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FOREWORD

This report, prepared by the Analytical Mechanics Section,
R&D Technology Unit, Martin Marietta Corporation, Denver Division,
under Contract NAS8-31224, presents the results of a study to
analyze data and document dynamic program highlights of the Sky-
lab Program. The study was performed from March 1975 to March
1976 and was .administered by the National Aeronautics and Space
Administration, George C. Marshall Space Flight Center, Huntsville,
Alabama, under the direction of Mr. Wayne

This report is published in two volumes:
>

Volume I Technical Di'scussion

Volume II Skylab Analytical and Test Modal Data
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INTRODUCTION

The Skylab cluster is the most complex spacecraft structure
that has ever been analyzed, assembled, tested and flown. Skylab
was an extension of the Apollo Applications Program (AAP) and was
intended to provide an experimental man rated laboratory in space
utilizing primary components and systems developed under the
Apollo program. This report represents a compendium of Skylab
structural dynamics analytical and test programs. These pro-
grams are assessed to identify lessons learned from the structural
dynamic prediction effort and to provide guidelines for future
analysts and program managers of complex spacecraft systems. It
is a synopsis of the structural dynamic effort performed under
the Skylab Integration contract and specifically covers the
development, utilization and correlation of Skylab Dynamic Orbit-
al Models.

The Apollo Applications Program was initiated in 1965, and
continued to 1969, when the program was officially titled Skylab.
Early configurations included the LEM docking systems, MDA with
five docking parts, boom systems and consideration of rotating
space station using S-IVb, GSM, LEM and S-II stages, to create
artificial gravity environments. The prime consideration always
was the development of an orbiting space laboratory with self
contained power to permit extended man exploration of his planet
and surrounding environment. Specifically, the developed space
station was to be designed utilizing, where possible, existing
"off the shelf" structural hardware from the Apollo program.

Skylab, therefore, represented an evolved structural design
utilizing existing space hardware except for specific manned
laboratory and experimental requirements. These included develop-
ment of the Multiple Docking Adapter (MDA), deployment assembly
for a redesigned (inverted) lunar decent vehicle (ATM) required
to house the space telescopes, necessary solar array assemblies
to provide power and modification of the third stage, SIVb, of
the Saturn V to provide for an Orbital Workshop (OWS).

The development of such an orbiting, manrated laboratory,
required development of significant dynamic methodologies .to pre-
dict expected response and load performances during orbital
operation. These principally concerned the generation of advanced
state of the art technologies associated with:



o Docking response studies.
o Modeling of complex structure.
o Vibration analyses of large degree of freedom systems.
o Acoustic, vibration and shock criteria.
o Testing of orbital structural assemblies..

As a summary 'of the detailed technical effort included
during the development phases of Skylab, we represent three
cycles of developed structural models. These cycles repre-
sented:

o Initial or preliminary Skylab design model.

o Models developed and used to verify dynamic test.

o Final analytical structural models, correlated with
dynamic test and used to verify flight readiness and
launch support activities.

The NASA Skylab structural test program consisted of both
static and dynamic test. These included structural tests on
components, subsystems and major assemblies and were performed
at contractor, NASA JSC and NASA MSFC test facilities. Static
test included influence coefficient, static load and tension
test. These tests produced data required in the early design
phase and necessary in the development of analytical structural
models. Solar array and assembly deployment, performance and
forced response structural testing were completed but are beyond
the scope of this study and are not included within the report.
Extensive structural dynamic payload vibroacoustic tests were
performed on both launch and orbital payload assemblies, i.e.,
forward of vehicle station 3200. The dynamic tests were per-
formed to verify/correlate vibration environments and derived
structural analytical data. Of principal concern, for this
report, is the orbital payload assembly acoustic and modal survey
tests. Analytical model test data correlation studies resulted
in a more detailed zonal vibration criteria and minor modifica-
tion in the deployment assembly analytical model. Significant
testing philosophies, procedures and instrumentation requirements
for future complex structural test were developed during this
test program. In fact, a large amount of test data relating to
structural and modal damping, automatic test procedures,
vibration criteria resolution, and test instrumentation require-
ments were obtained and as yet remains unused.

Program'changes during the last year of the Skylab project
resulted in reduced structural flight instrumentation which
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greatly hampered detail evaluation of the Skylab mission except
for some phases of ignition, liftoff and launch times. However,
utilization of the limited data available did provide some flight
correlation data with an insight in what data are required for
future systems. Provided as a summary to this report is a
relatively detail critical review of the Skylab program, decisions
made and definitive recommendations for future dynamic programs
of this nature.

Interspaced within the report are structural model sources;
.illustration of the analytical models; utilization of models and
the resultant derived data; data supplied to organizations and
subsequent utilization; and specifications of model cycles.
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"IT. STRUCTURAL-MODEL-DEVELOPMENT-

The Skylab program was an outgrowth of the Apollo Application's
Program (AAP), initiated in 1965. Actually, the Skylab was a final
configuration designation which had evolved from numerous trade studies
during the AAP program.

These studies resulted in the preliminary design of the Apollo
Telescope Mount (ATM) and Orbital Workshop (OWS) Solar Arrays, Multiple
Docking Adapter (MDA), origination of the docking program, ATM and its
telescope configuration, Gimbal Ring Assembly, Space Structure Transi-
tion Section (STS), Airlock Module (AM) with the AM trusses and a pre-
liminary OWS floor configuration. This configuration, presented in
Figure 1.1 was referred to as the "wet workshop".

LM/ATM

ATM-SAS

Figure 1.1 - AAP Wet Workshop Configuration

The Skylab program was officially inaugurated in 1969 with one
configuration, but two concepts. These concepts were identified as
wet or dry Orbital Workshops, which referred to a live or spent third
stage, S-IVb, Saturn V workshop.
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The decision was made to replace the Lunar Module (LM) and its
docking,port with the Apollo Telescope Mount (ATM) and Deployment Arm
(DA), which simplified the mission by deleting the LM docking event.

The Skylab orbital cluster consists of the Orbital Workshop (OWS),
Instrument Unit (IU), Fixed Airlock Shroud (FAS), Airlock Module (AM),
Structural Transition Section (STS), DA truss, Multiple Docking Adapter
(MDA), deployed ATM and deployed SASs of the ATM and OWS. When the
Command and Service Module (CSM) docked to the axial port of the MDA,
(Figure 1.2), it resulted in the Axial Configuration. The rescue mis-
sion required the use.of another CSM docked to the MDA radial port; this
was referred to as the Radial Configuration (Figure 1.3).

Late in 1969, the dry workshop was officially adapted as the Skylab
configuration. This section documents the development and design of the
structural models associated with the Skylab Dry Workshop configuration.

1.1 Skylab Vibration Analyses Chronology

The xvet workshop mathematical models were represented primarily
with equivalent beam stiffnesses. This "stick" model consisted of a
mass spring representation of the modules which made up the configura-
tion of Figure 1.1. Only the ATM rack structural model was a finite
element representation of the stiffness of the actual structure. The
formulation of such a model involved the idealization of an actual
structural member or assembly of members into a series .of discrete or
or finite elements. These elements were considered to be connected
at node points to form a network or model from which stiffness char-
acteristics could be obtained for the structure, using a digital com-
puter program. The Martin Marietta system of structural analysis
programs utilized the direct stiffness method. A stiffness matrix
was formed for each discrete element (axial member, beam, plate, etc.)
and the element stiffness matrices were merged to form the overall stiff-
ness matrix for the entire assembly represented by the model. To obtain
good representative stiffness characteristics of this complex structure,
the original model was formed in more detail than that used in the dynamic
model. The large stiffness matrix was then reduced or collapsed to one of
more manageable proportions. The effect of all intermediate, or collapsed,
stiffnesses was retained in the final stiffness matrix.
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Figure 1.2 - Skylab GSM Axial Docking Configuration

Figure 1.3 - CSM Radial Docking Configuration

The main cluster configuration was defined as shown in Figures 1.4.
and 1.5. During the initial phases of the Skylab cluster structural
configuration redefinition from a docked ATM and "wet workshop" to the
deployed ATM and "dry workshop" structural analytical models of the
principal Skylab systems were in a state of change.

The mathematical models became larger and more complicated as the
Skylab structural design cycle progressed. Table 1.1 Illustrates the
DOF and subsequent mode increase.

In 1970, the NASA associate contractors provided better mass and
stiffness matrices for the components which comprised Skylab configura-
tions than those used in the original stick model wet workshop. In the
new models, only the OWS, ATM solar panels, and MDA were represented with
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beam elements (El, AE, KAG, GJ). All other components of the model were
represented with free-free and fixed-free mass and stiffness matrices.
The total degrees of freedom (DOF) which made up the model, prior to any
reduction,-approached 20,000 DOF.

The technique used to compute the modes was modal coupling (Reference
1), with the modes 'of the various components being computed separately.
These uncoupled modes were mathematically coupled and transformed to form
a set of coupled modes. During this coupling process, a frequency cutoff
criterion was defined for the coupled mode set'. The frequency limit then
determines the number of component modes required in the coupled analysis.

It is known that some component modes are more important than others
in modal coupling. The obvious place to look for the important component
modes was in the ATM and OWS solar arrays, since these two components ac-
counted for approximately 80 percent of the total number of modes required.
The method for selecting the important component modes involved selecting
the solar array modes which had the largest effect on the main beam re-
sponse and discarding all others in the vibration analysis. To calculate
accurate loads on the solar arrays, all panel modes had to be'used. The
method employed was to calculate the accelerations at the solar panel
attachment point on the model with.the truncated panel modes and to use
derived accelerations to base drive the solar array cantilevered modes.

In 1971, it was recognized that the vibration analyses used for the
loads analyses were not necessarily sufficient for control system analy-
ses. The concept of uniform frequency cutoff was used for the controls
model. The concept was to retain all modes of each component to a speci-
fic frequency determined by the size limitation of the computer program,
which at that time was 115 DOF. The modal selection technique did not
guarantee maximum control moment gyro (CMC) or rate gyro motion. Of
course, this limited the frequency definition in the controls model to
slightly less than 5.0 cps. As one might suspect, this was not adequate
for loads calculations. Here again, the modal selection technique was
employed to increase the frequency definition of the loads model above
10 cps.

In 1972, the decision-was made to assess the accuracy of the loads
versus the controls modes, to assess the validity of solar array modal
selection techniques, and to determine an acceptable frequency fidelity
for vibration analyses. It was concluded that all-future vibration
analyses would contain individual component frequencies equal to or
greater than 15.6 cps. The solar arrays used consecutive uncoupled
modes up to 5.0 cps and used modal selection techniques for defining
important modes up to 15.0 cps. A single model for both loads and
controls analysis, determined in accordance with the aforementioned
criteria, was considered more accurate than previous vibration analyses
based on consecutive modes and frequency cutoff for a limited number of
coupled modes. The mathematical models were now so complex that the final
modal coupling run using over 200 DOF requring a CDC 350K core storage
capacity.
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Deflection, inches

Figure 1.6 - Nonlinear Force-Deflection Relationship

1.2 Evolution of Structural Models . .

Throughout the 3 year development program, hardware changes and
raised mass and stiffness definition of the structure, required up-
dating of the Skylab mathematical models. Three time periods have been
chosen as representative of the program to illustrate Skylab model
evolution. The first or initial model was documented in July 1970,
and was the first formulation of the "Skylab" cluster. The second or
pretest model, represented the Skylab configuration just prior to the
Ground Vibration Survey (GVS). Additionally, pretest modes were de-
rived using a dynamic test configuration as shown in Figure 1.7. The
final or preflight model was documented in December 1972. It represented
the final flight model and contained stiffness scaling factors derived
during GVS correlation studies. This model was used for final flight
readiness reviews, flight anomalies studies and flight evaluation. This
report does not document the Skylab anomalies studies.

Prime Skylab mission configurations, are shown in Figures 1.4 and
1.5. Structural model evolution is shown as a pictorial representation
in Figures 1.8 through 1.13. These figures represent, in a similar
manner, the mathematical modeling associated with the vibration studies
(see Section 1-1). These component systems/assemblies will be used to
illustrate the detailed model development of Skylab.
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An interesting learning experience came to the surface in the field
of mathematical modeling. The Skylab models were developed from approxi-
mately 11 modules. In the modal coupling procedure,,_several modulus—were^
tied together to form a main beam. The remaining modulus were modally
coupled to the main beam. For this example, the main beam consisted of
the FAS, IU and OWS modules. The finite element models for these struc-
tures were developed by NASA associate contractors. Historically, in-
terface loads had been required at the FAS/IU and IU/OWS, which made it
desirable to have a centerline point at each of these interfaces. There
is a limitation to the number of degrees of freedom which can be retained
in a dynamics model. Another reason to maintain a centerline node point
is to make the main beam module compatible with the sizes of the other
modules. However, the centerline coordinates were not modeled in the
original model. To derive a centerline node point, the radial degrees
of freedom were first reduced out to allow radial motion to occur in a
typical breathing mode manner. A geometric transformation relating IU
ring motion of all tangential and longitudinal coordinates in terms of
motion at the IU centerline reduced further the number of IU ring inter-,
face coordinates. Coupling which occurred between the radial and tangen-
tial degrees of freedom in effect constrained the IU ring motion radially.
A visual analogy of this phenomenon is to imagine that the IU centerline
point represents the motion of a radially slotted rigid plate. This
caused the OWS-SAS loads to be conservative to the point of exceeding
published design limits. In order to alleviate th^s situation, all IU
coordinates were collapsed out of the main beam model. This allowed
the main beam stiffness model to reflect the OWS-SAS attach point flexi-
bility as defined in the original IU finite element model, thus allevia-
ting the problem with the OWS-SAS loads.

A facet of modeling which had to be considered on Skylab was pro-
viding an adequate vibration analysis where it was known that a component
of the configuration exhibited nonlinear behavior. This was true particu-
larly in the ATM where the gimbal ring assembly (GRA) is suspended within
the rack on a nonlinear spring. The spring rate is high for small deflec-
tions up to the point where the preload in the spring is relieved and
becomes soft thereafter, until the GRA bottoms out on the rack stop. A
simple illustration of this problem is demonstrated with the load-deflec-
tion curve of Figure 1.6. For a control system vibration analysis, where
vehicle forces are small, it is reasonable to use a GRA spring constant
based on the force deflection range which passes through the origin. The
docking and latching forcing functions cause GRA responses and corres-
ponding deflections which operate in the nonlinear range. The cost and
schedule impact of performing a nonlinear analysis dictated the use of
an iterative process in the vibration analysis using the spring constants
and frequencies determined from the dashed lines of Figure 1.6. Luckily,
a few iterations of the GRA frequency produced a model which provided
loads consistent with the desired force-deflection relationship.
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1.2.1 Orbital Workshop Assembly - The orbital workshop assembly
analytical model evolved from an, Apollo_launch,configuration beam stiff-
ness model used in the initial Skylab analyses. Principal changes to
this model related to more detailed representations of the Solar Array
-Sys-tem,—the—backup—structure_which_reflec.ted_mo_tijjn of the arrays to a
center line model, and interface points for compatibility to the STS/
AM/AM-TRUSS subassembly.

The model was composed of three major subassemblies. These were
the OWS structural model, OWS Solar Array System, and the FAS/IU assem-
bly. (See Figures 1.8, 1.9 and 1.9a)

1.2.1.1 OWS Structural Model - The initial model was represented
by a six mass point, 6 DOF, centerline model. This model actually
represented the stiffness associated with a spent third stage, S IVb,
of the Apollo launch vehicle. The resulting 36 by 36 free-free mass and
stiffness matrices were collapsed to 28 by 28 matrices. The primary con-
cern associated with this assembly was upgrading the stiffness matrix to
reflect a dry workshop configuration.

Both the pretest and flight models of this assembly were represented
by a six centerline point model resulting in 36 by 36 mass and stiffness
matrices. The final model did reflect revised stiffness data associated
with the aft skirt section, but its effect to the overall modal characteris-
tics were minor. However, changes in the mass data during the three
modeling periods were significant.

1.2.1.2 OWS Solar Array System - Detailed models were utilized from
the start to define the solar array system. The initial model reflected a
25 grid point model resulting in overall 96 by 96 mass and stiffness ma-
trices. Modeling problems developed not because of limited size of the
model but to inadequate definition of its response. Specifically, these
included irregular tip deflections, no effect of radial motion (later
defined as backup structure), and no separate representation for near
or far 'side arrays although their orientation was different (see Figure
1.9a). The pretest and flight models, although similar in size (93 by
93 and 99 by 99), were significant improvements. These mod'els contained
separate stiffness matrices for each array, inclusion of structural ef-
fects from the centerline model to the OWS skin, and effects of the beam
fairing interface*with the deployed arrays.

1.2.1.3 FAS/IU/OWS Forward Skirt - This assembly had been principally
designed during the APP development cycle. Remaining concerns to this
assembly was associated with interface responses, load paths, and attach-
ment points with adjacent assemblies. The effects of AM truss design even
with truss realignment and bottle arrangement did not significantly influ-
ence the systems response. The primary design driver was the design and
development of the ATM deployment assembly (DA). Recall that, at the
Skylab configuration designation, one substructure remained for major
design. This was the ATM DA (see DA section).
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The initial FAS/IU model was structured as a finite element model,
using preliminary load path data of the "L-Beam" DA and considering only

mass Iff fec~t~£T~cff ~bottle~ attachment^ — Later— models— included_s.truc-tural
flexibilities associated with the ECS and 02 bottles. The pretest model
contained grid points in the assembly so that direct attachment to the DA
and AM was possible. The final model additionally included flexibilities
associated with the OWS forward skirt. This was due to refinement of OWS
Solar Array attachment points and upgrading load allowables on the beam
fairing OWS skirt interface.

1.2.2 Multiple Docking Adapter Assembly - The multiple docking
assembly analytical structural model evolved from the AAP program study.
Actually, it was initially composed of five docking parts and a payload
shroud configuration. With the dry workshop designation, the assembly
was refined to the MDA cylinder 'portion, STS/AM/ AM- truss and two docking
ports. Depending upon which orbital configurations were analyzed, the
CSM was considered. (See Figures 1.8, 1.10, l.lOa and l.lOb)

1.2.2.1 AM/STS Structure - During the AAP development phase of the
Skylab program, this assembly was treated as a beam model. At the ini-
tiation of the dry workshop concept, redesign of the trusses provided
truss rearrangement for EVA missions from the Air Lock Module (AM) .
Actually, this was utilized to free the pinned OWS Solar Array system
and deployment of the .parasol configuration during mission operations.

Analytical modeling changes of this structural system occurred in
only two models. These were the initial and final models. The initial
model was represented as a finite element, beam truss model with two
nitrogen (^) bottles attached rigidly to the trusses. The final model
included effects of the AM/OWS-dome bellows torsional spring flexibility
and arc assembly interface attachment for the N2 bottles. This model
was combined with the MDA structural assembly to yield the MDA/STS/AM
modal coupling partition.

1.2.2.2 Axial and Radial MDA Port Structure - The initial model
was completed by considering three degrees of freedom at each latch
point and considering the port models, axial or radial, independent
of the MDA centerline beam model. Significant revision was made for
the pretest model due to completion of the MDA static influence coeffi-
cient test and a more definitive model of the MDA. Port stiffness ma-
trices were defined from a model defined by elastic ports and an elastic
MDA. By removing the flexibilities associated with the MDA, the port
stiffnesses were obtained. The final model was revised only for the
radial port to reflect the 37.75 degree rotation of the CSM about its
longitudinal axis in order to place it into the proper radial-dock
orientation. <

1.2.2.3 MDA Structure - Although the MDA was considered as a
centerline beam model in all three modeling phases the pretest and
final models were derived from a finite element model which was col-
lapsed to a centerline model of the MDA. The MDA was combined with the
STS/AM- truss model to yield the modal coupling partition.
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1.2.2.4 GSM Structure - An Apollo GSM model was used throughout
the analysis phase and remained significantly unchanged until after the
test (see Figures 1.8, 1.11 and l.lla). Due to dynamic test correlation
studies the GSM stiffness was modified by increasing the torsional stiff-
ness between the Command Module (CM) and Service Module (SM) by a factor
of 3.19.

1.2.3 Apollo Telescope Mount Assembly - The ATM evolved from a simple
assembly to be deployed from a SM service bay, to the most complex struc-
tural component of the Skylab program. (See Figures 1.8, 1.12, 1.12a, b,
c, d, e, f and g)

1.2.3.1 ATM Solar Array System - Several models of the ATM-SAS had
been developed during the AAP program. These had been modeled, tested and
revised. Therefore, the array system was completed prior to the Skylab
designation. Changes made to this structural assembly dealt with revising
mass properties and incorporating, in the pretest and final models, accurate
definition of backup structure flexibilities.

1.2.3.2 ATM Rack, Spar Canister and Gimbal Ring Assembly Structure -
Thi's system created the most concern and revision of any of the major
structural assemblies of the orbital assembly. These concerns were due
to:

a. inadequacy of original lock system for the Spar Canister, re-
quiring an additional lock assembly, launch lock, that did not
totally eliminate interface responses;

b. error in mass modeling with the failure to consider total effects
of the ATM wire bundles which did not reflect actual CG offset
problems;

c. redesign of the EVA removable rack launch strut;

d. numerous problems associated with ATM forced response test and
effects of Spar modeling.

This structural system was the most complex of the structural systems
and, therefore, was modeled in detail initially. The initial model was
represented by 484 grid points using finite beam and shell elements. A
flow chart for developing the ATM rack, as shown in Figure 1.12b is repre-
sented in Figure 1.12c. The ATM gimbal system was modeled as a substruc-
ture then coupled to the rack model (Figure 1.12d). The Spar/Canister was
assumed to be a rigid subcomponent.

The model was not significantly changed during the pretest period.
The final model resulted in a revised interpretation of the roller-spring
stiffness data. Of principal concern during the analysis, was the non-
linearities of the roller-spring rates that affected the controls response.
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Figure 1.11 Axially Docked CSM
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The roller-spring rates were updated by assembly bench tests to obtain
deflection-load curves which were linearized (see Figure 1.12e). The
radial stiffness of the two type B ATM rack roller-springs were changed
from 113 Ib/in to 37500 Ib/in. Thus, all four (type A and B) of the
rack roller-springs, which connected the rack to the GRA had radial
stiffness of 37500 Ib/in. This was the only change to the basic rack /
stiffness data. The Spar/Canister was considered flexible instead of
rigid and was modeled as depicted in Figure 1.12f.

1.2.3.3 DA Structure - At the Skylab configuration designation,
only one substructure was left for major design. This was the ATM
Deployment Assembly (DA). Modeling problems existed in the definition
of first primary bending frequency, attach point designation, and load
path definition. Due in part to the major configuration change, removal
of LEM docking, three radial MDA docking ports, and conversion to the
dry workshop concepts, requirements were established for immediate as-
sessment of control and load impacts due to the DA. This precipitated
numerous orbital cluster vibration analyses using varying models of the
DA. However, since we have previously defined three modeling phases
for Skylab, we will not discuss the "L-Beam" and other preliminary DA
models.

The initial model assumed structural members to be thin walled
aluminum tubes and was a truss-beam stiffness model (see Figure 1.12g).
The model was revised by the dynamic test correlation results. This was
accomplished by scaling down the stiffness matrix by a factor of 0.6.
Actually, as a result of the dynamic test, remodeling should have been
performed primarily at the interface connection points. However, de-
tailed models were not available from the prime contractor so the scaling
was applied to the entire DA. Later, in comparison of flight results,
this correction had to be revised and stands as the only significant
modeling error made in the Skylab Orbital Dynamic Analyses.

1.3 Conclusions

Initially, model changes were brought about by the solidification
of the Skylab design. Beam models were replaced by more accurate finite
element representations of the substructures. Locations and size of
instrumentation packages were decided upon, thereby requiring more de-
tailed descriptions of the modal mass distributions.

Further model changes were required to obtain finer descriptions
of areas of interest, such as the ATM and OWS Solar Arrays. This in-
creased the number of degrees of freedom in critical areas requiring
reduction in the number of DOF in other substructures in order to stay
within computer size limitations. Modal coupling and modal selection
techniques were developed (see Methodology section, 2.1) to help solve
this problem. The GVS brought to the surface model inadequacies. Model
correlation techniques determined that CSM torsional springs and DA



1-23

53
Q)
>^
O

r-H
a
(U
a

.H

01
VJ
3
M

•H



1-24
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Figure 1.12a APOLLO Telescope Mount
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stiffness scaling factors had to be added to the models. Finally, the
requirement of tolerance studies of the structure, generated additional
modeling in the form of perturbed stiffness and mass matrices. At the
time, this required reruns of the modal coupling and new solutions of
the eigenproblems. Figure 1.13 provides a graphic summary of the model
evolution presented here.

1.3.1 Recommendations -

a. Early definition of a final configuration can eliminate "costly
remodeling.

b. Prior to final configuration definition, inexpensive beam and
stick models, with small numbers of DOF's, should be used
wherever possible.

c. The final configuration model interface areas should be modeled
as fine as possible. Modal coupling and modal selection tech-
niques should then be used to reduce the number of DOF's to
within the computer size limitations. This would have eliminated
the model discrepancies discovered during flight.

d. After the design configuration is finalized, model perturbations
can be handled using an eigensolution .sensitivity approach (see
Methodology Section, 2.3). This technique provides an economi-
cal eigensolution for a perturbed model by circumventing the
necessity for regeneration of the complete model. Major design
changes, mass redistributions, test derived scaling factors and
tolerance studies can be handled effectively by this technique.

e. If a GVS is to be performed on a test article, the GVS should
be performed as early as possible to permit a thorough model
evaluation.
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2.0 SKYLAB ANALYTICAL METHODOLOGIES

The Apollo Applications Program (AAP) which evolved into the Skylab
program presented numerous dynamic problems which required significant
analytical developments to cope with the complexity and sophistication
of a manned orbital laboratory. Principal concern in the structural
dynamic areas were 1) a large flexible structural system requiring detailed
modeling to define accurately modal characteristics for load and control
studies, 2) subsequent refinement in modal coupling and mode selection
programs, 3) requirement for a sophisticated docking impact analysis due
to structural load modal sensitivity, 4) control impulse definition, com-
plicated with the interaction of control sensors at various locations of
the orbital structural to natural model characteristics and a requirement
for accurate definition of propellant and.impulse requirements, and 5)
structural model correlation and revision due to differences in analyti-
cal and dynamic test results.

Technical requirements and resulting analytical methodologies were
originated early in the program and expanded throughout the Skylab pro-
gram. During the program and in the years hence, these analytical tools
have been refined and expanded into other areas/projects of application. -
Figures'2.1 through 2.3 define the chronological development of the
principal Skylab structural dynamic methodologies. Principal metho-
dologies developed under the Skylab program were:

a. Skylab modal characteristics,
b. docking response of flexible bodies,
c. structural model correlation with dynamic test..

2.1 Skylab Modal Characteristics

Skylab represented the most complex structural assembly that had
been considered to date by any scientific organization and as such pre-
sented distinct analytical problems to the analysts. Actually, the growth
of modal characteristics began under the original AAP studies and their
concepts will be included.

