LCAM COPG, BEHY AFHLTTECHNICAL, Y KIRTLAND $4 F B$ Bi

N:ICROCOPY RESOLUIIUN IESI CHART
Mational fulitau or siam. Thata

heat pipe
DESiGN
HANDBOOK
PART III

PREPARED FOR

4
$\rightarrow 5$

DRL-2
DRD No. SE-354T
DTM 72-3

HEAT PIPE DESIGN HANDBOOK

Contract No. NAS9-11927

August 1972

Prepared For
National Aeronautics and Space Administration Manned Spacecraft Center Houston, Texas

Prepared By
Dynatherm Corporation Engineering Staff

E. A. Skrabek

Principal Investigator
Approved By $\frac{\text { N. } / / \text { Revenf }}{\substack{\text { W. B. Blenert } \\ \text { Engineering Manager }}}$

C. 1 HEAT PIPE ANALYSIS AND DESIGN CODE USER'S MANUAL

C. 1. 1 Introduction

This section describes the utilization of a digital computer code for Heat Pipe Analysis and Design (HPAD). Basically, HPAD calculates the steady-state, hydrodynamic heat transport capability of a heat pipe with a particular wick corfiguration and working fluid as a function of wick cresis-sectional area. Heat load, orientation, operating temperature; and heat pipe geometry are specified. Both one "g" and zero "g'" environments are considered. At the User's option, the code will also perform a weight analysis and calculate heat pipe temperature drops. Each of the following wiek configurations whose cross-sections are shown in Figure C.1-1 can be analyzed using HPAD.

- Central Porous Slab
- Circumfere...la] Porous Wick
- Arterial Wick
- Annular Wick
- Axial Rectuangular Grooves

Both the composite and homogeneous modes of operation can be evaluated for the first three wick types. The analysis and formulation of the equations used in the program are presented in Section C.1.2. The basic closed-form sclution for heat iransport capability is presented, and the wick properties and self-priming requirements are established for each of the wick configurations. A weight analysis and a heat transfer model are also developed. This section concludes with the Method of Solution and User's options.

The program input requirements are described in Section C.1.3.2, and the output formate are described in Section C.1.3.3. Nomenclature is ligted at the end of Section C.1.3. The flow diagrams, program listings, and sample problems are presented in the Appendices. A listing of FORTRAN names with engineering quantities is also presented as an Appendix.

Figure C. 1-1. Heat Pipe Witk Configurations

$$
\underset{y}{x}
$$

C. 1-2

C.1.2 Analysis

C.1.2.1 He.3t Transport Capability

The analysis to determine the heat transport capability of a heat pipe considers both capillary pumping and sonic vapor limits. Closed form solutions are used to predict the steady-state heat transport as a function of wick area in the case of the capillary pumping limit or the minimum vapor area for the sonic vapor limit. The analysis is performed for the conventional one-dimensional heat pipe shown in Figure C.1-2. The following; assumptions apply:

- Uniform heat addition and removal at a singie evaporator and condenser section.
- Uniform wick properties and circular cross-section over the entire length.
- Momentum effects are negíigible.

C.1.2.1.1 Capillary Pumping Limit

The closed-form solution for the hydrodynamic heat transport capability as determined by the capillary pumping limit can be derived as:

$$
\dot{Q}_{t}=\frac{2 K A_{w}(1+\eta) \cos \theta F_{1}}{r_{p} L_{e f f}} N_{1}
$$

Although the individual terms have been discussed previously they will be repeated here for easy reference.

1. The parameter η is defined as the ratlo of the sum of all pressure differences due to body forces to the available capillary pressure, i.e.,
$\eta=-\frac{r_{p} D \cos \beta}{2 H \cos \theta}+\frac{r_{p} h}{2 H \cos \theta}$ C. 1-2
where H, the wicking helght factor, is a property of the working
C. 1-3

Figure C.1-2. Conventional Heat Pipe

$$
\text { C. } 1-4
$$

fluid and is defined as:

$$
\mathrm{H} \stackrel{\sigma}{=} \frac{\sigma}{P_{1} g}
$$

2. The parameter F_{1} represents the ratio of the flow pressure drop in the liquid to the sun of the flow pressure drops in liquid and vapor.

$$
F_{1}=\frac{\Delta p_{1}}{\Delta p_{1}+\Delta p_{v}}=\frac{1}{1+\phi \frac{v_{v}}{v_{1}} \frac{32 K}{D_{h, v}{ }^{2}} \frac{A_{w}}{A_{v}}}
$$

where the factor ϕ depends on whether the vapor flow is laminar or turbulent.

$$
\phi=\left\{\left.\begin{array}{lll}
1 & , & \operatorname{Re}_{v} \leq 2200 \\
0.0031\left(\operatorname{Re}_{\mathbf{v}}\right)^{0.75} & , & \operatorname{Re}_{v}>2200
\end{array} \right\rvert\,\right.
$$

with
$\operatorname{Re}_{v}=\left(\frac{\rho V D}{\mu}\right)_{v}$
C. 1-6

The turbulence coefficient (0.0031) has been adjusted so that the total vapor pressure drop neglecting momentum effect is equal for the laminar and turbulence at $R e_{y}=2200$. This assumption gives a smooth transition from laminar flow to turbulence. The maximum deviation resulting from the above assumption is about 10%.
3. The Liquid Transpert Factor N_{1} is defined as:

$$
N_{1}=\frac{P_{1} \sigma \lambda}{\mu_{1}}
$$

4. The parameter $L_{\text {eff }}$ is the effective transport length defined as:

$$
L_{e f f}=\frac{L_{e}}{} \frac{+L_{c}}{2}+L_{a}
$$

5. The parameters $K, r_{p}, D_{h, v}, A_{w}$, and A_{v} are the permeability, effective pumping radius, vapor hydraulic diameter, and the wick and vapor cross-sectional areas, respectively. These parameters are defined by the type of wick material and wick geometry employed. Homogeneous and composite type wicks are treated by determining the appropriate values of permeability and pumping radius to be used in Equations C.1-1 and C.1-2. Equivalent wick properties for different wick geometries are discussed in a later section.

Once the properties of the wick and working fluid have been determined, Equation C. 1-1 is used to calculate the maximum heat (\dot{Q}) that can be transported without exceeding the capillary limit. When the vapor flow is laminar, Equation C. 1-1 can be solved explicitly for either $\dot{Q}_{t} L_{\text {eff }}$ or \dot{Q}_{t}. When the flow is turbulent, Equation C. 1-1 becomes an implicit relation for \dot{Q}_{t}. In this case, the Newton-Raphson Method is used to calculate the maximum heat transport.

The heat transport capability is calculated for both zero "g' and one "g" environments by setting η equal to zero for the former and calculating $\boldsymbol{\eta}$ (Equation C. 1-2) for a specified elevation h_{e} (equal to $-h$) in the latter. The variation of heat transport with evaporator elevation ($\mathrm{d}_{\mathrm{Q}} / \mathrm{dh}_{e}$) is also calculated for the one " g " laminar case from:

$$
\frac{\mathrm{d} \dot{Q}_{\mathrm{t}}}{\mathrm{dh}}=-\frac{\mathrm{K} \mathrm{~A}_{\mathrm{w}} \mathrm{~F}_{1} \mathrm{~N}_{1}}{L_{e f f} H}
$$

C. 1-9

In order that a particular wick performs to its full capacity in a gravity 'teld, it must be capable of complete self-priming. At a minimum, this requires that in the static condition and at the specified orientation the capillary pumping available during pr: ning must be sufficient to overcome any adverse body forces. Thus, for a fully saturatti wick, the gravity head required for self-priming becomes:

$$
\mathbf{h}_{\text {req }}=h_{e}+\mathbf{D}
$$

C. 1-6

In the analysis, the self-priming capability of a particular wick is determined from:

$$
h_{s p}=\frac{2 H \cos \theta}{r_{p, s p}}
$$

where $r_{p, s p}=$ effective pumping radius during filling. Thus, in order to have a fully saturated wick:

$$
h_{\mathrm{sp}} \geq \mathbf{h}_{\mathrm{req}}
$$

This program will calculate the heat transport capability for only those wick geometries which satisfy the self-priming requirement (i. e., Equation C.1-12). As an example, consider the case of an arterial wick (Figure C.1-1C) adjacent to the tube wall ($h_{p}=0$). The self-priming requirement for a horizontal heat pipe with this wick is:

$$
h_{\text {req }}=D_{a}
$$

During priming the effective pumping radius is:

$$
r_{p, s p}=\frac{D_{a}}{2}
$$

therefore:

$$
h_{s p}=\frac{4 H \cos \theta}{D_{a}}
$$

The code will therefore perform the heat transport analysis for increasing values of artery diameter until either:

$$
\mathrm{D}_{\mathrm{a}}>2 \sqrt{H \cos \theta}
$$

C. 1-16
or the sonic vapor limit or the maximum allowable vapor temperature drop is exceedred.
C. 1-7

C.1.2.1.2 Sonic Vapor Limit

Generally, the heat transport capability of a heat pipe will be determined by the capillary pumping limit; however, in those cases where the working fluid is at a low vapor pressure, the sonic vapor limit could become dominant. The minimum allowable vapor area that can exist without incurring the sonic vapor limit is calculated from:

$$
A_{v, \text { min }}=\dot{Q}_{t} \sqrt{\frac{2(\gamma+1)}{\gamma R_{g} T}} \frac{1}{P_{v} \lambda}
$$

When performing the heat transport analysis for a specified wick configuralion, the transport capability calculated from Equation C.1-1 is a function of increasing wick (i. e., liquid) area until the wick becomes so thick that the vapor flow area is reduced to the point where the sonic vapor limit is reached. The heat transport portion of the analysis is then terminated. The analysis is alsc terminated if the wick is no longer self-priming or the vapor temperature drop exceeds a specified value (see Section C.1.2.2).

C.1.2.2 Wick Properties

The heat transport capalility of any of the five wick geometries shown in Figure C.1-1 can be determined using HPAD. Both homogeneous and composite modes of operation can be evaluated for the first three geometries. The circumferential distribution of the liquid is neglected for the central slab and artery designs. The heat transport capritility is determined using the equations developed in the preceding section. Since these equations are general, equivalent wick properties must be derived for the specific wick designs and operational modes. In particular, equivalent properties must be determined for the following:
$K=$ Permeability - This is either input as a material property; or, in the case of the arterial, annular, and groove germetries, it is calculated consistent with the appropriate friction factor and the hydraulic diameter of the liquid $\left(\mathrm{D}_{\mathrm{h}, 1}\right)$.

$$
\mathrm{K}=\frac{\mathrm{D}_{\mathrm{h}, 1}^{2}}{2 \mathrm{fRe}}
$$

$D_{h, 1}=$ Liquid hydraulic diameter - This parameter is defined as:

$$
D_{h, 1}=\frac{4 A_{1}}{P_{w}}
$$

$D_{h, v}=$ Vapor hydraulic diameter - Inis is defined analogous to $D_{h, 1}$
$\mathbf{r}_{\mathbf{p}}=$ Effective pumping radius - This is input as a property of the wick maitrial or calculated from the wick geometry.
$H_{\text {req. }}=$ Static elevation head that must be supported in one "g' environment if the wick is to be self-priming. This is calculated based on wick geometry.
$r_{p, s p}=$ Pumping Radius for self-priming.
The equivalent wick properties are listed in Table C.1-1 for the various wifls geometrles.

C.1.2.3 Weight Analysis

A weight analysis subroutine which can be employed at the user's option is included in this program. The weight analysis is based on coutainment of the internal pressure of the working fluid at a specifiled maxi num temperature. The internal pressure is input as the saturated vapor pressure when the maxirnum temperature is less than the critical temperature. For temperatures exceedir \boldsymbol{x} the critical temperature of the working fluid, the internal pressure is calculated from either the Ideal Gas Law or the Beattie-Bridgman Equation depencing on which is indicated in the input.

For an Ideal Gas:

$$
p=\frac{\mathbf{m} \mathbf{R}_{\mathbf{g}} \mathbf{T}_{\text {max }}}{\mathbf{V}_{\mathbf{t}}}
$$

Table C.I-1, Equivalent Wiek or mmeters
where " m " is the total fluid inventory required at the operating temperature, and " V_{t} " is the total internal void volume.

$$
\mathbf{m}=\mathbf{m}_{\mathbf{1}}+\mathbf{m}_{\mathbf{v}}
$$

with

$$
\begin{align*}
& m_{1}=P_{1} v_{1}=\rho_{1} \in A_{w} L \\
& m_{v}=P_{v} v_{v}=\rho_{v} A_{v} L
\end{align*}
$$

When the Beattie-Bridgman Equation is used:

$$
p=\frac{R_{g} T_{\max }\left(1-\epsilon^{\prime}\right)}{v^{2}}(v+B)-\frac{A}{v^{2}}
$$

where " \mathbf{v} " is the specific volume

$$
\mathrm{v}=\frac{\mathrm{V}_{\mathrm{t}}}{\mathrm{~m}}
$$

and

$$
\begin{array}{ll}
A=A_{0}\left(1-\frac{a}{v}\right) & C .1-26 \\
B=B_{0}\left(1-\frac{b}{y}\right) & C .1-27 \\
\epsilon^{\prime}=\frac{C}{V T_{\text {max }}^{3}} & \text { C.1-28 }
\end{array}
$$

A_{0}, a, B_{0}, b, and c are constants for the particular working fluid, which must be input when the Beattie-Bridgman Equation is required. These constants must be input consistent with the following dimensions: pressure in atmospheres, volume in liters/ gm mole, temperature in degrees K, and $R=0.08206$ atm-liters $/ \mathrm{gm}-\mathrm{mole}-{ }^{\circ} \mathrm{K}$. These are the units generally found in the literature.

The weight analysis is performed for a single tube wall thickness which is the larger of the specified wall thickness or the minimum wall thickness required to contain the pressure with a specified safety factor (S). The weight analysis can also be performed parametrically as a function of the radius of a spherical storage volume. This volume would be attached to the heat pipe to reduce containment pressures and subsequently the system weight. The spherical volume shown in Figure C.1-3 is used strictly for containment purposes and should not be confused with the storage reservoir used in gas-controlled heat pipes. A spherical volume is used to simplify the analysis; and, although it is impractical because of its fabricability, this model does give a good indication of the size of a cylindrical reservoir required to minimize the system weight. The wall thicknesses required to contain the pressure are determined from:

$$
t=\frac{\mathrm{pRS}}{\sigma_{y}} \quad \text { C.1-29 }
$$

and

$$
\delta=\frac{p R_{s t} S}{2 \sigma_{y}}
$$

$$
\text { C. } 1-30
$$

The total internal volume of the system is:

$$
\begin{aligned}
& V_{t}=V_{1}+V_{v}+V_{s t}+V_{w} \\
& V_{t}=\left(\pi R^{2}-\left(1-\epsilon^{\prime}\right) A_{w}\right) L+\frac{4}{3} \pi R_{s t}^{3}
\end{aligned}
$$

The total weight of the system is calculated as:

$$
m_{t}=m+m_{w}+m_{h p}+m_{s t}
$$

where

$$
\begin{array}{ll}
m_{w}=(P A)_{w} L & C .1-34 \\
m_{h p}= & \pi\left(t^{2}+2 R t\right) P_{h p} L
\end{array}
$$

Figure C.1-3. Heat Pipes with Spherical Pressure Containment Vessel

$$
m_{s t}=\left[\frac{4}{3} \cdot \pi \cdot\left(R_{s t}+\delta\right)^{3}-\frac{4}{3} \pi R_{s t}^{3}-2 \pi R_{s t} h \delta\right] \rho_{h p} \quad \text { C.i-36 }
$$

with

$$
\mathrm{h}:=\mathrm{R}_{\mathrm{st}}-\left(\mathrm{R}_{\mathrm{st}}^{2}-\mathrm{R}^{2}\right)^{1 / 2} \quad \text { C.1-37 }
$$

The weight analysis is performed for the case of no storage volume by setting $R_{s t}$ equal to zero (0). Otherwise, the analysis is performed for increasing values of stor:age radius. The analysis is terminated when either the thickness of the tube wall or the spherical shell becomes less than a specified minimum value, or the radius of the storago volume exceads a specified maximum. The minimum thicknesses should be specified consistont with fabrication constraints; whereas, the maximum storage radius relates to system integration considerations. When no storage volume is employed, if the tube thickness required for containment is less than the sperified minimum, the tube weight is calculated for the spectied value.

Also calculated in this subroutino are the temperature drops associated With conduction across the heat pipe wall at the evaporator and condenser sections. These temperature drops are a function of wall thickness and are therefore affected by the size of the storage volume. The equations for these temperature drops are presented in the next section.

C. 1.2.4 Heat Transfer An:ulysis

The heat transfer analysis is based on the thermal movel shown in Figure C. 1-4. The tot:d thermal impedance $R_{\text {th }}$ is composed of a series of individual resistinces.

$$
R_{t h}=R_{w, 0}+R_{e}+R_{v}+R_{w, c}+R_{c} \quad \text { C.1-3s }
$$

Where the individuad resistances are calculated from:

$$
R_{w}=\frac{D_{e x t} \ln \left(\frac{D_{\mathrm{ext}}}{D_{\mathrm{int}}}\right)}{2 K_{w} A_{\mathrm{ext}}}
$$

Fugure C. 1-4. Thermal Impedance Model for Heat Transfer Analysis;
C. 1-15

$$
\begin{aligned}
& R_{e}=\frac{1}{h_{e} A_{\text {int, } e}} \\
& R_{v}=\frac{P_{v} T}{\lambda P_{v} \dot{Q}_{t}} \\
& R_{c}=\frac{1}{h_{c} A_{i n t, c}}
\end{aligned}
$$

The internal areas used in the above equations are the actual heat transfer areas associated with the particular wick geometry. Meat transfer coefficients for the slab, arterial, and grooved wicks are input for the evaporator and condenser sections. For the case of the annular or circumferential wicks, the film coefficients are calculated from:

$$
\begin{array}{ll}
h_{\text {an }}=\frac{k_{1}}{\left(R_{i}-R_{v}\right)} \\
h_{\text {cir }}=\frac{k_{\text {eff }}}{\left(R_{i}-R_{v}\right)} & \text { c.1-43 }
\end{array}
$$

where the conductivities are specified input values. Individual temperature drops are calculated from:

$$
\Delta T_{i}=R_{i} \dot{Q}
$$

C. 1-45
and the overall temperature drop is calculated as:

$$
\Delta T=R_{t h} \dot{Q}
$$

As mentioned previously, the heat transport analysis will be terminated if the vapor temperature drop ΔT_{v} exceeds a specified maximum value.

C.1.2.5 . Analysis Summary

The features of this analysis and the basic assumptions cmployed can be summarized as follows:

C.1.2.5. 1 Features

1. The heat transport capability ($\dot{Q} L_{\text {eff }}$) or maximum heat transport ($\dot{Q}_{\max }$) can be calculated for five basic wick geometries.
2. The vapor flow may be laminar or iurbulent.
3. The heat transport capability is determined for both one "g" and zero " g " environments.
4. The effect of elevation on heat transport is determined.
5. Both composite and homogencous modes of operation can be analyzed for the slab, circumferential, and aríerial wick geometries.
6. The maximum heat transport is calculated as a function of wick thickness (or liquid flow area). For the axial groove geometry, the number of grooves, their width, and the corresponding land thickness is determined so that the maximum heat iransport is realized for a particular aspect ratio. In this case, the maximum heat transport is calculated as a function of groove aspect ratio.
7. The minimum vapor area allowed without incurring the sonic vapor limit is calculated.
8. The effective pumping radius required for self-priming is calculated.
*9. The fluid inventory, evaporator and condenser film temperature
[^0]> C. 1-17
drops and the vapor temperature drop are calculated for the minimum wick thickness necessary to meet a specified heat transport requirement.
*10. An optional weight analysis can be performed for the minimum wick thickness which satisfies the specified heat transport requirement. This analysis calculates the total system weight consistent with containment of the working fluid at a specified maximum temperature. A spherical storage volume maj be employed for containmen. a: the user's option.
11. The wo king fluid can be treated as a saturated vapor, a real gas, or an ideal gas (whichever is appropriate) at the maximum temperature.
12. The heat transport analysis is terminated at either the sonic vapor limit or when the vapor temperature drop exceeds a specified value.

C.1.2.5.2 Assumptions

1. One-dimensional axial fluid flow, i.e., radial and/or circumferential pressure losses, are negligible.
2. Heat pipe cross-section is circuiar and uniform over the length of the heat pipe.
3. Wick cross-section is uniform over the length of the heat pipe.
4. Fluid and material properties are constant over the length of the heat pipe.
5. Uniform heat addition and removal.
C. Axial heat conduction in the tube wall is negligible.

[^1]C. 1-18
-7. Vapor pressure drop due to gravity is negligible.
8. Momentum losses in the vapor are negligible.
9. Liquid flow is always laminar.
10. Nucleate boiling and entrainment limits are not considered.

These assumptions are consistent with most heat pipe analyses and are generally not prohibitive. The last three assumptions become invalid when very high heat loads or cperation with a fluid at a low vapor pressure are required. These conditions are generally encountered with liquid metals at operating temperatures substantially below their boiling point, and care should be exercised when using this analysis under those circumstances.

C.1.3.0 Program Description

C.1.3.1 General

A listing of the program is presented in Appendix A. The program was written in FORTRAN V and was designed to operate on the UNIVAC 1108 system. The FORTRAN names and the physical quantities they represent are listed in Appendix B. Storage requirements are on the order of 50,000 words (octal).

The program logic is illustrated in the flow diagram contained in Appendix: C. Basically, the program reads the input data, ca ${ }^{1}$ culates equivalent wick properties, performs a heat transport and thermal analysis as a function of wick thicknesis, performs a weight analysis if required, and outputs the data.

The deck setup as shown in Figure C. 1-5 consists of job cont rol cards, the program source deck (which may include a fluid property data acquisition code), additional control cards followed by the input data and program termination cards.

As indicated above, the program has two major cptions. First, a fluid property data acquisition code cain be utilized in conjunction with the HPAD source program. This eliminates the need for inputting the various fluid properties at the specified vapor temperature as part of the data deck. The second option is the weight analysis. Either option is exercised by using the appropriate integer in the fourth
C. 1-19

Figure C. 1-5. Program Deck Setup
C. 1-20
input card of the data deck as described in the next section.

C.1.3.2 Input Description

Table C.1-2 describes the entries to be made on the various input cards and indicates when each of the optional cards are to be excluded. The FORTRAN name, format, and units to be used are indicated for each entry. A listing of sample input data for a homogeneous circumferential wick and for the axial groove wick is presented in Table C.1-3 and C.1-4.

C.1.3.3 Output Description

The program outputs essentially all input data. This is followed by the heat transport analysis. The self-priming requirement and the minimum allowable vapor area (based on not exceeding the sonic limit) are printed. A table in which the film and vapor temperature drops and the calculated heat transport performance parameters are listed as a function of wick thickness or groove aspect ratio is printed next. This table is followed by a summary of the parameters associated with the minimum wick thickness or aspect ratio's which satisfy a specified heat transport requirement. If the requirement cannot be satisfied by the particular design, the following statement will appear at the end of the preceding table: "No Area Exists to Satisfy QMAX Requirement". If a weight analysis is requested, the tube thickness required for containment and a weight breakdown are listed in tabular form as a function of the wick storage volume radius for the minimum thickness or those aspect ratios which satisfy the heat transport requirement. This is then followed by a table which lists the conduction temperature drops and the syrtem's temperature drop as a function of the storage volume radius. A listing of typical output data is presented in Appendix D with the sample problem.

C.1.3.4 Nomenclature

The nomenclature used in the Heat Pipe Analysis and Design Code section is given in the following tabulation.

