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ABSTRACT

I
Problems related to the guidance of an autonomous rover

for unmanned planetary explorat i on have been investigated.

i'	 Included in these studies were: simulation on an interactive
graphics computer system of the Rapid Estimation Technique for

r	 detection of discrete obstacles; incorporation of a simultaneous

Bayesian estimate of states and inputs in the Rapid Estimation

Scheme; development of methods for estimating actual laser

rangefinder errors and their application to date provided by

Jet Propulsion Laboratory; and modification of a path selection

system simulation computer code for evaluation of a hazard
R	 detection system based on laser rangefinder data.
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INTRODUCTION

A thorough exploration of planets or other extraterrestrial bodies

!1	 by unmanned data acquisition systems must deal with formidable control

lU`	 problems posed by the long (9 to 45 minutes for Mars and more in other

cases) round-trip communications delay. Time delays of these orders of

magnitude preclude all but the most rudimentary and short range missions

unless a high degree of automation is achieved. An augmented Viking

mission or a sophisticated sample return program aspiring to the explora-

tion of a region of 500-1000/cm diameter would require the availability of

an autonomous rover requiring only occasional earth control.

In looking forward to detailed unmanned exploration of the planets,
there are two prerequisites. First is the requirement that a high mobility
rover or relocatable device be available. The higher the mobility (or

capability of the device to deal with irregular and difficult terrain

features), the more available will be the paths to the desired targets. A

rover of low mobility may well find itself with no acceptable paths in many

instances.

Second, a path selection system of capability comparable to the mobility 	 !

must be available. By path selection system are implied: (a) -he terrain 	 i

sensor(s) which are to acquire the necessary terrain data, (b) the terrain

modeler which is to process the acquired data with the goal of describing
the terrain features, and (c) the path selection algorithm to determine the

specific path to be followed towards the target. Unless the path selection

system can take full advantage of the rover's terrain negotiating capabilities,
such a mission will be made unnecessarily lengthy in time, or desired objec-
tives will not be achieved, or, in the worst case, the rover will be im-
mobilized when in fact passable paths are available. On the other hand, if

the path selection system is insufficiently discriminating, the rover may

follow a dangerous path with the risk of a catastrophic accident.

The research program described herein has been directed towards

problems of path selection including data acquisition and processing, path
selection algorithms and the corresponding integrated path selection systems.

The program involves two major tasks: (a) terrain and obstacle detec-

tion and interpretation and (b) path selection system simulation.

The task of terrain and obstacle detection and interpretation is aimed

at investigating alternative procedures for using range-point-_ng a,.Sle data

such as might be obtained from a laser rangefinder with the goal of c::^#-ecting
1	 discrete obstacle hazards and/or impassable terrain contours. Include] in

the investigation are the effects of data density in space and time as well
as of measurement errors inherent to the sensor and o the dynamical motion
of the rover. A major emphasis is being directed to the mathematical pro-

cessing of the data to reduce computational requirFments and to increase the

amount of useful information derived from the meazarements. Although the

study is aimed at the mid-range of 3 to 30 meters, it can be extended with

L	 very modest effort to longer ranges. Thus it could be used as the basis for
optimization of long range path segments. The sub-tasks which have been
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completed to date include implementation of the simulation of the Rapid
Estimation Scheme on an interactive graphics computer system, develop-

ment of the mathematical procedures for using a Bayesian Estimate of

States and Inputs for obstacle detection and estimates of laser range-

finder accuracy for Mars rover applico* 4 --	 luese studies are summarized

briefly below and are described in more deLa ' in the reprints of three

papers which are included. Future work will b(^ directed to the application

i ;	 and evaluation of these methods with respect to reducing data recuirements

fLj'	 while retaining performance levels.

The second major task, namely, path selection systems simulation and
evaluation, has the objective of appraising the effectiveness of alterna-
tive integrated path selection systems including the sensor(s), terrain

modeler and path selection systems with data errors due to the sensor and

vehicle dynamics. The simulator is a digital computer code capable of

generating three-dimensional terrains of a broad variety on which can be
superimposed a wide range of discrete hazards. The simulation affords the

opportunity to screen, evaluate and modify alternative concepts prior to
implementation in hardware. To date, the simulation has been modified to

reflect a laser range finder of the type required to employ the Rapid

Estimation Scheme and the mathematics of the edge detection procedure.

Consideration has been given to a path selection algorithm suitable to

this type of data. The progress which has been made is detailed in a

following section. Also appended is a paper describing the use of the

simulation in evaluating a short range hazard detection system based on a

f	 triangulation concept which suggests the effectiveness of the procedure.

This paper is based on work supported by NASA Grant INGL 33-018-091.

Task A.	 Terrain and Obstacle Detection and Interpretation

Task A.I. Simulation of Edge Enhancement Tecnnique - 1". L. Leung

Faculty Advisor: Prof. C. N. Shen

An edge enhancement technique for the detection of discrete obstacles

such as boulders and craters using a Rapid Estimation Scheme in ccnjunction

with a Kalman Filter has been developed. In order to increase the re-

searcher's effectiveness in perceivi:.b the effects of orientation, form of

hazard, data spacing and sensor error on the obstacle detection concept, the

technique has been programmed on the IDIIOM/Varian Interactive Graphics Com-

puter System. The Rapid Estimation Scheme not only is shown to be capable
of detecting the top edges of boulders and the near edges of craters but

along the bottom edges of boulders and the far edges of craters. The simula-
tion is now an operational tool which will be used to explore the detection

concept in detail	 It is described in c'?tail in a reprint of a paper which

follows below.
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K L. Leunr. an d C. N. Shen"

Rensselae r Polytechni c Institute
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Sim2ation f:r detection of cbstacles on Martian

Terrain is a: h iv.-ed by a rapid estir-at ion schene on

Varian Data 620./ i computer with I1)Ii0M display.

Sufficient info-ration can be obtained to recognize

the near and far e ,!Ee!: of pyra.7, ids, hemispherical

craters cr boulders, and the ccr.b ination thereof.

INTRODUCTI011

An aut onomous	 vzT':;cle is to be sent to Mars

-t ,for fL Lre exploraticn"". A laser renpefinder
hav ,'nr an rcc-aracv c ,," ± 1C cenl:imete rs, will scan

an ;rea ahead of the rsver. An obstacle Aetecticn
scheme 

will 
therefore be r led to ;recess .'-ese

ranee data to obta
i
n cor-.:)Iete .utlires 

or 
distinct

cb,l ects.

One detect
i
on scl

* 

are hr 	 has bee:,developed b..,
Reed, Sa: ,.y 1__' and Shen !2 j	 -,;.se of t-.e

d
i
rectional !.apla,:,'a:n rethcd. This s:'-c:-e -.-crks

well in detectinz tcp e!Ce or a boulder and near

edge of a crater but it fails to detect the bo-*.::r-

edge of a boulder and the f e^r e l t̂ e of a crater.

..-e schene ^:em only detec'. le :,e Î ur;s in ranges,

but not -'a7Ce	 in slopes.

The above sc-eme was s`nulate^ cr. both the! r= •! 3601

67 conT-uter and -.-a %'ar ; -in	 620'i ---,.-.;uter by

Sher and -C, en,'3 1 	'^n t:th ccr-,uters, the rar.Ee

data were ;enera'el by a se3:-:"_J nr sckiere tn-_

0auss-'a.r. -.::.se vas added to  e r-inre `ata t: sin-

ulate the mr.Fe. in the eir.laticn with the

Vari p-n rata cc:7pu-er, en 1DII0." rra; h ic cathod-ray-y

tube vas erplcyed to iiszlay the ; 

a'. 

areters, the
tzp•ie• of obstacle layout and 'he results for

edge irate. A li pht ;en Was also used 	 the :e:--
ator to Interrupt 'he disr'-s... and to change the

;are=eters.

another ot!tacle detection schcre was de-.2'_cred by
R. V. Snnslkar and C. 

N , 

hqn r J which uses a

e^Papid Estinaticn Scher  	in ccn^1=ztizn.
with Ka.:rs.- -filter. In the sinulat!m on the :2,%!

260 1 67 ccm:%tter, their schene was she  to w:r,

ext renely • ell in !ete: 1..1 n •	sf

• Yesearch s=ons:,._. 
b
y ::—"A Crsnt, ;SC,_ 7_e4

S%s-.ens Zng f neerin.-, :e;•.

OBjECIrIVE

The objectJvc is to e ,•a1 ,; ,Lte the --erforr-ance of t-e

obstacle detection scheme on a min`ccrputer. Thiss

paper sinala l es the Scnalkar-Shen Obstacle Detect-

ion Scherne on t
h
e Varian Data 62011 ccrp ,;ter, rak-

ing use of Sher and S lh?n's display subi-su'..'nes for

parareter, top,.rde--r, 
and 

edge image displays.

The reason for this simulation is two-fcl:!. Firs t-

ly, t
h
is enables e p-:-y pararcter chaneinr vit?l light

pen and telet ype.	 of -.bs l acles an the

resu-I tinr e9re `n-.arcs can be seen snd the differ-

ences cbservel. cperat:r then. ..lar ge t.-e

,Dararieters accordingly and rerett t
h
e simulation.

This neans that the sinulaticn :or. be d:nc adapt-

ively.

Secondly, t
h
e possi:-_'2 1.ty of !-p:_rentinsz *--* --

schene on a small c:nputer such as --a Ver : en Data

must be ascertained.

E UAT1:011S	 OHS-','.C=- D=ECT:-^';

The ranre data arc e f -.-m	 t.-e na':-`x R with the

,ollcwinp clvrentB

7t

ri j	 .	 .	 .	 .	 .	 .

r,	 4

rr	 r,
I . . .	 12

-wnere r, is the ranze dat a for the	
the

I	

j
len^-.h of the laser teum frz ri the r rsur.!- 7h he n -

•

di:es i an2	 indica a the local:_.. in .=c

cf elevation, a,9 and az*;,..;t'- &r.Flc, ; .. 	 e

r .. , :s the sL:7 of t r e sct ,,;&! listan:e 'Z_-

t ,., e-n t
h
e "ansritter and t l.e ;cint cr. t.-.e

I
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and the Gaussian. noise -'ue to the innccurncy of

the laser rangefinder. Hence

ri .} = di J + v
i ,	 (2)

i
The range ratrix R is processed both nlonr^ all
colu.^ns and across all rows. When processed vert-
ically up a colurn, it is expected to detect jumps
In both range and in slope, a two-dimensional
state vector is defined. I'e first cor •ponent is
the range d i and the second is the difference it,
successive range data g i (slope) where

F.1 ° d i+l -d i	 (3)

The quantities f , d ,8 arc illustrated in Figure
1, 9 is illustrated In Figure 2.

Along a column, the j index is held constant. The
state equation is given as follc4s by omitting the

index J.

x
i+l=F

i xi+w
i+D uk 6ik	 (4)

The measurcment model is:

ri+i = H xi+l + vi+l	 (5)

where	 I' 

l

d. 1	 r 1	 1
x1=1 g

i J
I;	

L

F1=1 0	f	 I;	 ' {= (1	 0)
i

r 0 1	 (6)
E- Il 1 J	 r, dump 1r. 	`k due to an edge

It can be sho:•n :hat for a flat plane,

1 +AB tan P.

fi 	 1-2G6 cot 8 1	 ( )

Also	 1	 for i	 k

6 ik 0	 for i ¢ k	 (8)

which is a K-oenecker delta fursticn.

VectcrB w and v repreccnt plant and Tess+.remert

noise res{ectiveiy. The quantity w i accounts for
the de nation of the model from the actual stets

equation. :ne quantity v i accounts for error in

the rangefinder.

PJUIGE DATA AND NOISE GE:-i RATIO:!

The surfa^e of each obstacle within tt.e scsr.r.ed
area is described Ly its own gecretric equation

f(x,y,z) = 0
	

(9 )
If the point on the Frcund rirht undernelth the
laser mast is taken as the origin, • ';en a 'e•:el
plane with no obstacle is described by z=O.

To determine the range readin g with azimuth anr~le
and anrlc of elevation Pii, irnrire a laser be Prn

at these r^.gles. :'he height H and (x,y) cecrdin-
ates of a point on the be-im a shall distan_e away
from the laser r%r. gefinder is culculated and this
hei ght is coepared with the height z of the terrain
with the sane (x,y) coordinates. If H is Treater

than z, then H of the point one increment down the
bean is calculate: and corpared w + th z of the
correspondin^ (x,y). The procedure Is repeated

until z is mater than H. :'sing a bisection

rethod, the (x,y) coordinates of the point where

the beam hits the terrain is determined. If the
height of this point is z" rind the height of the

rangefinder is D, then the true range reading di,
Is given by

	

di'=(D-z")/sin(P1)	 (10)

Dote that if the beam does not hit any obstacle,
z"=0 and

	

di,=D/sinPI	 (11)

These are illrstrated in Figures 2 and 3.

CAFACIT'f OF MACHINE

11.e computing ns nhine used in this simulation is
the Varian Data (20/1. The memor y of this corputer
when expanded, is a limiting 32767 words, or roug.n-
ly 32K. The operating systen used in this cor^pu:-
er takes up about LK. Hence the available memcri

is only 28K. For corparis-)n, the re-ories re-
quired by the various yrcgrams are tabulated on

Table 1.

	

SonaJkar Sher-	 Leung-

	

Shen on	 Sher. on Shen on

IB %1 360/67	 Varian	 Varian
----—-------------------
Rnrid Esti

—
maticn

—
	^chemc	 6K

4-directional w/0 DisplV	 22K
4-directional w/ Display	 28K

R.E.S. v/Display by corbin-

	

inR Sonalkar and Sher	 34K

R.E.S. w/Display after

Improverent	 27.5'

TMILE 1

The M.erory R.equirerents of Various Proprans

T£r :1I1LT:S USED III CO?SIRING TEE PF.:GRk-S

The original Sor.alkar-Shen program that sirulates

the Rapid Estimation Schene .as .ritten in Fortran
suitable for the 1BI4 corputer, .hich has a Treat

deal of convenient features not found in the ';ari't—n

ccr-puter. in order to run this program on the Ver-
ian machine, these convenient features must be

changed to standare FORTFA3.

After the two programs are male compatible, the

four-directional Laplacian cLs,acle detection parr

in the Sher-Shen prcpra.:. is taker. out, and the
Sonalkar-Shen program, i.e., The Rapid Estimaticn

Scher:e, i3 put i:..

Each of the two crig'nal prorrr-r-s is ver:- long by

..self. After t hey are combine', the resultant
program is too lcnr and requires too such meror;,
34 Y.. -ence it must be irprovcd by reu3ing some
"r:ry spaces after the numbers that are stored in

these spaces are used. :hat is to srV, two or mere
variables share the care memcr; space because they

are stored in that space at different non-overlapp-

'rr instances of Lire during the execution. This
only a^ccunts for a shall amount of nercr,l saved.

:'rte r-a.lor reducti:n in the re:r;r/ requircrent is
achieved by sto: • ir. g :hc noiseless rLnre ratrix and
noisy ranee ratrix in the safe meror/ spaces.

