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ABS T R  AC T 

This report covers the research accomplished in a two-year period on 

NASA Contract NAS 12-30. 
designing of a spaceborne pattern recognition system. 

The study was conducted in three parts: (1) A li terature survey to 

These studies a re  concerned with the feasibility 

select a number of pattern recognition techniques for testing; ( 2 )  A ser ies  of 

controlled recognition experiments to tes t  the performance of the selected 

techniques on five specimen classification tasks; (3) A hardware feasibility 

study culminating in three potential designs for a spaceborne recognition 

system. 

parameters as size,  weight, power, processing time and storage for each of 

the three system configurations e 

These designs were formulated in sufficient detail to define such 

Six techniques for generating property fi l ters and eight algorithms fo r  

designing decision functions were tested. 

these experiments: 

pictures of cloud patterns. 

three recognition tasks on the lunar data and two tasks on the NIMBUS data. 

Performance was measured in terms of percent correction decisions on an 

independent sample of patterns. 

recognition tasks ranged from 84.5 to 99.570 correct.  

Two data samples were used in 

(1) photographs of lunar terrain; ( 2 )  NIMBUS satellite 

Decision networks were designed to perform 

The best results obtained on these five 

Three possible mechanizations of a spaceborne recognition system 

(1) parallel/analog, ( 2 )  sequential/hybrid, (3) sequential/ were designed: 

digital, 

tube which views the scene and provides scanning of the sensed image through 

a small  aperture. The parallel/analog system implemenm all property fi l ters 

separately in analog form, resulting in a heavy system (50 lbs) which con- 

sumes considerable power (180 w). 

of a single property filter, used repetitively, with a diode matrix containing 

the weighting elements for  each computed property. 

weighs 32 pounds and comsumes 37 watts. 

uses a compact core storage unit and an arithmetic unit with a combination 

of hardwired program and software program to implement the required 

Common to each is an input device consisting of an image dissector 

The sequential/hybrid system consists 

The resulting system 

The sequential/digital system 
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property fi l ters.  

and least  power consumption (35 watts) of the three, but it also affords the 

added advantage of flexibility in logic mechanization. 

Not only does this system have the smallest  weight (24 lbs) 

The salient operating characteristic of all three systems is the capa- 

bility of classifying TV pictures in real-time ( i . e . ,  in the time interval 

be tween succe s sive pic tu res  ) . 
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SUMMARY 

This investigation was conducted in three parts - (1) a l i terature 

survey, (2) a software feasibility study, and (3) a hardware feasibility study. 

The l i terature search, discussed in Section 2.0, was conducted to seek prom- 

ising pattern recognition techniques for investigation in the software feasibility 

study. The software feasibility study (Section 3.0) comprised an experimental 

program to compare and evaluate the selected techniques on sample recogni- 

tion tasks. The hardware feasibility study (Section 4.0) entailed the prelim- 

inary design of three system mechanizations of a spaceborne recognition 

processor. 

weight, power, processing time, and storage requirements was made. 

Fo r  each design an assessment of such important parameters as 

The number of pattern recognition techniques encountered in the l i tera- 

ture search was almost as great as the number of authors. 

authorsP penchant for  antonomasia creates much confusion. 

the aid of Figure 1 i t  is possible to classify most of the techniques reported. 

In that figure, signal conditioning is nonabstractive processing which formats 

input data, and transforms it to achieve invariance to irrelevant pattern dif- 

ferences (such as  rotations, translations , etc. ). Known property extraction 

refers to the detection of pattern features which the designer knows, o r  sus- 

pectso to be of value in the decision process. Statistical property extraction 

refers to the detection of important features by statistical analysis of sample 

patterns. 

features i s  converted to a decision. 

Furthermore,  the 

However, with 

The decision mechanism is the means by which a set  of pattern 

All systems reported in the literature search bypass a t  least  one of 

these recognition system components, 

3 . 3 . 7  of this report is the f i rs t  we have encountered in which both known 

properties and statistical properties a r e  used. 

concentrated on the study of one algorithm for designing a decision mechanism; 

most applied studies centered on the design of known properties. 

Indeed, the work described in Section 

Most research investigations 

Based on this literature survey, six state-of-the-art algorithms for 

These were - the design of decision mechanisms were selected. 
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(1) Forced Learning 

(2) Bayes Weights 

(3) E r r o r  Correction 

(4) Iterative Design 

(5) Mean Square E r r o r  

(6) MADALINE 

MADALINE produces a piecewise linear decision surface in the property space; 

the rest  of the techniques a r e  linear. 

Section 3.  3 .  1 

These algorithms are described in 

Subsequently, two additional nonlinear techniques 

(7) Piecewise Linear 

(8) Distribution Estimation 

were added, as well as  several  modified e r r o r  correction and MADALINE 

schemes (Section 3 .  3 .  5). 

Two methods for statistically designing property fi l ters were chosen 

(Section 3. 3.1). 
fi l ters,  and in both cases ,  the property filter output is binary. 

the f i r s t  moments of the sample patterns a r e  analyzed to obtain linear switching 

surfaces for the property fi l ters,  

moments a r e  analyzed to derive quadratic switching surfaces. 

method also involve% a selection process. 

Both use random selection of subspaces for the property 
In one method, 

In the second method, the f i r s t  two sample 

The second 

The data samples (Section 3 . 2 )  used in these experiments depicted the 

following four types of lunar terrain and three kinds of cloud patterns: 

Lunar Te r rain 

Craters  with no conspicuous central elevations 

Craters  with one o r  more conspicuous central elevations 

Wrinkle ridges 

R i m a  (i. e. , ri l les) 

Clouds 

Noncumulus 

Cumulus, solid cells 

. Cumulus , polygonal cells 
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Five binary recognition tasks were performed: 

Lunar Te rrain 

(1) 

( 2 )  

(3) 

Task CVC - separate the c ra te rs  with central elevations 

Task RVR - separate the wrinkle ridges from the rima 

Task CVR - separate the composite class of c ra te rs  from 

from those without 

the composite class of ridges and rima 

Clouds 

(4) 

(5) 

Task NVC - separate the noncumulus clouds from the 

Task PVS - separate the cumulus solid cells from the 

composite class of cumulus clouds 

cumulus polygonal cells 

The lunar patterns were taken from the USAF Lunar Atlas; (155) the cloud pat- 

terns from NIMBUS TV pictures. 

slow-scan TV, recorded on magnetic tape, and digitized. The resolution was 

then reduced to one-fourth of that in the original digitized pictures, and the 

gray scale was compressed to three bits. 

were selected on the basis of pilot resolution studies. 

elements were found to be sufficient for the lunar data, while 75 by 75 element 

subframes were found best for  the NIMBUS data. 

patterns within subframes the number of sample patterns available was in- 

creased. 

patterns used to design the recognition systems; an independent file of 200 

sample patterns used to test  the systems. 

The patterns were rephotographed using a 

The resolution and ras te r  sizes 

Subframes of 50 x 50 

By translating and rotating 

In this way two pattern files were established: a file of 1000 sample 

All twelve combinations of six decision function algorithms and two 

property filter design methods were applied to the three lunar recognition 

tasks. 

better than with the linear property fi l ters.  Consequently, experimentation 

with linear property fi l ters was discontinued. 

only, six decision techniques were tested on both cloud pattern tasks. 
highest generalization performances obtained on the five recognition tasks 

we re: 

Performance with the quadratic property fi l ters proved to be much 

Using quadratic property filters 

The 
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Task Performance 70 

Lunar Terrain 

cvc 
RVR 
CVR 

Clouds 

NVC 
PVS 

63.75 

75.75 

99.50 

86.25 

85.50 

The significant feature in lunar task CVC is the central elevation of 

the crater .  This feature is not always well defined and, at best, occupies 

only one percent of the sampling aperture. 

of the bright and dark parts of the wrinkle ridge o r  rima, the significant fea- 

ture,  is not always well defined. In this case the significant feature occupies 

five percent o r  less  of the aperture. 

forms a significant feature. 

perhaps 30% of the aperture. 

indicated that features of both classes were being utilized in the discrimina- 

tion. ) It would therefore seem that the signal-to-noise ratio has a critical 

effect on the performance levels achieved. 

On lunar task RVR the ordering 

On lunar task CVR, the c ra te r  itself 

It is almost always well defined, and occupies 

(A tes t  on the CVR recognition system, however, 

In order  to eliminate noise which might corrupt the design of a decision 

network, artificial noise-free patterns were generated for lunar task RVR. 
These idealized patterns were used to design the system. 

ducted on the real  patterns. 

in the original experiments. 

difficulty in generating a representative set  of artificial patterns. 

Testing was con- 

Performances obtained were much poorer than 

The most likely cause for this result was the 

In a second attempt to improve the signal-to-noise ratio, a 25 by 25 

and 15 by 15 element subaperture was generated from each 50 by 50 element 

pattern used in lunar tasks C V C  and RVR. Examples of these reduced aper- 

ture patterns a r e  found in Section 3. 3.4.4. 

ances achieved with decision networks designed on these reduced aperture 

data were the following: 

The best generalization perform- 
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Performance, % 

Reducing the aperture s ize  improves the signal to noise linearly on Task RVR 

(as par t  of the pattern is eliminated along with the noise), and quadratically 

on Task CVC (as none of the significant features is lost). Subsequent experi- 

ments with reduced aperture s izes  on Task CVR lead to poorer performance 

than with the original aperture.  

fact that with the smaller apertures substantial portions of the c ra t e r s  are 

lost. 

This result can probably be attributed to the 

Thus, with suitable choices of aperture s izes  the three lunar recogni- 

tion tasks were performed with accuracies of 84. 5, 96.2, and 99.57'0~ Reduced 

aperture experiments were not conducted fo r  the two cloud recognition tasks  

because the results were very good with the 75 x 75 element aperture. With 

respect to the relative merits of the six decision function design techniques 

the following conclusions were reached: 

square e r r o r  algorithms showed up well in the comparisons only in those cases 

where the performance of all systems was unacceptably low. 

competitive in  the other cases .  

superior to the other techniques on lunar task CVR; MADALINE was best on 

task RVR (15 by 15 aperture).  

among these three techniques a 

(1)  The Bayes weights, and mean 

They were not 

(2) E r r o r  correction and iterative design were 

(3)  On all other tasks,  there  was little to choose 

One modification in the err0 r correction algorithm, two modifications 

to the MADALINE technique , and an additional nonlinear decision mechanism, 

"Piecewise Linear, were tested on three tasks. Performances achieved 

showed remarkably little variation, the best being 88 percent on cloud task 

NVC, 86 percent on cloud task PVS, and 75 percent on lunar task RVR (50 x 50). 

Another decision function technique, based on nonparametric distribution esti- 

mation, leads to very complex decision systems. However, this technique 

achieved no better than average performance on a variety of tasks. 

xii 



% 

An attempt was a lso  made to improve the property filter generation 

A technique employing a mutual information function was used to process. 

select one subspace for  cloud task PVS and one subspace for  cloud task NVC. 

.Twenty-five translations were then used to obtain 25 subspaces for each task. 

Distribution estimation was used to generate a switching surface for  each sub- 

space. 

91 percent on task PVS and 71 percent on task NVC. 

randomly selected subspaces yielded virtually identical performance, thereby 

indicating that this mutual information technique is not useful. 

The system decision was made by majority vote. Performance was 

Similar systems using 

A se t  of 29 known properties was designed for cloud tasks PVS and 

NVC by Mr. Eugene M. Darling, Jr. NASA Technical Officer for this project. 

Of these properties, 15 measure general characteristics of the pattern bright- 

ness field (e. g. ,  mean gray level, variance of gray level, conditional entropy 

of the field, etc. ), and 14 measure specific characteristics of clouds (e9 g. , 
cloud number, size, etc. ). The fifteen general properties were applied to the 

three lunar recognition tasks at  the reduced aperture sizes. 

systems were designed using these fifteen known properties. 

properties were then augmented by statistical properties in order  to test the 

effectiveness of the augmentation procedure. 

obtained: 

Recognition 

The known 

The following results were 
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Thus, eight augmentation experiments were performed. 

which performance with the known properties alone was excellent) no improve- 

ment o r  a performance decline was obtained. 

ments (judged not to be statistically significant) were noted. 

moderate increase (significance at the 92 percent level) occurred; and three 

cases of large improvements (significance at levels above 99.9 percent) were 

achieved. 

In two of these (in 
E” 

In two cases  small improve- 

One case of a 

Task 

With the best choice of aperture, property filter set, and decision net- 

work, the performances obtained on the five tasks were: 

Lunar Terrain 

cvc 
RVR 
CVR 

Clouds 

NVC 

PVS 

96.25 

84.50 

99.50 

92.75 

97.00 

These figures seem sufficiently high to warrant further development of a 

spacebo rne recognition system. 

A study was conducted to determine the accuracy with which a recog- 

nition system could position the boundary between two regions of homogeneous 

cloud cover. To accomplish this, approximately 35,000 different montages 

(Section 3. 3. 8) were created, each of which contains parts of patterns from 

two different cloud classes.  

subjectively evaluated to determine the effect of the presence of a sharp dis- 

continuity. The data from 

14,592 of the montage patterns (those created from pairs of well classified 

patterns f rom different classes) were computer analyzed to determine the 

accuracy of boundary placement as a function of the spacing between consec- 

utive sampling apertures. It was found that by interpolating the discriminant 

function values (i.  e. , the input to the decision function), the average e r r o r  in  

The data from 20,000 of these montages were 

This effect was judged to be of little importance. 
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boundary placement could be maintained between 8 . 6  and 10.2 ras te r  elements 

for all aperture spacings up to 75 ras te r  elements (the no-overlap case). 

the resolution used, a ras te r  element corresponds to about 2.3 miles. 

instead, the decision of the recognition system is interpolated, then the 

average e r r o r  is more than 20 raster elements at a spacing of 75. 

an average accuracy of 10.2 in this latter case,  the spacing between apertures 

would have to be 14 ras te r  elements o r  less.  

At 

I f ,  

To obtain 

Three possible mechanizations of a spaceborne recognition system 

were designed. 

device and ( 2 )  a decision network. 

cordance with the manner in which the decision network is implemented. The 

three systems considered are: (1) parallel/ analog, ( 2 )  sequential/hybrid, and 

(3) sequential/digital. The term "parallel" refers  to the fact that all quadratic 

computing elements a r e  individually implemented. 

only one quadratic unit is  implemented a t  a time and the computation process 

is repeated the required number of times, using the same computing element. 

The te rm "analog" refers to the analog nature of the voltage from the input 

device to the logic units. 

a r e  supplied as logic unit inputs. 

well as the weights and thresholds to the logic units, a r e  all digital. 

The system itself is divided into two parts - (1) an input 

The mechanizations a r e  designated in ac- 

In the sequential approach 

"Hybrid" implies that both analog and digital voltages 

"Digital" means that the input voltages, as 

The input device common to each system is an image dissector tube 

which views the scene and supplies subsections of a TV frame to a decision 

network for classification. In the parallel/analog system the analog output 

from the photomultiplier of the image dissector provides the input signal via 

a sample and hold circuit. 

verts the image dissector output voltage to digital form for subsequent input 

to the logic units. 

tivity of the system, the quadratic and linear weights , and the thresholds 

Table I summarizes the characteristics of these three implementations of a 

spac ebo rne recognition system. 

For  the other two systems an A/D converter con- 

A l l  of the systems require a memory to store the connec- 

This implementation study shows that, with current engineering tech- 

nology and commercially available components , either the sequential/hybrid 

o r  sequential/digital recognition system could be constructed with weight, 
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size, and power requirements compatible with TIROS or  NIMBUS-type satel- 

lites. 

TV pictures taken by the Automatic Picture Transmission (APT) System in 

re  al - time. 

Furthermore,  any of these spaceborne systems is capable of classifying" 
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1 0 INTRODUCTION 
* 

1.1 Purpose and Scope of the Program 

On April 1, 1960, TIROS I was launched into orbit to prove the 

feasibility of meteorological satellites. A succession of TIROS and NIMBUS 

satellites have supplied meteorblogists with astaggering number of photographs. 

A feeling for the dimension of the collection, transmission, and processing 

tasks may be gained by considering that the television cameras on a NIMBUS 

satellite deliver 96 pictures with a total of 5 x 10 All 

of these data a r e  stored aboard the spacecraft and transmitted to data acquisi- 

tion stations on earth. 

IV spacecraft, on the other hand, required 8 1/2 hours to transmit a single 

picture to earth. F rom Jupiter, the transmission of a single Mariner-type 

picture Over the same data link would take about one month. 

8 bits of data per orbit. 

Transmission time is only a few minutes. The Mariner 

As an approach to increasing the transfer rate of significant 

video information from unmanned spacecraft, the NASA Electronics Research 

Center is investigating the possibility of performing pattern recoinition prior 

to transmission. 

be simply a few numbers characterizing the imagery in a sampling aperture. 

From these, the boundaries separating large homogeneous a reas  could be 

computed and the original scene could be reconstructed on earth from idealized 

models of the pattern classes,  

It i s  envisioned that the data to be transmitted would then 

Under contract NAS 12-30, Astropower Laboratory of Douglas 

Aircraft Company investigated the feasibility of such a spaceborne recognition 

system. 

recognition system capable of classifying imagery with sufficient accuracy 

could be designed, and (2)  whether or not a spaceborne recognition processor 

compatible with spacecraft system requirements could be constructed. 

Two aspects of feasibility a r e  considered - (1) whether or  not a 

1.2 Design Philosophy 

The adaptive design techniques a r e  considered in the context of 

The process of recognition is the design philosophy illustrated in Figure 1. 

composed of four par ts  - signal conditioning, known property extraction, 

statistical property extraction, and computation of the decision. 

The purpose of signal conditioning or  preprocessing is to build 

into the system the required invariances prior to the actual recognition, to 

1 
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enhance the pattern to ease the recognition process,  and to format the data 

for further processing. 

hancement, scanning, magnification control, autoco r relation, resolution 

regulation, and obtaining correlations against a variety of orthogonal and non- 

Techniques such as Laplacian filtering for edge en- 

orthogonal functions a r e  examples of signal conditioning methods which have 

been applied in pattern recognition. 

F rom the conditioned signal, o r  from the raw data, properties 

which a r e  known to be, o r  a r e  suspected of being, of value in performing the 

recognition a r e  extracted. 

and analysis of the patterns. 

provides the system designer an opportunity to transfer some of his knowledge 

and experience in performing the recognition tasks to the system. The results 

obtained are, however, specific to the task at hand and a r e  not readily extended 

to new pattern recognition tasks. 

This phase of the design requires careful study 

Together with the signal conditioning phase, i t  

The l i s t  of known properties may not be adequate for high per-  

formance on the task at hand, o r  may not be suitable for the nature of the de- 

cision function. In these cases ,  the list of properties must be expanded. This 

i s  accomplished by statistically analyzing samples of patterns of each class.  

The value of the properties derived from the analysis of these samples is 

dependent on the representativeness and size of the samples, and the signal- 

to-noise characteristics of the sample patterns. 

The number of possible property profiles in general will be too 

large to permit cataloging them. 

by the system to an unknown pattern must  be computed from its property 

profile. It is in the a rea  of specifying the decision function based on the 

sample patterns that most research in adaptive pattern recognition has been 

performed. 

have been considered. 

statistical property extraction provides more general purpose results than 

does work done in signal conditioning and known property extraction. 

Therefore, the classification to be assigned 

For  the most part ,  linear and piecewise linear decision functions 

Research on the design of decision mechanisms and on 

1.3 Areas of Investigation 

Pattern recognition systems were to be assessed experimentally 

To accomplish on recognition tasks which might arise in spacecraft imagery. 

2 



this empirical evaluation, five recognition tasks were defined on seven classes 

of patterns. 

terrain,  the remaining three classes being textural patterns occurring in 

satellite cloud imagery. 

paratively evaluating the techniques. For these experiments, the signal con- 

ditioning consists of a limited degree of size and position normalization, 

resolution regulation, and contrast and brightness control. 

-1. 

Four of the pattern classes represented features of the lunar 

The initial experiments were directed toward com- 

Six adaptive techniques for designing the decision mechanism 

were selected. 

f i l ters were chosen. 

f i l ters,  one technique using linear switching surfaces, and the other, quadratic 

surfaces. 

estimation technique was also attempted as was the optical design of property 

fi l ters based upon the sampling of the spatial frequencies of the patterns. 

In addition, two methods for statistically designing property 

Both of these methods provide binary output property 

The generation of complex switching surfaces using a distribution 

An important a r ea  in pattern recognition, which had not received 

any attention, is that of statistically designing property filters to augment a 

set  of known property filters, A set  of known property filters for the cloud 

pattern tasks was designed by Mr. Eugene M. Darling, J r . ,  NASA Technical 

Officer for this program. 

the lunar data. 

and the three lunar feature tasks at  the reduced aperture sizes. 

A subset of these property filters was applied to 

Augmented systems were designed for both cloud pattern tasks, 

The accuracy with which the boundary between adjacent cloud 

patterns of different classes could be determined was also investigated. 

task is  relevant to the extent of overlap between "looks" at a scene required 

for accurate boundary delineation. 

tes t  patterns were generated, and the discriminant function of the recognition 

systems as a function of the portion of each pattern was examined. 

This 

Montages of pairs of (correctly classified) 

Finally, methods for implementing the system design for on- 

board processing of video data were considered. 

the performance of the classification task under the constraints of decision 

time, accuracy of the mechanization of the property filters and decision func- 

tion, and the weight, volume and power consumption of the resulting system. 

Of particular concern were 
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, 
2 . 0  PATTERN RECOGNITION SURVEY 

Y 

2 .  1 Introduction 

A pattern recognition system accepts patterns as inputs and 

produces ,classifications ofkhose patterns as an output, Generally the input 

pattern is represented by a finite number of measurements taken from an 

actual object o r  signal 

some special cases in which analog processing occurs,  this is not exactly 

true,  but this exception is not especially significant in practice. 

and the output by one of a finite set  of numbers. In 

In any practical problem, in which the number of possible input 

patterns is enormous, dictionary techniques in which the pa 
in a table a r e  inadequate. 

ments. 

discriminant function of the measurements is adequate for producing the deci- 

sions. 

pattern measurements against prototype patterns 

n Ise'llopkcd up!' 

The decision must be computed from the measure- 

In some relatively trivial problems a linear o r  a simple nonlinear 

In some rare  instances, success can be obtained by correlating the 
.I- -r 

For  more interesting pattern recognition problems, these two 

methods cannot cope with the complex distributions of patterns in  the measure- 

ment space* In more effective methods, transformations a r e  applied to the 

measurement vectors, in order to represent the patterns in a new form for 

which the correlation o r  disc riminant function methods a r e  more suitable. 

In the generally accepted terminology, properties of the pattern a r e  extracted 

from the measurements, and the pattern is represented by a property profile. 

As is apparent, this is a convenience. The computation of a 

property profile, followed by the computation of a simple discriminant func - 
tion from this profile, is equivalent to the computation of a more  complex 

disc riminant function. 

thesizing a complex discriminant function f rom simple elements. 

This formulation provides a rational means for syn- 

The process of extracting properties from the raw data is often 

For  the discussions considered as a sequence of simpler processes as well. 

which follow, this process will be considered a s  being composed of two 

.J. *r 
F o r  example, the automatic map matcher, ATRAN. 
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phases -a preprocessing phase and a property fi l ter  design phase. 

a greater breakdown might be considered. 

Clearly, 
r 

The total recognition system is thus considered as  being composed 

The input device has the function of obtaining the original meas-  of four parts.  

urements from the object o r  signal. The preprocessor serves the function of 

formatting the data, and possibly performing such general operations as  edge 

enhancement, conversion to the frequency domain, normalization of gray scale 

and so forth. Unlike preprocessing, the property extraction phase is abstrac- 

tive; that is, the patterns a r e  represented by a property profile vector of sig- 

nificantly lower dimensionality than the measurement vector. 

function phase provides the final abstraction to a simple decision. 

The discriminant 

The boundaries of this division into four parts a r e  often quite 

nebulous and often the classification of the phases of a design technique a r e  

quite arbitrary.  The experimental program was primarily concerned with the 

abstractive processes -the design of the property fi l ters and the construction 

of a discriminant function. 

A considerable body of l i terature exists on input devices. Most 

of these a r e  special devices to serve as inputs to character recognition systems. 

Since the input devices a r e  for  the most par t  more complex than the rest  of 

the character reader,  i t  is perhaps natural that these devices should have been 

emphasized. 

because it i s  the most hardware-oriented phase of the recognition process. 

The devices suggested for optical data incorporate such devices as flying spot 

scanners, photosensor a r rays ,  l asers ,  f iber bundle a r rays ,  and image dupli- 

cating a r rays  of lenses. 

Input devices have been given imaginative treatment, possibly 

Preprocessing i s ,  o r  should be, an attempt to provide invariance 

mechanisms for the recognition system, and to provide a representation of 

the input data which simplifies the form of the decision function required. 

Thus, preprocessing might be used to provide a pattern representation that 

does not change if  the actual object is  subjected to a translation o r  rotation, 

o r  if the illumination level changes, etc. 

however, this phase often takes the form of a random reshuffling of the input 

data. 

As a l i terature survey indicated, 
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Current methods in property extraction may be divided into three 
P 

types. 

mechanization for  extracting properties which the designer knows to be of 

value to the problem, i s  perhaps the most effective of the three, since i t  is 

applied to problems of which the designer has considerable knowledge. 

tistical property extraction utilizes statistical analyses of sample patterns to 

derive the properties. 

properties, depending upon the novelty of some of the properties thus obtained 

to offset the lack of efficiency of the method, 

Known property extraction, in which the design consists of finding a 

Sta- 

Random property extraction uses randomly selected 

An attempt has been made to classify the methods for designing 

discriminant functions into six categories. 

and often a choice has to be made between two o r  three in order  to classify a 

particular technique. These categories are: 

These categories are not disjoint, 

Adjustable Linear Disc riminants - Linear discriminants 
a r e  obtained by recursive processing of a set  of sample 
patterns . 
Adjustable Nonlinear Discriminants - These are generally 
piecewise linear discriminants obtained by recursive 
processing of the sample patterns. 

Correlation Techniques - The discriminants a r e  taken as  
the maxima of sets of linear discriminants. 
discriminants a r e  usually obtained by statistical processing 
of sample patterns. 

Probabilistic Techniques - Randomized decision functions 
a r e  obtained by recursive processing of the sample patterns. 

Sequential Techniques - A  decision t ree  i s  utilized, in  
which the effect of each test  (property filter output) is 
determined by the results of all preceding tests. 

Statistical Techniques - This category included all satis-  
tically based methods which would not f i t  into one of the 
above categories - 

The linear 

2 . 2  Input Devices 

The various implementations of input systems for  video pattern 

analysis tend to obscure the fact that there is a basic similarity in these 

systems. 

scanner o r  other imaging tube. The pattern i s  scanned by the reflection of an 

electron beam and the resulting video data processed directly o r  converted to 

The individual patterns may be examined by a vidicon, flying spot 

7 
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digital form. 

devices such a s  photo resistive o r  photo conductive cells o r  photomultiplier 

tubes. 

device o r  converter for further processing. 

The pattern may be segmented by an a r r ay  of light sensitive 
' 

The video output of the input sensor can then be fed to a storage 

For  the a r ray  of photosensitive elements the entire pattern may 

be illuminated,and the light reflected from the scene or  transmitted through 

the film and imagedonto the sensor array.  The binary (for black and white 

patterns) o r  analog (for gray scale patterns) output of each sensor element 

can be stored o r  used directly as an input to the logic of the recognition 

system. 

be scanned across  the illuminated scene and the resulting element outputs 

sequentially stored. 

In addition, a single column o r  row of photosensitive elements can 

The flying spot scanner device is used to direct an electron beam 

onto a scene, and the modulatedbsam is detected by a photomultiplier tube. The 

resulting output is amplified and can be imaged onto a storage tube for optical 

processing o r  stored for  analog processing o r  digital conversion. Imaging 

tubes, such a s  vidicons, a r e  used to sense the pattern directly. The video 

signal caused by the modulation of the electron beam a s  it sweeps across  the 

tube face can also be processed o r  stored directly in analog form o r  converted 

to digital form. 

positioning of the flying spot can be accomplished by using a programmable 

sweep circuit. 

with the input connection of a logic unit and enables the detailed examination 

of the image without storage requirements, 

The accessing of individual elements on the tube face o r  the 

This allows the selection of any sensor location consistent 

These two devices, the image tube and the photosensitive a r ray ,  

form the bulk of the devices proposed for optical inputs. 

a large number of novel devices which have been proposed o r  constructed. 

These include a zoom lens -fiber optic bundle-photosensitive a r ray  combina- 

tion; a TV camera-monitor-collimating lens -array of plastic lenses - 
photosensitive a r r a y  combination; lasers  for  spatial filtering, scanners using 

moving reflective surfaces and one o r  more photosensors; and devices using 

templates o r  moving film strips (for property l i s t  correlations) in  front of 

photosensors. 

There a r e ,  however, 
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A novel approach to an input system design includes a matrix 
5 

ar ray  of avalanche diodes. 

accessed by energizing the appropriate row(s) and column(s). 

that diode(s) to fire.  

that can be transmitted through a film. 

by a photomultiplier and forms the individual input (or  summed input) to a 

logic unit. 

Each individual diode (or a number of diodes) is 

This causes 

The diodes emit a narrow beam of high intensity light 

The modulated light beam(s) is sensed 

Applicable References 

2 ,  8, 9, 18, 19, 29, 56, 59, 62, 65, 72, 74, 78, 83, 86, 89, 93, 

97, 111, 121, 125, 136, and 137. 

2.3 Preprocessing 

The preprocessing component is concerned with 

1. transforming the output of the sensor into a form that 
emphasizes certain properties of the input necessary 
for recognition, 

presenting a property l ist  in parallel to the recognition 
device 

2,  

Frequently the preprocessing (or property extraction) operation is included in 

the recognition device. 

mation occurring between raw input signals and the decision process is crucial, 

and currently this aspect of the problem is receiving much attention. 

However, at present the feeling is that the transfor- 

As an example of such a transformation consider the case where 

the output of the sensor is a continuous function of time. 

portion of this signal can be represented as a ser ies  with respect to some 
orthonormal system of functions (e. g. , sines and cosines -yielding a Fourier 

ser ies  expansion). The transformation T, in this instance, takes the continu- 

ous input f ( t )  into a finite set  of the coefficients an in the series expansion, 

in e., 

A time-segmented 

K 
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The reduction in dimensionality thus effected i s ,  of course, 
? 

desirable. However, a more  important consideration is that there should be 

a close association between the input patterns to be recognized and the coef- 

ficients generated. That i s ,  the significant features of the class of patterns 

should bear a strong relation to the orthonormal base so that the coefficients 

do indeed simplify the recognition task. 

base can be measured in terms of the degree to which i ts  member functions 

represent the redundant features in the set  of patterns to be recognized o r  

classified. 

sive time-segmented portions of the input, a larger  l is t  is obtained which 

contains information concerning the variation of the coefficients in time. 

example, i f  Fourier ser ies  is used, the coefficients in this large se t  contain 

both time and frequency information. 

efficients versus time and frequency will yield an approximation to the t ime- 

frequency history of the original input. This technique has been used 

in discriminating between the vowels and consonants in human speech. 

The usefulness of a given orthonormal 

By collecting several sets of coefficients associated with succes - 

For  

A plot of the absolute value of these co- 

Many pattern recognition problems a re  "spatial" in character,  

i. e. 

nition task usually i s  to classify certain figures o r  P'objects of interest" 

covering only a portion of the two-dimensional field. The presence of addi- 

tional detail in the remainder of the field causes a background "noise" com- 

ponent to appear in the output of whatever device is used to "sense" the pattern. 

Preprocessing is concerned with techniques which provide some or  all  of the 

following to some degree: 

the initial inputs to the system a r e  two-dimensional patterns. The recog- 

1. 

2 .  

3 .  Reduction of background noise. 

4. Property extraction. 

Invariance to position and size of object of interest  in the 
field of view, 

Enhancement of certain features in the pattern to ease the 
task of property extraction and recognition. 

If the object of interest  is centered in the field, background may be suppressed 

by a masking technique which reduces the a rea  of the field being sensed. 

the sensor is a flying spot scanner the same effect can be had by "under- 

scanning, 1 t  i. e.  , scanning only a particular a r ea  about the center of the field. 

If 

10 



For  a flying spot scanner the output of the scanner can be subjected to such 

operations a s  gradient or  Laplacian filtering which tends to enhance edges and 

contours. 

four times, back and forth in the horizontal direction and up and down in the 

vertical direction. 

scanner is differentiated twice and then an average taken over the four scan 

paths. 

5 

These techniques require the scanning of each point of the field 

F o r  the Laplacian filtering operation the output of the 

The result is  equivalent to applying the Laplacian operator 

to the original image (brightness function). Since in the D 2 =--+7 a 2  a' 
a x  a Y  

2 regions of the field where pattern intensity f(x, y) is constant V 

the pattern which could be reconstructed from the processed scanner output 

would consist of the fine detail in the original. 

contrasting regions a r e  displayed against a dark background. 

filtering is similar but involves only a single differentiation and a squaring 

operation before averaging over the four scan paths, 

f(x, y) is zero, 

That is, boundaries of highly 

Gradient 

In many applications the output of the scanning device is sampled 

at  the Nyquist rate and the set  of sample values is used directly. 

resolution scanner is required the property list may be extremely large, thus 

complicating the data handling and the design of the recognition device, 

determination of the minimum resolution necessary for classification i s  an 

important part of the overall pattern recognition problem. 

true for problems involving complex spatial inputs such a s  the recognition of 

vortices in cloud patterns. No satisfactory method for determining the mini- 

mum resolution required is known a t  present, When high resolution inputs 

a r e  supplied a s  photographs, the use of a slow scan flying spot scanner can 

appreciably reduce the data rate and ease the task of data handling. 

If a high 

The 

This is especially 

Several special purpose computers oriented toward spatial prob- 
lems have been proposed in the literature, e, g o ,  Unger's SPAC. ( 143) Briefly, 

this computer consists of a two-dimensional a r r ay  of logic modules each of 

which may receive inputs from the modules immediately above, below, to the 

left, and to the right of it. 

module receives commands. 

Also, there is a master  control from which each 

Spatial inputs a r e  converted into a binary-grid 

11 



representation and then stored in the spatial computer. 

written for such computers (or they have been simulated on a conventional 

computer) which make possible the detection of corners ,  edges, edge sequences, 

and the convexity o r  concavity of simple spatial figures. 

as properties in the classification problem. 

Programs have been 
9 

These may be used 

Optical filtering a s  a technique for  property extraction has re -  

ceived considerable attention. A simple technique consists of projecting an 

image through a s t r ip  of film which possesses regions with different t rans-  

missivities. 

used to collect the total amount of light passing through the film. 

equivalent to correlating the spatial input with the function representing the 

transmissivity of the film strip. Repeating this with a succession of different 

transparencies amounts to measuring the degree to which the input possesses 

a given property. 

tion of transparencies forms the property list. 

This effects a weighting of the spatial input. A photosensor is 

This is 

The set  of photosensor outputs corresponding to the collec- 

It i s  difficult to specify a transformation o r  sequence of trans- 

formations to condition the sample set  of patterns in a way which will provide 

all  the desirable features (1) through (41). An interesting method for choosing 

properties for spatial patterns which is invariant under translations and size 

variations of the object of interest consists of describing the patterns by 

means of a finite number of their normalized bivariate central moments. 

F. L. Alt(4’ has described such a technique and applied i t  to the character 

recognition problem. 

form. 

much background, the usefulness of this technique is questionable. 

The characters were assumed to be of the binary-grid 

For  more complicated spatial inputs involving many gray levels and 

The easiest way to provide a degree of rotational invariance is 

to augment the sample set  of input patterns by adding a number of rotated 

versions of each pattern. 

degree of translation and size invariance. 