Table C.1-2 Input Data Description

C. 1-22

Input Card No.	Format	$\begin{aligned} & \text { Fortran } \\ & \text { Name } \\ & \hline \end{aligned}$	Description	Unit
5	3F10.5	TEMP	Operating temperature	0_{K}
.		TMAX	Maximum system temperature	$\mathbf{o r k}_{\mathbf{K}}$
		DT	Maximum allowable vapor temperature drop	0_{K}
6	6E10.4	RHOL	Liquid density	$\mathrm{kg} / \mathrm{m}^{3}$
		RHOV	Vapor density	$\mathrm{kg} / \mathrm{m}^{3}$
		XLAMD	Latent heat of vaporization	w-s/kg
		STGMA	Surface tension	N / m
	\cdot	XṀUL	Dynamiic liquid viscosity	$\mathrm{kg} / \mathrm{m}-\mathrm{s}$
		XMUV	Dynamic vapor viscosity	$\mathrm{kg} / \mathrm{m}-\mathrm{s}$
7	2F10.5	SMW	Molecular weight of working fluid	kg/mole
		GAMMA	Ratio of the spreific heats	
8*	5E10.4	$\left.\begin{array}{l} \text { ASO } \\ \text { SA } \\ \text { BSO } \\ \text { SB } \\ \text { SC } \end{array}\right\}$	Constants for Beattie-Bridgman Equation (pressure in atmosphere, volume in liter/ gm -mole, temperature in ${ }^{\circ} \mathrm{K}, \mathrm{R}=0.28206$ atm liters/gm-mole ${ }^{\circ}{ }_{\mathrm{K}} \mathrm{K}$)	
9	E10. 4	PHI	Wetting angle	degrees
10	6 F 10.5	QMAX	Maximum heat transport	W
		PERF	Performance factor	-
		FSA FE	Safety factor	-
	.	HIGH	Elevation between the condenser end and evaporator end	m

[^2]C. 1-23

Input Card No.	Format	Fortran Name	Description	Unit	1
		SIGN	Sign convention, +1 positive elevation -j negative elevation	-	
		VCID	Void fraction of the wick material	-	
11	3F10. 5	XLEV	Length of the evaporator section	m	=
		XI.AD	Length of the adiabatic section	m	
		XLCO	Length of the condenser section	-	
12	4Ei0. 4	XOD	Outside diameter of the heat pipe	m	
		TMN	Minimum wall thickness of the heat pipe	m	
		DELM	Minimum wall thickness of the storage reservoir	mi	
		FMAX	Maximum allowable radius of the storage reservoir	m	1
13	3E10.4	RHOM	Density of the heat pipe material	$\mathrm{kg} / \mathrm{m}^{3}$	
		STRES	Yield stress for the heat pipe material	$\mathrm{N} / \mathrm{m}^{2}$	
		WALLK	Thermal conductivity of the wall material	$W / m^{\circ} \mathrm{K}$	
14*	213	11	Mesh size of the coarse wick material	-	
		I 2	Mesh size of the fine wick material	-	
15	5E10.4	XKP	Permeability	m^{2}	
		RPE	Effective pumping radius for heat transport	m	
		CRPE	Effective pore radius for self-priming	m	
		HESL	Fvaporator film coefficient of slab wick heat pipe	$\mathrm{W} / \mathrm{m}^{2}-{ }^{\circ} \mathrm{K}$	
		HCSL	Condenser film coefficient of slab wick heat pipe	$\mathrm{W} / \mathrm{m}^{2-}{ }^{0} \mathrm{~K}$	1

[^3]C. 1-24

[^4]C. 1-25

Input Card No.	Format	Fortran \qquad	Description	Unit
20	2E10.4	D 1	Diameter of the wire of the screen mesh	m
		RHOW1	Density of the wick material	$\mathrm{kg} / \mathrm{m}^{3}$
21*	3E10.4	XMCWD	Minimum wick thickness (i.e., distance between the wick and the tube wall)	m
		STINC	Step increment for wick thickness	m
		XKLIQ	Thermal conductivity of the working fluid	$\mathrm{w} / \mathrm{m}-{ }^{\circ} \mathrm{K}$
22*	2E10.4	D 1	Diameter of the wirc of the screen mosh	m1
		RHOW1	Density of the wick material	$\mathrm{kg} / \mathrm{m}^{3}$
23**	3E10.4	RPE	Effective pumping radius for heat transport	m
		XKP	Permeability	m^{2}
		XKEFF	Effective thermal conductivity of the liquid and wick in circumferential wick heat pipe	$\mathrm{W} / \mathrm{m}-{ }^{\circ} \mathrm{K}$
$24^{* *}$	2E10.4	D 1	Diar zeter of the wire of the screen mesh	m
		RHOW1	Density of the wick material	$\mathrm{kg} / \mathrm{m}^{3}$
25***	8 E 10.4	ARMAX	Maximum value of aspect ratio of the groove	m
		ARMIN	Minimum value of aspect ratio of the groove	m
		WMAX	Maximum value of the groove width	m
	-	WMIN	Minimum value of the groove width	m
		TLITAX	Maximumt value of the land thickness of the groove	m
		TLMEN	Minimum value of the land thickness of the groove	m

[^5]** Cards 23 and 24 are needed only if the value of Card 4 (4) is equal to four (4)
*** Cards 25 and 26 are not needed if the value of Card 4 (4) is equal to five (5).
C. 1-26

Input Card No.	Format	Fortran Name	Description	Unit
		HEGR	Evaporator film coefficient of the grooved heat pipe	$\mathrm{w} / \mathrm{m}^{2}-{ }^{\circ} \mathrm{K}$
		HCGR	Condenser film coefficient of the grooved heat pipe	$\mathrm{W} / \mathrm{m}^{2}-{ }^{\circ} \mathrm{K}$
26***	213	NDAR	Number of groove aspect ratio	-
		NDWD	Number of groove widths	-

*** Cards 25 and 26 are not needed if the value of Card 4 (4) is equal to five (5).

```
NITFOGEN
ALUMINUM aLLOY 6:J61-T6
HOMOGENEOUS WICK AGAINST THE WALL (200 MESH SCREEN)
    2 2 4 1 2
    80. 300. 10.0
0.000OE +00
        5.0 1.0̈ 2.0
        0.2 0.8 0.2
1.27U0E-028.9000E-048.9000E-045.8000E-02
2.7000E+032.7500E+U81.6000E+02
7.70UOF-116.850OE-051.4000E-01
5.33UUL-052.2500E*+03
```

Table C.1-3. Sample Input Data for a Homogeneous Circumferential Wick

```
NITROGEN
ALUMINUM ALLOY 6061-T6
AXIAL RECTANGULAR GROOVED HEAT PIPE
    O 2 0 5 1 2
    80. 300. 10.0
8.0000E+025.9000E+001.9500E+058.2000E-031.4480E-045.3400E-06
    25.0
C.OOUOE+00
    0.005 1.0 2.0 0.00254 1.0 0.7
    0.2
        0.0 0.2
R ll
N: 1.5000E+005.0000E-017.6200E-044.0600E-045.1000E-043.8100E-043.8000E+027.6000E +02
3 3
```

Table C.1-4 Sample Input Data for a Axlal Groove Wick

NOMENCLATURE

Symbol
Description

A

$$
\begin{gathered}
\mathbf{A}, \mathbf{A}_{\mathbf{0}}, \mathbf{B}, \mathbf{B}_{\mathbf{o}} \\
\mathbf{D} \\
\mathbf{D}_{\mathbf{h}} \\
\mathbf{F}_{\mathbf{I}} \\
\mathbf{H} \\
\mathbf{K} \\
\mathbf{L} \\
\mathbf{N} \\
\mathbf{P} \\
\mathbf{P}_{\mathbf{w}} \\
\mathbf{Q} \\
\mathbf{R} \\
\mathbf{R e} \\
\mathbf{R}_{\mathbf{g}} \\
\mathbf{S} \\
\mathbf{T} \\
\mathbf{V}
\end{gathered}
$$

a, b, c
f
g
h
k
m
${ }_{t}{ }_{t}$
w
$\boldsymbol{\alpha}$
$\boldsymbol{\beta}$
$\boldsymbol{\gamma}$
δ
ε
η
θ
λ
μ
ν
p
σ

Area
Constants for Beattie-Bridgman Equation
Tube diameter
Hydraulic diameter
Pressure drop ratio
Wicking height factor
Permeability
Length
Transport factor
Pressure
Wetted perimeter
Axial heat flow rate
Radius, thermal resistance
Reynolds number
Gas constant
Safety factor
Temperature
Volume
Constants for Beattie-Bridgman Equation
Friction factor
Acceleration
Heat transfer coefficient, elevation
Thermal conductivity
Mass
Pumping radius
Thickness
Groove width
Grcove half angle
Heat pipe orientation with respect to gravity
Ratio of specific heats
Groove depth, thickness of wall of storage volume
Porosity
Gravity factor
Contact angle
Heat of vaporization
Dynamic viscosity
Kinematic viscosity
Density
Surface tension

Subscripts

C. 1-31

PRFCRTINTY PACE RTANTK NOT FTIMES

Appendix B. FORTRAN Names

PRECEDING PAGE BLANK NOT FILSIE:
\qquad
+
C. 1-37
.

Fortran Name	Description	Units
HD1, HD2	Headings (working fluid)	
HD3, HD4, HD5, HD12	Headings (heat pipe material)	
HD6, HD7,	Headings (type of wick)	
HD8, HD9, HD10, HD11,		
HD13, HD14, HD15, HD16		
MORE	Control Point, integer $=0$ for last set of data, otherwise interger $=2$	
OPWT	Control Point, integer < 1 without weight analysis, otherwise integer >1	
DATA	Control Point, integer <1 no data acquisition code, otherwise integer >1	
CTOW	Control Point, type of wick geonetry	
	1 slab	
	2 arterial	
	3 annular	
	4 circunferential	
	5 axial grooves	
STATE	Control Point, integer >1 use Beattie-Bridgman	
	Equation, integer < 1 use Ideal Gas Law	
FLUID	Control Point, type of working fluid	
	1 hydrogen	
	2 nitrogen	
	3 oxygen	
	4 water	
	5 ammonia	
	6 methanol	
	7 acetone	
	8 freon-21	
	9 sodium	
	10 potassium	
	11 lithium	
	12 mercury	
TEMP	Operating temperature	K
TMAX	Maximum system temperature	${ }^{\circ} \mathrm{K}$
DT	Maximum allowable vapor temperature drop	${ }^{0} \mathrm{~K}$
RHOL	Liquid density	$\mathrm{kg} / \mathrm{m}^{2}$
RHOV	Vapor density	$\mathrm{kg} / \mathrm{m}^{3}$.
XLAIMD	Latent heat of vaporization	W s/kg
SIGMA	Surface tension	N / m
XMUL	Dymamic liquid viscosity	$\mathrm{kg} / \mathrm{m} \mathrm{s}$
XMUV	Dynamic vapor viscosity	$\mathrm{kg} / \mathrm{m} 3$

$\begin{gathered} \text { Fortran } \\ \text { Name } \\ \hline \end{gathered}$	Description	Units
XMW	Molecular weight of the working fluid	kg/mole
GAMMA	Ratio of the specitic heats	
$\begin{aligned} & \text { ASO } \\ & \mathbf{S A} \end{aligned}$	Constant for Beattie-Bridgman Equation	
BSO		-
PHI	Wetting angle	degrees
PIH	Wetting angle	radians
QMAX	Maximum heat transport	W
PERF	Performance factor	
FSAFE	Safety factor	
HIGH	Elevation between the condenser end and evaporator end	m
SIGN	Sign convention, +1 positive elevation, -1 negative elevation	
VOID	Void fraction of the wick material	
XLEV	Length of the evaporator section	m
XLAD	Length of the adiabatic section	m
XLCO	Length of the condenser section	m
XOD	Outside diameter of the heat pipe	m
TMIN	Minimum wall thickness of the heat pipe	m
DELM	Minimum wall thickness of the storage reservoir	m
RMLX	Maximum allowable radius of the storage reservoir	m
RHOM	Density of the heat pipe material	$\mathrm{kg} / \mathrm{m}^{3}$
STRES	Yield stress for the heat pipe material	$\mathrm{N} / \mathrm{m}^{2}$ 。
WALLK	Thermal conductivity of the wall material	$\mathrm{W} / \mathrm{m}^{\circ} \mathrm{K}$
II	Indicator	
IND	Counter for performance parameters	
QTRAN	Maximum heat transport requirement	w
XLHP	Length of the heat pipe	m
XLEFF	Effective heat pipe length	m
QPRED	Maximum heat transport requirement (including the performance factor)	W
XID	Inside diameter of the heat pipe	m
AE	Internal area of the evaporator	m^{2}
AC	Internal area of the condenser	m^{2}
RHEAD	Required head of self-priming for slab wick, circumferential wick, and arnular wick	m
XNL	Liquid transport factor	$\mathrm{W} / \mathrm{m}^{2}$
11	Mesh size of the coarse wick material	
12	Mesh size of the fine wick material	
XKP	Permeability	m^{2}
RPE	Effective pumping radius for heat transport	m

C. 1-39

Fortran Name	Description	Units
CRPE	Effective pore radius for self-priming	m
HESL	Evaporator film coefficient oi slab wick heat pipe	$\mathrm{W} / \mathrm{m}^{20} \mathrm{~K}$
HCSL	Condenser film coefficient of slab wick heat pipe	$\mathrm{W} / \mathrm{mi}^{\text {e }} \mathrm{K}$
D1 \& D2	Diameter of the wires of the screen mesh	m
RHOW1	Density of the coarse wick material	$\mathrm{kg} / \mathrm{m}^{3}$
RHOW2	Density of the fine wick material	$\mathrm{kg} / \mathrm{m}^{3}$
XMCWD	Minimum wick thickness	m
CWL	Wick thichuess	m
CPCOR	Capillary pumping pressure for: self-priming	$\mathrm{N} / \mathrm{m}^{2}$
CCORE	Self-priming head	m
CPGHD	Capillary pumping pressure for heat transport	$\mathrm{N} / \mathrm{m}^{2}$
BODY	Body force	$\mathrm{N} / \mathrm{m}^{2}$
OTAR	Control card	-
	(1) for closed artery (2) for open artery	
STINC	Step increment for wiek thichness	m
H	Pedestal height of arterial wick	m
HEAR	Evaporator film coefficient of aiterial wick	$\mathrm{W} / \mathrm{m}^{20} \mathrm{~K}$
HCAR	Condenser film coefficient of arterial wick	$\mathrm{w} / \mathrm{m}^{2} \mathrm{~K}$
DMAX	Maximum allowable diancter of artery for selfpriming	m
XKLIQ	Thermal conductivity of the working fluid	$\mathrm{W} / \mathrm{m}^{\circ} \mathrm{k}$
XKEFF	Effective thermal conductivity of the liquid and wick in circumferential wick heat pipe	W/m ${ }^{\circ} \mathrm{K}$
SONIC	Sonic velocity at operating temperature	m / s
A SONIC	Minimum allowable vapor area for sonic limit	m^{2}
NL	Indicator	-
EHEAD	Equivalent pore radius for self-primink	:
B	Half of the wick thickness	1.
THETA	Angle	rad.ns
C	Chord length	!
AV	Vapor area	$: \mathrm{n}^{2}$
CHEAD	Net capillary pressure for heat transport	$\mathrm{N} / \mathrm{m}^{2}$
AW	Wick area	m^{2}
WP	Wetted perimeter of liquid area	m
DHV	Hydraulic diameter of the vapor	m
ARC	A re length	m
HAE	Evaporator film conductance	W/K
HAC	Condenser film conductance	W/K
DHL	Hydraulic diameter of the liquid	m
QLMAX	Maximum heat transport factor in " 1 -g" environment	W m
QLMOG	Maximum heat transport factor in " 0 -g" environment	W m

[^6]Fortran

Name	Description	Units
REYND	- Reynolds number	-
DIFT	Vapor temperature drop	${ }^{*} \mathrm{~K}$
QMAXC	Maximum heat transport in "1-g" environment	W
QMAOG	Maximum heat transport in "0-g" environment	W
DQDH	Slope of heat iransport versus evaporator elevation	W/m
AETD	Evaporator temperature drop	${ }^{*} \mathrm{~K}$
ACTD	Condenser temperature drop	${ }^{\circ} \mathrm{K}$
XQ(NDD)	Temporay storage space for QMAXC	W
XA(IND)	Temporary storage space for AV	m^{2}
XB(IND)	Temporary storage space for CWD	m
XL(IND)	Temporary storage space for AW	m^{2}
XQL(IND)	Temporary storage space for QLMAX	W / m
XARC(IND)	Temporary storage space for ARC	m
XDIFT(ND)	Temporary storage space for DIFT	\mathfrak{K}
AREA	Vapor area	m^{2}
AREAL	Liquid area	m^{2}
VTD	Vapor temperature drop	${ }^{6} \mathrm{~K}$
LAYER	Number of layers ut screen mesh	-
XMFLD	Mass of the working fuid	kg
Vow	Actual v slume of ti. wick	m^{5}
WTW	Weight of the wick	kg
ETD	Evaporato" :emperature drop	${ }^{\mathrm{K}}$
CTD	Condenser temperature drop	${ }^{\circ} \mathrm{K}$
$\left.\begin{array}{l}\mathrm{C} 1 \\ \mathrm{C} 2 \\ \mathrm{C} 3\end{array}\right\}$	Constants for turbulent vapor flow	-
CHECK	Counter for iterations when vapor is turburent	-
QT(${ }^{\text {P }}$	Temporary storage space for $Q_{\text {max }}$	W
A(N)	Constant for turbulence calculation	$\mathrm{N} / \mathrm{m}^{2}$
DA(N)	Derivative of turbuient transport equation	-
QTEMP(I)	Temporary storage space for Orov:	W
ARMAX	Maximum value of aspect raii)	-
ARMIN	Minimum value of asper: : tio	
WMAX	Maximum value of the groose witth	m
WMIN	Ninimum value of the gatove is inh	m
TLMAX	Maximum value of the land Chickness	m
TLMIN	Minimum value of the land thickress	m
HEGR	Evaporator film coefficient of the grooved heat pipe	$\mathrm{W} / \mathrm{m}^{2}{ }^{\circ} \mathrm{K}$
HCGF	Condenser film coefficient of the grooved heat pipe	W/m $\mathrm{m}^{\text {a }} \mathrm{K}$
NDAR	Number of groove aspect ratios	-
NDWD	Number of groove widths	-
DNAR	Number of groove aspect ratios	-
ARINC	Increment for the aspect ratio	-
DAR()	Aspect ratios	
DAWSP(Maximum allowable width of the groove at an aspect ratio for self-priming	m

C. 1-41

Fortrin Name	Description	Units
IREQ	Required pumping height	m
DNWD	Number of proore widths	-
WINC	Increment for the groove width	m
1N	Groove width	m
S17. (J)	Groove width	m
DEP(1)	Groove depth	m
SRVV	Internal radius of the prooves	III
NMAX	Maximum number of grooves	-
NMIN	Minimum number of grooves	-
NK	Number of grooves	-
DNI. (K)	Land thickness of the groove	m
BASE,	Batse thicokness of the groove	m
SAV	Vapor area	m^{2}
SAI	Vapor area	m^{2}
Ago	Area of onk groove	m^{2}
A MO)	Menisusa area of one groove	m^{2}
A Lo	lituld area of one hroove	m^{2}
GVOMI(K)	Total liquid area	m^{2}
ALAND	Total lamd area	m^{2}
DDI (K)	Maximum heat transport factor for sroove geometry in "l-g" environment	W m
EEl(\%)	Maximum heat tramport for groove geometry in " 1 -fr" envi romment	w
FF1(k)	Maximum heat transport factor for groove geometry in " $\left(0-\right.$ gr $^{\prime \prime}$ enviromment	W m
GG1(K)	Maximum heat transport in " $0-\mathrm{g}$ " envitonment	W
HH1 (K)	Slope of heat tramsport versus evaporator clevation in "l-g" enviromment	W m
DGM(k)	Mass of the working luid	kg
DWICK(K)	Weight of the land of the groove	kg
NG1 (K)	Number of erooves	-
NG:(1)	Number of grooves	-
BB2(J)	Groove width	III
CC2(J)	Land thickness	m
DD2(.1)	Maximum heat transport factor for groove peometry in " 1 - f " enviromment	W m
EE? ${ }^{\text {(J) }}$	Maximum heat iransport for groove geometry in "1-f" environment	W
FF2(J)	Mavimum heat transport factor for groove geometry in " $0-5$ ". environment	W m
GG2(J)	Maximum heat transport for groove geometry in " $0-\mathrm{y}$ " environment	W
HH2(J)	Slope of heat framsport versus evaporator elevation in " $1-\mathrm{g}$ " envi romment.	W m
P P2(J)	Mass of the wurking fluid	$\mathbf{k g}$

Fort run Name

Description
Units

BTRED	Calculated wall thickness of the hoat pipe	ft
TRED	Calculated wall thickness of the storage reservoir	m
BVHP	Volume of the heat pipe	ft^{3}
WTL	Weight of the working fluid	kg
WTH	Weight of the heat pipe	kg
WT	Total weight	k_{K}
BINCR	Increment for the radius of the storage reservoir	$f \mathrm{t}$
BVST	Velume of the storage reservoir	ft^{3}
BVTT	Total volume of the system	ft^{3}
DEXT	Outside diameter of the heat pipe	n
DINT	Inside diameter of the heat pipe	11
AEXTE	External area of evaporator	m^{2}
AEXTC	Extermal area of condenser	m^{2}
EWTD	Temperature drop across the cvaporator wall	${ }^{6}$
CWTD	Temperature drop across the condenser wall	${ }^{\circ}$
TTD	Total temperature drop of the system	${ }^{\circ} \mathrm{K}$

Appendix C. Program Listing

 OIMENSION DD:31200).EE212001,FF21/CO1,GG2(2001,HH12(200), PPR12001)
OIMENSION DGS(20DI,NCASE12001,DVIOLZCC),RK212001
USMENSICN GVOWI(2001,GVOW212001, GVUW3(206)
INTEGER OPMT,OTGN, OTAR, DATA,STATE,FLUSO
5003 FORMAT CIOAG
$50: 0$ FORMAT (BF10.
5009 FORMAT (8E10.4)

83 FOKMAT $1 / 19 \mathrm{H}$ TUBE MATERIAL -SAGI
65 forhat $/ 12 E 20.7,10 x, F 4.21$
70
174 FDRMAT : $/ 12 \times 10$, 106)
607 format (/E20.7,15x,E20.7,24X,E20.7)
609 FORMAT $1 / / 23 \mathrm{H}$ WIRE OIAMETER OF THE $13,39 \mathrm{M}$ MESH SCREEN WIRE
1OTAMETER OF TME, 13 , 15 H MESH SCKEEN(M):

IITY OF THE , 1.3.22H MESH SCREENIKG/N-M-MII
78 FORMAT $1 / 18 \mathrm{BH}$ YORKIMG FLUIO $=, 2 A 6$, 4 H AT .F9.2.3H(KI
622 FORMAT $(14 x, F 6.1)$
623 FORMAT $\{1 / 4 \times, F 8.3\}$
C91 FORMAT $1 / 4 \times, F 10.2)$
66 FORMA I/1/ifoh SELE-PRIMING
634 FORMAT (/E20.7, 20X, E20.7. E20.7.4H(MII)
637 FORMAT UE20.7.59X.E20.71
202 FORART I/E20.7.10X,E20.7
1,10AL, 1H1!
10 Formal (:1-)

ItR SAFETY FACTER•!
os FORMAI $1 / 1$. OUTSIDE DIAMETER(MI MIN. WALL THICKNESSIM)'
68 FORHAT 1/1: LEMGIH OF THE MEAT PIPE SECTIONS'I
69 format 1//" totalemios
lim)
4u0 forkat l/I/' GEDMETAY OF IHE STORAGE
Ti forkat UHE M
71 forkal $1 / 19$ Radius(M) of max. storage volumeil

sos format $1 / / 0$ pirmeabilityim-ki gff. pumping rad. for hea it transpdrtimi eff. pumping kad. fon self-primingimiol

inspoat and selt-prining(mia

730 furmat ($/ 1$, effective thermal conductivity of the ligulo amo the
1wick(W/N-K)
624 furmal t/I: contact angletoegiol
19 furmat (/II SURFace tensionch/mi

Es FORMAT 11, LIO. VISCOSITYKG/M-SI VAPOR VISCOSITY(KG/H-SIO:

889 formar $1 / \%$ elevarioninio'

143 F URMAI $1 / 19$ max. aLL OKABLE VAPOR TEMPERATURE DROPIKIE)
85 FORMAT $1 / 11 /{ }^{8}$ OUT Y UT D D T ADI

635 FORMAI $1 / \%$ mAX. ALLOWABLE DIAMETER OF THE AMTERY FOR SELF-PRIMIM
IG(M):I
636 format $1 / \%$ max. allowable oistahce between the mall and the mick I FOR REQUIRED HEROIM) REQUIRED HEAD(M) I
 201 FORAAT $1 / 10$ SONIC YELDCITY(M/SI MINIMUM YAPOR GREAIM-M

lOENSER

631 FJRMAI $1 / / 0$
1 DENSEK
2
$(G=1)$
cieliameter of

$16=01$

63
LDENSER
VAPOR $\begin{aligned} & \text { PEMP } \\ & (G=0) \\ & \text { E }\end{aligned}$
EVAPuraica
CON

11^{2} FORMAT $1 / \%$
${ }^{1(K)}(W / H) \cdot 1$
30 FURMAT 1 i. (K-R)
LP DROP POLEFFIMAX
the mick
omax
$(k)_{(W)}^{(W)}$ (K)

