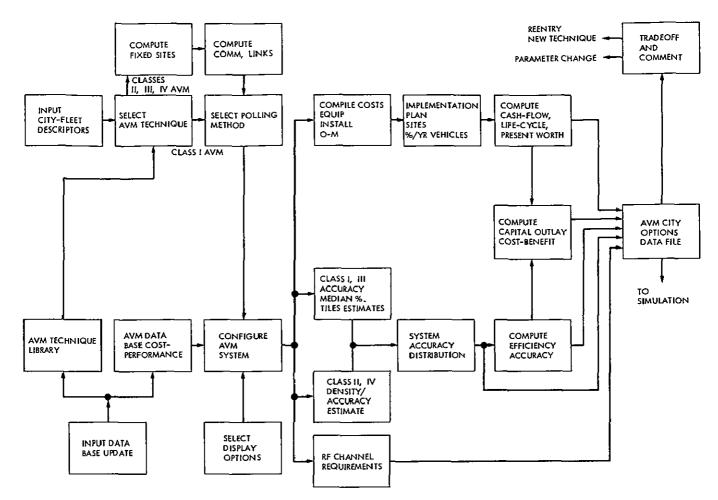


Figure 1-37. Concept for AVM System Synthesis Computer Program

will be for comparison purposes only. A breakdown follows:)

One-time costs

\$XX XXX XXX

(development, conversion, facilities)

Installation costs

\$XX XXX XXX

Recurring costs

\$XXX XXX per year

(operations, maintenance, training)

Replacement

\$XXX XXX per year

(equivalent annual payment at 10% year)

Upgrading costs

Display consoles

\$XXX XXX plus \$XX XXX per year (each)

Fixed sites

\$XXX XXX plus \$XX XXX per year (each)

Signposts

\$ XXX plus \$ XXX per year (each)

Vehicle equipment

\$ X XXX plus \$ XXX per year (each)

Telephone mileage

\$XXX XXX plus \$XXX XXX per year (each)

b. Resource utilization estimate.

Radio channels required: XX.X

Microwave or dedicated telephone lines needed: XXX

Computer memory estimate: XXX XXX bytes

c. Performance estimates.

Median location accuracy XX ft (effective polling rate = XX vehicles/second)

Fraction of fleet with error

less than ft: XX%

less than ft: XX%

less than___ft: XX%

d. <u>Comments</u>. Design features and other relevant considerations will be noted. Typical comments that might apply to specific systems are as follows:

"Vehicle status is monitored".

"Field unit alarm capability is present".

"Polling procedures are inflexible".

"Shared usage by several agencies would be difficult to implement".

"Effect of weather on performance expected to be small".

"Fleet locations easily monitored by public".

"Each 90 vehicles monitored requires an additional radio channel".

"Sensors may require protection from vandalism".

e. Trade-off potential. This portion of the output will identify significant trade-off possibilities and the potential outcome that could result from those trade-offs. The trade-off relationships will be accessible during Step 4 (Table 1-21) of the program. Typical trade-offs that might be possible for all or some of the systems are these:

Location accuracy vs number of radio channels (via the polling option and rate).

Computing at the command center vs computing on-board the vehicles. (This affects the costs and accuracy vs radio spectrum trade-off.)

Display characteristics vs cost. (These trade-offs may be independent of the other descriptors of the system.)

Location accuracy vs cost (via the spatial density of signposts, the number of fixed sites, etc).

f. <u>Cost benefit estimate</u>. A preliminary estimate of efficiency increase with AVM will also be an output. The cost benefit estimate will be derived from the estimated increase in efficiency and data such as that listed below.

Patrolman average salary:
\$XX, XXX per year
Patrolmen required for each vehicle: N
Support personnel for each vehicle: N.N
Overhead on salaries: PP%
Replacement cost of vehicle: \$X, XXX
Maintenance cost of vehicle:
\$X, XXX per year

'Based on the size of the fleet and these parameters, a cost benefit (deficit) first estimate will be provided such as:

Number of vehicles saved by shift. X, X, X Vehicle cost saving equivalent: \$XXX, XXX AVM capital investment equivalent,

10 yr: \$XXX, XXX 5 yr: \$XXX, XXX

The information provided by the AVM system synthesis program will not in itself provide sufficient justification for selection but will be a very important first step that eliminates obvious non-competitive techniques and allows for more detailed consideration of the viable techniques.

B. AVM System Simulation Computer Program

Much work has already been done by others in regard to AVM simulation (see Bibliography). The intent of this study effort is to utilize as much of that work as possible.

There is one aspect of the prior work where it is believed-that improvement is needed. This is in the area of AVM system accuracy estimation. Prior AVM simulation work has investigated the overall command and control function to determine the effect of AVM system accuracy on "wrong dispatches" and the average distance travelled as a result of these "wrong dispatches." A "wrong dispatch" results when the closest available vehicle is not the one directed to respond to the call for service. This incorrect action results from not knowing precisely the vehicle locations, and thus the entire system performance is degraded owing to unnecessary distance travelled and time consumed in responding to calls for service.

In these prior simulations of the command and control functions, the investigators assigned values such as a 95 percentile value of a radial error of X feet to the AVM system accuracy. It has been assumed that this error distribution is normal and constant with time. The computer simulation programs determine the exact location of each vehicle from a mobility routine or driver scenario. Then, in order to test the system response to a call for service, each of the exact locations is corrupted in some random fashion with either X and Y or with an angle and range to the exact location. The apparent location is then used by the dispatching routine in the search for the vehicle closest to the call for service. The foregoing mode of simulation effectively assumes a constant value for the AVM system accuracy which may be misleading for all but those techniques that use very short intervals between vehicle location determinations. Short interval interrogation of location is not a requisite mode of operation in many AVM techniques and is impractical or inappropriate in others.

A more realistic approach to AVM accuracy simulation is to model the actual vehicle location process, including the expected or appropriate polling technique and taking into consideration the time lapse from the last location determination, the motion of the vehicles, and the resultant effect on closest car determination. In this mode of simulation, the vehicle mobility or driver location routine can be altered by a time-varying location uncertainty, if that is appropriate for the particular AVM system concept. The exact nature of this uncertainty or modification to the exact location may also be a function of other factors in addition to time. These factors may be vehicle speed, physical location at time of interrogation, distance travelled since last location, or distance travelled since last signpost proximity update. These factors will be explicitly considered by the AVM simulation program.

An accurate measure of the reduction in response time requires that a reasonably accurate geocoded definition of the coverage area be a part of the simulation program. Simulations that sum the absolute values of the differences in X- and Y-distances from the vehicle position

to the location of the call for assistance give a correct solution only for idealized rectangular cities. Geocoded descriptions of the coverage area will allow an accurate measure of distance in each instance, since the optimum trevel routes can be used in the simulation.

The advantage of using the more accurate AVM simulation models is that a more realistic appraisal of the expected increase in efficiency can be determined. In addition, the possible variations in system configuration that affect performance parameters of the entire system can be investigated with the assurance that the influence of the variation has been considered.

Other technical performance parameters that will be considered in the simulation program include the data links involved in the vehicle location process and the effects of errors in reception; the effects of entry of new vehicles into the coverage area, and the re-establishment of the position of "lost" vehicles in relative location techniques. In addition, the actual location algorithm for each technique can be exercised with the expected input data. The preliminary concept of the main components of the AVM system simulation program are shown in Fig. 1-38. As already indicated, the intent is to develop this program around prior work insofar as possible.

Heretofore, simulation has been used almost exclusively in regard to reducing response time. The proposed simulation program will allow the investigation of other aspects of vehicle location. The utility of post data analysis can be evaluated, and the effects of an officer-needs-assistance incident can be assessed, both for the impact on subsequent calls for service and on the response time improvement to the officer in trouble.

References

- Stavis, G., General Precision Aerospace Technical News Bulletin, 8:4, 1965.
- Larson, R.C., Urban Police Patrol Analysis, MIT Press, 1972.
- 3. Task Force Report Science and Technology.

 A Report to the President's Commission on
 Law Enforcement and Administration of
 Justice, Sept. 1974.
- Doering, T.D., Vehicle Locator Feasibility Study, Final Report Submitted to Governor's Conference on Criminal Justice, Tallahassee, Florida, Mar. 1974.
- Turin, G.L., et al., "A Statistical Model of Urban Multipath Location," Vol. VT-21, No. 1, IEEE Transactions on Vehicular Technology, Feb. 1972.

Bibliography

- Moody, A.B., Capt. USNR, "The National Plan for Navigation," <u>Navigation</u>. J.Inst. of <u>Nav</u>., Vol 16, No. 1, <u>Spring</u> 1969.
- Davis, E.M., Dept. Chief LAPD, "Police Communication and Riot Control," speech presented before the IEEE, Panorama City, Calif., Nov. 16, 1966.
- Terman, F.E., <u>Radio Engineering</u>, McGraw-Hill Book Co., Inc., New York, 1947.
- 4. Henney, K., Editor-in-Chief, The Radio Engineering Handbook, Third Ed., McGraw-Hill Book Co., Inc., New York, 1941.
- 5. Kramar, E., "Hyperbolic Navigation-History and Outlook, "<u>Interavia</u>, Vol. XXIV, No. 2, pp. 174-177, Feb. 1969.
- DeGroot, L.E., and Larsen, J., "Extended Capability from Existing Navaids," <u>Interavia</u>, Vol. XXIV, No. 2, pp 391-405, Feb. 1969.
- Kuebler, W., "Marine Electronic Navigation Systems - A Review," <u>Navigation</u>. J. <u>Inst.</u> of Nav., Vol. 15, No. 3, pp. 268-273, Fall 1968.
- Stringer, F.S, "Hyperbolic Radio Navigation Systems," <u>Wireless World</u>, Vol. 75, No. 1406, pp. 353-357, August 1969.
- Shapiro, L.D., "Time Synchronization from Loran C," IEEE Spectrum, Vol. 6, No. 8, pp. 46-55, August 1968.
- 10. Yonezawa, Y., Shinomiya, H., Kobayashi, T., and Nishitani, Y., "Evaluation of Loran C System by a Manual Receiver Indicator Accuracy of Time Difference Readings and its Position Lines," IEEE Spectrum, Vol. 6, No. 8, pp. 61-70, August 1968.
- 11. "Symposium Paper Assesses Accuracy of Timing from Loran-C Ground-Skyways," Communications Designer's Dig., Vol. 3, No. 7, pp. 21-23, July 1969.
- 12. Burgess, B., "Propagation Effects and Lane Ambiguity Resolution in OMEGA," Proceedings of the Institution of Electrical Engineers, Vol. 116, No. 8, pp. 1297-1303, August 1969.
- Dauguet, A., "Certain Universal Systems of Navigation via Satellite," <u>NASA-TT-F-12092</u>, <u>N69-15348</u>, Jan. 1969.
- 14. "NASA Evaluates Omega System for Locating Fixed and Moving Platforms," Communication Designer's Dig., Vol. 12, No. 11, pp. 34-36, Nov. 1968.

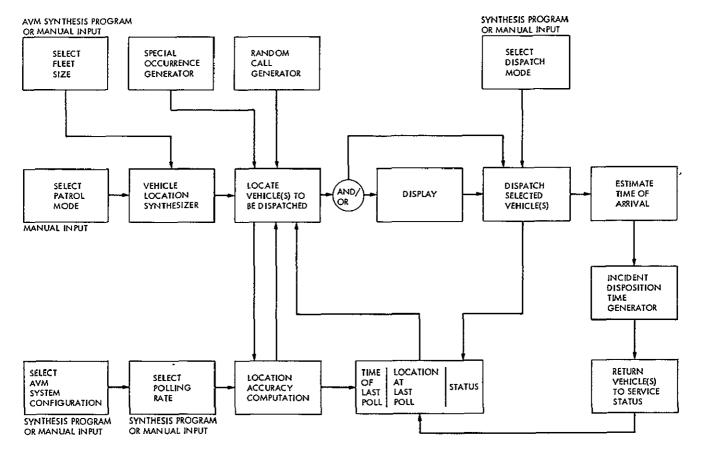


Figure 1-38. Concept for AVM System Simulation Computer Program

- "Closely Watched Buses," <u>Electronics</u>,
 Vol. 42, No. 22, p. 204, Oct. 27, 1969.
- 16. Quinn, C.E., Stevens, J.E., and Trabold, W.G., "DAIR A New Concept in Highway Communications for Added Safety and Driving Convenience," <u>IEEE Transactions on Vehicular Technology</u>, Vol. VT-16, No. 1, Oct. 1967.
- 17. Turin, G.L., Clapp, F.D., Johnston, T.L., Fine, S.B., and Lavry, D., "A Statistical Model of Urban Multipath Location," Vol. VT-21, No. 1, <u>IEEE Transactions on Yehicular Technology</u>, Feb. 1972.
- Turin, G.L., Jewell, W.S., and Johnson, T.L., "Simulation of Urban Vehicle-Monitoring Systems," Vol. VT-21, No. 1, IEEE Transactions on Vehicular Technology, Feb. 1972.
- Staras, H., "The Accuracy of Vehicle Location by Trilateration in a Dense Urban Environment," Vol. VT-21, No. 1, IEEE Transactions on Vehicular Technology, Nov. 1971.
- Ziolkowski, F.P., and Tsao, C.K.H.,
 "Antennas Buried in a Roadway for Vehicular Traffic Communications," Vol. VT-20,
 No. 4, IEEE Transactions on Vehicular Technology, Nov. 1971.
- Myer, J.H., "VEPOL A Vehicular Plantmetric Dead-Reckoning Computer," Vol. VT-20, No. 4, <u>IEEE Transactions on Vehicular Technology</u>, Nov. 1971.

- 22. Kaplan, G S, "Analysis of an Electronic Fence Element for a Vehicle Location System," Vol. VT-20, No 2, IEEE Transactions on Vehicular Technology, May 1971.
- Braun, W.V., and Walker, D.L., "Vehicle Location and Information Systems," Vol. VT-19, No. 1, IEEE Transactions on Vehicular Technology, Feb. 1970.
- 24. Knickel, E.R. and Van Horn, A.W., "Improving Police Command and Control with a Patrol Car Emitter-Call Box Sensor Car Location System," Vol. VT-19, No. 2, IEEE Transactions on Vehicular Technology, May 1970.
- Shefer, J. and Kaplan, G.S., "An X-Band Vehicle-Location System," Vol. VT-21, No. 4, <u>IEEE Transactions on Vehicular</u> <u>Technology</u>, Nov. 1972.
- Warren, W.T., Whitten, J.R., Anderson, R.E., and Merigo, M.A., "Vehicle Location System Experiment," Vol. VT-21, No. 3, IEEE Transactions on Vehicular Technology, Aug. 1972.
- Kaplan, G.S. and Schiff, L., "Data Rate Requirements for Relay Links in Vehicular Location Systems," Vol. VT-18, No. 2, <u>IEEE Transactions on Vehicular Technology</u>, Aug. 1969.
- 28. Figel, W.G., Shepherd, N.H., and Trammell, W.F., "Vehicle Location by a Signal Attenuation Method," Vol. VT-18, No. 3, IEEE Transactions on Vehicular Technology, Aug. 1969.
- 29. JPL Literature Search 73-018, Sep. 1973.

PART TWO: AVM DATA FOR USER GROUP ADVISORY COMMITTEE CITIES

G.R. Hansen

CONTENTS

		Page			Page
I. II. III. IV.	Cost Benefits of AVM Systems for Seven Cities	2-1 2-1 2-1 2-2 2-4 2-5 2-7	V. VII. VIII.	Monterey Park, CA, City AVM Cost Benefit Analysis Tables Pasadena, CA, City AVM Cost Benefit Analysis Tables San Diego, CA, City AVM Cost Benefit Analysis Tables Los Angeles, CA, City AVM Cost Benefit Analysis Tables A. Los Angeles Central Bureau Analysis Tables B. Los Angeles South Bureau Analysis Tables C. Los Angeles West Bureau Analysis Tables D. Los Angeles Valley Bureau Analysis Tables	2-8 2-10 2-11 2-14 2- 2- 2- 2-
		FIGU	RES		
Fig. N	o.	Page	Fig. N	ío.	Page
2-1. 2-2. 2-3. 2-4. 2-5. 2-6. 2-7.	Anaheim, CA, AVM Pulse or Narrow-Band Antenna Locations Anaheim, CA, AVM Wide-Band Antenna Locations Long Beach, CA, AVM Pulse or Narrow-Band Antenna Locations Long Beach, CA, AVM Wide-Band Antenna Locations Montclair, CA, AVM Pulse or Narrow-Band Antenna Locations Montclair, CA, AVM Wide-Band Antenna Locations Montcrey Park, CA, AVM Pulse or Narrow-Band Antennas	2-4 2-4 2-5 2-6 2-7 2-7 2-8	2-8. 2-9. 2-10. 2-11. 2-12. 2-13. 2-14.	Monterey Park, CA, AVM Wide-Band Antenna Locations Pasadena, CA, AVM Pulse or Narrow-Band Antenna Locations San Diego, CA, AVM Pulse or Narrow-Band Antenna Locations San Diego, CA, AVM Pulse or Narrow-Band Antenna Locations Los Angeles, CA, AVM Pulse or Narrow-Band Antennas Los Angeles, CA, AVM Pulse or Narrow-Band Antennas Los Angeles, CA, AVM Wide-Band Antenna Locations	2-9 2-10 2-10 2-12 2-12 2-15 2-15
Table	No.	Page	Table	No.	Page
2-1. 2-2. 2-3. 2-4. 2-5. 2-6. 2-7. 2-8.	Anaheim, CA, City AVM Physical Parameters Anaheim, CA, AVM Systems Cost Analyses Anaheim, CA, AVM Polling Cycle Min/Max Times Anaheim, CA, AVM Accuracies and Cost Benefits Long Beach, CA, City AVM Physical Parameters Long Beach, CA, AVM Systems Cost Analyses Cost Analyses Long Beach, CA, AVM Polling Cycle Min/Max Times Long Beach, CA, AVM Accuracies and Cost Benefits	2-4 2-4 2-5 2-5 2-5 2-6 2-6	2-11. 2-12. 2-13. 2-14. 2-15. 2-16. 2-17. 2-18.	Montclair, CA, AVM Polling Cycle Min/Max Times Montclair, CA, AVM Accuracies and Cost Benefits Monterey Park, CA, City AVM Physical Parameters Monterey Park, CA, AVM Systems Cost Analyses Monterey Park, CA, AVM Polling Cycle Min/Max Times Monterey Park, CA, AVM Accuracies and Cost Benefits Pasadena, CA, City AVM Physical Parameters Pasadena, CA, AVM Systems Cost Analyses	2-8 2-8 2-9 2-9 2-9 2-10 2-10
2-9. 2-10.	Montclair, CA, City AVM Physical Parameters Montclair, CA, AVM Systems	2-7	2-19. 2-20.	Pasadena, CA, AVM Polling Cycle Min/Max Times Pasadena, CA, AVM Accuracies	2-11
∠ − 10.	Cost Analyses	2-7		and Cost Benefits	2-11

TABLES (CONTD)

2-21. San Diego, CA, City AVM Physical Parameters
Cost Analyses
2-23. San Deigo, CA, AVM Polling Cycle Min/Max Times
Min/Max Times
and Cost Benefits with One Radio Channel
One Radio Channel
2-25. San Diego, CA, AVM Accuracies and Cost Benefits with Two Radio Channels
and Cost Benefits with Two Radio Channels
Two Radio Channels
AVM Physical Parameters 2-14 2-27. Los Angeles, CA, Central Bureau AVM Systems Cost Analyses 2-14 2-28. Los Angeles, CA, Central Bureau AVM Polling Cycle Times 2-14 2-29. Los Angeles, CA, Central Bureau AVM Accuracies and Cost ACCURACIES ANGELES, West Bureau AVM Accuracies and Cost Benefits
2-27. Los Angeles, CA, Central Bureau AVM Systems Cost Analyses 2-14 2-28. Los Angeles, CA, Central Bureau AVM Polling Cycle Times 2-14 2-29. Los Angeles, CA, Central Bureau AVM Accuracies and Cost ACCURACIES ANGELES, West Bureau AVM Accuracies and Cost Benefits ACCURACIES ANGELES, West Bureau AVM ACCURACIES ANGELES, West Bu
AVM Systems Cost Analyses 2-14 2-28. Los Angeles, CA, Central Bureau AVM Polling Cycle Times 2-14 2-29. Los Angeles, CA, Central Bureau AVM Accuracies and Cost Benefits AVM Accuracies and Cost Benefits with One Radio Channel 2-18 Accuracies and Cost Benefits Accuracies and Cost Benefits with Two Radio Channels 2-18
2-28. Los Angeles, CA, Central Bureau with One Radio Channel 2-18 AVM Polling Cycle Times 2-14 2-29. Los Angeles, CA, Central Bureau AVM Accuracies and Cost with Two Radio Channels 2-18
AVM Polling Cycle Times 2-14 2-42. Los Angeles, West Bureau AVM 2-29. Los Angeles, CA, Central Bureau Accuracies and Cost Benefits AVM Accuracies and Cost with Two Radio Channels 2-18
2-29. Los Angeles, CA, Central Bureau Accuracies and Cost Benefits AVM Accuracies and Cost with Two Radio Channels 2-18
Benefits with One Radio Channel Z=14
2-30. Los Angeles, CA; Central Bureau Accuracies and Cost Benefits AVM Accuracies and Cost with Three Radio Channels 2-18
Benefits with Two Radio 2-44. Los Angeles, Valley Bureau AVM
Channels 2-15 Physical Parameters 2-19
2-31. Los Angeles, CA, Central Bureau 2-45. Los Angeles, Valley Bureau AVM
AVM Accuracies and Cost Systems Cost Analyses 2-19
Benefits with Three Radio 2-46. Los Angeles, Valley Bureau AVM
Channels
Physical Parameters 2-16 Accuracies and Cost Benefits
2-33. Los Angeles, South Bureau AVM with One Radio Channel 2-19
Systems Cost Analyses 2-16 2-48. Los Angeles, Valley Bureau AVM
2-34. Los Angeles, South Bureau AVM Accuracies and Cost Benefits
Polling Cycle Times 2-16 with Two Radio Channels 2-20
2-35. Los Angeles, South Bureau AVM 2-49. Los Angeles, Valley Bureau AVM Accuracies and Cost Benefits Accuracies and Cost Benefits
with One Radio Channel 2-16 with Three Radio Channels 2-20

I. COST BENEFITS OF AVM SYSTEMS FOR SEVEN CITIES

A. Rationale for Selection of UGAC Cities

In order that a more realistic appraisal of the costs and expected performance of AVM Systems could be estimated, police department representatives from several cities were invited to participate in a User Group Advisory Committee (UGAC) devoted to studying AVM technologies. A set of nine criteria was established for selecting typical Southern California cities for the UGAC study. Some criteria are obvious and were established for time and economic considerations, while others were arrived at by heuristic processes. In this listing, the future tense is used because the criteria were established before city selection began. A brief rationale is presented with each criterion, to wit:

- (1) City Size. Cities in three categories,
 (a) less than 20 sq miles, (b) between 20 and
 100 sq miles, and (c) greater than 100 sq
 miles, will be solicited to determine the
 impact on urban areas to be covered by
 AVM Systems.
- (2) Geography/Topography. Essentially flat as well as hilly areas in the communities are desirable to ascertain the effects on AVM methods as well as the communication data links.
- (3) Population Density/Land Use. These criteria are closely allied, and agricultural areas, industrial centers, and suburban as well as high-rise residential areas should be a part of the cities. This criterion will eliminate those cities formed to be wholly agricultural or industrial areas for tax purposes.
- (4) Building Sizes. The inclusion of high-rise dense metropolitan, low-rise business (less than 6-10 stories), mixed business and residential, and suburban areas is desirable to match and extend prior AVM work and to include the effects of these structure distributions on the communication links.
- (5) Population. Cities with populations of (a) more than 1,000,000, (b) between 200,000 and 1,000,000, and (c) less than 200,000 will be solicited. These numbers are arbitrary and are not firm, but the population somewhat determines the size of the municipal government. It is felt that this criterion is desirable as differing governing bodies will require AVM information to different degrees. Additionally, the participants in the user group will probably have different authority within their city governments as a function of population. It is believed, that those from smaller cities may be closer to the policy making level than those from major cities.
- (6) Willingness to Cooperate. This is an obvious but important criterion and is

- difficult to assess beforehand. It is essential because the participants will be required to furnish data about their city as well as being regular in meeting attendance.
- (7) Pursuing or Contemplating AVM. This criterion is necessary to assure some active interest in the study effort.
- (8) Close to JPL. Economic considerations require this criterion since expense monies are not available in the grant for the participants. Additionally, regular frequent meetings are required and extensive travel time would be an additional expense to the participating city.
- (9) Must Have Public Safety Department. This is an obvious and perhaps trivial requirement, but is necessary to eliminate those cities that contract for police services with another government agency. These cities would probably fail Criterion (7) as well. This criterion is a natural outgrowth of the principal thrust of the proposed work which will focus on public safety vehicle location.

None of the foregoing criteria were intended to preclude participation by governmental bodies other than cities, such as counties. By criterion (8), only Los Angeles and possibly, San Bernardino, Ventura and Riverside counties could have been considered.

Seven cities were selected which met the majority of the criteria. Small cities were Montclair and Monterey Park. Medium cities selected were Pasadena, Long Beach, and Anaheim. The large cities were San Diego and Los Angeles.

Senior police officers from each of these cities participated in the UGAC and provided information concerning police operations and plans as well as statistical data for the individual cities.

B. Parameters Used in AVM Cost Analyses

Each UGAC city had different modes of operation and requirements regarding the implementation of AVM systems. For example, some police departments operate on a three-shift basis, while others use the ten-four plan where the officers work four 10-hour days in sequence. In responding to calls for service, some police departments use only patrolling vehicles while others dispatch the plain colored (i.e., pastels) in response to citizen calls. The inclusion of motorcycles, either two- or three-wheelers, in the AVM system was planned by some cities, but not by others. In the main, however, there is sufficient commonality of parameters to allow for automation of the AVM cost and performance estimation procedures.

1. Number of vehicles in the fleet. The total number of vehicles to be instrumented is the basis for the car cost estimates. Motorcycles were not included because a satisfactory digital message capability for motorcycles does not yet

exist. Vehicles, which in general do not respond to calls for service were also not included. The maximum and minimum number of vehicles by shift was determined and normalized to a three-shift operation. This parameter is necessary to determine vehicle polling intervals.

- 2. City area, street mileage, number of intersections and road segments. This information was provided by the representatives for the UGAC cities. The beat area is an important parameter which is used in the AVM system accuracy estimation, but no standard or common method of determining this parameter could be found. In some cities, the beats are correlated with the crime reporting technique. In others, the beats are periodically readjusted as determined by the average number of vehicles deployed on particular shifts. The beat size parameter is an independent variable in predicting the responsetime improvement that should accrue with a given location accuracy value. For the purposes of this study, the beat size was placed at the values resulting from dividing the city area by the number of vehicles deployed. This average value assumption cannot be wholly justified when, for example, beats vary from 6 blocks to 49 square miles in size as they do in San Diego.
- 3. Number of signposts or fixed sites required. The fixed site enumeration parameter in Class II and IV AVM systems was determined from the data supplied concerning the number of intersections or road segments. Where the technique was dependent on the number of lanes in the segment, the average value of 2.4 lanes per street segment was assumed as in the model cities. For the Class III AVM techniques, the placement and/ or the number of widely distributed fixed sites required was determined by an algorithm which was only a function of the area in the model city estimations. The boundaries and shape of the UGAC cities seemed to dictate a more realistic approach. Boundary outline maps of each city were prepared, and the most optimum placement of a grid representing the spacings for narrowband and wide-band antennas was determined. The minimum number of sites that would be necessary was thereby determined. The assumptions made were that there were no "difficult" RF areas that would require additional coverage, and that a fixed site could be placed where needed regardless of zoning, existing structure, or geographical restrictions.
- 4. Costing procedure for AVM Systems in UGAC cities. The costing of the various AVM system configurations for the UGAC cities was accomplished through the use of the APL computer programming language (see Part Three). The costs of vehicle equipment, fixed sites, base equipments, and polling elements were stored in the table form by technique and cost category (e.g., equipment, installation, operation and maintenance). This assemblage forms the cost data base. The various parameters for each UGAC city are also stored in a prescribed manner as follows:
 - (1) Urban area in square miles.
 - (2) East to West extent in miles.
 - (3) North to South extent in miles.

- (4) Road mileage.
- (5) Number of intersections.
- (6) Number of road segments.
- (7) Number of vehicles in AVM fleet.
- (8) Number of motorcycles.
- (9) Maximum number vehicles deployed in first shift.
- (10) Minimum number of vehicles deployed in first shift.
- (11) Maximum number of vehicles deployed in second shift.
- (12) Minimum number of vehicles deployed in second shift.
- (13) Maximum number of vehicles deployed in third shift.
- (14) Minimum number of vehicles deployed in third shift.
- (15) Number of dispatcher consoles.
- (16) Number of small coverage (or narrow band) Class III AVM sites.
- (17) Number of wide coverage (wide-band) Class III AVM sites.

The cost estimates (as of 1974) are compiled into the cost categories after multiplying by the appropriate parameter. The program is very simple, being really a programmed desk calculator with automatic input. The rationale for programming was to avoid a repititious procedure of calculating fine cost categories and obtaining three totals for each of 36 AVM techniques in the seven UGAC and three model cities and to simplify future cost estimations.

C. Descriptions and Summary Analyses of UGAC Cities

In Sections II through VIII, outline maps of each UGAC city are presented along with detailed listing of each city's physical parameters, AVM cost summaries, vehicle polling cycle times, and estimates of the AVM system accuracies and 5-year cost savings. The seven selected cities were Anaheim, Long Beach, Montclair, Monterey Park, Pasadena, San Diego, and Los Angeles. Thirty-six techniques in the four AVM classes were investigated for each city. Each of the seven cities was treated as an entity, with the exception of Los Angeles which was evaluated for each of its four geographical bureaus. Additionally, because of the large number of vehicles deployed in the cities of San Diego and the four Los Angeles bureaus, the system accuracies were determined for shorter cycle times or polling intervals. That is, more than one RF channel (half-duplex) was allowed for these areas.

In this Section, the summary analyses for each UGAC city are based solely on a comparison of the estimated 5-year saving and the estimated costs (as of 1974) of particular AVM systems.

The 5-year saving is predicted on only one factor of AVM performance, namely response time improvement. There are many other aspects of AVM systems which should enter into the decision process. Many of the thirty-six listed techniques which appear viable have never been developed or tested in typical urban environments. Therefore, only the developed and/or tested concepts will be discussed in the following summary descriptions. Complete tabulations are given in Sects. II to VIII.

1. Anaheim, CA. This city might be characterized as a break-even city with response time improvement such that cost savings just equal AVM costs, but only for the dead-reckoning techniques in Class I. Anaheim is slightly smaller than the medium model city (see Part One, Sect. III) in both area and fleet size, and the cost summary indicates Class I system costs for the dead-reckoning techniques of about \$280,000. The 5-year saving is about \$300,000 for a magnetic-compass/odometer system with a system accuracy of 50 to 75 meters.

The Class II AVM systems which indicate some car saving are the wide-spaced signposts and buried magnets. The accuracies achievable are roughly 250 meters and 50 to 75 meters, respectively. The cost of the Class II wide-spaced signposts is about twice the saving, while the buried magnets may cost four times the 5-year saving.

The most accurate Class III and all Class IV systems resulted in car saving, but the cost saving was negative. (See Sect. II.)

2. Long Beach, CA. The same AVM techniques as in Anaheim are viable in this city, but because the city is slightly larger in area with a substantially bigger vehicle fleet, the costs are about \$50,000 more for the Class I deadreckoning techniques. The 5-year savings are lower, about \$160,000, because the maximum deployment considered is less than in Anaheim.

There is a large difference between Anaheim and Long Beach in the Class II AVM systems as Long Beach has almost four times the road mileage and almost twice the number of intersections. Long Beach is unique in having a large number of named dedicated alleys in the central area which results in an intersection density of 144/km2 (400 per square mile). This factor causes the Class II and Class IV techniques to have a greater number of installations than are really required. Widespaced signposts and buried magnets indicate car savings, but the 5-year figure is well below the systems cost. If the high central density were reduced to a more reasonable value, the disparity between cost and saving would lessen to the point where the saving would be half the cost.

The pulse TOA Class III technique and all the Class IV systems indicated car savings, but cost savings were negative. (See Sect. III.)

3. Montclair, CA. In this city, the dead-reckoning techniques of Class I AVM and most of the techniques in the other classes indicate car savings primarily because system accuracies are very high. This is a direct result of a very short polling cycle time. The 5-year savings for all systems that indicate a saving are negative and exceed a "loss" of \$200,000. The car savings are

in the order of 5% of the deployed vehicles (4 to 7), that is, 0.2 to 0.4 cars.

Despite the fact that Montclair has a widespaced signpost AVM system installed and operational for over a year, this analysis indicates that the cost is substantially greater than the saving. The reason this analysis is faulty in this case is that Montclair does not have either a computer in the system nor the operation and maintenance (O-M) personnel indicated as required for all systems.

The system accuracy indicated for the wide-spaced Class II signposts is about 250 meters, which is quite close to that achieved in Montclair. The installed system has an accuracy of 0.2 km (1/8 mile) with slightly fewer signposts. The system costs are quite similar for the technique if the O-M category is omitted (\$60K versus \$71K). (See Sect. IV.)

- 4. Monterey Park, CA. Car savings are indicated for all classes of AVM in this city. Again as in the other small city, or small model, the cost saving is near zero or negative. This city, because of the great difference between maximum and minimum deployment and short polling cycle shows a greater car saving when fewer vehicles are deployed. If the O-M costs were greatly reduced, the 5-year saving would exceed the costs. (See Sect. V.)
- 5. Pasadena, CA. This city is roughly half-way between the small and medium models. Again a car saving is shown in all AVM classes with negative 5-year cost savings. Again, the short polling cycle causes little degradation of achievable accuracy. The O-M costs are the principal element mitigating against a positive saving, and the value for cars saved is less than a whole car. (See Sect. VI.)
- 6. San Diego, CA. In this city, virtually every AVM technique indicates a positive 5-year saving.—The Class I dead-reckoning techniques system costs are exceeded by the estimated savings, and the Class III costs are close to the savings. This result occurs despite the poor system accuracies caused by relatively long polling cycles. There is a substantial car savings because the averaging of beat areas leads to results in which apparent response time improvements with very inaccurate techniques occur. More than half the area of San Diego is covered by five northern beats which causes the average beat to be 40% larger in side dimension than the average beat that would result if these five beats and the area involved were not considered. The reduction in beat dimension would cause a decrease in apparent response time improvement.

In an attempt to reduce cycle time effects, the system accuracy and cost savings calculation were also performed for three RF channels for AVM. The cost savings under these conditions for Class I systems were doubled. The savings for Class II were uniformly increased by about \$1.8 million to the point where the cost of the buried magnet system was equalled, as were the costs of the Class III pulse TOA system, by the cost saving. (See Sect. VII.)

7. Los Angeles, CA. Los Angeles was analyzed separately for each of the four bureaus

(Central, South, West, Valley), which range in area from 130 to 500 km² (50 to 200 square miles). Again as in the medium model city, all of the bureaus show a 5-year saving for most of the AVM techniques. All bureaus operate about the same number of cars, so the effect of beat size on the response time efficiency increase is greater for the larger bureaus. In overall cost savings, the Valley bureau shows the greatest saving, followed in order by the West, Central, and South Bureaus.

The AVM system_accuracy and 5-year saving calculations were performed for 2 and 3 RF channels for the AVM systems for each of the bureaus. As expected, the accuracy improved to about one-half and one-third that of the one RF channel case. The 5-year saving with 3 channels showed an increase when changing from 2 to 3 RF channels that was almost twice that obtained in changing from 1 to 2 RF channels. The increase in accuracy leads to increased car savings, thereby reducing the effect of the constant O-M expenses (See Sect. VIII.)

II. Anaheim, CA, City AVM Cost Benefit Analysis Tables

Table 2-1. Anaheim, CA, City AVM Physical
Parameters

WYH IS SUND BUUNEE HILES.

enut host distance is 15.3 mico.

NUMBER SOUTH DISTANCE IS & HILES

FOTAL FOAD HILEAGE IS 456 MILES.

FINE HUMBER OF INTERSECTIONS IS 4800.

THE ESTIMATED NUMBER OF PORD SEGMENTS IS \$600

THEFO AFO 36 CAPS IN THE FLEET.

HND THEFE APE O NOTOPCYCLES.

THE NUMBER OF VEHICLES ON EACH SHIFT IS:

ΠΙΡΕΓ EHIFT NA∿ 14

CLEET SHIFT MIN- 14

SECOND SHIFT MAY: 12

JECOND SHIFT MIN- 12

гитер ватет мах. 19

THIFD SHIFT MIN- 19

THE NUMBER OF DISPATCHERS IS 1

THE CITY HOULD RECUIPE 6 HIDE+BAND OF

FULLE ANTENNA SITE? AND 16 HAPROU BAND

TH ANTENNA SITES FOR 7 AND I HILE PADIUS COVERAGE.