A similar procedure can be used to provide a 

Applicable References 

4, 8, 30, 43, 50, 51, 57, 68, 81, 92, 105, 120, 126, and 136. 
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2.4 Recognition System Design Techniques 

2.4. 1 Adjustable Linear Discriminants 

An adjustable linear discriminant results in 

a partitioning of an n-dimensional space with a hyperplane. Adjusting the 

disc riminant allows parallel displacement and orientation variation of the 

hyperplane. 

device (or unit) that has been so popular in pattern recognition research. 

simple form of the function and its ease of mechanization makes it attractive 

from both an analytic and an experimental point of view. A transformation of 

the signal space (which is usually of high dimensionality, approximately equal 

to the number of resolvable elements in the sensor) is performed and the 

ad jus table disc riminant partitions this transformed signal space (recognition 

space) under the control of a learning procedure. 

The discriminant can be implemented by the linear input threshold 

The 

Design of a recognition system assumes that one is given 

a set  of property vectors (i. e . ,  pattern vectors) which a r e  divided into classes.  

The recognition system is to implement this division of pattern vectors into 

classes so that it can be applied to new pattern vectors derived from the same 

source as were the given set  of vectors. 

nition systems to be discussed i s  the linear input threshold device. 

weighted sum of the vector components of the vector used a s  its input, this 

sum being called its input sum, emits a $1 output if  i t s  input sum was greater 

than 0,  and emits a - I  (or 0)  output if its input sum was less than 0. 

The basic building block of the recog- 

It takes a 

A recognition system consisting of one linear input 

threshold device, whose input vector is a pattern vector, has been used to t ry  

to separate two classes of pattern vectors. 

le t  a 4-1 linear unit output mean that the linear unit is recognizing i ts  input 

vector a s  a member of A, and let a -1 output mean that the linear unit is 
recognizing i ts  input vector as a member of B. 

Let A and B denote the two classes ,  

One method of adjusting the linear input threshold 

device's weights, called forced learning, adds each input vector component 

to the corresponding linear unitss weight if the input vector is a member of A, 

and subtracts each input vector component from the corresponding linear 

unit!s weight i f  the input vector is a member of B. Forced learning has the 



advantage of being independent of the sequence of pattern vectors presented 

to the linear unit but cannot guarantee to solve the recognition task if the 

task is solvable by one linear unit, 

w 

A second method of adjusting the linear input threshold 

unit weights, called e r r o r  correction, does not change the linear unit's weights 

i f  the linear unit correctly classified its input vector. If the input vector was 

actually in A but the linear unit indicated that i t  was in By then e r r o r  correc-  

tion adds each input vector component times a constant, c ,  to the corresponding 

linear unit weight. 

indicated that it was in A, then e r r o r  correction subtracts each input vector 

component times c from the corresponding linear unit weight. F o r  the cor-  

rection of any one e r r o r ,  c remains at a certain positive value; but between 

e r r o r s ,  c may be changed. If c is a constant o r  i f  c is always chosen to 

satisfy certain conditions , e r r o r  correction is guaranteed to solve the recog- 

nition task in a finite amount of time $if the task can be solved by one linear 

unit) and i f  one continues to present each pattern vector to the linear unit. 

Even i f  one linear unit cannot solve the task, using the above procedure will 

result in approaching the state where no e r r o r s  a re  made on those pattern 

vectors which a re  not involved in a contradiction. Whether the linear unit 

can solve the task o r  not, if  c i s  a constant o r  if  c i s  chosen to satisfy certain 

conditions, the linear unitus weights a r e  bounded. 

manner has been empirically shown to hasten convergence on relatively diffi- 

cult tasks. E r r o r  correction has the disadvantage of possibly poor generali- 

zation to new pattern vectors because it t r ies  to eliminate a11 e r r o r s  on the 

given pattern vectors. 

If the input vector was actually in B but the linear unit 

Varying c in the proper 

Another method of adjusting the linear unitss weights, 

called the Widrow-Hoff minimum mean square e r r o r  algorithm, assumes that 

each pattern vector component is either a +1 o r  a - 1 .  The e r r o r  for  a pattern 

vector is defined as the desired linear unit output minus the linear unit input 

sum. 

adds each input vector component, times the e r r o r ,  times a constant, to the 

corresponding unitPs weight. 

is a hyperparabolic function of the unitPs weights, then this algorithm is equiv- 

alent to searching for  the minimum of the hyperparabola using the method of 

At each presentation of a pattern vector to the linear unit, this algorithm 

It has been shown that i f  the mean square e r r o r  
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steepest descent. 

of A around t 1  and all  input sums for  members  of B around - 1. 

may be modified to adjust the linear unit's weights only if the unit's output is 

wrong. 

This algorithm tends to cluster all  input sums for members  , 
This algorithm 

In the preceding methods used for adjusting the linear 

unit's weights, the given pattern vectors were examined sequentially. 

following methods examine a l l  of these vectors at  once. Each of the following 

methods defines for each given pattern vector a cost or loss function based on 

the linear unit's input sum (or  output) for this particular vector, 

methods then attempt to minimize the total loss for the given pattern vectors. 

The 

These 

One of these methods, called the method of steepest 

descent, adjusts the linear unit's weights a step a t  a time. At each step, each 

component of the gradient of the total loss t imes d, a constant, is added to the 

corresponding linear unit's weight. At any one step, d remains at  a certain 

negative value; but between steps, d may be changed. 

A similar method, called iterative design, adjusts the 

linear input threshold device's weights one at  a time. 

the i-th weight, let the partial derivative of the total loss with respect to the 

i-th weight be denoted by p, and the i-th weight modified such that p changes 

to gp, where g i s  a number whose magnitude is  l e s s  than 0.99. 
weight adjustments, g may be changed. 

Fo r  an adjustment of 

Between 

Consider the case where a patternvector 's  loss is equal 

to the exponential of minus the linear unitPs input sum if the pattern vector is 

in A, a pattern vector 's  loss is equal to the exponential of the linear unit's 

input sum if the pattern vector is in B, and there is a constant b such that 

every weight has been adjusted within every b consecutive weight adjustments. 

For  this case, iterative design i s  guaranteed to solve the recognition task in 

a finite amount of time if the task can be solved by one linear unit. Even if  

one linear unit cannot solve the task, using the above procedure will result 

in approaching the state where each pattern vector which is not involved in a 

contradiction has a loss of zero. 

o r  not, if the column vectors of the matrix whose row vectors a r e  the members  

Whether the linear unit can solve the task 
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of A and B a r e  linear independent, then the total loss approaches its smallest 

possible value 
* 

Discriminant analysis is a method which with certain 

assumptions specifies the linear unit's weights which will minimize the total 

loss. 

pattern vectors the probability of class A, the probability of class B, the 

probability of any observed pattern vector if one knows that it is in A, the 

probability of any observed pattern vector if  one knows that it is in B, the 

loss associated with recognizing a pattern vector a s  a member of A when it 

is actually a member of B, and the loss associated with recognizing a pattern 

vector a s  a member of B when i t  is actually a member of A. Then depending 

on the assumptions made in order to obtain these probabilities, the specified 

decision function may be realizable by a linear unit, 

assumes that the components of a pattern vector a r e  either t 1  or 0 and a r e  

independent, i. e. , uncorrelated, then the minimal loss decision is  realizable 

by a linear unit whose weights a r e  conveniently expressed a s  logarithms. 

One can use this method if  one knows or can estimate from the given 

F o r  examples i f  one 

Discriminant analysis can be used to design a recogni- 

tion system which will classify a pattern vector a s  being a member of one of 

k classes. It can be used under conditions similar to those mentioned in i ts  

application to the two class problem. 

mated by a method such a s  the F ix  and Hodges method, which only assumes 

that the pattern vector probability density functions exist and a r e  continuous 

within each class.  

And i ts  classifications can be approxi- 

Another way of attacking the problem of k classes is to 

use a layer of linear units which have the pattern vector a s  their input vector. 

Then each of the k classes  is indicated by a particular pattern (or partial pat- 

tern) of the linear unit's outputs. 

to such a system. 

which uses k(k-1)/2 linear units. 

E r r o r  correction can be successfully applied 

An example of such a system is a class pair separator, 
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Consider the problem of designing a recognition system 
* 
which will classify a pattern vector a s  being a member of one of k classes.  

If there i s  only one prototype o r  typical pattern vector per class,  a linear 

machine can be used. 

consisting of k l inear input threshold devices (one associated with each class)  

which have the pattern vector as their input vector. 

a maximum selector; the system classification of a pattern vector is the class 

associated with the linear unit whose input sum is the largest. 

have been used to reinforce such a system. 

procedure which adjusts the weights of two linear units whenever the errone- 

ous classification of a given pattern vector occurs. If the i-th c lass  is desig- 

nated when the pattern vector really is in the j-th class,  each input vector 

component times c i s  added to the corresponding weights of the j- th unit, and 

each input vector component times c i s  subtracted from the corresponding 

weight of the i-th linear unit. If one replaces "one linear unit" and "the linear 

unit" by "this linear machine, then all of the statements made about the e r r o r  

correction method of adjusting the linear unit's weights a r e  true for this e r r o r  

correction procedure. 

machine. 

A linear machine contains two layers ,  the first layer 

The second layer contains 

Many ways 

One way is an e r r o r  correction 

A minimum Euclidean distance classifier is a linear 

Systems have been designed using adjustable linear 

discriminants in both analog and digital form. 

cumbersome since the weight variability is to be retained. 

system is simulated on a digital computer and the resulting design constructed 

with deterministic values in analog form. Digital implementation involves the 

use of the normal computer components of an input system, an arithmetic and 

memory unit and an output system. 

sampling the input field, and adjusting the weights and forming the discrim- 

inant function is done sequentially with the various values being stored and 

accumulated during the process 

The analog mechanization is 

In some cases the 

In this case the parallel operation of 

Applicable References 

8, 15, 16, 22, 25, 37, 39, 42, 48, 55, 60, 70, 71, 73, 

76, 77, 78, 79, 82, 87, 96, 99, 100, 101, 102, 111, 116, 120, 124, 125, 128, 

131, 138, 139, 141, 142, 148, 149, 150, 151, and 152. 
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2 . 4 . 2  Adjustable Nonlinear Discriminants 

Adjustable linear disc riminant functions, as  described 

in Section 2.4 .  1 operate to classify patterns of n inputs. 

weighted and included in  the analog sum which is compared to a threshold to 

determine which of two output states the unit will assume. 

derived from the outputs of property filters o r  pattern processing devices. 

In some cases the pattern itself may be classified directly. In either case 

the l inear threshold logic unit attempts to separate the patterns by 

passing a hyperplane in the n-dimensional input space. 

Each input is 

The inputs may be 

The class of nonlinear discriminants includes devices 

which attempt to separate patterns by passing nonlinear surfaces through the 

input space. 

pattern lies. 

in the input space. 

by a single threshold logic unit. 

considered as a separate input to a linear logic unit; the weights on the input 

lines would represent the coefficients of each term. These parameters may 

be adjusted by any of the methods used for  linear discriminant functions. 

When the inputs a r e  binary, the cross  product terms may be easily obtained 

using "and" gates. 

Classification is again based upon which side of this surface a 

An example would be a unit forming a hyperquadratic surface 

Quadratic o r  higher order surfaces may be implemented 

Each t e rm i n  the quadratic polynomial is 

The piecewise linear surface, composed of several  

planar surfaces, is  another form of adjustable nonlinear discriminant often 

implemented. Sharply varying o r  closed surfaces may be achieved with these 

systems. 

MADALINE consists of m linear threshold units each of which is connected to 

all  of the n inputs. 

of fixed logic to implement the overall binary decision. 

fixed logic outputs for the MADALINE depends upon the type of classification 

de si red a 

The MADALINE would be representative of such a system. The 

The binary output decisions a r e  collected by some form 

The use of various 

When a majority vote taker is  used, the training pro- 

cedure requires the input pattern to correlate with a majority of the paradigms 

stored in the threshold unitsD input weights. 

ments a r e  made. 

If a decision is correct ,  no adjust- 

If a decision is incorrect, a number of units sufficient to 



yomplete the correct  majority decision a r e  adapted toward the correct  output. 

(The total number of threshold units must be odd to avoid a tie vote. ) 

adaption procedure for the individual threshold element is identical to the 

Widrow-Hoff algorithm described in Section 2.4. 1. 

The 

An alternate system which should work well where the 

positive pattern class  is strongly multimodal, uses an "or" gate for the output 

logic. This training procedure adds the positive patterns to the weights of the 

logic unit with which i t  is most likely correlated. When a positive pattern is 

being classified, the threshold unit whose analog sum is closest to threshold 

is trained toward t1 .  

giving t 1  output a r e  trained toward -1. 

no adjustments a r e  made. 

accomplish exactly the same function if  the pattern classes were reversed. 

The majority, "and" and "or" gates a r e  special cases  of a general fixed logic 

unit with the properties of yielding a t 1  output i f  at least  k threshold units 

have t 1  outputs; otherwise the output is -1. 

o r  equal to the total number of inputs to this unit. 

varied to determine the most advantageous classification scheme 

When a negative pattern is misclassified, all  units 

When patterns a r e  classified correctly, 

Replacing the "or" gate with an "and" gate would 

k is a positive integer less  than 

This parameter may be 

Another configuration uses the parity function for an 

output gate. If the number of threshold units giving positive decisions is odd, 

the output is positive; if the number of units giving positive decisions is even, 

the output i s  negative. 

adjustment procedure. 

necessary to adjust more than one threshold unit to obtain a correct  decision. 

This results in the least  disturbance to the system with each adjustment. It 

i s  not c lear  how the various threshold units will relate to the pattern distri-  

butions. 

The advantage claimed for this method is a stable 

When a pattern is incorrectly classified, i t  i s  not 

Several alternatives have been suggested for cases 

where more  than two pattern classes a r e  to be separated. 

threshold logic units may be assigned to each class  to act as paradigms for 

that class.  The output logic selects the class assigned to the threshold unit 

which correlates most highly with the input pattern. 

of adjusting the weights of the paradigms has been suggested, 

One o r  more 

A mode-seeking method 

The weights in 
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each threshold unit a r e  adjusted to place the weight vector in the center of a 
cluster of similar pattern vectors. 

9 

An alternate procedure involves using several  adjustable 

nonlinear networks whose outputs form a binary classification "word. 'I  The 

individual nonlinear discriminants a r e  adjusted to present 1's o r  0 's  in the 

proper bit positions when an input of a particular class is presented to the 

machine. 

The work performed by Barus'") may also be con- 

sidered in the context of adjustable nonlinear discriminants. 

is to use the maximum likelihood criterion in classifying an input vector. 

This requires estimates of the probability density distribution of the input 

vectors for each class To accomplish this, several  "best" representations 

a r e  stored as paradigms for each class. Their representativeness is evalu- 

ated a s  the machine experiences identified input specimens - New specimens 

a r e  stored and less  useful ones discarded as  a result of this experience. 

method of estimating the probability density distribution of each class a t  the 

point occupied by the input vector i s  to correlate the input vector with each of 

the stored paradigms of a given class and count the number of times the cor -  

relation is greater than a certain percent. This number divided by the total 

number of paradigms of that class is Fit the estimate of the probability den- 

sity function. He assigns the input pattern to the class having the largest  pi. 
This classification process i s  analogous to storing each paradigm in the 

weights of a separate linear threshold unit, setting the threshold for the 

desired percent of correlation, and taking a majority vote of the outputs of 

all the units. 

Barus' approach 

His 

Applicable Ref e r ence s 

5, 10, 11, 12, 19, 20, 60, 115, 123, 149, and 151. 

2.4.3 Adjustable Properties 

The greatest  improvements in pattern recognition tech- 

niques will come in the a rea  of finding good sets of property fi l ters,  o r  meas-  

urements for the discriminant function. Although this a rea  has been receiving 

considerable attention recently, few workable systems have resulted. 
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Sometimes the constructors of pattern recognition design techniques choose 

properties randomly, o r  at the other extreme, intuitively based on careful 

study of the particular recognition problem. For  the most part ,  however, 

these constructors assume that someone will provide them with a set  of 

suitable property filters. 

b 

When the designer has a good understanding of the 

problem, the intuitive approach can yield good property filter sets. 

approach has been heavily used in character recognition. 

not, when the designer was unable to find a satisfactory property set ,  strong 

restrictions a r e  placed on the characters that a r e  allowed, and occasionally, 

they a r e  distorted almost beyond recognition in order  to utilize a property 

set .  

tion problem with some notable success. 

adding and deleting properties seem desirable. 

The earliest  techniques, and ones which a r e  still being 

This 

More often than 

More recently, human selection is being applied to the photointerpreta- 

Even in  this case, a technique for  

studied, for adjusting the set  of property fi l ters were evolutionary ones. 

these methods, a s e t  of property fi l ters is obtained (most often randomly), 

and a decision network designed for  these. Property fi l ters that a r e  found 

not to contribute significantly to the decision a r e  deleted from the set. 

some methods, additional properties a r e  added to replace those deleted. 

these cases ,  the design process is repeated until some design criterion is 

met. 

In 

In 

In 

More recent techniques use statistical analyses of a 

small fraction of the data in the sample patterns to derive property filters. 

These analyses a r e  generally performed under strong distributional assump- 

tions (which usually result in linear o r  quadratic input threshold devices for 

property filters). The property fi l ters a r e ,  in essence, linear o r  quadratic 

discriminant networks designed to base their decision on a small fraction of 

the data in the input pattern. 

variate normal distribution, whose parameters depend upon the pattern class,  

is common. Although this distributional as sumption is not usually accurate, 

the property fi l ters form only part of the system; other aspects of the design 

technique evaluate the effectiveness of the property fi l ters.  

The assumption that the input data has a multi- 
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Several techniques combine the above methods. In one 

system, discriminant analysis is performed on substantial subsets of the input 

a r ray  to produce property fi l ters with a large number of input connections. 

Those input connections which do not contribute markedly to the property 

f i l t e r f s  operation a r e  deleted. 

designed using disc riminant analysis, but only those which contribute signifi- 

cantly to the overall system a r e  retained. 

In another system, many property filters a r e  

In a different approach, property fi l ters a r e  designed 

which tend to cluster patterns of the same class,  while maintaining a separa- 

tion between the pattern classes.  

the method leads to property filter generation methods which a r e  the same a s  

those in which the multivariate normal assumption is made. 

Despite the difference in starting points, 

In one method, the property filter set  and the decision 

structures a r e  developed concurrently. 

a r e  designed using discriminant analysis on limited portions of the input fields. 

The most  effective of these a r e  retained and a decision structure is designed 

for these property fi l ters.  A new set of property fi l ters is then designed using 

a discriminant analysis modified to reflect which sample patterns a r e  not being 

classified properly by the existing network. Only those property fi l ters which 

form an effective addition to the existing network a r e  retained from the second 

set. 

satisfactory performance is achieved. 

A large number of property filters 

The decision structure is then redesigned and the process repeated until 

While this las t  system seems very reasonable, the 

design process i s  very tightly coupled to the task of separating the sample 

patterns. 

tativeness of the sample patterns than does the more statistically based 

methods described above. 

distributional assumptions, the less disastrous a r e  the effects of anomalies 

in the sample of patterns, but the more disastrous a r e  the effects of inac- 

curacy of the assumptions. 

The technique thus places much higher demands on the represen- 

The stronger the dependence of a method upon 

It is evident f rom the survey that substantial improve- 

ments in the design of property filters will result in great improvements in 

the design of pattern recognition systems. What is needed is a compromise 
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between the extent of human design, the degree to which distributional assump- 

tions a r e  utilized, and the degree to which the design is dependent on separa- 

tion of a particular set  of sample patterns. 

Applicable References 

4, 8, 18, 21, 38, 39, 43, 58, 78, 79, 81, 82, 90, 91, 
92, 105, 124, 125, 128, 129, 130, 131, 132, 140, and 141. 

2 .4 .4  Probabilistic Elements 

Typical of the systems o r  techniques that fall into this 

category a r e  the ARTRON of Melpar and the Probability State Variable (PSV) 

device of Adaptronics. They consist of devices whose internal states a r e  not 

deterministic but a r e  controlled by statistical switches whose probability of 

closure is adjusted during the training period. 

Specifically, the ARTRON is an element that realizes 

functions of binary input variables by training statistical switches to select 

various combinations of these inputs. Variations of this element have been 

used in systems such a s  LANNET (Large Artificial Nerve Net) and SOBLN 

(Self -Organizing Binary Linear Network). 

layer units consist of "and" gates that form all possible minterms (or max- 

terms)  for the input variables. 

switch; therefore, for n binary variables, Zn minterm generators and 2 

statistical switches a r e  required, giving the network the capability of gener- 

ating any of the 2 
of goal directed reward and punish signals , the probability of each statis tical 

switch being open o r  closed varies between the limits of . 01 and .99. 
final output is the union, through the action of an "or" gate, of these switches 

and their associated minterm. The statistical switch portion consists of 

three components. These a r e  a probability register, an adjustable noise 

control, and the reward/punish sign control. 

s is ts  of an up/down counter whose contents a r e  proportional to p.. 

put of the counter is converted to analog form (with register summing) and 

biases an adjustable noise control. The output of the noise control, which 

is pi and (1 - pi), tr iggers a flip-flop to produce a pulse density modulated 

In a single ARTRON the first- 

Each "and" gate has an associated statistical 
n 

2n switching functions of n variables. Under the influence 

The 

The probability register con- 

The out- 
1 
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output. 

the minterm input. 

the I'or" gate and fixed increment reward and punishment signals a r e  presented 

until the correct  minterm is selected. 

however, and the noise signal causes the switch output to j i t ter  around any 

operating point. 

The final output of the switch is the logical "and" of the flip-flop and 
8 

The state of the switches then determines the output of 

The final state is not deterministic , 

Though two-input/one-output ARTRONS may be pyra- 

mided with fixed logical elements to form n-input/m-output networks, conver- 

gence and stability a r e  not assured. 

of ARTRON devices which realizes all  possible Boolean connections and in- 

cludes redundancy for  e r r o r  correction (is e . ,  statistical switch failure). 

LANNET i s  an extension of the n-input/m-output concept with a hardware 

mechanization. The basic form consists of a 2n minterm generator with 

parallel banks of 2n statistical switches and n output "or" gates. 

mented with digital hardware and utilizes a 1024-word core memory for  

storage of 1024 statistical switch probabilities. 

The SOBLN is a special implementation 

The 

It is imple- 

A Probability State Variable ( X V )  device is defined a s  

an artificial nerve cell featuring statistical operation and with memory being 

stored a s  a probability of having certain transfer characteristics. 

ARTRON, discussed above, and the NEUROTRON, discussed in the next 

paragraph, a r e  considered a s  PSV devices. 

State Variable (RSV) devices have also been considered. 

begins by performing a t r ia l  experiment with one of two alternate values of a 

parameter.  Initially the choices between alternates is made a t  random with 

equal probability. As learning progressesg the statistics of selection a r e  

progressively biased towards the value producing a more consistently favor- 

able outcome. 

experimental change in a system parameter. 

improved a s  a consequence of this experiment, the new parameter is retained; 

otherwise , the change is discarded and a new random experiment, centered 

about the original state,  is attempted. 

Both the 

In addition to the PSV, Random 

The PSV strategy 

In the RSV strategy the system begins by making a random 

If the system performance is 

The NEUROTRON is a PSV device, similar to the 

ARTRON, with the addition of variable gain and time constant circuits and a 
capability fo r  handling continuous inputs that a r e  pulse density modulated, a s  
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well a s  binary coded inputs. 

a phase-lag o r  a phase-lead. 

that compute the logical combination of the two input variables; the gate (or 

gates) that a r e  energized provide a signal to a second "and" (or "or") gate that 

also receives an input from the statistical switch. 

nal i s  provided to the switch from the "active" input gate to allow reward o r  

punish signals to affect that switch. 

logical gates is input to an  "or" (or "and") gate. 

NEUROTRON (except for  the nature of the input signal) is identical to the 

ARTRON. The reward, punish and noise signals, in addition to varying the 

probability of closure of the statistical switches, a r e  also provided a s  inputs 

to the variable gain and time constant circuit. The logical output of the final 

l l o r I l  (or I(and(l) gate is combined with the gain and time constant output to 

provide the system transfer function. 

response determines whether a reward o r  punishment signal will be generated. 

The adjustment of the state of the statistical switch is accomplished by biasing 

the noise signal on the switch a s  in the ARTRON. 

stant circuit the new value is made less  than the old by a negative noise signal 

and more by a positive noise signal, the difference between the new and the 

old being proportional to the noise amplitude. 

new value, that value is retained; i f  a punishment signal follows, the old value 

is retained. 

using small networks of these NEUROTRONS. 

It is  capable of one of sixteen logic states plus 

The first layer consists of "and" o r  "or" gates 

In addition, a control sig- 

The output f rom the second layer of 

Up to this point the 

The nature of the actual and desired 

F o r  the gain and time con- 

If a reward signal follows a 

Various logical, a s  well as analog, functions have been generated 

Applicable References 

26, 27, 64, and 88. 

2.4.5 Correlation Techniques 

The majority of pattern recognition techniques involve 

the generation of one o r  more prototype patterns for each decision class.  In 

general, the choice of a prototype depends on the se t  of sample patterns in a 

given class  and i t s  interrelation with the sample sets  in each of the remaining 

classes.  

the probability distribution determined by the sample patterns in a given class 

and its interrelation with the distributions of each of the remaining classes.  

More specifically, the determination of prototypes is a function of 
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Briefly stated, the "matching" o r  correlation technique consists of correlating 

an input pattern with each prototype pattern. 

a particular class is made when the correlation of the input pattern with the 

prototype (or one of the prototypes) for  that class is greater than al l  other 

possible correlations. 

one prototype per  pattern class. 

Section 2.4. 1 and 2.4.  6 .  

~ 

The decision of membership in 

This section discusses techniques involving more than 

Single prototype systems a r e  discussed in 

One technique for estimating the probability density 

from a set of sample patterns in a given class may be described a s  follows. 

F r o m  the sample of patterns an estimate of the distri- 

bution o r  probability densities is obtained. 

evaluate the likelihood ratios (decision making accomplished by comparing 

the ratios of the probability densities against a constant). 

estimating the probability densities f rom labeled samples of known classes is 

regarded as "learning" while the evaluation of likelihood ratios a t  points in 

the vector space corresponding to an input stimulus is called "recognition. ' I  

These estimates a r e  used to 

The process of 

In approximating the probability density function of an 

unknown class ,  a cell  of prechosen size and shape is created and is centered 

on the f i r s t  learning sample. 

prior analysis of all the training data by computing the mean and variance of 

these data. In addition to the vector, the estimate of the new density of the 

cell is also computed and stored. The density is estimated by the fraction of 

the total number of input vectors that fall in that cell divided by the volume of 

the cell. 

to the first if it falls outside the first cell. 

the first cell, the center of that cell  is shifted to the mean of the two learning 

vectors, the density recomputed; hence the shape and size of the cell effec- 

tively is adapted from the knowledge about the local distribution of members  

of the class  rather than the original estimate. 

"sufficiently" far outside the first cell,  it creates a new cell of size and shape 

obtained from the pr ior  estimate of minimum cell size. 

first cell by a small amount, i t  is temporarily stored. 

a r e  processed similarly. 

The chosen size and shape i s  determined by 

The second learning vector is used to generate a second cell  similar 

If the second vector falls inside 

If the second vector falls 

If it falls outside the 

Subsequent vectors 

To insure that each cell  has enough room to grow, 
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and to reduce the chance for an overlapping coverage of the same region by 

more than one cell, an "outer" control parameter is introduced so that a 

vector not falling inside an existing cell is used to generate a new cell only if  

i t  is outside a larger  concentric cell. 

vectors a r e  forced into existing cell structures. 

-. 

As the cells grow in size,  these stored 

In approximating an arbi t rary probability density func- 

tion, a locally Gaussian assumption is made. 

mean of the cell a t  a point and the distribution is assumed locally Gaussian 

about that point with variance estimated from the density of the sample vectors 

in that cell. 

vectors into that cell. 

acceptance region about a pattern is defined by an ellipsoid in n-dimensional 

space; the shape and size of the ellipsoid a r e  estimated from the mean and 

variance of the input vectors which a r e  obtained from a priori  knowledge of 

the pAttern classes and updated by the density measure. 

A sample is used to specify the 

This allows a criterion for rejection or  acceptance of other 

This is the same a s  previous discussions where an 

A technique currently under investigation involves the 

use of the function 

y = ( y l e . .  , y ) is an arbi t rary point in N-space. N 

, x  ) is the k-th sample property vector (or k k xk = (x l ,  . 
list) in a particular class. 

bi = positive constants 

0 A point y 

algorithm has been developed together with a proof of i ts  convergence. 

algorithm makes it possible to recover the modes of the (in general) multi- 

modal probability density governing the property l ists  of a given class. 

cluster points a r e  used to construct an estimate of the actual probability 

density associated with a class. 

collection of prototypes which a r e  correlated against a pattern input vector. 

a t  which K is a local maximum is called a "cluster point. I '  An 

This 

These 

In general these design techniques lead to a 
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Ni l s  son ( '  15) suggests an iterative method for finding 

the modes of a multimodal distribution. 

distributed through the space. 

time. 

it moves a small amount towards the sample pattern. 

ments decrease in time so that the positions of the prototypes become more 

stable. 

A fixed number of prototypes a r e  

The sample patterns a r e  examined one a t  a 

The prototype which is closest to the sample pattern is modified so that 

The size of the incre- 

The clustering techniques mentioned above a r e  an 

attempt to find representative prototypes without the number of prototypes 

required becoming too large. 

a s  performance, a technique which has shown ve ry  good results is to save all  

sample patterns a s  prototypes. 

modes will occur many more times than those in lower probability portions 

of the distribution, a large number of prototypes (mostly unnecessary) a r e  

required to obtain high performance levels. A method has been suggested 

for obtaining a set  of prototypes cyclically, saving a s  additional prototypes 

each one which is misclassified by the existing set  of prototypes. 

is very similar to the clustering methods above. 

If memory requirements a r e  not a s  important 

Since patterns near the more significant 

This method 

Applicable R ef e r enc e s 

9,  10, 12, 24, 49, 80, 115, 122, 127, 128, 129, and 132. 

2.4. 6 Conditional Probability 

Statistical techniques play a central role in the recog- 

nition problem where they have usually been employed as an aid in choosing 

prototypes or in determining the weights associated with logic units in an 

adaptive system. 

problem a s  one of testing multiple hypotheses in statistical inference. 

technique consists of testing for each character the hypothesis that the 

observed pattern is the given character against the hypothesis that it is not. 

A formula was derived for determining the magnitude of the expected risk in 

making a given decision, i. e . ,  the expression 

Chow ( 3  ') considered the general character recognition 

His 
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C 

k 

is evaluated for j = 1 , 2 , .  . , c where F(x/ai) is the conditional probability of 

the input vector x occurring if the pattern is indeed the i-th character; pi the 

a priori  probability that the i-th character occurs; and w 

to misreading the i-th character as the j-th one. 

selected. 

recognition systems but requires a technique for calculating the conditional 

probability function. 

the weight assigned 

The minimum risk signal is 
i j  

This technique provides a conceptual framework for  designing 

The conditional probability F(x/ai) is in general derived 

One is finding a method by which the condi- 

in terms of the conditional probabilities G(x./ai) of the components of the 

vector x. 
tional probabilities G(x.f ai) may be obtained, and secondly , finding a method 

J 
for  combining them into an estimate of F(x/ai)* Although most investigators 

realize the undesirability of such an assumption, it is generally assumed that 

these components are independent. 

J 
Two difficulties exist. 

Some interesting results have been derived for  binary 

vectors X. 
implemented by using linear discriminants. 

discriminant i s  given by In 

With the independence assumption, a likelihood ratio test  is 

The j-th coefficient of the i-th 

o r  the logarithm of the odds ratio. 
G(x f a  ) 

g'XJ ai) 

Kana.l(82) uses an interesting and potentially very useful 

representation for  the joint probability distribution p(xl, x2, e e , 5) where 

x = (xlg a p x  1 represents the binary input pattern property vector. This 

representation, which is due to Bahadur, (16') takes the form 
N 

where pI(x) denotes the probability distribution of the xi when the xi's a r e  

independently distributed and they have the same marginal distributions. 

function f(x) involves correlations of various orders  e 

order  correlations in f(x), an approximation to the distribution may be obtained. 

The 

By neglecting the higher 

The derivation of the conditional probabilities G(x./a.) 

presents diificulties as  well. For binary variables, a customary procedure 
J 1 '  
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is to use the maximum likelihood estimate of the probability, based on a 

sample. 

x. occurs in m.. of these, the estimate of G(x./ai) is 3. 

estimate of 

mate gives coefficients whose magnitudes a r e  too large when the number of 

occurrences o r  nonoccurrences of x. a r e  very small, and gives infinite values 

if  the x. o r  not x. does not happen to occur. 

Thus, i f  the number of occurrences of ai in the sample is ni, and if 
m.. 
n. This gives an 
1 J 

for the logarithm of the odds ratio above. 
‘J m.. 

1n n. - &. . 
J 

1 This esti- 
1 1J 

J 
J J 

Mo s teller and Wallace ( 09) provide an elegant method for 

avoiding this overemphasis. 

methods derived from subjective probability. 

is assumed for  the conditional probability, and the estimate is derived from 

the a posteriori probability. 

counters for  m. and n. - m.. a t  Q! and 6 (arbitrary parameters of the Beta 

distribution). Any amount of de-emphasis of r a r e  events can be selected by 

adjusting Q! and B .  

The conditional probability i s  estimated using 

An a priori  Beta distribution 

The result simply amounts to starting the 

4 1 1J 

Applicable References 

1, 2, 5, 6, 31, 32, 40, 82, 87, 90, 91, 109, 118, 145, 

146, 147, and 167. 

2.4.7 Sequential Techniques 

As applied to pattern recognition, the t e r m  ”sequential 

technique’’ is used to imply the decision t ree  method, rather than any manner 

of implementation of the recognition device. 

provides an example of the decision t ree  method. 

to the input pattern depend upon the results of the preceding tests. 

decision t ree  can be duplicated with a nonsequential network in which all tests 

a r e  always performed, and the decision structure provides the selection of 

the equivalent sequences, just a s  it is possible to simulate a parallel logic 

network with a sequential machine such as a digital computer. 

do not, however, change the basic nature of the decision processes. 

The game of twenty questions 

The tests which a r e  applied 

The logic 

These artifices 

The sequential techniques range from the extremely 

complex heuristic programs, such as the General Problem Solver, to the 

relatively simple ones, such as EPAM. The former appears to be an attempt 
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to simulate the general thought processes of people; the latter is a mechaniza- 

tion of the twenty questions game. 

current program. 

The latter type is most applicable to the 

Ideally, each test  on a binary decision t ree  should elim- 

inate about half of the possible cases f rom further consideration. 

patterns a r e  relatively noise free,  and the figure- ground separation problem 

is not significant, this is accomplished relatively easily. 

instance, the t ree  is developed automatically. 

a sample pattern until a terminal branch is encountered. 

tern i s  the same as the pattern a t  that location, no changes a r e  made. If the 

patterns a r e  different, a test  is devised to separate these two patterns. The 

terminal point is  replaced by a test  node, and two terminal branches then re- 

place the one. 

When the 

In EPAM, for 

Existing tests are applied to 

If the sample pat- 

This automatic design process is less desirable when 

It is true that a structure could be designed the sample patterns a r e  noisy. 

to separate the sample patterns. 

two patterns, and a r e  likely to be based on the noise in those particular pat- 

terns. F o r  noisy patterns, the tests should be designed statistically, based 

on data derived from many samples. 

the acquisition of a sufficient number of patterns may prove to be trouble- 

some. If, for example, ten tests a r e  to be performed before final classifica- 

tion, and if  at least 100 samples of each type of pattern are required for  the 

design of each test ,  then a minimum of 100,000 sample patterns are required. 