23 formal I/ mo area exits to satisfy xmaximi requinmentif
31 fURMAS U\% OMAXIMI REQUIREMEMI IINCLUDING THE PERFORMAMCE FACTOR
$126^{11} 15^{\circ} 1$.
126 formal $1 / 1 \%$ the performance factor isal
20 fit is 0 , the max. Vapor arear(h-m) to satisfy omaximi requireme

1REGUIREMENT IS
LIS FDKMAT I
425 FDRAA I/I' THE MIN. OIAMETER(M) OF THE MICK TO SATISFY OMAXIM) A
 I Salisfr gmaximi peguinement is:1
12 f(GAMAI 1/E16.3, 3x,AE14.5)
132 Mumat Mrx,Ftal

 lanomaf.l
22 FURMAT $/ 1 / 5 x, F 2 C, 1,16 x, t 20.7$
34 FDRMA $1 / 520.2026 x, E 20.11$

$1 x_{1} \in 10.3,5 x_{p} \in 14.3,5 x$, TR.31
 IEAY IS:

si Comensen rerp. opjpirio

 ITEAT TRANSPDRI AND WEIGHI ANBLYSE; ARE PRESENTED:

pax. Allduable G

5s liseas atiowime:
55 Hanss $10 \quad$ (6. (1)

soo atAD (s.sros) Molithe
(rumais
Will 116,101

If llaya.gras) co 8 g 5011

KEAD (3,5Clo) 天Mnefanna
soll LiLppes

S022 x $\in \mathbb{O}$ ($5,50091 \mathrm{PHI}$
PHIFPHI:3.14159/180.0
GEAD iS.S010) CMAX, PERF, FSAFE,HIEM,SICM,VDID
HEAD 15.5010 I XLEVIXLAE,XICO
READ (S,3009) xOU, MIn.DELF,RMAX
REAGS (5,S0091 RHOM,STRESHALLK

1MO:O
OTRAM= OMA

ILEFF $=X L A D H A L E V / 2.00 \times L L O / 2.0$
OPKED=GMAXePFRF

$x 10=100-7.001 \mathrm{mln}$
$A C=x 10 * 3.141590 \times L C O$
RHEACOXIDOSICAEHIGH

ReA16/2.2
CO to $1330,331,332,333,121$, oram
 KEAD 15,50091 KKP,RPE,CRPE,HESL, HCSL IEAD 13,50091 O1,02,RHDW1, MHON2 IF (11.EU.121 60 in 9000
KMCMOE2.0e10182.0002)

CETJRECPCOX/PRFR A9-B1
 CREAOECPGIOMLUOT
On T0 334
331 n'av (3,497) otar

133) WFAD 13,5099 INCND.5IIMC,APE.HOHEAROHCAR

an土mei icnenitu

CCunterimax

2EAD(S.SUOF) D1, NHOW

ccuaticmax
RHEAD-X10*HICHO 1 CM
33) REROSS,SUOQ1 KKP, ROE,XKE

CuIRFCMO
CPGMC=2.00SISMARCOSIPKIIIRPE

PHEAOMXIDAHGHESIG
$02=0.0$
334
Ail

- Rite coilo

ERITE 16,501

WRITE $(6,62)$
WRITE $(6,63)$ HO3, HCA, HOS, पC12
WRite 16,2201
WPIIE (6.701 walle
White $(6,65)$ stres.ehon, fsafe
WITE $16,791 \times 00$,TMIY
wilte (8.68)
While (0.57)
MKITE 16,701 XLEV, XLAD, XLCD, XLMP
WRIE 15,400
walfe 16,70) Rmax
waite (6,101
wnit 16,731

wilit 16,805)
©0 [s $(604,602,603,6041,070 \times$
602
Wh1E 16,4061 ,603,6041,010
WRIT (6,807) XRP, PPE.CRPE
wilic (6, jons
RR1TE $\{4,604$) 11,17
WRit 16,6101 U1.62
wuite 16,6111 11,12

602
co tu (a19, 612),0tar

walrt $16,761 \times$ xc.ut
vilt le.oll
WRITE (6.10) 17

(6) 1ii rus

613 witite 16,5181
arift 16.101 MD
wilft $16,6,16$)
white 14,701 xMewo
Wiltt 16,191
walre 16.6171
ZHITE 16,70 aHOAS
cos $\overline{3} 105$

WaITE $(6,815)$
WR17t 16.701 D
WRITE $(6,617)$

604 wulte 16.6201 URITE 16,8071 XKP,RPE
WRITE $(C .615)$
WRITE 16.701 OL
WHITE
Whife 16,6171
Welte $(6,70)$ khew
20s Waltt 16,161
Wilte 16,771
Wile $(6,78)$ MOL.HDZ.TEMP
WRITE 16,621$)$
WRITE $(E, 6221$ XR
WRITE $(6,3231$ ganma
G0 10 (123,327.125.1231,070m
723 WRITE $(6,721)$ HESLPHLSL
walte 727
601012
327 Wite (6,721) MEAK, HCAR

125 WPITE $(6,728)$

26 WR1TE (4,730$)$
107 WRITE 16,701 XVEF
127 WRITE $(i, 024)$
WVIIE $(6,0,13)$ PIH
ERIIE (6.731
xile $(5,70)$
weire 16,81$)$
melif $(6,83)$
walit $(6,83)$ andixhor
waili (6,701 xmul, xauv
WRITE $(6,184)$
WRITt $(6,70)$
walie 16.16;
wilte lo, AsA
weir lbiss
waill $(6$, ID GPRED


```
N
    MAITE 16,0891.
    WM1IE 16,134HS
    CU IN 14200.4201,4200,42001,uSON
    #N1HE 16,4202%
    4200 Wh11/ (6,70) (h
        WRITE 16.891) Imax
        mxltc (6,143)
    O1 WRITE (0,891)
    MRITE (6.03)
    WRITE 16,B61 MS
    *)}\begin{array}{l}{\mathrm{ CO 10 (630,631,632,6301,0iOM}}
    630 W\IIt 16,6331
        EMEAD=2.0.SJC,M/(RHOL*9.8*RHEADI
        WRIIE (6,634) CCORE,RHEAD,EMEAD
        60 10 313
        331 WRIIE (6,6351)
        co to 513
        632 WalTE (10,6361
        whITE {6,631) CCORE,RHEAO
        313 G0 TO (305,306,301,3081,0104
    305 H=CWO/2.0
        TMEIA=ACOSIB/AI
        OV=2.OQR*R&TMETA-2.0*BEC
        co 10 14
306 Avm3.14159*1xID002-RMCWDe021/4.0
```



```
coro 74
74 vRITE (6,200)
    MRITE 16,201)
        GFITE 16,202) SOWIC,ASONIC
        SF {ASONIC.GT,AV1 GO 10 3',
    con in 1675,626.627.6251,9104
625
    matme 16,44301
    WiPE 66,3630
    26 W7150 329
26.WMITE 16,46311
    60 Tu 629
62) GRIPE (6,4632)
WkIIE 10,4631)
b29 Write 1b,il1
5 G0 TG (320,321,322,3231,010m
320 O=CNU/2.0 (%)
```



```
    |HEPA=ACDSFIB/A
    -x.SIM(SHETAI
    v.2.0*R0x日THETA-2.00g0C
    Am=3.1alsparok-AV
    P=4.001C:70THFIA
    Nav=4.)NAv/w"
```

OMAOLOOLM:JC/XLEFF

NGDHaCGOHetgl max/absiglmaxi)
AETVAGMAXC/HAL
AC TDIOMAXC/HAC

42 xO(IND)=OMAXC
xalinolear
xelinc)
xelifolicmo
xLINDJ=AN
XULINDI=OLMAX
XAREIINDIARC
KCIFTIMDD:DIF
IF (DIFI-GT, DT) 60 TO 1000
340 If III.EQ.121 60 IO 9001
STINC $=2.0 *(01+D 2)$
60 ro 344
9001
STinc. $2.0 \cdot 01$
6010334
342 STINC=2.04D1
GO TO 1511.572 .573 .5141 ,OTOW
a7t If (CWO.GTaxid) 6o rD 1000
in : 08118
icmoncio
TCMORCMDOH
IF IICWO.GI. XIDI CO 101000
 $\begin{array}{ll}161640.6 T \\ 60 ~ & 10 \\ 318\end{array}$
573 CHO=2.0®CMO
 If ICMO.GT. OMAXI 60 ic 1000
574 โEm0 2.00 C
IF IPCNO.GT. XIDI 60101000
318 if (AV.GE.ASONIC) 60 TO $>$
$000 i_{\text {max }} 1$
If (smo.fi.s) co to 162
:F $1 \times 012:-G E . G P R E O S$ GO 10
if (xGisi-qPREO) 21,22.24
22 in
angavia(imax)
CWDABPIMAXI
ARC=XARC(1)AXI
VID=xDIFI(IMax)

24 Imaxaj

 AHC=XARCIIM) + IXARC(IMAXI-XARC(IMII\&IOPKED-XUCIMIIIXXIIMAXI-XGIIM) 13 HMA! HM14
bu il 23
2i CUNTINUE
WRIE
WRITE
16,331
(
MRITE 16,701 OPREO

25 6010
25 Malle (6,31)
WRITE $(6,10)$ OPREO
HITE (6.126)
While 16.1261
WRITE (6.132)
WRITE $(6,132)$ PEAF
WRITE $(6,70)$ aREA AH PAKEAL
420 WRITE $(420,424)$ GAYEHBCLERO
XLA-LAYER
WRITE (6,5551 CMO,LAYER,I1,12

421 WRITE 16,625

427 HMIE 23
XMFLD=RHOL*AYOXLHP +RHOVQRREAOXLHP vOw $=0.0$
423 HRITE $(6,70) \mathrm{CW}$
44 WRITE 16,911
WRITE 16,70) AN
WRITE 16.93 ;
WRITE 16,93)
WRITE $16.70:$ xMFL
WRItE $(6,143)$
WRIE (6 . 892) of
$6010(310,311,312,3131,070$
0
 HAE=hEsLARCsAE
HAC=HCSLOARCPAC VOW=(1.0-vDIDI*AWexLH GOTO 314
 HAE-MEAROAE
HACOHCAR OAC wo in x! 4
 HAEXXLIOAAE/CMO HAGXXLIO*AC/CEO
3 UTUE 3 . 141
 HAE XXREFFOAE/CMD
314 HACOMXEFFEAC/C
ETODETRIN/HAE
CTBGUTKAN/HAC
WIIE (6.77C) VYO.ETO.CIS

CALL WTAMA COELM,FSAFE, XOD,TMIM,OPWT, NHOL, RHUM,RMAX,XIO,XLHP,XM FLD, XMW, TMAX, STRE S, WTW, HOUM,OTOW,VTD,ETU,CID, WALLK, OTRAN, KLEV, XLCU GO TO 1 , STATE,ASO,SA,BSO.SJ, SC, vow, an
40
 MLENL 4 G0 IO 14111,
4111 WRITE 16,46301 WRITE 10,3630
GD 104125
4112 WRITE 16,3630 GO TO 4125
4113 WRITE 16,4632 WRITE 16,4633
Co. Fu 4115
4114 WRIPE 16,4630
115 URITE 16.111
4E ClaABSicherol

 15*IXLAMOQAY)**1.TSI
CHECK
UTCIt
C.
41 CHECK=CKECK +1.0
IF iCHECK. ST. 15.0) 60 10 45
$\mathrm{N}=1$

DAININ1.75*C3*OTINI**O.75*C2
$44 \operatorname{DT}(M)=0 \Gamma(N) 40.02$
4601041
43 Qr (NPl) OIEMPIIISOTiN)
 co 1042
45 IF I: $1.6 T .11$ GO ta 826
11=11+1
Chie AO-CpGHO
318 1t=ili-1
GMAXC=DTEAPII)

GIFT=XOIFIIINDI
LETD.GIEMP (IITHAE
IF (xDIFTIMDI.GT.OT) CO Pa 1000

501042

- AREAFXAlt)

CWDARAli)
viovx
AHC=xatc(1)
GTAA=xOIII

GUTG 25
WKITE
16,2038
3 HKITE (6,203
GOTO
12 READ $\{5,50091$ ARMAX,ARMIN, HMAX, WAIN, TLMAX, TLMIN_HEGR,GEGR KEAD 15,4981 MDAR, MDNO
HRITE $(6,101$
RIITE $(6,601$

WRITE $(6,63)$ HD3, HD4, HDS, HDL2
WKITE $(6, b 5)$ (
WIIE $(6,65)$ STRES,RHOM,FSAFE

WRITE 16,76$)$
WRITE $(6,68)$
WRITE 16,691
KRITE 16,701 XLEY,XLAO, XLCO,XLHP
WRITE 16,4001
RIIE 16.711 and

WRITE $(6,73)$
WRIE $(6,13)$

WRITE 16,131
MRITE (G,TCI ARMAX,ARMIN
KRITE 16,141
KRITE 16,701
Wilte 16.701 mmax.mhin
Whife (6.15)
WRIft (6.70)
alite $(6,70)$ tlmax,ilmin
WRITE 16,10$)$
WRITE $(6,77)$
WRITE $(6,78)$ HO1,HD2,TEMP
WRITE $(6,021)$
WAITE 16,6221 KM
WRIIE 16,6241
WRITE 16.6231 PI
WRITE 16,40221
WRITE 16,6231 gamka
WRITE 16,121)
WKITE 16,7221 HESR.HCGR
WRITE 16,791
WRITE $(6, \because O)$ SIGMAXXLAMO
RRITE $(6,81)$
WRITE $(6,70)$
WRITE $(6,70)$ RHOL, RHOV
WRITE (6,70) XMUL, XHUY
maite 16.184$)$
WRITE 16.701 KML
Wilte $(6,101$
WRITE 16,888$)$
Whitt $(6,888)$
wRif: $(6,31)$.
WRIIE 6.701 UPAED
WRITE 16,1261
WRITE (6.132) PERF
WRIIE 16,8891
WR17 16,701 MS
WRit 16,7901 itmax
white 16,8911 max

```
        MNITE (6.143)
```

 MNITE (6.143)
 mite (6,05)
 mite (6,05)
 wniTE (6,80) MS
 wniTE (6,80) MS
 wnile 16016)
 wnile 16016)
 MRITEEG617,
 MRITEEG617,
 cmar=moar-1
 cmar=moar-1
 DLRI=ARHIM-ARIKC
 DLRI=ARHIM-ARIKC
 DO 3, IFI,MDAR
 DO 3, IFI,MDAR
 DARI=DARItaRINE
 DARI=DARItaRINE
 oar(|)ojaR!
    ```
```

 oar(|)ojaR!
    ```
```



```
```

 0N 09.6)10*0.5)/(2.000aR(1)1
    ```
```

 0N 09.6)10*0.5)/(2.000aR(1)1
 DMEDIII=HIGHESICN+DANSP(IIGDARII)
 DMEDIII=HIGHESICN+DANSP(IIGDARII)
 M1IE (S, 34) DAR(1),DAMSP(S)
 M1IE (S, 34) DAR(1),DAMSP(S)
 33
33
CONTINUE
CONTINUE
WRIIE 16,200)
WRIIE 16,200)
SONIC=C1GARMA*TENP*I.8*1545.33*32.2/XNM:*00.5)*0.3048
SONIC=C1GARMA*TENP*I.8*1545.33*32.2/XNM:*00.5)*0.3048
ASOHIC=PERF*ORAX*(2.041GAKMA+1.01)000.5/TXLAMD*RHOV SONIC)
ASOHIC=PERF*ORAX*(2.041GAKMA+1.01)000.5/TXLAMD*RHOV SONIC)
wnsif 16,zozi somiciasomic
wnsif 16,zozi somiciasomic
WITE (6,50) HD6,HD7,HDS,HD9,HO1O,HO11,HD13,HO14,HO15,HD16
WITE (6,50) HD6,HD7,HDS,HD9,HO1O,HO11,HD13,HO14,HO15,HD16
WIIE (6,35)
WIIE (6,35)
MRITE (6,36)
MRITE (6,36)
ONHOONOWO-1
ONHOONOWO-1
WIMC=IYRAX-WNIMI/DNWD
WIMC=IYRAX-WNIMI/DNWD
OD L13 M=i,MONR
OD L13 M=i,MONR
PA=KNIN-NINC
PA=KNIN-NINC
DO 114 J=1, NOUD
DO 114 J=1, NOUD
xY2(J)=pA

```
```

 xY2(J)=pA
    ```
```



```
```

 DEP1J1=DAR11)*XY2131
    ```
```

 DEP1J1=DAR11)*XY2131
 SRY=(x10-2.0*0EPIJI)/2.0
 SRY=(x10-2.0*0EPIJI)/2.0
 mMAX=2.00 SAV*3.14159/IXY2IJ)+TLMIM)
 mMAX=2.00 SAV*3.14159/IXY2IJ)+TLMIM)
 NNIN=2.0*SRV(3.14159/(XY2(J)+T(RAX)+1.0
 NNIN=2.0*SRV(3.14159/(XY2(J)+T(RAX)+1.0
 M,
 M,
 inouk
 inouk
 MK=k
 MK=k
 OXL(K)=2.005Nv*3.84159/XK-XYI(S1
 OXL(K)=2.005Nv*3.84159/XK-XYI(S1
 8ASE=3.14159*xID/XK-DXL(K)
 8ASE=3.14159*xID/XK-DXL(K)
 Sal-3.145%osevosav
 Sal-3.145%osevosav
 AGN-1SAI-SAV-XK*OXL(KiPOEPIJ1-xL*10.308ASE10*21/XK
 AGN-1SAI-SAV-XK*OXL(KiPOEPIJ1-xL*10.308ASE10*21/XK
 ANO=-10.5-3.14159/4.0)0xYZIJ1002
 ANO=-10.5-3.14159/4.0)0xYZIJ1002
 Alonaco-19n
 Alonaco-19n
 AN-ALO#xK
 AN-ALO#xK
 acardosai-say-acooxk
 acardosai-say-acooxk
 MP=2.00(DEP(:)+0.3250FASEIOX
 MP=2.00(DEP(:)+0.3250FASEIOX
 LHL 04.0*AM/MP
 LHL 04.0*AM/MP
 AV-SA1-AM-AL_MD
 AV-SA1-AM-AL_MD
 IF (av.li-AjmmiC) to to 1%0
 IF (av.li-AjmmiC) to to 1%0
 xKP=10HL*OHL l/32.0
    ```
```

 xKP=10HL*OHL l/32.0
    ```
```

RDFEXYZ(J)
C.CHIIE2.00SIGMACCUSIPHIITAPE

SUOY=RHOL \& . WヵIHIGHOSIGMAOEPISII
CHE AU=CPGHDOSUOY
O4B CI=ARS!CHEAD

2s*(XLAMO*AV)**1.15)
CHECK=0.0
341 CHECK=CHECKOLCR
3041
IF (CHECK.GT.20.0) 60103045

| $\mathrm{N}=1$ |
| :---: |
| $\mathrm{~A}(\mathrm{~N})$ |

$A(N)=C 3 * Q T(M) * * 1.75+C 2 * Q(N)-C L$

(f (DA(N)) 3043,3044,3043
3044 OT(N)=OR(M) +0.02
3043 gT(Naticer

3045
5 If III.-大r.11 60 to 3018
II = $11+1$
CHEADEP
GO 103048
3018 11-11-2

IF (XOIFTIINOI.GT.DTS GO TO 118
DDA(K)=U.0
FFI(K)=0.0
GG1(K)=OTEMP12
HA1 (K) $=0.0$
OGMIKI=RHOL *XLHP*AM+RKOV*XLKPtAY
OUICK(K)-RHOM XLHP=ALAMD

 1LAMO:RV*O2.011
GG1(K)=FFI/K)/XLEFF
KEYNCR2.OQEEI(K)ORVI(AYOXMUVOXLAMOS
IF TREYMO.GT. 2200.0150 10 3048
XOIFTK

10*XKUV/(AV*RHOV*XLAMD*RY**2.01)

MGi(K)=K

DHICK(X)=RHOMOXLHPGALAND
118 NGI(K)=K

```
    X01FICNI=0.0
    OXLIK) 0.0
    ODL(R)=0.0
    \(t \in i(x)=0.0\)
    FFi(x)=u.
    HHI(K)=0.
    únixi=0.0
    15 Onlckikiad.0
    115
    corrinu
    A8EEIILL
    00119 Enmmin, manaz
    IF IAB-EEIUCII 120.119 .119
120 Lt
Ab)EEIIL
CONTINUE
CONTIRUE
NG2 JJ)-LL
A82(J)=xytid)
    CC2(J) \(=0 \times 1\) (LL)
    OR21ss-D01
```



```
    GF2(J)nFFIILL
GG2(J)=GGILL
```



```
    -P2IJ) OCMILI
    \(002 \mathrm{JJ=OWICKIL}\)
```



```
    GO 10114
122 WG21J1=0
ER2 (J)=0.0
CR21
CCR
\(00211=0.0\)
    OD21 J)=0.0
    EER(J)=C.0
    GCR1J)=0.0
    \(4+12(A)=0.0\)
    P2(1) \(=0.0\)
    \(002(J)=0.0\)
    CVOM2(s) \(=0.0\)
114
\(\mathrm{CuMT}_{\mathrm{m}=1}\)
BC=EE2T:MI
EO 133 M-1.MONO
134
Br. \(=\mathrm{EE}\)
133 Comilmue
```



```
    ar,w11)=xy(1)
    4́f(1):nG7(ma)
```



```
    bra(1)=t1a(Am)
    0SSHIIFFiMn)
```



```
    OCS(11:HM2(Mm)
    OGMTJI=PP\IMM
        WHICR(1)=002!MM
        ovrac(i)= 
        gv(w3(1)= GVOm2IMm)
    1 1 3
        cin lss thelonitaiz
        Holn
        OD 137 ImmaIn,moar
        if (CO-OG2(IMm)) 130,137,13)
138
    CD=DCz(in
137CO=DC2(im
mSTCR=NGIIM
STGKl=OCN(IN)
STGR=DG1(1M|
STOR4=DG211m
STaRS=DG3(IM)
STORG=0G& (IM)
ITSRE=0GM (IM)
STORG=OWICKIIM)
3TCIG-OAR(IN)
sF02!-0xLIINI
31012*DVTOMMM
OVIDIIMI=DYYOIIN
MCIOIMI=MGISM)
MC,(1MI=MG(IN)
DG1(IN:=0G1(IN)
DC31/m)=0631/N
DGA(IM)=DGG(IN)
DGS(Im)-DGG(IN)
GGM(IM)=DE:(IN)
OWICK{IMI=CNICKIIM)
OWICKIIM)=[MICE
ORR(IM)= DARISN)
Groms(Imlecromuilms
MG:INI=NSTAR
OT,W\IMIOSTORI
G11/MIESTIP3
UGB(N):STURS
OG&(IA)=STISRG
UCS(IN)ESTIDRG
LGM(IO)=SIURH
LGM(FRIIHISTOKY
Ux\IfN|-SIUI!
GiviD(lN)siot?
```



```
13s Cuatamug
0) 9H 1=1,0048
Nfj9H 1=1,00AR
```



```
HE COMTINUE
    Mlite 10,31
    MNItE (6,10) QrM(1)
    WR17e 16,126
    CASE=5 (12) PENI
    LCASF=0
    if lut imi,MDAR
    lCAS&=1
14t COMTINUE (142 EO-0) GO TO 16
    WRITE 16,541
    WRITE (6,55)
    WRITE (6,SII
    MAEvHEGR*AE
    00 50 1-10LCAS
    EIO=OC2(1)/HAE
    CTD=062(1)/HAC
    WRITE (6,59) MCASE(I),NGII), DAR(1),DGHII1,OXL(11,DG2(1),DGH(1),DVT
se continue
    SIORESTRES
    00 95 I-1.lCase
    STES=STORE
    WTH=UMICKII)
    mCARE=:
    KMFLO=OGN(1)
    VOM-GYOW3II!
    ETD=DG2(11/HAE
    CTD=DG2(I)/HAC
    CALL MTANA CDELR,FSAFE,XOO,THIH,OPMT,RHOL,RHOM,RMAX,XID,XLHP,XM
    FLO,XMM, IAAX.STRES,WIN,NCAAE,OTOי,VTO,ETD,CID,HALLK,OTRAH,XLEY, XLC
    2O,HACPHAE,STPIE,ASO,SA,OSOPSB,SG,VON,AM
95 comimue
    IF (MORE.GT.1) 60 TO 500
        SIIO
    END
SUBROUIINE WTANA TOELM, FSAFE, XOD, TMIN, OPMT,RHOL, KKOK,RMAX,XIO,XLHP
```



