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ABSTRACT

SIN and SOLDIER are heuristic programs written in LISP which solve
symbolic integration problems. SIN (Symbolic INtegrator) solves inde-
finite integration problems at the difficulty approaching those in the
larger infegral tables. SIN contains several more methods than are used
in the previous symbolic integration program SAINT, and solves most of
the problems attempted by SAINT in less than one second. SOLDIER (SOLu-
tion of Ordinary DIfferential Equations Routine) solves first order,
first degree ordinary differential equations at the level of a good col-
lege sophomore and at an average of about five seconds per problem attempted.
The differences in philosophy and operation between SAINT and SIN are

described, and suggestions for extending the work presented are made.
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Chapter 1

Introduction

In the last few years there has been a surge of activity on
the design of algebraic manipulation systems*. Algebraic manipu-
lation systems are computer based systems which facilitate the
handling of algebraic and analytic expressions. One of the oft
stated capabilities desired of such systems is an ability to per-
form symbolic integration. Besides the obvious value of such a
capability in symbolic calculations there is the possibility of em-
ploying it as an adjunct to numerical integration programs for
functions which involve parameters. 1In such cases a single accur-
ate symbolic integration is likely to be preferable to numerical
integrations taken over the range of values of the parameters. An-
other reason for the interest in symbolic integration programs is
the fact that the ease with which such a program could be written
in a proposed language for algebraic manipulation has become an in-
formal test of the power of that language. Yet the only previously
announced symbolic integration program with any claim to generality
is SAINT (Symbolic Automatic INTegrator), writtem as a doctoral
dissertation by Slagle in 1961 [58]. Slagle described SAINT as be-
ing as powerful as a good freshman calculus student. Thus the un-

modified SAINT program does not appear powerful enough to warrant

*For a survey of the field of algebraic manipulation see Sammet [35].
For a bibliography of work in the field up to 1966 see Sammet [56].



its use in a practical algebraic manipulation system. In 1964 a
program which integrates rational functions was written for the
MATHLAB project by Manove, Bloom, and Engelman of the MITRE Corpor-
ation [36]. This program filled an important gap in the capabili-
ties of SAINT. By using such a program it appeared possible to
write a more powerful integration program than SAINT., Furthermore
it seemed that programs which solve ordinary differential equations
at least as well as sophomore college students (and a good deal
faster than such students) could also be written. Such programs
became the goals of our research.

We used the rational function package of MATHIAB in writing a
second symbolic integration program called SIN (Symbolic INtegrator).
SIN, in turn, we used to write a program which solves first order,
first degree ordinary differential equations. This program is
called SOLDIER (SOLution of Differential Equations Routine). SIN
and SOLDIER are both written in LISP [34], [20] for the CTSS system
at Project MAC [11]. These experiments in symbolic integration are
the principal subjects of this thesis. We believe these programs to
possess sufficient power and efficiency that they could be effectively
used in a practical on-line algebraic manipulation system.

In order to clarify the domain of applicability of our pro-
grams and in order to indicate the power of the present versions
of SIN and SOLDIER, we present below two examples of problems
solved by each program. The solutions that these programs obtain

to the four prablems can be found in Chapters 4 and 6.



/ATe5 sin’x ax
sin x
jn( 142x%) a“zdx
(2xy+5x+1)y'+y2=0
(y+x-l)y'-y+2x+3=0
Problems solved by SIN and SOLDIER
Figure 1

Although the capabilities of SAINT are quite impressive,
we found compelling reasons for taking, in SIN, a substantially
different approach. The most fundamental difference between SIN
and SAINT is in the organization of the programs. SAINT utilizes
a tree search as its main organizational device. Slagle compares
the behavior of SAINT to that of freshman calculus students. We
sought an organizational model which behaved like our conception
of the behavior of an expert human integrator. This model was sup-
posed to determine the methods needed to solve a problem quite
quickly. A discussion of the approach taken in SIN is given in
Chapter 2.

SAINT utilizes a matching program for algebraic expressions
called Elinst (ELementary INSTance). We desired a program which
was more closely organized as an interpreter for a pattern matching
language. This program. called SCHATCHEN, is a service routine em-
ployed throughout SIN and SOLDIER. The power of SCHATCHEN greatly
simplified the problem of writing an algebraic simplification pro-
gram, called SCHVUOS. SCHATCHEN and SCHVUOS are described in Chap-

ter 3.



Chapter 4 contains a detailed description of SIN and its
methods. A comparison between methods used in SAINT and SIN is
made. It is noted that SIN contains several methods not included
in SAINT. Among these is a decision procedure for a set of inte-
gration problems. Thus SIN is able to determine that jexzdx and
I%? dx are not integrable in closed form.

In Chapter 5 we introduce the Edge (EDucational GuEss) heur-
istic. The Edge heuristic is based on the Liouville theory of in-
tegration. In this theory it is shown that if a function is inte-
grable in closed form, then the form of the integral can be deduced
up to certain coefficients. A program which employs the Edge heur-
istic, called Edge, uses a simple analysis to guess at the form of
the integral and then it attempts to obtain the coefficients. Edge
is a nontraditional integration method and one that we believe is
the first in a line of very powerful methods.

The methods and organization of SOLDIER are introduced in
Chapter 6. The area of nonlinear first order differential equations
is much more difficult than just integration. Thus we were hardly
surprised at not being able to find a concept analogous to the Edge
heuristic of SIN. Nonetheless the power of the current version
of SOLDIER is comparable to that of a sophomore student in an or-
dinary differential equations course.

The appendices contain results of experiments performed with
SIN and SOLDIER and a report on some other work not directly con-

cerned with these programs.



Many people probably believe that the cheapest way to obtain
an integration capability would be to design an integral table
look~up program. While we do not espouse this course of action,
we did experiment with such a program (called ITALU). Appendix A
describes this program.

Richardson has recently obtained a recursive unsolvability re-
sult in integration wich has aroused great interest [52]. We des-
cribe this theorem and present some of our own related results
which involve nonlinear differential equations in Appendix B.

SAINT was asked to solve 86 problems. Of these it solved 84
in an average time of 2.4 minutes. SIN solved all 86 problems
with solution times which were frequently more than two orders of
magnitude faster than SAINT. SIN solved the other two problems
by using integration methods not available in SAINT. The fact that
SIN was compiled and that SAINT was run interpretively accounted
for most of the gain in speed. Results and further interpretations
of this experiment are given in Appendix C.

A physicist, Harold McIntosh, used an integral table to solve
eleven fairly difficult integration problems. SIN, after some
prodding, solved these problems and found some minor errors in
Professor McIntosh's answers. This experiment is described in Ap-
pendix D.

In order to test the effectiveness of SOLDIER we asked it to
solve 76 problems taken out of a differential equations text. SOL-

DIER solved 67 of these problems cleanly with an average time of
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about five seconds. One of these solutions indicated a misprint
in the solution given in the text. This experiment is described
in Appendix E.

With the exception of Chapter 7 which presents conclusions
and suggestions for further work the following chapters are fairly
self contained. Thus those who are only interested in algebraic
manipulation can reasonably ignore Chapter 2. Those interested in

AI may wish to ignore the higher numbered chapters.




CHAPTER 2

HOW SIN DIFFERS FROM SAINT

Introduction

In this chapter we discuss in broad terms the organizational dif-
ferences between SIN and SAINT. SAINT employs rather loose progress
constraints in generating subproblems, and obtains a solution through
a tree search. SIN relies on a much tighter analysis of the problem
domain (i.e., integration) and strict constraints on progress in order
to obtain a relatively straightforward solution.

Heuristic Search

In "The Search for Generality" [ 45 ], Newell finds that the most
frequent organizational structure used in Artificial Intelligence pro-

grams is one he calls heuristic search. We shall call programs which

employ this organization as the sole or central organizational device

HS programs. SAINT is an example of an HS program. HS programs can
be considered to be programs which attempt to generate a path from a
starting node A (usually the statement of the problem to be solved,
given in the internal representation) to a terminal node B (usually the
last link necessary to find a solution to A). The path from A to B con-
sists of one or more nodes which are (again, usually) in the same problem
domain as A and B. Thus in a theorem proving program the nodes would
represent statements of possible theorems and in SAINT the nodes repre-
sent expressions to be integrated. From each node the program is able
to generate one or more successor nodes. All of these successor nodes
could be examined to determine if they lead to a solutiom (a "B" node),

but it is in the nature of AL problems that if this were to occur the

11
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program would consume too much time and space. Hence heuristics are used
to select a set (possibly a null set) of successor nodes for examination
in preferance to others. The use of such heuristics leads to the "heuris-
tic" term in "heuristic search." The process of examining nodes in the
tree which is generally produced leads to the "search" term in "heuristic
search."

There are many strategies for guiding the search of the tree. How-
ever several stand out and deserve to be mentioned. One strategy is
called "depth first." It usually selects the last node generated as the
one to be examined next. This strategy has the effect of forcing an
examination of a single path until it either leads to a solution or the
program decides that it will not yield a solution. Such a strategy is
employed in most game playing programs. At the other extreme is a stra-
tegy called "breadth first" which selects the node which was generated
earliest. Such a strategy was used in the Logic Theorist [44]. SAINT
chooses the node which represents an expression which it deems to be
one of the simplest subproblems to be integrated.

We wish to clarify the sense in which we refer to a program as an
HS program. The fact that a subroutine in a program uses heuristic search
does not always imply that the program is an HS program. For example if
SAINT's simplifier had used heuristic search in order to simplify expres-
sions, then this fact does not imply that SAINT is an HS program (for
example SAINT could have been just a table look-up program). Nor is it
the case that any program which performs search even if the search is

guided by heuristics is always an HS program. We wish to reserve this
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name to programs which rely on conducting a search in the same domain
in which the problem is posed. Thus programs which search for a plan
in a different space from the one in which the problem is posed and
thereafter find the solution immediately are not HS programs.*

The Trend toward Generality

One of Newell's other conclusions in "The Search for Generality"
is that AI programs have tended in the recent past to shy away from
dealing with complex problem domains such as chess, geometry, or intex
gration, and have increasingly concerned themselves with generality.
By programs which emphasize generality we shall mean programs which
are concerned with an examination of mechanisms (e.g., heuristic search)
which are useful in many problem domains. By programs which emphasize
expertise we shall mean programs which concentrate on a particular
(complex) problem domain. Examples of the trend toward generality are
the advice taking programs (e.g., Black [ 3 ], Slagle's DEDUCOM{ 59 1,
and even Norton's ADEPT [ 47 ]). These programs solve toy problems
which have been posed from time to time by McCarthy. One of the striking
features of these programs is how little knowledge they require in order
to obtain a solution. In fact Persson, in his recent thesis[ 49 ] which
deals with ""sequence prediction" seems to feel that placing a great
deal of context dependant information in a program would be “cheating."

This emphasis seems to be useful when one desires to study certain

* Our emphasis regarding the space to be searched may differ from Newell's.
In fact our need to use intuitive definitions and rely on analogies and
examples points out the lack of a firm theoretical foundation in computa-
tion, and in Artificial Intelligence.
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problem solving mechanisms in as pure a manner as possible.

Slagle, too, desired to use SAINT as a vehicle for studying certain
problem solving mechanisms such as "character-method tables" (for example,
method A is probably useful when the problem is of type 1 or type 5--see
Minsky [ 411] for a discussion of this technique) and "inherited re-
sources'" (Minsky [ 41 }). We, on the other hand, intended no such
study of specific problem solving mechanisms, but mainly desired a
powerful integration program which behaved closely to our conception
of expert human integrators (it should be noted that Slagle compared
the behavior of SAINT to that of college freshman calculus students).
Nonetheless our experiment with SIN may be used to modify or improve
general problem solving mechanisms.

SIN, we hope, signals a return to an examination of complex problem
domains. Greenblatt's chess program [ 22 ] is another example of a
recent program which deals with a complex problem domain which has been
considerably neglected in the last few years.

The Emphagis on Analysis

Our emphasis in SIN is on the analysis of the problem domain. This
analysis is both an analysis that we performed and built into the pro-
gram, but more importantly an analysis which the program makes while
it is solving a problem. 1In order to achieve high performance in sym-
bolic integration we did not require that the program make a very com-
plex analysis of the situation. Nonetheless the analysis that SIN does
make markedly affects the performance of the program. When SIN is solving
one of SAINT's difficult problems the most noticeable difference between

its performance and SAINT's is not in the increased efficiency of the
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solution,* but in how quickly SIN usually manages to decide which plan
to follow and the straightforward manner with which it obtains the
solution thereafter.

As we shall see in Chapter 4 SIN's methods are quite similar to
those used by SAINT. However SAINT does not commit itself to a parti-
cular method, but will frequently explore several paths to a solution
until it finds some path which succeeds in obtaining the answer. Heur-
istic search is used to find this solution path. Frequently such un-
certainty is necessary in SAINT because it lacks the powerful machinery
that SIN possesses and relies on (e.g., the rational function package
of MATHLAB). Thus SAINT is forced to search until it finds a path
which leads to subproblems that it can solve. For example, in Jcot4x d:
SAINT cannot obtain a solution by using the substitution y = tan x whicl
leads to J;ﬂzi‘i—;zy dy since it cannot integrate the rational functiom.
Thus SAINT is forced to contain a further substitution y = cot x which
SIN can easily afford to ignore. In other cases the large number of
subproblems proposed by SAINT arises when SAINT employs methods which
do not perform a sufficient analysis or possess sufficiently tight
progress constraints., For example in J§%7§—§ dx, SAINT will consider
transforming the quadratic in the numerator, though this transformation
is not reasonable when one considers the square-root in the denominator

In this problem SIN would note the square-root and would make a substi-

Though SIN solves SAINT's problems about two orders of magnitude
faster than SAINT's published figures, this statistic is deceptive. If
SAINT were to be run under optimum conditions, SIN would only be about
three times as fast on the average. The principal reason for this fact
is that most of the processing time in SIN is spent in algebraic mani-
pulation (e.g., simplification), and the cost for these operations is
fairly constant in SIN and SAINT (see Appendix C).
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tution which would rationalize the denominator.

We feel that SAINT is not the only HS program in which greater
analysis would yield improved results. In the MATER program of Simon
and Baylor [ 2 1, heuristic search is used to find a mating combination
in chess. When MATER considers the set of replies that Black might be
able to make in respomse to a given move of White, it stores these re-
plies in a "try list." The try list is ordered so that moves which have
fewest responses are considered first. The set of moves which have the
same number of replies are normally considered in a first-in, first-out
manner ([ 2 1, p. 435). This leads to a breadth-first search. Had
the moves been stored in a last-in, first-out manner a depth-first
search would have resulted. This search would mean that the program
would explore a path until it became worse than some other path in con-
trast to MATER's criterion that a path is abandoned when it is no better
than some other path. This slight change in the strategy of the program
would lead MATER to find solutions to some problems on which it ran out
of space, and would not materially affect its performance otherwise.
This analysis of MATER is due to Henmeman [ 26 ].

While we do not wish to suggest that a radically improved perfor-
mance can be had in all HS programs through greater analysis, we cer-
tainly want to emphasize the effect that such analysis can have on many
HS programs. Since any nontrivial analysis requires a good deal of
context dependent information, we also wish to emphasize the need for
such information in problem solving programs. In the long run, of

course, complex analyses and strategies will have to be represented in
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specialized languages. We would like to see this development occur in
the Greemblatt program, for example.
The Three Stages of SIN

SIN is a three stage program. In this respect already the organi-
zation of SIN differs from most AY programs which are composed of a
single stage with a heuristic search as its principal organization.

The multiplicity of stages allows the programs to devote increasing effort
in later stages.

Stage 1 of SIN uses a method (Derivative-divides) which solves most
commonly occurring problems. The experiment in Appendix C indicates that
this method solves half the problems attempted by SAINT. Some problems
integrated by this method are: cos X, xexz, tan x seczx, X /I‘:";Z.

We feel that all too few AI programs employ the fact that in many
problem domains there exist methods which solve a large number of prublems
quickly. SAINT did employ this idea in its IMSIN (IMmediate SoLutioN)
routine (see Chapter 4). However IMSLN is not as powerful as SIN's first
stage. Evans' ANALOGY program [17] which is one of the few AI pro-
grams which does not rely on heuristic search also could have profited
from a first stage method. Evans' program deals with geometry analogies.
Instructions given to humans taking a test based on these analogies are
as follows: "Find the rule by which figure A has been changed to make
figure B. Apply the rule to Figure C. Select the resulting figure from
figures 1-5." Evans' program performs as if it were following the in-
structions: "Find the rule by which figure A has been changed to make
figure B. Also find rules which transform figure C to each of the fig-

ures 1-5. Select the answer figure which corresponds to a transformation
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which most closely fits a transformation from A to B." The test makers
are essentially suggesting that one should guess the answer figure. This
scheme, we have found, is effective in almost all the problems attempted

by ANALOGY. Consider the figures A, B, C below:

SN

<
A B C

A reasonable guess of the answer using the test makers' advice is:

TRIAL ANSWER

If such a figure is present among the answer figures then one should
choose that answer. All that would be required for this step is that
one test the guess for an identity with the answer figures. If this
scheme should fail to find an answer, then one would enter a second
stage in the program in which one would 'debug" the previous guess or
employ an analysis similar to Evans'. Yet once one is forced to enter
a second stage, one has a piece of information that one did not previ-
ously possess--that the problem is relatively difficult. Such infor-
mation may be used to guide further processing. A further use of guessing
will be indicated below in discussing the Edge heuristic.

The second stage of SIN is the stage in which we spent most of the
programming effort. 1In this stage the program is able to apply eleven

highly specific methods. The principle feature of this stage is that
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the program decides which method, if any, is applicable to a problem
quite quickly. We shall call the manner by which this stage of SIN

operates hypothesis formation. The routine at the heart of the hypo-

thesis formation mechanism in SIN is called FORM. FORM checks for
local clues in the integrand in order to generate an hypothesis regar-
ding which method is likely to be applicable. Currently FORM can
decide on the applicability of all but three of the eleven methods by
using local clues. For example, if -FORM notes the subexpression sin(x),
then FORM will call the method which handles trigonometric functions.
The first step that any of the methods in this stage is supposed to
make is to verify the hypothesis that it is able to perform a transfor-
mation which will either solve the problem or simplify it. Thus if the
routine which handles trigonometric functions does not believe that it
is applicable to the problem, as in Isin x e®dx, then it will return
the value FALSE to FORM. In that case FORM might entertain a second
hypothesis. Otherwise the method will continue to work on the problem.

More generally we think of hypothesis formation as a three step
process. First one analyzes the problem in order to obtain an hypothesis
regarding the solution method. Then the hypothesis is verified by the
method prior to attempting a solution of any subproblems. Finally, if
the method appears applicable then it is used in an attempt to solve
the problem. If the method does not appear applicable, a new hypothesis
may be generated.