Another desirable constraint is  that the tests performed divide the patterns 

into coherent sets ,  

for  choosing the pattern sets to be separated, rather than depending upon their 

order  of occurrence in the sample set  of patterns. 

However, the tests a r e  devised to separate 

If the decision t ree  has any great depth, 

It would seem more desirable to have a rational means 

These remarks a r e  not intended to indicate that the 

sequential approach is not of importance to the pattern recognition problems 

of this study. 

strained to only a few levels, and that the structure of this t ree  be established 

by the system designer. 

What is indicated, however, is that the decision t ree  be con- 

31 



In the Lunar experiments performed, four types of 

These a r e  c ra t e r s  with and without 
" 

lunar features were to be identified. 

central elevations, rima, and wrinkle ridges. 

incorporated three binary decision networks, one to separate the c ra te rs  f rom 

rima and ridges, one to separate rima from ridges, and one to separate the 

two types of c ra te rs .  

above. 

Nearly all the systems designed 

This is clearly a decision tree of the type suggested 

It should be noted that a number of sequential testing 

procedures have been recommended in the literature in connection with char- 

acter  recognition. 

relatively stylized, noise-free, isolated characters. As with the vast majority 

of the work which has been done on character recognition, the techniques make 

fu l l  use of the nature of alphabetic characters and the designer's great famil- 

iarity with them. The design tricks thus employed a r e  of little utility for the 

general pattern recognition problem. 

These schemes, however, a r e  intended to be used with 

Applicable Refe rence s 

18, 37, 46, 47, 52, 112, and 134. 
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3 . 0  SOFTWARE FEASIBILITY 

3 .  1 Introduction 
3 

The pattern recognition techeiques under consideration share  a 

common structure. As shown in Figure 2, properties a r e  extracted from the 

conditioned pattern, and the decision function is computed from the property 

profile of the pattern. 

A limited amount of pattern conditioning was performed 

for the experimental portion of this program. 

the resolution and aperture size to be used and maintaining some control over 

the image brightness and orientation to account for prior knowledge of sun 

direction and illumination. 

experiments, an acquisition, validation and conversion process had to be per-  

formed. 

pattern file and the concomitant problems. 

This amounted to specifying 

To prepare a set  of patterns for the simulation 

Section 3 .  2 discusses the tasks involved in obtaining an adequate 

In Section 3 . 3 .  1 the six design techniques used in the initial 

experiments (Section 3 .  3.4) a r e  discussed in detail. 

used in later experiments will be described in the appropriate sections. 

these initial experiments, two techniques were used to generate the property 

filters. 

hence examines only a portion of the input data. 

output of a property filter is binary. 

faces of the property fi l ters a r e  linear, and a r e  based on the average bright- 

ness of the pattern classes at the appropriate points in the input field. 

the other technique, the covariances of the brightnesses a r e  considered, and 

the switching surfaces which result a r e  quadratic. 

the techniques a re  given in Section 3 . 3 .  2. 

Additional techniques 

In 

Each property filter has a limited number of input connections and 

With both techniques, the 

With one technique, the switching sur -  

With 

Detailed descriptions of 

The six techniques for specifying the decision function were 

applied to the property profiles determined by the two methods mentioned 

above. 

profiles). In the sixth technique, a MADALINE system, the decision function 

is piecewise linear. 

Five of these result in linear decision functions (of the property 

The two techniques for designing property fi l ters were applied 

to three recognition tasks on the lunar data. Fo r  each of the s i x  sets  of 
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Sensory Units Logic Units Response Unit 
(conditioned pattern) (property detection) (pattern classification) 

Figure 2. Decision Network St ruc ture  
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property profiles generated a decision function was designed using each of 

the six techniques under consideration. 

3.3.4.2 are based on the resulting 36 systems. 

concerned with NIMBUS data, only the quadratic property filters were used. 

The comparisons of Section 3.3.4. 3 a r e  based on 12 system designs. 

description of the ,recognition tasks is given in Section 3. 3.3. 

The pr imary comparisons of Section 

For  the two recognition tasks 

A 

3.2 Generation of the Pa t te rn  Files 

3.2. 1 Origin of the Pat tern Sets 

Seven classes of patterns were used for  the recognition 

experiments. 

no conspicuous central elevations ( 2 )  craters with one o r  more  conspicuous 

central elevations (3) rima and (4) wrinkle ridges. 

Three classes were types of clous cover as seen f rom satell i tes-(l)  noncu- 

mulus cloud cover (2)  cumulus clouds-solid cells and (3) cumulus clouds- 

polygonal cells. 

Four classes were features of the lunar te r ra in- (  1) c ra te rs  with 

Sample patterns were derived f rom photographs. 

derived f rom A i r  Force Lunar Atlases, (155’ 156) the original photographs 

having been taken at various astronomical observatories in the United States 

and France. 

The lunar features were 

Mr. Eugene M. Darling, Jr, , NASA Technical Officer 

for  this program, selected f rom these sources 198 lunar features 

as follows: 

photographic 

Feature No. of Cases 

Craters ,  No conspicuous central  53 

Craters ,  One o r  more  conspicuous 53 

elevation 

central elevation 

Rima (ri l les or  trenches) 52 

W r i n k l e  ridges 40 

The sample cloud patterns were taken f rom 

categorized 

a set of 

reproductions of video cloud patterns transmitted f r o m  the NIM- 

BUS I satellite. Mr. Darling examined numerous photographs and selected 

323 examples of the three desired classifications f rom 311 picture frames. 

The cloud patterns are categorized in  the following table. 
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CLOUD PATTERN CATEGORIES 

Cumulus , Polygonal Cells 

Mr .  Darling also provided a subjective judgment of how well each frame 

depicts the pattern in question using this scale: 

G ,  Good - These a r e  the best  cases showing the pattern in 
i ts  most typical form. 

F, Fa i r  - The pattern shown is acceptable, but departs to 
a greater or  lesser  degree from its typical form. 

P, Poor - The pattern is  barely identifiable. These cases 
a r e  of marginal use. 

The distribution of patterns with respect to pattern quality was 

PATTERN QUALITY 

Pattern Class (Number of Cases) 

In addition Mr. Darling describes the patterns as  

follows: 

"The two cumulus patterns a r e  characterized by cellular 
elements. 
rounding a clear area.  
encloses the central c lear  region; in others the wall is open 
and the pattern becomes vermiculated ( io e. , worm-like). 
F o r  the purposes of this study both the open and the closed 
walls a r e  lumped together into a single pattern called 
polygonal cells. I '  (See Figure 3.  ) 

Polygonal cells consist of a wall of cloud sur -  
In some cases this wall completely 
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Figure 3. Cumulus, Polygonal Cells 
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, 

"The solid cell case is (as  the name implies) an unbroken mass  
of cloud, very bright, with sharp edges surrounded by a clear 
boundary. The solid cell may star,d isolated from other clouds 
by a distinct expanse of clear a i r  o r  may be embedded in a 
densely packed assemblage of cells where the boundary between 
cells is barely visible." 

"Noncumulus clouds appear typically in fibrous, diffuse sheets 
o n  filaments without distinct edges and without a cellular 
structure. ' I  

"It i s  important to understand that a 'pattern' in the cdntext of 
these experiments is _p not a single cell, but rather is  an assem- 
blage of many (or  at least  several) cells. The pattern must 
also be chosen to include a large fraction of cloud - at least 
60% o r  so." 

t 

(See Figure 4.) 

(See Figure 5. ) 

3 . 2 ,  2 Pattern Normalizations 

The goal of this study as  was previously stated, was to 

investigate the feasibility of developing a system which could be placed aboard 

a spacecraft to perform an examination of the optical patterns received and 

relay only selective information identifying the features or  objects encountered. 

The recognition system would be required to respond correctly over a wide 

range of pattern size variations, pattern translations, and rotations and to 

compensate for variations in picture brightness. 

for these variations could possibly be achieved by including in the training set  

of patterns all possible combinations of size, translation, and rotation of the 

features recorded a t  varying brightness levels. However this would require 

a very large pattern set  and would significantly increase the time and expense 

needed to record and process these patterns. 

System designs to account 

Limits were placed on the ranges of these variables. 

While these restrictions simplified the design of the recognition systems, 

they do not necessarily imply limited system performance. 

system, image brightness may be regulated by an iris, preferably controlled 

by knowledge of the sunss angle of incidence, o r  less  desirably, by measured 

reflectance. The latter could be troublesome in cloud pictures. Translation 

and rotation limits were imposed only on the lunar pictures. 

was primarily in te rms  of the direction of the sun, readily measured and 

controlled in the spacecraft. 

obtained by scanning, or  by parallel systems using displaced input fields. 

In an operating 

Rotation control 

An expanded range in translation may be 
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Figure 4. Cumulus, Solid Cell 
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, 

Figure 5. Noncumulus 
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Similar ly ,  size can be partly controlled optically, through knowledge of the 

spacecraft altitude, while additional flexibility can be added by techniques 

such a s  under scanning or by using different size apertures. 

On the lunar patterns it was found that in most cases 

human observers could not distinguish ridges from rima without knowledge 

of the direction of illumination from the sun. F o r  example, if the sun is 

illuminating the moon-scape from a relatively low angle, a ridge will be 

brightest on the side closest t o  the sun and cast  a shadow on the side away 

from the sun. The opposite situation results for the r ima or lunar canyon. 

While the c ra te rs  could be recognized without prior knowledge of the sun's 

direction, the characteristic pattern of bright and dark crescents was tied 

directly to the direction of illumination. Orienting the camera or the scan 

aboard the spacecraft to bear  a constant relative angle with respect to the 

sun in the plane of the lunar surface was considered technically feasible since 

such craft presently use sun sensors to position and stabilize themselves. 

This allows the designer of the recognition system to take advantage of 

a priori knowledge of the direction of the sun and greatly reduce the number 

of possible pattern variations. 

The c ra te rs  chosen for this study varied in diameter 

In order to classify the smallest crater  in the set  from 10 KM to 100 KM. 

with an aperture adequately large to encompass the largest  c ra te r ,  many 

different examples of c ra te rs  of the smallest size would have been required 

at various positions in the receptive field, to make the pattern statistically 

significant with respect to the res t  of the picture. 

a resolution investigation indicated that such an aperture would have required 

250 x 250 points to provide a sufficient number of resolvable elements to 

classify the smallest c ra te rs  in the set. To accommodate these pattern size 

variations a simple size normalization of the crater  patterns was performed. 

The diameter of the largest  crater  was specified to be  no greater than 1-1/2 

times the diameter of the smallest crater  in the set .  Despite the restrictions 

imposed by this normalization it was felt that the applicability of the resulting 

machine design to the general recognition problem would not be limited. 

recognition system with connections specified by the experimental design 

could scan small sections of the received image to classify the smallest c ra te rs ;  

In addition, the results of 

A 
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.he same design, with connections expanded by a fixed ratio about the center 

?oint of the scan aperture,  could be used to scan la rger  a reas  and classify 

:he la rger  c ra te rs .  

3erform the size normalization. 

iifficult problem in size normalization. 

:onvenient dimension comparable to the diameter of the craters .  

:onsiderably both in width and length. 

iormalize the size of the linear features so that the distance across  the 

:eature was approximately 10% to 1570 of the width of the aperture used for 

he craters .  

nine the light side and shadow side of the ridge or  r ima  but retained i ts  

inear characterist ic.  

I f  the linear pattern. 

f 

Alternately a zoom lens as used in Surveyor I could 

The linear features presented a more  

The ridges and r ima did not have a 

They varied 

As a compromise, it was decided to 

This achieved sufficient resolution across  the feature to deter-  

In most cases  this meant using only part  of the length 

The assumption was made that the amount of light 

mtering the vidicon aboard a spacecraft could be controlled electronically to 

naintain a constant average brightness for the received pictures. 

)f a controllable i r i s  on the cameras  of Surveyor I clearly illustrates this 

.echnique). 

>f the digitized photographs to compensate for variations in video gain inherent 

n the slow scan television system used for conversion of the pattern photo- 

graphs. 

(The use 

This as  sumption permitted adjustment of the brightness levels 

To obtain an estimate of resolution required for recog- 

iition of the lunar patterns, typical examples were selected from the four 

,attern groups and placed before the slow scan television camera.  

vertical sweep was adjusted to give 160 lines/inch on the TV monitor. 

nonitor display was photographed as the distance between the TV camera and 

)attern was increased in five steps. The farthest distance was chosen to give 

ibout 15 lines of resolution across  a c ra te r .  Examination of the monitor 

)hotographs indicated that human observers could accurately distinguish 

between cra te rs  without and c ra t e r s  with conspicuous elevations with about 

!5 lines of resolution across  the crater.  

were not so well defined. 

ieatures on the face of the monitor precisely. 

recognition was on the order  of 1/16 inch to 1/32 inch. A s  a result  it was 

relt that a t  least  5 to 8 resolvable elements across  the ridge o r  r ima were 

The 

The 

The results for ridges and r ima 
It was difficult to measure the width of the linear 

The width a t  the l imits of 
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necessary to determine the bright side and the dark side of the feature, and 

that a 50 by 50 ras te r  would be adequate for the recognition system. 

A similar analysis of the NIMBUS data was performed. 

The prints supplied were-enlarged from 35mm negatives on 8 in. x 10 in. 

contrast grade 3 paper. 

printing process through the use of a densitometer positioned under a particula 

square in the middle of the gray scale wedge associated with each photograph. 

On most of the prints from six to eight gray levels were discernable on this 

gray wedge. 

The correct gray scales were maintained during the 

To obtain an estimate of resolution and aperture size 

required for recognition of the cloud patterns, typical examples were selected 

from the three pattern groups and placed before the slow scan television 

camera. 

TV camera and the pattern was increased in several  steps. 

were examined to determine the minimum size aperture with which the various 

patterns could be recognized. These apertures corresponded to a 0.9-inch 

square on the original 6 by 6 inch photographs of noncumulus patterns and a 

1.4 inch square on the original polygonal cell and solid cell cumulus photo- 

graphs. 

did not give sufficient detail to Tecognize individual cells in the cumulus 

patterns. 

resolution of 75 elements across  the aperture (field of view.of the recognition 

system). 

examples of the cloud features from each photograph. 

originally provided, only the 147 prints judged by Astropower to  contain the 

best examples of the selected features were used for conversion to video 

patterns 

The monitor display was photographed as the distance between the 

The photographs 

It was also felt that the 50 resolvable elements across  the aperture 

The digital pattern processing program was modified to achieve a 

The small size of the aperture made it possible to choose several 

Thus, of the 311 prints 

The only other assumption introduced in the course of 

processing the NIMBUS patterns was concerned with the coiitr*3l of 

the amount of light entering the vidicon as was done for the lunar patterns. 

Again this assumption permitted adjustment of the brightness levels of the 

digitized photographs to compensate for variation in video gain inherent in the 

slow scan television system. There appeared to be no preferred rotational 
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orientation of the NIMBUS photographs as  was the case for the lunar features 

and their characteristic shadow patterns. 

a particular angular relationship with the sun and no size normalization of the 

patterns was performed. 

* 
No attempt was made to preserve 

3.2.3 

The procedure for converting the photographic pattern 

sets to pattern files stored on digital magnetic tapes in a form suitable for 

use in the simulation experiments included the following steps: 

Developing a video image of the photograph with a slow 
scan television system. 

Recording the video output of the TV system on analog 
magnetic tape. 

Replaying the recorded video signal through analog to 
digital conversion equipment creating a set  of digitized 
video tape s . 
Processing the digitized tapes to obtain correct resolu- 
tion, enhance contrast, and eliminate "between picture" 
noise. 

Editing the processed pictures to separate training and 
independent (generalization) samples and to provide 
translated versions of the recorded pictures. 

The video images of the pattern photographs were 

obtained with a slow scan television system, Model 6030B, manufactured by 

General Electro-dynamics Corporation of Garland, Texas. The slow scan 

camera was mounted vertically on a stable structure with the lens pointing 

down toward the center of a 4 foot by 4 foot table. 

up and down providing a practical range from 3 inches to 50 inches between 

lens and photograph. 

image of satisfactory clarity over this entire range to enable increasing or 

reducing its size with respect to the photographic pattern. 

was mounted about 2 inches from the camera on each side to eliminate shadows 

cast by the camera and supporting structure. 

was controlled by a Variac. 

integrated the incident light to produce an image requiring a semidarkened 

room for the recording process. 

The table was easily moved 

A suitable set of close up lens attachments provided an 

A photo flood light 

The intensity of the two lights 

The vidicon tube used in the slow scan camera 
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A certain amount of operating experience was necessary 

to determine the best  combinations of light intensity and exposure time for 

producing sharp images without saturating the vidicon. 

would change with distance between the lens and the photograph and, in some 

cases,  would change with the gray scale level and texture of the photograph. 

A Simmons Omega repeating t imer was used to control the exposure interval. 

These combinations 

For  the lunar data, the results of the resolution study 

indicated that 25 lines of resolution should be adequate to allow classification 

of the craters .  It was decided to make the largest  crater  no larger than 80% 
of the width of the aperture to allow room for various translations. Since the 

smallest c ra te rs  were to be no smaller than two thirds the size of the largest 

c ra te rs ,  a 50 x 50 point picture gave at least  25 lines of resolution across  the 

smallest crater.  

were drawn with grease pencil on the face of the TV monitor. 

chosen aperture was 1.5 inches on the face of the monitor. 

Squares delimiting the smallest and largest  crater  sizes 
The size of the 

The pictures were recorded with four times the final 

50 x 50 resolution giving an initial aperture of 200 x 200 points. 

processing program described later in this section the resolution was reduced 

by a factor of four by summing the gray scale values of four adjacent points 

In the 

on a line for four lines and dividing by 16 to obtain a numerical average of 

16  points. This process yielded the desired 50 x 50 resolution across the 

aperture and alleviated the effects of noise added to the video signal in the 

recording process. It also tended to compensate for slight misalignments 

individual scan lines 

the 

of 

The picture on the monitor scope was 2 .47  inches high. 

In order to obtain 200 lines across  the 1 ,5  inch aperture, 330 lines were 

required for the entire picture. 

was 1. 10 indicating that 363 sample points should be taken on each line to give 

an equivalent 200 lines across  the 1.5 inch aperture in the horizontal direction. 

The aspect ratio or ratio of width to height 

The Precision Instruments' 2100 recorder was used to 

record the video output of the TV camera.  The 30-inch/sec speed with its 

frequency response from dc to 10 KC yielded the best  compromise between 

video scan time (the longer the scan, the worse the picture) and the number of 
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pictures (approximately 100) stored on each ree l  of analog magnetic tape. 

With careful calibration of the recorder electronics i t  was possible to achieve 

the specified signal to noise ratio of 46 db. 

RMS power of the gray scale information carried on the video pulse was much 

smaller than the dc power of the video pulse itself; therefore, the amplitude 

of the noise generated in the recording process was in the same range as  the 

gray scale signal. Averaging 16 sample points to obtain one point at  reduced 

resolution virtually eliminated the effects of this noise. 

, 

However, it is evident that the 

The recording process was straightforward. The 
photographic pattern was placed on the table under the camera at a distance 

which would place the feature within the limits of the aperture marked on the 

monitor. 

size limits. 

specific direction. 

the recorder was turned on and allowed to stabilize at  30 ips, and one TV 
scan was initiated. 

A Polaroid photograph was made of the TV monitor to retain a record of the 

actual area of the photograph scanned and the probable quality of the picture. 

Each ?hotographic pattern was recorded in three rotations differing by 15 

degrees. 

Cra te rs  were centered between the minimum size and maximum 

The photographs were oriented s o  the sun angle was from a 

The lights were turned on for the proper exposure time, 

When the scan was complete the recorder was turned off. 

When approximately three analog reels were filled, 

they were played back and processed with an analog to digital converter at  the 

Douglas data processing facility in Huntington Beach. 

required when digitizing the patterns was estimated as  follows: 

The sampling frequency 

Desired visible horizontal - 
trace time 

- 
2 x (Video bandwidth) 

- - 363 Samples = 18.1 ms 

(2) (104cps) 

The actual video bandwidth was 1 MC but the 10 KC filter on the input of the 

F M  recorder gave an effective video bandwidth of 10 KC. The flyback time 

was measured at  1. 1 ms  so  the total horizontal sweep time was 19. 2 ms. 

Total f rame time = (Number of lines) (Total horizontal 
sweep time) 

= (330 lines) (19.2 ms) = 6.33 sec 
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Allowance for 770 blanking and 7570 registration proba- 

Tests  at the bility normally considered in this calculation was not included. 

beginning of the study indicated blanking was negligible. 

problem was virtually eliminated by the average of four points in both directions 

since the minimum spatial frequencies appearing in the final picture would 

cover the width of eight lines per cycle instead of two. 

The registration 

The sampling frequency is  then: 

Sampling frequency - Number of samples per line - 
Visible horizontal t race time 

- 362 Samples = 2o KC - 
18.1 m s  

The tape speed was 15 ips and the sampling frequency 

was 10,000 samples/sec. 

this gave an effective sampling rate of the required 20,000 samples/sec.  

recorded video signal was quantized to 10 bits from the lowest to the highest 

signal level, obviously more than adequate to represent the eight gray levels. 

The A/D converter was turned on at  the beginning of a set  of pictures and 

turned off after 18 pictures had been processed and the output had been 

recorded on a digital magnetic tape. 

"between pictures'' interval during the digitizing process. 

Since the tapes were being played at half speed 

The 

No attempt was made to eliminate the 

The resulting magnetic tapes with the digitized video 

data were processed on Astropower's SDS 930 computer. 

program read the tapes and separated the pictures from the "between 

pictures" interval. 

obtaining the numerical average of blocks of 16 points as described above. 

The processing 

At the same time, i t  performed resolution reduction by 

The program also performed a gray scale expansion 

about the features of interest. 

considering the highest video level in the pictures as  white and the lowest 

level as black. 

remaining gray levels. 

for the constant adjustments of the video gain required to maintain satisfactory 

performance of the TV system during the recording phase. It had the addition- 

al effect of enhancing the picture contrast in the regions of interest, serving 

as  a mild form of signal conditioning. 

The gray scale range was determined by 

The intervening range was divided equally between the six 

The floating gray scale was needed to compensate 
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The result was an 85 x 72 matrix of numbers from 

0 to 7 representing the brightness level a t  each point on the photograph. 

order to interpret the processed pictures more easily a character printout 

was used in addition to printing the numerical gray scale values. 

consisted of assigning dense characters such a s  B's to represent dark points 

and letting blanks o r  periods represent light points. Intermediate points are 

represented by appropriate combinations of characters. 

out was used for the reduced resolution examples shown in Figures 6 through 

10. 

In 

This 

The character print- 

The final step in preparing the patterns was the editing 

Each of the basic patterns was initially recorded in three rotations* process. 

differing by about 15 degrees, providing from 120 to 150 digital pictures for 

each set. 

rated. The editing process consisted of choosing a 50 x 50 set  of points from 

the larger 85 x 72 picture so that each feature was fairly well centered within 

its 50 x 50 frame. 

effectively shifted the feature within i ts  frame up to 17 per cent of the width 

of field in four directions. 

taken from each digitized picture. 

variation in pattern quality, so up to 16  translations were taken from the 

better patterns. 

dent test patterns for each of the four basic pattern sets.  

The printouts were studied and the quality of each pattern was 

In addition, several translations were chosen which 

In the case of the c ra te rs ,  nine translations were 

The linear features proved to have a wider 

The editing resulted in a set of 1000 training and 200 indepen- 

Figures 6 through 9 show examples of each of the four 

basic patterns. 

good example of the feature and its 50 x 50 character printout. 

illustrations show other typical examples of the same feature. 

tions under score the fact that the distinguishing feature between the two types 

of c ra te r  patterns (the conspicuous central elevation) occupies only about 1 

percent of the area of the picture. 

and ridges (the light and dark sides of the pattern) occupied from 5 percent 

to 10 percent of the picture area.  

The top two illustrations show the original photograph of a 

The lower 

The illustra- 

The distinguishing features between rima 

Figure 10 illustrates that the 50 x 50 point field pre-  

serves a surprising amount of detail found in the original picture. However, 
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Original Photograph Final Resolution 

Good Crater  Prototypes 

Typical Cra te r  Pat terns  

Figure 6. Lunar Cra te rs  With No Conspicuous Central Elevation 
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Final Resolution 

Good Prototype 

Typical Patterns 

Figure 7. Lunar Cra te rs  With One o r  More Conspicuous 
Central Elevations 
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0 ri ginal Photograph Final Resolution 

Good Rima Prototype 

Typical Rima Patterns 

Figure 8. Lunar Rima 
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Original Photograph Final Resolution 

Good Ridge Prototype 

Typical Ridge Pat terns  

Figure 9. Lunar Ridges 

52 



. 
. 

Original Photograph 

Fina l  Resolution 

F igure  10, C r a t e r  with Cent ra l  Elevation (Albategnius) 
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it is  still difficult to determine from inspection of the reduced resolution 

picture that the crater  does have a central elevation. 
9 

The NIMBUS photographs were processed in a similar 

fashion. 

square for the noncumulus cloud patterns and 1.4 inches square for the cumulus 

cloud patterns. 

graphs it was possible to avoid a reas  of the NIMBUS pictures containing 

fiducial marks; howevers the larger aperture required for the cumulus 

patterns included at  least one fiducial mark at any position on the photograph. 

In addition many of the photographs contained long black lines running across  

the a reas  of interest. Since these extraneous marks appeared a s  strong 

features and could confuse the classification problem, it was considered 

desirable to eliminate them. 

the marks and an attempt was made to match the gray scale and pattern shape 

of the area surrounding each mark, 

tains three unretouched fiducial marks and one retouched mark, 

photograph contains two retouched fiducials and a retouched black line. 

Figure 5 contains examples of unretouched fiducial marks and black lines. 

The sampling apertures on the original photographs were 0. 9 inches 

With the smaller aperture used for the noncumulus photo- 

A water color retouching kit was used to cover 

The upper photograph in Figure 3 con- 

The lower 

The video output of the TV system was recorded to 

allow batch analog-to-digital conversion of the video patterns 

to-digital conversion at a sampling rate consistent with the resolution desired, 

the digital tapes produced were processed by a computer program which 

isolated the pictures and adjusted gray scale levels to compensate for changes 

in video gain in the TV system. 

the pictures and stored the patterns in a standardized format on digital 

magnetic tapes, 

values of four adjacent points for three rows and dividing by 12 to obtain an 

average gray scale to represent the a rea  originally covered by the 12 points. 

After analog- 

This program also reduced the resolution of 

The resolution was reduced by summing the gray scale 

An editing program was also employed to provide several 

translations and a 180° rotation of the stored patterns-to expand the pattern 

files. 

percent greater than the required aperture size. 

six sample patterns were obtained from pach recorded frame. 

aperture was centered in the frame, the second translation shifted the aperture 

The dimensions of the video patterns actually recorded were about 35 
In editing the training set, 

The first  
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upward by 11 resolution points in the video frame, and the third translation 

shifted the aperture downward by 11 resolution points. The frame was then 

rotated 180° and the three translations were repeated. Fo r  the generalization 

set only the central position and 11 point upward shift were used in each 

rotation. 

dent test patterns for each of the three basic pattern sets. 

The editing process produced a set of 1000 training and 200 indepen- 

3. 2.4 Pattern Files 

After the processing described above was completed, 

there were two pattern files for each of seven pattern classes: 

(1) 
(2) Craters  with central elevations 

( 3) Wrinkle ridge s 

(4) Rima 

(5) Noncululus clouds 

(6) Cumulus - solid cells 

(7) Cumulus-polygonal cells 

Cra te rs  with no central elevations 

For  each pattern class,  one file, consisting of 1000 sample patterns, was 

used for designing recognition systems, and the other file, which contained 

200 sample patterns, was used to test the recognition systems. 

Design and test  files were also established for three 

composite classes: 

(8) 

( 9 )  

(10) 

Craters  (including classes (1) and (2) above) 

Linear Features (including classes (3 )  and (4) 
ab w e) 
Cumulus clouds (including classes (6) and (7) 
ab ov e) 

The design and test files for each of these composite classes also consisted 

of 1000 and 200 sample patterns, respectively. Fewer translations were 

taken from each basic pattern in producing the files for the composite classes 

than for the single classes.  

The 20 pattern files described provided the basic data 

for this program. 

however. 

Some 58 other pattern files were used in these studies, 
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Twenty-four of these files were used in the reduced 

For  each class of lunar pattern aperture experiments of Section 3 .  3 , 4 . 4 .  

(classes 1-4, 8,  and 9 above), files of patterns using subapertures of 25 by 

25 and 15 by 15 were generated. The subapertures were selected to contain 

the significant pattern features. Translations were included in these files, 

but their extent was controlled to assure  that the significant features would 

be present, 

Twenty-eight files represented the basic data in classes 

1-7, including the reduced apertures. Computer generated translations and 

rotations were eliminated. 

experiments of Section 3.  3. 7. 

These files were used for the augmentation 

Two of the files were the test  files for classes 8 and 9 
(c ra te rs  and linear features), with the raster  elements of each pattern sub- 

jected to a random rearrangement. These files were also used in the work 

described in Section 3 .  3 . 4 . 4 .  

The last  two files were design patterns for classes 3 

and 4 (wrinkle ridges and rima). 

generated in the computer, and represent idealized patterns. Systems de- 

signed using these artificial patterns were tested on real  samples. 

is described in Section 3. 3 . 4 , 4  as well. 

The sample patterns in these files were 

This work 
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3 . 3  Experimental Programs 

3 . 3 .  1 Decision Functions 

The six techniques for  designing decision functions are 

called, in this report: 

1 .  Forced Learning 

2. Bayes Weights 

3. E r r o r  Correction 

4. Iterative Design 

5. Meansquare E r r o r  

6 .  MADALINE 

The first three of these a r e  generally associated with the Perceptron program 

of F. Rosenblatt. (125) The last  two a r e  associated with the MADALINE pro- 

gram of B. Widrow. '157) Iterative design is a minimum loss approach, an 

approach first applied by W.  Highleyman. (71) 

with i ts  exponential form of the loss function, was developed at Astropower 

Lab0 rat0 ry . 

The particular algorithm used 

The f i r s t  five techniques derive linear functions of the 

binary property profile vectors for the computation of the decision. 

be the output of the i - th  property filter for the j-th pattern. 
Let bi(j) 

Let 

D(j) = Zwibi(j) - 0 

where 6 is a threshold for the decision element. 

achieved by assigning the j-th pattern to the "positive" class i f  D(j) > 0 and to 

the "negative" class  i f  D(j) < 0. If D(j) = 0, i t  is assumed, in this study, that 

the decision is  in e r r o r  regardless of the actual classification of the j-th pat- 

tern. 

"1" and "0" in the first four techniques, and "1" and t l- l l t  in the las t  two tech- 

niques. 

The first five techniques differ in the method for  assigning values to the 

parameters w. and 8, based on the property profiles of the sample patterns. 

Then a binary decision is 

F o r  computational convenience, the two values of bi(j) a r e  taken to be 

This assumption does not affect the capabilities of the techniques. 

1 

57 



3 . 3 .  1. 1 Forced Learning * 

In the forced learning technique, the oldest of 

the six methods, the weights w. a r e  defined to be: 
1 

where p. is the fraction of patterns in the flpositive" class possessing the i-th 

property (i. e. , the fraction for which bi(j) = 1) and q. is the fraction of pat- 

terns in the "negative" class possessing the property (again the fraction for  

which bi(j) = 1). 

in this study, the weights can be derived by examining the patterns one a t  a 

time. 

to aero. 

fied according to the following rule. 

1 

1 

If the number of samples for each pattern class  is equal, as 

Let the number of samples per class be "m. Set each weight initially 

The weights are modi- Then the patterns a r e  examined one by one. 

1 
m 
- 

where sgn(j) is "1" o r  "-1" according to whether the j-th pattern is "positive" 

o r  "negative" and Aw.(j) is the increment to the w. due to the j-th pattern. 

Only one pass through the sample patterns is  required. 

includes the forced learning technique. 

1 1 
Summary Figure 11 

The forced learning technique generally 

assumes the value of the threshold, 8, to be aero. In this study, i t  was taken 

to be the average value of 

for all sample patterns. Using this average value compensates for property 

filters which are assigned to be "on" primarily for patterns of one class and 

"off" primarily for patterns of the other class. The original forced learning 

technique was applied to randomly generated property fi l ters which did not 

have this consistent bias. 

3 .  3. 1 . 2  Bayes Weights 

The Bayes weights technique was originally 

derived as an "optimum" solution to the assignment of a decision function 

under the assumption that the property fi l ters were statistically independent. 
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This assumption is not, in general, valid. 

a r e  assigned by the following rule. 

With this technique, the weights 

.L -P 

where the symbols are as described above. 

f rom the forced learning data if  the accumulations of Awi(j) are kept separately 

for "positive" and "negative" patterns. 

threshold 8 is taken as the average value of C wibi,j). 

technique is summarized in Figure 11. 

These weights may be computed 

As with the forced learning, the 

The Bayes weights 

3 . 3 ,  1 .  3 E r r o r  Correction 

The e r r o r  correction procedure is largely 

The responsible for the current  popularity of adaptive pattern recognition. 

e r r o r  correction theorem guaranteed perfect performance on the sample pat- 

terns ,  provided that a set  of weights permitting this existed,. 

The weights a re  derived adaptively, in a 
manner similar to the adaptive derivation of the forced learning weights: 

The difference is that this weight change i s  applied only when the j-th sample 

pattern is misclassified. If the sample pattern is correctly classified, the 

weights a r e  not changed. This modification requires that each sample pattern 

be processed many times. The e r r o r  correction theorem specifies that only 

a finite number of corrections a re  needed to achieve a solution, but does not 

specify the number. The patterns were processed cyclically in this study. 

The threshold 8 is also determined adaptively. 

Again, this change is made only when an incorrect decision i s  observed. 

* 
To prevent the occurrence of undesirable infinite weights, a small constant 
is added to each of the four probability estimates pi, 1 - pi, qi, and 1 - qi. 
This may be justified by a Bayes argument in which an a priori  Beta distri-  
bution is  assumed (Reference 109). 
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CbiWi - 8 7  0 
D -  

CbiWi - e <  O 

Forced Learning 

w .  = p. 
1 i - q i  

Sequentially AWi (j) = - 1 sgn(j) bi(j) 
m 

Baves Weights 

Pi qi W .  = In- - In- 
1 - q. 

1 1 1 - Pi 

Mean Square E r r o r  

Figure 11. Decision Function Generation 
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. A modification of the original algorithm is 

incorporated to speed convergence. 

vector (the weights and the threshold) exceeds i ts  previous maximum, all  of 

the coefficients a r e  doubled. 

mental runs, and is based on previous experiments and analytic considerations. 

Whenever the length of the coefficient 

This change was verified in a number of experi- 

the e r r o r  correction 

the desired value of 

3 . 3 . 1 . 4  Mean Square E r r o r  

The mean square e r r o r  technique differs f rom 

method in that, for design purposes, it is assumed that 

is "1" for "positive" patterns and "-1" for  "negative" patterns. 

pattern is processed, the weights and threshold are changed td give this de- 

sired state. This is facilitated by using the values of rr l"  and l l - l f l  for bi(j). 

Each time a 

where n is the number of property fi l ters,  The threshold is derived similarly, 

Unlike e r r o r  correction Aw.c(j) can be positive o r  negative for  a pattern of 

either class,  and may change sign for one pattern processed at different times. 
1 

The patterns a r e  processed cyclically. The 

technique is summarized in Figure 11 a 

3 . 3 ,  1 .  5 Iterative Design 

The iterative design technique is based on a 

minimum loss approach. 

which depends on the value of the decision function. 

Each sample pattern is assigned a loss number 

The loss for the j-th pattern, L 

rectly classified and greater than 111" if it is incorrectly classified. 

will be less  than f r l s f  i f  the pattern is cor- 
j 2  

The 
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magnitude of the loss number reflects how definite is the decision. 

loss is defined a s  the sum of the individual pattern losses. 
A system , 

SL = C L  
j 

The weights and threshold a r e  adjusted to 

minimize the system loss. 

process is used. 

changed, the threshold is also adjusted. 