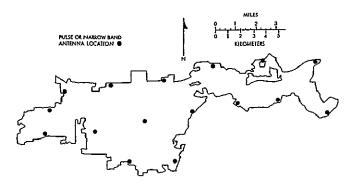


Figure 2-1. Anaheim, CA, AVM Pulse or Narrow-Band Antenna Locations

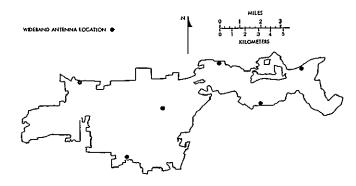


Figure 2-2. Anaheim, CA, AVM Wide-Band Antenna Locations

Table 2-2. Anaheim, CA, AVM Systems Cost Analyses

# WHEIM								
CLASS I							TUTHLO	
			нирси					
TECHNIOUE	LHPS	SITES	BASE	INST	11 - 0	UHL	UNITE	PARDON
YEYBOAPD	5	0	59	12	101	12	176	176
STILUS NAP	98	0	59	12	101	269	263	263
2-HCCELEFUMETEPS	50	ស	88	1++	164	261	268	ದರಿ ರಿ
LACEP HELOCINTR	65	8	90	15	10b	231	500	256
ULTEASONIC VELO	40	Ü	98	14	166	261	268	266
COMPASC/UDUMETER	53	ប	90	11	102	261	270	266
COMPASS LHCER VEL	67	Ö	90	16	10-	282	290	267
CHPSG/U-SONIC VEL	58	ō	90	14	164	270	279	275
ONEGA	73	9	75	13	103	294	204	301
LUPHH	NJI	ū	75	15	103	298	307	306
DECCR	76	ū	75	13	100	200	247	245
HII-STATIONS	15	ŏ	75	iż	105	210	216	215
DIFF ONEGR	48	11	75	15	100	294	301	361
DIFF LOPAN	ici	Ö	75	13	103	290	30.	506
DIFF AN-STA	17	ŭ	75	iż	100	212	219	555
PELAY OHEGA	Î٩	ŏ	75	13	104	217	211	25ء
PELA? LOPAN	رغ	ě	75	13	10+	815	213	227
CLASS II						•••		
BURIED PES LUGPS		3226	59	5496	101	8392	8895	Cach
PEFLECTING SIGNS	ıš	1656	59	592	197	1927	1930	1921
FEFLECTING RUAD	ŝ	116	59	704	677	1565	1568	1559
A-EHND PUST	ŕ	1104	59	228	173	1575	1579	1569
HE THE POST	6	120	59	66	11 -	375	378	369
LF POST	š	600	5	228	173	1071	1074	1065
LIGHTZI-P POST	6	460	Ša	277	221	1648	1и51	1042
EUPIED HACHETS	- 4	223	59	-5°	100	11-8	1152	11-2
ULTRACONIC POST	5	316	59	839	197	1912	1915	1906
TPAFFIC SEMSOR	5	912	59	396	101	1-78	1482	1473
CLASS 111	-		-	0			1101	1410
HHP-BAND FIL PHASE	9	76	163	18	169	313	322	323
HID-PAND FM PHASE	105	70	110	23	204	511	520	521
PULSE T-0-HRPIUHL	93	224	257	56	134	313	SSS	323
HOISE CORPELATION	29	29	257	14	178	516	514	520
DIRECTION FINDER	ž	79		16	154	510	300	306
CLASS IV			•	10	154	219	200	300
TERFFIC LOOPS	7	2943	5∌	1315	216	+535	+535	535
HAYSIDE RADIO	ž	2476	šá	1997	341	2974	2974	3974
PHOTONI-P DETECT) 5	1455	59	555	221	2293	2E-2S	2493
ULTRASONIC DETECT	5	1503	59	555	221	2042	2342	23-2
OCINIDONIE DEIECI	-	1555	3,5	555	CCI		c	L-9E

Table 2-3. Anaheim, CA, AVM Polling Cycle Min/Max Times .

CYCLE TIME IN SECONDS TO POLL HAX AND MIN UNITS DEPLOYED

CLASS I	TOTAL		SIMPLE			REDUNDANT	
TECHNIQUE	FLEET	SYNC	UCL.	RAND	SYNC	UOL	PAND
KEYBOARD	386	2 04	2 12	4 89	2 18	2 33	+ 38
-		1 29	13-4	2 53	138	1 47	2.77
stylus hap	4 83	2 13	5 50	4 18	\$ 36	2 51	4 5e
2-ACCEL ERONETERS	3 94	134	1 39	2 64	1 -4	1 53	2 83
2-HUGELERUIE IERS	3 94	131	2 15	4 13 2 61	2 25	e -1	4 40
LHSEP VELOCINTR	3 98	2 10	5 18	2 61 4 16	1 42 2 31	1 52 2 46	2 82 4 51
ELICEI VEEGOTIIIK	0 20	1-33	1 38	2 62	1 46	1 55	+ 51 2 85
ULTRASONIC VELO	3 94	2 63	2 15	4 13	2 25	2 41	4 46
		1 31	1 36	2 61	1 42	์ รี่	5 85
COMPASS-/ODOMETEP	3 94	2 98	2 15	4 13	2 25	2 41	+ 40
		1 31	1 36	2 61	1 42	1 52	5 85
Compass/laser veil	3 94	5 08	2 15	4 13	2 25	2 41	4 46
		1 31	1 36	2 61	1 42	1 52	5 85
CHPSS/U-SOHIC VEIL	3 94	5 48	2 15	4 13	2 25	2 41	4 46
ONEGR		1 31	136	2 61	1 42	152	5.85
UNEGH	4 25	2 24	5 35	4 29	2 58	2 74	4 79
LORAN	4 37	1 42 2 31	1 46	< 71	1 63 2 71	1 73	3 05
Posta	4 21		2 33 1 50	4-36		2 86	- 92
DECCA	4 32	1 46 2 23	1 50 2 35	2 75 4 33	171 266	1 81 2 81	3 10 + 85
		1 44	1 49	2 74	1 68	2 81 1 78	3 07
HM-STATIONS	3 39	2 65	2 13	4 10	5 50	2 35	- 41
		1 30	1 34	2 59	1 39	1 79	2 78
DIFF ONEGA	4 25	2 2-	2 32	4 29	2 58	2 74	4 79
		1 42	1 46	2 71	1 💢	1 73	3 02
DIFF LOPAN	→ 37	2 31	5 38	4 36	2 71	2 26	4 92
DIFF AH-STA	••	1 45	1 50	2 75	1 71	1 81	3 10
THE MICSIN	+ 55	2 23 1 -1	2 31	4 28 2 70	2 50	2 71	~ 7b
RELAY CITEUA	363 60	191 90	1 46 191 98	2 70 193 95	1 62 381 90	1 71 382 05	3 91
NEEDIN GENEGAT	500 50	121 20	121 25	122 50	241 20	382 05 241 30	384 10 242-59
RELAY LIORAN	15 60	6 23	3 31	10 29	14 57	14 72	16 77
		5 20	5 25	6 50	9 20	30 €	10 59
CLASS II							
EUPIED RES LOOPS	3 94	2 08	2 15	+ 13	2 25	2 41	4 46
		1 31	106	2 61	1 42	1 52	2 82
REFLECTING SIGNS	3 94	5-48	2 15	4 13	S 52	2 41	→ -6
REFLECTING ROAD	3 94	1 31	1 36	2 61	1 42	1 52	5 85
KELECITING KOND	3 74	2 08 1 31	2 15 1 36	4 13 2 61	2 25	2 41	- 46
K-BAND POST	3 91	2 06	2 14		1 42 23	152	2 32 4 43
2	0 71	1 30	1 35	4 12 2 59	1-41	238 15e	4 43 2 80
HF, VHF POST	3 86	2 64	έĭĕ	4 69	2 18	2 33	4 33 5 80
		ī ž÷	1 34	2.58	1 38	1 47	2 22
LF POST	3 91	2 06	2 14	4 12	2 23	2 38	2 77 4 43
		139	1 35	2 60	1 41	15⊎	5 30
LIGHT/I-R POST	3 91	2 96	21-	+ 12	2 23	2 33	4 -3
		1 39	1 35	2 68 4 13	1 41	1 50	5 80
BURIED MAGNETS	3 94	5 68	2 15	4 13	2 25	2 -1	- 45
ULTRHSONIC POST	3 91	1 31	135	\$ 61	1 72	1 52	5 05
OFTENDOLITO LOS	3 71	2 65 1-38	2 14 1 35	2 60 4 12	2 23	2 35	4 43 2 ^0
TPAFFIC SENSOR	3 91	2-00	2 14	4 15 5 60	2 23	2 38	
	- 4	1 30	1 35	2 60	1 41	150	2 43

Table 2-4. Anaheim, CA, AVM Accuracies and Cost Benefits

NUMBER SYSTEM ACCURACIES OF JURNICLES AND ESTIMATED \$1000 SAVINGS												
	STSTED H	CCURRCIES THEO		ICLES FIND ISTEN	VEHIC		SAVINGS					
CLHCC I	ULTIDATE	VEHICLES		CUPRC /	SAII		5-1EAR					
	HCCUPRC'	SAVED	וואס	1111	1186	HIN	SHUTTIC					
i Engumpo	5	1	44	-11	0.7	1.0	L 45					
STYLUS INP	Šã	ĩ	83	39	ōż	ĪĐ	245					
2-ACCELEFUNETE	P3 54	i	43	95	8.7	1.0	230					
LHSEF DELOCITIT	P 10	1	7-	49	9.7	1 1	∟ 95					
ULTPHOONIC USE	0	1	198	105	θь	10	<i>2</i> 26					
CUNFACC/UDUNET		1	7→	51	0.7	i 1	315					
COMPASS/LASEP		1	74	-,9	0.7	1 1	ತ 05					
CHPSS/U-SONIC		1	7+	- +9	07	1 1	205					
O NECH	1,00	ħ	3914	Co4U	0.0	ðи	ម					
LUPHN	160	1	392	381	02	0 1	_3₀5					
DECUM	200	1	+,72	+63	U I	ยย	_440					
SHOTTAT &-HA	560	1	79	+61	0 1	0.0	!!					
DIFF ONEGA	160	1	391	084	តន	ย 1	7365					
DIFF LOPAH	~กิต	9	1981	105+	ខម	υø	0					
DIFF AM-STA	ي50ء	1	563	55	0.0	Qυ	п					
PELAY ONECH	รูน0	Ð	6307	-115	Qυ	0.0	U					
FELHY LOCAN	Cuu	U	2215	2100	9 0	0.0	ឞ					
ULHUS II				-	もフ		529					
	OPS 16	1	73 73	43	97	1 1	-529 150					
FEFLECTING SIG		1		~ <u>~</u> 3			-2510					
PEFLECTING POA		1	71 73	-3	0 7	1 1	-510					
N-PAND POST HE, MHE PUST	15	1	73	~3	07	1 1	520					
LF POST	15 188	i	258	252	64	иБ	-440					
LILHT/I-P POST	38	;	62	30	07	1 0	-338					
CICHIZION FUSI		i	71	30	07	1 1	-25 -25					
ULTPASONIC PUS			÷.,	Ši	0.7	ii	-160					
TPAFFIC CENSUP		i	73	40	0.7	îî	220					
CLACS III		•	~	40	٠.		020					
HAP-DAND FIT PH	HSE 1000	0	2-88	£433	0 ម	11.11	0					
NID-DAND FILER		ě	2954	2889	00	0 11	ŭ					
PULSE T-0-HPPI		ĭ	177	173	ÕŠ	ยัว	- T32ŏ					
HOISE COPPELHT		ī	198	134	0.5	ย์ 7	7365					
DIPECTION FIND		ø	1830	1730	0 ព	ອິບ	e					
CLHSS IV												
TRHFFIC LOOPS	10	1	25	25	υC	12	-1.v3					
DICAR BCIC, AU	100	1	219	22-	9.5	υs	T1255					
PHOTONI-R DOTE		1	ა5	63	ย 7	1 1	_236					
ULTPASONIC DET		1	-+5	-6-	9 T	1 1	-230					

III. Long Beach, CA, City AVM Cost Benefit Analysis Tables

Table 2-5. Long Beach, CA, City AVM
Physical Parameters

AMEA IS 50.2 BOUAPE MILES.

EAST WEST DISTANCE IS 10 MILES.

WORTH SOUTH DISTANCE IS 9.6 MILES.

TOTAL ROAD MILEAGE IS 2000 MILES.

THE NUMBER OF INTERSECTIONS IS 9000.

THE ESTIMATED HUMBER OF PORD SEGMENTS IS 10000:

THERE ARE 61 CARS IN THE FLEET.

AND THERE ARE 51 MOTORCYCLES.

THE HUMBER OF VEHICLES ON EACH EHIFT IS:

FIRST SHIFT MAY 16

FIRST SHIFT MIN- 16

SECOND EMIFT MAY 16

REPRODUCIBILITY OF THE COMMAND PAGE IS POOR

SECOND SHIFT MIN. 16

THIFD SHIFT MAY. 16

THIRD EHIFT MIN- 16

THE NUMBER OF DISPATCHERS IS &

THE CIT: WOULD REPUIRE ? WIDE+BAND OR
PULSE ARTENNA SITES AND 21 MARPON SAND
FILARITENNA SITES FOR ? AND 3 MILE RADIUS COVERAGE

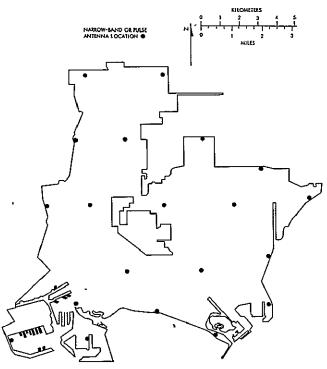


Figure 2-3. Long Beach, CA, AVM Pulse or Narrow-Band Antenna Locations

WEDE-MAND ANTENNA LOCATION: 0

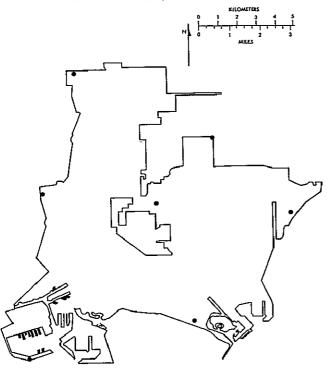


Figure 2-4. Long Beach, CA, AVM Wide-Band Antenna Locations

Table 2-6. Long Beach, CA, AVM Systems Cost Analyses

LUNG BEACH CLHSS I		T 1 to 212	SAUSA AR	- *			[JTHL	
TECHNIQUE FE\BORRI STYLUS HAP S-ACCELEROHETERS LHSEF VELOCIHTR ULTPASONIC VELO COMPASS/LBSEF VEL CHPSSV/LBSEF VEL CHPSSV/LBSUF VEL CHPSSV/LBSUF VEL	CAPS 156 90 109 78 90 114 97	SITES U 9 0 U 0 U 0	CANDS OF BASE 66 66 90 99 99 99 99 99 99 99 99 99 99 99 99	IHST 13 10 17 19 17 12 20	0-H 101 102 107 116 110 100 106	VOL 198 3-5 345 345 312 314 327	SHC 100 030 332 357 324 327 362 341	PAIDON 108 335 329 357 321 321 355 555
OMECA LOPAN DECCA AM-STATIONS DIFF OMEGA	165 171 71 25 165	9 9 0	85 54 84 55	15 15 14 1- 15	165 165 165 164 165	375 385 200 235 373	247 247 248 249	091 048 246 277 071
DIFF LOPAN DIFF HN-STA RELA: ONEGA RELHY LOPHN	171 29 30 36	0 ป ค เเ	84 84 84 04	15 1 ₇ 15 15	105 19- 197 197	285 239 247 250	251 230 241	098 257 258 265
CLACS II BUPIED FES LOOPS REFLECTING SIGNS REFLECTING POAD X-BAND POST	3 11	0059 1100 120 1640	66 66 66	5725 620 734 373	101 202 701 221	9270 2026 1638 2520	9276 2002 1644 2505	4261 2016 1624 ∟518
HF, VHF FUST LF POST LIGHT/I-R POST BURIED MACHETS ULTPASONIC PUST	10 10 7 9	200 1000 ะหต 336 350	66 66	103 373 455 635 066	131 221 302 108 202	514 1673 1641 1265 2681	525 1635 1647 1209 2007	509 1669 1661 1193 1991
TRAFFIC SENSOP CLASS III NAR-BAND FN PHASE WID-BAND FN PHASE PULSE T-O-APRIVAL NOISE CUPPELATION	9 14 178 153 +9	950 44 61 29-, 29	56 119 126 293 293	413 21 26 72 21	101 113 206 108	1545 616 1993 535	1554 0 0 630 1623 589	1508 002 632 1625 530
DIRECTION FINDEP CLASS IV TRAFFIC LOOPS WAYSIDE FADIO PHOTONI-P DETECT	3 5 5 3	79 161-0 16946 9708	67 66 66	16 2154 1143 919	154 293 351 301	325 16705 12519 11900	317 13735 12519 11000	317 18755 12510 11000
ULTPASONIC DETECT	٠	9788	66	918	501	11689	11089	11080

Table 2-7. Long Beach, CA, AVM Polling Cycle Min/Max Times

CYCLE TIME IN SECONDS TO POLL HEX AND HIM UNITS DEPLOYED

CLASS I	TOTAL		SIMPLE			PEDUNDANT	
TECHNIQUE	FLEET	SYMC	VOL	FAND	SYNC	UOL 1 98	RAND 3 73
KEYBOARD	12 02	1 72	1 79	3 47	1 23	1 98	3 73
CTILL BIO HON		1 72 1 79	1 79 1 37	3 47 3 54	1 98	2 13	3 23
STYLUS MAP	12 54	179	1 87	3 54	1 98	2 13	3 83
2-ACCELEROMETERS	12 25	1 75	1 82	3 58	1 90	2 65	3 88
E-HOGELEKOTE I EKS	IL LO	1 75	1 82	3 50	1 90	2 65	3 80
LASER VELOCIMIP	12-40	1 77	1 85	3 52	1 94	2 89	3 34
		1 77	1 25	3 52	1 94	2 69	3 84
ULTRASONIC VELO	12-25	1 75	1 82	3 50	1 90	2 85 2 85	3 89
		1 75	1 82	3 58 3 58 3 58	1~98 1 98	2 85 2 85	3 58 3 58
COMPASS/ODOHETER	12+25	1 75 1 75	1 82	3 50 3 50	1 98	2 05	2 20
COMPASS/LASER VEL	12-25	1 75 1-75	1 32	3 58	1.90	2 65 2 65 2 65 2 65	3 88 3 88 5 88
COMPRSS/ENSER OFF	12.23	1 75	1 82	3 58	1 98	2 65	3 88
CHPSS/U-SONIC UEL	12-25	1 75 1 75	1 32	3 59	I 98	2 65	S 68
41.00.0 50 122		i 75	1 82	3 58	1 99	2 05	3 59
OMEGA	13 22	1 89	1 90	3 64	2 18	2 33	4 07
		1 39	1 96	3-64	2-18	2-33	y 07
LORAN	13 59	1.94	5 95	3 69	5-58	2-43 2-43	4-18 4-13
PE000	13 44	1 94 1•92	2 02 1-99	3 69 3 67	2 23 2 24	2-39	7 14
DECCA	13 44	1.92	1 49	3 67	2.24	2.39	4 14
AN-STATIONS	12 10	1 73	1 80	3 48	1.86	2 01	3 75
14. 011		1-73	i 38	3 48	1-86	2-0i	3 75
DIFF OMEGA	13 22	1-89	196	3-64	2-18	2-33	4 97
		1 89	1 96	3-64	2 18	2 33	4 07
DIFF- LOPAN	13 59	1-94	2-02	3 209	2 28	2 43 2-43	4 13 4 13
DIEE ON OTO	15.4	1-94	2.02 1 95	3 - 9 3 63	2•28 2 16	2 39	4 05
DIFF AM-STA	13 14	1 88 1-28	1 95	3 63 3 63 163 35	2 16	2-39	4 95
RELAY ONEGA	1131-20	161-60	161-68	163 35	321 60	321 75	323 50
ice ii dea.	1101-00	161 60	161 68	163 35	321 60	321-75	323 50 323 50
RELAY LORAN	+8 53	6 93	7 01	8 68	12 27	12 42	14 17
		6 93	7 91	8 68	12 27	12 42	14 17
CLASS II						2.00	2 22
BURIED RES LOOPS	12 25	1-75	1.82	3 50 3 50	190	2•85 2 85	3 89 3 89
REFLECTING SIGNS	12 25	1-75 1 75	1 82 1 82	3 58 3 59	1 90	2 05	3 30
REPLECTING STONS	12 23	1.75	1 82	3 50	1 90	2 95	3 58
REFLECTING PORD	12 25	1-75	1.82	3 50	1 90	2 85	3 89
PER CECUTA POR		1 75	1.82	3.50	1 90	2.85	3 78
X-BAND POST	12 17	1-74	1.81	3 49	188	2 63	3 78
		1 74	1-81	3 49	183	5 63	3 78
HEF, UHEF POIST	12 02	1 72	1-79	3 47 3 47	1 83	1 98	3 73 3 73
. F 2007	45.47	1-72 1-74	1-79 1-81	3 47 3 49	183	2 03	3 73
LF POST	12 17	1 74	1.81		1 38	2 03	3 78
LIGHT/I-R POST	12 17	1 74	1-81	0 49 3 49	i 🚟	2 83	3 78
		î 74	1-81	3 49	1 88	2 93	3 78
BURIED HAGNETS	12 25	1 75	1-82	3 50	1 90	2 95	3 30
		1 75	1-82	3 50	1 98	2 85	3 89
ULTRASONIC POST	12 17	1 74	1-81	3 49	1 88	88888888888888888888888888888888888888	3 78 3 78
MODERIA SENSOR		1 74 1 74	1 81 1-81	3 49 3 49	188	2 83	3 78
TRAFFIC SENSOR	12 17	1 74	1.81	3 49	1 83	2 63	3 78

Table 2-8. Long Beach, CA, AVM Accuracies and Cost Benefits

LONG DEHCH							
	StoTEN H			ICLES AND			
		THEU		SISTEM	NEHIC		Cathmited
CLASC I	ULTIONTE	VEHICLES		CURACY	SHU		5-7EHP
	ACCUPAC:	CRUED	1187	1111	HHY	11114	SHIUHG
KEN 30APD	33	1	-3	93	0 🤞	ម្ន	170
STILUS HAP	38	1	62	62	99	9 3	155
2-HCCELEPONETEI	F3 0 4	1	47	97	0 9	βιэ	1⊌
LASEP VELOCINT		1	5 5	65	ъĢ	0.9	125
HETCHSONIC PEL		1	107	107	n 9	0 9	125
CUMPASS/ODDINETI	EP 26	1	65	ა5	и 9	0 9	160
CURPRSS/LESER	UEL 15	1	₽÷	b⊶	09	ŊΨ	1-5
CHPSC/U-SCHIC		1	4	64	υ9	u 🤌	145
OUCGO	しっしむ	ម	3380	3330	0 0	ប្រ	_ ម
LOPAU	160	1	259	389	93	3 נ	_300
DECCA	200ء	1	469	469	U 1	0.1	_ \$50
AH-STATIONS	200	1	407	67	0.2	១ខ	_3าย
DIFF ONEGR	150	1	339	309	ชร	១១	TSHU
DIFF LOPHI	493	IJ	1073	1073	១ម	មម	/ U
DIFF BU-STB	250	1	565	565	บบ	0 0	IJ
PELRY ONE GR	200	U	5394	509→	0.0	00	U
PELRY LOPAR	300	Ü	21:7	2177	ប្រ	មប	Ų
CLASS II							
LUPIED PES LO	DP\$ 10	1	64	D-7	R 4	υ	1711
FEFLECTING SIN	:IŞ 10	1	64	b++	0 9	0 3	_ేుకర
FEFLECTING PORT)	1	62	62	Иα	93	- "2∪აн
N-CHID POST	15	1	64	b :	ย 🤋	י פי	~~U
HE, MHE EUST	15	1	63	6	⊎ 4	0 4	_ 50
LF PUST	100	1	25€	256	0.6	⊍ -	_055
LICHT/I-P FOST	\$0	i	52	92	0 3	09	ేం.5
BURIED MAGNETS	**	1	bá	65	09	Fi 4	175
BLTPHSONIC FUC	T 20	1	bτ	U +	9 9	9 4	Trás
TRAFFIC SENSUF	10	1	80	ıΟ	99	9 ⊣	170
CLHCC 1II							
NHP-CRIED FIT FHE	3SE 10UO	G	2-57	2467	0 0	0 0	1)
MID-BAND FIT PH	RSE 1200	Û	2930	5430	ยย	00	_ 9
PULSE T-0-RFFI	'HL 100	Ī	175	175	0.7	07	T415
HALSE CORFELAT		1	196	100	u ~	υ -	7370
DIRECTION FIND	P 786	6	1315	1815	0.0	១ប	0
CLASS IV							
TRAFFIC LUCPS	10	i	25	25	1 3	ΙU	15
NAYSIDE PHOTO	190	1	221	221	0 6	მა	71305
PHOTONI-P DETER		1	56	60	UЭ	0 9	<u>_csn</u>
ULTPASONIC DETE	ECT 20	1	45	- 5	10	1 8	~~55

IV. Montclair, CA, City AVM Cost Benefit Analysis Tables

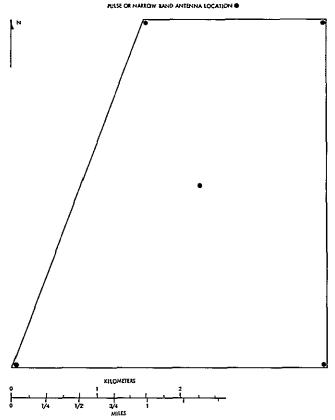


Figure 2-5. Montclair, CA, AVM Pulse or Narrow-Band Antenna Locations

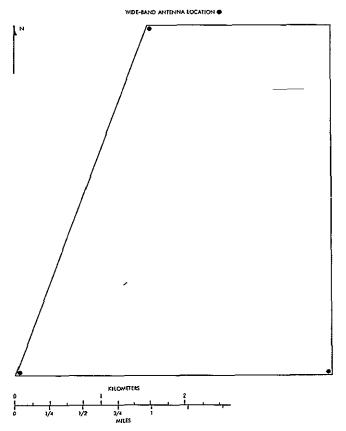


Figure 2-6. Montclair, CA, AVM Wide-Band Antenna Locations

Table 2-9. Montclair, CA, City AVM Physical Parameters

AFEA IS 5.2 SQUARE MILES. CAST WEST DISTANCE IS 2.3 MILES.

NOFTH SOUTH DISTANCE IS 2.5 MILES.

TOTAL ROAD MILEAGE IS 67 MILES.

THE NUMBER OF INTERSECTIONS IS 338.

THE ESTIMATED NUMBER OF POAD SEGMENTS IS 506:

THEPE APE 10 CARS IN THE FLEET-

AND THERE ARE O MOTOPCYCLES.

THE NUMBER OF VEHICLES ON EACH SHIFT IS:

FIRST SHIFT MAX. 5

FIRST SHIFT MIH- 4

SECOND SHIFT MAX. 5

SECOND SHIFT MIN. 4

THIPD SHIFT MAY- 7

THIRD SHIFT MIN- 7

THE NUMBER OF DISPATCHEFS IS 1

THE CITY MOULD FEOUIPE S WIDE+BAND OP PULSE ANTENNA SITES AND 5 MAPPON BAND FN ANTENNA SITES FOR 7 AND 3 MILE RADIUS COVEPAGE.

Table 2-10. Montclair, CA, AVM Systems Cost Analyses

HUNTCLAIR CLASS I							TUTALS	
			ANDS OF		_			
TECHNIQUE	CARS	SITES	EASE	INST	0-11	UGL	SINC	PRHOCHAR
YE YEOAPD	2	9	40	11	101	159	157	157
STYLUS HAP	20	9	+5	11	101	133	1\$5	132
2-ACCELEPONETERS	16	6	⊳ 3	11	101	195	200	200
LASEP DELOCIMER	10	0	70	12	162	263	65ع	_U-
ULTPASUNIC VELU	1	á	70	11	1/12	197	199	1 49
CUMPHSS/000METER	15	Ü	70	11	101	197	೭೮೮	199
CUMPHSC/LASER VEL	19	ñ	70	12	101	203	_US	20-
CHPS3/U-SONIC VEL	16	11	70	11	101	200	LU2	201
CHEGA	27	U	55	11	101	196	198	198
LORAH	28	õ	55	11	101	197	139	1 49
DECCR	12	ő	55	ii	161	130	183	182
ALI-STATIONS		ō	55	11	1111	172	17-	17-
DIFF. OHEGA	27	ė	55	11	101	196	198	146
DIFF LORAN	23	Ü	55	11	101	197	199	1 43
DIFF. AII-STA	-5	ยั	55	ii	101	173	175	176
PELA: UNEGA	, i	Ü	55	ii	101	174	173	177
PELA: LOPAN	ь	ยั	55	ii	101	175	17.	177
CLASS II	_	-						-
SUPIED RES LOGPS	ź	110	45	197	101	+54	+55	453
PEFLECTING SIGHS	š	56	-5	42	106	255	256	153
REFLECTING ROAD	ě	7	4 5	48	131	232	503	230
Y-BAND POST	. 5	~ė	-,5	26	106	257	258	≥56
HF, VHF POST	15	9	45	15	102	173	17-	171
LF POST	1 20 20 20	-+3	-5	26	106	222	223	220
LIGHT/I-P POST	11 2	34	-5	30	103	220	155	519
BUPIED HAGNETS	7	11	45	33	100	191	132	ĪΦυ
ULTPHSONIC POST	1 2	1.1	45	54	166	251	252	24.
TPHFFIC SENSOR	, 5	- 9	45	31	101	227	223	L26
CLASS III	_							
NAR-BRID FIT PHASE	3	24	54	11	103	199	201	2112
HID-BAND FM PHASE	39	35	72	16	202	353	356	350
PULSE T-0-APPIUHL	26	70	1-3	24	17.	-41	743	444
HOISE COPRELATION	ž	29	143	16	177	374	275	375
DIPECTION FINDEP	ĭ	79	35	15	154	284	202ء	282
CLASS IV	•	• •						
TRAFFIC LOOPS	1	229	45	103	109	- ∗85	435	485
NAYSIDE PADIO	ī	155	-5	68	113	381	381	331
PHOTONI-R DETECT	2	117	÷5	49	109	320	350	200
ULTRASONIC DETECT	ž	120	45	49	109	33-	324	รอิจ
OF INDOUGH DESECT	-					,		

Table 2-11. Montclair, CA, AVM Polling Cycle Min/Max Times

CYCLE TIME IN SECONDS TO POLL MAK AND HIN UNITS DEPLOYED

_							
CLASS I TECHNIOUE	TOTAL FLEET	SYNC	SINPLE	PAND	SYNC	TMRDHUGSR VOL	PH4ND
KEABOUKD	1 07	9 7 5	6 77	1 +9	0 89	0 84	1 58
		0 43	6 44	8 85	0 46	0 48	0 90
STYLUS HAP	1 15	9.78	6 46 6 46	1 52 9 87	0 87 0 50	0 91 0 52	1 64 0 44
2-ACCELEROHETERS	1 89	0 45 0 77	Ø 78	1 50	9 83	0 32	1 61
	2 02	0 44	0 45	8 86	0 48	0 50	e 92
LASER VELOCIMTR	1 11	8 78	6 79	1 51	0 85	0 89	1 62
ULTRASONIC VELO	1 69	0 11 0 77	8 45 8 78	985 159	0 49 0 83	ช 51 0 87	0 93 1 51
OCTATION VEED	2 07	0 44	0 45	0 86	0 43	0 50	0 92
COMPASS/ODOMETER	1.09	0 77	8 78	1 50	0 83	0 87	1 61
COMPASS/LASER VEL	1 69	0-44 0 77	Ø 45 Ø 78	8 36 1 50	0 43 0 83	0 50 u 87	0 92 1 61
COLDADON FUNCE ACT	1 67	0 44	8 45	989	0 48	u 50	9.45
CHPSS/U-SONIC VEL	1 89	9 77	9 78	1 59	6 83	0 87	1 61
		0 44	0 45	9 85	8 48	8 50 8 99	0.22
OHECR	1 18	9 83 9 47	Ø 85 Ø 48	1 56 0 89	9 95 9 54	9 99 0 57	1 73 0 99
LORAN	1.21	0 85	0 87	1.59	1 60	1 84	1 77
20.42.		0 49	0 50	Ø 91	B 57	0 59	1 01
DECCA	1 20	0 84	Ø 8e	1 58	0.48	1 03	1 75
		9 48	0 49	0 90 1 49	6 5 ₅	9 58 8 85	1-00 1 59
AM-STATIONS	1 93	0 76 8 43	0 78 0 44	1 49 0 85	8 46	8 49	0 91
DIFF. OMEGA	1 18	9.83	9 85	1.56	8 95	0 9 9	1 73
		0 47	0 48	บ่อล	8 S ₄	0.57	0 93
DIFF- LORAN	1.21	9 85	0 87	1 59 8 41	1 00 0 5?	1 84 8 59	1 77 1 81
DIFF AM-STA	1 17	0 49 6 82	⊌ 59 ⊌ 84	9 41 1 56	0 94	9 98	1 72
DILL 141-2141	1 11	8 47	6 48	0 89	9 54	9 56	0 98
RELAY OMEGA	101 98	78-79	79 72	71 44	140 70	140 74	141 48
		40-40	49 41	40 82	SØ 40	39 42	80 84
RELAY LORAN	4 33	3 03	3 95 1 77	3 77 2 16	5 37 3 07	5 40 3 09	ե 14 3 51
CLASS II		1 73	1 14	2 16	3 01	3 67	3 31
EURIED RES- LOOPS	1 66	8 74	Ø 76	1 48	0.78	0 82	156
		0 42	0 43	0.65	0 +5	6 47	0.83
REFLECTING SIGHS	1 05	0 74 0 42	9 76 9 √3	1 48 9 85	978 945	93 9 7~ 8	1 So 9 89
REFLECTING ROAD	1 06	9 42 9 74	ย 43 ย 76	1 48	0 78	0 82	1 50
THE LEGITION TO THE		0 42	0 43	9 85	0 45	9 47	9 ୫୨
X-BAND POST	1 Ub	97-	0.76	1 -8	0.78	0.85	1 56
		9 42	0 43	9 45	0 45 0 77	9 47 9 39	8 8° 1 5₁
HF, UHF POST	1 65	0 73 A 42	9 75 0 43	1 47 0 6	0 44	8 46	808
LF POST	1 00	6 74	9 76	1 48	8 73	ف ہ	156
		0 42	6 +3	ย 85	ษ 45	0 47	9 89
LIGHT/I-R POST	1 06	0 74	0.76	1 48	u 78	0 52 0 47	1 55 0 84
BURIED MACNETS	1 96	0 -2 0 74	છ +3 છ 76	035 148	0 +5 0 7∂	9.4? ⊍ 02	0 84 1 56
DONALD INCHES		0 42	0 43	ย ช5	0 75	U +?	U 34
ULTRASONIC POST	1 96	0.74	9 76	1 48	0 78	9 02	1 56
TRAFETA ARMON		9 42	9 40	ค 85	0 +5		u 39
TRAFFIC SENSOR	1 06	074 042	0 76 0 43	1 +8 0 85	0.78 0.45	⊎ 32 ⊎ 4 7	156 089
6			~ ~		2 10	- "	

Table 2-12. Montclair, CA, AVM Accuracies and Cost Benefits

OUTCLAIP

IO. HOCKETA	O MOTOR AND	en moetre	00 .1654	ITCH EC AND	CCTIMO	TED \$1000	CONTINCS	
	2121511 14	THEO		YSTEN	UEHIO	4 E.	COTTUBLED	
		HEHICLES		CURACY	JAC		5-YERP	
CLASS I	ULTIMATE		IIAA	1111	HA C	. 111tt	CHAINE	
TECHNIQUE	ACCURACY	CHUED		24	0.2	ยร	239	
NEACOUS D	33	ы	88 77	-3		03	-530	
STILUS HAP	30	0					7230	
2-HCCELEPONETE		ı	31	33	0.5	ប្រ	210	
LESER VELOCIN		G	35	3-	0.5	10 ·-		
ULTRASONIC MEL		8	103	100	9.5	សន	_235 _235	
COMPASS/QUOTET	EP 20	6	50	ન્8	9.5	⊍ +-		
COMPRISS/LACEP	VEL 15	ø	39	ತ್ತಾ	0.5	H	_2v5	
CHPSS/U-COHIC	UEL 17	Ų	3	72	0.5	IJ →	_582	
CHEGA	1500	ø	3751	0664	0.0	បប	я	
LUPAH	160	6	375	Sen	0.0	ųυ	U	
BECCH	200	ប	45 2	442	9 9	0.4	0	
AN-STATIONS	200	0	450	40	99	ប្រ	Ų	
DIFF GHEGA	160	0.	375	266	0.0	មេខ	Ð	
DIFF LOPHN	400	8	933	945	8.0	មើប	U	
DIFF AN-STA	250	ย	545	532	ខេត	មេខ	ø	
RELAY DIVECA	580	ø	2446	1332	00	0 6	e	
RELAY LOFAN	300	9	2119	2050	00	ษย	U	
CLASS II								
	10PS 10	ĸ	27	27	0.5	₽ +-	"205	
PEFLECTING 310	HS 10	11	27	27	0.5	n .,	_550	
PEFLECTING POR		0	27	15	0.2	0 4	73.5	`
A-BAND POST	12	õ	32	32	0.2	0 4	7230	,
HE THE POST	15	ម	39	38	02	04	7210	
LE POST	1ชอิ	Ö	245	239	ថ្ល	0.0	0	
LIGHT/1-F POST	30	IJ	77	74	0.5	11 3	_350	
BUPIED PHONETS		U	27	15	0.5	0 ~	_560	
ULTRACONIC POS		Ö	50	+ €	űЗ	\$1 mg	7200	
TPAFFIC SENSOR		U	67	27	0.2	U +	7285	
CLASS III		-						
BHR-ZRND FILE	IASE 1000	0	2370	2306	0.0	មេខ	ម	
UID-PAND FILE		ā	2314	2709	છે છ	ยย	B	
PULSE T-0-APP		6	169	154	Ø 1	υi	"315	
HOISE CUPPELAT		ŏ	îč.	193	0 1	Ď. i	~319	
DIFECTION FIN.		ě	1743	1697	មិ ម	បថ	ย	
CLR3- III)LI. 100	•	- ,0				=	
TPAFFIC LOOFS	1ช	ថ	2ь	ے د	១ខ	U	25	
UHISIDE RADIO	199	š	23u	235	ŏõ	0 0	Ď	
PHOTO/I-P DETE		õ	70	73	őč	บัง	_050_	
ULTFACUNIC DET		ĕ	47	43	ŏž	ÜŸ	-2-5	
OF INDODING DE	LC: LO	•	٠.			- '		

V. Monterey Park, CA, City Cost Benefit Analysis Tables

Table 2-13. Monterey Park, CA, City AVM
Physical Parameters

APEA IS 7.3 SOUARE MILES.