2.1.1 Early Assessment - Initial problems facing the analyst on the ,
AAP and subsequently the Skylab programs were size problems associated with
existing or revised computer programs. These problems included:

a. MDA finite element models required to find a model to define
six degree of freedom response at skin stations;

b. incapability of structural models from associate contractors
to define structural response adequately;
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c. models too course to effectively answer control system design
requirements;

d. difficulty in determining modal tolerances on a totally three
dimensional structural system; (

In an attempt to retain sufficient accuracy of models and at the
same time a rational approach to structural model size limitations, a
"beamology" approach to mathematical modeling evolved. Primary con-
sideration was given to detailed modeling of the interfaces and either
direct mass point centerline models or detailed structural model of
systems which were later collapsed/reduced to centerline point models
for a compatible mass matrix on these centerline models were determined.

Even with these considerations, the size and complexity of the
structural elements which comprised the Skylab configuration did not
lend themselves to efficient "direct" vibration analyses. This was
primarily due to computer size limitations associated with long com-
puter run times. Some program run times were beyond the mean time to
failure of the individual computer systems. This problem was partially
resolved by applying a component mode substitution method (modal coupling).
This method considers the structural system to be an assemblage of sub-
system components. The vibration modes for each component are determined
separately then a reduced or truncated set of these modes are used to
synthesis the total system.

The next section describes the chronology associated with the devel-
opment of this technique with parallel methodology development.

2.1.2 Methodology Development - Of most concern in the early devel-
opment of system modal characteristics was the requirement to obtain some
modal - fidelity limits on the model. The Skylab was such a complex model
that many modes were present that had to be accurately defined to complete
design study requirements. Initially, this was resolved by assuming iso-
lated structural-systems, i.e., due to structural damping major systems
did not significantly couple, therefore, these complex systems could be
analyzed as "uncoupled systems". Such systems were assumed to be ATM
docking ports, and OWS Solar Array System. As these assumptions were not
valid, the development of adequate methodologies followed.

It is not the intent of this report to republish all previously
developed and published methodology. However, to assure the completeness
of the report, Figure 2.1 illustrates the Skylab modal characteristic
methodology development.

2.2 Skylab Docking Response

The docking problems of spacecraft, in the past years, has been
focused on the docking requirements of the Apollo and Skylab missions.
However, missions of the future, in particular Space Shuttle, will require
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Vibration Report for
AAP^Beamology^Model ,._--„
ED-2002-414
1 April 1968

A description of .-inertia 1 coupling of a system of finite element and
beam or truss models.

Vibration Modal Analysis
Report - ED-2002-790-2
24 July 1970

Vibration Analysis of
Structures by Component
Mode Substitution
AIAA Journal, Vol. 9, No.
July 1971

Modal Coupling Program and Report
ED-2002-1256
10 February 1971

A Linear Strain
Tetrahedron Element With
Boundary Compatibility for
Fluids and Solids
D.M. 170, December 1973

Derivation of a loads modal selection technique to assure model fidelity
and subsequent accuracy of derived modes.

The structural system is considered to be an assemblage of subsystems or .components. The
vibration modes for each component are determined separately and then used to synthesize
the system modes. The number of component modes used may be truncated to reduce the number
of generalized coordinates required for a vibration analysis. Only component vibration
modes are retained as generalized coordinates when the system modes are obtained; hence,
the method is particularly suitable for structures with a large number of component inter-
face coordinates, such as finite-element shell models. The boundary conditions used for
determining component vibration modes can be either free-free or constrained.

Complex structures that comprise the Skylab cluster configurations do not lend themselves
to efficient direct vibration analysis/eigenvector programs. This is primarily due to
computer size limitations and long run time necessary to invert large size matrices.
This document defines in detail a computer program which utilizes a modal coupling tech-
nique. MODL3 is a program which is meant to perform modal inertial and/or modal stiffness
coupling of structural components in order to determine the vibration modes of a complex
structural system. It also produces inertial loads transformations for the coupled system.

Later Derived Methodology (Post Skylab)

Evaluation of Modal
Analysis Techniques
MCR-73-310
1973

Hydroelastic Mathematical
Model of Space Shuttle
Liquid Propellant Tanks
MCR-75-178, June 1975

FIGURE 2.1 - CHRONOLOGY OF MODAL ANALYSIS METHODOLOGY
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docking of space vehicles with space station satellites and necessitate
extensive docking analyses. The docking maneuver and its associated
responses will affect the design of these large, flexible structures.
Additionally,.definition of successful capture boundaries, spacecraft
attitude control requirements, propellant utilization studies, and man/
machine interaction or the degree of automation are required.

One of the first studies dealing with docking dynamics presented a
generic analysis of rigid body docking dynamics from initial physical
contact of two spacecraft to final latching. The docking interval was
specified in three phases - initial contact, continuous maneuver and
latching - and assumed that the first and third phases occurred over
a finite time interval. The study presented an analysis that revealed
gross effects of significant docking parameters, including attitude
misalignment, initial relative vehicle rates and docking rate.

A two-dimensional analysis of the dynamics of the probe and drogue
docking concept was presented (Reference 2) in 1966. The mathematical
simulation of the docking maneuver assumed the docking vehicles were
rigid bodies, but included a provision whereby the probe vehicle might
be modeled as a rigid structure with spring and dashpot attached masses.
Probe rotation was constrained by a resisting moment, and probe axial
deformation was assumed to act in accordance with a prescribed energy,
absorber. The restriction that the probe-tip must remain in contact
with the drogue surface was not introduced, and it was assumed that,
when the probe was not in contact, it returned to its equilibrium posi-
tion in a prescribed manner. This assumption precluded the necessity
for an iterative solution if nonlinear shock attenuators were included.
Latching was assumed to have occurred when (and if) the probe tip reached
a designated position in the drogue socket. All postlatch analyses were
conducted with the probe tip assumed pinned in the socket.

In 1967, analyses were completed of the docking maneuver that con-
sidered an Apollo docking mechanism (Reference 3). The primary goal of
this analysis was to determine the nature of the loading on the two
docking vehicles caused by the docking mechanism and to evaluate the
internal elastic loads induced in the vehicle. The general approach to
the development of the analytical method was to solve the two-body dyna-
mics problem in which rigid bodies are subjected to loading from a model
of the docking mechanism. These load histories were then used in a
generalized modal response analysis to determine the resulting elastic
response of the docking vehicles.

Additional studies were completed (Reference 4) based on impulse-
momentum relationships and considered friction between probe and drogue,
energy losses due to permanent deformation, attitude control of the
chase vehicle, and thrusting of the chase vehicle following initial
contact. All motion was considered, to take place in a plane, and the
.probe tip was constrained to lie on or within the drogue cone walls. '•
Given the spacecraft mass properties and a set of initial conditions,
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the simulation was able to predict whether a docking maneuver would be
successful (capture) or fail (miss) . The simulation also provided an
estimate of the contact loads that would occur during the attempt. This
simulation was used to obtain results for docking maneuvers of the Skylab
spacecraft.

Skylab analysts completed an analytical study of the docking dynamics
of two space vehicles that were more general than the efforts of previous
investigators. The equations of motion, coupled with pertinent constraint
equations and equations of momentum-impulse, were developed without regard
to any particular docking mechanism concept. Their equations resulted
from applying Hamilton's principle of least action (Reference 5) as if
the system under analysis were a conservative system subjected to auxili-
ary, holonomic constraint conditions. They modified the resulting equa-
tions to account for the possibility of unconservative forces and non-
holonomic constraint conditions through application of the principle of
virtual work. They showed that if the mass properties (inertial forces)
of the docking mechanism were negligible, the requirement for momentum-
impulse equations disappeared.

The Skylab docking event assumed the role as the most significant
orbital dynamic load problem. As such, it precipitated a direct physical
mating, docking response, test computer hybrid study at NASA JSC which
established initial boundaries, rates and latch forces. In excess of
6000 physical dockings were simulated and basic formulation of the dock-
ing problem was accomplished.

The modeling of the drogue/probe assembly (see Figure l.lla) and
resulting sliding motion coupled with control sensitivities, were, initially
considered as the most significant problem area. Therefore, docking
problems were considered in two ways, one the changing of modal properties
of the system during the docking event due to engagement, and two, being
large nonlinearities being excited,eg.9propellant slosh. The .complexity
of the docking problem was felt to be predominantly in the description of
the probe neck as it contacted the drogue. It is interesting to note that
at this time capture was not considered the significant event and, there-
fore, overall cluster response due to docking was considered small duetto
structural damping.

The initial loads methodology for the docking event considered gen-
eral step and ramp buildup forces and utilized a modal acceleration method
for resolving the transient responses.

As a result of the hybrid computer test results and films of orbital
mating, of the CSM/LEM, more detailed studies were initiated to resolve
impact of latch forces to Skylab design.

The results of a study of the response of flexible space vehicles
to docking impact have been detailed in Reference 6. This study resulted
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in a comprehensive analytical development and digital computer program
to investigate the docking dynamic characteristics of elastic space
vehicles. The analysis considered influence of one or more attitude
control systems acting during the maneuver. The resulting mathematical
modej. was programmed for numerical evaluation; primary program output
Consisted of time history plots of significant program variables, in-
cluding vehicle velocities, probe deformation characteristics, probe/
drogue interface forces and moments, and control system parameters.

Note that this analysis and that of Reference 6 were the first in
which the elastic properties of the two docking vehicles were considered.
The analysis also considered the effects of sliding friction between
probe and drogue, internal binding friction caused by probe deformation,
and the possibility of nonlinear stiffness and damping characteristics.

The development of a complete Skylab dynamic docking maneuver
analysis program, from impact through the latching sequence was a sig-
nificant state of the art development.

Recent studies utilizing those derived programs include general
docking methods, propellant responses, spinning body dynamics and re-
sponse of flexible, rotating components.

Figure 2.2 schematically depicts the docking study evolution.

2.3 Model Correlation to Vibration Testing

Analytical modeling of complex test articles seldom agree with
dynamic test results. Design changes, data tolerance effects, mathe-
matical techniques and engineering judgement impose uncertain constraints
on the analytical model.

This section describes a rational methodology to correct the model
discrepancies discovered by dynamic tests which was developed on the
Skylab program. The problem is approached by formulating the eigenproblem
in terms of perturbed nominal model finite element data and nominal modal
coordinates. The extent of coupling produced by elemental stiffness and/or
mass matrices between the nominal modes determines the respective distri-
butions of modal strain energy and modal kinetic energy among the model
elements. The extent of this coupling is limited by orthogonality of
the nominal model eigenvectors with respect to the unperturbed finite
element data. This property is utilized to decrease the size of the
eigenproblem required to calculate modal perturbations produced by a
given element perturbation. Thus, the sensitivity of a particular mode
to perturbation of a specific model elements can be determined economi-
cally. The model sensitivity information is used to define a set of
test data that is' most applicable for adjusting the analytical model
to correlate with dynamic test results.

The chronology of the development of this technique is depicted in
Figure 2.3. It should be noted that at the time of this report, addi-
tional development is proceeding in this area.
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Docking Dynamics for Rigid Body
Spacecraft - AIAA Journal,

Vol. 2, No. 1, January 1964

Dynamic Analyses of the Probe
and Drogue Docking Mechanism

Journal of Spacecraft and Rockets
May 1966

Program to Derive Analytical
Model Representations of the

Apollo Spacecraft and its Launch
Vehicles, Docking Analysis Final Report

D2-84124-3, May 1967

A Method for Digital Computation of
Spacecraft Response in the Docking Maneuver
Proceedings, ASME/AIAA 10th Structures,

Structural Dynamics and Materials Conference
April 1969

Methodology Report for Docking Loads
ED-2002-595, August 1969

Response of Flexible Space Vehicles
to Docking Impact

MCR-70-2, March 1970.

Docking Probe Analytical Model
ED-2002-770, August 1971

NASA JSC Physical Mating Test of
Apollo Docking Hardware

1969-1971

Orbital Docking Dynamics
MCR-74-23, April 1974

FIGURE 2.2 - CHRONOLOGY OF DOCKING RESPONSE METHODOLOGY
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Dynamic Model Verification
Report (Orbital Configuration)
ED-2002-1551, October 1972

Dynamic Test Reflected
Structural Model Methodology
ED-2002-1577, December 1972

Later derived methodology (Post Skylab)

Eigensolution Sensitivity to
Parametric Model Perturbations
April 1975, R-75-48628-001

Eigensolution Sensitivity to
Parametric Model Perturbations
46th Shock and Vibration Bulletin

(to.be published in 1976)

Dynamics Analysis Methods
for Load Sensitivity

(Presently be developed)

FIGURE 2.3 - CHRONOLOGY OF EIGENSOLUTION SENSITIVITY
> .- TO PARAMETRIC MODEL PERTURBATIONS
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3.0 ORBITAL CLUSTER INTERIOR ACOUSTICS

The purpose of the Skylab Interior Acoustics contract was to coor-
dinate with the National Aeronautics and Space Administration/Marshall
Space Flight Center (NASA/MSFC) and equipment contractors to assure com-
pliance with the acoustic requirements established by the Medical Research
and Operations Directorate. The following are examples of tasks which
were performed and are summarized in this section.

a. .Identify and locate noise sources in the Skylab. Determine the
frequency of use and duration of operation of noise sources as
a function of mission profile time.

b. Update analyses as required to evaluate the effects of additive
noise sources at crew work stations and rest stations. These
analyses shall reflect nominal continuous levels and maximum
levels resulting from equipment/experiment operation during the
mission profile.

c. Coordinate with MSFC and MSC to establish measurement require-
ments, locations and time/line schedule for obtaining noise
level measurements during the Skylab mission.

d. Analyze interior noise level measurements obtained during the
missions and correlate results with predicted levels.

Prior to a presentation of the acoustic data measured during' the
SL-2, 3 and 4 missions, a discussion and description of the Skylab noise
sources, the Skylab compartment characteristics and the acoustic metho-
dology utilized, are presented.

3.1 Acoustic Acceptance Criteria -

3.1.1 Skylab Internal Noise Levels - The Medical Research and
Operations Directorate at JSC, recognizing that the acoustic environ-
ment could influence the astronaut's performance and ability to commun-
icate, published a criteria for the Skylab internal noise levels as
shown in Figure 3.1.The criteria was applicable to any noise source or
combinations of noise sources operating continuously in the Skylab in-
terior. Of particular concern was the desire to insure adequate, unin-
terrupted sleep periods for the astronauts.

The development of the criteria was based, in part, on experience
gained during the Apollo program, where crew members had objected to
the noise output of the post-landing-ventilation (PLV) fans. These
fans were planned for extensive application throughout the Skylab ven-
tilation control system. Consequently, MSFC conducted an extensive
development program to provide mufflers for these fans to reduce noise
levels to acceptable limits.
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3.1.2 Speech Interference Levels - The preferred frequency speech
interference level (PSIL) was selected to assess the speech-interfering
aspects of the Skylab interior noise sources. The P&LL is defined as the
arithmetic average of the sound pressure levels in each of the three oc-
tave sound bands with center frequencies of 500, 1000 and 2000 Hz.

The PSIL associated with the Skylab interior noise criteria in Figure
3.1 was 56.7 dB. For this PSIL value, face to face communications at 14.7
psia ambient,pressure are possible using "a normal noise" when a speaker
and listener are less than five feet from each other (see Reference 7).

Another rating system, the modified speech interference level (MSIL),
includes the higher frequency noise. MSIL is defined as the arithmetic
average of the sound pressure levels in each of the four.octave bands with
center frequencies of 500, 1000, 2000 and 4000 Hz. The MSIL associated
with the Skylab interior noise criteria is 56.25 dB. PSIL and MSIL values
in each Skylab section due to operation of the individual noise sources at
,5.0 psia ambient pressure are presented in Table 3.1.

3.2 Definition of Environment

3.2.1 Noise Sources and Locations - Skylab equipment and experiments
were reviewed to determine noise sources. Tables 3.2 and 3.3 present a
listing of the Skylab equipment^and experiments; noise sources are indi-
cated with an- arrow or asterisk in these two tables. Originally, the
noise sources were grouped according to the contractor subdivisions. It
was determined that grouping the noise sources according to acoustic space
would provide more meaningful results. The three acoustic spaces chosen
were ,the MDA, AM/STS and OWS. The noise source, number, location, fre-
quency of operation and table number for its sound power level are pre-
sented for each compartment in tables 3.4, 3.5 and 3.6. Figures 3.2
through 3.10 indicate the locations of each of these noise sources. The
sound power levels for each compartment are delineated in Tables 3.7
through 3.13.

A-weighted sound levels (dBA) were calculated for the noise sources
at an atmospheric pressure of 5.0 psia. Octave band sound pressure
levels were converted to the equivalent A-weighted sound level by ap-
plying the relative response for the A-weighted network to the estimated
octave band levels and obtaining the overall level from the resulting
octave band levels.. These equivalent A-weighted sound levels are pre-
sented in Table 3.14.

3.2.2 Compartment Characteristics - The volumes and surface areas
of the MDA, STS, AM and OWS were calculated. In addition to these,
equipment volumes, surface areas and common wall areas between each
compartment were calculated. The results of these calculations are
presented in Table 3,15, Skylab Acoustical Compartment Characteristics.

Reverberation times for the flight configuration were estimated
from the Skylab mockup. Figures 3.11 through 3.13 present the rever-
beration times for the MDA/STS, AM and OWS at pressures of 5.0 psia
and 14.7 psia.
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3.2.3 Acoustic Methodology - Sound pressure level estimates for
each 'compartment', due to noi"se"sources in the same compartment, were—
calculated using the following equation for a reverberant sound field:

SPL = PWL - 10 Log1()V + 10 Log1Q ( P/PReF) +

10 Log . T60 + 19.6 dB (1)

where

3
V\ = volume of section containing noise source ft ,

P = ambient pressure in the enclosure, psia,

P = reference ambient pressure = 14.7 psia,

T60 = reverberation time of enclosure, sec

To obtain estimates of the sound pressure levels in the compartment due
to noise sources in other compartments, the following expression was
used from Reference 7:

PWL2 = PWLL + 10 Log1Q (SW/R̂  - TL (2)

where

PWL1 = noise source PWL located in Room 1,

PWL = PWL of noise source applicable to Room 2,

SW = area of common wall between Rooms 1 and 2,

R = room constant of Room 1= S t T / (!-«)= .049V2/T60

TL = transmission loss of common wall = 0 for an open passage

Combining equations (1) and (2) yields the PWL of the noise source
applicable to Room 2 in terms of the SPL in Room 1.

PWL2 = SPLL •+ 10 Log1() (SW/4) - 10 Log1Q (P/PRef) - TL (3)

From equation (2), the following definition of T60 is applicable.

T60 = .049V/S« . (4)
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where

^ = average absorption coefficient.
»»

Now, a = t.",/ fo. "**• (Reference 7 )
£<> Si

where

S. = surface area of the 1th wall

o( . = absorption coefficient of the ith wall

3.3 Flight Measurement Results

3.3.1 Noise Measurements During Skylab Mission (Experiment M487) -
The objectives of experiment M487 were to measure, evaluate and report
the habitability features of the crew quarters and working areas of the
crews in engineering terms useful to the design of future manned space-
craft. A portion of this experiment included the measurement of sound
pressure levels on Skylab using a portable sound level meter (Bruel +
Kjaen, type 2203) and octave filter se.t (Bruel + Kjaen, type 1613).
Eight measurement locations were selected and are shown in Figures 3.14
through 3.17. These are the aft OWS area (4 locations), the forward OWS
area (1 location), the STS/AM area (2 locations) and the MDA area (1
location). The sound level meter, used to obtain these data, was ori-
ented as follows:

a. OWS Wardroom - parallel to CDR food tray, microphone pointed
towards OWS (location #1);

• b. OWS Experiment Compartment - parallel to floor at LBNP, micro-
phone pointed towards sleep station (location #2); -

c. OWS Waste Management Compartment (WMC) - on floor,, microphone
pointed towards +X (location #3);

d. OWS Sleep Compartment - in PLT compartment, on floor, micro-
phone pointed towards +X (location #4);

e. OWS Forward Compartment - parallel to floor located at locker
ring area, microphone pointed towards +Y (location #5);

f. AM - parallel, with microphone pointed towards +X in middle
of compartment (location #6);

g. MDA - at Experiment M512 station, microphone pointed towards
-X (location #7);

h. STS - microphone pointed at Mole Sieve A (location #8).
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3.3.2 Flight Environmental Conditions for SL-2, SL-3 and SL-4 —
The ~following~ventilation system fan operational mode existed during the
period the acoustic data were obtained on the SL-2 mission:

a. GSM portable fan in MDA was off;
b. cabin fans 1 and 2 in MDA were on low;
c. OWS interconnect fan (STS duct fan) on hi;
d. cabin heat exchange module (STS heat exchange fans (3)) on hi;
e. OWS heat exchanger fans (4) in MDA were on hi;
f. OWS duct fans (8) in OWS were,on hi.

For the SL-3 and SL-4 missions the following operation mode existed:

a.r GSM portable fan in MDA on hi;
b. cabin fans 1 and 2 in MDA were on hi;
c. STS duct fan on hi;
d. STS heat exchanger fans (3) on hi;
e. OWS heat exchanger fans (4) in MDA were on hi;
f. OWS duct fans (12) in OWS were on hi.

In addition to the M487 acoustic measurements obtained during the
SL-3 mission, acoustic noise source measurements were also obtained.
These measurements were made in the immediate vicinity of eleven noise
sources in the Skylab interior. Specific information applicable to
sound level meter (SLM) distance and orientation to each noise source
was not received so a distance of 3 feet was assumed. The results of
these measurements are presented in Table 3.16.

3.3.3 Comparisons of Predicted and Measured Skylab SPL's - A com-
parison of the Skylab measured SPL data from the SL-2, SL-3 and SL-4
missions with previously predicted SPL's is indicated in Figures 3.18
through 3.20.

Figure 3.18 compares the MDA/STS SPL's and indicate the MAX/MIN
envelope of the Skylab flight data and the composite of predicted con-
tinuous noise source in the MDA/STS. A comparison of the data indicates
the predicted SPL's begin to exceed the measured data by 3 to 6 dB, from
1000 to 4000 Hz. Below 1000 Hz, the data compare favorably.

A comparison of acoustic data applicable to the Airlock module is
indicated in Figure 3.19. The predicted data fall within the measured
SPL envelope at the lower frequencies and begin to exceed the envelope
above 1000 Hz.

A comparison of acoustic data applicable to the OWS is indicated in
Figure 3.20. The predicted data fall within the measured SPL envelope,
especially in the mid-frequency range.

3.4 Acoustical Environment Mapping

A comparison of the Max/Min M487 SPL data obtained during the SL-2,
SL-3 and SL-4 missions is indicated in Figure 3.21. The highest acoustic
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levels were measured in the SIS, influencing the MDA and AM SPL's to
some extent. In general, the only areas to exceed the acoustic cri-
teria by 2 to 3 dB were the STS, AM and OWS waste management compart-
ment.

Preferred speech interference levels (PSIL's) and modified speech
interference levels (MSIL's) were calculated based on the M487 SPL
data. These PSIL and MSIL values are indicated in Tables 3.17 and
3.18, for eight locations in Skylab. These values do not exceed the
acoustic criteria PSIL's and MSIL's in any area.

3.5 _Skylab Crew Mission Acoustic Evaluation

A review of the Skylab crew comments applicable to the acoustic
environments they were exposed to during the SL-2, SL-3 and SL-4 mis-
sions is discussed in the following paragraphs, and is based on data
contained in Reference 8.

3.5.1 SL-2 Mission Acoustic Evaluation - Crew Acoustic evaluations
are described as follows:

a. verbal communications - "within the MDA you could holler at
someone in the workshop, however, could not holler from work-
shop to MDA";

b. SIA communications - "terrible for ground communications; have
to keep certain SIA1s turned down";

c. experiment M-509 - "when 509 thrusters fire,' it is quite
loud in OWS;. I recommend everybody in OWS to wear ear pro-
tection (PLT)";

d. pre-sleep - "very quiet in sleep area; noisiest seems to
be MDA/STS; can hardly hear fans running in OWS, but can
hear refrigeration pumps, (CDR)";
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e. post-sleep - "reported that both mouth sounds and
snoring are as loud in zero G as they are at 1 G;

f. Crew Subjective Evaluation of Compartments:

Location

OWS Wardroom

OWS WMC

OWS Sleep Area

OWS Exp. Compt.

OWS Fwd Dome

Airlock

MDA/STS

CDR

excellent, ex-
tremely low

excellent

low except for
noise from WMC
blower

low

excellent

low

fine

SPT

excellent

adequate

too high when
others are mov-
ing about,
needs sound
proofing

ok

ok

N/A

ok

PLT

very good

very good

very good

very good

very good

all right

satisfactory;
gets high during
EREP runs

3.5.2 SL-3 Mission Acoustic Evaluation - Crew acoustic evaluat-
ions are described as follows:

\
a. CDR - "can have duct fan heat exchangers turned off

and can't tell any difference in noise level, they are
so quiet";

b. PLT - "have to holler pretty loud to be heard from crew
quarters up into the dome. Voices do not transmit up
through the airlock at all. Have to use intercom to
talk to anyone in MDA/STS. SIA's keep squealing all
the time. Noise is definitely satisfactory";

c. CDR - "noise, very nice, very good";

d. Environmental Noise Factors Causing Interference: PLT -
"just SIA's; OWS is comparatively quiet. No interference
with ability to sleep". SPT - "never, no interference with
sleep". CDR - "sometimes noises worry you, but after 3 or
4 days you get used to them".
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Habitability Improvements:

PLT - "keep noise makers away from the sleep area, in the
future. Portable fans run quiet, don't make any noise."

Subjective Evaluation of Compartments:

Location

OWS Wardroom

OWS WMC

OWS Sleep Area

OWS Expt. Compt.

OWS Fwd Dome

Airlock

MDA/STS

CDR

«

adequate noise
level is ok,
communications
is good in
here

ok

need to be
able to de-
crease noise
level from rest
of vehicle as
it is hard to
sleep when
somebody else
isn't asleep

ok (adequate)

ok (adequate)

ok (adequate)

ok (adequate)

SPT

very good,
noise levels
are satis-
factory every-

very' good

looks reasona-
bly good

N

very good ,
satisfactory
everywhere

very good

very good

very good

PLT

very good, noise
level is quite
low, no objec- -
tionable noise

very good

very good

'

very good, no
objectionable
noise

very good

very good

very good, higher
in STS with fans on
but its a very
comfortable noise
level
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3.5.3 SL-4 Mission Acoustic Evaluation - Crew acoustic evaluations
are described as follows: — » . ,__...„..

a. Communications - CDR: "Squeal; verbal communications
is possible in workshop area between compartments ex-
cept WMC when door is closed and fan is on". SPT:
"Squeal is ok if you are in same compartment, for ver-
bal communications. If you try to go from' one to
another compartment, it is awful.hard. There's too
much noise or absorption of sound. If you are in
experiment compartment, then you can call up to some-
one above you but it takes a fair amount of volume."
PLT: "When on the same level (Z plane), there is no
difficulty with verbal communications. Noise level
increases as you go up and "down (X axis). When
separated by 10 to 15 feet along the X axis, it is
extremely difficult to communicate by shouting."

b. Environment - CDR: "Surprised at how little noise
there is in spacecraft. MDA/STS is only place there's
quite a bit of noise in. In OWS, it is extremely
quiet. All the different pumps and everything in MDA
make all the noise. It's about the same or possibly high-
er (slightly) then noise level in the command module."
SPT: "There's just a little too much noise to get sound
sleep, more than I'd like to have." PLT: "It's good to
have a little noise."

c. Environmental changes - CDR: "No change from noise
pattern mentioned earlier. Surprisingly quieter than
I expected. Noise in MDA/STS/AM is at a high level
and it has affected our recordings. ATM .C&D pumps are
quite noisy and noise as it comes down through airlock
is amplified by the dome for megaphone effects. Gets
fairly noisy by the time it gets down to experiment
compartment. Can turn pumps off at night so it won't
interfere with sleep." SPT: "Noise is high in MDA
and at ATM console. Find it gets to me when I am
trying to concentrate or trying to use the speaker.
Noise of pump in airlock used to get to me when work-
ing in MDA." PLT: "Can hear ergometer right now
quite well and ATM pumps are quite loud. All the
pumps are loud. Rate gyros are loud."

d. Subjective Evaluation of Compartments:
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Location

OWS Wardroom

OWS WMC

OWS Sleep Area

OWS Expt. Compt.