Since this cannot be done directly, a relaxation 

The weights a r e  adjusted cyclically. Each time a weight is 

These changes a r e  defined by 

and 

CL.b.(j)  6.1 - sgn(j)) 

cL .b . ( j )  (1 t sgn(j))' 
- J 1  1 A W ~  = ~e - z In 

J 1  j 

It has been shown that this process will give system losses converging to a 

minimum value for the system loss.  In common with the e r r o r  correction 

technique, perfect performance on the sample patterns will be achieved when- 

ever this is possible. 

To prevent the possibility of the finite samples 

yielding infinite weights (and hence absolute indicators) when not warranted, 

a small constant is added to each of the summations shown above. 

The iterative design technique processes one 

property filter at a time, but needs data from all of the sample patterns. 

computer requires "unit profiles" for the sample patterns, rather than prop- 

erty profiles. The technique is summarized in Figure 12. 

The 

3.3 a 1 e 6 MADALINE 

The MADALINE technique is the only one con- 

sidered capable of producing a nonlinear decision function. 

expense of system complexity (see Figure 13). 

It does so at the 
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Iterative Design - 

L. = exp {sgnu) (6 - Zbi(j) Wi} 
i J 

Adaptive ly 

c Lj  

=+ In c Lj Sums €or b.  1 ( j )  = 0 

POS 

c L j  

2 22 L j  AWi = A6 - In Sums for bi ( j )  = 1 

POS 

Figure 12. Decision Function Generation 
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i The design technique has the added job of 

allocating the task among the subdecision elements, o r  ADALINES. 

rithm selected is an extension of the e r r o r  correction technique. 

The algo- 

The basic principle behind the algorithm is 

that of minimum change. 

to determine i f  the decision is correct.  If it 

is not, the number of ADALINES whose decisions must be changed to give a 
correct majority vote is noted. 

the (incorrect) majority on the basis of minimum magnitude of the linear sub- 

decision functions. 

number of corrections, according to the e r r o r  correction technique, to re- 

verse  its decision. 

simplified by using "1" and 'I- 1" values for bi(j). 

As a sample pattern is processed, the first step is 

If it is, no changes are made. 

This number of ADALINES is selected from 

Each of the selected ADALINES is given a sufficient 

It is to be noted that the minimum change principle is 

The patterns a r e  processed cyclically. Con- 

vergence to a solution, when it exists, is not guaranteed, and indeed, counter- 

examples to convergence have been found. Figure 14 summarizes the technique. 

3 . 3 . 2  Statistical Property Fi l ters  

Two techniques for generating binary property fi l ters , 
o r  logic units, a r e  used in the initial experiments, one yielding units with 

linear switching surfaces and one yielding quadratic input units. 

have a limited set  of randomly selected input connections a 

The units 

Each logic unit thus views the patterns as projected on 

a subspace of the signal space. The switching surface for  the unit is derived 

from the analysis of the amounts of the sample patterns as projected into the 

subspace. 

are multivariate Gaussian. 

the covariance matrices for  the pattern classes a r e  assumed equal, and a 

multiple of the identity matrix. 

The analyses a r e  optimum if  the underlying pattern distributions 

The linear surface a r i ses  a s  a special case when 

3 . 3 . 2 .  1 Linear Units 

F o r  each of the recognition tasks, a se t  of 

1000 property fi l ters was derived. 

connections. 

the vector equation: 

Each unit has 10 randomly selected input 

Within the 10-dimensional subspaces the logic unit is defined by 
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ADA LINES 

1. Tes t  Decision 
2.  Determine Number of ADALINES to be Changed 

3.  Choose those ADALINES Requiring Least Change 
i f  Decision Incorrect 

Figure 14. MADALINE Technique 
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T 1 T  T 
X (M1 - Mz) - (M1 M1 - M2 Mz) = 0 

where M and M 1 2 
classes within the subspace. 

which satisfy this equation. 

a r e  the sample mean vectors of the "positive" and "negative" 

The switching surface consists of vectors X 

As shown in Figure 15, the switching surface 

consists of a hyperplane which is the perpendicular bisector of the line segment 

joining the means M1 and Mzo 

also have been written: 

The equation of the switching surface might 

Ca.x. - 8 = 0 
1 1  I 

The coefficients a. a r e  given by 
1 

that is ,  the difference in the mean brightness for the two pattern classes at  

the appropriate sensory field point. 

binary valued these coefficients would be identical to those derived from the 

property profiles by the forced learning tecbnique described ear l ier .  

It i s  to be noted that if the patterns were 

The advantage and the weakness of the tech- 

nique a r e  apparent. 

other connections a r e  selected for the unit, thus the units a r e  very easily 

The coefficient for a connection does not depend on which 

generated. However, the units a r e  not designed based on contrasts and gra- 

dients in the patterns, and require a high degree of pattern centering, size 

normalization, and brightness and contrast control i f  the units a r e  to be 

effective a 

In the discussions of Section 3. 3.4, the linear 

units a r e  referred to by the code "SDA" for simple discriminant analysis. 

3.3.2.2 Quadratic Units 

Two different computer programs were used 

to generate quadratic property filters in this study. 

an IBM 7094, was used in the initial experiments. 

"DAID'' for discriminant analysis-iterative design. 

One of these, written for  

This program is called 

This program was 
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\modified for  an SDS 930, and this modification is referred to as 'lQSID" 

(quadratic surface-iterative design). 

periments, subsequent to the initial ones, in which quadratic property fi l ters 

were to be designed. 

fications contained in QSID a r e  then listed. 

The QSID program was used in a l l  ex- 

The following describes the DAID program. The modi- 

The DAID program designs the set of property 

fi l ters sequentially, ten property filters being added to the l is t  in each pass. 

A decision function is defined concurrently, using the Iterative Design algo- 

rithm (Section 3. 3.  1. 5). The loss function of the Iterative Design method is 

used to control the overall system design. 

A selection process is used to obtain the ten 

fi l ters added to the system in each pass. 

(of the signal space) a r e  chosen by selecting their coordinates randomly. 

Within a randomly selected subspace, the switching surface of a unit i s  defined 

100 seven-dimensional subspaces 

by 

1 T 1  T 1  T -1 1111 

IS21 
XT($il  - $; ) X - 2X (8; M1 - $i1M2) t M1 $; M1 - M2S2 M2 t ln- = 0 

The vectors M1 and M a r e  the sample mean vectors and the matrices 1, and 

s2 a r e  the sample covariance matrices of the "positive" and "negative" classes 

within the subspace. 

switching surfaces would be optimum if the Mus  and $!s were actual means 

and covariance matrices,  and if the underlying statistical distributions were 

multivariate Gaussian. 

2 

The switching surface i s  illustrated in Figure 15. The 

Since the equation of the switching surface 

does incorporate the covariance matrices,  the resulting property fi l ters do 

reflect average contrasts and gradients for pairs of sensory field points. 

price for  this is the necessity for  matrix inversion in computer simulation, 

and the complexity of the quadratic input property fi l ters in its hardware 

mechanization. 

The 

The 100 candidate property fi l ters a r e  then 

evaluated, and ten a r e  selected. 

to complement those already in the system, the evaluation is based on the 

To ensure that the new fil ters a r e  selected 
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system loss. 

the greatest decrease in the system loss a r e  selected. 

the output weights of property fi l ters already selected a r e  held fixed. 

didate property fi l ter  which performs well only on sample patterns already 

correctly classified, would have little effect on the system loss,  and would 

not be selected. 

Those candidates which, i f  added to the system, would provide 
# 

During this evaluation, 

A can- 

Output weights a r e  assigned to the ten selected 

candidates , the output weights of the 20 most recently selected property filters 

a r e  updated, and the 10 filters a r e  added to the system. 

weight of each unit is adjusted twice after its initial assignment. 

Thus the output 

To save computer time, the DAID program 

folds this design process,  

processed concurrently. 

mean vectors and covariance matrices a r e  collected for  100 subspaces in 

Block A, (2)  activities a r e  determined and loss sums a r e  collected for 100 
candidate units in Block B and for 10 selected property filters in  Blocks C, D 

and E, and(3)pattern losses a r e  modified due to the changes in output weights 

for units in Blocks C ,  D, and E. After the sample patterns a r e  processed, 

the property fi l ters in Block E a r e  placed in a permanent file, the output 

weights of the units in Blocks C and D a r e  updated, and these property fi l ters 

a r e  transferred to Blocks D and E respectively. The candidate units in Block 

B a r e  evaluated, the selected units a r e  transferred to Block C and output 

weights assigned. Switching surfaces a r e  computed for the subspaces in 

Block A, these units a r e  transferred to Block B, and a new set of random 

subspaces generated for Block A. 

Five blocks of subspaces and property fi l ters a r e  

In a single pass through the sample patterns, (1) 

The next pass i s  then started. 

Since the output weights of 30 property fi l ters 

a r e  adjusted a t  the same time rather severe instabilities result, due partly to 

the folding. 

each makes a full correction. 

the original change required. 

sums. 

changes than on small  ones. The constant was chosen to be sufficiently large 

to control the instabilities, but small enough to allow adequate weight variation 

If a correction is required and several units can make the change, 

This results in an overshoot much larger  than 

To control this, a constant i s  added to the loss 

This results in undercorrection, with a much greater effect on large 
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* in three adjustments. A desirable side effect of this constant is the elimina- 

tion of infinite weights. 

filter should not be considered an absolute indicator. 

Based on a finite sample of patterns, a property 

A number of changes were required o r  de- 

The QSID program 

Fifteen candidate property fi l ters a r e  de- 

sired in the adaptation of this program for  the SDS 930. 

uses six-dimensional subspaces. 

signed in each pass,  and five a r e  selected. 

two cycles through the sample patterns a r e  required in each pass. 

f i r s t  cycle, mean vectors and covariance matrices a r e  collected, in the 

second the activities of the property filters for the sample patterns a r e  com- 

puted and stored. 

weights one at a time without cycling the sample patterns. 

can result, but a small constant was added to prevent infinite weights. 

The process is not folded and 

In the 

With the stored activities, it  is possible to adjust the output 

No instabilities 

Due to the improved output weight adjustment 

procedure, property filter sets designed by QSID a r e  substantially smaller 

than those designed by DAID. 

NIMBUS data tasks,  and resulting performances were virtually identical. The 

QSID systems, howevero required only 1 /8  to 1/4 as  many property fi l ters as 

the DAID systems. 

Competing systems were designed for both 

3 . 3 . 2 . 3  Recognition Tasks 

Five binary recognition tasks a r e  considered. 

Three of these a r e  concerned with differentiating between features of the 

liman ta r rain. 

1. Task CVC: 

2. Task RVR: 

3. Task CVR: 

Separate c ra te rs  with central  elevations from 
cra te rs  without central elevations 

Separate wrinkle ridges from rima 

Separate the composite class of c ra te rs  with 
and without elevations from the composite 
class of ridges and rima 

Of the three tasks,  separating the c ra t e r s  

with central elevations f rom those without is the most difficult. 

c ra te rs  themselves a r e  usually well defined, the central  elevations a r e  not. 

The elevations, which a r e  the significant portion of the image in this task, 

cover less  than one percent of the sensory field. 

Although the 

Separating the ridges f rom 
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the rima represents a task of intermediate difficulty. 

are not well defined. 

number of samples which are not readily classified by the observer. The 

significant portions of the patterns are larger  than in the c ra t e r  problem, 

covering perhaps five to fifteen percent of the sensory field. The task of 

separating the c ra te rs  f rom the linear features is the easiest  of the three, as 

the significant feature, the c ra te r ,  is usually well defined and may constitute 

more  than thirty percent of the image. 

The patterns in general 

Inspection of the computer printed patterns reveals a 

The remaining two tasks involved cloud tex- 

tures  in NIMBUS photographs. 

4. Task PVS: Separate cumulus polygonal cells f rom cumulus 

5. Task NVC: Separate noncumulus cloud cover from the 

solid cells 

composite class of cumulus polygonal and 
solid cells 

This seems to be the most natural processing, 

although an examination of the patterns indicates that first splitting off the 

polygonal cells ,and then separating the solid cells from the noncumulus cover 

would provide easier  recognition tasks. 

features cover the entire sampling aperture. 

centered in the field of view, but the NIMBUS patterns cannot. 

Unlike the lunar patterns, the NIMBUS 

Thus the lunar features can be 

F o r  each class of each recognition task, a 

file of 1000 sample patterns was established. 

design the property fi l ters and the decision functions. 

nition systems to identify the class of these sample patterns correctly is re- 

ferred to as "classification's capability. 

These patterns a r e  used to 

The ability of the recog- 

A recognition system may register a high 

classification capability without being able to perform a useful function. 

system requiring a complete match with one of the sample patterns would 

score 100% in classification capability, but would be useless on new patterns. 

The patterns contain a considerable amount of data, much of which is extrane- 

ous to the recognition task. 

extraneous data is bound to exhibit a spurious correlation with the pattern 

classification. 

A 

With finite sets of sample patterns, some of the 

Systems designed on this noise would be of no value. In the 
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' QSID and DAID designs it appears that the f i r s t  half to two-thirds of the prop- 

erty filters required (for 100% classification) are relevantto-the owrall  recognition 

task, and the remainder are m a r e  specific to selected patterns in the training set. 

Ideally, the recognition systems would be 

evaluated using the underlying distributions in the signal space of the pattern 

classes.  With the decision surface of the system known, the fraction of pat- 

terns of each class that would be classified correctly can be computed. Un- 

fortunately, these underlying distributions, in general, are not known. In 

this study, these fractions a r e  estimated from the system pe+formance on an 

independent sample of patterns. 

class of each task was established for  this purpose. 

system on these patterns is called the "generalization" capability. 

A second file of 200 sample patterns for  each 

The performance of a 

Conside ring the dimensionality of the signal 

space, a file of 200 test  patterns for  each class is  not large. This is especially 

t rue since the 200 patterns represent translations and rotation of a still smaller 
se t  of basic patterns. Therefore, small differences in generalization capabil- 

ities should not be considered decisive. However, as the same test and design 

patterns a r e  used f o r  each system, it is felt that the comparisons are valid. 

3.3.4 Initial Experiments 

3.3.4. 1 Introduction 

Twelve combinations of design techniques 

The were tested on three recognition tasks dealing with lunar topography. 

experiments a r e  summarized in Figure 16. 

F o r  each of the three lunar feature tasks,  two 

One set  sets  Qf property filters were designed as discussed in Section 3.3.2. 
consisted of 1000 linear units, each having 10 input connections. 

designated by the code "SDA. I' Three hours of computer time, on an SDS 930, 
were required to generate the units and to determine the property profiles of 

the sample patterns. 

having 7 input connections. 

"DAID. I t  Generation of the units and the corresponding property profiles re- 

quired seven hours of computer time on an IBM 7094. 

This se t  is 

The other set consisted of 310 quadratic units, each 

The quadratic units a r e  designated by the code 
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TASKS 

1 .  Cra te r s  with Central  Elevations vs. Cra t e r s  Without 

2 .  Rima vs. Wrinkle Ridges 

3 .  Cra te r s  vs. Linear Features 

PROPERTY FILTER GENERATION 

1. 

2 .  

Simple Disc riminant Analysis (SDA) 

Discriminant Analysis with Iterative Design (DAID) 

DECISION FUNCTION GENERATION 

1 .  Forced Learning 

2 .  Bayes Weights 

3 .  E r r o r  Correction 

4. Iterative Design 

5. Mean Square E r r o r  

6. MADALINE 

Figure 16. Experimental Program (Lunar Features) 
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, The decision functions designed by the pro- 

grams which generate the property fi l ters were discarded. F o r  each of the 

three tasks, and for each of the two sets of property filters, six techniques 

were used to reassign decision functions. 

in Section 3.3.1. 

first two methods, forced learning and Bayes weights, were combined in a 

single program of 20 minutes. The remaining four methods a r e  recursive. 

Each of these methods had its own computer program. 

allowed to run a minimum of eight hours (maximum 12 hours) for  each decision 

function, the exact time depending on computer availability. 

occurred when the programs terminated upon reaching perfect performance. 

More cycles could be accomplished on the DAID units than on the SDA units, 

since there were fewer adjustments to be made in each cycle. 

The six techniques were discussed 

All of these functions were determined on the SDS 930. The 

Each program was 

Three exceptions 

Six design techniques were tested on two 

recognition tasks dealing with cloud cover imagery. 

summarized in Figure 17. 
patterns cannot be centered in  the sampling aperture. Unless the classes can 

be separated by the average gray level of the patterns, the linear property 

fi l ters generated by the simple discriminant analysis (SDA) will give spoor per-  

formance on uncenteredwtterns .  

the linear units provided poorer performance than the quadratic units (DAID). 

Therefore, only the quadratic units were used in the NIMBUS experiments. 

F o r  each of the two tasks,  a set  of 400 quadratic property detectors, each 

unit having 7 input connections, was derived. 

The experiments a r e  

Unlike the lunar feature patterns, the NIMBUS 

In the experiments on’the lunar features 

Decision mechanisms were designed for the 

sets of property filters using the six adaptive techniques (Forced Learning, 

Bayes Weights, E r r o r  Correction, Iterative Design, MADALINE, and Mean 

Square Error ) .  

compute the classification and generalization performance levels after each 

cycle. 

different format than for  the lunar experiments, reflecting the additional in- 

formation provided by these program modifications. 

The las t  four a r e  recursive routines and were modified to 

The results of the NIMBUS experiments a r e  presented in a somewhat 

The design runs for the decision mechanisms 

were longer than for  the lunar experiments. The Iterative Design procedure 

75 



TASKS 

1. Polygonal vs. Solid Cel ls  

2. Noncumulus vs. Cumulus 

PROPERTY FILTER GENERATION 

1. Discr iminant  Analysis with Iterative Design 

DECISJON FUNCTION GENERATION 

1. F o r c e d  Learning 

2. Bayes Weights 

3. E r r o r  Correct ion 

4. Iterative Design 

5.  Mean Square E r r o r  

6. MADALINE 

F igure  17. Experimental  P r o g r a m  (Cloud Features) 
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was run on an SDS 930 for  13 hours for the first task and 8 hours for  the 

second. 

The MADALINE systempsed 3 ADALINES instead of the 7 used on the lunar 

tasks. This, combined with the longer run brought the MADALINE perform- 

ance levels up to the best in the group. The E r r o r  Correction procedure was 

run for 10 and 19 hours and the Mean Square E r r o r  for  10 hours on each task. 

The MADALINE design was run for 9 and 16 hours, respectively. 

3.3.4.2 Lunar Data 

1. Craters  vs  Craters  

The task of separating the c ra te rs  with 

conspicuous central elevations f rom those without elevations, as previously 

discussed, is the most difficult of the three lunar data tasks. 

Figure 18 presents the results achieved. 

A distinct bias in favor of the DAID units may be observed. With these units, 

MADALINE is able to achieve perfect classification performance, e r r o r  cor- 

rection and iterative design achieve an intermediate level (92-93%), and the 

remaining three techniques give the poorest performance (82-84%). 

weights gives the best generalization performance, closely followed by forced 

learning, 

while the other techniques a r e  approximately equal. 

Bayes 

Mean square e r r o r  gives the poorest generalization performance, 

The generalization performance figures 

achieved on this difficult task a r e  not satisfactory, so that the comparisons 

drawn from them should not be given much emphasis. 

2 .  Ridges vs Rima 

The separation of the rima from the 

wrinkle ridges is a somewhat easier  task than Task CVC, but is more difficult 

than any of the other remaining three tasks. 

Figure 19 summarizes the results 

achieved. 

DAID units over the linear SDA units. 

rection and iterative design are able to achieve complete separation of the 

sample patterns . 

These results again show a distinct advantage for the quadratic 

With the DAID units, both e r r o r  cor-  
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MADALINE, despite having seven times as much structure, did not achieve 

complete separation. 

rithm which could not arr ive at a suitable state within the allotted time. 

longer design run, and/or the use of fewer ADALINES might have yielded 

perfect separation. 

r 

It is felt that this is attributable to the inefficient algo- 

A 

The highest generalization performances 

a r e  obtained by MADALINE and Bayes weights using the DAID units, but the 

levels achieved by all systems do not appear to be significantly different. 

Only the Bayes weights and forced learning techniques approach this level 

using the SDA units. 

An examination of the patterns shows a 

number of patterns for which the classification by an observer cannot be made 

accurately, and some patterns in  which the ridge o r  rima is difficult to locate. 

In view of the quality of the patterns, generalization performance of 75 percent 

is more encouraging than the results for Task CVC, but it is not considered 

high enough for  an operational system. 

3. Craters  vs Linear Features 

The separation of the c ra te rs  f rom the 

linear features (ridges and rima) is the easiest of the five tasks. 

this, it is one of the two tasks for which none of the systems achieved perfect 

separation of the sample patterns. 

Despite 

The results obtained a r e  presented in 

Figure 20. 

than the SDA units. 

tion give the best classification performance, yielding over 99 percent correct  

decisions. Even with the SDA units, these two techniques achieved higher 

classification performances than the other techniques do with either set  of 

units. 

equals the classification performance at 99.5 percent, considerably higher 

than the other techniques. 

In most cases ,  the DAID units again proved to be more suitable 

With the DAID units, iterative design and e r r o r  correc- 

Generalization performance with the iterative design decision function 

Again, the MADALINE performances 

were disappointing. To tes t  to see i f  this was due to inefficiency of the 
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algorithm, an additional decision mechanism was designed for  the DAID units. 

Three ADALINES were used, and 150 cycles were executed. 

performance of this system was 94 .35 ,  and the generalization performance 

was 8 9 . 5 .  

The classification 

Both figures a r e  noticeably higher than those in  Figure 20. 

It was suspected that the design point 

which achieved the highest generalization performance did not necessarily 

coincide with the point providing the highest classification performance for  

the iterative design technique. 

the generalization performance at the end of each cycle. 

then run using the SDA units. 

e r r o r  rates a r e  presented on a cycle by cycle basis in Figure 21.  It can be 

seen that i f  the design was terminated at the end of 7 cycles (instead of 26)#  a 

four percent decrease (from 26 to 22) in the generalization e r r o r  r a t ec i s  pos- 

sible, at the expense of a 4 . 6  percent increase in the classification e r r o r  rate 

(from 2 . 9  to 7 . 5 ) .  

be typical. 

type of presentation for the experiments on NIMBUS data. 

The program was modified to permit testing 

The program was 

The resulting classification and generalization 

In subsequent experiments, these results were found to 

All four of the recursive programs were modified to permit this 

3 . 3 . 4 . 3  NIMBUS Data 

1. Cumulus vs Noncumulus 

The first task considered for the NIMBUS 

data is the separation of cumulus from noncumulus cloud cover. 

lunar experiments, 1000 samples of each class are used a s  training patterns, 

and an independent sample of 200 patterns of each class is used to test gener- 

alization. 

by translation and rotation. 

in contrast to the 50 by 50 a r r ay  used in the lunar experiments. 

As in the 

These 1200 patterns a r e  derived from a smaller  se t  of basic patterns 

The patterns a r e  presented as a 75 by 75 a r ray ,  

Four hundred quadratic property filters 

were derived for this task using the DAID program. 

primarily on the basis of computer time available. The iterative design algo- 

rithm is able to separate the training patterns completely, demonstrating that 

the property profiles of the patterns a r e  linearly separable. 

This number was selected 

The performances achieved by the six 

adaptive techniques a r e  shown in Figure 22. For  the four recursive techniques, 

82 



m 
N 

83 



f w .r( *$ e 

m 
d 

0 rn 
hl 
00 

- 
m 
Q) 

u 
h u 
d 

m 

84 



*two blocks of data a r e  shown. The first block shows the cycle in the recursive 

process at which the best performance on the training patterns is achieved, 

and the classification and generalization performance at that point. 

block indicates the cycle and performance levels for best generalization per- 

formance. 

The second 

The total number of cycles examined is also indicated. 

Both the iterative design and MADALINE 

achieved perfect separation of the training patterns. 

the patterns to be linearly separable. 

e r r o r  correction did not achieve complete separation. 

Iterative design shows 

Despite a very long run (19 hours), 

The best generalization performances a r e  

achieved by iterative design, MADALINE, and e r r o r  correction. The other 

recursive technique, mean square e r r o r  fails to achieve even the levels of 

the nonrecursive forced learning and Bayes weights Iterative Design and 

e r ro r c o r r ec tion achieve their best gene rali zation pe rf o rmanc e ve ry e a r ly in 

the design. 

of these two techniques e 

This has been observed consistently, and may be characteristic 

Of the three high performance techniques , 
MADALINE shows the least  sacrifice in generalization performance when clas- 

sification performance is used a s  the criterion for  terminating the design. 

This, of course, is a desirable feature. This observation may be related to 

the early peaking of generalization for iterative design and e r r o r  correction. 

Iterative design shows a moderate drop-off, while the performance for  e r r o r  

correction falls below the level achieved by Bayes weights. 

Figures 23 through 26 show the perfor- 

mance of the four recursive techniques on a cycle by cycle basis (up to 100 

cycles). The solid lines represent classification performance, the broken 

lines show generalization performance. 

by small triangles under the curves. 

MADALINE curves show more irregularity than the iterative design and mean 

square e r r o r  curves, the degree of irregularity is not typical. 

correction and MADALINE curves of the next section show greater irregularity, 

and a r e  more typical. 

choose the best stopping point for the design process. 

Best performance points a r e  indicated 

Although the e r r o r  correction and 

The e r r o r  

The greater  the irregularity, the more difficult it is to 

Generally, the peaks 
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and valleys of the generaliaation curve tend to coincide with peaks and valleys 
of the classification curve. 

2. Solid Cell vs Polygonal Cells 

The performance figures obtained on the 

task of separating the solid cell patterns f rom the polygonal cell  patterns a r e  

very similar to those cumulus-noncumulus tasks. 

Figure 27. 

The results appear in 

Complete separation of the training pat- 

terns was not obtained but the MADALINE and iterative design techniques both 

achieved l e s s  than 2 percent e r r o r  rate. 

the best generalization performance. 

again exhibit their best generalization early in the design. As before, the 

MADALINE shows the least  sacrifice in generalization when classification 

performance level is used to terminate the design process. 

performance falls almost to the level of Bayes weights, and e r r o r  correction 

falls noticeably below that level. 

These two techniques also provided 

E r r o r  correction and iterative design 

Iterative design 

Figures 28 through 31 show the cycle by 

cycle performance fo r  the recursive techniques. The greater  irregularity of 

the MADALINE and e r r o r  correction curves appears to be more typical of the 

results in this study than those of the preceding section. 

More recent designs for Tasks PVS and 

NVC have been accomplished using the QSID program. Generalization per- 

formance of 87.5 and 86. 0 were achieved, using 50 and 100 property fi l ters 

for these tasks, respectively. Further descriptions of these systems a r e  

given in Section 3 . 3 , 7 .  

3 Multiple "Looks" 

For  three of the four pattern categories 

in the NIMBUS tasks,  the generalization sample of 200 patterns per  class were 

derived from 50 basic patterns for each class. 

sampled at two translations for  each of two rotations. 

"looks" at each of the 50 basic patterns for these classes.  

category, Cumulus, 100 basic patterns were sampled at two rotations, pro- 

viding two "looks" at each pattern. 

The basic patterns were 

Thus, there a r e  four 

For  the remaining 
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.e 

The possibility of improving gene ralisa- 
9- 

tion performance by combining the decisions of the several  looksv was investi- 

gated for  all techniques. 

of linear decision functions for all of the looks. 

Table 11. 

The method consisted of simply summing the values 

The results a r e  given in 

If the decisions for the different "looks" 

were completely dependent, that is, the correctness of the decisions depends 

only on the pattern and not on its location o r  orientation, one would expect no 

change in performance. If the looks were completely independent, one might 

compute the expected performance as follows. Over the sample patterns in a 

category, the linear decision function may be considered to be approximately 

normally distributed. 

to standard deviation ratio should be 0.84. 

independent variables, the mean is doubled, but the standard deviation is 

multiplied by 

"looks, 

ratio doubles. 

and for  four looks 95,  370. 

To achieve 80% performance the magnitude of the mean 

Considering the sum of two such 

Thus the ratio is multiplied by fi- F o r  four independent 

the mean is quadrupled and the standard deviation doubles.. Thus the 

The expected performance for two looks in this case is 88.370 

Table 111 gives some typical values. 

The pe rfo rmance levels actually achieved 

a r e  greater than the single look levelss but are much closer  to these values 

than those to be expected i f  the looks were independent. This indicates that 

the original decisions a re  somewhat, but not greatly, dependent on position 

and orientation. The use of a larger  training sample is suggested. 

The multiple look method may be imple- 

mented by sequential processing, o r  by the inclusion of four times as many 

property f i l ters ,  o r  by a combination of these methods. 

3. 3. 4.4  Additional Lunar Data Experiments 

This section describes additional experimen- 

The primary tool consisted of tation which was performed on the lunar data, 

.I. 1. 

This approach was suggested by J. H. Munson of the Stanford Research 
Institute, who uses nine "looks" a t  each pattern, computes a decision for 
each look, and derives a majority decision. His method is thus similar 
to a MADALINE in which the ADALINES compute similar functions. 
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TABLE 11 

Task NvC 

Adaptive Technique 0 riginal Multilook 

Forced Learning 81. 2 84 .7  

Baye s Weights 82. 5 83 .  3 

MULTILOOK GENERALIZATION PERFORMANCES 
PERCENTAGE CORRECT DECISIONS 

Task PvS 

Original Multilook 

81.  0 8 6 . 0  

82. 0 8 6 . 0  

E r r o r  Correction 

Iterative Design 

85. 8 92 .0  83.0 87 .0  

86 .2  88 .7  85 .  5 8 9 . 0  

Mean Square Er ro r  I 7 8 . 5  I 
MADALINE 

88.7  I 80 .8  I 85.0 

86. 0 88 .3  85. 5 8 7 . 0  

Single Look 

7 5  

80 

85 

90 

95 

TABLE I11 

Two Look 

83. 5 

88. 3 

9 2 . 9  

96.  5 

9 9 . 0  

EXPECTED PERFORMANCE FOR INDEPENDENT LOOKS (%) 

Four Look 

91.  6 
9 5 . 3  

98 .  1 

99 .5  

99 .95  
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manipulating the patterns themselves a 

on which 99.5 generalization performance had been obtained, the patterns were 

scrambled in an attempt to determine the basis for this high performance. For  

Task RVR (ridges vs rima), a set  of artificial, noise-free patterns was gen- 

erated for the system design, with the system test  being performed on real  

patterns. 

central elevations), design and testing were conductedwith reduced aperture 

sizes,  using 25 by 25 and 15 by 15 subsections selected from the original 50 

by 50 patterns. 

by the newer computer program (QSID) written for  the SDS 930. 

For  Task CVR (craters  vs ridges- rima), 

F o r  both Tasks RVR and CVC (craters  with vs c ra te rs  without 

The property filter sets for  these experiments were generated 

1, Scrambled Patterns 

On Task CVR, the very high percentage 

of 99.5 correct  decisions was obtained for  both the c ra te r  and the ridge-rima 

groups. 

ence o r  absence of the distinctive c ra te r  formations, with little o r  no emphasis 

on the detection of the less  prominent ridges and rima. 

It was speculated that the system achieved this by detecting the pres- 

To test  this hypothesis, each of the 400 

test patterns for this task was scrambled. 

a pattern was randomly repositioned in a 50 by 50 raster .  

original picture points a r e  used in the scrambled picture, the gray scale 

distribution of each pattern remains unchanged, 

Each of the 2500 picture points in 

Since all of the 

A different random map was 

used for each picture. 

Figure 32. 

Four examples of the random patterns a r e  shown in 

The scrambled generalization patterns 

were then used to test  the system. 

being recognized was correct,  one would expect nearly all of the 400 patterns 

to be classified as ridges-rima, a s  none of them has any resemblance to a 

crater .  Additionally, performances greater than chance in both categories 

would indicate that at least  par t  of the decision depends upon gray scale distri- 

bution. This test gains i ts  validity f rom the high performance levels achieved 

If the conjecture that only the c ra te rs  were 

on the unscrambled patterns. 

The results of this experiment a r e  shown 

in Table IV. The results clearly show that the system recognizes patterns of 
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TABLE IV 

CRATERS VS. LINEAR FEATURES 
ITERATIVE DESIGN CE NE R ALIZATIO N 

1 C r a t e r s  1 Linear  Fea tu res  1 Total I 
I Normal  Pa t te rns  1 9 9 . 5  I 9 9 . 5  1 9 9 . 5 0  I 
I Scrambled Pa t t e rns  I 5 1 . 5  I 49.0 1 5 0 . 2 5  I 
I I I I I 

Scrambled Pa t te rns  1 5 1 . 5  I 5 2 . 5  1 5 2 . 0 0  I 
Be st  Generalization 

I I I I J 

100 
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Both classes,  and that the differences in gray scale distribution do not con- 

tribute to the recognition process. 

2 .  Artificial Patterns 

On the two remaining lunar tasks, the 

performances obtained ear l ie r  were less satisfactory. 

tion lies in the signal-to-noise ratio, F o r  Task CVC, on which the poorest 

performance was achieved, the signal, o r  significant feature is the (presence 

o r  absence of the) central elevation. 

this feature is small, 

larger  and it is often further weakened when the bright par t  o r  shadow part  

of the feature blends in with the background gray level. 

One obvious explana- 

Even in the most prominent examples, 

F o r  Task RVR, the significant feature is only slightly 

In one attempt to improve performance 

on Task RVR, a set  of artificial, noise-free training patterns was generated. 

The artificial patterns consisted of a uniform gray background, on which was 

imposed a pair  of adjacent s t r ipes ,  one lighter, and one darker than the back- 

ground gray level. Complementary pairs of ridge and rima patterns were 

generated, the ridge pattern having the lighter stripe on the right, and the 

rima having the lighter stripe on the left. 

F i g u r e  3 3 .  

Two such pairs a r e  shown in 

A relatively casual examination of the 

real  patterns was used to establish ranges for  the parameters of the art if ical  

patterns. 

of f 64 degrees (from the vertical) was used. The center of the pattern used 

a uniform distribution with a range of f 5 ras te r  elements f rom the center of 

the aperture. 

centrated toward the darker end of the scale. 

butions, 1000 pairs of artificial ridges and rima were generated. 

F o r  the angle of the stripes,  a trimodal distribution with a range 

The distribution of the three gray levels was most heavily con- 
F rom these parameter distri- 

Networks were designed to give perfect 

separability of the artificial patterns, and the performance of these networks 

was tested on the (real) generalization patterns. The performances achieved 

a r e  given in Table V.  
best network only provides 60.5 percent performance, compared with the 

It is c lear  that this experiment was a failure, since the 
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75.75 percent achieved when real  patterns were used for training. 

probable cause of this failure is inadequate parameter distribution. 

The 

3. Reduced Aperture Patterns 

In a second approach toward improved 

signal-to-noise ratios , reduced scanning apertures were used. Subapertures 

of 15 by 15 and 25 by 25 were applied to each sample lunar pattern, training 

and test. 

of the significant features of the patterns. 

The subapertures were positioned to include as much a s  possible 

Figures 34 through 37 give examples of 

the 25 by 25 and 15 by 15 patterns. 

greater on the c ra te rs  than on the ridges and rima. This is because part  of 

the ridges and rima a r e  sacrificed a s  the aperture size is  decreased, while 

none of a central elevation is lost. 

quadratically with aperture size reduction, while the ridges and rima gain 

only linearly. 