EAST WEST DISTANCE IS 4.6 MILES.

NORTH SOUTH DISTANCE IS 3 MILES.

TOTAL ROAD MILEAGE IS 101 MILES.

THE NUMBER OF INTERSECTIONS IS 596.

THE ESTIMATED NUMBER OF POAD SEGMENTS IS 226:

THERE APE 15 CAPS IN THE FLEET.

AND THERE ARE 8 MOTOPCYCLES.

THE NUMBER OF VEHICLES ON EACH SHIFT IS:

FIRST SHIFT MAX: 14

FIRST SHIFT MIN. 4

SECOND SHIFT MAX- 14

SECOND SHIFT MIN. 4

THIRD SHIFT MAX. 14

THIRD SHIFT MIN- 4

THE NUMBER OF DISPATCHEPS IS 1

THE CITY WOULD RECUIRE S WIDE+BAND OP PULSE ANTENNA SITES AND 5 MAFPON BAND

FM ANTENNA SITES FOR 7 AND 3 MILE PADIUS COVEPAGE.

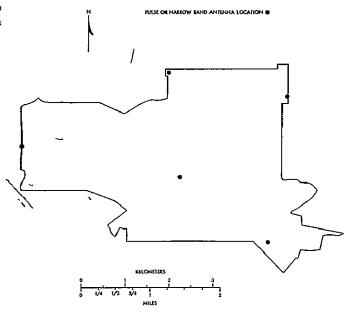


Figure 2-7. Monterey Park, CA, AVM Pulse or Narrow-Band Antennas

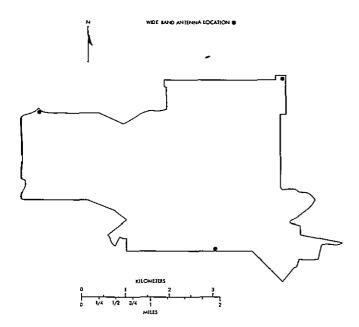


Figure 2-8, Monterey Park, CA, AVM Wide-Band Antenna Locations

Table 2-14. Monterey Park, CA, AVM Systems Cost Analyses

MONTERE, PAPI CLASS I							TOTHLS	
_		THOUS	ANDS OF	· 1				
FECRNIOUE	CHPS	SITES	PASE	HST	0-11	OOL	CHIC	PANDON
PENDUHPO	3	Ü	-8	11	131	164	161	161
STYLUS DEP	39	U	→ 3	11	101	200	193	190
2-ACCELEROMETERS	Ë4	บ	75	12	102	212	215	214
LHSEP VELOCINTR	-3	υ	75	13	103	219	288	221
ULTRASONIC VELO	20	છ	75	12	103	211	214	213
COUPASS/ODOMETER	22	9	75	11	101	211	-214	213
CULIPHSS/LASEP UEL	28	U	75	13	192	219	553	221
CHESS/U-SOHIC VEL	_4	Ü	75	1≥	162	215	218	217
ONEGA	→1	0	69	12	102	216	220	513
COFALL		0	99	12	162	217	155	221
DECCA	13	Ú	90	11	192	192	190	1 45
HII-STATIUNS	ь	ð	ьű	11	101	1-51	153	1-5
DIFF UNEGH	-1	ů	5 0	12	102	216	219	219
DIFF. LÓPAN	42	હ	ьÜ	12	102	217	220	221
DIFF MN-STH	7	ម	60	11	101	182	10	156
FELH: UNEGH	೪	ម	éυ	12	102	183	151	187
PELH: LUFHN	9	и	ન્ ધ	12	102	13-	132	180
CLASC II								
BUPIED FES LOOPS	3	1 49	40	3-8	101	644	7v1	6-0-
PEFLECTING SIGHS	3	91	43	62	109	319	321	217
FEFLECTING PORD	2	10	40	71	158	\$33	244	230
K-BAND POST	3	138	- 8	33	116	337	338	<i>3</i> 35
HF; UHF POST	3	15	46	18	103	130	134	1,5
LF POST	00000000000	75	48	30	110	474	276	272
LIGHT, I-P FUST	3	60	48	44	116	272	273	664
BUFIED MHGNETS	2	_0	43	51	160	553	224	226
ULTPACUNIC FUST	3	71	→ 3	62	109	313	315	311
TRHFFIC SENSOR	3	~4	43	44	101	275	277	270
CLASS III								
NHP-3AND FM PHASE	-	57	71	15	100	515	216	216
MID-BAND FIT PHASE	44	35	01	16	202	376	3.31	205
PULSE T-0-APPILIAL	09	70	175	25	176	+-37	- 40	41
HOISE COPPELATION	15	29 79	175	16	177	÷11	-12	413
DIRECTION FINDER	1	79	+1	15	154	2 40	239	550
CLASS IV				470				
TPAFFIC LOOPS	-	375	48	173	115	711	117	711
MAYSIDE PADIO	5	234	48	164	121	503	503	503
PHOTONI-P DETECT	25.50	197	48		116	~ <u>≎</u> 0	-30	~≾6
ULTRASONIC DETECT	5	1 3	-8	79	116	-36	406	36

Table 2-15. Monterey Park, CA, AVM Polling Cycle Min/Max Times

CYCLE TIME IN SECONDS TO POLL HAX AND HIM UNITS DEPLOYED

CLASS I	TOTAL		SIMPLE			PEDUNDANT	
TECHNIQUE	FLEET	SAMO	UOL	PRND	SYNC	MOL	CHAR
KEAPOUKD	1 61	1 50	1 54	2 98	1 61	1 65	3 10
STYLUS 1992	1 68	0 43 1 57	0 44 1-61	6 05 3 64	0 4⊳ 1 7→	03 1-81	₽90 329
311203 141	. 00	0 45	8 46	ĕ 87	0.50	e 52	6 94
2-ACCELEPOMETERS	1 64	i 53	1 57	3 61	1 60	1 74	0.51
		U 44	e 45	ย 36	0 48	9.5⊎	92.0
LASER VELOCINTP	1 66	1+55 0 44	1 59 0 45	3 62 0 S⊳	1-70 0-49	1 77 6 51	3 25 0 93
ULTPASONIC VELO	1 64	1 53	1.57	3 01	1 66	1 74	วั ธัง
		9 44	9 45	ව පත	0 48	0 50	0 45
COMPASS/ODOMETER	1 64	1 53	1 57	3 91	1 66	1 2-	3 21
COMPASS/LASER VEL	1 64	0 47 1 53	9 45 1 57	8 So 3 81	0 48 1 66	ย 50 1 7ช	3 21 3 21
CONTRACTOR VEL	1 64	0 44	ย 45	9 85	0 48	e 50	0 92
CHPSS/U-SONIC VEL	164	1.53	1 57	3 01	1 66	1 74	3 21
		0 44	0 -5	9 85	9-43	9-59	6 45
OMECA	1-77	1 55	1-69	3 13	1-98	1 93	3 +5 9 99
LORBH	1 82	0 47 1 70	0 -8 1 74	0 89 3 17	9 54 2 69	0 57 2 97	9 99 3 55
CONTAI	1 00	0 49	0 50	6 91	0 57	0 59	1 01
DECCA	1 89	1 68	i 72	3 16	1 96	2 03	3 51
		0 48	0 49	0+98	9 5₀	0 58	1 66
AM-STATIONS	1 62	1 51 6 43	1 55 9 44	2 99 8 85	1 62 0 46	1 70 8-49	3 17 9 91
DIFF OMEGA	1-77	1 65	1 69	3 13	1 90	1 98	3 +5
		9 47	9 48	0 89	0 54	0 57	0 99
DIFF LORAN	1 82	1 70	1 74	3 17	2 00	2 07	o 55
DIFF. AM-STR	1 76	0 43 1460	9 59 1 68	0 91 3 12	9 57 1-89	9 59 1 96	1 81
DIFF. MI-SIR	1 16	1.6. 8 47	1 68 8 48	0 89	1-89 0 54	9 56	3 ⊶
RELAY ONEGA	151-50	141 40	141 44	142 83	281 40	281 47	282 95
		40 40	48 41	49 82	80 40	89 42	89 84
RELAY LORAN	ь 58	6 97	6 10	7 54	10 73	10 81	12 28
CLASS II		1 73	1 74	2-16	3 07	3 69	3 51
BURIED RES LOOPS	1 60	1 49	1 53	2 97	1 59	1 66	3 14
		Ø 43	0 44	085	0 45	0 48	9 99
REFLECTING SIGNS	1-60	1.49	1 53	2 97	1 59	1 66	3 14
REFLECTING ROAD	1 60	0 43 1 49	9 44 1 53	9 85 2 97	9 45 1 59	0 48 1 55	9 90 3 14
KEPLESTING KOND	1 00	0 43	9 44	0 85	0 45	9 43	ĕ 90
X-BAND POST	1 69	1-49	1 53	2.97	1 59	166	3 14
		8 43	0 44	9.85	0 45	9 48	9 90
HE", UHE" POST	1 58	1 +7 0 42	1 51 0 43	2 95 0 84	1 55 8 44	1 62 0 46	3 10
LF POST	1 60	1 49	1 53	2 97	1 59	1 66	3 14
		0 43	8 44	0 85	0 45	9 48	0 90
LICHT/I-R POST	1 68	1 49	1 53	2 97	1 59	1 66	3 14
BURIED MAGNETS	1 60	0 43 1 49	0 44 1 53	0 85 2 97	0 45 1 59	9 48 1 bb	0 90 3 14
PORTED INVOICES	1 60	0 43	8 74	9 es	0 45	1 bb 8 48	3 14 8 90
ULTRASONIC POST	1 60	1 49	1-53	2 97	1 59	1 66	3 14
		9 43	8 44	0 85	0 45	0 48	0.20
TRAFFIC SENSOR	1 60	1 49 8 +3	1 53 8 44	2 97 0 85	1 59 0 45	1 66 8 -8	3 I+ 0 99
5		0 70	0 74	0 63	O +0	U 44	טר ט

Table 2-16. Monterey Park, CA, AVM Accuracies and Cost Benefits

LOHTEPE FHPI							
	JOSEPH RE	COMPACIES	AC UE	HICLES BIO	ESTIME	TEO SILAG	SOUTHES
	O, 0.0 0	THE		Nate of	VEHIC		COTIMATED
CLBCS I U.	LTIMATE	DEHICLES		CUFACY	ا⊢د		5-,EHF
	CCUPAC	SAVED	JIA S	III	nek	HIN	SHITTING
FE-DUMPD	33		92		9.5	6.5	22.110
		1	81	40		ůь	**s
STILL DEF	_ ೦೮	1					
S-HICELEPONETER		1	96	<u>0</u> ع	0.2	H <u>5</u>	~155
LHUEP PELUCINTP		ī	56	3∽	9.5	и 7	_ 10
ULTPASORIC VELO		1	100	180	υž	H 5	-1-6
CU1PASS/000HETE		1	56	-8	9.8	e -	20
CUMPASSZLASEP V	EL 15	1	Ĵ۵	33	U c	3.7	15
CHPSS/U-SONIC U	EL 17	i	55	2	U 2	83 T	15
HrtEl Pl	1500	ē.	3561	2664	0.0	0.0	Ü
LUPHII	leti	ē	337	367	0.0	нθ	Ð
DECCH	200	ši	→66	444	ин	មចិ	ū
BII-STATIONS	236	B	~6~	440	ии	មក	ő
DIFF ONEGS	150	й	⊃3 ₆	366	o n	0.0	ŭ
DIFF LURAN	-00	ö	1065	345	និម	บัยั	й
DIFF HU-STH	∠50	ម	561	502	បិរ័	ຍິນ	
PELA: UNECH	500 500	ខ	4755	1342	0.0	00	
							B
FELAN LOPAN	ວີຍົຍ	0	\$105	2050	មេខ	តិត្	9
CLASS II		_	_		_		
SUPTED FES LUC		1	55	27	n .	0.7	التي ا
PEFLECTING SIGN		1	و5	27	ិត 5	07	
FEFLECTING POAD	3	1	52	15	<u>.0</u> S	₽?	<u>-</u> ¿25
√-DHO POCT	12	1	S-	32	6.5	97	
HE WHE POST	1 15	1	53	u	35	U 7	10
LF POST	, 190	1	_5-	234	υi	0.0	7-75
LICHT/I-P POST	30	1	3 9	7-	0 2	øь	7,00
DUFIED MOUNETS	,		25	15	9.5	6.7	52
ULTERSONIC FOST	ΖÚ	1	51	-3	0.2	6 -	720
TERFFIC LENGUE	16	1	53	2-	0.2	0.7	ટેઇ
CLR35 III		_		-			
HAP-EHRO FIL PHE	SE 1UUU	ម	2451	2305	0.0	иц	9
NID-SHIP FILPHA		ŏ	2911	2739	йй	0 11	ŭ
CHLSE T-O-HPPIVE		ĭ	174	164	0 1	0 2	~z,ŏ
NOISE COMPELATION			145	183	0 1	0 1	-610
DIRECTION FINDER		1	1803	103	88		
	700	0	1803	1691	8.0	ខប	Ű
CLACS IV		_		_			
TEAFFIC LOOPS	111	1	25	26	0.5	u 3	-25
DICAR BETERNAL	100	1	553	237	0 t	ប្រ	_53 <u>0</u>
PHOTONI-P DETECT		1	67	73	0.5	ઇ૦	_150
ULTRHOUNIC DETER	CT 20	1	40	+8	0.2	មក	~~5

VI. Pasadena, CA, City AVM Cost Benefit Analysis Tables

Table 2-17. Pasadena, CA, City AVM Physical Parameters

APEA IS AS SOUAPE MILES.

EAST WEST DISTANCE IS 6 MILES.

NORTH SOUTH DISTANCE IS 5 MILES.

FOTAL POAD MILEAGE IS 350 MILES. .

THE NUMBER OF INTERSECTIONS IS 1860.

THE ESTIMATED NUMBER OF POAD SEGMENTS IS 2720:

THEFE ARE 35 CARS IN THE FLEET.

AND THEFE APE 8 MOTOPCYCLES.

THE NUMBER OF VEHICLES ON EACH SHIFT IS:

FIRST SHIFT MAX. 10

DIPET SHIFT MIN- 10

SECOND SHIFT MAY- 10

SECOND SHIFT MIN- 10

THIRD SHIFT MAX: 10

THIPD SHIFT MIN- 10

อออนกรหอ

THE NUMBER OF DISPATCHERS IS 1

THE CITY WOULD PEOUIRE 3 WIDE+BAND OR FULSE ANTENNA SITES AND 7 NARROW BAND
FM ANTENNA SITES FOR 7 AND 2 MILE FADIUS COVEPAGE.

Table 2-18, Pasadena, CA, AVM Systems
Cost Analyses

PASHDEHA CLHSS I							TOTALS		
0200 1		THOUS	SHOS OF	- £					
TECHNIOUS	CHPS	SITES	PASE	INST	0-11	HUL	SYRC	FAHDON	
YEYSUHFD	5	0	57	12	1111	120	17-	17,	
aT /LUG MAP	-ŭ	กั	5	10	1111	154	ورق	259	
2-HCCELEPUNETERS	56	ย	79	1-	10-	253	205	360	
LASEF VELOCINTR	65	ត័	37	15	106	275	282	231	
ULTEHSONIC VELO	→ 5	Ü	87	1-	106	256	265	2€1	
COMPASS/000METER	52	ő	<u>2</u> 7	11	102	256	265	261	
LIMPASS/LACER VEL	ь 5	и	37	16	1114	276	235	ເຮີ	
CHPUSZYERGER VEE	56	 U	57	1-	104	265	2	ر ت	
CHECH	95	Ö		13	163	558	297	<u>-</u> 45	
	90	ย		15	103	292	301	ے موم	
LOPAN DECCA	-J	õ	7202247226	13	163	233	2+2	5-1	
		ü	15	12	103	206	13ء	111	
HII-STATIONS	1.,	9	ج.	13	103		135	- 1, <u>1</u>	
DIFF UNEGH	75 98	Ö	-5	15	103	238 292	230	5 49 - 45	
DIFF LORAN			_==						
DIFF AN-STA	17	Ű	16	12	160	500	215	-1-	
RELAY ONEGA	13	ū	<u></u>	15	-01	515	267	221	
PELAY LORAN	21	0	72	13	144	215	264	220	,
CLASS II	_								•
BUPIEB RES LOOFS	5	1476	57	1833	101	CH23	3076	2067	
PEFLECTING SIGNS	17	÷1⊍	57	239	136	265	869	860	
PEFLECTING ROAD	5	- -5	57	686	22.	715	719	710	
/-BHND POST	ь	~∠8	37	40	149	720	72.	715	
HF, UHF POST	5	~ ₹	5	53	103	255	258	2.13	
LF FUJT	ซ	230	57	15	129	525	523	F19	
LIGHT/I-R POST	Ł	186	57	115	18	516	520	511	
BUPIED MAGNETS	-	108	57	256	100	500	593	٠,٠٠٠	
ULTERSONIC POST	5	317	57	330	139	851	855	3 € 6°7	
TRHFFIC SENCOP	ь	354	57	161	101	682	685	6 ⁻?	
LLH33 III									
NHF-BAND FII PHHSE	8	33	90	13-	165	257	265	200	
NID-BAND FIT PHASE	102	35	195	. 13≐	563	462	771	~~2	
FULCE T-O-AFRIVAL	91	98	240	33	180	6-17	657	655	
HOISE COPPELATION	58	29	249	18	178	\$95	509	50%	
DIPECTION FINDER	Ē	79	=,	15-	15-	307	503	ატა	
CLASS IV	_		•			201	55		
TPAFFIC LOOPS	3	1637	57	517	1-5	L350	2053	2053	
NAYSIDE PADIO	3	1-13	57	-32	19-	2097	2097	2697	
PROTONI-R DETECT	5	594	5-	223	150	1315	1315	1515	
ULTRASONIC DETECT	ร์	413	57	552	1-3	1734	1334	135-	
OF INDONIES RELECT	J	7413	- 31	66-	1-43	1 234	1334	1.50**	

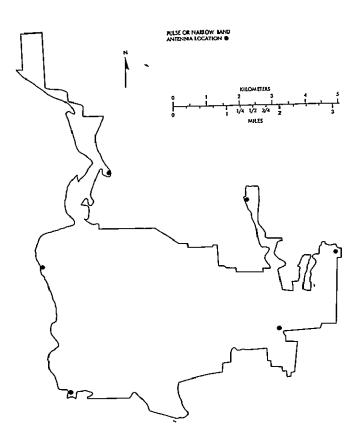


Figure 2-9. Pasadena, CA, AVM Pulse or Narrow-Band Antenna Locations

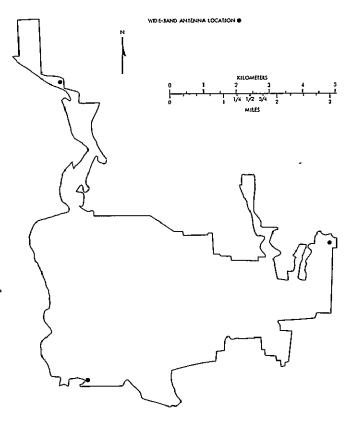


Figure 2-10. Pasadena, CA, AVM Wide-Band Antenna Locations

Table 2-19. Pasadena, CA, AVM Polling Cycle Min/Max Times

CYCLE TIME IN SECONDS TO POLL MAX AND MIN UNITS DEPLOYED

CLASS I	TOTAL		SIMPLE			PEDUNDANT	
TECHNIOUE KEYBOARD	FLEET 3 76	SYNC 1 07	UOL 1-11	RAND 2 15	SYNC 1 15	VOL 1 23	2 31 2 31
		1 07	1 11	2 15	1 15	1 23	2 31
STYLUS MAP	3 92	1 12	1-15 1 15	5 50 5 50	1 24 1 24	1 32	2 40 2 40
2-ACCELERONETERS	3 83	1 89 1 89	1 13	2 17 2 17	1 14	1 27	5 32
LASER VELOCINTR	3 87	1 11	1 15 1 15	2 19 2 19	1 19 1 21 1 21	1 29	2 35 2 35 2 37 2 37
ULTRRSONIC VELO	3 83	1 09	1 13	2 17	1 19	1 27	2 35 2 35 2 35 2 35
COMPASS/ODOMETEP	3 83	1 09 1 89 1 89	1 13 1 13 1-13	22222222222222222222222222222222222222	1 19	1 27 1 27 1 27	######################################
COMPASS/LASER VEL	3 83	1 09	1-13	2 17 2 17	1 19	1 27	2.35 2.35 2.35 2.35
CHPSS/U-SONIC VEL	3 33	1 09 1 09 1 09	1 13	2 17 2 17	1 19 1 19	1 27	5 32
OMEGA	4 13	1 18	1 55	5 56	1 36	1 44	2 05 2 52 2-52
LORAN	4 25	1 21	1 25 1 25	5 59 5 59 5 59	1 +3	1.51 1.51	2 53
DECCA	~ 59	1 20	1 24	2 28	1 +3	18	2 59 2 56
AM-STATIONS	3 78	1 20	1 24	2 16	1 70	1 +8	2 56 2 32
DIFF ONEGR	4 13	1-63 1 13	1 12	2·16	1 16 1 36	1 24 14	
DIFF- LORAN	4-25	1-18 1-21	1 22	5 5 9	1 36 1 43	1 4-	2 59
DIFF AH-STA	4 11	1 21 1 17 1 17	1 52	185 88 5 52 5 52 5 53 5 53	1 43 1 35 1 35	1 51 1 +3 1 -3	2 59 2 59 2 59 2 59 2 51 2 51
RELAY OHECA	353 50	191 98	1 21 101 64	165 68	201 60	201 US	2v2 16
RELA? LORAN	15 17	181.08 4 33	101 64 4 37	162-68 5 41	201 00 7 67 7 67	201 68 7 75	0 83
CLASS II -		4 33	4 3 ⁻	5 41	7 67	7 75	ə 33
BURIED RES LOOPS	3 78	1 98 1 98	1 12 1 12	2 16 2 16	1 16 1 16	1 24 1 2-	5.33
REFLECTING SIGHS	3 73	1 08	1.12	2 lb 2 lb	1 16 1 16 1 16	1 2+ 1 2+ 1 2+	85588888888888888888888888888888888888
REFLECTING POAD	3 78	1 08	1 12	5 10	1 16	1 24	5 25
X-BAND POST	3 76	1 97	1 11	2-16 2-15	1 15	1 23	5 31
HT, UNE POST	3 71	1 67 1 66	1 11 1 10 1 10	2 15 2 15 2 14 2 14	1 15 1 12	1 23	5 58 5 31
LF POST	3 76	1 06 1-07	1 11		1 12 1 15	1 20	0 06 4 31
LIGHT/I-R POST	0.76	1 67	1 11	2 15 2 15 2 15 2 15	1 15 1 15	1 23	***************************************
BURIED HACHETS	3 78	1 68	1 11	2 15 2 Ip	1 15 1 16	1 23	5 35
ULTRASONIC POST	3 76	1 08 1 07	1 12 1 11	2 16 2 15	1 16 1-15	1 24 1 23	근 3년 근 31
TPAFFIC SEHSOR	3 76	1 07 1 07 1 07	1-11 1 11 1-11	2 16 2 15 2 15 2 15 2 15 2 15	1-15 1 15 1 15	1 23 1 20 . 23	2 31 2 31 2 31 2 31

Table 2-20. Pasadena, CA, AVM Accuracies and Cost Benefits

PASADEIRA							
	STOTER A	CCUFACIES		IICLES AND			SAVINCS
		THEO	5	Maten	PERIC	LES	CSTIMATED
CLBSS I	ULTINHTE	PEHICLES	R(CURAC .	SHU	ED	5-1ERP
TECHNIQUE	ACCURACY	CHUED	HA V	HIM	ma 🔻	11111	SHIFTING
PEYBORPD	. 33	1	90	99	95	ម១	7136
STYLUS IMP	50	1	~4	~a	υ 5	Ú \$	້ ເ⊃ິ⊍
2-HCCELEPONETI		Ī	44	24	0.5	ย์ 5	~1 ₁₇ 5
LHSEP VELOCITY		1	11	-1	0.6	ને રુ	_≎n
ULTERSUNIC VE	in 🗝	i	10-	10√	ម 5	85	T155
CULTERSS- ODOLLE		1	511	Śυ	0 ь	0 &	~69
COUPHS\$/LRSEP		ī	70	49	8 6	9.6	- `` ŏ
CUPSS/U-SOHIC	UEL 17	1	44	گ ې،	0.6	0 ь	ō
ONECA	1600	0	2310	o210	ŪΘ	១៤	9
LOPHRE	160	Ċ	J31	180	81	บ 1	~⊍
BECCO	ربروق	ย์	4-bU	460	0.0	ии	U
RIF-STATIONS	250	Ø.	+5 €	456	u e	Üы	ы
DIFF ONEGH	150	G G	331	્~ા	8 1	U 1	7-40
DIFF LORAN	~06	ė	1950	1050	0 0	Ø 11	ಚ
DIFF 6H-STR	250	Ú	553	553	0.0	0 6	ម
RELHY UDELH	500	ō	3466	3400	ก็ห	11 13	U
RELAY LORAN	£60	ŭ	147	2147	0.6	ត់ធំ	Ð
CLBSS II		-			-	•	
	00PS 10	1	6	υ	Ωь	ძი	755
PEFLECTING ST			۵Ú	8	Ø 6	Uъ	 249
REFLECTING PO			39	3.9	0 6	0.5	71170
K-38H9 POST	15	ī	463	0	6 6	Üь	⁻ 195
HE, WHE POST	15	1	40	Ü	Йb	9 6	_∋∪
LF FOST	180	1	520	256	11 3	ย 3	7426
LICHT/I-R POS	T 39	ĭ	7.3	79	ช 5	ii 5	~3 -5
SUPIED MACKET	s	Ī	23	39	მხ	Oρ	756
ULTPACONIC PO	ST 20	1	56	50	Óь	0.6	-ε45
TRAFFIC SENCO	P• 10	1	-96	40	9 6	0 6	-55
CLHSS III							
HHF-PHID FIT P	HASE 1000	8	2-11	2411	U 0	0.0	U
HID-DAND FILE	HASE 1200	ō	2364	2864	0.0	0 0	9
PULSE T-0-ARR	IVAL 100	1	172	172	Ŋ	0	_600
HOISE COPPELA	TION 100	1	192	192	0 +	€ +	~5°3
DIRECTION FIRE	DEP 700	9	1774	1774	0 0	0.0	0
CLRSS IV		-					
TPRFFIC LOOPS	10	1	25	25	6 6	0 6	_525
DICAR SCIEVAN		ī	226	226	0.3	0.3	5
PHOTONI-R DET	ECT 30	1	60	63	0.6	0 ь	7290
ULTRHSONIC DE			46	46	0.6	9 6	_536

VII. San Diego, CA, City AVM Cost Benefit Analysis Tables

Table 2-21. San Diego, CA, City AVM Physical Parameters

APEA IS S31 SOUAPE MILES.

CAST MEST DISTANCE IS 23.5 MILES.

HOFTH SOUTH DISTANCE IS 41.2 HILES.

TOTAL ROAD MILEAGE IS 1945 MILES.

THE NUMBER OF INTERSECTIONS IS 10700:

THE ESTIMATED NUMBER OF ROAD SEGMENTS IS 27400.

THERE ARE 300 CARS IN THE FLEET

AND THEPE APE 52 NOTORCYCLES.

THE NUMBER OF VEHICLES ON EACH SHIFT IS.

FIRST SHIFT MAX. 66

FIRST SHIFT MIN 66

TECOND SHIFT MAX- 95

ECCOND SHIFT MIN- 95

THIRD SHIFT MAX. 60

THIPD SHIFT MIN. 60

THE CITY HOULD PEQUIRE 23 HIDE-BAND OR

PULSE T-0-A ANTENNA SITES AND 85 NARPON

BAND ANTENNA SITES WITH 7 AND 3 MILE COVERAGE RADII.

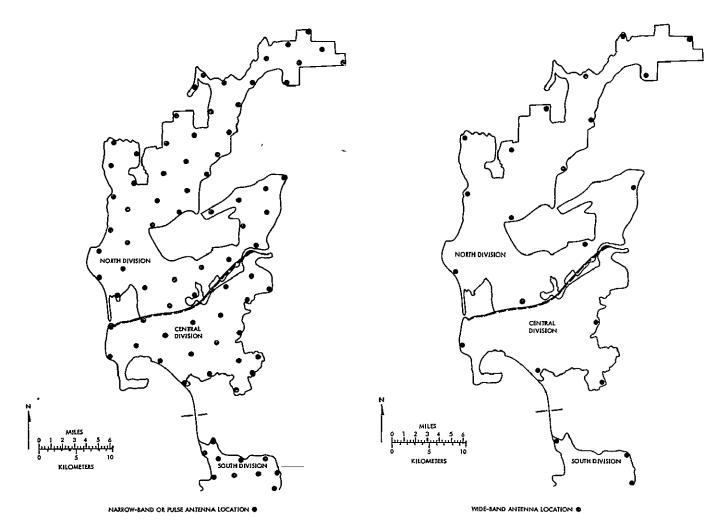


Figure 2-11. San Diego, CA, AVM Pulse or Narrow-Band Antenna Locations

Figure 2-12. San Diego, CA, AVM Wide-Band Antenna Locations

Table 2-22. San Diego, CA, AVM Systems Cost Analyses

Table 2-24. San Diego, CA, AVM Accuracies and Cost Benefits with One Radio Channel

SAN DIEGO CLASS I							TOTALS	:
		THMIS	ANDS O	F &				
TECHNIQUE	CHPS	SITES	SASE	INST	0-n	UuL	SYRC	RANDON
LEYBOAPD		0	2n3E	21	165	Su3	255	255
STYLUS HAP	765	ŏ	29	21	103	1030	982	300
2-ACCELEPONETERS	480	9	120	40	130	826	336	871
LASEP VELOCIMTR	534	0	12%	51	1-5	406	365	¥5u
ULTRASONIC VELO	381	ម	120	46	145	7-2	202	787
COMPRISS/000METER	440	8	128	16	112	7++	316	735
COMPASS/LASER VEL	557	U	123	55	127	915	437	456
CHPSS/U-SOHIC VEL	476	9	119	~ 0	127	819	385	351
ONEGA	910	U	109	34	123	110-	1203	1185
LOPAN	3-0	G	109	3-+	123	115-	1233	1221
DECCA	3-5	9	169	28	123	653	702	717
Att-STATIONS	120	ย	109	25	113	+20	+77	753
DIFF UTIEGR	810	ā	109	3-4	120	112-	1101	1185
DIFF LORRI	840	ō	1119	34	103	115-	1211	1021
DIFF AN-STA	140	ě	109	25	118	-46	+97	527
RELAY ONEGA	158	ยั	109	34	130	477	731	551
RELHY LOPAN	173	อั	109	3-	100	.a.,	446	566
CLASS II	*		.0,	5 4	100		770	550
ZUPIED RES LOOPS	43	986+	29	16793	165	263+0	26969	26832
PEFLECTING SIGNS	1-4	3014	39	1693	330	5374	5400	5326
REFLECTING POAD	33	329	39	2001	1749	7253	4282	4205
K-SAND POST	51	3151	89	639	309	4206	+315	4263 4263
HE UNE POST		3131 34s		177			355	
LF POST	47		89		155	057		3119
	-5	1713	89	640	319	2645	2873	2737
LIGHT/I-P POST	44	1370	39	785	→5 0	2707	2815	2709
BURIED MAGNETS	0.0	787	84	1997	100	3∠5⊍	3279	3202
ULTRHSONIC POST	1	2329	69	2365	383	5253	5281	\$2 6 8
TPAFFIC SENCOP	44	2683	99	1110	103	4662	4633	3357
CLASS III								
RAP-SAND FIT PHASE	£5	490	176	60	150	ಚರಿ	931	303
HID-2HND FN PHASE	272	267	176	72	219	1005	1683	1607
PULSE T-O-APRIVAL	773	1190	357	268	225	2812	2637	2395
NOISE COPPELATION	236	29	357	45	13-	398	925	332
DIPECTION FINDER	11	80	:13	19	154	-11	375	275
CLASS IV				•			0.0	0.0
TRAFFIC LOOPS	34	15550	39	3745	-32	138-0	1-040	198-0
HAYSIDE RADIO	-3	13593	89	3119	778	17-11	17611	17511
PHOTONI-R DETECT	35	2 ⁻⁶⁷	39	1530	447	10917	10917	10917
ULTPRSONIC DETECT	33	2014 2014	29	1578	447	11055	11055	11055
OF ILLIAMONIC DETECT	30	0 704	47	1910	447	11000	11000	11000