Mcreo •.e:, the riares set asi?e for the noise r.atri;c

fi

e
IG TNAT, PAGE
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In the oririnal prorram is elinina:ed. llence the

noise is added to the noiseless rnnrc ren rlinr as it

is Fenerated and the resultinr no'.sy ran ge rending

is put back in the sa^.e spice, therefore erazinr,

the noiseless realinr. Here rernry snvinr does not

cone at no expense because the noiseless rnnrc
matrix and noise -atrix ca:'. be retrieved as two
separated rntrices frcr the noisy range ratrix.

FROCEDURE OF SI!^ZATIC:1

The IDIICM. displays three seplrnte pictures, the

specification, the top view of the layout and the

edge enhanceren•
*

If no interruption occurs in
the display prc ness, the Varian. 6:0/1 will uce the
initial pare-titers for all calculations. The lirht

pen is used to in'.crrurt the rrocessinr by pointing

at the pararerer that one desires to charve. The
new value cf this parameter is entered t'rourh the

teletype. The .'arian 61^0 1! will then use th- new

dat- and continue the pro-eszinr. The picture on

d' play can be rerlaced }._ , nother picture by

polr.Ling the lirat pen a: th- appropriate character.

T}:e inputs to the corputer a — the dirensions ar.d

locaticnf f the cbstacles (the dimensions of the
obstacles not used will be zero), the hciFht end
location if the luzer ranrefindcr, the raxir.u^n and
minimum azimuth anrles, the maxirum and minimum

angles cf elevation, and the standard deviaticn of
the Gaussian noise used. The above input parineters

have ini'ci=1 v?1 •ses es specified in Figure 4(a).

Th ,-- can be charred thrcuFa the use of the light
pen and the telct;re.

With the input parEureters, the prorran then displk.s

the tcp •r.ew of the obstacle le : ut cr. the
;,lien the dispiny is interrupte ,? 1•y the lirht pen,

the prcFram then calculates the ranre data using,

Eq.'s (10) rod (11).

With the noisy rsnre data o^i the noise covariance,

the prcFran prccesses t he rnnrc data to detect the
corpletc wires of the cbstacles, usir.r the Perid
Estiratien Schere, i.e., Eq.'s (1) throu gh ( e).
Eleven cases are simulated. 71e values of the in-
puts far each case are shc:'n in Table 2.

NU:•T.RICAL l•.r.,SCrLTS AND DISCUSSION

Eleven cases were simulated. Fach case is a differ-

ent corbinaticn of cbstacle sizes, lccaticns, n-sd
no'.se parameters. Sere have sir.rle cbstacle and

scr•, have :^,ltiple obstacles. F r each case, the
parar•_ters, tepview, and cdre cr.i:nn_er.ent are dis-
played. The vnluAs of different para"ters are

shown in the parareter display. The layouts of the
ebetsc'_es are shc:•n in the tcpvieor displays and the
edre enhancercnt results , i.e., the c?re ir..ares,

are shown in the ed ge enhancercnt displays. The
plrareters are ch:ien tc illu.trate the effects of

the chanre of noise ccvariance, cbstacle sues, and

the distance between obstacles and laser far use in
the Rapid E s timation Scheme. Some of these eleven
cases are shcom in Figures 4-10.

In FI;r.1re 4( c), case Na. 1, cr.ly the top edge of
the 1 Teter radius !:enisphericml boulder at 1C
meters from.m, the laser rangefinder (L.R.F.) can be

detected because the obstacle is tco close to the
L.H.F. and hence the signal-to-noise ratio (f^!1P)
is srnll with 5 cm. noise standard deviaticn. In

case Na. 2, the noise standard deviation is ir.-
creased to 20 cn. and everything elt• e is the sane

as in case Ho. 1.

In Figure 5, case ::o. 3, the complete edge of the
boulder at 20 m. fr-r L.P..F. is detected for noise
with stnndnrd deviation equal to 5 cm. In case

11o.4 c-nd case No. 5, the sirulation is repeated

for case No. 3, except that the not^e standard

deviation is new 10 cm. and 20 c-n. respectively.
The perforrance is very rood. In Figure 5, case

tlo. 6, the cor-ple:e wire of a 1 m. radius hemis-
pheric,] boulder at ?0 m. from L.P.F. with a noise

standard deviation of 5 cm. is detected. :'he edge

enhancemen' result is better than that of the sar.e
bculder witn the sane noise at 20 r. from L.R.F.

In case No. 7, the noise standard deviation C, t is

increased to 20 cm. In this case, the tccm edre

is not so well define,.	 Case r,urber o	 is

a hcrdspherical crater with 1.5 m. radius at 12 m.

from the rover, with c,. eq •.al to 5 cm. The far

and near edr_es of the crater are detected but acre

noisy edges are picked up in the b-ckrround.

Figure 7, cas e No. P, is an equilateral pyramid of
height 1 m. at 20 r. frcm the rover, with 7,. equal
to 5 em. and 10 cr. .^srectively. Here
does not wort: too well. The top of the pyramid

gets tr=cated.

Case No. 10 (Fig. P) and case 110. 11 respectively
are r •:ltip:c obstacles havinr, a herisp:n.erical
boulder, a herdspherical crater, and a -yrarid

with :heir sizes atud lccat'_ens shover in _he .cp:icw
and parareter displays. The o_ J r. case ':c. 10 and

11 are 5 cr.. and 10 cm. ._spectively. __ :'ete
edi-cs of all three obstacles are detected f.:r the
case with a smaller 0,,. Fcr the case w:th a iarr__

0Y , the for edge of tSc crater and tine bc • ter.. e,.-e
of the pyramid are not detected.

CCIICLUSIC11

It can be concluded that the Papid Estirwtior.
Scheme works very well in detectin g complete ed1•es

of obstacles if the cbstacles are far enough frcm

the laser :inrefir.der (> about 15 meters) and the
noise stardari de::a:icr. is not too large

10 cn. This scheme can sties detect top edge cf
boulder and near edre of crater if the c}stac:es
are too close and r.cise star.dar' leviaticn is larg-

er thnr. 10 cr. Therefore, the rapid Estimation

S phere is eq:'relen: to ,.r better than the fTur-

directicnal Laplacian s phere in performnn^.e. How-

t-ver, the fcrrer sche:^e needs sli ghtly rcre ecrput-

aticn than the latter. "herefore, the F. F .S.. 	 ex-

tracts more inforr'ation frcn the noisy ra nre Rnitrix

if the sli g:rtly larrer rurbcr of ccrputatior, is
allowable.

PEFERF::C

Jet Frcpulsicn :.3boratcrr, "An Explcratcr: Ir.-
vestiration of n 1979 !'ors Rc::r b :snlcle Yiss-
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2. M. Reed, P. Sanynl and C.R. - hen, "A Practical
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TABLE 2 Va:ues of Input Pare-cters

i

I a.a. rears 'net shovn'

I

I

a
I

l•1i.{	 1	 N,l ••	 1•

-^ fI

i
Figure 1 - Side 71ew ;: S:ver

1

I

and Terrn'n

i

'

8	

i r- 
I

t	 ,.	 v	 •r_
i: C Flht	 C 	

ft" 's of

-N 	 of	 or o:	 1tcrec -- t'ax. :'in. l.ex.	 ^':c.	 r:ci	 of n
Craver	

1
f:n'ar rJrar!d I	 Poulde- I Crater Pzi-uth Ax:r::h F: r:atiorl E:r •:aaer	 nose !	 :o^ r/ra.ld	 Poulder

1 in	 cf-. r'r.

1	 (-1,0) (O,1G) (1,0) 3.0 0.0

I

1.0 0.0 1	 7.0 -7.0 19.c 10.0 S.0 `

2	 (-1,0) (0,10) (1,0) 3.0 0.0 1.0 0.0 7.0 -7.0 19.6 1o.0 :0.0 " S.

3	 (-I,C) (O,?0) (1,0) 3.0 0.0 1.: O.0 4.0 -+•0 9.0 !•: 5.0 5

4	 (-1,0) (0,2o) (1,0) 3.0 0.0 1.0 0.0 4.0 -1,.0 9.0 5.0 10.0 r..s.

5	 (-1,C) (0,27) (1,0) 3.0 0.0 1.0 0.0 4.0 -4.0 9.0 5.0 20.0 r'°

6	 (-1,o) (0.3 ,)) (l,e) 3.0 0.^ 1.0 0.0 3.0 -3.0 6.6 3.0 !.0 6

7	 (-1,0) (0,30) (1,0) 3.0 0.0 1.0 0.0 3.0 -3.0 6.6 3.0 :0.0 n.S.

6	 (0.20) (-1,C) (1,0) 3.0 1.0 0.0 0.: 4.3 -4.1 9.0 5.0 5.0
7

9	 (1,16) (-1,1°.) (0,12) 2.0 0.: 0.0 1.5 7.5 -7.5 11.3 2.3 5•e- r"a'

1 2.0 :.0 1.0 1.5 7.5 -7.' 11.3 2.3 5.0 E

1 	 (1,16) (-1,:8)+ (0,12) 2.0 :.0 1.0 1.5 7.5 -7.5 11.3 2.3 10.0

1

r

F'rure 2-Ranfefir.der Scanning Sc *cr..e

i

Figure 3- S!de 'lie u of the Plane

v!th G - 0°
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Proceedinrs of the h11'.nukee Syr'posiwr on Auto-
matic Control, Mur. 197 1+, Vilvaukee, Wis.

3. J. S. Sher end C.N.Shen, "Simulation of 'Ihe

Range Data and The Picture_ 'r'nhr.ncement :'cher.e

For The Rn:-s Rover", 1975 Corruter Science Con-

ference, University of Varyland.

4. R.V..cnalkar and C.N.Shcn, ".'•'ars C+stncle De-

tection By Fapid F.stimetion Scheme From Noisy

Loser Runrefindcr Revlinrs", Proceedinrs of the

Milwaukee Syrposiur. on Autcratic Control, ?-'arch

1975, Milwau:tee, Wis. pp 291 -296.

5. P. Snryal and C.N. Shen, "Rayes :rcision Rule

for Rapid Detection and Adrtrtive F.stinntion
Scheme vith Spnce Aprlications", IFFE Transact-

ions on Autr,matic Control Vol. AC-19, No. 3,
June 197 4 , pp 2'3-231.

6. R.V.Sonalkar and C.N.Shen, "Rapid Estinntion
and Aetecticn Scheme for Unknovn List•ret.ized

Rectangular Inpu ,.s", I11E Transactions on Auto-

raltic Control, Vol. AC-20, No.l, Feb. 1975.
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U
Task A.2 Detection of Discrete Obstacles - R.V. Sonalkar

11	
Faculty Advisor: Professor C. N. Shen

There are many potential methods which could conceivably be used to

detect discrete obstacles on a terrain. The major objective of this

task is to enhance the outlines of obstacles in a two-dimensional perspective
view from a set of laser rangefinder data contaminated by measurement noise.

A large discrete jump of the first differences of noisy rangefinder data

will outline certain edges on obstacles (i.e. top and sides of a boulder and

near edges of craters or crevasses). The Rapid Estimation Scheme can deter-

mine this jump of input under a sub-optimal condition by erasing all of the

previous memory of the covariances of the Kalman Filter at the stage where

the jump occurs. The present task has been aimed at retaining the past

memory in the Kalman filter at the time during the estimation of the jump of
the input and thus improve the estimate. The mathematical procedures re-
quired to achieve this objective have been developed and are described in
detail in the reprint of the paper entitled "Simultanec;is Bayesian Estimate

of States and Inputs" which follows.
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PRESENTED AT TIC JOINT AUTO%LITIC CONTROL CONTERENCE, July 1976,

at Purdue University.	 Proceedings of the same conference.

e	 SIMULTANXCL'S PAYE:IA'1 STI`tATL .r 51'A7EC AND I°i'L'TS

R. V. Sonal kar, Mc^iber IU.—
PATTE311 ANALYSIS AND P.E000:II':i!i CORP.
On the :'all	 -
Rome, New York 13440

C. N. Stico, Professor
Eiectricil and Syste^rs Engine^rin ^ept

RENSSCL.IER F0LYTr:W11CAL I':STI i1JTE
Troy, New York 121el

ABSTRACT

This _^^r des....: `Cr a Sin'Jitareo.ss Paws?"
Ec:i a:e (Sc_) of ztfttcs trd _.pats - T	 .ecrm:e

system ,.-.'_cr c=r.sir^:'a•':n 
,
_s t:au-.ed

to unkr.c:.-: inputs,	 or	 T C _.^

is o

	

cncii'.ic:r7 01 :!s^ l+%i."t`^'	 that sn .^Iu:
cccu:• s.	 I: is •-ainl;r desirrci ' to i^^rcJC :kc
Rapid Ia:	 :icn Cc;.c:::c (R1::;), [1.') .s!ach rc'_--
:con re!-i- a mini-	 rari r.ccT:Yl
The S3--c;-_in_ an cs:i'atc ai :".e ir.^lt ,r. also
prcvidcs	

^
a . :;_r ccrrcc:ion vz -he ceis:in;;

0 t i-rz te	 !o the C •1:..... RES

'._-ely O: .Lint a .:'! in,.LLt CSC: '.:^..	 `C r^Cr_PC^

in RES
^
 _:.hc:,. to be s •_bapt_rr._! in Fcf. [1]

:e SBE:s - cvcd :o :e	 under
acre in}cacti fo ;b:.^ini::; thn :17

cs..^ato	 c., it ^an riot . c-r.:.,q rrns• a re:tri.

^.:c encs r.atra'_t'cac'y c:•:ic _•!.	 Si..ce :!1^ 57E _:	 a

cond:._.-.3: ,r>:i•-a:^, r. dr:_	 chcac i.. rC^uir^d

to dr. ;c:. ..__ if :`.c	 M.^... a .^.puts ns C prcter.:. 	 A

Bayes dc:isic:. rule rrl fcr ••itch a purpose ha: teen.
describe! in ?e:. _l end __ nct r_res:cd in this
Paper.

B	 (rxq) _nput

Cav(x)	 :c.•arlAnce natrix c! :he r-ndVn	 it :e x.

ECx)	 cf X

(nxn) 5t^:e .r]r. _^icn Cr , :en =7:c-iC:
i

.ra trix

}!.	 (ry.n) Y.ca:.rer-c^.:

r.

k	 Fir	 sttCe a: which _^•r •.. cc:_:s _n d

.c,•^encc

M i 	 Co•rarianCC of the Frrlic.Cd ..... •--•-• xi

r,	 Dimenzion of	 the .._te vector x_

N(n,	 1)	 Ncrra: di_	 :	 ib •stion w i t`: r..ran vc.:::	 r..

and covarir.ncc -a:r :-X :.

0	 (r.!) `•r.c:cr with al:	 zero cicmcnt-,
r.

vc:tcr

D	 Ccvt: ir.:c^.	 r.f	 ....	 .:..:c	 esti.:t► a xi
'i

pdf of x ccndi:!cnc' on	 R

q	 Dircr.sicn :f the _nr_: vc.:cr ui

r	 iaL:	 s:c.^c a t which a t,. inpu: cc:'-r:,	 in

C ..	 ^UCnCC

(:r.$) CCcc: ration ..._:c ..variance rat. _ .