The effect of reducing the aperture is 

The cra te rs  with elevations thus gain 

Results for  Task RVR using the 25 by 25 

As with all  networks designed on the reduced aperture a r e  given in Table VI. 
aperture patterns , 100 percent classification of the training patterns was 

achieved with the three recursive techniques used (Er ro r  Correction, Iterative 

Design, and MADALINE). 

the number of filters that the QSID program needed to completely separate 

the training patterns. 

smaller set  of these units would probably be adequate for  complete training 

pattern separability, and a still smaller set  would likely yield marginally 

better generalization results e With the recursive techniques, generalization 

performances a r e  all a t  least  a s  good a s  the 75.75 percent achieved ear l ier  

on the 50 by 50 patterns, but the maximum 77 percent is not significantly better. 

The networks used 260 property filters. This is 

Later results in this section indicate that a somewhat 

Table VII presents the results obtained 

on the RVR task using the 15 by 15 aperture. 

filters. 

reaching a level of 84.5 percent with the MADALINE technique. 

Iterative Design technique, decision functions were derived for  the first 180, 

190, 200, 210, 220, and 230 property filters in  this set. Two hundred and ten 

These networks used 235 property 

Generalization performances showed a more substantial improvement, 

Using the 

104 



m 
lu 
x 
m 
lu 

- - m m  mm--  
m m o -  - - - m m  o- 
mmm-- - - - - - - m m m m  m m m - -  

- - - - a m  m m m m o -  - - - - o m m m m m  m m m m o -  - - o m m m m ( u  m m m m o o - - -  m m m m m o - -  m m m m m m m o - - - - - - - - - - - o m m m m m m m  m m m m m m m o - -  - -  - o m m m m m m m  mmmmmmmmmmmmmmmmmmmmmmmmmmmmmm m m m m m m m m m m m m m m m m m m m a m m m m m ~ ~  

- -  - - -  - c> m - - - m m m  
- z i l l l i  

105 



m m m m m m m m m m m m m m m m m  m ~ m m m m m m ~ m m m m m m m m  m - ~ m m m m m m m - - - - - - m  m - m m m m m m m m - - - - -  m m m m m m m m m m m m - - - - - m  m m m = m m m m m m m - - -  m m m m m m m m a m a m m o - -  - m  a m m m m m m m m m m m o - -  m m m m m m m m m m m m m m m o - m  m m m m m m m m n m m m m m o - m  m m m m m m m m m m m m m m m m m  m m m m m m m m m m m m m m m m m  ~ m u m m m m m m m m m m m m m m  c m m m c& m e e m  m m (u a , m  m m  m m m m m - o m o m m m m m m m m m  m m c c - o c o m o m m m m m m m  m m o - -  - - o o c m m m m m m m  
c iao-  - - o o e m m m m m m m  m a - -  - - -  o m m m u - u u m  
m m - -  - o m m m - - - - m  m m - -  - - - m m m m - - - m  
m e - -  - - m m m m u - - m  m o m - - - - - o m m m m m o - m  m o m - -  - o ~ m m m m m - m  
m - m z  m - - o m m m  m m m m m m  ~ - ~ ~ c - - u m ~ m m c m m m m  
m ~ o m m m m m m m m m ~ o o - m  

m - - o = m m m m a m e m m -  - m  m - - - m m m m m m m m m m - - m  m - - - m m m m m m m m m m -  m m m m m m a m m m m m m m m m m m  m m m a m m m m m m m f f i m m m m m  

:=sg:::gz,ggq.g.g?rg 

ln 
N 

x 
ln 
N 

f! 
5 

m m m m m m m m m m m m m m m m m  m m m m m m m m m m r n m m m m m m  m 5 m m m m m m m m m m m m m m m  ~ m m m m m m m ~ m m m m m m m m  ~uolrnmmmo - - m m m m m  m m m m m m v -  - -m(ummm - m m m m  m m m m  m o m m m - :  
- m m m  a o m m m -  

c , - - - - -  - m m m  -mm - m m  m -  - -m -a 

m i - - - - -  

m 
Y m 
Tu E - Y I _  

.a 

- m  
m 
m 
m 
m m 

P - ---- - - - -  
m 
m m m 

m 

ro 
m 

rl 
m m 

m 

m 
m 

m m 

m 
m m 

m ~ m m m m m m m m m m m m m m m  a m m m m m d m m m m m m m m m m  

106 



In 
N 

x 
In 
N 

107 

c 
P 
P 



ul 
tu 
x 

m 
tu 

108 



109 



V i ai Q, 
V 
k i 0 

110 



,property fi l ters were enough to provide complete separation of the training 
patterns 

fi l ters,  which gave 79.75 percent correct  decisions - an  improvement of one 

percent e 

The best generalization performance was obtained with 180 property 

The results on Task CVC show mQre  

dramatic improvements than on Task RVR. 
the quadratic effect on c ra te r  patterns of aperture reduction as opposed to the 

linear effect on ridges and rima noted ear l ier .  

also stem from the better quality of the c ra te r  patterns. 

formance (63.75 percent on the 50 by 50 patterns) also helps to underscore 

the improvement. 

aperture. 

These results a r e  based on the full set  of 140 property fi l ters used by the 

QSID program to achieve complete separation. 

technique, the effectiveness of smaller sets of property fi l ters was investi- 

gated. 

centages a s  a function of the number of property filters used. 

the property filter subsets represented an initial segment - the set of 100 units, 

for example, being the first 100 property fi l ters designed by the QSID program. 

The curves of Figure 38 a r e  apparently typical. 

property filter set produces a slight improvement in the generalization per- 

formance (in this case,  120 units give 83.25 percent). The most reasonable 

explanation for  this phenomenon is that near the end of a QSID run, only a very 

small number of patterns influence the selection of the property fi l ters.  

Lacking the statistical defense of numbers, the las t  property fi l ters selected 

most likely a r e  based on the individual noise characteristics of the remaining 

patterns. Even with the reduced aperture, the central elevations occupy less 

than five percent of the input field. 

This is no doubt partially due to 

P a r t  of the difference may 

Poorer initial per- 

Table VI11 presents the results achieved with the 25 by 25 

Two systems achieve 82.5 percent on the generalization patterns. 

Using the Iterative Design 

Figure 38 presents the classification and generalization e r r o r  per- 

In each case,  

A limited reduction in the 

When the aperture is reduced to 15 by 15, 

another large increase in performance is noted. 

needed to produce the 96.25 percent performance given in Table IX. Figure 

39, which shows the effect of using smaller  sets  of property fi l ters,  does not 

indicate any improvements over the full set  of units. 

Only 65 property fi l ters a r e  
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3.3.4.5 Summary 

Table X summarizes the results achieved on 

the five (full aperture) recognition tasks by the six decision function algorithms. 

With some exceptions, performance differences a r e  not large. Mean square 

e r r o r  falls down on four of the five tasks. 

Tasks CVC and RVR a s  being too poor for  useful systems , then the nonrecur- 

sive forced learning and Bayes weights algorithms appear weak. MADALINE 

falters on Task CVR. 

performer 

If one downgrades the results on 

Iterative design appears to be the most consistent 

MADALINE has the advantage that it usually 

provided a negligible loss in generalization Performance when best performance 

on the training patterns is used a s  the criterion for  terminating the design 

process. 

weights a s  the other techniques and longer design times due to the inefficient 

algorithm and the late occurrence of the optimal performance points. 

It has the disadvantages of requiring three times a s  many adjustable 

Iterative design has the advantage that best 

generalization usually occurs very early in the design processs offering the 

possibility of very short  design times. 

on the training patterns in a very smooth fashion, while similarly decreasing 

the generalization performance. 

selection of the optimum point for stopping less  critical. 

formance loss when classification performance is used as the stopping criterion 

is moderate. 

Further design improves performance 

The smoothness of the curves makes the 

Generalization per- 

E r r o r  correction shares with iterative design 

Ceneraliza- the advantage of early peaking of the generalization performance. 

tion loss was usually the largest  with this technique with classification a s  the 

stopping criterion. As with MADALINE, performance curves a r e  irregular,  

making stopping point selection more critical; and the algorithm is inefficient, 

improving classification performance ve py slowly e 

The quadratic property fi l ters (DAID units) 

provide significantly higher performance levels than do the linear property 

fi l ters (SDA) units, although the total number of adjustable parameters in the 

specification of the units was about the same for  both property fi l ter  sets.  
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TABLE X 

Adaptive Technique 

Forced Learning 

Bay e s W e  i ght s 

Erro r  Correction 

Iterative De sign 

Mean Square Error 

MADALINE 

GENERALIZATION PERFORMANCES FOR 30 SYSTEMS 
PERCENTAGE CORRECT DECISIONS 

Task 

Lunar Features Cloud Features 

c v c  RvR CVR NvC P V S  

62. 8 71. 0 74. 8 81. 2 81. 0 

63. 8 75.2 77.5 82. 5 82. 0 

59. a 70. 2 99. 2 85. 8 83. 0 

59.0 73. 8 99.5 86. 2 85. 5 

43.0 74.5 82. 2 78. 5 80. 8 

58, 0 75 .8  89. 5 86. 0 85. 5 
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Three factors may contribute to this result: the quadratic units a r e  based on 

contrasts in the patterns as well a s  average brightnesses (the basis of the 

linear units); selection was used with the DAID units, that is, only the best 

10 percent of the units generated were used; and the DAID set was constructed 

sequentially, with la ter  units selected to complement the ear l ie r  ones e 

The multiple look analysis indicates that the 

discrimination capability of the property fi l ters is somewhat dependent upon 

translation and rotation of the patterns. This may be remedied by including 

more translations and rotations in the se t  of training patterns so  that the 

property fi l ters derived a r e  less  sensitive to these pattern changes, and/or 

replicating the property fi l ters derived in other translations and rotations to 

implement the multiple look technique.. 

A study of the very high performance system 

designed fo r  Task CVR indicates that this system does actually recognize pat- 

terns of both classes,  and not the presence o r  absence of patterns of one of 

the classes.  

Results obtained using artifical noise-free 

patterns for training a system were not encouraging. 

extreme care  is necessary in defining the variations of the artificial patterns 

so  that they a r e  representative of the real  patterns. 

Indications a r e  that 

The performance obtained on each task appears 

to be very strongly related to the size of the significant pattern features rela- 

tive to the size of the sensory field. When the significant feature represents 

less  than one percent of the field, the best generalization performance achieved 

was 64 percent. 

generalization was 76 percent, 

the generalization performance better than 99 percent was achieved. 

F o r  patterns such as the lunar data, reducing 

When the feature was five to ten percent of the field, the best 

With features covering 30 percent of the field, 

the aperture size for  small features i s  an effective technique as can be sur-  

mised from the comment made above. 

Task RVR was increased from 75.75 to 84.5 percent, and on Task CVC from 

63.75 to 96.25 percent. 

Using this method, performance on 
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3.3.5 Additional Decision Functions 

3.3.5. 1 Introduction 

Earl ier  results obtained by using a variety of 

algorithms to design decision networks for a given set  of property detectors 

did not show a clear superiority for  any technique. Exc;,ept fo r  mean square 

error.,  the recursive techniques allsiLpp&+red& to 'be equally effective. 

MADALINE was the only technique tested 

ear l ier  which yielded a nonlinear decision on the property profiles. 

quently, it has an inherently greater capability than the other techniques, 

gained at the expense of greater system complexity. 

added capacity might be attributed to the fact that the particular property 

fi l ters used were designed to achieve linear separability of the training patterns. 

Two new nonlinear decision techniques were included in this study, and provide 

a partial confirmation of this hypothesis. 

linear techniques when applied to the same sets of property fi l ters.  

Conse- 

Its failure to exploit this 

They also failed to outperform the 

The two new techniques a r e  attractive in their 

own right. 

literature. (' 15) The Distribution Estimation method provided some good 

results a s  reported in Section 3.3. 6. 3 of this report. 

The piecewise-linear technique has been favorably reported in the 

The E r r o r  Correction and MADALINE tech- 

niques required relatively long design times. 

exhibited strong oscillations in performance a s  a function of the number of 

training cycles. 

point for the design process. 

one modified E r r o r  Correction algorithm, and two modified MADALINE algo- 

r ithm s we r e t e s t e d . 

Furthermore, these two designs 

This behavior made it difficult to select a proper stopping 

In an attempt to overcomr: these difficulties 

3.3.5.2 Distribution Estimation 

A distribution estimation technique was applied 

to the QSID and DAID property profiles derived ear l ier  for  sample patterns. 

This method is nonparametric, and is intended to recover f rom sample vectors 

an estimate of the (continuous) underlying distribution. Because this technique 

was intended for continuous distributions, it is perhaps not a t  its best when 

119 



applied to the binary property fi l ter  outputs. 

of the one written for  use in designing property fi l ters (Section 3.3.6.3), and 

was limited to the processing of 150-dimensional distributions. 

The program was a modification 

Given M n-dimensional sample vectors 

(training), denote the 3-th coordinate of the i-th sample by y... 

coordinate of a test pattern be denoted by x.. 
test  vector X is given by: 

Let the j-th 
1J 

The likelihood estimate for the 
J 

A more complete description of this estimate, and the means for estimating 

the parameters b. is given in Section 3.3.6.3. 
J 

A decision is derived for a tes t  pattern by 

estimating the likelihood functions (i. e. 

vector) for each class ,  using the sample patterns and b. values appropriate to 

that class,  and then selecting the largest  likelihood value. 

cision surface is highly nonlinear. 

density estimates for  the test pattern 

J 
The resulting de- 

The technique was first applied to the QSLD 
property fi l ters for Task CVC, for 5, 25, 35, and 65 property filters. 

40 shows the results, as compared with the decision functions designed by 

iterative design. 

filter sets ,  but not when the full set  of f i l ters is used. 

Figure 

Distribution estimation does better with truncated property 

The technique was then applied to the first 35 

It achieved 76.5 percent generalization, DAID property fi l ters for Task NVC. 

as compared with 73.75 percent for  e r r o r  correction with the same property 

filters. Using the la ter  QSID property f i l ters  for Tasks PVS and NVC (50 and 

100 fi l ters,  respectively) the generalization figures were 87.25 and 78.25 

percent, as compared with 87.50 and 86.00 percent obtained with iterative 

design. 

Distribution estimation gave 77 percent while e r r o r  correction gave 79.25 

percent. 

On Task RVR (15 x 15 aperture), 25 property fi l ters were used, 
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Thus the distribution estimation technique 

achieves performances which a r e ,  for the most part, about average on these 

tasks at the expense of a much more  complex algorithm. 

3.3.5.3 Piecewise-Linear 

In the piecewise-linear algorithm used in this 

study, an even number of response units was selected. 

units were assigned to each class,  

response unit with the highest input sum. 

linear, and each response unit input weight vector hopefully represents a 

cluster point of the training patterns of the appropriate class.  

Half of the response 

A decision is achieved by determining the 

The decision surface is piecewise- 

The algorithm is implemented as follows. If 
a correct  decision on a training pattern is obtained, no changes a r e  made in 

the response unitsn input weights. If an incorrect decision is made, the re- 

sponse unit for  the correct  class with the largest  input sum is determined. 

Fo r  this response unit, each input weight f rom an active property fi l ter  is 

incremented by - , where m is the total number of active property filters. 

On odd-numbered cycles (through the training patterns) only, the response 

unit which caused the incorrect decision is also modified, the connections 

6i here  is 1 for a from active property fi l ters being incremented by - - m 
positive class training pattern, and - 1 for  a negative class training pattern. 

'i 
m 

6, 

F o r  training purposes, the weights were 

allowed to vary as freely as with the ear l ier  E r r o r  Correction and MADALINE 

systems, but these weights a r e  not considered to be the actual system weights. 

The actual system weights a r e  taken to be the average values of these freely 

varying weights over the last full cycle through the training patterns. 

The technique was applied to the DND quad- 

ratic property fi l ters for Tasks N V C ,  PVS, and RVR (at the 50 by 50 aperture). 

Four,  six, and eight response units, o r  linear decision elements, were tested. 

The generalization results a r e  given below. 

different f rom ear l ier  results. 

little effect on the results of these experiments. 

These figures a r e  not significantly 

The number of linear decision elements has 
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3.3.5.4 Modified Algorithms 
I 

One modified e r r o r  correction, and two modi- 

fied MADALINE algorithms were considered. The method mentioned above 

using two sets of output weights was implemented, and the resulting techniques 

were called averaging e r r o r  correction and averaging MADALINE. 

weight method, one set  of weights is allowed to vary freely, while the other 

set ,  the actual system weights, are thle average values of the freely varying 

weights fo r  one cycle through the sample patterns. 

applied to Tasks NVG, PrdS, and RVR (50 x 5 0 ) 9  using the DAD units. 

In the two 

These techniques were 

The other modified MADALINE i s  called a 
This technique does not use the averaging process, sequential MADALINE. 

The original MADALINE algorithm appeared to use a large initial segment of 

the design run in allocating portions of the recognition task to the various 

ADALINES. 

for  N cycles through the training patterns. 

level is compared with previous performance level, and i f  it is better, the 

machine state is recorded. After N cycles, the machine state corresponding 

to the best performance level is used as initial weights for one ADALINE of a 

three ADALINE system. 

as a starting state for  a five unit system, and so on. 

work, N was taken to be 10. 

address the f i r s t  ADALINE to the largest  par t  of the problem, and subsequent 

ADALINES to increasingly finer parts of the discrimination, 

was applied to tasks NVC and PVS, with seven ADALINES as a limit. 

In sequential MADALHNE, the algorithm i s  run with 1 ADALINE 

After each cycle, the performance 

After N cycles, the best three unit system is used 

In the experimental 

The purpose of this change is, of coursep to 

This technique 

The generalization results achieved by the 

modified algorithms a r e  given in the table below. 

linear technique, the results do not appear to be significantly different f rom 

earlier performance figures 

As with the piecewise- 
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Technique 

Sequential MADALINE 

Task 
NVC 

87.75 

88.00 
88.00 
87.50 

86.00 
87.75 
87.00 
87.25 

Task 
PVS 

83.75 

85.00 
85.00 
85.50 

83.50 
85.75 
85.25 
86.50 

Task RVR 
(50 x 50) 

74.00 

75.00 
73.75 
75.25 

- 
- 
_. 

- 

The modifications did provide some good 

effects, however. 

strongly as a function of the number of training cycles, when compared with 

the unmodified algorithms, and the best performance point for all of the modi- 

fied systems came much ear l ier  in the design runs. 

Performance with the averaging algorithms did not oscillate 

3.3.5.5 Summary 

The results achieved using distribution esti- 

mation to design the decision function were more or less average, when com- 

pared with e r r o r  correction and iterative design. 

of the resulting systems, the application of this technique to binary valued 

property filters does not seem desirable in its current state of development. 

In view of the complexity 

The results obtained with the piecewise-linear 

F o r  technique and the three modified algorithms a r e  summarized in Table XI. 
comparison purposes, the results achieved ear l ie r  with the unmodified 

MADALINE a r e  included. This MADALINE has been the best technique on 

task RVR; it and iterative design were best on task PVS; it was second to 

iterative design by a quarter of a percent on task NVC. On task N V C ,  a l l  of 

the systems exhibit a small but consistent improvement over ear l ier  results. 

Elsewhere, only the sequential MADALINE registered any gainss and those 

were small. 
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TABLE X I  

GENERALIZATION PERFORMANCE WITH NEW ALGORITHMS 

Sequential M ADALINE 

Unmodified MADALINE 
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In summary, a number of new and modified 
I 

algorithms for the design of the decision functions were tested on the same 

property fi l ter  sets as were the ear l ier  algorithms. The primary objective 

of these experiments was to improve performance levels, and in this they 

failed to yield the hoped for  gains. 

The modified algorithms did display some 

operational improvements. Design times were shortened. F o r  example, the 

Sequential MADALINE design runs used 7 hours of SDS 930 t ime, compared 

with 12 to 16 hours used by the ear l ier  MADALINE, with no sacrifice in per- 

formance. The Averaging MADALINE and E r r o r  Correction did not display 

the large performance fluctuations during the design run which were charac- 

teristic of the unmodified algorithms, 

the designer greater confidence in selecting a stopping point for the design 

process. 

The smoother performance curve gives 

A number of nonlinear decision functions were 

It i s  felt that the failure of these techniques to consistently outperform tested, 

the linear techniques i s  due to the fact that the property fi l ters were selected 

to permit linear separability of the design patterns. 

3 . 3 . 6  

3 . 3 . 6 .  1 Introduction 

The results presented in Section 3 . 3 . 5  indi- 

cate that the decision mechanism algorithms a r e  probably as  effective as  the 

set  of statistical property filters permits. An improved means for designing 

the set  of statistical properties thus seems desirable. 

In the preceding work, the statistical property 

fi l ters were designed using the DAID o r  the Q S D  algorithms. 

set  of property filters is selected sequentially. 

to be augmented, a pool of candidate filters is generated. 

by randomly selecting a number of subspaces. 

surface is defined by the vectors X satisfying the quadratic equation 

In these, the 

Each time the existing set  is 

This is accomplished 

F o r  each subspace9 a switching 

XT{$;' - $ i l ) X  - 2XT($i1M1 - $i1M2) +MT$i lMl  - M2g2M2 T t In- I111 = 0 
I $,I 
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M1 and M a r e  the mean vectors, and $ and $ the covariance matrices of 

the two pattern class,  If each pattern class had a Gaussian distribution in the 

subspace, and if  M1, M2, Sls  and $ were the true parameters of these dis- 

tributions, this equation would provide an optimum switching surface. When 

M19 M2, 
sample patterns (as in the DAID and QSID algorithms). 

ysis is widely used, even when it is known that the underlying distributions 

a r e  not Gaussian (for example, see Reference 129). 

subspaces and the assumption of Gaussian statistics can lead to property fi l ters 

of low efficiency. 

than a r e  included in the property fi l ter  set ,  

grounds, based on how well the candidates augment the existing system in 

separating the sample patterns 

2 1 2 

2 

and $2 a r e  unknown, they a r e  customarily estimated from 

This quadratic anal- 

The random selection of 

To mitigate this, many more property fi l ters a r e  generated 

Selections a r e  made on pragmatic 

A different technique for  generating statistical 

property fi l ters was tested, 

of the ear l ier  techniques - the random selection of subspacess and the assump- 

tion of Gaussian statistics, 

complished sequentially, using a mutual information value a s  a selection 

criterion. 

parametric distribution es timation technique 

This method avoids the two least  desirable aspects 

Selection of coordinates for a subspace was ac- 

Within a subspace, a switching surface was defined using a non- 

Tests were performed on the cloud pattern 

tasks. 

to be formed by translations of a subspace generated by the mutual information 

process. Sets of 9 and 25 subspaces, translati'ons of a single select subspace, 

were used, The decision mechanism used in these systems was quite crude - 
consisting of an unweighted majority vote of the property fi l ters 

The textural nature of these patterns permitted a number of subspaces 

3 . 3 .  6.2 Subspace Selection by Mutual Information 

A program was developed to sequentially 

select the coordinates of a subspace, 

control the selection process. 

titions of the sample patterns in the training set  were required. 

denote the fraction of patterns in  the i-th cell of the first partition 4 the j-th 

cell of the second partition, pl(i)  denote the fraction in the i-th cell of the f i r s t  

Mutual information values were used to 

To establish the mutual information, two par- 

Let p(i, j') 
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partition, and p2(j) denote the fraction of patterns in the j-th cell of the second 

partition. 
r' 

Then the mutual information is given by: 

One of these partitions was provided by the 

actual classification of the sample patterns. The other partition chosen was 

an attempt to reflect the suitability of the subspace already selected, i f  aug- 

mented by a candidate coordinate. 

information was between "zero" and "one. If p(i, j )  = pl(i)p2(j) for all i and 

j ,  that is, the actual pattern classifications were statistically independent of 

the second partition, the value would be "zero. ' I  If p(i/ j)  were always "aero" 

o r  "one, I t  that i s ,  the second partition gives complete information about the 

actual pattern classification, the value of the mutual information i s  given by 

-Cpl$i)  log2 pl(i) .  
terns were used, this value is "one. (! 

In this application, the value of the mutual 

Since two classes containing equal numbers of sample pat- 

The selection of the second partition was dif- 

ficult, and the final choice represented several  compromises with computa- 

tional reasonableness. 

Ideally, a property filter would be designed 

using distribution estimation for  each subspace formed by augmenting the sub- 

space already chosen by a candidate coordinate. The decisions of these prop- 

er ty  fi l ters would then form the second partitions. To avoid the excessive 

computer time required to accomplish this, it was decided to design one 

property filter on the subspace already selected, and to refine the property 

fi l ter 's  partition using the discrete gray scales of the candidate coordinates. 

As  a second compromise with memory size,  only the most significant two bits 

of the three bit gray scale were used. 

cells ,  formed from the one bit decision of the logic unit and the two bit gray 

scale of the candidate coordinate. 

most weakening compromise of all,  quadratic property fi l ters were used to 

mini mi z e computer time 

Thus the second partition has eight 

As a final simplification, and perhaps the 

Coordinates for  the subspace a r e  selected 

from a 25 by 25 subaperture of the 75 by 75 NIMBUS patterns. It was felt 



t 

that the subaperture would be sufficiently large to contain the significant pat- 

% tern features. The MMBUS patterns were divided into nine subapertures. 

Due to the textural form of these cloud structures,  the patterns within the nine 

subapertures should be of the same nature. 

so that the sets of training patterns contained 9000 examples of each class. 

All nine subapertures were used, 

Once a subspace was selected, it was expanded 

to a set  of 25 subspaces by translation. 

central subaperture. 

10, and plus and minus 25 ras te r  elements were used. 
within each of the original nine subapertures is included in the resulting set  of 

25 subspaces. 

plus and minus 25 translations (corresponding to the original subapertures). 

Results on task NVC were sufficiently poor 

with the nine subspace case,  that the 25 subspace case for the selected sub- 

space was not tested. 

aperture were selected for Task PVS and one for Task NVC, and sets  of 25 

translations formed as above. 

distribution estimation to these random subspaces were almost as good as the 

performance of the same technique on the mutual information subspace. 

results on Task NVC were poor. 

eighth through seventeenth coordinates selected by the mutual information 

program was processed using 25 translations, and again the generalization 

performance was around 70 percent, Thus these tests have not demonstrated 

that these mutual information subspaces offer any advantage over randomly 

selected subspaces. 

Consider the subspace to be in the 

Horizontal and vertical translations of 0, plus and minus 

The subspace positione? 

A se t  of nine subspaces was also formed by using only the 0 and 

As controls, two random subspaces in the 25 by 25 sub- 

F o r  task PVS performance achieved by applying 

The 

For  this task, a subspace consisting of the 

3 . 3 . 6 .  3 Distribution Estimation 

A nonparametric distribution estimation tech- 

nique was used to establish the switching surfaces for the subspaces. 

ticular, the binary property filter is defined as o n f o r  a test pattern if  the 

density estimate (likelihood function) for the positive class  is larger  than that 

f o r  the negative class  at the test  pattern vector. 

recovering the unknown underlying distribution go r density) associated with a 
collection of samples has received considerable attention. E. Pareen 

In par-  

The problem of accurately 

(158) 
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b 

has treated a general class of consistent estimators for  the one-dimensional 

case. Most of his results have been extended to the multi-dimensional case 

by V. K. Murthy. (159) The mathematical results can be described very 

briefly. Let [xk]El  be a set  of M identically distributed N-dimensional 

random vectors. The empirical distribution function F 

expre s s ion 

’ 

is defined by the M 

number of observations x 

such that x. 5 x j=1,2,  * .  , N  
- 1  

FM(x1Sx2, a e 8 xN) = k 
J j’ 

An estimator fM for the N-variate density f is given by 

The function H satisfies the conditions 

H(xl, x2, . . %) dxl e dxN = 1 , J -00 I 
-0 

H(xl9x2’ e .xN) = H(fx19 *x2, , A x N )  2 0, 

and b > 0 for n = 1,2,  n 
assumed that the density f of the underlying distribution F is everywhere 

continuous 

, N. For  the applications of interest  i t  is also 

It can easily be shown that Equation (2) is 

equivalent to 
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, 
V, E(. Murthy, g159) in extending E. Parzen's results for  the one-dimensional 

case,  has shown that if the b 

the conditions 

a r e  functions of the sample size M and satisfy n 

(a) lim bn = lim bn(M) = for  n = 1 , 2 ,  ~ , N  
M+a M+m 

then fM is a consistent estimate of f a t  every point x. 

(a) and (b) a r e  satisfied then at every point x 

That is, i f  conditions 

lim E[fM(x)] = f(x) 
M+m 

and 

The specific case under investigation involves 

so  that Equation (3) becomes 

(4) 
M N  

n= 1 k=l  n = l  

1 
n fM'x) 

The notation used in Equation (4) is slightly different f rom that used in 

Reference 159 and entails substituting $ for bn in Equations (2),  (3) and 

condition (b). Since in every practical case one deals with a finite number of 

samplesp M, the problem is to obtain for a fixed M an estimate of the values 

for  bn. It is possible to introduce a property of the unknown underlying dis- 

tribution (via the sample set  {x ]k=l) by investigating an expression of the 

form 

k M  
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M M  

where 

> O f o r n =  1 * 2 * . . . ¶ N  
Pn 

lim pn = 
N- 

and 

a.. = - i  (xn - xn) j 2  , i and j refer to the i-th and j-th sample vector. 
1Jn 

The problem of determining the bn i s  thus traded for the problem of deter- 

mining p n' 
conditions (a) and (b), pn is of the order  .of log M (i. e. 

M 5 1). In obtaining this result the inequality 

It can be shown that in order  for  bn to satisfy the consistency 
pn/log M 5 k fo r  all  

I1 n= 1 

is derived, where 

1 M M  

Choosing 

yields 
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so  that the consistency conditions a r e  satisfied with p a s  given above if n 

N 

Furthermore,  i t  can be shown that if pn is of the form 

8 
gnM' t dm 

where Bn > 0 and gn, dn a r e  constants such that pn > 0 for M - > 1 ,  then the 

consistency conditions a r e  violated. Thus, in calculating the values of bn 

the expression 

1 

i s  used. 

pn(M) which yield an indication of the "spread" of the unknown distribution 

along each of the N axes. 

large second central moments requires smaller values for b (and hence 

smaller values of p ) than a distribution possessing small second central 

moments. 

The behavior of pn (and hence of bn) influence( by the quantities 

Thus for a fixed sample size M a distribution with 

n 

n 
This behavior is exhibited by pn as given above. 

Distribution estimates were made separately 

for each subspace. 

spaces in a system a r e  simple translations of one another, each subspace has 

i ts  own unique switching surface. 

Thus, although the coordinate configurations of the sub- 

Attempts were made to simplify the distribu- 

tion estimates by finding the local maxima of the density functions. It was 

hoped that the number of sample points used in the distribution estimation 

could be reduced by replacing those clustered around a mode by the modal 

point itself. Even with variations in clustering program parameters,  only 

two modes could be found for the polygonal cell  distribution, which would be 

insufficient to provide a real  simplification. 

It was hoped that 25 to 100 cluster points 

would be found, with nearly all of the sample points belonging to some cluster. 
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Having found such a set  of cluster points, one may proceed to simplify the 

system in one of two ways. 

the distributions, o r  one may use the cluster points plus the sample points 

not belonging to a cluster to estimate the distribution. When 1000 samples 

a r e  being used to estimate the distribution, and when one finds two cluster 

points which represent perhaps a dozen sample points , the second alternative 

offers a one percent reduction in system complexity. 

worth the effort. The use of the f i rs t  alternative with two cluster points 

implies that the distributions a r e  simple and highly separable. A single 

quadratic property filter should do nearly as  well, since four points are 

separable by a quadratic surface. 

dicate that this i s  not the case. 

One may use only the cluster points to estimate 

This hardly seems 

Earl ier  experiments with DAID units in- 

The subspace selection algorithm was applied 

to task PVS. 
coordinates which were selected were widely separated in the subaperture. 

Fo r  coordinates nine and ten, the program tried to select coordinates already 

chosen. When this happens, the algorithm chooses the second best candidate, 

and so on. With these alternate selections, coordinates nine and ten of the 

subspace followed the trend of widely separated points. 

subsequent selections 

on being denied this, chose an adjacent point. Performance of the quadratic 

property fi l ter  in classifying the training patterns varied smoothly, reaching 

a maximum with ten coordinates. At that point i t  made 71. 65 percent correct 

decisions on the 18, 000 subaperture patterns (nine subapertures from each of 

2 ,000  training patterns). 

The f i r s t  eight coordinates were selected with no difficulty. The 

For  the eleventh and 

the program tried to repeat the fourth coordinate, and 

The f i rs t  ten coordinates selected were used 

as the subspace. 

using distribution estimation. 

filters to determine the system decision, 86.75 percent of the test patterns 

were correctly identified. 

MADALINE accomplished with 400 DAID property fi l ters,  and at least  one 

percent better than any other system obtained with statistically derived 

properties a 

Nine translations were taken and switching surfaces assigned 

Using a majority vote of the nine property 

This is a quarter of a percent better than sequential 
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. The same subspace was then used in 25 trans- 

lations. The system yielded 90.75 percent correct  decisions, a substantial 

increase. 

10,000 generalization decisions (25 subapertures from each of 400 generali- 

zation patterns). .Using one of the randomly generated subspaces, the 25 

property fi l ters were 73. 17 percent correct ,  and the majority vote system 

achieved 90.25 percent. 

were 73.65 percent correct,  and the generalization decisions were 89. 75 per- 

cent correct.  

system. 

The property filters themselves were 73.59 percent correct  in 

F o r  the second random subspace, the property fi l ters 
\ 

Thus the subspace selection process did not add much to the 

The subspace selection program was then run 

to choose a ten coordinate subspace for  task NVC. 
selections began with the fifth coordinate and continued thereafter. 

quadratic property filter classification of the sample patterns occurred with 

five coordinates, and was 60.67 percent. The ten coordinate quadratic unit 

gave 59.71 percent. The 

f i rs t  nine choices came from the left half of the top row of the 25 by 25 raster .  

The tenth coordinate was about halfway down the las t  column. 

Repetition of previous 

The best 

The subspace selected was a rather strange one. 

Nine translations were taken, and a distribu- 

It achieved 66, 5 percent on the tes t  patterns - tion estimation system tested. 

84 percent of the noncumulus patterns, 30 percent of the solid cell patterns, 

and 68 percent of the polygonal cell patterns were correctly identified. 

tributing to this uneveness might be the fact that equal numbers of cumulus 

and noncumulus patterns were used to estimate the distributions. 

therefore, twice as many noncumulus patterns a s  there were solid cell o r  

polygonal cell patterns, 

than to polygonal cell  patterns. 

Con- 

There were, 

Solid cell patterns appear more  similar to noncumulus 

Due to the poor overall results,  the 25 trans- 

The unusual subspace may have contributed lation experiment was not run. 

to these results. The subspace selection program was continued to 23 coor- 

dinates. Except for two coordinates near  the center of the subaperture, the 

remaining coordinates formed a loose cluster near  the lower right corner of 

the aperture. Best clasbification with a quadratic property was 67.86 percent 
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with 17 coordinates, a figure much more in line with that achieved on task 

PVS. Coordinates 8 through 17 were used as a subspace, and 25 translations 

taken. The overall performance was 71.25 percent, with 98.5 percent of the 

noncumulus, 73 percent of the polygonal cell, and 15 percent of the solid cell 

patterns being correctly identified. 

+ 

To complete the picture, a random subspace 

was selected, and 25 translations taken. 

cent - 99 on noncumulus , 67 on polygonal cells , and 14 on solid cells. 

Overall performance was 69.75 per- 

3 .3 .6 .4  Optical Experiments 

Optical processing'161) offers some attrac- 

tive features for pattern recognition. 

highly parallel nature of the processing. Processing in the spatial frequency 

plane (see Figure 41) offers freedom from translational variations. In addi- 

tions the textural nature of the cloud patterns suggests that a frequency plane 

analysis might be fruitful. 

Great speed i s  possible due to the 

The two-dimensional Fourier transform of 

an input image i s  presented in the frequency plane. 

designed transparency o r  mask in the frequency plane, it is possible to oper- 

ate on the Fourier transform of the input image with the results displayed in 

the output plane. 

and display these results directly. The design of the property fi l ters is then 

dependent on the spatial frequency content of the training set  of data for  each 

patte rn class  . 