Table 2-23. San Diego, CA, AVM Polling Cycle Min/Max Times

CYCLE TINE IN SECONDS TO POLE NAW AND HIM UNITS DEPLOYED

0100 1							
CLHSS I TECHNIME	TOTAL FLEET	SYNC	SIMPLE VOL	PAND	SAIC	PEDUIDANT	
LEYEORPD	27 78	10 20	10 77	20.84	10 89	15 93	FAND 22 67
		6 ***	b 00	13 16	6 88	7 69	14 32
CTYLUS DHP	04 45	10 54	11 21	\$1.58	11 78	12 92	23 56
2-HCCELEFORETEPS	33 49	6 72 10 39	203 40 95	13 44 21 03	7 77	8 16 12 41	1+ 88 23 65
2 1-502227-01-2127-5	00 4.	6.56	16 92	10 28	7-12	15 54	1-, 50
LACEP VELOCINTA	C8 95	19 51	11 ⊎3	21 15	11 50	12 67	23 31
ULTPHSONIC MELO	32 49	10 39	7 9u 10 ∀6	13 36 21 00	7 28	8 90	14 72
021713011¢ -220		5 56	- 92	13 28	11 27 7-12	12 41 7 3~	23 05 1 ₇ 5 ₆
COMPHS\$/000METER	38 49	16 34	10 96	81 00	11 27	12 41	23 05
continues a nego tien	~~ 10	b 56	ь ч2 40 на	13 28	7 12	7 84	1 56
COMPHSS/LASEP UEL	C8 49	10 39 6 56	10 46 6 92	21 U3	11 27 7-12	12 41 7 8-	23 95 14 56
CIPSS/U-SOHIC UEL	30 49	10 39	10 46	21 03	11 27	12 41	23 05
		6.56	6 42	13 28	7 12	78-	1+ 5b
OFECH	-1 54	11 21	11 78	21 85	15 45	14 06	24 70
LOFAN	42 71	11 53	7 77 12 10	13 80 22 17	8 16 13 55	8 88 1~ 69	15 66 25 33
201111	· · ·	7 23	1= 65	1- 00	8 56	9 28	16 88
DECCH	45 S4	11 40	11 97	22 04	13 30	1 4	25 08
HI-STHT10HS		7 20	7 56	13 92	8 40	9 15	15 84
MI-21HI IUNS	33 02	10 26 € +8	10 83 6 84	20 98 13 20	11 02 6 96	12 16 7 68	22 38 14 +8
DIFF UNEGA	n1 54	nì žĩ	11 78	21 85	12 92	14 66	27 74
		- 68	7 44	13 80	8 16	8 88	15 66
DIFF LOPAN	→2 71	11 53	12 10	22 17	10 55	14 69	25 33
DIFF RII-STA	-i 30	7 28 11 15	7 64 11 72	1~ 60 21 79	8 56 12 79	9 28 13 93	16 00 24 57
3 (4. 31.)	41 30	7 67	7 40	13 76	203	3 80	15 52
PELAY ONEGA	3555 20	959 50	968 87	970 14	1989 50	1910 64	1921 28
PELHY LOPAN		606 00	696 C6	612 72	1206 00	1206 72	1213 -4
PELMI LOPALI	152 53	41 17 25 00	41 74 25 36	51 81 32 72	72 83 % 90	73 97 46 72	84 61 53 44
CLASS II		FO 60	20 30	JL IL	70 00	40 10	33 44
EURIED PES LOOPS	38 72	10 45	11 02	21 09	11 40	12 54	23 18
PEFLECTING SIGNS	38 72	6 60 10 45	ь 96 11 02	13 32 21 09	7 20	7 3≳	14-64
REFECTING STORS	उठ १८	50 45 50 58	P 9P	13 32	11 48	12 5- 7.92	23 18 14 64
FEFLECTING ROAD	38 72	10 45	11 92	21 89	i10	12 54	23 18
		6 60	9.90	13 32	7 20	7-92	14-64
(-BHID POST	<i>3</i> 8 49	10 39 0 50	10 96 6 92	21 93 13 28	11 27	12 41	23 45
HE, MHE POST	33 62	10 26	5 92 10 33	20 90	7 12 11 02	7-8- 12 16	14 56 22 00
	55 52	6 48	6 34	13 20	6 95	7 68	14 40
LF POST	34 49	19 39	10 95	21 03	11 27	12 41	23 05
LIGHT/I-P POST	38 49	. 5 5 5 5 5	6 42	13 23	.7 12	784	14 56
F104151-k-k021	35 44	10 39 5-5-	10 95 5 92	21 93 13 ∠8	11 27 7 12	12 41 7 8-	23 65 14 55
DIRIED MACHETS	38 72	10 45	11 #2	21 09	11 49	12 54	25 13
		6 60	5 ⁹ 5	13 32	7-20	7 92	14 64
ULTERSONIC POST	38 49	10 39	10 %	21 00	11 27	12 41	23 95
TRHFFIC SENSOP	38 49	6 56 10 39	5 92 10 96	21 93 21 93	7+12 11 27	7 34 12 41	1- 56 23 05
DENOOR	-0 -12	6 56	6 92	13 28	7 12	7 84	14.56
1							

OUR DIEGO							
	STSTEM H			IICLES AND			
		THEO		YSTEN	VEHIC		ESTIMMTED
	TIMATE	VEHICLE		CUPAC	FAL TAN	หม กไท	5-cehr
	CCUPAC :	SAVED	iin s	nin 2+5			SHATHC
YEYBOARD STYLUC MAP	30 30	6	38 2 5	253	23	24	1.75 1.35
2-HCCELEPONETER		6	383	249	5 8	\$ 3	1 +35 1-50
LISEP VELOCINTE		5	331	2-7	50	#101011 	1375
ULTPASONIC VELO		-	390	250	5 8	ខិទ័	น้ำรั
COMPASS-1000METE		ں ق	302	F-42	28	5 4	15-0
COUPASS/LESER V		Ü	32.2	2+3	58	57	10-t5
	EL I	é	300	244	2 3	24	1900
OHEGA	15110	ŭ	11.45	7112	น อ	0 11	.700
LUPAN	160	5	3	-12	1.9	Ĩ 7	ซเช
DECCA	200	-	506	-96	î 4	iò	405
AM-STATIONS	200	4	595	194	i 😽	iŏ	714
DIFF UNECA	150	ဒ်	713	-11	i q	ខំប័	335
DIFF LUFHN	-00	ž	1167	1142	<u>ย</u> ือ	υĕ	- 6
DIFF HII-ST9	259	4	bl-	59	и	ย์อิ	10
RELAZ UNEGA	500	i	33640	28369	ษอิ	ōō	Ü
PELSI LOPHI	500	ā	21-3	23+3	บ้อ	0.0	Ü
CLHSS II		-	*				
DURIED RES LOO	P3 10	-	277	2-1	2 ∂	24	1575
REFLECTING SIGN	IS IU	7	377	2+1	2.8	2 4	CINU
PEFLECTING POHO		-	36-	533	29	2.6	65 0
Y-38ND POST	12	~	277	241	2.8	e 4	555
HF, PHF POST	15	5 -	3"5	248	28	2 +	1.005
LF POST	159	ь	400	273	8 6 6 8	464+305	_ +8
LIGHT/I-P POST	्रा ।	ь	307	243	2 в	23	~ 1C8
STEMBRIC CELEUC	4	•	30	235	58	2.5	1000
ULTPASONIC POST		.	382	2-5	S 8	يد چ	1 40
TRHFFIC CENSOR	19	7	375	2+0	5.8	5.2	1535
CLACS III							
HHE-EHND FIT PHA		IJ	2600	2639	9.9	שט	ų
DID-DAND FO PHA		U	316	3106	60	иш	ຸນ
PULSE T-0-HEPIN		6	191	137	3 1	- 5	2258
HOISE COPPELATE		6	214	209	30	<u>+</u> 2	F530
DIFECTION FINDE	P 700	IJ	1979	1ч35	0.0	១ប	υ
CLHGS TH		_		•			or r
TEMFFIC LOOPS	10	7	50	53	40	ņ a	52-2
HAYGIDE PADIO	100	6	563	207	ទីស	4 + 5 9	_6~€
PHOTO VI-B DETEC		5	59	ьй	38 39		LIM OCC
ULTRASONIC DETE	CT CO	ь	-5	-3	3 7	5 I	0+0ء

Table 2-25. San Diego, CA, AVM Accuracies and Cost Benefits with Two Radio Channels

3HH DIEGO							
	SYSTEM R					ATED \$1000	SAVINGS
		THEO		ASTEN	VEHI		ESTIMATED
CLHSS I	ULTIMATE	VEHICLES		CURRCY		VED	5-1EAF
TECHNIQUE	ACCURACY	SAVED	MAX	MIN	MAY	11114	SAUING
FE: BOARD	33	ō	123	95	36	5 2	5375
STYLUS MAP	30	ъ	103	32	3.7	5 i	3285
2-ACCELEPONETE		ъ	100	99	36	52	3250
LASER VELOCINT		7	120	\$ 0	57	5-2	J1~5
ULTRHSONIC VEL		6	131	108	35 37 37	5 1 5 2	2100
COMPASS/ODOMET		6	120	.89	37	52	O+ CC
	UEL 15	ъ	127		3 7	5 2	5265
	VEL 17	Þ	158	73	37	5 2 0 U	<i>ა</i> 2ი5
ONEGA	16ผย	0	-004	3728	0.0	ម	ย
LOPAH	160	5	-91	393	20	22	1055
DECCR	والع	7	483	+74	15	13	510
AN-STATIONS	509	7	- 81	472	15	13	505
DIFF ONEGR	160	5	60	393	S-0	2 2 0 U	1005
DIFF LURAN	400		1109	11125	0.0	0 ម	0
DIFF AM-STA	253	+	581	57ช	1.0	0.5	160
RELA: ONEGA	500		10904	6592	0.0	0.0	9
PELA: LOPAN	300	0	2272	2221	0.0	00	U
CLASS II		_					
	OP3 10	7	126	79	***********		3375
PEFLECTING SIG		2	126	79	2.7	2 5	5900
REFLECTING ROA		7 7	155	7 ₆	37	53	4770
X-BAND POST HE, VHE POST	12 15		126 125	79 78	37	5 2 5 2	2355 J125
LF POST	180	6	265	259	žź	3 7	1225
LICHT/I-P POST			130	234	5 (5 2	1225
EUPIED NAGNETS		7	153	77	3 7	5 2	-400
ULTPRSONIC POS		6	153	ຮິດ	3 7	ร์อ์	1946
TOHFFIC SENSOR		7	126	28	3 7	5 2	3:05
CLASS III	10	•	120		J 1	3.	3.03
NHF-BAND FIL PH	8SE 1000	Ð	2550	2494	0.0	9.9	ย
MID-JAND FM PH		ŏ	3024	2962	ບັບ	ŏŏ	ű
PULSE T-0-APRI		Ď.	191	167	3 1	Š	2250
NOISE COPRELAT		b	21-	209	3.0	~ ž	2220
DIRECTION FIND		Ğ	1376	1005	u G.	ខំខំ	บ
CLASS IV		-					•
TRAFFIC LUOPS	1ช	-	SO	23	m 0.	6.3	೯೭-೯೭
MAYSIDE PADIO	160	6	293	297	οõ	ų są	
PHOTONI-P BETE		6	59	1018	3 8	5 9	-190
ULTRASONIC DET		ě	42	43	ěš	ē 1	2046
		_	_			_	

GEPRODUCIBILITY OF THE CENTINAL PAGE IS POOK

VIII. Los Angeles, CA, City AVM Cost Benefit Analysis Tables

Table 2-26. Los Angeles, CA, Central Bureau AVM Physical Parameters

APEA IS 57.5 BOURPE MILES.

EAST WEST DISTANCE IS 9 MILES.

HORTH SOUTH DISTANCE IS 13 MILES.

TOTAL FOAD MILEAGE IS 1152 MILES.

THE HUNGER OF INTERSECTIONS IS 9570-

THE ESTIMATED NUMBER OF POAD SEGMENTS IS 19140:

THOSE APE 157 CAPS IN THE FLEET.

AND THEPE APE O MOTORCYCLES.

THE NUMBER OF VEHICLES ON EACH SHIFT IS:

FIRST SHIFT MAN- 60

FIRST SHIFT MIN. 50

DECOND SHIFT MAY- 90

SECOND SHIFT MIN- 80

THIFD SHIFT MAJ 100

THIRD SHIFT MIN- 30

1.0-CENTRAL BUREAU

THE HUMBER OF DISPATCHERS IS A

THE CIT, WOULD REQUIPE & WIDE+BAND OP FULSE ANTENNA SITES AND 14 MAPPON BAND FM MATERNA SITES FOR 7 AND 3 MILE RADIUS COVEFAGE.

Table 2-27. Los Angles, CA, Central Bureau AVM Systems Cost Analyses

CLASS I							TOTALS	;	
		THULIS	ANDS O	F\$					
TECHNIQUE	CARS	SITES	BASE	INST	0-11	UOL	SYNC	RANDON	
KEYBOARD	22	U	72	16	103	237	212	212	
STYLUS HAP	491	9	72	16	164	617	592	592	
2-ACCELEPONETEPS	252	õ	100	26	116	513	549	541	
LHSER VELOCINTR	280	ē	108	32	124	568	599	591	
ULTRASONIC VELO	200	ū	108	26	124	482	513	รัยร์	
COMPASS/000NETEP	231	ø	108	14	197	-83	521	505	
COMPASS/LASER VEL	292	ŭ	103	34	115	573	610	594	
CHPSS/U-SONIC VEL	249	ĕ	10c	26	115	520	553	542	
ONEGR	424	ū	92	23	112	676	717	708	
LORAN	440	ĕ	šė	23	112	692	733	727	
DECCR	181	ย	92	20	112	429	471	463	
AM-STATIONS	53	ĕ	92	13	110	303	338	330	
DIFF OMEGA	424	ŏ	92	20	112	676	706	705	
DIFF- LOPAN	-48	ĕ	92	50	112	692	721	727	
DIFF. HM-STA.	774	ŏ	áž	18	110	218	348	363	
RELAY ONEGA	83	ĕ	92	23	116	308	313	376	
RELAY LUFAN	91	ě	92	53	116	246	321	384	
CLRS\$ II	7.	•			***	0.0	J-4	304	
BURIED RES. LOOPS	22	6891	72	11731	103	18843	18858	18812	
REFLECTING SIGNS	76	2166	72	1182	295	3755	3770	3730	
REFLECTING ROAD	20	230	72	1398	1251	2995	3010	2970	
K-BAND POST	27	5505	72	447	246	3017	2035	2992	
HF VHF POST	25	248	72	124	138	623	638	597	
LF POST	24	1197	72	4-8	2-6	2011	2026	1956	
LIGHT/I-R POST	23	957	72	5-9	344	1969	1984	19+4	
BURIED MRCNETS	16	690	72	1396	100	2298	2315	2272	
ULTRASONIC POST	22	1627	72	1651	296	3691	3706	3666	
TRAFFIC SENSOR	53	1819	72	782	102	2822	2837	2797	
CLASS III	63	1017		100	IQL	LOLL	LOSF	617	
NAR-BAND FM PHASE	36	66	142	SS	111	376	+15	419	
WID-BAND FM PHASE	457	24	135	28	205	8-7	888	890	
PULSE T-0-ARRIVAL	405	195	332	69	186	1187	1226	1230	
NOISE CORRELATION	124	29	332	31	181	720	734	738	
DIRECTION FINDER	6	79	78	17	154	352	333	333	
CLHSS IV	•	, ,			1.07	302	000	555	
TRAFFIC LOGPS	13	9898	72	2616	332	12922	12922	12922	
HAYSIDE RADIO	12	8608	72	5189	521	11451	11451	11451	
PHOTONI-R DETECT	19	5497	72	1103	342	7031	7031	7031	
ULTRASONIC DETECT	58	5592	72	1102	342	7127	7127	7127	
OF IKUSOLITE DE LEET	26	3392	16	1102	342	1127	. 121	-151	

Table 2-28. Los Angeles, CA, Central Bureau AVM Polling Cycle Times

CYCLE TIME IN SECONDS TO POLL MAX AND HIM UNITS DEPLOYED

CLASS I	TOTAL		SIMPLE			PEDUNDANT	
TECHNIQUE	FLEET	SYNC	VOL	RAND	SYNC	UOL	PAND
KEYBOARD	16 85	10 73	11 27	21 89	11 47 5 73	12-53 6 27	20 50 11 80
		5 37 11 20	5 63 11 73	10 90 22 27	12 40	13 47	24 53
STYLUS MAP	17-58	5 69	5 87	11 13	6 20	6 73	12 27
2-ACCELEROMETERS	17 17	10.93	11 47	22 60	11.87	12 43	24 60
_ 1.00222		\$ 47	5 73	11 00	5 93	6 47	15 66
LASER VELOCIMTR	17 38	11-07	11.60	22-13	12 13	13 20	24 27
		5 53	5 89	11.07	6 97 11 87	6 69 12 93	12 13 24 60
ULTRASONIC VELO	17 17	18 93 5 47	11 47 5 73	22 80 11.60	5 93	6 47	12 08
COMPASS/ODOMETER	17-17	10 93	11 47	55 69	11 87	12 93	24 99
COULTROSPONDIETER	31-11	S 47	5 73	11 60	5 93	ь 47	12 00
COMPRSS/LASER VEL	17 17	10 93	11 47	55 69	11 87	12 93	24 69
		5 47	5 73	11 00	5 93	6 47 12 93	12 66
CHPSS/U-SOHIC VEL	17 17	19 93	11 47 5 73	55 69	11 87 5 93	6 47	24 00 12 00
OHEGR	18 53	5 -7 11 80	5 73 12 33	11 t/0 22 87	13 60	14 67	25 73
OFECH	10 93	5 90	b 17	11 43	6 80	7 33	12 67
LORAN	19 05	12 13	12 67	53 50	14 27	15 33	26 40
		6 07	p. 33	11-68	7 13	7 67	13 20
DECCR	18 84	12 99	12 53	23 97	14 60	15 97 7 53	26 13
		6 98	ь 27 27	11 53	7 69 11 60	12 67	13 97 23 73
AN-STATIONS	16 96	10 89 5 +8	11 33 5 67	21 87 10 93	5 88	6 33	11 87
DIFF OHEGA	18 53	11 89	12 33	22 87	13 68	14 67	25 73
J	10 00	5 90	6 17	11 43	6 88	7 33	12 37
DIFF LORAN	19 65	12 13	12 67	53 50	14 27	15 33	26 49
		6 97	ь 33	11 60	7 13	7 67 14 53	13 20
DIFF AM-STA	18 42	11 73 5 87	12 27 5 13	22 80 11 40	13 47 6 73	7 27	25 60 12 38
RELAY OMEGA	1585 70	5 97 1918 98	1010 53	1021 07	2018 00	2011 07	2022 13
RECRI GILGE	1000 10	505 60	505 27	518 53	1005 00	1005 53	1011 07
RELAY LORAN	⊳ 8 03	43 33	43 87	54 49	76+67	77 73	83 89
		21 67	21 93	27 20	38 33	38 57	44 40
CLASS II				** **		13 07	24 13
BUPIED RES LOOPS	17 27	11 00 5 50	11 53 5 77	22 07 11-03	12 00 5 00	6 53	24 13 12 07
REFLECTING SIGNS	17 27	11 99	11 53	22 87	12 00	13 97	24 13
KE ELDITIO VILIO	24 W.	5 58	5 77	11 83	6 99	ь 53 13 97	12 97
REFLECTING ROAD	17 27	11 00	11 53	22 07	15 69	13 97	24 13
		\$ 59	5 ??	11 03	6 68 11 87	ь 53 12 93	12 67
X-RAND POST	17 17	10 93 5 47	11-47 5-73	22 69	5 93	5 47	24 69 12 60
HE, UHE POST	is 9s	10 89	11.33	21 87	11 60	12 67	23 73
W 7 VII 1001	10 0	5 40	5 67	19 93	5 80	6 33	11 87
LF POST	17 17	10 93	11 47	22 69	11 87	12 93	24 60
		5 47	5 73	11 60	5 93	b 47	12 60
LICHT/I-R POST	17-17	19 93	11 +7 5 73	22 69	11 87 5 93	12 93 6 47	24 00 12 00
BURIED HACKETS	17-27	5 47 11 00	11 53	11 00 22 07	12 99	13 07	24-13
DOUTED IMPRETS	11.451	5 50	5 77	11 03	6 99	6 5%	12 07
ULTRASONIC POST	17-17	19 93	11 47	22 00	11-87	12 93	24 00
		5 47	5 73	11 99	5 93	5 47	12 00
TPAFFIC SENSOR	17 17	10-93	11 47	55-98	11.87	12 93 6 47	24 86
7		5 47	5 73	11 69	5 93	5 47	12 00
4							

Table 2-29. Los Angeles, CA, Central Bureau AVM Accuracies and Cost Benefits with One Radio Channel

LA-CENTEHL BUREAU							
SYS	STEM AC	CURRCIES	no ver	ICLES AND	ESTIM	TED \$1600	SAVINGS
		THEO		SISTEM	PEHIC		ELTINATED
CLHSS I ULT:	INSTE	VEHICLES		CUPACY	SAL		5-1EAP
	JPACY	SAUED	THAN.	nΙn	አፀዘ	[1][1	SHUING
1 E1 BOARD	33	6	396	201	1 4	6.6	535
JTYLUS 11AP	36	6	+10	500	13	6.6	55
2-HUCELEFORETERS	34	6	403	205	1 4	00	,70
LHUEF DELOCINTR	13	-	396	201	1	ខខ	-38
ULTPHSONIC VELO	40	6 6	405	206	í →	00	+3⊌
CUMPHSS/UDONETER	29	ક	397	202	1-4	00	515
CUMPASS/LASER VEL	15	7	394	500	1 →	00	→7 5
CHPSSZU-CONIC VEL	17	7	395	201	14	00	+75
OUEGA	1:00	0	+199	- ∙079	0 0	00	0
LUPAU	ใจป	٤	468	498	00	9 0	ø
DECCA	200	1	566	492	ខ្ទ	0 ម	0
AN∽STAT IÓNS	200	1	504	498	00	68	9
DIFF ONEGA	160	2	449	+88	00	១ប	0
DIFF LOPAN	400	9	1169	1132	0 0	9 0	Ð
DIFF HU-STA	250	1	ь16	592	ខប	១១	บ
RELAY ONEGA	500		34669	17461	0 0	90	n
PELRY LOPHII	วับช	0	2148	5055	00	00	U
CLASS II							
BUPIED PES LOUPS	10	7	391	199	1 4	иО	535
PEFLECTING SIGNS	10	7 7 7	331	199	1 🕶	បេស	25
PEFLECTING FOAD	3	7	578	192	15	មេខ	" 5120
K-BHKO POST	12	7	391	193	1 +	0 6	T130
HE, UHE POST	15	7	398	148	1 +	មេខ	النادان
LF POST	100	7	-15	271	ย 7	មម	7765
LIGHT/I-P POST	30	E	401	204	1 +	บย	- 570
STANSHII CBIRUS	4	7	381	193	15	0.0	625
ULTPHSUNIC POST	20	ь	397	505	14	0 0	7430
TRAFFIC SEMSOP	10	7	283	198	14	មប	540
CLASS III							
MAP-BAND FIT PHASE	1000	8	2696	2607	00	00	IJ
MID-BAND FN PHASE	1200	6	3173	3683	0.ມ	00	0
PULSE T-0-APPIVAL	10ช	4	192	165	1 6	1 4	270
HOISE CORPELATION	166	4	215	207	13	មុខ	70
DIPECTION FINDER	700	6	1984	1916	ษษ	9 9	IJ
CLHS\$ IV							
TPAFFIC LOOPS	10	7	53	53	0.5	6.3	3065
Maiside radio	166	4	202	209	1.3	1-1	T1930
PHOTONI-R DETECT	30	ь	59	61	5.3	2.3	2265
ULTRASONIC DETECT	50	6	42	- -3	3-8	57	2565

Table 2-30. Los Angeles, CA, Central Bureau AVM Accuracies and Cost Benefits with Two Radio Channels

Table 2-31. Los Angeles, CA, Central Bureau AVM Accuracies and Cost Benefits with Three Radio Channels

LA-CENTRAL BURER	1.5						
		CHOOCIE	e an .uer	HICLES AND	CCTIMO	TED \$1000	SOUTHES
•	(SIEII PO	THEO		SISTEM	VEHIC		ESTIMATED
CLASS I UL	TIMATE	VEHICLE	~ ~	CCUPACY	SAL		5-YEAR
	CURACY	SAVED	XAN C.	HIN	MAX	MIN	SAVING
KEYBOARD	33		201	1111 45	2.5	12	1360
STYLUS NAP	20	6	201	103	2.4	10	1360
2-ACCELEROMETERS		Ď	205	103	2.4		
LASER VELOCINTR	13	6		95	2.5	1 2	1220 1255
ULTRASONIC VELO	+0		206	189	5-3	10	1185
		•			2.3		1340
COMPRSS/ODOMETER		Þ	202	36	25 25	is	
COMPASS/LASER VE		2	240	95	25	12	1599
CHPSS/U-SONIC VE		?	501	. 35	2.5	12	1200
OMEGA	1600	Ø	+079	3953	9 9	១ប្	0
LURAN	169		+08	397	00	ម្	ប្
DECCA	288	ī	492	473	0.0	9.0	o o
F41-STATIONS	209	1	490	476	80	ยย	9
DIFF CHEGA	160	3	408	396	0 0	0 0	Ð
DIFF LORAN	00	6	1132	1496	0.0	0.0	9
DIFF. AN-STA	250	1	592	\$75	ប្រ	00	Ð
RELA: OMEGA	500	Ġ	17461	7973	9 9	9 9	9
RELAY LORAN	⊲ 69	0	2322	2245	9 9	បស្	0
CLRSS II							
BURIED RES LOGP	S 10	7	199	9+	25	13	1048
REFLECTING SIGNS	10	7	199	94	2 S 2 S	13	400
REFLECTING ROAD	3	Ž	192	92	25	15	7+380
X-BAND POST	12	_	199	94	22222	13	⊳ 45
HF, UHF POST	15	7	198	9-	25	13	1185
LF POST	160	4	271	262	6.3	ยัย	Te00
LIGHT/I-R POST	30	6	204	101	2 4	1 1	ີປິ
BUPIED MAGNETS	4	7	193	92	2 4 2•5	īš	1375
ULTPASONIC POST	20		202	96	2.5	12	395
TPAFFIC SENSOP	10	7	198	9-	2.5	13	1365
CLASS III		•			4-0		
NAR-BAND FM PHAS	E 1000	8	2697	2521	0.0	0.0	8
UID-BHND FM PHAS		õ	3083	2994	ยัย	ŏŏ	ย์
PULSE T-0-ARRIVA		4	192	185	16	1 -	≘ 7ับ
HOISE CORRELATIO	N 100	4	215	207	13	U 0	7u
DIRECTION FINDER	709		1918	1855	00	ยีบั	, ,
CLASS IU	1 98	U	1-16	1033	0.0	0.0	**
TRAFFIC LOOPS	10	7	23	53	3 2	63	30.5
HAYSIDE RADIO	100	4	202	503	1-3	11	-1930
PHOTONI-R DETECT	30		202 59	61			2265
		6		61 43	2 \$ 3 A	53 57	
ULTRASONIC DETEC	T 20	6	-42	43	ತ ಟ	5 7	2565

LA-CENTPAL BURE	211						
TH-CELLIANE SORE	TO RECTENT A	CHRACIE	S (M) + UEI	IICLES AND	ESTIME	TED \$1000	SAVINGS
•	J. O (E	THEO	5	YSTEM	VERTO	LES	ESTIPHTED
CLASS ! U	LTIMATE	VEHICLE		CURRCY	SAC	ED	5-7EAP
	CCURRCY	SAUED	MAX	nin	HAX	HIN	SAVING
LEASURED	33	6	134	93	2-5	3 1	1810
STYLUS MAP	30		139	82	2-0	3.0	1700
2-ACCELEROMETER	3 -	6	136	97	25	2.6	167ย
LASER VELOCIITE	13	7	134	68	2 3	3 1	17ช5
ULTRASORIC VELO	40	6	137	107	2 9 2 9 2 9	3 B	1650
COMPASS/000METER	? 20	6	134	68	5.6	3 1	1790
COMPRISS/LASER VI	ī. 15	7	133	67	28	S 1	1750
CMPSS_U-SONIC VI		7	133	67		5 1	1750
UNEGR	1600	9	4011	389ь	99	ខែម	ម
LORHN	160	2	401	390	0 0	ยย	บ
DECCA	200	1	+34	+70	9 9	9.0	ย
AN-STATIONS	200	1	482	468	0 0	ยย	0
DIFF OHEGA	160	2	401	399	9 9	9.9	9
DIFF LOPEN	400	ō	1111	1076	0.0	0 0	0
DIFF AM-STA	250	1	582	566	0.0	0.0	Ų
RELAY ONEGA	500	8	11529	560 ₅	0 0	0.0	0
PELAY LORAN	300	0	2277	5505	00	0.0	Fi
CLH3S II				_			4 00
BURIED PES LOO		777	132	67	5.3	3.5	1c05 325
PEFLECTING SIGN		7	132	67	2 3	32	73730
PEFLECTING POAD	. 3	7	127	-5	23	33	3730 1170
-BAND POST	13	<u> 7</u>	132	67	58	32	1710
HF, VHF POST	15	7	131	.67	0.3	99	-630
LF POST	160	4	265	257	26	51	630 605
LIGHT/I-R POST	39	6 7	136 128	82 65	28	33	1975
SURIED MACHETS	4 20		134	63 63		3 1 3 3 3 1	3.5
ULTPASONIC POST	10	7	131	99	5.8	S ê	1090
TRAFFIC SELISOR	10	,	131	00			1020
CLASS III NHR-BAND FM PHA	SE 1000	0	2556	2472	ខាម	សម	ย
MID-SUB LL CAL		ŏ	2031	2935	90	ěŏ	ษั
PHESE T-0-APRIV		4	192	185	16	Ĭ 4	270
ROISE CORRELATION		4	215	207	ìз	Ĉŝ	76
DIPECTION FINDE		ā	1881	1818	00	ยีย	Ĭñ.
CLASS IV	K 700	•	1001	1010	~ ~	~ ~	-
TRAFFIC LOOPS	114	_	23	23	32	6.3	.≎მა5
MAYSIDE PHOIO	100		202	209	13	īi	71739
PHOTONI-P DETEC		6	59	61	28	5 3	2265
ULTRASONIC DETE		- š	42	43	3 0	5 7	2565
		_					

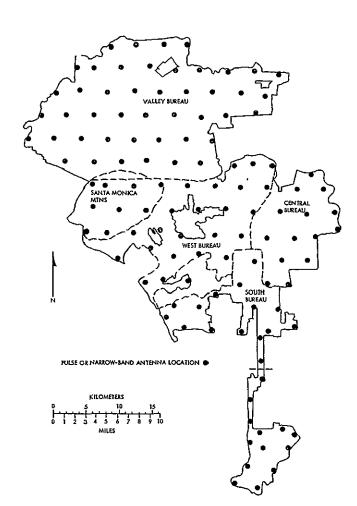


Figure 2-13. Los Angeles, CA, AVM Pulse or Narrow-Band Antennas

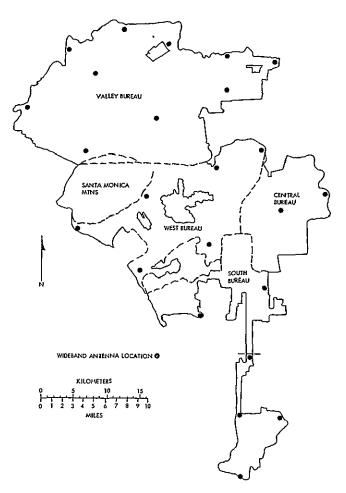


Figure 2-14. Los Angeles, CA, AVM Wide-Band Antenna Locations

Table 2-32. Los Angeles, South Bureau AVM Physical Parameters

Table 2-34. Los Angeles, South Bureau AVM Polling Cycle Times

CYCLE TIPE IN SECONDS TO POLL HAX AND HIM UNITS DEPLOYED

CLASS I	TOTAL		SIMPLE			REDUKDAKT	
TECHNIQUE	FLEET	SYNC	VOL	rand	SYNC	VOL	RAND
KEYBOARD	17-71	11-16	11 72	22 67	11-93	13.04	24.54
		5 69	5 97	11 55	6-88	6-64	12-51
STYLUS HAP	18 48	11-65	12 28	23 16	12.90	14-01 7-14	25-51
		5 94	6 22	11 80 22 88	6 57 12-34	13-45	13-98 24-96
2-ACCELEROMETERS	18 64	11-37 5 79	11 93 6 68	11 66	6-29	6.85	12.72
LASER VELOCIHITR	18-26	11.51	12 06	53 85	12.62	13.73	25.24
ERSER VELUCINK	10+20	5 87	6 15	11-73	6 43	7 00	12-86
ULTRASONIC VELO	18-94	11-37	11-93	22 88	12.34	13-45	24 96
		5 79	6 68	11 66	6 29	685	12 72
COMPRISS/ODOMETER	18-04	11.37	11 93	22 88	12-34	13-45	24.96
		5 79	6 68	11 66	6 29	6 85	12-72
COMPASS/LASER VEL	18-94	11-37	11 93	22 88	12.34	13 45	24-96
		5 79	6 98	11-66 22-88	6 29 12 34	6 85 13 45	12 72 24+96
CMPSS/U-SONIC UEL	18-94	11-37 5 ? 9	11 93 6 88	11-66	6 29	6 85	12 72
OMEGA	19-47	12 27	12 83	23 78	14 14	15 25	26-76
CALCAN	13-41	6 25	6 54	12-12	7 21	7.77	13 64
LORAN	20 02	12 62	13 17	24 13	14 84	15-95	27 46
		6 43	6 71	12.39	7 56	8-13	13.99
DECCA	19 86	12 48	13 84	23 99	14 56	15 67	27 18
		6-36	b 64	12-23	7 42	7 99	13 85
AN-STATIONS	17-82	11-23	11 79	22.74	12 06	13 17	24 68
*****	43	5 72	6 61	11-59 23 78	6 15 14 14	6+71 15 25	12 58 26 76
DIFF OMEGA	19+47	12-27	12-83 6 54	12.12	7 21	7.77	13 64
DIFF LORAN	20 62	12.62	13 17	24-13	14 84	15 95	27 46
Dan Lona		6 43	6 71	12.30	7 56	8 13	13-99
DIFF. AN-STA	19 36	12 29	12.76	23-71	14 01	15 12	26 62
		6 22	ь∙5 8	12 08	7-14	7 79	13 57
RELAY ONEGA	1666 50	1050 40	1050.95	1061 91	2090 40	2091 51	2103 62
		535 30	535 58	541 17	1065 38	1065 87	1071 73
RELAY LORAN	71 50	45 07	45 62 23 25	56 58 28 83	79 73 49 63	80 84 41 20	92 35 47 86
CLRSS 11		22 9 7	23 25	28 53	49 63	41 20	47 00
BURIED RES LOOPS	18 84	11 37	11 93	22 88	12-34	13 45	24 96
POWIED NES LOOPS	10 04	15 79	68	11 65	6.29	6 85	12 72
REFLECTING SIGNS	18 64	11 37	11 93	22 88	12 34	13 45	24 96
		5 79	6 88	11 66	6-29	6 85	12.72
REFLECTING ROAD	18 64	11 37	11 93	55 88	12 34	13 45	24 96
		5 79	6 88	11 66	o 29	6 85	12-72
X-BAND POST	17 93	11 38	11 86	22 81 11-63	15 59	13-31 6-78	24 82 12-65
IF, UHF POST	17-71	5 76 11•16	ь 84 11 72	22-67	11 93	13 04	24 54
HET ONE PUSI	11-11	5 69	5 97	11.55	6 68	6-64	12.51
LF POST	17-93	11-39	11-86	22 81	12 20	13 31	24 32
a		5 76	6 94	11-63	6 22	6-78	15 62
LIGHT/I-R POST	17-93	11-38	11 86	22-81	15 58	13 31	24-82
		5 76	b 04	11-63	6 55	6.78	12-65
BURIED MACHETS	18-04	11-37	11-93	25-88	12 34	13 45	2~ 96
ULTRASONIC POST	17 93	5 79 11-38	ь 08 11-86	11 66 22 81	6 29 12 29	6 85 13 31	12 72 24 82
ULIMISURIU PUST	11, 33	5 76	ь 04	11 63	5 22	6 78	12 65
TRAFFIC SENSOR	17 93	11.30	11+86	22 81	12 29	13 31	24 82
11/41 10 00000	25	5 76	6 04	11 63	6 22	6 78	12 ₺5

APEA IS 55.2 SOUAPE MILES.

EAST WEST DISTANCE IS 9 MILES.

NORTH SOUTH DISTANCE IS 23 MILES.

TOTAL ROAD MILEAGE IS 978 MILES.

THE NUMBER OF INTERSECTIONS IS 6090.

THE ESTIMATED NUMBER OF ROAD SEGMENTS IS 12190:

THERE APE 165 CAPS IN THE FLEET.

AND THERE ARE O NOTOPCYCLES.

THE NUMBER OF WEHICLES ON EACH SHIFT IS:

FIRST SHIFT MAX- 63

FIFST SHIFT MIN. 53

SECOND SHIFT MAY- 94

SECOND SHIFT MIN- 84

THIPD SHIFT MAK. 104

THIRD SHIFT MIN. 94

THE HUMBER OF DISPATCHEPS IS 2

THE CITY WOULD REQUIRE 5 WIDE+BAND OR
PULSE ANTENNA SITES AND 23 MARROW BAND
FM ANTENNA SITES FOR 7 AND 3 MILE RADIUS COVERAGE.