:i •-_. aion o:	 vac:cr z.

LA,	 (cr.!)	 :-sFut vcv

V.
1

(nxl) %!C ; ..nt cr sy s vi nzisc sC^•:crcf'

YC::Or

xi	 r^.q)._	 A_	 rer:c'_	 state	 :cc.=.

V.	 r.x_ ^caperc°: 'ec:cr

y.	 4x.1 Cerpcnen: ':ectcr

-_	 (C:<_) CSse: ration vC: :Cr

C^be{ 

c ^ lroenecker de -'s ._-._:i:.. *1 i! i=i anc
i,

-^ if ifj

4	 f!a:. in.. c:c`:cc"_ ` 	 2:'1. .. •0 1 , in:rr^_ ^:_y  
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P (A)	 Rink of matrix A

W	 fatrix defined by Lq. (0

Sub!tcr77tS

i,j	 Tine S.toge subscripts

n, n • q	 Dimensions of null-vectors 0.

Sut•crscriotn

T	 Matrix transpose

Quantity related to augncnted s••tem

1,0	 Hypotheses

S:cc i6. rl'-^J01

x.	 bcs: estimate of :cI

X .	 Predicted estimt:• of x

Ahbrnc!s;.ens

Kr Kalman filter

F,:P :!aximum A Pcstcrinri

:'v Nininun variance

pdf PreLability density function

FF.S Rani! F ntimation

S3C Sir+ultanecus nyesian Est-ate

WGN White C•aussian Noise

i.
INTRO: CCTIJt:

The	 cf the t:alman fester ,.ave
been cx::c-.rly varied in n •:-.crcus fields such as:

satel:itc, air:raf;. and ground vehicle .rackir.;,;
feedtack ;,recess control; irar,e preeessinr,; edco

detcct:-^n; et:.	 _sc cr •hc filter

to o::z:in cs. mates of :! 	 cf a : s tm tas
also . -nifra	 !t Ztort: ••-.	 he filter i3
opt ; .-. -,I only if th^ systcn ;ataric;crs are known

eerrectly. Cm the other `:arc:, uncertainti_s in
the s; s ;cn d}rar..ic_ and noise statist acs Often
cause the filter to diverge, if no saf,r,uar'_s are

intrcds eed to detect and prevent such a r•unatray
cordi;ion. Sudden ehcnecz in the states of a

systc-, which may be encount:red wh ile .rac'ni + a
r.ar.c_:tr_rL urge!, also restlt it
filter off ;rack. These di!ficu:.__s ere in-

ercascd .-on track-'ne nul;iple tarGets with

multi;le radarz.

uh](IINAL PAGE 19
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OF POOR QUAMY

Such chanr,,es can ) • r ^odclled cs i*cl,r:cd

inputr: to the synivri (1, 1 ] ne !. r ;u .•nces r_f in;•uts
(7] added to the atat^. IIn r,cr:ral. the diffcrunce
equation for ;h•: !,tat•s of a syr'rm L •.:b1ect V.,
unknown irgpits can he written xs fcllovs: System

dynamics:

xi+l
	 F, X 4 	+ wI	r	 Bu. 

6..	
(1)

j= k

Obacrvatien egja%on:

` i • 1	 Hi+lx1+1 + v
i•:	 (2)

where x. and w i arc n-vectors; u j	an unktvin c.-

vector; 2I
+1 and v

	 are s-vectors; 'r, I+l , 9, and

r  are known na:rices of eo^rpatible dl^:ensionr.

Vectors w r and v i art WO roq•..enec ve_;ors. .h^

plant noise vector w,. tt.e 	 twine

vccter v„ and the i::i:ia! c,..:c x o are all .,:cumcd

to be uneorrelated and of l:ncwu dis;rit:;icn	 the

distributions bcinr. NO.r, ^ i 6 i: ), :1(Os, , I 6ij

and N(xo , £o ) r•:sprctivc:y. Ccvaria::cc C I is

positive toni-definite w'alc £ anJ P i arc }osi..vc
o

definit matriCCL. I!cre, and in the sub_c;ucnt

derivations, On dcro,cs a c:71 vector of din ;ntion

(rxl), i.e., an r-vector with a:l zero

Ir. v%e aLsc::ce o: the inp •:t -Or	 the state

x  could have Lccn cs_-na:c d. 	 the

Kalman :i:ter (,+)- Fiwt_ •:cr, tt.e presence cf the

unknowns u„ 'x, and r in Lq. (1) rose -`.e rreblem

to be solve:.

To detect rich are input, it ^;st `e cstir-atec'
a; `first. Si- has used a .acp:i^.al r•in.-ur
vnr?ante .:;put esti •• ste r:hich raa ices sec	 to

exist -. the folinwirr cordi:icns are sati_fied.

a. q < s <	 (3a)
b. "acrix (HB) is of f •-:1 rank	 (]b)

The implications cf • `•cam two ;orditions wilt Le

discussed in a later section.

It has a'so been shown. in Ref. (5' 'hat the
Irl input evc : ratc i. r ,.;topti^•tl si:.c , ^t is based
on certain	 c•^;sir. ccr,?itie:.s
the hV inp_	 -t es__-a:c al!o cnues the fi: • tr to

lose its 'rc-cry" :y basirr the e.rren' state
es • iT.nte entirely cn the eurren; observa:icn.



n
P.

0
Therefore', the 1dvantnrc Cr 'iavinv. a nicooth c,:timatc
until the ini'ut drtc^lion t•ikon	 is lo:;t and
subse.rucnt	 are nei•aier•.

In an eff'-irt to determine a better and possibly

optical joint state and input votim te, the method

described in this parer sin dew^loped. The esti-

mate retcins the -encry cf .Ic filter as crponed

to the NV estir*ate which, under certain conditions,

became a limited nemcry open-filter. The estimate

has not bccn proved to be cptinal, or even better

than the previous MV estir.atc. tic:rc •+er, b^.cause
it has be^n derived from the basics without r.pprox-

inatior.s, and beca%;se it retains the rer„cry of the

filter, it is exrected that ti ne simultanvous

Sayesidn est-:7a*.e would prov-,_ a better filter

perforrarce.

The problem of detection is not described.

The interested reiler will find i t in	 [1,2.5,0].

The SBE is cerived, ccnditio:xd on tho pr ,_nnnce of

CLe input. A dec.,ion scheme will "ve tc be ..sod

in ccnjunctic-. with this tc de+.crr.inc whether this

condition--:l estimate -s correct.

BAYESIA17 I:S I?:A'iE

Two hypotheses are dcfinnd -

h ' : Ir.tut occurs at stage i.

):0•	 Input aces not occur at stave i.

These defir ; ticr.s assume that the decisions
between. st.lLec 0 at:cl i-1 Lave alrvi,l y been nade.

lit :	 xi +1 =1' i x i +i: i +l;u.	 (it )

ji 0 : 
xitl=Fi'i+wi	 (5)

xi+l-x0+1+Bu.	 (6)

Thus x0 
i+ 1 

is the partial state without the input.

Dcfiain( a ncs•: auEacntcd state v i+l , Eq (0) can be

r ct.rl.;tcn in a new -.nta-icn.

X.

xi+l	
LIi P]	 =	 i X ,+1	 (7)

0

where	 is	 5]	 1+'	 (8)
=	 n	 i+-

u.

I n is a (rxn) unity :ratr,: x and X: 
+1 

is the 
z g-

mented (n+q) vector. A priori information about

x0+1 exists in	 e for-1 of t`.' K317'an filter

estimate a: „take i.

Z.

where x is the best unb ,'xied estirrite at maze ii
obtained from Vic observation :.

i'

The error covariance of tt.e unbiased .i priori

estimate xi tl is obtained from the system dynamicc,

Eq. (1)

a+1	 i+1 i+1	 i+l. _+1

F i P iFi + Q.	 (10)

where	 Pi AEL(mi -y (x i -r i ) T ]	 (11)

is the error covariance of the estir..ate x;.

Su i:stitutinE Eq. (7) 'n (2), the observation

equation cciA itioned on 1: can be rewritten in

different form.

hl .
 Zi +1	 hi+1 

x
i+i + vi+l

	

"i+1
x
_ • 1 + `itl	

(12)

where	 II +1
	 A I1i+1 

'Y	 (1 3 )

and 9' is defined by Eq. (0).

To obtain a "A (raximu'n a pouter_-..) csti "ate

of 
Xitl, 

the probability density function (pd°) of

xi+1' conditioned on si+1' must be naximizcd. Using,

the °ayes rule fcr conditional prcbabilitics (U]]:

	

p(X, +l
!z i+ ) =	 P(7

	

)	 (:4)

Since, the state x0+1 and in put u i .:re ind'cperder.t of

each other, p(.{i+l)
	

be wri:tcn as a product of

P(ri +1 ) and p(u,).

p(z,
+1

/;•	 1 ) p(x^ +1 ) t(u,)

.p(Xi+1/..i+i) -
	 ?(Z. 1)
	

(15)

We may cor.:id-r u i to Lc rornally distributed,

Pu ) so that t.`.e derivative of In p(u i ) with recce-

to X 
i 

gives.

71
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n
1

, u
f'

^J

12.

11n p(ui) _ - (
,u—̀)T Y -1
	

U.
Yx-

i
	1 Y. i	 u	 :	 i

ror normally di::tributed varifl)lrc., Cq. (17) c,
(1,)	 easily he ::hewn to be reducible to the following

minimivation.

Th: input vector u  is assumed to be deterministic

and of unk nown r.zgnitude. Ther^fore, it may

be considered as a random variable with covariance

tending to i.finity. Allcwin3 i
u
	m causes

alnp(u i )	 On'q, [7]	 This fact allows the

m.•axi,mization of p(Xitl/Zitl) to be expressed in

the following form.

a In P( X
, 	 /Z. )	 ?ln P('i+lAi+1

"o \ i+l	 :+1 ^tl	 I X.	 =	 JXi+l
:+1

+ dIn	 =	 0	 (17)

:+1	 -

i+l

As iswell t +n, the solution of t his equation

lcadc t; the IIAP csti^vte v i.+1 of the aucmented

H

state X.1U	 !i.

aX [(z-H X)TR-)('-`t'. X)+(x_ x)T.1- 1(x-x)]-
Y,	

= 0r.t q

(20)

e
Since X=[u], the mini •nization of the second term

inside the parenthesis can be performed as follows:

J

ax	 _,

a (x- x)fl•1-1(x-x)] _	 [ ( x -x) TM -(<--)]
a

all

M
-1 (x-x)	 (?1)

0
q

The last eq..ality is due to the fact that x is

independent of the input u. As a resui t-, the tr.r:n

u(.-x) T`1 1 (x-x) is equal to the q-dimer.sicr.11-

null vector, O q . Sulatituting 1(t. (21) in (20)

gives:

-t1- It	 ( -II' X)	 i	 =	 O ro q	 ( 2^ )

It is understood that •t11 the pu_° 1 s in Fq.

(17) are conditioned en the previcus cLservation

Z.
	

whichpe:,•,_^^ the paf of x to be ccr,plctcly
i

S	 :•y it mcar., Eq. (^), ar.d ccvar_ r.cc,

Eq. (1C). The ccr.d.-.onal pdf p(z,/Xi+1)

rnquires the fcllowin, q:^ant_:ics.

. (z i+1Ai+1 )	Hi+l Xi+1

By fur-acr manipul:ticns, an exprue_ion for the

Bayesian estimate X is obtained.

X = X+ w -1 F TR -1 (z -H* X) (23)

where	 i = [ O x ] =	 iii	 (24a)

	

q	 0
a

n

-1	
t1-1	

O_1

^^	 =	 I{ ::T R	 ri::

0 q Oqc

(24b)

0
(1Q)

Cov. (z i . i /Xi+1 )	 irl

Before prccccdir.R any furt'.rr, let u ,, supprc,s

the s,:bsc.i^ts fcr convenience and use the follcwing

rotaticn.

x itl - x' Z
,. + ,

 
G 
X F,tl 	 Hi+;

(19)

rt

u i	 a' z irl	 z ' H i+l - H , Hi+^	
H

a r..	 X = x
0 +,

(24C)

u1

Even though similar in arpearance, Eq. (^	 bears

differences in two striking details with the

Kalman filter estimate. First, :i giver. by Eq.

(24a) is not equal to E(X) _ [ E(x) ] as is generally

true in the 1:a:-nn filter updating cquatic...

Secondly, the natrix p is invcrtihle only urdor



1

certain conditions to he drrived below. In the

Kf equaticr.s, the error cevari,nee P, which Fenerdlly

occurs in place of It -1 , is Positive definite by

definition. On 'he other hand, SSE can be obtained

only when 0 is invertible when certain_ conditions

are met.

Using Eqs. (8) and (13), ;he first term in Y

is seen to be of the following form:

' 13.

T	 may be written asthen, using F.q. (24b), y 0y	 y

follows:

_i
yT 0 y = yTH ;:TR 1 11*: y + y 1 11 - y l	 (26 )

Therefore, if 0 is to be positive definite, then

yTH;;TZ-1!!:: y + YT , -I y l ), 0	 (23)

I
n
fi
n

nust Jc satisfied for all (n+q) dimer.sicnp.l vectors

H`TR-1 H r:	 = T	 H ` F.. -1 1i	 Y = 1 '.	 iHAP. 
_	

l	 fl`R	 HI1 y ;9 0n+	 Fore y	 0	 means that y is not equal
----- - u - - ---- (25) q	

n+ 
q

8T 1 1'P -1, i 	i	 a T 1iTP - I I,P- to the null	 teeter of	 (n+q)	 ciincnsicns,	 i..,.,	 y

has :,*_ lr:ast cne :u^.-zero element.
The matrix in Eq.	 (25)	 is of :imcnsicns	 [(r.+o)x(n+q)],

but is or rank n.	 Since we have a-^:;umcd s >r.,	 R

-1Hto r^ of full rank, HTR

Any non-null vector y,	 defined by Eq.	 (27)

positive d.fir.itc, and h

can have cithcr y,	 = O n or y,	 ^ 0 , .	 Puttii:g there

is p-sitivc dcfir.itc.	 ttorcovcr, '+'	 is a	 [n x(n+q)]
_

two cases togcthrr,	 w2 cover 411 vector-L; y which

ratrix,	 riven by Eq.	 (8), and	 is of full	 rank.

T T -1
'Y	 11	 Y

arc non-:iu'_l,	 i.e.,	 y	 f	 O n+	 .
q1'h Oro rnre,	 II	 A	 cannot• he of r ' ny higher

rank	 tha:i	 n.
an']

u
u
0
0

G

9 =	 11T11	 if	 11T?-1iii1	 r r - I
' ^	 (.G)
i nq

9T !lTR  I I I BTH I is -I ll3	 i G
n	 q

In Eq. (26), both matricor cm the right side arc

Positive sczi-definite and of rank n each. Hence

the rank of 0 cannot be grca:Ar Char 2n. Let us

see under what conditions, 0 can be a pcsi:ive

definite matrix. If 0 is to be positive definite,

T•
y	 v must be oositivc for any (n+q) di-tensional

vector y, which doc:; not have all .cro elements.

