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FOREWORD

This document is Volume I of the final report for Contract NAS8-31310.

Volume II is printed under separate cover and is entitled "Solid Rocket Booster

Thermal Radiation Model --Volume II --User's Manual," LMSC-HREC TR

D496763-II. This report was prepared by personnel of the Thermal 8_Fluid

Physics Group, Engineering Sciences Section, Lockheed-Huntsville Research

& Engineering Center. The contract period of performance was from Z0

January 1975 through 20 March 1976. Theworkwas administered under the

technical direction of Mr. William C. Claunch of the Structures and Propulsion

Laboratory, NASA-Marshall Space Flight Center.
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NOMENCLATURE

Definition

area

absorption to extinction ratio

quadric coefficients

parameter

black body emissive power

energy per bundle

view factor

probability density function

elevation of axial region boundaries

elevation along plume axis

radiation intensity (also axial region boundary index)

volumetric emission of radiant energy (also radial

region boundary index)

particle-wavelength size parameter

linear absorption coefficient

1eng th

AI203 particle number density

sample size (number of emissions)

number of hits on a surface

direction cosines of line of sight
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points on a surface

pressure or property

chamber pressure

intersection point

ambient pressure

probability distribution function

absorption, ext.inction, scattering efficiencies

heating rate

distance between plume axis and line of sight in plane

at right angles to plume's axis passing through cone

vertex

nozzle exit radius

radial coordinate (cylindrical coordinate)

particle radius

length along line of sight

probable path length

scatter function

temperature

random number

direction cosines of surface unit normal

volume

principal coordinates (Cartesian coordinates)

distance along plume axis from base plane (cylindrical

coordinate)

angle between r 1 and r 2

cone half angle for radial region boundaries
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a

b

g
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scat

X
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polar angle of line of sight (spherical coordinate)

azimuth angle of line of sight (spherical coordinate)

azimuth angle of event site (cylindrical coordinate)

gimbal angle in yaw plane

gimbal angle in pitch plane (also Stefan-Boltzmann
c on st ant )

absorption, extinction, scattering cross section for

A_203 particles

optical depth

solid angle

wavelength

absorbtion

blackbody

gas

particle

scattering

wavelength
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1. INTRODUCTION

Thermal radiation from exhaust plumes of solid rocket boosters (SRB)

on the Space Shuttle is a major contributor to the heat load incident on the

base region of the Space Shuttle vehicle. The magnitude of this heating rate

is expected to be comparable to that caused by the Space Shuttle main engines

(SSME). Accurate estimates of SRB thermal radiation is necessary to opti-

mally design the thermal protection system (TPS) for the ascent phase of the

Space Shuttle trajectory. These estimates often rely on analytical models of

the thermal radiation emitted by plumes.

SRB plumes are composed of a dispersion of Af20 3 particles distributed

throughout the gaseous products of combustion of the solid propellant. Af20 3

particles are present in SRB plumes because alumina is added to the solid

propellant to increase the specific impulse of the booster. The particles may

exist in either the solid or liquid phase. In the solid phase, AfzO 3 particles

are almost pure scatterers of electromagnetic radiation. However, in the

liquid phase AfzO 3 has a relatively large absorbtion cross section and con-

tributes significantly to the thermal radiation of the SRIB plume. Certain

gaseous constituents present in SRB plumes are also strong emitters of

radiant energy. So, a realistic model for thermal radiation from SRB plumes

must consider coupled radiation from Af20 3 particles as well as emission

from the principal emitting gases, namely CO, CO Z, HzO and HCf.

At the present time, much of the thermal environment calculations in

the base region of the Space Shuttle which account for radiant heating due to

SRB plumes are based on a view factor calculation to surfaces in the base

region from a diffuse conical surface surrounding the plume. These view

factor calculations are used in conjunction with an assumed plume emissive

power in order to calculate radiant heating rates. Assumptions are also

l-1
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necessary regarding an appropriate value for the half angle to be used for

the diffuse conical surface representing the SRB plume. Unfortunately, view

factor methods for calculating thermal environments due to SRB plumes

cannot account for influences on plume radiant heating of such parameters

as:

• Chamber pressure

• Propellant composition

• Altitude

• Approach Mach number

• Afterburning, and

• Spatial variations in plume properties, including:

(1) gas and Al203 particle temperature; (2) gas

pressure; (3) Al203 particle number density; (4)

gas mole fractions; and (5) scatter and absorption
cross sections.

This report documents the development and description of a SRB plume

thermal radiation model which accounts for the influence of the above param-

eters on the magnitude and distribution of thermal radiation emanating from

SRB plumes. The Monte Carlo method is used to solve the radiation transport

problem to provide more flexibility in modeling plume structure. Property

definition in the plume may be provided by flowfield calculations or, if avail-

able, from experimental data. Spatial distributions of plume properties are

approximated by arranging homogeneous regions throughout the plume (in

which plume properties are defined)ifi a manner consistent with plume prop-

erty variations.

The Space Shuttle will have two SRBs astride the vehicle that will con-

tribute to the base heating. These plumes may intersect close to the base

region at high altitudes and may also gimbal one independent of the other.

Plume intersection and plume gimbal angle can have a considerable effect

on local heating rates. In view of this expected character of SRB thermal

radiation, the SRB radiation model described herein considers dual SRB

plumes. In this manner, the attenuation of radiant energy from one plume

1-2
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LMSC-FIREC TR D496763-I

on its neighboring plume {or shadowing effect) is accounted for in the model's

calculations of the distribution of thermal energy leaving the plume.

Space Shuttle surface geometries are modeled as combinations of

quadric surfaces. Specific surface geometries that can be considered are:

• Planar (parallelegram or annular)

• Cones and frustums

• Cylinders

• Ellipsoids and spheres, and

• Paraboloids.

These quadric surfaces can be defined in a Cartesian coordinate system by

means of a single polynomial expression. Models of specific Space Shuttle

surface geometries can be easily constructed with combinations of these

surfaces. The individual surfaces can be subdivided to provide more dis-

crete definition of local geometries. Each subdivision of every surface has

a unique mathematical definition. This surface characteristic is used in

conjunction with the Monte Carlo solution to the radiation transport problem

so that radiation heating rates can be calculated to each discrete subsurface.

The Monte Carlo method also enables easy and accurate predictions of the

effects of shading of one surface by another on the magnitude of radiant heat

loads.

The SRB thermal radiation computer code also provides the capability

to calculate view factors between one selected surface on the Space Shuttle

and the SRB plumes as well as all other surfaces of interest on the Space

Shuttle. This capability will allow detailed analysis of SRB thermal radia-

tion at extremely localized areas of the Space Shuttle where the effects of

surface shading are considerable.

The SRB thermal radiation model extends to the thermal design engi-

neer the capability to define the influences of plume flow field and propellant

composition on the magnitude and distribution of thermal energy emitted by

1-3
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dual SRB plumes. Also, the capability of delineating the influence of surface

shading on the magnitude of SRB radiant heating rates is provided. These

capabilities are provided with a computer code that is easy to input for pur-

poses of performing a detailed and extended parametric analysis of SRB

thermal radiation in the base region of the Space Shuttle.

1-4
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2. SRB PLUME STRUCTURE

2.1 PARAMETERS INFLUENCING SRB FLOW FIELDS

SRB exhaust plume flow fields are composed of the gaseous products of

combustion as well as solid and/or liquid particles ofAf203. Although the

flow field of a single plume may be considered to be axisymmetric, calculation

of the distribution of particie and gaseous properties in SRB plumes is a diffi-

cult task because the properties of the gas and particles are not contiguous at

any location. The particles are accelerated in the nozzle plume flow field due

to pressure gradients and drag forces exerted on them by the gaseous flow and

they retain temperatures that are generally higher than the gas temperature

because of their thermal capacitance. Reaiistic flowfield calculations require

accurate modeling of the interchange of momentum and thermal energy between

the gaseous flow fieId and the dispersion of A_zO 3 particles immersed in the

gases in order to establish distributions of particles and gas properties in the

plume.

A number of parameters influence SRB plume flowfield structure. One

of the more influential parameters is the ratio of pressure in the SRB com-

bustion chamber to the ambient pressure (Pc/P00). This ratio determines,

to a large degreee, the amount of gaseous expansion that takes place in the

plume and subsequently the plume's overall size. AnalyticaI studies of SRB

plume flow fields indicate that the initial expansion angle, 3', (measured rela-

tive to the plume axis) of the plume at the nozzle exit plane can be as large

as 35 degrees Figure 2-1 shows the effect of Pc/P on initiai plume ex-• 00

pansion. These data were obtained from several flowfield calculations using

Lockheed's two-phase plume flowfield computer code! l) At the Iower values

of Pc/P , the SRB plume c6ntains shock structures and associated localizedcc
regions of high temperature gases and, to a lesser extent, A_20 3 particles

with locallyhigher temperature. These shocks tend to increase the magnitude

Z-1
REPRODUCIBILITY OF THIJ

ORIG_A!, PAG[I IS POOR
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Fig. Z-I - Initial Plume Expansion Angle for SRB Plumes as a Function
of Chamber/Ambient Pressure Ratio
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of thermal radiation leaving the plume. At high altitudes and corresponding

hizh values of Pc/Poo, the plume expands considerably which reduces gas

temperatures. Typical variations of chamber pressure during a nominal

trajectory are shown in Table 2-i as a function of time. Also shown are the

ambient pressure and the ratio Pc/P00.

The influence that Pc/Po0 exerts on the plume flow field is often re-

ferred to as "an altitude effect" since the magnitude of the pressure ratio

is largely determined by changes in P . However, there are other character-o0

istics of SRB plumes that are due to variations in altitude as well as vehicle

velocity. At low altitudes viscous mixing between the quiescent atmosphere

and the plume leads to afterburning at the plume boundary. This occurs be-

cause the plume tends to be fuel-rich due to incomplete burning of the pro-

pellant in the combustion chamber. Afterburning caused by the mixing of

oxygen in the atmosphere with the fuel-rich plume can greatly increase the

heat load to the base plane of the Space Shuttle due to the plume boundaries

proximity to the base region. Another parameter influencing plume structure

that is somewhat dependent on altitude is the approach Mach number. The

approaching freestream tends to lessen the amount of plume expansion at high

values of freestream dynamic pressure. On typical trajectories freestream

dynamic pressure is maximum at 35,000 to 45,000 feet and then diminishes

with altitude. To include these altitude effects on the SRB flow field in the

thermal radiation calculations, a sophisticated treatment of the flowfield

problem is required. To a large extent, this is available in Lockheed's two-

phase SRB flowfield code. Some SRB flowfield predictions from this code are

shown in Section 2.3.