We think of hypothesis formation as a model for a planning mechanism.
As with any plgnning device one should strive to incorporate into the

planner a great deal of knowledge regarding the capabilities of the rest
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of the program. One aspect of the understanding that FORM has of SIN's
routines is incorporated in its ability to "make the problem fit the
method.”" By this phrase we mean that FORM is able to eliminate certain
ambiguities in the problem. These ambiguities arise when certain subex-
pressions in the statement of the problem hinder the recognition of the
true nature of the problem. For example, the analysis that FORM makes

of a problem allows it to suspect that an expression is a quadratic in

x even though SCHATCHEN (see Chapter 3) did not match the expression to

a quadratic. This occurs when FORM is examining a square-root of a
rational function. Let us suppose that none of the methods that FORM
has available in this case decide that they are applicable. FORM will
now attempt a further analysis because such a subexpression usually
represents a block to a solution. TFORM considers two excuses for the
fact that the methods did not seem to be applicable. Both relate to
SCHATCHEN's matching capabilities. The first is that the rational func-
tion inside the square-root was not expanded (e.g., x{(1 + x)); the second
that the ratiomal function was not completely rationalized (e.g., x + i).
FORM will therefore determine if these two transformations are applicable
to the rational function. If they are, it wilt reanalyze the problem to
determine if its methods are applicable. Thus FORM's analysis enables

it to localize the difficulties in a problem, and its understanding of
the rest of SIN allows it to find excuses for certain events and helps

it to overcome the difficulties in a problem. In some of the cases just
considered SAINT would have performed the same transformation (only expan-
sion, though). Yet these transformations would be applied to the whole

integrand and not to selected portions of it.
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The third stage of SIN is the place that we reserved for general
methods of integration. Such methods either search a great deal or
involve much analysis and machinery. Hence we feel that they should
be considered as a last resort. The experiment described in Appendix C
indicates that only two problems required a method in this stage. The
most interesting method of stage 3 is Edge which is based on the Edge
heuristic and is discussed in Chapter 5. Edge is a novel integration
method since it guesses the general form of the integral. Once a guess
has been made, a "differencing" technique similar to GPS's [ 43 ] is
applied to obtain the answer. As will be seen in Chapter 5 the guess
is closely related to the antiderivative of a selected subexpression in

the integrand.



CHAPTER 3

SCHATCHEN - A MATCHING PROGRAM FOR ALGEBRAIC

EXPRESS IONS

Introduction

Our aim in this chapter is to develop a set of requirements
for a language in which one can describe concisely and precisely
algorithms for the manipulation of algebraic expressions. Several
attempts at such languages have been made in the past. We would
like to distinguish among these attempts two distinct approaches to
an algebraic manipulation language. One could be called the

command-oriented language. An example of a command would be '"Let

w be the name of the expression which results from substituting the
expression named x for that named y in expression named z.'" It is
11, =

customary to abbreviate this to something like "w = subst(x, y, z)."

The second approach can be called the pattern-directed (or

production) approach. An example of a statement in such a language
would be "x+x = 2%x," which means that if the expression currently
being examined matches (i.e., is of the form) x+x, then it is re-
placed by the expression 2*x. Such statements will be henceforth
called rules. A rule is composed of two parts, a pattern-match part

(antecedent) and a replacement part (consequent).

22
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A command-oriented language is desirable for man-machine
interaction because the human is able to perform the desired pattern
recognition by himself most of the time (see Martin {37], Engel-
man [15]). It is also useful in those situations in which the
algorithms being coded are straight-forward, that is, nothing
unusual is likely to happen. An example of such a situation is a
program which solves a system of linear equations with variable
coefficients (see ALPAK [¢61]).

When the glgorithms being coded become increasingly complex,
the pattern recognition requirements of the algebraic manipulation
language are increased. To meet these requirements, highly command-
oriented languages, such as FORMAC [ 5], include some pattern recog-
nition facilities (e.g., the PART command). However, these facilities
are woefully inadequate for many purposes (e.g., simplification, in-
tegration) and the need for a pattern-directed subset of an al-
gebraic manipulation language has become clearly established.

In this chapter we shall be concerned solely with the pattern-
directed approach. At first, we shall rely principally on the
reader's intuition and understanding of alzebraic expressions. Our
discussion will become more and more precise as we proceed.

We shall first examine the requirements of the pattern-
match. The requirements of the replacement part, which are simpler,
are examined later. An application to simplification of the SCHATCHEN

program which fulfills these requirements will then be discussed. The
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chapter ends with an essay on simplification.

Below "PLUS'", "TIMES' will designate the usual arithmetic
operations of addition and multiplication. The former will also be
designated by "+", and the latter by concatenation. "EXPT" will

represent exponentiation.

The Pattern-Match

Let us consider the intuitive pattern for a quadratic in x =--

namely, pattern Pl:

(Pl) sz + Bx + C

All would grant that the expression El satisfies the pattern

Pl with the values for

(EL) 3x2 +2x + 5

A, B, C, being 3, 2, 5, respectively. Such an expression also
appears to offer no difficulties to a matching program since there
is a 1 - 1 correspondence between the elements in the expression and
the elements in the pattern. Thus, a straight-forward left-to-right
scan should yield the corresponding values for A, B, C and result in
a match. Consider, however, the expression E2. E2 is also a
quadratic in x. Yet it fails to have one of the properties that El
enjoyed. A left-to-right scan of E2 will yield the

(£2) Ix% + 2x

value 3 for A and 2 for B. However, we will have difficulty in
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assigning a value to C since no term in the expression corresponds
to the C term in the pattern. Obviously C should be matched with 0.
We generalize the example to conclude that terms in a sum in the

pattern which are missing in the expression are to be matched with 0.

Likewise, factors in a product in the pattern which are missing in

the expression are to be matched with 1. We should note though

that extra arguments in the expression might lead to failure as in

expression E3:

(E3) 4x3 + 3x2 +2x + 5

Expression E4 presents us with a degenerate instance of
pattern Pl. Note that the operators PLUS and TIMES which are ex-

plicitly present in Pl
(E&) X

are missing in E4. We can introduce these operators by rewriting

E4 as E4'.
' 2
(E4') 1:x° + 0
Let us proceed now with matching Pl and E4'. The value 1 for A is

easily obtained. The O term in E4' will match Bx and will result in
B=0. (This process will be clarified below.) Finally, due to .the
requirement stated above regarding missing terms in a sum, C will

be matched with 0. Then in order to match Pl with E3 we required that

the match must recognize missing or_ implicit operators.
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let us consider how the match might determine that Bx=0
implies that B=0. 1In Pl we implicitly introduced the convention that
constants such as x are represented by lower case Roman letters and
variables such as A, B, C, are represented by upper case Roman letters.

Constants must match themselves. The values of variables are deter-

mined by the pattern-match and depend on the expression. Furthermore,
our knowledge of multiplication indicates that if a product in-
volves a 0 factor, then its value is 0. (We shallk ignore cases with

infinite factors.) Thus, if a product is matched with 0, it is re-

quired for a factor to match 0. If Bx is matched with 0, then since

x must match itself, B must match O, otherwise the match fails. A

comp lementary requirement we shall impose is that if a product is

matched with 1, then each factor must match 1. This requirement is

redundant since it follows from our requirement for missing arguments
in a product.

In the above we have built into the match an understanding of
the arithmetic laws involving O and 1 in sums and products. Note
though that the match assumes that the expression has been simplified
to some extent. Thus, the pattern sz will not match the expression
x4(1/2) since the constant expression x2 is assumed to match only
itself.

However, information about 0-1 laws are insufficient as can be

seen when we consider expression E5:

(ES) X



27

In some cases such an expression could pass for a quadratic. 1In
other cases (for example, in applying the quadratic formula) such
an expression is not admissible as a quadratic. Note that the
match as described above will result in the value 0 for A, 1 for B,
and 0 for C for expression E5. We need to be able to describe to
the match that the value 0 for A is proscribed. In fact, we would
like a more general facility allowing one to delimit the range of
values that the variables in the match may have. We shall require

that the variable must be allowed to satisfy a predicate. We

shall indicate such a facility with a slash (/) as in pattern P2.

In P2 we require A to satisfy the predicate NONZERO:

2
®2) A/1~101~lemo x +Bx +C

In examining expression E6 we see that we will need more
predicates to limit the values of A, B, C, since E6 is certainly

not a quadratic in x:
2 ;
(ED) x* 4+ sin(x) x + 1

Let us consider pattern P3 which takes care of the difficulty

in E6.

2
+C
(p3) A /NONZERO-AND-NUMBER * *B/NumBER **C/NUMBER

Pattern P3, however, may be a too restrictive condition. It requires



28

that A, B, C, be numbers.

For example, P3 will reject expressions E7 and E8

(E7) x4 nx
2
(E8) X +x+y

slnce n does not appear like a number and gince y is certainly
‘not a number. If we wish to accept both E7 and E8, pattern P4
might be suitable:

x2+B

(P4) A /NONZERO-AND- FREEOFX /FREEOFX **°/FREEOFX

We shall assume that the predicate FREEOFX determines whether
an expression contains an occurrence of x and has the value T (true)
if it does not contain such an occurrence.

We thus can see that the predicate facility is both a blessing
and a headache since it forces one to consider quite carefully what
it is that he desires to be matched.

Further complications arise when we consider the expression E9.
We recognize E9 to be a quadratic.

(E9) X + x2

However, in doing so we made use of the fact that addition was a
commutative operation. This leads us to require that the match must

take into account the commutativity of addition and multiplication.

(Non-commutative addition and multiplication could be represented

with different operators than PLUS and TIMES.) As it turns out this
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requirement increases the cost of ‘the match greatly. It is now
insufficient to perform a single left-to-right scan of the expression.
We may be forced to traverse the expression several times. We shall
assume, however, that the pattern is to be scanned once from left-to-
right. This will allow us to use the values of previously bound
variables. For example, a pattern for determining whether an ex-

pression is a perfect square might be written as P5

(P5) 2+B/

A /NONZERO-AND-FREEOFX * +B/FREEOFX *¥C/FREEOFX -

AND - (B°-4AC = 0)

since by the time we encounter C, the values for A and B should
already be known or else the match has already failed.

The predicate facility is one way in which the pattern can be
used to direct the match. Below we shall give descriptions of
other facilities and examples in which they might be used. These
facilities are made available by the use of modes for the variables
in the match. The desirability of the first of these modes is indi-

cated in expression E10.

(E10) 3y + 2x + 1

The difficulty in matching expression E10 is due to the
occurrence of more than one factor (other than x2) in the terms in-
volving x2- We would really be interested in having the variables A

2 . X
and B act as coefficients of x and x, respectively. This means that
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2
in the term involving x ', the product of all the other factors is a
candidate for A. To show this we shall use the indicator COEFFT

(coefficient in TIMES) as a modifier for A as is shown in P6:
2
(P6) A /COEFFT,NONZERO-AND-FREEOFX * +B/COEFFT, FREEOFX *

*C /COEFFP , FREEOFX

In P6 we used the indicator COEFFP (coefficient in PLUS) to modify C.

This means that C will match the sum of the remaining terms in the

expressions. The result of matching P6 with E10 is : A=3y, B=2, C=l.
In expression Ell we see another phenomenon which will necessi-

tate the addition of a new mode. In Ell

(E11) 26 +.2x2 + 3

. 2 :
there occur two terms involving x . If we assume that each term in
the pattern should match exactly one term in the expression, then

. 2 . . .
the single term AX  in the pattern will fail to account for the two

terms in E10. We need a facility for specifying to the match that

a particular variable in the pattern is to be considered a co-

efficient in both a product and a sum. This is done in pattern P7

by using the indicator COEFFPT (coefficient in PLUS and TIMES) to

modify A and B.

2
®7) A /COEFFPT,NONZERO-AND- FREEOFX X *B/COEFFPT, FREEOFX **C/COEFFP, FREEOF

With the machinery we have developed we can now match pattern P7 with
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the expression EI12:

(E12) y3 + 31rx2y + 6x2 + 5y +1

The result of this match should be A=3ny + 6, B=0, C—73 +5y +1.

In the above examples we were attempting to determine whether
the expression was a quadratic in x. Suppose we wanted to generalize
the problem in order to determine whether the expression was a
quadratic in some atom, but where the atom was not fixed, but may
itself change. More precisely, we desire a function QUADRATIC of
two arguments EXP and ARG. This function is expected to determine
whether EXP was a quadratic in ARG. P8 can be used as a pattern in

QUADRATIC.

(8) A /COEFFPT,NONZERO-AND- FREEOFARG (VAR/EQUALARG>2 +
B /COEFFPT, FREEOFARG (VAR/EQUALARG) +

C/COEFFP, FREEOFARG

In P8 we introduced the predicate FREEOFARG which has the
obvious related function to FREEOFX in pattern P7. The predicate
EQUALARG tests the value that the match assigned to VAR for equality
to ARG.

Let us now congider the problem of extracting a perfect square
from a sum. More precisely let us consider the situation in which a

2

sum has three terms which are individually of the form A*VAR™, B*VAR

and C, and whose relation is defined by B2-4AC=O. This differs from
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the situation described in pattern P5 in that the expression may
now have more than three terms and in that the value of VAR is
originally unknown and depends on the expression being matched. Our

first attempt is to describe this situation with P9:

VARZ+B VAR+C

(®9) A /NONZERO-AND-NUMBER /NUMBER /NUMBER-AND- (B2-4AC=0)

+D/COEFFP

It turns out that pattern P9 does not satisfy our requirements
because there is some ambiguity regarding VAR. 1In predicate P8,
VAR was determined uniquely by the predicate EQUALARG. In the
current situation no such a priori predicate exists. The first
value of VAR can be essentially anything. To indicate this we can
write VAR/TRUE instead of VAR, where TRUE is a predicate which is
true on any input. However, the second occurrence of VAR in the
pattern (i.e., in B/NUMBER VAR) is intended to be fixed. That
occurrence of VAR must be the same as the previous value attached

to VAR. To make this point clear, let us consider expression El3:

(E13) ¥ 2x + 1+ 5z +2y

This expression will match pattern P9 with A=l, B=2, C=l, D=5z+2y,
and with the first value of VAR equal to y and the second equal to x.
To avoid this situation we could write the second occurrence of VAR
as VARllEQUALVAR- This is a fairly clumsy mechanism (even though a

similar device was used in P8). What we shall do instead is to
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define a new mode called CONV in which the first occurrence of the

variable (e.g., VAR) will satisfy the predicate (e.g., TRUE) and

the latter occurrences must match the expression matched during the

first occurrence. We thus arrive at pattern P10. (The CONV mode is

directly related to the PAV (pattern variable) mode of CONVERI [ 233.)

VAR +

(P10) A /NONZERO-AND-NUMBER (VAR

\2
/CONV, TRUE) * B /NMBER

C/NUMBER-AND- (B®-4AC=0) *P/COEFFP

Pattern P10 will match E13 with A=1, B=2, C=1, D=2x+5z, and VAR=y.

Let us consider PlO with expression El4:
2 2
(E14) y+y +x +2x+1

The first attempt will be to match VAR with y. This attempt will
fail and the match will fail even though a perfect square exists if
VAR were to match x. What is required here is a facility for direct-
ing the match to search for further possibilities. It is assumed,

of course, that the user of such a facility is aware that it may
cause a profound increase in the cost of a match. We shall intro-
duce such a facility with a mode which indicates a loop over the
expression. Such a facility may be used when there exists a set of
variables (such as A, B, C) in pattern P10 which are mutually inter-
related (e.g., BZ-AAC=O). This facility will direct the match to con-
tinue making trial guesses for the variables until one set is found

which is satisfied or until all possibilities have been exhausted.
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In programming terms the loop facility in the problem of pattern P10
will ask for a 3-level loop in which all possible values for A, B, C
(note that VAR is determined along with A) are examined until one set
is found which satisfies BZ—QAC=O. The syntax for the loop facility

is given in pattern PLl:

+

(®11) A/100p (4, B,C),NONZERO-AND-NUMBER (VAR

/CONV,TRUE)2

VAR+HC

B /nuMBER /NUMBER-AND- (B> -4AC=0) ' /COEFFP

Although in the above we have concentrated entirely on
describing patterns for quadratics, our intention has been to
describe a set of requirements for a language which can handle a
far richer set of tasks. To indicate the power of the machinery we
have developed, we shall give below a pattern which tests for the
occurrence of sinZB + coszB in a sum. Pattern P12 will match ex-

pression El5 and results A=5cos2(y) + 1, B=2x, C=2, and D=3y+251n2(x).

.2 B
(P12) A/COEFFPT,LOOP (A,C), NONzERoS™™ ( /CONV,IRUE) +

cosZ(B) +D

C/COEFFPT,NONZERO /COEFFP

(E15) 3y + 2sin’(x) + 5sin’ @x)cos’ (y) + 2cos (2x) + sin? (2x)

The implicit relationship between A and C in pattern P12

appears fairly trivial -- that is, both A and C must be nonzero.
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However, expression El5 shows that the loop facility helps to get us
out of the trap of matching B to x in the ZSinz(x) term.

We have so far neglected a discussion of the matching require-
ments of patterns which include exponentiation. We have let in-
tuition guide us through the cases where exponentiation did occur
in the patterns above. As before a constant expression in the pattern
of the form AB (e.g., sinz(x)) must match itself. Otherwise, if AB
is to be matched against the expression 0, we shall assume that it is
necessary and sufficient for A to match O. (The difficulty that
arises if B likewise were to match O is ignored.)

If AB is matched against 1, then either B must match 0 or A
must match L. Note that this can lead to a difficulty if both A and
B are variables, since only one value will be determined. If AB is
matched against ElEz, then B must match E, and A must match Ej or
B must match 1 and A must match E1E2.

In pattern P13 we are testing for an expression of the form

)
sinn(x) cosm(x). This pattern will match the expression sin(x)
and result in the values N=1, M=0.

N M
sin /INTEGER cos /INTEGER

(P13)

x) (x)

Pattern Pl4 is included here to indicate some of the ambiguity that

is inherent in patterns.

M/INTEGER

N
x /INTEGER + B/FREEOFX)

(P1l4) kA/NONZERO-AND-FREEOFX
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Pl4 corresponds to the intuitive pattern (axn+b)m. When Pl4 is
matched against (x2+1)3 it will yield A=1, B=1, N=2, M=3. When it
is matched against x6 it will yield A=1, B=0, N=1, M=6, although
A=1, B=0, N=2, M=3 serves equally well as a set of solutions. We
used this pattern to indicate some of the limitations of the match-
ing program we have been defining. In the case of the expression
x6, we obtain via pattern Pl4 the implicit relation NM=6. This
means that we have given the program insufficient information re-
garding the choice of values for N and M in this case. The match
cannot be expected to do very well in this instance.

A second difficulty with pattern P14 which has already been
mentioned occurs when it is matched against 1. 1In this case our
requirements for the match indicate that all that shall result is
M=0. We could have obtained A=0, B=l1 if the requirements regarding
the matching of 1 had been reversed. Neither situation is wholly
satisfactory. However, it is hard to foresee a compromise solution
which will be wholly satisfactory.

The lesson that is learned from pattern Pl4 is that it is up
to the user to make his patterns sufficiently restrictive so as not
to yield ambiguous situations in those cases in which they are likely
to be applied.

The impression that is likely to be in the minds of some
readers is that more machinery is yet to be described. We do not in-

tend to do this. In some strong sense the design of a good algebraic
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manipulation language is never over. Any description is only an
imperfect solution to many conflicting requirements. What makes a
language interesting is its usefulness in solving problems. The
set of requirements described above should satisfy this criterion
for many problems.

Before we end our discussion of the match and turn our atten-
tion to the replacement part of the rule, there are a few remarks
which are in order.