Table 2-33. Los Angeles, South Bureau AVM Systems Cost Analyses

Table 2-35.	Los Angeles, South Bureau	
AVM Acc	uracies and Cost Benefits	
with	One Radio Channel	

LA-SOUTH BUREAU							T .TOL 0		LR-SOUTH BU		OTEN O	OUT OO I E	5 2845 EUCT	ITCLES OND	COTTMO	TEN 0100	0.001171100
CLASS I		T110110					TUTALO	i		SY	SIED BI	THEO		HICLES AND			
T#4	2000		ANDS OF BASE			1101	24.00	PHNDOM	O1.100 T		IMATE	VEHICLE		S'I STEIF CCURRCY	VEHIC SAV		ESTIMATED
TECHNIOUE	CRPS 23	SITES		INST	0-M 163	797 5≠8	SYNC	214	CLHSS I TECHNIOUE		UPAC'	SRUED	XAII	HIN	HAY		5-YEAR
KEYBOARD		A	73 73	16			214		FELLITOUE	HUU	33		411	213	1 2	អIអ ម ១	SULTHE
STYLUS HAP	421	U		ib	105	641	614	514	STYLUS HAP		39 39	5	425	221		60	305
2-ACCELEROMETERS	264	ы	166	27	117	504	566	558	2-HCCELEROM	CTCO?	34	9	418	217	12	00	375
LASEP VELOCINTR	294	ŭ	109	33	125	507	⊳ 19	511				7				00	315
ULTRASONIC VELO	218	0	109	27	125	442	529	521	LACER VELOC ULTRASONIC		15 48	:	411 420	213 213	12		275
COMPASS/ODOMETER	242	ø	109	14	197	498	537	520	COMPRSS/000		20	5	426	215	1 2	0 0	275
COMPASS/LASER VEL	367	9	109	35	115	592	631	617				<u> </u>				บย	365
CMPSS/U-SONIC VEL	262	ø	107	27	115	507	576	559	COMPRSS/LAS		15 17		469 410	515	13	9 6	400
OMEGA	446	õ	93	24	113	761	7-5	734	CI\$P\$\$ZU-\$0H	IC VEL	1600	á	4206	210 -,089	13	9 O	440
LORAN	~62	ø	93	24	113	717	761	75-+	ONECS			2	470		9.0		ប្
DECCA	190	9	93	20	113	+C	486	477	Lupan		160	5		469		9 9	9
AM-STATIONS	66	0	93	19	110	214	3+5	333	DECCH		568	!	507 565	-93	9 9	0.0	Ŏ.
DIFF- OMEGA	446	9	93	24	113	761	732	734	HM-STATIONS		500	ř	965 +66	491	ម ប គេ ព	บ เร ค₌ค	6
DIFF LORAN	462	0	93	54	113	717	749	754	DIFF CHEGA		160	2		÷09			6
DIFF- AM-STA	77	9	93	19	110	025	356	370			400	ú	1171	1135	00	0 0	ŭ
RELAY OMEGA	97	0	93	24	117	346	320	336	DIFF AM-ST	н	250	1	618	59-	0 0	00	9
RELAY LORAN	95	0	93	5-	117	354	328	374	RELAY ONEGA		500	9	35972	18512	0.0	0.0	U
CLASS II		4000	70	030	460			*****	PELA? LURAN		399	Ü	2152	2329	U-C	00	Ų
BURIED PES LOOPS	24 80	4093	73	ხ <u>97</u> 5	193	11293	11308	11266	CLASS II			-	-04	200			
REFLECTING SIGNS		1340	73	766	826	2518	2525	2483		LOOPS	10		404	209	15	8 8	_+60
REFLECTING ROAD	21	147	73	897	834	1997	2012	1970	REFLECTING :		10	7		203	1.5	0 0	155
X-BAND POST	29 26	1401	73 73	291	193 125	2012	5058	1986	PEFLECTING I	KUHU	.3	7	090 404	202 209	14	9 9	_3150
HF, VHF POST	25 25	153 762	73	86		487	503	461	A-BAND POST	_	10	7	102	285	13	υĠ	.10
LF POST				292 358	194	1071	1387	1345	HE UNE POS	ì	15				13	9 9	_350
LICHT/I-R POST	24	609	73	338 236	257	13-7	1362	1320	LF POST		100	7	429	271	9 6	0 0	_52 <u>u</u>
BURIED MAGNETS	17	410	73		166	1-62	1477	1435	LIGHT/I-R PO		3:0	é	714	215	1 2	9 0	_3°2
ULTRASONIC POST	23	1036	73 73	1060 504	226	2443	2458	2416	BUPIED MACH		- 4	7	394	504	1 +	ยิล	_550
TRAFFIC SENSOP	24	1158	13	204	102	1886	1992	1860	ULTPASONIC I		26	7	+02 +10	203 213	13	0 0	T155
CLASS III		***		~~		404			TRAFFIC SENS	SUR	1ម	r.	402	203	13	0.0	465
NAR-BAND FII PHHSE	36	109	143	27	116	431	472	476	CLASS III				0700	0.15			
WID-BAND FM PHASE	480	58	134	33	267	911	954	956	NHP-BAND FII		1600	ប្	2702 3179	2615 3890	99	0 6	ម
PULSE T-0-APRIVAL	425	355	331	93	191	1361	1-02	1447	HID-BAHD FIT		1260	9			0.0	0.0	. 9
NOISE CORRELATION	130	29	331	31	181	726	742	747	PULCE T-0-AF		108	4.	192	185	1 5	13	2 <u>-</u> 5
DIRECTION FINDER	6	79	78	17	154	353	334	334	HUISE CORPE		100	4	215	268	1.0	9.6	_ñ
CLASS IV		000		4.570	240		****	***	DIPECTION F	INDEK	700	0	1987	1923	មឲ	មេម	Ð
TRAFFIC LOOPS	14	4823	73	1673	248	6829	6829	6829	CLASS IV			-	20				
WAYSIDE RADIO	13	4135	73	1393	407	6919	6019	6019	TRAFFIC LOOF		10	7	23	23	3 4	6-5	_0635
PHOTONI-R DETECT	19	2548	73	710	255	3665	3605	3695	MAYSIDE RADI		100	,	202 59	509	15	10	-1068
ULTRASONIC DETECT	21	2689	73	709	255	3667	3667	3667	FR R-1/07049		30	7	42	51	38	5 4 5 9	2775
									ULTPASONIC E	ほほじし	20		42	+3	3.5	59	⊸150

Table 2-36. Los Angeles, South Bureau AVM Accuracies and Cost Benefits with Two Radio Channels

LR-SOUTH BUREAU	1						
	SYSTEM AC	CURACIES	(M) , VEH	IICLES AND	ESTIN	TED S1000	SAUINGS
		THEO		YSTEM	VEHIC	LES	ESTIMATED
CLASS I U	ILTIMATE	VEHICLES	: AC	CURACY	SAL	ED	5-YERP
TECHNIQUE A	CCURACY	SAVED	HAX	HIH	MAX	nin	SAVING
KEYBORRD	33	6	503	105	2.5	0.7	1369
STYLUS HRP	30	6	217	109	2.4	6.5	1275
2-ACCELERONETER		6	213	167	2 4	0.6	1215
LASER VELOCINTA		7	209	105	2.5	0-7	1259
ULTRASONIC VELC			214	เบย	2.4	0-6	1175
COMPASS/ODDINETE		Ž	210	106	2.5	0.7	130
COMPRSS/LRSER V		67 77 82	598	105	2-5	ű s	1388
CHPSS/U-SONIC U		ż	203	105	25	07	1300
ONEGR	1600	À	4006	3972	ōō	9-0	L L
LORAN	160	ž	409	398	9 6	ë ö	Ø
DECCR	500	1	+93	479	0 0	บัย	ย์
AM-STATIONS	200		491	477	0.0	øĕ	ū
DIFF- OMEGA	160	1 2 8	409	397	9 9	õõ	ย
DIFF. LOPAN	489	5	1134	1099	ě ě	8 8	ě
DIFF. AN-STA	250	ĭ	593	577	6 6	ĕĕ	ŏ
RELAY ONEGA	588	ô	18162	8380	6 6	ĕĕ	ĕ
RELAY LORAN	888	ě	2327	2252	6 6	00	ŏ
CLHS3 II	000	•	LUL.	- LOC	00	~ ~	•
BURIED RES LOC	DPS 16	7	205	103	2.5	0.9	13⊳0
REFLECTING SIGN		;	265	100	2.8	0 9	745
REFLECTING PORI			198	96	2 6	1 1	_555 <u>8</u>
X-BRND POST	12	÷	205	103	25	ė ė	916
RF, VHF POST	iš		205	103	2 S 2 S	ě ž	1250
LF POST	188		271	262	ōř	ĕá	-445
LICHT/I-R POST	ວິບ	Ğ	ē1î	100	25	Ŏ Ž	598
PURIED NACHETS	70	7	200	190	25	ĭ'n	1375
ULTRASONIC POST		-	209	105	25	ΰĕ	745
TRAFFIC CEUSOR	19	7	204	103	25	ğğ	1365
CLASS III	10	•	COT	100			1000
MAR-BAND FIT PHE	ASE 1000	0	2612	2528	0.0	0.0	Ð
HID-BAND FM PH			3088	3882	ĕĕ	อ อ	õ
PULSE T-0-ARRIV			192	186	16	13	245
HOISE CORRELATI			215	208	13	6 5	70
DIRECTION FINDS			1922	1868	6 6	8 6	8
CLHSS IV	.P 100	ø	1922	1000	6 6	0.0	
TRAFFIC LOOPS	10	7	23	23	3.4	6.5	3 635
WAYSIDE RADIO	100		202	209	13	1.6	-10±0
PHOTONI-R DETER			59	16	3.0		2775
			42	43	3.2	5 4 5 9	2150
ULTRASONIC DETI	こしょ どり		40	45	3-2	99	2130

Table 2-38. Los Angeles, West Bureau AVM Physical Parameters

HEER IS 133.9 SOURPE MILES.

EAST WEST DISTANCE IS 19 MILES.

HOPTH SOUTH DISTANCE IS 18 MILES.

TOTAL POAD MILEAGE IS 1677 MILES.

THE HUMBER OF INTERSECTIONS IS 3400.

THE ESTIMATED NUMBER OF POAD SEGMENTS IS 18300:

THEFE ARE 193 CARS IN THE FLEET.

AND THERE ARE O MOTOPCYCLES.

THE NUMBER OF MEHICLES ON EACH SHIFT IS:

FIRST SHIFT MAN. 59

FIRST SHIFT MIN. 33

SECOND SHIFT MAX- 105

SECOND SHIFT MIN- 94

THIPD SHIFT MAY- 117

THIPD SHIFT MIN- 95

THE NUMBER OF DISPATCHERS IS &

THE CITY WOULD REQUIRE 7 WIDE+BAND OF PULSE ANTENNA SITES AND 44 MAPPON BAND
FM ANTENNA SITES FOR 7 AND I MILE FADIUS COVEFAGE.

Table 2-37. Los Angeles, South Bureau AVM Accuracies and Cost Benefits with Three Radio Channels

Li+-COUTH BUPER	J						
211 000111 201 211	SASTER R	CCUPACIE	S (1) • UEH	ICLES AND	ESTIMA	TED \$1000	SRUINGS
		THEO		YSTEH	VEHIC		ESTIMATED
CLHSS I	ULTIMATE	VEHICLE		CUPACY	SAV		5-YERP
	ACCUPACY	SAVED	Yest	HIH	MAX	HIN	SHILDHE
I E 130APD	33	01.022	139	94	2 6	2 9	1668
STYLUS MAP	38	5	144	82			1500
2-ACCEL ERONETE		ě	142	98	26	žė	1515
I HSFR UFI UCINTI		7	139	71	27 26 29	27 28 29	1550
LELTRHSONIC VELO			1-2	107	2.4	2.8	1475
CORPASS/000RETE		5 7 7	139	71	9	2 8 2 9 2 9	lo-d
COMPASS/LASER	vei 15	÷	138	71	2 4	2 9	1509
CHPSSZU-SONIC (÷	139	71	2 9	29	1688
ONEGA	1600	်	7017	3906	ĕĕ	ōé	1000
LOPAN	160	ě	402	391	9 9	8 6	ŭ
DECCA	200	i	484	471	6 6	0 0	ŭ
ALI-CTATIONS	200	i	482	469	8 8	ย้อ	ű
DIFF- UNEGA	is8	5	-92	391	0.0	00	ŭ
DIFF LORAN	0u	ō	1113	1079	0 0	8 8	ŭ
DIFF BU-STA	250	1	583	567	0 0	8 6	ŏ
RELAY ONEGA	200 200	â	12007	5922	0.0	0 0	บั
PELA LOPAN	200	8	2281	2208	9 9	ยอ	Ğ
CLASS II	200		5501	2500		0 0	·
		-	136	70	29	3 0	1735
	DPS 10 NS 10	?	136	70 70	29		1120
REFLECTING SIG		7	131	68	29	3 U	-17-6
REFLECTING POR		7	131	78	2 9		
K-BRND POST	12 15	ź	136	70 70	2.9 2.9		1205
HF, WHF POST	100		266		5 7	30	<u>1</u> 625 7370
LF POST		7		257	9.3		893
LIGHT/I-P POST	30	6	140 133	82 68	2 7 2 9 2 9	3 1	
BURIED MACHETS	т 20	5	133	71	29	3 1 2 9	1025 10-5
ULTRASONIC POS		6 7 7	139	70			
TPAFFIC SENSOP	10	ſ	135	76	5 9	30	1740
CLASS III		_		0.470			_
HAD BEE-AUT		0	2561 3006	2479 2944	0 0	00	9
HID-38HD FIT PH		6			ត្រ	មេខ	8
PULSE T-0-APPI		7	192	18e 208	16	13	245
HOICE COPPELAT		4	215	1824	13	9 6	7 <u>4</u>
DIRECTION FIND	EP 709	0	1884	1824	0 0	9 9	0
CLASC IV		_				_	
TPAFFIC LOOPS	10	7	53	53	3 4	5 5	_0635
DICAR SCIEVAN	100	7	202	209	1.3	10	⁻ 1050
FHOTO I-R DETE		6	59	61	30	5-4	2775
ULTPROONIC BET	ECT 20	_	42	43	3 2	5 9	3150

Table 2-39. Los Angeles, West Bureau AVM Systems Cost Analyses

LA-HEST BUREAU								
CLASS I							TOTALS	:
		TROUS	SANDS O	F\$				
TECHNIQUE	CARS	SITES	BRSE	INST	0-11	VOL	SYNC	RANDOM
KEYBOARD	25	0	78	17	193	252	222	555
STYLUS MAP	467	ē	78	17	105	695	666	666
2-ACCELEROMETERS	293	ĕ	111	29	119	580	616	607
LASER VELOCIMTR	326	ă	116	35	128	634	679	661
ULTRASONIC VELO	233	ĕ	116	29	128	534	578	561
COMPASS/OBOMETER	269	ĕ	116	14	108	535	579	560
COMPRSS/LASEP VEL	349	ĕ	116	38	117	639	683	664
CMPSS/U-SONIC VEL	291	ŏ	110	29	117	575	619	600
OMEGA	495	ĕ	98	25	11.	760	809	797
LORAN	513	Ö	98	25	114	779	827	819
DECCA	211	ő	98	21	117	473	521	512
RH-STATIONS	74	ĕ	98	20	111	331	366	357
DIFF OREGR	495	ő	98	25	114	760	795	797
DIFF- LORAN	513	ĕ	98	25	114	779	813	319
DIFF. AM-STA-	86	ő	98	20	111	343	378	396
RELAY OMEGA	97	0	98	25	119	567	333	411
RELAY LORRN	106	ă	98	25	119	376	347	420
CLASS II	100		70	23	117	316	341	460
BURIED RES LOOPS	26	6768	78	11524	103	18528	18545	18499
REFLECTING SIGNS	, 88	2068	78	1156	505	3721	3738	3691
				1375	1231	2962	2979	2932
REFLECTING ROAD	. 53	226	78					
X-BAND POST	32	5165	78	441	243	2984 631	3001	2955 602
HF, UHF POST	29	235	78	124	138		649	
LF POST	28	1175	78	442	244	1995	2013	1966
LIGHT/I-R POST	27	940	78	541	340	1955	1972	1925
BURIED HAGNETS	19	677	78	1372	100	2275	5505	2245
ULTRASONIC POST	25	1598	78	1624	293	3547	3664	3617
TRAFFIC SENSOR	27	1786	78	770	192	2791	2889	2762
CLRSS III								
NAR-BAND FM PHASE	42	208	152	38	127	565	610	615
HID-BAND FM PHASE	532	81	154	37	209	1012	1060	1062
PULSE T-0-ARRIVAL	472	616	343	148	202	1789	1825	1330
NOISE CORRELATION	144	29	343	33	182	759	775	786
DIRECTION FINDER	7	89	91	18	154	378	348	348
CLASS IV								
TRRFFIC LOOPS	15	15470	78	2572	328	18462	18462	18462
HAYSIDE RADIO	14	13709	78	2142	572	16514	16514	16514
PHOTO I-R DEJECT	55	9114	78	1686	338	10636	10636	10636
ULTRASONIC DETECT	23	9208	78	1685	338	10731	10731	10731

Table 2-40. Los Angeles, West Bureau AVM Polling Cycle Times

CICLE TINE IN SECONDS TO POLE MAK AND MIN WILTS DEPLOYED

Table 2-42. Los Angeles, West Bureau
AVM Accuracies and Cost Benefits
with Two Radio Channels

CLASS I	TOTAL		SIMPLE			REDUMDANT	
TECHNIOUE PEYBORRO	FLEET Fo PI	S.NC 12:56	13 18	PAND 25 51	SYNC 10 42	1/0L 14 bb	CP 61
		4 19	4 39	8 59	+ 47	+ 09	9.20
STYLUS MAP	20 50	13 19	13 73	25 05	14 51	15 76	28 70
2-ACCELEPOMETERS	28 61	4 37 12 79	+ 58 13 +2	8 68 25 74	4 84 13 38	5 25 15 13	9 57 28 08
E PROCEEDING TOTAL	60 61	7 20	70 45	3 58	4 53	5 6-	935
LHCER VELOCINTR	₹6 25	12 95	13 57	25 90	14 20	15 4-	20 34
ULTPRSONIC VELO	20 ⊌1	12 79	7 52 13 42	8 63 25 7±	÷ 73 13 38	5 15 15 13	28 U4
DETPRISANTE VELO	20 61	2b	13 42 7 47	8 58	4 63	5 04	435
COMPASS/ODOMETEP	20 01	12 79	13 42	25 74	13 23	15 13	ക്ര വ
		- 20	+ 47	8 28	- 63	5 6-	a 36
CÓMPASS/LASEP VEL	20 91	12 79 5 46	13 +2 + 47	25 7+ 8 58	10 38	15 13 5 6-	28 HB
CHPSS/U-CORIC HEL	20 H1	12 79	13 42	25 7+	13 86	15 13	28 6
	40	4 ∠6	4 47	8 58	4 63	5 04	+ 3c
OFFICE	21 59	13 81	1- 43	26 75	15 91	17 16	30 11
LUFAN .	22 20	-, 60 14 20	~ 81 1~ 02	3 92 27 14	5 3u 15 59	5 72 9-	18 85 30 69
LOCALITY ,	42 20	7 73	7 94	9 65	5 50	5 %	10 30
DECCA	21 96	1 114	16	26 99	16 🕬	17 63	J0 5.
		⊸ 63	4 89	-9⊌0:	5 40	\$ 88	19 19
AM-STATIONS	19 76	- 21 12 6-	13 26 4 +2	25 58 8 53	10 57	14 32 94	27 77 9 26
DIFF ONEGA	21 59	13 61	17 43	26 75	15 4	94 17 16	20 11
		- 4 ⊌ 3	4 81	0.45	5 39	5 72	10 C+
DIFF LORAN	ಕರ 20	1⊷ 20	1- 32	27 14	10 59	17 94	30 89
DIFF RII-STH	st +7	70 13 73	1+ 35) 95 25 68	5 % 15 %	5 % 17 00	10 00 24 45
216 td-219	E1 41	13 73 + 58	7 78	8 89	5 55	5 67	4.44
PELAY ONEGA	1848 00	1131 70	1132 32	1194 65	2351 70	2332 45	23 ₆ 5 ^Q u
00 00 1000	~	393 ∌0	39- 11	393 22	_03 an	78 32	788 63
RELAY LORAN	PP 00	59:7⊎ 16:40	51 32 17 11	63 65 21 22	39 7⊎ 2° 30	ବଧ ସ ର ଅଧ ଅଧ	193 96 5~ +3
CLASS II		16 -0	1, 11	C1 22	6 - 30	39 30	34 FL
BUP IED PES LOOPS	20 13	12 87	13 ⊶9	25 82	1., 19.,	15 29	38 S+
		4 24	→ 59	£ 61	7 68	.5 10	9 +1
PEFLECTING SIGNS	⊲⊎ 13	12 87 4 29	13 49 4 5u	25 32 3 61	14 0+ + 68	15 29 5 10	3 -1 53 54
REFLECTING PORD	∂ 0 13	12 87	13 -9	25 32	14 64	15 29	20 24
		+ 29	უ 5⊍	8 51	7 58	5 18	÷ +1
V-38HD POST	20 01	15 🚵	13 42	25 7	13 88	15 13	58 Ř9
HE WHE POST	19.76	- 20 12 64	- 47 10 26	8 58 25 58	7 63 13 57	5 84 14 02	27 77 77 ~ 29
1051	1-10	÷ 21	7 42	် ဒီဒိ	4 52	4 44	م عو
LF POST	20 B1	12 79	13 42	25 74	13 80	15 13	يې چې
LIGHT/I-R POST	20 01	÷ 26	. 5 47	3 53	- 63 13 Es	5 94 15 13	9 35
LIGHTY I-R POST	20 01	12 79 4 26	13 42	25 74 3 53	- 63	50-	ବ ୨୭
BURIED HACHETS	å⊎ 13	12 97	13 -4	ટર્ક કરે	I 04	15 29	28 S.
		+ 53	უ 50	C 51	7 68	5 10	→ 1
ULTPASONIC POST	50 01	12 79 - 26	15 -2	25 7+ 3 53	13 88	15 13 5 85	28 09 4 3a
TRAFFIC SENSOR	20 01	12 79	13 -2	25 7-	13 88	5 94 15 13	28 08
		7 66	7 4	3 53	~ 63	5 8.	9 36

LA-HEST BUREAU	ı						
	SYSTEM A					ATED \$1900	
		THEO		SYSTEM	VEHI		ESTIMATED
	ULTIMATE	VERICL		CURRCY		UED .	5-Year
	ACCURACY	SAVED	MAX	HIN	HAX	MIM	SAVING
KEYBOARD	33		236	94	2-2	2.5	1369
STYLUS MAP	39		244	80	2.3	5.3	1280
2-ACCELEROHETE			240	98	2-2	2-4	1285
LASER VELOCIHT			236	77	2-3	2.5	1235
ULTRASONIC VEL			241	108	5-5	2-4	-1160
COMPASS/ODONET			236	77	2 3	2-5	1335
COMPASS/LASER			234	??	2.3	26	1365
CHPSS/U-SONIC			235	. 77	2.3	2-6	1365
OHECA	1668		4196	3922	0-0	0-0	0
LORAN	160	4	411	393	0.9	0-8	_105
DECCA AM-STATIONS	200	3	495	473	05	0-0	T195
	200	3	493	471	95	00	7180
DIFF. OHEGA	160	4	411	392	8 9	9 9	105
DIFF. LORAN	400	1	1149	1084	9 9	98	_ 0
DIFF. AM-STA	250	2	596	569	01	9.9	~ 489
REILRY ONECR	598	9	20449	6450	99	9 9	9
RELAY LORAN	869	9	2340	2218	00	00	9
CLRSS II		_		_			
	OPS 18	8	233	<u>7</u> 0	2-3	26	1435
REFLECTING SIG		8	233	<u>7</u> 6	2.3	26	_ 490
REFLECTING POR		8	224	? .	2-3	2-8	T4955
X-BAND POST	12	8	233	76	2+3	26 26 17	735
HE, UHE POST	15	8	231	76	2.3	26	1260
LF POST	100	6	273	259	1.5	17	55
LICHT/I-R POST	36	7	239	83	2.3	25	175
BURIED MAGNETS	- 4	8	226	75	5-3	2.8	1669
ULTRASONIC POS		8	236	77	2-3	2.5	-10
TRAFFIC SENSOR	10	8	231	7ь	2.3	2-6	1449
CLRSS III NAR-BAND FN PH		_		0404			_
HID-BAND FM PH		8	2627	2491	6-6	0.0	0
PULSE T-0-ARRIV		ĕ	3103	2958	0.0	0-0	9
HOISE CORRELAT		6	193	123	1.8	3-5	1615
DIRECTION FIND		6	216	205	1.7	3-0	139
CLESS IV	ER (98	В	1933	1832	0.0	0.0	Ð
TRAFFIC LOOPS	10	8		24			
WAYSIDE RADIO	100	6	22		5-6	7-6	4060
PHOTONI-R DETER		7	291	215	1.7	3-4	_310
ULTRASONIC DETE		á	59	65	2 4	<u>5.7</u>	3335
DETENDONTE DETE	26	8	42	44	2-5	7-1	3635

Table 2-41. Los Angeles, West Bureau AVM Accuracies and Cost Benefits with One Radio Channel

Table 2-43. Los Angeles, West Bureau AVM Accuracies and Cost Benefits with Three Radio Channels

LH-HEST BURERU							
	SYSTEM A	CCURACIES	ON YUE	HICLES AND	ESTIM	ATEB S1000	SAUINGS
		THEO		SYSTEM	UEHI		EST IMPTED
CLASS I	ULTINATÉ	UEHICLES		CCURACY		UED	5-YERP
TECHNIQUE	ACCURACY	SAVED	MAX	MIN	MAX	HIN	SAVING
YEYBOARD	33	7	459	157	2 0	9 9	935
STYLUS HAP	30	7	475	163	1.9	ย่อ	900
2-RCCELEROMETE		÷	467	160	1.9	o o	830
LECER VELOCIMI		7 3	459	157	20	88	858
ULTRASONIC VEL		7	469	161	19	99	-85 -85
COMPRSS/ODOMETI		÷	460	157	20	0-B	
COMPASS/LASER		\$	455	156	20		960
CHPSS/U-SONIC		š	458	156	29	00	915
OIEGA	1699	ě	4227	4037	6 0	9 8	915
LORAN	1680	4	534	404	08	9 9	. 6
DECCA	500	3	510			A 8	
Att-STATIONS	200	3	208	487	9 5	ษย	195
DIFF OMEGA				485	0.5	6 9	T1 30
	160	4	521	404	0-3	6 6	36
DIFF- LORAN	400	1	1177	1119	0 0	00	Ų
DIFF AM-STA	250	2	623	586	9 9	0.0	9
RELAY ONEGA	500		40187	13565	00	00	Ō
PELAY LOPAN	899	ø	2164	229+	00	00	G
CLASS II		_					
SUPIED RES- LOC		ş	+54	155	5.0	១ប	985
PEFLECTING SIGN		8	454	155		v 99	_ 46
REFLECTING ROAD		8 8 6	438	149	20	99	T465\$
(-LAND POST	12	ą	454	155	20	u O	285
HF; UHF POST	15	8	452	154		0 0	-1 1 0-
LF POST	100	6	481	267	15	0.0	⁻ 95
LICHT/I-P POST	39	7	465	159	20	00	_500
BUPIED MAGNETS	4	8	442	151	2 0	90	1666
ULTRASONIC POST		8	460	157	20	ÐИ	35
TRAFFIC SENSOR	10	8	451	154	2.0	0 0	998
CLASS III							
NRP-BRND FM PAR	SE 1889	9	2717	2576	9 9	8 0	Ð
MID-BAND FM PHA		0	3194	3051	00	ē.ē	ā
PULSE T-0-ARRIV	PL 168	6	193	183	18	3 5	1615
NOISE CORRELATI	ON 100	6	216	205	1.7	3.0	1340
DIRECTION FINDE		ē	1999	1895	9 9	9 0	1070
CLHSS IV		-	. •		- •	~ 0	
TRRFFIC LOOPS	10	8	22	24	26	76	4060
WAYSIDE RADIO	188	6	201	aia	1 7	3 4	7310
PHOTONI-R DETEC	T 30	ž	59	62	2 4	6.7	3335
ULTRASONIC DETE	ĊT ŽÕ	ė	42	-4	23	7 1	3635

LA-VEST BUREAU											
	SYSTEM A	CCURACIES			ESTIM	RTED \$1000	SAVINGS				
		THEO		System	VEHI	CLES	ESTIMATED				
CLASS I	ULTIMATE	VEHICLES		CCURACY		JED .	5-YEAR				
TECHNIQUE	ACCURACY	SAVED	MAX	MIH	MAX	HIH	SAVING				
KEYBOARD	33	7	157	92	2+3	4 4	2785				
.STYLUS HAP	33	7	163	81	2.3	43	2768				
2-ACCELEROHETI	RS 34	7	160	96	2.2	43	2638				
LASER VELOCIM		8	157	54	2.4	4-4	2658				
ULTRASONIC VEL	_0 40	7	161	106	22	4-3	2585				
COMPRSS/ODONET	TER 28	8	157	51	2 4	4.4	2760				
COMPRSS/LRSER	VEL 15	8	156	54	2 4	4.4	2715				
CHPSS/U-SONIC	VEL 17	8	156	54	24	4 4	2715				
OHEGR	1600	9	4037	3856	0 0	98	9				
LORAN	160	4	404	336	09	9 9	105				
DECCA	200	3	487	465	06	00	⁻ 120				
AM-STATIONS	200	3	485	463	96	១ប	⁻ 105				
DIFF ONEGA	158	4	404	386	09	0 0	195				
DIFF. LORAN	400	1	1119	1063	0.0	8 H	0				
DIFF• AM-STA	258	2	586	560	0-1	0 0	~+80				
relay onega	509	0 1	13565	4437	0.0	0.0	9				
RELAY LORAN	866	9	2294	2175	00	0 9	Û				
CLASS II											
BURIED RES LO	IOPS 10	8	155	53	2 4	45	2960				
REFLECTING SIG		8	155	53	24	4-5	1915				
REFLECTING ROP		3	149	52	2-4	46	72705				
X-BAND POST	12	8	155	53	24	45	2160				
HF; VHF POST	15	8 6 7	154	53	24	45	2685				
LF POST	169	6	267	254	1 S	18	100				
LIGHT/I-R POST		7	159	80	23	4 4	1666				
BURIED MAGNETS		8	151	52	2.4	46	2950				
ULTRASONIC POS		8	157	51	2.4	4 4	1835				
TRRFFIC SENSOR	10	8	154	53	2 4	45	206 5				
CLASS III											
NAR-BAND FM PH			2576	2442	១១	00	9				
HID-BAND FH PH			3951	2988	00	00	ø				
Pulse T-0-ARRI		6	193	183	18	35	1615				
NOISE CORRELAT		6	216	205	1.7	3.0	1340				
DIRECTION FIND	ER 709	0	1895	1797	0-0	0.0	9				
CLASS IV		_					_				
TRAFFIC LOOPS	10	8	22	24	2.6	7.6	4058				
MAYSIDE RADIO	100	6	201	212	17	3 4	7010				
PHOTONI-R DETE		7	59	62	2 4	6 7	3335				
ULTRASONIC DET	ECT 20	ਤ	42	44	25	7 1	3635				

Table 2-44. Los Angeles, Valley Bureau AVM Physical Parameters

OFFA IS 215.3 SOUAPE MILES.

EAST NEST DISTANCE IS AS MILES.

WORTH BOUTH DISTANCE IS 13.5 MILES.

TOTAL POAD MILEAGE 13 2661 MILES.

THE NUMBER OF INTERSECTIONS IS 15000

THE ESTIMATED NUMBER OF POAD SEGMENTS IS 20000:

THERE ARE 199 CAPS IN THE FLEET.

AND THEFE ARE O MOTOPCYCLES.

THE NUMBER OF VEHICLES ON EACH SHIFT IS.

FIRST SHIFT MA., 72

FIRST SHIFT MIN. 61

SECOND SHIFT MAX. 102

SECOND SHIFT MIN. 96

THIFD SHIFT MAK. 121

THIRD SHIFT MIN. 96

THE NUMBER OF DISPATCHERS IS 2

THE CITY WOULD REQUIRE 18 WIDE+BAND OR
PULSE ANTENNA SITES AND 45 NAFPOW BAND
FM ANTENNA CITES FOR 7 AND 3 MILE PADIUS COVERAGE.

Table 2-45. Los Angeles, Valley Bureau AVM Systems Cost Analyses

CH-VHLLEY DUCERU									
CLHUU I							TUTHE3	;	
			HNOS U						
LECHNIQUE	LHFS	SITES	BRSE	INST	0-#	VOL	STRC	THICKING	
FC"(EUHPD	L IS	U	زان	17	193	25⊳	.45	2_5	
STYLUS NAP	4,2	υ	لاب	17	165	71++	58⊶	₽ 0~	
e-Hoceleponlices	"≥ાઉ	9	116	5.0	11 -	397	53⊶	⊳2 5	
LH EF PELOCIPITE	357	Ú	114	36	129	+5ก	r 37	673	
ULTHISUNIC MELO	2-1	ព	113	59	129	547	584	575	
CUMPAS\$/ODOMETEP	277	IJ	119	1	160	5-8	593	5~	
CUMPASS/ERSEF MEL	351	0	119	34	110	6 56	761	603	
CHPOS/U-SORIU MEL	200	U	111	29	110	597	-33	613	
መጀርብ	511	Ы	103	26	115	730	330	319	
F054H	530	0	168	26	115	739	8-9	041	
DELEH	215	ы	109	22	115	434	53⊶	524	
HII-STATIONS	76	0	100	20	112	337	373	+ګ	
DIFF UNCA	511	U	108	26	115	~∪⊍	-16	819	
DIFF LUPAN	530	ย	100	26	115	~0.	J35	241	
SIFF AM⊶STA	38	ø	108	28	112	Q9	332	~U4	
PELHY UNEGA	100	b	108	26	119	37⊶	344	-1 ∌	
PELAY LURAH	150	0	160	26	119	533	353	429	
CLHSS II									
SIPIED REC LUOPS	27	1 บ 3 บ บ	80	18379	163	_4419	54436	2,4308	
FEFLECTING SIGHS	-1	3348	69	1809	404	5744	5762	5710	
FEFLECTING PORD	24	366	80	2162	1903	-579	⊶59ა	4548	
<-SAND POST	55	3450	88	693	327	4612	~ 530	4592	
HF, UHF POST	زای	375	និប	167	159	~5°	3*7	J29	
LF PÓŞT	_3	1875	80	⊳9 -4	328	3435	3850	2005	
LIGHT/I-P POST	58	1500	00	850	~89	2967	2985	2937	
BUFIED MAGNETS	19	1089	99	2179	100	3488	350-ა	3√58	
ULTPRSONIC POST	26	2550	611	2577	495	5667	5665	5637	
TRAFFIC SENSOR	28	2850	80	1218	102	-388	4026	4277	
CLASS III									
NAP-BAND FIT PHASE	- 3	212	157	39	128	577	524	629	
NID-BAND FN PHASE	556	115	164	+3	510	1031	1100	1133	
PULSE T-O-APRIVAL	-3 ~	630	3-9	151	203	1819	1266	1871	
KOISE CORRELATION	149	29	349	3⊶	182	771	738	793	
DIPECTION FINDER	7	60	40	18	15+	378	355	355	
CLASS IV									
TRAFFIC LOOPS 4	ĺъ	28633	50	4091	462	25281	25281	25281	
MAYSIDE RADIO	15	18176	UU	3-,⊌8	852	22529	22529	22529	
FHOTONI-R DETECT	22	11928	ÇU	1"19	+78	1-225	14225	1+225	
ULTPASONIC DETECT	24	12078	. O	1718	478	1-076	14376	14376	