If y is defined in terms of its n an'_

dia.ensioral component vectors y l and y2 res;.ectively,

i.e., if

A[
y, i} n

, 2	 , q

i)	 If yl = On , t!:cn y 2 rr Oq ; oincc

ORIGINAL PAGE iS
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Y2 = 0
4 
simultaneously Will Make Y =O n+q , which

must be cr.cludcd for provinz, (??). !!ow,

(29) reduces to the follo.:ing afar

(25).

y2 BT ii' R-1
HBy 2 >0	 (33)

if this Ire quality is to be true for all y 2 f 0
q

-1
then ( 1:B)

T
B) R	 (H3), which is a (qx q) matrix, must be

positive de_`ini.,.. This con^ition is satisfied if

q < n < s in addition to (i!3) being, a rratr ix of fall

rank. !!atrices H and B arc of dimensions (zxn) and

(nxq) respectively, so that the (sxq) matrix (HS)

rust be of rank q. therefore, _nequalit.i (30)

true fcr all y2 f 0
4

a) q .n <s	 and b) Rani: (HB)	 q(27)
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i
r.
0

^a
ii

iu

0
0
n

0
n
e
0

^I

1.I

ii) When y I f O n , , 2 may take any value, since

y f O n+q is satisfied by virtue of y l ^ On.

Under this condition, inequality (29) rer:ains un-

changed. He::ever, PI -1 is positive definite, which

makes y  i1-1yl> 0 for all y l f O n . Therefore, the

sum of two quantities, one of which is positive

(y1 Ei-1y l ' C) and the other non-:egativc

(YT l..,T R-1 H': 1 1 0 	 must be positive. As a

result, under this case alto, inequality (20) is

satisfied.

rutting these ,::e ca -r!s to -ether, the con(iitior.s

to be satisfied for the cocitive definit-r.cs: of 't
are:

a) q <n Is	 rank(HP) = q

b) CI mus t_ he pcsitivt• definite	 (31)

Cc•nditicnc: ("'.la) arc. th- ::amc a!; (3a) and (3b)
which were ti,c rece •;sary cc::aitiDns for obtaining

the '. ',V estimate in FES. Also, 1: is the error
covariance of tho 1<r	 si.,tc x and i::
therefore poCltive dofiritc.	 hcrefurc, SM: doen

not i:nl:o::c any ,:;Iliticn,ll cen;lr^int- Qn thlr 'il:u•
for the purpo::c of cbtaininZ ti n- additional input

cntillate.

IMFLICATIO::S Or T:!E 1;1:C1:SS'.SY CO::DITI^i.'S

Here, we are tryir.Z; to ru?c a 'one-::hot' esti-
rate of the input vector .it:,--, having 	 benefi t

of 'inrut-dyna:..ics. I Theref,.. _,	 frier rec-ssi-
tates the availe.bility of su:cicicr.t ebzervatic:,s by

iml:ocir.g the con=dition (q' I n '^ :;).

Thn r,uirrmrnit that (1!3) Le c full rar.!,
rniicatca that all tix q inputs rt:s. anpr,r in the

obser •tatiors. If rank 0:9) = a(HB)< q then it
%,culd mean that all of q input con: -rants do %it
dircctly aff.et tr.e o)nervat.: r-ns ir. an y way. iic:aver,
they may r:s so through the states at subsecuc-t

stag=s and ray he estimated 1--er ri, l l,	 her^fc_^_,

( n (H3. ) = q) r..=:y be interpreted as the 'observability'
condition fc- .re input.

Condition (315) is not a new one and ncrcly

requires `hat a reliable or'_or estirlate must exist.

It is alwcys ,rue in ease of a prorcrly fernulated

problem, ac long as the s s•stc:•l cciZe covariance Q is
not taken to be a null matrix.

FROPERT::S OF TFE E3,IX.A:E.'

If the estimate (23) is tc b,. urbiasce, it must

satisfy the rcquircment

E (x) = E (x)	 (32)

ORIGINAL PAGE, I5
Of WOR QUALI'i'YI

0	 E(x0+1)	 `(x`.+.^

where	 E(X) = F	 i ♦1 	 =
E(u.)	 u.

u i	 1	 i

(33)

Taking the exnectaticn of Eq. (23) we get

E (X) = E (X) + 4 
-1 H*T R-I E ( Z-H:: X)

= E (X) + 0 -1 
ll ,; T ° -1 ii:' E (X-R)	 (34)

The lust eq^itlity in (3•+) is obtained from Eq. (12)

and from the fact that vi+1 -s a zero r..ean vector.

Because x is an unbiased estimate of x:

E (X)	 =	
E(x)	 =	 E (x)	 (3.)

Or	 Oq

Using Eqs. (33) and (3:) it iz possible to write

the cxpectation of X - :< in the following,

E(x - Y) _ -r	
I- E

	
= [:(X-M)l:^

uI

	 ^xj

f 	 u
(3r,)

:uc to the particu_:.	 -_ r(v- ) in -he above

equation, it can to easily c r.firne! that the

foilowing identity is

D l	
1-1	

Onq

E(x-\ k or..
	 (	 )

Oqn	 Oqg -

Adding t-is null vector to the right side of Eq.

(34), we get

E(Y) - E(::) + 0	 T 	 „-1	 Ong

0	 0
qn	 qq

::(x-z)	 (38)

But, the quantity in the brac', ets in	 eeuatior.

is 0 itself, Eq. (2 4b). -herefcre, the required

property emcrgcs _nrxdiately.
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E(X)	 =	 i:(X)	 +	 1-.(X-R)	 =	 E(X)	 (39) REE'EREL'cr7)

Py drawinr^ analorics with	 tic Val--!an filter 1. Sanyal,	 P.	 and	 Shen.	 C.	 N.,	 "^nvw':	 Deciciln
1	

ii:	 cf.	 (^],	 the	 fc	 towing quantities —
Fule for Rapid Detectiun nt;d A ga

a
 tivr :7thl-!'tcn

P
c n

defined:can be de
b e^de

S	 A^ lications"	 -NScheme wi th	 ice	 ^	 iJ	 Scat^ c:ionsf	 ^
Vol. AC-19,	 93, June 1974, pp 228-131

-1

2. Scn.,lkar,	 R.	 V.	 and	 Shun,	 C.	 Y.,	 "rapid

i{	 i+l Fi+l	 (40)Gain	 = K'`i+1 Estimation and Detectior. Scheme for U:I^novn

it	
t Discretizcrl P.ectargular Inputs", 	 IE££ Tj,jn.a et ione.

Vol.	 AC-20,_.!1,	 Ccb.	 1975, pp 142-144.

Covariance	 = P 	 =	 p-1 = E {(^i+.-xi+1) 3. Hiilsky, A.	 S.	 and Jones,	 H.	 L.,	 "A Gcr.^_^ali_rJ

Likelihood Fitio Arproach to St:+tc Erti: •taticn
(Xi+l-Xi+l)	 —__ (41)

.
in	 Linear Synte-.s	 Su'_'iect	 to 'br • :" •	C;::T:gon"
Proc e e"in r s of IrF E Conf cr- !ice cr. n ^	 icr
and Control ,	 Phoenix,	 r.rirona,	 Ncv.	 l0 r,,	 pp.

Urir.g Fo.	 ( 7 ), :orrespcnding quar.titi^s	 for the n- 846453.

t dimensional system of interest can be c^duccd.
4. Bryson,	 A.	 F.	 and Ho,	 I.C., Ar ^licd C^ti^; ,31 C^ntrol,

` DISCUSSIONS Blaisdell Fublishing Co., Waltnam,

1967.

The aayczi_n esti.mz!te aerivo• 	 in this cart '
can be calculated tu:d.7r conditions wi:icn can 5. Sanval,	 P. and Shea, C.	 N.	 "3aves Decision

easily be satin.icd.	 (31).	 In Ca^t,	 ``.a::e conditions Rule for P.apid 1.1eteetion anc'. Adaptive. F:a.ma;iunI
were assured to be	 .rue even fnr chriin:ng •'•^ Scheme with Spr.ce Applicaticnc"	 Procc edin, n

minimam vcriinc^	 inp+_t ecti-r4tr:	 in "cf.	 [I]. )f the Joint Ca:nnrtic Control Center^ rc6,
Therefore,	 the 3a osiar,	 , ztimz tc de^s trot	 cost Columbus, Uhic,	 Jure -1974.
any new restricciecs, 	 ,.rd	 at	 the	 3.1me	 ,'rr:e,	 it
makes use of the 'a priori'	 i.nfcr!"rkn in the 6. Soral'rnr,	 R.	 V.	 and	 Shen,	 C.	 It.,	 "'~aria
form of x i end 11i U^der certain c^r:ditio^.s, Ct,tir-at ion z:nJ	 Detection :chor e for llt•kro:rn

+1	 +1'

in	 FES,	 [5]. Discreti cd Kcctan,,ular :nnuts",	 _r-_	 cri:r:;.-
this in =ormaticn watt lost	 the of the.	 Jo i nt A.utem:Itic Cu ntrol re:ae,r , 	ice,

No approx.i: • ations :were t11C!c •-.nd	 t!:c	 Fn.	 (23) Austin,	 'icxas,	 Junc	 1	 ,^.

1
rt rcpresw.nts a valid and a ca •raet : ryesian cutic:atc.

7. i'1r 17 . 1,	 J.	 L.,	 ^_ tta^:1t rOrl	 TI1^•Or

I^
Lven	 if	 !.. )'C:;. •I.:	 c:;I ; nz,.t1Cn	 ':•	 TIGI	 a	 I1CL1	 tl:Ci'TkiCjUC .a1;C,	 A.	 ^^ , Ile!	 --

1^	 1_	 io n^ 	 to	 ,.n.iciti _tt;its	 statepplicatiun	 to	 ;itru7tar...	 .,	 r.nd	 :put cCrar-!till 6ouk Co.,	 .u6r wrr
cotimltior.	 is• Air-.),	 state.	 .._l . a^n:.	 _	 rt	 has	 hoop
u:cd c, I	 n	 in	 t`:r_	 litcraturc	 ''^.	 c:.tirntirr
and unknot.•n	 trz-d:tri utc.	 _	 ._	 but not for S. ,	 "!,	 ,Sona]knt,	 K.	 V.	 and^.her.,	 C.	 :!.,	 :r;	 C,ct.:e-e

Detection by Capid	 :tirwat'cn Sc..	 from
one-stage cst: ate- 	 Tire sci _	 ' proposed pore is

Mcisy	 "	 ^rcdiLaser. 9ar.^cfinder ReLdinrs -' `

'

to be c^Ir'_oyc.J in cor.j metier •-i:i1 a =ecisicn rule _

to estivate	 d dc: ^t any	 ts,	 cc^ of	 the	 ' ti!x_n t 	c_	 E-r-cosiu:-	 r.c	 C'c...	 :i^

and	 Cont rol,!'^	 :a ..ee,	 scunsin,	 41'i•

---

There fore,	 it is suital , Ia for icLr.vir_	 the	 __-
fornar.ee of t-c FLK	 acre irs:•_c:iate dctCCtic^ of 1978,	 Pp 291 - 296.

sudc!cn cifan;^	 s	 in	 state	 (ir.rut:)	 .s	 c:r.nidrrr^d
9. Scnalkar, R.	 t'.,	 "A Dec:	 :on Directed Rapidi equally ac izi-ortnnt as obtaining a good overall

Estimation of Stet_	 for Svrtcm Subj^7t t-.
tree c_:t_antc.

Unknown	 Input fc ,1::crces".	 "h	 uir-crt•i^ i^".,

SEE still r - n-iins	 to be	 investigated f.Irther. Rensselaer Polytechnic institute, Troy, N.Y.,

The opti-;ality .r	 ,;b-optira it	 properties `.ave Dec.	 1975.

to be dctc-rincd underc orti:o,cr.ali:y con ..̂ :iticn.
The fact that Ssc	 _.._:s	 th- :r,cmory of the
filter,	 Li:cs a str^, n; _-	 icatic	 that	 it will

give a much bettir statz estimate in the presence

of inputs.	 Further research c:!nccrning thi.

approach and cc.- utcr si-ulations of the RZ.3
incorporating the SEE are necessary.

AC KNOW LFDGEXENT

This pacer is submit-ed by ^r. R. £onAlkar

to the School of Z-, 	 -coring, P^nssclacr Polytechnic

Institute,	 .roy in par`ia!	 of thi

requirements for the degree of Doctor cf Philosophy.
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Task A.3 Estimation of Laser Rangefinder Errors - T. Ostroski

Faculty Advisor: Prof. C. N. Shen

The detection of discrete obstacles using laser rangefinder data

involves the mathematical processing of range data contaminated by instru-

ment measurement noise. The instrument noise should be determined in

advance of specifying parameters to be used in evaluating a system for

enhancing the images of potential obstacles. 	 In the past the mean and

variance of the noise were assumed and employed in computer simulations of

the edge enhancement procedures. The actual determination of the statistics

of the noise for an actual instrument was not attempted.

The purpose of th i s task was to establish the actual noise statistics

of an existing laser rangefinder. Methods for determining the noise were

developed and applied to a set of such data provided by Mr. Dobrotin of the
Jet Propulsion Laboratory. Details of the procedure and the results are

provided in the reprint of the paper which follows.

e
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ACCURACY ESTIX.An OF 71-7 LASE? RANGE-FINDER FOR V.A-F3 ROVER*

ii
T. Ostroski and C. 11. Shen

Rensselaer Polytechnic institute
Troy, New York
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ABSTRACT

A method -was !eveled to deter--'ne the accuracy of

a reungefinde- wnen errors exist 11•-e to the test
setup. An enal..-tic -,ro,:ed-.;re .*as de-. ,elcped to
evaluate actual 

data fr:m a test -erfzr.-re ,.' on the
laser rangefinder for the 	 .over project.

1NT-rCD'.'C7-r0:1

The laser ra:-..7efintier and a :ele-is.7rt ca7cra are
two alternatives 'ceinr c:ns-* iered to supply the

data for t
h
e -errain r.cdelin^, ccstacle detect-.sn,

end path select
i
on s ,,stems fcr t h

e ".tars autznomcus

rover. 'Tie ac•--ritage of t*-e laser r&n:effn:ler is

that actual	 to obstacles _en be

therefore, it is irportant 
to know t h

e acc uracy of
the rangefincer- --e actual data, which is used
in this paper, -.;as te-ken from a test or. a prototy-,e

rs.ngefin'_er c--r.str•.;:te4- a- t
h
e jet Propulsion Lab

as p--rt of the }Tars Faver -- -oject-

STATE'='T OF	 PROBLEM

The problem is to estimate the accuracy of 
a 

rs-n.-:e-

•"inder giver. t
h
e data 'rsn an act ,,;3-1 test r •.;n. The

fie!d of scan
.he

 _'---'s'test 
is 

a flat plane with no

obstacles. :f -.1- sta.- -es exist	 ey must be remc • -

ed from the rsnze lata set.	 :,.e	 in-

vol uted the te-t szsn ccme	 nary S,-'.ir:es of

e rror. These scur-es of error are in the ievice

Itself and ;ossibl.- in t h e test set ,,;p also. Any
errors ; ,-e to the -es- setup rus- be !n

the estimate of t
h
e err-- r for the device itself.

