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ABSTRACT 

SIN and SOLDIER are heuristic programs written in LISP which solve 

symbolic integration problems. SIN (Symbolic INtegrator) solves inde

finite integration problems at the difficulty approaching those in the 

larger integral tables. SIN contains several more methods than are used 

in the previous symbolic integration program SAINT, and solves most of 

the problems attempted by SAINT in less than one second. SOLDIER (SOLu

tion of Ordinary Differential Equations Routine) solves first order, 

first degree ordinary differential equations at the level of a good col-

lege sophomore and at an average of about five seconds per problem attempted. 

The differences in philosophy and operation between SAINT and SIN are 

described, and suggestions for extending the work presented are made. 

Thesis Supervisor: Marvin L. Minsky 

Title: Professor of Electrical Engineering 
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Chapter 1 

Introduction 

In the last few years there has been a surge of activity on 

the design of algebraic manipulation systems*. Algebraic manipu-

lation systems are computer ba~ed systems which facilitate the 

handling of algebraic and analytic expressions. One of the oft 

stated capabilities desired of such systems is an ability to per-

form symbolic integration. Besides the obvious value of such a 

capability in symbolic calculations there is the possibility of em-

ploying it as an adjunct to numerical integration programs for 

functions which involve parameters. In such cases a single accur-

ate symbolic integration is likely to be preferable to numerical 

integrations taken over the range of values of the parameters. An-

other reason for the interest in symbolic integration programs is 

the fact that the ease with which such a program could be written 

in a proposed language for algebraic manipulation has become an in-

formal test of the power of that language. Yet the only previously 

announced symbolic integration program with any claim to generality 

is SAINT (Symbolic Automatic INTegrator), written as a doctoral 

dissertation by Slagle in 1961 ~~. Slagle described SAINT as be-

ing as powerful as a good freshman calculus student. Thus the un-

modified SAINT program does not appear powerful enough to warrant 

*For a survey of the field of algebraic manipulation see Sammet ~]. 
For a bibliography of work in the field up to 1966 see Sammet ~~. 
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its use in a practical algebraic manipulation system. In 1964 a 

program which integrates rational functions was written for the 

MATHLAB project by Manove, Bloom, and Engelman of the MITRE Corpor

ation [36]. This program filled an important gap in the capabili

ties of SAINT. By using such a program it appeared possible to 

write a more powerful integration program than SAINT. Furthermore 

it seemed that programs which solve ordinary differential equations 

at least as well as sophomore college students (and a good deal 

faster than such students) could also be written. Such programs 

became the goals of our research. 

We used the rational function package of MATHLAB in writing a 

second symbolic integration program called SIN (Symbolic INtegrator). 

SIN, in turn, we used to write a program which solves first order, 

first degree ordinary differential equations. This program is 

called SOLDIER (SOLution of Differential Equations Routine). SIN 

and SOLDIER are both written in LISP [34], [20] for the CTSS system 

at Project MAC [11]. These experiments in symbolic integration are 

the principal subjects of this thesis. We believe these programs to 

possess sufficient power and efficiency that they could be effectively 

used in a practical on-line algebraic manipulation system. 

In order to clarify the domain of applicability of our pro

grams and in order to indicate the power of the present versions 

of SIN and SOLDIER, we present below two examples of problems 

solved by each program. The solutions that these programs obtain 

to the four prablems can be found in Chapters 4 and 6, 
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Problems solved by SIN and SOLDIER 

Figure 1 

Although the capabilities of SAINT are quite impressive, 

we found compelling reasons for taking, in SIN, a substantially 

different approach. The most fundamental difference between SIN 

and SAINT is in the organization of the programs. SAINT utilizes 

a tree search as its main organizational device. Slagle compares 

the behavior of SAINT to that of freshman calculus students. We 

sought an organizational model which behaved like our conception 

of the behavior of an expert human integrator. This model was sup-

posed to determine the methods needed to solve a problem quite 

quickly. A discussion of the approach taken in SIN is given in 

Chapter 2. 

SAINT utilizes a matching program for algebraic expressions 

called Elinst (ELementary INSTance). We desired a program which 

was more closely organized as an interpreter for a pattern matching 

language. This program. called SCHATCHEN, is a service routine em-

ployed throughout SIN and SOLDIER. The power of SCHATCHEN greatly 

simplified the problem of writing an algebraic simplification pro-

gram, called SCHVUOS. SCHATCHEN and SCHVUOS are described in Chap-

ter 3. 
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Chapter 4 contains a detailed description of SIN and its 

methods. A comparison between methods used in SAINT and SIN is 

made. It is noted that SIN contains several methods not included 

in SAINT. Among these is a decision procedure for a set of inte

gration problems. Thus SIN is able to determine that Jex
2

dx and 

Sex 
x dx are not integrable in closed form. 

In Chapter 5 we introduce the Edge (EDucational GuEss) heur-

istic. The Edge heuristic is based on the Liouville theory of in-

tegration. In this theory it is shown that if a function is inte-

grable in closed form, then the form of the integral can be deduced 

up to certain coefficients. A program which employs the Edge heur-

istic, called Edge, uses a simple analysis to guess at the form of 

the integral and then it attempts to obtain the coefficients. Edge 

is a nontraditional integration method and one that we believe is 

the first in a line of very powerful methods. 

The methods and organization of SOLDIER are introduced in 

Chapter 6. The area of nonlinear first order differential equations 

is much more difficult than just integration. Thus we were hardly 

surprised at not being able to find a concept analogous to the Edge 

heuristic of SIN. Nonetheless the power of the current version 

of SOLDIER is comparable to that of a sophomore student in an or-

dinary differential equations course. 

The appendices contain results of experiments performed with 

SIN and SOLDIER and a report on some other work not directly con-

cerned with these programs. 
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Many people probably believe that the cheapest way to obtain 

an integration capability would be to design an integral table 

look-up program. While we do not espouse this course of action, 

we did experiment with such a program (called ITALU). Appendix A 

describes this program. 

Richardson has recently obtained a recursive unsolvability re

sult in integration wich has aroused great interest~]. we des

cribe this theorem and present some of our own related results 

which involve nonlinear differential equations in Appendix B. 

SAINT was asked to solve 86 problems. Of these it solved 84 

in an average time of 2.4 minutes. SIN solved all 86 problems 

with solution times which were frequently more than two orders of 

magnitude faster than SAINT. SIN solved the other two problems 

by using integration methods not available in SAINT. The fact that 

SIN was compiled and that SAINT was run interpretively accounted 

for most of the gain in speed. Results and further interpretations 

of this experiment are given in Appendix C. 

A physicist, Harold Mcintosh, used an integral table to solve 

eleven fairly difficult integration problems. SIN, after some 

prodding, solved these problems and found some minor errors in 

Professor Mcintosh's answers. This experiment is described in Ap

pendix D. 

In order to test the effectiveness of SOLDIER we asked it to 

solve 76 problems taken out of a differential equations text. SOL

DIER solved 67 of these problems cleanly with an average time of 
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about five seconds. One of these solutions indicated a misprint 

in the solution given in the text. This experiment is described 

in Appendix E. 

With the exception of Chapter 7 which presents conclusions 

and suggestions for further work the following chapters are fairly 

self contained. Thus those who are only interested in algebraic 

manipulation can reasonably ignore Chapter 2. Those interested in 

AI may wish to ignore the higher numbered chapters. 



CHAPTER 2 

HOW SIN DIFFERS FROM SAINT 

Introduction 

In this chapter we discuss in broad terms the organizational dif

ferences between SIN and SAINT. SAINT employs rather loose progress 

constraints in generating subproblems, and obtains a solution through 

a tree search. SIN relies on a much tighter analysis of the problem 

domain (i.e., integration) and strict constraints on progress in order 

to obtain a relatively straightforward solution. 

Heuristic Search 

In "The Search for Generality" [ 45 ] , Newell finds that the most 

frequent organizational structure used in Artificial Intelligence pro

grams is one he calls heuristic search. We shall call programs which 

employ this organization as the sole or central organizational device 

HS programs. SAINT is an example of an HS program. HS programs can 

be considered to be programs which attempt to generate a path from a 

starting node A (usually the statement of the problem to be solved, 

given in the internal representation) to a terminal node B (usually the 

last link necessary to find a solution to A). The path from A to B con

sists of one or more nodes which are (again, usually) in the same problem 

domain as A and B. Thus in a theorem proving program the nodes would 

represent statements of possible theorems and in SAINT the nodes repre

sent expressions to be integrated. From each node the program is able 

to generate one or more successor nodes. All of these successor nodes 

could be examined to determine if they lead to a solution (a "B" node), 

but it is in the nature of AI problems that if this were to occur the 

11 
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program would consume too much time and space. Hence heuristics are used 

to select a set (possibly a null set) of successor nodes for examination 

in preferance to others. The use of such heuristics leads to the "heuris

tic" term in "heuristic search." The process of examining nodes in the 

tree which is generally produced leads to the "search" term in "heuristic 

search." 

There are many strategies for guiding the search of the tree. How

ever several stand out and deserve to be mentioned. One strategy is 

called "depth first." It usually selects the last node generated as the 

one to be examined next. This strategy has the effect of forcing an 

examination of a single path until it either leads to a solution or the 

program decides that it will not yield a solution. Such a strategy is 

employed in most game playing programs. At the other extreme is a stra

tegy called "breadth first" which selects the node which was generated 

earliest. Such a strategy was used in the Logic Theorist [44]. SAINT 

chooses the node which represents an expression which it deems to be 

one of the simplest subproblems to be integrated. 

We wish to clarify the sense in which we refer to a program as an 

HS program. The fact that a subroutine in a program uses heuristic search 

does not always imply that the program is an HS program. For example if 

SAINT's simplifier had used heuristic search in order to simplify expres

sions, then this fact does not imply that SAINT is an HS program (for 

example SAINT could have been just a table look-up program). Nor is it 

the case that any program which performs search even if the search is 

guided by heuristics is always an HS program. We wish to reserve this 



13 

name to programs which rely on conducting a search in the same domain 

in which the problem is posed. Thus programs which search for a plan 

in a different space from the one in which the problem is posed and 

thereafter find the solution immediately are not HS programs.* 

The Trend toward Generality 

One of Newell 1 s other conclusions in "The Search for Generality" 

is that AI programs have tended in the recent past to shy away from 

dealing with complex problem domains such as chess, geometry, or inte~ 

gration, and have increasingly concerned themselves with generality. 

By programs which emphasize generality we shall mean programs which 

are concerned with an examination of mechanisms (e.g., heuristic search) 

which are useful in many problem domains. By programs which emphasize 

expertise we shall mean programs which concentrate on a particular 

(complex) problem domain. Examples of the trend toward generality are 

the advice taking programs (e.g., Black 3 1 , Slagle 1 s DEDUCCI'1 [ 59 1 , 

and even Norton's ADEPT [ 47 1). These programs solve toy problems 

which have been posed from time to time by McCarthy. One of the striking 

fea~ures of these programs is how little knowledge they require in order 

to obtain a solution. In fact Persson, in his recent thesis[ 49 1 which 

deals with "sequence prediction" seems to feel that placing a great 

deal of context dependant information in a program would be '-'cheating." 

This emphasis seems to be useful when one desires to study certain 

* Our emphasis regarding the space to be searched may differ from Newell's. 
In fact our ne~d to use intuitive definitions and rely on analogies and 
examples points out the lack of a firm theoretical foundation in computa
tion, and in Artificial Intelligence. 
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problem solving mechanisms in as pure a manner as possible. 

Slagle, too, desired to use SAINT as a vehicle for studying certain 

problem solving mechanisms such as "character-method tables" (for example, 

method A is probably useful when the problem is of type 1 or type 5--see 

Minsky [ 41 I for a discussion of this technique) and "inherited re

sources" (Minsky [ 41 I). We, on the other hand, intended no such 

study of specific problem solving mechanisms, but mainly desired a 

powerful integration program which behaved closely to our conception 

of expert human integrators (it should be noted that Slagle compared 

the behavior of SAINT to that of college freshman calculus students). 

Nonetheless our experiment with SIN may be used to modify or improve 

general problem solving mechanisms. 

SIN, we hope, signals a return to an examination of complex problem 

domains. Greenblatt's chess program [ 22 I is another example of a 

recent program which deals with a complex problem domain which has been 

considerably neglected in the last few years. 

The Emphasis on Analysis 

Our emphasis in SIN is on the analysis of the problem domain. This 

analysis is both an analysis that we performed and built into the pro

gram, but more importantly an analysis which the program makes while 

it is solving a problem. In order to achieve high performance in sym

bolic integration we did not require that the program make a very com

plex analysis of the situation. Nonetheless the analysis that SIN does 

make markedly affects the performance of the program. When SIN is solving 

one of SAINT's difficult problems the most noticeable difference between 

its performance and SAINT's is not in the increased efficiency of the 
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solution,* but in how quickly SIN usually manages to decide which plan 

to follow and the straightforward manner with which it obtains the 

solution thereafter. 

As we shall see in Chapter 4 SIN's methods are quite similar to 

those used by SAINT. However SAINT does not commit itself to a parti-

cular method, but will frequently explore several paths to a solution 

until it finds some path which succeeds in obtaining the answer. Heur-

istic search is used to find this solution path. Frequently such un-

certainty is necessary in SAINT because it lacks the powerful machinery 

that SIN possesses and relies on (e.g., the rational function package 

of MATHLAB). Thus SAINT is forced to search until it finds a path 

which leads to subproblems that it can solve. For example, in Jcot4x dl 

SAINT cannot obtain a solution by using the substitution y = tan x whicl 

leads to Jy4(l ~ yZ) dy since it r~nnot integrate the rational function. 

Thus SAINT is forced to contain a further substitution y = cot x which 

SIN can easily afford to ignore. In other cases the large number of 

subproblems proposed by SAINT arises when SAINT employs methods which 

do not perform a sufficient analysis or possess sufficiently tight 

progress constraints. For example in Jx
2
/: x dx, SAINT will consider 

transforming the quadratic in the numerator, though this transformation 

is not reasonable when one considers the square-root in the denominator 

In this problem SIN would note the square-root and would make a substi-

* Though SIN solves SAINT's problems about two orders of magnitude 
faster than SAINT's published figures, this statistic is deceptive. If 
SAINT were to be run under optimum conditions, SIN would only be about 
three times as fast on the average. The principal reason for this fact 
is that most of the processing time in SIN is spent in algebraic mani
pulation (e.g., simplification), and the cost for these operations is 
fairly constant in SIN and SAINT (see Appendix C). 
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tution which would rationalize the denominator. 

We feel that SAINT is not the only HS program in which greater 

analysis would yield improved results. In the MATER program of Simon 

and Baylor [ 2 ], heuristic search is used to find a mating combination 

in chess. When MATER considers the set of replies that Black might be 

able to make in response to a given move of White, it stores these re

plies in a "try list." The try list is ordered so that moves which have 

fewest responses are considered first. The set of moves which have the 

same number of replies are normally considered in a first-in, first-out 

manner ([ 2 ] , p. 435). This leads to a breadth-first search. Had 

the moves been stored in a last-in, first-out manner a depth-first 

search would have resulted. This search would mean that the program 

would explore a path until it became worse than some other path in con

trast to MATER's criterion that a path is abandoned when it is no better 

than some other path. This slight change in the strategy of the program 

would lead MATER to find solutions to some problems on which it ran out 

of space, and would not materially affect its performance otherwise. 

This analysis of MATER is due. to Henneman [ 26 ]. 

While we do not wish to suggest that a radically improved perfor

mance can be had in all HS programs through greater analysis, we cer

tainly want to emphasize the effect that such analysis can have on many 

HS programs. Since any nontrivial analysis requires a good deal of 

context dependent information, we also wish to emphasize the need for 

such information in problem solving programs. In the long run, of 

course, complex analyses and strategies will have to be represented in 
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specialized languages. We would like to see this development occur in 

the Greenblatt program, for example. 

The Three Stages of SIN 

SIN is a three stage program. In this respect already the organi-

zation of SIN differs from most AI programs which are composed of a 

single stage with a heuristic search as its principal organization. 

The multiplicity of stages allows the programs to devote increasing effort 

in later stages. 

Stage 1 of SIN uses a method (Derivative-divides) which solves most 

commonly occurring problems. The experiment in Appendix C indicates that 

this method solves half the problems attempted by SAINT. Some problems 

integrated by this method are: 
x2 2 ~ 

cos x, xe , tan x sec x, x vl + x-. 

We feel that all too few AI programs employ the fact that in many 

problem domains there exist methods which solve a large number of prublems 

quickly. SAINT did employ this idea in its IMSLN (IMmediate SoLutioN) 

routine (see Chapter 4). However IMSLN is not as powerful as SIN's first 

stage. Evans' ANALOGY program [17] which is one of the few AI pro-

grams which does not rely on heuristic search also could have profited 

from a first stage method. Evans' program deals with geometry analogies. 

Instructions given to humans taking a test based on these analogies are 

as follows: "Find the rule by which figure A has been changed to make 

figure B. Apply the rule to Figure C. Select the resulting figure from 

figures 1-5." Evans' program performs as if it were following the in-

structions: "Find the rule by which figure A has been changed to make 

figure B. Also find rules which transform figure C to each of the fig-

ures 1-5. Select the answer figure which corresponds to a transformation 



18 

which most closely fits a transformation from A to B." The test makers 

are essentially suggesting that one should guess the answer figure. Th±s 

scheme, we have found, is effective in almost all the problems attempted 

by ANALOGY. Consider the figures A, B, C below: 

0 
A B c 

A reasonable guess of the answer using the test makers' advice is: 

0 
TRIAL ANSWER 

If such a figure is present among the answer figures then one should 

choose that answer. All that would be required for this step is that 

one test the guess for an identity with the answer figures. If this 

scheme should fail to find an answer, then one would enter a second 

stage in the program in which one would "debug" the previous guess or 

employ an analysis similar to Evans'. Yet once one is forced to enter 

a second stage, one has a piece of information that one did not previ

ously possess--that the problem is relatively difficult. Such infor

mation may be used to guide further processing. A further use of guessing 

will be indicated below in discussing the Edge heuristic. 

The second stage of SIN is the stage in which we spent most of the 

programming effort. In this stage the program is able to apply eleven 

highly specific methods. The principle feature of this stage is that 



19 

the program decides which method, if any, is applicable to a problem 

quite quickly. We shall call the manner by which this stage of SIN 

operates hypothesis formation. The routine at the heart of the hypo-

thesis formation mechanism in SIN is called FORM. FORM checks for 

local clues in the integrand in order to generate an hypothesis regar-

ding which method is likely to be applicable. Currently FORM can 

decide on the applicability of all but three of the eleven methods by 

using local clues. For example, if·FORM notes the subexpression sin(x), 

then FORM will call the method which handles trigonometric functions. 

The first step that any of the methods in this stage is supposed to 

make is to verify the hypothesis that it is able to perform a transfer-

mation which will either solve the problem or simplify it. Thus if the 

routine which handles trigonometric functions does not believe that it 

is applicable to the problem, as in Ssin x exdx, then it will return 

the value FALSE to FORM. In that case FORM might entertain a second 

hypothesis. Otherwise the method will continue to work on the problem. 

More generally we think of hypothesis formation as a three step 

process. First one analyzes the problem in order to obtain an hypothesis 

regarding the solution method. Then the hypothesis is verified by the 

method prior to attempting a solution of any subproblems. Finally, if 

the method appears applicable then it is used in an attempt to solve 

the problem. If the method does not appear applicable, a new hypothesis 

may be generated. 

We think of hypothesis formation as a model for a planning mechanism. 

As with any pl~nning device one should strive to incorporate into the 

planner a great deal of knowledge regarding the capabilities of the rest 
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of the program. One aspect of the understanding that FORM has of SIN's 

routines is incorporated in its ability to "make the problem fit the 

method." By this phrase we mean that FORM is able to eliminate certain 

ambiguities in the problem. These ambiguities arise when certain subex-

pressions in the statement of the problem hinder the recognition of the 

true nature of the problem. For example, the analysis that FORM makes 

of a problem allows it to suspect that an expression is a quadratic in 

x even though SCHATCHEN (see Chapter 3) did not match the expression to 

a quadratic. This occurs when FORM is examining a square-root of a 

rational function. Let us suppose that none of the methods that FORM 

has available in this case decide that they are applicable. FORM will 

now attempt a further analysis because such a subexpression usually 

represents a block to a solution. FORM considers two excuses for the 

fact that the methods did not seem to be applicable. Both relate to 

SCHATCHEN's matching capabilities. The first is that the rational func-

tion inside the square-root was not expanded (e.g., x(l + x)); the second 

1 
that the rational function was not completely rationalized (e.g., x + ~). 

FORM will therefore determine if thetie two transformations are applicable 

to the rational function. If they are , it will reanalyze the problem to 

determine if its methods are applicable. Thus FORM's analysis enables 

it to localize the difficulties in a problem, and its understanding of 

the rest of SIN allows it to find excuses for certain events and helps 

it to overcome the difficulties in a problem. In some of the cases just 

considered SAINT would have performed the same transformation (only expan-

sion, though). Yet these transformations would be applied to the whole 

integrand and not to selected portions of it. 
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The third stage of SIN is the place that we reserved for general 

methods of integration. Such methods either search a great deal or 

involve much analysis and machinery. Hence we feel that they should 

be considered as a last resort. The experiment described in Appendix C 

indicates that only two problems required a method in this stage. The 

most interesting method of stage 3 is Edge which is based on the Edge 

heuristic and is discussed in Chapter 5. Edge is a novel integration 

method since it guesses the general form of the integral. Once a guess 

has been made, a "differencing" technique similar to GPS's [ 43 ] is 

applied to obtain the answer. As will be seen in Chapter 5 the guess 

is closely related to the antiderivative of a selected subexpression in 

the integrand. 



CHAPTER 3 

SCHATCHEN - A MATCHING PROGRAM FOR ALGEBRAIC 

EXPRESSIONS 

Introduction 

Our aim in this chapter is to develop a set of requirements 

for a language in which one can describe concisely and precisely 

algorithms for the manipulation of algebraic expressions. Several 

attempts at such languages have been made in the past. We would 

like to distinguish among these attempts two distinct approaches to 

an algebraic manipulation language. One could be called the 

command-oriented language. An example of a command would be "Let 

w be the name of the expression which results from substituting the 

expression named x for that namec:) yin expression named z." It is 

customary to abbreviate this to something like "w = subst(x, y, z)." 

The second approach can be called the pattern-directed (or 

production) approach. An example of a statement in such a language 

would be "x+x- 2*x," which means that if the expression currently 

being examined matches (i.e., is of the form) x+x, then it is re

placed by the expression 2*x. Such statements will be henceforth 

called rules. A rule is composed of two parts, a pattern-match part 

(antecedent) and a replacement part (consequent). 

22 
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A command-oriented language is desirable for man-machine 

interaction because the human is able to perform the desired pattern 

recognition by himself most of the time (see Martin [~], Engel-

man [15]). It is also usefu 1 in those situations in which the 

algorithms being coded are straight-forward, that is, nothing 

unusual is likely to happen. An example of such a situation is a 

program which solves a system of linear equations with variable 

coefficients (see ALPAK [ 6 ] ) . 

When the algorithms being coded become increasingly complex, 

the pattern recognition requirements of the algebraic manipulation 

language are increased. To meet these requirements, highly command

oriented languages, such as FORMAC [ 5 ] , include some pattern recog

nition facilities (e.g., the PART command). However, these facilities 

are woefully inadequate for many purposes (e.g., simplification, in

tegration) and the need for a pattern-directed subset of an al

gebraic manipulation language has become clearly established. 

In this chapter we shall be concerned solely with the pattern

directed approach. At first, we shall rely principally on the 

reader's intuition and understanding of algebraic expressions. Our 

discussion will become more and more precise as we proceed. 

We shall first examine the requirements of the pattern-

match. The requirements of the replacement part, which are simpler, 

are examined later. An application to simplification of the SCHATCHEN 

program which fulfills these requirements will then be discussed. The 
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chapter ends with an essay on simplification. 

Below "PLUS", "TIMES" will designate the usual arithmetic 

operations of addition and multiplication. The former will also be 

designated by "+", and the latter by concatenation. "EXPT" will 

represent exponentiation. 

The Pattern-Match 

Let us consider the intuitive pattern for a quadratic in x -

namely, pattern Pl: 

(Pl) Ax
2

+Bx+C 

All would grant that the expression El satisfies the pattern 

Pl with the values for 

(El) 3x
2 

+ 2x + 5 

A, B, C, being 3, 2, 5, respectively. Such an expression also 

appears to offer no difficulties to a matching program since there 

is a 1 - 1 correspondence between the elements in the expression and 

the elements in the pattern. Thus, a straight-forward left-to-right 

scan should yield the corresponding values for A, B, C and result in 

a match. Consider, however, the expression E2. E2 is also a 

quadratic in x. Yet it fails to have one of the properties that El 

enjoyed. A left-to-right scan of E2 will yield the 

(E2) 3x2 + 2x 

value 3 for A and 2 for B. However, we will have difficulty in 
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assigning a value to C since no term in the expression corresponds 

to the C term in the pattern. Obviously C should be matched with 0. 

We generalize the example to conclude that terms in a sum in the 

pattern which are missing in the expression are to be matched with 0. 

Likewise, factors in a product in the pattern which are missing in 

the expression are to be matched with 1. We should note though 

that extra arguments in the expression might lead to failure as in 

expression E3: 

(E3) 4x
3 + 3x

2 + 2x + 5 

Expression E4 presents us with a degenerate instance of 

pattern Pl. Note that the operators PLUS and TIMES which are ex-

plicitly present in Pl 

~4) 
2 

X 

are missing in E4. We can introduce these operators by rewriting 

E4 as E4'. 

(E4') 

Let us proceed now with matching Pl and E4'. The value 1 for A is 

easily obtained. The 0 term in E4' will match Bx and will result in 

B=O. (This process will be clarified below.) Finally, due to .the 

requirement stated above regarding missing terms in a sum, C will 

be matched with 0. Then in order to match Pl with E3 we required that 

the match must recognize missing or implicit operators. 
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Let us consider how the match might determine that Bx=O 

implies that B=O. In Pl we implicitly introduced the convention that 

constants such as x are represented by lower case Roman letters and 

variables such as A, B, C, are represented by upper case Roman letters. 

Constants must match themselves. The values of variables are deter-

mined by the pattern-match and depend on the expression. Furthermore, 

our knowledge of multiplication indicates that if a product in

volves a 0 factor, then its value is 0. (We shall ignore cases with 

infinite factors.) Thus, if a product is matched with 0, it is re

quired for a factor to match 0. If Bx is matched with 0, then since 

x must match itself, B must match 0, otherwise the match fails. A 

complementary requirement we shall impose is that if a product is 

matched with 1, then each factor must match 1. This requirement is 

redundant since it follows from our requirement for missing arguments 

in a product. 

In the above we have built into the match an understanding of 

the arithmetic laws involving 0 and 1 in sums and products. Note 

though that the match assumes that the expression has been simplified 

to some extent. Thus, the pattern Ax
2 

will not match the expression 

x4 (l/Z) since the constant expression x2 is assumed to match only 

itself. 

However, information about 0-1 laws are insufficient as can be 

seen when we consider expression ES: 

(ES) X 
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In some cases such an expression could pass for a quadratic. In 

other cases {for example, in applying the quadratic formula) such 

an expression is not admissible as a quadratic. Note that the 

match as described above will result in the value 0 for A, 1 for B, 

and 0 for C for expression ES. We need to be able to describe to 

the match that the value 0 for A is proscribed. In fact, we would 

like a more general facility allowing one to delimit the range of 

values that the variables in the match may have. We shall require 

that the variable must be allowed to satisfy a predicate. we 

shall indicate such a facility with a slash {/) as in pattern P2. 

In P2 we require A to satisfy the predicate NONZERO: 

(P2) A /NONZERO x
2 

+ Bx + C 

In examining expression E6 we see that we will need more 

predicates to limit the values of A, B, C, since E6 is certainly 

not a quadratic in x: 

{ E~) 
2 

x + sin {x) x + 1 

Let us consider pattern P3 which takes care of the difficulty 

in E6. 

2 
{P3) A/NONZERO-AND-NUMBER x +B/NUMBER x+c/NUMBER 

Pattern P3, however, may be a too restrictive condition. It requires 
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that A, B, C, be numbers. 

For example, P3 will reject expressions E7 and E8 

(E7) 
2 

x + rtx 

(E8) 
2 

X +X+ y 

slnce It does not appear like a number and since y is certainly 

not a number. If we wish to accept both E7 and E8, pattern P4 

might be suitable: 

(P4) A/NONZERO-AND-FREEOFX x
2

+B/FREEOFX x+C/FREEOFX 

We shall assume that the predicate FREEOFX determines whether 

an expression contains an occurrence of x and has the value T (true) 

if it does not contain such an occurrence. 

We thus can see that the predicate facility is both a blessing 

and a headache since it forces one to consider quite carefully what 

it is that he desires to be matched. 

Further complications ar'ise when we consider the expression E9. 

We recognize E9 to be a quadratic. 

(E9) 
2 

X + X 

However, in doing so we made use of the fact that addition was a 

commutative operation. This leads us to require that the match must 

take into account the commutativity of addition and multiplication. 

(Non-commutative addition and multiplication could be represented 

with different operators than PLUS and TIMES.) As it turns out this 
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requirement increases the cost of the match greatly. It is now 

insufficient to perform a single left-to-right scan of the expression. 

We may be forced to traverse the expression several times. We shall 

assume, however, that the pattern is to be scanned once from left-to-

right. This will allow us to use the values of previously bound 

variables. For example, a pattern for determining whether an ex-

pression is a perfect square might be written as P5 

(P5) 
2 

A/NONZERO-AND-FREEOFX x +B/FREEOFX x+C/FREEOFX-

2 
AND - (B -4AC = 0) 

since by the time we encounter C, the values for A and B should 

already be known or else the match has already failed. 

The predicate facility is one way in which the pattern can be 

used to direct the match. Below we shall give descriptions of 

other facilities and examples in which they might be used. These 

facilities are made available by the use of modes for the variables 

in the match. The desirability of the first of these modes is indi-

cated in expression ElO. 

(ElO) 
2 

3x y + 2x + 1 

The difficulty in matching expression ElO is due to the 

2 
occurrence of more than one factor (other than x ) in the terms in-

1 
0 2 vo v~ng x We would really be interested in having the variables A 

and B act as coefficients of x2 and x, respectively. This means that 



30 

2 
in the term involving x , the product of all the other factors is a 

candidate for A. To show this we shall use the indicator COEFFT 

(coefficient in TIMES) as a modifier for A as is shown in P6: 

(PG) A /COEFFT ,NONZERD-AND-FREEOFX xZ+B /COEFFT, FREEOFX x 

+C/COEFFP,FREEOFX 

In P6 we used the indicator COEFFP (coefficient in PLUS) to modify c. 

This means that C will match the sum of the remaining terms in the 

expressions. The result of matching P6 with ElO is: A=3y, B=2, C=l. 

In expression Ell we see another phenomenon which will necessi-

tate the addition of a new mode. In Ell 

(Ell) 

there occur two terms involving x
2 

If we assume that each term in 

the pattern should match exactly one term in the expression, then 

the single term Ax2 in the pattern will fail to account for the two 
\ 

terms in ElO. We need a facility for specifying to the match that 

a particular variable in the pattern is to be considered a co-

efficient in both a product and a sum. This is done in pattern P7 

by using the indicator COEFFPT (coefficient in PLUS and TIMES) to 

modify A and B. 

~7 ) A/COEFFPT,NONZERO-AND-FREEOFX xZ+B/COEFFPT,FREEOFX x+C/COEFFP,FREEOF 

With the machinery we have developed we can now match pattern P7 with 
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the expression El2! 

~U) 
3 2 2 

y + 3rrx y + 6x + Sy + 1 

3 The result of this match should be A=3rry + 6, B=O, C=y +Sy +1. 

In the above examples we were attempting to determine whether 

the expression was a quadratic in x. Suppose we wanted to generalize 

the problem in order to determine whether the expression was a 

quadratic in some atom, but where the atom was not fixed, but may 

itself change. More precisely, we desire a function ~UADRATIC of 

two arguments KXP and ARG. This function is expected to determine 

whether KXP was a quadratic in ARG. P8 can be used as a pattern in 

QUADRATIC. 

(P8) A/COEFFPT,NONZERO-AND-FREEOFARG (VAR/EQUALARG)
2 

+ 

8/COEFFPT,FREEOFARG (VAR/EQUALARG) + 

C/COEFFP,FREEOFARG 

In P8 we introduced the predicate FREEOFARG which has the 

obvious related function to FREEOFX in pattern P7. The predicate 

E~UALARG tests the value that the match assigned to VAR for equality 

to ARG. 

Let us now con~ider the problem of extracting a perfect square 

from a sum. More precisely let us consider the situation in which a 

sum has three terms which are individually of the form A*VAR
2

, B*VAR 

2 and C, and whose relation is defined by B -4AC=O. This differs from 
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the situation described in pattern PS in that the expression may 

now have more than three terms and in that the value of VAR is 

originally unknown and depends on the expression being matched. Our 

first attempt is to describe this situation with P9: 

(P9) A/NONZERO-AND-NUMBER VARZ+B/NUMBER VAR+C/NUMBER-AND-(B2-4AC=0) 

+D/COEFFP 

It turns out that pattern P9 does not satisfy our requirements 

because there is some ambiguity regarding VAR. In predicate PS, 

VAR was determined uniquely by the predicate EQUALARG. In the 

current situation no such a priori predicate exists. The first 

value of VAR can be essentially anything. To indicate this we can 

write VARfTRUE instead of VAR, where TRUE is a predicate which is 

true on any input. However, the second occurrence of VAR in the 

pattern (i.e., in B/NUMBER VAR) is intended to be fixed. That 

occurrence of VAR must be the same as the previous value attached 

to VAR. To make this point clear, let us consider expression El3: 

(El3) 2 y +2x + 1 + Sz + 2y 

This expression will match pattern P9 with A=l, Bz2, Czl, D=Sz+2y, 

and with the first value of VAR equal to y and the second equal to x. 

To avoid this situation we could write the second occurrence of VAR 

as VARl/EQUALVAR· This is a fairly clumsy mechanism (even though a 

similar device was used in PS). What we shall do instead is to 
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define a new mode called CONV in which the first occurrence of the 

variable (e.g., VAR) will satisfy the predicate (e.g., TRUE) and 

the latter occurrences must match the expression matched during the 

first occurrence. We thus arrive at pattern PlO. (The CONV mode is 

directly related to the PAV (pattern variable) mode of CONVER1 [ 23].) 

(PlO) A/NONZERO-AND-NUMBER (VAR/CONV,TRUE)
2 

+ 8/NUMBER VAR + 

C /NUMBER-AND- (B2 -4AC=O) +D /COEFFP 

Pattern PlO will match El3 with A=l, B=2, C=l, D=2x+5z, and VAR=y. 

Let us consider PlO with expression El4: 

(El4) Y + / + / + 2x + 1 

The first attempt will be to match VAR with y. This attempt will 

fail and the match will fail even though a perfect square exists if 

VAR were to match x. What is required here is a facility for direct-

ing the match to search for further possibilities. It is assumed, 

of course, that the user of such a facility is aware that it may 

cause a profound increase in the cost of a match. We shall intro-

duce such a facility with a mode which indicates a loop over the 

expression. Such a facility may be used when there exists a set of 

variables (such as A, B, C) in pattern PlO which are mutually inter-

2 related (e.g., B -4AC=O). This facility will direct the match to con-

tinue making trial guesses for the variables until one set is found 

which is satisfied or until all possibilities have been exhausted. 
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In programming terms the loop facility in the problem of pattern PlO 

will ask for a 3-level loop in which all possible values for A, B, C 

(note that VAR is determined along with A) are examined until one set 

is found which satisfies B2-4AC=0. The syntax for the loop facility 

is given in pattern Pll: 

(Pll) A /LOOP (A, B,C) ,NONZERO-AND-NUMBER ( VAR/CONV, TRUE) 2 + 

B/NUMBER VAR+C/NUMBER-AND-(B2-4AC=O) +D/COEFFP 

Although in the above we have concentrated entirely on 

describing patterns for quadratics, our intention has been to 

describe a set of requirements for a language which can handle a 

far richer set of tasks. To indicate the power of the machinery we 

have developed, we shall give below a pattern which tests for the 

occurrence of sin2B + cos 2B in a sum. Pattern Pl2 will match ex-

2 . 2 
pression El5 and results A=Scos (y) + 1, B=2x, C=2, and D=3y+2s~n (x). 

(Pl2) A/COEFFPT,l.OOP(A,C), NONZBROsin
2 

(B/CONV,TRUE) + 

C/COEFFPT,NONZERO cosz(B) + D/COEFFP 

(ElS) 3y + 2sin
2 

(x) + 5sin
2 

(2x)cos2 (y) + 2cos2 (2x) + sin2 (2x) 

The implicit relationship between A and C in pattern Pl2 

appears fairly trivial -- that is, both A and C must be nonzero. 
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However, expression ElS shows that the loop facility helps to get us 

out of the trap of matching B toxin the 2sin2 (x) term. 

We have so far neglected a discussion of the matching require-

ments of patterns which include exponentiation. We have let in-

tuition guide us through the cases where exponentiation did occur 

in the patterns above. As before a constant expression in the pattern 

of the form AB (e.g., sin2 (x)) must match itself. Otherwise, if AB 

is to be matched against the expression 0, we shall assume that it is 

necessary and sufficient for A to match 0. (The difficulty that 

arises if B likewise were to match 0 is ignored.) 

If AB is matched against 1, then either B must match 0 or A 

must match 1. Note that this can lead to a difficulty if both A and 

Bare variables, since only one value will be determined. If AB is 

Ez 
matched against E1 , then B must match E2 and A must match E1 or 

B must match 1 and A must match El 
E2 

In pattern Pl3 we are testing for an expression of the form 

sinn(x) cosm(x). This pattern will match the expression sin(x) 

and result in the values N=l, M=O. 

(Pl3) 
N 

sin /INTEGER (x) M /INTEGER ( ) 
COS X 

Pattern P14 is included here to indicate some of the ambiguity that 

is inherent in patterns. 

(Pl4) 
N/ B )M/INTEGER 

~A/NONZERO-AND-FREEOFX x INTEGER+ /FREEOFX 
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Pl4 corresponds to the intuitive pattern (axn+b)m. When Pl4 is 

matched against (x
2

+1) 3 it will yield A=l, B=l, N=2, M=3. When it 

is matched against x
6 

it will yield A=l, B=O, N=l, M=6, although 

A=l, B=O, N=2, M=3 serves equally well as a set of solutions. We 

used this pattern to indicate some of the limitations of the match-

ing program we have been defining. In the case of the expression 

6 
x , we obtain via pattern Pl4 the implicit relation NM=6. This 

means that we have given the program insufficient information re-

garding the choice of values for N and M in this case. The match 

cannot be expected to do very well in this instance. 

A second difficulty with pattern Pl4 which has already been 

mentioned occurs when it is matched against 1. In this case our 

requirements for the match indicate that all that shall result is 

M=O. We could have obtained A=O, B=l if the requirements regarding 

the matching of 1 had been reversed. Neither situation is wholly 

satisfactory. However, it is hard to foresee a compromise solution 

which will be wholly satisfactory. 

The lesson that is learned from pattern Pl4 is that it is up 

to the user to make his patterns sufficiently restrictive so as not 

to yield ambiguous situations in those cases in which they are likely 

to be applied. 

The impression that is likely to be in the minds of some 

readers is that more machinery is yet to be described. We do not in-

tend to do this. In some strong sense the design of a good algebraic 
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manipulation language is never over. Any description is only an 

imperfect solution to many conflicting requirements. What makes a 

language interesting is its usefulness in solving problems. The 

set of requirements described above should satisfy this criterion 

for many problems. 

Before we end our discussion of the match and turn our atten-

tion to the replacement part of the rule, there are a few remarks 

which are in order. 

The match that we have described is based on the form of the 

expression. Frequently, we desire to know infonnation regarding the 

form to which the expression could be reduced under legal algebraic 

transformations. When we ask "Is this expression a quadratic in x?" 

we usually mean "Is this expression equivalent to a quadratic in x?" 

rather than "Does it look like Ax
2

+Bx+<:?". Thus expressions El6 and 

El7 are quadratics in x which do not look like quadratics in x unless 

we stretch our imagination a good deal. By restricting ourselves to 

a match based on form we can hardly expect this match to determine 

that El6 and El7 are quadratics. 

(El6) 

(El7) (x+l) (x+2) 

The generality of the match means that its power is restricted. One 

could, of course, design a special-purpose test for a quadratic in x. 

It might check to see if the third derivative of the expression with 
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respect to x is equivalent to 0 and if the second derivative is 

different from 0. Theoretical results by Richardson (see Appendix B) 

indicate that there will be problems even with such a special purpose 

match which it could not determine correctly in finite time. Special 

purpose devices probably could be designed for each pattern that 

could be written for our match. Some of these would have to be quite 

ingenious in order to be more powerful than our match. These de-

vices might be necessary in certain situations. However, they run 

counter to our desire for a language in which one can write concise 

rules. 

We shall have more to say about the pattern match when we dis-

cuss the existing algebraic manipulation languages below. 

Replacement 

Having discussed the matching part, we shall now describe the 

process by which new expressions may be generated using the results 

of the match. This process we shall call the replacement part of the 

rule. 

Let us consider the intuitive statement of rule Rl~ 

(Rl) 
2 2 B

2 
Ax + Bx + C ~ Ay + C - 4A 

A successful match of the left-hand-side of Rl should result 

in a dictionary containing the values of A, B and C. This dictionary 
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is then used to generate the right-hand-side expressions by re-

placing the variable names by the values which were assigned to them 

d . h h If . d h · 2 ur1ng t e mate . we cons1 er t e express1on x +2x+l, the match 

should result in A=l, B=2, C=l and the rule should yield the ex-

2 22 
pression ly +1- 4-1. Since this expression is unsightly we shaU 

require that the replacement step should simplify the expression. 

Thus, Rl would result in the expression y2 . (Note that Rl performs 

the operation of completing a square.) 

Suppose we were given rule R2: 

(R2) 
n n n-2 2 n n-4 4 

cos (nx)-lcos {x)- (
2

)cos (x)sin (x)+(
4

)cos (x)sin (x) 

R2 computes the first 3 terms in the expansion of cos(nx) in terms 

of cosx and sinx. If we had matched the expression cos(4x) with 

rule Rl, we would result in an expression involving the combina

torial terms (;) and (~). In order to have an expression amenable 

to further computation c;) and (~) should be evaluated to yield 6 

and 1, respectively. Thus, we require a facility for evaluating 

selected portions of the expression. With this facility R2 can be 

written as R3. 

(R3) 
n n (n-2) . 2 n 

cos (nx) .... cos (x)-EVAL((2))cos (x)S1n (x)+EVAL((4)) 

cos (n-4 )sin 4 (x) 
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The replacement routine will substitute for each atom which 

appears in the right-hand-side, its value in the dictionary if there 

is such a value. If no such value exists, the atom will be replaced 

by itself, that is, it will be quoted. We will require a supple-

mentary quoting mechanism so that we may use right-hand-sides in 

which names of variables appear which are not replaced. An example 

of a rule using su~h a facility is R4. DIFF(A,B) is assumed to 

yield the formal derivative of A with respect to B. 

(R4) 
g (y) 

f (x) 
g (y) 

f(x) EVAL (DIFF(g(y),(~UOTE x))) 

Although for expository purposes we used only intuitively written 

pattern matches in the rules above, it should be clear that in 

practical situations the left-hand-sides of the rules would be re-

placed by more explicit matching forms. 
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Existing pattern-directed languages 

The requirements given above for a matching and a replacement 

program are satisfied by the SCHATCHEN* and REPLACE routines used 

in SIN. We would like to place these programs in their historical 

context. SCHATCHEN has been most influenced by ELINST (ELementary 

INSTance), a set of routines included in Slagle's SAINT for the 

purpose of matching algebraic expressions to forms. ELINST 

satisfies many of the algebraic properties of SCHATCHEN such as 

variable arguments to PLUS and TIMES, missing operators, and 

commutative operators. It differs in that it does not give the 

user explicit control mechanisms of the scan of the expression. 

ELINST will generate all possible sets of values for the 

variable and only then will it apply the side relations to 

determine those which satisfy the pattern. Besides this weakness, 

ELINST suffers most ·by being essentially undescribed. I suspect 

that had Slagle described ELINST in 1961, then some of the 

proposals for algebraic manipulation languages which were made 

since 1961 would have had a different character. ELINST had to 

be as general as it is because the problem that Slagle was trying 

to solve required such generality. Furthermore Slagle encountered 

grave problems in fitting his program into the memory (32K) of the 

7094 and thus chose to make use of the economy of calls to ELINST 

in many situations in which it would otherwise have been wiser to 

write special purpose matches. Thus he claimed that one half of 

the time that was spent usefully by SAINT (i.e., excluding 

*match-maker in Yiddish 
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garbage collections) was spent in pattern recognition. 

The features of the algebra-oriented pattern-directed 

languages that were introduced in the past six years (e.g., 

AMBIT [lal, FORMULA ALGOL ViS], Fenichel 's FAMOUS [19], PANON-

IB [S])* appear to have a great deal in common. PLUS and TIMES are 

restricted to at most two arguments. Operators that appear in 

the pattern must explicitly appear in the expression. Sometimes 

also PLUS and TIMES are not recognized as commutative operators. 

All these restrictions mean tha~ the patterns are highly specific 

and that several rules are necessary in order to accomplish a task 

that can intuitively be stated in a single rule. The advantage that 

such matching routines have over a more general one such as SCHATCHEN 

is that each of the rules is quite readable and relatively efficient 

to execute. However the effect of a set of rules which is equivalent 

to a single SCHATCHEN rule is probably harder to guage than the 

SCHATCHEN rule itself. The execution time of a set of rules is also 

probably longer than the execution time of a single SCHATCHEN rule. 

Here is the kind of rule set that would be required in such 

languages in order to recognize a quadratic in x: 

2 2 
X ax 

2 
X + bx 

2 
ax + bx 

2 +x 
2 

+X 
(RS) 

X ax 
2 2 

X + bx + c ax + bx + c 
2 2 

X +X + c ax + bx + c 
2 

+ c 
2 

+ c X ax 
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*It should be noted that these languages have a greater generality 

than a discussion of their usefulness in matching algebraic 

expressions would indicate. 

In proposing the above twelve rules we are assuming that the 

language provides for commutativity in PLUS and TIMES and for the 

ability for declaring a, b, c to be FREEOFX. In systems in which 

a minus sign is recognized as a distinct operator one might require 

even more rules. Unfortunately the rule set proposed is not as 

powerful as Pattern P7 because each term in the pattern will be 

matched with exactly one term in the expression. It appears that 

one could overcome this restriction only by a recursive or iterative 

application of the rules. In fact, the FAMOUS system relies on the 

fact that the rule set is applied repeatedly to a given expression 

although in FAMOUS' case the reason for this reliance has a deeper 

philosophical significance owing to Fenichel's strong affirmation 

of the concept of local transformation embodied in Jl- theory. 

In our previous discussion we have emphasized the desirability 

of the implicit arithmetic operators PLUS, TIMES and EXPT in the 

pattern. There are, however, instances where the operator must 

explicitly be present. In the rule below which is used for 

rationalizing sums in a recent thesis by Iturriaga 

(RS) AXC+B 
c 

[28] 

the "+" operator must be present as well as the "/" operator. It 

is possible to simulate the requirement that these operators must 
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be present by requiring that A cannot be 0 and that C cannot match 

1. However such a situation is clumsy at best, and a facility for 

explicit operators should be provided. With such a facility for 

explicit operators (present in the early versions of SCHATCHEN, 

but dropped because of lack of use), a user of the algebraic mani

pulation system will be capable of programming in a wide variety 

of styles. These will range from the fairly rigid and inflexible 

rules of the rule set RS to the type of rule exemplified by pattern 

Pll. 

We shall also mention a slight controversy regarding the number 

of arithmetic operators which should be present in the internal 

structure of an algebraic manipulation system. Some people appear 

to believe that a large number of operators including unary minus, 

quotient, and difference is a good idea. Experience has shown, 

however, that such systems, expecially when combined with an 

inflexible pattern-match, require an increase in the user's awareness* 

which tends to downgrade his problem solving ability. The less a 

user must be concerned with what is actually happening, the more 

likely he is to solve hard problems. Of course, if the details 

which are hidden in the system involve exponential growth or the 

like, hiding such details can be disastrous. This is not, however, 

*"Awareness" is a term used by Weizenbaum to indicate the degree 

of attention to detail which a user is required to maintain in 

a given situation. 
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the situation when arithmetic operators are translated internally 

into only three - PLUS, TIMES, and EXPT. At the input-output level, 

just the opposite effect takes place. Here we wish to let the user 

of the algebraic manipulation system have the flexibility with 

which he feels comfortable. The recent trend in input-output 

of algebraic expressions has been to have this flexibility 

(see Martin [3~). 
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Implementation of SCHATCHEN 

SCHATCHEN is currently implemented as a set of LISP programs. 