Table 2-46. Los Angeles, Valley Bureau AVM Polling Cycle Times

CYCLE TIME IN SECONDS TO POLL MAN AND HIM UNITS DEPLOYED

CLASS I	TOTAL		SIMPLE			PEDUNDANT	
TECHNIQUE	FLEET	SYNC	UOL	CHRS	SYNC	1JGL	CHAS
YEYBOARD	28 29	18 99	13 53	26 38	13 88	15 17	28 56
		e 55	6 8 7	13 39	7-00	7 65	1
STYLUS HAP	21 17	13 55	14 20	26 Q.	15 69	16 29	29 69
		13 53	7 16	13 58	7 5∈	8 22	1 97
2-HCCELEPONETEPS	20 66	13 23	13 88	50 65	14 36	15 65	29 0-
	20.00	.6 b?	7-00	13 -2	7 24	7 89	17 57
LASEP VELOCINTR	28 92	13 39	1- 04	26 78	14 68	15 97	29 36
		ь 75	7 08	13 59	.7 ⊸0	S 05	14 20
ULTPHSONIC VELO	50 66	15 53	13 38	26 62	1-30	15 65	29 64
COMPACE (COOMETER	20 66	6 62 13 23	7 08 13 88	13 42	.7 2-	7 89	1- 6-
COMPASS/GOOMETER	20 00	6 67		56 05	1+ 35 7 24	15 65	54.61
COMPASS/LASER VEL	20.5	10 23		10 +2 26 bc		7 39	14 64
COMPROSE LINSER VEL	20 66		13 J8		[4 35 7 2→	15 65 - 89	50 01
CLIPSS/U-SONIC VEL	20 66		13 88				1- 6-7
CLA-22-0-SOUTE VET	20 66	13 23		26 62 13 42	14 35	15 65	5-0 6-4
ON NEGA	<i>ee</i> 39	5 67 1→ 28	7 00 14 92	27 67	7 24	17 75	14 67
O. EGN	22 30	1 - 28	7 52	10 95	16 46 8 30	17 75	31 1-
LOPHIC	55 93	14 68	15 33	23 97		8 95	15 70 31•°⊶
COMPA	ee 93	14 66				18 55 9 35	
DECCA				1- 15	ુડ 70		le 10
JEUUH	8¢ \$5	14 52 32	15 17 7 65	27 41	16 J	18 23	31 62
HIT-STATIONS	20 41	13 97		1- 07	8 54	9,19	15 9-
MI-SIMI (OIS	20 41		13 71	26 46	14 04	15 33	28 72
DIFF ONEGH	22 00	- 59 14 26	6 91 14 92	15 34 27 67	-	73	14 48
TEL OLICON	CE 30	7 20	14 92 7 52		15 46	17 75 6 95	31 17
DIFF LOPHH	22 93	14 68	15 33		8 3u 17 2b		15 70
Ditt Found	EE 93	14 65	15 33 73			14 55	31 %
DIFF AN-STA	ee 18	14 20	14 34	1+ 15 27 59	8 70 16 29	935 1754	16 10 39 98
DILL MI-SIL	22 10	7 16	7 48	13 91	8 55		39 93 15 t2
RELAN CHEGA	1988 98	1022 18	1222 75	1235 49	2432-10	2433 39	2446 78
KEETH ONEON	1-05 50	ыь 10 ы	616 73	-55 85	1226 10	1226 75	1203 50
RELAY LURAN	90 دی	52 43	53 08	65 B2	92 77	24 00	107 45
PECEN CONTAC	0. 0	26 43	26 76	33 18	76 77	7 42	54 17
CLASS II		60 75	20 10	55 15	40 1		34 17
CUPIED PES LOOPS	20 79	13 31	13 96	26 70	14 52	15 81	29.20
	'	6 71	7 ก4	13 76	32	7 97	1
PEFLECTING SIGHS	20 79	13 31	13 %	26 70	14 52	15 Éi	ร์จี รีอั
TENTEOTING DIGITS		6 71	7 0	13 76	7 52	7 97	1- 70
REFLECTING ROAD	29 79	13 31	13 00	26 70	14 52	15 81	29 20
		F 71	7 04	15 46	7 32	7 97	1- 72
N-3AND POST	20 66	10 53	13 38	26 62	1+ 36	15 65	29 04
		b 67	7 00	13 42	7 24	7 89	1- 6-
HF, UHF POST	20 41	13 07	13 71	26 4b	1- 94	15 33	28 72
		u 59	n 91	10 34	7 63	15 33 7 73	14 73
LF POST	20 bb	13 23	13 88	SP 65	1+ 05	15 65	29 0-
		6 67	7 99	13 +2	7 24	7 39	1- 6-
LICHT/I-R POST	20 66	13 23	13 88	20 02	1-36	15 5	29 64
		5 bi	7 90	10 42	7 2-	- 89	14 64
STBROOM CBIRUE	20 79	13 01	13 96	26 70	14 52	15 21	29 20
		6 71	7 04	13 -6	- 32	7 97	1-, 72
ULTRHSONIC POST	20 6b	13 23	13 38	26 62	I- Co	15 65	29 64
		b b7	7 60	13 42	7 24	7 84	1- 5-
TRAFFIC SENSOP	20 66	13 23	13 88	26 b2	1 ≒ 35	15 ⇔5	इव ६३
1		o o7	7 60	13 42	~ 2 <u>~</u>	~ 69	17 57

Table 2-47. Los Angeles, Valley Bureau AVM Accuracies and Cost Benefits with One Radio Channel

LH-VHLLE, DUFE							
	CHOTEN A			HICLES HID			CHUINGS
		THEO		SYSTEM	VEHIC		ESTIMATED
CLHSS I	ULTIMATE	VEHICLES	3 A	CCURACY	SAL	JED .	5∸7EHR
TECHRIOUE	ACCURRCY	SAVED	DA 5	11111	ለዘለ	HIN	SHUIRG
LETIOAFD		3	47	240	2.5	0.6	1360
STILUC HAP	C9	8:	+9⊎	255	2.4	0.6	1275
2-ACCELEPONETE	RS 3+	8	-82	250	25	0.6	1200
LHSEF PELOCINI	P 10	8	-74	246	2 5 2 5	អំប៉	1200
ULTPHOUNTE MEL	.0 +0	8	** ***	251	2 +	иO	1155
CUMPASS/000MET	EP 20	8	- 75	246	2 7 2 5 2 5	θи	1535
LUITPHSS/LASEP	HEL 15	ē	471	244	25	Ōύ	1285
CHPSS /U-SONIC	UEL 17	8	473	245	2.5	บัติ	1285
ONEGA	1600	Ö	4233	+113	00	อิห	ā
LUPHH	169	5	551	412	13	ยิบ	- 63
DECCA	260	3	549	496	13 07	ยิย	750
BH1-CTHTIUNS	200	5	503	494	6.7	ยย	"35
DIFF ONEGR	160	5	533	-11	īз	Ĉи	-60
DIFF LOPAN	-40	*********	1179	1142	0 0	Ôΰ	ñ
DIFF AN-STA	250	**	624	597	0.0	ห่ง	и
PELRY OHEGR	วีบย	1	+1473	21017	0.0	เมีย	IJ
PELAY LORAN	366	ย	2163	2345	0 0	0.0	ز
CLASS II							
BURIED PES LO	10PS 1U	ઠ	468	5+3	25	0.0	1360
PEFLECTING SIG	#IS 10	8	468	243	25	υO	15
PEFLECTING POA		8	÷52	234	5 b	0.0	7 7565
K-CHRD POST	10	8	+63	2-3	25	0 ប	c=0
HF, UHF FOST	15	3	466	241	. 5	0.0	16.0
LF POST	100	6	497	270	25	0.6	.5
LICHT/I-R POST	. 50	8	+30	249	2 5	មេខ	-525
SURIED MAGNETS		8 3 3	456	506	26	υü	1456
ULTRASUNIC POS		8	475	246	25	មម	7150
TRAFFIC CENSOR	19	8	460	241	25	6 Q	165
CLASS III							
MHP-ERND FM PH	ASE 1900	છ	5.55	2632	ยย	ยย	ម
WID-CAND FIT PH		e.	3199	3108	ΘU	ยย	Ü
PULSE T-0-HFPI		6	194	127	5 4	4 6	೭⊷೦೮
NUISE CORFELAT		•	217	584	27	≠ 1	2165
DIPECTION FIND	EP 700	G.	\$002	1937	0.0	9 Ø	Q.
CLASS IV							
TRAFFIC LOOPS	16	a	55	23	4 1	8.0	პი 90
HAYCIDE RADIO	100	ь	200	267	5.8	+ 5	* ೨೪೮
PHOTONI-R DETE		3	5ა	60	3 ८	7.5	3085
ULTRASONIC DET	ECT 20	ರ	42	+3	۹ر	76	10د.

Table 2-48. Los Angeles, Valley Bureau AVM Accuracies and Cost Benefits with Two Radio Channels

Table 2-49. Los Angeles, Valley Bureau AVM Accuracies and Cost Benefits with Three Radio Channels

LM-UMLLEN SUPERU

5/STEM ACCUPACIES 40) (VEHICLES AND ESTIMATED \$1000 SAVINGS
THEO SYSTEM VEHICLES ESTIMATED

	JISTEN RO					ATED \$1000	
		THEO		System	VEHIO		ESTIMATED
CLASS I	ULTIMATE	VEHICLES		CCURRCY	Sa	UED	5-Year
TECHNIQUE	RCCURRCY	SRUED	MAX	11 1 11	MAX	MIM	Saving
KE (BORRD	33	8	24-	122	3	3ъ	2105
STYLUC NRP	30	3	253	126	33	3 4	2025
2-HCCELERO(IETE		8	2+8	124	3 3	35	5000
LASER VELOCIA		8	244	155	3 4	3 ь	2455
ULTPASONIC VEL	.0 +0	88888888	2-9	125	3343777	3 4 3 5 3 6 3.5	1900
COMPASS/ODOMET		3	244	122	Э ч	3 ь	3160
COMPASS/LASER		3	- 12	121	3 +	∪ b	2110
CHPSS/U-SONIC		3	243	121		3 6	2116
OMEGA	1600	U	+112	3996	0 9	00	U
LORAN	100	3	412	~36	1 4	03	475
DECCA	260	5	+96	482	08	១ ០	25
AN-STATIONS	200	មកម្	~9 4	+3⊍	បខ	9 0	- •0
DIFF ONECA	169	5	-11	- -0⊍	1 +	03	475
DIFF LORRH	-80	1	1142	110ь	υG	00	0
DIFF- AN-STA	258	-	597	SOu	0 1	0 ២	T+ 35
RELAY UMEGA	500	1 :	21141	10516	ยิย	00	Ų
RELHY LUPHH	300	Ð	23-4	2267	9 9	9.9	0
CLASS II							
	OPS 10	3	241	120	3 4	3 7 2 7	23-0
PEFLECTING SIG		8	241	140	3 +	٠.7	755
PEFLECTING ROP		9 9 9 9 9 9	535	116	3 ↔	3 6 3 7 3 7	~6665
A-BHHD POST	15-	8	2+1	129	3 4	3 7	11-8
HF, UHF POST	15-		239	120	34	37	1930
LF PUST	1011	ь	5.3	264	2 4	3 9	616
LICHT / I-R POST		ខេខខេច	247	124	********	3 8 3 5 3 8	225
CUPIED NAGNETS		8	234	117	3 4	38	2350
ULTRASONIC POS		8	2-4	155	3 4	3.6	675
TRAFFIC SENSOR	10	8	239	119	3 🛥	37	≎255
CLASS III							
NAP-BAND FILLPH		0	2631	2545	υO	មម	6
MID-BAND FM PH		9	3107	3024	0.0	00	9
PULSE T-0-APRI		5	194	187	2-9	~ b	2+35
NOISE COPPELAT		ь	217	289	£+7	4 1	2165
DIRECTION FIND	EP 703	9	1936	1870	00	0 0	U
CLASS IV		_					
TRAFFIC LOOPS	10	8	22	23	4 1	30	<u>3</u> 698
MAYSIDE PADIO	100	6	566	207	28	<u>4.5</u>	-505
PROTONI-R DETE		8	59	60	38	70	3085
ULTRASONIC DET	ECT 20	8	42	43	39	76	3318

LH-MALLEY	CHIPEWIL							
TIL MALLE		STEM OF	MIDDOCTEC	1M) - DE	HICLES AND	FSTIME	TED 11000	SHITNES
	91	DIEN EN	THEO		SYSTEM	UEHIC		ESTINATED
CLASS I	th T	IMATE	VEHICLES		CCURRCY	SAL		5-1ERP
TECHNIC		JRACY	SAVED	MAX	HIE	1182	HIN	SHUING
VEV30ARD	E HOU				45	3 6		33.5
STYLUS II	\n.	33 30	8	162	33	36	52 51	3305 3300
2-HCCELER			ž	168 165	93	3.5	5 7	2305
LACER VEL		34	ä			3.3	5 2 5 2	3255
		15	3 3 8	162	30			
ULTPASON1		₩	8	166	108	35	§ 1	2180
COMPASS/0		50	9	163	30	3 7 3 7	5 2	55.50
CUMPRISS/L		15	4	161	39	3:7	52	うci⊓
CMPSS/U-9	SURFIC VEL	17	3	162	- 39	37	5 2	೦.1ಆ
OHEGA		1699	9	-0-3	3929	9.9		U
LOPAH		160	5	+65	393	1 4	9 7	• *5
DECCH		509	5	188	17-	9	o o	1 JO
AH-STATIO		500	លល់ និង នៅ នៅ និង និង ន	406	425	0.9	υÇ	115
DIFF- WIE		160	5	~Đ4	393	1	⊍ ⊶	⊷ 75
DIFF LOF		488	I	1121	1086	១១	00	_ 0
	\$TA	253	**	587	570	9 2	មិម	- 110
FELAY ONE		200		1-046	6633	១ម	บย	IJ
RELAY LOP	HN	৩৸৪	ə	5538	5550	Ø 0	ยย	Ŋ
CLASS II								
SUPIED FE		10	3	160	73	3 7	59 + 88 555	2168
PEFLECTIN		10	3	160	79	3 ?	. j. 3	_1955
PEFLECTIN		ತ	000	154	77	2000000000	5 ↔	5-65
K-3AHD PO		15	Ģ	160	79	3.7	53	<u> </u>
HE, WHE P	051	15		159	79	37,		3139
LF POST		168	5 8 3	208	523	5 4	<u> </u>	6-5
LICHT/I-R		30	3	165	81	3 ь	5 2	1500
BUPIED MA			8	156	77	3 7	50	コーコ
ULTERSONI		20	ş	163	CO	3 7	55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1375
TPAFFIC S	ENSUR	10	8	159	79	3.7	53	∪ ⊹6 5
CLASS III			_			_		
NHP-BRHD		1000	9	2580	2496	មូខ	9.9	И
MID-38ND		1500	0	3⊍55	2964	0.0	0.0	U
PULSE T-0		100	6	194	187	2 9	4-6	2435
HOISE COR		100	6	217	209	2 7	4 1	2165
DIRECTION	FINDER	700	O	1898	1836	0 0	บย	υ
CLASS IV			_				_	_
TRAFFIC L		10	8	22	53	7 1	ខគ	2699
HAY SIDE P		100	6	200	207	5.8	7 5 7 3	ಿ೦೨
PHOTONI-P	DETECT	30	8	53	50	38	73	3005
ULTPASONI	CENEUT	50	ತ	42	43	3 ₁	76	3010

PART THREE:

ANALYTICAL TECHNIQUES FOR ESTIMATING AVM SYSTEM ACCURACY

J.E. Fielding M. Perlman

CONTENTS

			Page
PART 7	HREE.	ANALYTICAL TECHNIQUES FOR ESTIMATING AVM SYSTEM ACCURACY	3-1
I.		LE LOCATION ACCURACY FOR CLASS I	3-1
	A. P	arameters for AVM System Accuracy Analysis	3-1
	B. De	erivation of Accuracy Analysis Algorithm	3-2
	C. R	esults of AVM System Accuracy Analysis	3-3
ц.	MEAN	OV CHAIN MODEL OF VEHICLE LOCATION BY S OF PROXIMITY SENSORS FOR CLASS II AND IV	3-6
	A. C	lassifications of Finite Markov Chains	3-6
	в. Р	roperties of Absorbing Markov Chains	3-8
		odel of Absorbing Markov Chain for Class II	3-10
		FIGURES	
Fig. No	•		Page
3-1	-	in AVM Accuracy Analysis Program	3-1
3-2	Cor	nputation of Cumulative Distribution Function	3-1
3-3	Eri	or in Knowledge of Vehicle's Location	3-2
3-4	Pro	obability Density vs Fraction of Trials	3-2
3-5	Uri Pro	ban Distribution Pattern for Monitored oximity Sensors	3-11
3-6	Sul Mo	omatrix Q of Absorbing Chain Model for nitored Subarea in Fig. 3-5	3-11
3-7	Sul Mo	omatrix R of Absorbing Chain Model for initored Subarea in Fig. 3-5	3-12
3-8	Мо	nitored Subarea with Sensor Density of 3/9	3-12
3-9	Sul Mo	omatrix Q of Absorbing Chain Model for onitored Subarea in Fig. 3-8	3-12
3-10	Sul Mo	bmatrix R of Absorbing Chain Model for buttored Subarea in Fig. 3-8	3-13
3-11	Fu	ndamental Matrix N Corresponding to Fig. 3-8	3-13
Table N	<u>o.</u>	TABLES	Page
3-1	Vel for	nicle Location Accuracy at 80% Level SIGMA = 0 Meters	3-4
3-2	Vel for	hicle Location Accuracy at 80% Level SIGMA = 100 Meters	3-4
3-3	Ve	hicle, Location Accuracy at 80% Level	3-5

VEHICLE LOCATION ACCURACY FOR CLASS I AND III SYSTEMS

In this Section, an algorithm is described which can be used to determine the system accuracy of Class I and III automatic vehicle monitoring (AVM) systems as a function of the appropriate system parameters. Some of the resultant cumulative probability density functions (cdfy) are also presented, which can be interpreted as the fraction of the fleet for which the error is less than or equal to y. The flow chart shown in Fig. 3-1 is a brief outline of the vehicle location accuracy program, while Fig. 3-2 expands on the methodology of the computation of the cumulative density function.

A. Parameters for AVM System Accuracy Analysis

The inherent error, ϵ_0 , is defined to be the distance between the vehicle's actual location and the location determined by the AVM system at the

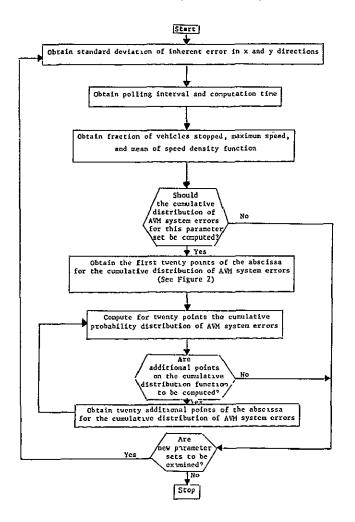


Fig. 3-1. Main AVM Accuracy Analysis Program

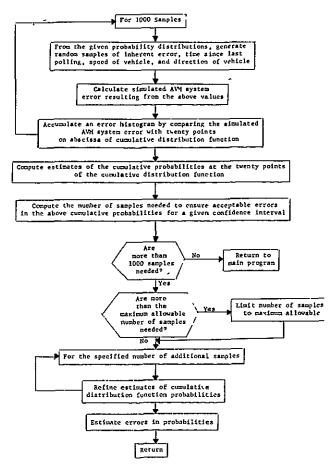


Fig. 3-2. Computation of Cumulative Distribution Function

instant of polling. Inherent error is assumed to be consistent with a Rayleigh distribution, i.e.,

$$\Phi(\epsilon_0) = \frac{\epsilon_0}{\sigma^2} e^{-1/2\left(\frac{\epsilon_0}{\sigma}\right)^2}$$

As time passes, the vehicle's location changes by a distance of (s · t) and a direction θ . (See Fig. 3-3.) The random variable θ is assumed to be uniformly distributed. Its probability density function is denoted by $p(\theta)$, and is equal to $1/(2\pi)$ between $-\pi$ and π .

The speed of the vehicle is represented by the symbol s and is assumed to be described by the following distribution

$$f(s) = \begin{cases} FO \cdot \delta & s=0 \\ \lambda e^{-\lambda s} & 0 < s < M \\ 0 & \text{otherwise} \end{cases}$$

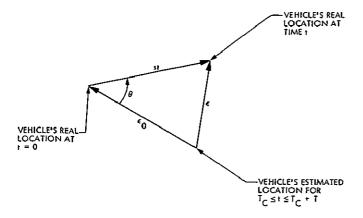


Fig. 3-3. Error in Knowledge of Vehicle's Location

There is a discrete probability FO, associated with zero speed. Between speeds zero 0 and maximum M, the speed is distributed exponentially. The parameter λ is set such that the fraction of vehicles stopped, FO, plus the fraction whose speed falls between 0 and maximum speed M sums to 0.99.

The last of the AVM system parameters is time. After the location of the vehicle is determined, there is a delay before the information becomes available. This delay is referred to as computation time, T_C . Thus, if the symbol T denotes the polling interval, the probability density function g(t) is a uniform distribution over the time interval T_C through $T_C + T$.

B. Derivation of Accuracy Analysis Algorithm

Probability distribution functions have been defined for ϵ_0 , θ , s, and t, and from Fig 3-3 the actual error in the knowledge of the vehicle's location, ϵ , is:

$$\epsilon = \sqrt{\epsilon_0^2 + s_t^2 - 2\epsilon_0 st \cos \theta}$$

The distribution of errors is given by:

$$cdfy = Prob(\epsilon \le y) = \iiint_{R} \Phi(\epsilon_{o}) g(t) \cdot$$

$$f(s) p(\theta) d\theta ds dt d\epsilon_0$$
,

where R is the region such that € ≤ y. Due to the complexity of R, it is not practical to evaluate this integral analytically or by numerical quadrature. Therefore a Monte Carlo integration of cdfy is used.

The Monte Carlo integration generates values for the four random variables, ϵ_0 , s, t, θ and uses these variables to calculate ϵ by the above formula. By checking whether $\epsilon \leq y_1$ for $i=1,\ldots,20$, when the y_i 's are a pre-specified array of points on the abscissa, it is possible, if enough trials are run, to determine an accurate estimate of the cumulative distribution function.

The methodology used to generate the random variables ϵ_0 , s, t and θ involves generating four uniform variates on [0, 1] r₁, r₂, r₃, r₄. Inverting the cumulative density functions leads to the expressions needed to calculate the desired variables:

$$\epsilon_0 = \sigma \sqrt{-2 \ln r_1}$$

$$t = T_C + r_2 T$$

$$s = \begin{cases} 0 & 0 \le r_3 \le FO \\ \frac{\ln(1-r_3)}{-\lambda} & FO < r_3 \le 1 \end{cases}$$

$$\theta = \pi(2r_4 - 1)$$

Of prime concern in the Monte Carlo integration is the number of trials needed to ensure an acceptable estimate of the probabilities that $\epsilon \leq y_1$. If p_1 denotes the real value of cdfy for a particulary y_1 , then the process becomes a long sequence of Bernoulli trials with p_1 equal to the probability of success (i.e., that $\epsilon \leq y_1$). Since the number of trials will be "large", the Bernoulli distribution can be well approximated by the Gaussian distribution with mean, $\mu = p$ Standard deviation,

$$\sigma = \sqrt{n \, p(1-p)}/n$$

where n = number of trials, and p_i has been replaced by p for simplicity.

Since the distribution of the number of trials for which ϵ exceeds any particular value of y is approximately gaussian, we can require the probability (of the event that the absolute error in the distribution function, cdfy, is less than some specified maximum value, E) to be at least C, the so-called "confidence level". That is, a fraction C of the distribution must be contained within the interval p - ko thru p + ko (Fig. 3-4). Thus, a value of C determines a value for k. In addition,

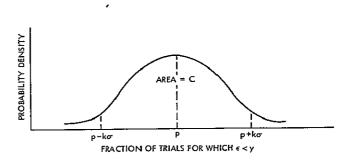


Fig. 3-4. Probability Density vs Fraction of Trials

to ensure an acceptable absolute error, E, it is required that the interval $k\sigma$ be less than or equal to E:

$$k\sigma \leq E$$
.

Substituting the expression for the standard deviation σ into this last equation gives

$$k\sqrt{np(1-p)}/n \le E$$

which may be rewritten

$$n \ge k^2 p(1-p)/E^2$$

This value for n represents the minimum number of trials needed to ensure an absolute error of less than E with confidence C. A larger value of k implies that a larger fraction of the gaussian distribution will be contained within the interval $p \pm k\sigma$, thus leading to a higher confidence C. However, a larger k requires an increased number of trials in order to satisfy the error criteria.

The accuracy algorithm specifies the maximum allowable error E, and the required confidence interval C. The program proceeds to run 1000 trials, and p_1 is then estimated as

(number of times $\epsilon \le y_i$)/1000 for $i=1,\ldots,20$.

These approximate values of p₁ are used to calculate the required number of trials, n, needed to ensure (with confidence C) that none of the error terms will be greater than the maximum allowable error E. If n is found to be less than 1000, no more runs are required and the calculation of (y₁, cdfy) is complete. However, if n is greater than 1000, additional trials are needed.

In order to prevent an excessive number of runs, in terms of computer time, a constant NMAX is introduced which serves as the maximum allowable number of trials. Thus, if it is determined that more than 1000 runs are needed, the algorithm will process additional trials until the error terms are sufficiently small or until the maximum allowable number of trials is reached, whichever comes first. In the case where the number of trials reaches NMAX, the resulting errors using the improved estimates of the p₁'s are calculated. In the actual execution of the program, the number of trials is almost always extended to NMAX with resulting errors on the order of 0.005.

The accuracy program is interactive, the user being free to set the system parameters of variance in inherent error, polling interval, computation time, fraction of vehicles stopped, and the "maximum" vehicle speed. The program then computes the mean of the exponential speed distribution such that 99% of the probability is included between speeds 0 and maximum speed M. The program also specifies the 20 values to be used along the abscissa of the cumulative distribution function of AVM system errors. These values are determined as a

function of the variance of the inherent error as one can assume that the variance of system errors is somewhat correlated with this parameter. The intent is to cover the full range from 0.0 to 1.0 of the cumulative distribution function. As a safeguard against failure of full coverages, the program allows the user to calculate the cumulative distribution function for 20 additional values of y where the user specifies the initial point and the interval between points. This option for additional points can be repeated as many times as the user desires. After the cumulative distribution function is computed, the user may reset the system parameters, and the process of determining a new cumulative distribution function is repeated.

C. Results of AVM System Accuracy Analysis

The algorithm described in the previous section was exercised by running 42 cases, each one with a unique set of the input parameters, where

SIGMA = Standard deviation of inherent error in x and y directions

T = Polling interval
TC = Computation time
M = Maximum speed

FO = Fraction stopped

Originally, all combinations of the following parameter values were to be run,

SIGMA (meters)	T (seconds)	TC (seconds)	M (meters/sec)	FO
0	2	0.01	40	0
100	10	0.1	60	
1000	60			
	120			
	300			

which would have required 60 cases. However, after the first 14 runs, it became evident that the AVM system error was stable for computation times in the range 0.01 to 0.1 second.

A value for the standard deviation of the inherent error of zero serves as a boundary condition for inherent accuracy of AVM hardware systems. Estimates of system error using SIGMA equal to zero represents the accuracy to be expected if one invests in extremely accurate hardware systems in terms of pinpointing location, assuming there is no motion. At first glance, a maximum speed of 60 meters/second (134 miles/hr) might seem a little high, however, the speed of the vehicles of the fleet is assumed to be distributed exponentially. Thus, a very small fraction of the fleet is traveling near maximum speeds; one-half of the fleet is traveling at a speed of less than (maximum speed/6) or 22.3 miles/hr. The fraction of cars stopped is set at 0 because the algorithm is designed to specifically test system accuracy assuming moving vehicles. Later, if individual users need results that reflect their mode of operation, they can supply a non-zero value for this parameter. The effects

of changes in the above variables on AVM system accuracy follows.

No modeling effort is necessary to determine whether system accuracy will improve or deteriorate given the direction of change of any input variable. As the variance in the inherent error, the polling interval, the computation time, and the maximum speed increase, system accuracy deteriorates. However, the designer requires a more detailed knowledge of the interaction between these system parameters and AVM system accuracy. He is faced with an accuracy constraint such as 80% of the vehicles must be located to within 150 meters. In order to satisfy this constraint, he must be aware of the combinations of system parameters that can meet his requirements. The above analysis provides this information. What it does not provide is information for the designers' next step, which is to determine the proper balance with respect to inherent accuracy, polling interval, and computation time so as to minimize cost as well as satisfy accuracy constraints.

The best accuracy results are obtained when SIGMA is set equal to zero. With SIGMA zero and polling interval equal to 2 seconds, 80% of the fleet is located to within 20 meters and this is not strongly dependent on maximum speed or computation time. As the polling interval is increased to to 10 seconds, 80% of the fleet is located to within 65 meters at maximum speed of 40 meters/second and to within 105 meters at 60 meters/second. Thus, as polling interval increases, accuracy becomes more dependent on maximum speed. Again, the accuracy is not dependent on computation time. Table 3-1 presents similar results for the remainder of the cases with SIGMA equal to zero. The above trends continue, that is, as the polling interval increases, the 80% distance grows,

Table 3-1. Vehicle Location Accuracy at 80% Level for SIGMA = 0 Meters

T (sec)	TC (sec)	M (meters/sec)	Accuracy (meters)
2	.01	40	15
2	.01	60	20
2	.1	40	15
2	.1	60	22
10	.01	40	65
10	.01	60	105
10	.1	40	70
10	.1	60	105
60	.01	40	420
60	.01	60	620
60	.1	40	420
60	1	60	620
120	.01	40	820
120	.01	60	1350
300	.01	40	2100
300	.01	60	3080

Table 3-2. Vehicle Location Accuracy at 80% Level for SIGMA = 100 Meters

T (sec)	TC (sec)	M (meters/sec)	Accuracy (meters)
2	.01	40	180
2	.01	60	183
2	.1	40	180
2	.1	60	183
10	.01	40	195
10	.01	60	212
60	.01	40	448
60	.01	60	650
120	.01	40	850
120	.01	60	1250
300	.01	40	2100
300	.01	60	3160

the dependence on maximum speed increases, and accuracy is not dependent on computation time.

Table 3-2 presents similar data for the case SIGMA equals 100 meters. With a polling interval of 2 seconds, 80% of the vehicles in the fleet are located to within 180 meters. The trends evident in the SIGMA equal zero cases can also be seen in Table 3-2. One major difference is that, in this case, the change in accuracy as polling interval increases from 2 to 10 seconds is rather insignificant. Thus, if the system hardware has a standard deviation for inherent accuracy in the x and y direction of 100 meters, then little would be gained by specifying a polling interval shorter than 10 seconds. In comparing the results of Table 3-1 and Table 3-2, it is apparent that the accuracy of a SIGMA = zero system is not significantly better than a SIGMA = 100 meters system when the polling interval is greater than 60 seconds. Thus, if a sophisticated hardware system in terms of inherent error is installed, it requires a short polling interval to realize significant benefits.

The most striking difference between the cases with inherent error equal to 0 and 100 meters and the case with inherent error equal to 1000 meters (Table 3-3) is that the interval between the minimum and maximum accuracies is much more compact in the 100 meter case. In general, one can conclude that as the resolution in inherent error deteriorates, the system is less dependent on the remaining parameters. The accuracy figure in Table 3-3 for polling intervals of 2, 10, 60 and 120 seconds are significantly higher than the corresponding values in Tables 3-1 and 3-2, while the accuracy at a polling interval of 300 seconds is of the same order over all three Tables.

These results presenting accuracy estimates for AVM system errors can serve as a tool to be used in AVM system design.

Table 3-3. Vehicle Location Accuracy at 80% Level for SIGMA = 1000 Meters

T (sec)	TC (sec)	M (meters/sec)	Accuracy (meters)
2	.01	40	1790
2	.01	60	1790
2	. 1	40	1790
2	.1	60	1790
10	.01	40	1795
10	.01	60	1810
60	.01	40	1880
60	.01	60	1950
120	.01	40	2210
120	.01	60	2500
300	.01	40	2985
300	.01	60	3500
300	.1	40	2780
300	.1	60	3650

Marvin Perlman

One approach to automatically locating specified vehicles in an urban area involves the employment of proximity sensors. The proximity sensors (which may be active or passive) are distributed throughout a given area. Once installed, the position of a sensor is fixed. A vehicle, properly equipped, will interact with a sensor when the distance between the vehicle and the sensor is within prescribed limits. Interaction results in communicating the identity of the vehicle and the location of the sensor to a central system. Not considered in this analysis are the proximity sensor's characteristics, the required equipment for the vehicle, or the means of communicating to the central system, This analysis presents a Markov chain model of the interaction of fixed proximity sensors with moving vehicles whose locations are to be monitored.

A. Classifications of Finite Markov Chains

l. Concepts and definitions. A stochastic process is any sequence of experiments amenable to probalistic analysis. A stochastic process is said to be finite if the set of possible outcomes is finite. An independent process is a finite stochastic process where knowledge of the outcome of any preceding experiment in no way affects the prediction of the outcome of the present experiment.

A finite Markov chain process is a finite stochastic process where knowledge of the outcome of the immediate past experiment does affect the prediction of the outcome of the present experiment. Furthermore, the dependence of the outcome of each experiment on the outcome of the immediately preceding experiment only is the same at each stage of successive experiments. A finite Markov chain is characterized by a finite set of states $\{s_1, s_2, \ldots, s_n\}$. The state of a Markov chain is the outcome of the last experiment. Thus a Markov chain is in one and only one state at a given time and advances from one state to another (or remains in the same state) in accordance with a priori transition probabilities. The transition probability p_{1j} is the probability that the (Markov chain) process will move from state s, to s, and p_{1j} depends only on s₁. Associated with every ordered pair of states is a known transition probability. An n x n transition probability matrix P contains as entries the transition probabilities corresponding to each of the respective n2 ordered pairs of states as follows:

Each row in P comprises a probability event space such that

$$P_{ij} \ge 0$$
 for all i, j

and

$$\sum_{j=1}^{n} p_{jj} = 1 \quad \text{for every } 1$$

The transition probability matrix P and an initial (starting state completely describe a finite Markov chain process.

2. Regular Markov chains. A Markov chain is defined to be regular if and only if after n steps (i.e., experiments) for some n, it is possible for the process to be in any state regardless of the starting state. The entry $p^{(n)}$ in p^n (the nth power of the transition matrix) is the probability that the process is in state s_1 after n steps given that it started in state s_1 . A regular Markov chain has a regular transition matrix P such that Pn contains only positive entries (i.e., $p^{(n)}_1 > 0$ for all 1, j). P may be tested for regularity by noting whether or not the entries in P^2 , $(P^2)^2$, $(P^4)^2$, . . . are positive assuming P has one or more 0 entry.

Example 1. Given the following (probability) matrix

Successive squaring of P, P², P⁴, . . . quickly results in large powers of P. When testing for regularity, the actual values of the entries need not be determined. Denoting each positive entry by x and each zero entry 0 gives

P2, P4 and P8 are, respectively

_			_	ι				-1						ŧ
0	0	x	0		0	x	x	x		×	x	x	x	
x	x	0	x		x	x	x	x		x	x	x	x	
0	x	x	x		ж	x	x	x		x	x	×	x	
ж	x	x	x	,	x	x	x	х	and	×	x	x	x	

Thus P is a regular transition matrix.

3. Ergodic Markov chains. A Markov chain is defined to be ergodic if and only if it is possible for the process to go from every state to every other state. Clearly a regular Markov chain is always ergodic. However, an ergodic Markov chain is not necessarily regular. That is, for every n, Pn contains some 0 entries. However, Pn for different values of n, will contain zeros in different locations. As n increases, the positions of the zeros change cyclically. In this case, the chain is termed a cyclic Markov chain. Thus an ergodic Markov chain is either cyclic or regular but not both.

Example 2. Given the following transition matrix

$$P = \begin{bmatrix} s_1 & s_2 & s_3 & s_4 \\ s_1 & 0 & 1 & 0 & 0 \\ s_2 & 0.25 & 0 & 0.75 & 0 \\ s_3 & 0 & 0.25 & 0 & 0.75 \\ s_4 & 0 & 0 & 1 & 0 \end{bmatrix}$$

or

where x denotes a positive entry. For even n > 0,

For odd n > 1,

$$\mathbf{p}^{\mathbf{n}} =
\begin{vmatrix}
0 & \mathbf{x} & 0 & \mathbf{x} \\
\mathbf{x} & 0 & \mathbf{x} & 0 \\
0 & \mathbf{x} & 0 & \mathbf{x} \\
\mathbf{x} & 0 & \mathbf{x} & 0
\end{vmatrix}$$

Starting in an odd-numbered state (s_1 or s_3), the process is in an even-numbered state (s_2 or s_4) after an odd number of steps, and in an odd-numbered state after an even number of steps.

P in Example 2 is an ergodic transition matrix which is nonregular. The process characterized by P is a cyclic (ergodic) chain.

4. Absorbing Markov chains. An absorbing state in a Markov chain is one which cannot be left once entered. An absorbing Markov chain is a Markov chain that has at least one absorbing state, and from every nonabsorbing state it is possible to move to an absorbing state (in one or more steps). The nonabsorbing states (of an absorbing chain) are known as transient states. The transition matrix P of an absorbing chain has entries $P_{11} = 1$ for each s_i that is absorbing.

Example 3. The following transition matrix characterizes an absorbing chain

		⁵ 1	⁵ 2	s ₃	s _{l4}	⁸ 5
	s _l	1	0	0	0	0
	⁸ 2	0.5	0	0.5	0	0
P =	s ₃	0	0.5	0	0.5	0
	s _{l4}	0	0	0.5	0	0.5
	\$ ₅	0.5 0 0	0	0	0	1

States s_1 and s_5 are absorbing; whereas, states s_2 , s_3 and s_4 are transient states.

5. Classification of states. The states of any given Markov chain can be partitioned into equivalence classes. An equivalence class comprises either an ergodic set of states or a transient set of states. Once the process enters an ergodic set, it remains in the set. Once the process leaves a transient set, it never reenters the set.

If a chain has two or more ergodic sets of states but no transient sets, the chain in effect is a composite of two or more unrelated chains. Each of the unrelated chains consists of a single ergodic set and may be treated separately. Without any loss in generality, every ergodic chain (regular and cyclic) consists of a single ergodic set.

An absorbing state is an ergodic set consisting of one and only one state. Such an ergodic set is referred to as a unit set. Thus an absorbing chain has one or more unit sets and one or more transient sets.

Every state of a given set whether it is ergodic or transient can "communicate" with every other state in the set. The process, however, moves toward the ergodic sets when the chain contains transient as well as ergodic sets.

B. Properties of Absorbing Markov Chains

1. Canonical Form of P and Pⁿ. The transition matrix P of an absorbing chain can always be arranged to have the following canonical form (by relabeling states)

$$P = \begin{array}{|c|c|c|c|}\hline I & O \\\hline R & Q \\\hline \end{array}$$

The submatrix I is an ℓ x ℓ identity matrix whose entries are the transition probabilities for every ordered pair of absorbing states (s_1, s_1) where

$$\mathbf{p}_{ij} = \begin{cases} 0 & \text{if } i \neq j \\ 1 & \text{if } i = j \end{cases}$$

The submatrix Q is an m x m matrix whose entries are the transition probabilities for every ordered pair of transient states. The submatrix R is an m x ℓ matrix whose entries are the transition probabilities for every ordered pair of states (s_1, s_1) where s_1 is a transient state and s_1 is an absorbing state. The submatrix 0 is an ℓ x m matrix whose entries are zeros corresponding to the zero transition probabilities of moving from any absorbing state to any transient state. Powers of P have the canonical form

where

$$M = [I + Q + Q^2 + \cdot \cdot \cdot + Q^{n-1}]R$$

Note that the expression for M is a matrix equation.