2.2 GEOMETRY MODEL FOR SRB PLUME STRUCTURE

The properties of the gaseous constituents and the A_20 3 particles vary

along the axial and radial coordinates of the plume. To make these variations

in plume properties easily handled by a math model for the solution of the

radiation transport problem, it is necessary to represent the spatial varia-

tions by means of relatively simple geometries but still provide a representa-

tive description of the plume. This can be provided by considering the plume

Z-3
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Table 2- I

TYPICAL VARIATIONS IN CHAMBER PRESSURE, AMBIENT PRESSURE

AND Pc/Poo DURING NOMINAL SPACE SHUTTLE TRAJECTORY

Time

(sec)

2

4

6

10

16

18

2O

22

24

32

4O

48

5O

52

54

56

58

64

72

8O

88

94

96

I00

ll0

I14

P
oo

(psia)

14.7

14.7

14.6

14.3

13.5

13.2

12.8

12.4

11.9

9.9

7.8

5.8

5.4

4.9

4.4

4.0

3.6

2.6

1.5

0.9

0.5

0.3

0.26

0.18

0.07

0.05

P
o

(psia)

768.8

781.5

792.1

802.7

814.1

817.6

812.2

774.5

744.9

661.i

593.0

543.7

534.3

525.0

527.9

532.0

534.5

544.7

568.5

584.3

596.3

607.2

611.2

610.8

570.0

488.8

52

53

54

56

60

62

63

63

62

66

76

99

98

I09

I19

132

147

207

367

647

1190

2025

2350

3390

8140

978O

2-4
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to be constructed of homogeneous regions wherein appropriate values of gaseous

and particle properties are defined. These homogeneous regions are stacked

along the axis and radius of the axisymmetric flow field. A region is bounded

along the radial coordinate by concentric, conical surfaces emanating from a

common vertex and is bounded along the axial coordinate by planes at right

angles to the conical surface axes (see Fig. 2-2). Properties are defined in a

Plur_e

Homogeneous

Region

r

h
I

i

Nozzle

I

i

i

Bas e Plane

Exit

Fig. 2-2 - Geometry Model for SRB Plume Structure
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cylindrical coordinate system with its origin at the vertex of the cones.

Average properties for each region are calculated based on assigned prop-

erties on the four corners of each region. The assigned values for these

properties may be determined from a two-phase flow calculation for the

gasdynamic definition of the SRB plume using Lockheed-Huntsville's two-

phase plume flowfield calculation. However, any valid definition of the

spatial distribution of plume properties may be used as input data.

The scheme used for defining properties for each homogeneous region

of the plume makes use of volumetric averaging. One plume region is shown

in Fig. 2-3. The property P(h,r) is taken to be a linear function of h and r

as shown in Eq. (2.1).

i+

Hi+l

1, j + 1 i+l,j

T-- i,j + i,_,_ x"

I
h

Fig. 2-3 - Property Definition for Plume Region
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P{h,r} = P.. + ZiP (h - Hi) + AP 1
Ar

h

(r - ri) (2.1)

AP
Ah

= Pi+ 1,j - Pi,j

Hi+ 1 - H.1]

(2.z)

[Pi,]+l + AP ] (h-Hi)]- [Pi,j + AP ] (h-Hi) ]
fxP] _ J +I -_ J (2.3)

[ = ar

The average value for the property P is found by integrating P(h,r) over the

volume of the region and dividing by the volume of the region.

_= f P(h, r)dV/fdV (2.4)

V V

Average values for the following plume properties are assigned to each plume

region by means of the above averaging technique:

• Particle number density, parts/ft 3 (parts/cm 3)

• Particle temperature, R (K)

• Particle radius, ft (micron s )

• Gas temperature, R (K)

• Static pressure, arm

• Mole fraction for CO, (-)

• Moie fraction for CO 2, (-)

• Mole fraction for H20, (-), and

• Mole fraction for HC£, (-)

Z-7
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The above properties result from a two-phase flowfield calculation for the

SRB plume using Lockheed's code. The mole fractions of the principle

gaseous emitters (CO, CO2, H20 and HCf) are influenced by the method with

which the plume chemistry is modeled. Available options for simulating

plume chemistry are provided by using equilibrium chemistry properties or

non-equilibrium chemical kinetics. However, representative calculations of

SRB plume chemistry is provided by using equilibrium chemistry.

2.3 EXAMPLES OF SRB FLOW FIELDS

Some results of Lockheed's two-phase flowfield calculations for SRB

plumes are presented in this section. Data are shown for a sea level plume

without an afterburning calculation, for a sea level plume with afterburning,

and for a plume at an altitude of 72,000 feet without afterburning. Figures

2-4, 2-5 and 2-6 show the boundaries for the gaseous and particle plumes.

The particle plume boundary is defined by the limiting streamline of the

particle trajectories at the edge of the plume. The limiting streamline (the

streamline beyond which there are no more particles) is usually defined by

the smaller particIes in the flow field which are accelerated more rapidly in

the radial direction by pressure gradients in the expanding plume than are the

large particles. Defining the gaseous boundary is a much more difficult task,

particularly for low altitude plumes where mixing with the ambient atmosphere

occurs along with afterburning. The plume boundary for the sea level plume

(Fig. 2-4) can be taken as the inviscid boundary when a mixing and afterburning

calculation is not considered. The ga'seous plume boundary for the afterburning

simulation (Fig. 2-5) is taken to be the region where the gases in the afterburning

shear layer drop below 3000 R (1667 K). The gaseous plume boundary for the

plume at 72,000 feet (Fig. 2-6) is defined by the inviscid plume.

Also shown in Figs. 2-4, 2-5 and 2-6 are the grids for approximating

the property variations with homogeneous regions stacked along the axis and

radius of the plume. Flowfield properties are supplied at the intersections

of the conical rays and the horizontal lines. For grid points that lie outside

the plume boundaries, the property values are simply set equal to zero.

2-8
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I Fig. 2-4 - Gaseous and Particle Plume Boundaries for SRB
Sea Level Plume Without Afterburning
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Fig. 2-5 - Gaseous and Particle Plume Boundaries for SRB

Sea Level Plume with Afterburning
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4
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Fig. 2-6 - Gaseous and Particle Plume Boundary for 72,000 ft SRB Plume
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This is particularly evident for the 72,000 foot phlrne where the large initial

expansion angle at the nozzle exit plane requires a large cone angle for the

outer grid rays. However, the plume flow field expansion is retarded down-

stream (at Z/R = 6) by the approaching freestream which has a Mach num-ex
ber of 2.5 at the 72,000 foot trajectory point.

Figure 2-7 shows the radial distributions of the properties of the Af20 3
particles that enter into thermal radiation calculations, namely particle number

density (N), particle radius (rp) and particle temperature (Tp). These data

are shown at three axial stations in the plume Z/R = 0.8, 4.0 and 11.0. Theex

particle radius tends to drop at the edge of the plume because smaller prop-

erties "migrate" to the edge more rapidly than do larger particles as the plume

expands down its axis. The particle temperature drops at the edge due to the

presence of smaller particles which more quickly adopt the cooler gas tem-

perature. The particle number density diminishes as the flow proceeds down

the plume axis because of the expanding volume of the plume. The particle

distributions shown in Fig. 2-7 are used for both sea level plumes calculated

for afterburning and without afterburning.

The gas temperature and pressure and the mole fractions for the four

principle gaseous emitters (CO, CO2, H20 and HCf) are shown in Figs. 2-8

and 2-9 for the sea level plume without an afterburning calculation and with

an afterburning calculation. The gas temperature and the mole fractions are

strongly influenced by the afterburning calculation as is evident by comparing

Figs. 2-8 and 2-9. If mixing in the shear layer between the ambient atmos-

phere and the plume flow is not considered, the combustibles in the plume are

maintained in a chemically frozen state as is indicated by the lack of change

(with respect to r/Rex ) in the mole fractions shown in Fig. 2-8. However, if

afterburning is simulated, a strong combustion process occurs at the plume

boundary as is evident from the large changes in the mole fractions at the

edge of the plume that results as CO and HCf burn to CO 2 and H20 (see Fig.

2-9). The gas temperature is raised at the edge of the plume. Also, the

volume of hot gases that will radiate back to the base plane is increased

2-12
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because the atmosphere at the edge of the plume enters into the combustion

process. Comparison of Figs. 2-8 and 2-9 shows that the afterburnL_g calcu-

lation causes the effective plume to spread considerably at axial stations re-

moved from the nozzle exit plane (Z/Rex = 11.2). The gaseous plume boundary

is taken to be at the region where the gas temperature drops below 1667 K.

Property data for a SRB plume at 72,000 feet are shown in Fig. 2-I0

(for particles) and Fig. 2-II (for gases). The 72,000 feet plume has no after-

burning simulation as the ambient atmosphere is rarefied to the point where the

amount of afterburning is expected to be low.
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3. SPACE SHUTTLE BASE HEATING FROM DUAL SRB PLUMES

The two SRBs astride the external tank (ET) on the Space Shuttle con-

tribute significantly to the heat loads incident on spacecraft surfaces in the

base region. In order to calculate radiant heat rates to these surfaces with

realistic representation of the SRB plume radiation field, it is necessary as

a first priority to establish the magnitudes and distribution of flowfield prop-

ert[es which contribute to the radiant energy leaving the plume. This infor-

mation can be provided by Lockheed's two-phase flowfield code as described

in Section 2.

3.1 DUAL SRB PLUME GEOMETRY MODEL FOR THERMAL RADIATION

Two SRB plumes are con sidered in the SRB thermal radiation model.

The plume locations are defined in a central Cartesian coordinate system

(XI,X2, X3) centered between the dual SRB nozzles. The X l coordinate is

parallel to the plume Z-axis at zero gimbal. The X 2 coordinate passes

through the center of the exit plane of the two SRB nozzles and the X 3 coordi-

nate is at right angles to X 1 and X 2. Both plumes are considered to be axi-

symmetric and the distributions of plume properties along the axial and radial

coordinates are approximated by defining homogeneous regions along the axis

and radius of the plume as outlined in Section 2. The geometry model allows

the SRB plumes to be gimbaled parallel to one another in the yaw and pitch

planes or they may be gimbaled independently with different yaw and pitch

gimbal angles. Figure 3-I shows the dual plume geometry model for zero

gimbal, parallel gimbal and independent gimbal in the yaw plane. The same

type ofgimbal angle options are available for gimbal in the pitch plane. Simul-

taneous gimbal in both yaw and pitch planes may also be modeled.

The SRB plume may be considered to extend several hundred feet down-

stream of the nozzle exit plane. However, for purposes of calculating radiant

3-I
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heat loads to the base region of the Space Shuttle, only a finite portion of the

plume need be considered. Often the nature of the SRB flow field can be used

to determine how much of the plume should be used in calculating radiant heat

transfer rates. The variation of plume temperature along the axial coordinate

provides a good indication of how significantly portions of the plume will con-

tribute to thermal radiation in the base plane. Usually a plume axial length of

10 to 15 exit radii is sufficiently long to provide good estimates of radiant heat-

ing. Longer plume lengths are not necessary because of the diminishing view

of the plane to the base region. .As the plume length considered for heating

rate calculations in.creases, it is likely that the dual plumes used in the heat

rate calculations will intersect. Plume intersection will certainly occur for

the finite plume lengths used to simulate plume structures of high altitude

plumes because of the high degree of plume expansion at altitude. The dual

SRB plume geometry model considers the possibility of plume intersections

as will be discussed later in this report.

3.2 THERMAL RADIATION FOR GRAY MEDIA

The spatial distribution of radiant energy leaving the SRB plumes is

established by the Monte Carlo method. This method considers the radiant

energy to be divided into several discrete bundles of equal energy. These

bundles are considered to obey the physical laws that govern the emission,

absorption, and scattering of photons. In the Monte Carlo method a large

number of these energy bundles (referred to as the sample size) are traced

as they undergo simulated emission, scattering, or absorption and subsequent

re-emission until they eventually escape from the boundaries of the plume.

Upon escaping the plume, the energy bundle travels along a straight line (re-

ferred to as a line of sight) as would a photon leaving the plume. This line

of sight is easily defined by a linear algebraic expression. In the computer

simulation of tracing the energy bundles as they leave the plume, the alge-

braic definition of the line of sight may be checked to determine if the energy

bundle intersects one of the simulated surface geometries that represent

spacecraft components. If the bundle strikes one of the Space Shuttle surfaces,

the energy contained in the bundle is considered to contribute to the radiant heat

3-3
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load on that surface. The problem of spacecraft surface heating will be

discussed later. This section addresses the formulations required to

model magnitude and distribution of thermal radiation leaving SRB plumes.