```
    <XLCO,HAC,HAE,STAYE,ASO,S:, BSO,SE,SC,VOW,AM:
    MIMENSIONTHICKI2OIOSTHIKIZOI
|f FORmat (11:)
    I SYSTEMO
        #EIGHT ANALYS!S FOR IH
        ()
    6 fukmat (/1' IEOUATion of state for real gas tI.e.gbeatrie-briogma
7 fommat w/% IEOUAIION of siate for ideal gas is usco to calculate
    I HME inTERNAL PRESSUREIO:
```



```
46 format i/f% safery factigr maximum temperatureiki:I
64 format (1/t Liquio wi.ik




03 furmat (/TEL5.7

42 FURAA IOM NO STCKAGE VOLUME IS NEEDED'I


15 FURMAT T/E15-T,12X,E15.TI





1 THE CONDENSER MALL(K) DROP(K)I)

    IF COPWI.LIBII GO 10111
    WRITE \(16.17 i\)
    WRITE (6iB8)
STHIKII) \(=0.0\)
    THICKIIJFTMIM
    HHN = 0
    CONST \(=0.08206\)
    \(11=1\)
\(1 \mathrm{NO}=0\)
    BAM=AN:10. 76
    \(\mathrm{R}=0.0\)
    WTS=0.0
    DELR=0.0
    DELREO.O
BOELK DEL M 3.201
    BRHOH \(=\) RHON*O. 0624
QRHOL
RHOL
    gR=xID*3.2.01/2.0
    \(\times 10=\times 10+3.201\)
    \(\operatorname{SXIO} \times 10+3.281\)
STRES=(SIRES/(703.109.81)4144.0
    OXLHPaXLHP
GRKAX
PRMAX 261

    \(T E M P=1 E M P Q 1\)
    BIEMP \(=1 E A P+1.8\)
BTMN TMIN 3.781
BXMFL
    EXMFL-XMFLDO2.205
IF ISTATEEEC. 11 CO TO 32
    IF ISTAJE.EQ. 11 GO TO 32

    amasuali.0-Sarsprul
    \(=B S O *(1.0-S B / S P V O L\)
    EPSISSC/ISPVOL PTERP**31


2) fogmal
\((K G))^{(M)}\)
    日R=X10*3-281/2.0
    \(0 \times 00=\times 00^{4.3 .281}\)

    EPSISSC/15PVOR

601033

33 MR17E ( 6,37 )
IF (BTRED.GT.BYMIMS/STRFS
IND=1
tre dxbimin
16 TKEDEBTREDOO.3048
THICKIII=TRED
JVHP=3.151590日XLHPPBRGBR-VO
RES=BPRES*703.1*9.8/144.0

IF (010w.EQ. 5 ) 60 TO 100
\(W T=W T H+W T L+W T M+W T S\)
00
WTH \(=W T H+W T M\)
O1 IF IOTOLLME.SI GO TO 3
WRITE \((6,4)\) NCAAE
WRITE (6,43) FSAFE,TEM
(f) (OTOX.EO.5) GO TO 21

WKITE 16,641
RITE \(16,6 \% 1\) XMFLO-MTH
21 GRITE 10,2
MRITE 16,65\()\) XMFLD
22 WRITE \((6,78)\)
WRITE \((6,79)\)
WRITE 16,303 ) RS,TRED, OELR, PRES,WTH,WTS,WT
IF (OPHT-LT-1) GO TO 2
IHCR=I DRRAX-8RI/9.O
IF IBIMCR.LT.0.0) 60 TO 2
\(B V H P=R R\) R \(B R=3.14159 * B \times L H P-V O W\)
BRMAX 2 BR-BINCA
RMAX=ARMAX 50 BINC
RS A DRMAX 00 . 3048
OHI=ORMAX-1 BRMAK**2-BR**21**O.5
 SVITABVHP\&BVSY
IF ISTATE.EO.11 CO TO 34
SPVOL=BVIT00.0283201000.0/(XMFLDO \(1000.0 /\) XMM)
EASL"(1.0-SA/SPYOL)
UnBSUOP1.0-SH/SPVOL)
 ARYS=CUNSI:TEMPOIT.OAPRESPRE
LI TO 35

3) HTRELETPRESRKPFSAFE/STRES

IF EBRNED.GT.BIMIV) GO 10 31
HTHEEDPTMIN

2.00STRES
if (MCFLR.GT. MDELH) GII II 52

BDELR=BDELM
52 RMAX \(=\) ЧR MAX 00.3046
TREDEBTKED*O.3i40
DELRエBCELR*O. 3040
\begin{tabular}{l}
\(11=1+1\) \\
\(5 H_{1}\) \\
\hline
\end{tabular}
STHIKIIII=RMAX
THICK(11)ETRED
H1=6H1*0.3048
WTH \(=\) RHON\& \(3.14159 * 1 \times 10 * T R E D+\) TRED**21*XLHP

12.0*3.141S9*RHAX*H2*DELR*RHOM

If ILTOW.EO.5) GO TO
GO 1031
30 WTH \(=H T H+H T H\)
31 WRITE \((6,303)\) RS, TRED, DELR, PRES, WTK, WTS,WT
IF INNN.GT. 11 GO 102
so continue
91 WRITE \((6,92)\)
2 WRITE (6,e7)
WRITE (6.11)
IF (OTOW.NE.51 GO TO 12
If IOTOW. NE. 51
WRITE \((6,4)\) NCAAE
12 WRIIE 16,131 ) x
WRITE \(16,3031 \times 10\)
WRITE \((6,14)\)
WRITE \((6,14)\) xLE
WRITE \((6,15)\) XLEV,XLC

WRITE 16,3031 WALLE
WRITE
WRITE
( 6,303\()\)
WRITE \((6,25)\)
WRITE \((6.26)\) VTD.ETV,CTD
WRITE 16,271
HRITE 16,291
DO 28
J=1,11
DExT=x10+2.047HICK(J)
OIHT-XIO
AEXEROEXT*3.141590XLEV
AEXTC=DEXT*3.141S94XLCD


WQITE 16,821 STHIKIS),THICK(S), EWTO,CWTO, TTO
28 Cuntinut
KEIU

\section*{Appendix D. Sample Problems}

\section*{PRECEDING PAGE BLANK NOT FHMED}

The first sample problem consists of determining the heat transport capability of an aluminum (6061-T6) heat pipe ( \(1.27 \times 10^{-2} \mathrm{~m}\) O. D. \(\times 8.9 \times 10^{-4} \mathrm{~m}\) wall). A homogeneous circumferential porous wick ( 200 -mesh stainless steel screen) is used in the heat pipe. The heat pipe working fluid is nitrogen at an operating temperature of \(80^{\circ} \mathrm{K}\), and the tube wall material is aluminum alloy \(6061-\mathrm{T} 6\). Heat load, elevation, maximum system temperaturi, and acceptable range of vapor temperature drop are specified as:
\[
\begin{aligned}
\dot{Q}_{\text {req'd }} & =5 \mathrm{~W} \\
\mathrm{~h} & =0.00254 \mathrm{~m} \\
\mathrm{~T}_{\max } & =300.0^{\circ} \mathrm{K} \\
\Delta \mathrm{~T}_{\mathbf{v}} & =10.0^{\circ} \mathrm{K}
\end{aligned}
\]

The length of the evaporator, adiabatic section and condenser of the heat pipe are specified as:
\[
\begin{aligned}
& L_{e}=0.2 \mathrm{~m} \\
& L_{a}=0.8 \mathrm{~m} \\
& L_{c}=0.2 \mathrm{~m}
\end{aligned}
\]

The sp'verical storage reservoir, if needed for containment purposes, is specified to be \(5.8 \times 10^{-2} \mathrm{~m}\) in diameter and \(3.9 \times 10^{-4} \mathrm{~m}\) wall thickness. Finally, the effective thermal conductivity of the wick is assumed to be \(0.14 \mathrm{~W} / \mathrm{m}-{ }^{\circ} \mathrm{K}\) (i.e. , thermal conductivity of nitrogen). The associated data cards are listed in Table C.1-3. The resulting computer output data follow. As indicated in the printout, the maximum heat transport capability in a one " g " environment is approximately 0.98 watts, which is less than the required heat load. Therefore, weight and heat transfer analyses are not presented and the program terminates with the following statement: "No area exists to satisfy QMAX (w) requirement'.

In the second sample problem, the performances of a nitrogen heat pipe. with an axial rectangular grooved wick are considered. The maximum and minimum
C. 1-58
allowable aspect ratios, land thicknesses, and widths of the grooves are specified as:
\[
\begin{aligned}
& \Phi_{\max }=1.5 \\
& \Phi_{\min }=0.5 \\
& L_{\max }=5.10 \times 10^{-4} \mathrm{~m} \\
& L_{\min }=3.81 \times 10^{-4} \mathrm{~m} \\
& W_{\max }=7.62 \times 10^{-4} \mathrm{~m} \\
& W_{\min }=4.06 \times 10^{-4} \mathrm{~m}
\end{aligned}
\]

The heat load requirement is:
\[
\dot{Q}_{\max }=0.005 \mathrm{~W}
\]
and the evaporator and condenser film coefficient are assumed to be \(380 \mathrm{~W} / \mathrm{m}^{2}-{ }^{0} \mathrm{~K}\) and \(760 \mathrm{~W} / \mathrm{m}^{2}-{ }^{0}{ }_{\mathrm{K}}\), respectively. These values are based on measured data. The other pertinent data remain unchanged and are specified in the first sample problem. It should be noted, however, that the properties of nitrogen are input here because of the option used in the control card. The associated data cards are listed in Table C. 1-4. The resulting computer output data follow. Since the maximum heat transpert capability in a one "g" environrnent of each specified aspect ratio is larger than the heat load requirement, the weight and heat transfer analyses are performed for each aspect ratio. The results of these analyses are presented in the computer output.



\section*{}

Max. caplllant head for setr-phimingini-.

-304414-0i
\(.1 \overline{3} \times \overline{000}-\overline{1}\)
- 185023600

- somic vecocitimasi minimum vapor aneamami fon sonic binifation
\(-1826361403\)
5284949-07



\begin{tabular}{l}
\(\Omega\) \\
\(\vdots\) \\
\(\dot{B}\) \\
\hline
\end{tabular}



Max. allobable vapon itmptinature oropixi
10.00
—_____
\(\qquad\)

\(\qquad\)

```

C.1-65

```


```

molecular melbutixG/MOIE;
28.0
COMTACI AMGLEIOETI
.000
TME RABIO or spICITIC HEATSICPICVI
1.400

```





```

t80. viscositrixg/mesj vapon viscositvingiñsi
.1848000003 --..--.-.00000008
LIOUIO TKANSPORT FACPOR{O/NOML

```



```

 -500n000.02
 InE Pemronmamct actor is
1.00
LEvATIOMCH:
.2b90000-02
mag. TENPEMAFUREIEI
300.00
MAE. ALLUEAMLE VAPOE YCMPKRATURE DROPIKA

```
\(\qquad\)
``` -
```

$\qquad$

 -5040000-02
pat pemenmanct oacton is
1.0 V

16.11

Cast	6noorl "u.	$\begin{aligned} & \text { Asple, wailo } \\ & \text { lueprolotms } \end{aligned}$		$\begin{aligned} & \text { gamn } \\ & \text { intekursion } \end{aligned}$	$\begin{array}{cc} 0618 \\ 1+1 \end{array}$	$\begin{gathered} \text { mass or phe } \\ \text { riviors } \end{gathered}$	yaron penp. onop(E)	eraposapen   finP Oinfik,	$\begin{aligned} & \text { conpenseti, } \\ & \text { Tppp ongrin) } \end{aligned}$
1	30	1.68	-4,34.13	. 196.01	.170.01	.015.0i		.4A5.uÕ	. $341206{ }^{\text {a }}$ :
1	0	1001	-404*113	. .30日-13	-68209]	-s94-ur	-112003	- 11s0.1so	-150000
-	11	-	-6ar.,	-0.0.is	-1120n	-194-6,8	-151-ct	-mat-ul	-230-911






## C. 2 DATA ACQUISITION CODE USER'S MANUAL

$$
!
$$

## C. 2.1 Introduction

This section describes the utilization of the Data Acquisition Code (DAC). Basically, DAC generates the thermophysical properties of various heat pipe working fluids at saturation condiiions. The fluids selected are those most commonly used and span the range from cryogens to liquid metals. Both constant properties and teinperature dependent properties are stored in the property subroutines of the DAC. Properties are stored as tabular data points or, in the case of the liquid metals, in functional form. Also, derived properties (e.g., liquid transport factor) are calculated and output by the code.

- This code can be used alone to obtain fluid property data or can be used in combination with the Heat Pipe Analysis and Design (HPAD) Code and thereby reduce the amount of input data required.

The program input requirements are described in Section C.2.2.2, and the output formats are described in Section C.2.2.3. References are listed at the end of Section C. 3. The flow diagram and program listing are presented in the Appendices. A list of Fortran names with physical or engineering quantities is also presented as an Appendix.
C.2.2 Program Description
C.2.2.1 General

The program logic is illustrated in the flow diagram contained in Appendix A. The FORTRAN names and the physical quantities they represent are listed in Appendix B. Storage requirements are on the order of 50,000 words (octal). A listing of the program is presented in Appendix C. The prograrn was written in FORTRAN V and was designed to operate on the UNIVAC 1108 system.

Basically, the program reads the input controi daia, generates the thermophysical properties of the specified fluid, and outputs the property data. The deck setup as shown in Figure C. 2-1 consists of job control cards, the program source deck,


Figure C.2-1. Program Deck Setup

```
C. 2-2
```


W, 5- W,
$\therefore \quad 1$
additional control cards followed by the input control card and program termination cards. The program has two major options. First, the thermophysical properties can be determined at a specified temperature or at specifled intervals over a specified range. If the syecified temperature range is out of property data limits, the program will automatically adjust the range to be consistent with the avallable property data. The second option consists of having the property data output in scientific units (SI) or in both scientific and engineering units.

## C.2.2.2 Input Description

Table C. 2-2 describes the entries to be made on the various input cards and indicates when each of the optional cards are to be excluded. The FORTRAN name, format, and units to be used are indicated for each entry. A listing of sample input data for different cases is presented below in Table C. 2-1.

Table C.2-1. Sample Input Data

2			
4			
1	2		
32000			
3			
4			
200.0	350.	10.	

## C.2.2.3 Output Description

The program outputs essentially all the thermophysical fluid properties as well as derived properties needed for the Heat Pipe Analysis and Design Code. These properties are divided into two categories in the output. First, the constant properties which consist of the following:

- Molecular weight
- Gas constant
- Ratio of speciflc heats
C. 2-3

Table C.2-2. Input Data Description


[^7]C. 2-4

- Normal melting point
- Normal boiling point
- Critical temperature
- Critical pressure

The second category listed below consists of the temperature dependent properties and includes the derived data.

> - Vapor pressure
> - Liquid density
> - Vapor density
> - Surface tension of liquid
> - Latent heat of vaporization
> i
> - Thermal conductivity of liquid
> - Dynamic viscosity of liquid
> - Kinematic viscosity of liquid
> - Dynamic viscosity of vapor
> - Kinematic viscosity of vapor
> - Ratio of kinematic viscosity (vapor/liquid)
> - Wicking height factor
> - Liquid transport factor
> - Sonic heat flux
> - Sonic velocity

A listing of output data associated with the sample input data of Table C. $2-1$ is presented in Table C.2-3. If the specified temperature is outside of the data range it will be indicated in the output by "TE MPERATURE OUT OF TABLE RANGE".


Table C.2-3, Sample Output Dato

C.2-7


	IfMematumi (K) (V\|c)	20800	2910.0	Jun•0	11000	$320 \cdot 0$	33000	3'lor	15t)010
	vapuk pressunt (n/n-mi								
	(n/n-m)	'1703	-19004	-35004	-39004	-1u*碞	-1600s.	$\cdot 24 * 0$	-
	lagulo vensity  	130004	. 10004		-97*as	.99003	.46003	.680is	. 57075
2	- SAPOR UEMSITY (KG/H=H-M!	-74-98	-14001	. $25-01$	:42-01	-100n1	.11*00	.17000	-2500
$\cdots$	sumpact tension [11/n)	-14001	-1301	-11001	-69031	$\cdots$ - 0 - 71	-60-01	. 01001	$\cdot 63=01$
N	$\begin{aligned} & \text { GAyHP Mtay } \\ & \text { CAOS/KG: } \end{aligned}$	- $25 \times 07$	. 25007	.. ${ }^{24007}$	- 84.007	-2400\%	-24007	-2300?	-230117.
0		-59*00	-ancon	.61-00	-62000		-65\%00	-6400	-6700n
$\frac{\square}{\square}$	ormatic viscositi or liüuto (ke/m-5)	-14007	-11-02	-83-03	+1009	-50-03	-49003	.43-03	-37-4J
$\begin{aligned} & \text { O} \\ & \stackrel{\rightharpoonup}{0} \\ & \underline{C} \end{aligned}$		-14005	-110ub	. .3 -060	-71006	-59-0	-30006	-47-5	-38-86
O	ormanic viscositr or vapor ikg/n., )	-71-ab	-10-84	110004	-11-04	.11409	-11-94	-18-09	012-04
ก	kinemarse viscosivy or vapon 111-m/s	-13-02	-13-03	-41-03	-25-05	-18-n5	-10-03	- 0 -0\%	-48-64
$\frac{3}{3}$	matio or xinematic viseositics (yarur/boviol	-9000)	-*4003	.49*03	-36*03	-27093	-21903	-10*03	-13003
-	- Icxing melght tagion ( $\mathrm{H}-\mathrm{m}$ )	-74-0s	-74-05	-3-0.	- 11 -0s	- 70 Ons	-. 07005	-6i-0. ${ }^{\text {a }}$	-60006
	bleuso tmanspont taction (is) $\mathrm{H}=\mathrm{x}$ )	-13012	-14.17	-21.12	-23.12	-27-12	. 31.12	-34012	418.18
	somic heat clus (min-n)	-36017	-* ${ }^{\text {a }}$	-120nt	-20004	-34*08	.5T4ul	. 52408	i1239
	sinice vatocitr infs	-410.1)	-4703	.43.13	-44003	-440¢	.45*03	-40*03	-*000

Appendix A. Flow Diagram for Data Acquisition Code

C. 2-11




SURROUTANE POUT I


Subroutine pout 2


SUBROUTINE POUT 3

## Appendix B. FORTRAN Names

and Associated Physical or Engineering Quantities
C. 2-15


Fortran Name	Description	Units
OSIGM	Surface tension	$\mathrm{N} / \mathrm{m}$
OXMUL	Dynamic liquid viscosity	$\mathrm{kg} / \mathrm{ms}$
oxmuv	Dynamic vapor viscosity	$\mathrm{kg} / \mathrm{m} \mathrm{s}$
OPRES	Vapor pressure	$\mathrm{N} / \mathrm{m}^{2}$
OXLAM	Latent heat of evaporation	W s/kg
POINT	Control Point, integer $=1$ for data at a temperature, otherwise integer $=2$	-
UNITS	Control Point, integer $=1$ for M.K.S. units, integer $=2$ for M.K.S. and British units	-
HD	Headings (working fluid and chemical formula)	-
GAS	Gas constant	$\begin{aligned} & \mathrm{ft} \mathrm{lbf} / \mathrm{lbm}^{\circ}{ }^{\mathrm{F}} \\ & \mathrm{~atm} \text { liter } / \mathrm{gm}^{\circ}{ }_{\mathrm{K}} \end{aligned}$
TMELT	Normal melting point	${ }^{\mathbf{o}} \mathrm{K},{ }^{\mathbf{o}} \mathrm{F}$
TBOIL	Normal boiling point	${ }^{0} \mathrm{~K},{ }^{0} \mathrm{~F}$
TCRIT	Critical temperature	$\mathrm{O}_{\mathrm{K},} \mathrm{O}_{\mathrm{F}}$
PCRIT	Critical pressure	$\mathrm{N} / \mathrm{m}^{2}, \mathrm{psi}$
NK	Control Point	-
OTEMP	Temperature	$0_{K}$
OTHCL	Thermal conductivity	$\mathrm{w} / \mathrm{m}{ }^{\text {o }} \mathrm{K}$
OXNUL	Kinemaiic liquid viscosity	$\mathrm{m}^{2} / \mathrm{s}$
OXNUV	Kinematic vapor viscosity	$\mathrm{m}^{2} / \mathrm{s}$
RATIO	Ratio of kinematic viscosities (vapor/liquid)	-
OXNL	Liquid iransport factor	$\mathrm{w} / \mathrm{m}^{2}$
OH	Wicking height factor	$\mathrm{m}^{2}$
NBRIT	Counter for units used	-

C. 2-17

Fortran Name	Description	Units
SONIC	Sonic velocity	$\mathrm{m} / \mathrm{s}$
OSHF	Sonic heat flux	$\mathrm{W} / \mathrm{m}^{2}$
BTEMP	Temperature	$\hat{o}_{F}^{\hat{F}}$
BPRES	Vapor pressure	psi
BRHOL	Liquid density	$1 \mathrm{~lm} / \mathrm{ft}^{3}$
BRHOV	Vapor density	$\mathrm{lbm} / \mathrm{ft}^{3}$
BSIGM	Surtace tension	$\mathrm{lbf} / \mathrm{ft}$
BXLAM	Latent heat of vaporization	Bt'l/lbm
BXMUL	Dymamic liquid viscosity	$\mathrm{lbm} / \mathrm{ft} \mathrm{hr}$
BXMUV	Dynamic vapor viscosity	$\mathrm{lbm} / \mathrm{ft} \mathrm{hr}$
BXNUL	Kinematic liquid viscosity	$\mathrm{ft}^{2} / \mathrm{hr}$
BXNUV	Kinematic vapor viscosity	$\mathrm{ft}^{2} / \mathrm{hr}$
BXNL	Liquid transport factor	Btu/hr ft ${ }^{2}$
BH	Wicking height factor	$\mathrm{ft}^{2}$
BSONI	Sonic velocity	$\mathrm{ft} / \mathrm{hr}$
BOSHF	Sonic heat flux	$\mathrm{Btu} / \mathrm{hr} \mathrm{ft}{ }^{2}$
BTHCL	Thermal conductivity of liquid	Btu/hr ft ${ }^{\circ} \mathbf{F}$
TMI3	Storage space for temperature	${ }^{O_{K},}{ }^{\mathbf{o}} \mathbf{F}$
TMA4	Storage space for iemperature	$o_{K,} \mathbf{o}_{\mathbf{F}}$
T1	Storage space for temperature	${ }^{0} \mathbf{K},{ }^{\circ} \mathrm{F}$
T2	Storage space for temperature	$\mathbf{o}_{\mathrm{K},} \mathrm{o}_{\mathrm{F}}$
XTEMP	Temperature	$0_{K}$
RHOL	Liquid dersity	$\mathrm{kg} / \mathrm{m}^{3}$

C. 2-18


## C. 2-19

## Appendix C. Program Listing of Data Acquisition Code



SUAROUTINE DAC IFLUID,LSUPP,LUUT, ARHOL, ARHOV,AXLAM,ASIGM,AXMUL,AK MUY, TEMP, APRES, XA, GAMMA)
 drecsion oxiamia)
IF ILSUPP.LT. 21 GO TO 301
NERIT=
points
Uniss=1
301 co 10

 60 10303
2 CALL MITRO ILSUPP,LGUT,NERIT,POINT,UHITS,ORHOL, ORHOV,OXLAM,O 1SIGH, OXMUL, OXMUV, IEMP, OPAES, KHK, GAMAAI
co 10303
3 Call
OXYGE ILSUPP,LOUT,NBRIT,POINT,UNITS,ORHOL, ORHOV,OXLAM,O 1SIGM. OXMUL
GO TO 303

- cale

LSICM, OXAUL
CO 10303
5 CALL
${ }_{2 S 1 G A, O X G U L}$
SIGN.OXHUL
60 TO 303
GXUUV, IEMP,OPRES, XMM,GAMAAS
GO TO 303 OKMUY, IEMP, OPRES. XMH.GAMMAI