Theorem 1. In any finite Markov chain, regardless of the initial (starting) state, the probability that the process is in ergodic state after n steps approaches I as n approaches infinity. (A proof of Theorem 1 appears in Ref. 1.)

A <u>Corrolary</u> to Theorem 1 is that are real numbers b and c where b>0 and 0< c<1 such that

$$p_{ij}^{(n)} \leq bc^n$$

for any ordered pair of transient states (s_1, s_1) . This gives the rate at which $p_{11}^{(n)}$ approaches 0.

Every entry in Qⁿ in the canonical form of Pⁿ of an absorbing chain approaches 0 as n increases without limit.

2. Fundamental matrix. The fundamental matrix of an absorbing chain is defined as

$$N = [I - Q]^{-1} \tag{1}$$

Note that

$$\frac{I}{I-Q} - \frac{Q^n}{I-Q} = I + Q + Q^2 + \cdots + Q^{n-1}$$

• and since $Q \neq I$ and $\lim_{n \to \infty} Q^n = 0$

$$[I - Q]^{-1} = \lim_{n \to \infty} [I + Q + Q^2 + \cdots + Q^{n-1}]$$

the inverse of I - Q (i.e., N) always exists.

The submatrix M in P^n as n approaches infinity may be expressed as

$$M = [I - Q]^{-1} R = NR$$
 (2)

The fundamental matrix N has the following probabilistic interpretation.

Let $u_{11}^{(k)} = 1$ if the process starts in transient state s_1 and is in transient state s_2 after k moves. Otherwise $u_{11}^{(k)} = 0$. Let $t_{11}^{(n)}$ denote the number of times the process is in transient state s_1 starting and during n moves given that it started in transient state s_1 . Thus

$$\mathbf{t}_{ij}^{(n)} = \mathbf{u}_{ij}^{(0)} + \mathbf{u}_{ij}^{(1)} + \cdots + \mathbf{u}_{ij}^{(n)}$$

The probability that the process is in transient state \boldsymbol{s}_1 after the \boldsymbol{k}^{th} move is

$$p(u_{1J}^{(k)} = 1) = q_{1J}^{(k)}$$

given that s_1 is transient and the starting state. The mean of $\upsilon_{11}^{(k)}$ is

$$m(u_{ij}^{(k)} = 1 \cdot q_{ij}^{(k)} + 0 \cdot (1 - q_{ij}^{(k)} = q_{ij}^{(k)})$$

The mean of $t_{11}^{(n)}$ is

$$m(t_{ij}^{(n)}) = q_{ij}^{(0)} + q_{ij}^{(1)} + \cdots + q_{ij}^{(n)}$$

the 1, 1th entry of

$$Q^{(0)} + Q^{(1)} + \cdots + Q^{(n)}$$

where $Q^{(0)} = I$.

Then

$$n_{ij} = \lim_{n \to \infty} m(t_{ij}^{(n)})$$

is the i, jth entry of the fundamental matrix expressed in (1). The value of n_{ij} is the mean number of times the chain is in transient state s_i given that it started in transient state s_i and continues until the process is absorbed (i. e., reaches an absorbing state).

3. Statistics on the number of times the process is in a transient state. Let v_1 denote the number of steps (including the original position) before absorption, given the starting state is s_1 . If s_1 is in an absorbing state, then $v_1 = 0$. Given that the absorbing chain contains a transient set denoted by T, and s_1 is a transient state if and only if s_1 T (i.e., s_1 "is a member of" T). Then

$$m(v_1) = \sum_{s_1 \in T} n_{ij}$$
 (3)

which is the ith row sum of the fundamental matrix N. Each row sum of N appears in the m x l column vector

$$\alpha = NC \tag{4}$$

where C is a m x l column vector whose entries are all l's.

The variance of the function v, is

$$var(v_1) = m(v_1^2) - (m(v_1))^2$$

where

$$m(v_1^2) = \sum_{s_j \notin T} p_{ij} \cdot 1 + \sum_{s_j \in T} p_{ij} m [(v_i + 1)^2]$$

(Note that the original position is necessarily included in the expression for $m(v_1^2)$.)

Continuing,

$$m(v_{i}^{2}) = \sum_{s_{j} \notin T} p_{ij} + \sum_{s_{j} \in T} p_{ij} m(v_{i}^{2} + 2v_{i}) + p_{ij}$$

$$= \sum_{\mathbf{s_j} \in \mathbf{T}} p_{\mathbf{j}} [m(v_{\mathbf{j}}^2) + 2 m(v_{\mathbf{j}})] + 1$$

$$\{m(v_1^2)\} = \left\{ \sum_{s_i \in T} p_{ij} [m(v_i^2) + 2 m(v_i)] + 1 \right\}$$

The braces denote a column vector where each entry corresponds to a different value of 1.

Therefore,

$$\{m(v_1^2)\} = Q \{m(v_1^2)\} + 2Q\alpha + C$$

$$[I - Q] \{m(v_1^2)\} = 2Q\alpha + C$$

$$\{m(v_1^2)\} = [I - Q]^{-1} [2Q\alpha + C]$$

$$= 2NQ\alpha + NC$$

$$= 2NQ\alpha + \alpha$$

Since

$$N = \frac{I}{I - Q}$$

$$N - NQ = I \text{ and } NQ = N - I$$

$$\{m(v_i^2)\} = 2[N - I]\alpha + \alpha$$

Finally, the variance of v_1 for each 1 expressed as entries in m x 1 column vector 1s

 $= [2N - I]\alpha$

$$\{var(v_i)\} = \{m(v_i^2) - (m(v_i))^2\}$$
$$= [2N - 1]\alpha - \alpha_{sq}$$

where α_{sq} results from squaring each entry $m(v_1)$ in α shown in (4).

Example 4. A particle moves a unit distance along a straight line. Given that it is in si, it moves to si+1, one unit to the right, with probability 0.5, or to state si-1, one unit to the left, with probability 0.5. Two states are introduced, one at each end of the line, to serve as barriers. These are absorbing states such that the process is absorbed if it reaches either absorbing state. Assume there are five states where si and si are absorbing, and si, si, and si are transient. The probability matrix appears in Example 3. Reordering the rows and columns gives the following canonical form:

The fundamental matrix is

Thus, for example, if the process starts in state s_2 , the mean number of time it is in state s_2 , s_3 and s_4 1.5, 1 and 0.5, respectively.

Furthermore,

$$\lim_{n\to\infty} P^n = \begin{bmatrix} I & 0 \\ NR & 0 \end{bmatrix}$$

since

$$\lim_{n\to\infty}Q^n=0$$

and

$$\lim_{n\to\infty} M = NR$$

as shown in (1) and (2).

In example 4

and

Hence, for example, if the process starts in state s_2 , it will be absorbed in state s_1 with probability 0.75 or in state s_5 with probability 0.25. The row sums of NR are necessarily 1 in accordance with Theorem 1. The mean number of steps before absorption including the original position for each transient starting state appears in α as shown in (4).

$$\alpha = NC = s_3$$

$$s_4$$

$$3$$

The mean number of steps before absorption is 3 if the process starts in s2 or s_4 ; whereas, it is 4 if the process starts in s_4 .

The variance of the number of steps (including the original position) before absorption for each starting state appears in the column vector

$$[2N - I] \alpha - \alpha_{sq}$$

from expression (5). In example (4)

$$2N - I = \begin{bmatrix} 2 & 2 & 1 \\ 2 & 3 & 2 \\ 1 & 2 & 2 \end{bmatrix}, \alpha = \begin{bmatrix} 3 \\ 4 \\ 3 \end{bmatrix} \text{ and } \alpha_{sq} = \begin{bmatrix} 9 \\ 16 \\ 9 \end{bmatrix}$$

Thus

$$\begin{bmatrix} 2N - I \end{bmatrix} \alpha - \alpha_{sq} = s_3 & 8 \\ s_1 & 8 \end{bmatrix}$$

The mean number of steps before absorption is greatest for starting at s_3 . However, the variance is the same for each starting transient state. (Note that when the variances are quite large compared to the corresponding entries in α_{sq} , it indicates that the means are unreliable estimates for that particular chain.)

C. Model of Absorbing Markov Chain for Class II and IV Systems

Consider a portion of an area to be monitored as shown in Fig. 3-5. Subareas are 5 x 5 square blocks, and each subarea has an identical sensor layout. A (monitored) vehicle entering a sensed intersection corresponds to an absorbing state. This is to be interpreted as updated information as to the vehicle's location. When the process is in an absorbing state, the location of the monitored vehicle is known (to within the detection radius of the sensor). A vehicle entering an unsensed intersection corresponds to a transient state. The absorbing Markov chain models a sequence of experiments for locating a vehicle to within prescribed limits of accuracy.

Given that a vehicle starts at any given intersection (sensed or unsensed), what is the mean and variance of the number of blocks the vehicle moves until being sensed? Once the vehicle is sensed, a new experiment begins. Thus, between sensings, an uncertainty exists as to the vehicle's location. This is reflected in the magnitude of the mean and variance of the number of blocks the vehicle moves between sensings.

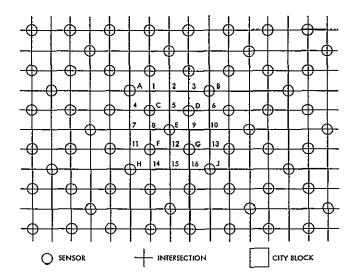


Fig. 3-5. Urban Distribution Pattern for Monitored Proximity Sensors

The number of sensors, their layout, and transition probabilities between orthogonally adjacent intersections is required a priori information. Uniformity of deployment of sensors assumes unbiased routes. Random movement of the vehicle corresponds to unbiased routing through the sensed area. Thus the direction of travel of a vehicle from an intersection will be in any one of four possible directions with equal probability.

If one were to incorporate a different transition probability for each of the four possible directions, the number of states in the Markov chain model would increase fourfold. Each state would be associated with a pair of labels. The intersection entered would be designated by one label and the direction from which it was entered by the other. Such a transition matrix would be meaningful if the transition probabilities were accurately known. That is, the probability that a vehicle upon leaving a particular intersection will go straight, make a left turn, a right turn or a U-turn is a priori information. Without this information, equiprobable direction of travel (to any of the four adjacent intersections) is assumed. The resulting statistical accuracy establishes achievable bounds on the system's accuracy.

Returning to Fig. 3-5, only the subarea with labeled intersections need be considered. Boundary intersections (of the subarea) act as reflecting boundaries in the Markov chain model. A vehicle in intersection 1 corresponds to the process being in transient state 1. The transition probability from state 1 to the intersection due North is 0.25. Since that intersection has the same relative location in its subarea as does intersection F in the subarea under discussion, an upward move (due North) is equivalent to a reflection to intersection F. Identical sensor layouts for all subareas is clearly required. This permits the use of a small transition matrix (25 x 25 in Fig. 3-5) for a Markov chain model of an entire area where fringe effects are neglected. Intersections labeled with characters are sensed and are associated with absorbing states. Unsensed intersections are labeled with numbers and are associated with transient states. The reflection properties of transient boundary intersections are apparent in the

submatrices Q and R in Figs. 3-6 and 3-7, respectively. (Note that states s_1 and s_4 are reflecting boundaries in Example 2.)

The matrix N and column vectors α = NC and [2N - I] α - $\alpha_{\rm Sq}$ were computed on an IBM 360/65. The components of α and $\alpha_{\rm Sq}$ rounded to 3 decimal places are:

	1		1	
	1	1.667		2.778
	2	2.667		7.111
	3	1.667		2.778
	4	1.667		2.778
	5	1.667		2.778
	6	1.667		2.778
	7	2,667		7.111
$\alpha = NC =$	8	1.667	α _{sq} =	2.778
	9	9 1.667	2.778	
	10	2.667		7.111
	11	1.667		2.778
	12	1.667		2.778
	13	1.667		2.778
	14	1.667		2.778
	15	2.667		7.111
	16	1.667		2.778

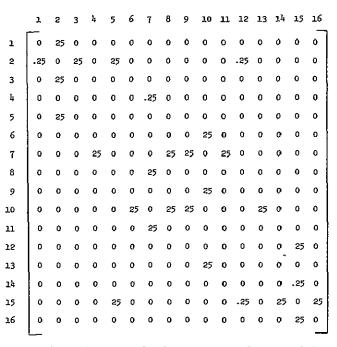


Fig. 3-6. Submatrix Q of Absorbing Chain Model for Monitored Subarea in Fig. 3-5

	A	В	C	D	E	F	G	H	J
1	.25	0	.25	0	0	.25	0	0	0
2	0	0	0	0	0	0	0	0	0
3	0	.25	0	.25	0	0	.25	0	0
Ц	.25	0	.25	.25	0	0	0	0	0
5	0	0	.25	.25	.25	0	0	0	0
6	0	.25	.25	.25	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0
8	0	0	.25	0	.25	.25	0	0	0
9	0	0	0	.25	.25	0	.25	0	0
10	0	0	0	0	0	0	0	0	0
11	0	0	0	0	0	.25	.25	.25	0
12	0	0	0	0	.25	.25	.25	0	0
13	0	C	0	0	0	.25	.25	0	.25
14	0	0	.25	0	0	.25	0	.25	0
15	0	0	0	0	0	0	0	0	0
16	0	0	0	.25	0	0	.25	0	.25

Fig. 3-7. Submatrix R of Absorbing Chain Model for Monitored Subarea in Fig. 3-5

Thus, starting in a transient state or an unsensed intersection, the mean number of blocks a vehicle moves before being sensed is 1.667 or 2.667. The variance of the number of moves for each starting state (1 through 16) is 1.778 which are the entries of

$$[2N - I]\alpha - \alpha_{sq}$$

Since 1.778 is a fraction of 2.778 and 7.111 (the distinct entries of α_{SQ}), the means given in α are reliable estimates for the layout in Fig. 3-5.

Note that the probability of being sensed cannot be computed. The probability of being sensed by a sensor in the same relative location as say B (Northeast corner of a subarea) can be determined from NR. See Example 4.

The ratio of sensed intersections to the total number of intersections in a monitored area is of interest. In Fig. 3-5, 4 sensors are each sharing 4 subareas. These are sensors at intersections A, B, H and J. Thus the total number of sensors per subarea for 5 (interior) + 4 (each shared by 4 subareas)/4 or 6. The total number of intersections per subarea is 9 (interior) + 4 (each shared by 4 subareas)/4 + 12 (each shared by 2 subareas)/2 or 16. Thus the ratio of sensed intersections to total intersections is 3/8.

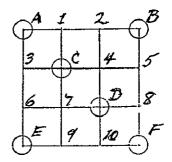


Fig. 3-8. Monitored Subarea with Sensor Density of 3/9

Consider a monitored area with identical subareas as shown in Fig. 3-8 where the ratio of sensed intersections to total intersections is 3/9. Its associated submatrices Q and R appear in Figs. 3-9 and 3-10, respectively. For completeness the fundamental matrix $N = [I - Q]^{-1}$ corresponding to Fig. 3-8 appears in Fig. 3-11. The entries are rounded off to 3 decimal places.

The mean and variance of the number of blocks a vehicle moves before detection starting from each of the unsensed intersections is 2 and 2, respectively.

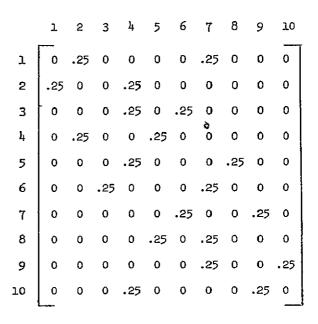


Fig. 3-9. Submatrix Q of Absorbing Chain Model for Monitored Subarea in Fig. 3-8

	A	В	C	D	E	F
						_
1	.25	0	.25	0	0	0
2	0	.25	0	.25	0	0
3	-25	0	.25	0	0	0
4	0	0	.25	,25	0	0
5	0	.25	.25	0	0	0
6	0	0	0	.25	.25	0
7	0	0	.25	.25	0	0
8	0	0	0	.25	0	.25
9	0	0	.25	0	.25	0
10	0	0	0	.25	0	.25

Fig. 3-10. Submatrix R of Absorbing Chain Model for Monitored Subarea in Fig. 3-8

	1	2	3	lų .	5	6	7	8	9	10
ì	1 073	0 29	0 021	0 089	0 024	0 083	0 311	0 006	o 083	0 021
2	0 287	1 15	0 006	0 311	0 083	0 024	0 089	0 051	0 024	0 006
3	0 021	0 083	1 073	0 311	0 083	0 29	0 089	0 057	O 024	0 006
lş	0 077	o 308	0 003	1 156	0 308	0 012	0 044	0 077	0 012	0 003
5	0 021	o 083	0 006	0 311	1 15	0 05#	0 089	0 287	0 024	0 006
6	0 006	0 027	182 0	0 089	0 024	1 15	0 311	0 006	0 083	0 057
7	0 003	0 012	0 077	0 044	0 012	0 308	1 156	0 003	0 308	0 077
8	0 006	0 024	0 021	0 089	0 29	0 053	0 311	1 073	0 083	0 051
9	0 006	0 024	0 021	0 089	0 024	0 083	0 311	0 006	1 15	0 287
10	0 021	0 083	0 006	0 311	0 083	0 024	0 089	0 021	0 29	1 073

FIG 7 The Fundamental Matrix N Corresponding to Fig 4

Fig. 3-11. Fundamental Matrix N Corresponding to Fig. 3-8

REFERENCE

 Kemeny, J. G., and Snell, J. L., <u>Finite Markov Chains</u>, D. Van Nostrand Co., Inc., Princeton, N. J., 1960

PART FOUR: AM BROADCAST AND BURIED LOOP FEASIBILITY ANALYSES FOR AVM USE

G.R. Hansen L.J. Zottarelli

		CONTENTS	Page
PART I	OUI	R. AM BROADCAST AND BURIED LOOP FEASIBILITY ANALYSES FOR AVM USE	4-1
I.		nicle Location by Means of AM Broadcasting Station	4-1
	Α.	Introduction	4-1
	в.	Hyperbolic Location Principles	4-1
	c.	Vehicle Equipment Requirements	4-3
	Ď.	Vehicle Location Method	4-4
	E.	Accuracy Analysis	4-5
	F.	System Data Requirements and Polling Intervals	4-5
	G.	Computer Simulation Programs	4-6
	н.	Conclusions	4-7
II.	Vel	nicle Location by Means of Buried Loops	4-8
	Α.	Relationships of Three-Loop Vehicle Location System	4-8
	В.	Magnetic Field Generated by Rectangular Loop of Wire	4-9
	c.	Computer Programs for Calculating Mutual Inductance	4-9
	D.	Optimum Relative Configuration of Three-Loop AVM System	4-11
Fig. No.		FIGURES	Page
4-1		Zero Degree Phase Difference Hyperbolic Contours Produced by Pair of Synchronized RF Signals	4-1
4-2		Apparent Motion of Hyperbolas Due to Slight Difference in Two Signal Frequencies	4-2
4-3		Change in Receiver Location from Hyperbolic Area 5-9-5 to 10-2-7	4-3
4-4		Phase-Locked Loop AM Receiver on Vehicle for Hyperbolic AVM Technique	4-3
4-5		Up-Down Counters Sync Logic for Hyperbolic AVM Technique	4-4
4-6		Configuration of Vehicle's Transmitting and Receiving Loops Relative to Buried Loop	4-8
Table No.		TABLES	Page
4-1		Vehicle Location Simulator Program, LOCATE	4-6
4-2		Vehicle Hyperbolic Lane Count Generator Program, PIG	4-6
4-3		AM Broadcast Station Locations and Baseline Lengths Program, SET UP	4-6
4-4		LOOPS Program for Mutual Inductance of Buried/Pickup Loops, and Sample Run	4-9
4-5		CARCUP Program for Mutual Inductance of XMTR/RCVR Loops, and Sample Run	4-10

G. R. Hansen

I. VEHICLE LOCATION BY MEANS OF AM BROADCASTING STATION CARRIER SIGNALS*

Carrier signals of commercial AM broadcasting stations can be used as the source of vehicle location information. As in well-known navigation systems, the signals radiating from pairs of stations will form an hyperbolic grid or coordinate system, and vehicles which are equipped with phase-lock receivers and phase repetition counters can keep track of the location of the vehicle in this hyperbolic coordinate grid. This information is then periodically transmitted to a central command base where the transformation from hyperbolic to geographic coordinates is performed, and the actual location of the vehicle is determined and displayed.

A. Introduction

Most vehicle location and navigation systems require dedicated transmitter-receiving equipment combinations and frequency allocations for the location function. A particular advantage of the AM broadcast phase-difference monitoring system is that commercial station signals (0.53 to 1.60 MHz) are used to furnish the vehicle location information. Therefore, neither dedicated transmitters nor special frequency allocations are required.

Carrier signals from three AM stations located near the urban perimeter are used to form a coordinate system of hyperbolas of constant phase difference between the signals from pairs of stations (Fig. 4-1). Therefore, this vehicle location technique shares many of the characteristics of other hyperbolic navigation methods such as OMEGA, LORAN, and particularly DECCA. In this location method, however, the transmission frequencies from the AM stations need not be synchronized, in contrast to the established navigation systems. It is more akin to the differential versions of the foregoing systems. In the differential verisons, mobile location equipment is utilized at fixed geographical sites for the purpose of improving the location accuracy of vehicles in the neighborhood by determining the signal phase or delay variance at the known site from that predicted, and this variance is used to correct the location data received by the vehicle.

The AM broadcast vehicle location technique relies on a frequency transformation method whereby the several frequencies of three AM broadcasting stations are separately normalized to a common frequency, and the relative phases of these common frequencies are compared to provide hyperbolic lines of position. An exact integral relationship between the carrier frequencies of the AM stations is not required, although harmonically related frequencies would result in a stationary "virtual hyperbolic pattern" and would somewhat simplify the location process.

Vehicular equipment consists of at least three phase-locked loop receivers to extract the carrier

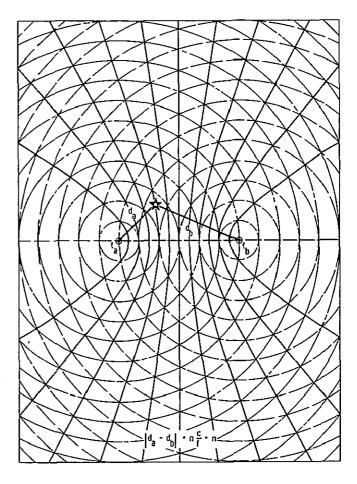


Fig. 4-1. Zero Degree Phase Difference Hyperbolic Contours Produced by Pair of Synchronized RF Signals

frequencies and also a second set of three phaselocked loop frequency multipliers to generate the common frequency. Phase comparators and digital counters are used to keep track of the vehicle location within the "virtual hyperbolic pattern." The hyperbolic coordinates are stored for subsequent transmission to a central command and control base.

Central equipment required consists of a limited arithmetic processor or table look-up computer which is needed to relate the hyperbolic pattern coordinate information to an actual geographical location

B. Hyperbolic Location Principles

If two separated and synchronized sources of radiation transmit signals in an isotropic medium, a receiver positioned midway between them, or on the locus of points which is equidistant from each transmitter, will detect no difference in the time-of-arrival or the phase of the signals from the separate sources. The locus is the perpendicular bisector of the connective between the two sources. (See Fig. 4-1.)

^{*}U.S. Patent 3,889,264.

If the receiver is at one side or the other of the bisector, the signal from the nearer transmitter will arrive at some finite amount of time before the signal from the farther source. If the signals are continuously transmitted, the phase of the nearer will lead the phase of the farther. Another locus of constant time or phase difference can be generated by maintaining the same difference in distance from the receiver to each transmitter. The curves for constant time or phase difference will be confocal hyperbolas that are symmetric around the bisector (see Fig. 4-1).

A line-of-position (LOP) can be determined relative to a pair of RF transmitters by noting the time difference in the arrival of the signals, which corresponds to one of the hyperbolas. There will be ambiguity as to which branch of the hyperbola represents the true LOP. If the signals are continuous wave and only the phase differences are determined, the degree of LOP ambiguity increases many-fold since the phase pattern is repeated whenever the cumulative distance change to the two transmitters equals one wavelength. The resolution of the ambiguity is described later.

If the two stations are transmitting on slightly different frequencies, the relative phase between the carriers will change cyclically at a rate determined by the difference in frequency. This rate will be the same anywhere that the two signals can be received. If the locus of lines of constant phase difference are now considered, they again comprise a family of confocal hyperbolas, but instead of being stationary, they will sweep through the area covered by the two stations (Fig. 4-2). The hyperbolas, as a function of time, will tend to

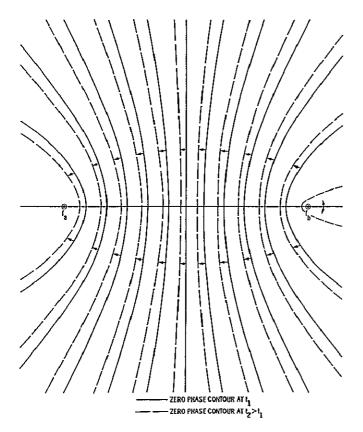


Fig. 4-2. Apparent Motion of Hyperbolas Due to Slight Difference in Two Signal Frequencies

form acutely around the station radiating the higher frequency and then move toward the lower frequency station; straightening as they reach the midpoint, then curving around the lower frequency station and then vanishing on the extension of the line joining the stations. A receiver capable of counting the passage of hyperbolas representing a particular phase difference will accumulate the same count in the same time interval regardless of the location within the service area of the two stations.

If the constant-phase difference counting receiver is positioned in a stationary hyperbolic field, no counts will be accumulated as long as the receiver's location is fixed. If the receiver is moved in such a manner as to cause the difference in the distances to the two stations to change by one wavelength, then one count will be accumulated. Similarly, in a moving field, a one-unit difference in counts will be accumulated by a stationary receiver as compared to a receiver that is moved by a wavelength distance difference.

The AVM system based on AM broadcast signals is discrete as opposed to continuous location systems in that the intersections of hyperbolas form a grid which can be transformed into specific urban area locations corresponding to these intersections. Interpolation between grid lines is not used. Therefore it is somewhat like a proximity system with the hyperbolic intersections taking the place of physical devices or signposts located at intersections or at fixed points. Continuous systems provide somewhat uniform coverage of the service area and allow any geographical locations within this area to be determined to some limiting precision dictated by the technique. The grid described by the intersection of the hyperbolas allows the actual geographical location of the vehicle to be somewhere within the hyperbolic triangle described by the coordinates of a particular triad vertex. The dimensions of this triangle are a function of the distance to the foci of the two families of hyperbolas and also of the wavelength of the common frequency. In most continuous AVM systems, the precision diminishes with the distance from the fiducial points. In the AM Broadcast hyperbolic AVM system, the location precision can be adjusted in the principal service area by the choice of the common frequency.

Established navigation systems such as OMEGA, LORAN, and DECCA refer to the areas between adjacent hyperbolas of constant phase as lanes. These navigation lanes vary in width from 1.5 to 15 km, depending on the frequency used in the system, and the principal goal of these methods is to maintain a vehicle's location precisely within a selected lane. In contrast, the AM broadcast vehicle location method utilizes much narrower (e.g., 0.15 km) lanes and keeps track only of the ID number of the hyperbola of constant phase difference that the vehicle has crossed and in which direction the hyperbola was traversed. Therefore, the location precision is a function of the lane width and will vary with the distance from the AM station pair. This system is intended for use in metropolitan areas and adjacent suburbs of rather limited size compared to the much larger service areas of navigation systems. Since AM transmitting sites are usually located near the outskirts of the area they serve, the divergence of the hyperbolas and the consequent loss in location precision can be held to reasonable values.

In many prior studies and developments concerned with emergency vehicle location problems (see Bibliography), a general goal has been to provide a location capability to one city block, or roughly 0.16 km (0.1 mile). Lane widths of this size can be generated with a frequency of 1 MHz.

In order to generate a hyperbolic coordinate system from AM station signals, these signals must be transformed to a common frequency which is phase coherent to the AM carrier. To be useful without restraints requires that this common frequency be a multiple of the highest common divisor of the available AM carriers. The common frequency should therefore be a multiple of 10 kHz.

The individual AM carrier signals are received by the vehicle receivers, and these signals in turn are each used to separately synthesize the common frequency. The common frequencies are therefore phase-coherent with the original AM carriers and effectively change the radiation from each of the AM stations to the common frequency. A virtual hyperbolic pattern is generated from each pair of AM stations received; and if the AM signals were phase coherent, the pattern will be stationary in space. It is then only necessary to measure the phase differences and count the number of times the phase pattern has repeated as the vehicle travels in order to determine a new location from a known starting point. Three pairs of signals (three station) are sufficient to remove any ambiguity in the determination of the new location from the old location (Fig. 4-3). Since the

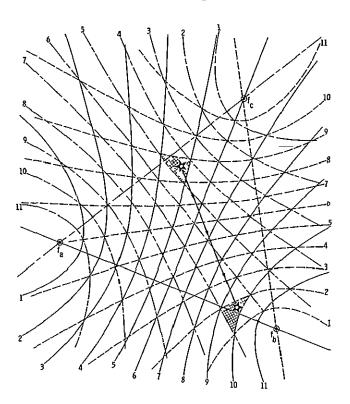


Fig. 4-3. Change in Receiver Location from Hyperbolic Area 5-9-5 to 10-2-7

spacing of the hyperbolic patterns is a function of the distance from the station pair, the relationship between the phase pattern counts and actual distances traveled would have to be computed. In this AVM system, the computational ability need not be placed in each vehicle. The computation of locations is reserved for the central command base where the location information is desired.

It is immaterial whether the hyperbolic grid pattern is fixed or moving as far as the location process is concerned. If fixed, then only the counts accumulated by moving receivers are necessary to determine the new positions from the old. If the grid is moving, then the difference in counts between the moving receivers and a stationary receiver is all that is required. Besides the magnitude of the counts, it is also necessary to know the "direction" of passage of the hyperbola of constant phase difference. The hyperbolas always move from the higher frequency source toward the lower frequency. If the hyperbolas are stationary, the vehicle's movement toward one source will tend to increase the apparent frequency from that source while decreasing the frequency of the other. Therefore an assignment can be made as to which direction is to be called a positive count and which a negative count.

C. Vehicle Equipment Requirements

A block diagram of one of the receivers to be installed in the vehicles is shown in Fig. 4-4.

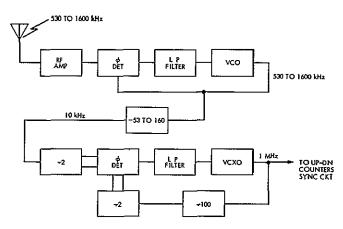


Fig. 4-4. Phase-Locked Loop AM Receiver on Vehicle for Hyperbolic AVM Technique

Three of these receivers are required for each vehicle. A conventional RF amplifier is used to provide selectivity and gain of the desired AM signal applied to the phase detector of the phase-lock loop (PLL). The voltage-controlled oscillator frequency in the PLL is adjusted to run at the same frequency as the AM station carrier. The oscillator output is divided by a variable modulus counter (-53 to 160) so as to produce an output frequency of 10 kHz. The 10 kHz signal is applied to a flipflop which provides a square-wave of 5 kHz used as the reference input to the phase detector of the frequency multiplying PLL. A 1 MHz voltagecontrolled crystal oscillator is phase-locked to the 5 kHz reference by dividing the oscillator frequency by 200 to produce a second 5 kHz signal which is compared to the reference. Therefore, the l MHz signal is phase-locked to the AM carrier frequency so that the phase relationship between the 1 MHz and the carrier is repeated at least every 53 to 160 cycles of the AM carrier.

Three such receivers, each tuned to a different AM station, will produce three separate 1 MHz

signals, each phase-coherent with the appropriate AM carrier.

The problem then remains to determine the ID number and direction of the hyperbola that is either traversing or being traversed by the vehicle. As stated previously, the measurement of the frequency difference and the determination of which is the greater frequency are required. The technique selected to determine the frequency difference and also to yield information as to which is the higher or lower frequency is to use an up-down counter in which one frequency provides incrementing pulses and the other decrementing pulses. The state of the counter should then indicate the integrated frequency difference between the two frequencies which is the algebraic sum of the hyperbola of constant phase difference traversed.

The up-down counter must respond to every incrementing and decrementing pulse because any pulse missed will displace the measured location by one unit in the hyperbolic grid. In order to prevent the uncertainty in the up-down counter which could be caused by the simultaneous arrival of up and down pulses, resynchronization of the 1 MHz pulses was required. A synchronizing frequency at least four times the frequency to be counted is required to assure that no pulse is lost or split. The logic for resynchronizing to 4.192 MHz is shown in Fig. 4-5. The logic discards both incrementing and decrementing pulses which are inputs to the same up-down counter and arrive in the same synchronizing interval.

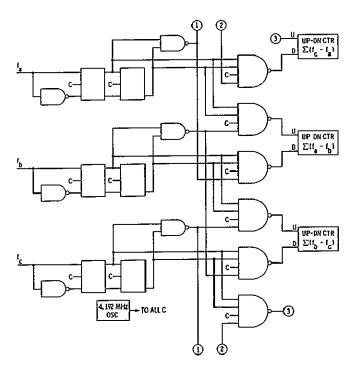


Fig. 4-5. Up-Down Counters Sync Logic for Hyperbolic AVM Technique

Each of the three counters in the receiver maintains a count which is the integrated algebraic sum of the apparent frequency difference between a pair of AM stations each nominally radiating at the common frequency. Part of this frequency difference is due to the AM stations not being phase coherent

(1.e., not exactly on the assigned frequency) and part is due to vehicular motion.

D. Vehicle Location Method

If three AM stations, A, B, and C, are monitored (Fig. 4-3) and the transformation of the carriers yields three common frequencies f_a, f_b, and f_c, then the three counters in the vehicles will accumulate counts N in a time t in accordance with:

$$N_{a} = (f_{a} - f_{b})t + V_{ab} (f)t \times F(x, y) = C$$

$$N_{b} = (f_{b} - f_{c})t + V_{bc} (f)t \times G(x, y) - C$$

$$N_{c} = (f_{c} - f_{a})t + V_{ca} (f)t \times H(x, y) - C$$

$$C = 3 \times 10^{9} \text{ m/sec}$$

where f is the common frequency, V is the vehicle velocity component parallel to the baseline of the station pair, and F, G, and H are general equations of the second degree (describing the three families of hyperbolas) in terms of X and Y which are the geographical location of the vehicle in an arbitrary orthogonal coordinate system. This system of equations does not yield an explicit analytic solution for the location in terms of X and Y. It does indicate the separability of the counts due to slight differences in the common frequency and the counts caused by vehicle motion. Counting is negligibly influenced by the difference in frequency of fa, fb, or fc.

At the base, the location process is initialized by first receiving the actual geographical location (in X and Y) of the vehicle and the initial content of the three counters (called Nai, Nbi, and Nci, respectively). The coordinates in X and Y and the counter states are stored. The counter states of the stationary receiver are also stored at the same instant. An explicit calculation is then made using the X-Y location and the coordinates of the AM stations which yield the location of the vehicle in terms of the parametric families of the hyperbolas. Each hyperbola in each family is numbered, and the results of this calculation give the location in three integers which represent the nearest hyperbola of each family.

Subsequent locations are determined by receiving the current state of the three counters from the vehicle. First, the initial state of the vehicle counters is subtracted from the current state, and second, the change in the state of the stationary receiver counters (from the initializing time to the current time) is determined and subtracted to yield the change in each of the hyperbolic coordinates caused by vehicle motion. The new X-Y coordinates of the vehicle location are then calculated with an iterative least-squares algorithm. The algorithm uses the old X-Y location and develops the required changes in X and Y so that the calculated new position will have the same hyperbolic coordinates as those determined for the vehicle from the current counter states. This method was chosen over an analytic technique as it yields a "most likely" solution in less time than an analytic method which has the additional disadvantage of having several pairs of coordinates as solutions.

Only two of the three available hyperbolic coordinates are necessary in all of the calculations as the third coordinate is not independent. The third coordinate does provide a check in that the sum of the hyperbolic coordinates should be a constant plus or minus one. Additionally, for locations near the vertex (the one AM station common to each hyperbolic family), the algorithm may become divergent and another set of coordinates should be used.

E. Accuracy Analysis

All AM broadcast stations in the United States operate on assigned carrier frequencies which are multiples of 10 kHz in the frequency region between 530 and 1600 kHz. The FCC requires that the actual carrier frequency be within 20 Hz of the assigned frequency. If all the AM stations within a given geographical area were exactly on the assigned frequency, the relationship between any two stations could be expressed as:

The carriers could be said to be phase-coherent in that the phase relationships between the two carriers are repeated every n + p cycles for one carrier and every n cycles for the other. If this condition is maintained, it is then possible to synthesize another frequency, which is also a multiple of 10 kHz which is phase-coherent to each of the carriers within the area.