OWS Fwd Dome

Airlock

CDR

Very low in wardroom as
it is in entire OWS un-
less you've got the EREP/
ATM cooling loop running;
then the dome takes the
noise as it comes down
the airlock and serves
as a great big megaphone
and sends it down slight-
ly amplified.

OK, but a little noisy
with separators going.
Not uncomfortable at
all.

Excellent, very quiet.
Walls and doors pretty
well damp out noise
as well as light attenua-
tors.

Fine

Adequate. Just a little
bit noisier than exp.
compt. because closer
to MDA/STS

No rating given. Ex-
tremely noisy. Cool-
ant pumps are noisy.

SPT

Great, no problem

Great

Fine

No comments

No comments

ATM/EREP coolant
pump noise prob-
lem is way too
high. Should
locate potential
noise sources
away from metal
walls that can
act like an
acoustical can.

PLT

Really not that
bad

Ok

Noise propagates
into sleep com-
partment when any-
one else is doing
something. Can't
rest. There is
no noise control
in vehicle.

Very good

Adequate. Ok, ex- .
cept it is reasonably
high. There is
sound focusing
up in dome area
because of spherical
nature.

Fairly high
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d. Subjective Evaluation of Compartments (Continued):

Location CDR SPT PLT

Unacceptable. Highly
unacceptable, biggest
offender is rate gyro

MDA/STS Unacceptable. Highly Way too high. Both Fairly high
pump and rate gyros
make a racket. Af-
ter a while, you can
tune out the noise
but can't think as
clearly in there.

3.6 Articulation Index (AI) Analyses - The articulation
index (A.I.) is a general criterion applicable for judging the
effects of noise on communication. The AI predicts the intel-
ligibility of speech (i.e., the percentage of words or sentences
which are correctly understood) for a specified noise environment
One method available to determine the AI, and utilized'herein,
is the weighted-octave-band (WOB) method, as described in Ref-
erence 9. The intelligibility criteria applicable to the
AI is described as follows:

An A.I. of ....

0.7 to 1.0

0.3 to 0.7 '

0.0 to 0.3

Provides communications

Satisfactory to excellent

Slightly difficult to satisfactory;
up to 987o of sentences are heard
correctly.

Impossible to difficult; special
vocabularies and radio-telephone
voice procedures are required.

Articulation indices have been calculated for the SIA/ATM
data (SL-4 mission), the MDA M-487 data (SL-3 mission), and the
OWS Experiment M-487 data (SL-3 mission). The AI values com-
pared the Sky lab mission data to two speech spectr'ums, one
applicable to a moderate voice and one to a raised voice. The
AI values are indicated as follows:
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Speech Reference SIA/ATM MDA OWS Exp. Area

Moderate Voice 0.048 0.054 0.550

Raised Voice 0.150 0.186 ' 0.723

These data indicate that communications in the OWS area shall be
satisfactory to excellent, while communications in the SIA/ATM and
MDA/STS areas might be quite difficult. These preliminary AI estimates
tend to support the crew comments as described in paragraph 3.5.

3.7 Flight Anomalies

On Mission Day 33, the SL-4 crew noticed a "loud whine, not quite
a squeal, but a whining noise", when they turned on the pumps. The
pilot, on Mission Day 34, performed some acoustic measurements to in-
vestigate this noise source.

A tabulation of the SPL's measured during the coolant loop noise
investigation is indicated in Table 3.19 and includes measured and cal-
culated overall SPL's in terms of dBA, calculated overall SPL's and the
measured octave band SPL's.

The AM.SPL's compare closely with each other and are a maximum of
9 dB higher than the acoustic criteria at 1000 Hz. The STS/ATM SIA
SPL's exceed the criteria at 500 Hz by 6 dB, and by 5 dB at 1000 Hz.
The MDA CSM hatch SPL's exceed the criteria by 2 dB at 1000 Hz. The
OWS experiment compartment SPL.'s are a minimum of 10 dB below the
acoustic criteria.

3.8 Conclusions

3.7.1 M-487 Flight Data - The data measured in the OWS indicated
this area to be the quietest region of the Skylab cluster. The OWS
data were 5 to 10 dB below the acoustic criteria specification, ex-
cluding the WMC area, and generally enveloped the predicted SPL's.
The STS measured data indicated this region to be the noisiest of the
Skylab cluster, which tended to support previously predicted SPL's.
The STS acoustic environment tended to influence the MDA and AM en-
vironments to a significant degree. Both STS measured and predicted
SPL's exceeded the acoustic criteria specification. The MDA measured
acoustic dataagreed closely with predicted SPL's, and did not exceed the
criteria. The only MDA noise source of a problem nature was the rate
gyros. Rate gyro acoustic data tended to exceed the MDA fan data by
5 to 10 dB. .

3.7.2 Noise Source Data - The noise source data obtained in the
OWS indicate that the refrigeration system SPL's are 5 to 10 dB higher
than the VCS fan SPL's, but do not exceed the acoustic criteria. The
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AM duct fan muffler noise source SPL's are quite highjLn_ the . loŵ frequenc'yi-
region, exceeding the criteria by as much as 11 dB at 250 Hz. The Mole
Sieve compressor noise source data are quite noisy at 500 Hz, exceeding
the criteria at 500 Hz. The MDA noise source data are dominated by the
rate gyro SPL's, which exceed the criteria by as much as 7 dB at 500 Hz.

ATM Coolant Loop acoustic data was obtained during the SL-4 mission
by the PLT crew member. Noticable increases in the SPL occurred in the
Aft Airlock and Forward Airlock locations, where increases as high as 12
dB at 1000 Hz were measured with the pumps operating.

3.9 Recommenda tions

a. The acoustic environment in Skylab was not unlike that of earth
living in that the crew was able to obtain "rest" periods from
the higher level noise in the work area (MDA/STS). Future manned
long term missions should address noise control in the early
design stages. Consideration of absorption material and more
efficient suppression of noisy equipment in confined spaces
such as the AM and MDA/STS should be incorporated into future
programs.

b. The intercom design must be improved to alleviate feedback
problems and improve communications.

. c. Sleep areas should be better isolated from the rest of the
crew quarters in terms of noise and other extraneous distur-
bances .

d. Updated acoustic criteria should be defined, similar.to that
indicated in Figure 3.1.However, these criteria should be more
detailed, and-be broken down into sleep, work, normal communi-
cations intermittent, etc., criteria. In other words, one
criteria cannot satisfactorily meet the requirements for all
conditions, especially in a long-exposure orbital application:
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. Table 3.2 Skylab Equipment and Experiment L±»t

Command & Service Module

1. SFS Engine
2. Running Light* (8 place*)
3.' Scimitar Antenna
4." Docking Light
5.- Pitch Control* Engine*.• •*:'-
6.' Crew Hatch
7. Pitch Control Engine*
8. Rendezvous Window "• ' [_'
9. EVA Hand Hold*
10. EVA Light
11.! Side Window - .
12. Roll Engine* (2 place*)
13. EPS Radiator Panel* (6 place*)
H. SM RCS Module (4 place*) .
15. ECS Radiator

B. Multiple Docking Adapter ' '

1. Docking Target
2. Experiment MS12 Facility

—•••3. ECS Duct to Port 5
4. Vacuum Vent Panel
5. Frame Electrical Umbilical
6. Spare Fan Container
7. Spare Light Container

• 8. -Film V*ult No; I ,r . - • .-
» 9. ECS Duct

10. Experiment S082A Cannlltar
11. Flight Data File
12. 'Speaker Intercom
13., ATM C&D Couole
14. Film Vault No. 4
15.: Film Vault No. 3

""*• 16. Experiment S009 Support Structure
17. DA Truii Motor (AM)

» 18. Area Fan (2 place*)
19., Film Vault No. 2
20.' DA Structure (AM)
21. COj Abiorberi and Shim* ..
22. 'Docking Port No. 3
23. Experiment SOW -
24. Experiment-S101 Reiupply
25. Experiment S101
26. Running Light (4 place*)
27. External Duct ' -
28. Vacuum Vent Connection for Experiment

M512 *;>,

Airlock Module

1. Window* (4 place*) '.t
*• 2. Molecular Sieve* (2 plecea)

3. Dl*cone.-Antenna* (2 placai)
4. Theraal Blanket
5. ,02 Tank! (6 placet)
6. Cabin Praia. Relief Valve
7. Suit Storage
8. Blo-Med Cable
9.. Sult.Stor'ege" .'. .
10. Undefined Storage Vol.
11. Camera Equip. Storage
12.' STS C&D Panel
13. 70MM Film Storage
14. Forward Airlock Hatch

»- 15. Tape Recorder
16. Spare Preeaure Control Unit
17. EVA/IVA Umbllicali
18. 'AFT Compartment Control Panel

k» 19. Heat Exchanger!
20. Light Any.
21. ,AFT Airlock Hatch
22.• Lock Compartment EVA Panel*
23. Running Light* (4 place*)
24. N2 Tank* (5 place*)
25. EVA/IVA Umbilical*
26. Oj/Nj Panel

K-27. Suit Cooling Module
28. Permanent Storage '

D. Inltrument Unit

E. Orbital Workihop

1. CHS Hitch
2. VCS Mixing Chamber & Filter
3. .VCS Duct
4. Storage Locker*
5. VCS Duct
6. Thermal Shield
7. 0, Prera. Supply Lin*

.8. Meteorold Shield
9. Water Container* (10 place*)

10. Food Storage (2 place*)
11. Storage Locker*
12. 0, PreU.Reguletor* for HjO Supply
13. Sleep Reitrainta
14. Intercom Box
15. Storage Locker* Front & B*ck
16. Sleep Re*tr«lnt
17. Sleep Restraint
18. Experiment M131 Equip. Stowage

Container
19. Storage Locker
20. Privacy Curtain

—*-21. Experiment M131 Rotating Chair
Control Coniole

22. Storage Locker
23. Drying Area
24. Traih Dlipoial Airlock
25. TV Outlet
26. Utility Outlet*

• 27. Food Heater
28. Propoaid Window
29. Intercom Box

• 30. Storage Lockiri
31. Solar Array Ally.
32. Storage'Cabinet!
33. Ion Source Shield -
34. Utility Outlet

-•»• 35. Refrlg./Freecer
36. Fire Extlngullher
37. Food. Watir Heater & Chiller Table
38. Gravity Work Bench

•*>- 39. Ergometer
40. Gal Analyter
41. Intercom Box
42. Helmet Box
43. . Experiment Support Syatem

-•••44. Lower Body Negative Preai.Device
45. OWS Control & Dlipliy Conioli
46. Intercom Box

•*•• 47. Rotating Chair
46. VCS Duet
49. Crotch Area
10. Mitiorold Shield
51. Theraal Shield
32. Running Light (4 placee)
S3. Waati Storage Tank
34. APCS Thruiteri
S3. Mateorold Shield
56. Tra*h Dlapoial Seperatlon Screen
57. APCS GN2.Sphere! (15 place!)
SB. Running Light (4 placea)
59. Solar Array Panel*
60. Acquisition Light
61. Interior Light

^v» 62. Food Storage Froater
63. Limb Motion Senior Any. Contalnar
64. Microbiological Specimen Fraecar

—>»63. Body Ma** M*a*urement Device
66. Force Meuurlng Unit

-»»67. Propoaed VCS Duct
68. Spare* Container
69. Aitro Aid* Container
70. Interior Light*
71. Scientific Airlock
72. Data Sy*t*m
73. Force Measuring Unit

-m. 74. VCS Fan Cluiter
75. Food Container
76. Intercom Box
77. Suit Container
78. Emergency Accee*
79; UV Stellar A*tronomy Container
80. N2 Tank* (3 placea)

E. Orbital Workshop (Continued)

81. Force Meaiurlng Unit
82. Interior Light§
83. Main.Accen . ._ t
84. Heat Filter Fan
85. Emergency Acceai
86. Portable Water Bottle
87. Interior Light!

—•»• 88. VCS Fan Cluiter
89. Food Container
90. Food Container
91. Coronagraph Container (Experiment

T025)
92. Scientific Airlock
93. UV X-Ray SOL-Photo (Experiment

S020)
94. Sample Array Syetern Container
95. Water Microbiological Control Equip.
96. Utility Outlet
97. . Photometer Syetem Contelner

(Experiment T027)
>^k» 98. Foot Controlled Maneuvering Unit

(Experiment T020)
-^ 99. Automatically Stabilized Maneuver-

ing Unit (Experiment M509)
100. Intercom Box
101. Food Container!
102. Restraint* Container (Experiment

MS 08)
103. Work Talk Board (Experiment MS08)
104. Tool!

Apollo Teleicope Mount

1. Command Antenna
2. Telemetry Antenna
3. ATM Solar Array Wing No. 1
4. ATM Solar Array Wing No. 2
5. ATM Solar Array Wing No. 3
6. Command Antenna
7. ATM Solar Array Wing No. 4
8. Telemetry Antenna
9. Charger Battery Regulator Module

(6 placea)
10. Control Moment Gyro (3 placea)
11. ATM Rack
12. CMC Invtitor No. 3
13. Canliter
14. ASM Aperture Door (Experiment

S054)
15. NRL-A Film Retrieval Door

(Experiment S082A)
16. Ha.-2 Apertura Doer
17. KRL-B Apertura Door (Experiment

S082B)
18. NRL-B Aperture Door (Experiment

S082B)
19. NBL-A Apertura Door (Experiment

S082A)
20. HCO-A Aperture Door (Experiment

80SSA)
21. Fine Sun Senior Aperture Door
22. Acquialtion Sun Senior*
23. Ho-1 Aperture Door
24. HAO Aperture Door (Experiment S052)
25. GSFC Aperture Door (Experiment

SOS6)
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Table 3.3 Experiment ERD's Reviewed

EXPERIMENT NUMBER INSCRIPTION,

T020*
T003
T027
T013
T018
MJ12
MVT9
MO?!**
M131*
M133*
M151
M172*
M113
Mill
M112

M091
M0?l
M073
M093
M171*
D021
D02&
8009
S019
S063
M092*
M509»
8150
81*9
S020
S190
3191
S192
S193
T025
ESS
EREP

EXT TV
MA15
M487
Proton Spec
S073
S183 , '
S194
S195
T002

Foot Controlled Maneuvering Unit
Inflight Aerosol Analysis
Contamination Measurement
Crew Vehicle Disturbances
Precision Orbital Tracking
Materials Processing in Space
Zero Gravity Flamnabllity
Specimen Mass Measurements
Human Vestitular Function
Sleep Monitoring Experiment
Tine and Motion Study
Body Mass Measurement
Blood Volume and Red Cell Life Spaa
Cytogenetic Studies of Blood
Man's Immunity - Invlro Aspects
Red Blood CellB
Pre-and Post-Flight IBNP
Mineral Balance
Bioassay of Body Fluids
Vectorcardiogram
Metabolic Activity
Expandable Airlock Technology
Thermal Control Coatings
Nuclear Emulsion
UV Stellar Astronomy (End Item Spec.)
UV Airglow Horizon Photography
Inflight TOT?
Astronaut Maneuvering Equipment
Galactic X-Ray Mapping
Particle Collection
X-Ray/UV Solar Photography
Multlspectral Photographic Facility
Infrared Spectrometer
10 Band Multispectral Sources
Microwave Radiometer
Coronagraph Contamination Measurement
Experiment Support System
Earth Resources Experiment
External Television
Thermal Control Coatings
Habitability/Crew Quarters
Proton Spec
Gegenscheln/Zodiacal Light
Ultra Violet Panorama
L-Band Radiometer
Earth Terrain Camera
Manual Navigations Sightings

"Experiments Having Identified Noise Sources
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Figure 3,4 Location of AM/STS Noise Sources
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Figure 3.5 Location of AM/STS Noise Sources
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Figure 3.7 Location of Noise Sources in OWS Forward Compartment
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Figure 3.8 Location of Noise Sources in OWS Forward Compartment
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Figure 3.9 Location of Noise Sources in Experiment Corapartment
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Figure 3 10 Location of Noise Sources in OWS Wardrooir
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Table 3.7 MDA Noise Source Power Levels

OCTAVE BAND
FREQUENCY
(HERTZ)

62.5
125
250
500
1000
2000
4000
8000

FAN MUFFLER ASSEMBLY
CRITERIA (3 FANS)

PWL (DB)

64. 8
69.8
74.8
69.8
69.8
72.8
72.8
69.8



3-33

oo

uI
8 2
H 0)gig,

CO X

0> i
CO 4J

z <:
M

CO CO

00

fi

i-H

•§
H

I
a

H
0

1

H

se

M̂
PQ

d

w

Ms
(d

H

W

5
H
b
o

CO

5̂i

co

%

«£
O

•» &3
W W

CO CO

g§
*J frl

li CO

ts
w

a o-^ s
» fe

3

s
s

•o

^
T3

N
H

K
^*
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Table 3,10 AM Noise Source Power
Levels in Decibels

OCTAVE
BAND
FREQUENCY
(HERTZ)

125
250
500
1000
2000
4000
8000

OWS .COOLING MODULE
(4 FANS)

14.7 PSIA

60.5
70.0
66.3
67.5
64.7
60.7
55.3

5.0 PSIA

w

72.7
67.7
67.5
62.8
53.7
48.2
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Table 3,15 Skylab Acoustical
Compartment Characteristics

Compartment/Equip .

MDA
STS
AM
OWS

MDA/ STS Equip.

MDA/ STS Total

Volume

1159 ft3

301 ft3
293.5 ft3

8000 ft3 .
160 ft3

1300 ft3

Compartment/Equip.

MDA
STS
AM
OWS

MDA/ STS Equip.

Surface Area

549 ft2

175.9 ft2

217 ft2

4895 ft2

600 ft2

Compartment
Interface

STS/AM
AM/OWS

Common Wall
Surface Area

23 ft2

8.9 ft2
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Ill

Figure 3.14 MEASUREMENT LOCATIONS IN THE OWS AFT COMPARTMENT
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Figure 3.15 MEASUREMENT LOCATION IN THE OWS FORWARD COMPARTMENT
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Figure 3.16
MEASUREMENT LOCATION IN THE STS/AM
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Figure 3.17 • MEASUREMENT LOCATION IN THE MDA
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Table 3.17 SPEECH INTERFERENCE LEVELS APPLICABLE TO
SL-2, SL-3, AND SL-4 M-487 MEASURED FLIGHT DATA .

Location

MDA

STS *

AM

OWS Wdrm.

OWS Exp.

OWS WMC

OWS Sleep

OWS Fwd

SL-2
(dB)

47.2

55.8

51.3 -

40.5

41.7

43.8

38.3

40.7

SL-3
(dB)

53.0

58.3

52.7

41.0

42.2

55.5

34.3

44.5

SL-4
(dB)

52.8

--

55.7

37.7

46.6

--

33.0

44.0

Noise Criteria
(dB)

56.7

56.7

56.7

56.7

56.7

56.7

56.7

. 56.7

Table 3.18 MODIFIED SPEECH INTERFERENCE LEVELS APPLICABLE
TO SL-2, SL-3, AND SL-4 M-487 MEASURED FLIGHT DATA

Loco tion

MDA

STS

AM

OWS Wdrm.

OWS Exp.

OWS WMC

OWS Sleep

OWS Fwd,

SL-2
(dB)

44:6

51.3

47.5

35.8

36.1

37.9

33.3

42.0

SL-3
(dB)

51.4

55.5

50.3

36.8

37.9

48.4

31.0

40.6

SL-4
(dB)

50.4

--

52.3

, 34.3

42 .7
]

28.6 .

40.6

Noise Criteria
(dB)

56.25

56.25

56.25

56.25

56.25

56.25

56.25

56.25
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4.0 GENERAL 'TEST PROGRAM

The purpose of this section is to present the experience and knowledge
gained from the Skylab Vibro-Acoustic Test Program. Included in this
section are descriptions of test hardware, test setup, instrumentation
requirements and data acquisition requirements. Each major test phase
was evaluated and constructive criticism is supplied in a form that may
be helpful in future test programs.

4.1 Vibro Acoustic Test Overview

The vibro acoustic test program which was performed on the Skylab
Structural Model Vehicle included the Orbital Workshop Launch Confi-
guration, Payload Launch Configuration and Payload Orbital Configuration
Test Series. Separate Acoustic and Vibration Tests were conducted on
these test configurations primarily to verify major structure and/or
verify the analytical model.

4.1.1 Initial Testing Plan and Revisions - The initial test plan
required acoustic and low frequency, vibration tests on the Orbital
Workshop, as well as, Acoustic, Vehicle Dynamics, and modal survey
vibration tests on the Payload Assembly (PA) Launch Configuration. A
modal survey vibration test of the payload~assembly orbital configuration
was also required in the initial test plan. This test plan was later
revised to include an Instrumentation Unit (IU) Acoustic Test and the
ATM/CMC Acoustic Qualification Test for the Apollo Telescope mount.

4.1.2 Vibro Acoustic Test Objectives - The vibro acoustic test
objectives were divided into three phases. Phase I being the Orbital
Workship Tests; Phase II being the Payload Assembly Tests; and Phase
III being the instrumentation unit and Apollo Telescope Mount Acoustic
Tests. The objectives of the Phase I Tests were as follows:

a. Verify structural integrity of primary and secondary structure
when exposed to dynamic environments.

;

b. Verify dynamic design and test criteria for components and
subassemblieSo

c. Obtain modal response data for analytical model verification.

The Payload Assembly Tests, Phase II Objectives were as follows:

a. Verify Structural Integrity of the Payload Assembly to the
Dynamic Environment

b. Quality Flight Hardware Components

c. Obtain modal response data for an analytical model
verification
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d. Verify Dynamic Design and Test Criteria for components
and sub-assemblies

The objectives of the Phase III tests were as follows:

a. Verify IU Dynamic Behavior

b. Verify Dynamic Design and Test Criteria for Components
and Sub-assemblies

c. Verify Prototype FCC (IU) response characteristics

d. Full dynamic qualification of the ATM/CMC

j

4.1.3 -. Generalization of Test Accomplishments - All the Test
Objectives were accomplished for the Phase I, Orbital Workshop Tests.
One component was qualified as a result of tests, with no requalification
tests required.

The Phase IIA, Payload Assembly Launch Configuration Tests,
accomplished all test objectives. This phase qualified four components
with the requirement for six requalification tests. It also established
the requirement for additional IU Acoustic Tests and additional ATM/CMC
Acoustic Qualification Tests (Phase III).

The Phase II B, Payload Assembly Orbital Configuration Tests, '
accomplished all Test Objectives. Twenty-five unique test modes were
acquired, which represent all identifiable major structural resonances
in the zero to twenty hertz frequency range. These twenty-five test
modes were determined to be comprised of nine major components. The
quality of the test modes were excellent with only' one mode exhibiting
poor orthogonality characteristics.

All test objectives were accomplished for the Phase III, IU and
Apollo Telescope Mount Acoustic Tests, The CMC was requalified due to
tests and twenty-three requalification test were required for the IU
components.

4.1.4 Test Anomolies and Criteria Summary - There were no test
anomalies in the Phase I Tests. Six levels of environmental sub zones
were raised, thirty-three were lowered and fourteen remained unchanged.
Forty-seven additional environmental sub zones were added fc special
component criteria.

In the Phase II A, Payload Assembly Tests a decision was' reached
to conduct additional IU Acoustic Tests due to a ST-124 exceedance and
a FCC excedance.

The Dynamic criteria assement for the major components of the
Launch Configuration Payload Assembly were as follows:
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MDA •'"""" " . --- - , . , - . „ . . , __.

a. Delete sinusoidal evaluation criteria, all zones

b. Change weight specification for 2 environmental sub zones

c. Add 9 new environmental sub zones

AM (Including PS, DA, and FAS)

a. Raise 11 environmental sub zones

b. Add 3 new environmental sub zones

c.. Special environmental criteria for 7 components

IU '

a. Acoustic criteria increased by a factor of 2 db on the
power spectral density (70-2000 HZ range)

ATM

a. Raise 2 environmental sub zones

4.2 Phase II A Payload Assembly Launch Configuration Tests

Acoustic and Vibration Tests were conducted on the Skylab Payload
Assembly from 08 September through 08 October 1971. The Test Program
for the Launch Configuration was comprised of the following major
activities:

Payload Assembly - Lift-off Acoustic Environment
Payload Assembly - Boundary Layer Acoustic Environment
Acoustic Absorption Test
IU Acoustic Test
IU Modal Survey

4.2.1 Acoustic Tests

4.2.1.1 Test Requirements - The following conditions are sum-
marized from the Acoustic Test Plan, S + E-ASTN-ADD-71-69

4.2.1.1.1 Test Objectives - The primary test objectives of the
Payload Assembly Test Program were to:

a. Verify the structural integrity of the assembly

b. Verify the dynamic design and test criteria for components
and sub-assemblies

c. Qualify flight hardware components
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4.2.1.1.2 Specimen Configuration - The test specimen consists of
an Instrument Unit, Fixed Airlock Shroud, Payload Shroud. Airlock
Module, Multiple Docking Adapter, Apollo Telescope Mount, and Deploy-
ment Assembly. These items were assembled on an S-IV B OWS/Forward
Skirt and Tank Dome Assembly as shown in Figure 4.1. Flight type
components which were installed during the acoustic tests and denoted
in figures 4.2, 4.3, and 4.4 are as follows:

a. PLV Fan Motor Assembly located in the Cabin Head
Exchanger Module of the STS.

b. Film Vaults 3 and 4 located in the MDA.

c. Hal Camera located in Film Vault 4 of the MDA.

d. AS & E Camera located in Film Vault 3 of the MDA.

e. S056 Experiment Camera located in Film Vault 3 of the
MDA.

f. PLV Fan Motor and Muffler Assembly located in the Cone
Section of the MDA.

All other components and assemblies were either prototype or mass
simulated models.

4.2.111.3 Facilities Description - All the tests described in
this document were conducted in the acoustic test facility, building
49,' Manned Spacecraft Center, Houston, Texas. The test specimen was
located in a reverberation chamber with a volume of approximately
169,000 cubic feet as shown in the sketch in Figure 4.5.

4.2.1.1.5 Control and Data Systems - The acoustic test spectra
were controlled by an automatic closed loop system capable of. adjusting
the test environment to within + 2 db of prescribed values. Simulation
limitations inherent in environmental acoustic testing were minimized
by use of vibroascoustic transfer functions which were derived and used
to adjust spectra so that selected test article responses in the OWS
and IU would correlate with available flight data. Simplified block
diagrams of the Acoustic Excitation/Control and Data Acquisition System
are presented in Figures 4.6 and 4.7.