The match that we have described is based on the form of the
expression. Frequently, we desire to know information regarding the
form to which the expression could be reduced under legal algebraic
transformations. When we ask "Is this expression a quadratic in x?"
we usually mean "Is this expression equivalent to a quadratic in x?"
rather than "Does it look like Ax2+Bx+C?". Thus expressions El6 and
El7 are quadratics in x which do not look like quadratics in x unless
we stretch our imagindtion a good deal. By restricting ourselves to
a match based on form we can hardly expect this match to determine

that E16 and El7 are quadratics.
(E16) X% + sin’ (x) + cos (x)

(E17) (x+1) (x+42)

The generality of the match means that its power is restricted. One
could, of course, design a special-purpose test for a quadratic in x.

It might check to see if the third derivative of the expression with
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respect to x is equivalent to O and if the second derivative is
different from 0. Theoretical results by Richardson (see Appendix B)
indicate that there will be problems even with such a special purpose
match which it could not determine correctly in finite time. Special
purpose devices probably could be designed for each pattern that
could be written for our match. Some of these would have to be quite
ingenious in order to be more powerful than our match. These de-
vices might be necessary in certain situations. However, they run
counter to our desire for a language in which one can write concise
rules.

We shall have more to say about the pattern match when we dis-

cuss the existing algebraic manipulation languages below.

Replacement

Having discussed the matching part, we shall now describe the
process by which new expressions may be generated using the results

of the match. This process we shall call the replacement part of the

rule.
Let us consider the intuitive statement of rule R1¢
2
2 2
(R1) Ax" +Bx +C— Ay +C - %K

A successful match of the left-hand-side of Rl should result

in a dictionary containing the values of A, B and C. This dictionary
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is then used to generate the right-hand-side expressions by re-
placing the variable names by the values which were assigned to them
during the match. If we consider the expression x2+2x+1, the match
should result in A=1l, B=2, C=l and the rule should yield the ex-
pression 1y2+l- f%,' Since this expression is unsightly we shall
require that the replacement step should simplify the expression.

Thus, Rl would result in the expression yz. (Note that Rl performs

the operation of completing a square.)

Suppose we were given rule R2:

(R2) cos(nx)4cosn(x)-(;)cosn-2(x)sin2(x)+(2)cosn-4(x)sin4(x)

R2 computes the first 3 terms in the expansion of cos(nx) in terms
of cosx and sinx. If we had matched the expression cos (4x) with
rule R1l, we would result in an expression involving the combina-
torial terms (;) and (Z). In order to have an expression amenable
to further computation (3) and (Z) should be evaluated to yield 6

and 1, respectively. Thus, we require a facility for evaluating

selected portions of the expression. With this facility R2 can be

written as R3.

(R3)  cos (ax) = cosn(x)-EVAL((;))cos(n-z)(x)sinz GOHEVAL(())

cos(n-a)sin4(x)
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The replacement routine will substitute for each atom which
appears in the right-hand-side, its value in the dictionary if there
is such a value. If no such value exists, the atom will be replaced

by itself, that is, it will be quoted. We will require a supple-

mentary quoting mechanism so that we may use right-hand-sides in

which names of variables appear which are not replaced. An example
of a rule using such a facility is R4. DIFF(A,B) is assumed to

yield the formal derivative of A with respect to B.

g(y) g(y)
(R4) f(x) - f(x) EVAL (DIFF(g(y), (QUOTE x)))

Although for expository purposes we used only intuitively written
pattern matches in the rules above, it should be clear that in
practical situations the left-hand-sides of the rules would be re-

placed by more explicit matching forms.
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Existing pattern-directed languages

The requirements given above for a matching and a replacement
program are satisfied by the SCHATCHEN* and REPLACE routines used
in SIN. We would like to place these programs in their historical
context. SCHATCHEN has been most influenced by ELINST (ELementary
INSTance), a set of routines included in Slagle's SAINT for the
purpose of matching algebraic expressions to forms. ELINST
satisfies many of the algebraic properties of SCHATCHEN such as
variable arguments to PLUS and TIMES, missing operators, and
commutative operators. It differs in that it does not give the
user explicit control mechanisms of the scan of the expression.
ELINST will generate all possible sets of values for the
variable and only then will it apply the side relations to
determine those which satisfy the pattern. Besides this weakness,
ELINST suffers most 'by being essentially undescribed. I suspect
that had Slagle described ELINST in 1961, then some of the
proposals for algebraic manipulation languages which were made
since 1961 would have had a different character. ELINST had to
be as general as it is because the problem that Slagle was trying
to solve required such generality. Furthermore Slagle encountered
grave problems in fitting his program into the memory (32K) of the
7094 and thus chose to make use of the economy of calls to ELINST
in many situations in which it would otherwise have been wiser to
write special purpose matches. Thus he claimed that one half of

the time that was spent usefully by SAINT (i.e., excluding

*match-maker in Yiddish
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garbage collections) was spent in pattern recognition.
The features of the algebra-oriented pattern-directed

languages that were introduced in the past six years (e.g.,

mprr 10 k]

UK

, FORMULA ALGOL , Fenichel's FAMOUS Ug], PANON-

appear to have a great deal in common. PLUS and TIMES are

restricted to at most two arguments. Operators that appear in

the pattern must explicitly appear in the expression. Sometimes

also PLUS and TIMES are not recognized as commutative operators.

All these restrictions mean that the patterns are highly specific

and that several rules are necessary in order to accomplish a task

that can intuitively be stated in a single rule. The advantage that

such matching routines have over a more general one such as SCHATCHEN

is that each of the rules is quite readable and relatively efficient

to execute. However the effect of a set of rules which is equivalent

to a single SCHATCHEN rule is probably harder to guage than the

SCHATCHEN rule itself. The execution time of a set of rules is also

probably longer than the execution time of a single SCHATCHEN rule.
Here is the kind of rule set that would be required in such

languages in order to recognize a quadratic in x:

2 2
X ax
2
x2 + bx ax + bx
x2 + x ax2 + x
(RS) 2 2
x +bx +c ax + bx + ¢
x2 +x +c ax2 + bx + ¢
2 2

x +c ax + ¢
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*It should be noted that these languages have a greater generality
than a discussion of their usefulness in matching algebraic

expressions would indicate.

In proposing the above twelve rules we are assuming that the
language provides for commutativity in PLUS and TIMES and for the
ability for declaring a, b, ¢ to be FREEOFX. In systems in which
a minus sign is recognized as a distinct operator one might require
even more rules. Unfortunately the rule set proposed is not as
powerful as Pattern P7 because each term in the pattern will be
matched with exactly one term in the expression. It appears that
one could overcome this restriction only by a recursive or iterative
application of the rules. In fact, the FAMOUS system relies on the
fact that the rule set is applied repeatedly to a given expression
although in FAMOUS' case the reason for this reliance has a deeper
philosophical significance owing to Fenichel's strong affirmation
of the concept of local transformation embodied in ¥ -theory.

In our previous discussion we have emphasized the desirability
of the implicit arithmetic operators PLUS, TIMES and EXPT in the
pattern. There are, however, instances where the operator must

explicitly be present. In the rule below which is used for

8
rationalizing sums in a recent thesis by Iturriaga (2 ],
(RS5) A+B/C -+ AgC+B

the "+'" operator must be present as well as the "/" operator. It

is possible to simulate the requirement that these operators must
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be present by requiring that A cannot be 0 and that C cannot match
1. However such a situation is clumsy at best, and a facility for
explicit operators should be provided. With such a facility for
explicit operators (present in the early versions of SCHATCHEN,

but dropped because of lack of use), a user of the algebraic mani-
pulation system will be capable of programming in a wide variety

of styles. These will range from the fairly rigid and inflexible
rules of the rule set RS to the type of rule exemplified by pattern
P11l.

We shall also mention a slight controversy regarding the number
of arithmetic operators which should be present in the internal
structure of an algebraic manipulation system. Some people appear
to believe that a large number of operators including unary minus,
quotient, and difference is a good idea. Experience has shown,
however, that such systems, expecially when combined with an
inflexible pattern-match, require an increase in the user's awareness*
which tends to downgrade his problem solving ability. The less a
user must be concerned with what is actually happening, the more
likely he is to solve hard problems. Of course, if the details
which are hidden in the system involve exponential growth or the

like, hiding such details can be disastrous. This is not, however,

*"Awareness" is a term used by Weizenbaum to indicate the degree
of attention to detail which a user is required to maintain in

a given situation.
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the situation when arithmetic operators are translated internally
into only three - PLUS, TIMES, and EXPT. At the input-output level,
just the opposite effect takes p}ace. Here we wish to let the user
of the algebraic manipulation system have the flexibility with
which he feels comfortable. The recent trend in input-output

of algebraic expressions has been to have this flexibility

(37,

(see Martin
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Implementation of SCHATCHEN

SCHATCHEN is currently implemented as a set of LISP programs.
Several people have suggested that one should embed it in a more
general language. CONVERT [23 ] seems to be the regnant choice for
such a language. CONVERT is a general pattern directed language with
much machinery for the transformation of list structures. In fact,
two modes in CONVERT which were introduced in the past year (i.e.,

BUV - bucket variable - and UNO - unordered search) were introduced
by Guzman and McIntosh, the designers of CONVERI, with the intention
of such embedding. Interestingly enough, the BUV mode is sufficiently
general that it has replaced other CONVERT modes. The advantage of
such an embedding is that it would allow the user to employ other
facilities of CONVERT. These facilities are quite impressive. The
major disadvantages are due to inefficiencies in a straight-forward
implementation. In order to discuss these inefficiencies we will have
to describe the manner in which SCHATCHEN performs a scan.

Suppose we have a pattern of form I,
(I) P1 +P2+P3
and an expression of form II.
(II) E1 + E2 + E3 + E4

The scan proceeds by attempting to match P1 with El. If that fails

an attempt will be made with P1 and E2, then Pl with E3. If P1
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matches E3, then E3 will be deleted from II, and the scan proceeds

by matching P2 + P3 with El1 + E2 + E4. This deletion is done by
using the RPLACD subroutine of LISP. In general this is an unsafe
method. It means that any prior references to IE will refer to the
expression with E3 deleted, which can be disastrous. However, great
care is used inside SCHATCHEN to maintain pointers to the excised
expression and to restore it to its original shape once the match

has been performed. Furthermore, all the pointers that a pattern

can have to intermediate results are carefully copied. The alter-
native to the deletion approach is to completely reproduce expression
II without E3. The alternative is quite costly especially when the
number of failures in identification is taken into account. Suppose
patterns Pl and P2 are related via a loop, then Pl may have to be
rematched after an original successful match. More likely is the
case that Pl is matched with E3, but P2 finds no match at all and
thus the match fails. The method of reproducing-an expression en-
tirely following a match of a subpattern with a subexpression is

thus seen to be quite expensive. A normal string transformation
language or even a list transformation language such as CONVERT
(except for the UNO mode) does not face this difficulty because the
scan along both the expression and the pattern is left-to-right. Thus,
if Pl matches E3, P2 can only match subexpressions to the right of E3,
(i.e., E4). When one introduces commutativity into the picture, the

situation becomes more complicated. Thus, in our example, after Pl
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matches E3, we must start P2 with El, P2 with E2, P2 with E4. It
is the commutativity requirement which necessitates the rescan of
the expression.

An alternative to the SCHATCHEN scan is to scan left-to-right
along the pattern with each subexpression. Thus, if El does not
match Pl, then a match is attempted between El and P2. With this
scan one is forced to keep intermediate results and perform complex
processing at the end of the scan in order to determine whether the
variables of the match satisfy their predicates and are properly
related. This alternative was rejected as being too unwieldy.

Another aspect of the implementation of SCHATCHEN turns out
to have important semantic properties. Intermediate results in
SCHATCHEN are stored in a special list called ANS. On this list we
also find the excision information mentioned above as well as markers
used to indicate levels of scope of variable bindings. A successful
technique in using SCHATCHEN is to use predicates which are them-
selves calls to SCHATCHEN and which introduce new variable bindings
to the ANS list. Thus, a variable A may be required to be of the
form BC, where B and C must match certain patterns. By calling
SCHATCHEN directly as the predicate for A, then the values of B and
C would be lost. However, if one calls a routine exactly one level
below SCHATCHEN (namely Ml), then one can preserve the values of B

and C in the final result as well as obtain the full power of SCHATCHEN
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The fact that ANS is available for all to use during the match can be
dangerous since the predicates could accidentally destroy a great
deal of information. Nonetheless the advantage of such an implemen-
tation device far overrides this difficulty. The ANS mechanism
represents another difference between CONVERT and SCHATCHEN. CONVERT
does not allow direct access to its dictionary. Many of the modes in
CONVERT, however, perform some change to this dictionary. In

this regard it should be noted that FLIP [62], another pattern-
directed language which is similar to CONVERT in emphasizing the
transformation of lists, concentrates on the control of the scan by
the user. FLIP, however, lacks much of the recursive machinery of
CONVERT and thus appears to be less likely a candidate for a language

in which to embed SCHATCHEN.

A Partial Description of SCHATCHEN

SCHATCHEN has two arguments, an expression and a pattern.
These will be denoted e and p, respectively. Variables in the
pattern are written in the form (VAR name pred argl ... argn)
where

name = name of variable

pred = predicate associated with the variable

argi are arguments 2 through (n+l) of pred.

The first argument of pred is assumed to be the expression that the

match assigns to the variable.
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If a variable has a mode, the mode is written in prefix form.

Thus, A/COEFFPT,NUMBERX becomes (COEFFPT (VAR A NUMBER) x), and

A/COEFFP,EQUAL 5 becomes (COEFFP (VAR A EQUAL 5)). (This pattern

tests for the equality of the variable A with 5.)
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SCHATCHEN ( e p )

If e equals p, the match succeeds.

If p is of the form (VAR name pred argl, ..., argn),

then pred (e argl arg2, ..., argn) is evaluated.

(Note that argl, ..., argn are replaced using ANS,
SCHATCHEN's internal push down list. If they contain
names of variables on ANS the most recent corresponding
values are used. Otherwise, EVAL (the LISP interpreter)
will obtain the value of the variables). 1If the value of
pred is TRUE, the match succeeds and ((name - e)) is

appended to ANS. Otherwise the match fails.

1f p is of the form (op pl ... pn) and op is not PLUS,
TIMES or EXPT, then e must be of the form (op' el ... en)
and each pi must match ei and op must match op'. Other-

wise the match fails.

1f the pattern is of the form (EXPT pl p2), then 1) e is
(EXPT el e2) and pl matches el and p2 matches e2

or 2) e is 0 and pl matches O

or 3) e is 1 and a) p2 matches 0 or b) pl matches 1

or 4) p2 matches 1 and pl matches e

Otherwise the match fails.
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If the pattern is of the form (op pl p2, ... pn) and

op = PLUS or TIMES, then if e is not of the form

(op el, ..., em), e is transformed to (op e). 1In this

case an attempt is made to match each pi with some ej. The

scan starts with pl matched with el. If that fails pl is

matched with e2. 1If pi matches some ej, ej is deleted

(using RPLACD) from e and the scan continues with pi+l

matched with the first subexpression remaining in e. If

for some pi no ej can be found to match it, then pi is

matched with O if op = PLUS of 1 if op = TIMES. If that

also fails, the match fails. 1If all the pi have been

matched, but some ej have not, the match likewise fails.
Exceptions to the treatment above are due to modes. If op =PLUS,
and pi is of the form (COEFFPT (VAR name pred argl, ..., argn) pl,...,
pk), then the remaining expression is traversed with the pattern
(COEFFT (VAR name pred argl, ..., argn)pl, ..., pk). Each sub-
expression that is thus matched is deleted from the expression. The
simplified sum of the results of the scan becomes the value of the
variable and is appended to ANS. If no subexpression could thus be
matched, then pred(0, argl, ..., argn) is attempted. If this too fails,

the match fails.

If op = PLUS and pn is of the form (COEFFP (VAR name pred argl,...,argn))
then if e is currently of the form (PLUS ei, ..., en), then pred

(e argl, ..., argn) is evaluated. If the value of pred is true



((name. e)) is appended to ANS. If no subexpressions remain in e
then pred (0 argl, ..., argn) is attempted. If it succeeds,

((name. 0)) is appended to ANS. Else the match fails.

If op = PLUS and pi is of the form

(COEFFT (VAR name pred argl, ..., argn)pl, ..., pk), then

(TIMES pl, ..., pk) is matched with e. If the match succeeds and

e remains of the form (TIMES el, ..., en) then pred (e argl...,argn)
is attempted. If it fails, the match fails. If no subexpressions
remained in e, then pred(l argl, ..., argn) is attempted. If this
succeeds (( name. 1) is appended to ANS. Else the match fails.

All other matches fail.
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An Application of SCHATCHEN

SCHVUOS - SCHATCHEN'S VERSION OF AN UNASSUMING
OPERATIONAL SIMPLIFIER

Owing to space considerations of the 7094, SIN required a
small but powerful simplification program. Such a program,
called SCHVUOS, was written and it gained both its power and small
size by capitalizing on SCHATCHEN's matching capability. SAINT's
simplifier was a LAP (the machine-language assembler for LISP)
coded subroutine written as a Master's thesis by Goldberg in
1959 [21].

SCHVUOS does not assume a standard (canonical) form of an
expression. This means that it will be slow when the expressions
to be simplified are large. In integration, however, it is rare to
encounter large expressions. The speed gained by a canonical order
can be seen in the following example. Suppose, two simplified
expressions are to be added. If the expressions are to be canon-
ically ordered, then the addition process is basically a merge of
the expressions with a simplification occuring if two terms are
identical except for a constant factor. If, however, the express-
ions are not ordered then we generally require a two stage process.
Given a term in the second expression we must determine if there
exists a term in the first expression which is identical to it ex-
cept for a constant factor. This may require a complete traversal
along the first expression. If the number of terms in each of the

. . 2
two expressions is n, this process takes on the order of n term-to-
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term matching steps. The canonical order scheme requires only on
the order of n steps. However, some time must be spent in deter-
mining the canonical description and keeping its value around.
Furthermore, the routines that generate the canonical order are
usually very space consuming. Thus, the use of a canonical order
is only worthwhile if the expressions are to be heavily manipu-
lated.

As has been implied in the above, much of the program effort
and execution time in a standard simplification program is spent
in collecting terms in sums. Related effort is spent in collecting
exponents in products. In SCHVUOS the collection of terms in a
sum is handled by calling SCHATCHEN and asking it to determine the
coefficient of the first term in the sum.

Suppose we had the expression EI8,

(E18) 2x + 3x2y +z +x+ yx2

then SCHVUOS will strip the first term of the sum of its coefficient

and generate the pattern P15:

(B15) A scorrreT, NomMBER® ¥ B/COEFFR

SCHATCHEN will yield A=3, B=3x2y+z+yx2. Next the pattern Pl6 is
generated on the expression B. Now SCHATCHEN will result in A=4,
B=z.

xzy + B

(16) A/COEFFPT,NUMBER /COEFFP
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Note that x2y and yx2 are recognized as equivalent. Thus, the

simplified sum is E19

(E19) 3x + szy + z

The operation of collecting exponents in a product is handled
similarly.

The basic simplification program requires only about two pages
of LISP code in contrast to a typical LISP simplification program
(such as Korsvold's[ 33 ]) which requires about 20 pages of LISP
code and has the same power, for our purposes, as does SCHVUOS.

SCHVUOS contains some unusual simplification rules because of
the integration environment in which it operates. Thus, arcsin(sin x)
simplifies to x and sin(arccos x) becomes v 1-x°. Moreover,
e1+2 log y + log z becomes yzze. (This transformation is also
handled by a call to SCHATCHEN.)

The simplification of an expression is done recursively. Each
operator (e.g., PLUS) first simplifies all its arguments. The
exception is TIMES which results in O if any of its arguments is O.