Several people have suggested that one should embed it in a more 

general language. CONVERT [23] seems to be the regnant choice for 

such a language. CONVERT is a general pattern directed language with 

much machinery for the transformation of list structures. In fact, 

two modes in CONVERT which were introduced in the past year (i.e., 

BUV - bucket variable - and UNO - unordered search) were introduced 

by Guzman and Mcintosh, the designers of CONVERT, with the intention 

of such embedding. Interestingly enough, the BUV mode is sufficiently 

general that it has replaced other CONVERT modes. The advantage of 

such an embedding is that it would allow the user to employ other 

facilities of CONVERT. These facilities are quite impressive. The 

major disadvantages are due to inefficiencies in a straight-forward 

implementation. In order to discuss these inefficiencies we will have 

to describe the manner in which SCHATCHEN performs a scan. 

Suppose we have a pattern of form I, 

(I) Pl + P2 + P3 

and an expression of form II. 

(II) El + E2 + E3 + E4 

The scan proceeds by attempting to match Pl with El. If that fails 

an attempt will be made with Pl and E2, then Pl with E3. If Pl 
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matches E3, then E3 will be deleted from II, and the scan proceeds 

by matching P2 + PJ with El + E2 + E4. This deletion is done by 

using the RPLACD subroutine of LISP. In general this is an unsafe 

method. It means that any prior references to It will refer to the 

expression with E3 deleted, which can be disastrous. However, great 

care is used inside SCHATCHEN to maintain pointers to the excised 

expression and to restore it to its original shape once the match 

has been performed. Furthermore, all the pointers that a pattern 

can have to intermediate results are carefully copied. The alter

native to the deletion approach is to completely reproduce expression 

II without EJ. The alternative is quite costly especially when the 

number of failures in identification is taken into account. Suppose 

patterns Pl and P2 are related via a loop, then Pl may have to be 

rematched after an original successful match. More likely is the 

case that Pl is matched with E3, but P2 finds no match at all and 

thus the match fails. The method of reproducing·an expression en

tirely following a match of a subpattern with a subexpression is 

thus seen to be quite expensive. A normal string transformation 

language or even a list transformation language such as CONVERT 

(except for the UNO mode) does not face this difficulty because the 

scan along both the expression and the pattern is left-to-right. Thus, 

if Pl matches E3, P2 can only match subexpressions to the right of E3, 

(i.e., E4). When one introduces commutativity into the picture, the 

situation becomes more complicated. Thus, in our example, after Pl 
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matches E3, we must start P2 with El, P2 with E2, P2 with E4. It 

is the commutativity requirement which necessitates the rescan of 

the expression. 

An alternative to the SCHATCHEN scan is to scan left-to-right 

along the pattern with each subexpression. Thus, if El does not 

match Pl, then a match is attempted between Eland P2. With this 

scan one is forced to keep intermediate results and perform complex 

processing at the end of the scan in order to determine whether the 

variables of the match satisfy their predicates and are properly 

related. This alternative was rejected as being too unwieldy. 

Another aspect of the implementation of SCHATCHEN turns out 

to have important semantic properties. Intermediate results in 

SCHATCHEN are stored in a special list called ANS. On this list we 

also find the excision information mentioned above as well as markers 

used to indicate levels of scope of variable bindings. A successful 

technique in using SCHATCHEN is to use predicates which are them

selves calls to SCHATCHEN and which introduce new variable bindings 

to the ANS list. Thus, a variable A may be required to be of the 

form BC, where Band C must match certain patterns. By calling 

SCHATCHEN directly as the predicate for A, then the values of B and 

C would be lost. However, if one calls a routine exactly one level 

below SCHATCHEN (namely Ml), then one can preserve the values of B 

and C in the final result as well as obtain the full power of SCHATCHEN 
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The fact that ANS is available for all to use during the match can be 

dangerous since the predicates could accidentally destroy a great 

deal of information. Nonetheless the advantage of such an implemen

tation device far overrides this difficulty. The ANS mechanism 

represents another difference between CONVERT and SCHATCHEN. CONVERT 

does not allow direct access to its dictionary. Many of the modes in 

CONVERT, however, perform some change to this dictionary. In 

this regard it should be noted that FLIP [62], another pattern

directed language which is similar to CONVERT in emphasizing the 

transformation of lists, concentrates on the control of the scan by 

the user. FLIP, however, lacks much of the recursive machinery of 

CONVERT and thus appears to be less likely a candidate for a language 

in which to embed SCHATCHEN. 

A Partial Description of SCHATCHEN 

SCHATCHEN has two arguments, an expression and a pattern. 

These will be denoted e and p, respectively. Variables in the 

pattern are written in the form (VAR name pred argl ... argn) 

where 

name name of variable 

pred = predicate associated with the variable 

argi are arguments 2 through (n+l) of pred. 

The first argument of pred is assumed to be the expression that the 

match assigns to the variable. 
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If a variable has a mode, the mode is written in prefix form. 

Thus, A/COEFFPT,NUMBERx becomes (COEFFPT (VAR A NUMBER) x), and 

A/COEFFP,E~UAL 5 becomes (COEFFP (VAR A EQUAL 5)). (This pattern 

tests for the equality of the variable A with 5.) 
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SCHATCHEN ( e p ) 

If e equals p, the match succeeds. 

If p is of the form (VAR name pred argl, ... , argn), 

then pred (e argl arg2, ... , argo) is evaluated. 

(Note that argl, ..• , argn are replaced using ANS, 

SCHATCHEN's internal push down list. If they contain 

names of variables on ANS the most recent corresponding 

values are used. Otherwise, EVAL (the LISP interpreter) 

will obtain the value of the variables). If the value of 

peed is TRUE, the match succeeds and ((name • e)) is 

appended to ANS. Otherwise the match fails. 

If p is of the form (op pl ... pn) and op is not PLUS, 

TIMES or EXPT, then e must be of the form (op' el ... en) 

and each pi must match ei and op must match op'. Other

wise the match fails. 

If the pattern is of the form (EXPT pl p2), then 1) e is 

(EXPT el e2) and pl matches el and p2 matches e2 

or 2) e is 0 and pl matches 0 

or 3) e is and a) p2 matches 0 or b) pl matches 1 

or 4) p2 matches and pl matches e 

Otherwise the match fails. 
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If the pattern is of the form (op pl p2, ... pn) and 

op =PLUS or TIMES, then if e is not of the form 

(op e 1, em), e is transformed to (ope). In this 

case an attempt is made to match each pi with some ej. The 

scan starts with pl matched with el. If that fails pl is 

matched with e2. If pi matches some ej, ej is deleted 

(using RPLACD) from e and the scan continues with pi+l 

matched with the first subexpression remaining in e. If 

for some pi no ej can be found to match it, then pi is 

matched with 0 if op = PLUS of if op = TIMES. If that 

also fails, the match fails. If all the pi have been 

matched, but some ej have not, the match likewise fails. 

Exceptions to the treatment above are due to modes. If op =PLUS, 

and pi is of the form (COEFFPT (VAR name pred argl, ... , argn) pl, ... , 

pk), then the remaining expression is traversed with the pattern 

(COEFFT (VAR name pred argl, ... , argn)pl, pk). Each sub-

expression that is thus matched is deleted from the expression. The 

simplified sum of the results of the scan becomes the value of the 

variable and is appended to ANS. If no subexpression could thus be 

matched, then pred(O, argl, 

the match fails. 

... , argn) is attempted. If this too fails, 

If op =PLUS and pn is of the form (COEFFP (VAR name pred argl, ... ,argn)) 

then if e is currently of the form (PLUS ei, ... , en), then pred 

(e argl, ... , argn) is evaluated. If the value of pred is true 
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((name. e)) is appended to ANS. If no subexpressions remain in e 

then pred (0 argl, ... , argn) is attempted. If it succeeds, 

((name. 0)) is appended to ANS. Else the match fails. 

If op = PLUS and pi is of the form 

(COEFFT (VAR name pred argl, ... , argn)pl, ... , pk), then 

(TIMES pl, ... , pk) is matched with e. If the match succeeds and 

e remains of the form (TIMES el, ... , en) then pred (e arg~ ... ,argn) 

is attempted. If it fails, the match fails. If no subexpressions 

remained in e, then pred(l argl, ... , argn) is attempted. If this 

succeeds ((name. 1) is appended to ANS. Else the match fails. 

All other matches fail. 
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An Application of SCHATCHEN 

SCHVUOS - SCHATCHEN 'S .'£ERS ION OF AN Q.NASSUMING 

QPERATIONAL ~IMPLIFIER 

Owing to space considerations of the 7094, SIN required a 

small but powerful simplification program. Such a program, 

called SCHVUOS, was written and it gained both its power and small 

size by capitalizing on SCHATCHEN's matching capability. SAINT's 

simplifier was a LAP (the machine-language assembler for LISP) 

coded subroutine written as a Master's thesis by Goldberg in 

1959 [21]. 

SCHVUOS does not assume a standard (canonical) form of an 

expression. This means that it will be slow when the expressions 

to be simplified are large. In integration, however, it is rare to 

encounter large expressions. The speed gained by a canonical order 

can be seen in the following example. Suppose, two simplified 

expressions are to be added. If the expressions are to be canon-

ically ordered, then the addition process is basically a merge of 

the expressions witll a simplification occuring if two terms are 

identical except for a constant factor. If, however, the express-

ions are not ordered then we generally require a two stage process. 

Given a term in the second expression we must determine if there 

exists a term in the first expression which is identical to it ex-

cept for a constant factor. This may require a complete traversal 

along the first expression. If the number of terms in each of the 

two expressions is n, this process takes on the order of n
2 

term-to-



55 

term matching steps. The canonical order scheme requires only on 

the order of n steps. However, some time must be spent in deter-

mining the canonical description and keeping its value around. 

Furthermore, the routi~ that generate the canonical order are 

usually very space consuming. Thus, the use of a canonical order 

is only worthwhile if the expressions are to be heavily manipu-

lated. 

As has been implied in the above, much of the program effort 

and execution time in a standard simplification program is spent 

in collecting terms in sums. Related effort is spent in collecting 

exponents in products. In SCHVUOS the collection of terms in a 

sum is handled by calling SCHATCHEN and asking it to determine the 

coefficient of the first term in the sum. 

Suppose we had the expression El8, 

(El8) 

then SCHVUOS will strip the first term of the sum of its coefficient 

and generate the pattern Pl5: 

(Pl5) A/COEFFPT,NUMBERx + B/COEFFP 

SCHATCHEN will yield A=3, B=3x2y+z+yx2 Next the pattern Pl6 is 

generated on the expression B. Now SCHATCHEN will result in A=4, 

B=z. 

(Pl6) 
2 

A/COEFFPT,NUMBERx y + B/COEFFP 
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Note that x2y and yx2 are recognized as equivalent. Thus, the 

simplified sum is El9 

(E19) 

The operation of collecting exponents in a product is handled 

similarly. 

The basic simplification program requires only about two pages 

of LISP code in contrast to a typical LISP simplification program 

(such as Korsvold's[ 33 ]) which requires about 20 pages of LISP 

code and has the same power, for our purposes, as does SCHVUOS. 

SCHVUOS contains some unusual simplification rules because of 

the integration environment in which it operates. Thus, arcsin(sin x) 

simplifies to x and sin(arccos x) becomes~- Moreover, 

e 
1+2 log y + log z becomes y2ze. (This transformation is also 

handled by a call to SCHATCHEN.) 

The simplification of an expression is done recursively. Each 

operator (e.g., PLUS) first simplifies all its arguments. The 

exception is TIMES which results in 0 if any of its arguments is 0. 

It is possible to achieve an economy if expressions which have 

been simplified in the past are not simplified redundantly. This 

has led to the AUTSIM-bit in FORMAC [63] and to a similar device in 

Martin's simplification program. In SCHVUOS one can sometimes achieve 

this effect by setting a flag which means that the arguments of the 

top level operator, PLUS, say, are already simplified although their 

sum, say, need not be simplified. This is done in the differen

tiation program used in SIN. 
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Attitudes Toward Simplification 

There seems to be a wide range of attitudes of people in the 

field of algebraic manipulation regarding the role that an alge

braic manipulation system should play in simplification. One view, 

let me call it the conservative view (held by Fenichel, for example 

maintains that the system should not simplify expressions until 

specifically told to do so. In this point of view there is to be n 

fixed system's simplifier and no fixed canonical order of expressio 

The conservative view negates the view of those whom we shall call 

the liberals (exemplified by the FORMAC design) who believe in a 

canonical order, in a fixed simplifier and in implicit simplifi

cation. One might even define a third viewpoint, a radical one, in 

which the system will represent expressions internally in a form 

quite different from their external form. Rational function progra 

(ALPAK [ 6], PM[l2], and MATHLAB's rational function package f36l) 

adopt this approach. A radical system is prone to use the distri

butive law indiscriminantly and to transform trigonometric function 

into their exponential form in order to take advantage of the power 

ful simplification algorithms which are then available. 

Two considerations should guide one in designing an approach 

to simplification within a given system. The first is the general

ity of the system, that is the range of problems which could be 

reasonably solved by it. The second is the efficiency of the syste 

in the solution of its problem. It appears to be an axiom that the 
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more general a system is, the less efficient it is. The most radi-

cal attitude toward simplification usually belongs to systems which 

are very powerful and fast in solving problems. We must, however, 

adopt a rather broad outlook regarding efficiency in order to 

understand what makes a liberal system more efficient than a con-

servative one for the problems that both can handle. It is not 

necessarily execution time which is being decreased, it is the 

burden of awareness on the part of a programmer which is decreased 

in a liberal system. If you can make assumptions about the simpli-

fier then you need think much less about the problem while you are 

programming its solution. Yet the argument for conservatism is too 

strong to be neglected. It relies on the axiom that the simplest 

expression depends on the problem being solved. Two examples which 

demonstrate this point and which have previously appeared (Moses [42], 

Fenichel [19]) are: 

4 
can be harder to integrate than X 

The latter strongly suggests making the simplifying substitution 

y=x4 . The former disguises this substitution but is more likely 

to be a result of any standard simplifier. Likewise, 
l+cos x 

may be harder to integrate than 
2 COS X 

esc x - sin2x which is equivalent 

to it. The former is easier to graph, read and write. The latter 

is immediately integrable, whereas the former requires the sub-

stitution y=ta~x. 



59 

While in the above examples one can reasonably hope to trans-

form one expression into another, this is not true of the example 

below. This example is intended to show that even the most obvious 

simplification rules can be harmful in some situations. Suppose 

a user generates three terms of an infinite series. We shall 

assume that he is attempting to obtain a general term. Suppose that 

the first term is 1, the second 2x+l and the third 3x2+3x+l. I 

maintain that if these terms were presented as x+l-x, x2+2x+l-x2 , 

x3+Jx2+3x+l-x3 , then the result would contain more information than 

before, for it would lead to a reasonable hypothesis that the general 

term is (x+l)n-xn. Yet one of the first rules of any existing 

simplifier is x-x -0. 

One argument that can be given against the radical approach 

0 0 0 h b 1 f 0 0 ( 1) 1000 1s g1ven 1n t e pro em o 1ntegrat1ng x+ . If one expands 

this expression, as a rational function package is likely to do, 

then one will use a great deal of space and time and result in an 

unsightly expression. However, the expression can be easily inte

grated to yield TUUi-- (x+l) 1001 by leaving it in its original 

form. Recent information indicates that future ALPAK systems will 

leave expressions in their factored form in order to resolve 

difficulties created by problems such as this. 

What then is the attitude that one should adopt toward simpli-

fications? A reasonable one would be to use each of these attitudes 

where they are most useful. In cases where there is a need for a 
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great deal of rational function manipulation and relatively little 

pattern recognition one should adopt a radical attitude. When the 

problem is not easily framed as a rational function problem or 

where the computational effort is light, but where the pattern 

recognition is not crucial, then you adopt a liberal attitude. 

Finally, when a standard simplifier will lead you into difficulty 

you just must restrict its effect. 

Separating the radical attitude within a program from the 

liberal one is usually easy -- there is a separate program to 

handle rational functions. Between the liberal and conservative 

modes there are too many intermediate steps. Here what appears 

to be required is a black-box simplifier with many inputs or in

dicators. With these inputs one could control the effect of the 

simplifier. It would be interesting to see if one could formulate 

a language in which a program (or a user) could communicate with 

the simplifier. For example, it could check certain indicators 

before attempting any given simplification. The cost for such 

checking could be quite minimal. 

An example of the use of such a simplifier is represented as 

follows: A common simplification rule is (ab)m- ambm. However, 

in general this rule is inaccurate (e.g., when a=-1, b=-1, m~, the 

left-hand-side yields 1, the right-hand-side, -1, assuming a 3tandard 

interpretation of the square root). If one suspects that this rule 

will lead to difficulty then one can leave a test condition in the 
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indicator for this rule which will weed out those cases in which 

the result is erroneous. 



CHAPTER 4 

SIN - THE §.YMBOLIC INTEGRATOR 

Introduction 

In this chapter we describe the operation of SIN. At first SIN's 

flow of control is analyzed. Then each of the methods used is described 

in detail. Finally, the performance of SIN on two examples is shown. 

Throughout this chapter the contrast between SIN's and SAINT's approach 

and methods will be made clear. 

Flow of Control and Subproblems in SIN and SAINT 

A problem given to SIN may be said to pass through the three stages 

of Figure 1. 

Stage 1 

No 

Stage 2 

Problem can be 
transformed or 
solved by spe
cial methods? 

+ No 

Stage 3 

No 

Return notice of failure 

Yes 

... Yes 

Yes 

Return integral 

Either 

1. Apply SIN to a trans
formed problem and 
return value of SIN 

or 

2. Solve problem using 
internal mechanisms and 
return result as value. 

Return integral 

Figure 1 - The 3 Stages of SIN 
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As figure 1 indicates, the first stage solves simple integration 

problems. In the second stage, we determine whetherone of about ten 

specialized methods is applicable to the problem. This determination is 

made by a routine called FORM and is quite fast. If a method is found 

to be applicable the problem will be either transformed and SIN will be 

asked to integrate the transformed problem, or the problem will be inte-

grated using techniques internal to the methods. If no method is found 

which is applicable, a more general method will be called in stage 3 in 

order to solve the problem. In this chapter we shall describe a third 

stage consisting of a simple Integration-by-parts routine. In Chapter 

5 we shall describe the Edge heuristic which we expect will be the basis 

of methods used in this stage in the future. 

Since most problems are expected to be solved by stages 1 and 2, 

we shall describe the organization of these stages here. The control 

of the methods used in stage 3 is specific to these methods and will 

be described separately. 

We note that the methods of stage 2 can call SIN to solve sub-

problems. When this occurs the flow of control and subproblems is given 

by Figure 2. 

@ 
Sub~ f5olulioo 

@) 
SubproblanJ t 5dulion 

@) 
5ubprob~ fsolu!bn 

@) 
Figure 2 - Usual Flow of 
Control and Subproblems 
in SIN 

Figure 3 - Flow of Control 
and Subproblems in SIN 
When Problem is a Sum of 
Three Terms 
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If a subproblem is a sum, then each term in the sum will be inte-

grated separately, and the flow is given by Figure 3. 

It should be noted that if a method in stage 2 can transform a 

problem, the problem is not passed to another method in stage 2 or stage 

3, even though the transformed problem cannot be integrated by SIN. For 

example, 

Jsin(ex)dx is transformed to Jsin Ydy after substituting y=ex 
y 

rsin y in stage 2. dy cannot be integrated by SIN. Thus, SIN concludes 
y 

that Jsin(ex)dx is not integrable by it and will not pass it to stage 3. 

In strictly enforcing such a decision we are depending upon the 

methods to employ tight progress requirements. If the progress require-

ments are made too tight, then few problems would be integrated by the 

methods of SIN's second stage. If, however, they are made too loose, 

then the methods of stage 2 would verify the hypothesis that they are 

applicable in problems in which they, in fact, are not appropriate, and 

thus SIN would fail to solve these problems. The experiments with SIN 

which are described in Appendices C, D, and E indicate the degree to 

which we succeeded in finding good progress requirements. We wish to 

point out that once such a discipline is successfully imposed on the 

methods, one is in a position to relax the requirement against backtracking, 

and thereby obtain somewhat greater power. We have not yet done so in 

SIN's second stage. 

SAINT, in contrast to SIN's stages 1 and 2, will allow a problem to 

generate more than one subproblem. However, only one of the subproblems 

generated from any given problem must be solved in order to integrate the 

given problem. In general, the subproblems generated by SAINT during the 
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course of solution will form a tree structure. Figure 4 is a simplified 

description of the flow of control and subproblems in SAINT. 

Is heuri~tic in::msbm:J{m 
applicable fo .suf¥001em ? 

Tronsfcrrn 

IMSLN 

fnter- transformed pt'O/;km(s) 
into subproblem free. 

Figure 4 - Simplified flow of 
control (single arrow) and sub
problems (double arrow) in SAINT 

If a problem in SAINT generates more than one subproblem, the node 

in the tree corresponding to it is considered to be an OR node. Thus, 

only one of the subproblems must be solved. If the problem is a sum, 

a similar complication to the one in SIN is made. The node generated 

for such a problem is called an AND node. Each of the terms in the 

sum becomes a subproblem, and must be integrated. AND nodes are indi-
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cated by an arc across the branches from that node. Thus, in general, 

a goal tree in SAINT has the form of Figure 5. 

Figure 5 - A Subproblem Tree in 
SAINT when sums are present among 
the subproblems 

All subproblems in SAINT are given to IMSLN. This includes the 

original problem and this fact is not shown in Figure 4. IMSLN thus 

acts like SIN's first stage. IMSLN has its own methods of solution. 

If it fails to solve the subproblem or some simple transformation of it, 

the subproblem will be put on the subproblem tree. 

The routine LOOP (see Figure 4) has access to a list of subproblems 

to be tried called PLH. This list is ordered so that the first member 

of the list represents a subproblem which has the lowest depth of nested 

operators (e.g., PLUS, TIMES, COS) in the internal representation of the 

problem. LOOP will select the first subproblem on the list. It will 
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then ask each of the methods of SAINT called the heuristic transformations 

by Slagle to determine if they can transform the subproblem. These methods 

will be guided by information about the subproblem called the character of 

the subproblem. The character contains information such as whether the 

subproblem represents a rational function, an elementary function of ex

ponentials or trigonemetric functions, etc. This information is used to 

limit the number of heuristic transformations applicable to a problem. Yet 

even with the use of the character mechanism as many as 11 out of the 17 

heuristic transformations may be applied to a single subproblem. 

The flow of control and information in SIN is called hierarchical. 

In a hierarchical organization, subproblems which are communicated between 

one routine and a second are private to these routines and are not known 

to the rest of the program. SAINT's organization can be called~ base 

oriented. In such an organization the· goal is to transform the data base 

(i.e., the goal tree in SAINT) to a desired state. In SAINT the desired 

state is a tree which has a path from the top node (the original problem) 

to a bottom node in which each node represents a solved problem. In a 

data base oriented organization control is relinquished to routines which 

manipulate the data base. In SAINT, all the heuristic transformations 

relinquish control to the IMSLN program. 

SAINT's data base oriented approach allows and, in fact, may be said 

to encourage the program to backtrack, that is to leave one path of the 

tree and start on another. SIN's approach is to discourage backtracks 

at the first two stages. Backtracking is allowed in stage 3. However, 

in stage 3 backtracking is only of a limited nature. 
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Conventions 

In describing SIN we shall use the usual convention that the 

variable of integration is x. SIN is actually a function of two argu-

ments. The first is the expression to be integrated and the second is 

the variable of integration. 

Below when we use the phrase "is a constant" we shall mean that 

the expression contains no occurrence of the variable of integration. 

2 2 
Thus, sin x +cos xis not a constant when x is the variable of inte-

gration. 

We shall not concern ourselves here with difficulties which may 

arise due to the unsolvability of the constant or matching problem for 

the elementary functions. For a discussion of these difficulties see 

Appendix B. 

By the elementary expressions of ~ we mean the set of expressions 

composed of 

1) constants, 2) x, 3) trigonometric functions of x (e.g., sin(x), 

cos(x)), 4) logarithmic and arctrigonometric functions of x (e.g., 

logex' arcsin x), and closed under the operations of addition, multi

plication, exponentiation, and substitution. 

By an elementary expression in~ (abbreviated elem(f(x)), we 

mean an expression obtained in the manner above, but where f(x) replaces 

2ex 2x 
x in the definition. Thus, for example, (ex+ l)e + e is an elemen-

tary expression of ex. The expression xex, on the other hand, is an 

elementary expression of x, but not of ex. 

By a problem integrable in ~ ~ we mean a problem whose 

integral is representable by an elementary expression. 
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First Stage of SIN 

The first stage of SIN uses the following three methods: 

If the integrand is a sum, each term is integrated separately 

by calling SIN iteratively and the results are added. 

Method II If the integrand is of the form 

[Lu.(x}]n, where n is a small positive integer, expand the 
1 

expression and apply Method I. 

Method III If the Derivative-divides routine is applicable, return its 

results. 

The first two transformations are made so that the rest of the 

program can assume that the integrand is a product (though possibly a 

trivial product as in x or in ex). The third method in this stage is 

the method which has led us to call this stage the stage that solves 

simple problems. 

We shall now describe these methods in some detail. 

I) Method I is an oft used method in practice. Using this method 

one avoids the difficulty of integrating dissimilar expressions such as 

sin x +ex. Integral tables, it will be noted, shun entries which are 

sums. However, this is not a safe rule to follow, in general. For 

r- 2 2 - 2 
example, let us consider u(ex + 2x ex )dx. Neither of the terms in 

this sum is completely integrable in terms of elementary functions. 
2 

However, the sum is the derivative of xex . Hence, breaking up the terms 

in the sum and integrating them separately can disguise the integrability 

of the sum. This difficulty was known throughout the course of this re

* search, and a heuristic for overcoming it in some cases was designed. 

* The heuristic that has been considered is of the following nature •. 
Suppose we have a product of terms of the form f(x)g(x)h(x). The der1-
vative is frequently of the form f'(x)g(x)h(x)+f(x)g'(x)h(x)+f(x)g(x)h'(x). 

Thus if one finds an integrand which is a sum such that two terms in the 
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However, no extension to this method has as yet been implemented. 

Slagle considered this method to be sufficiently safe so that he 

invariably followed it also. 

Example 

J(sin x + ex)dx = Jsin x dx + Jex dx 

II) The reason for method II can be seen by considering the problem 

J(x + ex) 2dx. SIN has no machinery which deals with this problem in its 

I 2 x 2x present form. However, if the problem is given as (x + 2xe + e )dx, 

then the problem is easily integrated. 

Example 

J(x + ex)
2
dx J 2 x 2x 

(x + 2xe + e )dx 

III) The Derivative-divides method is the heart of this stage in SIN. 

As we shall see many problems are integrated by it quite quickly. The 

inclusion of this method at this place in the program has an important 

methodological basis. It is presumed that in many computer problem 

solving systems there are methods of solution which solve most commonly 

occurring problems relatively quickly. If these methods are employed 

first by a problem solving system then many problems will be dispensed 

with in short order. Thus, the problem solving system will be able to 

afford to utilize expensive machinery in its later stages. 

The Derivative-divides routine checks to see if the problem is of 

the form: 

sum are related by having two factors in each of the forms f'g and fg' • 
respectively, and with the rest of the factors identical, then one can 
guess the original product easily. 
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Sc op(u(x))u'(x)dx, 

where c is a constant, u(x) is an elementary expression in x, u'(x) is 

its derivative, and~ is an elementary operator. Op may be one of the 

following operators: a) identity b) sin c) cos d) tan e) cot f) sec 

g) esc h) arsin i) artan j) arsec k) log. Three more possibilities 

for ~ involve the exponentiation operation. These presume that the ex-

ponential function has only one nonconstant argument. Thus, we get the 

cases 1) u(x)-l m) u(x)d, d I 1, n) du(x), where dis a constant. The 

final case is when the integrand is a constant and then u(x) is trivial. 

In that case the integral is simply ex. 

The method of solution, once the problem has been determined to 

posses the form above, is to look up~ in a table and substitute u(x) 

* for each occurrence of x in the expression given in the table. In 

other words, the method performs an implicit substitution y = u(x), and 

obtains the integral fc op(y)dy by a table look up. 

Using this method the following examples can be integrated. 

1) Ssin x cos x dx = tsin2x, op =identity, u(x) = sin(x), u'(x) = cos(x), 

c = 1 

Ixe x2 
2) dx 1 X 

2 
op = du(x), 2 1 

= 2e u(x) =x , u' (x) = 2x, c =-
2 

3) s~ = 1(1 + x2)3/2, d u(x) = 1 2 
u' (x) 2x, dx op = u(x) , +x , 

3 
1 c=-
2 

4) 
Jl :xex log(l +ex), -1 

u(x) 1 + X u' (x) X 
dx op = u(x) , e , e 

c = 1 

* See Appendix A for a description of integral table look-up methods. 
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op = u(x)d, u(x) = x, u'(x) = 1, c = 1 

A few more examples will indicate certain aspects of this method. 

6) Scos(2x + 3)dx = tsin(2x + 3), op =cos, u(x) = 2x + 3, u'(x) = 2, 

1 
c = 2 
The Derivative-divides method performs an implicit linear substi-

tution in this case. SAINT would have performed an explicit linear 

substitution and would have required two calls to IMSLN to solve the 

problem. 

7) J2yze 2xdx 2x yze Op =du(x), () 2 U X = X, u' (x) = 2, c = yz 

This method handles constants easily. Constants can be generated 

or can be present in the integrand. SAINT would have removed the con-

stants explicitly. 

S 2 X • X X 
8) cos (e )sLn(e )e dx 

1 3 X 
-y:os (e ) , op 

d u(x) , u(x) 

c = -1 

This example demonstrates that the integral may be fairly complex 

and the method will still apply. 

One of the experiments which was made with SIN was to attempt the 

86 problems attempted by SAINT (see Appendix C). Interestingly enough• 

this method of Derivative-divides was able to solve fully 45 out of 86 

problems. The average time on the 7094 was 0.6 seconds. 

It is hoped that the above examples convincingly demonstrate the 

usefulness of this method at an early stage in an integration program. 

The method is to be recommended for those who desire an integration 

capability, but who are unable or unwilling to avail themselves of a 

more general program. 

As was mentioned earlier, SAINT's IMSLN routine performs some 
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functions which are similar to SIN's first stage. IMSLN employs a 

table similar to that in the Derivative-divides routine but somewhat 

larger. It also performs eight transformations called algorithmic 

transformations by Slagle. These transformations are attempted one at 

a time. If one of them is successful the transformed problem is used 

and the original problem is not considered again. Two of these trans

formations are the same as method I and II in this stage of SIN. The 

others factor a constant or a negation operator from the integral; 

employ half angle identities; make a linear substitution; and perform 

certain simplifications on the integrand. As has been pointed out 

above, IMSLN also tends to the tree of subproblems and can determine 

if the original problem has been solved. IMSLN doesn't actually solve 

many problems so much as it is able to transform a great number of 

problems into a form which is more easily solved by the rest of SAINT. 

It would appear that SIN's Derivative-divides method solves more problems 

immediately than does IMSLN. SAINT's Derivative-divides heuristic trans

formation, which is quite powerful, is not applied to a problem until 

much later in the course of the solution. 

The Second Stage of SIN 

If a problem fails to be solved by SIN's first stage, then it is 

determined whether one of eleven additional methods is applicable to 

it. In order to determine which method is to be applied clues are ob

tained from the expression. We have called the technique by which these 

clues are used hypothesis formation (see Chapter 2). The routine that 

obtains these clues and conducts the formation of an hypothesis is called 

FORM. Associated with most of the methods are patterns in SCHATCHEN 
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which serve to differentiate the problems which are solvable by each 

method from those solvable by other methods. It turns out that few 

problems have more than one method applicable to them. In the cases 

where a conflict does exist (e.g., in solving problems with algebraic 

integrands) the actual method chosen appears to have little effect on 

the cost of obtaining a solution. 

In this stage of SIN, a single method (Method 6) handles problems 

which involve trigonometric expressions. When FORM sees a subexpres-

sion of an integrand which is a trigonometric function of a linear 

argument in the variable of integration, this subexpression will act 

as a clue, and FORM will call Method 6 to validate the hypothesis that 

a substitution can be made for the trigonometric functions. If Method 6 

decides that such a substitution is not applicable (e.g., fsin x exdx), 

then it will return the value NIL (FALSE). In such a case, FORM might 

entertain another hypothesis but since there are none for trigonometric 

functions, FORM will also return the value NIL. If Method 6 finds that 

a transformation is applicable, it will hand SIN the transformed pro-

blem. The value of SIN, with a proper substitution to account for the 

transformation that was made will be returned as the value of Method 6 

and of FORM. 

Examples of problems integrated by this stage of SIN: 

(It is probable that none of these could be integrated by SAINT.) 

1) 

2) S 2 x 2 
(1 + 2x )e dx 
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JA 
2x 

3) 
e 
+ Be4x dx 

4) fx rx+1 dx 

5) Jxl/2(x + 1)5/2dx 

6) J~dx 

Below we describe each of the methods used in this stage. Each 

description contains the clue which FORM uses to determine whether the 

method might be applicable. A more extended description of the manner 

in which FORM operates will then follow. 

Method 1) Elementary function of exponentials. 

This method is applicable whenever the integrand has the form of 
bxi+ci 

an elementary function of ai , where the ai, bi, and ci are con-

stants. 

Clue - a subexpression of form abx+c a, b, c are constants. 

Examples -

L :x3(f.k dx 

2x 
e 
+ Be4x dx 

J x+l 
le + ex dx 

I X X 
10 e dx 

becomes 

becomes 

becomes 

becomes 

t /By4 riy, y 

Jl : y dy, y 

Jy
log e 10 

dy, y 

X 
e 

X 
e 

x x+l 
e and e 

X 
e 

X 
ee 
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bx. +c. (b. x+c . ) log a. 
Method - a. L L is transformed into a

1 
L L al L in order 

--- L 

to convert all bases to a common base a
1

. Here a
1 

is the first base 

encountered in the integrand. 

bx+c c bx a
1 

where c ~ 0 is converted to a
1
a

1 
. This facilitates the 

transformation to be made. 

The substitution y =a~ is made. Thus, each a~x is replaced by 

b 
y and the resulting expression is divided by y loge al. 

Notes - What is controversial about this method is that in converts all 

bases to a single base which in not necessarily e. This may lead to 

the introduction of unnecessarily clumsy constants (e.g., log
5
3). 

SAINT's method in this case was somewhat different. SAINT did 

not handle different bases, nor all cases where constants (i.e., ci) 

were present in the exponent. It did, though, find the greatest common 

h k ddh b 
.. kx divisor oft e bi, , say, an rna e t e su stLtutLon y = a

1 
• In SIN 

this will be handled by algorithm 2 which will make the substitution 

z = yk after y = a~ is made by the current method. The method that per

k 
forms the substitution z = y was not present in SAINT although it was 

suggested as an extension 

Method 2) Substitution for an integral power. 

This method is applicable whenever the integrand is of the form 

xc Elem(xki), where c, ki are integers and where 

k = gcd(fc + 1, k
1

, k
2

, •. }), k ~ 1 

Clue - Instead of obtaining a clue which determines whether this 

transformation is applicable, FORM obtains a clue which determines 

whether this transformation is not possible. FORM will note that this 

transformation is not applicable when it sees a subexpression of the 
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a+bx . 
forme or s~n(x). If none of the other methods is applicable, and 

no such clue has been found, this transformation will be called. 

Examples -

becomes 

becomes 

k 
Method - Substitute y = x 

I~ 

fl 
4 

sin y dy, y 2 =x 

~ dy, y 
4 

3 X 

y + 1 

Notes - This method was suggested but not implemented by Slagle 

who embedded it in a larger method which was implemented in SIN in two 

separate methods (2 and 3). 

This method is currently restricted to integer exponents. It 

should be extended to handle exponents such as 3a, 2a in 

Jx3a sin(x2a)dx 

Method 3) Substitution for a rational root of a linear fraction of x. 

This method is applicable when the integrand is of the form 

( ax+ b~ (ax+ b~ Elem(x, ~rL, ~; 2, ••. ) 

where the ni and mi are relatively prime integers with some 

and with a, b, c, d constants and ad - be # 0. 

Cl~ - A subexpression of the form 

]m.l # 1, 
~ 

( ax+ b~ 
ex+ dr a, b, c, d constants; n, m, relatively prime integers, lml # 1 

Examples -

Jcos rx dx becomes J 2y cos y dy, y = rx 
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becomes 

The above two problems were attempted and not solved by SAINT. 

tl/2 ~ dx becomes J6y5 
1 

dy, 
1/6 

1/3 y3 yZ y X 

X 

Jjf!1i 2x + 3 dx becomes s 2 2y 2 
(2l - 1) 

dy, y = fR; 

Let k =least common multiple of the mi. 

Substitute y 
(ax + b )1/k 
ex + d 

~ - The restriction ad - be ~ 0 assures that the substitution 

is non-trivial. ~ If ad - be = 0, then dx 0. 

Slagle suggested methods 2 and 3 as a single method. Considering 

them as two separate methods facilitated the coding. This method is 

an extension of Slagle's suggestion since it covers linear functions. 

Even this algorithm should be split into two parts. One would 

n/m 
handl-e the case restricted to (ax + b) , the other the more general 

f + b'n/m 
case l~~ 

\ex + d/ 

Much of the time only the former is needed, but the machinery for 

handling the latter, which is more expensive, is employed. 

A weakness of this routine is its inability to deal with variable 

exponents. These would usually result in the generation of a reduction 

formula as opposed to an integral. The great advantage of an integral 

table over SIN currently is the presence of the reduction formulas. 

The Edge heuristic (See Chapter 5) can generate some reduction formulas, 
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but not many at present. (Or course, an instance of a variable exponent 

should result in a solution in SIN!) 

Method 4) Binomial - Chebyschev 

This method is applicable whenever the integrand is not a rational 

function and possesses the form 

Axr(c
1 

+ c
2
xq)p, where A, c

1
, c 2 are constants, p, q, rare ratio

nal numbers and c 1c2qp ; 0. 

Clue - A subexpression which is a nonintegral power of a rational 

function. This is followed in FORM by a match of the integrand and the 

form above. 

Examples 

fx4(1 - x2)-5/2dx Jy4(1 

-1 ~ 
becomes + /) dy, y X 

6 

Jxl/2(1 + x)5/2dx 
s -2y 

y = ;x ~ 1 becomes (yz _ 1)5 dy, 

Method- Binomial conversion to Chebyschev form (substitute y xq). 

r + 1 
Thus A+-A/q, and r .- p r +- -- -1 2 • 1 q 

Make the first applicable transformation 

a) r 1 integer, r
2 

> 0 

Substitute z = c
1 

+ c 2 y 

b) r
2 

integer, r
1 

a rational number with denominator d
1 

Substitute z = yl/dl 

c) r 1 integer, r
1 

< 0, r
2 

rational number with denominator d2 
1 /d 

Substitute z = (c 1 + c2y) 2 
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d) r
1 

+ r is an integer 
2 1~ 

Z -- (CJ ; c2y) 1 Substitute 

Otherwise, return notice of failure to integrate problem. 

~- This method was also suggested but not implemented by Slagle. 

It has the advantage of being a decision procedure. That is, if an inte-

grand has the form given above, then either the method yields the integral 

or the problem cannot be integrated in finite terms. This was proved by 

Chebyschev (see Ritt [54 ], p. 27). 

The argument used is roughly as follows: If r
1

, r
2

, or r
1 

+ r
2 

is an 

integer, then the substitutions above result in rational functions and thus 

can be integrated. Otherwise we know from Abel's Theorem (see Chapter 5) 

that the integral, if it is expressible in finite terms, is a sum of an 

algebraic function and logarithmic terms. The residue of a Chebyschev 

function is everywhere 0. Hence the integral cannot contain logarithmic 

terms. Further analysis shows that the assumption that the integral is 

algebraic leads to a contradiction. 

In this case also the integral tables contain many entries which 

are reduction formulas for the cases when p, q, r are parameters. Some 

such capability should be present in SIN also. 

Method 5) Arctrigonometric substitutions 

This method is applicable whenever the integral is of the form 

R(x, ~xz + bx +a) where a, b, care constants and R is a rational 

function of its arguments. 

Clue - A subexpression of the form 

(cx2 + bx + a)n/Z, where n is an odd integer. 
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J . 4 
~d 4 z, 
cos z 

y = arcsin x 

1- l 
dy becomes I~ arcsin By 

First eliminate the middle term of the quadratic by completing the 

square 

Y =X+£..._ 
2c' 

yielding the integrand in the form 

IfC 

IfC 

R(y- ~c'Jcy2 +a-::) 
b2 

Let A = a - 4 c 

c = c 

> 0, A> 0, substitute 

> 0, A < 0, substitute 

z = arctan Jf y 

z =arcsin~ y 

If C > 0, A = 0, replace the quadratic by /C y 

If C < 0, A > 0, substitute z = arc sec Jf!f Y 

/A2 + B2 

If A and Care both numbers, then the signs are determined trivially. 

If A or Care parameters, then the user will be asked whether they are 

positive, negative, or zero through an appropriate message at the console. 

For example if the value of A is e, a message would read 

IS e POSITIVE 

An answer of "yes'' is expected if e is in fact positive. However, the 

program can frequently determine whether A or C are positive. This is 
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done by assuming that all parameters are real valued and by using the 

fact that sums of squares of real numbers are positive. Thus 

2i + 3e
4 + 5 

is determined to be positive, whereas 

2 2 
-d - 2(e + f) 

is determined to be negative. A single SCHATCHEN rule is used in making 

this determination. 

In cases where the coefficients are parameters, it is possible to 

run the program several times and answer questions differently each time. 

SAINT had two transformations which performed the function of this 

method. One method eliminated the middle term from all quadratics, another 

made the arctrigonometric substitutions in all quadratics with missing 

middle terms. The arctrigonometric substitutions are normally made for 

roots of quadratics as we have done and not in all quadratics as SAINT 

attempted to do. SAINT also implicitly required that the coefficients 

in the quadratic be numbers. The kind of interaction between the user 

and the program which is required when one allows nonnumerical coefficients 

became practical when time-sharing systems were introduced. 

Method 6) Elementary function of trigonometric functions. 

This method is applicable when the integrand is an elementary 

function of the trigonometric functions applied to linear argument in 

the variable of integration. 

~- TRIG(a + bx) where TRIG£ {sin, cos, sec, tan, cot, esc} 



83 

Examples 

1) Ssin
2
x dx becomes J(~ -~os 2x)dx 

2) 

3) S dx becomes 
1 + COS X 

J 1 Az + Bzn ; y2> 
1 - y 

1 
tan?' 

dy, y COS X 

I) In problems where the arguments of the trigonometric functions 

are not the same throughout the integrand, the following cases are 

examined. 

a) I sin m x cos n x dx 
-cos{m - n} 

2(m - n) 

b) I sin m sin n x dx 
sin(m - n}x 

X 
2(m - n) 

c) S sin(m - n)x 
cos m x cos n x dx = 2 (m _ n) 

X - cos{m + n}x 
2(m + n) 

sin{m + nlx 
2(m + n) 

+ sin(m + nlx 
2(m + n) 

m, n, constants 

Otherwise, the method returns notice of failure to integrate the problem. 

II) If the arguments are the same but are not identically x, a 

linear substitution y = a + bx is performed and the procedure continues 

with the revised problem. 

III) 

a) 

b) 

IV) 

If the problem is of the form 

Ssinm(y)cosn(y)dy; m, n integers 

Jl nl 1 n-m 
m < n, transform to <zsin 2y) <2 + zcos 2y) ___ 2___ dy 

Jl nl 1 .!!!.....:...!! 
m ~ n, transform to (2sin 2y) <2 - zcos 2y) 2 dy 

All trigonometric functions are transformed into sines and 

cosines (e.g., tan y ~sin Y) in order to test if the resulting expres
cos y 

sian is of the form a or b. 

m f -n 
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a) Jsin2n+l(y)Elem(sin2(y),cos(y))dy. 

In this case substitute z = cos(y) 

b) S 2n+l 2 . 
cos (y)Elem(cos (y),s~n(y))dy 

In this case substitute z = sin(y). 

V) All trigonometric functions are transformed into secants and 

tangents in order to test whether the resulting expression is of the 

form: 

fElem(tan(y),sec
2

(y))dy 

In this case substitute z = tan(y). 

VI) 
1 

Finally, the substitution z = tanzY 
sin y is made. 

1 + cos y 

Notes - In the case where the integrand is a rational function 

of trigonometric functions of x all the problems can be reduced to 

rational functions. The choice of the transformation governs the 

simplicity of the resulting rational function and the final answer. 

The transformation in step VI above which is always applicable in these 

situations frequently leads to a great deal of work and to complex 

results. Fortunately, a number of simpler transformations such as 

those of steps III, IV, and V are easily recognized and are usually 

applicable. 

SAINT included all of the transformations given above, but they 

were embedded in different places in the program. I is included in 

the integral table. II is an algorithmic transformation, as is step III. 
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IV and V are three separate heuristic transformations. V is yet another 

heuristic transformation. The initial stage in steps IV and V is per-

formed by still another method. This organization of the methods appli-

cable to trigonometric functions led to the generation of extraneous 

subproblems since the heuristic transformations were disjoint and were 

not aware of each others actions, nor, in fact, of their own actions. 

For example, the method which performs the preliminary transformation 

sin x 
in steps IV and V (e.g., tan x ~~)must be inhibited from performing 

the opposite transformation later (e.g., sin~~). 
sec 

More work is necessary in this area in handling arguments to 

trigonometric functions which are linear, but different (e.g., J:!:~~~~dx). 
Some programs along this line have been designed by Edmund Berkeley, but 

they have not been fully implemented. 

Method 7) Rational function times an exponential 

This method is applicable whenever the integrand is of the form 

R(x)eP(x), where R(x) is a rational function in x and P(x) is a polynomial 

in x. 

P(x) . . Clue - A subexpression of the form e , where P ~s a polynom~al 

in x. If P(x) is linear in x, this method will be attempted if method 

1 is not applicable. 

Examples 

1. I X X X xe dx = xe - e 

J(x 

X 

2. 
X X 

__ e __ 

+ 1)2 e dx - X + 1 

3. J(l 2 x2 x2 + 2x )e dx = xe 

not integrable 
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This method once again is a decision procedure. That 

is, the method can tell whether a problem can be integrated in finite 

terms or not. The method is an improvement of the decision procedure 

in Ritt [ 54 ] (p. 48) which handled the case by solving a system of 

linear equations. The procedure is an application of the Liouville 

theory for integration about which more will be found in Chapter 5. 

This procedure is similar in flavor to Risch's [ 53] recent theoretical 

treatment of results in the Liouville theory. 

cl xml + sl (x) 
Let R(x) = Q(x) where s 1 , Q are polynomials 

s
1 

is a polynomial of degree< m
1

, 

c
1 

is a constant, c
1 

I 0. 

We know from the Liouville theory that the integral (if any) will 

be a multiple of eP(x). (See Ritt [ 54 ] , page 47.) 

and 

Suppose the integral is represented by 

(a
1

(x) + b
1

(x))eP(x), then 

P'(x)a1 + ai + P'(x)b1 +hi = R(x) 

C ml 
lx 

Let a 1(x) = ~' 

mlClxml - 1 C xmlpn C xmlQ 
s + 1 + 1 

a' = ~1-------~P~'------~~(~P~'~)_z ____ ~P-'~Q __ __ 
1 Q 

The numerator of P'b1 +hi is a polynomial T
1
(x), say, and a rational 

function remainder, u1(x), say. 
m2 

Let the leading term of T1(x) be c
2
x and 
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the rest of T1 (x) be s2(x). Now continue the process indicated above 

until some Ti (Tn' say) is 0. This is guaranteed to occur since the 

degree of the Ti is decreasing. If at that time the corresponding Ui 

(i.e., Un) is also 0, then the expression R(x)eP(x) is integrable and 

the integral is .~ ai(x)eP(x) If Un is not 0, then the problem is 
~=1 

not integrable in finite terms. 

Let a 

n n 
Note that if Un = 0, then R(x) - P' E a. - E a' 0. 

i=l ~ i=l i 

n 
E a.(x); then we obtain the relation 

i=l ~ 

P'a +a' = R 

P'aep + a'ep Rep 

p p 
(ae )' = Re 

aep JRepdx 

For the converse, we refer to Ritt. Also, note the discussion in 

Chapter 5. 

Notes - SAINT was able to solve the first two of the examples 

above. Both were solved using the Integration-by-parts method of 

SAINT. 

SAINT was unable to integrate Jex
2

dx because it found that no trans-

formations were applicable to the problem after approximately one minute 

of computation. 

The fact that SAINT was unable to integrate this problem does not 

necessarily mean that the problem is not integrable in finite terms. This 

statement is also true of SIN, in general. This is due to the fail-safe 

nature of the programs. When a fail-safe integration program results in 
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an integral then we know that the problem is integrable. When such a 

program does not yield an integral then one still does not know whether 

the problem can be integrated or not. A semi-decision procedure for 

integration would, in finite time, result in an integral or in the state

ment that the problem cannot be integrated in finite terms. Richardson's 

result (see Appendix B) shows that for the integration problem as he 

defines it, no decision procedure exists. Yet decision procedures exist 

for many interesting subcases and especially when one avoids considering 

the matching problems that Richardson shows are inherent in his charac

terization of the elementary functions. SIN embodies some decision pro-· 

cedures. Future programs are likely to contain more (see Chapter 5). 

One must be quite careful about the computational methods involved in 

order to avoid the explosion which is apparently inherent in many decision 

procedures in algebraic manipulation (see Moses[ 42 ]). We would prefer 

to see expensive decision methods to be attempted as a last resort, such 

as stage 3 in SIN. A final consideration regarding methods for integration 

is that they should not be too radical or else the result will become less 

meaningful to the human user. 