4.2.1.2 Test Summary - The Acoustic Testing, conducted in the
NATF reverberent chamber, consisted of exposing the PA Test Article
to both lift off and aerodynamic environments for a prescribed time.
A test Summary is presented in Table 4.1, which is a chronological
listing of the Test Sequence, run number, description, Test reference,
Test parameters, duration, data, overall SPL, data reference and remarks.

4.2.1.2.1 Test Procedure - The performance of each acoustic
exposure, identified in Table 4-1 by run no.'s PA-A-002, 003, 006, 009,
010, Oil, 012, 040, 041, 043, 044, and 045 was' implemented by following
the steps described in the detailed test procedure, DTP-SKY-7.
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Acoustic absorption tests were performed by following the procedure
outlined in reference (10). The tests are identified in Table 4-1 by run
no.Vs PA-A-013 through PA-A-038.

Table 4-1 run no.'s PA-A-046 and 047 sinewave sweeps were performed
,as required by reference 11.

4.2.1.2.2 Instrumentation - A total of 360 measurements, consisting
of 285 accelerometers, 43 microphones, and 32 strain gages, were recorded
during testing. The data acquisition system provided capabilities for
recording 264 channels; therefore, a second run at each test condition
with a repatch of 96 channels was required to obtain data from all 360
measurements.

No test was started with more than three data sensors in an inopera-
tive condition. The test spectra were controlled to 10 surface mounted
microphones.

The indicated total accounts for all instrumentation locations changes
and additions as described in the Volume I Instrumentation Plan,
ED-2002-1255, Revision A, dated 31 December 1976.

4.2.1.2.3 Data Summary - Data from the acoustic test can be
found in references (12), and (13). Data not presented in these references
are available from stored magnetic tapes. Measurement number versus
run number and recorder channel number information are presented in
Table II of the instrumentation plan noted in 4.2.1.2.2.

4.2.1.2.4 Test Description - The following contains summaries
of Test Problem Areas and solutions to these problems. In addition,
circumstances responsible for aborted test runs are tabulated by nature
of error and frequency of occurrence.

PROBLEM: Lack of Acoustic Power in High Frequency bands (abo.ve
500 Hz)

CORRECTION: Air modulator/Horn Configurations were changed to
to EPT-200 modulators, which have greater acoustic
output in the upper frequency range.

PROBLEM: Data from PA-002 and PA-003 indicated that vibration
inputs to the IU Components would exceed specification
levels if the full lift-off spectrum was applied to the
Test Article.

CORRECTION: An additional Low Level Test was run. A review of
the data resulted in a decision to use an alternate
lift-off spectrum which was based on the IU Data
alone, since transfer functions computed from the
S-IV B forward skirt measurements exhibited signifi-
cant deviations from corresponding flight measurements.
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APOLLO TELESCOPE MOUNT

DEPLOYMENT
ASSEMBLY

STRUCTURAL
TRANSITION
SECTION +Z

02 TANKS (TYP)

AIRLOCK MODULE

-X

MULTIPLE DOCKING
ADAPTER

PAYLOAD SHROUD

N2 TANKS (TYP)

FIXED AIRLOCK
SHROUD

INSTRUMENT UNIT

SzIV_B_ FORWARD SiCIRT

Figure 4.1 _Payload Assembly Test Article Launch Configuration
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VENTILATION DUCTS TO MDA

MOLECULAR
SIEVE
COVER

FLIGHT SPARE
STOWAGE CON-
TAINER
(REMOVABLE)

-Z

CABIN HEAT EXCHANGER MODULE
Fan Motor Internal)

MOLE SIEVE FAN AND,
LIQUID/GAS
SEPARATORS

PORTABLE TIMER AND
ASSOCIATED BATTERIES
10 & 20 WATT LIGHTBULBS
CONDENSATE MANUAL
PUMP, AND TELEPRINTER
HEAD

LSU STOWAGE (310)
UMBILICAL END STOWAGE

EVA PANEL NO. 2 •

10 WATT LIGHT AND
HANDRAIL ASSY

CROSSOVER DUCT TO OWS

ATM TANK MODULE

PERMANENT
STOWAGE

02/N2 CONTROL
PANEL '

CONDENSATE
MODULE

H90 TANK MODULE

STS IVA STATION
TAPE RECORDER MODULE

ATM FILM TREE SUPPORT
CABIN PRESSURE

RELIEF VALVE
UMBILICAL END

STOWAGE
EVA HATCH
EVA PANEL NO. 1
CENTER INSTRUMENT

PANEL

LSU STOWAGE (311)

AFT INSTRUMENT PANEL

INLET
MUFFLER ASSY FOR
OWS MODULE (HINGED)

ORIGINAL PAGE IS
OP POOR QUAIJTXI

Figure 4.2 Payload Assembly Test - Airlock Module
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SPACECRAFT ACOUSTIC LABORATORY

REVERBERANT CHAMBER

- ACOUSTIC SEAL -
(1/2" ALUMINUM PLATE
WITH DUCT SEAL)

COMPRESSOR ROOM

Figure 4.5 MSC Spacecraft Acoustic Laboratory Payload Assembly Test Configuration
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Malfunctions responsible for aborted Test Runs.
' FREQUENCY OF

NATURE OF ERROR OCCURRENCE

Was-300 modulator had insufficient 1
Acoustic Power in upper frequency range.

Chattering of Air Modulator Cooling System 1
Control relay

Test Control Computer Malfunction 3

Power output switch in "Dummy Load" 1
Position resulting in no Acoustic
Power Output

Microphone damaged when scaffolding I
was removed prior to testing

The total number of Test Malfunctions is small compared to the
total number of tests these malfunctions had no major detrimental
effect on the Total Test Program.

4.2.2 IU Modal Vibration Test - The Skylab Payload
assembly acoustic test data showed that vibration responses of the
Flight Control Computer (FCC) and the ST-124 package were significantly
higher than vibration qualification criteria, as previously reported
in "Skylab Payload Assembly Acoustic Testing." Marshall Space Flight
Center's assessment of this problem led to the conclusion that any
requalification program on the FCC would have a serious impact on the
Skylab Program. In an effort to obtain a better understanding of
the modal characteristics of the IU which were contributing to the
excessive vibration of these components, a vibration test was con-
ducted on the IU.

4.2.2.1 Test Requirements - All testing was conducted in
accordance with MSFC Test Program Plan S +E - ASTN-ADD-(71-69),
"PA Vibroacoustic Test Plan, Phase II". Minor modifications to the
Program were incorporated through Test Control Board Directives (TCBD).

4.2.2.1.1 Test Objectives - The tests were conducted to define
the mode shapes, resonance frequencies, and damping characteristics
associated with the measured response of the Flight Control Computer
(FCC) and the ST-124 stabilized platform mock-ups observed during the
PA Acoustic Testing.

\
4.2.2.1.2 Test Specimen - The test configuration consisted of the

Instrumentation Unit with a mass simulated FCC mock-up. Force control-
led sweeps, resonant dwells and decays were performed. Following this
activity, a prototype FCC was installed replacing the mass mock up, and
subsequent tests were performed.
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4.2.2.1.3 Test Facilities - Refer to Section 4.2.1.1 ._3 _p_f this_
report for description.

4.2.2.1.4 Testing Apparatus - At each of the four exciter locations
(Figure .4.8), a Ling A280 shaker was suspended from the facility crane
by cables, thus forming a low-frequency pendulum (resonance below 2.0 Hz).
The shaker was positioned with a mounting assembly and attached to the
IU through a "stinger" with a load-cell force linkl A typical shaker
suspension system is shown in Figure 4.9. At three of the test locations,
aluminum plates (which had been drilled and tapped for the force link)
were bonded to the test article to provide shaker attachment points.
At the fourth location,'the force link was attached by drilling and
tapping one of the ST-124 mounting bolts.

4.2.2.1.5 Control and Data Systems - The control system for the
electrodynamic shaker consisted of a frequency synthesizer, its associated
programing unit, and an amplitude-servo device for maintaining a constant
input force over the frequency range. The electrical signal developed
in these instruments was amplified by a solid state direct-coupled power
amplifier to provide the necessary drive current for the shaker. A
strain-gage load cell was installed between the shaker and the vehicle
drive-point to provide force measurement for servo feedback. A block
diagram of the control system is shown in Figure 4.10.

The readout system ,for phase tuning consisted of oscilloscopes
with the force signal driving the horizontal axis and the reference
accelerometer driving the vertical, thus providing a Lissajbus ellipse.
All accelerometer and force signals were filtered through' a 10-Hz
bandwidth tracking filter whose center frequency was tuned to the
synthesizer drive signal frequency.

\
4.2.2.2 Test Summary - The PA/IU was subjected to low-force levels

which were varied sinusoidally over a frequency range of 5 to 70 Hz at
four different Jocations. Then resonant dwell tests were conducted
based upon resonant frequencies observed and selected during the sine-
sweep tests. In addition, the FCC mock-up was replaced with an FCC
prototype, and subsequent tests were performed to determine the IU
vibration characteristics with FCC prototype installed.

4.2.2.2.1 Test Procedure - Five sine-sweep tests were initally
conducted over a frequency range from 5 to 70 Hz during which data from
61 fixed measurements were recorded. Following completion of the sine-
sweep testing, the data were processed and plotted in the form of
g(peak)/lb versus frequency and phase angle (relative to force) versus
frequency. The data review team examined the processed data and
selected frequencies for further investigation. At each frequency of
interest, a survey of the vibration accelerations normal to the external
surface was made by means of acceleration probes. Personnel manning the
probes were directed to grid positions on the structure by test engineers
located at a central instrumentation point. At each location of interest,
acceleration values and phase (relative to either force or a reference
accelerometer) were measured and logged. In addition, numerous frequencies
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were selected, tuned, and acceleration data recorded for post-test
examination.

Damping characteristics were determined by abruptly terminating
power to the thruster and recording the vibration decay as measured
by all accelerometers.

4.2.2.2.2 Instrumentation Summary - A total of 64 fixed servo
accelerometers were recorded during the subject vibration tests, and
a force transducer was used to control the force input to the specimen.
Details concerning specific instrumentation locations are described in
the Volume I Instrumentation Plan, ED-2002-1255 Revision A, dated
31 December 1971.

4.2.2.2.3 Data Summary - Tabulated data from the modal survey
dwell tests are presented in reference (14). Data not presented
are available from stored magnetic tapes. Information regarding
recorded data is presented in Appendix E, Table II of the Instrumentation
Plan, noted 4.2.2.2.2.

4.2.2.2.4 Test Description - Although, no major equipment
problem were encountered, several test reruns were required for the ,
following reasons.

' \ . FREQUENCY OF
CAUSE OF RERUN OCCURRENCE

Power supply 60 Hz noise; data 1
unreadable

Poorly defined mode 1

Repeat for better log 6
decremint data

ANOMALIES: The response of the FCC Prototype was significantly
lower than the response of the mass mock-up for a
given input force above 40 Hz. In particular, no
significant 55-Hz responses were measured after
installation of the prototype FCC. Acoustic test
data previously obtained indicate that a 55-Hz
mode contributed significantly to the FCC problem
(FCC vibration levels greater than qualification
levels). As a'result of this disclosure, more
testing was authorized to determine the effect of
prototype installation on the IU response to random
acoustic excitation.

4.2.3 Alternate Test Approach + Recommendation' - Instrumentation
recording limitating caused test turnaround delays.
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CORRECTION: Scope instrumentation requirements within facility
capability. This would require a pre-test analysis
as a basis for identifying minimum requirements.

4.3 Phase II B - Payload Orbital Configuration Modal Survey -
This modal survey was performed during the period extending from 23 May
through 23 June 1972 at the Manned Spacecraft Center in Houston, Texas
under the direction of Marshall Space Flight Center, Huntsville,
Alabama. Data was acquired from this test which identified 23 elastic
and 2 rigid body modes. *

4.3.1 Test Requirements - The following reported conditions are
standard modal survey test requirements.

4.3.1.1 Test Objectives - The Skylab modal survey test was performed
to obtain the characteristic vibrational frequencies, mode shapes,
damping coefficients, and generalized mass of the normal modes. Data
derived from the test was used to evaluate the analytical results
obtained with a mathematical structural model; and to further refine
design load modeling techniques.

4.3.1.2 Test Specimen Configuration - Test configuration hardware
consisted of the instrumentation unit (IU), fixed airlock shroud (FAS),
the structural transition section (STS), the airlock module (AM), the
multiple docking adapter (MDA), the ATM deployment assembly (DA), the
Apollo telescope mount (ATM), and the command and service module (CSM).
The aforementioned subassemblies were stacked upon the S-IVB configura-
tion orbital workshop (OWS) forward skirt/tank dome assembly (see Figure 4.
11). The ATM included semi-deployed solar arrays, two of which contained
mass simulated panels.

Flight type components which were installed during the test were
as follows:

a. PLV Fan Motor Assembly located in the Cabin Heat Exchanger
Module of the STS;

b. Film Vaults 3 and 4 located in the MDA;

s

c. PLV Fan Motor and Muffler Assembly located in the cone section
of the MDA.

All other components were either prototype or mass simulated models.

4.3.1.3 Test Facilities - The tests described were conducted in
the Spacecraft Vibration Laboratory (SVL) of the Vibration and Acoustic
Test Facility (VATF), building 49, MSC, Houston, Texas.
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4.3.1.3.1 Test Suspension System - The PA described in para-
graph 4.3.1.2 was stacked in the orbital configuration on the 12,000
pound base ring fixture. The GSM and ATM were supported from above
by one airspring each. Three additional airsprings attached to the
outer periphery of the base support ring fixture by means of single
attach point load cell links spaced 120 degrees apart. Suspension
spring rates and damping characteristics were controlled by the regulation
of air pressure to the plenum chambers of the five pneumatic springs.
Air pressure was maintained to provide suspension resonance and damping
characteristics at values where minimum interference with specimen modal
resonance properties were realized, and the constraints of static sta-
bility were still observed. Protectj.cn against possible catastrophic
failure of the suspension system was provided by automatic interlock
system and by positioning eight static support stands in sufficient dim-
ensional proximity to prevent any possible destructive translational or
rotational motions reacting upon the test system.

4.3.1.3.2 Shaker Positioning - The excitation of predicted analyti-
cal modes demanded the placement and activation of the vibration exciters
at precise geometrical positions and in exact force/phase combinations.
In some cases, mechanical accessibility prevented realization of dimen-
sional positioning. Twenty-one shakers were attached to the test speci-
men. Of these 21 shakers, 12 were controlled simultaneously. During
this test series, the shakers at 18 locations were subsequently utilized
for modal tuning.

The shakers employed in this test were rated at 150 force pounds and
were Unholtz-Dickie Model 28 exciters. Of the 21 exciters emplaced, 14
were hard mounted to major building structural members, and seven were
suspended upon spring yoke support systems. The exciters were connected
to the structure by stringers designed to resonate at frequencies well
above the upper frequency limits of test. No stringer or suspension
problems were encountered during conduct of this test series.

4.3.1.4 Control and Data Systems - All test control and data
operations were automated. The GAG 18/30 digital computer and its ass-
ociated peripherals performed all facets of test control, data ac-
quisition/reduction, and data display under the supervision of Automatic
Modal Tuning and Analysis System (AMTAS) software for all phases of the
test program with the exception of the wide band sweeps. Data emanating
from the wide band sweeps were recorded on analog tapes for subsequent
digital processing and graphic presentation.

Throughout the narrow band modal tuning and modal dwells, AMTAS
operated in the automatic digital mode.

4.3.2 Test Summary - In order to accomplish the stated test objec-
tives, the program was conducted in five distinct phases. These were:

a. An Automatic Modal Tuning and Analysis System (AMTAS) checkout
and end-to-end calibration was conducted prior to initiation of
the wide band sinusoidal sweeps. This assured the operational
readiness and accuracy of the AMTAS system prior to commencement
of actual testing.
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b. Wide band sinusoidal sweeps were conducted using both single and
- •— paired shakers. For structurally mounted"shakers, the frequency

interval extended from 0.8 to 20 Hz. When pendulum mounted shakers
were employed, the lower frequency limit was determined by
the shaker suspension system isolation frequency. Single and pair-
ed shakers connected at each of 13 separate vehicle excitation
stations were stepped over the test frequency range in increments
of 0.1 Hz. The dwell duration at each 0.1 Hz frequency
increment was adjusted to assure a minimum of 12 cycles per
increment. The outputs of 62 preselected servo accelero-
meters were recorded on analog magnetic tape. These magnetic
tapes were subseqeuntly processed by the Computation and Analysis
Division (CAD) yielding Cospectrum, Quadrature spectrum, Cross
spectrum, and phase angle plots and alphanumeric tabulations for
each of 12 sweeps. Examination of these records afforded an
insight into the number and regions of significant resonances,
the presence of modal coupling, and the most efficient locations
for the excitation of specific modes.

c. The rigid body modes of the specimen and suspension system were
checked. vDue to the physical asymmetry of the structure/support
system, a high degree of modal coupling was observed. Only two
rigid body (suspension) modes were acquired due to schedule limi-
tations. These data are essential in determination of the ef-
fects of suspension constraints upon the modal damping.

d. Narrow band modal tuning was accomplished using multiple shaker
installations at each frequency where resonant conditions were
indicated by the wide band coincident-quadrature response plots.
Coincident-quadrature plots were digitally produced for one
force and three selected accelerometers. Force distributions
and phasing relationships were adjusted among the various, exci-
tation stations to achieve fine tuning of the mode. Achievement
of final tuning was determined by examination of both Lissajous
patterns and the Coincident-Quadrature plots.

e. After fine tuning was accomplished, modal decay traces for 16
preselected accelerometers were recorded on oscillographs. In
addition, 12 selected decay accelerometers were recorded on
analog magnetic tape. If these modal decays proved free from
beating, the narrow band force distributions were reestablished
for purposes of data acquisition.

4.3.2.1 Test Procedure - A test procedure was generated by the
test agency which reflected the requirements of the test plan and pro-
vided the procedural steps to accomplish wide band sweeps, fine tuning,
narrow band sweeps, etc.
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4.3.2.2 Instrumentation Summary - The types, quantity, location
and identification of all dynamic instrumentation required during the
test are presented in Martin Marietta Corporation (MMC) document ED-
2002-1532, Volume III, dated 30 September 1972. In summary, transducers
which were required for this test were of the following types and quan-
tities.

Type Quantity

Servo Accelerometers 200
Force Transducers 21
Strain Gages 20
Rate Gyros 9

. Total 250 - ,

4.3.2.3 Data Summary - Coincidence-quadrature (CO/QUAD) plots and
tabulations were obtained for all wide band sweep tests and CO/QUAD plots
were obtained for narrow band sweep tests. CO/QUAD tabulations and two
dimentional mode shape plots were obtained for all dwell tests and time
amplitude traces were obtained for all decay tests. Refer to the follow-
ing sections for further details.

4.3.2.3.1 Test Techniques Wide Band Modal Tuning Sweeps - The
computer provided, through the Synchon interface, the required frequency
and sweep rate parameters. Force control and abort exceedance supervision
employed digital methods. The outputs of 62 preselected servo accelero-
meters were reocrded using the vidar multiplex system. This system
multiplexed six channels of data onto each analog magnetic tape track
using carriers of drfferent center frequencies. The center frequencies
and deviations for each channel were as shown below:

Data Channel 1 62.5 KHz + 10 KHz
Data Channel 2 100 KHz + 10 KHz
Data Channel 3 . 137.5 KHz + 10 KHz
Data Channel 4 175 KHz + 10 KHz
Data Channel 5 212.5 KHz + 10 KHz
Data Channel 6 250 KHz + 10 KHz
Reference Channel 287.5 KHz + 10 KHz

The 62 accelerorneters were recorded on 11 data tracks. An IRIG "B"
time code was recorded on Channel 6 of track 13. The tape recording
speed was 60 inches per second (ips) . A full scale 25 Hz calibration
signal was recorded on each data channel preceding each data acquisition
run. These tapes were delivered to CAD for processing. The final data
emanated in the form of cospectrum, quadrature spectrum, cross spectrum,
and phase angle plots and alphanumeric tabulations.

Normal turaround time from sweep test to processed data was 24
hours. These data were examined and analyzed in order to determine
optimum frequencies and effective excitation stations for subsequent
narrow band modal tuning and modal dwell tests.
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4.3.2.3.2 Test Techniques 'Narrow Band Modal Tuning - Wide band
sweep data were examined for.selection of a resonant frequency, and an
optimum shaker configuration (based upon observed efficiency in the wide
band sweeps). The largest quadrature value governed the selection of the
reference exciter and its associated input accelerpmeter. The reference
exciter was brought up to a preselected force value. The forcing function
was then tuned over a narrow frequency band in order to obtain the de-
sired 90 degree phase shift between force'and the local input accelera-
tion as indicated by a Lissajous figure display. When the master shaker
force-acceleration relationship had been optimized, a second shaker was
energized. This procedure was repeated until all shakers of the pre-
selected array had been activated. Frequency tuning, and adjustments
of force and phase relationships among the various shakers were repeated
until the optimum force-acceleration relationships were obtained for all
of the Lissajous patterns (up to twelve were displayed on three oscillo-
scopes) . Concurrent with the Lissajous pattern tuning procedures, three
computer controlled Houston Instrument (HI) Model DP-1 digital plotters
described the accelerometer co-quad response curves for three preselected
accelerometers in real time. Iterative adjustments of force, phase, and
frequency among all of the shakers were continued until a maximum quad-
rature combined with the best co-quad relationship was obtained.

The multiple shakers were swept across a two or three hertz band
centering about the resonant frequency. Co-quad plots were produced for
various combinations of forces and accelerometers to assure optimum modal
tuning.

When the force distribution was judged to indicate a condition of
modal resonance, the forcing array was abruptly terminated. The decaying
output signals of 16 preselected accelerometers were recorded on
oscillograph records. Twelve of the 16 accelerometers were recorded on
analog magnetic tape for later data processing at/MMC.

If examination of the modal decays revealed freedom from frequency
beating, the forcing distribution was reinstated and the AMTAS data
acquisition function initiated. Once' activated, AMTAS collected all
pertinent data, stored these data on disk and produced these data on
punched cards. AMTAS computed raw co-quad data for 200 servo-accelero-
meter positions, and provided these on tabular printout. Raw data were
transformed to the model node points, normalized, and the generalized
mass was computed and listed. Normalized deflections were computed and
planar deflection plots digitally produced for all of the 200 accelero-
meter locations. Modal orthogonalities were computed and listed.

Examination of the decays, deflection plots, and orthogonality
listing provided an assessment of the degree of modal purity attained.
Based upon this evaluation, a decision to retune or move on to another
frequency was effected.
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4.3.2.3.3 Specimen Protection - The AMTAS exhibited an extensive
capability to protect the vehicle from excessive force or motion condi-
tions. A 16 channel force and 32 channel accelerometer summing detector
monitored active exciter forces and 24 critical accelerometer locations.
Exceedance of predetermined force or acceleration levels during test
resulted in automatic reduction of input forces. In addition, 20 strain
gages located at critical load points on the DA and MDA docking tunnel
were continually sampled to detect excessive stress. When any strain
gage channel exceeded preselected strain limits, automatic abort occurred.
In addition, 14 of the 20 strain gages were recorded on an oscillograph
during modal dwells, thus providing a basis to identify the magnitude
and location of any over stress induced during test. Vertical overtravel
in excess of 1.5 inches in any of the five test article suspension air
springs also triggered an automatic abort.

4.3.2.4 -Test Description - The following test description gives
a detailed accounting of other test activities, problems and solutions.

4.3.2.4.1 AMTAS Checkout - Prior to test, and at frequent intervals
throughout the test program, the AMTAS system was exercised to reveal
any inconsistencies of a hardware or software nature. Hardware and
software anomalies revealed during these system checks and corrected
were:

a. Problem: Narrow band digitally controlled/acquired sweep
co-quad plots displayed spikes at 0.1 Hertz intervals.
Correction: Loose connection within a module of the synthe-
sizer controller was identified and corrected, resultant co-
quad plots were free from 0.1 Hertz repetive spikes.

b. Problem: On the 1.43 Hertz run planar plots, several singu-
larities inconsistent with the data trend appeared.
Correction: Sequence numbers 56, 62, 109 and 116 were checked
for orientation of axes of sensitivity and calibration. Se-
quence number 109 (SE 536-900-X) on the service module (SM)
forward bulkhead was found to be reading 207o higher. This
accelerometer was replaced.

c. Problem: The unity co-quad plots indicated a polarity reversal
for sequence'number 138.
Correction: The punched card data deck was inspected. It
was determined that a negative instead of plus sign had been
punched on the sequence number 138 card. The card was repunched
with the correct sign.

d. Problem: A number of dwells were aborted due to exceedance
of the various strain gage limits.
Correction: A DC offset was detected in the signal conditioning
equipment which caused erroneous triggering of the force accel-
eration summing detector. The signal conditioning devices were
corrected.
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4.3.2.4.2 Other Observed Test Malfunctions - As is natural in a
program of this size, both human and machine malfunctions will occur.
The following circumstances were responsible for aborted test runs during
this problem.

Nature of Error

Computer Core Dump Caused by
Software or Peripheral Error

AMTAS Control (AMC) Error
Tektronix Beehive Mod MI Alpha

Crt Malfunction
Data Channel Dropout
Air Spring Assembly Electrical

Failure
Strain Gage Malfunction
Wrong Accelerometer Selected
Transducer Malfunction on ATM Air

Spring Assembly
DC Offset in NEFF Amplifier
Mispatched False Accelerometer

Limits '
Plotter Scaling Factor -Incorrect
Incorrect Accelerometer Identifica-

tion Numbers on Plotters
Data not Retrievable from Core
Incorrect Computer Inputs
Frequency Synthesizer Failure
Stinger Resonance 04H
Master Attenuator Operator and

Functional Malfunction
Synchon Errors or Malfunctions

(Selection of Incorrect Channels)
Loose Ground Wire on Shaker 04H -
Overtravel Switch

Program Update Problem - Computer
Software

Line Printer Failure
Scanner Channel Interpretation.
Malfunctions

Frequency of
Occurrence

3
2

12
2

1
1
2

1
1

1
4

3
2
5
2
1

4

1

1

1
1

In consideration of the scope and complexity of the overall project,
,both human errors and equipment malfunctions represented a very miniscule
fraction of the overall testing process. '

4.3.3 Alternate Test Approach - The following test outline for
future test application is submitted for review and represents some
refinement from the Skylab test. Each test activity is preceeded by a
statement of the purpose of the test, which is then followed by the
necessary data requirements.
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Purpose: To determine the force and phase distribution necessary to
fine tune preselected modes.

Activity: Wide band sweeps should be conducted without restricting the
number of simultaneous shakers or requiring constant force
input. The following information is required from pretest
analysis for each wide band sweep

(1) frequency range

(2) number of shakers, location and phasing requirements

(3) selected mode frequencies

(4) mode shapes

(5) maximum input force distribution and reference force

(6) minimum instrumentation requirements for selected mode"
shape identification

Minimum Data
Requirements: (1) CO/QUAD plots and tabulations

(2) force amplitude plots and tabulations

Notes: 1. If linearity data is required, additional wide band sweeps
should be conducted using constant amplitude control.

2. If selected modes are not identified by this technique,
it may be necessary to change shaker locations and/or
select additional shakers to suppress coupled modes.

FINE TUNING MODES

Purpose: To fine tune selected modes; and to acquire data identifying
each test mode for correlation with the analytical model.