It is possible to achieve an economy if expressions which have
been simplified in the past are not simplified redundantly. This
has led to the AUTSIM-bit in FORMAC [63] and to a similar device in
Martin's simplification program. In SCHVUOS one can sometimes achieve
this effect by setting a flag which means that the arguments of the
top level operator, PLUS, say, are already simplified although their
sum, say, need not be simplified. This is done in the differen-

tiation program used in SIN.
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Attitudes Toward Simplification

There seems to be a wide range of attitudes of people in the
field of algebraic manipulation regarding the role that an alge-
braic manipulation system should play in simplification. One view,
let me call it the conservative view (held by Fenichel, for example
maintains that the system should not simplify expressions until
specifically told to do so. In this point of view there is to be n
fixed system's simplifier and no fixed canonical order of expressio
The conservative view negates the view of those whom we shall call
the liberals (exemplified by the FORMAC design) who believe in a
canonical order, in a fixed simplifier and in implicit simplifi-
cation. One might even define a third viewpoint, a radical one, in
which the system will represent expressions internally in a form
quite different from their external form. Rational function progra
(ALPAK [ 6], PM[12], and MATHLAB's rational function package [361)
adopt this approach. A radical system is prone to use the distri-
butive law indiscriminantly and to transform trigonometric function
into their exponential form in order to take advantage of the power
ful simplification algorithms which are then available.

Two considerations should guide one in designing an approach
to simplification within a given system. The first is the general-
ity of the system, that is the range of problems which could be
reasonably solved by it. The second is the efficiency of the syste

in the solution of its problem. It appears to be an axiom that the
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more general a system is, the less efficient it is. The most radi-
cal attitude toward simplification usually belongs to systems which
are very powerful and fast in solving problems. We must, however,
adopt a rather broad outlook regarding efficiency in order to
understand what makes a liberal system more efficient than a con-
servative one for the problems that both can handle. It is not
necessarily execution time which is being decreased, it is the
burden of awareness on the part of a programmer which is decreased
in a liberal system. If you can make assumptions about the simpli-
fier then you need think much less about the problem while you are
programming its solution. Yet the argument for conservatism is too
strong to be neglected. It relies on the axiom that the simplest
expression depends on the problem being solved. Two examples which
demonstrate this point and which have previously appeared (Moses [42],
Fenichel [19]) are:

4x’ 3 x4
12 can be harder to integrate than 4x . —————0
X

+1 &*)3+1

The latter strongly suggests making the simplifying substitution

y=x4. The former disguises this substitution but is more likely

to be a result of any standard simplifier. Likewise, 1
l4+cos x
X 2 cos x . . :

may be harder to integrate than csc x - sinZe which is equivalent

to it. The former is easier to graph, read and write. The latter
is immediately integrable, whereas the former requires the sub-

stitution y=tangx.
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While in the above examples one can reasonably hope to trans-
form one expression into another, this is not true of the example
below. This example is intended to show that even the most obvious
simplification rules can be harmful in some situations. Suppose
a user generates three terms of an infinite series. We shall
assume that he is attempting to obtain a general term. Suppose that
the first term is 1, the second 2x+1 and the third 3x2+3x+1. I

. . . 2
maintain that if these terms were presented as x+l-x, x +2x+1-x2,

x3+3x2+3x+1-x3, then the result would contain more information than
before, for it would lead to a reasonable hypothesis that the general
term is (x+1)n-xn. Yet one of the first rules of any existing
simplifier is x-x —0.

One argument that can be given against the radical approach
X : . . . 1000
is given in the problem of integrating (x+1) . If one expands
this expression, as a rational function package is likely to do,
then one will use a great deal of space and time and result in an
unsightly expression. However, the expression can be easily inte-

. 1 1001 X P Lo

grated to yield -ypT— (x+1) by leaving it in its original
form. Recent information indicates that future ALPAK systems will
leave expressions in their factored form in order to resolve
difficulties created by problems such as this.

What then is the attitude that one should adopt toward simpli-

fications? A reasonable one would be to use each of these attitudes

where they are most useful. In cases where there is a need for a
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great deal of rational function manipulation and relatively little
pattern recognition one should adopt a radical attitude. When the
problem is not easily framed as a rational function problem or
where the computational effort is light, but where the pattern
recognition is not crucial, then you adopt a liberal attitude.
Finally, when a standard simplifier will lead you into difficulty
you just must restrict its effect.

Separating the radical attitude within a program from the
liberal one is usually easy -- there is a separate program to
handle rational functions. Between the liberal and conservative
mod es there are too many intermediate steps. Here what appears
to be required is a black-box simplifier with many inputs or in-
dicators. With these inputs one could control the effect of the
simplifier. It would be interesting to see if one could formulate
a language in which a program (or a user) could communicate with
the simplifier. For example, it could check certain indicators
before attempting any given simplification. The cost for such
checking could be quite minimal.

An example of the use of such a simplifier is represented as
follows: A common simplification rule is (ab)m - a™™. However,
in general this rule is inaccurate (e.g., when a=-1, b=-1, m=%, the
left-hand-side yields 1, the right-hand-side, -1, assuming a standard
interpretation of the square root). If one suspects that this rule

will lead to difficulty then one can leave a test condition in the
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indicator for this rule which will weed out those cases in which

the result is erroneous.



CHAPTER 4

SIN - THE SYMBOLIC INTEGRATOR

Introduction

In this chapter we describe the operation of SIN. At first SIN's
flow of control is analyzed. Then each of the methods used is described
in detail. Finally, the performance of SIN on two examples is shown.
Throughout this chapter the contrast between SIN's and SAINT's approach

and methods will be made clear.

Flow of Control and Subproblems in SIN and SAINT

A problem given to SIN may be said to pass through the three stages
of Figure 1.

Stage 1

Problem is

simple problem? fo—p-  Yes Return integral
No
Stage 2
Problem can be Either
transf do
szlszdogiespef ———> Yes 1. Apply SIN to a trans-
. formed problem and
ds? P
cial methods return value of SIN
or

N
° 2. Solve problem using

internal mechanisms and
return result as value.

Stage 3

Problem can be
solved by more |——>» Yes Return integral

| general methods?

No

Return notice of failure

Figure 1 - The 3 Stages of SIN

62
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As figure 1 indicates, the first stage solves simple integration
problems. In the second stage, we determine whether one of about ten
specialized methods is applicable to the problem. This determination is
made by a routine called FORM and is quite fast. If a method is found
to be applicable the problem will be either transformed and SIN will be
asked to integrate the transformed problem, or the problem will be inte-
grated using techniques internal to the methods. If no method is found
which is applicable, a more general method will ba called in stage 3 in
order to solve the problem. In this chapter we shall describe a third
stage consisting of a simple Integration-by-parts routine. In Chapter
5 we shall describe the Edge heuristic which we expect will be the basis
of methods used in this stage in the future.

Since most problems are expected to be solved by stages 1 and 2,
we shall describe the organization of these stages here. The control
of the methods used in stage 3 is specific to these methods and will
be described separately.

We note that the methods of stage 2 can call SIN to solve sub-
problems. When this occurs the flow of control and subproblems is given

by Figure 2.

Subpmblenl Solution @ l
SIN lr (:E
Subprobleml Sdufion )

@*———»@*——»@

Subprobleni Solution

Figure 2 - Usual Flow of Figure 3 - Flow of Control
Control and Subproblems and Subproblems in SIN
in SIN When Problem is a Sum of

Three Terms
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If a subproblem is a sum, then each term in the sum will be inte-
grated separately, and the flow is given by Figure 3.

It should be noted that if a method in stage 2 can transform a
problem, the problem is not passed to another method in stage 2 or stage
3, even though the transformed problem cannot be integrated by SIN. For
example,

Isin(ex)dx is transformed to Igis'ydy after substituting y=ex
in stage 2. FEi?.X dy cannot be integrated by SIN. Thus, SIN concludes
that Isin(ex)dx is not integrable by it and will not pass it to stage 3.

In strictly enforcing such a decision we are depending upon the
methods to employ tight progress requirements. If the progress require-
ments are made too tight, then few problems would be integrated by the
methods of SIN's second stage. 1If, however, they are made too loose,
then the methods of stage 2 would verify the hypothesis that they are
applicable in problems in which they, in fact, are not appropriate, and
thus SIN would fail to solve these problems. The experiments with SIN
which are described in Appendices C, D, and E indicate the degree to
which we succeeded in finding good progress requirements. We wish to
point out that once such a discipline is successfully imposed on the
methods, one is in a position to relax the requirement against backtracking,
and thereby obtain somewhat greater power. We have not yet done so in
SIN's second stage.

SAINT, in contrast to SIN's stages 1 and 2, will allow a problem to
generate more than one subproblem. However, only one of the subproblems
generated from any given problem must be solved in order to integrate the

given problem. 1In general, the subproblems generated by SAINT during the
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course of solution will form a tree structure. Figure 4 is a simplified

description of the flow of control and subproblems in SAINT.

NOLOOP Subproblem “Tree

-y

> Any subproblems left ?

ek subproblem fo be salved.

" !

== Is heuristic {ranskormation
applicable fo subproblem ?

Transform  subproblem.

IMSLN ll

Enter transformed problem(s)
info subproblem  free.

Is original problem solved ?
¥es

Return Answer

Figure 4 - Simplified flow of
control (single arrow) and sub-
problems (double arrow) in SAINT

If a problem in SAINT generates more than one subproblem, the node
in the tree corresponding to it is considered to be an OR node. Thus,
only one of the subproblems must be solved. If the problem is a sum,

a similar complication to the one in SIN is made. The node generated
for such a problem is called an AND node. Each of the terms in the

sum becomes a subproblem, and must be integrated. AND nodes are indi-
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cated by an arc across the branches from that node. Thus, in general,
a goal tree in SAINT has the form of Figure 5.

Figure 5 - A Subproblem Tree in

SAINT when sums are present among

the subproblems
|
|
|
|

All subproblems in SAINT are given to IMSLN. This includes the
original problem and this fact is not shown in Figure 4. IMSLN thus
acts like SIN's first stage. IMSLN has its own methods of solution.

If it fails to solve the subproblem or some simple transformation of it,
the subproblem will be put on the subproblem tree.

The routine LOOP (see Figure 4) has access to a list of subproblems
to be tried called PLH. This list is ordered so that the first member
of the list represents a subproblem which has the lowest depth of nested
operators (e.g., PLUS, TIMES, COS) in the internal representation of the

problem. LOOP will select the first subproblem on the list. It will
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then ask each of the methods of SAINT called the heuristic transformations

by Slagle to determine if they can transform the subproblem. These methods
will be guided by information about the subproblem called the character of
the subproblem. The character contains information such as whether the
subproblem represents a rational function, an elementary function of ex-
ponentials or trigonemetric functions, etc. This information is used to
limit the number of heuristic transformations applicable to a problem. Yet
even with the use of the character mechanism as many as 11 out of the 17
heuristic transformations may be applied to a single subproblem.

The flow of control and information in SIN is called hierarchical.

In a hierarchical organization, subproblems which are communicated between
one routine and a second are private to these routines and are not known
to the rest of the program. SAINT's organization can be called data base
oriented. In such an organization the goal is to transform the data base
(i.e., the goal tree in SAINT) to a desired state. In SAINT the desired
state is a tree which has a path from the top node (the original problem)
to a bottom node in which each node represents a solved problem. 1In a
data base oriented organization control is relinquished to routines which
manipulate the data base. In SAINT, all the heuristic transformations
relinquish control to the IMSLN program.

SAINT's data base oriented approach allows and, in fact, may be said
to encourage the program to backtrack, that is to leave one path of the
tree and start on another. SIN's approach is to discourage backtracks
at the first two stages. Backtracking is allowed in stage 3. However,

in stage 3 backtracking is only of a limited nature.
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Conventions

In describing SIN we shall use the usual convention that the
variable of integration is x. SIN is actually a function of two argu-
ments. The first is the expression to be integrated and the second is
the variable of integration.

Below when we use the phrase "is a constant'" we shall mean that
the expression contains no occurrence of the variable of integration.
Thus, sinzx + coszx is not a constant when x is the variable of inte-
gration.

We shall not concern ourselves here with difficulties which may
arise due to the unsolvability of the constant or matching problem for
the elementary functions. For a discussion of these difficulties see
Appendix B.

By the elementary expressions of x we mean the set of expressions
composed of

1) constants, 2) x, 3) trigonometric functions of x (e.g., sin(x),
cos(x)), 4) logarithmic and arctrigonometric functioms of x (e.g.,
logex, arcsin x), and closed under the operations of addition, multi-
plication, exponentiation, and substitution.

By an elementary expression in f(x) (abbreviated elem(f(x)), we

mean an expression obtained in the manner above, but where f(x) replaces
X
. P X 2e 2x
x in the definition. Thus, for example, (e  + 1l)e + e is an elemen-
. X . X .
tary expression of e". The expression xe  , on the other hand, is an
X
elementary expression of x, but not of e”.

By a problem integrable in finite terms we mean a problem whose

integral is representable by an elementary expression.
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First Stage of SIN

The first stage of SIN uses the following three methods:

Method I If the integrand is a sum, each temm is integrated separately
by calling SIN iteratively and the results are added.

Method II If the integrand is of the form
[Zui(x)]n, where n is a small positive integer, expand the
expression and apply Method I.

Method III If the Derivative-divides routine is applicable, return its
results.

The first two transformations are made so that the rest of the
program can assume that the integrand is a product (though possibly a
trivial product as in x or in ex). The third method in this stage is
the method which has led us to call this stage the stage that solves
simple problems.

We shall now describe these methods in some detail.

I) Method I is an oft used method in practice. Using this method
one avoids the difficulty of integrating dissimilar expressions such as
sin x + e~ Integral tables, it will be noted, shun entries which are

sums. However, this is not a safe rule to follow, in gemeral. For
; 2
2 x

2 .
example, let us consider J.(ex + 2x"e” )dx. Neither of the terms in

this sum is completely integrable in terms of elementary functions.

2
However, the sum is the derivative of xe* | Hence, breaking up the terms
in the sum and integrating them separately can disguise the integrability

of the sum. This difficulty was known throughout the course of this re-

search, and a heuristic for overcoming it in some cases was designed.

The heuristic that has been considered is of the following nature.
Suppose we have a product of terms of the form f(x)gfx)h(x). The der;:
vative is frequently of the form f'(x)g(x)h(x)+f(x)8 (x)h(x)+E(x)g(x)h' (x).

Thus if one finds an integrand which is a sum such that two terms in the
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However, no extension to this method has as yet been implemented.
Slagle considered this method to be sufficiently safe so that he
invariably followed it also.

Example

I(sin x + ex)dx = Isin x dx + Iex dx

II) The reason for method II can be seen by considering the problem
I(x + ex)zdx. SIN has no machinery which deals with this problem in its
present form. However, if the problem is given as I(x2+ 2xe™ + ezx)dx,
then the problem is easily integrated.

Example
f(x + ex)de = J.(x2 + 2xe® + ezx)dx

III) The Derivative-divides method is the heart of this stage in SIN.

As we shall see many problems are integrated by it quite quickly. The
inclusion of this method at this place in the program has an important
methodological basis. It is presumed that in many computer problem
solving systems there are methods of solution which solve most commonly
occurring problems relatively quickly. If these methods are employed
first by a problem solving system then many problems will be dispensed
with in short order. Thus, the problem solving system will be able to
afford to utilize expensive machinery in its later stages.

The Derivative-divides routine checks to see if the problem is of

the form:

sum are related by having two factors in each of the forms f'g and fg',
respectively, and with the rest of the factors identical, then ome can
guess the original product easily.
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Ic op (u(x))u' (x)dx,
where ¢ is a constanf, u(x) is an elementary expression in x, u'(x) is
its derivative, and gp is an elementary operator. Op may be one of the
following operators: a) identity b) sin c¢) cos d) tan e) cot f£) sec
g) csc h) arsin i) artan j) arsec k) log. Three more possibilities
for op involve the exponentiation operation. These presume that the ex-
ponential function has only one nonconstant argument. Thus, we get the
cases 1) u(x)-1 m) u(x)d, d #1, n) du(x), where d is a constant. The
final case is when the integrand is a comnstant and then u(x) is trivial.
In that case the integral is simply cx.

The method of solution, once the problem has been determined to
posses the form above, is to look up op in a table and substitute u(x)
for each occurrence of x in the expression given in the table.* In
other words, the method performs an implicit substitution y = u(x), and
obtains the integral [c op(y)dy by a table look up.

Using this method the following examples can be integrated.

1) jsin x cos x dx = %sinzx, op = identity, u(x) = sin(x), u'(x) = cos(x),

2 2
x
2) Jxe dx = %e s Op = du(x)’ u(x) = xz, u'(x) =2x, ¢ =

N =

3) w1l + x2 dx = %(1 + x2)3/2, op = u(x)d, u(x) =1 + xz, u'(x) = 2x,
=1
¢ T2
X

4) Il i oX dx = log(l + ex), op = u(x)-l, u(x) =1+ ex, u'(x) = s
c =1

See Appendix A for a description of integral table look-up methods.
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5) Ix3/2dx = %XS/Z, op = u(x)d, u(x) =x, u'(x) =1, c¢=1
A few more examples will indicate certain aspects of this method.
6) Jcos(Zx + 3)dx = %sin(Zx + 3), op =cos, u(x) =2x + 3, u'(x) =2,

c =

N =

The Derivative-divides method performs an implicit linear substi-
tution in this case. SAINT would have performed an explicit linear
substitution and would have required two calls to IMSLN to solve the
problem.

7) Jzyzerdx = yzezx, op = du(x),

u(x) = 2x, u'(x) =2, c =yz

This method handles constants easily. Constants can be generated
or can be present in the integrand. SAINT would have removed the con-
stants explicitly.

8) Jcosz(ex)sin(ex)exdx = -%cosa(ex), op = u(x)d, u(x) = cos(ex)’
c =-1

This example demonstrates that the integral may be fairly complex
and the method will still apply.

One of the experiments which was made with SIN was to attempt the
86 problems attempted by SAINT (see Appendix C). Interestingly enough>
this method of Derivative-divides was able to solve fully 45 out of 86
problems. The average time on the 7094 was 0.6 seconds.

It is hoped that the above examples convincingly demonstrate the
usefulness of this method at an early stage in an integration program.
The method is to be recommended for those who desire an integration
capability, but who are unable or unwilling to avail themselves of a
more general program.

As was mentioned earlier, SAINT's IMSLN routine performs some
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functions which are similar to SIN's first stage. IMSLN employs a

table similar to that in the Derivative-divides routine but somewhat
larger. It also performs eight transformations called algorithmic
transformations by Slagle. These transformations are attempted one at

a time. If one of them is successful the transformed problem is used

and the original problem is not considered again. Two of these trans-
formations are the same as method I and II in this stage of SIN. The
others factor a constant or a negation operator from the integral;

employ half angle identities; make a linear substitution; and perform
certain simplifications on the integrand. As has been pointed out

above, IMSIN also tends to the tree of subproblems and can determine

if the original problem has been solved. IMSLN doesn't actually solve
many problems so much as it is able to transform a great number of
problems into a form which is more easily solved by the rest of SAINT.

It would appear that SIN's Derivative-divides method solves more problems
immediately than does IMSLN., SAINT's Derivative-divides heuristic trans-
formation, which is quite powerful, is not applied to a problem until

much later in the course of the solution.