This method was implemented using the rational function package of 

MATHLAB [ 36 ). SIN communicates with the rational function package by 

a process called chaining. More will be said about chaining when we dis

cuss the integration of rational functions. 

Method 8) Rational functions 

This method is applicable whenever the integrand is a rational function. 

Clue - FORM generates no local clue for rational functions. The 

applicability of this method is determined separately. Sometimes this 
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method is called directly by other methods (e.g., methods 2 and 4). 

Examples 

1. Jx3x+ 1 
dx _!log 

3 e 
(x + 1) 

1 
+ 6loge (x2 - x 1 (2x - 1) 

+ 1) + 73 arctan --n-. 

Jx61_ 1 -tloSe (x + 1) 
1 

(x + 1) 1 
(x

2 
- x + 1) -2. dx + 6loge + lZloge 

1 (2x- 1) 1 2 1 (2x :+ 1) - 273 arctan ~ - 1210ge (x + x + 1) - 273 arctan ~ 

-1 1 
2 3 log (x + A) + 3 loge (x - A) 

ZAB - A e 2AB2 - A 

~ - This method was programmed for the MATHLAB system by Manove 

and Bloom under the direction of Engelman of the MITRE Corporation. The 

integration procedure which is used is described in Hardy [ 25 ]. The 

polynomial factorization routine used in this program essentially follows 

Kronecker's method as described in Vander Waerden [ 65 ], p. 77-78. This 

program is also written in LISP and is itself described in "Rational Func-

tions in MATHLAB," by Manove, Bloom and Engelman [ 36 ]. 

~ - The power of this method makes the coding of the rest of 

SIN a great deal simpler. SAINT did not have a powerful rational function 

integration program (it could integrate polynomials and ratios of poly-

nomials with linear and quadratic factors) and it suffered thereby; much 

of the trial and error in some problems for SAINT can be attributed to 

its inability to integrate certain rational functions which arose as 

subproblems. Some of the extensions which were made to SAINT (e.g., 

methods 2 and 4) could not have been made unless a rational function 

program was present. Thus, the second stage of SIN lets this routine 

clean up the details such as rationalization of denominators which could 

be ignored in making the transformations. 
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Slagle realized that the unavailability of a rational function 

integration program was a basic defect in SAINT. However his proposal 

for the manner in which such a routine should be written was not the 

best. He proposed solving linear equations to obtain a partial faction 

expansion of the rational function. The method in MATHLAB is superior 

computationally. 

As was mentioned earlier the experimental work (e.g., debugging 

and testing) was done using Project MAC's time sharing system CTSS. One 

valuable feature of this system is the power to use programs written by 

others. In our case it was valuable to have access to the rational func-

tion package of the MATHLAB system. To be sure, in conventional "batch" 

processing one can employ large packages designed by others by using 

intermediate tapes. In CTSS one can conveniently make use of a program 

concurrently under development by another group, providing one is pre

* pared to spend some time for the process involved. 

The rational function program which SIN uses is available in CTSS 

as FULMAN SAVED. It is a separate core image from SIN and is called 

using the chaining process given below. 

a) SIN writes the problem to be integrated on file MANOVE LISP. 

b) SIN saves itself as MOSES SAVED. 

* The widespread availability of time sharing consoles has allowed SIN 
to be used by several people other than the author. "Bugs" in the pro
gram.have been pointed out by Michael Levin of Information International, 
Inc., Carl Hewitt and Peter Samson of Project MAC, md Russel Kirsch of 
the National Bureau of Standards. We would hereby like to express our 
appreciation of their efforts. 
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c) SIN directs CTSS to execute FULMAN SAVED. 

d) F1JUfAN reads MANOVE LISP. 

e) F1JUfAN generates a solution to the problem. 

f) FULMAN writes the solution on file MANOVE ANS. 

g) F1JLMAN directs CTSS to resume MOSES SAVED. 

h) MOSES (i.e., SIN) reads MANOVE ANS. 

Experimentally the minimum time for this process has been determined 

to be about 4.5 seconds of machine time. Most of the time is spent in 

steps sand~ in which 32k programs are loaded into core. 

There are, at present, certain differences in the internal repre-

sentation used in SIN and FULMAN. These differences are eliminated, 

whenever possible, by two interface routines present in SIN. The dif-

ferences consist of the following: 

a) log has two arguments in SIN, one in FutMAN. 

b) PLUS, TIMES have variable number or arguments in SIN and only 

two in FUIMAN. 

c) No floating point numbers are allowed in FULMAN. Whenever 

possible these are converted to rational numbers (i.e., (a•b) where a,b 

are integers). Otherwise an error indication is given in SIN. 

Method 9) Rational function times a log or arctrigonometric function 

with a rational argument. 

This method is applicable whenever the integrand is of the form 

R(x)F(S(x)) where F is log, arcsin, or arctan 

R(x) and S(x) are rational functions 

and where JR(x)dx is also rational. 
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Clue - F(S(x)) where F is log, arcsin or arctan and S(x) is a 

rational function. 

1) 

2) 

3) 

Examples 

Sx log x dx 
e 

x2 rx 
becomes z-logex - J2 dx 

3 

Sx
2
arcsin x dx becomes ~

3

arcsin x -L~ dx 

2 -1 2 S -1 (2x +2) --::-2---'"----log(x + 2x) becomes ---:;::--tlog(x + 2x) - ---:;::--t 2 dx 
X + 2x + 1 X X X + 2x 

Let T(x) = JR(x)dx 

a) F = log 

Solution is S ~ T(x)log(S(x) - T(x) S (x) dx 

b) F = arctan 

S S(x~ Solution is T(x)arctanS(x)- T(x) 1 + S (x) dx 

c) F = arcsin 

S S' (x) 
Solution is T(x)arcsinS(x)- T(x) dx 

h - s2(x) 

~ - This routine handles three special cases of the method of 

Integration-by-parts. The utility of these special cases is that they 

direct the solution process quite clearly, whereas the more general sol-

ution methods may make false starts or require more extended analysis. 

SAINT would have attempted to solve most of the problems that fall 

under this category with its Integration-by-parts method. If we presume 

that SIN had only the rational function capability of SAINT, then this 

method would allow SIN to be more powerful on these problems to which 

this method applies. This is due to the fact that SAINT could not tell 

how much effort it could reasonably expend on its Integration-by-parts 

method and it chose to spend less effort of it than would be required to 

integrate the third problem avove, for example. 
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Method 10) Rational function times an elementary function of 

logc(21 + bx). 

This method is applicable whenever the integrand is of the form 

R(x)Elem(logc(a + bx)) where R(x) is a rational function and a, b, c, 

are constants. 

Clue - A subexpression of the form loge (a + bx). This method is 

attempted if method 9 fails to be applicable. 

1) 

2) 

3) 

Examples J log x 
(log xe + 

e 
J y y 

l)2 dx becomes (y + l)2 e dy, y = logex 

Jl 1 J 1 - 1 + 1 2 dx becomes ~ dy, y x ogex _ y 

J-1-- dx becomes JleYdy, y = ex 
logex y 

~ - Substitute y = log c(a + bx) 

results in 

J (cy - a) cy 
R,-b---- Elem(y)~logec dy 

l:!£.lli - This method is used to reduce the problem to the exponen-

tial case where the powerful method 7 might be applicable. If method 7 

is not applicable, the transformed problem stands as much a chance of 

being integrated by SIN's current methods as did the original problem 

in the logarithmic form. 

Method 11) Expansion of the integrand. 

This method is applicable whenever the integrand can be expanded 

by distributing sums over products. 

~ - This method is used whenever all of the previous methods 

have failed to be applicable. No clue fJr the applicability of this 

method is found by FORM. 
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Examples 

J x(cos x + sin x)dx 

J x +ex dx 
X 

e 

becomes J (x sin x + x cos x)dx 

becomes J (xe-x + l)dx 

becomes 
r X 2x 
J (x + 2xe + xe )dx 

Notes - SAINT had two heuristic transformations which together per-

formed the job of this method. The first distributed nonconstant sums in 

products, the second expanded positive integer powers of nonconstant sums. 

In both cases, where Slagle considered the methods inappropriate, SIN 

would have already applied one of the previous methods and solved the 

problem. As a matter of fact, that is also true of the two problems 

for which he considered the methods to be appropriate. 

The Third Stage of SIN 

This stage, the last stage of SIN, is the appropriate place for 

methods of a rather general nature. 

Two methods which properly belong in this stage have been programmed. 

The first is the Integration-by-parts method. This method is used in 

the experiment in Appendix C in which SIN was asked to solve the 86 problems 

attempted by SAINT. Only two of those problems (i.e., .fx cos x dx and 

Jcos ~ dx) required this method. The second method is based on the Edge 

heuristic described in Chapter 5. A third method, a powerful Derivative-

divides method, has not been implemented, but will be discussed here. 

In the long run it is expected that only one of these methods will 

be used here--that is the method based on the Edge heuristic or some ~ari-
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ant of it. 

The Integration-by-Parts Method 

ExamEles -

1) Ix COS X dx becomes x sin X - Jsin x dx 

Ix 2 2 Ix 2) logex dx becomes .l£....log2x - logex dx 2 2 

Let Maxparts be twice the maximum of the value of a 

constant exponent of any nonconstant factor in the integrand. Thus 

Maxparts is 2 for x cos(x) and 4 for x
2
cos x. 

Consider any partition of the integrand into a product of nonconstant 

factors g and h, where H(x) dx can be obtained by SIN without calling 

the Integration-by-parts method. 

Now consider Jg'Hdx. We require that this integral be found by 

SIN by calling the Integration-by-parts method fewer than Maxparts times. 

If both integrals are obtained, the solution is 

Jgh dx = gH - Jg'H dx. 

~ - The crucial aspect of this method is embodied in the phrase 

"consider any partition." This method is thus willing to attempt several 

partitions of the integrand. It is thus searching for a solution, and 

searching very blindly indeed. 

In order to avoid searching too large a space, we require that H(x) 

must be found without using this method. SAINT, which also had an Inte-

gration-by-parts method required that H(x) be found by IMSLN, which is 

a stronger restriction. Likewise the Maxparts device avoids an infinite 

search for the second integral. SAINT, which did not use such a device 
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appears vulnerable to difficulties such as in the problem fsin x dx . 
. · X 

Consider h = sin x, g = ~· Thus Jh dx = -cos x and Jg'H dx = 

J
cos x d 

2 x. 

x b d b Jcos2x dx <s JP sin3x Th. One su problem generate y ~ dx. ~s process 
. ~ X X 

can continue indefinitely unless. measures are taken to curtail it. 

(Actually Jsin x dx is not integrable in finite terms.) 
X 

The Derivative-Divides Method 

The method of Integration-by-parts and the Derivative-divides method 

are the two general methods that a freshman calculus student is likely to 

learn. Let us recall that SIN's first stage employed a Derivative-divides 

method. However, that method is not as general as it might be. The 

Derivative-divides method attempts to determine whether the integrand can 

be put into the form g{u(x))u'{x). If this is the case then the substi

tution y = u(x) transforms the problem into Jg(y)dy. In stage 1, g was 

required to be a single operator. However, in a more general method g 

would not be so limited and the following problems would be transformed 

by this method. (Let us note again that this method is not available in 

SIN at present.) 

1) Scos x(l + sin3x)dx becomes J(l + y
3
)dy, y = sin X 

s 1 
J 1 : Yz dy, 2) 1 --. 2 dx becomes y = logey 

X 1 + log X 
1 e 

1 
3) S;T"7 dx becomes Jl ~ y2 dy, y = arcsin x 

1 + arcsinZx 

The first two of these problems can be solved by SIN's second stage 

(in particular by methods 6 and 10). The third problem is one of the 

simplest examples of a problem which cannot be solved by SIN's first two 
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stages along with the Integration-by-parts method. However, the Edge 

heuristi~ will correctly guess the integral arctan(arcsin x). 

SAINT had a Derivative-divides method which was more powerful than 

SIN's. However, it suggested many bad transformations in some cases. 

The method essentially performed a search for a subexpression such that 

the number of factors in the quotient of the expression and the deriva-

tive of the subexpression was smaller than the number of factors in the 

original integrand. This is too strong a restriction sometimes. 

A Derivative-divides method was designed but was never implemented 

in SIN. 

The kind of analysis we considered was as follows: Suppose the 

integrand is f(x) and a nonlinear subexpression of it is u(x), then if 

~f(~) can be represented as g(u(x)), the method would propose substituting 
r 

y = u(x) and attempting jg(y)dy. We should, though, restrict the kind of 

functions g that we would allow. For example in sin x we might 
' sin x + cos x 

wish to disallow the substitution y = cos x since it introduces the alge-

braic term~ into the denominator. If we make the conditions on 

the g's sufficiently restrictive (e.g., rational, algebraic) then the num-

ber of substitutions per problem that this method would propose would be 

small, and more significantly, each of the substitutions would be quite 

reasonable. 

Further Discussion of FORM 

We would like now to discuss some of the aspects related to the 

FORM routine in greater detail. We note that of the eleven methods 

available in stage 2 of SIN, eight possess local clues which immediately 

identify them to FORM. Method 2, substitution for an integer power, 
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possesses clues which allow FORM to reject the method in some cases. 

Methods 8 (Rational) and 11 (Expansion) do not currently possess local 

clues in FORM and are attempted whenever FORM fails to find an applicable 

method. 

As may be recalled from Chapter 2, one of the advantages of hypo-

thesis formation is that one can attempt to fit the problem to the method 

at hand. Since FORM is quite aware of the methods which are available to 

it, some such "fitting" could be attempted. This was done in the case of 

algebraic integrands. If an expression is of the form /R(x), where R is 

rational in x, then FORM will attempt to see if methods 3, 4, or 5 are 

applicable. If they are not, then this problem is going to cause some 

difficulty since it would appear that nothing else except stage 3 methods 

will be available to solve the problem. On the other hand it is possible 

that Methods 3, 4, or 5 are applicable, but that SCHATCHEN was unable to 

make the match. Two excuses can be made for SCHATCHEN in this event. One 

is that SCHATCHEN failed because the rational function R(x) was not ex-

panded (e.g., /1 + x(l- x)), or that the rational function was not com-

I X+ 1 
pletely rationalized (e.g.,Jx + --x--- ). FORM will thus determine if 

these two transformations are applicable toR (not the whole integrand). 

If they are, the problem is transformed to account for these changes and 

an attempt will be made to consider Methods 3, 4, and 5 again. Hypothesis 

formation is thus shown to be able to localize the difficulty in a problem. 

An Example of SIN's Performance 

We sball now consider in some detail how SIN performs on the problem 
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This problem stretches the capabilities of SIN a good deal. Thus 

it can be used to indicate some of the strengths and particularly the 

weaknesses in the program as it now stands. Our description will con-

centrate on the role that FORM plays in obtaining a solution. 

This problem is not a simple one. So it will pass to stage 2, where 

FORM will examine it. It turns out that FORM will arrive at the same 

hypothesis regardless of whether it examines the numerator or denominator 

first, but it will be more instructive to see how it operates on the numer-

ator. First, FORM will note the square-root (more precisely, the exponent 

1 
of z>· Since the base is not rational, which would indicate that Methods 

3, 4, or 5 might be applicable, the root is ignored and attention is 

focused on the base A
2 + B2sin

2
x. In this sum, the constant term A2 is 

encountered, and it yields no clue. The factor B2 is likewise a constant 

and yields no clue. This leaves the factor sin2x. The exponent of 2 is 

not interesting. However, the base sin(x) does yield a clue since it is 

a trigonometric function with a linear argument. FORM will, therefore, 

call Method 6 in order to test the hpyothesis that the expression is an 

elementary function of trigonometric functions of x. Method 6 determines 

that the hypothesis is valid and will call SIN after making the substitution 

y cos x. The subproblem thus generated for SIN is 

f- .JAZ + B2(1 - yZ) 
1 - y2 dy 

As before, this is not a simple problem and again FORM is called in 

order to generate an hypothesis. Interest will quickly focus on the square-
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root in the numerator. Though the base is a rational function, none of 

the clues in FORM appear to apply. As described in the discussion above, 

FORM will attempt to determine whether an expansion of the base is possible. 

Expansion is, of course, possible and yields the base A2 + B
2 

- B2y
2 

which 

matches the pattern used as a clue for Method 5. Method 5 is now called 

in order to determine whether an arctrigonometric substitution is possible 

in the revised problem which is 

Method 5 first validates the hypothesis. In order to determine which 

2 2 
substitution is appropriate, the routine decides that A + B is positive 

and that -B2 is negative in the manner described in the discussion of 

this method above. Method 5 will now make the substitution 
By 

z =arcsin IAZ + Bz 

which is followed by a call to SIN with the subproblem 

(A2 + B2)cos2z 

it. 

(1 -

J-i AZ + B2 2 dz • 
1 - B2 sin z 

Once again the subproblem is not simple and FORM is asked to examine 

In the integrand 

A2 + B2 . 2 -1 
BZ sm z) 

1 f . 2 d on y two actors are interest1ng, cos z an 

Whichever FORM will be asked to examine first, 

the conclusion will be the same--a hypothesis that the integrand is an 

elementary function of trigonometric functions. 

Method 6 will verify the hypothesis that only trigonometric functions 

are present and will make the substitution w = tan(z). This will result 

in yet another call to SIN with 

J-! (1 

the subproblem 

A2 + B2 
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This is a rational function and FORM will find no clue in this case. 

Since FORM also did not find any clue to reject the possibility that 

Method 2 (substitution for an integer power) is applicable, that method 

is called next. Method 2 cannot make a substitution, but will call 

Method 8 (rational) to solve this problem. 

The rational function package will obtain this subproblem through 

the chaining process described above under Method 8. First, it will 

transform it by rationalization into a problem of the form given below 

Then factorization and partial fraction decomposition will result in 

- --- +-A:--- - -A--- dw I[ B 1 1 1 1 ] 
l + w2 2 Aw - B 2 Aw + B 

Straight forward integration will now yield the integral 

1 1 
-B arctan w + 2A loge(Aw- B) - 2A loge(Aw +B) 

This result will be sent back to SIN for the arduous backward sub-

stitution: The first substitution is w = tan z which yields 

log (A tan z + B) 
B e 

The second substitution is z =arcsin /AZ + B2 y. This results in 

- ·) 
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c 
Note that tan arcsin C is transformed into ~ 

The final substitution is y = cos x; this in turn yields 

This is the result that SIN returns for the original problem. SIN 

does not simplify its results by rationalizing them or by combining log-

arithmic terms. This is certainly a drawback in this problem. Such 

simplifying transformations would result in the answer 

This result is to be compared with the answer in the table (Petit 

Bois, p. 138). That result is 
B 

( 
-;=::;===;r..cos x) 

B arccos IA2 + BZ -A loge(A cot x +IA2 csc2x +B) 

In more familiar terms, the table's answer is 

( B ) (A cos x + / A2 + BZ sinZx \ 
-B arcsin /AZ + BZ cos x - A loge sin x I 

This answer differs by a constant from the answer derived by SIN. 

Although we can only guess at the method that the table's compiler 

used, we can arrive at some conclusions regarding weaknesses in SIN's 

method of solution. 

Let us consider the first subproblem after the modification made to 

it by FORM. 
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Rewrite this as 

The transformation made above is a standard one in dealing with 

algebraic integrands. The integral above, after division, becomes 

Multiplying through we obtain two subproblems which together are 

simpler to solve than the combined problem. SIN, by not bringing the 

square-root to the denominator, unnecessarily complicates the work of 

the rational function package. This is certainly one of its weaknesses 

in dealing with algebraic integrands. 

SAINT and SIN solutions of the same' problem 

As a further comparison of SAINT and SIN, we shall indicate how 

both operate on the problem 

This problem was chosen because it is discussed extensively in Slagle's 

thesis. 

In SIN, after determining that the problem is not simple, the factor 

(1 - x2)-(5/Z) acts as a clue in FORM and generates a call to Method 5 

which validates the hypothesis that an arctrigonometric substitution is 

possible. This method generates the subproblem 

J .4 
s~n d 
cos4Y y 

after making the substitution y = arcsin x. 

Again, this is not a simple problem and this time sin(y) will act 
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as a clue for the hypothesis that only trigonometric functions are present. 

Method 6 validates this hypothesis and generates the subproblem 

Jl :4 z2 dx 

after making the substitution z = tan y. 

This subproblem is rational and FORM finds no local clue. Method 2 

is called and is ineffective. Method 8 (rational) is called and the rational 

function package returns the expression 

3 

as the integral. 

~ - z + arctan z 
3 

Backward substitution yields 

3 
tan y - tan y + y 

3 

and finally we obtain the integral 

1(1 - x2)-l/2 (1 ·_ x2'}-l/2 3 --
2
- - --

2
- + arcsin x 

X X 

In SAINT, the solution of 

J(l ~4x2)5/2 dx 

proceeds roughly as follows. 

In this problem y = arcsin x is substituted yielding 

I) J .4 
s1.n d 
cos4Y y 

as in sm. 

Subproblem I is transformed into 

II) Stan\ dy 

and into 

III) Scot\ dy 

both of which will now be added to the subproblem tree. Finally, z 1 
tan? 
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transforms subproblem I into 

J 4 
IV) 32 z d (1 + z2)(1 - zZ)4 z 

which is transformed by IMSLN into 

V) 32 J(l + zZ)(: _ z2)4 dz 

No more transformations are possible on subproblem I, so transfor-

mation will be attempted on subproblems II, III, and V. 

Subproblem II is transformed by z = tan y into 

VI) Jl ~
4

z2 dz 

IMSLN then performs the polynomial division and obtains 

J 2 1 
VII) (-1 + z + ~) dz 

From VII we obtain 

VIII) J-dz, 

IX) Jz2dz, and 

X) Jl ~ z2 dz 

Subproblems VIII and IX are solved by the table look up in IMSLN. 

This leaves II, III, V and X. 

III can be transformed by z = cot y, into 

I -1 
XI) z4(l + zZ) dz 

and IMSLN will convert it to 

XII) -Jz4(l ~ z2) dz 

By now only subproblems V, X, and XII remain to be considered. The 

transformation w = arctan z on subproblem X yields 

XIII) Jdw 
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which IMSLN solves by the table look up. Now IMSLN realizes that sub-

problem VII has been completely solved and by backward substitution can 

obtain the final result 

l 3 . 3tan arcs~n x - tan arc~in x + arcsin x 

We should note in the solution methods how SAINT keeps several 

options to the particular path to be followed in obtaining the answer. 

This is particularly noticeable in subproblem I which generates II, III, 

and IV. Only one of those three subproblems need be solved. SIN will 

generate only one subproblem, and will commit itself to using it. Of 

these subproblems only IV can truly be faulted. 
l . The tan 2 x transformat~on 

is generally to be eschewed if any other transformation is possible. How-

ever, the lack of communication between SAINT's heuristics make such a 

principle difficult to implement. 

Furthermore, it appears that subproblem XIII should logically follow 

X. However, the cost of obtaining the character of subproblem X in SAINT 

forced the particular order of events to be followed. A mechanism like 

FORM would have simplified this situation tremendously. 



CHAPTER 5 

THE EDGE HEURISTIC 

In this chapter we present the concepts underlying the Edge 

heuristic. The heuristic guesses the form of the integral and then 

attempts to obtain values for undetermined coefficients in that 

form. A program called Edge, which implements some of the ideas 

behind the Edge heuristic is described. The theoretical results 

related to this approach to integration are discussed. 

Let us suppose that we are given an integrand which is in 

the form of a product. Then we can usually determine quite easily 

which factor in the product is a singular or outstanding factor 

in the sense that it is not contained in the other factors or their 

derivatives, nor can it be derived from the other factors or their 

2 2 
derivatives through rational operations. In xex , the factor eX 

is outstanding since x is contained in the derivative of this factor. 

The outstanding factor in x3fl-x2- is the factor ~. However, 

there may be several such outstanding factors as in sinxex where 

both sinx and ex are not derivable from one another. In such a 

case we shall say that the first factor in a right to left scan of 

the expression is the outstanding factor. Moreover, in cases of 

functions such as sin(x)cos(x) no factor is outstanding. Here we 

shall choose the first factor on the right. 

1~ 
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Given that we have decided on an outstanding factor in the 

integrand, we can frequently make an educated guess regarding the 

form of the integral, assuming, of course, that the integral can be 

expressed in finite terms. 

Suppose the integral f(x) has an outstanding factor of the 

form 
g(x) 

e , say, f(x) = h(x)eg(x) then we can guess that 

J f(x)dx is of the form 

a (x)eg (x) + b (x) = I f (x)dx = I h (x)eg (x) dx 

where a(x), b(x) are undetermined functions of x, and where 

a(x) will not involve eg(x). 

Certainly If(x)dx must contain eg(x) since one cannot other

wise obtain such a function through differentiation. If If(x)dx 

has a nonlinear occurrence of eg(x) then so will its derivative, 

but this nonlinear occurrence will not cancel in f(x). 

Given the above choice for If(x)dx, then by differentiation 

we obtain 

a(x)eg(x)g' (x) +a' (x)eg(x) + b'(x) = f(x) = eg(x)h(x) 

A simple choice for the value of a(x) can be obtained by requiring 

that the first coefficient of eg(x) on the left be equal to the 

coefficient of eg.(x) in f. Using this choice we obtain 

a (x) -~ 
- g' (x) 
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The value of b(x) is obtained in a subproblem. 

b(x) = J-a'(x)eg(x)dx 

Hopefully, the choice of a(x) made above will yield a simpler 

integration problem for the determination of b(x) than the original 

problem. Let us consider a simple example using this guessing 

procedure. 

f(x) X = xe 

a(x)ex+ b(x) = Jf(x)dx 

a(x)ex + a'(xjex + b'(x) 

a (x) 
X xe 

=--=X 
X 

e 

a 1 (x) = 1 

X xe 

The subproblem for b(x) is certainly simpler than the original 

problem. It will be instructive to consider how the method out-

lined above will handle such a problem. Below we shall usually 

ignore the functional characterization of a(x) and b(x). 

b' X 
-e 



b' 
1 

b 

Finally, 

Jf (x)dx 

X -e 
--x 
e 

X = xe 

110 

-1 

constant 

X 
- e + constant 

Let us now consider another example using this procedure. 

f(x) 
2 sin x2 

= X COS x e 

sin 2 
The factor in f (x) is 

X 
outstanding e 

sin x2 
ae + b = J f (x)dx 

s in x2 2 , sin x2 
ae cos x 2x +a e + b' 

a= t 

a' 0 

b' 0, b constant 

2 

S 
~ sin x 

f(x) dx = "2e + constant 
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The first of the two problems above is usually solved by In-

tegration-by-parts. However, that method requires an integration 

step (i.e., Jexdx) which we did not perform. Furthermore, the 

integration by parts method is inapplicable in the second problem 

above. The latter problem is handled by the Derivative-divides 

method such as is used in SIN's first stage. So the analysis per-

formed by the Edge heuristic and in particular the analysis of 

Edge that we have been presenting is different from either of these 

two general methods of integration. 

An analysis which is similar, but more complex than the one 

made by Edge is employed by Method 7 of SIN's second stage. Let 

us consider the manner in which the method proceeds in light of the 

discussion above. 

We recall that Method 7 deals with integrands of the form 

R(x)eP(x) where R is rational and P is a polynomial in x. 

An example solved by this method is 

2 x2 
f (x) = (2x +l)e 

Edge would in this case guess 

x2 
a (x)e +b (x) J f (x)dx 

and 

a (x) 
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Method 7 is superior in this case in that it considers the 

R(x) factor term by term. Thus, it would guess 

2x2 
a(x) =~• = X 

It turns out that this is the correct value for a(x) since 
2 

the integral is exactly xex . 

On a more complex problem such as 

2x6 + 5x 
4 

+ x3 + 4x
2 

+ 1 

(x2+1)2 

2 
X 

e 

Method 7 would proceed by first letting 

5 
X 

a (x) 

The subproblem it generates is 

4x 4 + x
3 

+ 5 -
4 

x2+1 2 
----------~------------ex 

(x+l)
2 

Now it lets 

etc. 
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Finally, the result is 

5 3 2 
X + 2x + ~X + X + i eX2 

(x2 +1)2 

or 

X 
e 

2 

Thus, we see that although the heuristic of guessing the form 

of the integral is correct in the two examples above, the particu-

lar mechanism for guessing the values of the undetermined coefficients 

which is employed in Edge is not sufficiently powerful. We shall 

now indicate two other difficulties with the analysis of Edge 

described above. 

Let us recall that Method 1 of SIN's second stage handles inte

grands of the form Elem(ex). This method substitutes y=ex. In 

the case of rational functions of exponentials this substitution yields 

a rational function. Thus, for example, 

x 2x 
f(x) = (e +l)e 

becomes 

(y+l)y 

after making the substitution. The rational function package will 

expand this integrand and integrate the resulting quadratic in y. 

Edge would guess the form of the integral without making a corres-

ponding expansion. This leads to an incorrect guess of the form 
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since the two factors in f(x) are closely related. Had Edge ex-

panded the integrand and integrated the terms separately, it 

would have easily obtained the integral of f(x). 

Another difficulty with the manner in which Edge guesses the 

form of an integral is shown in 

f (x) 

Method l of SIN's second stage would yield a rational function 

which would be factored and expanded in partial fractions by the 

rational function package. Here again the two factors f(x) are 

closely related and thus the guess of the form of the integral 

made by Edge and the resulting guesses of the coefficients will 

fail to yield the integral. A partial fraction expansion is re-

quired if the integrand is a rational function of related terms. 

While keeping these weaknesses of Edge in mind, we shall con-

tinue to consider how the guessing heuristic operates on outstanding 

factors of different forms. 

Let us suppose that 

f(x} h(x) log(g(x)) 

and that the logarithmic factor is the outstanding factor in f(x). 

A good guess of the formJf(x}dx, if it exists, is 

2 
clog (g(x)) + a(x)log(g(x)) + b(x) = Jf(x}dx 

where c is a constant and a(x) does not involve log(g(x)). 
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2 
The log term is necessary (e.g., f (x) = 1/x logx), but its 

coefficient is only a constant. Otherwise the derivative of the 

2 
from above would contain a log term which would not cancel in 

f (x). 

Differentiating we obtain 

n 1 1x\ n 1 1x\ 
2c~ log g(x) +a~ +a' log g(x) + b' = h(x)log g(x) 

or 

(2cg~~~~ + a')log g(x) + ag~~~~ + b' = h(x) log g(x) 

In the above we grouped the terms involving the outstanding 

factor log g(x). We note two differences from the exponential case. 

First there is the constant c which did not arise before. Then 

the coefficient of the log term is a' instead of a. We can solve 

for a(x) by using the relationship 

Ll& a' = h(x) - 2c g(x) 

a = Jh(x)dx - 2c log g(x) 

We now use the fact that a(x) is independent of log g(x) in 

order to obtain a value for c. That is, if Jh(x)dx has a term in-

volving ~og g(x), the c is chosen so as to cancel that term. 

Otherwise, we chose c=O. The value of b' is determined by the 

relationship. 
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b' Lhl -a 
g (x) 

Let us consider an example. 

f(x) = (x + l/x)1og g(x) 

2 c log x +a log x + b = J (x+1/x)1og x dx 

(2 c/x + a')log x + a/x + b' (x + 1/x) log x 

a = J (x + 1/x)dx - 2c log x = 1/2 x
2 

+ log x - 2 c log x 

2c 1, c =· 1/2, a 

b' -a/x -1/2 X 

b = -1/4 / 

J (x + 1/x)log x ex 
2 2 2 

l/2log X + 1/2 X log X - 1/4 X 

It should be noted that J<x + 1/x)dx can, of course, also be 

obtained by a guess of the integral. 

The guess for the logarithmic case generalizes when f(x) is 

of the form 

f(x) = h(x) logng(x), n > 0 

In this case we can guess 

n+l n J n c log g(x) +a log g(x) + b = h(x)log g(x)dx 

with a,b,c determined using the same method as above. 
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Let us consider how we can capitalize on our experience of the 

types of outstanding factors dealt with above. Suppose f(x) is of 

the form 

h(x) 1:! 
f(x) 2 , where 1 + g (x) is the outstanding 

1 + g (x) 
factor. 

The argument now proceerls as follows: One could arrive at a 

1 factor 2 by two routes which do not involve complex con-
1 + g (x) 

stants: 

a) 

b) 

2 
log(l + g (x)) 

arctan g(x). 

In either case the coefficients must be constants since if they were 

not the derivatives would contain terms more complex than found in 

the integrand. Thus the guess is 

2 
c log(l + g (x)) + d arctan g(x) 

2cgg' 

1 + l 
+ ~ - --.!!.1& 

1 + g2 - 1 + g2 

rf(x)dx 

(2 gc +d) g' = h(x) where c, dare constants. 

Consider f(x) = ____ x __ 
1 + x4 

2 
(2x c + d)2x = x 

I 1 2 
f(x)dx = 2arctan x 

5 
We should note that our guess fails in such cases as __ x __ __ 

1 + x4 

in which division must be attempted first, or in the case of 

1 
which is equivalent to cos2x. 

1 + tan
2
x 



118 

In order to contrast the Edge heuristic approach with that used 

in Stage 2 of SIN, let us consider functions of the form 

f( ) h(x) •t• . t x = 2 n/2 , n a pos1 1ve 1n eger 
(1 - g (x}} 

An educated guess for the form of the integral of f(x} is 

2
a n/

2 
_ 1 + b = Jf(x}dx, unless n = +1 

(1 - g (x)) 

If n = +1, then we shall also consider the possibility of a 

c arcsin(g(x}) term, where c is a constant. 

An example we considered in Chapter 4 is 

b' 

X 

2 -x 

4 

Now we shall generate 

aJ 

a subproblem. 

= r -x2 dx 
(l _ x2)3/2 

4 
X 

2 -x 



b' 
1 

1 
(l _ x2)1/2 

In this case we shall guess 
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2 1/2 a
2

(1 - x ) + c arcsin x 

a2 (1/2)(-2x) c 1 

(l _ x2)1/2 + (l _ x2)1/2 = (l _ x2)1/2 

-xa
2 

+ c = 1 

c = 1 

The final result is 

We should like to mention how Edge handles trigonometric functions. 

For outstanding factors of the form sin(g(x)) it guesses cos(g(x)) and 

it guesses cos(g(x)) for outstanding factors of the form sin(g(x)). 

However, this manner of dealing with trigonometric functions is not 

necessarily the best one. Edge should in some cases consider the com-

plex exponential form of the trigonometric functions. In this way 
~ 

jsinnx dx can be found easily for integral values of n after expanding 

the complex exponential form of the integrand. By keeping the trigo-

nometric form Edge is forced to deal with methods such as "solution by 

transposition" which occurs in Jsin x exdx when one of the subproblems 

is J-sin x exdx. 

We have indicated above some examples in which Edge fails to 
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make a good guess for the form of the integral or the values of the 

undetermined coefficients in the form. Thus, it is necessary to 

determine whether Edge is progressing toward a solution. If the 

outstanding term involves an exponent and the absolute value of the 

exponent is decreasing, the routine thinks that it is making progress. 

The same is true if another factor in the integrand is exponentiated 

and its exponent is decreasing while the outstanding factor remains 

the same. The program is certainly not progressing if it obtains 

a subproblem which is exactly the same as some previous subproblem, 

though a solution by transposition is attempted if a subproblem is 

a constant multiple other than one of some previous subproblem. 

In the above we have indicated some cased in which the form has co

efficients which were constrained to be constants. The current 

version of Edge handles these cases by attempting a guess which ig

nores a term (usually the one with a constant multiple). If that 

guess fails to yield the integral using the progress information 

outlined above, the program backs up and introduces a new term in 

the form while eliminating another term. In this manner Edge per

forms a depth first search. 

Below we would like to indicate the theoretical results which 

underlie the Edge heuristic. 

Historically, the quest for results regarding the form of an 

integral goes back to the early nineteenth century. Laplace con

jectured that the integral of an algebraic function (y is algebraic 
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in x if P(x, y) = 0 where P is a polynomial with constant coefficients) 

need contain only those algebraic functions which are present in the 

integrand. This conjecture was proved by Abel. Liouville examined the 

form of the integral of an elementary function in a series of papers in 

the 1830's. Before we present the statement of Liouville's main theorem, 

we shall need some preliminary considerations. An important feature of 

Liouville's theory of integration is a hierarchy of elementary functions. 

In level 0 of this hierarchy are the algebraic functions. The monomial 

of level 0 is x. A monomial of level i + 1 is a function represented by 

ey or log y, where y is a function of level i and where the monomial has 

no representation which is of lower level than i + 1. Level i + 1 also 

contains all functions which are algebraic combinations of monomials of 

level i + 1 with functions of lower levels provided again that those 
2 

functions have no representation of lower level. Thus, xex is of level 

1 and exeeX + log(l - ix2) is of level 2. We should note that this 

hierarchy includes all trigonometric and arctrigonometric functions by 

using their complex exponential and logarithmic forms in order to clas-

sify them. 

Given a representation of an elementary function one can list 

the monomials. and algebraic functions of these monomials which were 

combined to form the function. Among the monomials and the algebraic 

functions there will be some which are of the highest level. Choose 

one such function and call it the principal function. Thus, the 
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original function is a rational combination of the principal 

functions with functions of equal or lower level. The principal 
x2 x2 

function in xe is e and the principal function in 

is ex. It is the concept of a principal function which we 

were striving for when we defined the concept of an outstanding 

factor in an integrand. We noted above some of the difficulties 

that one encounters in making an educated guess for the form of the 

integral when using only the notion of an outstanding factor. The 

principal function concept surmounts these difficulties. 

We are now in a position to ask whether there are any more 

monomials and algebraic functions in the integral of a function 

than in the function itself. The answer provided by Liouville's 

general theorem is that except for logarithmic extensions there are 

none. Liouville's theorem states that 

J f(x)dx 

where the ci's are complex constants and the vi are rational 

functions in the monomials and algebraic functions of these which 

appear in f [54]. 

Liouville's theorem itself gives a strong rationale to the Edge 

heuristic since it makes strong restrictions on the possible forms 
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of the integral. Recently, and independently of our work on Edge, 

Risch [ 53] has strengthened the Liouville theorem by showing that 

the constants ci need only be algebraic over the field of constants 

generated by the constants in f(x) with the ground field of the 

rational numbers. Risch has also given a decision procedure for 

those functions obtained without using any algebraic operations 

other than rational operations. His method is similar to the 

one employed in Edge in that it relies on knowing the possible form 

of the integral. However, it is superior to Edge in the manner in 

which it obtains the undetermined coefficients and in its use of 

partial fraction decomposition with respect to the principal 

function in the integrand. When algebraic operations are allowed 

in the integral, Risch believes that the integration problem may 

in general be recursively unsolvable. (See Appendix B where the 

integration problem is shown to be unsolvable using a different 

formulation than Risch's.) However, he is optimistic about integrands 

which are algebraic functions of level 0 in our hierarchy. 

We believe that methods which rely on guessing the form of 

the integral such as Edge or ones based on Risch's algorithm will in 

the near future provide us with very powerful integration programs. 

However, the amount of machinery that they call into play and their 

use of radical transformations such as the complex exponential form 

of the trigonometric functions indicate that those methods are not 

to be applied when more specific and presumably more efficient 

methods are available. 



Chapter 6 

SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS 

As a first approximation one might attempt to treat the pro-

blem of solving ordinary differential equations by using a similar 

strategy to the one used in SIN for integration problems. Let us 

recall that SIN used a three stage approach. First it attempted 

to solve the problem using simple methods. Next the FORM routine 

attempted to use local clues to determine which one of a specific 

set of methods was applicable to the problem. Finally the Edge 

routine employed a more general method of solution. In this 

chapter we shall consider how such a strategy would fare in the 

problem domain of first order, first degree ordinary differential 

equations (i.e. P(x,y)y'+Q(x,y)=O). We shall indicate the approach 

that was finally taken and describe the methods of solution which 

were programmed. 

There appears to be general agreement in the texts of ordin-

ary differential equations regarding the elementary forms of dif-

ferential equations. Linear, exact and separable equations seem 

to constitute the universal choice as elementary forms. They are, 

respectively, of the form f(x)y'+g(x)y+h(x)~o, P(x,y)dx+Q(x,y)dy=O. 

where op~, and A(x)B(y)dx+C(x)D(y)dy=O. These forms are relative
oyTx 

ly easy to recognize, and immediately reduce to integration problems. 

We shall adopt the usual convention that a reduction of a differ-

ential equation to one or more integration problems constitutes a 

solution of the equation even if the expressions to be integrated 

cannot be integrated in finite terms. Functions which can be ex-

124 
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pressed in terms of elementary functions and integrals of elemen

tary function are called Liouville functions. Due to the above

stated properties of linear, exact, and separable equations, the 

set of methods which determine whether the equation matches one 

of the forms constitute a reasonable analogue to SIN's first stage. 

When we consider finding an analogue to the FORM routine of 

SIN, we immediately arrive at difficulities. It is rare that one 

can make a slight change to a differential equation and still be 

able to use the same method of solution, let alone obtain a sim

ilar solution. Let us consider how the method of solution changes 

as we modify the five equations below. The methods of solution 

used (i.e., linear, exact, homogeneous, Bernoulli, and linear co

efficients) will be described later. 

1) 2xy' + y+x+l=O 

linear 

2) 2xy'+y(y+x+l)=O 

Bernoulli 

3) (2x+y)y'+y+x+l=O 

linear coefficients 

4) x(x+y)y'+y(y+2x)=O 

homogeneous 

5) x(x+2y)y'+y(y+2x)+l=O 

exact 

It should be noted that none of the methods mentioned above 

is applicable to any of the other four problems. The situation is 
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even more serious when we note that equation 6 is not integrable 

in terms of Liouville functions, but equation 7, which varies 

from equation 6 by only the addition of the constant 1, does 

possess a Liouville solution (see Ritt [54] p. 73). 

6) 
2 2 2 

x y'+x (y -1)-2=0 

7) 
2 2 2 x y'+x (y -1)-1=0 

Since the equations above appear quite similar, any test based 

on local clues only is going to fare quite badly. Thus the pos-

sibility of implementing an analogue to SIN's FORM routine does 

not appear very promising. One could of course, use global clues 

(such as the number of occurrences of x and y in the coefficient 

of y') to conclude that certain methods are inapplicable (for ex-

ample, the linear method is inapplicable if there are any occur-

rences of yin the coefficient of y'). However, this approach is 

not likely to give us a great increase in efficiency. 

On the basis of the difficulty just noted, one would suppose 

that a practical general method for solving first order, first 

degree ordinary differential equations is not likely to exist. 

Surprisingly, a general method does exist. It is known as the 

multiplier method. It can be shown that if a Liouville solution 

exists, then there also exists a Liouville function u(x,y), which 

can be used to multiply both sides of the equation and obtain an 

exact differential equation and thus an immediate solution. That 

is, given P(x,y)dx+Q(x,y)dy=O, then uPdx+uQdy=O satisfies ~(uP)=_](uQ). 
cy ~ 

There is, however, a slight catch in the multiplier method - it is 

very hard to find an appropriate multiplier except in special 
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cases, In fact, several texts caution their readers against trying 

to consider finding multipliers to differential equations. The 

Liouville theory (see Chapter 5) yields a form that an elementary 

solution to a first order differential equation must satisfY, How

ever it does not appear likely that one could write a method like 

Edge which would exploit this information, except in special cases. 

Negative results such as those in Appendix B appear to dampen the 

hope that one could find a general method for solving differential 

equations. 

We thus conclude that finding an analogue to SIN's strategy 

in the domain of differential equations is quite difficult if not 

impossible, We can, however, decrease our expectations and follow 

the traditional technique given in texts on differential equations. 

That is we can determine if the problem is solvable by one of a 

set of special methods by examining the applicability of the methods 

one at a time. It is this approach which was implemented. We were 

reduced to a search for a method because of our inability to either 

localize the problem or to find a simple model for it. The cru

cial role of constants in determining a solution frustrates even 

the most primitive simplifying considerations. There is one con

solation in the approach taken, and that is that once we find a 

method which is applicable it is either immediately reducible to 

integration problems or reduces to simple problems (i.e,, linear, 

exact, or separable) in one or at most two steps. Furthermore, 

these steps are known in advance in most cases, 

Eight methods of solution for first order, first degree 

differential equations were coded, These include most of the 



methods for solving first order equations taught in an introductory 

course on ordinary differential equations. As stated above, the 

methods are examined in turn in order to determine if they are 

applicable. The simple methods are attempted first. These will 

all call SIN whenever they apply in order to solve some integra-

tion problems. The five other methods will generate subproblems 

which are usually either linear, exact or separable. 

The conventions for stating the problem to the machine are 

the ones used in the text books or the tables. When the dependent 

variable is x, and the independent variable is y, the problem may 

be stated in either form I or II: 

I P(x,y)y'+Q(x,y) 

II P(x,y)dx+Q(x,y)dy 

It is assumed that the expression given is to be equated to 

0. The result, if found, will be stated in the form 

f(x,y)=Co 

where Co is a constant of integration. As will be seen, no attempt 

is currently made to solve for y or to perform other simplifications 

such as eliminating logs in the resulting expression. 

Top level control resides in a routine called SOLDIER (SOLution 

of Differential Equation Routine). SOLDIER will translate the pro-

blem statement into the form (either I or II) desired by the par-

ticular method. It will be noted that books tend to state a problem 

applicable to a given method in only one of the two forms (e.g., 

linear equations are usually in form I, and exact in form II). 

No attempt was made to use this fact as a clue to a solution. 

We now shall proceed in describing the methods. 
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Method 1 LINEAR 

~ f(x)y'+g(x)y+h(x)=O 

Procedure 

...£{& 
Let P(x)- f(x) , 

The solution is 

]Pdx 
ye 

.J!i& Q(x)- f(x) 

[
e fP(x)dx ] 

dx = Co 

The recognition of this form is done by a SCHATGHEN pattern. 

Since equations of the form f(x)y'+g(x)[h(x)y+k(x)]=O will not be 

recognized as linear by SCHATCHEN using the pattern given above, 

expansion is attempted as a heuristic aid to recognizing forms. 

Expansion is, however, attempted only when a single occurrence of 

y appears in the equation. Thus f(x)y'+g(x)y+h(x)[y+k(x)]=O is not 

expanded and is not recognized as a linear differential equation. 

Examples 

1) y'+y+x;=o 

becomes 

X r X 
ye +Jxe dx=co 

Thus solution is 

X X X 
ye +xe -e =Co 

2) xy'+xy+l=O 

X J X results in ye + .=._ dx = Co 
X 

Method 2 SEPARABLE 

FORM A(x)B(y)dx+c(x)D(y)dy=O 
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Procedure The solution is 

J!.W. 
C(x) 

dx +JE..W. 
B(y) 

Co dy 

No attempt is made to recognize this form except through 

SCHATCHEN's matching techniques, Thus no factorization of the 

equations is attempted. That is the factorization must be explicit 

although several factors may involve just y or just x. 

Examples 

1) 
2 2 

x(y -l)dx - y (x -l)dy=O 

becomes 

J :2_1 i :.J_ dx + 2 
y -1 

dy=Co 

Thus the solution is 

2 2 
1/2 log (x -1) - 1/2 log (y -l)=Co 

This answer is normally simplified on tables to become 

2 2 2 x -1 =Co or (x -l)=Co(y -1). As stated above no attempt is 
-2-
y -1 

currently made to perform such simplifications, 

2) exsiny y'+xcosy=O 

becomes 

or 
f sinydy 

. cosy 

'r- ( -x J xe 

-x -x 
-log cosy - xe -e =Co 

The transformation of this problem to the dx, dy form is 

performed by SOLDIER. 

Method 3) Exact Multipliers 

~ ~ P(x,y)dx + Q(x,y)dy=O 
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The method is applicable whenever 

The answer is 

Since this method is closely related in form requirements 

and solution method to certain special cases of the multiplier 

method, these cases are considered here. 

a) I£..2!:-~ 
PV qX = h(x), i.e.,the quotient is just a function of 

Q 
x, then the multiplier is e 

fh(x)dx 

Procedure Let P (x,y)= P(x,y)*multiplier, Q(x,y)= Q(x,y)*multiplier 

P and Q are guaranteed to satisfy 

~-~ oY- ox 

The solution is obtained using the procedure vf equation I 

above with P,Q replaced by P and Q, respectively. 

then 

b) If ~ _ ]!: , that is the quotient is a function of y only, 

ox oY = k(y) p 

1 k(y)dy . 
e l.S 

c) If ~ay -

a multiplier. Proceed as in step a). 

- ~ and 1lE = ~ 
ax ox oY 

1 
then the multiplier is 

P2+Q2 • 
Proceed as in step a) 

SCHATCHEN is used to perform the matching required in testing 

to determine if ..9E equals ~· Clearly a matching program such as 
ax oY 

Martin's [37] would be preferable in this case since no pattern 

matching is necessary, but only a match for equivalence. 
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The division steps employ only SCHVUOS's limited simpli-

fication methods for quotients. Thus no factorization is 

attempted. At present there exists no simplification program 

which can simplify quotients well. For example 

is not simplified to ex+l by any reported simplification program. 

Another approach to determin1n~ the applicability of the first 

three multiplier cases is to differentiate the quotient with respect 

to y in the first case and with respect to x in the second case. 