7a	 :ATA '-'.ATR:.(

A (!jagrq:- of the 9-a-nning	 :-e'-at

-
--;e to the

scanned area is	 in -- 4 r-:-e 1. Pint A is the
sc a-rining	 :e . : self. * ;i,t B i, the point cr^^-	 '

the line, A3, -w*--I c'- intersects -the horizontal

plane that -'r.clu!es the s-awned area. Li
n
e "-:E is

per-,endic'-."Ir to this ;-'=e. Z is the distan,'-e
from A to ?.

Alth:uF*- a	 cscr_-̀ ns'e sisten is

the scanni ng s:ne7e is in a	 ccc-!-4ns*e

system. in f';-:re 1, the elevs-: ,n sngle, ;, ^.d
the &:'.mu1 h&1	 t, are	 into steps.

the size of t
h
e cte;s are	 %n! -'^ for the e-'e-

r.	

.,-

stic step and	 res=ect".rely. -he

actual position of the rectanzular ccorlinate Sys-

ten is arbitrary (the -cordin p te- system has *

e^j-iel to 0* from the y axis for convenience). " .1-

11.111c slate ma t rix, R, ,, is an n x n matrix, where r.

is the number of e 74• aticn stets and n is the nu=.-
ber of azimuthal steps. The q •.;e-ntity, R , ccrres-
ponds to t

h
e i t " e.'eva*-'cn P-n,7:e-	 -j.'e

-	 step an	 ,
'azinuthr-1 ar.Fle s t ep. 7nerefore, F.. corresponds

to 9	 ar. d 0 . a.-I d F 	 ccrres;cndg- to 6	 and
Man	 Mr.	 =ax

..AX

='-;OD OF r11;IYS:S

T .c ,;prca ,:hes are g--.-en in this section. 7he
choice of t

h e =et-od depends .p,:;r. how well the test
setup has teen calibrated.

kne"'s"s - t"cr an ideal
test setup, ell range data • a-ues for a ;-i • en ele-
vat--*cn angle should	 :ha- "is, if the 

axis

of the rangefrider 	
to the ?: : r

,. 
zon-

tal plane,	 the azimuth anzle •.t : t *-. a csnster.'
elevation angle will sweep !Ln arc of a circle on the

horizontal surface with the cen*.er at point B.

Under this conditicr, t-e data for a!:

an gle ste;s at a given elevation angle :sn te a • er-
Sgei for each cf m elev-L", :n steps. -ese m a ,• zr-
aged • a.1-jes are called R .. and are coca tied by the

fo l low
i
ng equaticn-	

r.

W 

i = 
1	

1	
(110

n,

w l--:-- n. is the nu='1-er of -snre ±,% - a 7` nt s .-. r:w

:'he R .. can be plotted to cres'e a -wc dinensicnal
prcf"e of the range data. 7h 4 s ;'- ,--t 4

'

a 
u1sef'-' f:r

a visual Inspectior. of the -*in;ar4t-,- of the e-e-.-a-

.icn mechanism. 7he stan'- srd tev a:.= ,°

then be :alcilatei fir the data-:: 4.nts in- 'each row,
i, using the R, , i n	fcrmula:

2
7

S	
I	

i,

S i 	 (1b)

A lesst- square _ fit to the	 is
r-r --s	 It can prc-..de a setter
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r- 	 --------	 -	 --- -
-&ntlysi3 cf, the non -linearity than a vie ,iul insrec-	 If equntiona (2) and (11) are solved 51rultaneously
;Lion.	 Also, -values of 2.	 and 0	 , -which are ehown for —tt,-the 	 and 1z Fjven in the
in Fig%ire 1, cen be calc •o lated T.0n the	 fatted lire following equation:	 i

to the	 slues measured for the test.
 tni5	 POlt'	 b	 (12)!In

compared

1	 tan 6G1i-11J-a!In the least-squares fit, the estimated equation is
the fore: and then. the horizontal projection of the error,

i

of

,To facilitate the estimate, another coordinate (eu)i=ui	 ui	 (13)I

system was used.	 This transformation is sheen in Finally, the errors, e., be tween the 
P  

and the
Figure 2.	 In the u v coordinate systen, the ranee- fitted line, are calculated by dividing (e u ) i by
finder (point A)	 is the origin; end,to eliminate the cosine of (1-1)60:
0from the analysis, the cean value for the

min first elevaticn angle value is placed on the
ei	 (u i 	 )^ccs(CC^(i-:))	 (14)

C ilu axis. ten	 -1) _a

Me values of u 	 and v, can be obtained from the 2,	 Three Lirensicnal A-curscv Anal-:3's 	 - The three-
M meau values, R,, of the rows of R il by the follow- dimensional accuracy er.alysls is desired when there

l
ing equations, -where 60 is the elevation step size: is a "tilt" in the test setup.	 In the two dinens-

:eoin	 t^ft	 of fiuit.
	

cea((i-1)68)	 (3a) ional analysis, any such "tilt" will show up as ani	
i apparent increase in the error for each row.

Vi = R1	sin((i-1)60]	 (3b) ,n	 i	 t':'	 "tilt"e me.ho..s	 n	 ._s section also compute the

.The equations used to calc •slate the values of a and so that the ran refinder can be allrned to be per-

.b in equation (2) can be obtained from a prcbsbil- pendicular to the hori zzonta'_ plane.	 A visual in-
'Sty (1) or ccrputingmethods tex	 under the head- spection of the range data points can reveal whether

rings, "linear regression".	 hey are as	 follows:
".or not there is a	 'tiltGeneral trends of in-

:	 m	 m	 cl creasinr or 4P7reasing values of R, 1 as j Fces	 from

m	 Z u1 V1	 _(	 u1)(	 Z	
Vi )

!I

1 to n, indicate that a "tilt" exists.

-	 i=b=	 _ 1	 -1	 i-. The range ds'a is given in a polar c_:rdina*-e system'The

j	 m	 2	 m	 2 so the data rust first be transforr..ed into the	 x,
n	 (ui )	 -(	 u i )	 (4) y, - coordinate system she:•n in Figire 1.	 The c:n.-

i	 1=1	 1=1 version formulae are:

r	 b	
S1 1 xiJ 

=	 P,	 (Cos	 9 1 )	 ecs:,	 (15)s=	 v	 -	 u

1	 a	 i"1=1	 1= 1	 (5) yiV =	 R(ccs	 9,)	 sin g,	 (16)

:The estimated slue of Z	 is corpu=ed usin g the - R	 (sin 9	 )	 (17)
fact that slope of the line in Figure 2 	 , AY, is 'ij ij	 i

where
Ithe nepative of the reciprocal of the slope, a,	 c.° 0	 = 0	 + (i-1)60	 (l?)
ithe estimated line.	 The equation for the line AB i	

in

; 1s	 V	 - 1 u	 (6)
O, =	 (J-2)60	 (19)

a

: Selvinzt eq •iaticn.s	 (2)	 &rd (6)	 simultaneously, the The plane which contains the ranee data points car.

!coordinates of po i nt B, u	 and v ,	 are obtained: also be estimated by a least-s. •.:ares estimate.	 The
o

i
uo = - net 	 (7) Z • W 1 + v2 y + v.,	 (20)

+a The objective	 W.ction that ..ust be	 ted	 s:=
b m	 ncVo

1+a2 J	 L	 L	 (Zip-(w I X, y +w2y i , +w 3 ) J 2	 (cl)

'The 
length 

of Z	 can then be calculate'. by taki.'.g
1=1 V=1

1o f, ,h 	 the s	 ,!the	 squsre root o	 th e susum,	 s q uares o. u	 an d Taking partial derlvati •:es with respect to the cc-
IV	 from equations	 (7)	 and (8):	 o efficien'.s, wl , v2 , w 3 , and setting them equal tc

o zero:

Z =	 (-	 ab	 ) 2 +(	 S	 ) 2	 (9) re obtain;	 I

1+a` 	1+a2 W. 	
0_ 

1P 	 (22)

The 0	 can be ca:cu.lated using The value of Z

° The matrices are de'!ned es:
and b.	 The an g le :etween t!:e v axis	 s..1 :.3 !n 2
Fie•ue 2 is e q ual to 9u^ .	 Therefore, 9^ 1 can be ELxi	 l^x iUxi^	 I "iY	 J

. follow!:Ca1CL'lated as I
ELz i ^ui'	 EEyi,Z

G =
uiJo

0	 arc Cos	 (10)
m-n	 t EEx„	 U11	 m n (23)

'The differences,	 e, 	 'retween the actusl R {	values ij
.and the estimated lane sheen in Figure	 are very ZZx	 _

uil	 for aalysi3.	 ^o caicillate,	 e,, the eq•:a-useful	 . p n
1J	 i

I tion of the lice T,	 that passes throu:h the cririn Ie-yiJZ,^

is	 determined.	 T•.;	 e; •;atlon	 for it	 !s:
V •	 u	 (tan to(i-l))	 (11)

I	 EE 	 (24)

-
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vl	
—.m n

	w 2	and EE is	 E	 E

1=1 j=1

	

L w3-
1
	 (25)

These equations can be solved using a rAtrix solu-
tion routine to find the coefficient vector w, if
Q is nonsin^-.ilar.

; The actual range data can be corpared to the esti-
rated plane by generating the values of range data

that correspond to the estimated plane. These
range values are called P ik . The equation for Ri,
is derived by substituting" equations (15), (14)

and (17) into equation (20) and solving for R_,:
w3

P i,) - sin g i -cosd i •.: lcMp,+w2sinO	 (26)

where 0 and O r are g.'.ver. in equations (18) and
(19). i This primed range data ratrix, R t , can be
aubtracted from the original range data natrix,

R i ,, to form an error retrix, R.'

R,,-i i ,	 (27)

The P i , matrix shc•.s the difference between the
estimated plane and the original data.

Using equations (26) and (27) the ratrices, R• and
Pi values were calc ••?ated. The P

74 
val::es wer.

rUipulated to provide -ore useful ata. First,

the values -.;ere averaged in each row and called
•ri1	 ni

r,*- 
n	

P.i,
	

(28)
i =1

where n  is the number of data prints in row 1.

Next, the standard deviation of the values in each
row, si, were calculates ='_np the following
equation:	 ni

E pry
Sri=	

n-_1	
(29)

i

The values for r! and E` are eho •.m in Table 1. The
=e ggs and standard de •riations, calculated in the
three-dirensional analysis, correspond to R, and

S„ calculated in the t:•o- •ii-ensicnal analysis.
Me starred values, hcwe •rer, are computed tekinr.
the "tilt" into consideration.

The directicn of the "tilt", as zro,tected cn the
X, y axes is needed to alirn the rangefinder.
This directicn, d, shown in Fir. 1, can be com^ut-
ed by taking the gradient of Fqua. (20). "'he vec-
tor d is giver. by

T_

d - [v1 v2 )	 (30)

if no tilt exists, d will be a zero vector.

THE MAPS ROVER: Z APPLICATIC`1

The .echniques shown. in this raper were developed
to analyze actual test data from the laser rinve-

finder developed for the "ars Rover frcr. tests
perfcrned at Jet rrepulsicr. Lab.. Paseee.n.a, CA.

and obtained from Mr. B. Pobrotin.

The rar.geflnler. consistir.r of s :aser photcdetect-

or, and an electronic circuit, reesures tire of

.'li ght by a tire - to-pulse -hei ght -_., •version to:h-

nique. it uses a 10 bit A/A converter to obtain

a digital output signal. Six .slues are treasured
for each position; the final five are averared to

get the ranre value fm r that position. The bean
orientation in chan ged by '._ivin2 a rlrror that
positions the laser bear with two steppin g notors.
For the test data, there were 30 elevation steps
and 50 nziruthnl steps. The range data set fcr the
laser rangefinder is shown In Fir, 3. The range
points that fell on au obstacle were set e q ual to
zero so the computer pro prans for the analysis
would skip these points.

The pare-eters for the test setup (2) for this data
are:	 -634 - r-=, Ek .3307 de grees/step, d-^=.3059
degrees/step, 8 , = 35.04 degrees•

r n

The PPsult3 - The values of the nean, P,, P.,d s^_and-
ard -'-viation, S ii , computed from eq,:atic.n s (la) and
(lb) 2nd number bf data points for each row of the

ranre d gt5 are shc :T in Table 1. Using these reen
values, P , end e quations (2) thru (5), the least-
squares eitinate of the line passing through these
points was made:

v - .62859	 u+ 792,95	 (31)

The est`_rated value of Z , usin g Eoua.(9), is 671.3
From Fqua. (10), the estimated value o f 6

is calculated to be 32.150.	
main

The values cf a i in Table 1 show the difference be-

tween the R and the estin%ter line in Fqua.(2) as

shown in Fir. 2. These values were calculated us-

in p Foua. (14). Any trends in the 5, values car.

be cbserve3 in the chanres of the 
values 

of e_.

This analysis was riven only as an illustration.

There is a "till in this ranre data, sc the stand-

ard deviations, S,, are not rood estimates of the

perfer-once of the laser rangefinder.

The "tilt" in the data can be observed in Fir. 2

by ccrpa.rinp the left- and ri ght-most coluruts of

the ranre data. in 22 cf the _'0 rows, the first

element is sraller than the last; and in the caner
rows, they are equal. -his indicates that "tilt"
probabl-r exists and thrt the three-dimen3icr.al

analysis should be afplied.

For the least-square estimate of the plan e of the

data, the ratr`_x InuStiGns, (22) thru (25) were

solved for the vectc r. w. Equation (20) fcr this
estimate is:

.03946 x+ .03383 y+678.0 (32)

The direct:-r cf the tilt, d, was calculated to be
[,03044 .0338317 usinP Fq-ia. (29). In the top

view of FiP. 1, the position of d is shown relative
to the plane cf the scan in the x.y ;:a .e. T^:is

directicn of the 'tilt' is in arreenent with the

earlier observations of the ranre data.