The Second Stage of SIN

If a problem fails to be solved by SIN's first stage, then it is
determined whether one of eleven additional methods is applicable to
it. In order to determine which method is to be applied clues are ob-
tained from the expression. We have called the technique by which these
clues are used hypothesis formation (see Chapter 2). The routine that
obtains these clues and conducts the formation of an hypothesis is called

FORM. Associated with most of the methods are patterns in SCHATCHEN
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which serve to differentiate the problems which are solvable by each
method from those solvable by other methods. It turns out that few
problems have more than one method applicable to them. 1In the cases
where a conflict does exist (e.g., in solving problems with algebraic
integrands) the actual method chosen appears to have little effect on
the cost of obtaining a solution.

In this stage of SIN, a single method (Method 6) handles problems
which involve trigonometric expressions. When FORM sees a subexpres-
sion of an integrand which is a trigonometric function of a linear
argument in the variable of integration, this subexpression will act
as a clue, and FORM will call Method 6 to validate the hypothesis that
a substitution can be made for the trigonometric functions. If Method 6
decides that such a substitution is not applicable (e.g., fsin X exdx),
then it will return the value NIL (FALSE). 1In such a case, FORM might
entertain another hypothesis but since there are none for trigonometric
functions, FORM will also return the value NIL. If Method 6 finds that
a transformation is applicable, it will hand SIN the transformed pro-
blem. The value of SIN, with a proper substitution to account for the
transformation that was made will be returned as the value of Method 6
and of FORM.

Examples of problems integrated by this stage of SIN:

(It is probable that none of these could be integrated by SAINT.)

VA2 ToinlX
1) A +SB sin dx

in x

2
2) f(l + 2x2)eX dax
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2x
3) J.———zre d
A +Be®

4) ijx+1 dx

5) _[xllz(x + 1)5/2dx
6) jﬁ dx

Below we describe each of the methods used in this stage. Each
description contains the clue which FORM uses to determine whether the
method might be applicable. A more extended description of the manner
in which FORM operates will then follow.

Method 1) Elementary function of exponentials.

This method is applicable whenever the integrand has the form of
bxi+c.
an elementary function of ai 1, where the ai, bi’ and ci are con-

stants.

. bx+c
Clue - a subexpression of form a ; a, b, ¢ are constants.

Examples -
e 1 X
Jm’x dx becomes Im dx, y = e
e2x X
Jm dx becomes _[’A—ﬁ-;a dy, y = e
J'ex+1 j e R x+1 x
T 7 X 9 becomes T+y dy, y=-¢€ and e = ee

10
lo
Iloxexdx becomes fy g e dy, y = e
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bx, +c, (bix+ci)log a,

i, s .
i is transformed into a al in order

Method - a,
2ethoc i 1

to convert all bases to a common base a;-. Here al is the first base

encountered in the integrand.

bx+c
1

transformation to be made.

a abx This facilitates the

. c
where ¢ # 0 is converted to a 1

1
The substitution y = af is made. Thus, each a?x is replaced by
yb and the resulting expression is divided by y 1oge al.
Notes ~ What is controversial about this method is that in conmverts all
bases to a single base which in not necessarily e. This may lead to
the introduction of unnecessarily clumsy constants (e.g., 10g53).
SAINT's method in this case was somewhat different. SAINT did
not handle different bases, nor all cases where constants (i.e., ci)
were present in the exponent. It did, though, find the greatest common
divisor of the bi’ k, say, and made the substitution y = a?x. In SIN
this will be handled by algorithm 2 which will make the substitution
z = yk after y = aT is made by the current method. The method that per-
forms the substitution z = yk was not present in SAINT although it was
suggested as an extension
Method 2) Substitution for an integral power.
This method is applicable whenever the integrand is of the form
X, Elem(xki), where c, ki are integers and where

k =ged({c + 1, k) k . hak#1

2,
Clue -~ Instead of obtaining a clue which determines whether this
transformation is applicable, FORM obtains a clue which determines

whether this transformation is not possible. FORM will note that this

transformation is not applicable when it sees a subexpression of the



77

form ea+bx or sin(x). If none of the other methods is applicable, and

no such clue has been found, this transformation will be called.

Examples =~
fxs sin(xz)dx becomes J%y sin y dy, y = x2
‘[ 1}2{ dx becomes % —3}'—~ dy,y = x4
X +1 yo +1

Method - Substitute y = xk
Notes - This method was suggested but not implemented by Slagle
who embedded it in a larger method which was implemented in SIN in two
separate methods (2 and 3).
This method is currently restricted to integer exponents. It
should be extended to handle expoments such as 3a, 2a in
JxBa sin(xza)dx

Method 3) Substitution for a ratiomal root of a linear fractiom of x.

This method is applicable when the integrand is of the form

ax + b)m (ax+b,§‘]2 )
cx+d/ P dex+d

Elem(x,(
where the n, and m, are relatively prime integers with some lmil £1,
and with a, b, ¢, d constants and ad - bc # 0.

Clue - A subexpression of the form
\
ax + b

<m a, b, ¢, d constants; n, m, relatively prime integers, |m| £1

Examples -
J-cos VX dx becomes IZy cos y dy, y =Vx
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Ix Vx + 1 dx becomes JIZ(y2 - 1)y2dy, y = /x + 1

The above two problems were attempted and not solved by SAINT.

1 st 1 __1/6
le/z - x1/3 dx becomes 6y ;3—:—;2 dy, y =x

2
. [ s . fET
J 2% + 3 9% becomes Gy - D2 W Y T o7 3

Method - Let k = least common multiple of the m .

(ax + b\llk

Substitute y = cx + d

Notes - The restriction ad - bec # 0 assures that the substitution
is non-trivial. If ad - bc = 0, then %ﬁ = 0.

Slagle suggested methods 2 and 3 as a single method. Considering
them as two separate methods facilitated the coding. This method is

an extension of Slagle's suggestion since it covers linear functioms.

Even this algorithm should be split into two parts. One would

n

handle the case restricted to (ax + b) /m, the other the more general
ax + b\n/m

case \EEY)

Much of the time only the former is needed, but the machinery for
handling the latter, which is more expensive, is employed.

A weakness of this routine is its inability to deal with variable
exponents. These would usually result in the generation of a reduction
formula as opposed to an integral. The great advantage of an integral
table over SIN currently is the presence of the reduction formulas.

The Edge heuristic (See Chapter 5) can generate some reduction formulas,
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but not many at present. (Or course, an instance of a variable exponent

should result in a solution in SIN!)

Method 4) Binomial - Chebyschev

This method is applicable whenever the integrand is not a rational
function and possesses the form

Axr(c1 + czxq)p, where A, s ¢, are constants, p, q, r are ratio-
nal numbers and €,6,9p # 0.

Clue - A subexpression which is a nonintegral power of a rational
function. This is followed in FORM by a match of the integrand and the

form above.

Examples
1 -x
I b1 - x2) 24 becomes j - . s ;:L__;_JE_
1 +y )
_2y6
J.xl/z(l + x)5/2dx becomes J\(—yz——-—i‘)— dy, y = /%

Method - Binomial conversion to Chebyschev form (substitute y = xq).
r+1

Thus A*A/q, and r, T ps 1 + -1

Make the first applicable transformation

a) r, integer, r, >0

Substitute z = ¢y + R

b) r2 integer, r1 a rational number with denominator d1

Substitute z = y1/dl

< 0, r, rational number with denominator d

1/a,

c) T integer, T, 2

Substitute z = (c1 + CZY)

2
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d) T, + r, is an integer

1/d
1
Substitute z = <£l_§_£zl>

Otherwise, return notice of failure to integrate problem.

Notes - This method was also suggested but not implemented by Slagle.
It has the advantage of being a decision procedure. That is, if an inte-
grand has the form given above, then either the method yields the integral
or the problem cannot be integrated in finite terms. This was proved by
Chebyschev (see Ritt [ 54 ], p. 27).

The argument used is roughly as follows: If T, T

,orr. + r_ 1is an

2 1 2
integer, then the substitutions above result in rational functions and thus
can be integrated. Otherwise we know from Abel's Theorem (see Chapter 5)
that the integral, if it is expressible in finite terms, is a sum of an
algebraic function and logarithmic terms. The residue of a Chebyschev
function is everywhere 0. Hence the integral cannot contain logarithmic
terms. Further analysis shows that the assumption that the integral is
algebraic leads to a contradiction.

In this case also the integral tables contain many entries which
are reduction formulas for the cases when p, q, r are parameters. Some
such capability should be present in SIN also.

Method 5) Arctrigonometric substitutionsg

This method is applicable whenever the integral is of the form
R(x, é;zfiﬁiifl"Z) where a, b, ¢ are constants and R is a rational
function of its arguments.

Clue - A subexpression of the form

(cx2 + bx + a)n/z, where n is an odd integer.
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Examples
4 . G
X sin z
‘J‘ dx becomes f dz, y = arcsin x
2 572 4
1 -x") cos z
[ /AaZ + BZ - BIyZ 1 A%+ B)cos % B
J 2 dy becomes 3 22+ B 2 dz, z = arcsin _—
1-y (1-——32——sinz) ‘/AZ + B2
Method

First eliminate the middle term of the quadratic by completing the

square

b
y=x+z,

yielding the integrand in the form

b 2 b
R(y-z; ey +a-l:)
b2
a - 2

Let A Le

C=c

If C > 0, A > 0, substitute z = arctan )% y
. . C
If C~» 0, A< 0, substitute z = arcsin —-_A y

If C > 0, A = 0, replace the quadratic by J/c y
If C< 0, A> 0, substitute z = arcsecﬁzy

If A and C are both numbers, then the signs are determined trivially.
If A or C are parameters, then the user will be asked whether they are
positive, negative, or zero through an appropriate message at the console.
For example if the value of A is e, a message would read

IS e POSITIVE

An answer of ''yes" is expected if e is in fact positive. However, the

program can frequently determine whether A or C are positive. This is
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done by assuming that all parameters are real valued and by using the
fact that sums of squares of real numbers are positive. Thus
2d2 + 3e4 +5
is determined to be positive, whereas
-a% - 2(e + £)2
is determined to be negative. A single SCHATCHEN rule is used in making
this determination.
Notes
In cases where the coefficients are parameters, it is possible to
run the program several times and answer questions differently each time.
SAINT had two transformations which performed the function of this
method. One method eliminated the middle term from all quadratics, another
made the arctrigonometric substitutions in all quadratics with missing
middle terms. The arctrigonometric substitutions are normally made for
roots of quadratics as we have done and not in all quadratics as SAINT
attempted to do. SAINT also implicitly required that the coefficients
in the quadratic be numbers. The kind of interaction between the user
and the program which is required when one allows nonnumerical coefficients

became practical when time-sharing systems were introduced.

Method 6) Elementary function of trigonometric functions.

This method is applicable when the integrand is an elementary
function of the trigonometric functions applied to linear argument in
the variable of integration.

Clue - TRIG(a + bx) where TRIG € {sin, cos, sec, tan, cot, csel}
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Examples
2 1 _1
1) sin x dx becomes (E - geos 2x)dx

i -
/A2 + BZsinZx dx becomes /aZ + Bzgl = 22)

2 sin x

dy, y =cos x
1-y

1 [ay, y = tan &
3) Il rag— dx becomes dy, y tan 5%

Method

I) In problems where the arguments of the trigonometric functions
are not the same throughout the integrand, the following cases are
examined.

-cos(m - n) _ cossm + n!x

a) _[sinmxcos n x dx

= 2(m - n) x 2(m + n)
, . _ sin(m - n)x _ sin(m + n)x
b) j‘s:.nmxﬂnnxdx 2(m - 1) 2(m + 1)
_ sin(m - n)x sin(m + n)x R
c) cOos m X cOS n X dx 2(m - n) + Z(m + n) m, n, constants m f n

Otherwise, the method returns notice of failure to integrate the problem.
II) If the arguments are the same but are not identically x, a
linear substitution y = a + bx is performed and the procedure continues

with the revised problem.
IIT) 1If the problem is of the form
‘[sinm(y)cosn(y)dy; m, n integers

n-m

a) m < n, transform to (-;-sin 2y)n(% + %cos 2y) 2 dy

1 n. 1 1 m-n
b) m 2 n, transform to J(Esin 2y) (‘2“ - eos 2y) 2 dy

IV) All trigonometric functions are transformed into sines and

sin y

cosines (e.g., tany
(e.g., Y7 osy

) in order to test if the resulting expres-

sion is of the form a or b.
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a) Jsin2n+l(y)E1em(sin2(y),cos(y))dy.

In this case substitute z = cos(y)
b) jcoszn+1(y)E1em(cosz(y),sin(y))dy

In this case substitute z = sin(y).
V) All trigonometric functions are transformed into secants and
tangents in order to test whether the resulting expression is of the

form:
fElem(tan(y),secz(y))dy

In this case substitute z = tan(y).

VI) Finally, the substitution z = tan%y = T—EL%EE—; is made.

Notes - In the case where the integrand is a rational function
of trigonometric functions of x all the problems can be reduced to
rational functions. The choice of the transformation governs the
simplicity of the resulting rational function and the final answer.
The transformation in step VI above which is always applicable in these
situations frequently leads to a great deal of work and to complex
results. Fortunately, a number of simpler transformations such as
those of steps III, IV, and V are easily recognized and are usually
applicable.

SAINT included all of the transformations given abcve, but they
were embedded in different places in the program. I is included in

the integral table. II is an algorithmic transformation, as is step III.
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IV and V are three separate heuristic transformations. V is yet another
heuristic transformation. The initial stage in steps IV and V is per-
formed by still another method. This organization of the methods appli-
cable to trigonometric functions led to the generation of extraneous
subproblems since the heuristic transformations were disjoint and were
not aware of each others actions, nor, in fact, of their own actions.

For example, the method which performs the preliminary transformation

sin x et .
in steps IV and V (e.g., tan x * cox x) must be inhibited from performing
: . : tan
the opposite transformation later (e.g., sin = sec) "

More work is necessary in this area in handling arguments to
in(7
trigonometric functions which are linear, but different (e.g., %i%%gﬁ%dx).
Some programs along this line have been designed by Edmund Berkeley, but

they have not been fully implemented.

Method 7) Rational function times an exponential

This method is applicable whenever the integrand is of the form

R(x)eP(x)

, where R(x) is a rational function in x and P(x) is a polynomial
in x.

P(x)

Clue - A subexpression of the form e , where P is a polynomial

in x. If P(x) is linear in x, this method will be attempted if method
1 is not applicable.

Examples
1. Ixexdx = xe* - &

X

X X, __e
2 o e - 15

1
2 2
3. J(l + 2x2)ex dx = xe*

%2
4. Je” dx: not integrable



86

5. J‘g dx: not integrable

Method - This method once again is a decision procedure. That
is, the method can tell whether a problem can be integrated in finite
terms or not. The method is an improvement of the decision procedure
in Ritt [ 54 ](p. 48) which handled the case by solving a system of
linear equations. The procedure is an application of the Liouville
theory for integration about which more will be found in Chapter 5.
This procedure is similar in flavor to Risch's [ 53] recent theoretical

treatment of results in the Liouville theory.
c,x™ + Sl(x)

Let R(x) = 1 oY) where Sl, Q are polynomials
S1 is a polynomial of degree < w5
Cl is a constant, C1 # 0.
We know from the Liouville theory that the integral (if any) will
be a multiple of eP(x). (See Ritt [ 54 ], page 47.)

Suppose the integral is represented by

P(x)
(a;(x) + b_(x))e , then
L 1 Clxml + Sl(x)
P'(x)al +a! + P’(x)b1 + b! =R(x) = ——————F——

1 1 Qx)
Clxml
Let al(x) = _P'-Q—’ then .
m -1 9% ‘e’ Cl"mlp"

s e TTPQ T (@02

a =
1 Q

and mlclxml -1 Clxmll’" Clxle
s - + +

' Vo= Cpty oot =L P’ ()< P'Q

P bl + b1 R(x) - P a) - a; q

The numerator of P'bl + bi is a polynomial Tl(x)’ say, and a rational

m
function remainder, Ul(x), say. Let the leading term of 'I‘l(x) be sz 2 and
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the rest of Tl(x) be Sz(x). Now continue the process indicated above
until some Ti (Tn, say) is 0. This is guaranteed to occur since the
degree of the Ti is decreasing. If at that time the corresponding Ui

P(x)

(i.e., Un) is also 0, then the expression R(x)e is integrable and

n
the integral is _Zlai(x)ep(x). If U is not 0, then the problem is
l=

not integrable in finite terms.

n
Note that if U_ = 0, then R(x) ~ P' L a, - X a' = 0.
n i=] 1 j=1 1

n
Let a = .Elai(x); then we obtain the relation
i=

P'a+ a' =R

P'aeP + a'e = ReP
P

(ae )' = ReP

aeP = JRede

For the converse, we refer to Ritt. Also, note the discussion in

Chapter 5.

Notes - SAINT was able to solve the first two of the examples
above. Both were solved using the Integration-by-parts method of
SAINT.

2

SAINT was unable to integrate Iex dx because it found that no trans-
formations were applicable to the problem after approximately ome minute
of computation.

The fact that SAINT was unable to integrate this problem does not
necessarily mean that the problem is not integrable in finite terms. This

statement is also true of SIN, in general. This is due to the fail-safe

nature of the programs. When a fail-safe integration program results in
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an integral then we know that the problem is integrable. When such a
program does not yield an integral then one still does not know whether

the problem can be integrated or not. A semi-decision procedure for

integration would, in finite time, result in an integral or in the state-
ment that the problem cannot be integrated in finite terms. Richardson's
result (see Appendix B) shows that for the integration problem as he
defines it, no decision procedure exists. Yet decision procedures exist
for many interesting subcases and especially when one avoids considering
the matching problems that Richardson shows are inherent in his charac-
terization of the elementary functions. SIN embodies some decision pro-
cedures. Future programs are likely to contain more (see Chapter 5).
One must be quite careful about the computational methods involved in
order to avoid the explosion which is apparently inherent in many decision
procedures in algebraic manipulation (see Moses[ 42 ]). We would prefer
to see expensive decision methods to be attempted as a last resort, such
as stage 3 in SIN. A final consideration regarding methods for integration
is that they should not be too radical or else the result will become less
meaningful to the human user.

This method was implemented using the rational function package of
MATHLAB [ 36 ]. SIN communicates with the rational function package by
a process called chaining. More will be said about chaining when we dis-
cuss the integration of rational functions.

Method 8) Rational functions

This method is applicable whenever the integrand is a rational function.
Clue - FORM generates no local clue for rational functions. The

applicability of this method is determined separately. Sometimes this
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method is called directly by other methods (e.g., methods 2 and 4),

Examples
x _ 1 1 2 1 (2x - 1)
1. Jx3 1 dx = 3loge (x+1) + 610ge (x x + 1) +-7§ arctan =3

T S | 1 1 2
2. x6 . dx = -61°gb (x +1) + 6loge (x + 1) + 12loge (x* - x+1) -

1 2x - 1) _1 2 1 <2xf+ 1)

273 arctan(—j73-*) 12198 (X° +x + 1) « 577 arctan\™ 53—

3 : L dx = = log, (x + A) + ———‘l————'log (x - A)
B2 - a2y - a2 At mp® - a2 C oap? - a3 °

Method - This method was programmed for the MATHLAB system by Manove
and Bloom under the direction of Engelman of the MITRE Corporation. The
integration procedure which is used is described in Hardy [ 25]. The
polynomial factorization routine used in this program essentially follows
Kronecker's method as described in Van der Waerden [ 65 }, p. 77-78. This
program is also written in LISP and is itself described in "Rational Func-
tions in MATHLAB," by Manove, Bloom and Engelman [ 36 ].