This reduces the recognition problem to a match for equivalence to 

0. In this manner we avoid placing constraints on the simplifica-

tion program for determining the applicability of the method. How-

ever this technique does not yield the desired value of the quotients. 

There exist many other special cases for the multiplier. In 

fact the origin of Lie Groups was motivated by considerations 

regarding the families of differential equations which are solved 

by particular multipliers. 

Examples 

1) 
3 22 2 22 3 

(4x y-12x y +5x +3x)y'+6x y -8xy +10xy+3y.=O 

Solution is 

3 2 2 3 2 
2x y -4x y +5x y+3xy.=Co 

2) (2xy+5JM-l)y'+l=o 

Solution is 

xy2e-5/y +Je-5/ydy Co 

Method 4 Bernoulli 
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!!lliM f(x)y'+g(x)y + h(x)yn=O, where n is a constant, n /. 1 

Procedure 

1-n 
Substitute u(x)=y in order to obtain the linear equa-

tion 

f(x) u'+(l-n) g(x)u+ (1-n)h(x)=O 

The form of the equation is tested by SCHATCHEN. As in the 

linear case expansion will be attempted to aid the pattern match, 

but only when there are exactly two occurrences of y in the equation. 

Examples 

1) 
2 2 

x (x-l)y' = y - x(x-2)y=O 

transformed into the linear equation 

y' + kD_ y + 1 =0 
x (x-1) / (x-l) 

2) 4 
3xy' - 3xy logex - y = 0 

is transformed into 

Method 5 Homogeneous 

~ P (x,y)dx + Q(x,y)dy = 0 

where P and Q are homogeneous functions in x and y of some 

degree, n, say. 

Procedure The substitution u(x) = Z is made. After factoring 
X 

xn from the equation, one obtains an equation with the variables 

separable (Method 2). 

Notes 

This is a common form for a differential equation. It is 
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a subcase of method 8, but is given special treatment here because 

of the frequency and ease of recognition of this form. 

The factorization of xn from the equation must, in general, 

be performed in order to have the result recognized as separable. 

The recognition of homogeneity and factorization are performed by 

SCHATCHEN and SCHVUOS and thus are not unusually powerful. For 

2 example x +xy y'+y=O is not recognized as homogeneous. 
X 

Examples 

1) 
2 2 2 

3x y' - 7y - 3xy-~ =0 

solution is 

log ex- J.... arctan u7 :t. =Co 
.r-r X 

2) 
3 2 3 2 

2x(y +5x ) y'+y -x y =9 

solution l.S 

2 
log x + 10 log :t. - 1 log (3+y ) Co 

e 9 ex 9 e ---z 
X 

Method 6 Almost Linear 

FORM f(x)g(y) y' + h(x,y) 0 

where 

h(x,y) k(x)l(y)+m(x) 

and 

1' (y) g(y) 

Procedure 

Substitute u(x) = l(y) resulting in the linear equation 

f(x)u' + k(x) u+m(x)=O 

This is a method which is rarely indicated in the texts. 



Examples 

1) xyy' + 2xl+l-O 

2 
substitution is u(x)=y 

yielding 

lxu' + 2xu+l=O 
2 l 

2) x2cosy y' + siny + ex 0 

substitution u = siny 

yields 
l 

Method 7 Linear coefficients. 

FORM y '+F (:t~rt~c 0 = 0 

Procedure 

Substitute 

b'c - be' 
x* = x - a'b - ab' 
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Where a,b,c,a',b',c' 
are constants and 
ab' - a 'b I 0 

ac' - a'c 
y* = y I - a I b - ab I 

and obtain a homogeneous problem (method 5). 

Recognition is based on matching 

A(ax+by+c)n (a'x+b'y+c') -n repeatedly 

in F(x,y), where a,b,c,a',b',c' are assumed to remain fixed in 

f(x,y). 

Examples 

1) (4y+llx-ll)y'-25y-8x+62=0 

answer is 

1 1 ~ ( y-22)~ log (x - - ) - - log 1+2 -e 9 2 e 9 
-1-
x-9 

(- -2~ ~ 
+ 3/2 loge (4 + :_i }- Co 
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2) (y+x-1) y'-y+2x+3=0 

answer is 

1 ( 2 ) +I 2 f2 (y -2 ) oge x+ 3 2 arctan 2 ___ 6 

x+ l 
2 3 

+ 1/2 loge 0 ~xy: i)J= Co 
3 

Method 8 Substitution for xny 

FORM y'+L(x,y}=O 

where L(x,y)= ~ H (xny), 
X 

Here H is a function of a single argument, 

and n is a constant to be determined. 

Procedure Substitute u(x)= xny resulting in the sepaxable equation 

du dx 
u(n-H(u)) x 

The method employed to recognize this form uses the implicit 

function theorem to yield an equation in n. 

Consider 

G(x,y) = ~ L(x,y) 
y 

We wish to determine if G(x,y) = H(xny) = H(u(x,y)). 

The implicit function theorem states that this relation will hold 

if and only if 

oG ~ _ ..c2 ~ _ o 
~X 0y oY oX -

Note that this equation represents the Jacobian in the two 

variable case. Since u(x,y)=xny, we obtain the following 

relationships: 



or 

n n-1 
X - noGx y=O 

n =x_ag 
~ 

_ag 
Y oY 

oy 
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If n is known, we can determine whether the above relationships 

holds. However we can also use this relationship to generate a 

value for n. If the right hand side of the last equation is a 

constant than a substitution with n as that value is possible. If 

it is not a constant, the method is inapplicable. 

Notes 

This method is a generalization of the homogeneous case 

(Method 5). The method is rarely described although it accounts 

for many of the substitutions in the first 367 equations in 

Kamke [~. In some of these cases Kamke prefers to give other 

methods of solution. For example, in (I 293)x(y
2
-3x)y'+2y3-5xy=O, 

mk b 27 16 b Ka e suggests dividing y x y instead of su stituting 
- 1/2 

u(x,y) = x y. 

In this method we resorted to a special purpose matching 

rule instead of using SCHATCHEN. The use of the implicit function 

theorem was suggested by Engelman. In this case the theorem 

fits the situation beautifully. However one will probably have 

to make some assumptions to recognize forms such as 

a b 
(bxy'-a) = x y (xy' + cy) 

In order to perform the integration, y in G(x,y) is replaced 

by ~· It is then hoped that SCHVUOS can rid the resulting 
X 



expression of all occurrences of x. 

Examples 

1) 

(see appendix E for further discussion of these examples) 

2 
(x-x y) y'-y = 0 

becomes 

~ 
\ 1-uj 

1 dx = 0 
X 

2) xy' + y log ex - y logeY - y 

becomes 

du dx 
X 

0 

In Appendix E we describe an experiment in which SOLDIER was 

asked to solve 76 differential equations selected from a college 

text. SOLDIER was able to completely solve 67 of these problems 

with an average time on the order of 5 records. An analysis of 

the problems it failed to solve and steps taken to improve SOLDIER's 

performance on some of these problems is also given in Appendix E. 

We would also like to mention the existence of a program 

which solves linear differential equations of any order with con-

stant coefficients (see Engelman [36]). It was written by Ernst 

for the MATHLAB system. It utilizes the Laplace Transform method 

for solving such equations. The program makes use of the rational 

function package of the MATHLAB System. 

Some methods which were not described above should be pointed 

out. There are many special cases of integrating factors which 

can be considered. In particular, one method guesses the form 

of the 
a b 

integrating factor to be x y , substitutes that form 
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into the equation and solves the linear equations in the parameters 

that result after setting up the conditions for exactness (i.e., 

..iL ~M) ~ ..a_ U1N)). If the system of equations can be satisfied, 
oY ax 
then Method 3 (Exact) is applied. If the differential equation con-

tains a subexpression which is irrational in both a andy (e.g., 

sin (x
2 

+ y
2
)), then it might be useful to substitute for some part 

2 2 
of this subexpression (e.g., u ~ x +y ). One can also attempt to 

switch the independent and dependent variables. Such a change would 

be useful in 

(xy + x2) y' + ey ~ 0 

since it leads to the Bernoulli differential equation 

ey x' + xy + x2 ~ 0 

There is a large body of knowledge regarding Reatti and Abelian 

equations (i.e., y' ~f(x)/ + g(x)y+ h(x), and y'cf(x)y3+g(x)/+ 

h(x)y+k(y)). These methods, however, frequently rely on knowing 

one or more particular solutions to the differential equation. 

Information regarding methods applicable to Ricatti and Abelian 

equations and to more general differential equations can be found 

in Kamke. Kamke also contains a table of about 1250 equations 

whose solution is frequently given in some detail. 

As is pointed out in Appendix A, a great deal of the informa-

tion about differential equations could be stored in tables and 

searched by computers. If we presume that a continual effort 

will be made to generate a library of programs and tables for 

differential equations, then programs will become a formidable 

tools for solving these problems. 



CHAPTER 7 

CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK 

The Performance of SIN 

We believe that SIN is capable of solving integration problems as 

difficult as ones found in the largest tables. The principal weakness 

of SIN in relation to these tables is in cases of integrands which con-

tain variable exponents and which usually result in solutions which are 

iterated integrals. Edge can solve some of these integrals (e.g., 

Jxncos x dx) since it contains special checks for variable exponents. 

However none of SIN's methods in stage 2 are able to obtain such iterated 

integrals. The experiment reported in Appendix D also showed SIN's 

weakness in handling certain algebraic integrands. On the other hand 

the power of MATHLAB's rational function package means that SIN is able 

to integrate many problems not present in the tables. Decision proce-

dures for cases such as the Chebyschev integrals give SIN a capability 

which is not present in most tables. 

SIN appears to us to be faster and more powerful than SAINT. The 

added power of SIN is principally due to the additional methods that SIN 

possesses. The additional speed is gained by the change in the organi-

zation of SAINT and by the use of tighter progress requirements. In 

Appendix C we pointed out that though SIN can solve problems solved by 

SAINT two orders and frequently three orders of magnitude faster than 

SAINT, that this figure is deceptive. It is probable that under optimal 

conditions for SAINT and SIN these figures will reduce dramatically so 

that the gain in speed will average to about a factor of three. In 

140 
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cases where the Derivative-divides routine is successful in solving a 

problem (about half the time), the ratio should be much higher. The 

average will be lowered by the increased effort spent on algebraic mani-

pulation on the other problems. SIN's simplifier SCHVUOS, is probably 

a good deal slower (but more powerful) than SAINT's hand-coded simpli-

fier. This factor affects the cost of most of the other processes such 

as differentiation and matching. 

On the Organization of SIN 

Instead of describing the organization of SIN at this point, we 

would like to indicate certain aspects of this organization which arise 

out of the discussion in Chapter 4. The reader is referred back to 

Chapter 2 for an outline of SIN's organization. 

One of the difficulties that AI programs will increasingly face 

involves communication (see Newell [ 46 ]). If a subroutine performs 

an analysis of a problem then its analysis must be communicated to its 

parent routine in such a manner that the parent routine can easily 

understand the information. If two subroutines are working in parallel, 

one may need to know what the other one is doing in order to perform 

efficiently. An example of the usefulness of the latter type of commu-

nication was pointed out in Chapter 4 in the section in which we described 

SAINT's solution of J(l _ ~;)512 dx. Here it was noted that in one of 

the subproblems SAINT should not have performed the substitution 

y = ta~ since another trigonometric substitution on the problem had 

already been made which was undoubtedly superior. In this case SAINT 

did not seek out the necessary information. A similar difficulty arose 
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when SAINT's methods could have performed transformations which were 

the inverse of previous transformations. This occurs in the method 

which substitutes sin x for tanx, since this method may later substi
cos X 

tute tan x for sin x. In this case SAINT did communicate the existence 
sec x 

of the previous transformation. While we do not wish to minimize the 

need for explicit communication in complex problem solving programs, 

we do want to point out the usefulness of highly implicit communication 

in certain situations. If a parent routine knows enough about the oper-

ation of its subroutines, then it is not necessary to communicate a 

great deal of information, the parent routine can determine what has 

probably occurred with just a few key works of exchange. We think that 

such Unplicit communication occurs when FORM finds excuses for the 

failure of its methods to solve certain problems. In fact in these cases 

the methods are not aware of the situation as much as FORM is. SIN will 

not attempt the tan!x transformation if another trigonometric transfor

mation is possible since this choice was built into the program. Similar 

remarks hold for the trigonometric identity transformation. What these 

examples appear to point out is that when one is able to centralize con-

trol in a routine which has sufficient understanding of a task, then the 

communication requirements in the program are markedly reduced. 

We noted in the discussion in Chapters 2 and 4 that SIN employs 

tighter progress constraints than does SAINT. This implies that there 

may be some problems which SIN will not attempt to handle though it has 

sufficient machinery for solving 

that SAINT will attempt to solve 

them. 

r Sirt X J--x 

(On the other hand, we believe 

dx until it runs out of time or 

space.) We are not particularly worried by,such occurrences. It appears 
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to us that it is more important at present that a program have a good 

understanding of what it is able to do rather than that it have a medi

ocre understanding and be able to solve more problems. If one desired 

to increase the power of SIN we would wish that he spend the effort on 

improving the analysis done by FORM rather than that he spend it on in

creasing the search in FORM. We understand, of course, that it is not 

always possible to take this approach. The domain of nonlinear differ

ential equations is a good example of such a situation. 

On the Organization of SOLDIER 

We noted in the Introduction that we did not expect to find a con

cept as powerful as the Edge heuristic in the domain of first-order, 

first-degree ordinary differential equations. Thus we were not surprised 

to fail to find a practical method similar to Edge. In fact the most 

notable aspect of SIN's organization that we carried over was the reli

ance on tight progress constraints. It seems to us that human analysis 

of this problem domain also employs tight progress constraints in the 

solution methods. 

Let us recall from Chapter 6 that SOLDIER employs eight solution 

methods. These methods are attempted one at a time. If a method decides 

that it is able to make a simplifying transformation (i.e., a direct re

duction to integration or a reduction to a known and simpler differential 

equation form), then it will attempt it, and the result of the transfor

mation will be the value of SOLDIER. Otherwise the next method will be 

considered. 

In Appendix E we tested SOLDIER on some problems given in a differ

ential equations text. SOLDIER was able to solve 67 out of 76 of these 

problems. We do not believe that one should conclude from this perfor-
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mance that SOLDIER is far removed from being as powerful a differential 

equation solver as expert humans are. We think that if the improvements 

and extensions to SOLDIER that we suggest in Chapter 6 and below are made 

then SOLDIER will be a powerful program indeed. We were disappointed 

when we recognized this to be the case. The reason for it is that mathe-

maticians have not made great advances in this problem domain over the 

past three hundred years. 

On the Applications of LISP 

Unfortunately, and mainly wrongly, LISP has acquired the reputation 

of being a language with very low execution speed. One factor leading 

to this reputation is the slow speed of arithmetic in most LISP imple-

mentations. (The Hawkinson-Yates system for the 7090 is an exception.) 

Yet when one declares variables to be fixed or floating it is possible 

for LISP to execute arithmetic statements as well as any other processor. 

It is the convenience of mixed data types (during execution) which forces 

the slow, interpretive execution speed of arithmetic operations in LISP. 

Another factor leading to this reputation is that old and famous programs 

such as SAINT ran interpretively. Compilationusually results in approx-

imately a twenty fold gain in speed. However the largest factor leading 

to this reputation is due to the attitude of the LISP programmers. LISP 

programs were usually developed in research projects where speed was only 

a minor consideration. (It is safe to say that many impressive programs 

such as Bobrow's STUDENT 4 ] , Evans' ANALOGY and Slagle's SAINT could 

not have been written as doctoral dissertations except in LISP.) The 

trend in the recent past has been toward using LISP as a practical language 
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for projects with real time constraints on response. For example the 

MATHLAB system of Engelman and the robot projects at MIT and STANFORD 

have such real time constraints. It is thus important to recognize 

that LISP programs can be written which are relatively fast provided 

that one takes speed into consideration in designing the programs. It 

is our hope that SIN can serve as a model for this lesson and remove 

some of the stigma attached to LISP. It is far too easy to write LISP 

programs which execute slowly if one becomes beguiled by the ease of 

using LISP's recursive mechanisms. SAINT's pattern matching program 

Elinst was far too recursive to run efficiently. However it was a much 

smaller program thereby and this factor was crucial in the implementation 

' .. of SAINT. The rational function package ~ed in SIN runs slowly when 

parameters are introduced into a rational function. While such a de-

crease in speee is inherent in the task, it is also due to the extensive 

utilization of the recursive nature of the LISP list structure in the 

representation of rational functions. A special purpose representation 

of rational functions such as used in Brown's ALPAK [ 6] or Collins' 

PM system [ 12 ] should increase the speed of the rational function pack-

age by one to two orders of magnitude. 

On the Teaching of Integral Calculus 

We would like to see the introduction into first year calculus 

courses of the concepts underlying the Edge heuristic and the Liouville 

Theory. Besides giving the student a very powerful integration method, 

such a study might acquaint him with practical applications of notions 

derived from modern logic such as Godel numbering or decidable problem 

domains. I x2 
Such a course might also indicate why e dx is not an ele-
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mentary function rather than leave such a statement without proof. The 

relationship of the Edge heuristic and the problem solving technique of 

guessing could reasonably be emphasized in courses aimed at a more prac

tical foundation. 

Improvements and Extensions to SIN and SOLDIER 

All the programs discussed in this thesis would profit by being 

rewritten for the LISP system of the MAC PDP-6. The PDP-6 LISP system 

executes about three times as fast as the 7094 LISP system on compiled 

function and even faster on interpreted ones. This is due to the im

proved instruction set of the PDP-6 and to improved system's programming 

rather than an increase in the machine speed. The MAC PDP-6 also has 

256 K of memory which would mean that all the routines could certainly 

be loaded at one time. This would allow greater interchange between 

SIN and SOLDIER and the rational function package. It would allow 

SIN and SOLDIER to be used as subroutines to the MATHLAB system of Engel

man. The excellent scope output routines of Martin [ 37 ] are available 

on the PDP-6 as are teletype output routines written by Millen for the 

MATHLAB System [ 40]. Routines which accept FORTRAN-like (i.e., infix) 

notation for algebraic expressions are available and should be used in

stead of the LISP (i.e., prefix) notation which is now used in inputs to 

SIN and SOLDIER. Anderson of Harvard University is currently working on 

a program which permits hand written input of algebraic expressions from 

a Rand Tablet [ 1 ]. Such a program could be used in the future as well. 

SCHATCHEN should be rewritten so that new modes can be defined by 

the user without reprogramming relevant sections of SCHATCHEN. The 

simplifier SCHVUOS served us well while we required a small simplifier. 

However a new, more powerful and efficient simplifier written along the 
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lines indicated in Chapter 3 should be used. As is clear from Chapter 6 

and Appendix E this simplifier should have factoring and division capabi

lities not currently available in general purpose simplifiers. The task 

of matching expressions for identity should be performed by a program such 

as Martin's matching program rather than by SCHATCHEN [ 37]. 

SIN's second stage would profit from a better handling of algebraic 

integrands. This is clear from Appendix D. Another lesson learned in 

that appendix is the usefulness of a capability whereby the user can com

municate with FORM and some of the methods used in SIN in order to intro

duce new functions such as the error function. A table of integrals invol

ving the error function which contains 145 entries was computed by Maurer 

in 1958 [ 38 ] . Such a table should be computable by SIN as well. 

It is clear that much more work needs to be done on the Edge heuris

tic both as a method for solving integration problems and as a possible 

tool for teaching freshman calculus students. We understand that Risch 

is currently programming his method of integration using the rational 

function package. Such a program could be included in SIN's third stage 

as well. 

In discussing SOLDIER in Chapter 6 we noted that a great number of 

methods are known which have not yet been programmed. An interesting 

project is involved in finding particular solutions to differential equa

tions. Such solutions can be used to find general solutions to Ricatti 

differential equations. In Appendix E we noted that the output of SOLDIER 

rarely conforms with the form of the text books' output. Another project 

would be to devise a routine which translates SOLDIER's output to conform 

with the implicit conventions used in text books. 
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We believe that if work is continued on the implementation of new 

methods for SOLDIER, then this program will become a truly formidable 

tool in solving ordinary differential equations. In fact a program such 

as SOLDIER can become an active competitor with text books or journal 

articles as a medium for the permanent storage of knowledge about methods 

of solution. 

On a Mathematical Laboratory 

In a forthcoming monograph by Martin and Moses the concept of a math

ematical laboratory will be introduced. In a mathematical laboratory a 

user will be able to solve symbolic problems in mathematics. A mathema

tical laboratory is envisioned to consist of two major components, a 

general purpose system and a set of specialized programs. The general 

purpose system will deal with input and output and will provide a 

command-oriented language with many capabilities. The specialized 

programs will deal with tasks which are sufficiently complex to require 

a separate organization. SIN and SOLDIER are prototypes of such special

ized programs. Specialized programs will in the future employ a set of 

rather general routines such as a pattern directed language similar to 

SCHATCHEN or a simplifier such as SCHVUOS. These frequently used routines 

will form a data base from which new specialized programs will be more 

easily written in the future. Work is proceeding in this country on all 

aspects of such a mathematical laboratory, but we shall concentrate our 

discussion on the specialized programs. In a recent thesis [ 28 ), Itur

riaga has written a program in FORMULA ALGOL for finding limits of expres

sions and for determining whether one expression is greater in value than 

another over some domain, This work represents an extension of work on 



149 

limits performed by Fenichel [ 19 ]. No work has been done to our know

ledge, on finding sums of infinite series. Jolley provides a table of 

such series [ 29 ]. Nor has any significant work been done on definite 

integration. Bierens de Haan's monumental work on this area can be 

consulted [ 24 ]. In both of these cases one might at first utilize a 

table look up as described in Appendix A. 

Leaving aside the area of analysis we note that Maurer [ 39 ] and 

Mcintosh [ 57 ] reported on systems which deal with finite groups. Some 

routines have also been written for solving specialized tasks in topology. 

In fact a new theorem in topology was proved as a result of experiments 

performed by such programs [50]. Likewise specialized programs in com

binatorics have been written [ 16 ]. Such programs should be expanded 

upon, systematized, and made available as part of a larger symbolic mani

pulation system in pure mathematics. 

Along with the need for practical work in algebraic manipulation 

there is a need for parallel work on theoretical results. Collins' study 

of the Greatest Common Divisor algorithm led to a major imporvement of 

the Euclidean GCD method [ 13 ]. Similar studies are needed of methods 

for factoring polynomials, especially over extensions of the ring of in

tegers. We need a study of the degree of growth of the results of certain 

algebraic transformations. We should have examples of very bad problems. 

In [ 42 ] we present such a problem in the domain of polynomial equations. 

Recursively unsolvable results such as those in Appendix B point out cer

tain difficulties in algebraic manipulation. Proofs of the decidability 

of certain subcases such as in Richardson [52], Caviness [ 9 ], Brown [7], 

Risch [ 53], and Tobey [ 63] are useful also and these may in turn lead to 
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programs which implement the decision procedures used. 

On Artificial Intelligence 

In the area of Artificial Intelligence we would applaud all projects 

which required and utilized a large base of specialized knowledge. Robot 

projects are examples of such projects. On a less ambitious level we 

would like to note that it might be useful to develop a program which 

solves word problems in the calculus. Such a program would counter, (if 

only temporarily!) the objections of those who claim that the semantic 

approach of Bobrow cannot be extended. One approach toward this problem 

would be to construct several methods of solution (e.g., "rate" problems 

of several types). Then the program would use local clues (probably key 

word analysis as in Weizenbaum's Eliza [ 66] will do) to determine which 

solution method is appropriate. Then the method choseri should guide the 

program in extracting the information from the problem statement necessary 

for a complete solution. 

It would also be interesting to have some work leading toward a 

program which solves multiple choice questions on the level of the MAA 

high school prize examinations. Let us consider a typical problem. 

"At what time between 4 and 5 PM are the hands of the clock exactly 

opposite each other?" 

If the program knows that the answer involves the denominator of 11 

and one such answer is presented, then it should guess that answer. If 

only one answer involves a denominator of 11 and is moreover between 4:50 

and 4:55 PM, the program should guess it. These guesses would be made at 

stage 1 of the program. 
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If stage 1 is not effective but if the program knows the method of 

solution (a linear equation), then it should solve the equation. This 

would be done at stage 2 of the program. 

If neither of these stages is appropriate, then the program must 

obtain an analysis of this situation. Such an analysis is presently 

beyond the capabilities of AI programs, but not grossly beyond these 

capabilities. 

Presumably one of the methods available to this program is a rate 

problem solver. The statement of the problem does not immediately imply 

a rate problem but the knowledge that the minute hand and the hour hand 

travel at different rates could lend weight to such an hypothesis. Let 

x be the time in minutes past 4 o'clock at which the event occurs. Then 

the minute hand travelled x minutes between 4 o'clock and the occurrence 

of the event. The hour hand travelled 1~ minutes during that time. How

ever the hour hand started with a 20 minute advantage and ended thirty 

minutes (one half a revolution) behind. Thus 

X 
X = 20 + 30 + lZ 

600 6 . 
x = ~ = 5411 mLnutes 

The solution above required the use of information about clocks 

and the relationship between clocks and circles. It also required a 

sophisticated word problem solver that was able to utilize this infor-

mation to set up the linear equation. Another method of solving this 

problem relies somewhat more heavily on making inferences about diagrams. 

In either case it appears that a good deal of machinery is required for 

the analysis of this problem. Besides the word problem solver a program 

which makes inferences based on diagrams of plane figures is also useful. 

While such programs may not be sufficient in order to perform the analy-
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sis of this problem, they certainly go a long way in that direction. 
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APPENDIX A 

ITALU - AN INTEGRAL TABLE LOOK - UP 

This appendix describes some experiments which were performed 

with an integral table look-up. Although a table look-up is 

probably inferior in the long run to an integration program with 

regard to power or speed, the techniques employed in this routine 

could be found useful in other areas of symbolic mathematics such 

as exact definite integration, summation of series, or differential 

equations. 

There are several ways in which one could search a table of 

integrals. There is the brute force approach. In this case each 

entry in the table is matched for equivalence with the expression 

to be integrated. This scheme is used in SIN's Derivative-divides 

routine. Such a scheme takes a long time when the table is large, 

of course. A better approach is to sort the entries in the table 

by the factors which appear in them (e.g., all entries with sin x 

as a factor are in one subtable). Thus when presented with 

sinxex, one checks all subtables for the one which contains sinx. 

In that subtable one checks •for another part of the table which 

contains sinxex and there one presumably finds the entry desired. 

This approach would require that there be n! entries for an 

integrand with n factors (unless the expressions are canonically 

ordered). A table look-up along these lines was discussed in 

Klerer and May [321 

153 
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Besides being relatively slow these approaches are not sensitive 

to the fact that an integral table usually presents generalized forms 

of integrands (e.g., _fax
2

+bx+c) and not just particular integrands. 

(e.g., J;l+l). This is due to the presence of undetermined constants 

in the integrand. These constants are used as coefficients as in 

J sin(ax+b}dx or exponents as in Jxndx or Jxnsinxdx. The example 

J xnsinxdx points out a further feature of the integral table, that 

is, the presence of iterated integrals in the table. A good integral 

table look-up should be required to make use of all of these features 

of the tables. 

An integral table look-up, called ITALU, was programmed to 

account for the features of the table just mentioned. It had the 

additional property of being relatively fast by making use of the 

technique of hash-coding. 

By carefully hash-coding the expression to be integrated one 

can expect to obtain a number which would correspond to relatively 

few expressions in the table. Furthermore the hash-code can be 

designed to account for the distinctive features of the table. The 

hash-coding scheme which was implemented ignored constants in sums 

and products. Thus sin (ax+b) coded the same as sin(2x}, sin(x+2}, 

sinx, and sin(3~ x+Sy+z). The hash-code, moreover, was a floating-

point number and the code of a sum was the sum of the codes of the 

terms in the sum, with a similar rule for products. Thus the code 

maintained the algebraic identities for sums and products. Hence 

sinxex coded like ex sinx. In this manner we avoid the need for 
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a canonical form of an expression. One further feature of this 

coding scheme was that terms in a sum which had codes identical 

with those of previous terms were ignored. Thus sin (x+yx) 

coded like sinx and x
2

+2xy+3x coded like (2y+3) x + x2 and 

ax
2

+bx+c. 

The coding scheme was obtained recursively. The variable of 

integration had a fixed code of 0.95532. Any trigonometric, 

arctrigonometric or logarithmic function had associated with it 

a fixed floating-point constant which generally was exponentiated 

by the code of its argument in order to obtain the code of the 

expression. Sums and products were treated as described above. 

Exponentiation was a relatively complex operator for the coding 

scheme. This is due to the frequent occurrence of exponents 

-2, -1, -t, t• 2 in the tables. When these exponents occurred the 

code for the base was raised to the exponent and the result was the 

code of the expression. Any other constant exponent was coded as 

1.43762 and the value of the subsequent exponentiation became the 

code. Thus xn is coded like x3 or xa or x- 4 · 5 

all coded alike. Thus ex coded like 2x or yx. 

Fixed bases were 

An advantage of this coding scheme was that SCHATCHEN patterns 

could be coded easily as if they were expressions. This was due to 

the fact that the variables in the pattern were considered constants 

with respect to the variable of integration (assumed to be x 

throughout the table), and hence were ignored in sums and products 

and had a fixed value in exponents. Entries in the tables had 



integrands which were SCHATCHEN patterns (e.g., sin (\{cOEFFPT, 

NONZERO-AND-FREEOFX x+B/COEFFP, FREEOFX). Thus the full matching 

capability of SCHATCHEN could be employed in order to obtain the 

values of the constants in the integral table entry. 

ITALU had an internal table of code numbers for the expressions 

in the table. This internal table was searched using a binary 

search (i.e., the codes were linearly ordered by their numerical 

values). Corresponding to each code in this table was the location 

on the disk where the integral table entry resided. Once a code was 

assigned to an expression, it was determined if an entry in the 

table had an identical code, and the file on the disk containing 

that entry (if any) was read. In order to conserve disk space 

several entries were on the same file, but these entries were 

associated with their codes so that the search of the file was 

linear but rapid. For each expression having the desired code 

(several are possible), SCHATCHEN was used to determine if there 

was a match between the pattern which represented the integrand in 

the table and the original expression. If no match was found, the 

next expression was examined, and so on until all the expressions 

with the appropriate code were examined. If a match was obtained, 

the integral was evaluated after making appropriate substitution for 

the result of the match. Thus the integral contained the values 

of the constants in the integrand. The device of evaluating the 

the integral allowed the integral to be a LISP function. In this 
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manner iterated integrals could be obtained. Hence the ITALU 

program satisfied the requirements of an integral table look-up 

that we considered above. 

The implementation of ITALU was carried through up to the 

point where all of the steps above had been implemented and the 

program was tested on several problems. The largest number of 

entries in the table was only ten at any given time, and thus 

the properties of the coding could not be fully assessed (e.g., 

one could not tell how frequently unrelated entries yielded the 

same code number). The execution time of a call to ITALU was 

generally about 1 second. Most of this time was spent accessing 

and reading the disk. A set of routines were written for 

facilitating the addition of new entries to the table. However 

the description of each entry as a SCHATCHEN pattern with a 

corresponding integral was a fairly tedious job. A compact 

representation of the expressions in the table was obviously 

desirable, but was not implemented. 

Modifications to the hash code of ITALU were considered. 

Under the current coding scheme ~x2+1 codes like x. One 

possibility is to ignore the value of constants in sums and 

products, but recognize their existence. Such a scheme would be 

useful in handling algebraic expressions. 

We also considered using a hash-coding scheme, such as 

Martin's Dll. Martin's hash codes are elements of finite 

fields rather than floating point numbers. Finite field 
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arithmetic is preferable when there is a risk of a floating-point 

overflow or a round-off error during the computation of the hash 

code. We felt that these difficulties could be ignored or easily 

overcome in the coding of expressions to be integrated. In order 

to account for round-off errors, we thus allowed for a variance 

of 1 Xl0- 6 between the code of an expression and one in the table. 

In the domain of symbolic integration, a table look-up is 

probably not the best solution. Programs can now compete 

effectively in many cases with the tables with regard to speed 

and completeness. The situation in the future can only improve 

the relative position of the integration programs. Tables such 

as Petit Bois' 511 with its 2500 entries contain many errors, 

some of which are serious (e.g., Slog cosxdx = co!x , [51] p. 150). 

However table look-up devices appear to have current 

usefulness in other areas of symbolic mathematics. Very little 

work is being done at present on summation of series and exact 

definite integration. Tables in these areas exist - Jolley's ~~ 

in summation and Bierens de Haan's [24] monumental work on definite 

integration. For differential equations we reported solutions 

methods.in Chapter 6. However much still remains to be done, and 

tables could be used as long as programs have not caught up with 

the full power of tables such as Kamke's Tables could be 

extendeq to include a great deal of information besides exact 

solutions. For example, tables could be employed to obtain good 

numerical techniques for solution or references to papers on 
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particular cases. We should point out that some entries in a 

table would be hard to look-up in any reasonable way. For 

example, the entry xy'=yH(xny) properly deserves a special 

purpose program as was done in Chapter 6. Information about 

chemical compounds is currently being stored in tables which 

are searched by specialized techniques. Similar methods could 

be used in mathematics. The exact methods of ITALU are clearly 

not extendable to the other problem domains - special purpose 

programs should be used in each case. However the hash-coding 

technique coupled with the use of a matching program for 

increased power seem relevant to each of the areas considered. 



APPENDIX B 

RECURSIVELY UNSOLVABLE RESULTS IN INTEGRATION 

A recent theorem by Richardson [52] showed that the matching 

problem for a class of functions we shall call R-elementary is 

recursively unsolvable. This result is easily applied to show that 

the question of determining whether integrals of R-elementary functions 

possess R-elementary solutions (or elementary solutions in the sense 

of Liouville (Chapter 5)) is likewise recursively unsolvable. 

Richardson's result, announced January 1966, is probably the first 

theorem about recursively unsolvable problems in analysis and has 

aroused great interest in the field of algebraic manipulation. Refer

ences to it are made in Brown [ 7], Caviness [ 9], Fenichel [19], 

Moses [4z], and Tobey [631· 

There is, however, a feeling among some (e.g., Risch [53]) that 

Richardson's unsolvability result may be due to the fact that the 

integration problem he showed unsolvable is not well-posed. In this 

appendix we shall sketch Richardson's unsolvability proof and indicate 

points in the proof where some of this contention has arisen. We 

shall then present results of a similar nature to Richardson's which 

avoid these difficulties in the proof by extending the domain of the 

problem to nonlinear differential equations. These results are proved 

using similar techniques to Richardson's and were originally proved, 

interestingly enough, over a year before Richardson announced his proof. 

160 
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In order to proceed we shall require the following definitions. 

The R-elementary functions are obtained by the operations of 

addition, multiplication, division and substitution upon real variables, 

x1 , x2 , ... , xn using the constants rr, the rational numbers, loge2, 

and the functions ex, sin x, cos x, and logjx~ 

The constant problem is to decide, given an R-elementary 

function f(x), whether f(O)=O. 

The identity(matching)problem is to decide, given an R-

elementary function f (x), whether f (x)=O. 

The integration problem is to decide, given an R-elementary 

function f{x), whether there exists an R-elementary function g(x), 

such that g' (x)=f(x). 

Richardson first showed that the identity problem reduced to 

solving the constant problem. Thus, if one restricts the R-

elementary function to a domain where the constant problem is pre-

sumably solvable (e.g., by allowing only the rational operations), then 

the matching problem is likewise solvable. 

He then showed that the matching and integration problems for 

the R-elementary functions is recursively unsolvable. In order to 

proceed with our sketch of that proof, we shall require the following 

definitions. 

Hilbert's lOth Problem {The Diophantine Problem) 

Does there exist a procedure for determining whether the 
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equation P(x
1

, x
2

, ... , xn)=O, where Pis any polynomial with 

integer coefficients, has a solution where each xi is an integer? 

Exponential Diophantine Problem 

Does there exist a procedure for determining whether the 

equation P(x1 , x2 , ... , xn, xn+l)=O, where Pis any polynomial with 

integer coefficients and where xn+l is replaced by zxl, (i.e., 

P(x1 , ... , xn' 2x 1)=0) has a solution with each xi' i=l, ... , n an 

integer? 

Theorem (Davis, Putnam, Robinson) [14] 

The exponential diophantine problem is recursively unsolvable. 

The version of the Davis-Putnam-Robinson result that Richard-

son used is as follows: 

Theorem A There exists a polynomial Q(y, x
1

, ... , xn' zxl) such 

that the problem of determining whether for each integer value of 

there exist integer solutions xl' ... ' X to the equation n 

Q(y' xl' ... ' X n' 
zxl)=O, is recursively unsolvable. 

Hilbert's lOth problem has not yet been decided although it 

suspected that the problem is recursively unsolvable as well. 

Let us now proceed with Richardson's argument. 

Consider the polynomial Q of Theorem 1. Let the x. be real 
1 

numbers. Then, if the equation I 

(I) 0 

y 

is 
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possesses real-valued solutions for an integer value of y, then the 

xi must be integers, and if Q possesses integer solutions, equation I 

certainly has real solutions. 

Note that since each term in I is real-valued, the'~um of the 

squares" device forces each term to be zero. Since sinrr x. = 0 .. x 
1 i 

is an integer, the xi must all be integers. This illustrates a con-

cept we shall call forcing. Forcing will be frequently used in this 

appendix. The term 
n 
L: 

i=l 
forces Q to possess integer solu-

tions. The use of rr and sin x in this manner was foreshadowed by 

Tarski [ 61]. 

The next step is to show that there exists and R-elementary 

function f(y, x 1, xn) such that f(y, x 1 , ... , xn)< 1 for a given 

integer y and for some real xi if and only if Q(y, xt, x!, ... , 2xt)=O 

for some integer values of the xt, and for the same integer value of y. 

Richardson shows that we can take f(y, x
1

, ••. , xn) to be of 

the form 

A(n{ n 
L: 

i=l 

where A is a large R-elementary function of n and each Ki is a 

suitably chosen largeR-elementary function of its arguments. In this 

form f is an R-elementary function. The proof that f has the desired 
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property utilizes an argument based on the consideration that if f 

is sufficiently close to 0 in value, let us suppose that 

f(y, ~l' ~2 , ···, ~n) ~ l, and let each ~i be close to the integer, 

... , xn' What is desired is 

to force ~ to have the value 0 at the xt· Since ~ is continuous in 

its variables (it is a polynomial in them) and moreover has integer 

values for integer arguments (the coefficients are integers), what 

is necessary is that the derivative of ~ is sufficiently small so 

that Q does not materially change its value on the interval between 

xi and xt· For this purpose the Ki which are based on the partial 

derivatives of Q are forced to be small as well. This is done by 

requiring sin n x. K~ ~ 
~ ~ 

Now Richardson shows that one can obtain a coding which re-

duces the problem for the n variables xi of Q to a single variable 

x. He obtains a function G(y, x) such that G(y, x) < 1 for real 

x- (V e>O)(G(y, x) <e)- 3: real x. 
~ 

The coding is 

0 for some integers xt· 

x1 = h(x), x2 = h(g(x)), x
3 

= h(g(g(x))), ... 

where h(x) = xsinx, g(x) = xsinx3 . 

Richardson now uses the log !xi function to obtain a decision. 

Consider the following equations: 
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lxl = eloglxJ thus the absolute valuefunction is R-elementary. 

. x-v+l x-vl h. . . x-y = 2 , t :!.s subtract1on has value 0 1f y=x. 

Min(y,x) = y:(y:x), the minimum function restricted to non-

negative values. 

Now if G(y,x) ~ 1 for some real x and integer y, then 

G(y,x) < t for some real x by the e case above, and for this x, 

2:2G(y,x) > 1 . Thus, min(l, 2:2G(y,x)) = 1 for some real x. If 

G(y,x) > l for all real x, then for all real x,min(l,2!2G(y,x)) = 0. 

By the continuity of G which is preserved either min(l, 2~2G(y,x))=l 

for some interval of values on the real axis for x and for a 

fixed integer value of y, or min(l, 2•2G(y,x)) = 0 for all real x. 

Now if we let M(y,x)- min(l, 2:2G(y,x)), then the question of 

deciding whether M(y,x) is identically 0 is equivalent to deciding 

whether ~(y, x
1

, ... , xn, 2xl) = 0 has integer solutions and is thus 

recursively unsolvable. M(y,x), we note, is R-elementary. 

The above is a sketch of the proof of the recursive unsolvability 

of the matching problem. The recursive unsolvability of the integra-

tion problem is obtained as follows: 

Consider 

x2 J M(y,x)e dx 

If M = 0 for some integer value of y, then the integrand is 0 

and possesses a solution (e.g., 0). If M = 1, on some interval then 
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the integrand is equivalent to exZ which possesses no elementary 

solution on any interval, as is well-known. Hence, the integration 

problem for R-elementary functions is unsolvable since one cannot 

tell whether M = 0. 

This completes the sketch of Richardson's proof. As was seen, 

the decision step in the matching problem necessitated the use of 

the absolute value function. Caviness argues that either the abso-

lute value function or the constant rr (used in sin rr x and needed 

to assure a zero value on integer arguments) are the culprits in 

allowing Richardson's results to hold. The constant rr should not 

be too surprising in the context since there are many problems re-

lated to the constants e and rr which are not yet solved (note 

irrx -irrx 
sin rr x e - e 

2i 
) 0 For example, it is not known whether 

e+rr is a rational number. 

We should note that the absolute value function arose when we 

considered only one of the infinite number of inverses to the log 

function. For example we can obtain the absolute value function by 

considering J~ to possess only one solution. If we were to 

evaluate each of the values of an R-elementary function and were to 

consider f(x) to be equivalent to 0 if it were 0 for each of its 

values, then one might obtain a more tractable problem. One would 

still be left with ticklish problems regarding the constants e and rr. 

These one might suppose are not very interesting from a practical 
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standpoint. However, by introducing square-roots into the picture, 

one might complicate the situation once more since such an intro-

duction appears to lead to difficulty in integration (see Ritt [54], 

Risch [53]). 

The recursive unsolvability of the integration problem was 

obtained by making use of the fact that one could not tell what the 

simplest description of the integrand was. In previous work on the 

problem of integration in finite terms such a difficulty was usually 

ignored. If one could ignore such a difficulty in the matching or 

in the constant problem, then these problems would disappear. The 

same cannot be said of the integration problem, of course. 

The question now arises as to whether there are unsolvable 

problems in the area of symbolic integration which avoid the use of 

the absolute value function and which do not simply reduce to the 

matching problem. Below we give some simple and hardly surprising 

results which indicate that such problems do exist when one considers 

nonlinear differential equations. 

(II) 

We shall require the following result: 

Theorem B (see Ritt p. 73) 

The equation 

2 
y' + y 1 + 9±.U 

X 

where p is a constant (a computable complex number, say), has a parti-

cular solution which is a rational function in x (with computable 
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complex coefficients) if and only if p is an integer. 

Theorem l 

The exponential diophantine problem (Theorem A) is equivalent 

to the problem of determining whether, for integer values of y, the 

system of differential equation S has particular solutions which 

are rational function in x. 

(Hence, the latter problem is recursively unsolvable1 

a) 0, i=l, ... , n 

dyi 
+ y2 

p.(p.+l) 
(S) b) + 1 1 i=l, 

~ x2 
, •• 0, n 

2 2Pl) 
dz + 2 ~ (y, Pl, 0 •• , pn' 

c) z = l -dx X 

Proof. Suppose S has such a set of solutions for a given integer 

value of y. 

By a) each pi is a constant. 

By b) and Theorem B each pi is an integer. 

pn, 2Pl) = 0 by c) for y an integer. 

This is so since by a) and b)~ is a constant. Thus, for z to 

have a particular solution which is a rational function, -Q
2

=q(q+l) 

for some integer q. But q(q+l) ~ 0 for integers q and -Q2~ 0 since 

· · 1 d Th ·'( p 2Pl) = 0 for integer Q 1s 1nteger va ue . us, ~ y, p 1 , ... , n' 
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values of p
1

, ... , pn. 

Suppose Q did possess integer solutions ci for some integer 

value of y, then by fixing each pi to be the corresponding ci, we 

obtain a set of rational solutions for S. 

Theorem B has a corollary which states that the differential 

equation II has a general solution which is a Liouville function if p 

is an integer. 

Theorem 1 can, therefore, be extended to show that the problem 

of determining whether systems of differential equations of the 

form S have solutions which are Liouville functions is recursively 

unsolvable. 

Let us consider the diophantine analogue of the systemS (i.e., 

no exponentiation in Q). We now have a system of polynomial equa-

tions with integer coefficients. The solutions of such systems of 

equations is in the domain of differential algebra (see Kaplansky [31)). 

Theorem l leads to the result that Hilbert's lOth Problem reduces 

to a decision problem in differential algebra. 

Let us now consider the problem of determining whether a 

d "ff '1 ( ' (n))-Oh 1 · () 1 erent1a equation f x, z, z , ... , z - as a so ut1on z x 

where z and all its indicated derivatives are real-valued functions 

of x. 

More precisely consider 



g(y, x, z', ..• , 

(n) 2 2 z + Q (y, w
1

, w2 , 

= 0 

170 

w ' n 
. 2 

Sl.n ll W. 
1 

In g, y is an integer, x is the independent variable and is 

real, z is the dependent variable and the wi are defined as follows: 

w 
n 

(n-1) = _z __ _ 
(n-1)! 

/n-2)_ xz(n-1) 

(n-2)! 

z - xz' 
x2z'' (n-l)x(n-l)z(n-1) 

+--zy- + ••• + (-1) (n-1)! 

Theorem 2 The problem of deciding whether 

g(y, x, z, z', •.• , z(n)) = o has a real-valued solution which 

possesses n real-valued derivatives is recursively unsolvable as 

y varies over the integers. 

f!221· Let y be fixed. 

Suppose g has such a real-valued solution z(x). Since we are 

dealing only with real-valued functions the term (z(n))
2 

forces 

z(n) = 0 and thus z must be a 

Each w.
1 

was so chosen that if 

polynomial of degree (n-1) at most. 

n-1 
z = an_ 1x + a 0 , then wi = ai+l' Since 
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sin rr wi = 0, ai is forced to be an integer. Moreover, since 

Wl 
Q(y, w

1
, w

2
, ... , 2 ) = 0, Q must possess a set of integer solu-

Suppose Q(y, 
xl 

x 1 , ... , xn, 2 ) 0 has solutions xi= ai, 

ai integers. Then 
n-1 

z(x) = an_ 1x + ••• + a
0 

is a solution to g=O. 

The statement of Theorem 2 is too general to make it a 

satisfying decision problem since the set of all real-valued 

functions with real derivatives is not computable. The theorem 

would hold for any computable superset of functions of the set of 

polynomials of degree n with integer coefficients. 

Theorem 2 seems to indicate the concept of a real-valued 

solution to a differential equation is quite elusive. 



APPENDIX C 

SIN Is PERFORMANCE ON SAINT Is PROBLEMS 

As an experiment for testing SIN's performance, we attempted the 

86 problems attempted by SAINT and reported in Slagle's thesis. SAINT 

integrated 84 our of these 86 problems and announced failure to integrate 

x ~ and cos~. Slagle reports that SAINT solved the 84 problems 

with an average time of 2.4 minutes (144 seconds). SIN solved all 86 

problems with an average time of 2.4 seconds. This average becomes 1.3 

seconds when one discounts the cost of chaining. Chaining occurred on 

22 our of the 86 problems. Chaining is considered to take 4.5 seconds 

in this accounting. That time appears to be a minimum bound for the 

operation. In order to determine the time required by SIN to solve a 

problem, we used the execution time reported by CTSS. The swap time in 

CTSS is ignored here. 

Over half of the 86 problems (more precisely 45) were completely 

solved by SIN's first stage. These problems were solved with an average 

time of 0.6 seconds. Of the remaining problems only two required the 

Integration-by-parts routine (i.e., x cos x and cos fx- the latter gene

rates the subproblemj2y cosy dy). Two routines were added to SIN in 

order to solve the definite and double integrals among the 86 problems. 

These routines call SIN to perform the integrations indicated and make 

appropriate substitutions at the upper and lower bounds. 

Below we list problems for which SAINT results are available and 

the comparative results for SIN. 
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SAINT time SlN time discount 
Problem in seconds in seconds for chain ~ 

2 

J 1 dx 
1 X 

1.8 0.20 Fastest problem 
solved by SAINT, 
integrated by table 
look up in IMSLN 

s sec2t dt 
1080 9.18 4.6 Longest solution 

1 + sec
2

t - 3 tan t time in SAINT. 
9 subgoals in 
SAINT, 1 in SIN 

s dx 
126 0.87 7 subgoals in --2-

sec x SAINT, 3 in SIN 

s ~ dx 102 5.87 1.3 3 subgoals SAINT /x 1 SIN 

J /xZ 
X dx 

960 9.68 5.2 14 subgoals SAINT + 2x + 5 
1 SIN 

s . 2 
Sl.ll X cos x dx 120 0.33 

s . 2 2 (sm x + 1) cos x dx 228 2.48 

s exdx 
102 0.28 2 subgoals SAINT 1 +eX 

OSIN 

s 2x 
e 

222 6.23 1.7 1 + eX dx 

s l 1 
dx 120 9.78 5.3 - COS X 

1( 

f3 2 
0tan x sec x dx 144 0.47 
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SAINT time SIN time discount 

Problem in seconds in seconds for chain ~ 

1 

I X 
0 

log ex dx 132 o. 70 

1( 

J ~in x cos x dx 156 0.30 Largest speed 
0 ratio between 

SIN and SAINT 

I X+ 1 dx 576 10.1 5.6 Longest solution 
hx- x2 in SIN. 