By placing a suitably 

Alternately, i t  is possible to sample the frequency plane 

To investigate the possibility of designing 

property filters based upon the spatial frequencies of the patterns, some 

limited optical experiments were performed. 

transparencies of the NIMBUS cloud imagery was made on 120 film. 

were selected to provide 24 transparencies for each of the three types of 

clouds used in previous experiments. 

in the input plane of the objective lens as shown in Figure 42. 

was used to illuminate the cloud pattern transparency. A microscope, with 

its input lens placed in the frequency plane, allowed the resulting spectrum 

of the image to be enlarged to ease the sampling task. 

A set  of 72 black and white 

The data 

These transparencies were then placed 

A laser beam 

A photomultiplier tube 
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Mith 0.020 inch input aperture measured the irradiance in this enlarged fre-  

quency plane. 

points, each row and column was separated by 0.001 inch, resulting in 81 

measurements of the spatial frequencies for each transparency. 

of the measurements made is shown in Figure 43. 

The sampling was performed over nine rows and columns of 

An example 

The resulting data was then subjected to 

several  analyses including the following: 

1. Property fi l ters were generated using the QSID procedure 
modified to accommodate s ix  inputs per unit and to select 
one unit at  a time from a population of 15 candidate units 
generated. 

Property fi l ters were generated using a further modification 
of this QSID procedure where the covariance matrices of the 
pattern classes  were assumed to be equa1,resulting in the 
specification of a linear discriminant for each filter. 

2. 

As a result of the generation of these property 

fi l ters,  the patterns were actually classified by the QSID o r  the LSID (linear 

surface) procedures e 

is of interest to note (Table XI) that complete separability was readily achieved 

with very few property fi l ters.  

Despite the small number of patterns represented, it 

TABLE XI 

CLASSIFICATION RESULTS USING OPTICAL PREPROCESSING 

1 

T ec hni qu e 

QSID 

Task 

PVS 
PVS 

NVC 

NVC 

in Each Class 

Each property fi l ter  was then examined to  attempt 

to determine what information, available in the spatial frequency domain, was 

selected. The LSID units were of particular interest  since the linear weights 
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Figure 43. Sampled Frequency Plane (Irradiance) 
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indicated a direct relationship between input signal and filter response. 

X I I I  and XIV present the input connections, the weight assigned, and the fre- 

quency of usage of each connection. Fo r  the NVC task only 16 different inputs 

were used, while for  the PVS task, which required two more property filters, 

28 inputs were used. 

both tasks. 

showed a trend toward selecting more  outer elements for  cumulo-polygonal 

and cumulo-solid cell classifications which may be interpreted as a tendency 

to select,for discrimination, t kh ighe r  frequency content present in these pat- 

terns,  

f i l ters to attempt to perform a generalization experiment due to the difficulty 

in obtaining an adequate sample for  comparative evaluation. 

Tables 

Only five of these input connections were selected for 

The scattering of the connections across  the a r r ay  of inputs 

No attempt was made to physically implement o r  to simulate these 

3.3.6.5 Summary 

Summarizing these results, a technique for 

property filter generalization using sequential subspace selection and non- 

parametric distribution estimation was tested. 

formance decline was experienced. 

process appears weak. 

tation of the solid cell and polygonal cell subclasses in Task NVC, and to the 

greater gray scale distribution differences between the polygonal cells and the 

solid cells o r  noncumulus patterns than between the solid cells and the non- 

cumulus patterns. 

On task PVS a substantial per- 

In both cases,  the subspace selection 

The results a r e  probably due to the smaller represen- 
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TABLE XIII 

PROPERTY FILTERS ( N V C )  

Weights 

--,4583 00 

--. 5 93E -0 1 
. 179E 00 

-..399E 00 

. 155E 00 

.546E 00 

--.117E 01 

.143E 01 

.6263 0 1  

--.8593 01 

.244E 01 

.667E 00 

.251E 01 

.5363 00 

-.2283 01 
-.282E 01 
-. 6933 00 

.180E 01 

Connection 

8 
9 
17 
28 

30 
40 
41 
44 
45 
58 
62 
70 
71 
74 
78 
81 

? 

C 

Freque'nc y 
of 

Usage 

1 
1 
1 
2 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
2 
1 
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Jogic 
Unit 

1 

I S  ID 
C onne ct ion 

13 

67 

81 

48 

9 

59 

29 
55 

66 

36 

68 

74 

61 

62 

6 
7 

69 
1 

26 

3 

12 

45 

63 

80 

4 

60 

12 

35 

30 

36 

TABLE XIV 

PROPERTY FILTERS (PVS) 

W eight s 

-.779E -03 

.204E 00 

-.276E 01 

-. 2733 00 

.6973 00 

-.355E 00 

.352E 00 

-. 606E 00 

.543E 00 

-.480E 00 

7553 -01 

-.126E 01 

- +  751E 00 

.204E 01 

.341E 00 

-.122E 01 

162E -01 

--. 105E 01 

.2343 00 

,6823 00 

-.291E 00 

-.463E 00 

.147E 01 

-.318E 01 

-.223E 00 

7223 -01 

.321E 00 

.593E -01 

-.286E 00 

119E 00 
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Connection 

1 

3 

4 

6 

7 

9 
12 

13 

26 

29 
30 

35 

36 

45 

48 

55 

59 

60 

61 

62 

63 

66 

67 

68 

69 
74 

80 

81 

Frequency 
of 

Usage 
1 

1 

1 

1 

1 

1 

2 

1 

1 

1 

1 

1 

2 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 
1 

1 

1 

1 



3.3, 7 Augmentation of Known Properties 

3.  3. 7. 1 Introduction 

Figure 44 shows the philosophy for designing 

a recognition system. 

input patterns and (where possible) invariance to irrelevant pattern differ- 

ences such as gray-scale changes, translations, etc. The "Known Properties" 

a r e  included to exploit the designer's knowledge of the recognition task. 

measure pattern characteristics which the designer feels a r e  useful for 

classifying the patterns. 

"Decision Mechanism'' being used, then the design effort is readily completed, 

If they a r e  not, however, more property filters must be obtained. One way 

in which the additional property fi l ters may be designed i s  by the statistical 

analysis of sample patterns (i. e. "Statistical Property" extraction). 

"Signal Conditioning'' provides both formatting of the 

They 

If the known properties a r e  sufficient for the 

The augmentation of a set  of know property 

filters with a set  of statistical prQperty fi l ters specifically designed to 

complement the known properties is a virtually untouched problem, 

augmentation experiments a re  reported here. 

both NIMBUS tasks (Tasks PvS and NvC), as well as all three lunar feature 

tasks (CvC, RvR, and CVR) at the reduced aperture sizes of 25 by 25 and 

15 by 15. 

Eight 

Augmentation was tried on 

3.3.7.2 Augmentation Technique 

The method of augmentation was as follows. 

A linear decision mechanism for the known properties was f i r s t  designed. 

For  this purpose the iterative design algorithm (modified to process the 

continuous outputs of the known property filters) was used. This approach 

was used for three reasons (1) design times a r e  short, (2) the designs a r e  

optimized in te rms  of the pattern losses used in the r e s t  of the process, and 

(3 )  compensation for variation of means and variances between property 

fi l ters is automatic. * 

* In some other experiments using continuous data an e r r o r  correction process 
was used. 
algorithm. 
through the patterns would have been necessary for the threshold to compen- 
sate for the means of the property filter values. 

The data had to be normalized prior to the application of the 
If this normalization had not been made, four million cycles 
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After this design was complete, each sample 

pattern in the training set was assigned a loss value. If Di was the value of 

the linear decision function for the i-th pattern, and 6. plus or minus one, 

depending on the true classification of that pattern, the loss for that pattern 

was given b y  

1 

L~ = exp 1 - 6 i ~ i )  

This portion of the system design was held fixed for the rest  of the process. 

The losses for the training samples were 

used as initial values for the sample pattern losses in the QSID program. 

This program selects statistically designed property fi l ters to minimize the 

system loss. 

the know property filters. 

Thus the statistical property filters a r e  selected to complement 

After the set  of augmenting statistical property 

filters was selected, the decision mechanism generated by the QSID program 

was discarded, 

applying the iterative design algorithm, again using initial values for losses 

of the training patterns. 

by adding the decision functions for the known and statistical property sets .  

Again, the use of the iterative design algorithm made the equal weighting of 
these two decision functions automatic. 

That portion of the decision mechanism was redesigned by 

Performance on the sample patterns was determined 

3 .  3 .  7 . 3  Known Properties 

A set of 29 known properties was designed by 

the NASA Technical Officer for this program, Mr. Eugene M. Darling, Jr. 

These properties, listed in Table XV, were specifically designed for recog- 

nizing cloud patterns. 

and 97.0 percent generalization performances on Tasks NVC and PVS, respec- 

tively. 

there is  little room left for improvement by augmentation. 

Systems using these known properties achieved 90. 0 

Since these known properties alone achieved excellent performance , 

Fifteen of these 29 known properties relate 

to general characteristics of a two dimensional brightness field. 

ing properties a r e  specifically tailored to the cloud recognition problem. 

The remain- 
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TABLE xv 
KNOWN PROPERTIES 

1. Mean Brightness 

2. Brightness Variance 

3. 

4. 

5. Relative 

6. Frequency 

7. of Each 

8. Gray Level 

9. 

10. 

11. Information in  the X- 
Direction (adjacent points ) 

12. Information in  the Y-  
Direction 

13. Mean Gray Level Area 
(connected regions of 
constant gray level) 

14. Variance, Gray Level Area 

15. 

16. 

17. 

18. 

19. 

20. 

2 1. 

22. 

23. 

24. 

25. 

26. 

27. 

2 8. 

29. 

Mean Cloud Segment 

Number of Clouds 

Mean Cloud Size 

Variance Cloud Size 

Relative 

Frequency 

of Cloud 

Size 

(i. e .  number 
of elements 
in a 75 x 75 
element 
aperture) 

1-25 

26- 100 

101-225 

226 -400 

401-900 

90 1 - 1600 

1601-2500 

250 1 - 3600 

360 1-4900 

4901-5625 

80 contour area (auto- 
c o r  relation function) 
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The general properties a r e  numbers 1 through 14, and 29, 
t ies were also used in the lunar terrain recognition experiments. 

anticipated that the use of a small set  of known properties, none of which was 

designed for the lunar problem, would result in lower performance levels 

more amenable to improvement by augmentation than was the case with the 

cloud pattern experiments. 

Theae 15 proper'-. 

It was 

Most of the entries in Table XV a r e  self 

explanatory. The following definitions a r e  offered for those which a re  not. 

Information in the X and Y Directions 

Let p (I) be the unconditional probability of brightness I, 
0 5 1  5 7 ,  calculated from a particular pattern. 

P (J/I) is the probability of brightness J ,  given that the 
brightness i s  I at the adjacent point. 

Hq (J/I) is the conditional information of J given I where 
g i s  either X or  Y. 

7 7 
Hq (J/I) = P(1) P (J / I )  log P (J / I )  

I= 0 J = O  

This is the equation defining properties 11 and 12 

Mean Grey Level Area 

The average size of connected a reas  of constant bright- 
ness,  I for O < I  < 7, 

Variance, Grey Level Area 

The variance of size for Connected a reas  of constant 
brightness, I ,  for O<I,-? 7. 

- -  

- -  
.80 Contour Area 

The area  bounded by the y-axis and 0.80 auto-correlation 
contour. 

3 . 3 .  7.4  Augmented Systems 

The process for augmenting known properties 

was applied to eight recognition tasks. 

tained both with the known properties alone, and with known properties aug- 

mented by statistical properties. 

Table XVI presents the results ob- 
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Although results for networks using statistical 

properties only (i. e . ,  no known properties) were available for most of these 

recognition tasks, these re.sults were not included in Table XVI, 
between the performances of a statistical property system and an augmented 

known property system does not evaluate the augmentation process. 

computer program which derived the augmenting properties is the same one 

that derived the original statistical properties. The only difference consisted 

of providing initial values for the pattern losses to insure that the augmenting 

statistical properties would not t ry  to duplicate the efforts of the known 

properties, 

(or  equal to) that of the statistical property systems, one concludes that the 

known properties a r e  (or a r e  not) measuring significant pattern features not 

accessible to the quadratic statistical property fi l ters.  

evaluates the utility of the known properties in the augmented system. 

purpose of these experiments was to evaluate the augmentation process, 

statistical property systems should not be compared to augmented systems. 

A comparison 

The 

Thus, if the performance of the augmented systems is higher 

This comparison 
As the 

In asses sing the performance differences 

shown in Table XVI, two factors should be given consideration - (1) an 

objective evaluation that such a difference might occur by chance, due to the 

random selection of the sample tes t  patterns, and (2)  a subjective evaluation 

of whether or not the difference matters.  To aid in this latter consideration, 

the column "Percentage Decrease in E r r o r  Rate" is given in Table XVI. The 

column headed "Probability of Chance Occurrence" provides an indication of 

the probability that the difference occurred by chance. 

its computation is given below. 

The method used in 

It i s  desired to test  the hypothesis that the 
system (known property system and augmented known property system) a r e  

equal, against the (one sided) alternative that the augmented system is better. 

Assume that the pattern set (consisting of 400 patterns) used to test one system 

was selected independently of the pattern set  used to test the other system, 

and that each system has the same e r r o r  rate, r.  

observed e r r o r  rates for the known property system and the augmented system, 

respectively. 

hypothesis, 

Let rK and rA be the 

is r ( l  - r)/200. Under the K - 'A Then the variance of r 
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will have zero mean and unit variance; and will be very nearly normally dis- 

tributed. 

and a table of the cumulative normal distribution was consulted to determine 

the probability that a difference greater than or  equal to observed difference 

would occur by chance. 

for moderate probabilities, and indicative of very small  probabilities for the 

extreme values. 

the "Probability of Chance Occurrence'' is the probability that a difference 

greater than the observed difference rA - rK would occur by chance. 

1 To obtain the "Significance Level, I '  r was estimated by 7 (rK -I- rA), 

The normal approximation should be very accurate 

A' For task PvS, the one case in which rK was less  than r 

This analysis is conservative. The test  

patterns actually used were the same for each system. 

actually expect a smaller performance difference than with two independent 

sets  of test  patterns. 

the i-th test pattern was a parameter,  pi. 

system misclassifies the i-th pattern (io e . ,  the systems make independent 

classifications, each having a probability of 1 - pi of being correct) .  

and 1, over the possible set of r have a Beta distribution with parameters - 
1 - P  

test patterns. 

is r( 1 9 r) / (200(2 - r) ). 

"Probability" of 022, compared to the value of 083 given by the conservative 

analysis. The choice of parameters for the Beta distribution is arbitrary,  and 

critically affects the results. 

an expected e r r o r  ra te  of r ,  but yield .00003 as the Probability of Chance 

Oc cur r enc e 

One would therefore 

To see the extent of this, suppose that associated with 

Let pi be the probability that each 

Let pi 

Then the expected e r r o r  ra te  is r ,  and the variance of rK - rA 
2 For  task NVC, this analysis would give a 

1 - r  Fo r  example, parameters 1 a n d 7  also give 

3.3,7,5 Summary 

Summarizing the results of the augmentation 

On task PvS a significant performance de- studies, eight tests were made. 

crease was encountered, and on task CVC at the 15 by 15 aperture an insigni- 

ficant performance change occurred. 

as  performances with the known properties alone a re  97 and 96 percent r e s -  

pectively. 

These failures a r e  not disappointing, 

On task CVR at both apertures,  and on task CVC at 25 by 25, 
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very substantial reductions in the e r ro r  rates accompanied the augmentationc 

The likelihood that these improvements occurred by chance is quite remote. 

Task NVC provides a borderline case. 

only one-third to one-half as large as  those achieved in the better cases ,  and 

there is one chance in twelve that the improvement might occur by chance, 

Task RvR at both apertures provided the most disappointing results. 

reductions in the e r r o r  rates were relatively small, and quite likely to have 

occurred by chance. 

a 

The reduction in the e r r o r  rate i s  

The 

In at least  half of the tes t  cases on which 

augmentation would be important to a designer, substantial performance 

increases were achieved. 

valuable one, particularly when it is most appropriate -when the known 

properties alone do not produce very high performance levels. 

Thus, the augmentation process appears to be a 
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3 . 3 .  8 Pattern Boundary Delineation 

3 . 3 , 8 .  1 Introduction 

The ultimate objective.of the NIMBUS data 

recognition systems is to provide the information needed to draw a cloud map. 

To accomplish this, it is necessary to delineate the boundaries between homo- 

geneous regions of cloud textures. 

pattern types a r e  not usually sharply drawn, it is expected that operational 

accuracy requirements would not be too high. 

Because the boundaries between cloud 

A system's ability to meet this standard 

would depend, first and foremost, upon i ts  generalization capabilities. 

system which had a high rate of e r r o r s  would give r i s e  to many spurious 

boundaries, 

removed by smoothing. 

A 

With a very low rate of e r r o r s ,  occasional mistakes may be 

Assuming a system of high generalization 

capability, there a r e  several factors that influence the accuracy with which 

boundaries may be delineated. 

adjacent sampling apertures. 

from the standpoint of accuracy. However, the number of apertures which 

must be processed for a given coverage var ies  inversely a s  the square of the 

distance between adjacent aperture centers. Thus, concerning the amount of 

spaceborne processing to be performed, and the amount of data to be trans- 

mitted, the degree of overlap should be minimized. 

One of these is the extent of overlap between 

A large degree of overlap might be desirable 

The amount of overlap required to yield a 

given accuracy of boundary delineation depends on two factors. 

is the performance of the system when the boundary is present in the aperture, 

that is, when clouds of two different types a r e  contained in the aperture. 

second factor is the accuracy with which a boundary can be interpolated 

between a pair of transition apertures,  

is the only quantity considered, then the boundary must be placed halfway 

between the centers of the transition apertures. 

inputs to the response units a r e  considered, the possibility of improving the 

accuracy of boundary delineation by interpolation exists. 

factors, the effect of a boundary in the aperture and the accuracy of inter- 

polation, which form the subject of the experiments considered in this section. 

F i r s t ,  there 

The 

If the recognition system's decision 

But i f  the magnitudes of the 

It is these two 
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3 . 3 . 8 . 2  Approach 

To investigate the boundary delineation 

problem, patterns with artificially induced boundaries were generated. 

was accomplished by creating patterns which a r e  a montage of two patterns 

selected f rom the generalization files. The recognition systems were then 

tested on the montage patterns. 

This 

F o r  these experiments, new sets  of quadratic 

property fi l ters were designed for Tasks NVC and PVS, using the QSID 
program, 
These new recognition systems did not give better performance than the 

ear l ier  DAID designs, but needed considerably less  than the 400 property 

fi l ters of the ear l ier  systems to obtain the same performance. 

The decision function was supplied by the iterative design algorithm. 

The QSID program required 190 and 115 

property filters for 100 percent classification on Tasks NVC and PVS 
respectively. 

these numbers were reduced to 150 and 90 property fi l ters,  respectively. 

The best  generalization performances came at  100 and 50 property fi l ters,  

respectively. 

When the decision function was reassigned by iterative design, 

These latter numbers were selected for the boundary 

delineation investigation. 

a function of the number of property filters. 

Figure 45 shows the generalization performance a s  

The montage patterns were generated by a 

computer program. This program accepted, a s  inputs, two patterns and a 

main direction, and would produce 100 montage patterns a s  output. 

direction could be right, left, up, or down. If the main direction was right, 

for example, the f i rs t  output pattern would be the f i rs t  pattern of the pair, 

the second output pattern would be the same, except that the rightmost column 

would be replaced by the rightmost column of the second input pattern, and s o  

on until all 75 columns had been replaced, 

The main 

Following these f i rs t  76  patterns, 
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eight selected montages from each of the other three directions were pro- 

duced, 

through 49 illustrate the f i rs t ,  twenty-sixth, fifty first, and seventy-sixth 

patterns in a montage sequence. 

Data from these latter 24 montages were not examined. Figures 46 

A total of 144 different pairing6 of patterns 

were considered. Usually, all four directions were considered for each 

pairing, as early experiments indicated that different directions for a single 

pairing produced results a s  diverse a s  different pairings would. In all, 464 

combinations of pairing and direction were run, producing 46,400 montage 

patterns. 

Fo r  the f i rs t  76 patterns in each montage 

sequence, the computer produced a plot of the input to the recognition system's 

response unit, 

in Figures 46 through 49. 

Figure 50 shows this plot for the montage sequence illustrated 

Ideally, the recognition system would compute 

a discriminant (input to the response unit) of a fixed magnitude whenever a 

homogeneous pattern is present in the aperture. Again, ideally, the computer 

plot for a montage sequence would appear a s  a straight line. 

conditions, the extent of the montage could be determined from the value of 

the discriminant of a single pattern. Unfortunately, the original patterns 

a r e  not that well defined, and a high percentage a r e  not pure prototypes. 

In addition, the recognition system does not produce a constant magnitude 

output, The straight line plot, however, remains desirable. With this, one 

may interpolate linearly to position the boundary, 

Under these 

Test patterns giving r ise  to incorrect decisions 

The reamining patterns were classified a s  low were not included in this study. 

(discriminant magnitudes between 0 and 4) or  high (discriminant magnitudes 

between 4 and 10). 

and high against low and al l  combinations of pattern classes,  including pairs 

of patterns f rom the same class ,  a r e  represented in the 464 montage sequences. 

All combinations of high against high, low against low, 

Of the 46,400 discriminant values computed, 

11,136 were ignored, These were,  for the most part, duplicates of other values 
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and correspond to the las t  24 patterns in each sequence of 100. 

remaining 35, 264 discriminants, 20,672 were subjected to visual examina- 

tion for calibration purposes, 

Of the 

The remaining 14,592 discriminants repre-  

sent the 192 montage sequences involving a high pattern of one class paired 

with a high pattern of another c lass ,  

determine the degree of f i t  of the plot to a straight line. 

These data were computer analyzed to 

3 . 3 . 8 , s  Calibration 

Montage sequences not included in the com- 

puter analyses were considered to be calibration runs. 

272 montage sequences, or almost 59 percent of the sequences. 

These runs encompass 

In the montage patterns, unlike real  patterns, 

the boundary is present a s  a sharp disccmtinuity. 

discontinuity could result in e r ra t ic  performance of the property fi l ters whose 

input connections straddle the discontinuity. 

The presence of this 

The sequences meant primarily 

to determine whether or not this effect is  present were those involving two 

"high" patterns of the same class. If the effect were present, one would 

expect to find a "sagging" towards zero in the computer plots. 

as  illustrated in Figure 51, was found in a small minority of cases. 

cases were counterbalanced by another small minority in which the curves 

bowed away from zero. 

about a straight line connecting the endpoints, as  illustrated in Figure 52. 

Thus, it  is concluded that the property fi l ter 's  input fields a r e  sufficiently 

well distributed thoughout the aperture, and that the nature of the property 

filters is such that the preeence of a discontinuity in the aperture does not 

create a serious disturbance. 

This effect, 

These 

The majority of cases showed unbiased fluctuations 

With only the sequences involving a high 

pattern of one class and a high pattern of another class entering into the 

computer analyses, the question a r i ses  whether the results could be considered 

valid for other conditions. 

and low-low pairs were processed, both for pattern pairs from the same class 

and fQr pattern pairs from different classes.  

judged subjectively. 

A large number of sequences invloving high-low 

The computer graphs were 

It was judged that the "random" fluctuations about 
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the underlying curve were the same for these calibration as  for the noncali-- 

'bration sequences, but that the underlying curves were probably more linear 

for  the calibration sequences. This is probably due to the fact that the end- 

points in the calibration plots a r e  closer together than in the noncalibration 

plots. 

3.3.8.4 Accuracy of Interpolation 

There were 192 pairings of "high" patterns 

for which the sequence of discriminant values were keypunched, 96 each for 

Tasks PVS and N V C .  Several analyses relevant to linear interpolation were 

performed. Figures 53 through 56 a r e  illustrative of the data processed and 

were selected to show the variety of plots encountered. 

Straight lines were constructed joining the 

endpoints of the sequences (i. e . ,  the discrirninants for the ''pure" patterns). 

The r m s  deviation of the other 74 times 192 discriminants about these lines 

was 1.94. 

r m s  deviations were also a function of the extent of the montage. 

presents these results. 

center of the plots, a s  might be expected. 

by least squares, smaller deviations would have been observed, and the 

This represents about 15 percent of the average full range. The 

Figure 57 

The deviations a re  largest (about 2 . 4 )  near the 

If the lines had been constructed 

smallest deviations would likely not have been at  the left side of the curve. 

The value of the discriminants a t  the points 

where the constructed straight lines crossed the zero axis were noted, The 

absolute values of the deviations at  these points had an average value of 2.00 

and a standard deviation of 1 41 (I The median deviation at this point was 1.5 1. 

The average number of times a curve crossed 

the zero axis was 2.24. 

single crossing. 

distance from the crossing of the straight line to the nearest crossing of the 

discriminant curve was 7. 95, about twelve percent of full scale (full scale 

is 75). 

In almost two thirds of the cases,  there was only a 

The average The maximum number of crossings was 9. 

The median distance was 6.6. 

The foregoing data a re  given to provide a 

feeling for the effectiveness of a straight line fi t .  

boundary delineation task a r e  given by the analyses bellow. 

The major results of the 

The assumption 
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was made that the recognition system f i rs t  passes over a homogeneous region 

of clouds during which the discriminant would be constant (equal to the f i rs t  

discriminant in a sequence of 76). 
would give r i se  to the next 74 discriminant values. 

second homogeneous cloud region, where the discriminant is again constant 

(equal to the last  of the 76 values). 

extended on each end by horizontal lines. 

successive apertures were considered. F o r  each distance, a l l  possible 

transition pairs (successive decisions which a r e  different) were found. 

e r r o r  in boundary placement was then computed for two cases - linear inter- 

polation on the discriminant values, and linear interpolation on the decision 

(in which the boundary is  placed halfway between the centers of the transition 

pair). 

It then passes over a boundary, which 

Finally, it  passes Over a 

With this assumption, the graphs were 

Distances from 1 to 75 between 

The 

The results a r e  presented in Figures 58 through 60. 

It can be seen from these figures, considerable 

advantage results from using the discriminant values rather than the decision 

itself. 

(corresponding to about 23 miles at  the resolutions used), this could be 

achieved with an aperture spacing of 72 ras ter  elements using the discriminant 

values, while the use of the decisions only would require a spacing of no more 

than 10 ras te r  elements. 

than 50 times a s  many apertures than the former does. 

nant values for interpolation, the accuracy achievable does not depend strong- 

ly on the spacing between apertures,  within the range tested, the entire range 

of accuracies falling between 8.58 and 10,22 ras te r  elements (11.5 to 13.5 

percent of the aperture size). 

of 42 to 46 raster  elements, not f a r  from the spacing of 38 selected for the 

hardware studies prior to these experiments. 

If the average accuracy requirement were ten raster  elements 

The Patter case involves the processing of more 

Using the discrimi- 

The maximum accuracy is achieved with spacings 

3 4 Conclusions and Recommendations 

1 Using only statistically derived property fi l ters,  recognition 

systems were designed to give more than 84 percent correct generalization 

decisions on all  five tasks. Fo r  three of the tasks performances near 85 per-  

cent were obtained, on one task 96 percent was obtained, and on the fifth task, 

99.5 percent was achieved. To accomplish this, the size of the sampling 
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Figure 59. Interpolation of Boundary Location (PVS) 
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aperture has to be reduced for two of the tasks. 

the proper aperture size was strongly emphasized on one task, for which 

performance rose from 64 percent with a 50 by 50 aperture to 96 percent 

with a 15 by 15 aperture. 

The importance of choosing 

Two of the tasks,  for which 86 and 87.5 percent were obtained, 
were cloud pattern recognition tasks. 

nition systems were designed which achieved 90 and 97 percent correct 

decisions on these tasks. 

with statistically designed property fi l ters raised the 90 percent figure to 
92.75 percent. 

Using only 15 known properties recog- 

Augmenting the logically designed property fi l ters 

In view of the quality of the sample patterns, many of which a r e  

difficult for a human observer to identify, it is felt that the performances 

obtained a r e  sufficiently good to warrant the further development of a space- 

borne recognition system. 

2. By interpolating on the discriminant functions generated by 

the recognition systems, boundaries between cloud pattern types could be 

located to an average accuracy of 8.6 to 10.2 raster  elements (corresponding 

to 11.5 to 13.5 percent of the aperture size). 

constant for all  distances between sampling apertures up to 75 ras te r  elements 

- the no overlap case. These figures do not include spurious boundaries intro- 

duced by incorrect recognition system er rors .  

cies when the discriminant functions a r e  ignored and only the decisions a r e  

used, the spacing between consecutive apertures can be no more than 14 

raster  elements. 

This accuracy was relatively 

To obtain comparable accura- 

It is concluded, therefore, that for boundary delineation the 

discriminant function should be used rather than the decision, itself. 

procedure is followed it i s  not necessary to process overlapping apertures in 

order to accurately locate boundaries between regions of different homogeneous 

textural patterns. 

If this 

3 .  A set  of 15 known properties, produced very good results on 

the tasks for which they were designed and, indeed, performed moderately 

well on tasks for which they were not designed. 
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Eight experiments to augment the known properties with 

statistically designed property fi l ters were performed. 

in which performance with the known properties alone was excellent, augmen- 

tation lead to no change o r  a decline in performance. Of the other six experi- 

ments, augmentation yielded two cases in which the improvement was small 

and unlikely to be statistically significant; one case of a moderate improvement 

which was significant a t  the 92 percent level; and three cases of substantial 

improvement, significant a t  more  than a 99.9 percent level, 

In two experiments, 
P 

4. In the experiments performed, the statistical property 

fi l ters with quadratic switching surfaces consistently performed better than 

those with linear switching surfaces, even though considerably more linear 

units were used. 

moments, and a r e  therefore based only on average gray scale differences. 

The quadratic units were based on the f i rs t  two sample moments, and a r e  

based on two-point contrasts a s  well a s  gray scale differences. It is possible 

to approximate quadratic units with linear units by using more than one thres- 

hold, (160) Had this been done, it is likely that the performance with linear 

units could be brought up to the level of the quadratic units at  the expense of 

a larger property filter set. 

The linear units were designed using the f i r s t  sample 

over all others. 

obtained by any method, the forced learning, Bayes' weights, and mean square 

e r r o r  algorithms failed to provide high performance. 

is too complex a technique to be considered in view of the fact that i ts  per-  

formance is no better than average. 

design, e r r o r  correction, piecewise linear, and MADALINE. The failure of 

the latter two, which yield nonlinear decision functions, to outperform the 

On all problems for which high performance levels were 

Distribution estimation 

The remaining algorithms were iterative 
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' linear techniques is probably due to the method by which the property fi l ters 

were selected - a method which emphasizes linear separability of the sample 

patterns. 

5. Attempts to improve the original methods of designing 

decision functions and statistical property fi l ters were, by and large, not 

successful. 

far  the design of decision functions lead to shorter and more stable design 

runs, but not to significantly better performances, 

subspaces for property fi l ters deterministically, and establishing the switching 

surfaces nonparametrically lead to a moderate performance increase on one 

cloud pattern task, and a substantial performance drop on the other. 

The added algorithms, and modifications to earlier algorithms, 

A method for  selecting 

- The authors feel that better methods for the generation of 

property fi l ters can lead to more  effective recognition systems, since our 

present ability to design decision functions far  exceeds our capability to 

extract.a meaningful set  of pattern properties. 
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4.0  HARDWARE FEASIBILITY STUDY O F  AN 'ON BOARD' RECOGNITION 
SYSTEM 

4. 1 Introduction 

In order to evaluate the performance of the three spaceborne 

recognition systems reported here, it  has been assumed that the system is 

operating on imagery similar to that obtained by the Automatic Picture 

Transmission (APT) System ( 16') aboard an earth-orbiting meteorological 

satellite. The recognition system classifies 75 x 75 element subsections of 

a picture into one of a prescribed number of cloud (or  background) classes.  

A code designating the class is  either stored aboard the spacecraft o r  trans- 

mitted to earth, o r  both. 

The usefulness of performing on-board processing is  apparent 

when one considers even the relatively modest data link and data acquisition 

requirements of the APT System. 

a region on the earth of about 1050 x 1050 miles with a 700 line resolution, 
6 generates approximately 22  x 10 

light pictures/orbit with seven gray levels) + If an on-board recognition 

system, similar to that to be described, were employed, with an optics 

system covering the same ground region, only 42 x 10 ,bits of information 

would be generated per orbit. This figure allows for the transmission of 15 

bits to specify the system's response unit input (is e . ,  discriminant function) 

each time a classification is made. The result is a substantial reduction in 

transmission bandwidth, data storage, and subsequent data processing 

r equir em ent s 

The APT vidicon camera system, covering 

bits of information per orbit (i, e. , 15 day- 

3 

The 'on board' recognition system will employ a wide-angle lens 

having a field of view of 1050 x 1050 n. miles from a 500 n. mile altitude 

similar to the APTS. Cloud cover classifications a r e  made on 175 x 175 n.m, 

subsections of this area.  With the satellite in a polar orbit, the east/west 

scanning of each subsection i s  accomplished electronically by means of the 

input system, while the north/south scanning results from the movement of 

the satellite (Figure 61). An overlap of 50% east/west and north/south is 
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Figure 6 1. NorthlSouth Scanning By Satellite Movement 
(5070 overlapping strips) 
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* introduced in order to increase the accuracy with which the boundaries 

between different cloud classes  may be determined. ':' 

The east/west scanning of the input system yields 11 overlapping 

subsections covering a region on the ear th  of 175 by 1050 n. miles (Figure 62). 
Classifications a r e  performed on each subsection. 

lapping subsections in the north/south direction the satellite must t raverse  a 

ground distance of 87.5 miles. 

orbit) is approximately 3 .  61 n. miles/second. 

west overlapping subsections must be processed in about 24 seconds. 

the implementation approaches investigated and discussed in this section 

require l e s s  than this time to perform the required processing. 

To obtain the 50% over- 

The ground speed of the NIMBUS (500 n. m. 

Therefore the eleven east/  

All of 

The pattern recognition system may be divided into two parts - 
(1) an input unit and (2)  a decision network. 

recognition device is illustrated by Figure 6 3 .  

The general structure of such a 

To perform the cloud pattern classification task a s  discussed in 

Section 3, it  has been determined that a sensory resolution of 75 x 75 elements 

for each subsection can be utilized. (163) Image storage and shuttering is  not 

required i f  a subsection classification can be performed in less  than 0.645 
sec . ,  the time required to move one sensory resolution element. 

requirement is satisfied for all of the systems considered in the feasibility 

study. 

This 

The input unit consists of an image dissector tube with associated 

horizontal and vertical  deflection coils, focusing coils, x and y deflection 

amplifiers , three digital- to -analog converters and cor responding flip-flop 

registers,  and a signal conditioning amplifier for the dissector tube output. 

Except in the parallel/analog implementation of the decision network, a four 

bit analog-to-digital converter is also considered to be a component part of 

the input unit. 

.I, .I. 

In Section 3. 3.8 of this report, it is shown that for abrupt transition boun- 
daries,  i f  the discriminant value (response unit input sum) a r e  used as a 
means for interpolating to find the boundary location, little benefit is gained 
from providing this amount of overlap. If in actuality 50% overlap is not 
required, the system may be modified to yield potentially a 7570 reduction in 
the computing duty cycle, with commensurate savings in power consumption. 
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Input Unit Decision N e t w o r k  

Cumulus 
Solid 

Polygonal 
Cell 3 

vs. 