- CALL , METHA ILSUPP,LOUT,HBRIT, POINT,UNITS,DRHOL,ORHOY, OXLAH,O GO TO 303 ,OXMUY,TEMP,OPRES, KMW,GAMMAI
7 call
2 SIGN,0×muL
6050303
- call

CALL
151 GN, OXMUL
ACETO ILSUPP, LOUT, NBRIT,PGINT,INITS, ORHOL, OKHOV,OXLAM,O 6010303

ERE2I ILSUPP, 2 OUT, MERIT, PUIMT, UMITS, DRHAL, DRHOY, OXLAK,O OKHU, TEMP,OPKES,XMM,GAMNAS

CARL SGOIU ILSUPP,COUT,NERIT, POINT, UNITS, URHDL, URHOU, OXLAM.O 6010303
10 CALL PUTAS ILSUPP,LDUT, NERIT, POSNT, UMITS,CRHOL, ORHOV, OXLAR,O SIGM, OXMUL, OXMUV, TEMP, OPRES, XMM, GARMA
6010303
LGALL LITHI ILSUPP, LOUT, ABRIT,DGIN
60 ro 303
12 Call

30: AKHOL =TIRHCLII
ARHIGY=UKHIGM(I)
AXMUL = UXMULI
AXMUVxOXMUVII
APMES=GPRFSII
AXLAH=OXLAHIII
304 RETURA
eno
 IIMENSION MD(2,2)
35 Format l"1")
36 FORMAT I/1/18 OATA ACOUISIIION COOE COAC


$1 \mathrm{~s} \cdot 1$
C ONSTA
OHP (KG/MOLE)
39 format I/II/' mDLECULAR EEIGHY (KG/KOLE) GAS CUNSTANTIN-M/KG
1
40 ROMMAT RATIO OF SPECIFIC HEATS:I
40 FOKMAT I/F14.3.22X,F14.7.17X,F14.31
41 FURMA $1 / / /{ }^{\circ}$ NORMAL HELYING POINT(K) MORMAL BOILING POINTIKI 42 CORMAT LF13.3.7x, CRITICAL PRESSUREIN/M-KIO

50 fOKMAT W/I/ MULECULAR WEIGHI ILBM/MOLEI GAS CONSTANT IFT-LBF

51 formal I////' normal melying puintif) mormal suiling mothitif 1 CRITICAL TEMPIF) CRITICAL PRESSUREIPSIIOI

$\therefore$ IIE 16.351
IIE $(6.35)$
a
(6.36)
KRITE (6.451
WRITE (6,37) (HDCI,1),1-1,21,HD(1,2)
WRITE 16,381
GA $=(0.08205 / X M U)=10.00 * 5 / 0.9869$
RITE $\{6,39)$
RITE $(6,40)$
WRITE $(6,40)$ XMN,GAS,GAMMA
WRITE (6,42) TKELT,TDOIL,TCRIT,PCRII

43 WRITE $(6,35)$
WIIE 16,361
WHIIE $(6,371$ (HDIT.11.1-1, 21, HOI 21

WRIIE 16,501
GAjx1545.33/XMm
WRITE 16,001 XMH,GAS,GAMMA
KRITE TA,SII
IMELT=TMELT*9.0/S.0-458.67
TCRII:ICKII $=4.015=0-459.67$

PCKIIEPCAITEIG.7/10.0e*
WKITH (6,42) IMELT, IBOIL,ICRIT, PCRI
44 REIUKN

SUAROUTIME POUT2 INK,OTEMP, OPMES,URHUL, ORHOV,OSIGM,OXLAM, UXMUL, OIXM
IUY, GAMKA, XMW, NERII, OIHCL, POINT,LSUPPI
OIMENSION GIERP (B), OPRES(8), ORHLL (8), ORHUV(B), OSIGM(B), OXLABIB

UIMENSION BTEMD (B), BFAES(B), BRHOL(B), BRHUV(B), BSIGM(B), BXLAM(B)
OIMENSION AXMUL (B), BXKUV(B), BXNUL(IB), BXNUVIB), BXNL (B), OH(A)
DIMENSIUN ASUNI (B), BOSHF(Bi, BTHCS(8)
INTEGER POINI
66 format !
IDENT PROPERTIESPI'
68 FORMAT IIM TEMPERATURE',
70 ftgmar $\%$ Yapor pressure:
72 FORMAT I M LIOUIO DENSITYO'


76 format
Te, format : $\%$ SURFace tensiols



y formar i $\%$ KIMEMATIC VISCCSITY OF LIVUID
OG FCRMAT i\% DYNAHIC VISCOSITY OF VAYORI,

90	FURKAT
92 FURMAT	$\%$

92 FURMAT $\%$ RAIID OF KINFMATIC VISCO
97 FURMAI $\%$ LIGUID TRANSPORI FACYOR•I
99 format
il formal
il format i $\%$ SORIC VELOCITVI)
69 FORMAT 1 ITH $(K E L V I N)$, $23 \times, 8 F 10.1$


11 FORMAT 111H (N/M) $29 \times 8$ 8E10.21
79 format (lif ( $\mathrm{H}-5 / \mathrm{KG}$ ) , 29x, BEI0.2





96 FORMAT 110 H ( $\mathrm{H}-\mathrm{H}) \quad, 30 \mathrm{X}, \mathrm{BE} 10.2)$

00 FOKMAT $\{15 \mathrm{H}$ (W/H-M) . $28 x, B E 10.2)$
03 format ifm ifahrenheiti $23 \times$, of 10.1
104 FDREAT 113 H (PSI) $, 27 \mathrm{X}, 0$ E10.2)

06 FONMAT 12 SM $\{18 M / F T-F T-F T$, $2 \angle X, B E L 0.21$


$101601181=1$.
 OFKF $311=$ OPRES $11100.00024 S 1$


BSACL(:1)=OTHCL(1)*0. 2780


YxPuVIt)=(IXMUV(1)*2.205*1600.013.281




118 BUSMF(I)=0SHFII)*3.4129/3.281002
WRite ( 6.691
WRITE 16,1031 ,
WRITE $(6,103)$

WRITE $(6,104)$ (EPKESIIT,1-1,NK
WRITE $(6,72)$
WRITE $(0,105)$ (ERHDLII), $1=1$, MK $)$
WRITE (6.74)
WRITE ( 6,106 ) (BRMOV(t),I=1,NKI
WRITE $(6,1071$ (ESICMII),1-1, NK)

WRITE 16,30 )
WRITE $(6,104)$
WRIJE 16,821
WRIJE 16,1101
WRITE 16,041
WRIIE 16,041
WRITE 66,06 )

WRITE 16,901 EXMUY(l),IEI,NKI
WRITE $(6,113)$ (BXNUV(t), l-1, NK)
WRITE 16,921
WRITE (6,94) (RATIC:It),l-l, MX)
White 16.951

valife (6,97)

WRITE 16.1201
WRITE (6,121) (BOSNFTi,if-1, MK)
117 RFTURN
EMO
 SNTEGER UHIIS.NOINT
10 furmar (OIO)


cours?

a fishat i/fissh temptratureisi exceeds rablaf angete therrange is fh 1UA, FB=1,6H(F) TO,FB.1.4h(F)=1

l(F).)
whit 16,101
IF (C,BRIT-FO.1) GU TO 3
WHIT, 16,431 IMI3, TMAG
IF (Pulitrife-1) GU TU II
CIT TL 22
11 WKITE 16.131 11.12
22 IF CUNITSEEQ. 11 GU 70 d2
HE TUNA
IMS
ITM
IM
3 IMI $3=$ TMI $3 * 9.015 .0-459.07$

$11=7109.0 / 5.0-459.67$
12=1/09.0/5.0-459.67
WRIIE (6,4) IMI3, THA4
IF IPUINTAEE, 1 GO TO I4
IF (PUINT.NE. 1 ) 60 TO 14
WRITI 16.24$)$
WRITI 16.
CO 1080
14 WKITE (6.15) T1,T2
b) REIUR

SUBROUTINE HYDRO ILSUPP,LDUT, MBRIT, POIMT, UNITS, ORHOL, ORHCV, OXLAM,O


 DIMENSION OSIGM(B),THECLI30)
INTEGER POINT, UNITS
3 formar bic note chput temperature ramge mas beem adjusteoel
6 FDRMAT $191 \%$
MM
IND
O
INDEO
NBRIT
GAMMA=1;41
XHM 2.07
TCR1T-32.9
TMELTE13.81
TBOIL 20.27
PCRII =107.06.495*10.*03

UATA (XTENP (I), IA1.9i/14.0.15.0.17.0.19.0.21.0,23.0,25.0.27.0,29.0 "ut

 1 F $\mathrm{F}+1,6-41 E+1,5,99 \mathrm{E}+1,5-33 \mathrm{E}+1 /$
UATA (RHUVIII, I-1,91/1.S2E-1,2.26E-1,4.90E-1,9.492-1.2.67E40.2.70E
100.4.0.OBE*0.6.0JE $0.9 .02 E+01$

DATA ISIGMAIII.1-1.91/ 2.94t-3.2.81E-3.2.49:-3.2.14t-3.1.17f-3.1.4
1 IE-3. 1.00.F-3, 7. 10E-4.3.20t-41

$13 \mathrm{~F}+5.4 .07 \mathrm{E}+5.3 . \mathrm{A2E}+5.3 .3 \mathrm{SE} 51$

CEST, $1.01 E-5,1.01 E-5,9,30 E-6 /$
Lit-6, 1.34E-6,i.40E-6,1. SOE -6/
Coll
SE-1,1.29E-1,1.34E-1,1.3EE-1/
WIND:
(F (lSUPP.GT. 11 GO TO 12
READ 15,301 POIMR, UNITS
30 FORKAT 1 COI31
12 if (POINT-1) 31.32.3
32 IF (NBRIR.EG.11 GUTO 64
READ $(5,311$ IEMP
33 FDRMAI (8F10.4
64 IF ITEMP-LT-XTEMPIS1) 60 RO 34
If ITEMP.GT.XTEMPSMMIT GO TO 34
31 READ 15
IF INERIS.NE -1) 60 TO 5
TM1N2ITR:N+459.671*5.0/9.0
TMAXa11nKx+459.671*5.0/9.0
OT=DTA5.0/9.0
5 IF (IMIM.GI:XIEMPIMAI) 60 TO 34
 $1 N D=1$
TMiN=XIEMP(1)
43 IF ITMAX.(E.XIEMPIMA)) CO TO 44
ND $=1$
Max
1EMP(NM)

If IPONT-NE. 1) CO TO 20

20 IF (PDINT.EO.1) GO TO 21
IF IIMIN.CI-XIIMPIMA)I CD 1010
IF IINAX.(TXXEMPIII) GO 10 10
21 IF IIND.tO.01 60 vo 14
WRIIE
WRIIE
(6,15)
14 IF :POINT-11 45,46,43
$46 \mathrm{DT}=0.0$
THAX=TEAP
$45 \mathrm{TEMP}=\mathrm{II} \mathrm{MP}$-Or
$99 \mathrm{OD} 5: \mathrm{K}=1,0$
IIMP = ItMP
if (k.ne.1) gu to ne
IF (TFMP.GF.TMAX) 691063
85 H० nk

SQ $11=1$
UTFAP(K)=TEMP
UPKESIKIPPRESSIII)
UR1OL (K)=RHUL(II)
usicm(k)=s!gmalill
UxLAMIFI=xLAMDIII
ofacul (k)=xpul (11)
UXAUV(:S)-XMUVIII)
OTHCL(K)
If (POINT.fQ. 1 ) 60 to 6

| If (puint |
| :---: | :---: |
| co |
| 10 |

60 If (l.eco.l) GU 105
$11=1$
$10=1-$

 LUGCRESSGIOII-XIERP(IOIPALOGRPRESSTIIIIIIIXTERPIIII-XIERPCIOIII
 $1 \times 1$ EMP (IOS)


 l11-kifmp(101)
 111-xIEMPS101)

 LXTEMPG10s)
 IXIEMPSIOS:
if PO IMP.EQ.1] GO 506
be comtinue
31 continue
6) CALL POUT 2 IHX, DTEMP, OPRFS, OMHOL, DAMOY, OSSGH.OXLAM, OXMUR, OXMUY, SAM IMA, XNH, NBAIT, OIHCL, POINT 2 SUPPI
IF (PUIHTEEO.11 CO 1010
10 IF (MGRITAEEOS CO 1062
Nox $11=1$
IF (UNIIS.EO.2) CO 10 t2
GD TO 62
34 Al $=x I E M P I$
$A 2=x \mid E M P(M M 1$
IF TPUINT.ED.11 co 8033
1EMP $=0.0$
S. $\operatorname{in} 101066$
3) InINa=0.0

So CALL POUTS LAI,AZ,NERIT,UNITS, POINT, IENP, TMEN, TMAX, LOUT
63 IF (UNIIS.NE. 2 ) GU 1062
IF (NHR
THKIJ=1
id ITEI
wh fig out.NE.ll GO IIS 11
 SIGM,LXMUL, OXPUV, IEAP, DPRES,XMN, CAMMA I
 GIMENSION XILMP(30), PMESSI30), RHIJVISU), RHIIL (3U), SIGMA (30)
 integer point, units
16 FORMAI 10:10:
MA $=13$
$1 M O=0$
INOTO
NDRIT
GAMMA $=1.404$
XKNO26.02
TCRIT天125:96

PCRIT=3.395*10.**6

OPTA (XTEMPII), $1=1,23$ )/65.0,70.0.73.0.00.0,85. $0,90.0,95.0,100.0,10$ 13.0 .110 .0 .115 .0 .120 .0 .125 .01

DAMA IPRESS $11,1=1,131 / 1,70 E+4,3,82,+4,7,50 E+4,1,32 E+5,2,20 E+5,3.5$


 1E+1,2-21E+1,3-10E+1,4.33E+1,5,40E+1,7.95E+1,1.13E+2,2.10E+2f
 SEE-3.3.13E-3,4.15E-3,3.20E-3,2.28E-3,1.40E-3,6.80t-6,1.20E-41

 1E-4,9.20E-5, $8.40 \mathrm{E}-5,7.9 \mathrm{EE}-5,7.50 \mathrm{E}-5,7.10 \mathrm{E}-5,0.8 \mathrm{DE}-5,6.50 \mathrm{~F}-5 /$
 1t-6.7.10E-6.7.53E-دOE-151-6,9.00E-6, 1. OSE-5, 1.21t-5, 1.61E-51
9E-1,1-10E-1,1.0!E-1.9.20F-2.B.20E-2,1.10E-2,B.00E-2.4.00E-21 if ILSUPP-GT-i) 60 10::2
FORMAT 15,301 (1013)
30 FORMAT (10131
12 F 1 PUINT-1) $31,32$.

READ $\mathrm{S}_{5} 331$ T\&MP



3! MEAD (S.33) TMJH,IMAX,OT
IF INERITAE. i) GO 105
TMIMarTMIN+459.6TIAS.019.0

ulforeb.0/9.J
3 If ITHIN.GT-XIEMP(KNI) GU TO 34
If ITAX-LTEXIIMPIII) 60 to 34
IF ITMINOTE,XIEMPIII) GU to as
$1 \mathrm{IL}=1$
43 IF (IMAXALE, XIRMP(MNI) (G) (I) 44 lwu=1
(MAXEXIEMP(MM)
44 IEMP 1 TMIA

IF MPUSN.NE. IV GO TO 20
IF IMMP.IT.XIEMPIII 60 to 63
IF IIFMPGGT, XIEMP(MMI) GU TV 61
20 if IPMINT.EQ. 1160 RO 21
IF ITMAN.CT, XIEMP (MAI) 60 IT 10
IF IMAX.LT.XIERPII)
21 IF (INDOEO.O) CO TO 14 WNITE 16,161
i4 IF PPCINI-11 45,46,45
46 Or=0.0
MAX
TEMP TEM
TEMP-DT
$940057 \mathrm{~K}=1.8$
TEMP=IEMP\&DT

BF (IEMP.GT.TMAX) GO TO 63
os If (IEMP.GT.imax) GO TO 61 *Kak
oo bs lanino.nm
IF (XIEMPIII-TEMP) 68,59,60
34 11:1
LIEMP $(X)=$ TEMP
UPRES
R
UPKES(K)=PRESS (III
ORHOV(K)=RHOV(II)
dsigmikiasigmalits
UXLAM(K) $=x$ LAADEIII
XXALL $(K)=X \operatorname{AUL}(11)$
OXHUV(K)=XRUVIII)
OTHCLIKI=THECLIII)

60 TO 57
$60{ }_{11} 11=1$
$11=1$
$j: j x 1-1$
OIEMP(K)=TERP


 Ixtentilion)

 lll-ximplivil


111-xtimpestil)


txiempitio:

XitMpilasi
IF PPUNT.EQ. 11 GU TO 61
of CUMTINUE
57 Continue
61 GALL POUT2 INK, OTEMP, OPRES, ORHOL, ORHCV, OSIGM, OXLAM, TYMLL, OXMIV,GAM IMA, RKA, NARIT, OTHCL, POINI, S SUPP
If IPOINTEEQ.11 GU 1010
0 : F (NERIT.KE.0) 60 TO 62
mer $11=2$
$\begin{array}{lllll}\text { IF Cuniss.EQ. } 21 & 60 & 10 & 12\end{array}$
CO 1062

- AI=XIEMPILI

IF (POINT-EQ.1) 60 TO 55
$T \in M P=0.0$
5 CO 10.66
tmax=0.0
6 CALI POUTS (AI,AZ, NDRIT,UHITS, POINT, TEMP, TMIN, IMAX,LUUT)
63 IF IUNITS.ME. 2 I GO TO 62
IF MNRIT.NE.OI GO TO 62

62 RETURN ${ }^{\text {GO }}$
END

SUBREUTINE OXYGE ILSUPP,LOUTP: SRIT, POINT,UNITS,OHHDL,ORHOV,OXLAM,O ISIGM, OXMLL, OXHUV, TEMP, OPRES, XMW,GAMMAI


 UIMENSIOM DSICMIB),THECL130)
inieger point. uhits
is figmat 1919 note input temperature range has deen adjustedis MK $=11$
INDAO
NBRIT $=0$
GAMMA=1.401
$X A W=31.9485$
ICRITEI54.7
IMELI=34.8
TAOLLE90.z
DATA IHDII,11.1=1,21,HDIT,21/8HOXYGEN ,2HOZ
WATAIXIEMPISI,I=1,111/60,0,10.0,80.0,90,0,100.0.110.0,120,0,130.0.
140.0 .145 .0 .140 .01


ikhus(11,1a1,111/ 1.29ti3,1.24t+3.1.192
(E.1,\%.71E+2,4.(IBE+2,0.29t+2,7.67E+2,6.83E+21
 luE $+1,4,50 \mathrm{E}+1,0.00 E+1,1,33 E+2,1.00 t+2,203 \dot{U}+21$

 LEA5, $1.75 E 45,1.54 E+5,1.24545, t .01543,7.00 E 44 /$


 25E-1,1.14t-1.9.80E-2.0.10E-2.7.10E-2.3.80E-21
NIND=1
IF 1 SUPD.GI. 11 60 1012
30 furmat isolsi
12 if (PUINT-1) 31.32.
2 If iNRRIP.fG.i) 60 YO 64
READ (h.33) TEMP
3) FARMAT IBFIO.4)

IF ITMP.tT-xTHPIIII GO TO 34 6u Tu -1
3) NEAD $(3,33)$ TMIN,TMAX, OT

If IMRITPNE.11 GU TO 5 TMAX= (TMAXA459.67)*5.019.0 Dradies.0/9.0
5 IF (IMIM.GT.XTEMP(MA)I GO 1034 IF (TMAX-LTAXIEMPIII) GU TO 34 IF ITMIN.GE.XIENPIII) GO TO 43 INOSI
4) IF itMax.le.xffrimmil go 1044 INO=1.
TMAXIXIEMPIMA
4 TEMPATMIN
CALL PGUIITHD, XMW, TMELT, TBOIL, TCAIT, PCRIT, NERIT, CAMAA,LSUPPI
if PDONT.NE. 11 GO to 20
IF (IEMP-GT-XIFMP(MN)) G0 1063
20 If PPOINTEEQAII 601021
iF IIMIN-GT.XTKMPSMMII GO In 10

wirl. 16,161 WRITE 16.151
14 IF IPIINY-1145,46.45
6 OT: 0.0
5 IEMP:IEMP-DI


IFMPATEMNOOT
1t (KoNE. 11 Lit TE sa
80 If (TLMP.GT.IPAXI GU TU ol AK=K OO 6B IENINO.KM
59 II=1 (EMP) 85,59.60

UPAESIXI-PRESSIII)



OXMUL(k)=xMUL(11)

OTHCL(K)*THEGL(1)
IF PPOINT.EO. 11 पO TO 61
60 $11=1$
$10=1$ $10=1-1$ OIEMP(KIMTEMP
 JKHOL (K)=RHOLIIIITRHOLIII-RHDLIIOI) ITIEMP-XTEMPIIIIIIXIEMP(II)\&XIEMP(10)


 OSIGM(K)=SIGMA
11-xiEnF(SOI)

[)-x|EMP(IO)1


1xTGMP(10)1

69 continue
57 CONTINUE
61 CALL POUTZ IMK, OTEMP, OPAES, OAHOL, ORHDY, OSIGM,OXLAM, OXMUL, OXHUY,GAM 1 HA, XALGARIT.UTHCL, POINT. LSJPP
IF WUINTEEOLI) GO TO 10
LC IF INGRIT.NE.OS GO to 62

if \{UNITS.FO.2) GO 1012
60 TU 62
AI
OXIEMPI
A2=XTEAㄱNA
IF (1.O!NT,EG.1) GO TO 55
TEMP $=0$ r
60 TL
$5 \begin{aligned} & \text { THIN }=0.0 \\ & \text { IMAX }=0.0\end{aligned}$



NR2ll=1
IF (PCINT.NE.L) LU IJ 31
2 Lil TUG 64
62 MEIU
 ISICN, UXMUL, OXMUV, TEMP, RPRES, XMH, GAMAAI
30) oxmul(a), oxnuvia
 CIMENSION OSIGM(8), THECLI301
inteler puint, units
16 FOKMAP $910^{\prime \prime}$
is HIRMAT $m \times 12$
$M E D$ 1ND $=0$
NHR
NHRIT=O

TMELTR273.16
Y801L=373.10
PCNTE 218.16701Cji2.009.1
darackienplile io
10.0,475-0,500.0.5 54.0.550.0, 300.0, 325.0,350.0,373.0,400.0,423.0.45
 $11 E+5 \cdot B E 5 E+5,1.5 E+6,2-6 E+6,4,0 E+6,6,0 E+61$


.6.8.0.1.3E+1,2.2E+1,3.4E+1/i, 5E-2,9.0E-2.2.5E-1.6.0E-1,1.3,2.5.4



 BE $-4,1.5 E-4,1.3 E-4,1.2 E-4,1.0 E-4,9,0 E-3$ )
 S.1.5BE-5, 1.14t-3,1.9t-5,2.12E-5,203EE-5,2.12E-5
0.8E-1,6.7E-1,6.56E-1,6.35E-1,6.12E-1,5.76E-1

IF (LSUPP.G7. II GO TO 12
KEAD $(S, 30)$ POINT, UNITS
30 fermal iloisi
12 if (Puint-i) $31,32,32$
32 If (NORIT.EO.11 Gis TO 64
IF ILSUPP.GT. 11 Gid iU 64
READ (S.344 It KP
3) FUREAI $18 F 10.41$

64 IF TEMP-(TXXIEMP(11) CO TL 34
1F ITEMPGTEXIEMP(HM)I GD
READ $(5,33)$ TMIN,TMTX.
IF (NURIT.NE. 11 GO TO 5
IMIN=ITNIN459.671*5.0/9.0
TMAX $=1$ Tmax $454.671 * 5.0 / 9.0$
2 $\mathrm{OH}=0185.0 / 9.0$
5 IF ITMN-GF-XTEMPRMMH GO To 34
IF (TMAX.LT.XIEMPIIS) 60 TO 34
IF
iND=1
3 IMIN XIEMP(1)
43 iNO $=1$ INOXI $\mathrm{T} A \mathrm{XTEMP}$ (MA
44 TEMP=TMIN
12 CALL PGUTZIHD, XKH, IMELT, TGOIL, TCRIT, PCRIT, NERIT,GAMMA,LSUPPI IF (POINT. NE. 1) CO TO 20
IF ITEMP.LT.XIEMP 111 OD OD 103
20 If 'PEMPG -XTEAPIMNI) GO TO 6
IF ITMAM.GT XIEMP (RMII GO TO 10
IF TIMAX. LT XXEMPII) GO TO 10
21 IF (IND.EO.3) GO TO 14
HRITE $(6,16)$
14 IF (PDINT-1) 45,46,45
146 IF $1 \times 0.0$
TMAXRTEMP
4S TEMP 5 TEMP-D