Activity: Perform fine tuning by quadrature peaking and acquire dwell,
narrow band sweep, and decay data for each mode. The follow-
ing information is required from wide band.sweep data for each
mode prior to tuning

(1) shaker force distribution and phase

(2) mode frequency

(3) decay measurements

(4) general mode shape
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The following verifications should be made for each mode " „. _
acquired."

•N

(1) linearity check

(2) force amplitude.and frequency drift

Minimum Data
Requirements: (1) dwell CO/QUAD tabulations

(2) decay data

(3) narrow band CO/QUAD plots and tabulations for each
mode required

Notes: 1. If mode verification is negative it may be necessary to
retune the mode, using constant amplitude control and/or
frequency control.

4.3.3.1 Test Comparisons and Conclusions - The foregoing test outline
represents an attempt to refine test requirements, without affect-
ing data quality. These refinements could result in reduced cost and
minimum schedule impact on similar test programs.

Specific differences in the foregoing outline and the Sky lab payload
tests.are as follows:

1. more emphasis is placed on.the analytical model in the form of
pre-test requirements;

2. wide band sweeps of individual shakers can be replaced with
multiple shaker wide band sweeps;

3. fine tuning time can be reduced since wide band data would be
more representative of actual tuning conditions and also,
requires less data interpretation than the single shaker
data approach;

4. the need for a totally automated control and data acquisition/
reduction system can be optional;

5. data reduction requirements can be kept to a minimum.
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4.4 PHASE III ADDITIONAL IU ACOUSTIC TESTS

Due to differences in the response of the FCC mass mock up when
compared with the FCC Prototype, MSFC authorized additional Acoustic
testing on the IU. TPhis section will discuss the objectives, summarize
the, tests and make some conclusion based on the test results. Descrip-
tions of test requirements, test facilities; Control and Data Systems,
and Instrumentation summary will be omitted since they have no.t^changed
from the previous IU Acoustic Tests. Test descriptions have also been
previously summarized and appear in Table 4.1 as PA-042 through PA-047.

4.4.1 Test Objectives - The following objectives were decided
upon for these tests:

a. determine the effect of the 25 Hz horn upon IU vibration
responses;

b. determine if the substitution of a prototype FCC in the IU
for a mass mock-up FCC significantly changed vibration re-
sponse levels measured during the previous acoustic testing.
In addition, conduct sine-sweep tests to assess the modal
density of the reverberant chamber.

4.4.2 Test Summary - Three random acoustic runs were conducted
during this investigation. The first run was conducted for the' purpose
of obtaining IU response data with a prototype FCC installed in"this IU.
Data from this run, along with previously obtained data, allowed a com-
parison of the FCC-prototype response data to the mass mock-up response
data. Run PA-A-043 subjected the test article to an environment repre-
senting the local IU liftoff environment. Control instrumentation and
horn/modulator selection and programing duplicated that used during the
previous IU liftoff acoustic test (PA-A-040).

The second run was conducted for the purpose of obtaining^a set
of IU response data with the 25 Hz horn deactivated. After deactivating
the 25 Hz horn, two 50 Hz horns were programmed to produce the low fre- •
quency environment normally produced by the 25 Hz horn. PA-A-044 also
subjected the test article to the IU liftoff environment. Comparison
of the data obtained during this run to data obtained during PA-A-043
enabled data analysts to assess any effect of the 25 Hz horn upon FCC
and other IU responses.

The third run (PA-A-045) was conducted to obtain IU responses to
the aerodynamic environment. The horn/modulator selection and programming
duplicated that used during the previous IU aerodynamic noise run (PA-A-
041) with the minor exception that 2-W-100 replaced l-W-100 in the horn
selection.

Although slightly higher low-frequency sound levels were produced
in this run series (PA-A-043 through PA-A-045) than obtained in the
previous comparable run series (PA-A-040 and PA-A-041), the differences
are within prescribed tolerances and allowable limits. However,
response data comparisons from these two run series required careful
adjustments to eliminate variations resulting from these differences.
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In order to ̂ assess the reverberation chamber characteristics with the
test article in place, two sine-sweep runs were conducted. A special
closed-loop system (very similar to that used for modal vibration
excitation) was used to control the SPL at the throat of the 25-Hz
horn to a constant level. An initial sweep was made to obtain instru-
ment ranging information. The sinusoidal sound pressure at the 25-Hz
horn throat was varied over a frequency range of 19.98 to 99 Hz, and
data from all microphones and accelerometers were recorded on run
PA-A-047. Subsequently, data processing was performed to obtain plots
of g's (peak) versus frequency or sound pressure in psi (peak) versus
frequency.

4,4.3 Conclusions on Additional IU Testing -

a. Assessment of the sines weep Acoustic Data did not indicate
the presence of any unusual reverberant chamber characteristics

b. FCC response data obtained after the installation of the
Prototype FCC showed a significant decrease in response
at 55 Hz with lesser changes at other frequences below
100 Hz.

c. Data assessment indicated that no significant change in
ST-124 responses were produced by the Prototype FCC in-
stallation or horn selection (25-Hz versus 50-Hz horns)
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5. DYNAMIC STRUCTURAL MODEL VERIFICATION

5.1 Pre-Test Modal Vibration Analysis

This section presents the results of the final pre-test modal
analysis for the Configuration 6 (Orbit) modal survey test. Config-
uration 6 is defined as consisting of the OWS Forward Skirt and Dome,
IU, FAS/MDA, STS, AM, CSM, deployed DA, deployed ATM with folded ATM
solar arrays and laboratory suspension systems with associated test
fixtures. The modal data presented herein represent the best availa-
ble mass and stiffness representation of the Configuration 6 Dynamic
Test Article (DTA). These data were generated primarily for the pur-
pose of providing a final mass matrix for use in on-site orthogonality
checks during modal survey testing. In addition, these modal data will
also be used in on-site mode shape comparisons during testing. Figure
5.1 shows the components of this configuration.

5.1.1 Base Ring and Base Ring Suspension System Structural Models -
The Base Ring Suspension System model is based on geometry and weight
data provided informally by NASA/MSC. Three air springs are located at
120 degree intervals around the Base Ring. Axial spring rates for each
air spring are based on a natural frequency of 0.5 Hz and the suspended
weight. The weight suspended by the three Base Ring air springs does,
not include the ATM or the CSM since they are each supported by their
own independent air suspension systems. Portions of the deployed DA
weight were allocated to two suspension systems, per informal discus-
sions with NASA/MSC. Seventy percent of the deployed DA weight was al-
located to the Base Ring Suspension System and the remaining 30 percent
was allocated to the ATM Suspension System. The total suspended weight
acting at the Base Ring Suspension System was 78,458 pounds, divided
among three springs. The lateral pendulum springs were calculated
using this weight and a pendulum length of 104 inches. The final spring
rates were assembled into three 3x3 grounded stiffness matrices, which
were then rigidly transformed to the aft OWS Forward Skirt centerline
collocation point at station 3100, using a radius from the centerline
to the Base Ring suspension points of 154.73 inches. Finally, a nega-
tive spring constant of -16.8118 x 10^ inch-pound/radian was added
directly to the 8y and 0Z degrees of freedom at station 3100 to ac-
count for the inverted pendulum effect of the weight supported by the
Base Ring Suspension System. This negative spring constant was calcu-
lated using an estimated CG location at station 3314.28 for the sup-
ported weight.

5 .1.2 OWS Forward Skirt, Dome andilU Structural Models - The OWS
Forward Skirt Structural Model (see Figure 5.2) is based on the OWS
stiffness distribution taken from the NASA memorandum, "Change to AAP-1
Structural Characteristics," J. H. Farrow, 31 August 1970, No. S&E-ASTN-
ADS-70-33. The OWS Forward Skirt is modeled using three centerline
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collocation points resulting in an 18x18 free-free stiffness matrix.
The OWS Forward Skirt mass model was supplied by the MMC Weights Group
and consisted of three 6x6 matrices and combined to form an 18x18 mass
matrix. The IU Structural model is based on the IU stiffness distribu-
tion supplied by NASA-MSFC in May 1970. The IU is modeled using two
centerline collocation points resulting in a 12x12 free-free stiffness
matrix. The IU mass model was supplied by the MMC Weights Group in the
form of two 6x6 mass matrices which were combined to form a 12x12 IU
mass matrix. All mass data reflects DTA weights and c.g.'s provided
by NASA/MSFC.

5.1.3 FAS Structural Model - The basic FAS mass and stiffness
data used in this analysis was provided by McDonnell-Douglas Corpora-
tion in Transmittal Memorandum 646-E236-061471. In order to be com-
patible with the IU model, an equivalent centerline collocation point
was generated at the IU interface by rigidly transforming the skin-
line points provided in the original mass and stiffness at the IU
interface. The skin-line points at the Payload Shroud interface on
the FAS were reduced out for this vibration, analysis because they will
not experience any dynamic loads other than their own mass loading.

5.1.4 AM/STS/Truss Structural Model - Updated mass and stiffness
data were provided by McDonnell-Douglas. The AM/OWS dome bellows tor-
sional spring was added and the stiffness matrix relieved to yield a
61x61 free-free stiffness matrix. Corresponding mass data appears in
ED-2002-1326. The model consists of 4 AM tunnel centerline nodes and
the MDA/STS interface at 6 degrees of freedom each,' plus 6 truss N£
bottles and the 4 Truss/FAS interface points at 3 degrees of freedom
each. The beHows/OWS-dome interface is represented as one torsional
degree of freedom at MMC Station 2320.0 (see Figure 5.3).

5.1.5 MDA Structural Model - The MMC Stress Group supplied a
144x144 constrained flexibility matrix for the MDA. After inverting
the flexibility matrix to obtain a stiffness matrix, the stiffness
matrix was collapsed to a 48x48 stiffness matrix. The 48x48 matrix
was reduced to a 12x12 matrix by use of rigid body transformations
to obtain a centerline model of the MDA. The 12x12 matrix represents
two grid points (MMC stations 3605 and 3545) with six degrees of free-
dom each. The 12x12 matrix was then relieved with respect to MMC sta-
tion. 3441.765, resulting in an 18x18 free-free stiffness matrix.

The MDA mass reflects actual DTA weight and CG as determined by
the MMC Weights Group. The mass properties for the STS/AM were up-
dated to reflect data provided in an informal memo from Paul Heaton,
MDAC-East, to Wayne Ivey, NASA/MSFC, dated 30 December 1971.

5.1.6 Axial Port Structural Model - The axial port structural
model is massless and consists of a 42x42 free-free stiffness matrix
which was added to the GSM to interface with the MDA stiffness model.
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5 .1.7 Axially Docked GSM Structural Model - MMC received a 92x92
stiffness matrix of the total GSM from North American (see Figure 5.4).
However, the DTA uses a GSM which has been modified in two respects:
1) the flight SM engine and bell was removed and replaced with a spaced
stack of steel plates which approximately duplicates the weight and CG
of the SM engine and engine bell; 2) the DTA SM is a stripped down ver-
sion of the flight hardware. Extensive ballast was added to the SM and
Command Module in order to match the flight GSM total mass, CG and roll
inertia. It is not known whether the yaw and pitch inerti'as of the DTA
CSM are significantly different from the CSM Structural Model used for
this analysis. It is also not known whether the DTA ballast was attached
so as to increase the overall stiffness of the SM. Since time and funds
did not allow generating a new DTA CSM mass and stiffness model, the
flight CSM mass and stiffness model was used with one change. The stack
of spaced steel plates used on the DTA to represent the SM engine and
bell are much stiffer than the equivalent flight engine hardware.
Therefore, a rigid transformation was made to lump the SM engine mass
and stiffness formerly collocated at station 3929.16 to the aft struc-
tural collocation point on the SM structure, located at station 3921.50
(see Figure 5.4).

5.1.8 ATM Spar/Canister Structural Model - The ATM Spar/Canister
stiffness model was generated by the MMC Stress Group (see Figures .5).
The mass model was generated by the MMC Weight Group based on DTA weight
data supplied by NASA/MSFC in document S&E-ASTN-SAE(71-48).

5.1.9 ATM Gimbal Ring Assembly GRA Structural Model - The ATM GRA
stiffness is included in the ATM Rack stiffness model, described in a
later section. The mass matrix for the GRA structural model was calcu-
lated by the MMC Weights group to reflect actual DTA weight and CG.
This 6x6 CG mass matrix was transformed in a least-squared best fit
manner to the 12 translation degrees of freedom assigned to the four
launch lock nodes on the ATM Spar/Canister mass model.

\

5 .1.10 ATM Solar Arrays, Stowed (ATM-SAS) Structural Model - The
ATM-SAS structural model was updated from a reduced 52x52 stiffness
matrix supplied by Sperry Rand Space Support Division in transmittal
memorandum SP-232-0579. A corresponding 52x52 diagonal mass matrix
was also supplied. The ATM-SAS model included the ATM-SAS backup
structure.

One vibration analysis of the ATM-SAS structural model was per-
formed, in the ATM-SAS local coordinates. Then the resulting mode
shapes and inertia lo'ading matrices were transformed by geometrical
transformations to the four bays of the ATM Rack. Thus, the DTA vi-
bration model assumes that the four ATM-SAS panels are identical. .
However, the DTA has one flight version panel, one prototype flight
panel, and two mass simulated ATM-SAS panels. By definition, the ATM-
SA'S vibration analysis structural model should represent the flight and
prototype ATS-SAS panels used on the DTA. However, the two mass simulated
panels used on the DTA ATM will naturally exhibit a different dynamic
response than predicted by this vibration analysis.
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5.1.11 Deployed ATM Rack Structural Model - The deployed ATM
Structural Model is based on a 160x160 free-free stiffness matrix pro-
vided by the MMC Stress Group in January 1971. This stiffness matrix
was collapsed to a 96x96 free-free stiffness matrix. The rollers and
locks stiffnesses were added and the entire Gimbal Ring Assembly stiff-
ness matrix was reduced to six degrees-of-freedom at the center. The
spar/canister is considered to be rigid. The four undeployed solar
arrays were also considered to be rigid. The ATM mass model was pro-
vided by the MMC Weights Group and formed into a 96x96 mass .matrix.
The masses .for the four undeployed solar arrays were rigidly trans-
formed to the six collocation points on the appropriate ATM bays re-
sulting in four 18x18 solar array mass matrices which were added to
the 96x96 ATM mass matrix. The ATM Rack mass model was updated by the
MMC Weights Group to reflect actual DTA weight and CG data.

5.1.12 Deployed DA Structural Model - The deployed DA structural
model is based on a 63x63 mass and stiffness matrix provided by McDonnell-
Douglas Corporation Transmittal Memorandum 646-E236-070771.

5.1.13 ATM Suspension System Structural Models - Configuration 6
is suspended by air springs in the axial direction at five locations.
Three of these are located at 120 degree intervals around the Base Ring.
The GSM is suspended from the aft SM structure while the ATM is suspended
at Bay 2. The point of suspension on the ATM was considered to be direc-
tly over the ATM center of gravity. Axial spring rates for each of the
five suspension locations are based on a natural frequency of 0.5 Hertz •
and the suspended weight. In addition to the axial springs, restoring
forces due to pendulum action were simulated by adding lateral springs
in both lateral axes 'at the points of suspension. For small deflections,
the lateral spring rates are equal to the suspended weight divided by the
pendulum length of each individual suspension point. The final spring
rates were assembled into five 3x3 grounded stiffness matrices. The
stiffnesses for the three Base Ring suspension points were rigidly trans-
formed to the aft OWS Forward Skirt centerline collocation point at sta-
tion 3100.0. The ATM suspension stiffness was transformed in a least-
squares manner and added to the ATM stiffnesses at the four corners of
Bay 2. The GSM suspension system was added to the CSM stiffness at
.centerline station 3921.5. Since adequate suspension system data were
not available at the time of this analysis, the pendulum length of each
suspension point was assumed to 180 inches and the radii from the center-
line to the Base Ring suspension points were assumed to be 150 inches. .
Suspension System Structural Model was updated. The ATM updated weights
and geometry data were supplied informally by NASA/MSC. The ATM suspen-
sion system was modeled as a double pendulum similar to the basic concept
used for the CSM suspension system. The upper pendulum consists of.only
a single pendulum bar which is 134.6 inches long and weighs 90 pounds.
The lower end of the bar interfaces at a tie point node located at
X = 3668.10, Y = 0.0, Z = -219.20, which is above the CG of the com-
bined ATM Rack, Spar Canister, GRA and the four ATM-SAS panels.

From the ATM Suspension System tie point, four turnbuckles (2 short
and 2 long) and associated shackles and adapter plates carry the suspension
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system load to the four corners of the ATM Bay 2. Local 2x2 stiffness
matrices for each of the four turnbuckles were calculated assuming that
each was a steel bar with ah area of 0.50 square inches. Direction
cosine transformations were then used to add each local turnb.uckle
stiffness matrix to those degrees-of-freedom of the ATM Rack stiffness
matrix.corresponding to the appropriate corners of Bay 2. . . ,

The upper end of the pendulum bar is pinned to the ATM air spring
beam and air cylinders. The ATM air spring beam and cylinders are only
.allowed to move vertically and have an approximate moving weight of 500
pounds.. The remainder of the ATM suspension hardware is involved in
the lateral pendulum spring calculations, with 491.3 pounds lumped at
the tie point node at station 3668.10 and another 121.35 pounds is
spread out to the four corners of Bay 2 on the ATM Rack.

The 0.5 Hz ATM vertical air spring is based on a vertical moving
weight of 25,390.8 pounds, which includes 1185.9 pounds to represent
30 percent .of the weight of the deployed DA, since only 70 percent is
supported by the Base Ring Suspension System. The upper pendulum
lateral springs, acting at the tie point node, are based on the 491.3
pounds upper pendulum weight, lumped at the tie point, plus 24,399.5
pounds for the lower pendulum. ,

The lower pendulum springs, acting at the combined CG of the ATM/30
percent DA/lo.wer part of ATM Suspension System, are based on 24,399.5 '
pounds and a lower pendulum length (tie point to CG) of 122.77 inches.
.There is no substantial ATM rack structure at the combined CG location
(X = 3545..3.3, Y = 0.0, Z = -219.20) so the lateral lower pendulum springs
were transformed in a rigid body manner to the lateral degrees-of-freedom
at the four corners of Bay 2 and of Bay 6.

A chec:k vibration analysis was also made of the free-free ATM rack,
mass loaded with the ATM Spar/Canister, GRA and four ATM Solar Arrays,
and grounded by the ATM suspension system mass and stiffness models.
The resulting first six rigid body modes are tabulated in Table 5.1.

5.1.14 GSM Suspension gystem Structural Model - The CSM Suspension
System Structural Model was updated. The basic suspension system model
was changed from a single pendulum analysis with a massless suspension
system to a more realistic double pendulum analysis which included the
weight and inertia added by the CSM Suspension System. Weight and geo-
metry data were supplied informally by NASA/MSC. The CSM Suspension
System consists of two 100 pound rigid bars 95.8 inches long which are
each pinned to 100 pound fittings on the SM aft end. These fittings
act at station 3939.2 and are considered to be located at +Y = 75.0,
Z = 0.0. The upper end of each of the rigid bars is pinned to a 150
inch long crossbeam which rests on the CSM plenum chamber air cylinders.
The beam plus the moving air cylinders weigh approximately 600 pounds,
with each of the six air cylinders weighing 23 pounds. A single 0.5 Hz
axial air spring acts at the center of the crossbeam, with a total sus-
pended weight of 30,772 pounds, of which 29,772 is the CSM. Because the
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six air cylinders are interconnected to a common plenum chamber, there
is no air spring restraint due to -the crossbeam rocking about the 0Z
axis. The mass and inertia effects of the crossbeam and air cylinders
was accounted for by lumping the beam and air cylinders to mass collo-
cation points at the center of each air cylinder plus the center and
ends of the crossbeam. The vertical links and SM fittings were collo-
cated at the ends of the crossbeam and at the pivot point of the fit-
tings. Finally, a rigid body transformation was written to transform
all of the suspension system mass collocation points to the aft end of
the GSM, at station 3921.50.

Lateral upper pendulum springs, based on a pendulum length of 95.8
inches, were assumed to act at each outboard suspension fitting of the
CSM. The ends of the crossbeam were assumed fixed in the Z direction.
Each upper lateral pendulum spring carried one half of 'the CSM weight
plus a SM suspension system fitting plus a load cell plus one-half of
the vertical support bar.

The lower lateral pendulum was considered to extend from the sus-
pension fitting pivot, at station 3939.2, to the CG of the CSM, at sta-
tion 3791.64, for a lower pendulum length of 147.56 inches. The lower
pendulum weight was the CSM weight. The lateral lower pendulum springs
were rigidly transformed to act at the two closest SM centerline struc-
tural nodes, located at stations 3921.5 and 3766.50. A-similar rigid
body transformation was used to transform the upper lateral pendulum
springs, acting at the outboard SM suspension fittings, to the center-
line SM node at station 3921.5. • .

A check vibration analysis was made of the free-free CSM grounded
by the air spring and the double pendulum springs. The. first six modes
and frequencies of this check run correspond to a rigid CSM restrained
by"its suspension system. These frequencies for the CSM suspension
system are listed and identified in Table 5.2.

5.1.15 Discussion of Pretest Model - The vibration analysis re-
flects, as closely as possible, the properties of the actual DTA.
However, some deficiencies in the model are known to exist and are
noted as follows:

a. The flight CSM structural model, modified in this analysis
to reflect use of a simulated SM engine and engine bell,
would be a reasonable simulation of the actual DTA if flight
type equipment and bracketry is used throughout the DTA CSM.
However, unless sufficient care is exercised in the locations
and method of attachment of all ballast used in the DTA CSM,
the detailed dynamic response of the vibration analysis model
and the DTA can be expected to differ, primarily at higher
frequencies.

b. This vibration analysis assumed that all four ATM-SAS panels
are identical and are representative of flight hardware.
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However, the DTA uses two ATM-SAS panels which are mass simulated
but not stiffness simulated. Again the local response of the DTA
and the analytical models can be expected to differ womewhat,
especially at higher frequencies.

c. The ATM Rack stiffness matrix includes the stiffness effects of
all four outriggers. However, the outrigger on Bay 2 on the
DTA is removed to make room for the ATM Suspension System hard-
ware. The stiffness effect of the removed outrigger was not
subtracted from the ATM Rack stiffness matrix because the neces-
sary free-free stiffness matrix for a single outrigger was not
provided. In addition, the stiffening effect of the outriggers
in the Orbit Configuration are probably not significant compared
to the main structure of the ATM Rack.

The total vibration model contains 630 net discrete degrees of
freedom. Briefly, the coupled modes analysis was performed>as follows:
The GSM and CSM suspension system were modally coupled to the MDA/STS/AM
which in turn was modally coupled to the "Main Beam" consisting of the
Base Ring Suspension System, Base Ring, OWS Forward Skirt, IU and FAS.
In addition, the ATM Spar/Canister and the four ATM Solar Arrays were
modally coupled to the ATM Rack and GRA. The ATM Rack was modally coupled
to the Deployment Assembly which, in turn, was modally coupled to the "Main
Beam" at the FAS interface. (It should be noted that the FAS,02 tanks
stiffness or mass were not changed as a result of the Launch Configuration
modal test which showed that these tanks respond analytically at higher
frequencies than the test article).

The final coupled modes analysis contained 208 modal degrees of
freedom based on the following component modes and cut-off frequencies:

Component No. Modes Cut-Off Frequency. Hz.

Main Beam 39 44.80
MDA/STS/AM 29 43.80
CSM 16 •' 49.00
DA 19 41.96
ATM Rack/GRA 31 44.97
ATM SAS, Bay 1 13 38.53
ATM SAS, Bay 3 13 38.53
ATM SAS, Bay 5 13 38.53
ATM SAS, Bay 7 13 38.53
ATM Spar/Canister 22 43.84>

The above component cut-off frequencies insure accurate coupled modes
for the test range of 0 to 20 Hz. Degrees-of-freedom and location
coordinates for the ten modally coupled branches are shown in Table 5.3.
A description of the first 78 modes of the analytical,model is provided
in Table 5.4 . The generalized mass contribution (CMC) for the total
analytical model is presented in Table 5.5.
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Prior to commencing the study to correlate the analytical and test
modes, the coupled analytical modes were reduced to the 193 degrees of
-freedom shown in Table 5.3. The resulting analytical modes were then
re-normalized in the same fashion and with the same mass matrix as the
test modes. The re-normalized analytical modes were plotted (two-dimen-
sional) and GMCs were, determined. Table 5.,4 contains brief descriptions
of the first seventy-eight coupled analytical modes. The column headed
"Generalized Mass" in Table 5.4 provides an indication of the adequacy
of the representation of the original model by the reduced modes and
reduced mass matrix. That is, if the representation were entirely ade-
quate, the generalized masses would be unity for each mode. As can be
seen, modes involving the ATM components are not well represented by the
reduced system. This is attributable to a basic lack of ATM instrumenta-
tion, resulting in an insufficient number of DOF's in the ATM components.
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Figure 5.1 Skylab A Orbital Configuration (Configuration 6)
Test Setup Modal Survey Tests
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AIR SPRING
NO. 1

AIR SPRING NO.3- -

AIR SPRING
NO. 2

Figure 5.2 3ase Ring/OWS Forward Sktrt/IU/FAS Model for Configuration 6
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Figure 5,3 MDA/STS/AM Model
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X (UNDEPLOYED)

BAY 5

BAY 2

BAY 1

Z (UNDEPLOYED)
X (DEPLOYED)

^-^38

Y (UNDEPLOYED & DEPLOYED)

Z (DEPLOYED)

Figure 5.4 ATM Rack Model
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Figure 5.5 ' Axially Docked C:iM
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Table 5. 1

IDENTIFICATION OF FIRST SIX NATURAL

FREQUENCIES FREE-FREE CSM ON DTA GSM SUSPENSION SYSTEM

Mode No. Frequency, Hz Comments

'1 .1863 1st simple pendulum mode, mostly
Y motion.

2 .1867 1st simple pendulum mode, mostly
Z motion

3 .4363 . 9 rotation, .mode, due to pair of
lateral pendulum springs at outer
skin.

4 .4997 ' Axial mode, on 0.5 Hz airspring
5 .6925 . 2nd pendulum, mode, Y direction

(primarily 9 rotation about nearly
stationary c6)

6 .7021 2nd pendulum mode, Z direction
(primarily 9 rotation about nearly
stationary C&)
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Mode No.

1
2

4
5

•Table 5.2

IDENTIFICATION OF FIRST SIX NATURAL

FREQUENCIES FREE-FREE ATM ON DTA ATM SUSPENSION SYSTEM
t

CommentsFrequency,Hz

0.0000
.1984

.2033

.5190

.7546

, .7749

9 rotation with no restraint
1st simple pendulum mode, primarily
Y motion.
1st simple pendulum mode, primarily
Z motion.
Axial mode, on 0.5 Hz air spring.*
2nd pendulum mode, Y direction
(primarily 0 rotation about nearly
stationary CG)
2nd pendulum mode, Z direction
(primarily 9 rotation about nearly
stationary C?)

•'•NOTE: This check run was made without any weight from the deployed
DA. However the CSM Suspension System air spring is based
on a suspended weight which includes 30 percent of the DA.
Note that the 4th coupled mode for the total DTA is an axial
suspension system mode at 0.489 Hz. .