13 subgoals SAINT 
1 SIN 

J 2ex 
dx 360 8.25 3.7 4 subgoals SAINT 

3e2x 2 + 1 SIN 

s ~ X dx 660 8.77 4.3 13 subgoals SAINT 
(1 _ xz)S/2 

2 SIN 

s 
6x e dx 510 7.92 3.5 10 subgoals SAINT 

e4x + 1 lSIN 

s 2 390 7.20 2.7 loge(2 + 3x )dx 10 subgoals SAINT 
1 SIN 

The last 3 problems were solved by SAINT in 540, 318 and 210 seconds 

respectively after an entry was added to SAINT's table which was used in 

the solution of these problems. 
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In order to fully account for the effect of garbage collection the 

problems were run in large batches. Thus garbage collection time was 

distributed over the set of problems. Garbage collection time probably 

accounts for less than 2o% of the total time in SIN. 

We should note some of the reasons for the time difference in the 

results of SAINT and SIN. SAINT was run on the 7090 and SIN on the 7094. 

This accounts for about 4o% of the gain (2.18 vs. 2.00 microseconds in 

the cycle time and overlapped instruction execution in the 7094). The 

single major difference in the time is due to the fact that SAINT ran 

mostly interpreted (a major exception being the simplifier), and SIN was 

run mostly compiled. Compilation is usually considered to gain a factor 

of 20-30 in the speed of the program. We tested some problems with SIN 

being executed completely interpretively. We noted an average speed loss 

of a factor of 15. However none of the problems 'Which were run inter

pretively included problems which required chaining. Thus we were unable 

to run some of the more complex problems in the set interpretively. 

By taking these factors into account we note that SIN would only 

run about three times faster than SAINT on the average when both are 

executed under optimal conditions. The reason for the relatively small 

ratio in SIN's favor we believe is because most of the time spent in SIN 

in solving the harder problems in the set is spent in algebraic manipu

lations (e.g., simplifications). Algebraic manipulation in SIN is not 

materially faster than it is in SAINT. Though the analysis performed in 

SIN yields a very direct solution, the total time spent to obtain the 

solution is still significant. Hence the contrast with SAINT in regard 

to total solution time is not very great. 



APPENDIX D 

Solution of Problems Proposed by Mcintosh 

Professor Mcintosh (National Poleytechnic Institute of Mexico) 

required the solution of eleven nontrivial integration problems for 

a physics paper that he was writing 051. He found the solution to 

these problems in Petit Bois' table. He also asked us to solve 

these problems using SIN. The problems involved variable coefficients 

in a square root of a quadratic which the version of SIN current at 

that time was not equipped to handle. Although we had intended to 

add the variable coefficient capability to Method 5, it was not 

needed for the SAINT experiment described in Appendix C. We rewrote 

Method 5 to account for variable coefficients. Interestingly enough 

this was not sufficient for a satisfactory solution of the problems 

since Professor Mcintosh required that the output be in terms of 

the arcsin function. In some cases the transformations proposed 

by Method 5 yielded an answer in terms of the log function. To 

force the arcsin result a further method was added. Thus if the 

integral was of the form 

J--~c __ _ dx 

the substitution y= 1 was made. 
X 

This substitution rids the 

denominator of the factor x. With these modifications SIN was able 

to solve all eleven problems. In the solutions obtained by Mcintosh 
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we noted some discrepancies from solutions obtained by SIN. It 

should be noted, however, that Mcintosh was only interested in 

the coefficient of the arcsin terms and not in the argument. All 

the errors were minor and occurred only in the arguments of the 

arcsin function. 

Important lessons are to be obtained from this experiment. 

It is quite likely that other users of SIN will have similar 

requirements regarding the form of the output. SIN should there

fore be modified so that FORM can accept simple descriptions of new 

substitutions written, say, as a SCHATCHEN and REPLACE rule. 

An examination of the eleven problems will indicate that a 

great deal of SIN's machinery was involved in solving these 

problems. Thus it would appear that a program such as SIN is more 

useful than a special purpose integration routine written for 

solving just this set of problems. Such a special purpose program 

will require so much machinery as to make it uneconomical. 

Finally we should note that this experiment points out the need 

for further work on methods which transform algebraic integrands. 

The method we introduced to force the arcsin result also decreased 

the labor involved in the solution and should be normally available 

in SIN. 
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Mcintosh Problems 

Problem Constraints Answer equivalent to 

J dr 1 a 
l) 

r hHr2 - a2 H > 0 -0 arcsin /2ii r 

dr Ja2 + e:2 s -1 
2) H > 0 arcsin 

rJ2Hr
2 - ci - €2 Jci + e: 2 /2ii r 

J r JzHr2 

dr 
H2 > za~ 1 Hr2 - a 2 

3) 
-if - 2Kr4 2a arcsin 

r 2 JH2 - 2Ka2 

Jr )zHe2 
-

dr 
4) 2 €2 2Kr4 a -

H2 > 2(a2 + e: 2) K 1 arcsin 
2 Ja2 + e:2 

5) s dr K2 + zai > o 1 Kr - if 
r/zH/ - a2 

- arcsin 
r) K

2 + zJb2 - 2Kr a 

6) J. dr 
j 2 2 2 r 2Hr - a - e: - 2Kr 

r dr 

7) J )zEr2 - a 2 

8) J r dr 
.; 2 2 - €2 2Er - a 
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Problems Constraints 

9} I r dr 

10) I r dr 

11) E < 0 

L 

Answer equivalent to 

1 2K r
2 - E = arcsinJEZ 

u <!K - 2Kci 

2Er + K 
arcsin J 2 2 

K - 2Ea 



APPENDIX E 

AN EXPERIMENT WITH SOLDIER 

As an experiment for testing the effectiveness of the 

differential equations routines we attempted to solve the review 

problems appearing in pages 54-56 of "Applied Differential Equations" 

by Spiegel [60]· This text was chosen for sentimental reasons since 

it was the book through which we first learned methods for sotV1ng 

ordinary differential equations. The methods described in Chapter 6 

were mostly influenced by !nee's "Integration of Ordinary Differential 

Equations" [ 27], and Kamke's "Differentialgleichungen" [30 ]. As 

it turns out the methods in Spiegel were quite similar, which is not 

a surprising fact. However, there were some differences and these 

will be pointed out below. 

Briefly, the results of the experiment were as follows: Of the 

80 problems in pages 54-56 of the book, 4 involved second and higher 

order equations (i.e., y", y"'). These problems were not attempted 

since SOLDIER had no machinery to deal with them. Thus the number of 

problems actually attempted was 76. Of the 76, SOLDIER satisfactorily 

solved 67 problems with an average time of 6.6 seconds. Discounting 

the cost incurred by chaining (chaining occurred on 26 of these 66 

problems), the average time was 4.3 seconds. Two problems were com

pletely reduced to integration problems, but were not integrated by 
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problems were not solved at all. An examination of the result re

ported by SOLDIER for one of the problems (i.e., 51) indicated a 

misprint in the book. As before, our timing information is based 

on the report by CTSS of the execution time of the program. 

The system on which this experiment was carried out had the 

following characteristics: SCHATCHEN, SCHVUOS, FORM, REPLACE, SOLDIER, 

and all the solution methods for differential equations were com

piled. A few integration methods, especially the Derivative-divides 

method, were also compiled. The rest of the integration methods were 

run interpretively. This accounted for a noticeable increase in 

solution time when one of the integration subproblems required a 

solution method in stage 2 or 3 of SIN. As was the case in the ex

periment reported in Appendix C, the 76 problems were attempted in 

large batches (about 15 at a time) so that the effects due to garbage 

collection were fully considered. 

Below we shall describe on the performance of SOLDIER on some 

of the more interesting fully solved problems. We shall then describe 

each of the 9 problems which it failed to solve fully. 
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Representative Solved Problems 

The largest number of integrations needed to solve one of the 

67 problems was 3. This was achieved by problem 69 among others. 

(69) or (ey+x+3)dy - dx 0 

This problem is solved by one of the multiplier methods (Chap-

ter 6, Method 3) 

0 (ey+x+3) 
ox 

L ( -1) 0 
oy 

1 
(1-0) -1, and -1 is function of y. -T a 

Thus the first integral is 

s -1 dy = -y 

The multiplier is e-y resulting in the exact equation 

The second integral is 

-xe-y , 
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and the fin a 1 integra 1 is 

y-3e-y 

The solution reported by SOLDIER is thus 

The solution in Spiegel is 

This solution is equivalent to the one obtained by SOLDIER. 

This problem was solved in 5.2 seconds. 

The most complex solution was obtained as a result to prob-

lem 73. 

(73) 
~ _ x+3y 
dx - x-3y 

This homogeneous problem required the solution of 

r du 
J ,;::r±.:Iii 

l-3u 

The final solution given by SOLDIER was 



HS4 

2 
loge X + ~loge (1+3;-r + 2;) - J2 arc tan (fz + $ ) Co 

The solution in Spiegel was 

2 2 
loge(x +2xy+3y) 2,]2 arc tan (:}~Y) + c 

This problem was solved in 15.3 seconds and required a chain 

to the rational function package. 

The problem in which we discovered a misprint in the book's 

solution was problem 51. 

(51) y' 3x+2y or y 1 -3x-2y 0 

The problem is linear (Chapter 6, Method 1) and the first 

integral required is 

J -2dx -2x 

The next integral is 

S 
-2x 

-3x e dx ( 
3 + 3 ) -2x 4 z-xe 

The final answer given by SOLDIER was 

Co ye-2x + (f + ~ x)e-2x 
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The book's solution was 

-2x 3 3 
y=ce -z-x-4 

This solution differed from SOLDIER's in that the sign of 

-2x 
the exponent of e is wrong. 

The answer was obtained in 9.0 seconds and required a chain 

to solve the second integral. 

The fastest solution time was obtained for problem 5. 

(5) (3- y)dx + 2xdy 0, y(l) 

This problem is also linear. 

The first integral is 

S_...!... dx 
2x 

The next integral (after simplifying e -l/2 logex =Jx) is 

J 2)/2 dx 

The final result is 
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The book's solution is 

(3-y)
2 

= 4x 

which is equivalent ot SOLDIER's except that the constant of 

integration was determined by using the initial condition. 

This problem was solved in 0.8 seconds. 
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The Nine Unsolved Problems 

Problems 48 and 75 were not solved primarily because SOLDIER 

had no machinery for factoring them. In these two 

(48) 

(7 5) 

2 2 
~ - £. ep -q 
dp - q 

0 

problems what is needed is to recognize that ea+b a b 
e e . A 

powerful factoring routine would have yielded the result that both 

of these problems are separable. 

Problem 50 is also recognized to be separable 

(50) (x+xcosy)dy - (y+ sin y)dx 0 

if one factors x+xcosy. When SOLDIER solved this problem it utilized 

one of the multiplier methods. 

The difficulties due to the lack of a general factoring or 

division routine which was pointed out in Chapter 6 is one of the 

outstanding problems which must be solved in order to achieve a 

powerful routine for solving differential equations. The rational 

function package which is not directly utilized by SOLDIER can 

factor polynomials and some more general expressions (e.g., x+xcosy 
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could be factored by it), however, it must be extended in order to 

recognize factorizations involving exponentials and logs. 

A similar difficulty to factoring faced the program in 

problem 65. 

(65) 

This problem is easily solved by the homogeneous method if it 

is first transformed into 

xy' - ylog ~ = y 
e x 

SOLDIER does not possess enough machinery to realize that this 

transformation can be effected. Method 8 of Chapter 6 which normally 

would have solved problem 65 without the log transformation failed 

because SCHVUOS could not simplify a quotient which arose in the 

course of the solution. 

Problems 47 and 64 were not solved because SOLDIER lacked a 

method given in Spiegel. 

(47) 

(64) 

xdy - ydx 

xdy - ydx 
2 2 

2x y dy 

Spiegel suggested that one should watch out for frequently 

occurring combinations such as xdy+ydx or xdy-ydx. He gave a method 

which deals with some of these cases. In 47 he points out that by 
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dividing by x2 one obtains the derivative of i on the left hand 

side and ydy on the right hand side. In 64 one obtains zldy on the 

right hand side and once again the derivative of~ on the left 
X 

hand side. SOLDIER lacked this particular method and was unable to 

solve these problems. Once again Method 8 of Chapter 6 was applicable 

and did not find a solution due to problems in division. 

Another method lacking in the program is pointed out by prob-

lem 57. 

(57) 
ds 
dt 

1 
s+t+l 

Here the linear substitution u(t) = s+t+l would have left a 

separable equation. Also a reversal of the independent variable 

followed by multiplying out the denominator would have left the 

equation 

dt 
ds s+t+l 

which is linear. The method of multiplying out the denominator is 

also useful in problem 17. 

(17) y' 
4 
~ 

3x2 

SOLDIER solved 17 by dividing through the denominator and using the 

Bernoulli method. By multiplying out the denominator, the multiplier 
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method would solve the problem. 

Problem 22 was not solved by SOLDIER because the almost-

linear method is not powerful enough. 

(22) (tan y - tan
2

y cos x)dx - xsec
2

y dy 0 

The substitution u(x)ztan(y) results in the equation 

(u-u
2

cos x)dx - x du = 0 

which is Bernoulli. However, the almost-line~r method checks only 

for the possibility that the resulting equation is linear and com-

pletely misses the possibility that it is Bernoulli. 

Finally, two problems, 56 and 74, were not completely solved 

because SIN did not have powerful enough machinery. 

(56) 

(74) 

di + 3I 
dt 

y'cos x 

lOs in t 

y - sin2x 

In 56 the linear method generates the subproblem 

J -10e3tsin t dt 

Without the Edge heuristic, SIN cannot integrate this problem. 

There was not enough room in the system to include the Edge heuristic 

(only 1500 words were left in free storage), so SIN failed to 
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integrate this problem. 

SIN failed to handle the integration problems needed in 74 

because it does not currently possess enough machinery for dealing 

with sin(2x) and cos(x) in the same integrand. As has been indi

cated in Chapter 4 some machinery for just this situation was 

designed but not fully implemented. 



Modifications to SOLDIER 

Following the experiment reported above we made two changes 

to the methods employed by SOLDIER. First we added a simple factori-

zation routine to Method 8 of Chapter 6. With this routine Method 8 

was able to solve problems 47, 64, and 65, as expected. 

In addition we added an indicator to SCHVUOS. When this 

indicator was on, SCHVUOS executed the rule ea+b ~ eaeb This 

indicator was turned on in running Method 2 of Chapter 6 (Separable). 

Thus, problems 48 and 75 were solved as well. The use of indicators 

illustrates the approach toward simplification programs we had out-

lined in Chapter 3. In that chapter we said that simplifiers should 

be considered as black boxes with strings attached. When a decision 

has to be made inside the simplification program, it can check to 

see whether it had been given an instruction regarding the choice to 

be made. 

These changes must be considered as stop-gap measures and not 

as solutions to the factoring problems which still remain in SOLDIER. 



APPENDIX F 

LISTINGS 

The listings of SIN and SOLDIER given below were produced by a LISP 

program written by Diffie of the MATHLAB project and modified by us. 

Listings of LISP programs are frequently printed by using the internal 

representation of the program. The listings of programs written in most 

other languages usually bear a close correspondence to the input form of 

the program. This need not be the case for LISP programs. The routine 

Edge which was not listed using Diffie's program is presented last. The 

listing of this routine may be used to guage the effect of Diffie's pro

gram. 

The listings of two recent LISP programs (i.e., Martin [ 37 ], Nor-

ton 47 ]) are also available. One can use these listings to compare 

different styles of LISP programming. Norton accentuates the use of the 

PROG feature and his programs thus have a FORTRAN-like appearance. Mar

tin's style is richer and leans toward greater use of "pure" LISP. Our 

style is intermediate to these two styles. 
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SGHA TGHEN 

DEFINE 
((ISGHATGHE"l M2l 

1M2 !LAMBDA' IE P SPLISTl 
IPROb !ANSI 

I RETURN IGOND (I NULL IMl E PI l N!Ll 
( INULL ANSI Tl 
IT ANSI l l l l l 

IMl (LAMBDA IE PI 

DEFINE 

(GOND ((EQUAL E PI Tl 
I (A TOM P l N ILl 
((ATOM IGARPll 

IGOND ((OR IEQ IGAR PI (QUOTE PLUS) l 
IEQ (GAR PI (QUOTE TIMESll 

(LOOPP E PI l 
((EO (GAR PI (QUOTE EXPTll IZEPOW E Pll 
(lEO (GAR El I GAR PI l ( EAGHP E PI l 
I lOP (GAR PI l N!Ll 
(lEO I GAR PI I QUOTE GOEFFT l l 

ICOEFFPORT E P (QUOTE !TIMES 1 Till l 
IIEQ (GAR Pl (QUOTE COEFFPTll ICOEFFPT E P Tll 
I lEO (CAR PI (QUOTE COEFFPl l 

(COEFFPORT E P (QUOTE (PLUS 0 Till l 
(lEO ICAR PI I QUOTE COEFFTTl l 

ICOEFFTT E ICADR PI T (QUOTE TIMESll 
(lEO !GAR Pl I QUOTE GOEFFPPl l 

ICOEFFTT E ICADR PI T (QUOTE PLUS I l l 
((EO IGAR PI (QUOTE DVCOEll IDVCOE E P Til 
( IEQ IGAR PI (QUOTE ZEPOWl l IZEPOW E PI l 
IIAND ISETO ANS ICONS NIL ANSll (TESTA P E N!Lll 

IRESTOREll l 
IT IRESTOREll ll 

I I ATOM ICAAR PI l 
ICOND ((ATOM El NILl 

((PROG2 ISETQ ANS ICONS NIL ANSll 
!TESTA (CAR PI ICAR El El l 

ICOND ((OR IEQ ICAR El (QUOTE PLUSll 
lEO ICAR El (QUOTE TIMESII 

ICOND I I LOOPP E 
I CONS I CAR E l 

I CDR PI I l 
IRESTOREll l 

IT IRESTOREII II 
((AND ISETQ P ICONS (CAREl ICDR Pill 

IEACHP E PI I 
IRESTOREll l 

IT I RESTORE II l l 
IT (RESTORE II I l 

IT N!Ll IIIII 

I ( ILOOPP I LAMBDA IE PI 
I PROG (X Z EEl 

I SE TO E E 
ICONO I I NOT lEO I CAR El I CAR Pill 

ILIST ICAR PI El l 



LOOP 

L5 

LB 

L2 

Ll7 

Ll9 

LlB 

LlO 

Ll1 

Ll2 

Ll3 

Ll4 

L15 

Ll6 

L47 
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IT El , 
CSETQ Z PI 
ISETQ ANS ICONS Nl L ANS l l 

I SETQ z CCDR Zl l 
ICOND I I NULL Zl 

!RETURN ICOND II NULL I CDR EE II I RESTORE 1 l l 
IT IRESTOREll 

C SETQ X EEl 

CCOND I !NULL !CDR XII !GO Ll71 l 
IIOP1 !CUR Zll !GO LlOII 

,, 

IIEQ ICAAR Zl (QUOTE EXPTll !GO Ll4ll 
IOU ICADR XI !CAR Zll IGO L2ll l 

I SETQ X !CDR XI l 
(GO L5l 

ISETQ ANS ICONS ICONS X !CDR XII ANSI! 
IRPLACD X ICDDR XII 
!GO LOOP! 

ICOND !!NOT IEQ !CAR PI !QUOTE PLUSlll !GO LlBll 
( I M1 0 I CAR Z l l (GO LOOP l l l 

!RETURN IRESTOREll 

ICOND lUND IEQ !CAR PI !QUOTE TIMES)) 
( M1 1 (cAR z I , , 

!GO LOOP! l 
IT !RETURN IRESTOREII l I 

ICOND IIEQ ICAAR Zl !QUOTE COEFFTI l !GO Llll l 
I IEQ ICAAR Zl (QUOTE COEFFP l l I GO Ll2 l 
I CEQ ICAAR Zl (QUOTE COEFFPT II (GO L13 II 
I CEQ ICAAR zl (QUOTE COEFFTT l l I GO Ll6 l I 
I CEQ ICAAR Zl (QUOTE COEFFPP II I GO L4 7 II 
I CEQ ICAAR Zl !QUOTE ZEPOWll !GO Ll4ll 
I CEQ ICAAR Zl !QUOTE DVCOEII IGO L43ll 
IT !GO Ll511 , 

ICOND IICOEFFPORT EE !CAR Zl I QUOTE !TIMES 1 Nlllll 
!GO LOOPI I 

IT !RETURN IRESTORElll 

ICOND IICOEFFPORT EE !CAR Zl (QUOTE IPLUS 0 NILlll 
!GO LOOP! , 

IT !RETURN IRESTORElll 

ICOND I ICOEFFPT EE !CAR Zl Nlll !GO LOOP II 
IT !RETURN IRESTOREill I 

ICOND IIZEPOW ICADR XI I CAR Z l l !GO L2 l I IT I GO LB II I 

ICOND ((LOOP EE ICDAR Zl l I GO LOOP II 
IT !RETURN IRESTORElll l 

ICOND IICOEFFTT EE ICADAR Zl NIL (QUOTE TIMES I l 
(GO LOOP) , 

IT !RETURN IRESTORElll 
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DEFINE 
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ICONO IICOEFFTT EE ICAOAR Zl NIL !QUOTE PLUSII 
IGO LOOPI I 

IT !RETURN IRESTOREIII 

ICOND IIOVCOE ICAOR XI !CAR Zl NILI IGO LOOPII 
IT IGO LBII 111111 

I I I COEFFPOR T 
ILAHBDA 

IE P I NOI 
IPROG IX Z EEl 

L32 

L31 

L30 

L35 

L2 

LOOPl 

L6 

L5 

Ll7 

Ll6 

L7 

ISETQ ANS ICONS NIL ANSII 
ISETQ EE El 
ICONO 

I IEQ ICAR INDI !QUOTE PLUSII IGO L3011 
IIEQ !CAREl (QUOTE PLUSII IGO L3lll 
I I EQ I CAR E I (QUOTE TIHESII IGO L3211 I 

ISETQ EE !LIST !QUOTE TIHESI Ell 
IGO L21 

ICOND IICADDR INDI IGO L211 IT IGO Lllll 

ICOND 
((NOT ICAODR !NOll IGO Llll 
I I NULL ICDDR Ell IGO L211 
IT IGO L2011 I 

ICONO I IEQ I CAR El I QUOTE PLUS II IGO L35111 
I SETQ EE I LIST I QUOTE PLUS I Ell 
I GO L21 

ICONO 
I I NULL ICDOR Ell IGO L21l 
I IEQ ICAR I NOI I QUOTE PLUS II IGO L211 
IICAODR INDI IGO L211 
IT IGO Llll I 

ICOND IIEQUAL E 01 IGO L7lll 
ISETQ Z ICDR Pll 

I SETQ Z I CDR Zll 
ICOND IINULL Zl IGO L7111 
I SETQ X EEl 

ICOND 
IINULL ICDR XII IGO LlOII 
I IEQ ICAAR Zl I QUOTE COEFFTTII IGO Ll611 
I IEQ ICAAR Zl I QUOTE COEFFPPII IGO Ll711 
IIHl ICADR XI !CAR Zll IGO L511 I 

I SETQ X I CDR XII 
IGO L61 

I SETQ ANS ICONS 
IRPLACD X ICOOR 
I GO LOOP 11 

ICOND I ICOEFFTT 
IGO L 71 

ICOND I I COEFF TT 

ICONS X ICDR XII ANS II 
XII 

EE ICADAR Zl NIL (QUOTE PLUS II 

EE ICADAR Zl NIL I QUOTE TIMES II 

IGO LOOPllll 

I GO LOOP 1111 
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LlO 

L20 

L1 

L3 

L12 

L4 

DEFINE 

197 

ICDr-lO 
IINULL !COR EEII 

I RETURN ICONO I I TESTA ICAOR PI ICAOR INOI NILI 
ICOND IICAOOR INDI IRESTORElll IT IRESTORE2111 I 

IT IRESTOREII Ill 
IINULL ICDOR EEII 

I RETURN ICOND I I TESTA ICAOR PI ICAOR EEl NILJ 
I PROG2 I SE TQ ANS 

ICONS ICONS EE !COR EEII ANSI I 
I PROG2 I RPLACD EE I CDDR EE II 

ICONO IICAODR INOI 
I RESTOREll I 

IT IRESTORE211 1111 
IT IRESTOREII II I I 

ISETQ X ICOPYl EEII 
ICO"'O (I NULL !TESTA ICADR PI X NILII (RETURN IRESTOREIII 

IICAOOR INDJ !RETURN IRESTOREllll I 
ICONO I lAND ICDOR El IEQ !CAR I NOI (QUOTE PLUS II I 

IPROG2 I SETQ ANS ICONS ICONS EE I COR EEl I ANS II IRPLACO EE NIL II II 
!RETURN IRESTORE211 

ICONO II NULL OH ICAOR INOI !CAR Zll I I RETURN I RESTORE II II 
I GO LOOP 11 

!RETURN IRESTOREII 

I SETQ X EEl 

I CONO I I NULL I COR XII IGO L411 
I ICOEFFPORT ICAOR XI P I LIST !CAR INDI ICAOR INDI Til IGO L1211 I 

I SETQ X I CDR XII 
IGO L31 

ISETQ ANS ICONS ICO"'S X ICOR XII ANSII 
IRPLACO X ICOOR XII 
!RETURN IRESTORE211 

ICOND II NULL IMl ICAOR I NOI PII I RETURN I RESTORE II II 
!RETURN IRESTORE211 IIIII 

IIICOEFFPT !LAMBDA IE P INOI 
IPROG IZ ZZI 

Ll9 

L22 

L20 

L21 

I SETQ Z 
ICONO IIEQ ICAR El !QUOTE PLUSII El 

IT ILl ST I QUOTE PLUS I Ell II 
ISETQ ANS ICONS NIL ANSII 
ISETQ ZZ ICONS !QUOTE COEFFTI !COR Pill 

ICOND ((NULL ICOR Zll IGO L2lll 
((NULL I Ml I CAOR Z I Z Z II I GO L20 II 

ISETQ ANS ICONS ICONS Z ICOR Zll ANSII 
IRPLACO Z ICOOR Zll 
IGO Ll91 

ISETQ Z !COR Zll 
IGO Ll91 

I SETQ Z 
IFINOIT ICONO IIEQ ICAAOR PI !QUOTE VAR•II 
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ICOND ( (~ULL Zl 

(CAR ICDDADR Pll l 
IT ( CAADR P ll ll I 

(RETURN ICOND ((NULL (TESTA ICADR Pl 
0 
NIL ll 

(RESTORE l l 
liND (RESTORElll 
(T IPROG2 (RESTORE2l Oil Ill 

((NULL I CDR Zll 
(RETURN ICOND ((NULL ITESTA ICADR PI 

(CAR Z l 
NIL ll 

(RESTORE! l 
liND IRESTORElll 
IT IPROG2 (RESTORE2l 

(CAR Z l llllll 
ISETQ Z (SIMPPLUS Zll 
ICOND ((NULL (TESTA ICADR PI Z (QUOTE COEFFPTlll 

(RETURN IRESTOREll l 
liND (RETURN (RESTOREllll I 

(RETURN (PROG2 IRESTORE2l Zll l I I 
IEACHP (LAMBDA IE PI 

IPROG NIL 
(COND ((NOT (EQUAL (LENGTH El (LENGTH Pill 

IRETURN NIU II 
(SETQ ANS ICONS NIL ANSll 

EACHPL 
I SE TQ E (CDR Ell 
ICOND ((NULL El (RETURN IRESTORE1lll 

((NULL (Ml (CAREl ICADR Pill 
(RETURN IRESTOREll ll 

ISETQ P I CDR PI l 
IGO EACHPU Ill 

IZEPDW (LAMBDA IE Pl 
IPROG NIL 

L5 

L9 

LlO 

LB 

L7 

L6 

ISETQ ANS ICONS NIL ANSll 
ICOND I I ATOM El IGO L6ll I 

ICOND ((NOT IEQ ICAR El (QUOTE EXPTlll IGO LBll 
((NOT (M1 (CADR El ICADR Plll (GO L8ll 
((NOT (M1 (CADDR E) (CADDR Pill 

(RETURN IRESTOREll ll 

!RETURN IRESTORE1ll 

ICO~D ((AND (NOT IM1 0 ICADDR Pill 
(NOT (M1 1 (CADR Pill l 

(RETURN (RESTORE) l l l 
!GO L9l 

ICOND ((NOT (M1 E ICADR Plll (RETURN (RESTOREIII 
((NOT (M1 1 ICADDR PII l I RETURN IRESTORElll 

!GO L9l 

ICDND ((NOT IM1 0 ICADR Plll IRETURN (RESTOREllll 
(GO L9l 

ICOND ((EQP E 1l (GO LlOll 
( IEQP E Ol (GO L7ll 
IT (GO LBll llll 



199 

(LOOP (LAMBDA IE LPl 

DEFINE 

IPROG IZ V Xl 

L5 

L6 

LlO 

L8 

ISETQ ANS ICONS !QUOTE •LOOPl ICONS NIL ANSlll 
ISETQ X LPl 

I SE TQ Z E l 

ICONO IINULL IMl ICAOR Zl ICAR Xlll !GO LlOlll 
ISETQ V ICONS !LIST X Z !CDR Zll Vll 
ISETQ ANS ICONS ICONS Z !CDR Zll ANSll 
IRPLACD Z ICDDR Zll 
ISETQ X !CDR XII 
ICOND ((NULL XI !RETURN IRESTORE2llll 
ISETQ ANS ICONS !QUOTE •LOOPI ANSil 
!GO L5l 

ISETQ Z !CDR Zl l 
I COND II NOT I NULL I CDR Z l II I GO L6ll 

((EQUAL X LPI !RETURN IRESTOREIIl 

ISETQ X ICAAR Yll 
IRPLACD ICAOAR Vl ICADDAR Vll 
ISETQ Z ICADDAR Yll 
ISETQ V !CDR VII 
ISETQ ANS ICDR ANSil 
IRESTORE3l 
!GO L6l IIIII 

IIIRESTORE3 (LAMBDA NIL 
IPROG NIL 
Ll 

!RESTORE !LAMBDA NIL 

ICOND ((NULL ANSI !ERROR (QUOTE RESTORE3111 
II NULL !CAR ANS II I ERROR I QUOTE RESTORE3lll 
IIEQ !CAR ANSI (QUOTE •LOOPII (RETURN Nllll 
IlNDT !ATOM ICAAR ANSill 

IRPLACD ICAAR ANS l I CDAR ANS II II 
ISETQ ANS !CDR ANSI I 
!GO lll Ill 

IPROG IYl 

Ll 

!RESTORE! !LAMBDA NIL 

ISETQ V ANSI 

ICOND IINULL VI !RETURN NILII 
IIEQ !CAR VI !QUOTE •LOOPII 

IPROG2 IRPLACA Y ICADR Yll 
IRPLACD V ICDDR Yll II 

!!NULL ICAR VII 
(RETURN IPROG2 ISETQ ANS !CDR VII Nllll l 

IlNDT !ATOM ICAAR Ylll 
I RPLACD I CAAR VI I CDAR VII II 

ISETQ Y !CDR Yll 
!GO lll Ill 

IPRDG IYI 
L2 

Ll 

ISETQ V ANSI 
ICOND IINULL ANSI !RETURN Til 

!!NUll !CAR ANSII 
!RETURN IPROG2 ISETQ ANS !CDR ANSI! Til l 

I !NOT !ATOM ICAAR ANSI II IGO l3ll I 
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I COND ((NULL I CDR Y II I RETURN T II 
((NULL ICAOR Yll 

!RETURN IPROG2 IRPLACD Y ICOOR Yll Til 
IlNDT !ATOM ICAAOR Ylll 

IPROG2 IRPLACO ICAAOR Yl ICOAOR Yll 
IRPLACO Y ICOOR VII II 

IT ISETQY ICORYIII I 
!GO Ll I 

IRPLACO ICAAR ANSI ICOAR ANSI! 
ISETQ ANS !CDR ANSI! 
!GO L21 I I I 

IRESTORE2 !LAMBDA NIL 
IPROG IYI 

Ll 

I SETQ Y ANSI 
ICOND ((NULL ANSI !RETURN Til 

!!NULL !CAR ANSI! 
!RETURN IPROG2 ISETQ ANS I CDR ANSI I T I I I I 

ICOND ((NULL !COR Yll !RETURN Til 
ltEQ ICAOR Yl (QUOTE •LOOPII 

IRPLACO V ICODR VI I I 
IINULL ICADR VII 

!RETURN IPROG2 IRPLACO V ICDDR VII Til II 
I SETQ V I COR VI I 
IGO Lll Ill 

!TESTA• !LAMBDA !ALA EXP LOCI 
ICONO IIGONO IIEQ ICAOR ALAI (QUOTE FREEII (FREE EXPII 

I IEQ IGAOR ALAI I QUOTE NUMBERPI I 
INUMBERP EXPI I 

I IEQ ICAOR ALAI (QUOTE TRUE I I T I 
IT !APPLY ICAOR ALAI 

IFINOTHEM ICDDR ALAII 
IALISTI Ill 

ICOND IINOT IMEMBER ICAR ALAI SPLISTII 
IPROG2 ISETQ ANS 

T I I 
IT Tl I I 

IT NILI Ill 

ICONS ICONS ICAR ALAI EXPI 
ANS I I 

I FINOTHEM (LAMBDA IARGSI IFINOTl ARGS ANS ICONS EXP NILI I I I 
IF I NOll I LAMBDA I X V Zl 

DEFINE 

IGOND ((NULL XI Zl 
I I NULL VI 

IFINOTl IGOR XI 
ANS 
INCONG Z ILIST IEVAL !CAR XI IALISTllll II 

IIEQ IGAAR Yl !CAR XII 
IFINOTl IGOR XI ANS INCONC Z ICONS ICOAR VI NILlll 

IT IFINOTl X IGOR Yl Zll IIlli 

I I lOP I LAMBDA IFNI 
!MEMBER FN 

(QUOTE (PLUS TIMES 
EXPT 
SIN 
cos 
TAN 
LOG 
SEC 
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INTEGRAL 
ARCSIN 
ARCCOS 
ARCTAN Ill II 

ICOPYl !LAMBDA IAI ICONO IINULL AI Nlll IT ICONS ICAR AI ICOPYl ICDR Alllllll 
IFINOIT (LAMBDA CAl 

CPROG IY Zl 

Ll 

IFREE !LAMBDA CAl 

ISETQ Y ICONS NIL ANSII 

ICONO IINULL ICOR Yll !RETURN Zll 
IINULL ICAOR Yll !RETURN Zll 
I CEQ ICAAOR Yl AI 

I PROG2 I SETQ Z l NCDNC Z I LIST I CDADR Y Jill 
IRPLA,CD Y ICDDR Yll II 

IT ISETQ Y !COR Yl l I I 
IGO lll Ill 

ICONO I lA TOM AI INOT CEQ A VARIII 
IT lAND IFREE ICAR All !FREE ICDR Allll Ill 

I OP 1 I LAMBDA I A I 
I MEMBER A 

(QUOTE ICOEFFPT COEFFP 
COEFFT 
ZEPOW 
CDEFFPP 
COEFFTT 
LOOP Jill I 

ICOEFFTT (LAMBDA IEXP PAT INO OPINOI 
IPROG IRES Zl 

Ll 

L2 

L3 

L4 

ISETQ ANS ICONS NIL ANSII 
ICDNO CIANO IND INOT lEQ ICAR EXPI OPINOIII 

ISETQ EXP lUST OPINO EXPII II 
ISETQ Z EXPI 
ISETQ SPLIST ICONS ICAR PATI SPLISTII 

lCOND IINULL ICOR Zll IGO L31 I 
( ITESTA PAT ICADR Zl Nlll IGO L21 I 

ISETQ Z ICOR Zll 
IGO lll 

ISETQ ANS ICONS ICONS Z ICDR Zll ANSI! 
ISETQ RES ICONS ICAOR Zl RESII 
IRPLACO Z ICOOR Zl I 
IGO Lll 

ISETQ SPLIST CCDR SPLISTII 
ICOND IRES CGO L41 I 

I I NOT ITESTA PAT 
ICOND IIEQ OPINO 

I QUOTE PLUS I I 
0 I 
ITIII 

Nl L II 
I RETURN I RESTORE) I I l 

ICONO liND !RETURN IRESTORElll I 
IT !RETURN IRESTORE2111 I 

I SETQ RES 
ICOND I I COR RES I I CONS OPINO RES II 

IT ICAR RESII II 
ISETQ ANS ICONS ICONS ICAR PATI ISIMP RESII ANSII 
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lCOND liND (RETURN lRESTOREllll 
IT !RETURN lRESTDRE2lll llll 

(TESTA 
(LAMBDA !ALA EXP Bl 

DEFINE 

lPROG lY Z FUNC VALl 

LOOP 

lCDND llNOT lEQ !CAR ALAI !QUOTE VAR•lll 
(RETURN (TESTA• ALA EXP Nllll ll 

l SETQ Z lCADR ALAI I 
lSETQ ALA lCDDR ALAll 

lCONO l !NULL Zl 
!RETURN IPROG2 lSETQ Y 

lCOND (VAL (Ml EXP Yll 
IT !TESTA• ALA 

EXP 
NIL llll 

ICDNO l !NULL Yl Nlll 
lFUNC (SET !CAR ALAI EXPll 
IT Yl llll 

( lEQ (CAR Zl (QUOTE SET II lSETQ FUNC Til 
llEQ !CAR Zl (QUOTE UVARll 

(CONO I ISETQ Y 
!CDR lSASSDC !CAR ALAI 

ANS 

lSETQ VAL Tl l 
IT Nlll ll 

(QUOTE Nllll Ill 

llANO lEQ B (QUOTE COEFFPTll 
IEQ lCAAR Zl (QUOTE COEFFPTll 

lSETQ ALA lCADAR Zll ll 
lSETQ Z ICDR Zll 
l GO LOOP l l ll l l 

SCHVUOS, REPLACE, DIFF 

(I (SIMP PLUS 
(LAMBDA 

lEXPl 
IPROG IY !NO Z W ANS A B All 

lSETQ A Ol 
B 

BB 

c 

AA 

lCOND ((NULL EXPl (GO AAlll 
ISETQ Y !SIMP (CAR EXPlll 
ICOND 

( lEQ !CAR Yl (QUOTE PLUSll (GO Cll 
( lNUMBERP Yl lSETQ A (PLUS Y Alii 
I T l SE TQ Z l CONS Y Z ll l l 

ISETQ EXP !CDR EXPll 
!GO Bl 

lCOND 
( ( NUMBERP ( CADR Yll 

IPROG2 lSETQ Z !APPEND ICDDR Yl Zll ISETQ A !PLUS lCADR Yl Al.'l l 
IT lSETQ Z (APPEND !COR Yl Zlll l 

!GO BB l 

lCOND 



H 

G 

FF 

EE 

E1 

DEFINE 
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II NULL Zl IGO Ell l 
II NULL I CDR Zl l IGO EEl l 
IIEQ ICAAR Zl !QUOTE TIMESll IGD Ell l 

I SE TQ A1 1 l 
ISETQ IND Tl 
I SETQ B I CAR Zl l 
IGD FFl 

ICOND IlNDT INUMBERP ICADAR Zl l l IGO PIll 
ISETQ A1 ICAOAR Zll 
ICOND IINULL ICDDDAR Zll IGO Gill 
ISETQ B ICDDAR Zll 
ISEHI IND NIL) 
IGO FFl 

I SETQ A1 ll 
I SETQ B ICDAR Zl l 
I SETQ IND Nl Ll 
I GO FF l 

ISETQ B ICADDAR Zll 
ISETQ IND Tl 

ISETQ Z ICONS !QUOTE PLUS) !CDR Zlll 
I SETQ Y 

ICOND 
liND ICOEFFPT Z !LIST NIL !QUOTE IC NUMBERPll Bl Nllll 
IT ICOEFFPT Z ICONS NIL ICONS I QUOTE IC NUMBERPl I Bll Nllll II 

ISETQ Y !PLUS A1 Yll 
ICONO 

IIZEROP Yl Tl 
IIONEP Yl 

ISETQ W ICONS ICONO liND Bl IT ICONS !QUOTE TIMES! Bill Wll l 
liND ISETQ W ICONS !LIST !QUOTE TIMES! Y Bl Will 
IT I SETQ W ICONS ICONS I QUOTE TIMES I ICONS Y Bll Will I 

ISETQ Z ICDR Zll 
IGO AAI 

I SETQ W ICONS !CAR Zl WII 

ISETQ W ICONO IIZEROP AI WI IT ICONS A Willi 
I RESTORE I 
ICOND 

IINULL WI !RETURN 011 
IINULL !CDR Wll !RETURN !CAR Will 
IT !RETURN ICONS !QUOTE PLUSI Will llllll 

IllS IMPT IMES 
ILAM~DA 

IEXPI 
IPROG IY DIV Z W A A1 B ZZl 

I SE TQ A 11 

ICOND IINULL EXPl IGO STAR Till 
ISETQ Y !SIMP !CAR EXPlll 
ICONO IIEQ !CAR Yl (QUOTE TIMESII 

ICOND IINUMBERP ICADR Yll 
IPROG2 ISETQ A !TIMES ICAOR Yl All 

ISETQ Z I APPEND ICDDR Yl Zl l II 

, 



START 

G 

FF 

K 

JK 

H 

JJ 

IT ISETQ Z !APPEND !COR VI Zlll II 
I lAND INUMBERP VI IZEROP VII !RETURN Oil 
IINUMBERP VI ISETQ A !TIMES V Alii 
IT ISETQ Z ICONS V Zlll I 

ISETQ EXP ICDR EXPII 
!GO Bl 

ICONO I lAND IEQ ICAAR Zl I QUOTE PLUS II 
!NULL !COR Zll 
!NULL WI 
!NOT I ONEP All I 

!RETURN IPROG23 ICSETQ SlMPIND Tl 
ITIMESLOOP A ICOAR Zll 
ICSETQ SIMPINO NILI 1111 

ICOND IINULL Zl !GO Elll 
I I NULL !COR Zll IGO EEl I 
IEXPTSUM !RETURN ICONS (QUOTE TIMESI ICONS A Zllll 
I lEw ICAAR Zl !QUOTE EXPTII IGO Gil I 

I SETQ Al ll 
ISETQ B !CAR Zll 
!GO FFI 

ISETQ B ICADAR Zll 
I SETQ Al 

ICOND I INUMBERP ICADOAR Zll ICAOOAR Zll 
IT ICONS ICADDAR Zl Nllll II 

ISETQ ZZ Zl 

ICOND I IEQ ICAADR ZZI !QUOTE EXPTI I IGO HI I 
11M2 ICADR ZZI B Nlll IGO Ill I 

ICOND llANO wUOTIND 
IEQ !CAR Bl !QUOTE PLUSII 
IEQ ICAADR ZZI !QUOTE PLUSII 
ISETQ V IMATCHSUMl B ICADR ZZIII 

IGO DIVll II 

ISEHI ZZ ICDR ZZII 

ICOND IICDR ZZI !GO Kill 
!GO Ml 

ICOND 11M2 ICADADR ZZI B Nlll IGO llll 
ICOND llANO QUOTIND 

IEQ ICAR Bl !QUOTE PLUSII 
IEQ ICAR ICADADR ZZII (QUOTE PLUSII 
ISETQ V IMATCHSUMl B ICADADR ZZIII I 

IGD DIV21 II 
IGO JKI 

IRPLACD ZZ ICDDR ZZII 
!GO Jl 

ISETQ Al ICOND IINUMBERP All IADDl Alii IT ICONS 1 Alllll 
IGO JJI 

I SETQ A 1 
ICUND llANO INUMBERP All INUMBERP ICADOAR ICDR ZZIIII 

I PLUS Al ICADDAR ICDR ZZI II I 
IT ICONS ICADDAR I CDR ZZI I 

ICOND ((ATOM All (LIST Alii IT Alii 1111 



M 

EE 

El 

Dl'll 

Dl'/2 

DEFINE 
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I GO JJ I 

ISETQ Al ICONO IINUMBERP All All IT ISIMPPLUS Alllll 
I SETQ W 

ICONO IINUMBERP All 
ICONO IIZEROP All WI 

IIONEP All ICONS B Wll 
IT ICONS !LIST !QUOTE EXPTI B All Wll II 

IT ICONS !LIST !QUOTE EXPTI B All Wll II 
ISETQ Z !COR Zll 
I GO STAR Tl 

ISETQ W ICONS !CAR Zl Wll 

I SETQ A 
ICOND !!NULL WI AI 

IINULL !COR Wll 
ICOND I IONEP AI !CAR WII 

IT !LIST (QUOTE TIMESI A !CAR Will II 
I IONEP AI ICONS (QUOTE TIMES I WII 
IT ICONS !QUOTE TIMESI ICONS A Will II 

ICOND I !NULL Dl'/1 !RETURN All 
IT !RETURN ISIMPTIMES !LIST ICONS (QUOTE TIMESI 01'11 Allll I 

ICOND I lAND INUMbERP VI !SETQ A !TIMES A VIII !GO Ill 
IISETQ Dl'l ICONS V 01'111 !GO Ill l 

ISETQ Dl'l ICONS ISIMPEXPT !LIST V !CAR ICDOADR ZZIIII Dl'/11 
I GO L I IIIII 

I I ISIMPEXPT 
(LAMBDA 

I EXP I 
IPROG lA Bl 

I SETQ B I SIMP ICADR EXPIII 
I SETIJ A I SIMP I CAR EXPIII 
ICOND 

I IEIJP A 01 !RETURN 011 
(lAND 

IEQ !CAR AI !QUOTE EXPTII 
ISETQ B ISIMPTIMES lUST B !CAODR Allll 
I SETQ A ICADR All 
NIL I 

.~I L I 
IIEQP B 01 !RETURN lll 
I IEIJP B 11 !RETURN Arl 
IIEIJP A ll IRETUR'I 111 
(lAND INUMBERP AI (NUMBERP Bll 

IRE TURN !COND 
I I NOT EXPTINDI IEXPT A Bll 
((AND !FIXP Bl IGREATERP B -111 IEXPT A Bll 
IT Ill ST I QUOTE EXPTI A Bll l II 

((EQ !CAR AI !QUOTE TIMESII 
IRETUR"l ICONS !QUOTE TIMESI IEXPTLOOP !CDR Allll 

I IAt.ID EXPTSUM lEO I CAR Bl I QUOTE PLUS Ill 
I RETURN 

ICO"lS 
ll.iUOTE TIMESI 
IMAPLIST !CDR Bl 

(FUNCTION !LAMBDA ICI ISIMPEXPT !LIST A !CAR Clllll llll 



I !NOT !ATOM Bl I 
I Rt TURN 

IPROG !WI 
IRE TURN 

ICOND 
(()40TISETQW 

IMZ 
H 
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!QUOTE !PLUS ICOEFFT IC TRUEll 
!LOG IBl TRUEI lA TRUE) I 

ICOt:FFP IE TRUEII II 
'HL Ill 

!LIST l(JUOTE EXPTI A Bl I 
I !NOT !EQUAL A ISUSLIS W ICUOTE 811111 

!LIST (QUOTE cXPTI A Bl I 
IT 

ISIMPTIMES !LIST 
ISI~PEXPT !LIST ISUBLIS W !QUOTE All 

ISUBLIS W !QUOTE Cll II 
ISIMPEXPT !LIST A ISUBLIS W !QUOTE Ellll lllllllll 

!RETURN !LIST (QUOTE EXPTI A Bll Ill 
li:XPTLUOP 

I LAi~BDA 
I A I 
IPROG23 

ICSETQ SIMPIND Tl 
!MAPLIST A !FUNCTION ILA~.BDA ICI ISIMPEXPT !LIST !CAR Cl Bl l l I l 
ICSETU SIMPIND NILl Ill 

IS IMP 
ILAMBOA 

I EXP I 
I PROG I Z I 

IRETUR'J 

A TTl'( Iti 

1 coc•o 
I !ATOM EXPI EXP) 
I SIMPIND EXPl 
!!NULL ISETQ Z !GET !CAR EXPl !QUOTE SIMPllll 

ICONS !CAR EXPI 
IMAPLIST !CDR EXPl !FUNCTION (LAMBDA ICI !SIMP !CAR Clllll II 

I li:lol Z !QUOTE SIMPTIMESl I ISIMPTIMES !CDR EXPl II 
I lEI< Z !QUOTE SIMPPLUSl I ISIMPPLUS !CDR EXPl I l 
IIEQ Z IQUuTE SIMPEXPTll ISI~PEXPT !CDR EXPlll 
IT !APPLY Z !LIST !CDR EXPII IALISTlll lllllll 

leLUS I Sli'IP SIMPPLUSII 

ATTR If\ 
IT IMES I SIMP SIMPTIMESl l 

ATTRib 
I oXPT I SIMP SIMPEXPTII 

DeFINE 
lllSlMPLQG 

I LAf',BDA 
I A I 
(PKOG 181 

ISETW ti !SIMP ICADR Alii 
ISETW A !SIMP !CAR Alii 
ICOND I IE:QUAL A Bl !RETURN 111 



ATTR IB 

l!tQP B 11 !RETURN 011 
!lcQ !CAR B) !QUOTE EXPTII 
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ICONO ((EQUAL 4 ICADR Bll !RETURN ICADDR Bill 
IT (RETURN !LIST (QUOTE TIMES) 