I I Quadratic Logic I Linear Response 
Logic Units I 

Units 

Figure 63.  Recognition System Block Diagram 
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The decision network is made up of 256 f i rs t  layer quadratic 
t 

logic units and two second layer response units. 

inputs, zl  through z6, which a r e  a function of the light intensity at  the corres-  

ponding coordinates ( x ~ ,  y,) through (x6Y y6)Y where (xi, yi) is one of the 

5625 points of the subsection being processed. 

unit receives inputs from the f i r s t  N quadratic units while the second response 

unit receives input from the remaining 256-N quadratic units. 

response unit discriminates between cumulus and non-cumulus cloud cover, 

while the second response unit discriminates between cumulus, polygonal 

cells and cumulus, solid cells. 

sections, only 150 quadratic units a r e  required to accomplish these 

classification tasks. The hardware feasibility study uses 256 quadratic units, 

hence the estimated size,  weight and power consumption figures tend to be 

cons e rv a t iv e 

Each quadratic unit has six 

One second layer response 

The f i r s t  

In the simulation studies reported in previous 

Each of the 256 quadratic logic units implements the following 

algebraic function 

6 i 

a 0 t 1 zi [bi  + 1 cij  zj) 

i=l  j= 1 

If the function is zero or  positive then the quadratic unit output Qm is 1, 

otherwise Qm = 0. 

linear weights (bi), and 21 quadratic weights (c..). 

well a s  the coordinates corresponding to each z 

in advance by training the recognition system on a sample set  of patterns 

The abave expression contains one threshold (a ), six 
0 

These 28 coefficients, a s  
13 

i’ a r e  completely specified 

by means of a computer simulation program (Section 3.0). 

The purpose of the two linear response units is simply to test 

the inequalities. 

N 25 6 
t e l >  Oand QmWm - 

m= 1 Nt1 

Three techniques for implementing the recognition systems were 

evaluated in this study, The three systems considered a r e  (1) parallel/analog, 
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, 
(2)  sequential/hybrid, and (3)  sequential/digital. 

to the fact that a l l  256 quadratic computing elements a r e  separately imple- 

mented. The term "analog" indicates that the quadratic unit's z-inputs a r e  

analog voltages. 

(involving six inputs) is implemented once, in hardware, o r  by means of a 

computer program. 

the expression is evaluated sequentially for each of the 256 quadratic units. 

The term "hybrid" refers  to the fact that the z-vector inputs a r e  supplied in 

both analog and digital form to the quadratic computing element. 

"digital" implies that the z-vector inputs (as  well a s  weights and thresholds) 

to the quadratic computing element a r e  all  binary. 

The term "parallel" refers  

In the sequential approach the general quadratic expression 

The coefficients and input coordinates a r e  specified and 

The term 

Table XVII contains a summary of each system and the major 

subsystems, along with the results of the hardware feasibility study. 

All of the systems require some form of memory to store the 

connectivity of the system, the quadratic and linear weights, and the 

thresholds. 

diode matrix can be replaced by a core memory which should yield a smaller 

weight and volume, but will increase the power dissipation and cost. 

ly, the diode matrix could replace the core memory in the sequential/digital 

approach if a small writing buffer memory were included. Another memory 

technique which appears useful is a transparency containing digital weights, 

thresholds, and access information. 

It should be noted that in the sequential/hybrid approach the 

Similar- 

Processing time in each case could be reduced a t  the cost of 

additional power consumption by decreasing the time required for the image 

dissector to access a data point. 

If a computer with sufficient memory capacity is an integral 

part  of an existing satellite system, the possibility exists for implementing 

the sequential/digital approach using that computer, thereby requiring only 

the addition of the input system. A further advantage of the sequential/digital 

approach is that it allows augmentation of the statistically designed properties 

(logic units) with known properties (see Section 3.3. 7) extracted from the 

input pattern by special digital subprograms. 

figuration which affords such flexibility. 

This is the only system con- 
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The implementation study reveals that, with current engineering 

technology and commercially available components, a useful sequential/hybrid 

or sequential/digital recognition system could be constructed with weight, size, 

and power requirements comparable with those of the satellite-borne APT 

System. 

the results of this hardware feasibility study, the development of an on-board 

recognition system for cloud cover mapping appears to be practical. 

In view of the classification accuracies obtained (Section 3.0), and 

4.2 Input System 

It is possible to construct the light sensitive portion of the input 

This approach is unit with an array of 75 x 450 (33, 750) discrete photocells. 

not used since the size of such an a r r ay  of discrete elements would be at 

least 7.5" x 45.0". 

the a r r ay  of discrete sensor elements the size problem can be alleviated. 

However, current technology in monolithic a r r ays  does not yield adequate 

uniformity between sensors  to allow discrimination of eight gray levels. 

general, the primary reason for employing such an a r r ay  of light sensory 

elements is in the interest of generating rapid responses from the recognition 

system. As previously described, however, without image storage the system 

is required to classify a new subsection every .645 seconds, the time interval 

corresponding to a satellite displacement of one resolution element. 

allows ample time for each data point to be acquired sequentially. 

a subsection classification i t  is necessary to acquire an input set of data 

representative of the light intensity of a maximum of 5625 points. 

100 psec  per data point, .5625 seconds a t  most a r e  required to access data. 

In the sequential approach only the required data points (i ,  e . ,  those resulting 

from the design simulation) a r e  accessed. F o r  the case under consideration 

256 logic units a r e  to be mechanized, each with 6 inputs utilizing a t  most 1536 

input points, so that only . 1536 seconds a r e  required to access  data. 

event the access time is less  than the 645 seconds available. Thus it i s  

:;< 
If a monolithic photosensory a r r ay  is used to replace 

In 

This 

To generate 

Allowing 

In any 

* 
For example with the use of TI LS-600 N P N  Planar Silicon light sensors 
having a center-to-center spacing of 0. 1". 
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possible to employ a compact lightweight vidicon or  image dissector tube to 

sequentially acquire data under the assumption that any point may be interro- 

gated within 100 psec.  

An image dissector rather than a vidicon has been selected. A 
vidicon has the property that in reading out a data point the data value a t  that 

point is temporarily destroyed. 

employ the same input data point, hence if  the vidicon were employed and the 

same point interrogated in rapid succession the voltage representative of the 

light intensity would vary even though the input light intensity corresponding 

to the data point is constant. This disadvantage is overcome with the image 

dissector, 

which is not required by an image dissector. 

image dissector tube is that the resolution of the tube i s ,  to a f i r s t  order 

approximation, controllable by the selection of tube aperture size. 

reasons an image dissector tube appears ideally suited a s  an optical-to- 

electrical transducer for a video pattern recognition system. 

On occasion two adjacent logic units may 

In addition the vidicon requires from 1 to 4 watts of heater power 

A further advantage of the 

For  these 

4.2. 1 Image Dissector Tube 

The schematic of an image dissector tube is shown in 

Figure 64. 
collimated by a magnetic focusing field in the drift tube. 

electron drift is dependent upon the magnetic focusing and deflection fields. 

An aperture permits electrons to pass into the photomultiplier. 

of the aperture is representative of approximately an equal a rea  on the photo- 

cathode, the location of the selected photocathode area  being dependent upon 

the horizontal and vertical  magnetic deflection field. The electrons passing 

through the aperture a r e  multiplied by a photomultiplier with a conventional 

dynode structure. 

pertinent information concerning the tube and the associated deflection and 

focusing coil is specified in Table XVIII. 

The photocathode of the tube releases electrons which a r e  
The direction of 

The area 

The dissector tube selected is the ITT model F4011. The 



oil 

\' Aperture 
Anode 

Useful Area---\ 
1.1" O.D. \ /- \ 

I 

Strip 

Figure 64. Image Qissector Tube 
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TABLE XVUI 

DISSECTOR SPECIFICATION 

Tube Diameter 

Useful Photocathode Diameter 

Selected Aperture = (g)  - [ - 4 i O ) -  - 

Anode- to-Photocathode Voltage 

Photocathode Sensitivity (typical) 

Photocathode Spectral Response 

Maximum Photocathode Current 

Phatomultiplier Gain (typical) 

F4508 Deflection Coil Sensitivity 

Density 

(typical) 

Inductance 
Resistance 

F4506 Focusing Coil (voltage & 

Overall Dimensions with Coils 

Weight with Coils 

current) 

1.5 inches 

1. 1 inches 

1.724 x l o m 3  inches 

2400 volts 

5 O p a / lumen 

s11 

2 10 p a / c m  

2 x 10 6 

150 ma/in 

3 mh 
11 ohms 

28 volts @' 40 ma 

8. 2" x 3. 1" 0. D. 

3.9 pounds 

4.2. 2 Input Optics 

The focal length of the input lens required to give a 

ground coverage of 1050 by 1050 nautical miles from an altitude of 500 

nautical miles corresponds to a lens having a 108-degree field-of-view. 

Since the linear dimensions of the image dissector, for a square format con- 

tained within the useful area,  is 0. 778 inches, and since the image plane to 

lens distance for an object at  infinity corresponds to the focal length, then - .778 108O for the case considered f = -/tan- = 0.389/tan 54O = 0.283 inches 

or  7. 2 mm. 

if required, however for purposes of this discussion the lens will be used 

a t  an F number of 8. 

(162) 

2 
A controlable iris can be used to adjust the input light intensity 
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4.2.3 Maximum Dissector Current 
t 

The dissector tube selected should not be operated at  a 
2 photocathode density in excess of 10 p a / c m  , however the output anode current 

from the dissector should be a s  large a s  possible under conditions of maximum 

illumination since the dissector signal-to-noise ratio improves in proportion 

to the square root of the output anode current. 

sun above the earth 's  atmosphere a t  mean solar distance is 12,680 lumen/ 

ft . (164) The maximum albedo or reflectance from the earth is 0.9. 
Hence the maximum light flux density input to the lens is 11,410 lumens/ft 

Since the lens is used a t  an F number of 8 and has a nominal transmittance of 

0. 7, then the illumination on the dissector is  31. 2 lumen/ft 

The maximum output f rom the 

( 164) 
2 

2 -9. ',- 

2 2  
The useful a r ea  of the dissector is m(0.55)  in. = 

-3 2 2 0.95 in. = (6. 6) 10 ft (or 6. 1 cm ), hence the light flux on the dissector 

is nearly 0 , 2  lumens. 

manufacturer with respect to a tungsten source having a color temperature 

of 287O0K. 

luminous efficiency curve, radiates about four times the power per lumen a s  

the tungsten source. Since typical photocathode sensitivity of the dissector 

for  the tungsten source is 50 pa/lumen it is estimated that sensitivity with 

the solar source will be about 200 p a/lumen. The maximum photocathode 

current is 40 p a  (product of dissector light flux and photocathode sensitivity). 

Since the useful dissector a rea  is 6.1 cm the maximum photocathode current 

density i s  6 . 6  pa /cmZ or  42. 1 pa/in.  

The photocathode sensitivity is specified by the 

The sun has a much higher color temperature and, based on the 

2 

Notice that this is 34% less  than the 

2% (165) The dissector illumination is computed from the equation: 

2 
= light flux density input to the lens (TB = 11,410 lumens/ft ) where TB 

nf = F number 

m 

7 = transmittance of the lens = 0. 7 

= linear magnification (m=O for the case considered) 
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maximum allowable current density as specified by the manufacturer. 

selected dissector aperture diameter of e 0017 inches (see Table XVIII) yields 

an aperture area of 2.34 x l o s 6  in. 

is 98.5 x 
gain of 2 x 10 

The 

2 Hence the current through the aperture 

Fa. 
yields a maximum output current of 197 Fa. 

Multiplying this current by the typical photomultiplier 
6 

4.2.4 Dissector Signal-to-Noise Ratio 

The primary source of noise in an image dissector is 

due to the random shot noise present in the photocathode emission. 

of the photomultiplier is to increase the noise coming through the aperture by 

a factor of 1.15 for the dissector being considered. 

noise (166) may be applied to the output current of the image dissector. 

The effect 

The formula fo r  shot 

1 

= k  2 e p I D A f  
In 21 (3) 

where k = d,& = 1. 15, 6 = per stage gain of the 

e = 

p = 

ID = 

Af = 

photomultiplier 

charge of one electron = j l .  6 x 1019 coulombs 

overall gain of the photomultiplier = 2 x 10 6 
average dissector output current 

bandwidth of the system 

The useful bandwidth of the system can be no greater 

than one half the sampling frequency, so that 

where f = sampling frequency = 10K Hz 
S 

At = time duration between adjacent samples = 100 psec  

(3) may be expressed a s  
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4 

This yields 

At the maximum dissector current 197 p a  the cor re-  
is 216, an extremely good signal-to-noise ratio. D/ In sponding value of I 

4.2. 5 Deflection Amplifier Requirements 

The selected deflection coi ls  have an inductance of 3 

The sampling 

This places certain restrictions on the 

millihenries and sensitivity with the F4011 of 150 ma/in. 

time is  100 psec per data point. 

maximum voltage swing, output current and output load the deflection am- 

plifier must drive. 

will be considered since it represents the worst case. 

be capable of supplying enough current to cause a deflection of ik .389 inches. 

At the stated sensitivity this requires f 58.4 ma. Each subsection corre-  

sponds to a length . 13 inches on a side (see Figure 64) requiring a current 

of 19. 5 ma. 

, 2 6  ma. 
that 

The requirements for the horizontal deflection amplifier 

This amplifier must 

One resolution element corresponds to changing the current 

To cause a deflection to within 1/2 of a resolution element requires 

L 19 5 A t  = - In 0 .13 = 5L/RL 
R L  

The resistance in ser ies  with the deflection coil, neg- 

lecting the internal resistance of the coil (11 ohms), must be at least  

R L 1 x -  5L - 1500 

With this value the voltage corresponding to maximum deflection i s  f8.75 

volts. 

The deflection amplifiers have the capability of summing 

several inputs. In the x-direction this allows subsection biasing, This 

feature offers a significant advantage in the sequential/hybrid and sequential/ 

digital decision network implementation since it is then necessary to store 
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only seven bits of coordinate information (75  positions) rather than nine bits 

(450 positions) which would be required if  periodic subsection biasing were 

not employed. 

’ 

The Y deflection amplifier also has the capability of sum- 

mation and allows correction to be made to cause incoming data to be re- 

tained in a fixed position independent of the satellite movement. 

rection is made with the advancement to each new subsection, The cor-  

rection corresponds to 0 , 9  of a sensory element for the parallel/analog 

system (35 millivolts at the deflection amplifier output). 

hybrid and sequential/digital approach the correction corresponds to approx- 

imately 1 /3  of a sensory element or 13 millivolts at the deflection amplifier 

This cor- 

In the sequential/ 

output, 

4.2.6 D/A Converter 

The function of the D/A converter is  to allow data acces- 

sing by means of digitally stored numbers2 or  in the case of the parallel/ 

analog system by means of counters. use a standard R/2R sum- 

mation ladder and field effect transistor switches; each switch controlled by 

the state of a flip-flop register or counter. 

The D/A 

4.2.7 A/D Converter 

A simple four bit A/D converter is required by the sequen- 

tial implementations. 

dissector for 16 equally spaced gray levels. 

cult to define the minimum and maximum gray level precisely and the gray 

level intensities a r e  not necessarily linearly spaced, the system allows for 

16 gray levels rather than eight. If it is found that extra quantization is  not 

required, the last bit of the converter can be disregarded. 

method suitable for the sequential/hybrid and sequential/digital implementa- 

tions i s  illustrated in Figure 65. 

made large relative to 25KQ2 the dissector anode load resistor. 

require a unity gain buffer amplifier. 

corresponds to 5 volts (25K x 200pa). 

and hold circuit since the data is sampled and held by virtue of the D/A 

The converter encodes the output voltage of the image 

Since it may be diffi- 

A conversion 

The input impedance to the converter is 

This may 

The full scale input to the converter 

The unit does not require a sample 
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gction on the image dissector. 

age has stabilized in both sequential/hybrid and sequential/digital systems. 

Read-out is always done after the input volt- 

The converter is capable of encoding a zero to f u l l  scale change in 3 . 2  

1.1 seconds. Z . .  
1J 

i = 1-6 

j = 1-256 
f \ 

,\ 

P 9 

x2 

Figure 65. A / D  Converter 

4.3 Parallel/Analog System 

A block diagram of this approach is shown in Figure 66. The 

input function and performance of the image dissector is as described in 

Section 4.2.1 and 4.2,3, 

described in Section 4, 2. 5 and the D/A's i n  4. 2.6, 
The deflection amplifier performance has been 

The X counter advances from count one (binary zero) to  count 

75 (binary 74) while the Y counter remains fixed, 

Y counter advances from count one to count two. 

until al l  elements within a subsection have been interrogated. A s  this process 

is taking place the particular coordinate position being interrogated is decoded 

and is used to  initiate sampling of one of the 1536 of the available 5625 points 

read-out, 

maximum size of the decoder network is 150, 7-input lrAND1' gates. 

At the end of X = 75 the 

This process continues 

Only about 50X and 50Y locations a r e  required to  be decoded. The 

Each 
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sample and hold circuit contains a 2 input "AND" gate. 

advanced to the position X = 75, Y = 75 of a particular one of the eleven 

horizontally overlapping subse-ctions the compute one-shot is fired. 

time delay of approximately 5 msec, a subsection classification appears a t  the 

Once the counter has 

After a 

output. 

The compute one-shot causes the gated clock to be inhibited so 

that no counters advance during this interval. 

is simply to allow time for a l l  of the quadratic and response units to settle. 

When the compute one-shot turns I'off,'' the read or  write tape one-shot fires 

indicating to other equipment that a new subsection has been classified and the 

classification may be transmitted or  stored on tape or  both. 

the write one-shot is also set  equal to 5 msec. 

shot's turn off, the gated clock is released and on the next clock pulse the 

X and Y counters return to X = 1 and Y = 1 and the subsection counter advances. 

On the occurrence of the eleventh subsection following turn off of the write 

one-shot, the halt one-shot is fired and remains in this state for a duration of 

17.8 seconds halting further data processing. 

to move sufficiently to cause 50% overlap of the next group of subsections to be 

classified. 

data will be 562.5 milliseconds whereas the time required to perform a 

classification and readout is only 10 msec. 

so that an analog voltage representative of the input sum of a response unit 

may be monitored. 

The comp<te one-shot's function 

The duration of 

Following the write tape one- 

This allows time for the satellite 

The clock i s  a 10 KHZ clock, hence the time required to acquire 

The response circuitry is arranged 

4.3.1 

The general structure of the j-th sample and hold circuit 

is shown in Figure 67. The major requirements for switch S is that it be a 

high speed switch, having a low ''on" resistance and a high "off" resistance 

and be capable of bilateral current flow. 

deleted at the expense of a shunt dumping switch in parallel with the capacitor 

The latter requirement is sometimes 

C. 

The overall sampling accuracy is dependent on the ratio 

of the hold time to the sample time for  a fixed source and load resistance, and 

is independent of C. 
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If 

= sampling time = dissector dwell time = 100 ksec 

= holdt ime = 572. 5 msec 

tS 

tH 

a = required sampling o r  hold accuracy 

then - = RLC a I 
~ a and tH = RLCln tS = RSCln- 1 

a ’  

so that 

Consider a system requiring 16 uniformly spaced gray 

levels, that is, a spacing between gray levels of 6. 25%* Then it is reason- 

able to take a = 1.5% which gives a combined sampling and hold e r r o r  of 3%. 
6 For  the situation under consideration this gives RL/Rs = 1 . 6 ~ 1 0  h z .  

A reasonable value for a solid state switch is RS=50 ohms; 

this requires R - 80 megohms. Substituting the value of R o r  RL yields 

C = .47 microfarads. 
L -  S 

By constructing the buffer amplifier in a unity gain con- 

figuration and using a matched pair  of field effect t ransis tors  in the input 

stage of the amplifier, it is possible to  realize input resistances of greater  

than 100 megohms. 

The power dissipated by the control gating circuits may 

be made sufficiently small so as to  be neglected relative to the dissipation of 

the buffer amplifier. 

outputting a zero to five volt signal. 

operation of the first layer  logic units which these amplifiers supply. 

The buffer amplifier should be capable of accepting and 

High level signals are conducive to  good 

This 

indicates that it will be difficult to construct a buffer amplifier using less 

than 5 milliwatts. 
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4. 3.2 

The performance of these logic units is described by 

equation ( l ) ,  Section 4. 1.. A block diagram of the connective structure indicated 

by equation (1) is shown in Figure 68. 
voltages. 

All inputs (Z1 through z6) are analog 

Since 256 of these quadratic logic units are required by 

the recognition system, it is important to keep the weight and power of each 

as small as possible. 

tR, of each unit as small as possible in  order  to  obtain the high data processing 

rates normally associated with a parallel analog recognition system. 

multiplier technique using ganged potentiometers operates accurately but has 

the disadvantages of large weight and size and a poor frequency response. 

The disadvantage of using the Hall generator technique is its weight and the 

power required to  obtain a useful output. 

using conventional toroidal magnets for a six input quadratic logic unit will 

weight approximately 3. 0 pounds. 

quadratic units would weight 0. 4 tons. 

Further,  it is important to  maintain the response time, 

The servo 

For  example, a Hall multiplier 

A system requiring approximately 256 

A method that overcomes the disadvantages of servo- 

multipliers and Hall multipliers uses the logarithmic relationship between the 

t ransis tor  emitter current  and the base to emitter voltage. This relationship 

is extremely uniform f rom transistor to t ransis tor  if the devices currently 

used for  differential amplifier applications are employed. 

of V~~ e 
ments on five differential t ransis tors  (10 junctions). 

to  emitter voltage for  any emitter current f rom 2pa  to  lOOpa is less than 

+. 020 volts. 

current range f rom 1pa to  lOOOpa of less than + 5%. 

Figure 69 is a plot 

vs. i for 1 / 2  of a n  MD1122. The graph was obtained f rom measure- 

The variation of the base 

This variation will cause a maximum absolute e r r o r  over the - 
- 

The operation of the weighted analog multipliers used 

for the quadratic logic unit is described with the aid of Figure 70. 

weighted multiplier used by this logic unit is identical in its principles of 

operation. 

that vBE = 0. 

Each 

Initially vx, v and vB are shorted and the offset pot adjusted so  

This accounts for  any D. C. offset appearing ac ross  the input 
Y 

200 



Inputs I Weighted I 
I Analog I 

$8: N ~ N ~  N Multipliers I 

Figure 68,  Quadratic Logic Unit Connective Structure 
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terminals of the pa709 integrated circuit amplifier. In an actual system, 

where size and weight a r e  important the offset pot may be replaced by two 
fixed resistors.  

The pa709 amplifier is connected a s  a differential 

amplifier so that 

- 
- vx -t v Y  

This expression may be rewritten using the semilogarithmic relations 

between voltage and current to yield 

i 
KT X KT C KT In- = - In-  t - 1 n Y  - - In - 

lR ¶ lR 

i i a i  
0 0  KT 

_s_ 

¶ lR  ¶ lR ¶ 

or 

but 

and 

i i  
i = a o  2 
0 

C 

i X = aa (+ + 2) R12 

- % w, i -  
y - a B R 1 ;  C - 

el V 

i i  
- v 0 = -io RL - -ao RL 

C 

hence the output voltage is given by 

RBRLeZ 12% 1 ( aa?:o ) j R a ~ L e i  
R l l R I V  0 = -el 

If Qa, Q,, Qc, and Qo a r e  high beta transistors having a Bmin = 100 and a 

= 200 max B 
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then 

so that 

R ~ R ~  
Rl lRl  

- +  
V 

H 

0 = -el 

by equating like terms it is clear that 

1 c =  R ~ R ~  0 -  

i j  R. .R1 V 
1J 

Notice that if the voltage supplying the resistor R1 is set equal to v ,  then 

linear te rms  of the quadratic logic a r e  obtained with 

- R ~ R ~  bi - R. .R1 
1J 

Negative weights a r e  obtained by inverting the polarity of the corresponding 

voltage applied to Rijp provided the sum of the input voltages is positive. 

In designing this weighted multiplier i t  has been 

assumed that the i 

readily if the transistors a r e  mounted on a common heat sink or  even to a 

higher degree if they a r e  mounted on a common header. 

containing matched transistors mounted on a single TO-5 header. 

= i = iRc = i Roo  Rx Ry 
This condition can be met most 

That is, a unit 

To allow summing the individual products, see Figure 

68, it is only necessary to mutually connect the output collectors of all  the 

individual weighted multipliers and terminate these collectors in the common 

load resistor RLo  

The output comparator may be readily constructed using 

an integrated circuit pa  710 which is housed in a TO-5 case. 
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A six-input logic unit would require a volume of less 

than 7 cubic inches and weigh approximately 0. 1 pound. 

pated by each logic unit using the conventional components l isted above is 

approximate (80 milliwatts) (n-kl). Fo r  n = 6 the dissipation is 0. 56 watts. 

Future integrated circuit amplifiers could afford significant reduction in 

this power dissipation. 

The power dissi- 

4. 3.3 Linear Threshold Response Units 

The response layer  is constructed with l inear thresh- 

old logic units. 

equation (2)  of Section 4, 1. 

cuit comparator and resis tor  summing network (see Figure 71). 

of the circuitry reveals that 

The equation defining the performance of these units is 

The unit is constructed using an  integrated cir-  

Inspection 

R 1 
1 1 

n 

w = 2 where R n  = , 1 

Rm 
n 

8 = (v) 3 

Negative weights are obtained by inverting the Q lines. 

implemented using integrated circuits, one PA709 and one pA710. 

The amplifiers a r e  

4.3.4 Summary 

Cloud cover classification f rom a satellite does not 

require a high classification speed; fo r  this reason the quadratic unit redund- 

ancy is not justified. 

perform a-subsection classification is spent accessing data points (562. 5 msec). 

Given all data points a response is obtained f rom the decision network in less 

than 5 msec. 

without the use of a photosensor array.  

in this section was designed t o  minimize size, weight, and power consump- 

tion. 

were cri t ical  the data coordinates could be stored in a diode rra trix similar 

to that described in Section 4.4.2 allowing the unit to access  only the 1536 

The major portion of the t ime used by this system to  

The speed advantage of this network cannot be fully exploited 

The parallel/analog system described 

Speed was not the critical factor, However, if the speed requirements 
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Figure 71. Linear Threshold Logic Unit 
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points required by the quadratic logic units. 

required to process a s t r ip  of eleven subsections could be reduced from 6 . 3  

seconds to about 1.8 seconds with less  than ten percent increase in weight 

and a slight increase in power consumption. 

With this approach the time 

Table I on page xvii tabulates the estimated power, 

volume and weight a s  well a s  the recommended processing t ime/s t r ip  and 

duty cycle using this, the sequential/hybrid and the sequential/digital 

approaches 
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4.4 Sequential/Hybrid System 

The sequential/hybrid approach (Figure 72) accesses six  data 

points, computes a quadratic unit’s activity adds and s tores  the response 

weights as determined by the quadratic unit’s activity and then repeats the 

process until 256 quadratic units and the two resultant response sums have 

been generated. 

Only one quadratic computing element is used. This unit must 

be provided with a means for changing the weights and the threshold to 

correspond to the particular quadratic unit being computed. 

lished by means of hybrid multipliers and a stored program. 

This is accomp- 

The cyclic control of the system is a s  follows. Assume the lower 

and higher order binary counters (Figure 72) a r e  at zero and the subsection 

counter of the input unit is at  zero,  s o  that c and t a r e  true. This causes 

the stored program to read out the two response units’ thresholds (40 bits) and 

the coordinates (X 
(14 bits). 

response sum registers and the location data a r e  entered into the X and Y DYA 

registers of the input unit and C1 and t 1 
causes the f i rs t  data point to input to one of the six sample and hold circuits 

where i t  is retained in analog form. Also as  a result of t l’s  coming true on 

the next clock, the A/D converter output representing 2 will be transferred 

to a multiplier register contained by the quadratic logic computing circuitry. 

C 

out of the stored program. 

when C5 comes true on the next clock pulse the sixth data location point of a 

quadratic logic unit is entered into the X and Y .D/A register of the input unit. 

When C 

sample and hold under control of t6,  and C6 causes the 27 digital weights and 

a threshold to be read-out in parallel to the quadratic logic computing circuit. 

On the next clock pulse t7  occurs and the digitized Z 

respective quadratic logic register and the weights and threshold a r e  load into 

their respective registers contained by the quadratic logic computing circuitry. 

S i x  bits including sign a r e  used for digitally representing quadratic weights 

and threshold. 

0 0 

Y 1) of the f i rs t  data point of the first quadratic unit 1’ 
On the next clock pulse the threshold data is entered into the 

1 come true. The occurrence of t 

causes the second coordinate value of the f i rs t  quadratic unit to be read- 1 
The data accessing sequence proceeds. Then 

and t 6 6 come true the last  data point is retained by i ts  associated 

is transferred to its 6 

During t7 and C7 all  data inputs 2 through 26 ,  in both analog 
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and digital form, and the 27 weights and the threshold of the first logic unit 

a r e  contained by or  supplied to the quadratic logic computing circuitry. 

during t7 the activity of mth quadratic unit Q 
occurrence of C 

read from the stored program (12 bits) and one extra bit to define which of the 

two response sums is to be added to the response weight providing Qm = 1. 
Following t 

binary counter advances while the resulting response sum is transferred to 

the appropriate response register. This sequence, except for inputting the 

response sum threshold, is repeated, 256 times. On the occurrence of the 

trailing edge of the las t  program count, C2047, a write tape one shot is 

energized. This provides a signal indicating that a subsection has been 

classified and causes the gated clock to be m’omentarily inhibited and the 

subsection counter contained by the input unit to advance one count. 

fashion all 11 subsections of a s t r ip  a r e  classified. 

trailing edge of C2047 and with the subsection counter equal to 10 the gated 

clock is inhibited until the next s t r ip  comes in view. 

corresponds to 100 p sec. 

the wait cycle will be 21.95 seconds. 

pute a subsection is .2048 second hence one s t r ip  corresponds to 2.25 seconds 

neglecting the time to readout each classified subsection. 

Thus 

is monitored. Due to the m 
the response weight corresponding to f i rs t  quadratic unit is 7 

the lower order binary counter returns to to and the higher order 7 

In this 

On the occurrence of the 

Each clock interval 

Neglecting the time used to readout response sums, 

The time required to access and com- 

4.4.1 

The major building block of this computing element is 

the hybrid multiplier. 

coefficient. 

multiplier is essentially a D/A converter having a variable input voltage. 

Each of the six analog switches shown in Figure 7 3  is controlled by the output 

of the digital flip-flop register.  

to respective bit positions of the D/A ladder. 

represented in two’s complement. 

This unit multiplies an analog signal by a digital 

The circuit of a hybrid multiplier is shown in Figure 73. Each 

The switches commutate either ?eFn or  ground 

Negative digital multipliers a r e  

Figure 74 illustrates the arrangement of the hybrid 

multipliers, summing amplifiers, D/A and comparator used to implement the 

quadratic logic unit. The inputs of the f i rs t  column of multipliers a r e  analog 

voltages originating from the six sample and hold circuits and digital weights 

from the stored program. The second layer multipliers use intermediate 
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sums for analog inputs and digital values corresponding to the 2 ' s .  Each of 

the 27 weights uses  a six-bit register,  each digital 2 a four-bit register and 

the threshold a. contained by the D/A register is six bits. The unit requires 

a total of 192 flip-flops and switches, 34 D/A ladder networks, and 35 inte- 

grated circuit amplifiers . 
All quadratic weights a re  stored as  six bits including 

sign. 

not be compromised. However with the quadratic weights selected the linear 

weights correspond to 10 bits including sign and the threshold corresponds to 

14 bits including sign. 

of the quadratic unit a r e  represented a s  the most significant five bits plus 

sign and a r e  rounded. 

This weight accuracy is selected so the original data (four bits) will 

In the prewired.program linear weights and the threshold 

The summing amplifiers in the quadratic unit computing 

circuit a r e  therefore used to perform scaling as well a s  linear summation. 

4 .4 .2  Prewired Storage 

The storage medium selected for this implementation 

i s  a diode matrix. 

interrogate the contents of 14 columns (X & Y data), 256 rows which interro- 

gate 168 columns ( a  

columns (w 

for 67,880 diodes. 

absence a zero. 

required data assuming an equal distribution of one's and zero's .  

miniature diodes such a memory could be constructed in volume less  than 900 

cubic inches. 

The diode matrix may be thought ofas  1536 rows which 

b i t s  and c.. 's) and 256 rows which interrogate 13 
0' U 

and response sum selector). The matrix must provide locations m 
The presence of a diode indicates a one in this bit  position, 

Approximately 34,000 diodes a re  required to store the 

Using 

This type of memory has the advantage that large or 

small blocks of stored data may be unloaded in parallel. This property can 

not be readily attained using conventional coincident current core memories 

since the word length of such memories i s  normally fixed at  40 bits or less.  

It can not be concluded on this basis  that coincident core storage is not prac- 

tical for the sequential/hybrid approach. 

capability could provide a method for storing all  the response sums in an 

orbit (approximately 2772 response sums, 20 bits each-maximum). This 

capability cannot be obtained using the read only diode matrix. 

Core storage with read/write 

In addition 
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recognition system design changes may be made readily by reading new 

weights, thresholds and data coordinates into the core memory. However, 

the diode matrix does provide economy when compared to coincident current 

core storage. 

such as  permanently wired transformer coupled storage o r  ferri te rods. 

The diode matrix provides significant simplicity relative to other memory 

techniques. 

Other forms of prewired storage could have been employed 

4.4.3 Input Unit 

The input unit uses the image dissector, deflection and 

focusing coils, deflection amplifiers, with X ,  Y and subsection D/A's pre- 

viously described (Section 4. 2). 

previously described (Section 4. 2). 

the X and Y D/A registers,  rather than counting a s  in the parallel/analog 

approach. 

a result of C2047. 

The input unit contains a four bit A/D a s  

Data accessing is  done by directly loading 

The subsection D / A  register acts as  a counter and is  advanced a s  

4 .4 .4  

The inputs to the parallel adder a r e  called A. through 

A19 and M through M19. 

The least significant bit position corresponds to S 

in S19. 

complement 

The adder output sum is designated So through S19. 

The sign bit is contained 

Negative numbers (A and M lines) a r e  presented to the adder in two's 

0 

0' 

19 Let RSlo through RSl and RS20 through RS2 19 
represent the contents of the first  and second response sum registers respect- 

ively. 

adder. 

Let RU be the bit indicating which response unit is to be input to the 

Then in Boolean form. This bit is supplied by the stored program. 
- 

A. = (RSlo RU) j- (RS2 RU) 

A19 

* 0 

= (RSl19 ' RU) + (RS219 T U )  

The other inputs to the adder (M lines) a r e  conditioned 

m l l  by Qm and the twelve bit response weight w through w mo 
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m . Q  - Mo - w mo 

Q m10 m M10 = w 

M l l  = w Q m l l  m 

Q m l l  m M19 = w 

Notice that sign of the response weight, wmll  is spread 

from Mll  through M 

standard fashion to the 12 bit response weight. 

This allows the 20 bit response sum to be added in a 19' 

The adder performs in a conventional manner. 

= AoGo t XoMo 

= AIMICl + A l ~ l G l  + AIM1'El 

C1 = AoMo 

C2 = AIMl + AICl 4- MICl AIGICl  s1 

The size of the weights prevent overflow in the sum, however overflow can be 

checked providing the signs of the two numbers to be added a r e  alike. 

flsw can not occur with opposite signs. 

is 

Over- 

The logic for such an overflow check 

overflow = Al9KAl9sl9 -I- A ~ ~ M ~ ~ ~ ~ ~  

4.4.5 Response Register Logic 

The purpose of this logic is to load the response 

regis ters  with their respective thresholds at  the proper time and to enter the 

adder sum into the register dictated by the response unit selector bit (RU) at 

the appropriate time. Accordingly the response regis ter ' s  logic is 
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RS lo RSlo - 
1 = So(RU)t7 t (elo) Co 0 = So(RU)t7 t (no) Co 

: RSZO - 
1 = So(RU)t7 t (e  Z0) Co 0 - -  RS 2 

0 = So(RU)t7 t (no) Co 

4.4. 6 Counters and Decoders 

The lower and upper counters of the system count in a 

Since this logic is quite widely known the se t / rese t  straight binary fashion. 

equations for these flip-flops will not be discussed. 

produces binary counts 0 through 7. 