Notes - The power of this method makes the coding of the rest of
SIN a great deal simpler. SAINT did not have a powerful rational function
integration program (it could integrate polynomials and ratios of poly-
nomials with linear and quadratic factors) and it suffered thereby; much
of the trial and error in some problems for SAINT can be attributed to
its inability to integrate certain rational functions which arose as
subproblems. Some of the extensions which were made to SAINT (e.g.,
methods 2 and 4) could not have been made unless a ratiomal function
program was present. Thus, the second stage of SIN lets this routine
clean up the details such as rationalization of denominators which could

be ignored in making the transformationms.
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Slagle realized that the unavailability of a rational function
integration program was a basic defect in SAINT. However his proposal
for the manner in which such a routine should be written was not the
best. He proposed solving linear equations to obtain a partial faction
expansion of the rational function. The method in MATHLAB is superior
computationally.

As was mentioned earlier the experimental work (e.g., debugging
and testing) was done using Project MAC's time sharing system CTSS. One
valuable feature of this system is the power to use programs written by
others. In our case it was valuable to have access to the rational func-
tion package of the MATHLAB system. To be sure, in conventional 'batch"
processing one can employ large packages designed by others by using
intermediate tapes. In CTSS one can conveniently make use of a program
concurrently under development by another group, providing one is pre-
pared to spend some time for the process involved.*

The rational function program which SIN uses is available in CTSS
as FULMAN SAVED. It is a separate core image from SIN and is called
using the chaining process given below.

a) SIN writes the problem to be integrated on file MANOVE LISP.

b) SIN saves itself as MOSES SAVED.

The widespread availability of time sharing consoles has allowed SIN
to be used by several people other than the author. 'Bugs" in the pro-
gram.have been pointed out by Michael Levin of Information Intermational,
Inc., Carl Hewitt and Peter Samson of Project MAC, ad Russel Kirsch of
the National Bureau of Standards. We would hereby like to express our
appreciation of their efforts.
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c¢) SIN directs CISS to execute FULMAN SAVED.

d) FUIMAN reads MANOVE LISP.

e) TFUIMAN generates a solution to the problem.

f) FULMAN writes the solution on file MANOVE ANS.
g) FUIMAN directs CTSS to resume MOSES SAVED.

h) MOSES (i.e., SIN) reads MANOVE ANS.

Experimentally the minimum time for this process has been determined

to be about 4.5 seconds of machine time. Most of the time is spent in
steps ¢ and g in which 32k programs are loaded into core.

There are, at present, certain differences in the internal repre-
sentation used in SIN and FULMAN. These differences are eliminated,
whenever possible, by two interface routines present in SIN., The dif-
ferences consist of the following:

a) 1log has two arguments in SIN, one in FUIMAN.

b) PLUS, TIMES have variable number or arguments in SIN and only
two in FULMAN.

c¢) No floating point numbers are allowed in FULMAN. Whenever
possible these are converted to rational numbers (i.e., (a*b) where a,b

are integers). Otherwise an error indication is given in SIN.

Method 9) Rational function times a log or arctrigonometric function

with a rational argument.

This method is applicable whenever the integrand is of the form
R(x)F(S(x)) where F is log, arcsin, or arctan
R(x) and S(x) are rational functions

and where JR(x)dx is also rational.
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Clue - F(S(x)) where F is log, arcsin or arctan and S(x) is a

rational function.

Examples
2
X

1) Jx logex dx becomes 2 10gex - I% dx

3 x>
2) fxzarcsin x dx becomes =—arcsin x - J dx
3 3/1 - x2

log(x2 + 2x) becomes ;—i;flog(xz + 2x) - I -1 (2x +2) dx

x2 +2x +1 x+1 xz + 2x

3)
Method - Let T(x) = IR(x)dx
a) F = log
Solution is T(x)log(S(x) - IT(X) glgi% dx
b) F = arctan

Solution is T(x)arctanS(x)- JT(x) T—giggzzj dx

c) F = arcsin

Solution is T(x)arcsinS(x)- IT(x) -——§li§l———‘dx
J1 - Sz(x)

Notes - This routine handles three special cases of the method of
Integration-by-parts. The utility of these special cases is that they
direct the solution process quite clearly, whereas the more general sol-
ution methods may make false starts or require more extended analysis.

SAINT would have attempted to solve most of the problems that fall
under this category with its Integration-by-parts method. If we presume
that SIN had only the rational function capability of SAINT, then this
method would allow SIN to be more powerful on these problems to which
this method applies. This is due to the fact that SAINT could not tell
how much effort it could reasonably expend on its Integration-by-parts
method and it chose to spend less effort of it than would be required to

integrate the third problem avove, for example.
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Method 10) Rational function times an elementary functiom of

loge(a + bx).

This method is applicable whenever the integrand is of the form
R(x)Elem(log.(a + bx)) where R(x) is a rational function and a, b, c,
are constants.

Clue - A subexpression of the form logc(a + bx). This method is
attempted if method 9 fails to be applicable.

Examples

log x
e I y
—_— ——--—1__.Z =
1) a ) dx becomes ( nHZ e dy, y = log x

2) Jl —*——l——z— dx becomes Jl‘l——z dy, y = log x
x 1 + logox ‘1 +y ? e

S J'ly = X
3) Tog ¥ dx becomes ;e dy, y = e
e

Method - Substitute y = logc(a + bx)
results in
J‘R(E'Zb-—a)Elem(y);—ylogec dy

Notes - This method is used to reduce the problem to the exponen-
tial case where the powerful method 7 might be applicable., If method 7
is not applicable, the transformed problem stands as much a chance of
being integrated by SIN's current methods as did the original problem
in the logarithmic form.

Method 11) Expansion of the integrand.

This method is applicable whenever the integrand can be expanded
by distributing sums over products.

Clue - This method is used whenever all of the previous methods

have failed to be applicable. No clue for the applicability of this

method is found by FORM.
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Examples
I x(cos x + sin x)dx becomes J (x sin x + x cos x)dx
+ e* -X
I 5—;—5— dx becomes I (xe © + 1)dx
e
I x,2 X 2x
x(L + e") dx becomes (x + 2xe” + xe” )dx
Notes - SAINT had two heuristic transformations which together per-

formed the job of this method. The first distributed nonconstant sums in
products, the second expanded positive integer powers of nonconstant sums.
In both cases, where Slagle considered the methods inappropriate, SIN
would have already applied one of the previous methods and solved the
problem. As a matter of fact, that is also true of the two problems

for which he considered the methods to be appropriate.

The Third Stage of SIN

This stage, the last stage of SIN, is the appropriate place for
methods of a rather general nature.

Two methods which properly belong in this stage have been programmed.
The first is the Integration-by-parts method. This method is used in
the experiment in Appendix C in which SIN was asked to solve the 86 problems
attempted by SAINT. Only two of those problems (i.e., Jx cos X dx and
[cos Jx dx) required this method. The second method is based on the Edge
heuristic described in Chapter 5. A third method, a powerful Derivative-
divides method, has not been implemented, but will be discussed here.

In the long run it is expected that only one of these methods will

be used here--that is the method based on the Edge heuristic or some wari-
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ant of it.

The Integration-by-Parts Method
Examples -
1) Jx cos x dx becomes X sin x - Jsin x dx

2
2) J; logzx dx becomes %—loggx - Ix logex dx

Method - Let Maxparts be twice the maximum of the value of a
constant exponent of any nonconstant factor in the integrand. Thus
Maxparts is 2 for x cos(x) and 4 for xzcos X.

Consider any partition of the integrand into a product of nonconstant
factors g and h, where H(x) = Ih dx can be obtained by SIN without calling
the Integration-by-parts method.

Now consider Ig'de. We require that this integral be found by
SIN by calling the Integration-by-parts method fewer than Maxparts times.

If both integrals are obtained, the solution is

Igh dx = gH - jg'ﬂ dx.

Notes - The crucial aspect of this method is embodied in the phrase
"consider any partition." This method is thus willing to attempt several
partitions of the integrand. It is thus searching for a solution, and
searching very blindly indeed.

In order to avoid searching too large a space, we require that H(x)
must be found without using this method. SAINT, which also had an Inte-
gration-by-parts method required that H(x) be found by IMSLN, which is
a stronger restriction. Likewise the Maxparts device avoids an infinite

search for the second integral. SAINT, which did not use such a device
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gin x

appears vulnerable to difficulties such as in the problem [ dx.
.

Consider h = sin x, g = i. Thus Jh dx = -cos x and Jg'H dx =

cos X
j——-— dx.
x2
cos X .
dx is
2
X X

[ s
|sin x
J

One subproblem generated by 3 dx. This process
3

can continue indefinitely unless measures are taken to curtail it.
sin x
X

(Actually dx is not integrable in finite terms.)

The Derivative-Divides Method

The method of Integration-by-parts and the Derivative-divides method
are the two‘general methods that a freshman calculus student is likely to
learn. Let us recall that SIN's first stage employed a Derivative-divides
method. However, that method is not as general as it might be. The
Derivative-divides method attempts to determine whether the integrand can
be put into the form g(u(x))u'(x). If this is the case then the substi-
tution y = u(x) transforms the problem into Ig(y)dy. In stage 1, g was
required to be a single operator. However, in a more general method g
would not be so limited and the following problems would be transformed
by this method. (Let us note again that this method is not available in
SIN at present.)

1) Jcos x(1 + sin3x)dx becomes I(l + y3)dy, y = sin x

1 1
1 | .
2) Ix i-:—igg:;—dx becomes T—I—;z dy, y = logey

L 1
3 I /1 - x? 1 + arcsinx

1 :
dx becomes f—————z dy, y = arcsin x
1+y
The first two of these problems can be solved by SIN's second stage
(in particular by methods 6 and 10). The third problem is one of the

simplest examples of a problem which cannot be solved by SIN's first two



97

stages along with the Integration-by-parts method. However, the Edge
heuristic¢ will correctly guess the integral arctan(arcsin x).

SAINT had a Derivative~divides method which was more powerful than
SIN's. However, it suggested many bad transformations in some cases.
The method essentially performed a search for a subexpression such that
the number of factors in the quotient 0f the expression and the deriva-
tive of the subexpression was smaller than the number of factors in the
original integrand. This is too strong a restriction sometimes.

A Derivative-divides method was designed but was never implemented
in SIN.

The kind of analysis we considered was as follows: Suppose the
integrand is f(x) and a nonlinear subexpression of it is u(x), then if
fé%ﬁj can be represented as g(u(x)), the method would propose substituting

p
y = u(x) and attempting Jg(y)dy. We should, though, restrict the kind of

sin x

. . 1 .
functions g that we would allow. For example, in 3in x + cos x

we might
wish to disallow the substitution y = cos x since it introduces the alge-
braic term /T_:—§7 into the denominator. If we make the conditions on

the g's sufficiently restrictive (e.g., rational, algebraic) then the num-
ber of substitutions per problem that this method would propose would be

small, and more significantly, each of the substitutions would be quite

reasonable,

Further Discussion of FORM

We would like now to discuss some of the aspects related to the
FORM routine in greater detail. We note that of the eleven methods
available in stage 2 of SIN, eight possess local clues which immediately

identify them to FORM, Method 2, substitution for an integer power,
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possesses clues which allow FORM to reject the method in some cases.
Methods 8 (Rational) and 11 (Expansion) do not currently possess local
clues in FORM and are attempted whenever FORM fails to find an applicable
method.

As may be recalled from Chapter 2, one of the advantages of hypo-
thesis formation is that one can attempt to fit the problem to the method
at hand. Since FORM is quite aware of the methods which are available to
it, some such "fitting" could be attempted. This was done in the case of
algebraic integrands. If an expression is of the form /Ez;;, where R is
rational in x, then FORM will attempt to see if methods 3, 4, or 5 are
applicable. If they are not, then this problem is going to cause some
difficulty since it would appear that nothing else except stage 3 methods
will be available to solve the problem. On the other hand it is possible
that Methods 3, 4, or 5 are applicable, but that SCHATCHEN was unable to
make the match. Two excuses can be made for SCHATCHEN in this event. One
is that SCHATCHEN failed because the rational function R(xX) was not ex-
panded (e.g., /E_:T;zi_?j;S), or that the rational function was not com-
pletely rationalized (e.g.,Jx + §—§;l ). TFORM will thus determine if
these two transformations are applicable to R (not the whole integrand).
If they are, the problem is transformed to account for these changes and
an attempt will be made to consider Methods 3, 4, and 5 again. Hypothesis

formation is thus shown to be able to localize the difficulty in a problem.

An Example of STN's Performance

We shall now consider in some detail how SIN performs on the problem
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J /a% + stinzx
—_—= dx

sin x

This problem stretches the capabili;ies of SIN a good deal. Thus
it can be used to indicate some of the strengths and particularly the
weaknesses in the program as it now stands. Our description will con-
centrate on the role that FORM plays in obtaining a solution.

This problem is not a simple one. So it will pass to stage 2, where
FORM will examine it. It turns out that FORM will arrive at the same
hypothesis regardless of whether it examines the numerator or denominator
first, but it will be more instructive to see how it operates on the numer-
ator. First, FORM will note the square-root (more precisely, the exponent
of %). Since the base is not rational, which would indicate that Methods
3, 4, or 5 might be applicable, the root is ignored and attention is
focused on the base A2 + stinzx. In this sum, the constant term A2 is
encountered, and it yields no clue. The factor B2 is likewise a constant
and yields no clue. This leaves the factor sinzx. The exponent of 2 is
not interesting. However, the base sin(x) does yield a clue since it is
a trigonometric function with a linear argument. FORM will, therefore,
call Method 6 in order to test the hpyothesis that the expression is an
elementary function of trigonometric functions of x. Method 6 determines
that the hypothesis is valid and will call SIN after making the substitution

y = cos X. The subproblem thus generated for SIN is

FAT+ETa D Z+3 Za-vD g4

-y
As before, this is not a simple problem and again FORM is called in

order to generate an hypothesis, Interest will quickly focus on the square-
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root in the numerator. Though the base is a rational function, none of

the clues in FORM appear to apply. As described in the discussion above,
FORM will attempt to determine whether an expansion of the base is possible,
Expansion is, of course, possible and yields the base A2 + B2 Bzy2 which
matches the pattern used as a clue for Method 5. Method 5 is now called

in order to determine whether an arctrigonometric substitution is possible

in the revised problem which is

[

l-y

dz ,

Method 5 first validates the hypothesis. 1In order to determine which

substitution is appropriate, the routine decides that A2 + B2 is positive

and that -Bz is negative in the manner described in the discussion of

this method above. Method 5 will now make the substitution
— By
z = arcsin m
which is followed by a call to SIN with the subproblem
A2 + B2)cos?z
J B dz

A< + B 2 :
———2~——sin z

Once again the subproblem is not simple and FORM is asked to examine
it. In the integrand only two factors are interesting, coszz and

AZ + g2 . , : )

(1 ———2———51n z) . Whichever FORM will be asked to examine first,
the conclusion will be the same--a hypothesis that the integrand is an
elementary function of trigonometric functioms.

Method 6 will verify the hypothesis that only trigonometric functions
are present and will make the substitution w = tan(z). This will result
in yet another call to SIN with the subproblem
J-1 A2+B2

1 dw
2 AZ + BS _ w?
B(lL+w ) (1 ———2——— 1+ )
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This is a rational function and FORM will find no clue in this case.
Since FORM also did not find any clue to reject the possibility that
Method 2 (substitution for an integer power) is applicable, that method
is called next. Method 2 cannot make a substitution, but will call
Method 8 (rational) to solve this problem.

The rational function package will obtain this subproblem through
the chaining process described above under Method 8. First, it will

transform it by rationalization into a problem of the form given below

1

-8(a% + B%)
Uuw
a + v)y@? - 43P

Then factorization and partial fraction decomposition will result in

B 1 1 1 1 J
I“ + A - =A dw
[1+w2 2Aw ~ B 2 Aw+B

- Straight forward integration will now yield the integral
1 1
-B arctan w + 2A loge(Aw - B) 2A loge(Aw + B)
This result will be sent back to SIN for the arduous backward sub-
stitution: The first substitution is w = tan z which yields
Bz+ 1A log (A tan z - B) - 2A log (A tan z + B)
2 e 2 B ©
The second substitution is z = arcsin /27—3757 y. This results in

) B
- B arcsin
/aZ + BZ
" -
A 5 )
A2 + g2 Y
- lA loge /AZ + B + B
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C
Note that tan arcsin C is transformed into /T—f=E§

The final substitution is y = cos X; this in turn yields

B cos x
Z 4 p2

N (N V.1
-B arcsin /a2 + g2 cos x’ + 2A loge B

B cos x
1 A /ATy 92

- 2A loge 5 + B
- ATy pleos’x

This is the result that SIN returns for the original problem. SIN

4 B 2
- mcos X

does not simplify its results by rationalizing them or by combining log-
arithmic terms. This is certainly a drawback in this problem. Such

simplifying transformations would result in the answer

A cos x +-/Az + BZ sinzx )

—3 1
-B arcsin /AZ + BZ COs X ° 2A loge‘A cos X - /AZ + B2 sinzx /

This result is to be compared with the answer in the table (Petit

Bois, p. 138). That result is

B
—_—__CcO08 X

B arccos ( /a7 + B2 > - A loge(A cot x +/AZ csclx + B)

In more familiar terms, the table's answer is

B ) ( T TR i 7o
. —_— A cos X + VA + BS sin?x
B arcsin ( /A2 7 B2 cosx A loge oin x )

This answer differs by a constant from the answer derived by SIN.

Although we can only guess at the method that the table's compiler
used, we can arrive at some conclusions regarding weaknesses in SIN's

method of solution.

Let us consider the first subproblem after the modification made to

it by FORM.

I— /aZ 1 BZ - Bzxz .
l_yl ay
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Rewrite this as
@+ 8% - %% 1 .
1 -y%) J/aZ+2- By Y

The transformation made above is a standard one in dealing with

algebraic integrands. The integral above, after division, becomes

(.2_ 2 1
JB léy)m;z dy

Multiplying through we obtain two subproblems which toge#her are
simpler to solve than the combined problem. SIN, by not bringing the
square-root to the denominator, unnecessarily complicates the work of
the rational function package. This is certainly one of its weaknesses

in dealing with algebraic integrands.

SAINT and SIN solutions of the same' problem
As a further comparison of SAINT and SIN, we shall indicate how
both operate on the problem A
|25tz
This problem was chosen because it is discussed extensively in Slagle's
thesis.
In SIN, after determining that the problem is not simple, the factor

a- xz)'(S/Z)

acts as a clue in FORM and generates a call to Method 5
which validates the hypothesis that an arctrigonometric substitution is

possible. This method generates the subproblem

. 4
Ju—nﬁdy

costy
after making the substitution y = arcsin x.

Again, this is not a simple problem and this time sin(y) will act
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as a clue for the hypothesis that only trigonometric functions are present.

Method 6 validates this hypothesis and generates the subproblem

4
e
after making the substitution z = tan y.
This subproblem is rational and FORM finds no local clue. Method 2
is called and is ineffective. Method 8 (rational) is called and the ratiomal
function package returns the expression

3

z_

3 - Z + arctan z

as the integral.
Backward substitution yields
tan3
——3—2 - tany +y

and finally we obtain the integral
o (M,
3 + arcsin x
x>

In SAINT, the solution of
4
x
IZI—:-;23572 dx
proceeds roughly as follows.