L-
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Table 5.3

ORBIT CONFIGURATION MODAL S U R V E Y
DEGREE OF FREEDOM TABLE FOR MODE SHAPES AND DISCRETE MASS MATRIX

Z DESCRIPTION

O.OOC BASE PNG/TWS SKIRT
0.000 OWS/IU INTERFACE
C.OOC IU/FAS INTERFACE

4'6.683 FAS 02 BOTL1.+Y +7
81.473 FAS 02 BOTL2.+ Y + 2
81.473 FAS 02 BOTL3.!-Y +Z
46.683 FAS 02 BOTL4 . -Y •» 2

-•1.6.683 FAS 0? 80TL5.-Y -Z
-81.473 FAS 02 BOU6.-Y -2

0.000 F A S / A M / D A IF." *Y
116.OSC F A S / A K / D A IFt *2

0.000 F A S / A H / D A IF. -Y
-8i.l488 F A S / D A IF. -Y -Z
116.060 FAS/ -AM IF* -Z
-83.D143 F A S / D A IF. +Y -Z

0.000 AM TUNNEL/SHEAR UB
0.000 AM TUNNEL/STS IF
0.000 MDA/STS INTERFACE
0.1300 HDA CONE/CYL ITPFC
0.000 N2 TANK. *Y. LOWER
O.J30C N2 TANK. ?Y. UPPER

69.350 N2 TANK. *Z» LOWER
•69.050 N2 T A N K * *Z. UPPER

-69.050 N2 TANK -Z. L O W E R
-69.050 N2 TANK. -Z» UPPER

0.300 CM. FWD BULKHEAD
O.OOC CM. AFT BULKHEAD
0.000 SM. FWD BULKHEAD
0.000 SM. AFT BULKHEAD

-90.000 LOWER D LATCH, DA
-11.85C L O W E R +Y TRUNNION
-11.950 LOWER -Y TRUNNION
100.OOC EREP PACKAGE C.G.

•252.500 ATM PN 6*7 IF,OUTR
•252.500 ATM PN 1.E.IF.OUTR
•252.500 ATM PN 8.1 IF.OUTR
•252.500 ATM PN 2.3 IF.OUTR
•158.000 ATM PN S.7 IF.lNNR
•158.OOC ATM PN 1.5 IF.INNK
•15P.OOO ATM PN 9.1 IF.INNR
158.J30C ATM PN 2.2 IF.INNW

•lai.9925 CMC. -Y SIDE
•181.995 CMG. + Y SIDE

-182.000 CMC. *X SIDE
207.490 ATM S A S . PN 1
207.490 ATM SAS. PN 3
207.49C ATM S A S . P,«-: 5
207.490 ATM SAS. PN 7
240.709 SPAR CENTER
240.709 G R A / C A N CENTER

NODE
NO

1
2
3
4
5
6
7
8
3
10
11
12
13
14
15
IS
17
18
.9
20
21
22
23
24
25
26
27
23
29
30
31
32
33
34
35
39
3»7
38
39
40
41
42
43
4/T
•45
46-
47
48
4R
50

. ox

1
7
13
19
22
25
28
31
3*
37
40
43
46
49
52
55
61
t~r.
73
79
82
85
88
91
9.4
97
103
1091
115
121
12.4
127
130
133
136
139
142
145
148
151'
154
157
163
169
175
177
179
181
183
180

DEGREES OF FREEDOM
Dt

2
8

} 14
;?o
;?3
26
;?9
3?
35
33
41
44
47
50
53
56
62
63
74
en
83
83
89
92
95
98
1C4
110
116
122
125
123
131
134
137
140
142
146
149
152
155
158
164
170
176
178
18P
182
184
189

D2

3
9
15
21
24
27
30
33
36
39
42
45
48
51
54
57
63
69
75
81
84
87
90
93
96
99
105
111
117
123
126
129
132
135
138
141
144
147
150
153
156
159
165
171

185
190

TX

4
10
16

58
64
70
76

100
106
112
118

160
166
172

186
191 ,

TY

5
11
17

r

59
65
71
77

101
1C7
113
119

161
167
173

187
192

TZ

6
12
18

60
66
72
78

102
108
114
12C

162
168
174

1R3
.193

310C
3223
3258
3316
3316
3316
3316
3316
3316
3341
3341
3341
3355
3341
3341
3282
3394
3441
3605
3297
7348
3297
7348
3297
3348
3678
3751
31756
3921
3454
3532
353?
3416
3479
3517
3572
7E1C
3479
3517
3572
36 1C
J545
3545
3610
359S
3599
349C
3490
3545
3545

X

.00

.000

.555

.555

.555

.555

.555

.555

.555

.615

.615

.615 -

.700

.615

.615

.765

.615

.765

.COO

.665

.365

.665

.365

.665

.365

.000

.600

.500

.500

.765

.915

.•915 -

.765

.094

.701

.299

.906

.094

.701

.299

.906

.000

.000

.906

.9301

.9301

.0699

.0699

.000

.000

LOC

r
0
r

81
46

-46
-81
-81
-46
116

C
116
-62
0
83
0
C
0
0

69
69
0
C
0
C
0
C
0
C
0

113
113

G
27
-65
65
-27
27
-65
65
-27
-65
67
0
54

-54
-54
54
C
0

AT10N
Y

• C.OC
.0-00
.OOC
.473
.683
.633
.472
.473
.683
.050
.cue
.060
.346
.000 •
.0143
.OOC
.coc
• OOP.
.coc
.050
.C5C
.onn
• roc
.000
.coc
.QUO
• ccc
.000
.coo
.000
.5CC
.500
.CDC
• ?99 •
.906
.906 •
.299
.'99 •
.506
.906
.299
.906 •
.834
.0130 •
.93C1
.9301-
.9301'
.9301-
.COC •
.oon -
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Table 5.5

ORBITAL CONFIGURATION ANALYTICAL MOOES CMC SUMMARY

MODE
NO.

1
2
3
it
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
3<»
35
36
37
38
39
4C
41
42
43
44
45
46
47
48
49
50
51
52

FREQf
HZ.

.28

.29

.36

.48

.50

.51
1.37
1.57
1.96
1.99
2.66
3.25
3.52
4.93
5.32
5.76
6.03
6.79
7.04
7.70
8.03
8.51
8.62
8.69
8.89
8.95
9.03
9.10
9.27
9.36
9.40
9.59
9.71
9.90
9.95
10.28
10.66
12.63
12.75
12.91
13.01
13.28
13.40
13.52
13.70
13.78
13.97
14.08
14.47
14.52
14.61
14.62

CMC
COX)

.0048

.0055

.0032

.*773

.0598

.2126

.3078

.1170

.2668

.4857

.0118

.0048

.0135

.0508

.1210

.1185

.3245

.1435

.1175

.1286

.052?

.4984'

.0293

.4612

.2604

.5106!

.0194

.0865

.0243

.9286

.8793

.0590

.0319

.1157-

.0646

.0721

.0387*

.0550.

.0520

. 070T

.1315

.1126

.0173

.4343

.3048

.2541

.0103

.0329

.0270

.4989

.5001

.5109

CMC
<OY)

.9919

.0021

.5771

.0334

.6076

.2949

.0020

.7103

.4774

.0569

.2920

.3387

.0200

.4831

.6200

.5725

.0541

.5559

.0639

.0191

.0529

.5012

.7239

.5004

.5858

.4234

.2259

.5011

.4857

.0297

.0402

.4410

.5053

.2329

.4980

.2458

.1059

.5142

.3825

.1815

.6245

.2655

.1296

.1821

.2764

.3779

.5582

.5079

.0559

.4973

.4999

.4591

CMC
(OZ)

.0002

.9887

.1128

.0811

.2807

.4598

.6548

.0309

.1136

.4053

.0265

.1054

.9190

.1396

.1121

.0077

.4456

.1390

.6948

.8331

.0013

.0002

.2074

.0377

.1219

.0324

.1620

.3482

.4782

.0320

.0346

.4807

.4602

.1993

.3705

.2473

.8491

.1274

.1231

.6398.

.1475

.4298

.7433

.0936

.2319

.2477

.2820

.4104

.8911

.0022
-.0005
-.0002

CMC
CTX)

.0006

.0015

.3062

.0001

.0009

.0000

.0019

.0761

.0794

.0078

.6490

.5412

.0042

.0630

.0581

.0116

.0011

.0911

.0053

.0013

.0045
. .0001
.0387
.0005
.0263
.0036
.5923
.0454
.0014
.0002
.0000
.0167
.0019
.0108
.0522
,4332
.0033
.2793
.4164
.0764
.0166
.0212
.0434
.0532
.0312
.0154
.1315
.0294
.0031
.0008
.0000
.0006

CMC
(TY)

.0000

.0021

.0001

.0053

.0165

.0271

.0335

.0000

.0034

.0385

.0002

.0000

.0431

.0006

.0045

.0003

.1740

.0065

.1167

.0178

.0009

.0000

.0003

.OOC2

.0028

.0290

.0003

.0121

.0078

.001*3

.0043

.0020

.0003

.0006

.0021

.0013

.0028

.0062

.0130

.0278

.0556

.1376

.0574

.1350

.0459

.0179

.0037

.0028

.0226

.0003

.0005

.0285

CMC
(TZ)

.0025

.0000

.0007

.0028

.0345

.0156

.0000
,0657
.0594
.0059
.0205
.'0099
.0001
.2430
.0843
.2895
.0006
.'0640
.0017
.10001
.8878
. 0032
.0004
.'0000
.0028
. 0011
.0002
.0067
.0026
.0053
. 0415
.0006
• 0004
.4407
.0126
,0003
.0001
.0178
,0131
.0016
.'0242
.0333
. 0091
.1018
.1099
.0870
.'0144
.'0166
.'0002
o0006
.0000
.0010
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Table 5,5 .(CONTINUED)

ORBITAL CONFIGURATION ANALYTICAL MOOES CMC SUMMARY

MODE
NO.

53
5«*
55
56
r>7
r>a
i.9
to
61
62
63
6<>
6!»
S<>
6V
6t(
69
70
74
7?.
73
7<«
75
76
77
78
79
60
81
82
83
8<*
85
86
87
88
89
90
91
92
93
9t*
95
96
97
98
99

100
101
1C?
1C3
10«*

FREQ,
HZ,

!<».&«»
1U.97
15.56
15.57
15. &i»
15.69
16.15
16.57
16. ec
16.95
17.17
17.2C
17.27
17.31
17. 5<*
18.01
18.32
18.35
16.65
18.75
18.80
18,82
18.85
18.88 •
19.51
19.53
20.07
20.19
20.1*6
20.57
20.58
20.61
20.65
21.25
21.<»7
21.68
21.78
22.06
22,22
22.35
22.65
23.09
23.19
23. M
23.63
2i». 02
2<*.2f
2<».29
2<».82
25.15
25.60
25.67

GMC
(0X8

.̂ 795
.03<»8
.31*57
.0090
.0096
.0117'
.015&
.01*99
.1571
.0251
.i*97t*
.5001
.1*712
.3233
.02M
.5485
.361̂ -
. 3i*12
.*569
.1*512
.2167
. 3766
.5161*
. Ollt»
. 3551
.2600
.072<*
.0117
."250 f
.3175
.3736
.3582
.3655
.7<*31
.i*72<»
.2<*85
.3213
.1*305
.0573
.3732
.2957
.3976
.7053
.1286
.2<*85
.8577
.*978
, 8659
.277?
. 0575
.5Q1»<»<
.7959

GMC
(DY)

.5158

.8703

.1372

.0015

.921*6

.01*1*0

.0169

.1*226

.1*571*

.9211

.1*998

.5001

.1*773

.«*216

.0181

.2859

.5521

.2319

.5<*Q9

.W217

.3307

.01*07

.271*6

.9506

.031*7

.2667

.0931
,fl638
.3762
.1*221
.<*25i«
,<*156
.1*123
.0692
.2038
.191*8
.15i»7
.2477
.-17 1»7
.3150
.3032
.1329
.1^*11*
.2615
.5337
.0200
.3210
.0761
.3519
.0897
.2117
,.1060

GMC
(OZ)

.0008
,0395
.111*1
.9815
.0567
.931*5
.9587
.01*17
.0315
,G2<»7
.COC'i*

- . 0 0 1 U
.0510
.0393
.9198
.1591*
.0761
.0608
.0979
.0725
.0360
.0208
.0112
.0153
e07C2

.0395

.8106

.0863

.0336

.0203

.Gt*<*l

.0731

.0592

.0657

.1017
,0i»&3
.1130
.1009
.0138
.1810
.0331
.0761
.1331*
.0956
.1523
.0873
.0188
.0082
.0675
.0266
.0561
.0<*09

GMC
(TX)

.001£*
»Cli*8
.0079
.0005
.0007
.0006
.093**
.M87
.3053
.0205
.0006

- .0007
.0003
.1611*
.0030
.0037
.0030
.0657
.001*8
.Oi*i*i*
'.1011*
.GG98
.0529
.02Q1*
.0031*
.1390
.0139
.0256
.2265
.2289
.1220
.1317
. li*9i»
.0990
.2133
.C837
.1510
.0728
.0799
.0892
,3065
.0899
.00<«3
»2697
.0567
.0171*
.1030
.0253
.2363
.82QO
.021*8
.0111

GMC
(TY)

.0023

.0052

.3925

.0071*

.0059

.0091

.0051*

.0579

.01*53

.0002

.0000

.0009

.0001

.0521

.031*9

.0023

.001*1*

.2692
-.0015
• 0089
.2856
.5355
.1000
.0001
.0062
.2912
.0082
.0008
.01*38 ,
.0055
.0332
.0160
.0105
.000<*
.0063
.0723
.0209
.0357
.01*22
.0352
.051*3
.081*1
.0126
.20Ci*
.0031
.0169
.1521*
.0197
.0152
.0019
.0032
.0055

GMC
(TZ)

.'0002

.'035<*

.0027

.0001

.'002<*

.0002

.0000

.0092

. OG3<»

.DOS'*
,0017
. 0002
.'0001
.0023
.0001
. 0002
.0030
.0312
.0010
.0013
. 0297
.'0166
.031*9
.0021
.•0001*
.0036
.̂ 0018
.0116
.0192
.0057
.0015
.0031*
.0031
.'0026
,0025
.351*5
. 2331
. 112«*
.6322
.0065
. 0067
. 2193
.0031
.01*1*3
. 0056
. 0008
.0071
.001*9
.0519
,001*3
.1998
,'0**36
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5 .2 Discussion of Test Modes

Thirty valid test modes were acquired during the Orbital Configura-
tion modal survey. A list of these modes arranged in order of ascending
frequencies is presented in Table 5.6. It will be noted that test run
no. 400 has been deleted because it contained invalid data in the ATM
area of the structure.

It can be seen in Table 5 .6 that twenty-five unique modes were ob-
tained ranging in frequency from 0.31 Hz through 17.01 Hz which represent
all the major resonances which could be identified in the'O to 20 Hz test
range. The remaining five modes represent the results of efforts to re-
tune some of the original modes to yield better orthogonality between
modes. The reduction and normalization of data, modal characteristics
and purity of the Table 5 .6 modes are discussed below.

5 .2.1 Reduction of Data - Reduction of data consisted of "trans-
lating" the acquired quadrature data for each test mode to specific
collocation points using rigid body or "least square" mathematical
transformations. The specific collocation points correspond to points
selected from the pretest modal vibration analysis. The degrees of
freedom corresponding to the reduced data and identical to the model
DOF's are shown in Table 5 .3. It will be noted that the Tables .3 data
define 193 reduced degrees of freedom but the original quadrature test
data were for 200 degrees of freedom. This is explained as follows:
The six accelerometers located on the outboard ends of the ATM outriggers
were deleted for purposes of defining mode shapes. The primary purpose
of these accelerometers were to provide reference accelerations for the
six force shakers located on the outriggers. The outrigger accelerometers
could not be'utilized in a manner which would provide useful additional
shape information. In addition, data from the five accelerometers lo-
cated on the ATM Canister were deleted (three on the sun end, two on the
MDA end). Instead of defining Canister motion separately, a new six de-
gree of freedom collocation point was defined at the same geometrical
location as the Spar Center. This point was defined as the GRA (Gimbal
Ring Assembly)/Canister Center with motion given by the six accelero-
meters located on the GRA. The Spar Center point has five degrees of
freedom defined by the five accelerometers located on the top and bottom
of the Spar. The data deletions mentioned above total eleven resulting
in 189 basic degrees of freedom. Since the ATM solar array uniaxial
accelerometers were mounted in the plane of each folded array, trans-
formation of each accelerometer to launch vehicle coordinates (X and Y)
was necessary resulting in an additional four degrees of freedom bringing
the total for reduced data to 193.

5.2.2 Normalization of Data - After reducing the data as described
above, the results were normalized to a 193 by 193 discrete mass matrix.
The normalization was performed in a manner which yielded unity generalized
mass for each mode. This normalization technique is convenient for orthog-
onality calculations, determination of generalized mass contributions (GMCs)
and comparison with analysis. The 193 by 193 mass matrix was derived from
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analytical mass matrices which were available for each of the various
structural components comprising the analytical model. The method for
deriving the mass matrix consisted of static collapse of the component
matrices to the 193 degrees of freedom contained in Table 5.3. The
results were merged to form the final 193 by 193 matrix. .Subsequent
calculations involving this matrix and the mode shape data has shown
it to have inadequate definition in the area of the ATM. This is at-
tributed to a basic lack of definition of ATM motion caused by the limited
number of accelerometers available for use on the ATM during testing.
Since it is an extremely complex structure, the instrumentation required
to define ATM motion adequately would have gone beyond practical limita-
tions or resulted in sacrifices in other important areas of the structure.

5 .2.3 Orthogonality of Test Modes - In order to determine the
relative purity of each test mode and'determine if a re-tuned mode yields
a purer mode than the original tuned mode, orthogonality calculations were
performed. The results represent the standard triple matrix product of
normalized modes and the kernel mass matrix described above. This triple
matrix product yields a 30 by 30 symmetrical orthogonality matrix con-
taining a unity diagonal with the off-diagonal terms representing the
amount of inertial coupling between modes as a fraction of the unity
generalized masses. When multiplied by 100.0, the numbers in this matrix
can be thought of as percentages. A summary of the data is shown in
Table 5.7. The Table 5.7 data indicates generally excellent orthog-
onality between modes. Mode ISA exhibits excessive coupling with other
modes (particularly Mode 14A) and is obviously not well isolated enough
to be considered for use in correlation studies. Mode 02A (suspension
system mode) contains apparent bad data at two accelerometers on the
Base Ring/OWS interface (sequence nos. 1 and 3) causing apparent coupling
with other modes. However, Mode 02A is a well-tuned mode. It should
also be noted that mode 20A was not well isolated from mode 19A (32.4%
coupling).

In the five cases of re-tuned modes, the orthogonality results
show:

a. mode 06B is a purer mode than 06A,
b. mode 10A has slightly higher average coupling but slightly

lower standard deviation than mode 10B, and is therefore
slightly more well tuned,

c. mode 13B is purer than mode 13A,
d. mode ISA is purer than mode 18B, ,
e. mode 22B is purer than mode 22A.

Therefore, modes 06B, 10A, 13B, ISA and 22B will be used for corre-
lation studies.

5.2.4 Characteristics of Test Modes - There are twenty-five unique
modes contained in the thirty test runs given in Table .6. The unique
modes are briefly described in Table 5.8. Most of the modes are highly
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coupled modes involving motion throughout the structure while a few do
have dominant local motions. GMCs based on the 193 by 193 discrete mass
matrix were determined for each of the 193 degrees of freedom contained
in Table 5.3 for every test mode. In addition, GMCs for the major com-
ponents comprosing the configuration were calculated. The major compo-
nents are considered to be the following:

a. Base Ring/OWS Skirt/IU/FAS,
b. 6-FAS 02 Tanks,
c. MDA/STS/AM,,
d. 6-AM N2 Tanks,
e. Command/Service Module,
f. Deployment Assembly,
g. ATM Rack with CMGs and Solar Arrays,
h. ATM Spar,
i. ATM GRA with Canister.

Table 5.9 shows a summary -of GMCs for each of the thirty test modes as
an aid in determining the general nature of the test modes. It should
be noted that the GMCs for Mode 02A are distributed improperly due to
the bad accelerometer data previously noted. A redistribution would
show most of the CMC concentrated in the X-Y Plane. Two-dimensional
plots for each of the thirty mode shapes are presented in Volume II.
The Volume II plots represent the translated and normalized test quad-
rature data.

As opposed to the Launch Configuration test modes, the Orbital
Configuration test modes do not exhibit local motions relative to the
various component centerlines. However, these modes do exhibit char-
acteristic large relative deflections in most degrees of freedom in
the CSM from the MDA interface forward through the CM/SM interface.
These deflections occurred in the suspension system modes (Modes 01A
and 02A) as well as the higher frequency modes.

5.3 Correlation of Test Modes with Analytically Predicted Modes

The following paragraphs present the methods, supporting data and
the results of the study to correlate the test modes.

5.3.1 Methods of Correlation - Test and analytical GMCs and two-
dimensional mode shape plots were compared. However, since the Orbital
Configuration test modes did not indicate significant local deformation
which were not measured (as was not the case for the Launch Configuration)
two supporting correlation techniques became available: the first of
these is the cross-orthogonality check in which a triple matrix product
is formed using the transpose of the normalized test modes as the pre-
multiplier and the reduced set of normalized analytical modes as the
post-multiplier of the 193 x 193 mass matrix. The results of this triple
product contains elements equal to or less than unity, indicating the de-
gree of similarity between the analytical modes and the test modes. If a
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given analytical mode tends to correlate with a given test mode, the
cross-orthogonality check will indicate this by showing a cross CMC
approaching unity. The second additional method consists of deter-
mining a best fit of analytical and test GMCs over the entire mode
shape in a least-squares sense. This is done by findirig, for a given
test mode, the sum of the squares of the differences between the test
and analytical GMCs for every degree of freedom. The analytical mode
for which this sum is a minimum will be the mode which best fits the
test mode CMC distribution. It should be noted that the latter methods
are employed only as a guide to correlation and must be used in conjunc-
tion with direct shape comparisons and engineering judgement.

5.3.2 Correlation Results - Using the methods outlined above,
twenty-four of the twenty-five unique test modes were correlated with
analytical modes. Mode 15A is not correlated due to poor orthogonality
characteristics discussed in Section 5.2. In general, the correlations
are quite clear except for modes which contain significant FAS tanks
responses which tend to make the correlation uncertain due to the known
differences between the analytical and DTA FAS tanks. Table 5.10 shows
a summary of the correlation results for the twenty-four unique test
modes. Table 5.11 presents the cross-orthogonality and least-squares
CMC fit results. The latter table shows both the "best" and "next best"
correlations using these methods. It can be seen that the two methods
agree in many cases.

5.3.3 Discussion of Correlation Results - In most cases, mode
shape correlations are excellent. However, as Table 5.10 shows, the
test and analytical frequencies vary in agreement. That is, in some
cases, frequency differences are significant while in other cases they
are not. For first vehicle bending modes, the analytical frequencies
vary from 4.6 percent to 18.1 percent higher than test frequencies.
The first vehicle axial mode analytical frequency is 6 percent higher
than test while the second vehicle axial mode analytical frequency is
14.7 percent higher. The first vehicle torsional mode analytical fre-
quency is almost 21 percent lower than test. All the modes mentioned
above involve significant motions throughout the entire structure.
Hence, it is difficult to determine with certainty at this point which
individual components contain modeling deficiencies which would result
in the above frequency differences. In most of the modes there are
significant relative motions across the CSM axial port area and across
the CM/SM interface. Hence, these areas are suspect.

The FAS oxygen tanks exhibit response characteristics similar to
those observed during the Launch Configuration test. That is, the
tanks respond analytically at frequencies higher than test frequencies
(see Figures 5.6 through 5.8). '

The ATM model appears to correlate well with test although there
were not significant local deformations of the ATM in the test fre-
quency range.
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It can be seen in Table 5.10 that the vehicle second torsional
mode obtained during test (Mode 18A) is correlated with analytical mode
39 which is actually a third torsional mode. The analytical second
torsional mode is mode 36 which occurs at 10.28 Hz. However, the mode
39 correlation with mode ISA is the best correlation which could be
found. The shape discrepancy leads one to suspect that the torsional
stiffness across the CM/SM interface is modeled too softly. The cor-
relation of the vehicle first torsional mode also indicates this appa-
rent modeling deficiency.

5.3.4 Conclusions - As a result of evaluating the Orbital Configura-
tion modal survey test data and correlating these data with the best
available corresponding analytically derived data, the following con-
clusions were reached:

a. twenty-five unique test modes were acquired which represent
all identifiable major structural resonances in the 0 to 20
Hz test frequency range; .

b. the quality of the test modes is excellent with only one mode
exhibiting poor orthogonality characteristics;

c. correlations of the test and analytical mode shapes are excel-
lent. However, some significant differences in test and analy-
tical frequencies were noted and required further, more detailed,
studies in order to pinpoint the sources of these differences.
Stiffness modeling in the areas of the CSM axial port and the
CM/SM interface are suspected to be deficient, however, due to
the nature of the test modes, other structural areas may be
involved. • . *
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Table 5.6

SKYLAB ORBITAL CONFIGURATION MODAL SURVEY TEST

VALID TEST RUNS ARRANGED IN ASCENDING FREQUENCY- ORDER

MODE
NO.

1
2
3
4
5
6
7
8
9
10
*11
12
13
14
15
16
17
18
19
20
21
22
23
21
25
26
27
28
29
30

MODE
NAME

CIA
02A
03B
04A
05 A
06A
C6B
Q7A
C8A
09A
IDA
1DB
11A
12A
13A
13B
14 A
15A
16 A
17A
18A
18B
19A
20A
21A
22B
22 A
23A
24 A
25 A

RUN
NO.

333
336
611
378
3*6
434
610
431
452'
443
482
619
536
574
491
667
474
600
347
549
526
663
586
627
633
654
506
643
638
499

FREQ. .
HZ.

0.31
0.31
1.31
1.43
1.66
1.72,
1.74
2.51
3.06
4.10
4.50
4.55
5.03
5.86
6.25
6.36
6.73
7.59
8.85

11.59
12.65
12.87
13.30
13.68
14.55
15.40
15.78
16.20
16.53
17.01

COMMENTS

RE-TL'NE OF MODE 06A

RE-TUNE OF MODE IDA

RE-TUNE OF MODE 13A

RE-TUNE OF MODE 18A

RE-TUNE OF MODE 22A



5-29

O ,J p ^ ^ ^ p f ^ ^ . - i ^ p t N l p c ^ e v J O ' - i c ^ ' - i o O ' - J O ^ i o b ' ^ i - i i - i i ^ S

•-3 W S
f w Q O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O

O 2
o

H
.-. Z
O U

y
Ow • f ^ ^ ^ ^ p p p ^ ^ ^ ^ i - i O r - H o O t - i i - i o e ^ c s i t - i c v i e v i c v i c v i c v j e s i c j p s i

CO
4J
I-l
3 Z

% OiMH
Cd ^ H Z

n 5
(0
c
o
00o

W Z H
M O H Z

° "• PM oen

I <u

JB

4J
CO
01
H

«4-l

O

>%(-1
to

en
g
O O
•5T1 ^P ^2- G*~ <-*

O H
fa i-l fJ
O A. P^

c I

S

Q) -
t-H

•8
H

C/i

ua
M
*J

Ŝ3
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Table 5.9

ORBITAL CONFIGURATION TEST MOOES CMC SUMMARY

MODE
NO.