ICADDR Bl 
!LIST (QUOTE LOG! 4 ICADR Bll IIIII 

IT IRE TURN I L1 S T I QUOTE LOG I l B I I I I I I I I I 

(LOG !SIMP SIMPLOGII 

DEFINE 
I I I SIMPTRIG 

I LAMBDA 
lA 6 C Dl 
I PROG I Y I 

!RETURN ICOND 
!!EQUAL 0 Bl Cl 
( I A TOM D I ILlS T A D I I 
I I SE TQ Y 

I CDR I S~SSDC !CAR 01 
!GET A (,QUOTE SIMPTRIGI I 
(QUOTE NILLl I I) 

I SIMP I SUBST ICADR Dl (QUOTE XI Yl I I 
IT !LIST A Oil Ill)) 

ISIMPTRIGl !LAMBDA !AI ISIMPTRIG !QUOTE SIN! 0 !SIMP !CAR Alllll ll 

ATTR IB 
!SIN !SIMP SIMPTRIGlll 

ATTRIB 
!CDS I SIMP SIMPTRIG21 I 

DEFINE 
IIISIMPTRIG2 !LAMBDA (A) ISIMPTRIG (QUOTE CDS! 0 l !SIMP !CAR Alllllll 

DEFINE 
IIITIMESLDOP 

I LAMBDA 
I A B I 
ICONS 

I QUOTE PLUS) 
IMAPLIST 6 

!FUNCTION !LAMBDA ICI 
ISIMPTIMES (PROG23 ICSETQ SIMPIND T1 !LIST A !CAR C)) !CSETQ SIMPIND NIL)) ))))))) 

I EXPAND 
I LAMBDA 

(A Bl 
IS!MPPLUS IMAPLIST B IFUNCTIO~ !LAMBDA ICI ITIMESLOOP !CAR C) Alllll )) 

IPROG23 !LAMBDA lAB Cl B)) )) 

OEF INE 
IIISIHPTAN (LAMBDA (A) 

ICOND IIEQ ICAAR AI (QUOTE ARCTAN)) !SIMP ICAOAR Alii 
IT ISIMPTRIG !QUOTE TAN! 0 0 !SIMP !CAR Allll ))) 

IS IHPARC TAN I LAMBDA I A I 
ICONO !IEQ ICAAR AI !QUOTE TAN)) !SIMP ICAOAR Alii 

IT ISIMPTR!G (QUOTE ARCTAN) 0 0 !SIMP !CAR A)))) ))))) 

ATTRIB 
!TAN !SIMP SIMPTANII 



ATTR 16 
!ARCTA~ !SIMP SIMPARCTANll 

DEFINE 
I I !SIMPDIFFERENCE !LAMBDA !AI 

!SIMPPLUS !LIST (CAR AI 
tSIM?TIMES !LIST -1 ICADR All! llll 

I SIMPQUOTIENT !LAMBDA !AI 
ISIMPTIMES (LIST !CAR AI 

ISIMPEXPT !LIST ICADR AI -111 1111 
lSIMPMit'WS !LAMBDA (AI !SIMPTIMES (LIST -1 !CAR Alllll II 

4 TTR IB 
IDIFF~RENCE !SIMP SIMPDIFFERENCEll 

ATTR 16 
(QUOTIENT !SIMP SIHPQUOTIENTil 

ATTR IB 
IMI~US ISIMP SIMPMINUSII 

ATTRIB 
ISIN !SIMPTRIG ((ARCSIN • XI 

!ARCCOS EXPT !DIFFERENCE 1 IEXPT X 211 D.5EOI 
(AKCTAN QUOTIENT X IEXPT (PLUS 1 IEXPT X 211 0.5EOII Ill 

ATTK lti 
IC8S (SIMPTRIG (!ARCSIN EXPT !DIFFERENCE IEXPT X 211 0.5EOl 

!ARCCOS • XI 
!ARCTAN EXPT (PLUS 1 IEXPT X 211 -0.5EOI Ill 

ATTR IB 
ITA~ ISIMPTRIG !!ARCSIN QUOTIENT X IEXPT (DIFFERENCE 1 IEXPT X 211 0.5EOII 

!ARCCOS QUOTIENT IEXPT !DIFFERENCE 1 IEXPT X 211 0.5EOI XI 
(ARCTAt~ XI Ill 

ATTR IB 
!ARCSIN ISIMPTRIG IISIN XI ICOS PLUS X (QUOTIENT PI 211111 

ATTR IB 
!ARCCOS ISIMPTRIG (!SIN DIFFERENCE X (QUOTIENT PI 211 !COS • XIIII 

ATTR IB 
!ARCTAN !SIMPTRIG !(TAN. XIIII 

DeFINE 
ll!NILL !LAMBDA NIL ICUOTE INILIIIIll 

DEFINE 
ll!SIMPARCSI"' !LAMBDA !AI ISIMPTRIG (QUOTE ARCSINI 0 0 !SIMP !CAR Alllll 

( SIMP ARCCOS 
!LAMBDA IAI 

!SIMPDIFFERENCE !LIST ISIHPQUOTIENT !LIST !QUOTE Pll 211 
ISIMPARCSIN !LIST All Ill I 

I S IMPARCCO T 
(LAMBDA !AI 

ISIMPOIFFERENCE !LIST ISIMPQUOTIENT !LIST (QUOTE Pll 211 
ISIMPARCTAN !LIST All llllll 



209 

A TTR IB 
(ARCS I'J (SIMP SIMPARCSINII 

ATTR I B 
!ARCCOS (SIMP SIMPARCCOSII 

ATTR IB 
IARCCOT I SIMP SIMPARCCOTI l 

DEFINE 
(I!MATCHSUM1 (LAMBDA (ASUM BSUMI 

DEFINE 

(PROG (Z W LENGTH M!NLENGTH QUOT MINQUOTI 

LOOP 

A 

OUT 

!COND !!NOT (EQUAL !LENGTH ASUM) (LENGTH BSUMlll 
!RETURN NIL) l) 

ISETQ Z !CADR ASUMll 
!SETQ W !CDR BSUMll 
!SETQ MINLENGTH 10001 

!SETQ QUOT !SIMPQUOTIENT !LIST !CAR WI Zlll 
( SE TQ LENGTH 

(LENGTH !COND I!EQ (CAR QUOTl 
(QUOTE tIMES l 

(CDR CUOTI l 
IT (QUOTE (Nillll ))) 

!COND ((GREATERP LENGTH MINLENGTHl (GO All) 
!SETQ MINLENGTH LENGTH) 
!SETQ MINQUOT QUOTl 

(COND ([EQUAL MINLENGTH 1) (GO OUT))) 
ISETQ W !CDR WI l 
!COND !W (GO LCOP) l) 

ICOND [(M2 BSUM 
ITIMESLOOP MINQUOT (CDR ASUM)) 
NIL l 

!RETURN MINQUOTI ) ) 
!RETURN Nil) IIlli 

(((SIMPCOT !LAMI:!DA !XI !LIST [QUOTE EXPTI !SIMPTAN XI -llllll 

ATTRIB 
!CUT !SIMP SIMPCOTll 

DEFINE 
( ( !REPLAC~ !LAMBDA (OICT EXPll 

(PROG23 !CSETQ SIMPIND T1 (REPLAC EXPll (CSETQ SIMPIND Nlll) ) ) 
!REPLAC 

(LAMBDA 
( tXP ll 
!I'ROG !Zll 

!RETURN 
!COND 

(!NULL EXPll Nl Ll 
(!NOT !ATOM EXPlll 

(COND 
(IEQ !CAR EXPll (QUOTE EVALll 

IPROG2 
ISETQ ll !EVAL (REPLAC !CADR EXPlll (ALISTlll 
IPROG23 

!CSETQ SIMPIND Nil) 
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(~IMP Zll 
ICSETQ SIMPIND Tl Ill 

IIEO ICAR EXPll IOUOTE QUOTE•II ICADR EXPlll 
IT IPROG IZl Wll 

ISETQ Zl IREPLAC ICAR EXPllll 
ISETQ ~~ IREPLAC !CDR EXPllll 
!RETURN ICOND llANO IEQ Zl ICAR EXPlll IEQ Wl ICOR EXPllll 

E XPl I 
IT ISIMPl ICONS Zl Wllll 111111 

II NUM3ERP E XP11 E XPll 
IISETO Z1 ISASSOC EXP1 OICT !FUNCTION !LAMBDA NIL NILIIII 

IGOR Zll l 
I T E XP 11 I I l l l 

IS IMP 1 I LAMBDA IE XPll 
ICONO 

IIATOM EXP1l EXP1l 
IlNDT IGET ICAR EXP1l !QUOTE SIMP!ll EXP11 
IIEQ ICAR EXPll !QUOTE TIMESII ISIMPTIMES IGOR EXP111l 
IIEQ ICAR EXPll li.lUOTE PLUSII ISIMPPLUS ICDR EXPllll 
IIEQ ICAR EXP11 !QUOTE EXPTII ISIMPEXPT ICOR EXPllll 
IT !APPLY IGET ICAR EXP1l !QUOTE SIMPII !LIST ICDR EXPlll IALISTIIl IIIII 

DEFINt 
Ill DVCOE 

I LAMBDA IE P I NO l 
IPROG IX Y Zl 

LOOP 

I SETQ ANS ICONS NIL ANSII 
ICOND IlNDT IEQ ICAR El (QUOTE TIMESIIl 

ISETQ E !LIST (QUOTE TIMES) Ell II 
ISETQ Z ICDR Pll 

ISETQ Z !CDR Zll 
ICOND IINULL Zl 

ICOND IITESTA ICADR PI (SIMP ICOPYl Ell NIL! 
I RETURN ICOND I !NO I RESTORE11 l 

IT I RESTORE211 II l 
IT !RETURN IRESTORElll Ill 

I SE TQ X E l 
IGO LOOP2l 

LOOP1 
ISETQ X ICDR XII 

LOOP2 

L2 

Ll 

L7 

ICOND II NULL I CDR XII IGO L6l II 
ICOND IIEQ ICAADR XI !QUOTE EXPTll IGO Llll 

I(M1 ICADR XI ICAR Zll IGO L2ll l 
IGO LOOP11 

ISETQ ANS ICONS ICONS X ICDR XII ANSll 
IKPLACD X ICDDR XI I 
IGO LOOP) 

ICONO I IEQ ICAAR Zl I QUOTE EXPTII IGO L311 
IlNDT (Ml ICAOADR XI !CAR Zlll !GO LOOP111 

I SE TQ Y -11 

ISETI.l ANS ICONS ICONS X ICDR XII ANSll 
I KPLACD X 

ICONS !SIMP lUST ICAADR XI 
ICADADR XI 
!LIST (QUOTE PLUS) 

ICAR ICCDADR XII 



L3 

L5 

L6 

DEFINE 

211 

Y Ill 
ICDDR XI I l 

IGO LUOPI 

ICOND I IM1 ICADADR XI !CADAR Zll !GO L5lll 
I GO LOOPll 

ICOND IIM1 ICAR ICDDAOR XII ICADDAR Zll !GO L2lll 
ISETQ Y ISI~PMINUS (LIST ICADDAR Zllll 
IGO L71 

ICONC IIM11 ICAR Zll !GO LOOPlll 
I SE TQ E 

ICONS !CAR E I 
ICONS ISIMPEXPT !LIST !CAR Zl -111 !CDR Ell II 

IGOLOOPilllll 

IIIDIFF1 !LAMBDA IEXP VARI IPROG23 ICSET SIMPIND Tl IDIFF EXPI ICSET SIMPIND NILIII I 
I DIFF 

I LAMBDA 
I EXP I 
ICOND 

IIATDM EXPl ICOND !IE~ EXP VARl 11 IT Olll 
IIEQ !CAR EXPI !QUOTE EXPTll 

I CDND 
I I FREE I C A ODR E XP II 

ISIMPTIMES !LIST 
ICADDR EXPI 
ISIMPEXPT !LIST ICADR EXPI ISIMPPLUS !LIST ICADDR EXPI -11111 
IDIFF ICADR EXPII Ill 

!!FREE ICADR EXPII 
ISIMPTIMES ILIST 

EXP 

IT 

ISIMPLOG !LIST !QUOTE El !CADR EXPlll 
IDIFF ICADDR EXPll Ill 

I SIMPTIMES 
I LIST 

E XP 
I SII~PPLUS Ill ST 

ISIMPTIMES (LIST 
I CADDR E XP I 
IDIFF ICADR EXPII 
I SIMPEXPT Ill ST ICADR EX PI -11 l II 

ISIMPTIMES ILIST ISIMPLOG lUST !QUOTE El ICAOR EXPlll 
IDIFF ICADDR EXPII 111111111 

I lEO I CAR EXPI (QUOTE liMoS II 
ISIMPPLUS 

(MAPLIST 
IGOR EXPI 
(FUNCTION !LAMBDA IYI 

ISIMPTIMtS ICONS IDIFF ICAR Yll !CHOICE !CARYl !CDR EXPIIll IIIII 
!lEO ICAR EXPI !QUOTE PLUSll 

ISIMPPLUS IMAPLIST IGOR EXPI !FUNCTION !LAMBDA IYI IDIFF !CAR Yllllll l 
IT (APPLY !GET ICAR EXPI (QUOTE DIFFII ILIST !CDR EXPII IALISTIII Ill 

!CHOICE !LAMBDA (A Bl 
ICOND IIEQ A ICAR Bll !CDR Bll IT ICONS ICAR Bl !CHOICE A !CDR Blllll 1111 

DEFINE 
IIIBIGDIFF ILAM~DA lA Bl 
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ISIMPTIMES !LIST IDIFF ICAR All 
ISUBST ICAR AI !QUOTE XI Bl llllll 

DeFINE 
IIIOIFLOG !LAMBDA IAJ 

IPROG NIL ISETQ A ICDR All !RETURN IBIGDIFF A (QUOTE IEXPT X -llllll ll 
IDIFSIN !LAMBDA IAJ IBIGDIFF A I~UOTE ICOS Xlllll 
IOIFCOS !LAMBDA lA) IBIGDIFF A I~UOTE !TIMeS -1 ISIN Xllllll 
IDIFTAN !LAMBDA IAJ llliGDIFF A ll.lUOTE IEXPT ISEC XI 211111 
IOIFSEC !LAMBDA IAl IBIGDIFF A !QUOTE !TIMES ISEC XI ITAN Xllllll 
IDIFARCTAN !LAMBDA IAI IBIGDIFF A !QUOTE IEXPT !PLUS 1 IEXPT X 211 -llllll 
I DIFAKC~!Cj I LAMbDA IAI 

IBIGDIFF A !QUOTE IEXPT !PLUS 1 !TIMES -1 IEXPT X 2111 -0.5EOIII ll 
IOIFCSC !LAMBDA !AI IBIGDIFF A !QUOTE !TIMES -1 ICOT XI ICSC Xllllll 
IDIFCOT !LAMBDA IAI IBIGDIFF A !QUOTE !TIMES -1 IEXPT ICSC XI 2111111 
IDIFARCCOS I LAMBDA IAI I MINUS IDIFARCSIN AI I I I 
IDIFARCSEC 

!LAMBDA IAI 
IBIGDIFF A 

!QUOTE IEXPT !TIMES X 
IEXPT !DIFFERENCE IEXPT X 21 11 

0.5EO l l 
-1 l I I I I 

IDIFARCCSC !LAMBDA IAI ISIMPMINUS lUST IDIFARCSEC Alllll 
IDIFINTEGflAL !LAMBDA lXI 

ICO"'D I leQ ICADR XI VARI ICAR XI l 
IT I SIMP I LIST !QUOTE INTeGRAL) IDIFF !CAR XII ICADR XIIII Ill II 

ATTRIB 
ll~TEGRAL IDIFF OIF!"'TEGRALII 

ATTRIB 
ISI"' ID!FF DIFS!Nll 

ATTRIB 
!CDS IDIFF DIFCOSII 

ATTRIB 
!TAN IDIFF DlFTANll 

ATTRIB 
!SEC IDIFF DIFSECll 

ATTRIB 
IARCTA'l IDIFF DlFARCTANil 

ATTR IB 
!ARCSIN IDIFF DIFARCS!Nll 

ATTR IB 
I LOG IDIFF DlFLOGl I 

ATTRIB 
ICSC ID!FF DIFCSCII 

ATTRIB 
!COT IDIFF DIFCOTJI 

ATTRIB 
IA~CCOS IDIFF OIFARCCOSil 
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ATTR IB 
IARCSEC IDIFF DIFARCSECII 

ATTRIB 
IARCCSC IDIFF DIFARCCSCII 

DEFINE 
Ill EXPAND2 I LAMBDA IEXPI IPROG23 ICSET SIMP INO Tl IEXPANOl EXPI ICSET SIMPINO NILI II 
I 

IEXPANDl 
I LAMBDA 

I :xP I 
ICOND 

II A TOM E XP I E XP I 
llANO IEQ !CAR EXPI !QUOTE EXPTII 

INOT !ATOM ICADR EXPIII 
IINTEGERP ICADDR EXPII 
I EQ I CAADR E XP I I QUOTE PLUS I I 
I~REATERP ICADDR EXPI 01 
ILESSP ICADDR EXPI 61 I 

IEXPANDEXPT ICADR EXPI ICADDR EXPII 
IIEQ IC.AR EXPI !QUOTE TIMES)) 

ICOND IICDDR EXPI 
IPRODEXPAND IEXPANDl ICADR EXPI I 

IEXPANDl ICONS (QUOTE TIMES! ICODR EXPIII II 
II CDR EXPI IEXPANDl ICADR EXPI I I 
IT NILI II 

IT ISIMPl IMAPLIST EXP IFU"'CTION !LAMBDA ICI IEXPANDl ICAR Clllllll Ill 
IPRUDEXPAND ILAMoDA lA Bl 

ICD'lD 
IlNDT lOR lEO I CAR AI I QUOTE PLUS II IEQ I CAR Bl (QUOTE PLUS II II 

ISIMPTIMES !LIST A Bll I 
II'~OT IEQ ICAR AI IQUUTE PLUSIII ITIMESLCOP A ICDR Bill 
IlNDT IEQ ICAK Bl !QUOTE PLUSIIJ ITIMESLOOP B (CDR Alii 
IT !EXPAND ICDR AI ICDR Bill IIIII 

DEFINE 
Ill RATIONALIZE 

I LAMBDA 
IEXPI 
IPROG 1101 

I RETURN 
ICOND 

IlNDT IE~ I CAR EXPI (QUOTE PLUS I I I NILI 
I I SE TO 

w 
1M2 

EXP 
I QUOTE 

I PLUS 
IT I ME S 

ICOEFFTT 
IC 

IF UNCTION 
I LAMBDA 

IC I 
I Ml 
c 
I~UOTE 

IE XP T 
IAA !FUNCTION (LAMBDA IAAI 



DEFINE 

2i4 

lAND INOT !EQUAL AA Ill 
!NOT !EQUAL AA Oll llll 

IN !FUNCTION ILAP-!BDA INt 
lAND INUMBERP Nl ILESSP NOll llllllllll 

ICDEFFTT IB TRUEll l 
ICOEFFPT lA TRUEll ll 

NIL ll 
!REPLACE W IOUOTE !TIMES !PLUS (QUOTIENT A Cl Bl Clll l 

IT Nlll ll lllll 

FORM,SIN,DERIVATIVE-DIVIDES 

Ill TRUE I I LAMBDA IAI lOR I 'lOT INUMBERP All I NOT IZEROP Alllll 
IINTEGEKPl !LAMBDA IAl IINTEGERP ISIMPTIMES !LIST 2 Alllll 
IVARP (LAMBDA IAl !EQUAL A VARlll 
!FREEl !LAMBDA IAl (AND !FREE Al lOR INOT INUMBERP All !NOT IZEROP Allllll 
IFlXPl (LAMBDA IAl lAND INUMBERP Al IFIXP All)) 
!MASTER !LAMBDA lA) 

IPROG NIL 

DEFINE 
I I I FORM 

IFlLcWRlTE ll.JUOT:: MANDVEl (QUOTE LISP! !QUOTE MASTERll 
IFILEAPND 

!QUOTE MANOVE) 
(QUOTE LISP) 
!LIST ICONS ICAR Al ITRANSL !SIMP ICDR Alllll l 

!CHAIN !QUOTE IISAVE MOSES Tl IR FULMAN MANDVEllll 
IFILESHK !QUOTE MANOVEl (QUOTE ANSll 
I RETURN I SIMP IU'ITR IREADllll lllll 

I LAMBDA 
IEXPRESl 
ICDND 

IIFREE EXPRESl Nlll 
I I ATOM EXPRESl Nlll 
I I MEMBER ICAi't EXPRESl I QUOTE I PLUS TIMES Ill 

I I LAMBDA ILl 
IPROG IYl 

LOOP 
ICOND 

IISETQ Y !FORM ICAR Ull !RETURN Yll 
IlNDT I SETQ L I CDR Llll I RETURN Nllll 
IT I GO LOOP l l ll l 

ICDR EXPRESl ll 
I (MEMBER I CAR EXPRESl I QUOTE I LOG ARCTAN ARCS!Nlll 

ICOND 
I I SETQ ARG 

1M2 
EXP 
ILl ST 

(QUOTE TIMES) 
!QUOTE ICDEFFTT IC RATBPRIMElll 
ICD"lS ICAR EXPRESl 

ICDND I IEQ ICAR EXPRESl I QUOTE LDGll 
ICONS ICADR EXPRESl I QUOTE I IB RAT8llll 

IT !QUOTE liB RAT8llll Ill 
N lL ll 
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IRATLOG EXP VAR ICONS ICONS !QUOTE AI EXPRESI ARGII I 
IT 

I PROG I Y Z I 
ICOND 

II SE TQ Y 
!FORM ICOND IIEQ ICAR EXPRESI !QUOTE LOGII ICADDR EXPRESII 

IT ICADR EXPRESII Ill 
!RETURN Yl I 

llANO 
I EQ I CAR E XPRE S I I QUOTE LOG II 
ISETQ Z 1M2 ICADDR EXPRESI C Nllll 
!FREE ICADR EXPRESII 
I SE TQ Y 

1M2 
EXP 
I QUOTE I TIMES ICDEFFTT IC RATS I l ICOEFFTT ID ELEMIII l 
NIL Ill 

I RETURN 
I I LAMBDA 

(A B C 0 BASEl 
(SUB ST 

EXPRES 
VAR 
(INTEGRATE 

ISIMPTIMES (LIST 
ISUBST 
Ill ST 

(QUOTE QUOTIENT! 
Ill ST 

(QUOTE DIFFERENCE) 
(LIST (QUOTE EXPTI BASE VARI 
A I 

B I 
VAR 
C I 
Ill ST 

!QUOTE QUOTIENT) 
!LIST (QUOTE EXPTl BASE VARI 
B I 

ISUBST VAR EXPRES Dl II 
VAR Ill 

(COR ISASSOC (QUOTE AI Zll 
I COR ( SASSOC (QUOTE Bl Zll 
!COR ISASSOC (QUOTE Cl Yll 
!CDR ISASSOC (QUOTE Dl Yll 
ICADR EXPRESI 111 

IT !RETURN Nllll lllll 
( (OPTRIG !CAR EXPRESl l 

ICOND 
IINOT ISETQ W 1M2 ICADR EXPRESl C NILlll !FORM ICADR EXPRESlll 
IT IPROG2 ISETQ POWERLIST Tl IMONSTERTRIG EXP VAR ICAOR EXPRESl Ill l l 

((FIXPl ICADDR EXPRESll !FORM ICAOR EXPRESlll 
( (FREE ICADR EXPRESII 

ICOND 
IISETQ W 

1M2 
EXP 
!QUOTE !TIMES ICOEFFTT IR RAT811 IEXPT !BASE FREEl IP POLYPIII 
NIL I I 

ICALLALGORT ISUBLIS W (QUOTE IR P BASEIII VARI l 
11M2 ICADDR EXPRESI C Nlll ISUPEREXPT EXP VAR ICADR EXPRESIII 
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IT IFORM ICADDR EXPRESIII II 
I (1\IOT (RATS ICAOR EXPRESIII (fORM ICAOR EXPRESIII 
llANO ISETQ W 1M2 ICADR EXPRESI RATROOTFORM NILII 

I OENOMF I NO (CAD DR E XPRE S II I 
IPROG2 ISETQ POWERLIST Tl IRATROOT EXP VAR ICAOR EXPRESI Wll I 

((NOT IINTEGERP1 ICAOOR EXPRESIII 
ICOND (1M2 EXP CHEBYFORM NILI ICHEBY EXP VARII 

IT (FORM ICADR EXPRES)II ll 
IISETQ W 1M2 ICAOR EXPRESI 0 NILII 

ICONO 
I I SETQ ARG 

1M2 
EXP 
(QUOTE !TIMES 

IEXPT IVAR VARPl -11 
ICUEFFTT IAA FREEl) 
IEXPT ISQ Ml 01 -O.SEOI )I 

NIL ll 
(SIMP 

I SUBST 
!LIST (QUOTE EXPTl VAR -11 
VAR 
I ALGEB2 
ILl ST 

(QUOTE TIMESI 
-1 
(REPLACE ARG (QUOTE AAl I 
Ill ST 

(QUOTE EXPTI 
I SE TQ Y 

(REPLACE ARG 
(QUOTE (PLUS (TIMES A !EXPT VAR 211 !TIMES B VARl Cl lll 

-0.5EO ll 
VAR 
y 
(REPLACE ARG 

!QUOTE (((QUOTE• Cl • AI ((QUOTE• Bl • Bl ((QUOTE• Al • Cll llllll 
(T IALGEB2 EXP VAR ICAOR EXPRESI Wll ll 

(I SETQ W 1M2 ICAOR EXPRESI E NILI l 
IPROG2 ISETQ POWERLIST Tl IROOTLINPROD EXP VAR ICAOR El<PRESl Wll 

11M2 EXP CHEBYFORM NILI ICHEBY EXP VARil 
((NOT 1M2 !SETQ W IEXPANOZ !CAOR EXPRESIII !CAOR EXPRESl NILII 

IPROG2 
ISETQ EXP !SIMP ISUBST W ICADR EXPRESI EXPill 
IFORM (SIMP !LIST (QUOTE EXPTI W !CADOR EXPRESIIll ll 

IISETQ W !RATIONALIZE ICAOR EXPRESlll 
I PROG2 

ISETQ EXP (SIMP ISUBST W ICAOR EXPRESI EXPIII 
(FORM !SIMP !LIST !QUOTE EXPTI W ICAOOR EXPRESIIII II 

IT NILI IIIII 

DEFINE 
I I I INTEGRATE 

I LAMBDA 
IEXP VARI 
IPROG IV ARG POWERLIST B W C 0 E RATROOTFORM CHEBYFORMI 

ICONO I I FREE EXPI I RETURN !SIMPTIMES I LIST EXP VARl l l l I 
ICOND 

I (NOT IEQ ICAR EXPI (QUOTE PLUS Ill IGO 011 
IT 

(RETURN 
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LOOP 

SKIP 
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ISIMPPLUS (MAPLIST !CDR EXPI 
!FUNCTION !LAMBDA ICI !INTEGRATE! !CAR Cllll ))Ill 

ICOND IISETQ V IDIFFDIV EXP VARII (RETURN VIII 
I SETQ V 

ICOND I IEQ I CAR EXPI (QUOTE TIMES I I I CDR EXPI I IT I LIST EXP I I I I 
I SE TQ C 

(QUOTE I PLUS ICOEFFPT IB FREEl IX VARPI I ICOEFFPT lA FREEl I 1 I I 
ISETQ RATROOTFORM 

IQUOT!: !TIMES 
ICOEFFTT IE FREEII 
!PLUS ICOEFFPT lA FREEl IVAR VARPII ICOEFFPT IB FREElll 
IEXPT !PLUS ICOEFFPT IC FREEl IVAR VARPII ICOEFFPT ID FREElll 
-l I I I I 

I SETQ 
CHEBVFOKM 
(QUOTE !TIMES 

IEXPT IVAR VARPI IRl NUMBERPI I 
IEXPT !PLUS !TIMES ICOEFFTT IC2 FREEII IEXPT IVAR VARPI (Q FREEllll 

ICOEFFP ICl FREEl 1 I 
IR2 NUMBERPJ I 

ICOEFFTT lA FREEII Ill 
I SE TQ D 

!QUOTE !PLUS 
ICDEFFPT IC FREEl IEXPT IX VARPI 211 
ICDEFFPT IB FREEl IX VARPI I 
ICOEFFPT lA FREEII Ill 

I SETU E 
!QUOTE !TIMES (PLUS ICOEFFPT lA FREEl IVAR VARPII ICOEFFPT IB FREEIII 

I PLUS ICDEFFPT IC FREE I I VAR VARPI I I COEFFPT I D FREE I I I I I I 

ICOND 
((RATS !CAR VII !GO SKIPII 
IISETQ W (FORM !CAR VIII (RETURN Wll 
IT !GO SPECIAUI I 

ISETQ V !CDR VII 
ICDND ((NULL VI 

!RETURN ICOND IISETQ V IPOWERLIST EXP VARII VI 
IT !MASTER ICONS VAR EXPlll )))) 

(GO LOOPI 
SPECIAL 

DEFINE 

(RETURN I COND 
IlNDT 1M2 EXP ISETQ V IEXPAN02 EXPII NILII IINTEG~ATE V VARII 
IIAND !NOT POWERLISTI ISETQ V IPOWERLIST EXP VARIII VI 
(($ETC Y (PARTS EXP VARII Y) 
IT !LIST !QUOTE INTEGRAL) EXP VARII 1111111 

IIIRATS ILAM8DA IEXPI 
ICOND IIFREE EXPI Tl 

IIATOM EXPI Tl 
((MEMBER ICAR EXPI !QUOTE !PLUS TIMESIII 

lAND IRAT8 ICAOR EXPII 
ICDND IICDDR EXPI 

(RATS ICONS !CAR EXPI ICDDR EXPIII I 
( T Tl l I I 

((NOT IEI.l !CAR EXPj !QUOTE EXPTIII NILI 
IIFIXPl ICADDR EXPll (RATS ICADR EXPIII 
IT Nl L1 I I Ill 
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DEFINE 
IIIINTEGRATEl !LAMBDA IAl !INTEGRATE A VARlllll 

DEFINE 
IIIPDLYP !LAMBDA IEXPl 

ICDND 
IIFREE EXPl Tl 
II A TOM EXP l Tl 
II MEMBER I CAR EXPl !QUOTE I PLUS TIMES Ill 

I AND I POLYP I CADR E XP l) 
lOR I NULL ICUDR EXPII I POLYP ICONS I CAR EX PI ICDDR EXPll l l II 

IIEQ ICAR EXPl (QUOTE EXPTll 
lAND 

INUMBERP ICAODR EXPII 
IINTEGERP ICADDR EXPll 
IGREATERP ICADDR EXPl Ol 
!POLYP ICAOR EXPll II 

IT NILI Ill 
ICALLALGORT 

I LAMBDA 
lA VAR I 
IPROG NIL 

IFILEWRITE !QUOTE MANOVEl !QUOTE LISP! !QUOTE SUPERALGORTll 
IFILEAPND 

!QUOTE MANOVEl 
IQUUTE LISPI 
I LIST 

I TRANSL I CAR AlI 
ITRANSL ISIMPTIMES !LIST ICADR AI ISIMPLOG ILIST !QUOTE El ICADDR Allll ll 
VAR ) l 

!CHAIN !QUOTE IISAVE MOSES Tl IR FULMAN MANOVEllll 
IFILESEEK !QUOTE MANOVEl !QUOTE ANSI! 
!RETURN !SIMP IUNTR IREADllll IIlli 

DEFINE 
IIISIN !LAMBDA IEXP VARl !INTEGRATE IS!MP EXPl YARill 

IOPTRib !LAMBDA IAI !MEMBER A !QUOTE ISIN COS SEC TAN CSC COTlllll 
I ELEM 

I LAMBDA 
IAI 
ICONO 

II FREE A I Tl 
II A TOM A I N I L1 
11M2 A EXPRES NIL) Tl 
IT IEYAL ICONS !QUOTE ANOI 

IMAPLIST ICDR AI !FUNCTION !LAMBDA ICI IELEM !CAR Clllll l 
NIL Ill l Ill 

DEFINE 
IIIFREE !LAMBDA IAI 

ICOND IIATUM AI INOT IEQ A YARIIl 
It lAND !FREE ICAR All !FREE ICDR Allll Ill 

IYARP !LAMBDA IAl IE\1 A YARIII II 

DEFINE 
IIIDEFINITEINTEGRAL 

!LAMBDA IEXP YAR LOWER UPPERI 
IPROG IYI 

ISETQ V !PRINT !INTEGRATE EXP VARIII 
!RETURN ISIMPDIFFERENCE !LIST ISUBST UPPER VAR VI 

ISUBST LOWER YAR VI 111111 



I DOUBLE INTEGRAL 
!LAMBDA IEXP Ll 

IPROG IYl 
I SE TQ Y 
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IDEFINITEINTEGRAL EXP 
ICAAR Ll 
ICADAR Ll 
(CAR ICDDAR Lll ll 

!RETURN IDEFINITEINTEGRAL Y 

DEFINE 
IIIINTEGRALLOOKUP 

I LAMBDA 
I EXP l 
ICONO 
II~Q !CAR EXPl (QUOTE LOGll 

!SIMP ISUBST 
ICADDR EXPl 
(QUOTE Xl 

ICAADR Ll 
ICADADR Ll 
!CAR ICDDADR Lll lllllll 

!QUOTE !PLUS !TIMES X !LOGE Xll !TIMES -1 Xlll lll 
I I EQ I CAR EXPl (QUOTE PLUSll ISIMPTIMES I LIST 0.5EO EXP EXPlll 
IIEQ !CAR EXPl (QUOTE EXPTll 

ICOND 
((FREE ICADK EXPll 

ISIMPTIMES ISUBST 
EXP 
(QUOTe Al 
ISUBST ICADR EXPl (QUOTE Bl !QUOTE (A IEXPT !LOGE Bl -lllll lll 

IIEQP ICAODR EXPl -ll 
!SIMP ISUBST ICADR EXPl (QUOTE Xl (QUOTE (LOGE Xllll l 

IT !SIMP ISUBST 
ISIMPPLUS !LIST ICAOOR EXPl lll 
!QUOTE Nl 
I SUBS T 

ICAOR EXPl 
(QUOTE Xl 
!QUOTE (TIMES IEXPT N -ll IEXPT X Nlll llllll 

IT ISUBST 
ICAOR EXPl 
(QUOTE Xl 
IGOR ISASSOC 

I CAR E XP l 
!QUOTE ((SIN TIMES -1 !COS Xll 

!COS SIN Xl 
!TAN LOGE !SEC Xll 
I SEC LOG E I PlUS I SEC X l IT AN X l l l 
(COT LO~ E !SIN Xll 
ICSC LOG E (PLUS !SEC Xl !TAN Xlll ll 

!QUOTE Nllll lllllll 
IOIFFDIV 

I LAMBDA 
I EXP VAR l 
IPROG IY A X V D l W Rl 

I SETQ X 
1M2 

EXP 
!QUOTE !TIMES ICOEFFTT lA FREEll ICOEFFTT IB TRUEllll 
"'ll ll 
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ISETQ A ICDR ISASSOC (QUOTE AI XIII 
ISETIJ EXP ICDR ISASSOC (QUOTE Bl XIII 
ICOND 

I I AND 
IEQ ICAR EXPI (QUOTE EXPTII 
IEQ ICAADR EXPI IIJUOTE PLUSll 
IINTEGERP ICADDR EXPll 
ILESSP ICADDR EXPI 61 
IGREATERP ICADDR EXPl Ol l 

!RETURN ISIMPTIMES !LIST A 
(INTEGRATE IEXPANDEXPT ICADR EXPl ICAOOR EXPll VARl lllll 

I SETQ E XP 
ICOND I IEQ ICAR EXPl (QUOTE TIMES I I EXPl 

IT !LIST (QUOTE Tli~ESl EXPil II 
I SETQ Z I COR EXPll 

ISETQ Y ICAR Zll 
I SETQ R 

!LIST (QUOTE PLUS! 
ICONS (QUOTE COEFFPTI 

ICONS (QUOTE IC FREElll (CHOICE Y ICOR EXPlll Ill 
ICOND 

I ISETQ W 1M2 IOIFFl Y VARl R Nllll 
IRE TURN 

I SIMPTIMES 
ILl ST 

y 

A 
y 
ISIMPEXPT !LIST ISIMPTIMES !LIST 2 ICOR ISASSOC (QUOTE Cl Wllll 

-1 I Ill Ill 
ICONO 

((MEMBER ICAR Yl (QUOTE IEXPT LOGIIl 
ICOND 

IIFREE ICADR Yll ISETQ W ICADDR Ylll 
((FREE ICADOR Yll ISETQ W ICADR Ylll 
I T I SE TQ W 0 I l l l 

I (MEMBER I CAR Yl I QUOTE I PLUS TIMES I I l ISETQ W Yll 
IT I SET!;; W I CADR Y I I l l 

ICOND 
I I SETQ 

w 
ICONO 

I lAND 
IEQ ICAR ISETQ X IOIFFl W VARlll (QUOTE PLUSll 
IE'i 

(CAR ISETQ VICAR ISETQ 0 !CHOICE Y ICOR EXPllllll 
(QUOTE PLUS! I 

INOT ICDR Oll I 
ICONO IISETQ D IMATCHSUM !COR XI !CDR Vlll 

!LIST ICONS (QUOTE Cl Dll I 
IT Nlll I I 

IT 1M2 X R Nllll II 
(RETURN 

ICONO 
((NULL ISETQ X IINTEGRALLCOKUP Ylll NIL! 
IT 

I SIMPTIMES 
Ill ST 

X 
A 
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ICONO 
I I EQ W T I 11 
IT ISIMPEXPT !LIST !COR ISASSOC IQUOTECI Wll -1111 11111111 

ISETQ Z (CDR Zll 
ICOND II NULL Zl I RETURN Nl Ll II 
IGD AI IIIII 

IIITRUE !LAMBDA IAI Tllll 

DEFINE 
I I I MATCHSUM 

I LAMBDA 
IALIST BLISTI 
IPROG IR S C Dl 

I SE TQ S 

DEFINE 

1M2 
!CAR ALISTI 
(QUOTE !TIMES ICOEFFTT lA FREEl) ICOEFFTT IC TRUEIIII 
NIL II 

ISETQ C ICDR ISASSOC !QUOTE Cl Sill 
ICOND 

I I NOT I SE TQ R 
1M2 

ICONS (QUOTE PLUSI BLISTI 
ILl ST 

!QUOTE PLUSI 
ICONS (QUOTE TIMESI 

ICONS 
!QUOTE ICOEFFTT IB FREE1111 
ICOND IIEQ !CAR Cl (QUOTE TIMESII !CDR Cll 

IT lUST Cll Ill 
!QUOTE ID TRUEII I 

NIL Ill 
!RETURN NILI II 

I SE TQ D 
I SIMP I LIST 

(QUOTE TIMESI 
ISUBLIS S (QUOTE All 
!LIST (QUOTE EXPTI ISUBLIS R !QUOTE Bll -11 Ill 

ICOND 11M2 ICONS (QUOTE PLUSI ALISTI ITIMESLOOP D BLISTI NILI 
IRUURN Dl I 

I T I RETURN N I Ll I I I I I I I 

IIIEXPANDEXPT !LAMBDA lA Nl 
I PROG I VI 

LOOP 
I SE TQ V AI 

ISETQ N ISUBl Nil 
ICOND IIZEROP Nl !RETURN VIII 
I SETQ V 

!EXPAND !CDR AI 
ICOND IIEQ !CAR VI 

IGO LOOP! IIIII 

I QUOTE PLUS I 
I COR VI I 

IT !LIST VII Ill 

METHODS 1-9 OF SIN'S SECCND STAGE 



DEFINE 
ll!SUPEREXPT 

l LAMBDA 
!EXP VAR BASEl 
(P~OG !EXPTFLAG Y WI 

I SETQ Y (ELEMXPT EXPll 
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!CONO IEXPTFLAG (RETURN NI Llll 
I RETURN 

I SIMP 
I SUB ST 

!LIST (QUOTE EXPTI BASE VARl 
VAR 
I INTEGRATE 

I Sl MPQUOTI ENT 
!LIST Y 

ISIMPTIMES !LIST VAR ISI~PLOG !LIST (QUOTE El BASEllll ll 
VA'\ l ll l Ill 

( ELEMXPT 
I LAMbDA 

IEXP) 
ICOND 

((FREE EXP) EXP) 
((ATOM EXP l l SETQ EXPTFLAG Til 
((NOT (EQ ICAR EXPI (QUOTE EXPTlll 

ICONS ICAR EXPl 
IMAPLIST I CDR EXPl (FUNCTION I LAMBDA (Cl IELEMXPT (CAR Cl l l l l ll 

II'WT !FREE ICAOR EXP))) 
!LIST (QUOTE EXPTI IELEMXPT ICAOR EXPll IELEMXPT ICADOR EXPlll 

((NOT IEQ ICAOR EXPJ BASEl l 
IELEMXPT (LIST 

(!;;UOTE EXPTl 
BASE 
(SIMP !LIST 

(QUOTE TIMES! 
(LIST (QUOTE LOG! BASE ICADR EXPll 
ICAOO~ EXPl l llll 

IPIOT ISETQ W 
1M2 

ICAOOR EXPl 
(QUOTE I PLUS ICOEFFPT (A FREEl IVAR VARP) l ICOEFFPT I B FREEl l ll 
NIL l l) 

(LIST I CAR EXPl BASE IELEMXPT ICADDR EXPl l l l 
I T I SIMP I SUBS T 

BASE 
(QUOTE BASEl 
ISUBLIS W (QUOTE !TIMES IEXPT BASE Bl !EXPT VAR Allll llllllll 

DEfiNE 
(I I SUBSTlO 

(LAMBDA (EXt' l 
ICOND 

I I ATOM EXPl EXPl 
((AND IEQ ICAR EJ(Pl (QUOTE EXPTll IEQ ICADR EXPI VARl l 

!LIST !CAR EJ(PJ VAR IINTEGERP (QUOTIENT ICADDR EXPl Dill l 
IT IMAPLIST EXP (FUNCTION (LAMBDA ICl lSUBSTlO ICAR Cllllll lll 

I POWERLI ST 
(LAMBDA 

( EXP VAR l 
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IPROG IY Z CD POWERLIST Bl 
I SE TQ Y 

1M2 
EXP 
!QUOTE I TIMES 

IEXPT IVAR VARPl IC INTEGERPll 
I COEFFTT lA FREEl l 
ICOEFFTT IB TRUE I l l l 

NIL l l 
!SETQ B !CDR ISASSOC !QUOTE Bl Ylll 
ISETQ C !CDR ISASSOC (QUOTE Cl Ylll 
ICD"<D IlNDT ISETQ Z IRATlO Blll !RETURN Nlllll 
ISETQ D ILISTGCD ICONS IADDl Cl POWERLISTl ll 
ICO~D !!NULL Dl !RETURN Nlllll 
I il.ETURN 

!SIMP 
ISUBST 

!LIST !QUOTE EXPTl VAR Dl 
VAR 
!INTEGRATES !SIMP !LIST 

!QUOTE TIMES) 
IEXPTD-ll 
!CDR ISASSOC (QUOTE Al Yll 
!LIST !QUOTE EXPTl VAR ISUBl (QUOTIENT IADDl Cl Dll l 
I SUB STl 0 B l l l 

VAR l l l l l l l 
IRATlO !LAMBDA IEXPl 

!CDNO 
I I FREE EXP l Tl 
!!ATOM EXPl ~Ill 

IIEQ !CAR EXPl (QUOTE EXPTll 
ICOND 

I IEQ IC.<DR EXPl VARl 
ICOND I I INTEGERP ICADDR EXPl l 

ISETQ POWERLIST ICONS ICADDR EXPl POWERLISTll 
IT :\Ill l ll 

IT lAND IRATlO ICAOR EX?ll !RATIO ICADDR EXPll ll II 
I I MEMBER I CAR E XP l I QUOTE I PLUS T1 MES ll l 

lAND IRATlO ICADK EXPll 
lOR !NULL ICDDR EXPll IRATlO ICONS !CAR EXPl ICDDR EXPllll ll 

IIEQ !CAK EXPl !QUOTE LOG)) IRATlO ICADDR EXPlll 
IT IRATlO ICADR EXPlll II I 

ILISTGCD !LAMBDA IPOWERLISTl 
IPROG !Dl 

LOOP 

DEFINE 

ISETQ D !CAR POWERLISTll 

ISETQ POWERLIST !CDR POWERLISTII 
ICONO I IONEP Dl !RETURN NIL I I l 
!COND II~ULL POWERLISTl !RETURN Dill 
!SETQ 0 IGCD D !CAR POWERLISTIII 
I GO LOOP l I I l I I 

I I I INTEGRATES !LAMBDA IEXP VARl 

DEFI1~c 

ICOND IIRATB EXPI !MASTER ICONS VAR EXPI ll 
IT !INTEGRATE EXP VARll ll ll l 

(!!ABSOLUTE !LAMBDA !Al ICOND IILESSP A Ol !MINUS All IT Allllll 
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DEFINE 
(((l<HEGERP !LAMBDA (A) 

IPROG IYl 

A 

ISETQ Y ll 
ICOND I I NOT INUMBERP AIl I RETURN Nlll l 
(I NOT (FLOATP AIl I RETURN A) l l 

ICOND 
IIEQP Y Al !RETURN Yll 
IILESSP Y Al (GO All 
I (NOT IGREATERP (DIFFERENCE Y AI 0.98999999EOl l (RETURN NIL l l l 

I SE TQ Y I SUB 1 Y l l 
I GO C l 

ICOND ((NOT IGREATERP (DIFFERENCE A Yl Q.98999999E0ll !RETURN NILll l 
I SETQ Y IADDl Yl l 
I GO C l l l l 

IFIXPl !LAMBDA IAl lAND INUMBERP Al IFIXP Allll 
IRAT3 !LAMBDA IEXP INDl 

ICOND 
IIFREE EXPl Tl 
(I ATOM EXP l INDI 
I I MEMBER I CAR EXPl (QUOTE I TIMES PLUS Ill 

lAND IRAT3 ICADR EXPl INDl 
lOR I NULL ICDDR EXPl l IRAT3 ICONS !CAR EXPl ICDDR EXPl l INDl l l l 

I (NOT IEQ I CAR EXPl (QUOTE EXPTl l l 
ICOND ( IEQ !CAR EXPl (QUOTE LOG) l IRAT3 ICDDR EXPl Tl l 

IT IRAT3 ICAOR EXPI Tl l l l 
IIFREE ICADR EXPll IRAT3 ICADDR EXPl Tll 
((FIXPl ICAODR EXPll IRAT3 ICADR EXPl !NOll 
I lAND 1M2 ICADR EXPl RATROOT Nlll IDENOMFINO ICAODR EXPl l l 

ISETQ ROOTLIST ICONS IDENOMFIND ICADDR EXPll ROOTLISTll l 
IT IRAT3 ICADR EXPl 'I ILl l l l l 

ISUBST4 (LAMBDA IEXPl 
ICOND 

((FREE EXPl EXPl 
((ATOM EXPl AI 
II NOT IEQ I GAR EXPl (QUOTE EXPTl l l 

IMAPLIST EXP !FUNCTION (LAMBDA ICl ISUBST4 !CAR Clllll l 
11M2 ICADR EXPl RATROOT NILl 

!LIST !CAR EXPl B IINTEGERP !TIMES K ICADDR EXPllll l 
IT !LIST (CAR EXP) ISUBST4 ICAOR EXPll CSUBST4 ICAOOR EXPllll Ill 

IFINOINGK (LAMBDA ILISTl 
IPROG IKl 

A 
I SETQ K ll 

ICOND CCNULL LISTl (RETURN Kill 
ISETQ K !QUOTIENT (TIMES K ICAR LISTll IGCD K !CAR LISTllll 
ISETQ LIST IGOR LISTll 
I GO A l l l l 

CDENOMFIND !LAMBDA IKl 
IPROG IYl 

A 

ICOND IINOT I'IUMBERP Kll (RETURN NILlll 
ISETQ Y ll 

IGOND IIINTEGERP (TIMES K Yll (RETURN Ylll 
ISETQ Y IADDl Yll 
ICOND I ILESSP Y 251 IGO AIl l 
I RETURN Nlll l l l 

IGCD (LAMBDA (A Bl 
(PROG NIL 
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I RATROOT 
!LAMBDA 
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ICOND II ZEROP AI !RETURN !ABSOLUTE Bl I) l 
ISETC B !REMAINDER BAll 
ICO"lD IIZEROP Bl IRETUR"l !ABSOLUTE A)))) 
ISETQ A !REMAINDER A Bll 
!GO A) Ill 