In this problem y = arcsin x is substituted yielding

31n yd
cos
as in SIN.
Subproblem I is transformed into
4
II) Jjtan y dy
and into

II1) Jcotay dy

both of which will now be added to the subproblem tree. Finally, z = tamn %y
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transforms subproblem I into

z
IV) I32 (1 + zz) (1 - zz')*a dz
which is transformed by IMSIN into

I
v 32 1+ 22)(1 - 25)% dz

No more transformations are possible on subproblem I, so transfor-

mation will be attempted on subproblems II, III, and V.
Subproblem II is transformed by z = tan y into

4
zZ
D T

IMSLN then performs the polynomial division and obtains

2

VviI) _[(-1 + 2z +11W) dz

From VII we obtain

VIII) j-dz,

IX) ]‘zzdz, and

1
R A

Subproblems VIIT and IX are solved by the table look up in IMSLN.

This leaves II, III, V and X.

III can be transformed by z = cot y, into
-1
XD IFT o &2
and IMSLN will convert it to

1
XII) -~ m dz

By now only subproblems V, X, and XII remain to be considered.

transformation w = arctan z on subproblem X yields

XIII) J dw

The
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which IMSIN solves by the table look up. Now IMSLN realizes that sub-
problem VII has been completely solved and by backward substitution can

obtain the final result

%tan3arcsin x = tan arcsin X + arcsin x
We should note in the solution methods how SAINT keeps several
options to the particular path to be followed in obtaining the answer.
This is particularly noticeable in subproblem I which generates II, III,
and IV. Only one of those three subproblems need be solved. SIN will
generate only one subproblem, and will commit itself to using it. Of
these subproblems only IV can truly be faulted. The tan % X transformation
is generally to be eschewed if any other transformation is possible. How-
ever, the lack of communication between SAINT's heuristics make such a
principle difficult to implement.
Furthermore, it appears that subproblem XIII should logically follow
X. However, the cost of obtaining the character of subproblem X in SAINT

forced the particular order of events to be followed. A mechanism like

FORM would have simplified this situation tremendously.



CHAPTER 5

THE EDGE HEURISTIC

In this chapter we present the concepts underlying the Edge
heuristic. The heuristic guesses the form of the integral and then
attempts to obtain values for undetermined coefficients in that
form. A program called Edge, which implements some of the ideas
behind the Edge heuristic is described. The theoretical results
related to this approach to integration are discussed.

Let us suppose that we are given an integrand which is in
the form of a product. Then we can usually determine quite easily

which factor in the product is a singular or outstanding factor

in the sense that it is not contained in the other factors or their
derivatives, nor can it be derived from the other factors or their
derivatives through rational operations. In xe¥* , the factor ex2

is outstanding since x is contained in the derivative of this factor.
The outstanding factor in x>V l-xz. is the factor -x2. However,
there may be several such outstanding factors as in sinxeX where
both sinx and e® are not derivable from one another. In such a

case we shall say that the first factor in a right to left scan of
the expression is the outstanding factor. Moreover, in cases of
functions such as sin(x)cos(x) no factor is outstanding. Here we

shall choose the first factor on the right.

107



108

Given that we have decided on an outstanding factor in the
integrand, we can frequently make an educatea guess regarding the
form of the integral, assuming, of course, that the integral can be
expressed in finite terms.

Suépose the integral f(x) has an outstanding factor of the

form eg(x)’ say, f(x) = h(x)eg(x) then we can guess that

I f(x)dx is of the form

a()ef® 4 by = [ foodx = | h(x)e® ®ax

where a(x), b(x) are undetermined functions of x, and where

a(x) will not involve eg(x)'

Certainly ff(x)dx must contain eg(x) since one cannot other-

wise obtain such a function through differentiation. If If(x)dx

: X
has a nonlinear occurrence of eg( )

then so will its derivative,
but this nonlinear occurrence will not cancel in f(x).

Given the above choice for If(x)dx, then by differentiation

we obtain
2™ ) +a' @eE® 15w = £ = 2@

A simple choice for the value of a(x) can be obtained by requiring

that the first coefficient of eg(x) on the left be equal to the

8OO 4n g,

coefficient of e Using this choice we obtain

£ (x) = hx)

a(x) = =

B T E®
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The value of b(x) is obtained in a subproblem.
b(x) = j‘-a'(x)eg(x)dx

Hopefully, the choice of a(x) made above will yield a simpler
integration problem for the determination of b(x) than the original
problem. Let us consider a simple example using this guessing

procedure.
f(x) = xe®
a(x)e™+ b(x) = [EG)ax
ax)e® + a' (xye* + b'(x) = xe*

xe®
a(x) ==—=x

(]

a'(x) =1

b(x) = ‘f—l-exdx = I-exdx

The subproblem for b(x) is certainly simpler than the original
problem. It will be instructive to consider how the method out-
lined above will handle such a problem. Below we shall usually

ignore the functional characterization of a(x) and b(x).

b = J'- eXdx
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-ex
a = ? = -1
a'l =0
bi = J' -0-e¥dx = ‘['0 dx = constant
b = ae’+b, =-e° + constant

1
Finally,

X X
J‘f (x)dx = xe” - e + constant

Let us now consider another example using this procedure.

; 2
f(x) = x cos xzeSln x

. 2
The outstanding factor in f(x) is S X

: 2
sin x
e

+b = jf(x)dx

sin x2 2 sin x2 sin x2
ae cos x° 2x + a'e +b' = x cos xZe

a=%
a' =0
b' = C, b = constant

. 2
J‘f(x) dx = %e SIM X 4 constant
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The first of the two problems above is usually solved by In-
tegration-by-parts. However, that method requires an integration
step (i.e., Iexdx) which we did not perform. Furthermore, the
integration by parts method is inapplicable in the second problem
above. The latter problem is handled by the Derivative-divides
method such as is used in SIN's first stage. So the analysis per-
formed by the Edge heuristic and in particular the analysis of
Edge that we have been presenting is different from either of these
two general methods of integration.

An analysis which is similar, but more complex than the one
made by Edge is employed by Method 7 of SIN's second stage. Let
us consider the manner in which the method proceeds in light of the
discussion above.

We recall that Method 7 deals with integrands of the form

P(x)

R(x)e where R is rational and P is a polynomial in x.

An example solved by this method is
2
£(x) = @x2+1)e”
Edge would in this case guess
%2
a(x)e” +b(x) = J‘f(x)dx

and

_ 2x2+1 _ 2x2+1
akx) = &Z)Y' 2x
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Method 7 is superior in this case in that it considers the

R(x) factor term by term. Thus, it would guess

2 2 2
X _2x
alx) =Gy < 2x TF

It turns out that this is the correct value for a(x) since

2
the integral is exactly xe* .

On a more complex problem such as

4
2x6 + 5%+ x3 + 4x2 + 1 ex2

(x2+1)2

Method 7 would proceed by first letting

6 5
a(x) = 2% - X

x2)" (x2+1)° 2412

The subproblem it generates is

4x4 + x3 + 5 -

K241 2

(x+l)2

Now it lets

4 2y3

4x
6D'62 41 il

a,(x) =
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Finally, the result is

3 2
x5+2x +Ex +x +3 x2

(x2+].)2

or
2x3 +2x + 1 x2
= e
2 (x"+1)

Thus, we see that although the heuristic of guessing the form
of the integral is correct in the two examples above, the particu-
lar mechanism for guessing the values of the undetermined coefficients
which is employed in Edge is not sufficiently powerful. We shall
now indicate two other difficulties with the analysis of Edge
described above.

Let us recall that Method 1 of SIN's second stage handles inte-
grands of the form Elem(ex). This method substitutes y=ex. In
the case of rational functions of exponentials this substitution yields
a rational function. Thus, for example,

£(x) = (e541)e’X

becomes

(y+l)y
after making the substitution. The rational function package will
expand this integrand and integrate the resulting quadratic in y.
Edge would guess the form of the integral without making a corres-

ponding expansion. This leads to an incorrect guess of the form
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since the two factors in f(x) are closely related. Had Edge ex-
panded the integrand and integrated the terms separately, it
would have easily obtained the integral of f(x).

Another difficulty with the manner in which Edge guesses the

form of an integral is shown in

1 -xX

f(x) =
e +1
Method 1 of SIN's second stage would yield a rational function
which would be factored and expanded in partial fractions by the
rational function package. Here again the two factors f(x) are
closely related and thus the guess of the form of the integral
made by Edge and the resulting guesses of the coefficients will
fail to yield the integral. A partial fraction expansion is re-
quired if the integrand is a rational function of related terms.
While keeping these weaknesses of Edge in mind, we shall con-
tinue to consider how the guessing heuristic operates on outstanding
factors of different forms.
Let us suppose that
£(x) = h(x) log(g(x))
and that the logarithmic factor is the outstanding factor in f(x).

A good guess of the form If(x)dx, if it exists, is

clog” (8(x)) + a(x)log(g(x)) + b(x) = [£(x)dx

where ¢ is a constant and a(x) does not involve log(g(x)).
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The log2 term is necessary (e.g., f(x)=1/x logx), but its
coefficient is only a constant. Otherwise the derivative of the
from above would contain a log2 term which would not cancel in
£f(x).

Differentiating we obtain

2c3g—§% log g(x) + agg—E% +a'log g(x) +b' = h(x)log g(x)

or

] 1
2(:5----£El +a')lo X) + as—iﬁl +b' =h(x) lo X
( 5 (0 Ylog g(x) 2 (x) (x) log g(x)
In the above we grouped the terms involving the outstanding
factor log g(x). We note two differences from the exponential case.
First there is the constant c¢ which did not arise before. Then

the coefficient of the log term is a' instead of a. We can solve

for a(x) by using the relationship

v o ' (x
a’' =h(x) - 2¢c EE%;%

a = Ih(x)dx - 2c¢ log g(x)

We now use the fact that a(x) is independent of log g(x) in
order to obtain a value for c. That is if Ih(x)dx has a term in-
volving dog g(x), the c is chosen so as to cancel that term.
Otherwise, we chose c=0. The value of b' is determined by the

relationship.
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b' = _aB 8
g (x)

Let us consider an example.

f(x) = (x + 1/x)log g(x)

c logzx +a logx+b =‘r (x+1/x)log x dx

@ c/x +a')log x +a/x +b"' = (x+ 1/x)log x
a =J'(x+1/x)dx-2c log x = 1/2 x2+1ogx-2c log x

2c =1, ¢ =1/2, a=1/2 x2

b' = -afx = -1/2 x

b =-1/4 x2

I(x + 1/x)1log x ex = l/Zlogzx + 1/2 leog x - 1/4 x2

It should be noted that J\(x + 1/x)dx can, of course, also be
obtained by a guess of the integral.
The guess for the logarithmic case generalizes when f(x) is

of the form
f(x) = h(x) logng(x), n>0
In this case we can guess
c logn+1g(x) + a logng(x) +b = J‘h (x)logng(x)dx

with a,b,c determined using the same method as above.
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Let us consider how we can capitalize on our experience of the

types of outstanding factors dealt with above. Suppose f(x) is of

the form
£(x) = —h%{)—" » where 1—_,_12(—) is the outstanding
1+g°(x) &
factor.

The argument now proceeds as follows: One could arrive at a
1

1+ g%(x)
stants:

factor by two routes which do not involve complex con-

2) log(l + g>(x))

b) arctan g(x).
In either case the coefficients must be constants since if they were
not the derivatives would contain terms more complex than found in
the integrand. Thus the guess is

c log(l + gz(x)) + d arctan g(x) = [f(x)dx
2cgg’ + dg! _ _h(x)

2 2
1 + g2 1+g l+¢g
(2 gc +d) g' = h(x) where c, d are constants.
Consider f(x) = -—5—2
1 +x

(2x2c +d)2x =x

If(x)dx = larctan x2
2 5

We should note that our guess fails in such cases as X
1 +x

in which division must be attempted first, or in the case of
1

1 + tan' x

. R R 2
which is equivalent to cos'x.
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In order to contrast the Edge heuristic approach with that used

in Stage 2 of SIN, let us consider functions of the form

f(x) = -—————%152—;75 , n a positive integer
(1 - g (x))
An educated guess for the form of the integral of f(x) is

+b = Jf(x)dx, unless n = +1

a
2 nf2 -1
@ - gfen™
If n = +1, then we shall also consider the possibility of a
¢ arcsin(g(x)) term, where ¢ is a constant.

An example we considered in Chapter 4 is

4
X
£x) = (4 . x2)5/2
4
a X
+b = J————— dx
1 - 232 A - 252
aD) (-20) o 4
+ 23270 = STz
a -2 a - a - =
4 3
a = _X_=X_
3x 3
a' = x2
-xz
b =
a- XZ 3/2
Now we shall generate a subproblem.
2
._a-L—— + b =Y_—'X__ dX
1 - 2T 230
' 2
23 (-1/2)(-2%) aj Fb! = -x
a - 1532 a- BT D230
2
a, =X = x
1 X
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1
by =
1 g _ 12
In this case we shall guess
a2(1 - xz)l/2 + ¢ arcsin x = J(l - x2)-1/2dx

a2(1/2)(-ZX)

+ c - 1
a-5"? a-AH a -
-xa, +c=1
c =1
a, =0

The final result is

4 3
p.< X 2, - -

J 2.572 ¥ =3 a-x7 302 x(1l - x2 1/2 + arcsin x
X

(r-x)

We should like to mention how Edge handles trigonometric functions.
For outstanding factors of the form sin(g(x)) it guesses cos(g(x)) and
it guesses cos(g(x)) for outstanding factors of the form sin(g(x)).
However, this manner of dealing with trigonometric functions is not
necessarily the best one. Edge should in some cases consider the com-
plex exponential form of the trigonometric functions. In this way
o
Jsinnx dx can be found easily for integral values of n after expanding
the complex exponential form of the integrand. By keeping the trigo-
nometric form Edge is forced to deal with methods such as "solution by
transposition" which occurs in Jsin x e“dx when one of the subproblems
is I-sin X exdx.

We have indicated above some examples in which Edge fails to
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make a good guess for the form of the integral or the values of the
undetermined coefficients in the form. Thus, it is necessary to
determine whether Edge is progressing toward a solution. If the
outstanding term involves an exponent and the absolute value of the
exponent is decreasing, the routine thinks that it is making progress.
The same is true if another factor in the integrand is exponentiated
and its exponent is decreasing while the outstanding factor remains
the same. The program is certainly not progressing if it obtains
a subproblem which is exactly the same as some previous subproblem,
though a solution by transposition is attempted if a subproblem is
a constant multiple other than one of some previous subproblem.
In the above we have indicated some cased in which the form has co-
efficients which were constrained to be constants. The current
version of Edge handles these cases by attempting a guess which ig-
nores a term (usually the one with a constant multiple). If that
guess fails to yield the integral using the progress information
outlined above, the program backs up and introduces a new term in
the form while eliminating another term. In this manner Edge per-
forms a depth first search.

Below we would like to indicate the theoretical results which
underlie the Edge heuristic.

Historically, the quest for results regarding the form of an
integral goes back to the early nineteenth century. Laplace con-

jectured that the integral of an algebraic function (y is algebraic
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in x if P(x, y) = 0 where P is a polynomial with constant coefficients)
need contain only those algebraic functions which are present in the
integrand. This conjecture was proved by Abel. Liouville examined the
form of the integral of an elementary function in a series of papers in
the 1830's. Before we present the statement of Liouville's main theorem,
we shall need some preliminary considerations. An important feature of
Liouville's theory of integration is a hierarchy of elementary functions.
In level 0 of this hierarchy are the algebraic functions., The monomial
of level 0 is x. A monomial of level i + 1 is a function represented by
e” or log y, where y is a function of level i and where the monomial has
no representation which is of lower level than i + 1. Level i + 1 also
contains all functions which are algebraic combinations of monomials of
level i + 1 with functions of lower levels provided again that those
functions have no representation of lower level. Thus, xex2 is of level
1 and exeex + log(l - ixz) is of level 2, We should note that this
hierarchy includes all trigonometric and arctrigomometric functions by
using their complex exponential and logarithmic forms in order to clas-
sify them.

Given a representation of an elementary function one can list
the monomials. and algebraic functions of these monomials which were
combined to form the function. Among the monomials and the algebraic

functions there will be some which are of the highest level. Choose

one such function and call it the principal function. Thus, the
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original function is a rational combination of the principal
functions with §unctions of equal or lower level. The principal
function in xe® is e and the principal function in

eX+1 is e¥. It is the concept of a principal function which we
e2x+3ex

were striving for when we defined the concept of an outstanding
factor in an integrand. We noted above some of the difficulties
that one encounters in making an educated guess for the form of the
integral when using only the notion of an outstanding factor. The
principal function concept surmounts these difficulties.

We are now in a position to ask whether there are any more
monomials and algebraic functions in the integral of a function
than in the function itself. The answer provided by Liouville's
general theorem is that except for logarithmic extensions there are

none. Liouville's theorem states that

f f(x)dx = vo(x) + < log vy

YE!
N

1

where the ci's are complex constants and the v, are rational
functions in the monomials and algebraic functions of these which

appear in f [54].

Liouville's theorem itself gives a strong rationale to the Edge

heuristic since it makes strong restrictions on the possible forms
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of the integral. Recently, and independently of our work on Edge,
Risch [ 53] has strengthened the Liouville theorem by showing that
the constants ci need only be algebraic over the field of constants
generated by the constants in f(x) with the ground field of the
rational numbers. Risch has also given a decision procedure for
those functions obtained without using any algebraic operations
other than rational operations. His method is similar to the
one employed in Edge in that it relies on knowing the possible form
of the integral. However, it is superior to Edge in the manner in
which it obtains the undetermined coefficients and in its use of
partial fraction decomposition with respect to the principal
function in the integrand. When algebraic operations are allowed
in the integral, Risch believes that the integration problem may
in general be recursively unsolvable. (See Appendix B where the
integration problem is shown to be unsolvable using a different
formulation than Risch's.) However, he is optimistic about integrands
which are algebraic functions of level O in our hierarchy.

We believe that methods which rely on guessing the form of
the integral such as Edge or ones based on Risch's algorithm will in
the near future provide us with very powerful integration programs.
However, the amount of machinery that they call into play and their
use of radical transformations such as the complex exponential form
of the trigonometric functions indicate that those methods are not
to be applied when more specific and presumably more efficient

methods are available.



Chapter 6

SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS

As a first approximation one might attempt to treat the pro-
blem of solving ordinary differential equations by using a similar
strategy to the one used in SIN for integration problems. Let us
recall that SIN used a three stage approach. First it attempted
to solve the problem using simple methods. Next the FORM routine
attempted to use local clues to determine which one of a specific
set of methods was applicable to the problem. Finally the Edge
routine employed a more general method of solution. In this
chapter we shall consider how such a strategy would fare in the
problem domain of first order, first degree ordinary differential
equations (i.e. P(x,y)y'+Q(x,y)=0). We shall indicate the approach
that was finally taken and describe the methods of solution which
were programmed,

There appears to be general agreement in the texts of ordin-
ary differential equations regarding the elementary forms of dif-
ferential equations. Linear, exact and separable equations seem
to constitute the universal choice as elementary forms. They are,
respectively, of the form f(x)y '+g(x)y+h(x)=0, P(x,y)dx+Q(x,y)dy=0,
where %g;%g, and A(x)B(y)dx+C(x)D(y)dy=0. These forms are relative-
ly easyytoxrecognize, and immediately reduce to integration problems.
We shall adopt the usual convention that a reduction of a differ-
ential equation to one or more integration problems constitutes a
solution of the equation even #f the expressions to be integrated

cannot be integrated in finite terms. Functions which can be ex-
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3)

4)
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pressed in terms of elementary functions and integrals of elemen-

tary function are called Liouville functions. Due to the above-

stated properties of linear, exact, and separable equations, the
set of methods which determine whether the equation matches one
of the forms constitute a reasonable analogue to SIN's first stage.