01A
0 2 A
038
0 4 A
05A
06A
068
0 7 A
08 A
09A
I D A
106
l iA
12A
13A
138
1VA
15A
16A
1?A
ISA
186
19A
2 0 A
21A
22B
2aA
25A
2 4 A
25A

\

FREQ,
HZ.

.31

.31
1.31
l.<»3
1.66
1.72
1.74

. 2.51
3.06
4.10
4.sc
4.5t>

5.03
5.86
6.25
6.36
6.73
7.59
8.85

11.59
12.65
12.87
13.50
13.69
14.55
15. 4L
15. 7H
16.20
16.53
17.01

GHC
( O X )

.0106

.2027

.3567

.2205

.1138

.3625

.4395

.0331

.0596

.021 5

.1528

.1528

.3596

.C509

.0737

.056^

.03t»l

.0315

.8781

.1333

.C320

.0276

.0375

.011*6

.0079

.1503

.2703

.19<*6

.2824

.8257

CMC
( O Y )

.0171

.2219

.0026

.6185

.6374

.1600

.0245

.5621

.0182
.053<*
.475?
.W72
.0176
.62i»6
.0510
.0415
.4S90
.4499
.0139
.583C
.0723
.2459
.7573
.•.335
.6269
.4681
.39»*9
.0932
.5188
.0568

GMC
( D Z )

.9559

.3995

.6142

.0641

.0946

.3210

.4927

.0983

.8630

.0401

. 18 4 C

.187U

.4199

.2016

.697C

.7615

.3666

.33J4

.0427

.3838

.0739

.0812

.19J2

.4936

.1060

.2327

.2322

.6228

.6792

.0952

GHC
C T X )

.0009

.0016

.0004

.0524

.1222

.0299

.0011

.2573

.0003

.8755

.1449

.1394

. 0002

.025-*

.0137

.0096

.0457

. .712

.0012

.0195

.8192

.6278

. J 0 8 1
'. w 0 4 9
. 3273
.0957
.0352
.-,239
. J119
.3032

GHC
( T V )

.0062

.0702

.0247

.0010

.0015

.0292

.0384

.0001

.056c

.0001

.0010

.0306

.2007
o O O D f c
.1630
.1307
.0035
.0023
.0029
.0050
.0013
.0329
.0107
.0475
.0061
.0068
.0395
.0591
.0210
.0044

GMC
( T Z )

.0092

.10 40

.0013

.0434

.0605

.097<»

.-00 38

.0493

. DO 26

.0094

.0420

.0430

.0021

.0969

.OC17

.0007

.0611

.0147

.0613

.0055

.0013

.0147

.026?

.0056

.0239

.04^5

.0379

.0065

.0166

. 014b
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5.4 Correlation Improvement Methodology

5.4.1 General Approach - A list of the literature reviewed in
search of a suitable method to improve correlation between experimental
and theoretical results is presented in the Reference Section of this
report. Most of the referenced methods involve computations using meas-
ured amplitude data and result in a model limited in size to the number
of degrees of freedom measured in test. They also require the existence
of a compatable mass matrix that is orthogonal to the measured data.
Hall* proposed a method of modifying existing detailed analytical models
to achieve the desired correlation, but his approach also requires direct
computations using measured amplitude data. It was felt that valid Sky-
lab modeling results could not be obtained using any method which depends
on measured modal amplitude for the following reasons:

a. 630 degrees of freedom (DOF) in the analytical model were judged
necessary for good fidelity in loads calculations. Only 200 DOF
were measured;

b. it was not possible 'to derive a test compatable mass matrix that
adequately represented the Skylab Launch Configuration, kinetic
energy distribution in all areas of the analytical model;

c. much of the measured amplitude data contained local effects
which could not be properly accounted for.

In order to minimize these shortcomings, a method to improve corre-
lation between the Skylab experimental results and the theoretical model
was developed which relies heavily on measured frequency data. A de-
tailed description of this method is presented in "Dynamic Test Reflected
Structural Model Methodology Report", published in December 1972. The
methodology presented in this section is limited to a brief discussion
of the frequency algorithm that has been developed and to discussion of
its application to the Skylab Orbit Configuration test results.

5.4.2 The Frequency Algorithm - Theoretical mode shapes and fre-
quencies of the pretest model were obtained from the solution of the
general eigenproblem,

o- (i)

where subscript i refers to the ith mode.

* Linear Estimation of Structural Parameters from Dynamic Test Data
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It is assumed that theoretical mode shapes and frequencies of a
model that correlates with test results can be obtained from the solu-
tion of the eigenproblem,

o

where the matrices [mj and [kj are the mass and stiffness of subcomponent
elements whose respective sums produce fM^ and DO-lcf j are scaling fac-
tors which must be determined in order to obtain both eigenvector and
eigenvalue correlation with test results. It was shown in the Dynamic
Test Reflected Structural Model Methodology Report that scaling factors
which produce eigenvalue correlation in all modes would -also produce
eigenvector correlation. This phenomenon led to the development of a
Taylor's series expansion of the theoretical eigenvalues about the pre-
test values as a function of the scaling factors to obtain an expression,
from which those factors can be determined. The first order approxima-
tion of this expansion is,

Cxi
S

(3)

where subscript (e ) refers to experimental data and subscript (o) refers
to the initial, or pre-test, data. Each row of the matrix of equations
represents a theoretical mode for which is assumed that corresponding
experimental data is available and the derivative with respect to each
required scaling parameter may be determined. Ideally, when subcomponent
detail is sufficient to produce as many scaling factors as there are modes,
the solution from Equation (3) is

' (I (4)

In practice, this requirement will not be satisfied, nor will experimental
data be determined for all modes. However, a least-squares solution for
( £ fis possible when Equation (3) contains more modes than scaling fac-
tors. Or, if the Taylor's series expansion of the ith theoretical eigen-
value is dominated by a single scaling factor, $j, an approximation.of
that factor may be obtained from,

/

- LU, (5)
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Because of the first order approximation of the Taylor's series expansion,
an iterative application of the algorithm is required whereby each set of
parameters is used to calculate an updated model whose eigenvalue and
eigenvalue derivatives are used to calculate new parameters until the
difference in successive parameters is arbitrarily small.

5.4.3 Calculation of Eigenvalue Derivatives - Fox and Kapoor* pro-
vided an expression for the partial derivatives of an eigenvalue with
respect to a structural parameter. The general 'expression is stated as
a function of the derivatives of the mass and stiffness of the eigen-
problem with respect to that parameter as

(6)

If the mass and stiffness matrices are defined as linear functions of
their subcomponent elements, as in Equation (2), where the structural
parameters are regarded scaling factors on the original modeling, as
opposed to real hardware changes that would alter both mass and stiff-
ness, Equation (6) produces two derivative terms of the form,

3^ = -u,,-'|(M l ™ l ! 4 > / f o>
3 d/w

and,

Equations (7) and (8) may be recognized as expressions for the kinetic
and potential energy of the ith mode contained in the subcomponent ele-
ments defined by [jri] and [k] respectively. Since the sum of the sub-
components equals the total system, the sum of the eigenvalue derivatives
with respect to the mass scaling factors equals the total kinetic energy
of the system, and the sum of the eigenvalue derivatives with respect to
the stiffness scaling factors equals the total potential energy of the
system. Thus, dividing both sides of Equations (7) and (8) by the eigen-
value, £*->/•'* , yields the fractional parts of the respective total energies
contained in a particular subcomponent. This observation allows Equation
(3) to take the form,

R. L. Fox and M. P. Kapoor, "Rates of Change of Eigenvalues and Eigen-
vectors", AIAA Journal, Vol. 6, No. 12, December 1968, pp. 2426-2429.
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_ l

•.MM (9)

Where element '/'-j of matrix [Pj is the fractional part of the total
. kinetic or potential energy contained in the ith test correlated analy-
tical mode that is contributed by the j_th subcomponent.

5.5 Correlation Improvement Procedure

Prior to the initiation of this study,the Skylab Orbit Configuration
Dynamic Test Article (DTA) vibration analysis model had been constructed.
Each component of this model consisted of mass and stiffness data repre-
senting the combination of many subcomponents. Information concerning
the details of these subcomponents was not available for use in this
study. This condition limited the scope of the effort to the determina- ••
tion of component, rather than subcomponent, scaling factors that would
improve the correlation between experimental and theoretical results.
Also, it was assumed at the outset of the study that the mass of all
components was adequately represented in the pre-test model so that the
determination of mass scaling factors was not required.

5.5.1 The Pre-Test Model Strain Energy Distribution - The strain
energy distribution in the components of the Orbit DTA pre-test model
was calculated for each of the analytical modes by the method defined
in paragraph 5.4.3. The results of these calculations in the modes that
are correlatable with test results are presented in Table 5.12. A review
of the correlation revealed that analytical mode 14 correlated with test
mode 10A as well as analytical mode 15 did. Also, analytical mode 18
correlated with test mode 12A as well as analytical mode 16 did. These
two additional modes are also included in Table 5.12 with an asterisk.
Although CMC data indicated apparent correlation between test mode ISA
and analytical mode 39, the actual vehicle second torsional mode occurred
analytically as mode 36 at 10.285 Hz. Strain energy for both mode 36 and
39 are included in the table, but the correlation is shown as existing
between analytical mode 36 and test mode 18A. Analytical mode 47 appears
twice in Table 5.12; once with each of the test modes with which it was
correlated.

The strain energy in analytical modes 41 and 42 is contained pri-
marily in the Solar Arrays. Frequency correlation of the pre-test model
with test results is very good in these modes and would not be affected
by changes to other components due to the lack of strain energy in other
components in these modes. -Similarly, all other analytical modes listed
in Table 5.12 have very little strain energy in the Solar Arrays and
would not be affected by changes to Solar Array components. Since no
changes to the Solar Array components can be made in this study, strain
energy contribution for these components is not included in Table 5.12.
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For convenient reference, the experimental and analytical modal
frequencies are repeated in Table 5.12 as are the frequency differences
expressed as a fraction of the experimental frequencies. The square of
the frequency ratios minus one that are required for the solution of the
frequency algorithm defined by Equation (9) in paragraph 5.4.3 also are
presented in Table 5.12.

In general, the tabulated strain energy values reflect six degree
of freedom motion of an entire component so that it is not possible, by
review of Table 5.12 alone, to determine the specific locations, if any,
in a particular component where the strain energy is concentrated nor
the direction of motion with which it is associated. Motion in many of
the test modes is dominated by the FAS Oxygen Tanks or the AM Nitrogen
Tanks. Determination of scaling factor for local support structure for
these tanks is required for improvement of correlation in those modes.
Examination of Table 5.12 shows that a GSM component scaling factor large
enough to improve'correlation with the first torsional mode, test mode
09A, would have a large detrimental effect on the existing good correla-
tion between analytical mode 11 and test mode 07A due to the very large
CSM strain energy contribution in analytical mode 11. Many other exam-
ples can be cited from Table 5.12 to show that the lack of subcomponent
detail disallows application of the idealized methodology for correlation
improvement. However, the essence of the methodology was applied within
the limits of the available data to determine required changes to the.de-
ployed DA and the CSM by the rationale discussed in the following para-
graphs .

i
5.5.2 The Deployed DA Component Model - Analytical mode 9 has 70.8

percent of the total strain energy concentrated in the DA (see Table
5.12). The generalized mass contributions (CMC) of its corresponding
test mode, Table 5'. 13, were in the ATM Rack in the X, Y, and Z direc-
tions. Review of the plotted data in Volume II for this mode shows
very little relative motion in the lower DA between the trunnions and
.the FAS interface. This type of motion suggests that the upper DA,
between the trunnions and the ATM interface, contains the full 70.8
percent of strain energy with a fairly uniform distribution. The data
in Table .12 shows that an increase in DA stiffness is required to im-
prove frequency correlation between analytical mode 9 and test mode 05A.
It was concluded that, since part of the DA was already too stiff to be
involved in the motion of analytical mode 9 and the remaining parts con-
tributed equally, a scaling factor applied to the entire DA component
should result in a stiffness matrix that approximates one which would
result from adjustment of individual DA truss members had the data re-
quired to do so been available. An estimate of such a scaling factor
was calculated using Equation (9) in paragraph 5.3.3 and the data of
analytical mode -9 and experimental mode 05A in Table 5.12 by,'

^A = -.2827.70774 = -.398DA
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the McDonnell Douglas Corporation model with a Deployed DA stiffness
model developed by Martin Marietta Corporation (MMC) for use in stress
analyses. Frequency data from a Skylab Orbital Configuration DTA coupled
system vibration analysis using the MMC DA component stiffness model and
the revised CSM component model discussed below in .paragraph .5.3 is
presented in Table .14 as "MMC DA + CSM Eigensolution". Only data for
the first few modes is presented to support credibility of the least
squares scaling.factor and no attempt was made to correlate the modes
that are not presented. A comparison of the flexibility influence
coefficient data for both DA models showed that the MMC model is only
85 percent as stiff as the McDonnell Douglas model overall and only 58
percent as stiff in the Z direction at the upper rigidizing arms and 58
percent as stiff in the X direction at the lower rigidizing arms.

This concluded the procedure for improvement of correlation between
theoretical and experimental results by perturbation of the theoretical
DA component model.

.5.3 The CSM Component Model - Experimental modes 09A and 18A
were identified respectively as the first and second torsional modes
of the Skylab Orbit Configuration DTA. The correlating analytical modes,
are listed in Table .12. The data of Table .12 shows that an increase
in stiffness somewhere in the DTA was required to improve frequency cor-
relation with test results. The first analytical torsion mode, mode 12
in Table .12 has 36.2 percent of the strain energy in the CSM component
•and 43.7 percent in the DA component. The remaining energy is contained
in insignificant amounts in the other components. Although a DA change
produces the largest frequency .change in this mode, the DA change calcu-
lated in paragraph .5.2 to improve correlation in other modes is in the
wrong direction. Table .14 shows the first analytical torsion mode
frequency decreased to 2.995 H2 as a result of the least squares DA
component scaling factor. The second analytical torsion mode, mode 36
in Table .12 has 59.4 percent of the strain energy in the FAS/IU/OWS
component, 28.2 percent in the CSM component, and the remainder spread
in insignificant amounts in the other components. Although CMC data
for analytical mode 36 was not reported because it was not correlated
with test data, CMC data for that mode was calculated and it showed large
FAS Oxygen Tanks motion. Due to the lack of FAS subcomponent stiffness
data the strain energy associated with Oxygen Tanks motion could not be
separated from the total FAS/IU/OWS component contribution. A total FAS/
IU/OWS component scaling factor calculated to improve correlation in the
second torsional mode would produce a comparable decrease in correlation
between experimental-mode 24A and analytical mode 69 which, as Table .12
shows, has 50.8 percent of the strain energy in the FAS/IU/OWS component
and requires scaling in the opposite direction. A total CSM component
scaling factor' to improve correlation in either torsion mode was also
disallowed by the detrimental effects it would have on existing good
correlation in other modes. However, examination of the first and second
analytical torsion modes as plotted data suggested that the addition of
torsion springs between the Command Module forward and aft bulkheads and



5-47

The effect of this scaling factor on all other analytical modes listed
in Table 5.12 was determined by using Equation (3) of paragraph 5.4.2
to solve for the new eigenvalues,j^e }., that are produced by the above
value of DA when the scaling parameters for all other components are .
set equal to zero. The results of these calculations are presented in
Table 5.14 as "Mode 9 Estimation" data. The differences between these
frequencies and experimental results, expressed as a fraction of the
experimental frequencies, also are included in Table 5.14. Experimental
and pre-test model analytical data are repeated in Table 5.14 for con-
venient comparison. A comparison shows significant improvement or no
effect in all modes except the first torsional mode, correlated with
experimental mode 09A, and analytical mode 47 which correlates with ex-
perimental modes 21A and 22B, both of which are strongly tank modes.
This result led to the examination of those analytical modes which
showed the. greatest improvement from application of the DA scaling fac-
tor. The examination revealed that the'same type of motion occurs in
those modes as in analytical mode 9; that is, multi-directional ATM
activity on the upper DA and relatively stiff lower DA. It was then
decided that a DA scaling factor, that satisfies the frequency algor-
ithm (Equation (9) of paragraph 5-3.3) in a least squares sense, for
all test correlated modes which are clearly associated with uniform strain
in the upper DA, would produce the best correlation improvement possible
within the limits of available data. All data involved in the determina-
tion of the least squares scaling factor are presented in Table 5.15. A
question regarding which analytical modes best correlated with test modes
10A and 12A was raised previously. Analytical modes 14 and 18 were chosen
for this calculation because of their higher DA strain energy contributions.
Correlation in these modes is not too important since calculation of the
least squares scaling factor was dominated by analytical modes 9 and 17.

The effect of the least squares scaling factor on all other analy-
tical modes listed in Table 5.12 was determined by using Equation (3) in
the same manner as was done for "Mode 9 Estimation". The results of
these calculations are presented in Table 5.14 as "Least Squares'Esti-
mation". The corresponding frequency ratio data also are included.
Figures 5.9 and 5.10 compare pre-test and perturbated analytical mode
shapes to test mode shapes in the X-Y and X-Z planes. Improved corre-
lation between tests mode shapes and analytical mode shapes was obtained
from the least square DA scaling factor.

Comparison of these results with test and the "Mode 9 Estimation"
data led to the decision to calculate the coupled modes of the system
using the least squares scaling factor on the DA component stiffness
matrix. The frequency data for the first few modes from this vibration.,
analysis is presented in Table 5.14 as "Least Squares Eigensolution".'
No attempt was made to correlate the modes not shown.

Although the results obtained by scaling the Deployed DA component
PAGS--Î ness lend confidence in the methodology by which the scaling was

•p "DOHP QTTAlJH??rm:''nec'' an independent-check on these results was made by replacing
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between the Command Module aft bulkhead and Service Module forward bulkhead
would improve torsional correlation without disturbing motion in non-torsion
modes if springs of the proper magnitude could be determined. An estimate
of the proper torsional spring magnitude was made using the data of analy-
tical mode 12 in Table 5.12 and the least squares DA component scaling fac-
tor determined in paragraph 5.5.2 in Equation (9) from paragraph 5.3.3 by,

..36221 S CSM + .43725 (-.4664) =+ .591

S - 2 19
CSM />iy

This meant that torsional springs 2.19 times the magnitude.of those in
the CSM Component model should be added to the existing springs to im-
prove correlation. Such a large change questioned the credibility of
the estimate. At this point, flexibility influence coefficient data for
the Apollo CSM was obtained by telecon from Jack Nichols of NASA, Hunts-
ville. Table .16 presents this data and the corresponding Skylab CSM
component flexibility influence coefficient data. The ratios of relative
deflection across the ports in question, also presented in Table 5.16 .
shows the difference in these models is greater than indicated by the
scaling factor estimated above. This result is consistent with the
methodology since the calculation of the scaling factor involves divi-
sion by the total CSM component strain energy which is larger than that
undeterminable portion associated with torsion alone.

With the Apollo CSM data in hand, it was decided that the best Skylab
CSM component model improvement would result from the addition of torsional
springs .th-3 c reflected the flexibility influence coefficient ratios shown
in Table 5.16. Calculations of these springs are included in Table 5.16.
The coupled modes of the Skylab Orbit Configuration DTA were then calcu-
lated using the CSM component with the alterations discussed above the
the Deployed DA component with stiffness increased by the least squares
scaling factor determined in paragraph S..5.2. The frequency data from
this vibration analysis is presented in Table 5.14 as "Test Verified Eigen-
solution" data. Figures 5,11 and 5.12 show the improvements obtained over
the pretest analytical modes by the inclusion of torsional springs and DA
scaling factors.

This concluded the procedure for improvement of correlation between
theoretical and experimental results by perturbation of the theoretical
CSM component model.

No other component changes were made in this study.

S..5.4 Results - Table 5. 17 presents a summary of the correlation
results. This table provides the basis for acceptance of the modeling
changes discussed in the previous paragraphs. Supporting data for the
statements made in Table 5 .17 are provided in. Volume II. Volume II
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contain plots for both test and analytical results. The analytical modes
were calculated using 198 component (uncoupled) modes. It was observed
that many of those component modes had no effect on the coupled modes of
interest in this study. To improve efficiency in conducting the analysis,
those ineffective component modes were deleted.

5.5.4.1 The DA Component Scaling Factor Results - The primary
effect of scaling the DA component stiffness matrix was to improve the
correlation of experimental and theoretical frequency data. The mode
shape correlation between the experimental results and the pre-test
theoretical model results was satisfactory in those modes which may be
categorized as coupled main beam bending and ATM activity. This good
correlation was essentially unchanged by the DA scaling factor. The
pre-test model exhibited strong coupling between the first torsional
mode and an X-Y plane first bending mode. This motion was not observed
in test. The application of the DA component scaling factor eliminated
-this coupling in the analytical model. However, it also decreased the
torsional mode frequency to 2.995 Hz pripr to the CSM component model
alterations. Correlation of FAS Oxygen and AM Nitrogen tank-modes and
of longitudinal modes was unaffected by the DA component scaling factor.

5.5.4.2 The CSM Component- Torsional Springs Results - The effect
of the addition of the two torsional springs to the CSM component model
was improvement of mode shape and frequency correlation between experi-
mental and theoretical results in the first two torsional modes.-

Inclusion of the springs decreased the difference betx^een experimental
and analytical frequencies of the first torsional mode from 20.7 percent of
the experimental frequency to 13.9 percent. The pre-test analytical model
produced a large relative torsional deflection between the command and
service module bulkheads which resulted in the node of the first torsional
mode being located in the MDA cone structure whereas the node was observed
to be at the AM trusses in the test results. As'a result of the CSM com-
ponent changes the analytical node was shifted aft to ,the STS/AM component.
The difference between experimental and analytical frequencies of the
second torsional mode decreased from 18.7 percent of the experimental fre-
quency to 4.6 percent as a result of the CSM component changes. A signi-
ficant improvement in the second torsional mode shape correlation in the
CSM component also was produced by these changes.

Correlation of FAS Oxygen and AM Nitrogen tank modes and of longitu-
dinal modes was unaffected by the CSM component changes.

5 .5.5 Conclusions -

'a. A valid methodology for perturbating a theoretical dynamic model
to improve correlation^with experimental results has been developed
as part of this study.

b. The changes incorporated into the Skylab Orbit Configuration
DTA model produce acceptable primary modal characteristics cor-
relation of that model with test results in all planes of motion.
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c. While complete correlation of all test data with analytical
results was not achieved, further effort to produce total agree-
ment is unwarranted because DTA model changes required to do so
would not necessarily be applicable to the flight article.

d. Component models resulting from this study are technically
acceptable for use in the test verified dynamic model.
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Table 5.13 ORBITAL CONFIGURATION MODAL SURVEY

T E S T MODES GENERALIZED MASS CONTRIBUTION SUMMARY

TEST MODE HO. TEST FREQUENCY = 1.66 HZ.

COMPONENT
NAME

=IR/OHS SKIRT/IU/FAS
5-FAS 02 T A N K S
^OA/STS/AM
5- AM N2 TANKS
COMMAND/SERVICE MOD.
DEPLOYMENT A S S E M B L Y

' *TM-RACK,C«GS ,«*-'& 8
4TM-S3AR CENTER
ATM-GRA/CAN CENT^i?

SUM

(OX)

. 01<»i

. C C 0 2
• C C 3 7
. OP 3<»
.C97«
.T773
e 0 0 3 C

.P01B

.1138

GMC
C O Y )

,?888
» 317^
,0528
.0336
.2582
. 03<*i
.1172
. C18<+
.0168

o 63 7k

we
(0?)

.ri62

.01«»9
.OlQt*
.(i016
.0021
.C018
.cser
.0009
.0039

,09*^

G-4C
( T X )

.C67'.
0.

.C128
G o

.C187 ,
0.

.U03

. r j375

.C159

.1222

(TV)

.1005
G o

.C001
p. •
- .CB01
D.

. o a o c

.CU05

. C 3 0 5

.C315

GSC
(TZJ

.C333
0.

.0057
0.

.1135
0.

. CtJO <*
0.

.0067

.0505

T O T f t L GM CONTRIBUTION FQf? EACH COMPONENT

IS SKIRT/IU/FAS
6 - c A S 02
M D 6 / S T S / A H
6 - A M N2
COMMAND/SEP VICE MOD.
DEPLOYMENT ASSEMBLY

ORIGINAU PAGE 13
OF POOR QUALOT

4 T M - S P A R CENTER
ATM-GPA/CAW CENTER

.0718

.0059

.3219

.0137

.2513

.0333
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Figure 5.9 jTest/Analytical Mode Comparisons
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Figure 5.10 Test/Analytical Mode Comparisons
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1.0

Figure 5.12 Test/Analytical Mode Comparisons
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Ĉ
ro

c
CU

SB-
O 0

•H
CO JJ
< o
fr | p

i/l
i— i

PQ

CO <f
CO CO1 1

CO

vO

*£

r-l



5-63

c
•H
4-1

§

r--
r-l

cu
i-H

"cO
H

o

CO
1-1

CU

o
O

10
0)
•o
o

to
o

>>
I-l
CO

4J
CO
QJ
H

CO

woo
2

rJ

g

r̂J

Uo
0
2

H
CO
to
H

*^

O
M
H
P-i
M

O
to
W
Q

E- * *
O O
r-} Z
P-l

CO

u 3
2 M
0 g

•<y •

Hs

gd
O 52
S

i2a
•?
§o
o
Z
O
H
H
P-.
M
Pd
O
CO

O

H •sip..
CO

C_ 5 hJ
2 i-p

° H

.
Cf •

|S

Bo
O »2
2

JJ-- — .C--- -— - -,
CO -1-12 x-v
(U CO CO !-" •
JJ o co u a to

C JJ tO -H
.C C3 CO JJ rJ tO
JJ r-l 73 Q. CO >-,
•HO. CU r-l r-l
3 -3 o co

r-l O X CO C
JJ i— I JJ C) -i-l D
d 0 JJ vx
o o c c
E C r-i CJ O ra
CU "H O. C -i-l .C
(U co JJ JJ
rJ C 43 r-l O
oo JJ JJ c^ o JJ
CO CO -rt r-l tO

73 U r-l <J-I CD
73 CO O JJ
O CJ 73 v-l 73
O 2 C X C
O O 0 C3 X -H

r-l
r-l
1

Q

in vo
CM CM ,.
1 1
0 0

m
o

c*

0

•

CU
73
O
d

J3
JJ
•H

^
CU

73
O •
E 2
r-i

CO C
•i-l -H
X
CO JJ

d
JJ T-l
CO O
i-l O.
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5.6 Postfllght Model Verification

This is a good time to show how the analyst can be trapped into
altering a component stiffness properties without sufficient knowledge
of the components structural detail. A fourier analysis of the ATM rack
rate gyro flight measurements provides frequency data representing the
ATM supported by the DA.

5.6.1 Flight Results - During maneuvers performed at 149:10:25:10
in SL-2 flight, the rate gyros displayed the data presented in Figure
5.13 for the x, y and z axes. The sampling rate of the gyro data is
12 samples per second. A Fourier analysis was performed to identify
the frequency of the recorded signal. The period analyzed was 512
samples which corresponds to 42.66 seconds. The frequency content is
plotted also in Figure 5.13 with a frequency resolution of 0.0234 (12/
512) Hz. The dominant frequencies are listed by axis in the following
table.