3.2.1 Thermal Radiation from a Participating Medium

An expression for the magnitude of radiant energy emitted locally in

SRB plumes may be obtained by considering the attenuation of radiation

intensity in the plume. Consider a volume element of the SRB plume. Con-

tained within the volume element are a homogeneous dispersion of Af203

particles immersed in the gaseous products of combustion. Although there

are several gaseous constituents present, only CO, CO2, H20 and HCf con-

tribute significantly to thermal radiation. Radiat[on intensity at a given

wavelength in the volume element will be attenuated in a manner represented

by the following expression

wher'e

(Y
a, 2t

K
a,X

dl l

dx - - (N a + K X) I X (3.1)a, _k a,

particle number density

= spectral absorption cross section of the particles, and

= volumetric absorption coefficient of the gas

Imposing the constraints of local thermodynamic equilibrium (LTE) requires

that the net change of radiation intensity be zero along a given line of sight.

This condition is satisfied when there is an amount of energy emitted by the

volume element equal to that absorbed. Let JX represent local emission in

the volume element into the solid angle about the line of sight. Then imposing

LTE requires

or

dI X

dx - (N (Ya, X + Ka, k ) IX + 3k = 0 (3.2)

J_. : (N Cra, X + Ka, x ) Ik (3.3)
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Equation (3.3) is applicable for an incremental solid angle, de,

line of sight under consideration. Integrating Eq.(3.3) over 47r

and over a finite volume gives

about the

steradians

where

JX 4 (N E p + K E g X) V-- _a, k b, X a, k ,

EPb X and E g = spectral black body functions for the
, b, X particles and gases, and

V = volume under consideration.

(3.4)

Equation (3.4) represents the spectral radiant energy emitted by a

homogeneous volume of particles and gases under conditions of LTE.

Rigorous calcuIations of thermal radiation leaving a volume of emitting,

absorbing, and scattering medium would account for the influence of wave-

length dependent properties. However, for purposes of calculating the total

thermal radiation heat load, the gray approximation to the radiation trans-

port phenomenon is often sufficient. Simulating the coupled radiation from

the particIes and the gaseous emitters in SRB plumes as a gray medium re-

quires that appropriate wavelength averaged values be obtained for the ab-

sorbing and scattering properties of the medium. The gaseous constituents

of the plume are almost pure absorbers of radiant energy. Conversely, the

A_203 particles are almost pure scatterers of radiant energy when they are

in the solid phase. Liquid Al203 particles, however, can have significantly

iarge absorption cross sections.

3.2.2 Gray Absorption Coefficients for SRB Plume Gases

Gases tend to absorb and emit radiant energy in discrete wavelength

bands. The absorbing properties of the gases can change by several orders

of magnitude over a small wavelength interval. An appropriate averaging of

absorbing properties over the wavelength spectrum must be performed in

order to calculate meaningful radiant heating rates. Abu-Romia and Tien (2)

have made a study of appropriate mean absorption coefficients to be used in

thermal radiation calculations for gases. It is recommended in Ref. 2 that the
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Planck mean absorption coefficient be used for gases that approach the opti-

cally thin limit. Considering the gaseous phases alone, the thin limit is

approximated in SRB plumes and the Planck mean absorption coefficient be-

comes a valid means of removing spectral dependence from plume properties

in the thermal radiation calculations.

The Planck mean absorption coefficient is defined as

00

Ka,X (k, T, P) Eb, X (X, T) dX

Ka.{ T, P) = oo

Eb, X (X, T) dX

o

(3.5)

wherein the spectral variations of the volumetric absorption coefficient is

weighted by the blackbody function. _The Pianck mean absorption coefficient

will be independent of wavelength but will still be a function of the partial

pressure and temperature of the gas under consideration. Figure 3-2, taken

from Ref. 2, presents the Planck mean absorption coefficients for CO, CO 2

and H20 as functions of gas temperature for a partial pressure of one atmos-

phere. The Planck mean absorption coefficients shown in Fig. 3-2are used to

represent CO, CO 2 and H20 as gray gases in the thermal radiation model.

Similar data for HCf are needed but are not available. In order to include

!.-l_f_in the thermal radiation calculations, the Planck mean absorption coef-

ficient for HCf is taken to be that of CO. This approximation should provide

a preliminary estimate of the absorption coefficient for CO in that the spectral

absorption coefficient for I-IC_ is lower than that for CO but, on the other hand,

the band for HCf subtends a greater fraction of the blackbody function than does

CO. These two effects should mitigate against each other and make the approxi-

mation more valid.

The Planck mean absorption coefficients shown in Fig. 3-2 were

calculated for a partial pressure of l atm. In order to use these coefficients

directly in calculations of thermal radiation, it is necessary to ratio the coef-

ficient in Fig. 3-Z from l arm to the partial pressure of the gas being modeled.
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Taking this into consideration, the absorption coefficients for CO, CO2, H20

and HCf are added linearly in order to obtain the absorption coefficient for the

entire mixture as in Eq.(3.6).

where

4

- P _I -- M .F .. (3.6)amixt ur e 1 aim Ka. 1
= 1

P = static pressure of the gas mixture

Ka. = linear absorption coefficient of constituent gases

I CO2, CO, H20 and HCf, and

M.F.. = mole fraction of constituent gases.
I

3.2.3 Scattering and Absorbing Properties of A/203 Particles

A_203 particles can possess substantial absorption characteristics as

well, depending on the magnitude of the imaginary portion of the index of re-

fraction. For liquid particles of Ag203 the index of refraction can be large

which leads to relatively large absorption cross sections. On the other hand,

solid Argo 3 particles are almost pure scatterers of radiant energy. The cal-

culation of the magnitude of the absorption and scattering of electromagnetic

radiation by particulate matter, such as the distribution of Af203 particles in

the S1RB plume, can be done by using the lk4ie theory; its application to calcu-

lating the absorbing and scattering properties of ._203 clouds is contained in

the following paragraphs.

The problem in scattering of electromagnetic radiation by particulate

matter, such as spherical particles immersed in a vacuum, is to relate the

properties of the particles (i.e., size, shape, index of refraction) to the spatial

distribution of the scattered radiation and to the absorption of radiation by the

particulate matter. Basically, there are three regimes for the solution of this

problem. The limits of each regime are dependent on a size parameter, namely,

the ratio of the circumference of the scattering particle to the wave length of

the incident radiation
27r r

Ka - X p (3.7)

3-8
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For wave lengths of incident radiation orders of magnitude larger than the

dimensions of the particle, the iRayleigh approximation to scattering of the

radiation is applicable. For wave lengths orders of magnitude less than the

dimensions of the particle, classical optics may be applied to the scattering

of the incident electromagnetic radiation. When the wave length of the incident

radiation and dimensions of the scattering particle are on the same order of

magnitude, recourse to sophisticated treatment of the scattering and absorption

phenomenon at the particle is required.

I

I

l
I
I

I
I
I
I

The Mie theory treats the case where the wave length of incident radia-

tion and the size of the particle are comparable. Mie theory is concerned

with a very idealized situation, that is, a sphere composed of homogeneous,

isotropic material embedded in a homogeneous, isotropic, dielectric, infinite

medium irradiated by a plane wave propagating in a specified direction. The

dielectric properties of the matrix medium imply that this medium is non-

absorbing. The gaseous constituents in the SRB plume are physically repre-

sentativeof such a medium. I_or a sphere composed of a conducting material,

that is, a non-dielectric material, any incident radiation on the sphere is partly

absorbed, scattered and transmitted by the sphere. The Mie solution predicts

the scattering and absorption cross sections (or eff[ciencies) as well as the

spatial distribution of the scattered intensity. The efficiencies are the ex-

tinction, absorption, and scattering cross sections normalized by the geom-

etric cross section

Q "= e, a, scat (3.8)
e, a, scat r 2

P

The Mie solution is effected in the form of complicated series that involve the

Riccati-Bessel functions and Riccat[-Hankel functions of increasing order.

A computer program for the Mie solution is discussed and listed in Ref. 3.

l
l
l

The extinction and absorption efficiencies and the absorption to extinction

ratio for A_203 particles are shown in Fig. 3-3 as a function of wavelength.

Particle radii of 5,6 and 7 microns are considered and the index of refraction

for Af203 is taken to be 1.8 + .008i. The magnitude of Qe and Qa as predicted

by Mie theory are actually a function of one variable, namely K a = Z_ rp/X, but

3-9
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the physical influence of rp and k are perhaps best pointed out in parametric

form as in Fig. 3-3. It is clear from Fig. 3-3 that the Qa (and therefore ga )

is influenced substantially by wavelength of the radiation field. Although the

wavelength dependence of _a and _e for A£203 is less critical than the de-

pendence of linear absorption coefficients for gases, a mean value for _e and

o for the particle dispersion should be used. The Planck mean is again used
a

for this purpose as shown in Eq.(3.9):

o0

f _a(k), _e(k) Eb(k, T) dX

o (3.9)
(I_i' (_e = oo

f T) dkEb(k,

o

3.2.4 Total Thermal Radiation Emitted by the SRB Plume

Using the Planck mean values for the absorbing properties of the con-

stituent gases of the SRB plume and the Af203 particles, an estimate may be

made of the spontaneous emission of radiant energy of the participating medium

that comprises the SRB plume. Using Eqs. (3.6) and (3.9) an expression may be

obtained for the gray approximation for radiant energy leaving one region of the

plume as shown in Eq.(3.10):

- - _ +_ E_}v (3.1o_J = 4 (N cra a

The total radiation emitted by the entire volume of the plume is taken to be the

sum of the radiant energy emitted by all regions of the plume.

all

re_ns (N Pbl gbl)J%otal = 4 L E +K E V. (3.11)
i a i 1

i=1

3.3 APPLICATION OF THE MONTE CARLO METHOD TO SRB PLUME

THERMAL RADIATION

The Monte Carlo method is generally used for solving problems in

which the physics of the phenomenon of interest is understood but in which

3-11

LOCKHEED-HUNTSVILLE RESEARCH & ENGINEERING CENTER



I
I

I
I

I
I

I

I

I
I
i
I

I
I
I

I
I

I

I

LMSC-HREC TR D496763-I

the equations that describe the physics are difficult to solve due to complicated

boundary conditions. Application of the Monte Carlo method to thermal radia-

tive transfer problems involves establishing a math model of the physics that

govern the thermal radiation processes. The physics modeled are those that

characterize the emission, scattering and absorption of photons. Basically,

the solution consists of a group of a large number of photons throughout the

system. For an emitting, scattering, and absorbing medium such as a solid

rocket plume, the groups of photons, herein referred to as energy bundles,

are considered to be emitted at appropriate points throughout the plume. The

bundles are then traced along probable paths that may lead to several scatter-

ing and/or absorption events with the Af203 particles and the gaseous con-

stituents of the plume. An absorbing collision will, in effect, terminate

interest in the subject bundle in that the bundle cannot escape the plume and

there is no possibility that the energy in the bundle will be imparted to a target

of interest. When ar_ energy bundle is absorbed, a second bundle is considered

to be emitted at the absorption site in order to satisfy LTE. If an energy bundle

escapes the plume either directly upon emission or after several scatterLngs

and re-emissions, its path upon escaping the plume is analyzed to determine

if it hits or misses some predetermined target. If the bundle strikes some

target which models a Space Shuttle surface of interest, a portion or all ofthe

energy in the bundle may be considered to be absorbed by the target surface

depending on the manner in which the absorbing properties of the surface are

simulated.