If (K.NE. 1 ) GO TO 88
IF (TEMP-GT.TMAXI GO TO 6
-8 IF (TENP.GT.TMAXI GO TO 63 NK $=\mathrm{K}$ DO 83 I $=$ HIND, MM
(1)-TEMP) 68,59.60 UTEAP (K) = TEMP OPRESIKI-PAESSIIII
ORHOL $(X)=R H O L(11)$
URHOV
ortgoviki=sigmalit
OXLAm(KI=XLAMOIIII
OXXULIKI=XMULIII
UXMUY(K)=KKUV(11)
OTHCLIKIFTHECE(1!)
if (POINT.EG.1) G0 7061

60 1F | $\begin{array}{l}11=1 \\ 10 \times 1-1\end{array}$ |
| :--- |
| 10 |

$10 \times 1-1$
OTERP $(\mathrm{K})=$ TEMP
OTERP(K) $=$ TEMP



1xtempriall
 10G1 RHOVIIO)I-XTEMP (IOI*ALOGI RHUVIIIHIII(XTEMP(II)-XIEMPIIDIII GTHCL(K)=THECLIII)+ITHECLIIII-THECL(IOI)*ITEAP-XTEMPSIIIIIIXIEMPG
osigm(k) $\operatorname{sig}$ gma
11)-XIEMP(101)
(i) AnK =

1I-XIEMPIIOI)


IXIEMPSTUI)
IF (POINT.EG.1) GO TO 61
LOTO 57
GOANTINUE
68 CONTINUE
57
GL CALL POUT2 INK, OTEMP, OPRES, ORHOL, ORHOV, OSIGH, OXLAM, OXMUL, OXMUV,GAK IMA, XMN, NARIT, OTMCL, POINT.LSUPP:
IF (POINT.EO.1) GO TO 10
10 IF (NRRIT.NE.OI GO TO 62
NBRSI=1
IF (UNITS.EQ.2) go to 12
CO 1062
34 Al=XIEMP(1)
SZXIEMP (HM)
IF
(POINT.EQ.
TEAP $=0 . C$
55 GOTO $\mathrm{TMIN}=0.0$
35 TMAX=0.c

63 IF (UN!T:GAE. 2 ) GO TO 62
NBRIT=1
IF iPOINT.NE. II GO TO 31
62 RETURN
END

SUBRCUTIME AMHOM ILSUPP, LOUT, NERIT, POIMT, UMITS,ORHOL, ORHOY, OXLAM, O ISIGM, OXMUC, OXNUV, TEMP, OPKES, XMK, GAMMA
OIRENSION XMUL (30), XYUY(30), HDI 2,21,XLAMD(30), UXHUL (8), OXMUVis)
DIMENSIUN XTEMP (30), PRESS(30), RHUY(30),RHOL(30),SIGMA(30)

USMENSION OSICM(B), THECL(30)
inieulr pointiunits
16 fibrat $191 \%$
15 finkat $1 / 1$
note input tehperature hange has been adjustede) MKO24
IND
NBRITI
N
GAHPA $=1.31$
GAMPA $=1.31$
$X H W=17.0$

## $1 \mathrm{CR15}=407.3$ $14 \mathrm{ELT}=195.0$ <br> MRELIE195.0

MCKIT=111.3*1.01325*10.0**s

OATA $1 \times$ TEMP $111,1=1,241 / 200.0,210.0,220.0,230.0 .240 .0,750.0 .260 .0$. $1210.0,280.0,290.0,100.0,110,0,120.0,140.0,380.0,365.0,310.0,115.0$ $0380=0,385.0,390.0,395.0,400.0,415.01$

 34. 14t $+6,1.00 t+1,1.02 \mathrm{t}+71$

DATA 1 RHOL\{11, $121,241 / 7,30 \mathrm{E}+2,7,16 \mathrm{E}+2,7.05 \mathrm{E}+2,6,9 \mathrm{E}+2,6,81 \mathrm{E}+2,6.64$


 $1 E+0.2 .10 E+0,3.05 E+0.4 .32 E+0,6.08 E+0,8,30 E+0,1.11 E+1,1.48 E+1,1.43 E$ $21,4-10 E+1,4,60 E+1,5.20 E+1,5,80 E+1,6-60 E+1,1.40 E+1, B, 80 E+1,1.03 E+2$ $31.30 E+2.2 .30 \mathrm{E}+21$
12E-2,2.8AE-2,2.63F-2,2,42E-2,2.4.12E-2,3.8AE-2,3.62F-2,3.36E-2,3.1 $2-2,1.49 \mathrm{E}-3,8.90 \mathrm{E}-3,5.68 \mathrm{E}-3,4,80 \mathrm{E}-3,3.9 \mathrm{EE}-3,3.13 \mathrm{E}-3,2.28 \mathrm{E}-3,1,2 \mathrm{E}-3$ 3,0-70E-3, O. OOE +01
DATA $\{X L A M O!i 1,1=1,241 / 1,4 B E+6,1,45 E+6,1,43 E+6,1,40 E+6,1,37 E+6,1,3$
 3, 3.1E+5,1.30t+5/
 1E-4,2-50E-4,2.42E-4,2.34E-4,2.24E-4,2.14E-4,2.02E-4,1.9CE-4.1.62F
 34.8AE-5,3.00E-5)

OATA (X. 25,1.46E-5,1.50E-5.1.55E-5,1.59E-5.1.65E-5,1.71F-5,1.78E-5.1.BEE-5, 32.00E-5,2.30EE51

OATA (THECL(11. I=1.24)/5.31E-1,5.40E-1,5-45E-1,5.4EE-1,5.4日E-1.5.4 17E-1,5.45E-1,5.41E-1,5.35E-1,5.25E-1,5.12E-1,4.97E-1,4. $1.1 \mathrm{E}-1,4,46 \mathrm{E}$ 3,3.23E-1,3.14E-1/
NI $\mathrm{MD}=1$
IF ILSUPPGT. 13 GO 1012
READ 15,301 PO
fORHAT 110131$)$
30 FORHAT 110131
12 IF IPOIMT-11 31.32.31
 READ 35,331 TEMP
33 FORMAT 10 F10.41
64 IF IIENP.LT-XTEMPID1) GD TO 34
60 to 11
31 READ 15,33 ) TMIN, IMAX, DT
(F (NBRIT.NE.1) GO TO 5
TMIN=ITHIN+459.671*5.0/9.0
TMAXEITMAX+450.671*5.0/9.
5 IF ITMIN.GT. KTEMPIMNI) GO TO

IF IMAX-LT-XIIMPIII) CO III 34
IND=1
43 IF (IMAX. IE-xTtMP(MA)) 60 1040 IND 1
IMAX $=X$ TEMP (MM $)$
 If (PLINT.NE.I) GU TO 20
IF ITLAP. Cl XIEMPILII GO 1063
20 if (PUANE.ED-XILMP (MAI) GU TO 63
If TMAN.GT.XIEMP(MAI) 60 TO 10
1 IF IINO.EO.01 co TO 14
MRITE 16,16 )
WRitt lc.is
141 $\mathrm{Dr}=0.0$
$1 \times 2$
5 TEMP $=$ TEMPM D
99 "0 57 $k=1,8$
If (K.NE. 1) GO TO 8
IF ITEMP.GT.TMAXI GO 1063
6. $\begin{aligned} & \text { if } \\ & n X=K\end{aligned}$

0068 IONINO,MM
IF (XTEMP(II-TEMP) $68,59,60$
59 ti=i
OTEAP (K) $=1$ FKM
UPRES
UHHOL $(x)=Q R E S S(11)$
URHOV(x)=RHOV(II)
OSIGMIKI=SIGMAIII)
OXLAM(x)=XIAMDIII)

UTHCL(K)=THECL(11)
IF IPOINT.EQ.11 GO TO 61
601
F 1. EO.1) co ro 50
$11=1$
$10=1-1$
UTEMP(K) $=$ TEMP


 1XTEMP(10))
ORHOV(K)

 111-XIEMPIIOS)
 $11-X I E M P(10)$
UXLAM(K) $=X(A H)$
UXLAM(KIEXLARO
II)-Xf:MP(IU)I
 XTLMLIIOI)
XTEMP(10)
IF (PUINT.EQ.11 GO IH 61
6078057
68 COMTILU
61 Call
V,GAMMA PUUT2 imX,OTEMP,OPRES,ORHOL
IF IPOINT-EQ.II GO 1010
If TEEMP.LE.TMAX) 60 TD
101
NBRIT=1
IF IUNITS.EQ. 21 GO 1012

A2=XTEMP(Mn)
IF SPOINT.EQ.11 GO TO 55
TEMP $=0.0$
CO TIS 66
5 TMIN=0.0 TMAX=0.0
CRLL POUT3 IA1, A2,MARIT,UNITS, POINT, TEMP,THIN,TMAX,LUUT
3 IF IUNITS. HE. 2) GO TO 62
IF INRRIT.NE.OI GO TO 62
IF INBRIT.NE.OI GO TO 62
MBRIT=1
MBRIT=1
IF ipoin
601066
$2 \begin{aligned} & \text { RETU } \\ & \text { END }\end{aligned}$

SUBROUTINE METHA ILSUPP,LOUT,NERIT,TOINT,UNITS, ORHOL, ORHOV,OXLAR,O SIGM, OXMUL, OXHUV,TEMP,OPRES, XMM,GAMAA
DIMEKSIOM XKUL (30), XMUV(30), HD 22,21 . XLAMD 301 , OXMUL (8), OXMUY(8) RIMENSIOM XIEMP(30), PRESS(30), RHOV(30), RHOL (30), SIGMA(30)
DIMENSION OTHCL( $\theta$ ), OXLAM(B), OTEMP( $\theta$ ), OPRES( $\theta$ ), ORHLL ( 8 ), ORMOVIA) DIMENSION OSIGR(S), THECL(30)
integer point,units
 $M N=21$
$1 N D=0$

## NDOI

GAMAR 1.25

ICRIT=513.1

PCR! $=1150$.9*6. $895 * 10$.**3
OATA IHOLI,11.1=1,21, HOL1,21/BRIMEIHANUL, $5 \mathrm{HCH} 30 \mathrm{H} /$
UATA ISIEPP(1).1=1,211/250.0,260.U.270.0,280.0,290.0,300.0.320.0, 1340.0.360.0,380.0,400.0,420.0,440.0,450.0,460.0,470.0,480.0,445.0 2490.0.495.0,500.01




EAIAI ! HOVIII, $=1,211 / 1.24 \mathrm{EF}-2,2.10 \mathrm{E}-2,3.90 \mathrm{E}-2,7.10 \mathrm{E}-2,1.26 \mathrm{E}-1,2.60$
 21. $3.14 \mathrm{E}+1,4,65 \mathrm{E}+1,5,02 \mathrm{E}+1,6.60 \mathrm{E}+1,7.58 \mathrm{E}+1,0.90 \mathrm{E}+1,1.07 \mathrm{E}+21$

19E-2,1.9RE-2,1.78E-2,1.57E-2,1.37E-2,1.16E-2,9,605-3,7.50E-3,6.50E $2-3,5.50 \mathrm{E}-3,4$. $50 \mathrm{E}-3,3.40 \mathrm{E}-3,2.90 \mathrm{E}-3,2$, 40E-3,1.40E-3,1.40E-31
DATA $\times$ LAMDI $11,1=1,211 / 1.21 E+6,1.20 E+6,1,20 E+6,1,19 E+6,1,1 \mathrm{EE}+6,1.1$
$17 E+6,1,16 F+6,1.10 E+6,1-06 E+6,1,00 E+6,9,35 E+5, B .62 E+5,7,80 E+5,7.32 E$


<n, $9.00 \mathrm{E}-5,7.90$ - $5,6.85 \mathrm{E}-5,6,45 \mathrm{E}-5,6000 \mathrm{E}-5,5.60 \mathrm{E}-5,5.05 \mathrm{E}-5 /$

1E-4,1.03E-5,1.10E-5,1.16E-5, i.23E-5,1.29E-5.1.36E-5,1.43E-5,1.47E-
25,1.SLE-5,1.55t-5, 1.59E-5,1.62E-5,1.64E-5,1.61E-5,1.69E-5/
OATA (THECLII. I=1,211/2.01E-1,2.06E-1.2.05E-1.2.05E-1,2.04E-1.2.0
2-1,1.92E-1,1.91E-1,1.90E-1,1.90E-1,1.90E-1,1.89E-1,1.89E-1/
NIND $=1$
if ILSUPP. G1. 11 to 1012
30 format inol3)
12 IF (PGINT-1) 31,32,31

READ (5,33) TEMP
33 FORMAT (GF10.4)
IF (IEMP.LT.XIEMPII) 60 TO 34
IF ITEMP.GT.XIEMP(MAI) GO to 11
31 IEAD (5,33)TMIN,TMAX, DT
IF INBRIT.ME.1) GO TO 5
THIN $=1$ IMIN $+459.671 * 5.0 / 9.0$

5 If (TMIN.GT.xTL!口:(MM)) GO TO 34 IF ITMAX.LTEXIEMPIII) GO TO 34
IF ITMIN.GE.XTEMPIII GO TO 43 IND $=1$
IAIN $=x$
43 If (IMAX.LE.XIEMP(MM)) 607044 IND $=1$
TMAX=XIEMP(Mn)
44 TEAP 11 THIN


$20 \quad 103$
IF (TEMP.GT.XIEMP(AN)I GO $10 \quad 6$
20 if (POINI.EO.1) GO TO 21
IF ITMIN. LT. XIEMPIKM): GO IO 10
IF ITMAX.LTXTEMPILII GO TO 10
21 IF (INO.ECOS (10 TO 14
wilte (6,151
$46 \begin{aligned} & \text { UT }=0.0 \\ & \text { IMAX }=\text { TE }\end{aligned}$


IF (X.NE.1) GO 1085


88 IF | if $=K$ |
| :---: |


IF (XTEMP(S)-TEMP) 68.59,60
59 11:1
OTEMPIKI=TEMP
UPRESTKI=PRESSIII!
ORHOL (K)=RHOL (II)
ORHOV(K) $=$ RHDVIII)
USIGA(K)=SIGMAIII)
UXLAM(K) $=\times \operatorname{LAMDIII)}$
UxMLSK1=xMUL (111)
oxnuviki=xMuvill
OTHEL(K)=THECIIII)
IF $P O I N T . E Q .11$ io 0 to
608057
60 $11=1$
$10 \times 1-1$
TOEI-1
OTEMP
KK)-TEMP

 SXIEMPIIOII


41)-XTEMP(IO)1





if (POINT.EQ.1) GO TO 61
68 continue
68 continue
57
61 CALL POUT 2 IMK, OTEMP, OPRES, ORHOL, ORHOV, OSIGM, OXLAM, OXMUL, UXHUY, GAM
1 1MA, XMH, NBRIT, OTHCL, POINT, LSUPD
IF 1 POINT-EO-11 60 TO 10
10 If (NERIT.NF.O) 60 to 62
NBRIT=1
IF IUNITS.EG. 21 GU 1012
60 TU 62


$1+M P=0.0$
$60 T 156$
3) $I M I N=0.0$

TMAX $=0.0$
6S CALL POUT3 IAT, AR, NBRIT,UNITS,POINT, TEMP, TMIX, TKAX,LCUT
63 If IUNITS-NE. 21 GU 1062
IF INRRIT.NE.OI GU 1062
tertirl
IF POUNT.NE.11 GU TO 31
GU TU 64
62 ROTTUKN 64
END

SURRUUTIME ACETO ILSUPP,LDUT, NBRIT, POINT, UNITS, ORHOL, OAHOV, OXLAAK,O 1S:GM, OXMLL OXMUV, IEMP,OPRES, XMH,GAMMAI
DIMENSION XTEMP(30), PRESS(30), RHOV (30), R UIMENSION OPHCL(B).OXLAM(A), OTEMP(8),OPRES(S),ORHOL(A), ORHOVIB) UIMENSION OSIGMEBI,THECLISOI
15 FORMAI POINT.UNITS
15 formal 1/": note input temperature range has been adoustedis MM $=23$
INO $=0$
IND=O
NGRIT=0
NGRIT $=0$
GAMMA
XM
$\mathrm{XMH}=58.0$
TCAIT
S
TMFLIF178.5
. $18011=329.7$
PCRIT $=47.2$ 21.01325*10.0**5
DATA 1 HO(1.1). $1=1,21$, HDC(1,2)/THACETONE, 5 HC 3460
DAIA XXIEMP $(11,1=1,131 / 325,0,335.0,345.0,355.0,365.0,375.0,385.0$. DATA IPRESS $111,1=1,131 / 8.53 E+4,1,20 E+5,1.62 E+5,2.16 E+5,2.92 E+5,3.7$ $16 E+5,4-84 E+5,6,12 E+5,7-46 E+5,9-33 E 45,1$. $13 \mathrm{E}+6,1.36 \mathrm{E}+6,1.65 \mathrm{E}+6 \mathrm{I}$
 IOE $+2,6.75 \mathrm{E}+2,6.62 \mathrm{E}+2,6-4 \mathrm{EE}+2,6.32 \mathrm{E}+2,6.18 \mathrm{E}+2,6,00 \mathrm{E}+2,5.82 \mathrm{E}+21$ $18 \mathrm{~F}+0,8.97 E+0,1.09 \mathrm{E}+1,1.35 \mathrm{E}+1,1.60 \mathrm{E}+1,1.92 \mathrm{E}+1,2.24 \mathrm{E}+1,2.60 \mathrm{E}+1 / \mathrm{I}$ DATA ISIGMAII, 121,131/1,09E-2,1.71E-2,1.64E-2.1.52E-2.1.40E-2,1.2 LEE-2,1.16E-2,1.03E-2,9-10E-3,7,80E-3,6.60E-3,5.40E-3,4.10E-31



 10E-6,9.60E-6,9.70E-6,9.90E-6,1.00E-5,1.02E-5,1.04E-5,1.06E-51 12E-1, $12 \mathrm{E}-1.1 .37 \mathrm{E}-1.1 .33 \mathrm{E}-1.1 .30 \mathrm{E}-1,1.25 \mathrm{E}-1.1 .21 \mathrm{E}-1.1 .16 \mathrm{E}-1,1.12 \mathrm{E}-1 / \mathrm{l}$
NIND
IF LLSUPP.GT-11 GO 7012
READ $(5,301$ POINT,UNITS
30 FGRMAT 11013$)$
12 IF (puint-11)
12 IF (POINT-1) 31.32.31

32 If INBMIT.EU. 11 U1 1064 IF $1 L S U P P . C T-11$ G
READ $\{5,331$ ItMP
3 READ 15,331 1t MP
33 FORMAT (8FI0.4) ©u to 11
31 READ 15,331 TMIN,TMAXPOR
IF INBRIT. NE. 11 GO TOG 5 TMAX $=1$ TMAX $+459.671 * 5.089 .0$ OT=OT $\$ 5.0 / 9.0$
5 (F ITMIN.GT-XTEMP(MM)I CO TO 34
 iNOM 1
xTEMP(1)
3 IF ITMAX-LE.X TMAX $=1$
TMTEMPIMM
44 TEMP =TMIN
CALL POUTI〈HD,XHE,THELT,TBOIL,TCRIT,PCRIT,NBRIT,GAMMA,LSUPP IF IPUINT.NE. 11 GO 1020
IF IIEMP.GT-XTEMP(MM) GO 1063
20 IF IPOINT.EQ.1) GO TO 21
If ITMIN.GT. XIEMP(MM)) GO TO 10
IF HMAX.LT.XTENPII) GO TO 10
1 Is (IND.EGBO) GO TO 14 WRITE $(6,16)$
WRITE $(6,15)$
14 If 4 PDINT-11 $45,46,45$
46 DT $=0.0$
5 TEMP 5 TEMP-DT
95 TE $57 \mathrm{~K}=1,8$ TEMP = TEMP + DT IF (K.ME. II GO YO Bs If (TEMP.GT-TMAX) GO TO 63
If (TEMP.fi.thax) GO TO 61 NK=K
DO SB IUNIMD, MM 1F (XIEMPIII-TEMP) 68,59,60
59 11*1
QTEMP体)=TEMP
OPRES(RI=PRES5111) uni:OV(K) a Rovilil USIGHIK)=S(GHA(1)I) OXLGMTKI=XLAMDIIt
 CXRUV (XI=XMUVIII IF (POINT.EO.1) GO To if toc 57
if tiong.
60 if tisFU.1) go 1054 $11=1$
$10 \div 1-1$


U1EMR(K):IEMP






11)-XIEMPIIDII

OSIGM(K)=SIGMA(II)+ISIGMAIIII-SIGMAIIUIJ*(TEMP-XTEMPIIII)/IXTENPII UXLAM(K) $=$ XLAMO
1)-XIEMP(IU):
 1XTEMPIIOI)
OXRUV(KI=XMUV(II)+:XMUV(III-XMUY (IOII*ITEMP-XTEMPRIIII/IXTEAPIII)-
If ipuint.
60 To 57
68 CONTINUE
57 CUNTINUE
61 CALL POUT 2 IMK, OTEMP, OPRES, ORHOL, ORHOY, OSIGM, OXLAM, OXHUL, OXMUY,GAM HA, XKH, NBRIT,OTHCL, PDIHT, LSUPPI
IF (POINT.E0.1) GO TO 10
10 (F (iNARIT.NE.O) 60 TO 029 NBRII $=1$
IF (UNITS.EO.2) 60 TO 12

A2nXTEMPIMN:
TE PPOINT.ED.1) GO TO 55
$T \in M P=0.0$

Imax=0.0
O6 CALL POUT3 IAI,AZ,NERIT,UNITS,POINT, TEMP,THIN, TKAX,LOUTI
63 If IUNITS.NE.21 GU 1062
IF INERIT-NE.OI GO TO
NBR
62
if ipoin
GO TO B4
62 RE TURN
ENO

SURROUTINE FRERI ILSUPP,LOUT,NARIT, POINT, UNITS, ORHOL, ORHOV, OXLAR,O ISIGM, CIXHUL, OXKUV, TEMP, OPRES, XMM, GAMHA

DIMENSION OTHCL(B), OXLAMIOI,OIEMPIG1,OPRESISI,ORHOLIB), DAHOVIE) UIMENSION USIGM(b), THECL(30)
INIEGER pINTI, UnITS
16 FIJRMAT 10101
15 FURMAI
note input temperature range has aeen adjustecol

IVUau
VAR $11=0$

1CRII=451.7
TMELI=13甘.2
TBJIL=282.12
PCK1T=750.*6.895*10.003

JA1A UAIA TPRESSIll.1=1.141/1 10.01410 .0 .120 .01
 $2+51$


 1E+0.2.42E+0.2.90E+0,3.60E+0.4.2.2E+0,5.88E+0.8.10E*0.1.14E+1,1.50E+ $21 /$
DATA (SIGMA11),1-1.141/2.75E-2,2.67E-2,2.58E-2,2.51E-2,2.47E-2,2.3 5E-2.2.2日E-2.2.20E-2.2-14E-2,2.07E-2.1.92E-2.1.181-2,1.64E-2,1.48E
 14E*5,2.5AE45,2.49E+5,2.46E~5,2.44E45,2.3BE45,2.33E+5,2.27E45,2.20E 2451
VATA (XYUL $111,1=1,141 / 6,00 \mathrm{E}-4,5.65 \mathrm{E}-4,5.34 \mathrm{E}-4,5.06 \mathrm{E}-4,4,00 \mathrm{E}-\mathrm{i}, 4.56$ $1 E-4,4,33 E-4,4.15 E-4,3.96 E-4,3.80 E-4,3.52 E-4,3.26 E-4,3.05 E-4,2.85 E-$
$24 /$ 1E-6,1.00E-5.1.02E-5,1.JSE-5,1,07E-5,1.il2E-5,1.15E-5,1.14E-5,1.23E251
 $B E-1,1.25 E-1,1.23 E-1,1.20 \mathrm{E}-1,1.1 \mathrm{BF}-1,1.13 \mathrm{E}-1.1 .08 \mathrm{E}-1.1 .03 \mathrm{E}-1,9.80 \mathrm{E}$ 2-21
IF ILSUPP.GT. 11 60 1012
REAO 15,301 POIKT, UMITS
30 foamar 110131
12 IF (PCIMT-1) 31.32.31

READ 15,331 IEMP
33 FORmAT (BF10.4)
64 IF ITEMPCL.XIEAPI1) 60 TO 34
IF TTEMP.GT.KIEMP(MAI) 60 TO 34
601011
READ ( 5,33 ) TMIA. TMAX. DT
IF IMBRIT,
IF MERII.NE. II 60 TO 5
Thincititita $59.67135 .0 / 9.0$
TMAX= 1 TMAXP4 $59.671 * 5.0 / 9.0$
Ot=0105.019.0
5 IF IMIN.GT-XTIMPIMMI) GO TO 34

$1 N D=1$
$M$
3 If (IMAX.LEOXIEMPIMMI) GO II 44.