Dominant Frequency - Hz

Axis 1 2 3

, X 0.8767 1.027

Y 1.60 1.35 ' 1.80

Z ' 0.876 1.027

The principal frequency content is 0.88 Hz about the x and z axes and
1.6 Hz about the y axis. Review of vibration analyses of the Skylab
configuration indicates the following correlation with orbital data.

Pre-GVS Analysis Config. Post-GVS Analysis Config.
Flight 1.2 (Ref. ED-2002-790-4, 1.2 (Ref. ED-2002-1562-2,
Data January 1971) November 1972)

.88 Hz .888 Hz ATM/DAI (81%) .594 Hz DA (DEPL)l (77%)

1.60 Hz 1.655 Hz ATM/DA4 (72%) 1.275 Hz DA (DEPL)2 (25%)

The low frequency analytical modes were selected on the basis of
their correlation of ATM slopes in .the x and z axis with 9X and 92 flight
rate gyro data at .88 Hz. Similarly, the high frequency analytical modes
exhibited ATM 9y correlation with the 1.60 Hz rate gyro data.. ATM/DA4 is
the essentially same mode as DA(DEPL)2. The names and uncoupled mode
numbers differ due to a change in .component definitions between the two •
analyses.
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The differences in the pre and post-GVS results reflect the DA
stiffness scaling factor. A scaling factor to decrease the DA stiff-
ness was determined which improved correlation between experimental
and analytical frequency data in a least'squares sense. Unfortunately
this scaling factor decreased correlation with flight results. A rigor-
ous explanation for these conflicting results would' require extensive
reanalysis. However, it is theorized that the source of the discrepancy
arises from the fact that individual DA truss member adjustments required
to improve experimental/theoretical correlation could not be made due to
lack of component modeling detail information at MMC. A review of the
type of motion in the modes of concern and comparison of MDAC and MMC
flexibility definition of 'the DA truss were made to support this theory
as f ollox^s .

\

The on-orbit configuration vibration analysis was rerun using the
original (unsealed) MDAC DA truss stiffness model. This analysis pro-
duced a .785 Hz and a 1.497 Hz mode which correlate respectively with
the .88 Hz and 1.6 Hz flight data. Examination of the mode shapes of
the modes of interest (Table 5.18) shows the relative deflection across
the DA rigidizing arms is very large.in the directions associated with
the primary motion of the overall mode shape. That is, large AX and AY
motions occur in the .784 Hz mode which is primarily 92 of the ATM, and
large A X motions occur in the 1.497 Hz mode which is primarily X, 9y of
the ATM. This observation suggests that increasing the stiffness model-
ing of the DA rigidizing arms alone would improve correlation of these
modes with flight data. It also suggests that the stiffness of the DA
between the ATM support frame (excluding rigidizing arms) and the trun-
nions could be decreased as required to improve correlation xvith GVS
results without greatly affecting the frequency of the modes observed
from flight data.

A comparison of MDAC and MMC DA truss flexibility influence coef- >
ficient data'(Table 5.19) shows that the MMC model is considerably softer
than MDACs between the ATM support frame and the FAS interface. The fact
that the MMC model produced lower frequency GVS correlatable modes than-
the MDAC model was pointed out and supported the DA scaling factor that
was defined. Table 5.19 also shows that MMC model represents the rigid-
izing arms to be stiffer than the MDAC model by a factor of 1 at DOF 13
and 19 and a factor of 1.5 at DOF 14 and 20. Although the MMC DA model
has not been used in an on-orbit configuration vibration analyses with
which to compare the modes of interest, these differences in DA modeling
in an area that strongly affects the flight data modes indicates that
local DA truss member modeling adjustments are-required for theoretical
correlation, with both flight and GVS results.

Since the only significant structural response observed from.on-orbit
flight data was contained primarily in the .88 hz and 1.6 Hz modes, the DA
scaling factor was abandoned.

Configuration 1.3N1/ was revised to incorporate the unsealed MDAC
truss stiffness model.
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.6.2 Recommendations -

.•a. In future applications of the methodology developed under this
task to other vehicleSj assure the availability of subcomponent
modeling detail.

b. Develop a method to determine the type of test results that will
be most suitable for theoretical/experimental correlation studies
on a particular vehicle, and improve testing techniques to assure
that such data will be obtained.
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6.0 CONCLUSIONS

Detailed conclusions and subsequent recommendations are included
within each section. However, on an overview of the Skylab program,
several distinct points are obvious. In the process of completing a
particular difficult project both on a logistics and a technical basis
short cuts are taken, baseline costs are trimmed, programs are delayed
or ignored, all of which normally have to be repeated at a much larger
cost. These items are particularly true in structural analyses.

^

As a result of this summary of the Skylab project, the following
recommendations are presented for evaluation in the areas o'f importance
and on a chronological basis.

6.1 Structural Models

It is imperative that detailed plans be established initially in
the program to define sensitive structural areas. These areas refer to,
either response, which affects modal characteristics and resultant sta-
bility studies, or load which affects structural design, material pro-
perties and sizing.

Since the problem is one of integration in a design beam or .stick
models will always be required, initially. However, even with beam models
care should be exercised with'modeling, in some detail, "all" structural
system interfaces. "All" should be literally interpretated if possible
and at a minimum should include any interface between separate system
modeling, contractors or centers.

After completion of detailed analytical studies, using the derived
beam models, resulting load and response data should be integrated in the
structural design. This should culminate in finite element models of all
sensitive structures and will remain "frozen" until completion of the
subject dynamic test. Obviously, all sensitive structure will complete,
at a minimum, static influence coefficient tests.

6.2 System Modal Characteristics

Accurate vibration analyses must be completed for both load, response
and control stability studies. However, these studies should be completed
in an orderly manner and in sufficient detail so as to satisfy modal
fidelity, and modal characteristics for the data users.

Initial studies should be limited to the structural beam models.
There is a strong tendency in projects and the customer to require in-
stantaneous vibration analysis.' This results in a continued update of
the data at great expense. In reality, programs should be planned to
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follow four periods of structural modeling and derivation of modal
characteristics of the Structural System. These are:

a. initial beam models,
b. preliminary finite element models,
c. models generated at completion of static test and initial design

reviews,
d. models generated at completion of dynamic test and system design

reviews.

6.3 Structural Testing

Static, dynamic and acoustic test seems to always be completely
planned on a project then revised continually throughout the program.
Initially, in the program a strong committment should be made on struc-
tural testing and what areas are to be completed. This includes pre-
liminary instrumentation, support system and data retrieval programs.

If a test is worth completing, and considering the associated cost
of just initiating any structural test, it must have a strong committment
from the project. It should be planned and frozen well in advance of
scheduled testing and completed .in a timely manner so as to affect design
and reduce costly analysis requirement.

/

Structural testing should not be considered only as ground tests.
As a post mortem on the Skylab program, it seems ridiculous that such
limited structural data was retrieved from flight. Mega dollars were
spent during the study to resolve array response, gimbal ring response,
docking loads and beam fairing loads yet limited if any flight data was
retrieved to verify design decisions, load/response criteria, or as a
guide to future projects. Additionally, dynamic test data relating to
acoustic environment (a noted problem in orbit) and structural damping
data (a significant problem in structural design) remains to be analyzed.

Specifically, the following recommendations are made for structural
testing:

a. influence coefficient test should be completed for all interface
structural , systems;

b. automatic modal tuning programs should be devised to speed up
testing and assure accurate and timely results;

c. detailed pretest analyses should be completed;

d. adequate instrumentation must be provided to assure accurate
results especially in resolving structural damping;

e. detailed correlation studies should be planned and completed
in a timely manner.;
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f. results of all tests should be implemented in the analysis
schedule. . .

6.4 General

Control and loads studies are generally analyzed in sufficient detail.
However, emphasis should be placed on limiting these studies to the four
periods of structural modeling and in completing the final response and
load studies with test verified models.

The abandoned child in most major projects is the adequate mission
evaluation studies for structural systems. Therefore, it is "imperative
that project directors assure there is adequate flight evaluation and
correlation of structural design decisions and models, based on suffi-
cient flight instrumentation.
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7.0 NOTES

7.1 Abbreviations

a

AM

ATM

CDR

CG

CMC

GSM

DA

dB

dBA

DC

DTA

FAS

FCC

FS

ft

GRA

CMC

Hz

IMC

in

IU

MDA

MDAC-E

MDAC-W

Microbar

MMC

MSC

Average Absorption Coefficient

Airlock Module

Apollo Telescope Mount

Commander

Center of Gravity

Control Moment Gyro

Command and Service Module .

Deployment Assembly

Decibels

Sound level measured with A-weighting network

Direct Current

Dynamic Test Article

Fixed Airlock Shroud

IU Flight Control Computer

S-IVB Forward Skirt

Feet
6 • •

Gimbal Ring Assembly

Generalized Mass Contribution

Hertz (cycles per second)

IMC Magnetics Corporation

Inches

Instrumentation Unit

Logarithm to the base 10

Multiple Docking Adapter

McDonnell Douglas Astronautics Company - Eastern Division

McDonnell Douglas Astronautics Company - Western Division

A pressure of one dyne per square centimeter

Martin Marietta Corporation

Manned Spacecraft Center
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MSFC

MST

MSIL

N2

NAR ,

NASA

°2

OB

OWS

P

PA

PLT

PLV

PSI

PSIA

PSIL

PRI

PS

PWL

R
\*
Ref.

S

SAS

SAT

Sec

SIA

SIL

SMEAT

SPL

SPT

STS

SWS

T60

TCBD

Marshall Space Flight Center

Modal Survey Test(s)

Modified Speech Interference Level

Gaseous Nitrogen

North American Rockwell Corporation

National Aeronautics and Space Administration

Gaseous Oxygen

Octave Band

Orbital Workshop

Pressure

Payload Assembly

Pilot

Post Landing Ventilation

Pounds Per .Square Inch

Pounds Per Square Inch, Absolute

Preferred Speech Interference Level

Primary Mole Sieve Fans

Payload Shroud

Acoustic Power Level, dB

Room Constant

Reference

Area of Room ' •

Solar Array System

Systems Assurance Test

Secondary Mole Sieve Fans

Speaker Intercom Assembly

Speech Interference Level

Skylab Medical Experiment Altitude Test

Sound Pressure Level, dB

Science Pilot

Structural Transition Section

Saturn Workshop I

Reverberation Time, Seconds

Test Control Board Directive
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TL Transmission Loss, dB

TVIS TV Input Station

V Volume -

VCS Ventilation Control System

WMC Waste Management Compartment

WOB Weighted Octave Band

7.2 References

The following documents are referenced in the foregoing sections
by numbers only.

1. W. A. Benfield and R. F. Hruda: Vibration Analysis of Structures
by Component Mode Substitution, AIAA/ASME llth Structural Dynamics
and Material Conference, Denver, Colorado, April 22 - 24, 1970.

2. W. D. Brayton, "Dynamic Analysis of the Probe and Drogue Docking
Mechanism", Journal of Spacecraft and Rockets, May 1966.

3. David W. Malone: A Program to Derive Analytical Model Representa-
tions of the Apollo Spacecraft and ITS Launch Vehicles, Docking
Analysis Final Report. D2-84124-3. The Boeing Company, Space
Division, Seattle, Washington, May 1967.

4. R. J. Ravera: Docking Dynamics' Simulation for AAP. Technical
Memorandum TM-69-1022-6. Bellcomm, Inc., Washington, D.C., July
1969.

«

5. C. Lanczos: The Variational Principles of Mechanics. University
of Toronoto Press, 1966.

6. C. S. Bodley and A. C. Park: Skylab Docking Response Program.
ED-2002-770. Martin Marietta Corporation, Denver ,^ Colorado, April
1970.

«
7. J. Gremel (Personal Communication), McDonnell Douglas Astronautics

Company-East: 1972.

8. Caldwell C. Johnson: TM-X-58163, Skylab M487 Habitability/Crew
Quarters, dated October 1975

9. AFSC Design Handbook, Series 1-0, Personnel Subsystems, DH 1-3,
January 1969.

10. Acoustic Absorption Data Internal to Shroud, MSC TCBD No. OWS/PA-52,
Houston, Texas, 26 August 1971. .
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11. Additional Acoustic Test for IU Anomaly Investigation, MSC, TCBD
No. OWS/PA-57, Houston, Texas, 6 October 1971.

12. Vibration Acoustic Data from the Skylab Phase IIA Payload Assembly
Vibroacoustic Test for the Liftoff Condition, Data Book for:

Runs Enclosure

PA-A-008 & 009 3
PA-A-040 5 •
PA-A-043 - ' . 7
PA-A-044 8
MSFC Document No. S&A-ASTN-ADD-72- , Huntsville, Alabama, Release
Date Pending. . •

13. Vibration Acoustic Data from the Skylab Phase IIA Payload Assembly
Vibroacoustic Test for Boundary Layer Condition, Data Book for:

Runs Enclosure

PA-A-011 & 012 4
PA-A-041 6
PA-A-045 9
MSFC Document No. S&E-ASTN-ADD-72- , Huntsville, Alabama, Release
Date Pending.

14. Phase and Amplitude Data from the Skylab Phase IIA Payload Assembly
Special Modal Survey Test Performed on the Instrument Unit, Data
Book for: *

I
Runs Enclosure

0 _ *

PA-V-012,,014, 015,' 019, 10
021, 026, 027, 029, 031,
033, 034, 036, 038, 040, «
041 and 044

• MSFC Document No. S&E-ASTN-ADD-72- , Huntsville, Alabama, Release
Date Pending.

15. W. P. Rodden, "A Method for Deriving Structural Influence Coefficients
from Ground Vibration Tests", AIAA Journal, Vol. 5, No. 5, May 1967,
pp. 991-1000.

16. A. Breman and W. C. Flannelly, "Theory of Incomplete Models of Dynamic
Structures", AIAA Journal, Vol. 9, No. 8, August 1971, pp. 1481-1487.

17. R. G. Ross Jr., "Synthesis of Stiffness and Mass Matrices from Experi-
ments Vibration Modes", SAE Preprint 710787, pp. 1-9.
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18. A. E. Galef and D. L. Cronin, "Determination of Structural Proper-
ties from Test Data", The Shock and Vibration Bulletin, Bulletin 41,
Part 7, December 1970, pp. 9-18.

19. B. M. Hall and E. D. Calkin, "Linear Estimation of Structural
Parameters from Dynamic Test Data", AIAA/ASME llth Structures,
Structural Dynamics, and Materials Conference, Denver, Colorado,
April 22-24, 1970.

20. R. L. Fox and M. P. Kapoor, "Rates of Change of Eigenvalues and
Eigenvectors", AIAA Journal, Vol.- 6, No. 12, December 1968, pp.
2426-2429.

7.3 Additional Reference Material

This section provides a listing of the date, report number and title
of Skylab documents that are applicable to the dynamics effort^ Much of
the information in this report was developed from these documents, there-
fore, persons requiring additional information or specific data may find
this reference section useful.

Date

10/27/67

04/15/68

06/15/68

08/01/68

08/15/68

05/30/69

06/30/69

08/23/69

09/25/69

10/20/69

04/06/70

09/23/70

09/23/70

10/15/70

11/02/70

11/16/70

03/29/71

Report No.
ED- 2002-

181

445-1

445-2

580-1

445-3

827-1

847

595

908

924

770

1190

1197

1201

1136- \

827-2

1279

Title

AAP Docking Loads Analysis

Docking Loads Report

Docking Loads Report

Cluster Docking Report

Docking Loads Report

AAP Cluster Docking Response Report

Control Impulse Methodology Report

Methodology Report for Docking Loads

CSM/MDP (Axial) Latch Loads

Latch Loads Evaluation Report

Docking Probe Analytical Model

ATM Deployment Loads Report

Evaluation of Solar Array Deflection Model

Pre-Test Static Influence Coefficients

Latch Load Evaluation Report

Skylab Cluster Docking Loads Report

Orbital Workshop Solar Array System Sensitivity
Analysis
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Vibration Modal Analysis

Date

06/30/67

07/01/67

12/18/67

03/15/68

04/01/68

04/15/68

05/15/18

06/15/68

06/18/68

07/22/68

08/15/68

12/15/69

07/24/70

09/23/70

01/14/71

02/10/71

04/12/71

06/30/71

07/16/71

07/19/71

09/01/71

09/23/71

09/30/71

01/31/72

02/15/72

02/26/72

03/31/72

04/20/72

Report No.
ED- 2002-

137

141

300'

384-1

414

384-2

384-3

384-4 .

539-1

384-5 ~

539r2

' 960

790-2

. 790-3

. 790-4

1256. .

790-5

1325

790-6

1355

1326

1355

1338

1433

790-7

1446

1459

1433
Rev. A

Title

Vibration Analysis of the AAP Or'bital Workshop

Vi'bration and Acoustic Analysis for AAP Flight
Configuration 4.

Vibration. Analysis of the AAP Orbital Workshop

Cluster Modal Vibration Report

Vibration Report for AAP Beamology Model

Cluster Modal Vibration Report

Cluster Modal Vibration Report

Cluster Modal Vibration Report

AAP Vibration Analysis Report

Cluster Modal Vibration Report

AAP Vibration Analysis Report

Cluster Vibration Analysis Mass Properties

Vibration Modal. Ana lysis Report

Vibration Modal Analysis Report

Vibration Modal Analysis Report ,'

Modal Coupling Program and Report

Vibration Modal Analysis Report

Pre-Test Vibration Analysis Report

Vibration Modal Analysis Report

Modal Tolerance Report

Vibration Modal Analysis Mass Properties

Modal Tolerance Report

Vehicle Dynamics Mechanical Vibration Modal
Survey Test Plan

Modal Property Data Report, Configuration 7

Vibration Modal Analysis Report

Modal Property Data Report, Configurations 9 & 10

Modal Property Data Report, Configuration 6

Modal Property Data Report, Configuration 7
}
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Report No.
Date

06/21/72

09/15/72

09/15/72

09/29/72

10/16/72

10/27/72

10/31/72

11/14/72

11/14/72

11/14/72

11/21/72-

11/21/72

11/21/72

12/19/72

12/20/72

04/01/70

10/15/70

04/01/71

05/15/71

09/15/71

10/20/71

ED- 2002- v Title

1494

1544

1522

1525

1546

1551

1554

• 1562-1

1562-2

1562-3

1563-1

1563-2

1563-3

1577

1564

ATM

948-1
• . .

1168

1265

1303

1303
Rev . A

1380

Vibro- Acoustic Modal Survey Test Evaluation Report
(Launch Configuration)

Modal Property Data Report, Configuration 7

Vibro- Acoustic Modal Survey Test Evaluation Report
(Orbital Configuration)

Cluster Modal Properties for Control Analysis-
Interim Report

Dynamics Modal Verification Report (Launch Con-
figuration)

Dynamics Model Verification Report (Orbit Con-
figuration)

Modal Property Data Report, Configuration 6

Modal Property Data Report, Configuration 3.2

Modal Property Data Report, Configuration 1.2

Modal Property Data Report, Configuration 2.1

Cluster Modal Properties for Control Analysis,
.Configuration 1.3/Nom

Cluster Modal Properties for Control Analysis,
Configuration 1.3/-67.50

Cluster Modal Properties for Control Analysis,
Configuration 1.3/112.5°

Dynamic Test Reflected Structural Model Methodology
Repor.t

Final Vibration Modal Analysis Report

System and Subsystem Dynamic Analysis

Interim Report, Spar Canister Modal Data for
Control Loop Analysis

Interim Report, Spar Canister Modal Data for
Control Loop Analysis

Interim Report, Spar Canister Modal Data for
Control Loop Analysis . • .

ATM Rack and Spar/Canister Boost Condition Vibra-
tional Transfer Function
I

ATM Rack and Spar/Canister Boost Condition Vibra-
tional Transfer Function

Spar/Canister Modal Data for Control Loop Analysis
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Date ED-2002- Title

06/21/72

09/15/72

09/15/72

09/29/72

10/16/72

10/27/72

10/31/72

11/14/72

11/14/72

11/14/72

11/21/72

11/21/72

11/21/72

12/19/72

12/20/72

1494

1544

1522

1525

1546

V

1551

1554

1562-

1562-

1562-

1563-

1563-

1563-

1577

1564

Vibro- Acoustic Modal Survey Test Evaluation Report
(Launch Configuration)

Modal Property Data Report, Configuration 7

Vibro- Acoustic Modal Survey Test Evaluation Report
(Orbital Configuration)

Cluster Modal Properties for. Control Analysis
Interim Report

Dynamics Modal Verification Report (Launch Con-
figuration)

Dynamics Model Verification Report (Orbit Con-
figuration)

Modal Property Data Report, Configuration 6

1 Modal Property Data Report, Configuration 3.2

2 Modal Property Data Report, Configuration 1.2

3 Modal Property Data Report, Configuration 2.1

1 Cluster Modal Properties for Control Analysis,
Configuration 1.3/Nom

2 Cluster Modal Properties for Control Analysis,
Configuration 1.3/-67.5°

3 Cluster Modal Properties for Control Analysis,
Configuration 1.3/112.5°

Dynamic Test Reflected Structural Model Methodology
.Report

Final Vibration Modal Analysis Report

ATM System, and Subsystem Dynamic Analysis

04/01/70

10/15/70

04/01/71

05/15/71

09/15/71

10/20/71

948-1

1168

1265

1303

1303
Rev.

1380

Interim Report, Spar Canister Modal Data for
Control Loop Analysis

Interim Report, Spar Canister Modal Data for
Control Loop Analysis

Interim Report, Spar Canister Modal Data for
Control Loop Analysis

ATM, Rack and Spar/Canister Boost Condition Vibra-
tional Transfer Function

ATM Rack and Spar/Canister Boost Condition Vibra-
A tional Transfer Function

Spar/Canister Modal Data for Control Loop Analysis
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Date
Report No.
ED-2002- Title

. 12/17/71 •

12/17/71

12/19/71

01/10/72.

01/10/72

01/10/72

01/10/72

01/10/72

01/15/72

02/18/72

03/31/72

05/19/72

04/20/72

10/20/72

- 10/23/'72

" 11/06/72

11/13/72

11/15/72

11/20/72

12/18/72

12/18/72

* 03/19/73

09/20/73

1417

1418

1424

1420

1421

1422

1423

1419

1431

1435

1459

1431-2

1433
Rev. A

1555

1556

1421-2

1420-2

1422-2

1424-2

1431-3

1388-2

1388-3

1700

Modal Property Data Report S-IC Flight Configura-
tion 1, Part 2

Modal Property Data Report S-IC Flight Configura-
tion 2

Skylab Boost Flight Phase Model Properties Report

Modal Property Data Report, S-IC Flight Configura-
tion 4

Modal Property Data Report, S-II Flight Configura-
tion 1

Modal Property Data Report, S-II Flight Configura-
tion 2

Modal Property Data Report, OWS Flight Configura-
tion 1

Modal Property Data Report, S-IC Flight Configura-
tion, Part 2

Skylab Boost Flight Loads Analysis Report

Skylab Boost Flight Loads Methodology Report

Modal Property- Data Report Configuration 6

Skylab Boost Flight Loads Analysis Report
*

Modal Property Data Report Configuration 7

Skylab Payload Base Motion Vibration Analysis
Report .

Modal Property Data Report, Base Motion Config-
uration

Modal Property Data Report, ̂S-II Flight Config-
. uration 1

Modal Property Data Report, S-IC Flight Config-
uration 4

Modal Property Data Report, S-II Flight Config-
uration 2

Skylab Boost Flight Phase Modal Properties Report

Skylab Boost Flight Loads Analysis Report

Skylab Payload Base Motion Analysis Report

' Skylab Payload Base Motion Analysis Report

Informal Flight Loads Data for Inclusion to
Skylab Mission Support
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Date
Report No.
ED-2002- Title

12/17/71

12/17/71

12/19/71

01/10/72

01/10/72

01/10/72

01/10/72

01/10/72 '

01/15/72 .

02/18/72

03/31/72

05/19/72

04/20/72

10/20/72

10/23/72

11/06/72

11/13/72

11/15/72

11/20/72

12/18/72

12/18/72

03/19/73

09/20/73

1417

1418

1424

1420

1421

1422

1423

1419

1431

• ,1435

1459

1431-2

. 1433
Rev. A

1555

1556-

142 l-£

1420-2

1422-2 -

1424-2

1431-3

1388-2

1388-3

1700

Modal. Property Data Report S-IC Flight Configura-
tion 1, Part 2

Modal Property Data Report S-IC Flight Configura-
tion 2

Skylab Boost Flight Phase Model Properties Report

Modal Property Data Report, S-IC Flight Configura-
tion 4

Modal Property Data Report, S-II Flight Configura-
tion 1

Modal Property Data Report, S-II Flight Configura-
tion 2 .

Modal Property Data Report, OWS Flight Configura-
tion 1

Modal Property Data Report, S-IC Flight Configura-
tion, Part 2

Skylab Boost Flight Loads Analysis Report

Skylab Boost Flight Loads Methodology Report

Modal Property Data -Report Configuration 6

Skylab Boost Flight Loads Analysis Report

Modal Property Data Report Configuration 7

Skylab Payload Base Motion Vibration Analysis
Report

^ »

Modal Property Data Report, Base Motion Config-
uration

Modal Property Data Report, S-II Flight Config-
uration 1

Modal Property Data Report, S-IC Flight Config-
uration 4

Modal Property Data Report, S-II Flight Config-
uration 2

Skylab Boost Flight Phase Modal Properties Report

Skylab Boost Flight Loads Analysis Report

Skylab Payload Base Motion Analysis Report

Skylab Payload Base Motion Analysis Report

Informal Flight Loads Data for Inclusion to
Skylab Mission Support
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SPS Cluster Reorientstion Studies

Date

03/26/73 -

06/29/73

08/15/73

08/15/73

08/15/73

08/15/73

10/04/68

07/01/70

04/19/71

,06/15/71

08/09/71

08/31/71

08/31/71

09/14/71

11/19/71'

01/31/72

02/15/72

05/22/72

05/07/73 ,

08/23/73

Report No.
ED- 2002-

1658

1694

1694

1694

1694

1694

Task

643

• 1055

1281-1

1131

1339-2

' 1356

1357

1365

1281-2

1432

1444

1444
Sup. 1

1687

1695

Title

Informal Loads/Response Data SWS Deorbit Feasibility
Study

SPS Cluster Reorientation Loads - Preliminary

SPS Cluster Reorientation Loads - Final Volume I

SPS Cluster Reorientation Loads - Final Volume II

SPS Cluster Reorientation Loads - Final Volume III

SPS Cluster Reorientation Loads - Final .Volume IV

Miscellaneous Special Studies

Acoustic Test of Multiple Docking Adapter (MDA)
Panel

Preliminary Saturn Workshop Acoustical Environmental
Mapping

Orbital Maneuver Loads Report

Subsystem Design Load Factors Due to Shock, Acous-
tic and Vibration

Apollo Telescope Mount Solar Array System Sensi-
tivity Analysis

CSM/MDA- Doc king Shock Final Test Report

EPCS Orbital Cluster Modal Properties and ATM
Boost

ATM Alignment Modeling *

Orbital Maneuver Loads Report (Final)

Recommended Specification Revisions and Equipment
Exceedance Study for MDA

Skylab RCS-DAP Vibration Analysis

Skylab RCS-DAP Vibration Analysis for Configurations
1.3 and 3.2

Reduced Dynamic Test Damping Data Analysis Report

Skylab Premission Support of SL-2 Orbital Loads