T"7EP -rt7ATIC7 OF THE PFSULTS

A ccrparlsen of these ststisti:al res •;lts cf values

provides useful infcrration. Poth the e, and the
r, shown in Table 1 indicate a trend of curvature

in the data. Be cause it apFears in the three-di-

rensicnsl rr.alvsis, the trend is not due tc the
tilt of the plane. This non linearity '.s frcr the

devi:e itself and on:inates either in the ele •:a-

ticn -echP=l:n, the ranre r+easurerent apparat•.:s,
or both.
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The standard devintions of the three-dirensional

analysis are in general smaller than those of the

two-dimensional analysis. This !s expected be-
cause the three direr.sional analysis removes the

added errors due to the tilt in the test. '"he

standard deviations, P", ranre from approximately
2 to 7 mm. Studyin g t ese Si, one will notice i
trend of increasin g error as the distance of the

range value increases (Rcw 1 has the larFest ranre
values). Pecause the chan ge is not siFnificant,

however, an actual value of the error cannot be
established. :-.`.e staniard deviation s r-5 and : *,
are 7.7 4 =and 5.12 mm. They are larger by about

4 = thsn the ether values of R" around them. In
subsequent tests, the star.dnrd & viaticns of these

rows should be checked to see if this problem re-

occurs.
I
Before the data in Table 1 is interpreted fNsrther,

the quantization error must be estimated. :'he
standard deviaticn, S , of the quantization error

can be found independen tly of the scan by the

followinr, form•.a a, where d is the difference be-
tveen successive quantization levels:

S  J12	 (33)

For this data set,A equals 9ra: therefore, S 

equals 2.6 mm. Except for rows 6 and 30, the S•

range from 2.9 to L .7 rn. Most of the inaccuracy

therefore is due to q uantization error. '"he r.ext

larFest source of error is the nor.linear_t y of the
range rea,inas. The inaccuracy due to this non

linearity rakes the performance of the rangefinder

poor for the ran ge of a.proxlrately 1 to 1.3 meters
Modifications to the rangefinder should be made

If it is to be used in this range.

CONCLUSION

.h!s paper has presented two r..ethods to an p-ly:e the

accuracy of a ra refir.din p device.

The two-di-mensional analysis is useful when the
rangefindir.F device has been aliFned so that its

vertical axis is rerpendicular to the scanned plane.
The errors, e, introduced from the ranrefindinp

device or other sc.irces can be observed in Table 1
of the rear.s gi and standard deviat!^n 13, S.. A

visual inspect#cn  of the e, will reveal any non-

linearitles of the data. "aese nonlinearites cf
the system are shown at different elevation angles
and, hence, at different rar.re distances.

The three-direr.s'_cnal analysis is used when a "tilt"
exists between the scanned plane and the vertical

axis of the r"refinilr g device. in this rethod,

the plane of the scan is determined using a least-

squares estimate. rrom the ecuaticn of the est.-

rated plane, the vertical axis can be remlipr.ed,

for the actual device and the test can be r,:.n aFa!^.

Also, values of ran ge data can be corputed fro g the

equation of the eztinsted plane. The difference of

these values and the actual ran ge data car. be used

to p !ve a rough estimate of the accuracy when "tilt"

exists.

If it is possible to rake rultiple tests of the

rangef!r.ier, the best approa^_h is to first correct

the alignment of the ran gefinder using, the second

method, and then use the first method to analyze

the data from the rangefinder test.

The methods Just described show the errors of the

rangeflnding device as the elevation angle, Q,
changes or, equivalently, as the distance of the

measurement increases. The source of these errors

are the elevation nrFle positioning mechani= or
the distance reasurinF device itself. Other coerc-
es of error that are included in the error estir..at-

- are quantization error and error due to noise in
the environrent. lie quantization error can be

estimated independently and compared to the final

results.

The change of range readirp with the intensity of

the reflectei pulse is also icrportant (3). -he in-
tensity of the relfected pulse can be chan ged by

changin g the reflectin g surface cr by chanpinr, the
angle of the reflectin g surface with the incident
bear. The errors due to the latter are reasured by
the r..ethods in this paper; because as the distance
of a range data increases, the angle that the sur-

facc forms with the bean also increases (4). 9cw-

ever, these errors and the errors due to increasing
distance of the measurement cannot be se p arated !n
the analysis. it is recor.mer.dei that a testing

schere be constructed that could reasure the errors
due to changes of intensity.

Table 1. Statistical Results

Row P i S1 e  ri Si ni

1 = rm -^ mm mm data/row

1 12r	 .on 5.71 2.23 2.73 L.L5 2»

2 1252.52 5.14 2.23 2.35 3.69 23
3 1239.96 5.87 0.90 1.43 3.81 25
4 1230.58 L.56 2.50 3.05 4.31, 26

5 1218.97 4.27 1.65 2.72 4.30 29

6 1210.18 5.65 3.39 4.00 7.74 33

7 1194 .57 2.63 o.C9 1.93 4 .65 ?7
8 1187.27 4.17 0.R8 2.55 4.66 37

9 1177.19 3.93 0.69 2.18 3.74 37

to 1166.5 E 4.78 -0.27 1.05 L .33 37
11 115 4 .62 5.12 -2.71 -1.65 3.51 50
12 11 4 5.52 4.85 -2.51 -1.61 3.39 50

13 1135. 46 5.44 -3.E4 -2.71 L.14 50

14 1127.28 4,09 -2.71 -2.11 3.33 50

15 111x.58 5.17 -2.65 -2.20 3.27 50

16 1110.62 4. 58 -2.03 -1.71 3.23 co

17 1101.02 5.81 -?.21 -7.03 4.1L 50

18 1093. 4 8 5.17 -2.50 -2.45 4.01 50

19 10A5.L4 4.70 -2.44 -2.52 3.03 50
20 1079.72 3.79 -1.22 -1.42 3.?6 50

21 1070.44 4.44 -1.71 -2.03 3.84 5(,

22 1043.60 3.77 -0.71 -1.14 3.17 5r)

23 1055• g4 3.32 -1.06 -1.61 3.40 50

24 1040.06 L.52 0.32 -0.34 3.'.0 50

25 1043.60 3.00 1.18 0.42 2.88 50

26 1034.86 4.46 1.53 0.4.6 3.44 50

27 1029.24 MA 0.87 -0.10 3.31 5M

29 1023.72 L.43 2.19 1.12 3.02 50

20 1017. 80 4.99 2.98 1.81 3.L0 50

30 1013.E0 6.15 5.57 4.31 5.12 50
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Task B.	 Path Selection System Simulation - B. Longendorfer

Faculty Advisor: Prof. D. K. Frederick

The overall obj=ctive of this task is to define a path selection

system for the exploration of the surface of a planet using Mars as a

case. Because of the delay introduced by one-way communication to Earth

from Mars (on the order of twenty minutes), the vehicle must be able to
sense its environment and direct its own movements without human assistance.

Accordingly, algorithms are sought which will organize the collected data
into an appropriate "world model", and utilize it in choosing an optimal

safe path.

The paticular methods investigated are edge-detection techniques.

Edge detection techniques require a matrix of range/pointing angle data.

Sudden changes in magnitude between adjacent elements, or differences in

the rate of change of these magnitudes signal the existence of "edges".

The application of these techniques to the Mars Rover requires much

supporting simulation work. For example, the matrix of inpit data consists
of laser range readings from a specified field of view, requiring the simula-

tion of a range-finding sensor.

Practical problems arise when considering the multitude of situations

that occur in the physical world. Flat fiel^, ^angle obstacle encounters

(with which most of the theoretical work has been done) are rare. Problems

such as what initialization procedures shall be used, which side of an edge

(or both) constitutes an obstacle, what threshold values yield the "best"

performance, etc. must be considered. At times, additional processing might

be required to obtain a more complete picture.

The vehicle then must relate the resulting matrix of edges to the
actual environment, through a Terrain Modeller. The Terrain Model must
calculate the actual location of the obstacles sensed, their approximate
size and height, their relationship to the surrounding terrain, and the loca-

tion of scanned (known) and unscanned (unknown) regions. Work on the Terrain

Model has reached the debugging and concept testing stage.

Once information about its surroundings is available to the vehicle,

it must select a safe optimal path to its target. The method employed is

called a path selection algorithm. The algorithm is necessarily influenced

by the data-acquisition method in such factors as the conservatism of the

method (because of the susceptibility to noise or the lack of it), and the

type of obstacles which the sensor is intended to detect (discrete obstacles,

slopes, positive or negative obstacles). Work on the path selection algorithm

is in the planning stage.

Sensor

l
A laser rangefinder sensor was specified for a nominal range

of three to thirt y meters. Previous sensor simulations were not

suited to this particular task. They allowed for only a small

f	
number of elevation angles (one to four), and these were con-
strained to certain values (for example, only horizontal). Azimuth

4
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angles were similarly constrained. Clearly, the sensor used

in edge detection needed to be able to generate a large matrix

of readings at one time, at any angle coordinates. The sensor
now programed overcomes these defects, as well as providing

for time lapse while scanning. Noise affecting the range read-

ings is taken into account in two ways:

(1) noise of specified type, mean, variance, maximum

amplitude, natural frequency, and damping constant

may be added directly to the range readings, and

(2) the specified accuracy of the sensor may be changed

by the user.

Plans for further work on the sensor include the modification

of the added noise by a factor proportional to the range squared,
in order to better simulate errors in time of flight measurement.

The sensor simulation uses the following method to compute

range readings. It first calculates the position of the laser

and the position of the location where the laser would intersect

ground, both with respect to the vehicle, assuming no slopes.
It transforms both points to the planet reference frame, by its

knowledge of vehicle heading, and actual in-path and cross-path
slopes. It calculates the direction cosines of the line connect-
ing the two points and steps along this beam with a user-specified

increment (BEMSTP, usually set to five centimeters), until it finds

itself below the actual terrain level. It enters a bisection

scheme until the desired accuracy is reached. The accuracy is a
user-specified input (SD4STP) and is defined as the difference

between exact measurement and the computed measurement (not as the
difference between the height of the computed measurement and the

terrain at that point, as in previous sensors). Efficiency of the

sensor is vastly improved by the use of an initial gues,, at the

range reading, and logic which will not recalculate '.ransfermations

unless the vehicle has moved from its previous position. The initial
guess is taken to be zero for the elevation angle nearest the vehicle.

For other elevation angles, the guess is set equal to a value some-
what smaller than that for the elevation angle nearest to it but
closer to the vehicle.

Testing of the sensor is now complete.

Scan Generator

The scan generator serves as a preprocessor for input and

output for the sensor. It allows input in a variety of convenient
forms and calculates the necessary azimuth and elevation angles to

cover the specified field of view while maintaining a certain data

density. Because of the requirement that the Kalman filter must

receive only angles spaced by a constant number of degrees, the data

density (number of points per square meter) will vary, sometimes

quite drastically.

Input may appear in tha form of a list of angles, or maximum,
minimum and incr-mental angles, or in the form of field dime.isions
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•,	 such as leneth, width, center and maximum polat spacing.

Testing is now complete.

E(,,-,e Detection Techniques

The edge detection programs had to be interfaced with the

existing aimvlation package.

The edge detection routines employ a Kalman filth, which
is performed separately on each row and each column. Row process-
ing looks for changes in the magnitude of range readings (vertical
edges), while column processing looks for both magnitude and

slope changes (horizontal edges). The Kalman filte r predicts

values for each clement of the array in succession, and computes

the probability of an edge having occurred at that stage bas-d on
factors such as the difference between actual and expected values,

the probability that an edge will occur, the cost of making a

wrong decision on the location of the edge, etc. Bayes' Risk

calculations weighted by these considerations make the actual

decision.

The performance of the edge detection routines has been tented

by generating a terrain with the simulation package, measuring

ranges with the sensor, and attempting to reconstruct the edges

with the computer programs. Varying success has been attained, as

shown in Figures 1 through 5. Problems identified here will be
explored further in months to come.

The bottom edges of boulders and the far -dges of craters
have not been shown by the program. To remedy the situation, two

courses are presently being ; • irsued. One possible solution is to

replace some of the threshold values (originally programmed as

constants) with variables, and rc-test th^ performance. :mother
solution is to install an auxiliary test to look specifically for

an important situation not now being identified. A "moving average"

or constantly updated average value, will flag changes in slope

greater than this average plus a tolerance or expected changes that
fail to occur (i.e. changes l,ss than this average minus a tolerance).

The first case would signal the far edge of a negative obstacle while

the second case is that of the near edge of a positive obstacle.
At pr:sent, the "moving average" is .ble to be engaged or disengaged

by a flag so that its effect may be studied. The tolerance itself

is selected as a fraction of the computed average difference	 as
the value computed assuming the maximum transversible slope.

Noise seems to have very little effect on the performance of

the Kalman filter. Figures 4 and 5 bh ow the effects of unfilt.:red
whiteno_se, which was added independentl y to each of the rar.g.-

readings. Range readings differ by as much as twenty centimet.2rs
along the same row (which should ideally have exactly the same

readings, since they result froc identical elevation angles).

LL



a

^u

u
0

pq	

V

25.

8

i

r

n
Another problem is the correct initialization procedure to

follow. Until recently, initialization involved calculating

expected range readings and changes in range readings given that

the surrounding terrain was a flat plane. Changes in slopes be-
tween elements of a column were done the same way. However, a

new initialization procedure is being tried at present. Rows and

columns are initiated to the range reading actually obtained. If

an edge is actually present there, it will occur at the next stage

instead. The small inherent error will be more than compensated

for by the lack of initialization error on slopes, which could

possibly block off an entire forward path.

Terrain Model

The Terrain Model interprets the data obtained from the
sensor and edge detection routines, and translates it into an
organized, easily understandable form. The Path Selection Algorithm

is then freed from the concern for which method was actually used to

obtain the data, and it can be a much more generally applicable pro-

gram.

The Terrain Model presently being developed divides the general

region of the vehicle and target into a grid of squares, and uses

them as a type of obstacle map to provide memory.

There are several stages preceding the construction of the

final obstacle map. First, the edge matrix provided by the edge
detection routines must be scanned for edges. The model must

decide on which side of the edge (or both) the obstacle lies, and

whether the obstacle is positiv: or negative. This is currently

determined by taking an average range ov^•r the proposed obstacle
(i.e. that terrain which is between one edge and another, where
an edge is defined as the beginning or end of A row or column or as

the edge identified by the detection programs). The average range

is compared to a value plus or minus a threshold. The comparison

value currently corresponds to that for flat ground, but a better

comparison of the known surface area (such as prediction from ortho-

gonal polynomial least squares) will soon be employed. This is an
example of the interaction of the terrain model and the edge detec-

tion routines. Second, all iratrix elements determined to be within

the obstacle are marked according to type and blocked out. Third,

all squares on the obstacle map of the environment which contain any
part of the region scanned by an edge in the edge matrix are also

marked with the obstacle type. This can be achieved b . • using attitude

data and some geometry to orcain the planet (x,y,z) , 00rdinates at the

scan point. Projecting the obstacle location on to the xy-plane

yields the map location. Actually, this is done at any ; p oint of the
entire region sampled '-y one data point which will cause a new ;quare
to be blocked on the obstacle map. Further information may be ob-
tained and included in the map such as a height code, which would be

useful for computing and storing s'.ope, and flagging hazardous terrain.

However, thi. has not as yet bee.i incorporated in the model. Edge

detection is designed to handle discrete obstacles, so that has been
the main area of concentration of effort so far.

0
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All terrain is initially labelled as unknown and is changed

l^	

to another code only after it has been scanned at least once.

`	 Certain problems remain to be dealt with. Storage and

( I	memory capabilities directly conflict in the choice of the size
lof the blocks on the obstacle map. However, if only a certain

amount of memory is needed while a large amount of terrain is to

be covered, a "rolling pointer" might be used, which would indicate
the current farthest sensor reach, while old data would be over-
laid with new data from a different region. Another problem is the

conflicting declarations of obstacles. Depending on the conservatism
of the algorithm, differences in successive measurements would make

the algorithm more or less sensitive to noise.