The 10 kHz can be multiplied to another frequency, say 1 MHz, which will be phased coherent with the original carrier. Since the FCC allows a frequency tolerance of 20 Hz, the synthesized 1 MHz signal will have a tolerance of:

(2)
$$\pm X Hz = \pm 20 Hz (10^6 Hz)/f Hz$$
, where

f is the AM carrier frequency.

Therefore X can vary between 39 and 12 Hz, depending upon the frequency of the AM broadcasting carrier. It is therefore possible that a pair of AM stations could cause a beat frequency between the two "normalized" carriers approaching 80 Hz. The impact of the frequency difference is principally upon the equipment design, the sampling rate for location purposes, and the amount of information that must be transmitted from the vehicle. These effects will be discussed later.

A secondary effect of the AM carrier being off frequency and thereby causing the 1 MHz to be slightly off is that the location process will be reduced in precision. A wavelength of the actual frequency will be slightly shorter or longer than expected by up to 39 parts per million. This error would be on the order of 1 meter on the baseline connecting a station pair with a separation of 30 km and up to 2 meters some 60 km away from either station and therefore negligible.

F. System Data Requirements and Polling Intervals

System considerations determine how much information is needed from each vehicle and how often it should be sent. Prior work in automatic vehicle monitoring has usually emphasized the fixed-rate polling method of interrogating vehicles

to determine locations. If the polling method allows any or all vehicles to travel at maximum speed and still be located to the ultimate precision, the information flow is maximized from each vehicle. If an average speed is assumed for the fleet of vehicles, then high-speed vehicles will not be located to the precision available, and parked or slowly moving vehicles will be transmitting much redundant data. Volunteer methods wherein the vehicle initiates a data transmission whenever a significant change in location has occurred require means to avoid contention and must also send additional data to identify which vehicle is transmitting. An adaptive polling technique whereby high-speed vehicles are interrogated at much shorter intervals and where average and slowly moving or parked vehicles are infrequently sampled is quite easily mechanized. The simplest polling technique requires that the central control transmit incrementing pulses (tones, or tone bursts) to all vehicles which count and accumulate these incremental signals. When the number of signals received matches the number assigned to the vehicle, a data transmission is initiated from the vehicle. The inclusion of a respond or do-notrespond pulse, tone, or burst with the incrementing signal will tell the vehicle whether data is required or not. Conversely, a vehicle which had been immobile could request inclusion in the next polling sequence by responding with an appropriate signal regardless of the command not to send data.

The amount that the AM carriers are off frequency together with the sampling intervals of the vehicles determines the number of bits required to be sent to the central command for location purposes. The length of each of the up-down counters is therefore determined by this number of bits. As stated before, two low-end of the band AM stations could cause an 80 Hz beat frequency in the synthesized I MHz signals which would cause a total count of about 288,000 per hour to be accumulated. A vehicle cruising at 30 km/hr along the baseline of a station pair would accumulate a count of 200 per hour due in a stationary pattern. A recent Department of Transportation requirement for vehicle monitoring required that 25% of the vehicle fleet be located each 15 sec and the remainder located each minute. The total counts for each station pair under these requirements would be 1200 for 15 sec and about 5000 for the minute interval. To accommodate this requirement, the length of the up-down counters would have to be 13 bits each. Some 40 to 50 bits per interrogation would have to be transmitted from each vehicle if a preamble, parity checks, or error detection information was added to the basic 39 bits of location data. Assuming the higher number over a voice channel from the vehicle which could conservatively accommodate 1200 bit/sec, then 24 vehicles could be interrogated and located each second. Again using the DOT requirement, 820 vehicles could be located each minute, with 205 of the vehicles being located each 15 seconds, or four times each minute for a total of 1435 locations each minute (1440 maximum). It should be realized that these are theoretical maximum numbers and neglect the practical realities of turn-on stabilization time of mobile transmitters and also assumes another channel for interrogation purposes.

The amount of data required from each vehicle could be reduced by about two-thirds if the AM

stations being utilized for location maintained phase coherency. A stationary location pattern would be generated, and the up-down counter lengths could be reduced substantially as only counts due to vehicle motion would be accumulated. Only a relatively small amount of equipment would be necessary at each AM station to maintain the carriers coherent to one another. This could be done by either a common synchronizing signal or with each station referencing the carrier frequency to the other two carriers by counting and phase-locked loop techniques. In either case, the control range of the added equipment must not allow the carrier to be pulled outside of the 20 cycle FCC tolerance limit.

Some operational difficulties that might occur with this type of vehicle location system could be caused by momentary outages of one of the AM carriers, or transmitter switchover when power is increased or reduced. In some smaller metropolitan areas it may be difficult to find three "24-hr" broadcast stations with appropriate geometry, and different configurations may have to be used for day and night operation.

G. Computer Simulation Programs

Two computer programs, a location simulator called LOCATE (Table 4-1), and a vehicle count

Table 4-1. Vehicle Location Simulator Program, LOCATE

```
V_JCATE[[]]V

V_LOCATE

[1] XS**+XS,XS[1]
[2] Y7**+XS,YC[1]
[3] J**-30
[6] X**-71[1]
[5] Y*-21[2]
[6] RF L*1
[7] D**((X-XS[1])**D[L])**-((X-XS[1])**D[1])
[8] D**-D[1]
[9] C<*-30
[10] RE A[L]**((X-XS[L])**D[L])**-((X-XS[1])**D[1])
[11] PC***(0 (CRR[1]-LAN[1])**,(LA [3]-CCT[3])**300
[12] B[L]**((Y-Y-L[1))**D[L])**-((Y-Y-C[1])**D[1])
[13] CY[L]**-(D[L]**-D[1])**-((Y-Y-C[1])**D[1])
[14] **-RE***((X*X-X)**(*/B*2))**-((*/X*X)**(*/A*Z)))**DP***-((*/A*2)**(*/B*2))**-((*/X*X)**(*/A*Z)))**DP***-(13] X**-AX
[15] D***-((*/A**)**(*/B*2))**-((*/X*X)**(*/A*Z)))**DP***-(13] X**-AX
[20] **-RE***(((AX)**)**-0)**((AY)**-10)**
[21] **OP***, AND YARE***, OLD
[23] **AX AND YARE***(X-X), (Y-Y)

**OP****(Y-X)
**OP***(Y-X)
**OP****(Y-X)
**OP***(Y-X)
**OP***(Y-
```

generator called PIG (Table 4-2) were written to test the location method. A SETAUP program (Table 4-3) was also written which stores the locations of the AM stations in the arbitrary coordinate system and determines the lengths of the baselines connecting the stations.

In order to make the simulation more realistic, three AM stations in the Los Angeles, CA, metropolitan area were chosen: KFI (640 kHz) located in the Buena Park-La Mirada area southwest of the Los Angeles Civic Center; KNX (1070 kHz) in Torrance which is south and slightly west of the Civic Center; and KMPC (710 kHz) with transmitter in North Hollywood which is northwest of the Civic Center. The baseline distances are: KFI-KNX 31 km, KNX-KMPC 35 km; and KMPC-KFI 51 km.

Table 4-2. Vehicle Hyperbolic Lane Count Generator Program, PIG

Table 4-3. AM Broadcast Station Locations and Baseline Lengths Program, SETΔUP

An arbitrary origin for the coordinate system was located some 8 km (5 miles) in the Pacific west of the Palos Verdes peninsula such that most of the area of interest for location purposes would be in the first quadrant of the X-Y system. The origin is at 118°30'W and 33°45'N.

The location (LOCATE) program and the vehicle count generator (PIG) program were written in APL computer language. The vehicle count generator requires two input variables. These are the initial and terminal values in meters of the X-Y coordinates representing each change of position of the vehicle. The hyperbolic coordinates of each location are calculated and the integral difference determined. The difference represents the counts that would be accumulated by a vehicle in traveling from the initial to the terminal location of each leg of travel. The count difference and the initial location are the inputs to the LOCATE routine which determines the new location. The new location is determined by a reiterative technique whereby the deltas of X and Y which would satisfy

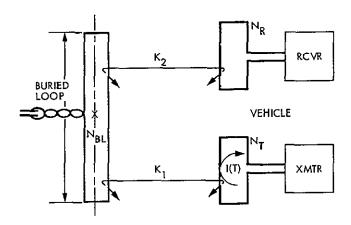
the change in counts of the hyperbolic coordinates are calculated and added to the initial location.

H. Conclusions

A vehicle location method for use in metropolitan areas is available, which uses the carrier signal information from three currently operating AM broadcasting stations located near the urban perimeters. Two advantages of the method are that (1)

dedicated transmitters for location purposes are not required and that (2) the phase-lock-loop counting receivers installed in the vehicles are inexpensive. The mathematical technique for vehicle location is relatively simple and requires only that the initial location be known. While the technique is not explicit, location can be determined with adequate accuracy to the precision implied by the geometric configurations of the AM stations used and the frequency of the synthesized signal used for phase comparison.

II. VEHICLE LOCATION BY MEANS OF BURIED LOOPS*


Lawrence J. Zottarelli

With the exception of the cut-to-fit development method, the evaluation of the buried loop* AVM system requires as a basis some mathematically analytic relations. Since such relations do not seem readily available in the open literature, an analytic approach was developed to determine the effects of loop spacings, dimensions, and height above roadway on RF signal detection and on identification of the vehicle's location.

A. Relationships of Three-Loop Vehicle Location System

The approach is to find the mutual inductance of the vehicle's transmitter and receiver loops through the intermediary of the passive buried loop. A typical three-loop configuration is shown in Fig. 4-6. The assumptions are

- The XMTR and RCVR are sufficiently remote from each other so that direct mutual inductance is of secondary importance.
- The buried loop is tuned with a capacitor to the vehicle transmitter frequency, and the buried loop resistance is directly proportional to the number of turns.
- 3. The loops are in an isotropic medium.

I(T) = XMTR CURRENT

K, = XMTR/BL COUPLING

K2 = RCVR/BL COUPLING

 $N_R = RCVR TURNS$

 $N_{\tau} = XMTR TURNS$

NRL = BURIED LOOP TURNS

R_{BL} = BL RESISTANCE

Fig. 4-6. Configuration of Vehicle's Transmitting and Receiving Loops Relative to Buried Loop

1. Analytic Relations of Loop Mutual Inductances

(1) The magnetic flux lines Φ coupling the buried loop (BL) due to the XMTR current I(T) at point P is

$$\Phi_{BL} = K_1 \cdot N_T \cdot I(T)$$

where

(2) The voltage E coupled to the buried loop with width W is

$$\begin{split} &\mathbb{E}_{\mathrm{BL}}(\mathrm{T}) = \mathrm{N_{BL}} \, \mathrm{d}\Phi_{\mathrm{BL}} / \mathrm{d}t = \\ &\mathbb{W} \cdot \mathrm{K_1} \cdot \mathrm{N_{T^*}} \, \mathrm{N_{BL}} \cdot \mathbb{I}_{P^*} \cos(\mathrm{wt}) \end{split}$$

(3) The current in the buried loop (which is at resonance), with resistance R, is

$$I_{BL}(T) = E_{BL}(T)/R_{BL} = \frac{\left[K_1 \cdot N_T \cdot N_{BL} \cdot W \cdot I_P \cdot \cos(wt)\right]}{R_{BL}}$$

(4) The flux lines coupling K₂ the RCVR due to the buried loop is

$$\Phi_{\text{RCVR}}(\mathbf{T}) = K_2 \cdot N_{\text{BL}} \cdot I_{\text{BL}}(\mathbf{T})$$

substituting

$$\Phi_{RCVR}(T) = \left[-K_1 \cdot K_2 \cdot N_T \cdot (N_{BL})^2 \cdot W \cdot I_{p'} \cdot \cos(wt)\right] / K_{BL}$$

(5) The voltage at the RCVR due to the buried loop is

$$E_{RCVR} = N_R \frac{d\Phi_{RCVR}}{dt} = \frac{\left[K_1 \cdot K_2 \cdot N_T \cdot N_{BL} \cdot N_R \cdot (W I_P)^2 \cdot \sin(wt)\right]}{R_{LOOP}}$$

allowing now the resistance per turn (R/turn)

$$R_{loop} = (R/turn) \cdot N_{BL}$$

$$QED \cdot E_{RCVR} = \left[-K_{1} \cdot K_{2} \cdot N_{T} \cdot N_{BL} \cdot N_{R} \cdot (W I_{p})^{2} \cdot \sin(wt) \right] / (R/turn)$$

^{*}U.S. Patent 3,772,691, "Automatic Vehicle Location System."

2. Comments. The reasoning involved in deriving the relationship permit the geometrical and electrical aspects of the solution to be separable and simply multiplicative. If $E_{\texttt{rcvr}}$ is to be of the form MdI/dt then:

and

I(t) becomes IP cos(wt)

B. Magnetic Field Generated by Rectangular Loop of Wire

1. Development of Flux Density Equations. It is desired to find the flux intensity B at a point P(x, y, z) generated by the rectangular loop of wire, with the X-axis direction across the lane width and the Y-axis in the direction of roadway travel.

Given:

- (1) A rectangular loop of wire of length L and width W, with the lane width equal to the buried loops length.
- (2) The loop is in a free-space plane (of x, y, z rectangular coordinates) having equations z = 0.
- (3) The loop has a DC current of I.
- (4) The coordinate space has its origin at (0,0,0), which is the center of the loop wire.
- (5) The linkage or mutual inductance of two parallel planar loops (not necessarily coplanar) lying in x, y-plane uses only the z-component of flux density.

Method:

- (1) Decompose the loop into four linear segments
- (2) Apply the Biot Savart law from each segment to the point of interest

$$\left| \mathbf{B}_{\mathbf{p}} \right| = \left(\frac{\mu}{4\pi} \right) \cdot \left(\frac{\mathbf{I}}{\mathbf{a}} \right) \cdot (\cos Y - \cos \alpha)$$

(3) Decompose the flux density into its vector components, and sum the components.

The complete mathematical analysis is presented in Ref. 1.

C. Computer Programs for Calculating Mutual Inductance

Two programs are used to generate the mutual inductance of rectangular wire loops. The programs LOOPS and CARCUP are written in the Stanford Artificial Intelligence Language, "SAIL," which is an extended ALGOL 60.

1. "LOOPS" and "CARCUP" Programs.
The "LOOPS" program is used to find (1) the
XMTR/RCVR direct mutual coupling, (2) the self
inductance of a loop, and (3) the direct coupling

between the Buried Loop and the XMTR or between the Buried Loop and the RCVR or between two Buried Loops. The "CARCUP" program is used to find the mutual coupling between the XMTR and the RCVR via the Buried Loop, the inner workings of the two programs are similar, the program "CARCUP" is, in effect, the program "LOOPS" run twice. Both of the programs have Input/Output in common.

a. LOOPS Program. This program (Table 4-4) asks the user: (1) if he wants more detailed information, (2) to specify "how many steps," or data points, (3) where is the starting point of the pickup loop and what size is the loop (in terms of XMIN, XMAX, YMIN, YMAX) and how. high above the buried loop (in terms of Z), (4) to specify the aspect ratio of the buried loop, K.

The LOOPS program calculates and prints out the mutual inductance for the number of data points specified. Each successive data point represents the mutual inductance of the buried loop and pickup loop moving along the positive Y-direction (along the roadway lane) by 1/10 of its length (i.e., (YMAX-YMIN)/10). The mutual inductance is in relative units. To find the answer in henrys, multiply the answer by half the lane width (in meters), by 10-7, by the number of turns of the buried loop, and by the number of turns of the pickup loop.

b. CARCUP Program. This program (Table 4-5) asks the user: (1) if he wants more detailed information, (2) to specify "how many steps," or data point, (3) where is the starting point of the XMTR loop, and what is its size and how high above the buried loop (in terms of XTMIN, XTMAX, YTMIN, YTMAX, ZT); also where is the starting point of the RCVR loop and

Table 4-4. LOOPS Program for Mutual Inductance of Buried/Pickup Loops, and Sample Run

```
TYPE LODPS SAT

ONLOW

BEGIN TLOUPS

ONLOW

INTERRIAL INTEGEP EXIT *FDPEP.1

INTEGER 1,353,EFK,

ONCO

DEFINE RF="153*12";

ONLOW

DEFINE RF="153*12";

ONLOW

GHALXLANIN, MAY (**,7MIN, (MAX.,END.AB YARA,P,C,D,E HARBE-CC,DD,F,C)

SHAKALANIN, MAY (**,7MIN, (MAX.,END.AB YARA,P,C,D,E HARBE-CC,DD,F,C)

SHAKALANIN, MAY (**,7MIN, (MAX.,END.AB YARA,P,C,D,E HARBE-CC,DD,F,C)

ONSO

OUTSTRCTD OUT WHAT NOTES TYPE IN EITHER YES OP NO FOLLOWED BY

ONLOW

OF FERRIVE COUDLING SETURES TO CALCULATE THE FREE SPACE

RERIVE COUDLING SETURES TO FAIT OUTSTRCT

THE PURPOSE OF THIS PROBERM 1.5 TO CALCULATE THE FREE SPACE

RERIVE COUDLING SETURES TO FAIT OUTSTRCT

THE PURPOSE OF THIS PROBERM 1.5 TO CALCULATE THE FREE SPACE

RERIVE COUDLING SETURES TO FAIT OUTSTRCT

THE PURPOSE OF THIS PROBERM 1.5 TO CALCULATE THE FREE SPACE

RERIVE COUDLING SETURES TO FAIT OUTSTRCT

THE PURPOSE OF THIS PROBERM 1.5 TO CALCULATE THE FREE SPACE

RERIVE COUDLING SETURES TO FAIT OUTSTRCT

THE PURPOSE OF THIS PROBERM 1.5 TO CALCULATE THE FREE SPACE

RERIVE COUDLING SETURES TO HAVING THE LANG LENGTH IS

CONTON THE FOULDING SETURES TO MOVING THE LANG LUCATION OF THE

DEFINION IN SETURE SETURES TO MOVING THE PURPOSE DOD.

THE FINION IS THE CALCULATED FLUA IN PELATIVE FLUA LYITS

AND OF SI-CESSIVE STEPPING.

TO FINA THE ROTTOR FLUX IN VOLT SECONDS MULTIPLY THE DATA

DISTORMANY STEPS PEFERS TO MOVING THE PURPOSE DOD.

THE FINION IS THE CALCULATED FLUA IN PELATIVE FLUX LYITS

AND OF SI-CESSIVE STEPPING.

TO FINA THE ROTTOR FLUX IN VOLT SECONDS MULTIPLY THE DATA

DATA ONLOW OF THE PURPOSE OF THIS PURPOSE DOD.

CONCON OUTSTRC MAY STEPS ");

ONLOW OUTSTRC MAY "NOW ARRY STEPS ");

ONLOW OUTSTRC MAY "NOW ARRY STEPS ");

ONLOW OUTSTRC MAY "NOW ARREST OUTSTRCEF);

OUTSTRC MAY "NOW ARRY STEPS ");

ONLOW OUTSTRC MAY "NOW ARREST OUTSTRCEF);

OUTSTRC MAY "NOW ARRY STEPS ");

ONLOW OUTSTRC MAY "NOW ARREST OUTSTRCEF);

OUTSTRC MAY "NOW ARREST OUTSTRCEP);

OUTSTRC MAY "NOW ARREST OUTSTRCEP);

OUTSTRC MAY "NOW ARREST OUTSTRCEP);

OUTSTRC MAY "NOW ARREST OUTSTRCEPS TO MAY INCH AND
```

Table 4-4. (Continued)

```
04300
04400
04*00
04500
                                           Y+YMIN YA+CMAY-YMIN>/101
                                           YEND-YMIN-YA-O
T-0;24;0-0;
DUTSTPC72=>,2+REALCCANCCST+INCHWL>;ERK); BUTSTRCPF>;
                                       04700
04800
04900
04950
05000
05100
05200
05300
05400
05500
    05400
05700
05800
05900
06000
06100
06200
06300
06400
06500
                                          m+-(D/(E+DD))+(-B/H+R
BZ+(P+R+L+H)+(A+YA,
END,
                                           PROCEDUFE FLUTCUP
    05500
0650
06700
06800
06900
07000
                                          BEGIN
SETFORMAT(13:3),
WHILE Y GEQ YMIN AND Y LEQ (YEND-( 9999)+(YA)) DQ
DEGIN
THE Y GEQ XMIN AND X LEQ ( YMAX-( 999)+(XA))
                                                               WHILE X GEO XMIN AND X LEG ( YMAX-( 949)+(XA)) DD
    07100
07200
07300
07400
07500
07600
07700
07800
07900
03000
                                                                         BIZ; T+T+BI;X+Y+X8
                                                              END;
V(S3+T;X+ (MIN;Y-Y+YA;S+S+1;T+0
                                                  V(3.71) NO (2-10) DO (2-10
                                                              0+0+\(1),1+1+1
END,
OUTSTR(CVE(O)),
O+0+J+1, IF <1 MOD 5> = 0 THEN OUTSTR(RF),1+J
     03100
     03200
    08300
08400
08500
08550
08500
                                                    ENB.
                                           END,
FLUXCUP,
                                           END, END;
END "LOOPS"
      PUR LOGPS LAV
   DO YOU WHAT MOTES CTYPE IN EITHER YES OR HO FOLLOWED E. CAR PET) YES
            THE PUPPOSE OF THIS FEDERAN IS TO CALCULATE THE FREE SPACE
THE PUPPOCE OF THIS FEDERAM IS TO CALCULATE THE FREE SPACE RELATIVE COUNCING SETLECH TWO FILMT BUT NON COURANNS PECTRAGOLOR LODPS OF WHECKING SIDES OF WHICH ARE FABRILLED TO THE COORTION BENEFORNOE) IT IS TO BE APPLIED IN HUTOMOTIVE VEHICLE LOCATION HENCE THE TENDO OF THE FOLLOWING INTERDUCTION. THE LANG WITHIN IS THE X DIMENSION THE LANG LENGTH IS THE X DIMENSION THE LENGTH IS THE Z DIMENSION. THE WEITHOU DISTANCE SETVERN LOOPE IS THE Z DIMENSION. THE LENTED OF THE BUPIED LOOP IS HT COOPDINATES 0,000 THE WITHOUT OF THE BUPIED LOOP IS THE LANG WITH DIVIDED BY LENGTH.
  LENGTHY
MIN, MAY, MIN, MAY DETERMINE THE SIDES HAD LOCATION OF THE
PICTUP LOGP
ALL IMPUT DIMENSIONS HPE TO BE NORMALIZED TO HALF THE LANG
 WIDTH.

HOW MANY STEPS PEFEPS TO LOVING THE PICKUP LODP ALONG
THE LENG LENGTH COERCRALLY HAMY FROM ABOUT THE BUPIED LODP) BY
1/10 OF THE FICKUP LODE LENGTH AND THEN CALCULATEING ITS
NORMALIZEL 2 DIRECTION FOUDLING FROM THE INFIED LODP
THE PRINTOUT IS THE FALCULATED FLUY IN PELATIVE FLUY UNITS
AND OF COCCESSIVE STEPFINGS.
TO FIND THE HOTUHL FLUY, IN YOLT SECONDS MULTIPLY THE DATA
BY THE FOLLOWING FACTO?

(1) < (((CLANE WIDTH) / 2) >> (10 < - 7 >> )
WHERE I IS THE BUPIED LODE CHEPENT IN AFPS
HORE INTELLIBED THE IN METERS
HOW MANY STEPS 100
   WIDTH.
     YMIH=-1
     KMAN=1 000
     YMIN=-0001 00
     MAX=1
     2=0
     K=1
                                                                                                                                                                                                                                                                                        .10299
10299
10391
-.401
-178
-9509-1
-5699-1
-3699-1
-2539-1
-1349-1
                                                                                       .10209
10209
- 59091
-.770
- 281
                                                                                                                                                           10279
10279
- 30131
                               .34392
10299
                                                                                                                                                                                                                            10299
                                                                                                                                                                                                                           - 19391

- 489

- 205

- 107

- 2669-1

- 2729-1

- 1424-1

- 1059-1

- 8359-2

- 5329-2

- 3019-2

- 2559-2
                          .10279
14001.-
                                                                                                                                                          --607
--603
                       -.10001

-.334

-.355

-.8513-1

-.5193-1

-.2059-1

-.1709-1

-.1709-1

-.9709-2

-.9059-2

-.4039-2

-.4039-2
                                                                                       - 281
- 135
- 7659-1
- 4759-1
- 3159-1
- 2203-1
- 1209-1
                                                                                                                                                          -.120
                                                                                                                                                        - 6919-1
- 4959-1
- 2929-1
- 2069-1
- 1519-1
                                                                                                                                                                                                                                                                                             - 7963-2
- 6329-2
- 5112-2
                                                                                            -.9_2J-2
-.7249-2
                         - (59-2 - (64-2 - 59)
- 005+2 - (57)+2 - 57)
- 040-2 - (47)-2 - (5)
- 400+2 - 389-2 - 37,
- 3359-2 - 3239-2 - 31,
- 2820-2 - 2720-2 - 20,
- 2820-2 - 2520-2 - 00,
- 2850-2 - 600 DF CHIL ENECUTION
                                                                                                                                                          -..529-2
- 3749-2
- 3129-2
- 3-39-2
                                                                                                                                                                                                                              - 2559-2
-.2179-2
```

Table 4-5. CARCUP Program for Mutual Inductance of XMTR/RCVR Loops, and Sample Run

```
TYPE CARCUP SAI

00100 PEGIN 'CARCUP'

00200 INTERNAL INTEGER EXIT ,FORER.,

00300 INTERNER IJ,90:2,91BRK;

00400 DEFINE RE-'(154'12')

00500 REAL Y,YIMIN,XIMAX,Y,7IMIN,YTMAX,YEND,AB,YA,AB,B,C,D,E,AA,EB+CC,D
D,F,
00600
00700
00800
00900
                                  G.H.K.L.M.N.O.P.R.T.BC./ES.NO.ARMIN.XRMAX.YRMIN.YRMAX.ZT.ZP.
                                 REAL XMIN, YMIN, YMAY,
STRING STI
DUTSTRC'DO YOU WANT NOTES CTYPE IN EITHER YES OR NO THEN CHR PET
 01000
NCTT))/R
                                                                 HERE

HT = NUMBER OF TUPNO ON THE TRANCHITTER LOOP

NRL = NUMBER OF TUPNS ON THE BURIED LOOP

NR = NUMBER OF TUPNS ON THE PECIEVER LOOP

LAMF WIGHT IS IN METERS

U = 20-12

F = TRANSMITTER FPEQUENCY (MERIZ,

IP = THE PERF TRANSMITTER CUPRENT

SIN/UT) = /OU KNOW WHAT

R = THE PER TURN PESISTANCE OF THE BURIED LOOP

> DEVIDE, + = NULTIPLY, t = 10 THE POWER OF

"KRP),

"KED LAND STEPS"...
 01200
01300
01400
01500
01500
01600
01700
01800
 02000
02100
02200
 02300
02400
02500
                                 OUTSIP("HON WHIN STEES "),
O-(10+(FEALSCHN((ST+INCHWL),BFK))), GUISTR(RF),
 02506
02790
02800
02900
                                  SEGIN
FEAL ARFA? VEI QIDREHL ARPH: WEI (Q-4)]
                               DUTSTR("XTHIN=") ATH'N-FERLIGHT(ST-INTHLL), FCY), GHTSTR("DUTSTR("XTHIN=") ATH'N-FERLIGHT(ST-INTHLL), FCY), GHTSTR("DUTSTR("(TMRA="))ATMS -PERLICHK(ST-INTHLL), FFY), GHTSTR("DUTSTR("(TMRA="))ATHLCREELICHK(ST-INCHL), FFY), GHTSTR("DUTSTR(")")ATHLCREELICHK(ST-INCHL), FFY), GHTSTR("DUTSTR("FMTN=")ARMINPERLICHK(ST-INCHL), FFY), GHTSTR("DUTSTR("FMTN=")ARMINPERLICHK(ST-INCHL), FFY), GHTSTR("DUTSTR("YHIN=")ARMINPERLICHK(ST-INCHL), FFY), GHTSTR("GUTSTR("YHIN=")ARMINPERLICHK(ST-INCHL), FFY), GHTSTR("GUTSTR("YHIN=")ARMINPERLICHK(ST-INCHL), FFY), GHTSTR("GUTSTR("XF"), GHTSTR("GUTSTR("XF"), FFY), GHTSTR("GUTSTR("XF"), GHTSTR("FF)), GHTSTR("ATH), GHTSTR("ATH), GHTSTR("ATH), GHTSTR("ATH), GHTSTR("ATH), GHTSTR("FF), GHTSTR("ATH), GHTSTR("ATH), GHTSTR("FF), GHTSTR("ATH), GHTSTR("ATH)
 02900
93000
03100
93200
93300
93400
93500
 03600
03700
03700
03700
03900
04000
                                  PROCEDURE BIZ,
BEGIN
 04209
04300
04400
                                         04500
04600
04700
04800
 04900
05000
05100
 05200
05200
05400
05400
05709
05600
05900
05900
06100
06200
06400
06400
06500
06500
06900
07100
07100
07200
07300
07400
07400
                                            BZ+(P+R+L+M)+ A+/A;
                                   END
                                   PROCEDURE FLUXCUP,
                                   BEGIN WHILE / GEO YMIN AND Y LEO (YEND-( 9999>+(\A>) DO
                                         WHILE A GEO XMIN AND V LEO ( XMRX-(.949)*(XR)) DD BEGIN
BEGIN
BIZ; T+T+BZ,V-V-XAR
END,
VSSJ+T,Y+XMIN; +Y+YA C+S+1;T+0
                                            MHILE J LEG (S-10) DD
                                           BEGIN
WHILE (0+10>>1 DB
                                                   BEGIN
0+0+V[1]+I+I+1
                                          0+0+V[1],1+I+1

000,

0(1-10]-W[1-10]+0,

0+0,J+J+1,1+J,

END
                                    END,
Z+1.WHILE Z LEQ (Q-9) DO
  07700
  07500
07900
                                                    7+7+1
  08000
 08000
08100
08200
09300
09500
08500
08700
08300
08900
09000
                                   THO, S-1, 0+0
A*YTMIN-YA*C.7MAX-YTMIN>/10, 1+YTMIN /A-(/TMAX-/TMIN)/10,
YEND+YTMIN+YA*C.7MAX-YTMIN-/MIN-XTMIN, NAA-XTMAX-
                                FLUXCUP,

T+0.5+1.0+01

X+(XMIN-XAR-YSMAX-APMIN)/10,/+YRMIN-) END-YRMIN+YR+0,

YA- YRMAN-IFMIN-XI0,YMIN-YFMIN YMIN-AF,IIN AMAX-YRMRX,

FLUXCUP,

FLUXCUP,

SETFORMAT(13,33,1+1)

WHILE I LEG (Q-9) DD

BEGIN

DUTSTR(CVE(WCII))

IF (I MOD 5)=0 THEM DUTSTF(PF),

I+1+1

END,
  09100
 09200
09400
09500
09500
09700
09900
                                                    END.
                                   END END
```

Table 4-5. (Continued)

.RUM CARCUP.SAV DO YOU WHNT NOTES (1/PE IN EITHER YES OP NO THEN CAR PET) YES IF FIND THE ACTUAL GUTPUT VOLTS, MULTIFL/ THE DATA BY THE FOLLOWING -(NTANEL-NR+CC(101C-7)>>CLANG WIDTH/2>+2>>2>>CUR2>+(IF:C>+3)N(WT>) R WHERE NT = NUMBER OF TURNS ON THE TRANSMITTER LOOP NRE = NUMBER OF TURNS ON THE BURIED LOOP NR = NUMBER OF TURNS ON THE RECIEVER LOOP LANG WIDTH IS IN METERS W = 2+PIFF F = TRANSMITTER FREQUENCY (HERTZ) IP = THE PERT TURN RESISTANCE OF THE BUPIED LOOP / = DEVIDE, + = MULTIPLY, + = TO THE FOWER OF HOW MANY STEPS 30 ATMINE 45 XIMAX- S5 YTMINE- 05 ZT=.1 XPHINE-.55 XRMAX-.45 YRMINE-.05 ZR=.1 K* 4 119-1 119-1 120-1 1209-1 1209-1 1209-1 1210-1 1200-1 1300-1 1300-1 1300-1 1210-1 1200-1 1300-1 1300-1 1300-1 1300-1 1200-1 13

what is its size and how high above the buried loop (in terms of XRMIN, XRMAX, YRMIN, YRMAX, ZR), (4) to specify the aspect ratio of the buried loop, K.

The CARCUP program calculates and prints out the mutual inductance for the number of data points specified. Each successive data point represents the mutual inductance of the XMTR/RGVR through the buried loop by moving along the positive Y-direction (along the roadway lane) by 1/10 of the XMTR length. The results are in units of relative mutual inductance and to get real answers, answer "yes" when the program asks if you want more detailed information.

2. Method of computing. The inputs to the program (XMAX, YMIN, etc.) describe the area swept out by the motion of the pickup loop(s). The program calculates the mutual inductance between the entire buried loop and portions of the swept-out area using elements of area 1/10 the pickup loop width by 1/10 the pickup loop length.

 $\Delta X = (XMAX-XMIN)/10$ $\Delta Y = (YMAX-YMIN)/10$

The swept-out area is divided into portions having dimensions ΔY by (XMAX-XMIN). There are (10 + "how many steps") portions. The mutual inductances are calculated and stored for those portions.

Summing the values of 10 successive portions yields the mutual inductance of the buried loop to one particular position of the pickup loop.

The CARCUP program sums the corresponding 10 successive portions of both XMTR and RCVR and multiplies them together to get the overall mutual inductances. There are two main subroutine procedures used to calculate the mutual inductances, BIZ and FLUXCUP. With respect to the

BIZ subroutine, the flux density is calculated for that corner of the area XA by YA which is closest to the point (XMIN, YMIN). With respect to the FLUXCUP subroutine, FLUXCUP in the LOOPS program differs from FLUXCUP in the CARCUP program, the difference being in form only for the purpose of minimizing data handling.

D. Optimum Relative Configuration of Three-Loop AVM System

- 1. Buried loop interaction with adjacent coplanar loops. The results seem to favor loops having aspect ratios of ≥ 1. However, the practical aspect of packing the buried loops as densely as possible is a primary consideration. At any rate, if K is greater than 0.025, a center-to-center spacing of the buried loops of greater than 4 x K (i.e., 2 times the loop width along the lane) results in a coupling of less than 5% of the same loops superimposed.
- 2. XMTR and RCVR direct coupling. If it is presumed that the XMTR and RCVR loops "ought to be the same," then the results seem to favor loops having aspect ratios ≥1. That is, the loops should be rectangular and have their "small ends" pointed toward one another. The XMTR and RCVR on the vehicle are small compared to the buried loop. The choice of their aspect ratios has a limit to avoid extending beyond the buried loop.

At any height, sensors having more turns on smaller loops are as effective as ones with large loops having fewer turns. At any height the coupling varies with later position, being highest near 0.8½ from center to end of the buried loop. The variation between these limits is about 10%.

If a sensor loop is placed lower than the optimum height, it results in overcoupling and relatively high noise signal, thus also reducing buried loop packing density. This is most pronounced for buried loop aspect ratios much greater than pickup loop size. XMTR and RCVR coils of differing shapes will function and may permit three-loop systems whereby the smallest moving coil may be made the optimal for signal to "noise" ratio.

3. Expected real-life signal levels. The following configurations and conditions are assumed: (1) Roadway with lane width 2l = 3 meters, (2) buried loops with aspect ratio K = 0.1 and separated by $4 \times k \times \ell$, (3) pickup loops (XMTR and RCVR) having sides $P = 0.1\ell$, height $Z = 0.1\ell$, and separated by ℓ . (4) All loops have 10 turns each of #27 wire and resistivity of 1.36 ohm/meter. (5) The transmitter is producing 100 kHz at 1 amp peak. (6) Self-inductance of buried loop 495 microhenrys. (7) Mutual inductance of two buried loops 20.25 microhenrys. (8) XMTR/RCVR selfinductance 7.87 microhenrys each. (9) Direct mutual inductance of XMTR and RCVR 0.0045 microhenry. (10) Three-loop system maximum mutual inductance 1.24 microhenrys. (11) Voltage signals produced by XMTR/RCVR direct coupling 2.8 mV cos wt. (12) Voltage signals produced by three-loop system -0.78 mV sin wt.

4. <u>Comments</u>. The direct coupling of the ransmitter and receiver produces a voltage at the receiver of contant peak amplitude, having the transmitter frequency and shifted in phase by

+90 degrees. The three-loop system response envelope is a function of the vehicle speed. The output frequency is shifted 180 degrees with respect to the input current frequency.

REFERENCE

 Zottarelli, L. J., "Burried Loops," JPL Interoffice Memo addressed to G. R. Hansen, 1974.