INint 1

44. IIMP $=1$ MIN

if IPOINT.Nit. 11 GU TO 20
ra 63
if (TEMP.GT.xTEMP(MH)) GU 1063
20 IF IPIMNI.EO.11 GU TO 21
if ITMAM-LT-XPGMP(MA)I GO 1010

witit $(6,15)$
wift 16,15$)$
16 IF (PM list-11 45,46.45
46 UT $=0.0$
45 TEMPSTEMP-DR
99 UU 5T $\mathrm{k}=1,8$
TEMP=TEMP\&DT
If (K.NE.l) 60 to ab
if (ItMP.GT. TMAXI GO 1063
as if (IEMP.GT. TMAX) 60 to 61 NK $=\mathrm{K}$ IF (XTERPIII-TEMHS $68,59,60$
59 11.1
OIEMP $(K)=\mathrm{TH}$ MP
UPRES
(K)
UPRESIK)=PRESSIII)
URHDL(K)=YHOLIIII
OKHOV(K)=RHOV(II

UXLAM(K)=XLAMGI:11)
UxAH ( $x$ ) $=x$ xMUL 111
OXHUV(K)=xMOVCII
tF (POJNT.EQ.1) GO TO 61
GO TU 51
IF (1.EQ.1)
an
59
$11=1$
OTEMD(K)=IEMP
 LUGIPRESSIIOII-XTEMP(IOSEALOGIPRESSIIIIII/IXTEMP(III-XIEMPIIDII URHOL (KIERHOLIIII (RHOLISII-RHOLIOII* (IEMP-XSERPIIII/IXTEKPIII)EXTEMP(IO)I
OKHOV(K)=EXPI(IALOGI RHOVIIIII-ALOGI RHOV(IO)I):TFKP

 1)-XIEMP1
OSIGA

HI-XIEMP(IDI) I!-XIEMP(IBI) (I)-XIEMPIIGI)
 1RItMPIIOII
 1XTEMPIIO).
IF (PCINT.FQ. 1 ) 60 - 061

LO 1057
CONTINUE
60 continue

MAA, XKM, NHZIT, OTHEL, PUINT,LSUPPI
IF IPOINT.EO.1) GU TO 10
10 IF (NBRIT.NE.O) GO TO 62

IF (UNifs.fo.2) GO TO 12
60 IU 62
34 AL=XIEMP:U.
A2 $2 \times$ XEMP (MA)
(F $\{$ POINT.EQ. 1 ) 601055
TEMP $=0.0$
$G 070 \quad 66$
$35 \begin{aligned} & \text { GU TO } \\ & \mathrm{TMIN}=0.0\end{aligned}$
I $\ln =0.0$
66 CALL POUTS IAL,A2, MERIT, DNITS, POIMT, TEMP, TMIN,TMAX,LOUTI
63 IF (UNITS.NE.2) GO TO 62
NBRITII
IF \{POINT.NE. 11 GO 1031
GO TO 64
$62 \begin{gathered}\text { RETU } \\ \text { END } \\ \text { GN }\end{gathered}$

SUBRUUTINE SODIU ILSU.'P,LDUT, NARIT, POINT, UNITS, ORHOL, CRHOY, OXLAM, O SSIGK, OXAUL, OXMUV, TEMP, OPRES, XMM, GAMMA
(8)

16 formai point imits

mote input temperature range has aeen aojustedos
$\mathrm{KM}=2$
INO $=0$

gamman5.013.0
$X M W=<2.991$
CRIT=2600.0
MELTE 311.0
BUIL- 1156.2
PCRIT=167.2*1.01325010025
DATA (HDIt,1),1:1,21,HOC(1,2)/8MSODIUM . 2HMA/
OATA (XTEMPII),1=1,21/371.0,2200.01
if NOM
IF 11 SUPP.GT. 13 GO IC 12
F0.4MAT (1013)
12 IF IPDINF-11 31,32,3
32 if ingaiteeo.11 GO 10
1F MSUPP.GT.11 60 TO 64
KCAO 15,33 ) TEMP
33 FDRMAT (BFIO.4)
64 IF (TEMP.LT.XTEMP(I)) GO TO 34
(F ITEMP.GT.xIEAP(MAI) GD TO 34

331 imin, tmax. 0
If INBUIT.NE.1) GOTOS
IMIN=(IMIN+459.67)*5.019.0
IMAX $=(1$ MAX +459.67$) * 5.0 / 9.0$

5 IF (TMINOGI.XTEMP!HM)) 60 TO 34
 IF ITMIN.GE.XIEMP(I)) GO 1043 iNO $=1$
iHIN=XIEMP(1)
4) IF iJMAX.LEAXTEMP(MAH) GO 1044


TEmp: mal
11 CALL POUTIIHE, XHA,TMELT,TBOLL,TG2IT, PCRIT, NARIT, GAMMA,LSUPPI
1F (PUINT.NE.1) GO IS 20
IF I:EMP.LT.XIEMP(I) GL 1063
20 if (POLAT.EQ.1) GO TO 60 TO 63
IF ITMIN.GT-XTENP(MHI) GO TO 10
IF TTMAX.LT.XTEMP(IS) 60 to 10
21 IF IINO.ED.OS GO TO 14
WRITE (6.161)
14 If (POINT-1) 45,46,45
46 UT=0.0
TMAX=TEMP
45 TEMP-TEMP-DT
99 UO 57 Kal, 8
If IK.NE. 11 GO TO 80
If (IEMPGT. TMAXI 60

NK=K
CTEMP (K) = TEMP
UPRES (K) $=$ (EXP $9.983175-10918.00 /$ TEMP-686231.9/TEMP**2) 1 (1010.00.05 URHOL $(K)=\{1.013630-0.0002350445 *$ TEMP-0.0000nCDOO9861048*TERP**2 **
ORHOV (X) = IEXP $11.000785-10129.16 /$ TEMP-575469.0/TEMP**231*1000. TFA1. 6 OIEMP-459,6.7
ORHCi(K)=14.4298-0.000e1292*TF+0.00000011127*1F**2-0.000000000030b
13301F*031* 70.87
UXLAM(X)=14170.0-0.0914TFMP100.001

UXMUV(K)=10.0000105571+0,0000001581986*TCMP-0.00000000001934133*TE LMP**21*0.1

57 cO


IF (IEMP.LE.TMAX) GO TO 10

$\rightarrow$ NIND $=1$
if curits.EQ.21 Gu Tu 12
फi) 10 or

If IPUINT.EC.11 GO IU 5 s
It MP $x 0.0$
40 TU 66
3) $\operatorname{Iman}_{\max =0.0}$

63 IF TUNITS.NE.21 GU TO 62

IF (POINT.NE.I) GO TO 32
GO TU
MEIURN
62 MEIURM

SUBROUTINE POTAS ILSUPF, LOUT,NHRIT, PQINT, UNITS, ORHOL, ORHOY, UXLAM, O
ISICR, DXRUR, OXMUY, TEMP, OPRES, XKW, GAMMA :
(8),OTERP(a), OPRES(B)

NTEGER POIAT UMIIS ORHOVIB),OSIGA181, OXKUL (B), OXMUY(8)
15 forkal l/I' note input timperalure range has been adjusteois
16 format iol'
$\mathrm{MM}=2 \mathrm{Z}$
$\mathrm{INO}=0$
nERIT=O
GAMMA=5.0/3.0
$\mathrm{XHH}=39=1$
ICRIT $=2300.0$
TMELT $=330.9$
$T B D I L=1033.2$
PCRIT=0.0


MINO 1
EFAD $(5,301$ PDOIHT 60 TO 12
30 FORMAT (1013)
12 IF (POINT-1) 31,32,31
32 If INBRITEEQ.11 GO TO 64
IF ILSUPP.GT. I; GU TO 64
33 Formar (sfio.4)
64 If (TEMP.LT-KYEMP 1111 oU 70 34
IF ITEMP.GT-XIEMP(MMI):0 1034
60 to 11
31 READ $(5,33)$ TMIM, TMAX, OT
IF INBRIT-NE.!) GO TO 5
TMIN= (IMIN+459.67)*5.0/9.0
TMAKITMAX $459.071 * 5.0 / 9.0$
DT=DT*5.019.0
, IF (INTH.GT.XIEMP(MMI) 60 TO 34
IF ITMAX.1T.XTFMP(II) GU TO 34
IF ITMIN.GE.XItMP(II) GO TO 43

LIBM1
thiNzXIEMP(I)
3 If TTMAX.LF-XTEMPIMAII GU if 44 IMAX=XTEMPIMM
44 TEMFIMIN
II CALL PCUTIIHO, XMA,TKELT, THOIL, TCAIT, PCRIT,NERIT,GAMMA,LSUPPI

IF ITEMP.LT.XIEMOII) GO TO 63
IF ITMP.GT.XTEMP(MA) GO TO 63

IF ITMIL.GT-XTEMP(HA)) GLTO 10
21 IF IMMAX.LT.XTEMPIII)
IF INA.ED.
WRITE $(6,16)$
WRITE $(6,16)$
4 (F (POINT-1) 45,46,45
$46 \mathrm{UT}=0.0$
45 TMAXTEMP
45 IEAP EIEAP-DT
99 DO $51 \mathrm{~K}=1,8$
TEMP=TERP + DT
IF (K.NE-1) CO TO 88
IF (IEMP.GT. TMAX) GO TO 63
IF (IEMP.GT.iMAX)
©
OTEMP (K)=IFMP
UPRES(K)=1EKP19.191863-9030.992/TEMP-433038.0/TEMP**211*10.00*5 IRHOL $(K)=10.9083578-0.0002244534 *$ FEMP $-0.00000001274617 *$ TEMP** $21+10$

 IF $=1.8 W$ TEMP-454.
OTHCL
(S)
OTHCLIKI =10.76869-0.00C47904*TF*0.00000013778*TF**2-0.000000000024

UXIAH(K)=12269.079-0.1310445*TEMP-0.0002003039 IENP**21*1000.0 LXMU( (K) $=(-0.0004390586+2.02 H 652 / I E M F-541.0448 / 1 E M P 4 * 24164680.4 / T E$
 OXMUV(K)
(MP**2)
IMP4*21*O.
IF (POINT.
Q.11 GO 1061

61 CALL POUT 2 INK, OTEMP, OPRES, ORHOL, ORHOV,OSIGM,OXLAK, OXMUL, OXMUV,GAM IMA, XMH, NBRIT, OIHCL, POINT,LSUPPI
IF (POINT.EOL) 60 TO 10
13 IF IF INBRIT.NE.OI GO TO GZ
MBRIT=1
MINOI
IF lunits.eg.21 GO : 12
34 A1-XIEMPII
$34 \begin{aligned} & \text { Al=XIEMP (1) } \\ & A Z=X T E M P(M M)\end{aligned}$
IF (PCINT.EQ.1) GO YO 55
IEMP $=0.0$
GII
6 GIT 5066
$35 \begin{array}{r}\text { IMIN } \\ \text { IMAX } \\ \text { I }\end{array}$

63 IF (UNIIS.NE. 2 )
IF (YARIT.NE.0) wo to 62
IF PHAIIRI
fo to b4 -NE.ll GO TO 31
O2 RETURN
END

SUBROUTINE LITHI ILSUPP,LOUT,NBRIT,POINT,UNITS,OKHOL,ORHOV,OXLAM.O SIGA, OXAUL, OXAUV.TERF,OPRES,XAW.GARAA
DIMENSION HD( 2,21 , XIEMP (Z1,OTHCL(E), OXLAM(B), OTEMP $(B)$, OPRES(B)
IMENSION ORHOLISI, ORHOVIBI,OSIGM(Bi, OXMUL (Bi,OXMUYIBI
integer point, units
16 FORMAT (11.)
MM $=$ ?
IND=0
GERIT=0
$X \times W=6.939$
YCRIT=3500.0
TMELT=453.0
TBOIL $=1613.0$


NINDAl

REAB 13.301 pO
30 FORMAT (IOI3)
30 FORMAT (1013)
12 IF (POIMT-1) $31,32,31$

READ (5,33) TEKP
33 format (8F10-4)
64 IF TTEMY LIT.XTERPIIN CO TO 34
IF (TEMP.GT.XTEMP(MAN GO TO
60 1011
31 READ (5.33) TMIN, TKAX, O
IF (NBRIT. NE. 11 G 60105
IMIN:(TMIN+459.67)E5.0/9.0 Of-UTO5.019.0
If ITMIN.GTexfempikMi) 60 TO 34
if (TMAX.LTAXIEMPIll) Gn to 34
IF ITMIN.GE.KIEMPIII GO TO 43 IND = 1
43 If INMAX
(TX.LE.XIEMP(MAI) GO 1044 MAX:X
44 TEAP =IMIN


IF (IEMPATEXIEMP(1)) GO TU 63
IF TIEMP.GT.XYEMPIMMI) GO 1063
20 if (PLINT.EO.1) GU 1021
IF (IMIN.GT.XIEMP(MM)) GO 1010
IF
ITMAX.(T.XTEMP(1)) GO 10 10
21 IF IND.EGCOI CO TS 14
प्राIE (6.1s)
WKITE 16,151
14 IF 1 PGINT-1) $45,46,45$ $U T=0.0$
$T M A X P T$
TEMPTEAPP-DT
$940057 \mathrm{~K}=1,8$ IEMP = TEMP IF $\mathrm{IK}+\mathrm{ME}-11 \mathrm{GO}$ to as
88 ir (ftmp.GT. TMAXI GO TO 63
88 fuk=k
©femp $(x)=$ TEMP
OPRES $(K)=1.01356 * 10.0 * * 14.8831-7877.9 /$ TERP) 0 io.0**S
 $104+3$
URFI OTHCL (K) $=10.49998+0.00027992 * T F+0.000000022565 * \mathrm{TF}=\$ 2-0.00 c 00000002$ 14606*TF**31*70.87
USIGM(K) $=(454.494 \mathrm{~B}-0.1356226 *$ TEKP $+0.000001615487 * \mathrm{TEMP**21*0.001}$


$(*+3) * 0.1=(0.00003673815+0.0000001167182 *$ TEMP $-0.00000000001135025 \mathrm{VT}$ oxmuy(x) $=1$
1EMP:82l:O.1 1 (PUINT.EQ.1) GO 0061
57 continue
37 CONTINUE $\quad$ GALL POUT2 (NK, OTEMP, OPRES, ORHOL, ORHOY, OSIGM, OXLAM, OXHUL, OXMUY, GAM IMA, XAH, NBRIT,OTHCL, POINT, ISUPPI
IF IPOINT.EQ. 1 ) 601010
IF (TEMP.LE.IMAX) GO TO 99
10 IF (HERIT.NE.O) GO TO 62
IF 1 IHER
NBRIT=1
NIND
IF (UNITS.EO.2) GO 1012
GU TE 62
34 A1nxIEMPII
$A 2=X I E M P(H M)$
IF IPOINT.EQ.11 GO 1055
$16 M P=0.0$
60 ro 60
35 IMIN=0.0 TMAX $=0.0$
66 CALL POUTS IAL, A2, NBRIT,UNITS, POINT,TEMP,TKIM,TKAX,LOUTI
63 IF IURITS.NE. 21 GU 7062
IF INPR
NHRITAI
IF IPDINT.NE.!l GO TO 31
62 Rerunid.
62 Rerux:i
 SIGM, OXELUL, OXHUY, TEMP, OPRES, XHH -GAMMA

OIMENSION ORHUL(B), ORHOV(B),CSIGMIBI,OXMULIBI, OXMUV(B)
IHIEGER POINT, UNITS
is format lil'
$\mathrm{M}=2$
$\mathrm{NO}=0$
ARIT=0
SAMRA=5.013.0
TCRIT=1735
TMELI=234.33
TBOIL=630.2
CRIT $=1.05$ * $10.0 * * 8$
OATA (HDII,1),I=1,2), HD(1,21/7HMERCURY,2HHG/
IND $=1$ TEMP (1),1=1,2)/234, 33,900.0/
IF (LSUPP.GE-1) GO TO 12
READ 15,301 POINT, UNITS
30 FIRMAT (1013)
12 If (POINT-1) $31,32.3$
IF (LSUPP.GT.1) GO TO 64 READ $(5,33)$ TEAP
33 FORMAF 18 F10.4
64 IF TIEMP-LS.XTEMP\{1) GO TO 34
IF (IEAP.GT. XTEAP(MA)I GO 1034
31 REAO 15
32 READ (5, 33) TMIN,TMAX, D
ININ $=($ TMIN 4 49.67) 5 .019.
TMAX $=(T K A X+n 59.67) * 5.0 / 9.0$
OT=DT*5.0/9.0
IF (ININ-GT-XTEMP(MM)) GO 7034
IF (IMAX-LY.XIEMP 34$)$
 IND 1
IMINaxTEMP(1)
43 IF IIMAXALE:XTEMPIMANI GO TO 44 TMAXI XIENP(MA)
44 TEKP=TMIN
II CALL POUTI (HD, XMW, TMELT, TEOLL, TCRIT, PCRIT,NBRIT,GAMMA,LSUPP) IF IPOINT-ME. II GD 1020
IF IEMP-LT-XYEMPIIIGGOTO 63
20 IF
20 IF IPOINT.EO.11 GO TO 21
IF (TMIN.GT.XTEMP(MA)) GO TO 10
21 IF (IND.EO.O) GO TO 14
WRIE $(6.16)$

14 IF [PII?NT-11 4S.46.45
46 UP=0.0
4 It MPITEMP-OT
99 UU $51 K=1,8$
IF IX.NE. 11 GU 1088
IF (X.NE-I) GU TO B8
IF IEMPGT.TMAX) GO TO 63
If (IEMP.GT-TMAX) GU TO G1
8 If (IEMP.GT-TMAXI GU TO 6
$: J K=K$
UIEMP
UIEMP (K) =TEMP

 URHOV $(K)=(E X P(3.243496-4559.02 /$ TEMP-607443.0/TEMP**21) $=1000$.
UIHCL $(X)=10.14648003+50.0368 /$ TEMP-82000.5/TEMP** $2432629500.0 /$ TEMP

OSIGM(K) $=(487.6255+0.0013279 * T E M P-0.0002458797$ TEMP**2)*0.001
 1*43)*0.1
OXMUV(K) $=10.00007143205+0.000000630029 *$ TEMP $* 0.0000000003373475 *$ TEM

IF IPOINT.EQ.1) GO TO 61
S1 CALL POUT2 INK,OTEMP, OPRES, ORHDL, ORHOV,OSICM, OXLAA,OXMUL, OXMUY,GAM 1MA, XMN, NBAIT,OTHCL, POINTILSUPP)
IF PPINT EO-11 GO TO 10
IF (TEMP.LE. TMAX) 60 TO 99
IF (NBRIT.NE.O) $60 ~$
NBK!T=1
NIND $=1$
IF (UNITS.EQ.2) GO TO 12
601062
34 AL=XIEMP(I)
IF (POINT.EQ.1) GO TO 55
TEMP $=0.0$
$53 \begin{aligned} & 601086 \\ & \text { TMIN }=0.0\end{aligned}$
53 THIN=0.0

63 If IUNITS.NE-2) GO TO 62 NGR17=1
IF IPOINT.WE.N) GO TO 31
COU 10 C :
62 RETU

## C. 3 VARIABLE CONDUCTANCE HEAT PIPE ANALYSIS CODE USER'S MAIUUL

## C. 3.1 Introduction

This section describes the utilization of a digital computer code for Variable Conductance Heat Pipe Analysis (VCHPA). This computer program considers the steady-state performance of cold-wicked reservoir gas-controlled heat pipes. The reservoir and inactive condenser section are assumed to be in thermal equilibrium with the sink temperature. Flat-front analysis is used with conduction and diffusion effects being assumed negligible. This code consists of the following analyses:

- Design Analysis
- Performance Analysis

In the Design Analysis, storage volume and gas charge requirements are calculated parametrically as a function of sink temperature range and allowable vapor temperature range (control sensitivity). The Performance Analysis presents a parametric study of performance for a system within the range of specified maxim'im conditiors. The analysis and formulation of the equations used in the program are preseited in Section C. S. 2. A general description of the program is presented in Section C.3.3 along with a description of the program's input and output. Nomenclature is listed at the end of this section.

The flow diagrams, program listing, and sample problems are presented in the Appendices. A listing of FORTRAN names wich enginee ang quantities is also included as an Appendix.
C.3.2 Analysis

Figure C.3.1 shows a schematic of a cold-wicked gas-controlled heat pipe and its assumed temperature distribution. A steady-state analysis has been performed to determine storage volume requirempais and performance within the design range. The following assumptions were made in performing the analysis:

- Flat front analysis is applicable; i. e., thermal conduction and mass diffusion effects are negligible.
C. 3-1


Figure C. 3-1. Schematic of a Cold Wicred Gas-Controlled Heat Pipe acd Its Assumed Temperature Distribution

- The entire condenser length is active at the maximum condition.
- The entire condenser is blocked at the minimum condition.
- The inactive part of the condenser and the reservoir are at the sink temperature $\mathbf{T}_{0}$.
- The noncondensable gas obeys the Ideal Gas Equation of State.

Using these issumptions, the following equations apply:

- Conservation of Mass
$m_{g}=m_{g, r}+m_{g, c}$
C. 3-1
- Law of Additive Partial Fresaures (applicable to inactive part of the condenser and also the storage volume)

$$
\left.\begin{array}{ll}
\mathbf{p}_{\mathbf{v}}=\mathbf{p}_{\mathbf{v}, \mathrm{o}}+\mathbf{r}_{\mathbf{e}, 0} & \text { (Inactive Condenser) } \\
\mathbf{p}_{\mathbf{v}}=\mathbf{p}_{\mathbf{v}, \mathbf{r}}+\mathbf{p}_{\mathbf{g}, \mathbf{r}} & \text { (Reservoir) }
\end{array}\right\}
$$

- Ideal Gas Equation of State

$$
\left(p V_{g}=(m R T)_{g} \quad C \cdot 3-3\right.
$$

The above cquations yield the following relationship:

$$
m_{g}=\left(\frac{p_{v}-p_{v_{2}, o}}{R_{g} T_{0}}\right)\left(V_{r}+V_{v, c}^{\prime}\right)
$$

where $V_{v, c}^{\prime}$ is the volume of the vapor space in the inactive condenser at the minimum condition. Thus at the maxinum condition:

$$
m_{g}=\left(\frac{p_{v}-p_{v, r}}{R_{g} T_{r}}\right)_{\max } V_{r}
$$

At the minimum condition:
C. 3-3

$$
m_{k}\left(\frac{p_{v}-p_{v_{0} 0}}{n_{k} r_{o}}\right)_{\text {min }} v_{v_{, c}}^{\prime}\left(\frac{p_{v}-p_{v_{1} r}}{n_{k} \cdot r_{r}}\right)_{\text {min }} v_{r} \quad \text { c. } 3-(i
$$

The ratio of reservoir volume to condenser vold (mative volume of condenser) is obtained by equating Equation c. 3-5 and C. a-b:

$$
\frac{v_{v}}{v_{v, c}} \frac{1}{\left[\left(\frac{p_{v, \max }-p_{v, 0, m a x}}{p_{v, \min }-p_{v, 0, m i n}}\right)\left(\frac{T_{0, \min }}{T_{0, \max }}\right)-1\right]}
$$

The ratio of the mass of the noncondensing gas to the condenser volume is obtained from Equation C., 3-6:

$$
\frac{m_{k}}{v_{v, c}^{\prime}}=\frac{i}{r_{k}}\left(1+\frac{v_{r}}{v_{v, c}^{\prime}}\right) \frac{p_{v, m i n}-p_{v, 0, m i n}}{T_{o, m i n}} \quad \text { c..s.s }
$$

The heat transiev from the condenser to the sink can be defined as:

$$
\dot{Q}-G_{c}\left(T_{v}-T_{0}\right)
$$

The maximum required enductanco of the condenser is therefore:

$$
G_{c, \max } \frac{\dot{Q}_{\text {max }}}{\left(T_{v, \max }-T_{0, \max }\right)}
$$

Combining Equations C. 3-9 and C. 3-10, the heat transfer at any vapor and sink tomperatures within the control range is:

$$
\dot{Q}=G_{c, \max } \eta\left(T_{v}-T_{0}\right)
$$

where $\eta$ is given by:

$$
\eta=\frac{G_{c}}{G_{c, \text { max }}}=i+\frac{v_{r}}{v_{v, c}^{\prime}}-\frac{R_{s} m_{g} T_{0}}{v_{v, c}^{\prime}\left(P_{v}-V_{v, o}\right)}
$$

The Design Analysis consists of solving Equations C. 3-7 and C. 3-8 for the storage volume and gas charge requirements as a function of the sink temperature range and control sensitivity $\Delta T_{\mathbf{v}^{*}}$. The calculations are performed for a specified nominal operating temperature $\Delta T_{v, n}$ and minimum sink condition $T_{0, m i n}$ with maximum sink temperature as a parameter. For a giver $\Delta T_{v}$ the maximum and minimum vapor temperatures are:

$$
\begin{align*}
& T_{v, \max }=T_{v, n}+\frac{\Delta T}{2} \underline{v} \\
& T_{v, \min }=T_{v, n}-\frac{\Delta T v}{2}
\end{align*}
$$

The control range is decreased in accordance with a specified $\Delta T_{v}$ incroment until the storage requirement exceeds a specified maximum or becomes negative implying that a cold-wicked reservoir cannot provide the desired control. The analysis is repeated for successively increasing sink temperature ranges antil the maimum specified range is reached.