Other assumptions include:

(1) The vehicle has been supplied with a map of its

surroundings up to a certain radius at the begin-

ning of the simulation (otherwise a fixed sensor

could never scan the field).

(2) The sensor cannot change, add or delete angles

from its scan once they are initialized.

(3) Primary effort should be given to the detection
of discrete obstacles.

Path Selection Algorithm

The problem of selecting a path given an obstacle map consisting

of squares has t=en dealt with by C.Y. Lee, Reference 1 and F. Tallman,

Reference 2.

The algorithm consists of:

(1) identifying the known (scanned) region

(2) finding a minimal length path to the target

(3) following the portion of this path 3f maximum
length until the target is reached or another scan
is necessary.

The minimal length pith is identifies by placing numbers in
ascending order in blocks adjacent to the target, adjacent to the block

adjacent to the target. As lo,ig as t 1no vehicle progresses from one

number to the next lower ni:,nber, it iF following a minimal length path.

Problems not considered in the literature that are faced here are:

(1) The vehicle may be more than one square in dimension

of length or width.

n
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(2) The vehicle has inherent dynamical characteristics

and ^annot turn abruptly.

(3) The vehicle scans only a small portion of its

surroundings.

(4) The vehicle cannot proceed within a certain radius
of unknoT,n terrain without losing the ability to

sense obstacles that may be present.

Edge detection appears to be able to overcome two of the basic

problems other path selection algorithms could not eas_1N- deal with:

noise, and confusion of slopes with discrete obstacles. The trade-

off seems to be memory space and computation time.

Since simulation efforts are only now giving way to proposed

problem solutions, it is too early to draw definitive conclusions.

A reprint of a paper describing the application of this simulation
code to the evaluation of a triangulation-based short range hazard

detection system follows. The reprint is included to illustrate some

of the type of output which can be expected when complete simulations

of the concepts described herein are implemented.

I
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THE MILWAUKEE SYMPOSIUM ON AUTOMATIC COMPUTATION AND CONTROL

GUIDANCE AND CONTROL OF AN AUTONOMOUS ROVER FOR PLANETARY EXPLORATION
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1

A four-wheeled vehicle capable of deal-

ing with irregular terrain features such as
might be encountered in unmanned exploration

of extraterrestrial bodies has been designed,
constructed and tested. Its mobility and

maneuverability are such that applications
on earth requiring autonomous control may be

served by it or a suitable variation. It
could also serve as a test bed for arti-
fi.ial intelligence/robotics research. Al-
ternative concepts for terrain senFing and

modeling, and path selection algorithms have

been investigated. A triangulation-based

laser/photodetector path selection s-•stem

developed by simulation is found to je able

to deal with a broad range of terrain fea-

tures. The path selection system is now in

the process of construction and implementa-

tion and will permit field evaluation of the
overall vehicle system as in autonomous

rover.

INTRODUCTION

The very long tern interests of man re-

quire that a thorough exploration of the

planets of the solar system, their moons and

the asteroids be undertaken eventuall y . Al-

though it is likely that man himself will

visit or establish himself ultimatel y on some

of these extraterrestrial bodies, economic and

technological considerations suggest that un-
manned systems must be used during the shorter

run.

Considerable knowledge of `tars, Venus,

Mercury and Jupiter has been gained by fly-by

or orbiter missions and more advanced remote
sensor concepts will contribute further to
man's understanding of the solar system. How-
ever, basic understanding of the chemical,

biological, geological, meteorological and

physical characteristics of extraterrestrial

bodies requires surface exploration. The

current Viking missions are intended to meet

some of these requirements for the planet

Mars.

Despite the historic implieatione of the

gars Viking program, Viking-t ype missions are

severely limited in scope because of the

restricted sampling range of its ten foot boom

with a 120 0 arc. Thus only a minute fraction of

the martian surface will have been scrutinized

and a larger but still very small fraction a,

limited by line of sight will be examinee visual-
ly. A more thorough exploration is not likely to

be effected by increasing the number of such
stationary landers because of the large number

which would be required and the problem of se-

lecting and reaching precise landing sites where

critical measurements can be made. A method for

exploring the planet in question in detail and to
do so adaptively on the basis of the knowledge

being gained is essential.

The scenario for plan-tar: exploration could

involve either a stationar y lander containing

sophisticated and adaptable instrumentation

for in--it , i anal y sis or a sample return vehicle.

In either case, the scenario must involve sample

and/or data gathering devices capable of being
relocated over much of the planetary surface, and

in the case of sample gathering devices, capable
of returning to the lander site. In order that

such missions can be executed in a reisonable

time of the order of several months t) perhaps a

year, such sample or data gathering devices must
have a high level of both mobility and automa-
tism.

The mobility requirements as expressed in

terms of characteristics such as the maximum

slope which can be climbed or descended, the

maximum boulder which can be negotiated without

:.voidance, the ability to transverse depressions

and very rough terrains, etc., has a dir,• ct bear-

ing on the availability of paths to the desired

sites. A vehicle of limited mobility may require

an inordinate length of time and distance travel-

led to reach the target. Indeed, in some circum-

stances, the vehicl^ may not be able to reach the
target. As the vehicle's -nobility is increased,

it will be able to deal effectively with in-

creasingly difficult terrains. More paths to

target will be available and the opportunit y fu,
selecting more optimal paths will be increased.

Thus, one major research objective should be

aimed at developing and evaluating alternative

concepts of relocatable devices capable of serv-
ing a stationary lander or sample return mission.

Of equal importance to advanced exploration
missions is the level of auto-atism which can be

achieved. The decision for the vehicle to
:ollow one path or another towards its destina-
tion must be provided by some path selection

system comprised of appropriate terrain data
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sensors, terrain modeler and path selection
algorithm. The character and capabilities of

such a system must be appropri.te to the objec-

tives of the mission. A low level path selection
system will have to be biased conservatively to

minimize the risk of an unperceived hazard in the
vehicle's path. Thus many, perhaps all, accept-

able paths towards the target may be excluded.

The effect of a low level detection system is,

in fact, to reduce the vehicle's mobility. As a

minimum, the path taken towards the destination

will be lengthier and the range of the explora-

tion will be reduced. 	 In the other extreme, the

vehicle may become immobilized. On the other

hand, a higher level, more sensitive, more per-

ceptive path selection system will identify a

larger fraction of the passable paths and will
permit selection of those directions most com-

patible with the mission goals. Thus a second

major research objective is the development of

efficient path selection systems for the safe
relocation of a rover.

The research program 
(1) 

aimed at these two
major objectives is applicable not only to

extraterrestrial exploration but to robotics ap-

plications on earth where hostile environments

and special circumstances may exclude either di-
rect	 or remote manual control. The major

emphasis of this paper is on the rover and the

path selection system selected for immediate im-

plementation.

THE RENSSELAER ROVER

By virtue of its design the vehicle has a

very high mobility and maneuverability, Ref. 1
and 2. In its deployed state, Figure 1, it has

a stable stance allowing it to traverse very

irregular terrain. The configuration of the

struts serving the individually-driven wheels

permits this vehicle to be collapsed into a com-

pact space, Figure 2, from which it can be de-
ployed automatically. The struts, which are

driven separately by torsion bars, can be used
to raise or lower the payload compartment as re-

quired and to orient it fore-and-aft with res-

pect to the horizontal. The front wheel wagon

steering insures that all four wheels will be in
contact with the terrain for all but the most

severe surface irregularities. 	 It also permits

a sharp turning radius such that in the extreme

case, the vehicle can turn about a center through

the rear wheel axles. The vehicle is able to

deal effectively with a broad range of slope

situations and discrete obstacles.

Perhaps the most outstanding feature of the
design is that this vehicle can recover from the

situation in which both front wheels fall over
the edge of a crevasse or a deep crater. For all

other vehicles which have been proposed, such an

event would be catastropic and would terminate

the mission. That is not so with this concept.

ill Faculty participating in the overall re-

search program are: Profs. D.K. Frederick,

D. Gisser, G.S. Sandor, C.N. Shen and S Yera-

zunis.

Because of the unequal lengths of the front and

rear struts and the torsion bar system, the front
and rear wheel assemblies can be reversed and the

vehicle can withdraw safel y from the hazard. This

same maneuver can be used to extricate the vehicle
from a "box canyon" or equivalent terrain feature

in which there is insufficient room for the vehicle
to turn itself around and from which it ma y not be
able to back out. Previously proposed vehicles
would also fail in this instance.

"'he vehicle has been refined to the point
where it can serve as an exceptional test bed for

the evaluation of alternative path selection sys-

tems.	 In this sense it is a valuable asset for

exploring artificial intelligence or robotic as-
pects related to a machine seeking an acceptable

path to a prescribed destination, an objective not
necessaril y restricted to extraterrestrial ex-
ploration.

In addition to the mechanical and propulsion

systems, the rover is equipped with electronic
four-wheel speed controls to permit effective

steering, attitude and heading gyroscopes, posi-
tion sensors for all major strut c-nponents, and
a two-wav telemetry link to an off-board mini-
computer to provide the necessary vehicle data
for guidance and control. All that remains is the
implementation of the hardware and software re-

quired for an operating path selection system.

PATH SELECTION SYSTE % 1 SD!UUTION'

The path selection system required to guide

an autonomous vehicle must include: terrain

sensor or sensors hardware, procedures for inter-

preting the data, and an algorithm for selecting

safe paths on the basis of the data. the best

combination of hardware and software will depend
on the details of the mission and the dynamical
and mobility characteristics of the vehicle or
robot. An optimization of these requirements

through an iterative process of constructing and
evaluating specific hardware and software will be

inordinately expensive and tedious and is not

likely to be optimal. A digital computer simula-
tion has been developed which can be used to

screen all conceivable s y stems. Ref. 3 and 4. The
simulation can "create" a ver=y broad spectr ,un of
terrains possessing such large and small scale

details as desired. The pitching, heaving and

rolling of the vehicle can be simulated and their

effect on the terrain sensor data can be evalua-
ted. The terrain sensor can be simulated to re-

flect both the error due to the motion of the
sensor as a result of vehicular d ynamics and the
inherent sensor measurement errors. Proposed
terrain modelers and path selection algorithms can

be analyzed, evaluated and modified. When these

considerations are taken all together, a first but

:meaningful appraisal of the strengths and weak-

nesses of proposed hardware systems can 'e obtain-
ed.	 Its application to a specific path selection

system is described later in this piper.

ALTERNAIIVE TERRAIN DATA CA71ERI NG CONCEP:5

Efforts in developing alternatives for the
gathering of terrain data have been focused on:

f 
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(a) a range-pointing angle concept and (b) a tri-
angulation concept.

An in-depth study of the use of range-angle

pointing data for terrain modeling and hazard de-

tection has been on-going for several years. This

phase. which ha resulted in numerous publications,

Ref. 5, 6, 7, 6, 9, 10, has focused on the mid-

range problem.. from 3-30 meters. liethods have been

developed for interpreting these data to obtain

estimates of the terrain gradients and to detect

discrete objects whose contours deviate from the

main terrain. Edge detection and edge enhancement

techniques have veer. developed which provide com-

plete outlines of boulders, ridges, craters and
crevasses provided that a sufficiently high data

density is available. Current efforts are concen-
trating on the problem of reducing the data re-

quirements without sacrificing the effectiveness

of the interpretation. These studies are con-

cerned with the data density in both time and
space and to the implications of inherent sensor

errors and errors due to the motion of the sensor

as a consequence of vehicular dynamics.

As an alternative, a short range (1-3 meter)
system based on triangulation has also been in-

vestigated.	 Indeed the latter system has been
selected for implementation on the Rensselaer

Rover. The concept is illustrated in Figure 3

in which are shown a laser beam along one point-
ing angle and a photodetector along a second

pointing angle. The existence of a reflecting
surface, i.e., terrain within the zone of inter-
section, will be sensed by the photodetector. In
principle, an y number of lasers and photodeteet-
ors can be deployed to obtain terrain surface

data to any desired density and discreteness.

This information can then be used as the basis for
modeling the terrain and making path selection
decisions.

From a terrain modeling point of view, the

range-pointing angle and triangulation concepts

are equivalent. That is, both concepts provide

the same type of data in that the terrain surface
is concluded to lie along a line segment of some

length and angular orientation. However, the two

concepts involve different technical obstacles in

their implementation. The uncertainty of locating
the terrain surface along the line segment using

the range-pointing angle concept is determined by

the ability of instrumentation to measure time-of-

flight with possibly weak return signals and in
the presence of undesired reflections. \s one's

objective in hazard detection focuses more on the

short-range aspect, the time-of-flight measure-
ment becomes increasingly difficult due to the

need to measure extremel y short time intervals.
On the other hand, the uncertaint y related with

terrain location by triangulation is controlled
by the geometrical relationship of the laser and

the detector and the cone-of-vision of the latter.

By using overlapping detectors and by scanning

with a high frequency laser, the uncertainty can
be made extremely small for the short range*How-
ever, the triangulation system begins to suffer
inherent and significant uncertainty in long

range applications. Thus, hardware systems based
on range-pointing angle data look more attractive

at longer ranges whereas the triangulation con-

cept is .f ar more favorable at short range.

Given the objective of demonstrating a mini-
mal level of autonomous roving capability, it was

concluded that a path selection system based on

the triangulation concept would be implemented.

THE PROPOSED PATH SEIECTION SYSTE`i

As noted earlier, a path selection system

consists of a sensor(s) to gather the data, a

terrain modeler to process the data into a proper

form, and a path selection algorithm to employ the
modeled results with the objective of defining

guidance commands. The path selection system

which has been chosen for hardware and software

implementation consists of two lasers scanned
azimuthally along fifteen positions equally spaced
at loo to provide a 140 0 field of view. One
photodetector possessing a 9.60 cone of vision

will also be scanned over the same azimuthal

angles. The two lasers will be 1•x ated at a height

of 1.5 meters at elevation angles of 43 0 and 460

whereas the photodetector at the 0.75 meter height

will have an elevation angle of 62 0 , Figure 3.

These initial design parameters are specified on
the basis of the simulation studies completed to

date. The mast on which the lasers and the photo-

detector are to be mounted has been constructed to

provide up to 6 azimuthal 1400 sweeps per second.

The instrumentation mounting arrangements are such

that the lasers can be scanned in elevation as

well as azimuth and that additional t,hotodetectors
can be added as desired. Finally, the mast con-
figuration will allow for significant adjustment
of the geometric parameters so that the research-

ers will have considerable flexibility in studying
more sophistricated triangulation-based alterna-

tives.

Central to the task of demonstrating and

evaluating this concept during the late spring of
this year has been the path selection system

simulation effort.	 It has fallen on this group to

screen a number of design concepts and to synthe-

size a specific alternative satisfying the basic
requirement that the rover will not pursue a path

which will abort the mission and that if a safe

path to the specified target exis ► s the rover will
eventually detect it. Although toe long-tern ob-

jectives call for a high degree of discrimination
on the part of the system to minimize the misin-

terpretation of safe alternatives as hazardous,

the studies completed to date have defined a mini-

mum but feasible system.