In order to perform a Monte Carlo simulation of the thermal radiation

leaving SRB plumes it is necessary to properly select emission sites and

directions as well as to set up geometry models to track energy bundles

within the plumes. This section addresses these topics and presents ex-

pressions for calculating heat flux to target surfaces.

3.3. I Distribution Functions

The emission, scattering and absorption (and re-emission) of energy

bundles must be simulated in accordance with the physical laws known to

3-12
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govern photons. Howell (4) demonstrated that appropriate selection of random

events may be achieved by setting the cumulative distribution function for the

variable equal to a set of random numbers that is uniform between 0 and l

and then solving for the variable. Sets of random numbers are easily gen-

erated by a digital computer. Random number generators are usually sup-

plied in subroutine form as part of the digital computer software° The

nature of the random number generator available on the MSFC Univac 1108

is reviewed here. A more detailed discussion is available in Ref. 5. The

random number is generated by squaring a six-digit integer and then taking

the middle six digits from the squared value which is then divided by 106 re-

sulting in a number between 0 and I. The Six digit number which initializes

the random number array is supplied as an input value (NSTART) for the

Univac random number generator. The same sequence of random numbers

is generated if the same value for NSTART is used as an initializing value.

Such a sequence is referred to as pseudo-random and the process of the multi-

plicative congruential method. The method supplies a distribution of random

numbers which is uniform over the interval from 0 to i.

So, a uniform set of random numbers is conveniently supplied as part

of the MSFC Univac II08 software. Now, if the cumulative distributions for

the variables of interest in solving the radiation transport problem can be

defined, the radiation transport problem can be solved with the Monte Carlo

technique. References 4 and 6 outline the method for obtaining cumulative

distribution functions which amounts to integrating the probability density

function as

where

x

F(x) = f P(x) dx

-(X)

(3.1z)

P(x)

F (×)

x

: probability density function

: cumulative distribution function, and

= variable of integration.

P(x) defines the probability that an event will lie between x and x + dx. As

such, the integral of P(x) over all x is unity. Thus, the cumulative distribution

function has a value between 0 and l for any value of x.

3-13
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i Cumulative distribution functions must be derived which simulate the
following phenomena in order to calculate the distribution thermal radiation

i leaving SRB plumes:

• Uniform distribution of emission sites over each homogeneous

i region of the plume
• Isotropic emission from a volume element

• Isotropic scattering

I • Anisotropic scattering, and

• Attenuation of radiant intensity in a homogeneous medium.

! -
• Selection of Emission Sites

i Each region of the plume emits _an amount of energy as thermal radia-

i tion as defined by Eq.(3.10). The number of spontaneous emissions that areallowed to take place in each region is determined by the fraction of the total

energy leaving the plume that is emitted by the given region as shown in Eq.

/regions j. _" E b + K E V.a a 1

_/ _"_g 1_ i i

i Ne, e, i Jt all
-/ ___

/ i-1 regi°ns (N Pl gli)E E +fie V[

i a i ai=l

LMSC-HREC TR D496763-I

(3.13)

I
I
I
I

I

I

where N is the number of energy bundles emitted by region i. In this
e,i .........

manner the number of energy bundles emitted by each region is made pro-

portional to the amount of radiant energy leaving the region.

It is also necessary that a uniform distribution of emission sites is

achieved within a given region. The SRB plumes are assumed to be axi-

symmetric and their structure is defined in a cylindrical coordinate system

centered at the vertex of the conical surface boundaries. So, proper values

must be assigned to the cylindrical coordinates r, _ and h. A uniform dis-

tribution within the homogeneous region implies that

3-14
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I dN
e dV r dr d_ dh

N - V V
e

(3.14)

I
I

I

I

I

I
I

The volume of a region of the plume may be expressed as

V /_fHi+jf h tanyJ+l dr dO dh - tanZyj)= r = _r (tan2Tj+l

o H. h tany j

Reference to Fig. 3-4 will aid in defining the variables. Now

3h Z dhdV 2r dr d_._

V
- - tan2yj) _r H 3 _ H 3h2(tanZyj+l i+l 1

(3.1s)

(3.16)

The fact that the coordinates r, _ and h are independent and that Eq.(3.16)

integrates to unity, implies that Eq. (3.16) is the joint probability density

function for the selection of emission sites within the prescribed volume.

The probability functions for each coordinate may be taken as (since coordi-

nates are independent)

- Uh_ h

Zr dr

i o

. 3__h_2 dhI _'_'-- 4+,53
II. i

1

l r

F(r) =f

I h tany. 3

H 3) Uh + H?] 1/2

= U
r

h 2 (tanZyj+i tanZyj)

I r = h VUr (tanZyj+l - tanZ7j) + tanZyj

(3.17)

(3.18)

(3.19)

I

I
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Equations (3.17), (3.18) and (3.19) have been attained by integrating (with re-

spect to the coordinate) the probability density function for each coordinate

in order to obtain the cumulative distribution function. The cumulative dis-

tribution function is then set equal to a random number (U_,U h,Ur). Using

these equations, the random selection of emission sites may be put into effect

with assurance that the emission sites so selected will be uniformly distributed

over the given volume.

• Isotropic Emission and Scattering

I

I

I

I

Once an emission site has been selected it is necessary to select the

direction of travel of the subject energy bundle defined in a spherical co-

ordinate system centered at the event site. Isotropic implies that the direction

selected will have no bias for any given direction. This requires that the prob-

ability of emission into any incremental solid angle, dr0, be identical. Thus,
¢

d_o sin8 d_ dh sin 8,, dh dO_ (3.20)
_- 4_r 2 Z--_

is the joint probability density function for the selection of coordinates of

isotropic emission. Further,

I F(n) = f sinu2 dU = Ur7 _ cost) = I - 2 Un (3.21)

0

I F<o,:/
I o

I

I

I
I

dO
- U O _ O = 2_ 6) (3.22)2_

Equations (3.21) and (3.22) govern the selection of direction coordinates for

isotropic emission as well as isotropic scattering since the selection of

coordinates for isotropic scattering is governed by the lack of direction bias.

• Anisotropic Scattering

A Mie theory prediction of the scatter function S(_, O) for anisotropic

scattering from Af203 particles is shown in Fig. 3-5. A scatter function for

3-17
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I

CS(N) I(N)/I °

Scattering Function- SO] )

Anisotropic Scattering

/- Isotropic Scattering

]
0 40 160 20O80 120

Scatter Angle, _ (deg)

Fig. 3-5 - Averaged Product of Scattering Distribution Function and Sine

of Scattering Angle as Predicted by Mie Theory for Wavelengths-

Between 0.5 to 3.0//
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isotropic scattering is also shown for comparison. The scatter function is

defined as the probability that the scatter direction relative to the direction

of the incident radiation will fall into the solid angle, dr0'. Thus,

do' 1
S(rT, 0) _- - 4_ S(r],0) sinrT' dr?' dO'

If unpolarized radiation is considered, an even distribution of scattered radia-

tion about the incident direction results. Then,

_-(n')

y(0') -

and

= "_ S(rT') sinr7' dr]' = U ,n

O

0'

1 dl dO' = U@, _ O' = 27r U o21r
o

(3.z3)

(3.24)

The anisotropic nature of scattering by A_zO 3 is manifested principally

by a strong bias for scattering into the solid angle in the forward direction.

In order to simulate this phenomenon some means of solving the integral ex-

pression in Eq.(3.23) must be performed. Stockham (7) has discussed a con-

venient method for doing this. The area under the curve of S(r]') sinrT' versus

r]' shown in Fig. 3-5 is normalized to unity. This area may be represented by

the sum of the areas of triangles and rectangles which constitute the total area

under the curve. Then, the polar angle for anisotropic scattering may be ob-

rained from the expression

where

A(rT') = U ,
r]

A(_') is the functional relationship for the summation of
triangular and rectangular areas under the curve of

S(rT') sinr_' versus r]'.

• Attenuation of Radiation Intensity

Yhe intensity of a beam of radiation traversing an absorbing and scatter-

ing medium is attenuated in proportion to the intensity of the beam and the

optical properties of the medium. This is expressed by Eq.(3.1) wherein
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spectral values are considered. Rewriting Eq.(3.1) for a grey medium com-

posed of Af203 particles and portions of CO, CO2, H20 and HCf gives

or

dsdI _ _ (N a'a +-Ka) I (3.25)

dI _ (N _ +Ka ) dS (3.26)I a

In a homogeneous region, N, _a' and Ka

which integrates to

are constant and

I S

dI -- --
f

-i- -- - (Na a+K a) J
I o

o

I
o

I

I

I

I

I

dS (3.27)

(3.28)

Equation (3.28) represents the fraction of the original beam intensity

at Station S relative to the beam intensity at Station 0. The fraction of

intensity removed prior to S is

-(N a + _a) S
1 - I = 1 e a (3.29)

I
o

tion for defining

and Eq. (3.29) can be thought of as the probability that the path length will be

less than or equal to S and thus constitutes the cumulative distribution func-

S.

-(Ncy +K )S

r(s)= 1 -e a a = U S _ S' - -I _n U S (3.30)P N7 +R
a a

I

I

Since U S is equivalent to (U S - 1) in the random sense, S'P

probable length of travel in the medium.

represents the

I
3-20
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It is convenient to normalize the length dimensions with the exit radius

of the SRB nozzle in order to more conveniently represent the optical prop-

erties of the plume in terms of optical depths (really optical radius) which are

dimensionless. Dividing Eq.(3.30) by R ex

!

I Sp - R -P- = - 1
ex (N _a + Ka ) R ex

I

I

I

i I
I

I

I

I

I

I

_n U S (3.31)

The optical properties of the Af20 3 particles and gaseous constituents can

now be expressed in terms of optical depths based on the nozzle exit radius,

R
ex

-- (3.32)
Tp = N cra Rex

-- R (3.33)
Tg = K a ex

and

T = Tp + Tg = (N _a +Ka ) Rex (3.34)

I Ln U S (3.35)Sp = -?

Equation (3.35) defines, in terms of random numbers, the probable

length of travel of an energy bundle prior to either a scatter or absorption

event in a single homogeneous region. However, the SRB pIume is not ho-

mogeneous and is modeledas a composite of homogeneous regions as dis-

cussed in Section Z. The probabie length oftravei for an energy bundie may

take it across several different homogeneous regions before it either suffers

a scatter or absorption event or escapes the plume. Each region of the plume

has its own unique optical properties and attenuates the radiation intensity

passing through it at different rates. Consider a beam of radiation passing

through a series of homogeneous media as sketched in Fig. 3-6. The Iine of

sight passes through five different regions numbered successively 1 through 5.