IEXP VAR RATROOT WI 
IPROG IROOTLIST K Y Wll 

DEFINE 

ICOND IISETQ Y ICHEBY EXP VARll !RETURN Ylll 
ICOND !!NOT IRAT3 EXP Tll !RETURN Nlllll 
ISi:Til K IFINDINGK ROOTLISTll 
I SETQ Wl ICONS ICONS !QUOTE Kl Kl WI l 
I SETQ 

y 
( SUBST41 

EXP 
!SIMP ISUBLIS W1 

!QUOTE !QUOTIENT 
!DIFFERENCE B I TIMES 0 IEXPT VAR K) I I 
I DIFFERENCE !TIMES C IEXPT VAR Kl I AI l I II 

VAR I I 
I SETO 

y 

( l"lTEGRA TE 
I SIMP 

I L1 ST 
!QUOTE TIMES) 
y 
I SUBLI S 

W1 
!QUOTE (QUOTIENT 

!TIMES E 
!DIFFERENCE 

!TIMES A D K IEXPT VAR !PLUS -1 Kl)) 
!TIMES B C K IEXPT VAR !PLUS -1 Kl l) II 

IEXPT !DIFFERENCE !TIMES C IEXPT VAR Kll AI 21 ))))) 
VAR ) ) 

!RETURN ISIM~ ISUBST 
I SIMP I LIST (QUOTE EXPTl RATROOT I LIST I QUOTE EXPT) K -11 II 
VAR 
y , ) ) , , ) , , 

IIISUBST41 !LAMBDA IEXP A Bl ISUBST4 EXPillll 

DEFINE 
IIICHEBY 

(LAMBDA 
IEXP VAR) 
IPROG IRl R2 D1 D2 N1 N2 W 01 

ICOND 
I !NOT 

I SETQ 
w 
1M2 

EXP 
(QUOTE !TIMES 

IEXPT IVAR VARPI IRl NU~BERPII 

IEXPT (PLUS !TIMES ICOEFFTT IC2 FREEl! 
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IEXPT IVAR VARPl IQ FREEl! l l 
ICOEFFP IC1 FREEl l l 

IR2 NUMBERPl l 
ICOEFFTT lA FREEl l l l 

NIL l l l 
I RETURN Nlll l l 

ISETQ Q !CDR ISASSOC (QUOTE Ql Will 
I SETQ 
w 
I CONS 

ICONS (QUOTE AI 
ISIMPQUOTIENT !LIST !CDR ISASSOC (QUOTE AI Wll Qll l 

ICONS 
ICONS 

!QUOTE Rll 
I SIMPQUOTIENT I LIST ISIMPPLUS I LIST 

1 
ISIMPMINUS !LIST Qll 
!CDR ISASSOC !QUOTE Rll Wll ll 

Q ) ) ) 
w ) ) ) 

ISETQ R1 !CDR ISASSOC (QUOTE Rll Will 
ISETQ R2 !CDR (SASSOC !QUOTE R2l Wlll 
ISETQ W !REVERSE Wll 
ICOND 

I I NOT lAND 
ISETQ 01 IDENOMFIND Rlll 
ISETQ 02 IDENOMFIND R2ll 
ISETQ N1 IINTEGERP !TIMES R1 Dllll 
I SETQ N2 IINTEGERP I TIMES R2 02) l l 
I SET~ W 

ICONS ICONS (QUOTE Dll Dll 
ICONS ICONS !QUOTE 02) 021 

ICONS ICONS !QUOTE N1l N1l 
ICONS ICONS (QUOTE N2l N2l Wl llllll 

IRETU'<N Nlll l 
I lAND I INTEGERP Rll IGREATERP R1 Ol l 

IRE TURN 
(SIMP 

I SUBS T 
ISUBLIS W !QUOTE (PLUS Cl !TIMES C2 IEXPT VAR Qlllll 
VAR 
(INTEGRATE 

(EXPAND 
I SUBLIS W 

I QUOTE II Tl ME S 
A 
IEXPT VAR R2l 
IEXPT C2 !MINUS !PLUS Rl llll llll 

IGOR IEXPANDEXPT ISUBLIS W (QUOTE (PLUS VAR I TIMES -1 Cll l l l 
Rl l l l 

VAR l l l l l 
I I INTEGERP R2l 

I RETURN 
I SIMP 

I SUBS T 
ISUBLIS W (QUOTE IEXPT VAR (QUOTIENT ~ Dlllll 
VAR 
(MASTER 

ICONS 
VAR 



DEFINE 

(SIMP 
(SUBLIS W 

(QUOTE (TIMES 
01 
A 
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( E XPT VAR (PLUS N1 Dl -11 I 
(EXPT (PLUS !TIMES C2 !EXPT VAR 011 I Cll R21 II II II II II 

((AND ( INTEGERP R11 (LESSP R1 01 I 
(RETURN 
(SIMP 

( SUBST 
( SUBLIS W 

(QUOTE (EXPT (PLUS C1 !TIMES C2 IEXPT VAR Qlll 
!QUOTIENT 1 D21 I I I 

VAR 
(HAS TER 

(CONS 
VAR 
(SIMP (SUBLlS W 

(QUOTE (TIMES 
A 
D1 
IEXPT C2 !MINUS !PLUS R1 1111 
!EXPT VAR (PLUS Nl D1 -111 
IEXPT (DIFFERENCE !EXPT VAR D11 C11 R11 1111111111 

((INTEGERP ISIMPPLUS (LIST R1 R2111 
(RETURN 

(SIMP 
I SUBST 

ISUBLIS W 
(QUOTE IEXPT !QUOTIENT (PLUS C1 !TIMES C2 (EXPT VAR Qlll 

IEXPT VAR Ql I 
(QUOTIENT 1 D11 II I 

VAR 
(MASTER 

(CONS 
VAR 
(SIMP (SUB LIS W 

(QUOTE (TIMES 
-1 
A 
D1 
!EXPT C1 !PLUS Rl R2 111 
IEXPT VAR (PLUS N2 D1 -111 
IEXPT !DIFFERENCE !EXPT VAR D11 C2 I 

(TIMES -1 (PLUS R1 R2 211 11111111111 
(T (RETURN NILII 111111 

(((ALGEB (LAMBDA (ABC Dl IALGEB2 ABC (CONS NIL Dllllll 

DEFINE 
(((ALGEB2 

!LAMBDA 
(EXP VAR SQUARE WI 
IPROG lA Y B C F1 A1 Yl X1 E 0 H Gl 

!SETQ A (CDR ISASSOC (QUOTE AI Will 
ISETQ B (CDR !SASSOC (QUOTE Bl Will 
!SETQ C (COR ISASSOC !QUOTE Cl Will 
!CONO I (NOT IRAT6 EXPI I (RETURN NILI I I 
ISETQ Y1 



Ll 

L2 

L4 

L3 

L5 

ISIHP !LIST 
(QUOTE PLUSI 
VAR 
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I LIST I QUOTE QUOTIENT I B I LIST I QUOTE TIMES I 2 Cl I I I I 
ISETQ Xl 

ISIHP !LIST 
!QUOTE DIFFERENCE) 
VAR 
!LIST (QUOTE QUOTIENTI B lUST (QUOTE TIHESI 2 Cll Ill 

I SETQ Al 
ISIHP !LIST 

(QUOTE DIFFERENCE) 
A 
I L1 ST 

(QUOTE QUOTIENT) 
!LIST !QUOTE EXPTI B 21 
!LIST (QUOTE TIHESI 4 Cl 1111 

ICONO 
I lAND 'NUHBERP Cl IGREATERP C Oil (GO Lll I 
I lAND INUHB~RP Cl ILESSP C 01 I IGO L21 I 
IIASKPOS Cl IGO Llll 
IIASKNEG Cl IGO L211 
I I ASK IT C I QUOTE POSITIVE II IGO Lll I 
I IASKIT C I QUOTE NEGATIVE) I !GO L21 I 
IT (RETURN IALGEB EXP VAR SQUARE WII I 

ICOND 
I (AND INUHBERP All IGREATERP Al Oil IGO L311 
llANO INUHBERP All ILESSP Al Oil IGO L511 
llANO INUHBERP All IZEROP Alii IGO L411 
IIASKPOS All IGO L311 
IIASKNEG All (GO L511 
I IASKIT Al (QUOTE POSITIVE I I IGO L31 I 
IIASKIT Al (QUOTE NEGATIVE)) IGO L511 
IIASKZERO All IGO L411 
IT !RETURN IALGEB EXP VAR S~UARE Will 

ICOND 
I lAND INUHBERP AlI IGREATERP Al 01 I IGO L61 I 
llANO INUHBERP All ILESSP Al 011 

!RETURN IALGEB EXP VAR SQUARE Wll I 
I IASKPOS All !GO L611 
IIASKIT Al !QUOTE POSITIVE)) IGO L611 
IT !RETURN IALGEB EXP VAR SQUARE Will 

ISETQ C ISIMPEXPT (LIST C 0.5EOIII 
ISETQ Y ISUBSTb EXP Xl ISIHP !LIST (QUOTE TIHESI C VARIIII 
ISETQ Y !INTEGRATE !SIMP VI VARII 
(RETURN ISIHP ISUBST Yl VAR VIII 

ISETQ H (QUOTE (ARCTAN XIII 
ISETQ E !QUOTE !TAN XIII 
I SETQ Fl (QUOTE I SEC XI I I 
I SETQ G (QUOTE IEXPT I SEC XI 21 I I 
IGO GETOUTI 

I SETQ H I QUOTE I ARC SEC XI I I 
ISETQ E (QUOTE !SEC XIII 
ISETQ Al ISIMPMINUS (LIST Allll 
I SETQ Fl I QUOTE I TAN XI I I 
ISETQ G !QUOTE (TIMES ITAN XI ISEC XIIII 



L6 
ISETQ E (QUOTE ISIN XIII 
ISETQ G !QUOTE ICOS XIII 
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ISETQ C ISIMPMINUS ILIST Clll 
ISETQ H (QUOTE !ARCSIN Xlll 
ISETQ Fl (QUOTE ICOS Xlll 

GETOUT 
ISETQ C ISIMPEXPT !LIST ISIMPQUOTIENT !LIST Al Cll 0.5EOlll 
ISETQ 0 ISIMPEXPT (LIST Al 0.5EOIII 
ISETQ 

y 

I SUBST6 
EXP 
IEXPAND2 !SIMP (LIST (QUOTE PLUS! 

(LIST (QUOTE TIMES! 
c 
ISUBST VAR (QUOTE XI El I 

ISIMPDIFFERENCE I LIST Xl VARI l I I l 
I SIMP I LIST (QUOTE TIMES I 0 ISUBST VAR I QUOTE X I Fll II ll 

DEFINE 

ISETQ Y (SIMP (LIST (QUOTE TIMES! C ISUBST VAR !QUOTE XI Gl Yl II 
ISETQ Y (INTEGRATE IEXPAN02 Yl VARll 
!RETURN !SIMP ISUBST 

(SUBS T 
(LIST !QUOTE TIMES) ILIST (QUOTE EXPTI C -11 Yll 
(QUOTE Xl 
H l 

VAR 
y llllllll 

IIIASKIT (LAMBDA lA Bl 
lAND 

I NOT (Ptl.!Nl (QUOTE lSI I I 
!NOT IPRINl BLANK!! 
(PRINT Al 
(PRINT Bl 
IEQ IROFLXI (QUOTE YESil Ill 

IASKZERO (LAMBDA (AI (ASKIT A (QUOTE ZEROIIII 
I ASKPOS 

(LAMBDA 
lA I 
1M2 

A 
(QUOTE (PLUS ICOEFFPT 

IB I FUNCTION (LAMBDA IBI lAND INUMBERP Bl IGREATERP B 01 l I l I 
ICOEFFTT IC POSFNI l l I l 

NIL ll l 
IASKNEG 

I LAMBDA 
(A l 
(M2 

A 
(QUOTE !PLUS ICOEFFPT 

(B I FUNCTION I LAMBDA IBI lAND INUMBERP Bl ILESSP B 011 II l 
ICOEFFTT IC POSFNI l l l l 

NIL II l 
I POSFN I LAMBDA IC l 

ICONO 
I I ATOM C l I GET C (QUOTE POSITIVE! l l 
IIEQ ICAR Cl (QUOTE EXPTII 
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ICOND 
I INUMBERP ICADDR Cl I IINTEGERP (QUOTIENT ICACDR Cl 21 I I 
I I ATOM ICADR Cl I (GET ICADR Cl I QUOTE POSITIVE) I I 
IT NIL! I I 

IT NIL! I I I I I 

DEFINE 
IIIPFCTSQ (LAMBDA (XI 

IPROG IYI 

A 
ISETQ Y ll 

ICOND I IEQP I TIMES Y Yl XI (RETURN Yl I 
I IGREATERP (TIMES Y Yl XI I RETURN NIU I 

I SETQ Y IADDl Yl I 
IGO AI I II 

IRAT6 (LAMBDA IEXPI 
ICOND 

I I FREE EXP I T I 
I I A TOM E XP I T I 
I I MEMBER I CAR EXPI (QUOTE (PLUS TIMES I I I 

lAND IRAT6 ICADR EXPII 
lOR (NULL ICDDR EXPII IRAT6 ICONS I CAR EXPI ICDDR EX PI I I I II 

I I NOT I EQ I CAR EXP I I QUOTE EXPTIII Nl U 
I I FIXPl ICADDR EXPII IRAT6 ICADR EXPIII 
IlNDT IINTEGERP ISIMPTIMES ILIST 2 ICADDR EXPIIIII NILI 
IT 1M2 ICADR EXPI SQUARE NIL II II I 

ISUBST6 
I LAMBDA 

IEXP A Bl 
ICOND IIFREE EXPI EXPI 

I (ATOM EXPI AI 
I !MEMBER ICAR EXPI I QUOTE !PLUS TIMES III 

ICONS !CAR EXPI 
(MAPLIST (CDR EXPI 

!FUNCTION (LAMBDA ICI ISUBST6 ICAR Cl A Bill Ill 
I I NOT IEQ ICAR EXPI I QUOTE EXPTIII I ERROR II 
IIFIXPl ICADDR EXPII 

I LIST I CAR EXPI I SUBST6 ICADR EXPI A Bl ICADOR EXPII I 
IT I LIST I CAR EXPI B IINTEGERP (TIMES 2 ICACDR EXPI l Ill Ill 

I TRIGSQRT 
I LAMBDA 

I EXP VAR SQUARE WI 
IPROG IY A B C D E Fl G HI 

ISETQ A ICDR ISASSOC (QUOTE AI Will 
ISETQ B ICDR ISASSOC (QUOTE Bl Will 
ICOND II OR I NOT INUMBERP All I NOT INUMBERP Bl I I 

!RETURN IALGEB EXP VAR SQUARE Wll I 
I I NOT IRAT6 EXPI I I RETURN NIU I I 

ICOND IIGREATERP A 01 
ICONO IIGREATERP B 01 

lAND ISETQ H (QUOTE !ARCTAN XIII 
ISETQ E (QUOTE ITAN XIII 
ISETQ Fl !QUOTE ISEC XIII 
ISETQ G I QUOTE IEXPT I SEC XI 21 I I II 

IT lAND ISETQ E I QUOTE I SIN XII I 
I SE TQ G I QUOTE I COS X II I 
ISETQ B (MINUS Bll 
ISETQ Fl I QUOTE (COS XI II 
ISETQ H (QUOTE I ARCSIN XII I II II 

IT lAND ISETQ E (QUOTE ISEC XIII 
ISETQ A (MINUS All 



DEFINE 
(((ALGEB 

(LAMBDA 

(COND (!NOT 
l (NOT 

l SE TC Y 

( SETQ 
lSETQ 
l SETQ 

( SE TQ C 
l SE TQ D 

(SUBST6 EXI' 
!SIMI' 
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Fl !QUOTE (TAN Xll) 
G !QUOTE !TIMES !TAN XI !SEC XII II 
H !QUOTE (ARC SEC XII I Ill 
li'FCTSQ (QUOTIENT A Bllll !RETURN 
li'FCTSQ AIl I (RETURN Nllll l 

!LIST (QUOTE TIMES) 
c 
(SUBST VAR !QUOTE XI El II 

!SIMI' (LIST !QUOTE TIMES) 
D 

NIL II 

lSUBSTVAR lQUOTEXl Fll llll 
l SE TQ Y 
l SE TQ Y 
!RETURN 

(SIMI' !LIST !QUOTE TIMES! C lSUBST VAR !QUOTE XI Gl Ylll 
!TRIGINT Y VARII 
!SIMP lSUBST lSUBST 

VAR 

(LIST (QUOTE TIMES! 
(LIST !QUOTE EXPTI C -11 
VAR l 

!QUOTE XI 
H l 

Y I l I Ill I l 

lEXP VAR SQUARE WI 
lPROG !A B C Al Cl Y PROBLI 

A 

lSETQ A !CDR ISASSOC (QUOTE AI Will 
ISETQ B !CDR ISASSOC (QUOTE Bl Will 
lSETQ C !CDR ISASSOC (QUOTE Cl W)Jj 
lCOND (!NOT (RAT6 EXPll !RETURN NILIII 
lCOND 

l lAND I NOT !NUMBER!> Cl l I ASK Cl l 
ISETQ Cl lSIMPEXPT (LIST C 0.5EOlll 

((NOT INUMBERP Cll !GO All 
l !NOT lGREATERP C Ol I (GO AI I 
(T !SET.;, Cl lSIMPSQRT Clll l 

l SETQ Y 
ISUBST6 

EXP 
l SUBSTL lA B Cl VARI 

!QUOTIENT !DIFFERENCE IEXI'T VAR 21 AI 
!PLUS B !TIMES 2 (TIMES VAR Cllll ll 

( SUBSTL (A B VAR Cll 
!QUOTIENT !PLUS !TIMES IEXPT VAR 21 Cll (TIMES B VARI !TIMES A Clll 

(PLUS B (TIMES 2 !TIMES VAR Cllll llll 
l SETQ 

PROBL 
l Ll ST 

(QUOTE TIMES! 
y 

lSUBSTL lAB Cl VARI 
!TIMES 2 

!TIMES !PLUS (TIMES B VARI !TIMES IEXPT VAR 21 Cll !TIMES A Clll 
lEXPT (PLUS B (TIMES 2 !TIMES VAR Cll II -21 II I l I 

I SETQ Y 
ISUBSTL (VAR Cl SQUARE) 

(PLUS !TIMES VAR Cll IEXPT SQUARE !QUOTIENT 12111 II 
(GO Bl 
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OEFLIST 
I I I SUBSTL 
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ICOND 
((AND INOT INUMBERP All IASK All 

ISETQ Al ISIMPEXPT !LIST A 0.5EOlll 
((NOT INUMBERP All !ERROR (QUOTE (NOT YETllll 
liLESSP A Ol (ERROR (QUOTE (NOT YETllll 
IT ISETQ AI ISIMPSQRT Alll l 

I SETQ Y 
I SUBST6 

EXP 
ISUBSTL (8 C AI VARI 

(QUOTIENT !DIFFERENCE (TIMES 2 ITIMES VAR Alii Bl 
IOIFFERENCE C IEXPT VAR 211 II 

ISUBSTL 18 C AI VARI 
(QUOTIENT (PLUS 

!TIMES AI IEXPT VAR 211 
!TIMES -1 (TIMES 8 VARll 
!TIMES AI Cl l 

!DIFFERENCE C IEXPT VAR 211 llll 
I SETQ 

PROBL 
I LIST 

(QUOTE TIMES! 
v 
ISUBSTL 18 C AI VARI 

I TIMES 
ITIMES2 

I PLUS 
!TIMES AI IEXPT VAR 211 
(TIMES -1 !TIMES 8 VARll 
I Tl ME S A I C l II 

IEXPT !DIFFERENCE C IEXPT VAR 211 -21 llll 
I SE TQ V 

ISUBSTL IVAR AI SQUARE! 
!QUOTIENT !DIFFERENCE IEXPT SQUARE (QUOTIENT I 211 All VARI ll 

!RETURN (SIMP IUNTR ISUBST V VAR (MASTER ICONS VAR PROBLllllll lllll 

(LAMBDA lA ALISTI 
ISUBLIS IMAPLIST ICAR AI 

(FUNCTION ILAMBOA 181 
ICONS ICAR Bl 

IEVAL ICAR Bl ALISTl 1111 
ICADR AI 1111 

FEXPR I 

DEFINE 
IIISIMPSQRT (LAMBDA lXI 

IPROG lVI 

A 
ISETQ Y 11 

ICOND I IEQP I TIMES Y VI XI I RETURN VII 
IIGREATERP !TIMES V VI XI 

!RETURN !LIST !QUOTE EXPTI 

ISETQ V IADDI VII 
IGO AI IIIII 

X 
(QUOTE (QUOTIENT 1 211 1111 
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DEFINE 
(((ASK (LAMBDA lXI 

DEFINE 

lAND I NOT IPRINl (QUOTE lSI I I 
(NOT IPRlNl BLANKII 
(PRINT XI 
(PRINT !QUOTE POSITlVEII 
IEQ IRDFLXI (QUOTE YESII IIIII 

(((TRlGl (LAMBDA (AI !MEMBER A (QUOTE (SIN COSIIIII 
I SUPER TRIG 

I LAMBDA ( EXP I 
ICOND 

I I FREE EXP I Tl 
I I ATOM EXPI NIL) 
(I MEMBER (CAR EXPI (QUOTE I PLUS TIMES I I I 

(AND ISUPERTRIG ICADR EXPII 
lOR I NULL ICDDR EXPI I ISUPERTRlG ICONS I CAR EX PI ICOOR E)(Pl I I I I I 

((MEMBER I CAR EXPI (QUOTE IEXPT LOG II I 
(AND ISUPERTRIG ICADR EXPII ISUPERTRlG ICAODR EXPIII 

((MEMBER ICAR EXPI (QUOTE ISIN COS TAN SEC COT CSCIJJ 
ICOND 

(1M2 (CADR EXPI TRIGARG NILI Tl 
((M2 

ICADR EXPI 
(QUOTE (PLUS ICOEFFPT IB FREEl IX VARPI I ICOEFFPT (A FREEl I I I 
NIL I 

(AND I SE TQ NOT SAME T I Nl Ll I 
IT ISUPERTRIG ICADR EXPIII II 

IT ISUPERTRIG ICADR EXPIII Ill 
ISUBST2 !LAMBDA IEXP PAT) 

ICOND 
((NULL EXPI NILI 
11M2 EXP PAT NIL) VARI 
(( A TOM E XP I E XP I 
IT ICONS ISUBST2 ICAR EXPI PATI ISUBST2 ICDR EXPI PATIII Ill 

(MONSTER TR lG 
(LAMBDA 

IEXP VAR TRlGARGI 
IPROG INOTSAME W A B Y 01 

ICOND 
((SUPERTRIG EXPI IGO All 
((NULL NOTSAMEI !RETURN NILII 
I I NOT I SETQ Y 

1M2 
EXP 
(QUOTE !TIMES 

ICOEFFTT (A FREEl) 
liB TRIGll (TIMES IX VARPI ICOEFFTT (M FREE)) II 
liD TRlGll I TIMES IX VARPI ICOEFFTT IN FREE II II II 

NIL II I 
IGO BJ J 

((NOT (AND 
(MEMBER ISETQ B !CDR ISASSOC (QUOTE 81 Ylll 

I QUOTE I SIN COS I I I 
!MEMBER ISETQ D ICDR ISASSOC !QUOTE 01 Ylll 

(QUOTE I SIN COS II II I 
!RETURN NILI I 

I lAND IEQ B (QUOTE SlNI I IEQ 0 I QUOTE SIN I I I 
I RETURN 

(SIMP TIMES 
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I SUB VAR 
I SUBLIS 

y 
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!QUOTE lA !DIFFERENCE 
I QUOTIENT 

ISIN !TIMES IOIFFERENCE M Nl XII 
ITIMES 2 IOIFFERENCE M Nil I 

!QUOTIENT (SIN !TIMES (PLUS M Nl XII 
ITIMES 2 !PLUS M Nil 111111111 

I lAND CEQ B (QUOTE COSII IEQ D (QUOTE COS III 
(RETURN 

I SIMPTIMES 
( SUBVAR 

I SUBLI S 
y 
(QUOTE lA !PLUS 

(QUOTIENT 
ISIN !TIMES !DIFFERENCE M Nl XII 
!TIMES 2 (DIFFERENCE M Nil l 

(QUOTIENT (SIN (TIMES !PLUS M Nl XII 
ITIMES 2 (PLUS M Nil 111111111 

I lOR lAND 
IEQ B (QUOTE COSII 
ISETQ W (CDR ISASSOC !QUOTE Ml Ylll 
IRPLACD ISASSOC (QUOTE Ml Yl !CDR ISASSOC (QUOTE Nl Ylll 
(RPLACD ISASSOC (QUOTE Nl Yl WI I 

T I 
(RETURN 

( SIMPTIMES 
I SUB VAR 

ISUBLIS 
y 

ICOND 
((NOT 

!QUOTE (-1 A 
I PLUS 

I QUOTIENT 
ICOS ITIMES !DIFFERENCE M Nl XII 
!TIMES 2 (DIFFERENCE M Nil I 

!QUOTIENT !COS ITIMES (PLUS M Nl XII 
!TIMES 2 (PLUS M Nil llllllllll 

( SETQ 
y 
IPROG2 

ISETQ TRIGARG VARl 
(M2 

cXP 
(QUOTE ( TIME S 

ICOEFFTT (A FREEII 
( IB TR!Gll (TIMES IX VARPI (COEFFTT IN INTEGERPilll 
(COEFFTT !C SUPERTRIGI l l I 

NIL l l l l 
(RETURN Nlll l l 

(RETURN 
(INTEGRATE 

(EXPAND2 
( Ll ST 

(QUOTE TIMESl 
(REPLACE Y (QUOTE Cll 
(COND 
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I IEQ ISETQ B !REPLACE Y ICUOTE Bl I I I~UOTE COS II 
I SUB ST 

VAR 
(QUOTE XI 
ISUPERCOSNX !REPLACE Y (QUOTE Nlll II 

IT ( SUBST VAR (QUOTE XI ISUPERSINX I REPLACE Y I QUOTE Nil II II II 
VAR I I 

I SETC W I SUBSTZ EXP TR!GARGI I 
I SE TQ B 

(COR ISASSOC (QUOTE Bl 
1M2 

TR IGARG 
(QUOTE (PLUS ICOEFFPT IB FREEl (X VARPII ICOEFFPT (A FREE II I I 
NIL I l II 

(i<~TUR·~ ISUBST HIGA;>.G VAR ITRIGINT ISIMPQUOTlcNT !LIST W 811 VARII 1111 
ITRIGZ (LAMBDA IAI (MEMBER A (QUOTE (SIN COS TA'J CCT SEC CSCIIIII )) 

DEFINE 
IIISUPERSINX (LAMBDA 1~1 

( ( LAM"DA I l I 
IEXPANDZ I LIST ICUDTE TIMES I 

I 
ISINNX !TIMES I Nil II I 

ICOIIID IILESSP N 01-11 IT Ill Ill 
ISUPEKCOSNX !LAMBDA (Nl 

((LAMBDA Ill IEXPANDZ ICGSNX (TIMES I Nllll 
ICDI\IO IILESSP N Ol -11 IT Ill Ill 

ISIHHX !LAMBDA (NI 
ICOIIID ((EQUAL N 11 (QUOTE !SIN XII I 

IT (LIST (QUOTE PLUSI 
ILIST (QUOTE TIMES! 

!QUOTE ISIN XII 
ICOSNX I SUB! Nl I 

!LIST !QUOTE TIMES! 
(QUOTE !COS XI I 
ISINNX (SUB! Nil 111111 

ICOSNX !LAMBDA IIIII 
ICOND ((EQUAL N 11 (QUOTE !COS XIII 

IT ILIST (QUOTE PLUSI 

DHINE 

!LIST !QUOTE TIMES! 
(QUOTE I COS X l I 
(CQSNX (SUB! Nll 

I LIST I QUOTE Tl MES I 
-1 
I QUOTE IS IN X l I 
ISINNX ISUBl N)l 11111111 

(((POSEVEN (LAMBDA IAI lAND lEVEN Al IGREATERP A-IIIII 
(TRIGFREE (LAMBDA !AI 

ICOND 
IIATOM AI !NOT !MEMBER A IQUUTE !SIN• COS• SEC• TAN•Illll 
IT lAND ITRIGFREE !CAR All ITRIGFREE ICOR Allll Ill 

IUNTR (LAM80A IEXPI 
ICONO 

I (ATOM EXPl EXPI 
((EQ !CAR EXPI !QUOTE LOGII 

ICONO IINULL ICDDR EXPII 
!LIST !CAR EXPI (QUOTE El IUNTR ICADR EXPIII l 

IT !LIST (CAR EXPI ICADR EXP) (UNTR (CADDR EXPIIII ll 
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ttEQ !CAR EXPI !QUOTE MINUSII !LIST !QUOTE TIMESI -1 lUNTR ICADR EXPIIII 
IIEQ !CAR EXPI (QUOTE SQRTII 

!LIST !QUOTE EXPTI IUNTR ICADR EXPII 0.5EOI I 
IIEQ !CAR EXPI (QUOTE INTEGRAL)) !LIST ICAR EXPI ICADR EXPI VARII 
IIEQ !CAR EXPI !QUOTE DIFFERENCEII 

!LIST !QUOTE PLUSI 
IUNTR ICADR EXPII 
!LIST !QUOTE TIMESI -1 IUNTR ICADOR EXPIII II 

IIEQ !CAR EXPI !QUOTE QUDTIENTII 
!LIST !QUOTE TIMESI 

IUNTR ICADR EXPII 
!LIST !QUOTE EXPTI IWHR ICAODR EXPII -11 ll 

IT IMAPLIST EXP !FUNCTION (LAMBDA !AI IUNTR !CAR A IIIII IIIII 

DHINE 
IIITRANSL 

I LAMBDA 
I EXP I 
ICDND 

IINUMBERP EXPI 
I PROG I TEMP I 

IRETUR'I ICOIIID 
I IFIXP EXPI EXPI 
II SETQ TEMP IINTEGERP EXPII TEMPI 
IISETQ TEMP IDENOMFIND EXPjJ 

!LIST !QUOTE QUOTIENT) IINTEGERP !TIMES TEMP EXPII TEMPI I 
IT !ERROR !QUOTE TRANSLIII 1111 

IIATOM EXPI EXPI 
llANO !MEMBER !CAR EXPI (QUOTE !PLUS TIMESIII 

IGREATERP !LENGTH !CDR EXPII 21 I 
I LIST 

I CAR EXP I 
ITRA.~SL ICADR EXPII 
ITRANSL ICONS !CAR EXPI ICDDR EXPIII II 

llANO IEQ !CAR EXPI !QUOTE LOGII ICDDR EXPII 
ICOND IIEQ tCADR EXPI !QUOTE Ell !COlliS !CAR EXPI ICDDR EXPIII 

IT !LIST 
I QUOTE QUOTIENT) 
!LIST !QUOTE LOGI ITRANSL ICADDR EXPIII 
!LIST !QUOTE LOGI ICADR EXPII 1111 

IT IMAPLIST EXP !FUNCTION !LAMBDA !AI ITRANSL !CAR Allllll Ill 
IRATl !LAMBDA IEXPI 

IPRDG 181 NOTSAMEI 

I RAT 
!LAMBDA 

I EXP I 

ICOND llANO INUMBERP EXPI IZEROP EXPII !RETURN NILIII 
ISETQ 81 ISU~ST 8 (QUOTE Bl !QUOTE IEXPT BIN EVENIIIII 
!RETURN IPROG2 ISETQ YY !RAT EXPII ICDND IlNDT NDTSAMEI YYI IT NILIII 1111 

IPROG IYI 
!RETURN 

ICOND 
IIEQ EXP AI !QUOTE XII 
It A TOM E XP I 

ICOND ((MEMBER EXP !QUOTE !SIN• COS• SEC• TAN• II I 
I SE TQ NOT SAME T I I 

IT E XP I I I 
IISETQ Y 1M2 EXP B1 Nllll IF3 VII 
IT ICONS !CAR EXPI 

IMAPLIST !CDR EXPI I FUNCTION !LAMBDA IGI I RAT I CAR Gil II I II IIIII 
IF3 ILAM~DA IYI 
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llEQ !CAR EXPI (QUOTE MINUSll lUST (QUOTE TIMESI -1 lUNTR lCADR EXPIIII 
l !Eli !CAR EXPl (QUOTE SQRTII 

!LIST (QUOTE EXPTI lUNTR lCADR EXPll 0.5EOI l 
llEQ !CAR EXPI (QUOTE INTEGRAL)) !LIST (CAR EXPI lCAOR EXPI VARll 
l l EQ !CAR EXPI !QUOTE DIFFERENCE II 

!LIST (QUOTE PLUSI 
lUNTR lCADR EXPl I 
!LIST !QUOTE TIMES I -1 lUNTR lCAODR EXPl II l l 

l l EQ l CAR EXP I (QUOTE QUOTIENT II 
!LIST !QUOTE TIMES! 

lUNTR lCADR EXPil 
!LIST (QUOTE EXPTI lUNTR lCADDR EXP) I -11 ll 

lT lMAPLIST EXP !FUNCTION (LAMBDA lAl lUNTR !CAR A lllll lllll 

DHINE 
l l l TRANSL 

(LAMBDA 
l EXP I 
lCOND 

l l NUMBERP EXP I 
l PROG (TEMP I 

lRETUR"l lCO'ID 
l lFIXP EXPl EXPI 
l lSETQ TEMP liNTEGERP EXPll TEMPI 
llSETQ TEMP lDENOMFIND EXPil 
lUST (QUOTE QUOTIENT! liNTEGERP !TIMES TEMP EXPll TEMPI l 

l T !ERROR (QUOTE TRANSLIII l I l I 
l (ATOM EXPI EXPI 
llANO !MEMBER !CAR EXPI (QUOTE !PLUS TIMESlll 

lGREATERP !LENGTH !CDR EXPII 21 I 
l LIST 

!CAR EXPI 
lTRAMSL lCADR EXPll 
l TRANSL ICONS !CAR EXPl lCDDR EXPI l I II 

l lAND lEQ !CAR EXPl !QUOTE LOG) I lCDDR EXPI I 
lCDND llEQ lCAOR EXPI (QUOTE Ell lCO'IS !CAR EXPI lCODR EXPlll 

l T !LIST 
!QUOTE QUOTIENT) 
l Ll ST !QUOTE LOG I lTRANSL lCAOOR EX PI I I 
!LIST (QUOTE LOG) lCADR EXPll llll 

lT (MAPLIST EXP !FUNCTION (LAMBDA !AI lTRANSL !CAR Allllll Ill 
lRAT1 (LAMBDA lEXPI 

lPROG lB1 NOTSAMEI 

!RAT 
(LAMBDA 

lCOND llANO lNUMBERP EXPI lZEROP EXPll !RETURN NILlll 
lSETQ B1 lSUtlST 6 !QUOTE Bl (QUOTE lEXPT B lN EVENlllll 
!RETURN lPROG2 lSETQ YY (RAT EXPll lCOND ((NOT NOTSAMEI YYI lT NILlll )))) 

l EXP l 
lPROG lYI 

l RETURN 
lCOND 

l lEQ EXP AI (QUOTE Xl I 
l l A TOM E XP I 

lCOND l !MEMBER EXP !QUOTE !SIN• CGS• SEC• TAN• I l I 
l SE TQ NOT SAME T l l 

( T EXP l l I 
l lSETQ Y lM2 EXP Bl NILII lF3 Yl I 
lT lCOI'<S !CAR EXPI 

lMAPLIST !CDR EXPl !FUNCTION !LAMBDA lGl !RAT !CAR Glllll lllllll 
lF3 lLAMtlOA lYI 



ISUBST 
c 
IUUOTE Cl 
ISUBST 
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IOUOTIENT ICDR ISASSOC (QUOTE Nl Y NILII 21 
(QUOTE Nl 
(QUOTE IEXPT IPLUS 1 !TIMES C· IEXPT X 2111 Nil 1111 

IODD1 
I LAMBDA 

(N I 
ICOND IINOT IZEROP !REMAINDER N 2111 

I SETQ YZ 
ISUBST 
c 
(QUOTE Cl 
I LIST 

IQUOTE EXPTI 
(QUOTE (PLUS 1 !TIMES C IEXPT X 21111 
(QUOTIENT I SUB! Nl 21 II I I 

ITNILllll 
lEVEN (LAMBDA !AI lAND I~UMBERP AI IINTEGERP (QUOTIENT A 211111 
ISUBVAR I LAMBDA IBI ISUBST VAR (QUOTE XI Bll I 
ITRIGINT 

(LAMBDA 
( EXP VAR I 
(PROb IV REPL Yl Y2 YY Z M N C YZ A Bl 

I SETQ Y2 
ISUBLIS ISUBVAR (QUOTE (((SIN XI • SIN•l 

I !COS XI • COS• I 
I (TAN XI • TAN• I 
IICOT XI EXPT TAN• -11 
I I SEC XI • SEC• I 
I ICSC XI EXPT SEC• -11 II I 

EXP II 
I SETO Yl 

I SE TO Y 
!SIMP ISUBLIS !QUOTE ((TAN• TIMES SIN• IEXPT COS• -111 ISEC• EXPT COS• -1111 

Y2 1111 
ICOND IINULL ISETQ 

1M2 
y 

!QUOTE ITIMES 
ICOEFFTT IB TRIGFREEII 
lcXPT SIN• IM POSEVENII 
IEXPT COS• IN POSEVENII II 

NIL Ill 
!GO L11 II 

I SETU M I CDR I SASSOC I QUOTE Ml Zlll 
I SETQ N !CDR I SASSOC (QUOTE Nl Zl I I 
I SE TO A 

I INTEGER? I TIMES 
0. 5EO 

ICOIIIO IILESSP M Nl 11 IT -111 
!PLUS N I TIMES -1 Mil Ill 

I SETQ Z ICONS I COlliS IOUOTE AI AI Zll 
I RETURN 

I SIMP 
I LIST 

IOUOH TIMES! 
I COR I SASSOC I QUOTE Bl Zll 

O. 5EO 



Ll 

GET3 

GET! 

I SUBS T 
!LIST (QUOTE TIMES! 2 VARI 
!QUOTE XI 
I INTEGRATE 

I SIMP 
ICOND 

I ILESSP M Nl 
ISUBLIS l 

(QUOTE !TIMES 
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IEXPT (TIMES 0.5EO ISIN XII Ml 
IEXPT !PLUS 0.5EO !TIMES 0.5EO !COS XIII AI llll 

IT ISUBLIS l 
(QUOTE !TIMES 

IEXPT !TIMES 0.5EO !SIN XII Nl 
IEXPT !PLUS (J.5EO ITI~ES -O.SEO ICOS XIII AI llllll 

!QUOTE XI lllll 

I SE TQ C -11 
ISETQ A IQUQTE SIN•ll 
I SET~ B I QUOTE COS• II 
ICOND llANO 

1M2 Y IQUUTE ICUEFFPT IC RATll IEXPT COS• IN 00011111 Nlll 
ISETC REPL !LIST ICUIJTE SINI VARil I 

(GO GETOUTl ll 
ISETQ A Bl 
ISETQ B IQUUTE SIN•Il 
ICO"JD ((AND 

1M2 Y !QUOTE ICOEFFPT IC RATll IEXPT SIN• IN ODDlllll NILI 
ISETQ REPL !LIST !QUOTE COSI VARll l 

IGOGET3lll 
I SETQ Y 

!SIMP ISUBLIS (QUOTE IISIN• TIMES TAN• IEXPT SEC• -Ill !COS• EXPT SEC• -1111 
Y2 Ill 

I SE TQ C ll 
ISETQ A (QUOTE TAN•ll 
I SETQ B I QUOTE SEC•II 
ICOND ((AND I RAT! Yl ISETQ REPL I LIST I QUOTE TAN I VARl l I !GO GET Ill l 
ISETQ A Ill 
ISETQ B !QUOTE TA"l•ll 
ICOND (lAND 

1M2 Y !QUOTE ICOEFFPT IC RATll IEXPT TAN• IN 00011111 NILJ 
ISETQ REPL !LIST (QUOTE SECI VARll I 

!GO GETOUTI II 
I SE TQ Y 

!SIMP ISUBLIS !QUOTE IISIN• TIMES 2 X IEXPT IPLUS 1 IEXPT X 211 -111 
I COS• 

TIMES 
!PLUS l (TIMES -1 IEXPT X 2111 
IEXPT !PLUS 1 IEXPT X 211 -11 Ill 

Yl Ill 
I SETQ Y 
ILl ST 

(QUOTE TIMES! 
y 
(QUOTE !TIMES 2 IEXPT !PLUS 1 IEXPT X 211 -!Ill ll 

ISETQ REPL ISUBVAR (QUOTE (QUOTIENT ISIN XI !PLUS 1 ICOS Xllllll 
!GO GETZl 

ISETQ Y !LIST !QUOTE TIMES! -1 YY YZII 
!GO GET21 
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( SETQ Y 
!LIST (QUOTE TIMES! (QUOTE (EXPT (PLUS 1 (EXPT X 211 -111 YYI l 

!GO GET21 
GETOUT 

GET2 

DEFINE 
( ( (ALGOR T 

(LAMBDA 

( SETQ Y ( Ll S T !QUOTE T1 MESI YY YZ ll 

ISETQ Y (SIMP VII 
(RETURN !SIMP (SUBST REPL (QUOTE XI !INTEGRATE Y (QUOTE Xlllll lllll 

( R 1 P1 VARll 
IPROG (R OLOS1 OLDREST P VAR PO Q S S1 S2 ANS A1 A2 A3 NUM A M B REST! 

( CSETQ VARLI ST ( Ll ST VARll l 

LOOP 

B 

(IIIEINAR Rll 
INEWVAR Pll 
ISETQ R (REP R11l 
( SE TQ P (REP P 1 l l 
( SETQ VAR (REP VARll l 
ISETQ PO IPFDERIVATIVE Pll 
ISETQ Q (OENOMINATORF Rll 
( SETQ S1 (NUMERATORF Rll 

ICOIIID ((NOT IPOLP Slll !GO Alii 
( SETQ B (LIST !CAR Sllll 
ISETQ S ISIMPOL !CDR Sllll 
ISETQ M (SUB1 (LENGTH Sllll 

ISETQ ANS (PLUSF A ANSI! 
ISETQ OLDSl Sll 
( SETQ OLDREST REST! 
(SETQ A (QUOTIENTF ITIMESF B (POLEXPT VAR Mil !TIMESF PD Qlll 
ISETQ A3 (TIMESF A IPFDERIVATIVE Qlll 
( SETQ A2 

(QUOTIENTF (MINUSF (TIME SF B (POLDERIVATIVE (POLEXPT VAR Ml l l I 
PO I l 

( SETQ A1 
(QUOTIENTF ITIMESF (TIMESF B IPOLEXPT VAR Mil (PFDERIVATIVE POll 

IPULEXPT PO 21 II 
ISETQ S2 (SEP (PLUSF (PLUSF S REST! IPLUSF A1 (PLUSF A2 A3lllll 
ISETQ S1 !CAR S2ll 
(SETQ REST !CDR S2ll 
(COND (51 !GO LOOPlll 
(SETQ REST (SIMPSIMP !TRANS RESTill 
ICOND ((AND (NUMBERP REST! !ZEROP REST! l 

(RETURN (SIMPSIMP !LIST 
(QUOTE TIMES! 
!TRANS (PLUSF A ANSI! 
(LIST (QUOTE EXPTI (QUOTE El Pll ll l ll 

(RETURN 
(PLUSSIMP 
Ill ST 

(QUOTE PLUS! 
(SIMP SIMP (LiST 

(QUOTE TIMES! 
(TRANS ANSI 
(LIST (QUOTE EXPTI (QUOTE El Pll ll 

( L1 ST 
(QUOTE INTEGRAL! 
( Ll ST 
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DEFINE 

240 

!QUOTE TIMES! 
ICOND ((NOT OLDRESTI (TRANS (QUOTIENTF OLDSl Qlll 

IT !TRANS IQUOTIENTF !CDR S21 Qlll 
(LIST !QUOTE EXPTI !QUOTE El Pll IIIII 

ISETQ B ICONS !LIST ICAAR Slll !COR Sllll 
l SE TO S 

ICOND llSETQ S ISIMPOL ICDAR Sllll ICONS S !CDR Sllll IT Sll I 
!SETQ M lSUBl !LENGTH !CAR Slllll 
l GO B I I I I I I 

( ( ( S EP l LAMBDA ( R I 

DEFINE 

IPROG IS D Nl 
ICDND l (POLP Rl (RETURN ICONS R Nlll I I I 
ISETQ N INUMERATORF Rll 
ISETQ D IOENOMINATORF Rll 
ICOND llANO IONEP (LENGTH Nil ICNEP (LENGTH Dill 

(RETURN ICONS R NILI I I I 
ISETQ S IPOLDIVIDE N Oil 
!RETURN ICONS !CAR Sl IQUOTIENTF !CDR Sl Dl I I I I I I I 

l llSUPERALGORT (LAMBDA IR P VARI 
IPROG NIL 

DEFINe 

IFILEWRITE (QUOTE MANOVEI 
(QUOTE ANSI 
IALGORT R P VARI I 

!CHAIN !QUOTE ~(R MOSESIIII IIIII 

l II MASTER lLAMBuA IYI 

DEFINE 

IPRUG lFLISTl 
ICSETQ VARLIST (LIST !CAR Yl I I 
INEWVAR !CDR Yl I 
ICSETQ REPSWITCH NIL! 
IFILEWRITE !QUOTE MANOVEI 

(QUOTE ANSI 
ISIMPSIMP !FPROG !REP !CDR Yllll I 

!CHAIN {QUOTE IIR MOSESII I I I II II 

lllRATBPRIME ILAM5DA ICI lAND (RATS Cl (OR (NOT INUMBERP Cll !NOT IZEROP Cllllll 
IFIN:J !LAMBDA IEXPI 

ICOND l !ATOM EXPI !MEMBER EXP !QUOTE (LOG INTEGRAL ARCTAN I I I I 
IT IUR (FII~D !CAR EXPI I !FIND !CDR EXPI I I I I I I 

l RATLuG 
!LAMBDA 

IEXP VAR FORM! 
IPROG lA B C CC D Y Z WI 

( SETtJ Y FORM I 

c 

A 

ISETQ B !CDR ISASSOC !QUOTE Bl Ylll 
ISETQ C !CDR ISASSOC (QUOTE Cl Ylll 
ISETQ Y (INTEGRATE C VARII 
ICOND (!FIND Yl !RETURN NIL! I I 
ISETQ D lDIFFl !CDR ISASSOC (QUOTE AI FORMII VARII 
ICDND ( IEQ ICADAR FORM) (QUOTE ARCSIN I I (GO Bl I I 

ISETQ l !INTEGRATE ISIMPTIMES !LIST Y 011 VARII 

ISETQ D !CDR ISASSOC (QUOTE AI FORMIII 
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DEFINE 
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!RETURN !SIMP (LIST (QUOTE DIFFERENCE) !LIST (QUOTE TIMES) Y Dl Zll l 

ICOND 
((NOT 

( SETQ 
w 
1M2 

D 
(QUOTE 

(PLUS 
!COEFFPT 

( C TRUE ll 
( EXPT 

ICC (LAMBDA !CCI 
(Ml CC 

(QUOTE (PLUS ICOEFFPT IB FREEl IEXPT IX VARPl 2ll 
ICOEFFP lA FREEl) lllll 

IN I~TEGERPll llllll l 
I GO C l ll 

ISETQ CC ICDR ISASSOC (QUOTE CCI Will 
ISETQ Z ITRIGSQRT !LIST (QUOTE TIMES) Y Dl VAR CC Wll 
ICONO ((NUll Zl (RETURN Nlllll 
(GO A I I I I I l 

(((FINO! (LAMBDA IY AI 
( ClJ1~D 

I I E'l Y A l Tl 
I (ATOM Yl NILI 
IT lOR (FIND! (CAR Yl AI I FINO! I COR Yl AI ll l I I 

IMAXPARTS 
!LAMBDA 

tAl 
IPROG lVI 

LOOP 
( SETQ I I 

( SE TQ V 
(MAX V 

(COND ( IEQ ICAR VI (QUOTE EXPTI I 
ICOND ((NUMBERP ICAODAR Yl I 

(CUND ( ILESSP ICADDAR Yl Ol !MINUS ICAOOAR Yll l 
IT ICADDAR Yll ll 

!Tllll 
IT 11 Ill 

( SETQ A I CDR All 
ICOND (I NULL AI IRETURI~ Yl l I 
(GO LLJOP l I l I 

INTEGKATIUN-BY-PARTS 

!PARTS 
ILAM60A 

IEXP VARI 
IPROG lA B Y Z W G TOPPARTI 

( CONO I i~OPAR TS (RETURN Nl ll I I 
ICONO ((NOT I GET (QUOTE TOP I !QUOTE APVALl II 

ICSETQ TOP ISETQ TOPPART IGENSYMlll ll 
( SE TQ Y 

1M2 
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CSET 
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EXP 
(QUOTE !TIMES ICOEFFTT lA FREEl! ICOEFFTT IB TRUEllll 
NIL l l 

ISETQ A !CDR ISASSOC !QUOTE Al Ylll 
ISETQ S I CDR ISASSOC !QUOTE Bl Yl l l 
ICONO IINOT IEQ !CAR Bl !QUOTE TIMESlll !RETURN Nlllll 
ICOND 