The path selection system simulation, Ref. 4,

has the capability of simulating the performance

of a broad range of surface rover concepts, alter-

native data gathering concepts, data processors

i.e. (terrain modelers and path selection algo-

rithms on a terrain selected by the user. The
terrain can have large cale features as well as

fine detail.	 Inherent sensors errors can be

simulated along with those sensors errors due to

the dynamic motion of the rover as it moves over
highly irregular terrain and rubble. Thus, the

simulation affords the users the opportunity to
appraise alternative hardware and software con-

cepts conveniently.

In the case at hand, the simulation was used
to develop the design parameters specified above.
The anticipated behavior of the selected syste n
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is shown on Figures 4 through 8. Notc that the
design parameters are set to detect a positive
hazard (boulder or step) or negative hazard

(crater or trench) in excess of approximately
+ 12" from the plane defined by the attitudinal
status of the vehicle. With the single detector,

this requirement is equivalent to setting the
maximum gradient to + 12 0 . Parenthetically, it
might be noted that the 12 0 gradient is far lower

than the actual slope climbing capability of the

Rensselaer Rover. Thus this system will rule out

potentially passable paths because of its in-
ability to discriminate between slopes and dis-

crete obstacles.

Shown in Figure 4 are the results of three
simulations as applied to a boulder-crater field

superimposed on a flat base using the single
laser-singlE detector concept described earlier

assuming the absence of noise due either to in-
he:ent sensor limitations or the pitch or roll
vehicle m.)tions. The proposed path selection

system is found to be quite effective in dealing
with this problem. Also shown in Figure 4 is a

simulation of this system with vehicle motion

noise effects equivalent to fluctuations of + 50
in pitch and + 10 o in roll at the contact points
of the wheels	 At these noise levels, the path

selection was unaffected.

The noise parameter referred to above is

intended to account for the vehicle motion caused

by terrain features which are too small to model

on an individual basis. Random fluctuations in

the pitch and roll angles are generated aid then

added to the vehicle's attitude as determined by

the slope of the deter-ainistic terrain under the
vehicle. These random fluctuations are computed

by entering a sequence of uniformly distributed

random numbers Into a second-order low-pass

digital filter whose damping ratio and undamped

natural frequency are representative of the
vehicle's dominant mode. The purpose of the

filter is to simulate the smoothing effect of

the vehicle's suspension system. Roll and pitch

.ire treated separately, with different random
sequences. For example, using an unfiltered

randor• sequence uniformly distributed over + 10

degrees resulted in filtered angles having a
standard deviation of + 3.74 degrees and ex-
treme values of - 9.0 in the pitch direction.

Hence, the excursions in the attitude of the

mast and laser-detector combination are some-
what less than the unfiltered fluctuations which

are assumed to exist at the wheel contact points.

The standard deviation and the extreme values for

other levels of vehicle dynamic noise would be

proportional to these for 10 degrees.

Also shown in Figure 4 are simulations in-

volving the two-laser system scheduled for imple-
mentation with noise levels of 100 and 150 in
both pitch and roll. The performance of the

system continues to be effective despite the high
noise levels. Howe v

er, it is clear that as the
noise level due to vehicular dynamics and terrain
irregularities is i.,.:caseu, a poin , will be

reached eventually at which the effectiveness of
the path selection system will be degraded. This

question has not been fully explored yet because

as will be described below noise effects are far

more significant in terrain situations involving
sur f ace undulations than on flat base terrains.

Shown in Figure 5 are simulations involving
a terrain described by sinusoidal functions. It

should be noted that for a sinusoidal terrain of
6 meter period and 0.20 meta: Amplitude in the

absence of noise that the path selection system

Is able to direct the vehicle in a straight line

fashion brt. ,cen the initial point and the target

destin.cion.	 However, an	 increase of the

amplitude to (,.3 meterf,,rces the one laser
hazarl. detection system to depart significantly
from the a-raight line path and to ru • andet to-

ward the targer. Although the target is reached

eventually a considerably larger distance travel-

ed is involved. The path selection system can be
improved by adding a second laser at an incre-

mental ele vation of 3 0 .	 This modification has

the effect cf providing additional information
which allows the path selection sysrem to take a
some•+,at more direct route toward the target.

However neither system can achieve a direct route
for an amplitude of this magnitude. 	 Increasing

the amplitude to 0.33 ru•ters wh1 ►e retaining the
period at 6 meters, causes both the one and two-

laser systems to prescriLe an even more tortuous

path. At an amplitude 0.4 meters, the system is

unable to contend with the situa t ions anu fails

to make progress towards the target. The simu-

lations shown in Figure 5 highlight a major weak-

ness in this simple hazard detection system,

namely, its inability to distinguish between a

slope anda discrete obstacle. The rover found
itself obliged to turn from the direct path at

critical points where the sensor was detecting
the existence of a moderate• slope in excess of
the 12 0 limit imposed by the assumed sensor sys-
tem. It had to take on a direction such that

the gradient to be encountered would be within

the specified tolerance limits. This is not

necessarily a fatal flow since the rover was

able to select a tra j ectory either up or down hill
which would be satisfactory . But it did so at the
penalty of taking an unnecessarily long trajectory.

The consequences of dynamic noisy are far

more significant with respect to rolling terrain

situations than in the case of the flat terrain or.

which a variety of boulder and crater obstacles
are superimp o sed. This behavior is shown in Fig-

ure 6 in which the one-laser and the two-laser

systems are tested in a .3 meter amplitude, 6
meter priod sinusoidal terrain with noise due to
vehicle d ynamics equivalent to 10 0 in pitch and
10 0 in roll.	 In order to compare the two alter-
natives, the same seed was used to generate the

random numbers which serve as the basis for cal-

culating the noise. Thus, both systems were
tested against the same exact sequence of dyna-
mical otion. Both simulations failed to the ex-

tent that extreme meandering and confusion is

observed. It cannot be concluded that the target

would not have been reached ultimately because the
simulations were automaticall y ter-ninsted on the

basis of a time constraint. however, what is

important to note in this comparison is that the

two-laser systen had no observable superiority

over the one laser s ystem :n the case of this
rolling terrain at this level of dynamical noise.

Also shown on Figure 6 is the performance of the

two laser system with vehicle dynamics noise re-
duced to 5 0 in pitch. ,although a meandering path
was followed, the system would ulciaately lead the

rover to the target.
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Sham in Figure 7 are the .,.:its of three
sL•..alations all involving a rolltnF terrain des-

cribed by a .25 meter ampli:^-^e, 6 meter period
sinusoidal surface. Two of the simulations com-
pare the effectiveness with which the one- and

two-laser systems could deal with this rolling
terrain situation in the presence of lo o pitch,

loo roll dynamical motion. Neither simulation

proved to be particularly effective although the

failure to reach the target is again a cennequence

of terminating the simulation rather han a funda-

mental inability to achieve the target ultimately.

Nevertheless, in the case of this level of dyna-
mical noise it is clear that the path selection

system is forcing the rover into very substantial
meandering and is therefore not considered effec-
tive for both the one- and two-laser systems al-

though the latter appears stronger. However, the
third simulation involving dynamical noise levels

of only 5 0 in pitch but with the loo roll retain-

ed showed that the two-laser system was able to

take a relatively direct route from the starting

point to the f i nal destination. This suggests

therefore that in the design of an autonomous

rover a significant impact on the effectiveness of

hazard detection and path selection systems can be

obtained by careful vehicular design which mini-

mizes the effect of dynamical noise upon the sens-

ing devices. Another way of loohiro At the

si gnificance of these simulations is to note that

it is s he stun of the gradients representative of
the physical terrain situation and of the nors
effects which determine ham well the path selec-
tion system will perform for a given vehicle. L)n
the basis of the data at hand, it can be con(.luded

that even with a lo o pitch noise due to dynamical

motion that there would be some rolling terrain

either with reduced aT p litude and/or increased
period which could be handled effectively by this
system.	 In effect, the consequences of the noise
associated with the dynamical motion is to reduce
the nobility of the vehicle by applying a bias

required to offset the impact of noise.

Surrwrized in Figure 8 are the results of

three simulations in t : absence of vehicle dvna-
mics noise in which th, boulder/crater field is

superimposed un the s-nusoidal rolling terrain.

The combined terrain features are see-i to pese a
more serious problem than for ether case sepa-

rately. Case 1 involving the vehicle origin in

the upper right ind corner found the vehicle get-
ting itself into an awkward position in which a

considerable amount of maneuvering was required

before a good trajectory toward the target could

be defined. The d+scontir.uities in path which are

show: are a consequence of the simulation program

which applies when the vehicle finds itself in sn

impossible situation. The algorithm calls for the
vehicle to back up 1 meter. As far as the simula-
tion is concerned this backup is instantaneous and

discontinuous. Case 2 involving an initiation

point in the upper left hand corner for a two-

laser system proceeded rather well to the target
•rhereas the corresponding path for the on:-laser

system encountered difficulty near the target

and a considerable meandering before reaching the

target. Also shown for comparison in Figure d is
the path selection process for the bouldericrater

field on a flat plane.	 :t can be seen that the

effect of the rolling terrain is to deny to the
vehicle the most direct route to the target.

However, the final simulation shown involving a

So in pitch sod loo in roll vehicle dynamics

noise closely psrnllels the path of the noiseless

flat terrain. case.	 It would appear that in this
case, the no + se led to a fort.atous selection of

path.

Other simulations not reported herein have

been conducted which suggest ways in which the

system could be modified to deal more effects-e':

either with the discrete obstacle such as bould-

ers, craters, trenches or with slope character-

isticl. The tendency to interpret passable slopes

as impassable can be reduced increasing the cone

of vision of the detector. However, the effect of
this action is to increase the size of the posi-

tive or negative discr e te hazard to be interpreted

as passable. A decrease in the cone of vision of

the detector will permit smaller discrete ob-
stacles to be detected but at the penalty of de-
fining lower acceptable slope thresholds. The

design parameters which have been selected as of

this date represent what is believed to be the

bes- -ompromise for the purpose of demonstrating

and .e-1 uating this k'	 of a system in hardware.

A. noted earlier, the problem of noise due

to %ohi L dynamics has the effect of biasing the
pats: se-ection decisions conservatively. The

pitching or rolling motion of the vehicle provides
false information which is interpreted as a

vehicle hazard.	 It is also possible for the
dvnamical noise to give a false indication that a

hazard is not present even t%ough it really: is.
The latter does not prove to be significant be-

caus- subsequent scans will disclose the exist-

ence of a real hazard, even though it ma y be
overlooked on an individual scan. The reverse is

not true; when a path is deemed to be b l ocked be-

cause of the dynamical noise, the path selection
algcrithm treats it as being blocked and not only

directs the vehicle otherwise but retains in its
memory that that path is blocked. Consideration
is being given to incirporating memor y into the

-.rrain modeler and path selection algorithm so

as to reduce the false identification of hazard-
ous paths. Such a system should provide a basis
for alievfating the type of erratic behavior

;ism in Figures 6 and 7.

The -r,-sent path selection s;:sten has one

additions ..ajor fault to which attention is be-

ing dire,=E-d.	 Sp,:cifically, past researchers.

Reference 11, have shown that a particular
terrain feature may or may not be a hazard de-

pending upon the main terrain characteristics on

which the feature is located. '.hus in the ulti-

mate, it will be necessar-.: to r,tlate Cie state of
the terrain, as defined be the attitude informa-
tion provided by the attitude gyroscope mounted

on the vehicle to the data being provided by the

hazard detection sensors. One possible solution

is to implement a higher level triangulation-

based s y stetr. which involves elevation as well az

azimuthal scanning of the laser and an increased
nurber of detectors with smaller cones it zones
of vision. The effect of this type of a s•:stem
is if course to decrease the coarseness of the

infor-ration. Provided that a sufficiently fire

mesh is obtained, pattern recognition techniques

can be u.ied to obtain a much more detailed and

info maLi a impression of the nature of the
terral:a in the path of the vehicle. The informa-

tion g !:,tr,ed in such a system could be tied to the
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vehicle attitude data through appropriate mathe-

mticical relationships to provide a more sound
decision as to whether the terrain feature is or

is not a hazard for the vehicle's particular

state.

Alternatively, one could :onsider using the

basic system described herein but replicating it

in sufficient number so that only one of the sys-

tens would be operational at a given time depend-

ing upon the vehicle's attitude. Thus one might

have a multi-unit system of the type described

herein with the central unit applying to all
situations in which the vehicle's attitude is not

far removed from horizontal, with the immediately

adjacent two units applying when the vehicle's

attitude is slightly upwardly or downwardly in-
clined, and with additional adjacent units apply-
ing at greater and greater attitudinal deviations

from horizontal. The number of such units would

depend on the needfcr refined terrain information.

Consideration is being given to other sys-

tems of intermediate complexity, namely, five 90

detectors overlapped as to produce nine discrete

signals in combination with from three to five
lasers being scanned azimuthally but with each

laser at a very specific elevation. Such an
intermediate system can be implemented in hard-

ware and software relatively easily and have the
advantage of providing enough added information

to give the path selection algorithm a more re-

liable basis for decision raking.

As of this writing, the research program to
produce the required hardware, (i.e. lasers,
photodetectors, scanning mast, etc.) and to

program the software in a IDIIOM Graphics-Varian
Computer, which is to se r3e as the data processor,

are proceeding vigorously. The rover itself and

its on-board control s ystems and actuators are
operational along with the telemetry systems re-
quired to transmit data from the vehicle to the

computer and vice versa. It is anticipated that

all systems will be active in the neighborhood of

April 1, and that laboratory and field research

will be undertaken shortl y thereafter.

CONCLUSIONS

A path selection system based on a two-laser/

one-detector terrain sensor can be effective

in guiding an autonomous rover over terrains

whose general slopes are less than + 12 o and

on which are distributed discrete hazards

larger than + 12 inches in the presence of

vehicle dynamics noise of the order of + 50
in pitch and ; 10 0 in roll.

2.	 The performance of such a system can be in-

creased provided that the state (i.e. the

attitude) of the vehicle is taken into
account in the interpretation of the sensed

terrain data and that additional attitude

dependent sensor units are added.

Terrain sensors based on triangulation

provide a basis for developing short-range

path selection systems capable of dealing
with very complex terrain situations.
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Figure 4. Path Selection Simulation Through a Boulder/Crater Field on a Flat Base Terrain
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Figure 6. Path Selection Simulation for a Sinusoidal Terrain 0.3 Meter ,amplitude and 6.0 Meter

Period in the Presence of Vehicle Dynamics Noise

Figure 7. Path Selection Simula t ion for a Si.usoidal Terrain of 0 .25 Meter amplitude and ^.0 Meter

Period in the Presence of Vehicle Dynamics Noise
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Figure 8. Path Selection Simulation for a Boulder/Crater Field Superimposed on a Sinusoidal Terrain
c, f 0.3 Meter amplitude and 6.0 Meter Period
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