The length of travel in each region and the optical properties of the region

define the rate of attenuation of radiant energy from the beam.
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S
l

Base Plane

Fig. 3-6 - Line of Sight of Energy Bundle Traversing Several Plume Regions

The attenuation from S = 0 to any station along the line of sight is

expressed as

I -(TI tl + TZ _Z + "'" +Ti _i)
- = e
I

o

The probability of collision along the line of sight is

is - {sI -(TI Sl + T2 SZ+'" "+Tn-I sn-I + P l
l--- = l-e

i
o

+ SZ+...+Sn_

= v (s) = u s

(3.36)

1)] "rn)

{3.37)

3-ZZ

LOCKHEED-HUNTSVILLE RESEARCH & ENGINEERING CENTER



I

I
LMSC-HREC TR D496763-I

I

I

I

or

in-1]- fn (U S) = r i S i + Sp - _ S i Tn

i=l i=l

(3.38)

where the subscript n refers to the region in which the scatter or absorption

event occurs. Solving explicitly for the probable length of travel

n-I

I n-I fn Us + _ Ti S[
i=l

' Sp = [_I Si - Tn
| =

(3.39)

It is again noted that all lengths are normalized with respect to the exit

radius.

i

i'
:I

I
I

I
I

• Selection of Scatter or Absorption Event

As the life history of an energy bundle is followed during its residence

within the boundaries of the plume, the bundle may be subjected to several

scatter and absorption events. Once it is determined that the subject energy

bundle will suffer a collision event, it is necessary to specify whether the

event is an absorption or a scatter event. This is done by establishing the

absorption to extinction ratio for the various regions of the plume. The AizO 3

particles have a significant scattering cross section while the gaseous con-

stituents of the SRB plume are pure absorbers. So an expression for the ab-

sorption to extinction ratio for a homogeneous region may be expressed as

_a/_e Tp + _'g (3.40)
A/E = T

A/E is compared with a random number, U. If U is less than A/E, the event

is considered to be an absorption event. For U larger than A/E, the event

is a scatter event.

I
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3.4 TRACING ENERGY BUNDLES WITHIN THE PLUME

It is necessary to track the location of energy bundles as they are

emitted, scattered or absorbed and reemitted during their lifetime within

the plume. It is also necessary to identify the region of the plume that the

bundle is traversing in order to attenuate the radiation intensity at the appro-

priate rate. The first step in this procedure is to calculate the elevations

of intersections of the line of sight with the conical surfaces which define

the boundaries between regions along the radial coordinate of the plume.

3.4.1 Calculation of Line-of-Sight Intersections with Conical Region
Boundaries

The method used to calculate the elevations along the Z-axis of inter'

sections of the line of sight with the conical boundaries follows that used by

Tien and Abu-Romia (8). As a first step the distance is calculated between the

axis of the conical surfaces and the point where the line of sight pierces a

plane at right angles to the axis and passes through the cone vertex. Figure

3-7 shows this intersection point, Pi; h and r 1 locate the point within the

plume where an emission, scatter or absorption/reemission event occurs.

Using the law of cosines, the distance R between the plume axis and the

piercing point is

_ 2 tanr7 cos(_- - (O - ¢ )) (3.41))2R = r 1 + (h tanv] - 2r 1 h

Now referring to Fig. 3-8 the following geometric identities are

appa r ent

e d
tan7 - Z. - (3.42)

ll Zi2

i
- (3.43)

tan t? Zi 1

tan rT' = -'_ R + c (3.44)
Zil - Zi2
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Fig. 3-7 - Orthographic Projections of Line of Sight to Piercing Point
in Plane Through Vertex
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Fig. 3-8 - The Path Length Through a Conical Body
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Thr(mgh use of Pythagoras theorem and the quadratic equation, the following

t,xprt_ssions are (,btained which give the Z elevations for intersections of the

line of sight with the conical boundaries reIative to a plane through the vertex

in terms of T, rT, r?' and R.

Vtan 7 + R tan_' - [(tan_ + R tanrT') 2 at {1-R 2) (tan 2

Zil - tan 2r_ - tan23 t

n - tan2?t]
(3.45)

Vtan 7+ R rant/' + [(tanT+ R tann') 2 + (1-R 2) (tan 2r7 - tan27)] (3.46)

Zi2 = tan 2r_ - tan27

Equations (3.45) and (3.46) apply only when r_ > 7. If r7 < 7, the line of

sight exists through the base of the plume. For r_ < 7 the Z elevation of the

intersection of the line of sight with the cone region boundary is simply the

elevation of the base. If r7 > 90 deg, Eq.(3.45) is used to calcuIate the Z co-

ordinate of the intersection. If 7 < _ < 90 deg, Eq.(3.46.) is used. These

equations are used to calculate the intersection of the line of sight with aI1

conical region boundaries used to construct the plume.

3.4.2 Attenuation Along the Line of Sight

Once an energy bundle is emitted, scattered or absorbed/reemitted,

the line of sight that the bundle follows may cross several regions before

leaving the plume. In order to calculate the probabIe length oftravei as per

Eq.(3.39), the length of travel (S i) in each plume region must be calculated.

Figure 3-9 wiI1 aid in visualizing the manner in which S i is caIculated. In

the foilowing discussion the planes at right angies to the plume axis used to

bound plume regions along the axis are referred to as I surfaces. The

conicaI boundaries are called J surfaces. An event site is shown in Region

I = 2, J = 2. For ease in visualizing the method, the trajectories of the

energy bundIe are shown for the case where the line of sight passes through

the plume axis (which corresponds to an azimuth angIe of @ = 0 or 180 deg).

This expedient makes the lines of sight shown in Fig. 3-9 appear in true
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I=4

I=3

Z

Z 2
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1

H 1

Z
Z

Z 2Z
1

Z
1

Base Plane

Z

Event
Site

Z 3

Lines of

Sight

Fig. 3-9 Line-of-Sight Intersections with Plume Region Boundaries
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length. However, the equations to be derived for calculating the length of

travel in each region are valid for any @ and _.

The location of event sites in the plume are tracked in a cylindrical

coordinate system centered at the common vertex of the conical surfaces

used to construct the plume. The true length of travel in any region may be

determined by identifying the Z-coordinate of the intersections of the line of

sight with the boundaries of the region and dividing the difference in elevation

by the cosine of the polar angle, 8, of the line of sight. These intersections

may occur on any combination of the I and J surfaces. The possible combi-

nations of intersections are with I-I surfaces, I-J surfaces, J-I surfaces or

J-J surfaces. These combinations of line-of-sight surface intersections are

shown in Fig. 3-9. However, note that there are only two combinations of

line-surface intersections from the event site to the region boundary, namely

site to I-surface or site to J-surface. The Z coordinate of the intersections

with the I surfaces are available from data used to construct the plume struc-

ture, namely in the array of HZ. values. The intersections with the J sur-
1

faces are available from either Eq.(3.45) or (3.46). The true length of travel

in any plume region may now be conveniently calculated from

Z -Z

S. = n+l n (3.47)
cost]

These Values of S. may be used in conjunction with Eq. (3.39) in order to cal-
l

culate the probable length of travel, Sp, of an energy bundle.

3.4.3 Location of Scatter and Absorption Event Sites

In the simulation of SRB thermal radiation using the Monte Carlo method,

the energy bundles are tracked in a cylindrical coordinate system centered at

the vertex of the conical boundary surfaces with the positive Z-coordinate

aligned with the cone axis. The direction of travel of an energy bundle is

assigned in a spherical coordinate system centered at the event site. Emis-

sion sites within the plume are selected based on Eqs. (3.13), (3.17), (3.18)

and (3.19).
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Equation (3.13) is used to select the plume region in which the emission

site occurs. Equation (3.17) selects the azimuth angle measured counter-

clockwise with respect to a line parallel to the positive X 2 coordinate of the

principal coordinate system and at right angles to the plume axis. The evalu-

ation of the emission site, h, relative to the vertex of the conical boundaries

along the Z-axis of a single SRB plume is determined by Eq. (3.18). The

radial distance from the plume axis, r, is determined by Eq.(3.19). Once

an emission site is selected, the energy bundle is followed along a line of

sight with polar and azimuth angles defined by Eqs. (3.21) and (3.22). The

polar angle, y], is measured with respect to the positive Z-axis of the plume.

The azimuth angle, @, of the llne of sight is measured with respect to a line

parallel to X2-coordinate and at right angles to the plume axis. A probable

length of travel is then selected based on Eq.(3.39). The energy bundle is

tracked along the line of sight until it either escapes the plume or until a

collision event occurs. The occurrence of a collision event is determined

when the predetermined value for S is less than S. for any region. This
p i

circumstance implies that the energy bundle failed to escape the plume along

the specified line of sight. Once a collision event occurs it is necessary to

calculate the cylindrical coordinates of the new event site. Reference to

Fig.3-10 should be made for the following discussion. Figure 3-i0 is a

schematic of the geometry involved in tracing energy bundles. The plume

shown in Fig. 3-i0 is composed of a single region. However, the relations

derived for tracking energy bundles from site to site are valid for a plume

composed of any number of regions.

The Z-coordinate of the new event site is obtained by adding the pro-

jection of S onto the Z-axis of the plume
P

h 2 = hl + Sp cosN (3.48)

The new value for the r-coordinate is obtained from the law of cosines.

Consider the rl, the new value of r 1 (r 2 in Fig.3-10), and the projection

of S onto a plane at right angles to the Z-axis. The projection of S onto
P P
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such a plane is simply Sp sin_ 7 and the law of cosines gives

_r _ + sin_7) 2 2r S sin_ cos(_-(8-¢i )) (3.49)r 2 = I (Sp - i p

The new value for _I (_2 in Fig.3-10) is obtained by calculating the angle a

from the law of cosines

<_ 2 2 sin_)2 )
r 1 + r z - (Sp

(x = arc cos 2 r 1 r 2

and

and

_2 = _I + a if 8 - _i < _r

(3.50)

Equations (3.48), (3.49) and (3.50) are used to update the cylindrical

coordinates (r,h and $) of energy bundles as they undergo scatter or

absorption/reemission events throughout a single SRB plume. When an

energy bundle escapes the boundaries of one plume, it is necessary to check

whether the line of sight of the bundle intersects the neighboring plume. This

check is provided by representing the neighboring plume as a quadric surface

in a central coordinate system (Fig.3-11). The left plume in Fig.3- II con-

tains an event site with the line of sight of the energy bundle passing through

the neighbor plume. The right plume is defined by a quadric expression in

the central coordinate system. The definition of the line of sight is also

translated to the central coordinate system and the algebraic expressions

for the line of sight and the quadric expression for the conical surface of the

external boundary of the neighbor plume are checked for a possible solution.

If a real solution exists, there is an intersection of the line of sight with some

portion of the infinite conical surface. The coordinates of this intersection

are checked to determine if it lies within the limits of the finite plume. The

method for representing the plume as a quadric surface is discussed in

Section 3.5.
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3.5 SURFACE GEOMETRY PACKAGE

Heated surface geometries are represented by quadric surfaces. These

surfaces may be grouped in various combinations to simulate Space Shuttle

geometries. The external boundaries of the dual plumes are also represented

as a quadric surface (cone) to facilitate modeling the shading effect of the

adjacent plumes on the emitted radiation.

3.5.1 Quadric Surfaces

The heated surfaces can be described as either quadric surfaces or

planar surfaces. The surfaces of cylinder, cone, sphere, ellipsoid and

paraboloid belong to the former type; the surfaces of parallelogram and

disk belong to the latter. These surfaces can be represented by a general

quadric equation of the following form

C 2 2 2 X 3 + C X 2 X 3XI + C2 X2 + C3 X3 + C4 XI 5

+ C 6 X 2 X 3 + C 7 X I + C 8 X 2 + C 9X 3 + C
=0

I0

(3.51)

The XI,X Z and X 3 are the coordinates of the system. The CI,C 2 ....

are the coefficients that determine the properties of the surface. A detailed

discussion on these surfaces is found in Ref. 9.