((NOT !GET (QUOTE MAXPARTSl (QUOTE APVALlll 
lAND ICSETQ MAXPARTS I TIMES 2 IMAXPARTS Bl l l 
ICSET~ NUMPARTS ll ll 

!lAND ICSETQ NUMPARTS !ADD! NUMPARTSll 
IGREATERP NUMPARTS MAXPARTSl l 

!RETURN Nlll l l 

ISETQ Y !CDR Bll 

ICSETQ NOPARTS Tl 
ISETQ Z !INTEGRATE !CARYl VARll 
ICSETQ NOPARTS NIL) 
ICOND IIFINDl Z !QUOTE INTEGRAL)) !GO Alll 
I SETQ G !CHOICE !CAR Yl Bl l 
ISETQ W !INTEGRATE ISIMPTIMES !LIST IDIFFl G VARl Zll VARll 
ICOND ((FIND! W !QUOTE INTEGRAL)) !GO Alll 
I SETQ 

y 
ISIMPT!MES !LIST A ISIMPDIFFERENCE !LIST ISIMPTIMES !LIST G Zll Will ll 

(RETURN ICOND IIEQ TOPPART TOP) 
IPROG23 

IREMPROP (QUOTE TOP) (QUOTE APVALl l 
y 

IREMPROP (QUOTE MAXPARTSl (QUOTE APVALl l l l 
. T Yl l l 

I SETQ Y I CDR Yl l 
ICOND ((NULL Yl !RETURN N!Llll 
ICO'lD ((NOT IEQ TOP TOPPART) l IGO LCOPl l l 
ICSETQ MAXPARTS !TIMES 2 IMAXPARTS Bill 
ICSETQ NUMPARTS ll 
I GO LOOP l l l l l l 

I'IUMPAR TS ll 

CSET 
(NOPARTS Nlll 

DEFINE 
I I I SOL 

!LAMBDA 

SOLO l ER 

IEXP !NDVAR DEPVARl 
ISUBST 

IN DVM 
!QUOTE Xl 
ISUBST 

DEPVAR 
(QUOTE Yl 



(SOLDIER 
(SUBST 

(QUOTE XI 
INDVAR 
I SUBS T 

(QUOTe Yl 
DEP VAR 
I SUBS T 

!QUOTE DXI 
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(INTeRN lf'1KNAM 1<>< .• CLEARBUFFI !PACK (QUOTE Oil !PACK I<~DVARIII I 
ISUBST 

ISOLCON 
I LAMBDA 

(QUOTE DYI 
!INTERN IMKNAM lOR ICLEARBUFFI !PACK (QUOTE Oil (PACK DEPVARIII I 
I SUBS T 

(QUOTE YPRI 
(INTERN IMKNAM lOR 

ICLEARBUFF I 
!PACK DEPVARI 
(PACK !QUOTE Pll 
(PACK !QUOTE Rll Ill 

E XP II I I II I I I I 

(FXP INDVAR OEPVAR X Yl 
IILAMtlDA IZI 

IILAMBDA IWI 
ICONO ((NULL WI Nl Ll 

IT !LIST 
(QUOTE EQUALI 
I SIMP I SUBST Y DEPVAR ISUBST X INDVAR Will 
w 1111 

ICDrW 
I I NULL Zl NILI 
II EQ ICADR Zl (QUOTE CJII ICADDR Zll 
IT ICADR Zll Ill 

I SOL EXP INDVAR DEPVARI Ill 
I SOLDIER 

I LAMBDA 
IEXPI 
i?RGG (W EXPl EXP21 

1 cor·-w 
I I SE TQ W 

1M2 
EXP 
(QUOTE (PLUS ICOEFFPT lA TRUEI DYI ICCEFFPT IB TRUEI OXIII 
NIL II 

(GO AI I 
I I SE TQ W 

1M2 
E XP 
(QUOTE (PLUS ICOEFFPT lA TRUEI YPRI ICCEFFPT (8 TRUEIIII 
~HL II 

NIL I 
IT !RETURN NILII I 

ISETQ EXPl !REPLACE W (QUOTE IPLUS (TIMES A DYI ITI~l~S B DXIIIll 
I SEH: EXP2 EXPl 
IGO Bl 

ISETQ EXP2 !REPLACE W (QUOTE (PLUS !TIMES A YPRl Bllll 
I SETQ EXPl EXPl 
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!COND ((T~YSOLD (QUOTE !LINEAK 
SEP 
EXACT 
HOMOGTYPE 
BERNOULLI 
LINEARCOEFF 
ALMOSTLINEAR 
REVERSEVAR 
XNYl ll 

(QUOTE (EXPl EXPl EXPl EXPl EXPZ EXPZ EXPl EXPl EXPZll l 
(RETURN Wl l 

( T ( RETURN N I Ll l l l l l 
!TRYSOLD !LAMBDA (A Bl 

!COND 
((NULL Al Nlll 
(($ETQ W ((CAR Al (COND ((EQ (CAR Bl (QUOTE EXPlll EXPll (T EXP21111 WI 
IT (TRYSOLD (CDR AI !CDR Bill IIlli 

DeFINE 
( ( ( FAC TORXY 

!LAMBDA 
( EXP I 
(Ci"l"lD 

((NOT !EQ (CAR EXPI (QUOTE TIMESlll EXPl 
( T 

( SIMPTIMES 
!MAPLIST 

(CDR EXP I 
!FUNCTION !LAMBDA !EXPI 

(COND 
( !EQ !CAAR EXPI (QUOTE PLUS I I (FACTORXY2 !CAR EXPI I I 
((AND (EQ !CAAR EXPl (QUOTE EXI'Tl I 

( EQ ( CAADAR E XP I (QUOTE PLUS l I I 
(SJMPEXPT !LIST !FACTORXYZ (CADAR EXPll (CADDAR EXPlll 

( T (CAR E XP l I I I I I I I I I I 
(FACTORXY2 

(LAMBDA 
( EXP I 
(PROG !Z IND RES WI 

LOOP 

(SETI.i Z !CDR EXPll 
!SETQ IND (QUOTE Xll 

!COND 
(!NOT 

( SETQ 
w 
(M2 

(CAR Zl 
(QUOTE 

(COEFFT 
(B TRUE I 
( EXPT 

(A Ml INDl 
IN (FUNCTION !LAMBDA (Nl 

(AND (NUMBERP Nl !GREATERP N 0.98999999EO I l I I I I I l 
NIL I l I 

!GO NOI II 
( SETQ RES 

!CO"lS !REPLACE W (QUOTE !TIMES B (EXPT A (PLUS N -111111 RESl I 
!COND ((NOT !SETQ Z !CDR Zlll 

!RETURN !SIMPTIMES (LIST IND !SIMPPLUS RESllll II 
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IGO LOOP) 

ICOND IIEQ IND !QUOTE Vll !RETURN EXPlll 
ISETQ l'lD (QUOTE Vll 
I SE Hl l I CDR E XP ll 
I SETQ RES Nlll 
IGO LUOPl lllll 

DEFINe 
IIISIMPEXPT 

(LAM flO A 
I EXP l 
(Ptl.DG lA Bl 

ISETQ B !SIMP ICADR EXPlll 
I SETQ A I SIMP I CAR EXPlll 
ICOND 

IIEOP A Ol !RETURN Oll 
I ( A'lD 

IEQ !CAR Al (QUOTE EXPTil 
ISETQ B ISIMPTIMES !LIST B ICADDR Allll 
ISETQ A ICADR All 
NIL l 

NIL l 
! !EQP B Ol !RETURN ll l 
I IEQP B ll I RETURN All 
I IEQP A ll I RETURN lrl 
I lAND INUMBERP Al INUMBERP Bll 

!RETURN (CUND 
I I NOT EXPTINOl (cXPT A Bll 
I (AND IFIXP Bl IGREATERP B -lll IEXPT A Bll 
IT I LIST I QUOTE EXPTI A Bll Ill 

I lcQ I CAR Al (QUOTE T!MESll 
IRETUR'l ICONS !QUOTE TIMES! IEXPTLOOP !CDR Allll 

I lAND =xPTSUM IEQ !CAR Bl IQUCTE PLUSlll 
(RETURN 

ICONS 
(QUOTE TIMES! 
IMAPLIST !CDR Bl 

!FUNCTION !LAMBDA ICl ISIMPEXPT lUST A ICAR Clllll llll 
IlNDT IATOM Bll 

I RETURN 
IPROG IWl 

(RETURN 
ICOND 

I I "'OT I SETQ W 
1M2 
B 
IQUOTE !PLUS ICCEFFT IC TRUEll 

(LOG 161 TRUE! lA TRUE)) 
ICOEFFP IE TRUEll ll 

Nl L lll 
!LIST !QUOTE EXPTl A Bl I 

IlNDT !EQUAL A ISUBLIS W !QUOTE Blllll 
!LIST (QUOTE EXPTl A Bl I 

IT 
ISIMPTIMES !LIST 

ISIMPEXPT (LIST ISUBLIS W (QUOTE All 
ISUBLIS W (QUOTE Cll ll 

ISIMPEXPT lUST A ISUBLIS W (QUOTE Ellll lllllllll 
!RETURN !LIST (QUOTE EXPTl A Bll Ill 

IEXPTLOOP 
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I A I 
IPROG23 
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ICSETQ SIMPIND Tl 
IMAPLIST A IFU'JCTION ILA"'BDA ICI ISI"'PEXPT I LIST I CAR Cl Bl I I I I 
ICSETQ SIMPIND NILI IIIII 

DEFINE 
I I I LI"'EAR 

(LAMBDA 
l EXP I 
!PROG !Y l WI 

I RETURN 
!COND 

l (i~O T 
I SETQ 
w 
1M2 

EXP 
!QUOTE 

I PLUS 
ICOEFFPT IF FREEX !QUOTE Yll OYI 
ICOEFFPT lA Ml 

(QUOTE !PLUS !COEFFPT IG FKEEX I QUOTE Yl I Yl 
ICOEFFPT !H FREEX !QUOTE Ylll Ill 

OX I I I 
NIL I II 

ICOND llANO ITHEREXNY EXP ll 

IT 

!NOT 1M2 EXP !SETQ W IEXPAN02 EXPI I Nlll I I 
!LINEAR WI I 

IT Nlll I I 

Ill ST 
!QUOTE EQUALI 
(QUOTE COl 
ISIMPPLUS 
Ill ST 
Ill ST 

!QUOTE TIMES! 
!QUOTE Yl 
I SETQ 

l 
I SIMPEXPT 
ILl ST 

!QUOTE El 

!SIN 

!SIN ISIMPQUOTIENT !LIST !REPLACE W (QUOTE Gl 
!REPLACE W I QUOTE Fl I I I 

!QUOTE XI IIIII 

!SIMPTIMES !LIST Z 
!SIMPQUOTIENT !LIST (REPLACE W !QUOTE HI) 

!REPLACE W !QUOTE Fll 1111 
I QUOTE X I I I I I I I I I I I 

!THEREXNY !LAMBDA IEXP Nl (EQUAL N !COUNTY EXPIIII 
!COU"'TY !LAMBDA IEXPI 

!COND !!ATOM EXPI !COND IIEQ EXP !QUOTE VI I ll IT 01 I I 
IT (PLUS !COUNTY !CAR EXPII (COUNTY (COR EXPIIII IIIII 

DEFINE 
I!ISEP 

I LAMBDA 
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{ !:XP) 
!PROG {loll 

!RETURN 
!C01~D 

((SETQ W 
1M2 

!PRUG23 !CScTQ EXPTSUM Tl !SIMP EXPl !CSETQ EXPTSUM NIL l) 
( OUU TE I PLUS 

! TIMES 
OX 
!COEFFTT !M FREE X (QUOTE X) l l 
!COEFFTT IR FREE X (QUOTE Y))) 

! TIMES 
DY 
!COEFFTT IN FREEX !QUOTE Xlll 
!COEFFTT IS FREEX !QUOTE Yl l l ) l l 

NIL l l 
ILl ST 

I QUOTE EQUAL) 
!SIMPPLUS !LIST 

!SIN !SUBLIS w !QUOTE !QUOTIENT R Sill !QUOTE: X)) 
!SIN !SUBLIS W !QUOTE !QUOTIENT N Mill !QUOTE Yll )) 

!QUOTE COl l) 
( T N Ill I l I I l 

!FREEX !LAMBDA !A VARl 
!COND (!ATOM AI !NOT !EO A VARl l l 

IT !AND !FREEX !CAR Al VARl !FREEX !CDR A) VARlll ))))) 

DEFINE 
!!(EXACT 

!LAMBDA 
I EXP l 
!P~OG !W P U DPDY DQOX Y Fll 

!COND ((~OT !SETQ w 

OUT 

A 

1M2 
EXP 
(QUOTE !PLUS !COEFFPT !P TRUE) OX) !COEFFPT !Q TRUE! OYll l 
NIL l) l 

!RETURN Nlll ) ) 
i SETQ P { SUBLI S w !QuOTE P) l l 
I SETQ Q I SUBLI S W !QUOTE Q) l l 
!SETQ DPDY !DIFFl P {QUOTE Ylll 
( SETQ DQDX !DIFFl Q !QUOTE X)) l 
!COND !!NOT 1M2 DPDY DQDX NIL)) !GO Alll 

!SETQ Y !SI"' P !QUOTE Xlll 
!RETURN 

I LIST 
I QUOTE EQUAL) 
(QUOTE COl 
!SIMPPLUS 

I LIST 
y 

I SIN 

!COND 

!EXPANDZ !SIMPDIFFERENCE !LIST Q !DIFFl Y !QUOTE Ylllll 
(QUOTE Y) ))))) 

I !NOT 
I FREEX 

I SETQ Fl 



ll 

c 

DEFINE 
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!SIMPQUOTIENT !LIST ISIMPDIFFERENCE !LIST DPDY DQDXl l Qll l 
(QUOTE Yl l l 

!GO B l l l 
!SET~ Y !SIMPEXPT !LIST !QUOTE El ISI'J Fl l~UOTE Xlllll 
ISETQ P ISIMPTIMES !LIST Y Plll 
ISETQ Q ISIMPTIMES !LIST Y Qlll 
!GO DUll 

ICOND 
l (NOT 

l FREE X 
l SETIJ Fl 

ISIMPQUOTIENT !LIST ISIMPDIFFERENCE (LIST DQDX DPDYll Pll l 
(QUOTE Xl ) l 

l GrJ C l l l 
ISETQ Y !SIMPEXPT (LIST !QUOTE El {SIN Fl t<;:UOTE Ylllll 
ISETQ P ISIMPTIMES (LIST Y Plll 
l SETQ Q l SIMPTIMES Ill ST Y Ql l l 
!GO DUll 

ICOND IlNDT lANO 1M2 DPDY lSIMPMINUS (LIST OQOX)) Nlll 
1M2 lDIFFl P (QUOTE Xl l lOIFFl Q (QUOTE Yl l Nlll l l 

I RETURN Nlll ) ) 
l SE TQ Y 

ISIMPPLUS I LIST lSIMPTIMES I LIST P Pll lSIMPTIMES I LIST Q Ql) ll ) 
ISETQ P lSIMPQUDTIENT !LIST P Ylll 
lSETQ Q lSIMPQUOTIENT lUST Q Ylll 
!Gll UUTl ))))) 

l l I BE~:-IDULL I 
(LAMBDA 

lcXP) 
IPROG (W) 

lRETUKN 
lCO"'D 

l !NOT 
l SET<J 
~ 

1M2 
E XP 
(QUOTE 

(PLUS 
ICOEFFPT lB TRUE) YPRl 
ICOEFFPT IP FREE X ICUOTE Yl l Yl 
lCOEFFPT 

(Q FREEX (QUOTE Yl l 
l E XP T Y 

IN (LAMBDA tAl 
lAND INUMBERP Al !NOT IZEROP Alll llllll 

Nl L l l l 
ICOND ((AND lTHEREXNY EXP 2) 

!NOT 1M2 EXP lSETQ W lEXPAND2 EXPll Nllll 
!BERNOULLI Wl l 

l T NILl ) l 
l IFREEX !REPLACE W !QUOTE B) l (QUOTE Yl l 

liLAMilDA 
l P 1.1 Nll 
l SUBS T 

l SIMPEXPT I LIST I QUOTE Yl Nl l l 
!QUOTE Yl 
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!LINEAR ISIMPPLUS !LIST !QUOTE DVI 
ILl ST 

!QUOTE TIMES! 
!QUOTE DXI 
Ill ST 

!QUOTE PLUS! 
!LIST !QUOTE TIMES! N1 P !QUOTE VII 
!LIST !QUOTE TIMES! N1 Cl 1111111 

!REPLACE W (QUOTE !QUOTIENT P Bill 
(REPLACE W !QUOTE !QUOTIENT Q Bill 
ISIMPDIFFERENCE !LIST 1 ISUBLIS W !QUOTE Nllll 111111111 

DEFINE 
lllHOMOGHPE 

(LAMBDA 
IEXPI 
IPROG IV Z WI 

ICOND 
l !NOT I SETQ W 

1M2 
EXP 
!QUOTE !PLUS ICOEFFPT IP TRUE! DXI ICOEFFPT IQ TRUE! DYII I 
NIL II I 

IRETURN Nlll I 
l !NOT lAND 

ISETQ Z lHOMOG lSUBLIS W !QUOTE PII II 
ISETQ Y lHOMOG lSUBLIS W (QUOTE Qllll 
l EQP V Z I I I 

l RETURN Nlll I 
l T 

l R.E TURN 
!LIST 

l QUOTE EQUAl! 
l ll ST 

!QUOTE PLUS! 
(QUOTE (LOG E XII 
!SIMP 

l SUBS T 
!QUOTE (QUOTIENT Y XI I 
(QUOTE Yl 
l SIN 

l Sl MPQUOTI ENT 
l Ll ST 

l SE TQ V 
!SIMP lSUBST 1 (QUOTE XI lSUBLIS W (QUOTE Qlll II 

l Sl MPPLUS l Ll ST 
!SIMP lSUBST 1 (QUOTE XI lSUBLIS W (QUOTE Pill I 
l SIMPTIMES !LIST !QUOTE VI VII II II 

(QUOTE Yl II I I 
(QUOTE COl 1111111 

lHOMOG (LAMBDA lEXPI 
lPRUG lNOTHOM VI 

lSETQ Y lHOMOGEN EXPII 
lCOND lNOTHOM (RETURN NILII lT !RETURN VI)) Ill 

l HOMOGEN 
(LAMBDA 

l EXP I 
lCOND 

l !ATOM EXPI lCOND l lEQ EXP !QUOTE Yll 11 l lEQ EXP !QUOTE XII 11 IT 01 II 
l l EQ !CAR EXP I (QUOTE TIMES I I 

lEVAL ICONS !QUOTE PLUS! 
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(MAPLIST (COR EXPI (FUNCTION (LAMBDA CCI (HOMOGEN (CAR Clllll I 
(All ST l I l 

I (EQ I CAR EXPI !QUOTE PLUS I I 
II LAMBDA I Yl 

IPROG IZI 

LOOP 
I SETQ Z IHOMOGEN I CAR Yl I I 

( SETQ Y I COR Yl I 
ICOND 

IINULL Yl !RETURN Zll 
IlNDT !EQUAL Z IHOMOGEN !CAR Yllll 

(RETURN (PROG2 ISETQ NOTHOM Tl -100011 
IT I GO LOOP l l Ill 

ICDR EXPI II 
IIEQ ICAR EXPl ICUOTE EXPTll 

ICOND 
( INUM6ERP ICADDR EXPil I TIMES (HOMOGEN ICADR EXPil ICADDR EXPI l I 
llANO IZEROP IHOMOGEN ICADR EXPill IZEROP IHOMDGEN ICADDR EXPilll Ol 
IT IPROG2 ISETQ NOTHOM Tl -100011 ll 

I(EQ ICAR EXPl !QUOTE LOGil 
ICOND IIZEROP IHOMOGEN ICADDR EXPIIl Ol 

IT IPROG2 ISETQ NOTHOM Tl -100011 ll 
IIZEROP IHOMOGEN (CADR EXPlll 01 
IT IPROG2 ISETQ NOTHOM Tl -100011 IIIII 

DEFINE 
( ( ( ALMOSTL !NEAR 

I LAMBDA 
IEXPI 
IPROG IW 0 DDOYI 

( RETURIII 
ICOND 

I I NULL 
I SETQ 
w 
1M2 

EXP 
I QUOTE 

I PLUS 
!TIMES DY (COEFFTT lA TRUElll 
I Tl ME S 
ox 
I PLUS 

I Tl ME S 
ICOEFFTT IC FREEX (QUOTE Ylll 
ICOEFFTT 

ID !FUNCTION (LAMBDA IAl (NOT IFREEX A !QUOTE Yllll llll 
ICOEFFPP IE FREEX !QUOTE Ylll llll 

NIL Ill 
NIL l 

I I EQUAL 0 
I SETQ DDDY 

IDIFFl ISETQ D I REPLACE W I QUOTE Dill I QUOTE Yl l II 
NIL l 

I I NOT (EQUAL 0 IDIFFl DDDY I QUOTE XI Ill NILI 
IT 

I SUBS T 
D 
!QUOTE Yl 
I LINEAR 

I REPLACE 
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ICONS ICO~S (QUOTE Bl 
ISIMPQUOTIENT lUST !REPLACE W (QUOTE All OODYll l 

w ) 
I QUOTE 

I PLUS 
IT IME S B OYl 
!TIMES DX 

I PLUS 
E 
I Tl ME S C Yl 
(TIMES -1 B IEVAL IOIFF! !QUOTE Ol (QUOTE XIIII lllllllllllllll 

IIIZE~OPl (LAMBDA lA) lAND INUMBERP A) IZEROP A)))) 
IFREEXY ILA~SDA (A) lAND IFREEX A (QUOTE Xll IFREEX A (QUOTE Y))))) 
ILINEARCOEFF 

I LAM6DA 
I EXP) 
IPROG II~D W A B APR BPRl 

I RETURN 

I ELEMLIN 

ICOND 
I I NOT IELEMLIN EXP)) NILI 
I lOR 

lAND 
IZEROPl ISETQ A ISUBLIS W IQUOTE Allll 
IZEKOPl ISETQ B ISUBLIS W !QUOTE Bllll 

lAND 
IZERDPl ISETQ APR ISUBLIS W (QUOTE APRllll 
IZEROPl ISETQ BPR ISUBLIS W I~UOTE BPRllll I 

IZEROPl ISIMPDIFFERENCE !LIST ISIMPTIMES ILIST A BPRll 
ISIMPTIMES (LIST APR Bll llll 

!RETURN NILI l 
IT 

IKE PLACE 
I REPLACE 
NIL 
I QUOTE 

I I X 
EVAL 
!QUOTE• 

I REPLACE 
w 
{~UOTE (PLUS X 

IMI~US (QUOTIENT 

( y 

EVAL 

IOIFFERENCE !TIMES BPR Cl 
!TIMES B CPR) l 

!DIFFERENCE !TIMES APR Bl 
!TIMES A BPRl llllllll 

I QUOTE• 
I REPLACE 
w 
I QUOTE I PLUS Y 

!MINUS (QUOTIENT 
!DIFFERENCE !TIMES A CPRI 

I Tl ME S APR C l l 
(DIFFERENCE (TIMES APR Bl 

(TIMES A BPRl lllllllllll 
IHOMOGTYPE ISUBSTLIN EXPll ))))))) 
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!EXPI 
((LAMBDA ( Y I 

!COND (!NULL Yl NILI 
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IT lELEMLINl (REPLACE Y (QUOTE (QUOTIENT A Blllll II 
1M2 EXP (QUOTE !PLUS !COEFFPT !B TRUE! YPRI !COEFFPT !A TRUEIIII NILI Ill 

l SUBSTLIN 
!LAMBDA 

!EXPI 
!LIST 

!QUOTE PLUS) 
!QUOTE OYI 
l SIMP TIMES 

l LIST 
!QUOTE DXI 
!SUBSTLINl !REPLACE 1M2 

EXP 
(QUOTE !PLUS !COEFFPT !B TRUEI VPRI !COEFFPT (A TRUEIIII 
NIL I 

!QUOTE !QUOTIENT A 811 1111111 
l ELEMLIN 1 

!LAMBDA 
l EXP I 
!CONO 

l l FREE XV EXP I Tl 
l l SETQ 

w 
1M2 

EXP 
!COND 

l !NO I NOI 
IT 

!QUOTE (TIMES 
!COEFFTT !AA FREEXVII 
!EXPT !PLUS 

!COEFFPT !A FREEXVI XI 
( COEFFPT ( B FREE XVI VI 
!C FREEXVI I 

IN NUMBERPI I 
l EXPT 

!PLUS 
!COEFFPT !APR FREEXVI XI 
!COEFFPT !BPR FREEXVI Yl 
!CPR FREEXVI I 

(M !FUNCTION !LAMBDA !M Nl !EQUAL M (MINUS Nllll Nl IIIII 
NIL II 

ICOND IINO INDI IT !SETQ IND EXPIII I 
( ( A TOM E XP I N ILl 
IT !AND lELEMLINl !CAR EXPII !ELEMLINl !CDR EXPIIII Ill 

l SUBSTLINl 
!LAMBDA 

l EXP I 
!CUND 

l!FREEXYEXPI Tl 
(1M2 EXP INOI 

l SIMP l SUBLI S W 
(QUOTE l TIMES 

AA 
!EXPT !PLUS !TIMES A XI (TIMES B VII Nl 
lEXPf !PLUS !TIMES APR XI !TIMES BPR VII !MINUS Nil IIIII 

IT IMAPLIST EXP !FUNCTION (LAMBDA !Cl lSUBSTLINl !CAR Cllllll lllll 



DEFINE 
!!!XNVl 

!LAMBDA 
I EXP I 
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I PROG I W C H FX S A B Nl 
!COND !!NOT ISETQ W 

1M2 
EXP 
!QUOTE !PLUS ICOEFFPT !A TRUEI VPRI !COEFFPT !B TRUEIIII 
NIL Ill 

!RETURN NILI I I 
!SETQ C !REPLACE W !QUOTE !QUOTIENT !MINUS Bl Allll 
I SETQ 

H 
ICOND 

I IEQ !CAR Cl !QUOTE PLUS II 
!SIMPPLUS 

I MAPLI ST 
!CDR Cl 
!FUNCTION !LAMBDA !GI 

!SIMPTIMES !LIST !QUOTE XI !QUOTE !EXPT V -111 !CAR Gil 111111 
IT !SIMPTIMES !LIST !QUOTE XI !QUOTE !EXPT V -111 Clll II 

I SETQ FX !QUOTE !TIMES !EXPT X Nl VII I 
I SETQ H IFACTORXV Hll 
I SETQ 
s 
IEXPAND2 

ISIMPDIFFERENCE !LIST 
!SIMPTIMES !LIST IDIFFl H !QUOTE XII IDIFFl FX !QUOTE VIlli 
ISIMPTIMES !LIST IDIFFl H !QUOTE VII !DIFFl FX !QUOTE XIIII 1111 

ICOND !!NOT ISETQ ~ 
1M2 
s 
!QUOTE !PLUS !COEFFPT lA TRUE) Nl !CCEFFP !B TRUEIIII 
NIL I II 

!RETURN NILI I I 
ISETI.I A !CDR ISASSOC !QUOTE AI 1011 
!SETQ B !COR !SASSOC !QUOTE Bl Will 
ICOND !lOR IZEROPl AI IZEROPl Bll !RETURN NIL))) 
I SETQ N 

!COND 
llANO IEQ !CAR AI (QUOTE PLUSII CEQ !CAR Bl IQUOTE PLUSJJJ 

IMATCHSUM !CDR ISIMPMINUS I LIST Bl I I !CDR AI I I 
IT ISIMPQUOTIENT !LIST ISIMPMINUS !LIST Bll Alii II 

ICOND I I NOT !NUMBERP Nil !RETURN NILI I I 
!RETURN 

I L1 ST 
!QUOTE EQUAL) 
(QUOTE COl 
I SIMPQUOTIENT 

!LIST 
I SIMPEXPT 

I LIST 
!QUOTE El 
!REPLACE 

!LIST ICONS 
(QUOTE Ul 
ISIMPTIMES !LIST IQUOTE VI ISIMPEXPT I LIST !QUOTE XI Nl II )) I 

I SIN 
I LIST 



{QUOTE QUOTIENT! 
1 
{ Ll ST 

{QUOTE TIMES! 
{QUOTE Ul 
Ill ST 

(QUOTE PLUS! 
N 
!REPLACE 
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!LIST ICONS (QUOTE VI 
!SIMP !LIST 

(QUOTE QUOTIENT! 
{QUOTE Ul 
(LIST (QUOTE EXPTI {QUOTE XI Nl 1111 

H 1111 
(QUOTE Ul 1111 

(QUOTE XI lllllllll 

AODIT!ONAL METHODS 

DEFINE 
(I I il.EVERSEVAR 

(LAMbDA 
( EXP I 
IPROG lVI 

DEFINE 

!RETURN ICOND IISETQ V 
!LINEAR ISUBLIS {QUOTE !IX. VI IV. XI (OX • DVI IDV • DXIII 

EXP Ill 
ISUBLIS !QUOTE !IX. VI IV. XIII Yl I 

( T NILI lllllll 

( { { XAVB 
(LAMBDA 

IEXPI 
(PROG IW 

M 
N 
XYDMDV 
XVDNDX 
XM 
VN 
COEXM 
COEYN 
XAVB 
A 
B 
FOil.M 
XVDIFF 
Al 
A2 
Bl 
B2 
Cl 
C2 
DET 
FACT I 

ICOND !(NOT ISETQ ~ 
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EXP 
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(QUUTE !PLUS !COEFFPT (M TRUE! OXI !COEFFPT IN TRUE! OYII I 
NIL ) II 

(RETURN NILI l) 
!SET~ M !REPLACE W (QUOTE Mill 
!5ETQ N !REPLACE W !QUOTE Nlll 
( SE TQ XYOMOY 

!EXPANOZ (SIMPTIMES !LIST (QUOTE XI !QUOTE Yl !OIFF1 (QUOTE Yllll )) 
( SETQ XYONOX 

IEXPAN02 (SIMPTIMES !LIST (QUOTE Xl (QUOTE Yl !OIFF1 N !QUOTE X)))) II 
ISETQ XM (EXPAN02 !SIMPTIMES (LIST (QUOTE Xl Mllll 
!SETQ YN !EXPAN02 !SIMPTIMES (LIST -1 (QUOTE Yl Nllll 
(SETQ XYDIFF !SIMPOIFFERENCE (LIST XYONOX XYOMOYlll 
( SE TQ W 

1M2 
!CONO ( !EQ !CAR YNl (QUOTE PLUS II !CAOR YNI) (T YNl I 
(QUOH (TIMES !COEFFTT !B FREEXYl l (COEFFTT !C TRUE)) II 
NIL )) 

( SETQ B1 !REPLACE II !QUOTE Bl) I 
( SETQ FACT !REPLACE W (QUOTE Cll l 
(SETQ YN 

!CONO !(EQ !CAR YNI (QUOTE PLUS)) ICONS !CUOTE PLUS) !COOR YNIII 
iT Ol l I 

!SETQ FORM 
( Ll ST 

(QUOTE PLUS) 
!CONS (QUOTE COEFFPT) 

ICONS !QUOTE !B FREEXY)) 
ICON[; (!EQ !CAR FACTI (QUOTE TIMESil (COR FACTI! 

!T (LIST FACTII Ill 
(QUOTE (COEFFPP (0 TRUE) II l I 

( SETQ W 1M2 XM FORM Nlll l 
!SETQ A1 !REPLACE w (QUOTE Bill 
!SETQ XM !REPLACE II (QUOTE Olll 
!SETQ W 1M2 XYOIFF FORM Nllll 
( SET<J C1 (RePLACE W (QUOTE Bill 
( SETQ XYOIFF !REPLACE W (QUOTE 0)) l 
( CON 0 ( ( M 2 Y N 0 N I Ll ( G 0 B 2 l E R Ol ) I 
( S E TQ W 

1M2 
ICOND l IEQ !CAR YN) !QUOTE PLUS I l !CAOR YNII IT YNII 
(QUOTE (TIMES !COEFFTT IB FREE XV) I (COEFFTT !C TRUE! Ill 
"l!L )) 

!SETQ B2 !REPLACE W (QUOTE Bill 
!SETQ FACT (KEPLACE W (QUOTE Clll 
!SETQ FORM 

( Ll ST 
(QUOTE PLUS I 
(CONS (QUOTE COEFFPTl 

ICONS (QUOTE !B FREEXYl l 
ICD"lD !IEQ !CAR FACTI (QUOTE TIMESll !COR FACTII 

( T !LIST FACTI) l II 
(QUOTE ( COEFFPP (0 TRUE)) I l I 

!SETQ W 1M2 XM FORM Nllll 
($ETQ A2 (REPLACE w (QUOTE Bill 

B2BACK 
!SETQ W 1M2 XYOIFF FORM NILII 
ISETQ C2 !REPLACE W (QUOTE Bill 
( SETQ OET 

!SIMP !LIST 
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!QUOTE DIFFERENCE! 
(LIST !QUOTE TIMESl 62 All 
!LIST (QUOTE TIMESl Bl A2l Ill 

!COND (1M2 DET 0 NILl !RETURN N!Llll 
( SE TQ B 

(SIMP !LIST 
!QUOTE QUOTIENT) 
ILl ST 

!QUOTE DIFFERENCE) 
!LIST (QUOTE TIMESl 62 Cll 
!LIST (QUOTE TIMESl Bl C2l 

DET Ill 
I SE TQ A 

!SIMP !LIST 
(QUOTE QUlJTI ENTl 
ILl ST 

!QUOTE DIFFERENCE! 
!LIST (QUOTE TIMESl Al C2l 
!LIST !QUOTE TIMESl A2 Cll 

DET Ill 
I SETQ XAYB 

!SIMPTIMES !LIST !LIST !QUOTE EXPTl (QUOTE Xl Al 
!LIST (QUOTE EXPTl !QUOTE Yl Bl Ill 

!RETURN !EXACT !LIST 
(QUOTE PLUS l 
I L1 ST 

!QUOTE TIMESl 
!QUOTE DXl 
IEXPAND2 !SIMPTIMES !LIST M XAYBlll l 

Ill ST 
(QUOTE TIMES) 
(QUOTE DYl 
!EXPAND2 !SIMPTIMES !LIST N XAYBlll llll 

B2ZERO 

DEFINE 

! SETQ 62 Ol 
( SETQ W 

1M2 
!COND ( !EQ !CAR XMl (QUOTE PLUSll !CADR XMll IT XMll 
!QUOTE !TIMES !COEFFTT (6 FREEXYll !COEFFTT !C TRUEllll 
NIL ll 

!SETQ A2 !REPLACE W (QUOTE Blll 
!SETQ FACT !REPLACE W (QUOTE Clll 
!SETQ FORM 

(LIST 
(QUOTE PLUSl 
ICONS (QUOTE COEFFPTl 

!CONS (QUOTE !B FREEXYll 
!COND ( IEQ !CAR FACTI !QUOTE TIMES II !CDR FACTI I 

IT !LIST FACTll Ill 
(QUOTE !COEFFPP W TRUElll ll 

!GO B2BACKl llll l 

( ( (KAMKE329 
(LAMBDA 

( EXP l 
(PROG (W DET AA BBl 

!COND 
(!NOT 

( SETQ 
w 



DEFINE! I 

1M2 
IEXPAND2 EXPl 
I QUOTE 

I PLUS 
ICOEFFPT IC H1 
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!QUOTE (PLUS ICOEFFPT !ALPHA FREEXYl Xl 
ICOEFFPT 

lA FREEXYl 
IEXPT X IP FREEXYll 
IEXPT Y IQ FREEXYll llll 

YPR l 
ICOEFFPT IBETA FREEXYl Yl 
ICOEFFPT 

IB FREEXYl 
IEXPT X IR FREEXYll 
IEXPT Y IS FREEXYll Ill 

NIL Ill 
(RETURN NILl l 

I I NOT lAND 
1M2 1 !REPLACE W (QUOTE !DIFFERENCE P Rill NILl 
1M2 1 (REPLACE W (QUOTE !DIFFERENCES ~Ill NILl ll 

I RETURN NI Ll l 
II M2 

0 
I SETQ OET 

!REPLACE W 
!QUOTE !DIFFERENCE !TIMES A BETA) !TIMES B ALPHAlll ll 

NIL l 
!RETURN NILl ll 

ISETQ AA 
!REPLACE W 

!QUOTE (QUOTIENT !DIFFERENCE !TIMES Q BETAl !TIMES R ALPHAll 
IEVAL DEll llll 

I SETQ BB 
I REPLACE W 

(QUOTE I QUOTIENT I DIFFERENCE !TIMES Q Bl ITU~ES R All I EVAL DETll lll 
I RETURN 

I REPLACE 
w 
I QUOTE 

!EQUAL CO 
I PLUS 

IQUUTIENT !TIMES IEXPT Y !TIMES A IEVAL AAlll 
IEXPT X !TIMES 8 IEVAL AAlll l 

IEVAL AAl l 
!QUOTIENT !TIMES IEXPT Y !TIMES ALPHA IEVAL BBlll 

IEXPT X !TIMES BETA IEVAL BBlll l 
IEIIAL BBl lllllllllll 

EDGE 

IFREEILAMBDAIAIICONDIIATOM AliNOTIEQ A VARlll 
ITIANDIFREEICAR AIIIFREE ICDR Alllllll ll 
DEFINE I I 
IEDGEILAMBDAIEXP 1/ARIIPROG 
IPROBL ARCLOG POSEXPT OLOPROBL ONEMORE NONRAT NEWB' G W CONST NONCON 

B ANSW L FF AORA' H A 



NPHXP A' tl' LDERIV Ml 
ISETQ B' ITRIGSUBST EXPII 
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(SETQ NINTXPIM2 B'IQUOTEITIMES(BB Ml(QUOTEIEXPT(A (QUOTEILAMBDAIXIINOT 
( FREE X I I I I I ( N 

I<.~UDTEILAMBOA(X)(NOTINUMBERP XIIII 1111 
ICOEFFTTIC TRUEIIIINILII 

(GO BEGI 

LOUPICONDIIRATB B'IIGO FINISHEDIII 

ICONDIIEQICAR NONCONIIQUOTE TIMESII(GO AAIII 
ISETQ FF NONCUNI 
(GO GUESSl 
AAISETQ LDERIVICONSIQUOTE PLUSI IMAPLIST IGOR NONCONl 

IFUNCTIO"'ILAMBOAICIIOIFFliCAR CIVARllllll 
ISETQ M!COR NONCONII 
ISETQ LICOR LDERIVII 
LOUP2!CON0( !RAT8(CAR Ml )(GO SKIP I II 
ICO"'D!(NOT!M2 !CHOICE (CAR L1 LDERIVI 

!LISTIQUOTE PLUSI!LISTIQUOTE TIMESI!CAR Ml 
(QUOTE!COEFFTT!A TRUE I II I 

(QUUTE!B TRUEIII NIUI !GO ENOPIII 
SKIP!SETQ NONRAT!CAR Mil 
(SETQ M!COR Mil 
ISETQ LICDR Lll 
(CU~O(M(GO LOOP2111 
!SETQ FF NONRATI 
!GO GUESSI 
E~DP!SETQ FF!CAR Mil 

GUESSISETQ ARCLOG NILI 
ISoTO POSEXPT NILI 
(SETQ G!CONO 
((EI./!CAR FF)(QUOTE COSIHPROG2!SETQ AORA' T)(LIST(QUOTE SINIICAOR FFIIll 
!(EQ(CAR FFI!QUOTE SINII(PROG2!SETC AORA' TliLIST(QUOTE COSI!CAOR FFllll 
t!EQ(CAR FFI!QUOTE LOGIHPROG2!SETQ AORA' NIUFFII 
!IEQ(CAR FFI(QUOTE ARCSINII!PROG21SETQ AORA' NILIFFII 
((EQICAR FF)(QUOTE ARCTANII!PRUGZISETQ AORA' NILIFFII 
( !EQ(CAR FF)(QUOTE EXPTI )(COND 
{(FREEICADR FFII(PROGZISETQ AORA' TlFFII 
((NOTINUMBERPICADDR FFIIIIPROG23(SETQ AORA' TIILISTIQUOTE EXPTl!CAOR FFl 

!SIMPPLUS!LIST!CAODR FFlllll 
ISETQ POSEXPT Till 

t!GREATERPICADDR FFIOI!PROG23!SETQ AORA' Tl(LISTIQUOTE EXPTIICAOR FFI 
ISIMPPLUS(LISTICADDR FFlllll 
( SETQ PlJSEXPT T1 l I 

( (LESSP(CADDR FFI-ll IPROG2!SETQ AORA' Tl !LIST(QUOTE EXPTl 
!CAOR FFI!SIMPPLUS(LISTICAOOR Ffllll Ill 

( IAND!EQUAL!CADOR Ffl-0.51 !SETQ WIMZ!CADR FFl 
!QUOTE(PLUS(COEFFP(A FREEOll(COEFFTIC MZ!QUOTE!EXPT!O TRUEl!N EVENliiNILl 

( B FREE I I l IN ILl I l 
( PROG23( SETQ AORA' Tl (REPLACE W 
!QUOTE(ARCSINIEXPT(QUOTIENTITIMES(MINUS BlClAl0.5lllliSETQ ARCLOG Till 

!(EQUALICADOR FFl-ll(CONOI!SETQ W(MZ!CAOR FFl 
!QUOTE!PLUSICOEFFP!A FREEOli!COEFFT!C MZ!QUOTE!EXPT!O TRUEl!N EVENlllNILl 

IB FREE II llNILI l 
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IPROG231SETQ AORA' TIIREPLACE WIQUOTEIARCTANIEXPTIQUOTIENTITIMES B C!Al0.5llll 
ISETQ ARCLOG Tl II 
ITIPROG231SETQ AORA' Tl ILISTIQUOTE LOG! I QUOTE EIICADR FFiliSETQ ARCLOG Tlllll 

ITIERRORIQUOTEINOT YET ACCOUNTED FORllllll 
ITIERRORIQUOTEIGUESS NOT YET F!NlSHEDIJilll 

GOGOICONDIINOT AORA'IIGO A'SETlll 
ISETQ AISIMPQUOT!ENTILIST NONCONID!FFl G VARIIII 
ISETQ AICONDIIAND ARCLOGISETQ WIM2 AIQUOTE 

ITIMESIB M21QUOTEIEXPTIPLUSICOEFFPIB1 FREEOII 
ICOEFFTIB2 TRUEIIB3 FREEIII-liiNILI 

IC M21QUOTEIPLUS!COEFFPIC1 FREEOII 
ICOEFFTIC2 TRUE111C3 FREEllliNlliiCOEFFTTID TRUEilllNlllll 
ICONOIISETQ MIMATCHSUMICDADRIREPLACE WIQUOTE Bill 

ICORIREPLACE WIQUOTE Clllll 
ISIMPQUOTIENTILISTIREPLACE WIQUOTE Ol!Mlll 

IT AlII 
IT A Ill 

ISETQ A'IDIFFl A VARII 
ISETQ NEWB' ICONDI INOTIEQICAR A' I !QUOTE PLUS Ill ISIMPMlNUSillST 

IS!MPTIMESillST G A'lllll 
ITITIMESLOOPIS!MPMINUSIL!ST Gil !CDR AI Ill! 

!GO LOOP51 
A'SETISETQ A'IS!MPQUOT!ENTILIST NONCON Gill 
ICONDIIFINOliSETQ AI!NTEGRATE A' VARIIIQUOTE lNTEGRAllliGO K!Lllll 
ISETQ NEWB'ICONDIIEQICAR AI(QUOTE PLUS!! IT!MESLOOPIS!MPM!NUS 

IL!STIO!FFl G VARIIIICDR Alii 
ITISIMPTIMESILIST -liO!FFl G VARIA! I II I 

LOOP51SETQ PROBLICONSILIST B' CONST NONCON G FF A A' ARCLOG POSEXPTIPROBLII 
ICONDI lAND ARCLOGINOTIFREE Alii ISETQ ARCLOG 1111 
ICO~DI lAND POSEXPTINOTIFREE Alii ISETQ POSEXPT 1111 
!PRINT NEWS' I 
ISETQ B' NEWB'l 
BEG ISETQ WIM2 B'IQUOTEIT!MESICOEFFTTIA FREEIIICOEFFTTIB TRUEIIIINllll 
ISETQ CONSTIREPLACE WIQUOTE Alii 
ISETQ NONCONIREPLACE WIQUOTE Bill 
I StrQ L PROBll 
LDDP31CONDIINULL LliGO PROGRESSII 
IIMZICAODAR LINONCON NILIIGO Alii 
I SETQ Ll COR ll I 
I GO LOOP3l 
AISETQ M PROBLI 
ISETQ W CONSTI 
AZISETQ WIS!MPTIMESillST W !CADAR Mllll 
ICONDI I EQ M L II GO Alii! 
ISETQ MICDR Mil 
!GO AZI 
A11CDNDIIM2 WICADAR LINILIIGO Kllllll 

IRPLACAICDAR ll 
IS!MPQUOTIENTILISTICADAR LIIS!MPDIFFERENCEILISTICADAR LIWlllll 

ISETQ ANSW 01 
SK!PZISETQ l PROBLl 
LOOP41CONDIINULL LliRETURN ANSWIIl 
ISETQ ANSWISIMPT!MESIL!STICADAR Ll 
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IS IMPPLUSI L I STI SIMPTI ME S I L1 ST I CAD OR ICDOOAR LliiCARI COO OAR L II II ANSW IIIII 
I SETQ Ll CDR Lll 
IGO LOOP41 
FINISHEDISETQ ANSWII'HEGRATE B' VARII 
I GO SKIP 21 

PROGRESSICONDIIRAT8 B'l !GO FINISHED) I 
IONEMOREIRETURNIQUOTEINO PROGRESSllll 
(!EQUAL POSEXPT 1liSETQ ONEMORE Til 
I !EQUAL ARCLOG 1liSETQ ONEMORE Tlll 
ICONO( I NOT NINTXPl IGO LOOP) I l 
ISETQ WIM2 B'(QUOTEITIMESIEXPTIA EQUALIREPLACE NINTXPIQUOTE Alll 

IM TRUEliiiCOEFFTTID TRUEllllNllll 
ICONDIINULL WliERROR(QUOTE NINTXPllll 
ISETQ MISIMPDIFFERENCEILISTIREPLACE NINTXPIQUOTE Nll 

IREPLACE WIQUOTE Mlllll 
ICONOIINOTINUMBERP Mll IERRORILISTIQUOTE NINTXPIMlll 
IIZEROP MliGO LOOPll 
IIGREATERP M OliGO N1ll 
IONEMOREIRETURNIQUOTEINO PROGRESS NINTXPlllll 
I SETQ ONEMORE Tl 
IGO LOOPI 
NliSETQ ANSWILISTIIlUOTE INTEGRAL) NIL I LIST! QUOTE QUOTElB' I I LIST! QUOTE QUOTE l 

VARlll 
(GO SKIP21 

KILL! ISETQ PROBLICDR PROBLll 
KILL21CONOI !NULL PROBLI IGO MAYBEONEMOREIIl 
ISETQ LICAR PROBLll 
ICONOI ICARICDDODRICOODDR Ll l l (GO POSEXPTl l l 
ICONDIINOTICADOOR ICDDDOR LllliGD KILL1ll 
IIEQICARICAOODR LlliQUOTE LOGil IGO KILLlll 
I 
ISETQ FFICADOORICOR Llll 
ISETQ B'ICAR Lll 
ISETQ CONSTICADR Lll 
ISETQ NONCONICADOR Lll 
I SETQ AORA 1 Tl 
ISETQ GICONOIIEQICARICADODR LIIIQUOTE ARCS!Nll 

ILISTIQUOTE EXPTI ICAOR FFl ISIMPPLUSILISTICADDR FFl1ll ll 
ITILISTIQUOTE LOGliQUOTE EliCAOR FFillll 

ISETQ PROBLICOR PROBLil 
ISETQ ONEMORE NIL) 
!GO GOGO) 
KILLISETQ OLDPROBL PROBLl 
(GO KILL21 

MAY~EONEMOREICONDIONEMOREIRETURNIQUOTEII GIVEUPlllll 
IPRINTILISTIQUOTE ONEMORElOLOPROBLll 
ISETQ PROBL OLDPROBLl 
ISETQ ONEMDRE Tl 
IGO LOOP) 

PDSEXPTI COND I I EQUAL! CAR I CDDDDR I CDDDOR Ll l l 1 l I GO K I Lll l I l 
ISETQ FFICADODRICOR Llll 
ISETQ POSEXPT 1) 
ISETQAORA' Tl 
ISETQ 8' !CAR Lll 
IPRINTILISTIQUOTE POSEXPTlB 1 ll 
ISETQ CONSTICADK Lll 
ISETQ NONCONICAOOR Lll 



ISETQ G FFI 
ISETQ PROBLICDR PROBLI I 
I GO GOGO I 
IIIII 

DEFINE! I 
ITRIGSUBSTILAMBDAIEXPI 
ICONO 
I !ATOM EXPIEXPI 
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II~OTIMEMBERICAR EXPIIQUOTEITAN COT SEC CSCIIII 
ISIMPIMAPLIST EXPIFUNCTIONILAMBDAICI ITRIGSUBSTICAR Clllllll 

IIEQICAR EXPIIQUOTE TANIIISIMPQUOTIENTILISTILISTIQUOTE SINIICADR EXPII 
ILISTIQUOTE COSIICADR EXPIIIII 

IIEQICAR EXPIIQUOTE COTIIISIMPQUOTIENTILISTILISTIQUOTE COSIICADR EXPII 
ILISTIQUDTE SINIICADR EXPIIIII 

IIEQICAR EXPIIQUOTE SECIIISIMPQUOTIENTILIST l!LISTIQUOTE COSIICAOR EXPIIIII 
))))) 
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