In the Performance Analysis, the heat transport is calculated as a function of vapor and sink temperature . Performance calculations are performed for a specific design (based on Equation C. 3-7), for a specified aceptable control range $T_{v, m a x}$ and $T_{v, m i n}$, and for specified extreme sink conditions $T_{0, m a x}$ and $T_{o, m i n}$. In the event that the specified control range cannot be accommodated with a cold reservoir system (i.e., $V_{r} / V_{V, c}^{\prime}<0$ ), the range of vapor temperatures is increased by a $1^{\circ} \mathrm{C}$ increment and this process is repeated until control can be obtained. Once the storage requirement has been determined, the maximum required condenser conductance $G_{\text {max }}$ is calculated from Equation C. 3-10 and the parametric analysis is initiated for the minimum sink condition. At a given sink temperature, the heat transport $\dot{Q}$ is calculated for increasing values of vapor temperature above the minimum specified value until the condenser is fully active (i.c., $\boldsymbol{\eta}=1$ ). The analysis is then repeated for successively increasing values of sink temperature until the specified maximum sink temperature is reached.

## C.3.3 Program Description

## C.3.3.1 General

A listing of tho program is presented in Aperedix C. The program was written in FORTRAN V and was designed to operato on the UNIVAC $1 / G A$ system. The Property Data dequisition Code is required as a subsoutine to ditermine working flud vapor prossuros. The Follthan names and tho physical guantilies they repiesent ate listed in Appendix b. Storage requirentents ate on the order of so, ooo words (octal).

The flow diagram is included in Appendix $A$ as an add in the overall profram logic. Input for this program is in a NAMELDE format. This allows the user Io tun multiphe eases by ehanging only the variables which are different from those of the previous eatse. All othor inputs aro reinitialzed as for the preceding casc. The program contains options to perform eithor the dosign analysis andor performamer analysis. lasically the program reads the input data, performs the regulred analysis, and wutputs the data.

Tho deck setup ats shown in Figure C. 3-: consists of job control cards, the progtam suare deck (which includes huid property data acquishtion code), additional control cards follownd by tho input dat:a and promram tormination cards.
1.3.3.: Inpul Descophtion

The entries to be made on the various input cards are described in Table C. 3-1. The Nandilist group name, FORTRAN name, format, and untts to be used are indicatod for each entry. A listing of sample input data of an ammonia heat pife, using nitrogen as the noncondensable gas, is nresented in Tablo C. 3 -2 for two cases.

## Tabla C.3-2 Sample Input Data

```
ANOMONIA
NITLOG!N
 BCONTRO MORE=2.LIUUID=5.LCI=2.LC2=1S
 #UATAIN TOMAX=304.0.TOMIN=268.0.OTO=5.0.TVMAX=328.0.TVMIN=308.0.
 UTV=1.U.DCTV =1.0.RG=296.59.QMAX=6.0.VRVC=50.0S
Amanflia
NIlOkritN
 ACONTRO MOPE=:I-LCI=1-LC2=25
```



Figuro C.3-1. Program bech Setup
'iable C.3-1. Input Data Description

Input Card No.	Format	Fortran Name	Description	Units
1	2 A 6	HDI   HD2	Headings (working fluid)	-
2	2 A 6	$\begin{aligned} & \text { HD3 } \\ & \text { HD4 } \end{aligned}$	Headings (non-condensible gas)	-
3*	-	CONTRO	NAMELIST group name	-
	integers	MORE	Contrel Point, integer $=0$ for last case; otherwise integer $=2$	-
		LC 1	Control Point, integer $=2$ for both design and performance analyses; otherwise integer $=1$	-
		LC 2	Contrul Point, integer $=2$ for performance analysis; otherwise integer $=1$	-
4*	-	DATAIN	NAMELIST group name	-
	Floating   Point   Constants	TOMAX	Maximum sirk temperature	$0^{\mathbf{K}}$
		TOMIN	Minimum sink temperature	$\mathbf{o}_{\mathbf{K}}$
		DTO	Increment of the sink temperature	${ }^{0} \mathrm{~K}$
		TVMAX	Maximum vapor temperature	$o_{K}$
		TVMIN	Minimum vapor temperature	${ }^{0} \mathbf{K}$
		DTV	Increment of the vapor temperature	$0_{K}$
		DDTV	Operating temperature control range	${ }^{0} \mathrm{~K}$
		RG	Gas constant of non-condensible gas	$\mathrm{Nm} / \mathrm{kg}{ }^{\mathbf{O}} \mathrm{K}$
		QMAX	Maximum heat transpoit	W
		VRVC	Maximum allowable ratio of : :servoir volume to condenser void	-

[^8]C. 3-8

The first easo reguites hoth the design and porformanco andysis. In the serond catso, ouly the performame analysis is requested.

## (., 3. 3. 3 Output lesecipiption

The program outputs essentiahy all input data, In the leosign Analysis, the resorvoit-to-condenser volume rato and mass-to-condenser volume ratio are

 sink tomperature, the iollowing statement will appear in the table. "IEEEERVOLR CAN
 Analysis is reguested, the required reservole-to-condenser volume ratio earrespending to the speritiod infut is cutput along with the noncondensable mass-fo-condenser volume ratho. This is followed by tathes of the heat disstyated and the ration ative combenser lemgth to total condensor length versus oporaling vapor fomperature for succossive sink temper:tures. If the spereford vapor temperature range had to be adjusted in ordor to have a wotkitg coht-reservoir systom, the statement "VAMOR
 The storage requirements corresponding to the so adjusted tomperatures are valenlated and used in the analysis. A listithe of typical output is given in Appothe il with the sample problem.

## C.B.3. 1 Nomenclature

The following is a listhyg of the tomenchature and associatert sembols usod in the variable conductance heat pipe analysis.

## NOMENCLATURE

Symbol	Description	Units
A	Heat rejection area pei unit length of condenser	$\mathrm{m}^{2} / \mathrm{m}$
G	Thermal conductance	$w /{ }_{\mathbf{K}}$
h	Heat trandier coefficient	$\mathrm{W} /{ }^{\circ} \mathrm{K} \mathrm{m}^{\mathbf{2}}$
$\mathbf{L}_{\mathbf{a}}$	Active length of condenser	m
m	Mass of non-iondensible gas	kg
P	Pressure	$\mathrm{N} / \mathrm{m}^{2}$
Q	Heat transport	W
R	Gas constant of non-condensible gas	$\mathrm{Nm} / \mathrm{kg}{ }^{\mathrm{O}} \mathrm{K}$
T	Temperature	$0_{K}$
V	Volume	$\mathrm{m}^{3}$

Subscript:

c	Condenser
eff	Effective
f	Non-condensible gas
n	Nominal
max.	Maximum condition
min.	Minimum condition
$\mathbf{0}$	Sink
$\mathbf{i}$	Reservoir
$\mathbf{v}$	Vapor

## Appendix A. Flow Diagram

for the Variable Conductance Heat Pipe Analysis Code


## Appendix B. FORTRAN Names

and Associated Physical or Engineering Quantities

Fortran Name	Description	Units
OUT 1	Operating temperature control range ( $\Delta \mathrm{T}_{\mathbf{V}}$ )	${ }^{\mathbf{K}} \mathrm{K}$
OUT 2	Reservoir - condenser volume ratio ( $\mathrm{V}_{\mathrm{r}} / \mathrm{V}_{\mathrm{c}}$ )	- -
OUT 3	Ratio of the mass of the gas to the condenser volume ( $\mathrm{m} / \mathrm{V}_{\mathrm{c}}$ )	$\mathrm{kg} / \mathrm{m}^{3}$
CONTROL	A NAMELIST group name	-
MORE	Control Point, integer $=0$ for last set of data, otherwise integer $=2$	-
LIQUID	Control Point, type of working fluid	-
	1 Hydrogen	
	2 Nitrogen	
	3 Oxygen	
	4 Water	
	5 Ammonia	
	6 Methanol	
	7 Acetone	
	8 Freon-21	
	9 Sodium	
	10 Potassium	
	11 Lithium	
	12 Mercury	
LC 1	Control Point, integer $=2$ for both Design Analysis and Performance Analysis, otherwise integer $\neq 2$	-
LC 2	Control Point, integer $=2$ for Periormance Analysis only, otherwise integer $\neq 2$	-
DATAIN	A NAMELIST group name	-
TOMAX	Maximum sink temperature	${ }^{0} \mathrm{~K}$
TOMIN	Minimum sink temperature	${ }^{c} \mathbf{K}$
DTO	Increment of the sink temperature	$0^{\mathbf{K}}$
TVMAX	Maximum vapor temperature	${ }^{0} \mathbf{K}$
TVMIN	Minimum vapor temperature	${ }^{0} \mathrm{~K}$



Fort ${ }^{\text {an }}$ Name	Description	Units
ASIGM*	Surface tension	$\mathrm{N} / \mathrm{m}$
OSIGM		
A XMUL*	Dynamic liquid viscosity	kg/m s
OXMUL		
AXMUV*	Dynamic vapor viscosity	$\mathrm{kg} / \mathrm{m} \mathbf{s}$
OXMUV		
Proma	Vapor pressure at the maximum sink temperature	$\mathrm{N} / \mathrm{m}^{2}$
XMW	Molecular weight of the working fluid	kg/mole
GAMMA	Ratio of specific her.ts of the working fluad	-
PVOMI	Vapor pressure at the minimum sink temperature	$\mathrm{N} / \mathrm{m}^{2}$
VTD	Increment of vapor temperature	${ }^{0} \mathrm{~K}$
VTMLAX	Maximum vapor temperature	${ }^{\mathbf{O}} \mathbf{K}$
VTMIN	Minimum vapor temperaturt	${ }^{\mathbf{K}} \mathrm{K}$
PVivlaix	Vapor pressure at the maximum vapor temperature	$\mathrm{N} / \mathrm{rra}^{2}$
PVMIN	Vapor pressure at the minimum vapor temperature	$1 \mathrm{~N} / \mathrm{m}^{2}$
VCDVR	Condenser-reservoir volume ratio	-
VRDVC	Reservoir-condenser volume ratio	-
NNN	Control-number of calculations	-
NNP	Control-number for temporary storage	-
CTVMA	Maximum vapor temperature	${ }^{\mathbf{o}} \mathbf{K}$
CTVMI	Minimum vapor temperature	$0_{K}$
GMLAX	Maximum thermal conductance	$\mathrm{W} /{ }^{\circ} \mathrm{K}$

[^9]> C: 3-16

	Fortran Name	Description	Units
$1$	NA	Control-number of calculations	-
	NB	Control-number of calculations	-
	TO	Sink temperature	${ }^{0} \mathrm{~K}$
	KT	Counter for calculations	-
	PVO	Vapor pressure at sink temperature	$\mathrm{N} / \mathrm{m}^{2}$
	PV	Vapor pressure	$\mathrm{N} / \mathrm{m}^{2}$
	F	Effective length	m
	Q	Heat transport	W

## 1

Appendix C. Program Listing of the Variable Conductance Heat Pipe Analysis

C. 3-19










```
lol
ICJgmar (SNVEI(KE/M-M-M)P)
amgmat "//" meservoir cam no lomger provide oessmed temperature c
 lomrall';
```



```
37 FDRMAT %//: MAXIMUM HEAT TMANSPDRT(WI"
```



```
234 FORMAT I/IO VAPOR TEMPEQSIU*E RANGE HAS BEEN ADJUSTEO.4
```



```
39 fOMMA: \/1, KAISO OF THE RASS OF NOM-COMOENSISLE TO CONDENSER VCS
101KG/M-m-M1O!
40 fuanal H/O SINK TENPIK), VAPGR TEMPIKI HEAT TRANSPO
```






```
22 FONMAM U/F15.2,19x,F15.2)
28 fuRMar (ff20.3)
M4,
so formal (1F15.4;'
2 FORMA5 1/20x,F20.3, E20.6,20x, F10.51
 REAO (3.101 ND1,HD
 MEAD (S,10) MDS;
 GEAD M%,OMTAIN:
 <OUNT=0
 LSupf=2
```



```
 Mrate 16011!
 whis (6.j2)
 WR11E 1G,341 MDR,HOZ
 M1TE 16,15) HD,M
 1NO.0
```

11
1
4
1
23
1
29
26
27
31
36
121
37
123
35
30
39
40
10
10
14
13
16
22
24
28
34
122
30
42
31
READ 15,101 hDE, HD
READ M, OMTAIM)
QUNT $=0$
SuPf=?
LOUR:
write 16,111
waire 10,221
RR1IE 10.141 MOL. HOZ
a1t 16,101 RG


11 if ilic
F 14 C3.ECS 21 cu 1111




whlle 10,23i
willi
(6,501

Ann(TOMAX-IOMIN) /OICOI
zh 1 -rvaninloctral


1f $11001.6 T, 1 ;$ go 1033



NNH*O

vimax=1M+YiD/2.0
VIPIN TVIV-V10/2.0


1F (LUUT.GT.1) 60 TO 35
CALL


YROVC. $1.0 / \mathrm{VCDVR}$

Duiz( $)$ ) =rRove
Dur 31 JJaxnove
If (VRDVC.LT. 0.01601032
if (VRDVG.GT.VRVC) 60 50
31 MHN=J CONTIAUE
32 If iNAN-fO.01 60 ro 90
NO 33 Kal , N
$51 Q_{1=D U I 21 R 3}$

SPOANE $1-k$

UUT2(R1=U1T2(NP)

52 WRITE (6,361 IOUTICIII,
B. WRIPE 16,11
WRIFt $\left.\begin{array}{l}10,36) \\ \text { WRIFE } \\ \text { ( } 0.20\end{array}\right)$
WRITE 16.201
WRITE $(6.121)$

MRITE $(6.37)$ OMA
WRITE $(6.24)$
MRITE
CTYAA IVMAX
cTYMAAIVMAX
CTYMI= TVMIN
56
CARL
IUV, CIVMA, PYMAX, XMN, GARMA)
IUV, CIVMA, PVRAX, Xh , GARMA)
IF (LOUT.GT.1) GO TO 35
CALL OACILIOUIU,L SUPP, LOUT, ORHOL, ORHOV,OXLAM, OSIGM, OXAUL, OX


IUY, TOMAX, pVOMA, XKH, GAMKA)
CALL LDUT.GT. DACILIOUID,LSUPF, LDUT, ORHOL, URHOU,OXLAM,OSIGM, OXMUL, UX
IUY, TOMIN, PYOMI, XHM,GAMAA)

YCDVRASPVMAX-PVORAI*TOMIN/I
YRDVC $=1$
If (VROVL.G7.0.0) 60 to 36
CTVMA-CTVMAt1:0
CIVMI-GTVMI-1.0


60 CO 56
CR
10

135
54 witt (B.123)

If (KLUNT.ED.0) Go 10253
23s

WxIIf 16,111
WHIt




WR!: $16,5 \cdots 1 \times$ x





1F (IIU.GT. TOMAX) GO TU 3S
CALL
LUV. TU, PVO, XMH, GAMAA)
IF LLUT.Gr.if 60 10 $3 s$
WR1TE 16,111
WRITE ( 6,28 ) To
TVOCIVAI-DTV

IF (VV.GY.CTVMA) GO TO 141
IF (TV.EQ.TOI GO 10 141
CALL DACILIGUIO,LSUPP,LOUT, ORHOL, ORHDY, OXLAM,OSIGM, OXKUL,OX
UY. TV, PV, XAH, GAMHA)
IF
IOUT-GT-I) GO TO
F=1.OUVRDVC-RG*XHOVCP TO/(PV-PYO)

KVIFIV
KT
K

141 IF CONTINUE
141 CONTINUE
201 TVACTVMI-DIV
DO $202 \mathrm{LE}, \mathrm{NB}$
iVnivoiv
if iv. GT.cival 60 ro 41

CAL, TV.PVoXMM, CAMMA)


If (F.GT-1.01 CO ro 202
(0.42) TV.C.F

202 CONTINUE

TV=TVi-6.0 Poviv
$00132 k=1, N B$

CALL DACILIGUID,L SUPP, LOUT, ORHOL, ORHOY, OXLAM, OSIGM, OXAUL PUX





152 CONTINuF
is it iNEME.GTall GU TO 51

Appendix D. Sample Problem

C. 3-23

The sample problem consists of determining storage volume requirements (Design Analjsis) for a given set of sink conditions and of predicting the performance (Performance Analysis) within the range of these sink conditions and within a maximum acceptable range of vapor temperatures. The heat pipe working fluid is ammonia at a nominal operating temperature of $45^{\circ} \mathrm{C}$, and the noncondensable gas is nitrogen. The sink conditions and maximum control range are specified as:

$$
\begin{aligned}
\mathbf{T}_{0, \max } & =308^{\circ} \mathrm{K} \\
\mathbf{T}_{\mathbf{O}, \min } & =268^{\circ} \mathrm{K} \\
\mathbf{T}_{\mathbf{V}, \max } & =328^{\circ} \mathrm{K} \\
\mathbf{T}_{\mathbf{V}, \min } & =308^{\circ} \mathrm{K}
\end{aligned}
$$

The heat that must be dissipated at maximum conditions (i.e., $T_{v, \max }$ and $T_{o, \max }$ ) is specified as:

$$
\dot{Q}=6 \mathrm{w}
$$

and the maximum allowable reservoir to condenser vapor volume ratio is:

$$
\frac{V_{r}}{V_{V, c}^{\prime}}=50
$$

The calculation increments are specified as:

$$
\begin{aligned}
\Delta T_{v} & =1^{\circ} \mathrm{C} \\
\Delta\left(\Delta T_{v}\right) & =1^{\circ} \mathrm{C} \\
\Delta T_{o} & =10^{\circ} \mathrm{C}
\end{aligned}
$$

The associated data cards are listed in Table C. 3. D-1. The resulting computer output data follow. The results are also plotted in Figures C.3.D-1 and C.3.D-2. In Figure C. 3. D-1, the storage requirements are shown as a function of control sensitivity for various sink temperature ranges. As indicated in the computer printout, the coldreservoir cannot provide control with the specified volume ratio at maximum sink


Figuro C. 3. D-1. Storage Reservotr Requirements as a Function of Control Sensitivity

Nominal Vapor Temperature : $\quad 318^{\circ} \mathrm{K}\left(113^{\circ} \mathrm{F}\right)$
Mininum Sink Temperature : $268^{\circ} \mathrm{K}\left(23^{\circ} \mathrm{F}\right)$
Working Fluid : Ammonia
C. 3-25


Figure C.3.D-2. Performance Analysis: Operating Temperature Versus Heat Dissipated

Nominal Vapoi Temperature: $\quad 318^{\circ} \mathrm{K}\left(113^{\circ} \mathrm{F}\right)$
Range of Sink Temperatures : $\quad 268^{\circ} \mathrm{K}-308^{\circ} \mathrm{K}\left(23^{\circ} \mathrm{F}-95^{\circ} \mathrm{F}\right)$
Working Fluid
: Ammonia
C. 3-26

Table C. 3. D-1 List of Associated Data Cards

```
AMMONIA
NITROGFN
 SCONTRO MORE=2.LIOUID=5,LC1=2.LC2=1s
 $DATAIN TOMAX=308.0.TOMIN=268.0.DTO=10.0,TVMAX=328.0.TVMIN=308.0.
 OTV=1.0.DOTV=1.0.RG=296.59,QMAX=6.0.VRVC=50.OS
AMMONIA
NITONGEN
 SCONTRO MORE=0.LC1=1.LC2=2S
```

temperatures abuve $298^{\circ} \mathrm{K}$. The results from the Performance Analysis are given in Figure C. D-2 which shows the heat pipe operating temperature $T_{v}$ versus the heat dissipated $Q$ at different sink temperatures. The allowable vapor temperature control range had to be adjusted in order to obtain control with a cold-reservoir at the specified extreme sink temperatures. This adjustment is indicated on the first pirge of output data for the Performance Analysis. Also, the calculation increment for the vapor temperature is adjusted internally so that at least six data points are calculated for a given sink temperature. This is to guarantee that sufficient data is available for curve plotting.


C.3-29


203.000










1
C.3-30


Mata Sima Itaplei	CDTIVAPOREX	(yRCYC)	CACVCIfbe/Henskl


nescmvoln cam no comen porovioc orsinco tinfenaiume confmol
102.000

$\qquad$
c.3-31



## Computer Codes

 NASA Gami No. NGROD-005-071, Catholie University of America, september 1970

C: Edwards, 1). K., Flelschman, G. L. , and Mareus, B. D. , "User's Manual for the TRW GASPIPE Program," NASA ClR-1L430G, April 1971

C3 Lyon, R. N. , Ed. "Liquid Metals Handbook," NAVENOS l-73 (Rev.) (199:)
C4 Schins, H. E. J., "Liquid Matals for Heat Pipes, Properties, Plots, and Data Shects," Euratom Report EUR 3i5ise (1967)

Skrabek, E. A. and Bienert, W. 13. "Heat Pipe Design Mandbook," NASA Contrat NAs9-119:27. Dynatherm Corporation Report Nu: i:-3, August 197:

Stallings, R. D. and Collett, d. F., "Lheat Pipe Design Program," lackheed Electronics Corp., TN-675-4.4-00:375

C7 Wripht, J. D. "Computer Program for the Design and Analysis of Heat Dipes," North American Rockwell, Spice Division, Report No. Sirie-SA-0001, danuary 1!7:



[^0]:    * When the axial groove geometry is analyzed, the parameters of (i) and the weight of (j) are calculated for those aspect ratios whose calculated heat transport exceeds the specified requirement.

[^1]:    *Whel، the axial groove geometry is analyzed, the parameters of (i) and the weight of (j) are caculated for those aspect ratios whose calculated heat transport exceeds the specified requirement.

[^2]:    * Card 8 is needed only when the value of card 4 (5) is an integer smaller than 1 and the value of card $4(2)$ is an integer greater than 1.

[^3]:    * Card 14 to Card 15 are needed only if the value of Card $4,(4)$ is equal to one.

[^4]:    * Cards 17 to Card 19 are needed only if the value of Card 4 (4) is equal to two (2). ** Card 18 is not needed if the value of Card 17 is equal to 1.
    *** Card 19 is not needed if the value of Card 17 is equal to two (2).

[^5]:    * Card 21 and 22 are needed only if the value of Card 4 (4) is equal to three (3).

[^6]:    C. 1-40

[^7]:    * Card 4 is needed only when the value of card 3 (1) is an integer equal to unity.
    ** Card 5 is needed only when the value of card 3 (2) is an integer equal to two.
    *** Card $G$ is needed only when both values of card 3 are equal to two.

[^8]:    * Start with a $\$$ in column 2 followed immediately by NAMELIST group name. New data follow and are ended with $\$$.

[^9]:    * Data not used in this program but included as a general format for calling up the Property Data Acquisition Code.