There are altogether six surfaces, namely: cylinder, frustum, paraboloid,

ellipsoid, parallelogram and annular disk. On the first three types of surfaces,

there are optional constraint planes to define the extent of these surfaces. The

constraint planes are assumed to be perpendicular to the body axis of the sur-

face.

The surfaces are defined by eleven parameters in general. These param-

eters are two radii and the coordinates for three points, as summarized in Table

3-1. The target surface may be a simple surface as in the cases of ellipsoid,

parallelogram and disk or a simple surface plus constraint planes perpen-

dicular to its axis, as in the cases of cylinder, frustum and paraboloid. The
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Table 3- 1

INPUTS OF FARGET SURFACES

R 1 R2 P1 P2 P3

Radius N/A

Radius of

Top

Radius of

Constraint Plane

Passing Through
P2

N/A

N/A

Outer Radius

Radius of

Bottom

N/A

N/A

N/A

Inner

Radius

Center of

Top

Vertex

C e nt e r

C enter of

Bottom

Center of

the Base

Pole

A Point

not on

Body
Axis

Zero

Mer idian

PI'P2'P3 are three consecu-

tive corners, counterclockwise

about the outward normal.

Arbitrary Normal
Point on Vector

Disk

Center

I

I

I

I

I

I

I

N/A: Not applicable.
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basic target surfaces are transformed from the central coordinates to body

coordinates in which the shape of the quadric surface is readH F recognizable.

3.5.2 Subdivision of Surfaces

The main surfaces and their constraint planes are further divided into

sub-areas for more precise heating rate prediction. Four integer numbers

are used to describe the subdivision. These numbers are NN1, NN2, NRING1

and NRING2 in the program, Their meaning is indicated in Fig. 3-12.

The area of each sub area and the position vector of its center are

computed. Each area is further assigned a number. When a photon tra-

jectory intercepts a target surface either on the main surface or on the con-

straint plane, the position vector of the hit point is calculated. Comparisons

of this hit point position vector to all the position vectors of the sub-areas

on the given surface are then made in order to identify the proper sub-area

which was hit.

3.6 RAY TRACING FROM PLUME TO SURFACE

The ray tracing scheme can be described as follows. Assume a ray

originating from point (X1,Y1,Z1) in the direction (U1,U2, U3). Its tra-

jectory which is a straight line in the three-dimensional space can be de-

scribed in the parametric form:

X = X1 + U1 • d

Y = YI+U2.d

Z = ZI+U3-d

(3.52)

where d is a parameter characterizing the distance between an arbitrary

point (X,Y,Z) on the line to a fixed point (X1, Y1,Z1) on the same line.

The target surfaces, six in total, can be classified into two categories,

i.e., the planar surface and the quadric surface. A planar surface can be
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Fig. 3-12 - Sub-Areas of the Target Surfaces
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expressed as

(X - X0) • nl + (Y - Y0) • n2 + (Z - Z0) • n3 = 0 (3.53)

where (X0, Y0, Z0) are given points on the plane; (nl,n2,n3) are the direction

cosines of its normal and (X,Y, Z) are the general points on the plane. If the

straight line, as given in Eq. (3.52), intercepts the plane, there will be common

point (X,Y,Z) such that

(X1 -U1 • d- XO) . nl + (Y1-U2.d- YO) • n2+(Z1-U3 • d-ZO) .n3 = 0

therefore

d = /X1 - X0) . nl + (YI - Y0} • n2 + (Zl - Z0). n3
U1 • nl + U2. n2 + U3. n3 (3.54)

The position vector of the hit point is obtained by substituting d obtained

in Eq.(3.54) into Eq.(3.53). A closer look at Eq.(3.54) reveals the following

obs er ration s :

a. When the denominator vanishes, there is no solution. This is the

case in which the trajectory is parallel to the plane.

b. When the numerator vanishes, it means that the given point of the

trajectory is already a point on the plane.

c. When the distance, d, is a negative number, it means that the

direction of the trajectory is in the sense away from the plane

from the given point.

Hit points on the quadric surfaces are calculated in a similar way.

To illustrate the procedure, a cylindrical surface of radius R is considered.

Let the surface be given in its body coordinates as follows:

X 2 +y2 = R 2 (3.55)

The common solution of Eq. (3.55) and Eq. (3.52) leads to

(X1 + U1 • d) 2 + (Y1 + U2 • d) 2 = R 2
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- B_+_B 2 -4 "A • C

A = (u1)Z+ (uz)z = i -(u3)z

B = E (U1- XI + U2 • YI)

c = (XllZ+ (Yl)z- R z

(3.56)

If the discriminant, B 2-4AC, is less than zero, there is no solution. This

means the trajectory does not intercept the target surface. The sign of the

square root is chosen in such a way that d is the positive and the smaller of

the two real roots. When d is computed, the hit point on the target surface

is readily known by substituting d into Eq.(3.52).

• When there is more than one target surface in the computation, the

shading effect needs to be considered. The photon ray, being a straight line

and absorbed by the first intercepting surface, stops at the nearest surface

it intercepts. The mathematical expressions of all the possible intercepting

points, however, are calculated in the program. A comparison is made to

pick the shortest distance and therefore the correct hit point. After the hit

point is determined, a further check is made to determine the sub-area on

the surface that is hit. The number of hits of that sub-area is then incre-

mented.

The algorithm of the dual plume simulation can be described as follows:

the two plumes are assumed to be identical in every respect except their loca-

tion and orientation. Each plume has a local coordinate system which is

centered at the center of its exit plane with XI' axis coinciding with the plume

axis. In addition there is a central coordinate which is located midway be-

tween the centers of the exit planes of the two plumes at their zero gimbal

angles. Each plume can then be located freely with respect to the central

coordinate system. The coordinate systems and the gimbal angles are shown

in Fig. 3- 13 and Fig. 3-14, respectively.
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Let (X I, X2, X3) and (Ul, U2, U3) be the position vector and the trajectory

direction cosines in the central coordinate system. The primed quantities

(XI',X2',X3') and (UI', U2', U3') are the corresponding quantities in the plume

local coordinates. (PP(1), PP(2), PP(3)), *and a are the location and gimbal

angles of either plume. Transformation from the plume coordinates to the

central coordinate can be clone by following matrix multiplications. Note that

, is either *I or *l plus _/2 and c;is either _l or ¢;2 as the case may be.

X \-sing cosd) sino" cosg cosd)/ X3 _DP(3)/

(3.57)

icos.0s..UZ = _sing sind) cosd) -cos(y sind)) IU2'

U3 \-sing cosd) sin, coscr cos,/ \U3'

(3.58)

Transformations from the central coordinate system to either plume

coordinate system are the inverse of the above and are given as follows:

X2') = cosd)
X3'/ \sing -cos(r shad)

-,in_cos*\/xl pp(l/\

sin* ) _X2 PP(2) /cos(; cosd) / X3 PP(3)/

(3.59)

I[Jlil (Co0" s[n(Y sind)
UZ = cosd)

U3 kS incr -cos(_ sin*

sind) ) U2

cosy cosd) / U3

(3.60)

When an energy bundle escapes the boundary of a plume, the location

of the point on the plume boundary and the direction of the bundle can be re-

corded on a data tape. When a large number of sample energy bundles are

coilected, typically 100,000 samples, the data will give agood definition of

3 -4Z
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the plume's radiation field. This process is the IPLUME=3 option in the com-

puter code. The energy bundle can be traced directly as it leaves a plume. A

random number is first called to determine in which plume this energy bundle

is originated. The location and direction are then transformed to the central

coordinate system. A check must be made at this point to determine if this

energy bundle will intercept the other plume. If it does, the interception on the

other plume is treated as a reemission point in that plume, and the tracing process

described in preceding sections is continued in that plume until the energy bundle

again leaves the plume. If the energy bundle leaves a plume and does not inter-

cept the other plume, then the geometry package is called to determine if it hits

any part of its surfaces. This procedure is the IPLUME = 1 option in the code.

If the data tape is used as in the case of IPLUME : 4 option, instead of

generating the energy bundles within the plumes, the presence of the other

plume is treated as a shading surface. When the energy bundle hits the botmd-

ary of the other plume, the energy bundle stops there. Otherwise a check is

made to determine the hit point. Moreover, due to the assumption that the dual

plumes are identical when the location and direction of an energy bundle are

read from the data tape, the same set of data applies to both plumes. There-

fore when a set of data is read from the tape, two rays which are originated

at each of the two plumes in a mirror symmetrical position are calculated.

In the case when the plumes are gimbaled, this symmetry still applies, be-

cause the location and direction are given in terms of the plume local coordi-

nates which are not affected by the gimbal angles.

3.7 HEAT FLUX EXPRESSIONS

When an energy bundle escapes the boundaries of the dual SRB plumes,

it may or may not strike a surface of the geometric model of Space Shuttle

surfaces. The methodology for discriminating whether the bundle intersects

a spacecraft surface has been discussed in Section 3.5. If the bundle hits a

surface, the energy contained in the bundle is absorbed by the surface. The

radiant heat flux to a given surface is ultimately determined by tabulating the

number of energy bundles that strike the given surface relative to the total
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nunaber of bundles used in calculating the distribution of thermal radiation

leaving the plumes

The amount of energy contained in an energy bundle for a specific SRB

, and the number of absorption/plume is dependent on the number of samples Ne,

reemission events that occur during the simulation. The total number of samples

plus reemissions multiplied by the energy per bundle must equal the total energy

emitted by all regions of the plume as given by Eq. (3.11), as

all

r_ns( N -- Pl -- gbl 1
E + K E V i (3.61)

(N e +Nre } e = 4 _a i a i
i=l

Equation (3.61} defines the energy per bundle for a specified sample size, Ne.

The heat flux to a given surface is given by

qn -- Nh e/As (3.6Z)

where A S is the area of the sub-surface and N h is the number of hits in that

area.

3 -44
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4. VIEW FACTOR MODEL

4.1 HEAT TRANSFER CALCULATIONS USING VIEW FACTORS

The radiative heat exchange between surfaces can be calculated with

the help of the view factor concepts. The view factor, dFl_2, which is also

known as configuration factor, shape factor and other names, is defined as

the fraction of energy leaving black surface dA l that arrives at black surface

dA 2 (Fig. 4- I),

cos_3 1 cos_ z

dFl_ 2 = sZ dA Z (4.1)

Equation (4.1) shows that the view factor depends only on the size of

dA g and its orientation with respect to dA 1, The differential notation dF indi-

cates that the view factor is for energy transfer to a differential element, dA2,

from a differential element, dA 1. The view factor for two finite areas, A 1

and A2, is calculated by integrating over both A I and A 2

1 ff cos_l c°s_z
Fl_ 2 - A1 S 2

7f

A1A 2

dA 2 dA 1 (4.2)

I
The view factor Y2_ 1 which is defined as the fraction of energy leaving

black surface A 2 that arrives at black surface A1, can be given similar to

Eq. (4.2)

I 1 If c°s_2 c°s_l dA 2
F2_ 1 - A_ 2 S 2 dA1

I A2A 1

(4.3)

I

I 4-1
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dA

A 2

Fig.4-1 - Schematic of View Factor F I-2
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Therefore, the reciprocity relation follows

A 1 Fl_ 2 = A 2 F2_ 1
(4.4)

ql'

The radiation exchange from A 1

can be given immediately.

to A 2, qz' and that from A 2 to A 1 ,

4 (4.5)
q2 = o- A 1 Yl-2 T1

4 (4.6)
ql = _A2 Y2-1 T2

The view factors, FI_ 2 and F2_ I, depend on not only the area and orien-

tation of the surface but also on the shape and local curvature of the surface.