0 through 255. 

following AND" gates 

The lower counter 

The upper counter yields binary counts 

As shown in the block diagram the decoding requires the 

Quantity No. of Inputs 

8 3 

32 4 
2304 2 

This gating may be easily accomplished using conventional diode logic due to 

the low clock rate.  

4 .4 .  7 Sample and Hold 

The sample and hold circuits a r e  implemented as  

previously described in Section 4. 3. 1 of the parallel/analog system, except 

that sample control is accomplished with a single input timing level (tl  through 

t ) rather .than a pair of timing levels corresponding to an accessed coordinate 

(XI Y1 throughX75Y75). 
6 
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4.4.8 Summary of the Sequential/Hybrid Approach 

A summary of the estimated size, weight and power 

and required processing time per strip and system duty cycle is given in 

Table XVII, Section 4, 1 based on the preceding preliminary design. 

This approach appears highly effective provided that 

the decision network uses  only the statistical type property filters. 

The results of the study a re  highly dependent upon the 

memory selected. 

a time into the quadratic unit computing circuit, while a data point is 

simultaneously accessed, a core memory could be used with a 38-bit word 

length using nearly the identical counter control arrangement without 

requiring the decoders. Such a system would yield reduced size and extend 

the flexibility of the system if the core memory used has a write capability. 

In addition the write capability would provide a direct means for electroni- 

cally transferring the results from the computer simulation to the on board 

s equent i a1 / hyb rid r e  cognition system. 

If the quadratic weights and thresholds a r e  loaded four at 

The digital registers of the hybrid multipliers a r e  

loaded with fixed weights from the diode matrix in order to implement 

the sequentiallhybrid system. 

with an up/down counting capability, the weights and thresholds could be 

modified a s  specified by a training algorithm. 

multiplier could prove quite useful for future applications requiring self- 

learning recognition systems. 

If these regis ters  were, in addition, provided 

This type of modified hybrid 

4.5 

Figure 75 is a .block diagram of the sequentialldigital system, 

The system may be divided into two par ts ,  a compact general purpose com- 

puter and an input unit. The G P  computer is used to control the input unit 

and to compute and store the 22 responses associated with a s t r ip  (11 sub- 

sections). 

arithmetic unit and a control unit. 

The G P  is divided into three component par ts  - a memory, an 

Many general purpose computers have been de signed, developed 

and a r e  available commercially. The t e rm general purpose as  used here 
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refers  to the fact that the sequence of the operations executed can be  readily 

changed by altering a stored program. On the other hand a computer designed 

to be particularly efficient for a special problem using a special input medium 

is normally considered to b'e a special purpose computer. The objective in 

performing a preliminary design of a computer, rather than using available 

commercial machines, is to specify clearly the minimal hardware required 

€or the special problem at hand and to design a computer compatible with the 

input unit and capable of operating in real  time. 

The factors considered which yield the minimal computer 

hardware a r e  (1) operations may be performed using only fixed point arithme- 

tic, (2)  the only arithmetic operations required a r e  addition and multiplication, 

( 3 )  the multiplier is always 4-bits representing the encoded 16 grey levels, 

(4) the memory is packed to yield a minimum storage capacity, and (5) the 

minimal control unit requires only 13 instructions. 

This system uses  a 2psec clock. 

altered only on occurrence of a clock pulse yielding a synchronous computer. 

To obtain the 2psec clock, a lpsec crystal  controlled oscillator is  driven into 

a toggle flip-flop. 

of the true tQggle flip-flop output. 

entiated on the positive-going output to yield and out-of-phase clock. 

All regis ters  a r e  

The normal clock differentiates the positive-going output 

The false side of this flip-flop is differ- 

4.5.  1 Input Unit 

The image dissector; deflection and focus coils; deflec- 

tion amplifiers; D/A ladders,> switches and regis ters ;  and four-bit A / D  con- 

ver ter  a r e  implemented a s  described in Section 4.2. 

program control. 

the other implementations conside red. 

Data a r e  accessed under 

The data access rate corresponds to lOOf2psec/point as in 

The X,  Y ,  and subsection registers a r e  loaded directly 

f rom the memory output under control of the two instructions LDDA and LSS. 
The memory output register lines are designated MO through MO 19' 0 

Accordingly the se t / rese t  equation for the X,  Y and 

subsection register, SS, a re  
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I x b 4 =  (MO19)(LDDA)t6;OX64 = ( m 1 9 ) ( L D D A ) t 6 ;  1 y64 = (hf0 ,2) (LDDA)tb ;oY64 (m12)(LDDA)t6 

1''' = (M0,)(LSS)t6 = ( r n 0 ) ( U S ) t 6  

The X and Y flip-flops a r e  labeled s o  the sum of the 

subscripts of the flip-flops in the true state may be added to yield the 

associated rectangular coordinates of a point in a subsection. 

4.5.2 Memory 

The memory consists of 4096 storage locations in which 

Each information can be stored and from which information can be extracted. 

storage location i s  20 bits long. 

representing the weights, thresholds and coordinate points a r e  stored in 

locations 0 through 3583. 

program, and storage for the results of the program (22 locations for response 

sums). In addition, this section of memory allows for the storage of 12 
accessed data points (2 quadratic units). 

could be used for such things as  a magnetic tape writing subroutine o r  out- 

putting response sums to a transmitter. 

locations 0 through 3583 remain unchanged; that is, in reading the contents 

The information is of two types. Numbers 

Locations 3584 through 3820 (257 words) contain the 

The las t  275 locations a r e  free and 

The contents of a word in memory 

221 



of these locations the information is automatically restored. 

illustrates the approach used in packing the 256 quadratic units and corres-  

ponding response weight into locations 0 through 3583 and also shows the 

instruction word format. 

one quadratic unit and augment the associated response unit requires 14 

memory locations. 

- an operation code and an address. 

bit, the instruction and the word format. The instruction portion represents 

the operation to be obeyed, i. e. , addition, multiplication, etc. A one in the 

index bit  indicates that the contents of the index register a r e  to be added to 

the address before accessing memory (Figure 76). 

the number and position of the bits in the memory word on which operations 

a r e  to be performed. 

and function of the instructions a r e  listed in Figure 77. 

Figure 76 

Notice that storage of the data required to generate 

The memory instruction word is divided into two par ts  

The operation code contains the index 

The word format specifies 

The various instructions, clock pulses per instruction 

The memory unit selected is produced by Electronic 

Memories Inc. and designated by the manufacturer as  the SEMS 5. 
SEMS 5 (Severe Environment Memory System) is a small, fast, lower power, 

light weight, coincident current core memory. As the memory title implies, 

it is designated to withstand severe shock, vibration, humidity and tempera- 

ture. 

The 

The major specifications of the SEMS 5, a s  used, appear in Table XVTV. 

The time used to process and classify a s t r ip  (11 

subsections) is 2.45 seconds, using the program described in Section 4.5. 7, 

and the relatively fast  SEMS 5 
The time between s t r ips  was previously estimated a s  24.2 seconds; therefore, 

the memory is operating only 10.1% of the time and is in  standby the remain- 

ing time. 

reducing power dissipation which can not be achieved using other slower 

magnetic memory forms, such a s  a drum, disc or  magnetic tape unit. 

2 p e c  cycle t ime a s  the system clock rate. 

The relatively high speed of the memory provides a method for 
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0 0 0 4  
0005 

0 0 0 6  

0 0 0 7  

0 0 0 8  
0 0 0 9  
0 0 1 0  
0 0 1 1  

0 0 1 2  

BINARY 
CODE 

ALL 2% QUADRATIC LOGIC UNITS AN0 CORRESPONDING RESPONSE 
WEIGHT ARE CONTAINED BY LOCATIONS 0 THRU 3583. 

DATA I N  THIS FORMAT 

I ,  MEMORY INSTRUCTION WORD 1 

1 1 1 

( 1 9 1 1 8  17 16 1 5 \ 1 4  I3 1 2 1 1 1  10 9 8 7 6 5 4 3 2 1 01 

Z1 THRU Z6, TZ1 TZs. LSS (M00-'M03) 

1 1 

PROGRAM, RESPONSE SUMS (22 LOCATIONS), TZ1 THRU T a ,  AND 21 
THRU 26 ARE CONTAINED BY LOCATIONS 3584 THRU 38M. 

XrYl THRU X6,Y6 (M06+MOlg) 

CI1 THRU C41 (M06+MOlI) 

C42 THRU C66 (MOO +M05) 

bl THRU b6 (M012dM017) 

a (MO12+ Mol+ 

w (MO6+MOl7) 

ALL FULL-WORD DATA (MO0-+MO19) 

c a w  

Figure 76. Memory Data Packing and Memory Instruction Word 
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Speed 

TABLE XVIV 

SPECIFICATION OF THE SEMS 5 MEMORY UNIT 

Temperature 

Shock & Vibration 

Capacity 

Weight 

Volume 

Dimensions 

Read o r  W r i t e  Initiate Pulse 

Voltage & Current Requirement 

Voltage 
(t 2700) 

t 1 5  

- 5  

t 5  

Standby 
Cur rent 
(amps 1 

.06 

.Ol 

. 8 0  

Standby Power Required 

Operating Power 

Operating Power (IO. 1% 
duty cycle) 

2 psec  cycle time 

. 6  p s e c  access time 

-55 to +85OC 

meets applicable portions of MIL-E-5400 

4096 word, 20 bits each 

6 pounds 

132 cubic inches 

4. 5" x 3. 68" x 8. 00" 

. 2  f . l  psec  

(@ 20 bits/word) 

Operating 
Current 

. 8 0  

3.80 

.80 

(amps) 

4. 95 watts 

25. 0 watts maximum 

8.00 watts maximum 
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4.5 .2 .1  Memory Address Logic 

The memory may be addressed from the 

address portion of an instruction word (IRO through IR1 1), f rom the instruc- 

tion o r  program counter (ICo through IC 1), o r  by means of the index lines 

(INO through INl1). Instruction counter outputs are input only during t7, the 
time the memory output will contain an  instruction. If indexing is to be used, 

the index bit, IR19 of the instruction word, will be true.  

lines are called MAO through MA1 1. 

The memory address 

The memory address logic is 

MAO = (IRom19 t INoIRl9)T7 t ICOt7 

mll = ( I R ~ ~ T F ~ ~  ~ I N ~ ~ I R  )t +1cllt7 19 7 

4. 5. 2. 2 Memory Write Logic 

Information is written into memory either 

from the A/D converter ( Z l ,  Z2, Z4, Z ) output on the occurrence of the in- 

struction s tore  the A/D converter output (STAD) o r  f rom the A regis ter  (Ao 
through A ) of the arithmetic unit under control of the instruction s tore  the 

A regis ter  (STA). 

into a selected memory location are MIO through MIl9. 

for  these lines is 

8 

19 
The input lines which govern the information to be written 

Accordingly the logic 

MIO = (Ao) (STA) t (Z,) (STAD) 

MI1 = (A1) (STA) t (Z,) (STAD) 

MI2 = (A2) (STA) t (Z,) (STAD) 

MI3 = (A3) (STA) 4- (Z8) (STAD) 

MJ-4 = (A4) (STA) 

MI19 = (A191 (STA) 
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4.5.2. 3 Read/ Write Control 

It is required to read data from the memory 

at three different times. 

out of the memory during t l ,  
read from the memory during t5. 

(LDA), load the D/A registers (LDDA), load the subsection register (US) and 

write out the response sums (WRITE), data is read out of memory during t6' 
Except during the wait phase, a new instruction is always read out during t7. 
Accordingly the read logic 

If a multiply is to be executed, data must be read 

When an add is to be executed, data must be 

For  the instructions load the A register 

..I.--. 

READ = (MULT) t + (ADD) t5 + (LDA t LDDA t LSS t WRITE) t6 t t7 WAIT 

This logic is used to trigger a one-shot with a .2psec  duration. 

output pulse is delayed .2psec  after the read line comes "up. 

this one-shot is connected directly to the read initiate line of the memory. 

i s  important to note that memory output lines will represent the accessed data 

o r  instruction within . 8psec from the occurrence of a normal clock pulse. 

This allows ample time for adding the new memory address in the instruction 

register to the contents of the index register or copying and instruction o r  

data into the appropriate registers on the following normal clock pulse. Note 

that 1.2psec occur after the memory output lines a r e  "up" before occurrence 

of the next clock pulse. In a sense the memory is asynchronous with the res t  

of the system. 

The one-shot 

The output of 

It 

Only two situations occur where i t  is desired 

to write-store the A register (STA) o r  store the converter output (STAD). 

WRITE = (STA t STAD)t6 

4.5.3 Control Unit (Figure 75) 

The control unit provides the timing for  the system via 

the bit counter and contains the instruction counter, the instruction register, 

the word format register,  the index register,  index adder and the bit counter. 
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4.5.3.1 Bit Counter and Decoder 

The bit counter counts in a normal binary 

fashion except that it is preset by the instruction to be executed. 

to which the bit counter is preset  always corresponds to the t ime required to 

execute the current instruction and fetch the next instruction. 

the counter operation is shown below. 

The duration 

A diagram of 

1 1 1 4  
I 

Decoded 
Bit Time 

wait 

B2 B1 Bo 
0 0 0  

mult iply-+ 0 o 1 

Before proceeding with the bit counter logic 

it is necessary to define H. 

in t This line will come true only on the occurrence of a wait instruction 

and if  the new strip of data has not come into view (START = 1) o r  i f  a wait 

instruction occurs and the response sums have not a s  yet been read (RSR = 1). 

Hence 

H i s  a line that causes the bit counter to hang-up 

7' 

- 

H = (WAIT) (START +=) 

If H occurs it causes the bit counter to freeze o r  hang-up in t 

the bit counter is always done as a result of t7 occurring. 

counter is forced to t 

(MO18 t MO17)t7. 
significant bit) is, 

Presetting of 7' 
In presetting, the 

unless an  add o r  multiply is to occur as indicated by 6 -.-. 
The resultant se t / rese t  logic of the bit counter (Bo least  
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add mult. 

Bo - - -  e 6-_ 
1 = BOH t7 t t7(MO18MO17MO16MO15 -k M018M017M016M015) -I- H 

- -  - 0 B O  = BOH t7 t t7(MO18 t MO17) 

- - e  - -- 
1 B2 = B 0 1 2  B B H t7 t t7(MO18 t MO17 MO18M017MO16M015) t H 

- - o B2 = B ~ B ~ B ~ E  t7 t t 7 ( ~ ~ 1 8 ~ ~ 1 7 ~ 0 1 6 ~ 0 1 5 )  

This logic has not been reduced to its minimum form. 

parent that, since count zero never occurs,  it may be used as an  excluded 

count. All other counts are  decoded. Accordingly 

In decoding it is  ap- 

-- -- 
t l  = BlB2 t4 = BOBl -- 
t2 = BOB2 t5 = B ~ E ~ B ~  - 

= BOBlB2 t3 = BoBlE2 t6 
t7 = BOBIBZ 

4.5. 3 , 2  Instruction Counter 

The instruction counter is used to address the 
next instruction. 

count as a result  of the occurrence of t 7'  However in  the instruction, skip if 

the A regis ter  is negative (SAH), it is required to advance two cpunts. 

addition, on a branch instruction, the instruction counter is caused to copy 

the current memory address of the instruction register.  

counter contains 12 flip-flops (ICo through IC1 l ) .  

this counter is ICoa 

Normally this counter advances in straight2 binary, one 

In 

The instruction 

The least significant bit of 

The s e t / r e s e t  logic for  this counter is  , 
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- -  
1 IC' = rco[t6(SAN)A19 t BRUt7H] t IROBRUt7 

0 IC' = .T.co[t6(SAN)A19 4- =t7E] t IROBRUt7 

0 IC' = ICoIC1 [t6(SAN)A19 t Kt7g]  t mlBRU t7 

- - 
1 IC1 1 = (ICoIC1.. . ICl1) [t6(SAN)A19 t BRUt7g] t IR11BRUt7 

0 IC'' = (ICoIC1.. . ICl1) [t6(SAN)A19 t K t 7 T ? ]  t K11BRUt7 

4. 5. 3.  3 Index Register and Index Adder 

The index regis ter  and adder provide a method 

for  modifying the address specified by an  instruction pr ior  to accessing mem- 

ory. 

evaluate successive logic units. 

This feature facilitates cycling through the same se t  of instructions to 

The contents of the A regis ter  a r e  copied into 

the index regis ter  when the instruction, t ransfer  A to index regis ter ,  occurs 

(ATI). The bits of the index register are labeled INDO through INDll, where 

INDO is the least significant position. 

but is written down fo r  completeness. 

The logic for  copying is straight forward 

INDO 

IND 

1 = Ao(ATI)t7 

1 = A1(ATI)t7 

INDO - 
INDO - 

0 = AO(ATI)t7 

0 = Al(ATI)t7 

INDll - 
= A11(ATI)t7 0 = A11(ATI)t7 1 IND1 1 
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A parallel adder is used to add the index 

register to the address contained by the instruction register (IRO through I R l l )  
Addition is complete in less  than 1.2psec and the modified address is available 

for use in addressing the memory on the f i rs t  read o r  write pulse occurring 

after t 

car r ies ,  internal to the adder, a r e  designated CI1 through CIll .  

tional adder logic is, 

The outputs of the adder are designated INo through INl1. The 7' 
The conven- 

-  IN^ = ( I R ~ ) ( I N D ~ )  t ( I R O ~ ~ ~ O )  

CI1 = IROINDO 

- 7  -- 
I N ~  = I R ~ I N D ~ C I ~  t I R ~ I N D ~ C I ~  t I R ~ I N D ~ C I ~  t T E l ~ ~ ~ l Z ' T l  

C12 = IRIIND1 + IRICIl +- INDICIl 

G I l l  = IRIOIND10 + IRlOCI10 t INDloCIl0 

7 -   IN^^ = I R ~ ~ I N D ~ ~ C I ~ ~  t IR~~IND~~E~~ t I R ~ ~ I N D ~ ~ C I ~ ~  t TiTll~~~llC' i l l  

4.5.3.4 Instruction Register and Decoder 

The instruction register is used to retain the 

instruction to be executed, since normally in executing an instruction the 

memory output changes f rom an instruction word to a data word, erasing the 

instruction to be operated on. 

at the middle of t7 into the instruction register by using the out-of-phase clock, 

All 13 instructions a r e  decoded. 

labeled IRo through IR 
register is simply 

The instruction from memory is simply copied 

The instruction register flip-flops are 
The copy logic for this and IR15 through IR19. 
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1 I R O  = Moot7 

1 IRll = MOllt7 

1 IR15 = MO15t7 

1 IR19 = MO19t7 

IRl l  = - MOllt7 0 

0 = MO15t7 IR15 - 

IR19 - 0 = MO19t7 

Since the excluded counts are  not used to 
reduce the instruction decoding logic, three additional instructions may be 

added to expand the computing capability with no change in  the decoding logic. 

LDA = =15E16=17=18 Lss = IR151R161R171R18 

STA = ~ R ~ ~ E ~ ~ T E ~ ~ X ~ ~  ADD = IR 61R1 7~~ 

- - 
SAN = IR 5~~ l6E1 7El 

BRU = I R ~ ~ I R ~ ~ E T ~ ~ E ~ ~  
MULT = IR151R16E171R18 

WAIT = IR 51R 6 E 1  71R 

- 
ATI = TK15E16~~17E18 STAD = IR15X161R171R18 

ITA = IR 5Xl 6~~ 7El WRITE = I R ~ ~ X ~ ~ I R ~ ~ I R ~ ~  
- 

LDDA = I R  51R 7El 

4.5.3.5 Word Format  Register and Decoder 

The word format regis ter  copies the memory 
bits MO12 and MO14 at the end of t7. The copy logic is 
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1 WFO = MO12t7 

1 WF1 = MO13t7 

1 WF2 = MO14t7 

WFO __. 

W F 1  - 
W F 1  - 

0 = MO12t7 

0 = MO13t7 

0 = MO14t7 

Only six of the possible eight word formats 

a r e  decoded. 

a r e  hardwired to the appropriate bit positions, hence the required portion of 

the word from memory i s  automatically selected by the instruction. 

format decoding logic is, 

This is t rue since lines going to the D/A's (X, Y and subsection) 

The 

--- -I 

F1 = WFOWF1WF2 F4 = W F O W F l W F 2  

- - 
F2 = W F O W F l W F 2  

- 
Fg = W F O W F l W F 2  

- 
F5 = W F O W F l W F 2  

- 
F6 = W F O W F l W F 2  

4.5.4 Arithmetic U n i t  

The arithmetic unit has provisions for multiplication 

and addition. 

tive numbers a r e  represented in two's complement form. 

consists of three registers labeled M, A, and 2 ,  logic circuitry to perform 

addition and complementing the M, A and 2 register se t / rese t  logic for  loading, 

transferring, shifting and retaining the resultant sums partial products and 

All arithmetic operations a r e  performed in fixed point. Nega- 

The arithmetic unit 

products. 

Since arithmetic operations a r e  performed in fixed 

point, the numbers held by the A o r  M register a r e  of limited size. 

that these registers are of adequate size, consider the largest  value which 

can be obtained in generating a quadratic o r  linear response sum. For the 

quadratic unit, the quadratic weights C.. a r e  five bits plus sign. This choice 

is based on e r r o r  considerations. The linear weights bi a r e  selected as nine 

bits plus sign; hbwever, only the most significant five bits after rounding plus 

sign a r e  used in forming the bizi products. The value of a. may be as large 

a s  13 bits plus sign; however, only the most  significant five bits, after 

To insure 

1J 
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rounding, plus sign will be used. Notice that since c . . ~ s ,  b.Ps and a. are all  

stored in memory as five bits plus sign loading of the M and A registers varies. 

Correct loading is accomplished by means of the word format. Returning to 

the size of the M and A register,  i t  is c lear  that the largest  possible sum of 

all the products of a quadratic unit, including the sign bit, is 

1J 1 

13 = f (28)2 f 1.75 x 2 1 7  

To accommodate this size number the M and A register a r e  made equal to 19 

bits plus sign. Using 20-bit M and A registers is overly conservative, since 

the weights a r e  never simultaneously a maximum nor all  of the same sign. 

In experiments with two quadratic logic units, it  has been found that a partic- 

ular Z vector (set of six Z . l s ) ,  the sum of all terms yields numbers ranging 

from -12,426 to 9,684. This corresponds to 14 bits plus sign, however the 

order  in which the sum is generated could produce even la rger  interim values 

1 

The response unit weights a r e  chosen a s  11 bits plus 

sign. 

response unit, the largest  possible response sum is f Z7 0 211 = f 218- 

largest  numbers which can be accommodated by the M o r  A register i s  

d9 - 1 and -Z19 so the register capacity i s  more  than adequate. 

Assuming half of the quadratic unit outputs s (128) supply inputs to a 

The 

4.5.4. 1 Two's Complement Arithmetic 

Negative numbers a r e  held in memory in 

The two's complement of a number is formed binary two's complement form. 

by adding one to the one's complement (logical inverse) of the number. 

convention allows the sign of a number to be used as an integral par t  of the 

number and obviates the need for keeping track of a detached sign with com- 

puter logic. Another advantage of t w o p s  complement arithmetic is that only 

one representation of zero exists. The largest  possible number which can be 

represented with the M and A register,  equal to 20 bit positions, is t (219 - 1) 

and d9, as previously stated. 

This 

To add positive o r  negative numbers, with 

negative number in 2 ' s  complement form, i t  is only necessary to add the A 

and M register outputs, bit by bit, including the sign bit and to neglect any 
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car ry  occurring from the most  significant bit position (sign bit) i f  a ca r ry  

occurs. 

bits (M19 and A 

In the event the signs M19 and A 

overflow to occur. 

size of the M and A register prevent overflow from occurring for  the problem 

being served. 

A t rue overflow in addition can only result if the signs of the sign 

) a r e  alike, but the indicated sum, S 19 19' is of opposite sign. 

a r e  opposite, it is impossible for  a t rue 

Overflow in the arithmetic unit is not checked since the 
19 

To perform multiplication, the contents of 

the A register a r e  transfered to the M register and the A register is zero set ,  

while the multiplier (Z data point) is entered into the Z register. 

tion is always carried out in five bit t imes,  excluding the time to access the 

multiplier and multiplicand and fetch the instruction. 

Multiplica- 

Multiplication i s  done by examining the pairs 

of the multiplier digits, that is, ZIZo, Z2Z1, Z 3 Z 2 ,  Z4Z3,  Z 5 4  Z to deter- 

mine the action to be taken with regard to the multiplicand in the M register. 

The process may be reduced to three simple rules. 

1 .  

2 .  

3 .  

If a multiplier digit is the same as the next lower-order 
multiplier digit, add nothing and shift the M register left. 
If a multiplier digit is false and the next lower order is 
true, add the contents of M to A and then shift M left. 

If a multiplier digit is one and the next lower order  is 
false, add the two's complement of M to A and then shift 
M left. 

The sign digit of the Z register is operated 

upon exactly a s  though it were the highest order  digit of the number. 

The process yields the correct  product, in- 

In the system the Z sign bit will always be dependent of the sign of M o r  Z .  

positive but the M sign bit may be either positive o r  negative. 

M register the least  significant bit Mo is zero set  as a result of the multi- 

plyinstructionand bit t ime t2, to insure that zeros propagate to the left from 

the least  significant bit position. 

In shifting the 

The following two examples a r e  shown in 

Figure 78 to show how the multiplication algorithm works. 

paring ZIZ 

Notice in com- 

that it is essential to force Zo = 0 to make the first decision as 0 
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to the action to be taken. 

sequence the 2 register is shifted right. 

To compare successive bit pairs  in the proper 

The M register is shifted left. 

This section is included to clarify the method 

used for  multiplication since several  techniques exist. 

4.5.4.2 Adder and True/Complement Logic 
and Complement Control Logic 

The two's complement of the contents of the 

M register may effectively be added to the contents of the A regis ter  by in- 

serting a 1 in the adder's zero position car ry ,  Co, and adding the oriels com- 

plement of the contents of the M register (logical inverse of M). 

any addition o r  multiplication i t  must be determined whether the normal t rue 

o r  logical inverse sides of the M register a r e  to act a s  inputs to the adder. 

When adding, the true sides of the M register a r e  always required. 

plication either true o r  the false side may be used o r  all modified M lines 

(M ) eminating from the true/complement logic a r e  forced false (adding aero). 

The complement control logic is 

Preceding 

In multi- 

I 

NCO = Add t z l Z o  (MULT) 

Co = ZITo (MULT) 

where NCO provides the true M lines to the adder. 

complement of the M lines to the adder and forces a zero car ry  to the least  

significant bit of the adder. 

Co provides the one's 

The true/complement logic is tabulated below. 

The least  significant output f rom the M register is Mo whereas the resultant 

output to the adder is Mo. 
I 

Mb = MO(NCO) t ~ o C o  

Mi = M,(NCo) t E , C o  
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The full adder logic as well known is 

co = co 

- 1 -  = A ~ M ~ C ~  t XoGbco t X , M ~ E ~  t A ~ M ~ C ~  

C1 = A M '  0 0  t A C  0 0  t M b C o  

s1 = A ~ M ; C ~  + KIE;cl  t X l ~ i E l  t A~E;F, 

C 2  = A 1 1  MI t A I C l  t M;C1 

S18 = A18Mi8C18 t ' s i18ci8C18 t ~ 1 8 M ; 8 ~ 1 8  t A l 8 c i 8 E l 8  

'19 = A  18 M 18 tA18C18 
1 

M;8C18 

= A M' C tx E' C t x  MI t A 1 9 E i 9 E 1 9  '19 19 19 19 19 19 19 19 19 19 

4.5.4. 3 Z Register Logic 

The Z regis ter  contains five flip-flops, Z4 

through Zo. 

a r e  loaded during a multiply instruction from the memory output line MOO 

through M03. 

In addition the register has the capability of shifting right during multiplication. 

The set/reset logic for  this regis ter  is 

This regis ter  is used exclusively for  multiplying. Z4 through Z 1  

As a result  of t l  occurring, the Z flip-flop is cleared to zero. 0 

1 z O  = MULT(ZICl) 

1 z 1  = MULT(Z2fl t Mootl) 

O z o  = (MULT) (zlCl t t l )  

z 1  - 
0 = MULT(TZtl t Moot1) 

- 
1 z2 = MULT(Z3tl t Molt l )  0'' = MULT(z3Fl t Molt1) 

- 
1 z 3  = MULT(Z4fl) t MOZtl) O z 3  = MULT(T4tl t MOztl) 

1 z4 = MULT(Z5Cl t M03t1) - 
O z 4  = MULT (y5fl t M03t1) 
- 

Z5 = TRUE SUPPLY VOLTAGE Z5 = FALSE SUPPLY VOLTAGE 
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4.5.4.4 A Register Logic 

The A register (Ao through A19) copies the 

) a s  a result of an add instruction and t6 occurring sum lines (So through S 

o r  for the multiply instruction except during t l  o r  t7. 

as a result of tl occurring, the A register is cleared. 

loaded from memory as a result of the instruction, load A (LDA), and the 

occurrence of t 

the memory word format. 

being loaded contains a quadratic weight C 
bit must be spread from A5 through A19. 

memory output (MOO through MO In addi- 

tion the A register is also loaded from the index register (INDO through INDll) 

a s  a result of the instruction ITA and t6. 
Alq to be zero set. 

19 
In a multiply instruction 

The A register is also 

The manner in which the memory is loaded depends upon 

If the memory word format is F1 o r  F2 the data 
6' 

If the weight is negative its sign i j '  
For  a full word format, F6, the 

) is simply copied directly into A. 19 

ITA and t6 also cause A12 through 

To yield the previously described results the 

A register logic is shown on the following page: 
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Y = LDAt6F1 

1 AO = S O R  t MOoX t M06Y t INDOW 

0 
- - - 

= - SoR t MOOX t M06Y t INDOW t P 

= SllR t MOllQ t T t INDllW 1 A1 1 

- II_ - 0 = SllR t MOllQ t U t INDllW t P 

= S12R t MO12Q t T 1 A12 

- 
0 = S12R t MO12Q t U t W t P 
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4.5.4.  5 M Register Logic 

The A register is transferred to the M register 

as a result of a multiply instruction and t 

quired to shift left during a multiply instruction except during t l  o r  t7. 

the multiply instruction and a s  a result of t 

insures that zeros a r e  propagated to the left f rom the least  significant bit 

position during a multiply. 

put a s  a result of the add instruction and t 

the data is copied depends upon the word format. 

i s te r  on formats F 3 9  F4, F5 and F6’ 

unit, threshold of the quadratic unit and weight of the response unit a r e  for- 

mats Fg9 F4’ ayd F5,  respectively. The magnitude of the linear quadratic 

weight goes into positions M 

of the weight and Mo through M 

goes into positions M 

the threshold and Mo through M 

into Mo through M1 

Full word formats, F6, a r e  transferred on a bit by bit basis f rom the memory 

output to the M register. 

occurring. The M register is re- 

With 
1 

occurring, Mo is zero set;  this 2 

In addition the M register copies the memory out- 

occurring. The manner in  which 

Data flows into the M reg- 
5 

The linear weights of the quadratic 

through M8 while M 4 9 
a r e  zero set. 

through M19 copy the sign 

The quadratic unit threshold 4 
through M12 while M13 through M19- copy the sign of 8 

a r e  zero set. The response weight is entered 9 
with M1 through M19 copying the sign bit of this weight. 

The M register logic i s  shown on the following 

page: 
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4 . 5 . 5  Power Supplies 

The power supplies will convert the 28 v D.C. source 

of power, normally on-board a satellite, to multiple D. C. levels. The power 

inverter and voltage regulators will supply f 15, + 5  and -2400 volts to the 

system. The inverter and regulators are estimated to be 70% efficient and 

hence dissipate about 8. 8 watts since the power requirements for  all other 

subsystems is estimated to be 20. 6 watts. 

l ess  than 2 .5  pounds and occupy less  than 275 cubic inches. 

The required supply should weigh 

4.5. 6 Summary of Sequential/Digital Hardware 

Item Estimated 

Volume Weight 
(cubic inches) jpounds 9 

Input Unit 180 7 , 2  

Memory 195 8.7 

Control Unit 350 3.2 

Arithmetic Unit 450 4 . 1  

2 .5  - 27 5 Power Supplies - 
Total 1450 25.7 

Power 
(watts) 

5.2 

8. 5 
3.0 

4 .0  

8.8 - 
29. 5 

4.5.7 Program 

The system program is described by the flow chart  of 

Figure 79. 

interval when computing a quadratic logic unit is taking place. 

program using the available 13 instructions has been written. 

Note that the program provides for data to be accessed during the 
The complete 

4 .6  Recommendations 

As a result  of the hardware feasibility study it has been shown 

that a recognition system on board a satellite is feasible, providing ei ther  

the sequential/hybrid o r  sequential/digital implementation is employed. 

The power consumption of both sequential implementations is 

less than that used by the APT system (40. 1 watts). 

quential systems is comparable with the weight of the APT system (25.5 pounds). 

The weight of the se- 
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Figure 79. Flow Diagram of Stored Program Using Sequentid/ 
Digital Decision Network Implementation 
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None of the systems studied use moving parts and for  this reason should be 

extremely reliable. 

One major reason for practicality of the sequential implemen- 

tations stems from the recent developments in digital integrated circuits. 

Since the preliminary design has been considered using standard printed c i r -  

cuit boards and connectors, i t  is possible to reduce the estimated system 

weight and size by employing multilayer printed circuit boards. 

The sequential/hybrid system size and weight could be improved 

significantly by using a 38-bit core stack with 2048 words. 

data accessing is done in coincidence with loading quadratic weights and 

thresholds 

than the sequential/ digital system. Computing circuitry could be significantly 

improved if  the quadratic property fi l ters could be replaced by parallel hyper- 

plane property fi l ters.  

renders it extremely appealing where only statistical property fi l ters a r e  to 

be implemented, 

With this approach 

The sequential/hybrid approach provides a simpler control unit 

The general simplicity of the sequential/hybrid system 

Even though other memory techniques may be less  expensive, 

the core memory offers a particularly strong advantage in that the weights, 

thresholds, data coordinates and stored program may be read into the mem- 

ory directly from Astropower's SDS 930 computer. 

design and subsequent design improvements may be implemented within 

seconds. 

consuming wiring and construction for each design implementation. 

The original system 

This i s  in  sharp contrast to the diode matrix which requires time 

The sequential/digital approach makes use of tried and time 

tested technology. 

systems lack. 

statistical property fi l ters with a minimal amount of additional hardware 

[i. e. , memory expansion). 

Further ,  it provides a degree of flexibility that other 

This may be used to advantage to implement both known and 
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(1) Section 3 , 3 .  7 of this report discusses a procedure which permits 
the utilization of the two techniques for generating property 
fi l ters,  known property extraction and statistical property ex- 
traction, to be used in concert in designing a recognition system. 
The results reported in that section demonstrate that the aug- 
mentation technique is capable of increasing the performance 
level of these systems, particularly in those cases where the 
known properties alone do not achieve a high level of correct 
classification. 
authors' knowledge, demonstrating this capability. 
they a r e  reported, under separate cover, in compliance with 
NASA's requirements. 

The hardware discussions of Section 4 . 0  present several  alter-  
nate approaches to the design of a recognition system for the 
on-board processing of video data. 
porates well known and documented design techniques, the 
mechanization into a system capable of performing the classifi- 
cation of cloud pattern data and compatible with satellite system 
requirements has not been reported in the past. 

The results presented a re  the f i rs t ,  to the 
As such 

(2) 

Though each design incor- 

In each of the above cases documentation is  being supplied to the New 

Technology Representative at Douglas for further action. 
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