The view factors of some standard configurations are found in the literature.

For those configurations for which the view factors are not available, the

process to compute the view factor by evaluating the integration given in

Eq. (4.2) is difficult in general.

4.2 MONTE CARLO METHOD

Since the view factor is defined as the fraction of total energy leaving

one surface that arrives at the other, it is possible to divide this total energy

into many bundles which are emitted diffusely from the emitting surface. The

fraction of the total bundles that is intercepted by the other surface would be the

view factor Y 1_2. In this manner the view factor is obtained without carrying

out the lengthy integration as given in Eq.(4.2). This is the underlying idea

of the Monte Carlo method.

The Monte Carlo method is especially powerful when the geometry of

the exchange surfaces is complex. There are, however, assumptions in-

volved. The assumptions required when using the view factor to compute

radiant heat exchange are that the surfaces involved are diffuse-gray emitters

and reflectors, that each surface is isothermal and that the total flux arriving

at and leaving each surface is evenly distributed across the surface. The

4-3
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assumption required with the Monte Carlo method is that the reflector surface

is of some reasonable finite size so that the number of hits recorded on the

surface would be statistically meaningful. This assumption is not as restric-

tive as it appears. In the case where the reflector is small the view factor

can be calculated with reciprocity: relation by first computing the reverse

view factor from the reflector to the emitter. However, there is no apparent

criterion to distinguish a small target surface from a non-small target sur-

face. tt is a matter of how large a solid angle that the target surface subtends

and how many emitting bundles are used. In the present code, the view factor

and its corresponding reciprocal are computed at the same time. These are

given in the output side by side for convenient reference.

4.3 DISTRIBUTION FUNCTION

In the Monte Carlo method the energy bundles are emitted from a sur-

face uniformly in a cosine distribution. The process involves picking an

emission site on the surface and choosing a direction of the trajectory. When

a large number of energy bundles are dispensed, the emission sites will be

distributed uniformly over the emitter surface and the trajectory directions

will be distributed according to the cosine law. The spatial distribution will

be discussed in the next section. The directional distribution is discussed

here.

The direction of the trajectory can be determined by the angles _ and 0

(Fig.4-2) when the location and the local normal are given on the emitting

surface. When a large number of emissions are chosen, the trajectories will

be distributed according to the cosine law about the local normal.

Let N be the total number emitted from the source point and dn the
e

number emitting through dA. Since the number density is proportional to

cos;/, the number of trajectories lying within do is

d_0 = sinr7 dN dO

4-4
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I

I

I dNe - 4_ Nm c°sr_

N m .
I = _ smn cost1 dr_ de

I where N m is the maximum number density. The total number N

7r/2 2r Nm

I Ne = f f "G-_ sin'_c°s'_d°d_
0 0

I . N m

:---_

I The joint probability density function is therefore,

I -_ = fd@ d_ = 1 sinr7 cos_ d0 dr_

I The marginal distribution functions P(_) and P(O)

respectively ar_e .............. ,

I m,@) : / 1 . "sm_ cos n d n -

I

0

I Therefore the corresponding random numbers are
@

i

I

U : /2 sin_) cosr_ dr7 : sinZr7

0

LMSC-HREC TR D496763-I

is
e

for _ and @ distributions

1

2r

2 sin_ cos_

I
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which mean s

@ = 2_r. U@ (4.7)

D = sin-l_ (4.8)

Equations (4.7) and (4.8) are the relations between the random numbers

U@ and U drawn from the random number generator and the values of 0 and rl
rl

used to determine the trajectory.

4.4 EMITTING SURFACE GEOMETRY PACKAGE

The geometry package in the view factor calculation involves two parts.

The first part is the geometry of the emitting surface which will be discussed

here. The second part is the geometry of the target surfaces which is the

same package used in heating rate computation and was discussed in the pre-

ceding section.

The emitting geometry package includes nine surfaces, i.e., half cylinder,

half frustum, hemisphere, parallelogram, annular disk, cylinder, frustum and

sphere. The input and output of these surfaces are all done in a subroutine

VFEMIT. When the subroutine is called to output a trajectory, a point on the

emitting surface is first chosen as follows:

I o

where

Cylinder

HELV

TH =

= H.RNI

(o.s- RNZ). _/Z

HELV is the height above the base

H is the height of the cylinder

TH is the azimuthal angle, and

RNI and RN2 are two random numbers.

4-7
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where

Frustum

HELV : H. (R2 - RL)/{R2 - RI)

TH : (0.5 - RNI) • _/2

Rl and R2 are theradii of the base and the top of the frustum,

respectively, and

RL = R2 * R_

If RL< Rl, another RN2 is drawn.

3. Sphere

A random direction is chosen. The point on the spherical surface is

determined by a trajectory starting from the center of the sphere in the

chosen direction to the point on the surface. A final check is made to ensure

the point falls within the range of the hemisphere. If the point on the spherical

surface is not within the given hemisphere, another random direction is gen-

erated and the process is repeated.

4. Parallelogram

where

D1 = RNI" HI2

D2 : RNZ • H23

N : P1 +C12 .D1 +C23 .D2

is the position vector of the random point on the plane

Pl is the position vector of corner Pl

HI2, H23 are the distance Pl to P2 and P2 to P3, respectively, and

Cl2, C23 are the direction vectors of the lines P1 to PZ and PZ

to P3, respectively.

4-8
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5. Annular Disk

TH = RN2- 2_

RR = R2 _/'RNI

where

TH is the azimuthal angle subtended by the random point, and

RR is the random radius. If RR is less than the inner

radius R1, then another RN1 is generated

Now that the random point on the emitting surface is chosen, the direction

of the emission is the next to be determined which is described in the following

paragraphs.

4.5 RAY TRACING

When a random point is chosen on the emitting surface, the direction

cosines of the local normal at that point are known. The direction of the

emitting trajectory is then generated by random numbers in such a way that

the direction would fall into a cosine distribution about the local normal. A

set of direction cosines (UI', U2', U3') with respect to the local coordinates

are generated as follows.

O' : 2z • RNI

4' = sin -1 _'-N2

UI' = cos_'

U2' = sin_' cosO'

U3' = sin_' sing'

The local coordinates which coincide with the local normal at the chosen

surface point can be related back to the centraI coordinates. The direction

4-9
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cosines (UI', U2', U3') are transformed into (UI,UZ, U3) which are based on

the central coordinates. Let the local normal be (NI,N2, N3). The trans-

formation is:

I ILIcos osin UZ = sin_ sin@ cos@ -cos_ sin8

U3 [-sin¢ cos@ sin9 cos_ cos9

UI'

UZ'

U3'

where

: ACOS(N 1)

O = =/2 +ATAN (N3, N2)

Now that the location of the starting point and the direction of emission

are known, this information can be fed into SOIRTNG subroutine to determine

if and where the target surface is hit. The number of hits are recorded

according to the sub-areas on each target surface.

When the specified number of trajectories are dispensed, the view factor

and its reciprocal view factor of each sub-area are computed by dividing the

number of hits by the total emissions. The results are grouped together by

each target surface in the output.

4-I0
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5. EXAMPLES AND RESULTS

5.1 RESULTS CONCERNING PLUME CHARACTERISTICS

The two plumes from the two SRBs are assumed to be axisymmetric

and identical to each other. The radiative power of the plumes varies with

many parameters, e.g., trajectory point, particle size and density, after-

burning, gas constituents, etc. The influence of these plume flowfield prop-

erties is reflected in the Monte Carlo solution to the radiation transport

pr obl era.

The energy bundles are traced within the plume until the energy bundles

leave the plume boundary. Data tapes are generated recording the direction

and the location of the line of sight of each energy bundle leaving the plume.

These data tapes are used to define the line of sight of energy bundles leaving

the plume in the radiation heating rate calculation. This circumvents the

necessity of performing the Monte Carlo simulation for every computer run

and provides a substantial saving in computer execution time with no sacrifice

of sample size or accuracy.

Distributions of the energy bundles as they leave the boundary of a single

plume are plotted on the following pages. Figure 5-I shows the distribution in

the X 1 direction which is along the axis of a single plume. Figure 5-2 shows

the distribution of the bundles leaving a single plume relative to the angle _.

The _? angle is the angle between the trajectory of the energy bundle and the

X 1 axis. Distribution of energy bundles in the ¢ direction is always uniform.

5.2 EXAMPLES OF HEATING RATE CALCULATIONS

The radiant heat flux to a disk at a distance -0.1 R over a single plume
ex

for sea level and 7Z,000 ft trajectory points is plotted in Fig. 5-3. Figure 5-4

5-1
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Fig. 5-1 - Distribution of Energy Bundles in X 1 Direction
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shows similar data for a single plume except the disk is -4.94 R above the
ex

exit plane, which is about the same elevation of the bottom of the ET.

The effects of gimbal angles and different altitudes on the radiant heat

fluxes are shown in Figs. 5-5 through 5- 10 for the dual SRB plumes. The

heating rates are shown for a rectangular plane extending from X 2 = -6 to 6

and X 3 = -5 to 5 over the dual plume. Figure 5-5 shows the heating rates

along the strips parallel to X 2 axis. The two obvious dips along the center

strip are due to the shading of the nozzles. The distance between the rec-

tangular plane and the nozzle exit plane is denoted by X 1. Figure 5-6 shows

the similar case, except the plane is located at X 1 = -4.94 where the plane is

tangent to the bottom of the external tank. The heat flux is more uniform at

X 1 = 4.94 and the intensity is reduced by a factor of 2 to 3 as compared to the

X = 0 location.
1

Figures 5-7 and 5-8 show the effect of gimbal angle for the sea level

plumes. Figure 5-7 shows the heat flux on strips of the rectangular plane

when the plumes are tilting 30 deg toward the X 3 axis, i.e., a = -30 deg,

= 0 deg. The heat flux on the side where X 3 > 0 is a marked increase over

the side where X 3 < 0. The heat flux on the strip toward wkich the plumes

are tilting is 3 to 10 times higher than that on the strip away from the

plumes. Figure 5-8 shows the heat flux on strips of the rectangular plane

when the plumes are tilting 25 deg toward the X 2 axis, i.e., _ = 25 deg, _b = 90

deg. The heat fluxes are lopsided to the same direction the plumes are tilting.

The heat fluxes along one strip near the edge of the rectangular plane

are plotted in Fig. 5-9 for the 9430 ft plumes. The four curves represent the

following cases: (1) cl = 0,° _ = 0,° X 1 = 0; (2) a = 0,° * = 0, ° X 1 = -4.94; (3) a = 25 °

¢ = 0 ° X 1 = 0; and (4) cr = -30 ° qJ = 0,° X 1 = 0. It is seen that the gimbaling of

the a angle would increase or decrease the heat flux at this particular location

by a factor of 2.

The heat fluxes for no gimbal for the 72,000 ft plume are plotted in

Fig. 5-10. The bottom curve is the heat flux at X 1 = -4.94. The heat flux

5-6
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at X l = -4.94 is seen to be only one third of that at X l

of subtargets.

= 0 for the same row

A simple geometry package (see Fig. 5-11) was put together to compute

the heat flux at the end dome of the ET. The shading effects of the nozzle are

simulated with a disk placed at the nozzle exit plane. The end of the ET is

divided into three rings which are further divided into four parts. The heat

flux on each division is summarized in Table 5-I. Table 5-2 shows the heat

flux when the sea level plumes are gimbaled in pitch plane and in yaw plane.

The effects of gimbaling are especially pronounced when the plumes have large

pitch angles ((rlarge, _2= 0). Table 5-3 shows the heat flux of gimbaled dual

plumes at 72,000 ft altitude. It is observed that the g[mbal angles in both the

pitch plane or yaw plane increase the heat flux at the ET dome substantially.

Two models were made to facilitate the study of heat flux within the

nozzle shroud enclosure. One model is shown in Fig.5-12. Four target sur-

faces constitute the model. Surface 2 is the skirt of the nozzle plus the end

constraint plane and a stiffener. Surface 4 is another stiffener at the mid-

height of the skirt. The heat fluxes on these two surfaces are given in Table

5-4 for a single plume at three altitudes.

Another nozzle enclosure model is shown in Fig. 5-13. This model is

in closer agreement in its dimensions to the actual shroud design on the SRB.

The target surfaces are designated by numbers. The heat fluxes are given

in Table 5-5 for a single plume at three altitudes.

The geometry model of the IET and SRB structure is shown in Fig.5-14.

The target surfaces are designated by numbers. The end dome of the ET is

divided into four rings on its surface. The plumes at three altitudes are not

gimbaled. The heat fluxes are summarized in Table 5-6.

5-13

LOCKHEED-HUNTSVILLE RESEARCH & ENGINEERING CENTER



il i; _ IRi _ i i i mR il i i i i i i _

f,-

T

rm

n-
C
Z
.-I

r-
f-
ro

m

m
Z

Z
m

Z
-.t
rn

t.rl

!

i

i

0"1

;3"

©

M

U
0

e_

C3

-,D
G",

i



I W m I U_ I II I I_I D m U

t-

w-

in

T
C
Z

co

r-
r-
rn

_o

r_

_o

I

r_
z
o

z
r_
r_

_o

if)

z
-t
M

!

kn

r.n

II

ul
o

"o
o
o

q

II

c,
_0

II

o
o

> > >
P

_rQ

o o o o

_-_ _-. _-_ 0 0 _ r_

I

o o o o o o o o o o

o _ 00 00 _I_ _ 00 .--4 -_a o 0

o o o o o

P_
_o

o o o o o o o o o o

o

0 o o o o

09

t_
fl

4_ o _ o _ b_ e0

0 0 0 0 0

_ _ _ _ 0 _ _ 0 0

o
_-_ o

o
o o o o o

_ 0 0 (3" _ _

0 e-

l

M
H

0

!

U:l

bl

,...o

o",



I

I

I
I
I

I

I

I
I
I

I
I
I

I
I

I
I

I

I

LMSC-HREC TR D496763-I

Table 5-2

EFFECTS OF GIMBAL ANGLES ON HEAT FLUXES

AT ET DOME FROM DUAL SEA LEVEL PLUMES

Io (deg)

I

2

3

4

Avg.

5

6

7

8

Avg.

9

I0

]l

12

Avg.

0 9O 0 90 0

8 8 35 350

1.14

1.14

1.46

1.46

1.3O

0.93

0.93

2.43

2.43

1.68

0.9]

0.91

1.83

1.83

1.37
i ..

1.13

1.62

0.97

1.14

1.22

1.12

l.87

1.12

0.75

1.22

i.83

1.83

3.65

1.83

2.28

0.32

0.32

0.97

0.97

O.65

1.31

1.31

1.31

1.31

1.31

2.05

2.05

2.97

2.97

2.51

1.78

1.62

1.46

2.27

1.78

1.68

2.24

2.O6

2.62

2.15

4.34

2.51

4.11

4.11

3.77

0.81

0.81

2.27

2.27

1.54

1.31

1.31

2.62

2.62

1.96

2.05

2.05

4.79

4.79

3.42

*Iteat flux in Btu/ft2-sec
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HEAT FLUX ON TIIE

be O

i

Table 5- 3

ET DOME WITH GIMBALED PLUMES AT 72,000 FT

2

3

4

(deg)

(deg)11

Avg.

5

6

7

8

Avg.

0

0

O.67

0.67

0.70

0.70

0.68

0.91

0.91

i.03

1.03

0.97

35

9O

&88
i.00

0.88

1.05

0.96

1.57

1.54

1.42

1.36

1.47

9

10

II

12

Avg.

1.43

1.43

1.28

1.Z8

1.36

2.03

Z.37

g.3Z

2.37

Z.Z7

35

0

0.60

0.60

1.33

1.33

0.97

1.01

1.01

1.80

1.80

1.45

1.78

1.78

2.69

Z.69

Z.Z4

*Heat flux in Btu/ft2-sec.

REPRODUCIBILITY OF THI_
ORIGINAL PAGE IS POO$,
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Table 5-5

HEAT FLUX ON A NOZZLE SHROUD MODEL

Altitude Sea Level 9430 ft 72_000 ft

Target W/cm 2 Btu/fta-s ec W/cm 2 Btu/ft2- sec W/cm 2 Btu/ft2- sec

B

1[

la

ib

Ic

2

3a

3b

3a'

4a

4b

4c

4d

4a'

4b'

4c t

0.0

0.0

0.0

0.0

0.0

1.53

3.24

0.I0

0.11

0.12

0.00

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

1.34

2.86

0.09

0.I0

0.01

0.0

0.0

0.0

0.0

0.015

0.0

0.0

0.79

0.27

l.64

2.02

0.15

0.21

0.13

0.03

0.0

0.0

0.03

0.013

0.0

0.0

0.69

0.24

1.45

1.78

1.13

0.19

0.12

0.03

0.0

0.0

0.03

0.22

0.07

0.04

0.33

l.51

3.97

4.76

0.22

0.56

0.32

0.30

0.02

0.76

1.37

0.19

0.06

0.04

0.29

i.33

3.50

4.20

0.20

0.50

0.28

0.26

0.18

0.67

I.21
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la

lb

lc

8

Number = Surfaces

4b X_I X2

Fig. 5-14 - Model of the External Tank and Solid Rocket Boosters
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5.3 EXAMPLES OF VIEW FACTOR CALCULATIONS

Several examples of view factor calculations are presented in this

section. The first example involves the geometry of three disks, as shown

in Fig.5-15. The surface l is the emitting surface.

To compare the results with the exact solution and the results obtained

with different sample sizes, the view factor of the entire surfaces is used

although the view factors from the emitting surface to the sub-areas on the

target surface are also available. The exact solution of view factor FI_ 2is

given as follows (Ref. 6):

R l = rl/h, R 2 = r2/h

2 2
X = I + (I + Rz)/R 1

rl_z _-(x _Xz:4 (RZ/RI)Z)/Z

The results are summarized in Table 5-7.

A second example is given in Fig. 5-16, where a hemispherical emitting

surface of unit radius is facing a dish-shaped target surface. The exact solu-

tion of the view factor calculation is available in the literature {Ref. 6) and is

given as follows:

F = 1 -
I-Z

Comparisons of results are given in Table 5-8.

The third example demonstrates the heat flux calculation to a point in

the base plane and a point on the base of the ET using the view factor method.

A small disk with a radius of 0.001 is placed at either position 1 or position g

at the end point of the ET (Fig. 5-17). The two SRB plumes for the 7Z,000 ft

5 -24
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j Surface 2 _face 3

3 -_-

X 2

Fig.5-15 - First Example of View Factor Calculation
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Table 5- 7

COMPARISON 09" RESULTS }-OR EXAMPLE 1

View

r

!000

2000

5000

10,000

20,000

Analytical

Y
1-2

0.2840

0.3020

0.2950

0.2871

0.2911

0.2918

Y2- i

0.0710

0.0755

0.0738

0.0718

0.0728

0.07295

F1-3

0.0370

0.0345

0.0322

0.0336

0.0358

Y3- I

0.00925

0.00863

0.00805

0.0084

0.00894
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X

Hemispher h
Sur face

2

Fig. 5-16 - Second Example of View Factor Calculation
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Table 5- 8

COMPARISON OF RESULTS FOR EXAMPLE 2

_View

"_.Factor

Sample or_
Method

r h F1-2

Analytical 1 5 0.01942

7500 I 5 0.01960

Analytical 5 5 0.29289

7500 5 5 0.2944

5000 5 5 0.2896

F2_ I

0.03884

0.03920

0.02343

0.02355

0.09267

Radius of emitting hemisphere = 2.
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r = .001

T
Surface 3

15.0

Scale 1 = 6.07 ft

lr[g. 5-17 - Calculation of Heating Rate by V_ew Factors
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trajectory point are represented by two frustum bodies. The average emis-

sive power of the plume is assumed to be either 40 Btu/ftZ-sec or 25 Btu/ft 2-

sec. The results are summarized in Table 5-9. The schematic of the SRB

plumes and target points is shown in Fig. 5-17.

As a demonstration case, view factors from a sphere and a cylindrical

rod (simulating a strut) to the surfaces within the nozzle shroud enclosure

shown in Fig. 5-12 were computed. The orientations of the sphere and rod

relative to the shroud are shown in Fig. 5-18. The surfaces are designated

as target l, target 2 and so On and their orientation is seen in Fig. 5-1Z. The

emitting surfaces are the sphere and rod and are designated as number 1 and

2, respectively. The computer output is reproduced in Table 5-10. To limit

the data printout to a reasonable number of pages, only data for target 1 (the

nozzle) and target 2 (the conical shroud) are shown.
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Table 5- 9

HEATING RATES BY VIEW FACTORS FOR 72,000 FT PLUME

Location 1 Z

View Factor F 2_I

View Factor F 3_I

Sum Y : F2_ I + Y3-1

Heat Flux, Btu/ftZ-sec

at 40 Btu/ftZ-sec

at 25 Btu/ft2-sec

i.9329-09

1.8959-09

3.8288-09

Z8.28

17.66

6.0481-I0

6.0736-I0

I.2122-09

8.95

5.59

* * -6
Emitting Surface: r = 0.001 ; A = 3.14159 x I0 = 1.1575 x 10 -4 ft

e

Surface Area 2 or 3 = 580* = 21370 ft2

Total Emission from 2 or 3 = E = 21370 x 40 = 8.55 x 105 Btu/sec
1 5

E 2 = 21370 x 25 = 5.34 x 10 Btu/see

Heat Flux at 40 Btu/ft2-sec = 8.55 x 105 x F/A
e

Heat Flux at 25 Btu/ft2-sec = 5.34 x I05 x F/A e

Non -dimensional.
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6. CONCLUSIONS AND RECOMMENDATIONS

The SRB plume thermal radiation code is capable of defining the

influence of plume flowfield structure on the magnitude and distribution of

thermal radiation leaving the plume. Radiant heating rates may be calcu-

lated for a single SRB plume or for the dual SRB plumes astride the Space

Shuttle. The plumes may be gimbaled in the yaw and pitch planes. Space

Shuttle surface geometries are simulated with combinations of quadric sur-

faces. Surface shading effects are accounted for. The code also has the

capability to calculate view factors between the SRB plumes and Space Shuttle

surfaces as well as surface-to-surface view factors.

The capability of the SRB plume thermal radiation code can easily be

extended to more accurately model the physics of the radiation transport

phenomenon. The following extensions in the codes capability are suggested:

• Model the wavelength dependence of radiative properties on the
magnitude and distribution of spectral thermal radiation leaving
the plume.

• Provide the capability to calculate radiative interchange factors
between surfaces. This will include the ability to model absorp-
tion and reflection at the surface. Reflection can be modeled as

specular, diffuse and real surface reflection.

• Provide the capability to perform a complete calculation of radia-
tive interchange factors between all surfaces of a Space Shuttle
enclosure such as the volume contained within the SRB shroud.
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