When we consider finding an analogue to the FORM routine of
SIN, we immediately arrive at difficulities. It is rare that one
can make a slight change to a differential equation and still be
able to use the same method of solution, let alone obtain a sim-
ilar solution. Let us consider how the method of solution changes
as we modify the five equations below. The methods of solution
used (i.e., linear, exact, homogeneous, Bernoulli, and linear co-
efficients) will be described later.

2xy' + y+x+1=0
linear

2xy ' +y (y+x+1)=0
Bernoulli

(2x+y)y"+y+x+1=0

linear coefficients

x(x+y)y ' +y (y+2x) =0
homogeneous

x(x42y)y ' +y(y+2x)+1=0
exact

It should be noted that nome of the methods mentioned above

is applicable to any of the other four problems. The situation is
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even more serious when we note that equation 6 is not integrable
in terms of Liouville functions, but equation 7, which varies
from equation 6 by only the addition of the constant 1, does
possess a Liouville solution (see Ritt {54] p. 73).

6) xzy'+x2(y2-1)-2=0

7) xzy'+x2(y2-1)-1=0
Since the equations above appear quite similar, any test based
on local clues only is going to fare quite badly. Thus the pos-
sibility of implementing an analogue to SIN's FORM routine does
not appear very promising. One could of course, use global clues
(such as the number of occurrences of x and y in the coefficient
of y') to conclude that certain methods are inapplicable (for ex-
ample, the linear method is inapplicable if there are any occur-
rences of y in the coefficient of y'). However, this approach is
not likely to give us a great increase in efficiency.

On the basis of the difficulty just noted, one would suppose
that a practical general method for solving first order, first
degree ordinary differential equations is not likely to exist.
Surprisingly, a general method does exist. It is known as the
multiplier method. It can be shown that if a Liouville solution
exists, then there also exists a Liouville function u(x,y), which
can be used to multiply both sides of the equation and obtain an
exact differential equation and thus an immediate solution. That

is, given P(x,y)dx+Q(x,y)dy=0, then uPdx+uQdy=0 satisfies 3 (uP)=_3(uQ).
dy x

There is, however, a slight catch in the multiplier method - it is

very hard to find an appropriate multiplier except in special
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cases. In fact, several texts caution their readers against trying
to consider finding multipliers to differential equations. The
Liouville theory (see Chapter 5) yields a form that an elementary
solution to a first order differential equation must satisfy. How-
ever it does not appear likely that ome could write a method like
Edge which would exploit this information, except in special cases,
Negative results such as those in Appendix B appear to dampen the
hope that one could find a general method for solving differential
equations.

We thus conclude that finding an analogue to SIN's strategy
in the domain of differential equations is quite difficult if not
impossible. We can, however, decrease our expectations and follow
the traditional technique given in texts on differential equationms.
That is we can determine if the problem is solvable by one of a
set of special methods by examining the applicability of the methods
one at a time, It is this approach which was implemented. We were
reduced to a search for a method because of our inability to either
localize the problem or to find a simple model for it. The cru-
cial role of constants in determining a solution frustrates even
the most primitive simplifying considerations. There is one con-
solation in the approach taken, and that is that once we find a
method which is applicable it is either immediately reducible to
integration problems or reduces to simple problems (i.e,, linear,
exact, or separable) in one or at most two steps. Furthermore,
these steps are known in advance in most cases,

Eight methods of solution for first order, first degree

differential equations were coded. These include most of the
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methods for solving first order equations taught in an introductory
course on ordinary differential equations. As stated above, the
methods are examined in turn in order to determine if they are
applicable. The simple methods are attempted first. These will
all call SIN whenever they apply in order to solve some integra-
tion problems. The five other methods will generate subproblems
which are usually either linear, exact or separable.

The conventions for stating the problem to the machine are
the ones used in the text books or the tables. When the dependent
variable is x, and the independent variable is y, the problem may
be stated in either form I or II:

P(x,y)y'H(x,y)

11 P(x,y)dxHQ(x,y)dy

It is assumed that the expression given is to be equated to

0. The result, if found, will be stated in the form

f(x,y)=Co ,
where Co is a constant of integration. As will be seen, no attempt
is currently made to solve for y or to perform other simplifications
such as eliminating logs in the resulting expression,

Top level control resides in a routine called SOLDIER (SOLution
of Differential Equation Routine)., SOLDIER will translate the pro-
blem statement into the form (either I or II) desired by the par-
ticular method., It will be noted that books tend to state a problem
applicable to a given method in only one of the two forms (e.g.,
linear equations are usually in form I, and exact in form II),

No attempt was made to use this fact as a clue to a solution,

We now shall proceed in describing the methods.
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Method 1 LINEAR

FORM E(x)y '+g(x) y+h(x)=0

Procedure

Let P(x)% , Q(X)%%

The solution is

Srax fp(x)dx
ye + [Q e dx = Co

Notes

The recognition of this form is done by a SCHATGHEN pattern.
Since equations of the form f(x)y'+g(x) [h(x)y+(x)]1=0 will not be
recognized as linear by SCHATCHEN using the pattern given above,
expansion is attempted as a heuristic aid to recognizing forms.
Expansion is, however, attempted only when a single occurrence of
y appears in the equation., Thus £(x)y'+g(x)yth(x) [y+k(x)]}=0 is not

expanded and is not recognized as a linear differential equation.

Examples
1) y'+y+x=0
becomes

yex+.£<exdx=Co

Thus solution is
yex+xex- e=Co

2) Xy "+xy+1=0

X
results in yex+j_€_3__ dx = Co
X

Method 2 SEPARABLE

FO A(x)B (y)dx+C (x)D(y)dy=0
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Procedure The solution is

ij) +/B() = Co

Notes

No attempt is made to recognize this form except through
SCHATCHEN's matching techniques., Thus no factorization of the
equations is attempted. That is the factorization must be explicit

although several factors may involve just y or just x.

Examples
1 x(y-1)dx - y (x>=1)dy=0
becomes

j x2 dx + ——L dy=Co
x -1 -1

Thus the solution is
2
1/2 log (x -1) - 1/2 log (y2-1)=Co

This answer is normally simplified on tables to become

2 2
x -1 =Co or (x -1)=Co(y2-1). As stated above no attempt is
y2-1
currently made to perform such simplifications.
2) exsiny y'+xcosy=0
becomes

si xd + xemX dx=Co

cosy

~log cosy - xe -e x =Co
The transformation of this problem to the dx, dy form is
performed by SOLDIER.

Method 3) Exact - Multipliers

Exact FORM P(x,y)dx + Q(x,y)dy=0
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The method is applicable whenever
X _N
dy X
The answer is

Seone flo- 2 [ arco

oy

Since this method is closely related in form requirements

(]

and solution method to certain special cases of the multiplier

method, these cases are considered here,

a) 1f & - _ . . . .
oy ox = h(x), i.e.,the quotient is just a function of

%, then the multiplier is ejh(x)dx

Procedure Let P (x,¥)= P(x,y)*multiplier, 6(x,y)= Q(x,y)*multiplier

P and Q are guaranteed to satisfy

2 _ N
dy ox

The solution is obtained using the procedure of equation I
above with P,Q replaced by P and Q, respectively.

b) If 3Q _ 3P , that is the quotient is a function of y only,

X 3y _
LI )
then
efk(}’)dy is a multiplier., Proceed as in step a).
P RN 2F _ 20
c) If £ - - and & =
) oy 9% dx Y
1
then the multiplier is 535 . Proceed as in step a)
PR
Notes

A}
SCHATCHEN is used to perform the matching required in testing

to determine if jP equals Q. Clearly a matching program such as
[e23 oy
Martin's [37] would be preferable in this case since no pattern

matching is necessary, but only a match for equivalence.
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The division steps employ only SCHVUOS's limited simpli-
fication methods for quotients. Thus no factorization is
attempted. At present there exists no simplification program
which can simplify quotients well, For example

e2%42e%41
*+1
is not simplified to e +1 by any reported simplification program,

Another approach to determinipg the applicability of the first
three multiplier cases is to differentiate the quotient with respect
to y in the first case and with respect to x in the second case.
This reduces the recognition problem to a match for equivalence to
0. 1In this manner we avoid placing constraints on the simplifica-
tion program for determining the applicability of the method. How-
ever this technique does not yield the desired value of the quotients.

There exist many other special cases for the multiplier., In
fact the origin of Lie Groups was motivated by considerations
regarding the families of differential equations which are solved
by particular multipliers,

Examples
D) (bxoy-12x7y 25x 5 3x) y 4652y 2= Bxy "+ 10y 3y=0
Solution is
2x3y2-4x2y3+5x2y+3xy=00
2) (2xy+5x+1)y'+y2=0

Solution is

- 5 -
xyze 1y 4'Je 5/ycly = Co

Method 4 Bernoulli
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JORM f(x)y'+g(x)y + h(x)yn=0, vwhere n is a constant, n # 1

Procedure

Substitute u(x)=y -n in order to obtain the linear equa-
tion

f(x) u'+(l-n) g(x)uvt (l-n)h(x)=0
Noties

The form of the equation is tested by SCHATCHEN. As in the
linear case expansion will be attempted to aid the pattern match,
but only when there are exactly two occurrences of y in the equation.
Examples

1) xz(x-l)yI = y2 - x(x-2)y=0

transformed into the linear equation

y' '+ (x=2) y+ 1 =0
x (x-1) % (x-1)

2) 3xy' - 3xy41ogex -y =0

is transformed into

y'+y+3logx=0
x e
Method 5 Homogeneous
FORM P (x,y)dx + Q(x,y)dy = 0

where P and Q are homogeneous functions in x and y of some

degree, n, say.

Procedure The substitution u(x) = i is made. After factoring
n :
x from the equation, one obtains an equation with the variables

separable (Method 2),
Notes

This is a common form for a differential equation, It is



a subcase of method 8, but is given special treatment here because
of the frequency and ease of recognition of this form.

The factorization of xn from the equation must, in general,
be performed in order to have the result recognized as separable.
The recognition of homogeneity and factorization are performed by
SCHATCHEN and SCHVUOS and thus are not unusually powerful. For

example x2+xz y'+y=0 is not recognized as homogeneous.,
X

Examples
1) 3x2y' - 7y2 - 3xy-x2=0

solution is

log x

e - arctanV’7 -;Z; =Co

3

7

2) 2x(y3+5x2) y'+y3_x2y =0
solution 1s

1ogex + 10 loge y-2 loge(3+2; ) = Co

9 b4 9
X

Method 6 Almost Linear

FORM £(x)g(y) y' + h(x,y) =0

where

h(x,y) = k(x)1(y)+m(x)
and

' (y) = 8(y)
Procedure

Substitute u(x) = 1(y) resulting in the linear equation
f(x)u' + k(x) wim(x)=0
Notes

This is a method which is rarely indicated in the texts,



Examples
1) xyy'+ 2xy2+1-o
substitution is u(x):y2
yielding
1

=xu' + 2xuwti=0
2 1

2) xzcosy y' + siny + eX=0
substitution u = siny
yields 1

2

xu' +u+ter =0

Method 7 Linear coefficients.

' axtbytc _
FORM y'+7( SV N ) = 0
Procedure
Substitute
o ox - b'c = be'!

a'b - ab'

where a,b,c,a’',b',c'

are consta

nts and

ab' - a'b £ 0

o1 _ ac' -a'c
Yk‘y a'b - ab'

2

and obtain a homogeneous problem (method 5).

Notes

Recognition is based on matching

A(ax+by+c)n (a'xtb'ytc') -n rep

in F(x,y), where a,b,c,a',b',c' are assumed to remain fixed in

f(x,y).

Examples

1) (4y+11x~11)y'-25y- 8x+62=0

answer is

1 1 y=
1oge(x -3 ) - 2 1oge(3+2 3

+ 3/2 loge

22

*79

-22
-4+y -9—-

1
3

eatedly

= Co
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2)  (px-1) y'-y+2x+3=0

answer is

wol
«
]
oln

loge(x-l-—:z; ) + /2—2 arctan —

2
y-
+ 1/2 loge (24-( 3): Co
x +

Method 8 Substitution for xny

3
wirn

alu

wln

FORM y'+L(x,y)=0

where L(x,y)= L B (xy),

Here H is a function of a single argument,

and n is a constant to be determined.

Procedure Substitute u(x)= xny resulting in the sepaxable equation

du _ dx
u(n-H(uw)) =~ x

The method employed to recognize this form uses the implicit
function theorem to yield an equation in n.
Consider
X
G(x,y) = ; L(x,y)
We wish to determine if G(x,y) = H(xny) = H(u(x,y)).
The implicit function theorem states that this relation will hold

if and only if

3 Qqu G pu_0O
¥x 3y X

Note that this equation represents the Jacobian in the two
. . n . .
variable case, Since u(x,y)=x y, we obtain the following

relationships:
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26 < - nggxn-1y=0

X dy
or
. ¢
n-xx
26
Y

If n is known, we can determine whether the above relationships
holds. However we can also use this relationship to generate a
value for n, If the right hand side of the last equation is a
constant than a substitution with n as that value is possible. 1If

it is not a constant, the method is inapplicable.

Notes

This method is a generalization of the homogeneous case
(Method 5). The method is rarely described although it accounts
for many of the substitutions in the first 367 equatioms in
Kamke [3}. In some of these cases Kamke prefers to give other
methods of solution. For example, in (I 293)x(y2-3x)y'+2y3-5xy=0,

Kamke suggests dividing by x27 y16

- 1/2
u(x,y) = x ye

instead of substituting

In this method we resorted to a special purpose matching
rule instead of using SCHATCHEN. The use of the implicit function
theorem was suggested by Engelman. In this case the theorem
fits the situation beautifully. However one will probably have
to make some assumptions to recognize forms such as
f(xcy) (bxy'-a) = xayb (xy' + cy)

In oxder to perform the integration, y in G(x,y) is replaced

u
by —;+ It is then hoped that SCHVUOS can rid the resulting

X
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expression of all occurrences of x.
Examples (see appendix E for further discussion of these examples)
1 (x-xzy) y'-y=0
becomes
du -

uflt L
l-u

2) xy'+y log x ~ y logy -y = 0

1 dx=0
X

becomes

du = dx
u (-1 - (1ogeu-1)) x

In Appendix E we describe an experiment in which SOLDIER was
asked to solve 76 differential equations selected from a college
text. SOLDIER was able to completely solve 67 of these problems
with an average time on the order of 5 records. An analysis of
the problems it failed to solve and steps taken to improve SOLDIER's
performance on some of these problems is also given in Appendix E,

We would also like to mention the existence of a program
which solves linear differential equations of any order with con-
stant coefficients (see Engelman [36]). It was written by Ernst
for the MATHLAB system. It utilizes the Laplace Transform method
for solving such equations, The program makes use of the rational
function package of the MATHLAB System.

Some methods which were not described above should be pointed
out, There are many special cases of integrating factors which
can be considered. 1In particular, one method guesses the form

: ; a ;
of the integrating factor to be x yb , substitutes that fomrm
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into the equation and solves the linear equations in the parameters

that result after setting up the conditions for exactness (i.e.,

g; M) = g; (uN)). If the system of equations can be satisfied,
then Method 3 (Exact) is applied. If the differential equation con-
tains a subexpression which isirrational in both a and y (e.g.,
sin (x2 + y2)), then it might be useful to substitute for some part
of this subexpression (e.g., u = x2+y2). One can also attempt to
switch the independent and dependent variables. Such a change would
be useful in

(xy + xz) y'+e =0
since it leads to the Bernoulli differential equation

e x' + Xy + x2 =0

There is a large body of knowledge regarding Ricatti and &belian
equations (i.e., y'=f(x)y2 + g(x)y+ h(x), and Y'=f(x)yi+g(x)yz+
h(x)yt+k(y)). These methods, however, frequently rely on knowing
one or more particular solutions to the differential equation.
Information regarding methods applicable to Ricatti and Abelian
equations and to more general differential equations can be found
in Kamke, Kamke also contains a table of about 1250 equations
whose solution is frequently given in some detail.

As is pointed out in Appendix A, a great deal of the informa-
tion about differential equations could be stored in tables and
searched by computers., If we presume that a continual effort
will be made to generate a library of programs and tables for
differential equations, then programs will become a formidable

tools for solving these problems.



CHAPTER 7

CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK

The Performance of SIN

We believe that SIN is capable of solving integration problems as
difficult as ones found in the largest tables. The principal weakness
of SIN in relation to these tables is in cases of integrands which con-
tain variable exponents and which usually result in solutions which are
iterated integrals. Edge can solve some of these integrals (e.g.,
Ixncos x dx) since it contains special checks for variable exponents.
However none of SIN's methods in stage 2 are able to obtain such iterated
integrals. The experiment reported in Appendix D also showed SIN's
weakness in handling certain algebraic integrands. On the other hand
the power of MATHLAB's rational function package means that SIN is able
to integrate many problems not present in the tables. Decision proce-
dures for cases such as the Chebyschev integrals give SIN a capability
which is not present in most tables.

SIN appears to us to be faster and more powerful than SAINT. The
added power of SIN is principally due to the additional methods that SIN
possesses. The additional speed is gained by the change in the organi-
zation of SAINT and by the use of tighter progress requirements. In
Appendix C we pointed out that though SIN can solve problems solved by
SAINT two orders and frequently three orders of magnitude faster than
SAINT, that this figure is deceptive. It is probable that under optimal
conditions for SAINT and SIN these figures will reduce dramatically so

that the gain in speed will average to about a factor of three. 1In
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cases where the Derivative-divides routine is successful in solving a
problem (about half the time), the ratio should be much higher. The
average will be lowered by the increased effort spent on algebraic mani-
pulation on the other problems. SIN's simplifier SCHVUOS, is probably
a good deal slower (but more powerful) than SAINT's hand-coded simpli-
fier, This factor affects the cost of most of the other processes such

as differentiation and matching.

On _the Organization of SIN

Instead of describing the organization of SIN at this point, we
would like to indicate certain aspects of this organization which arise
out of the discussion in Chapter 4. The reader is referred back to
Chapter 2 for an outline of SIN's organization.

One of the difficulties that AI programs will increasingly face
involves communication (see Newell [ 46 ]1). If a subroutine performs
an analysis of a problem then its analysis must be communicated to its
parent routine in such a manner that the parent routine can easily
understand the information. If two subroutines are working in parallel,
one may need to know what the other one is doing in order to perform
efficiently. An example of the usefulness of the latter type of commu-
nication was pointed out in Chapter 4 in the section in which we described
SAINT's solution of YI_:—§2;577 dx. Here it was noted that in one of
the subproblems SAINT should not have performed the substitution
y = tan%x since another trigonometric substitution on the problem had
already been made which was undoubtedly superior. In this case SAINT

did not seek out the necessary information. A similar difficulty arose
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when SAINT's methods could have performed transformations which were

the inverse of previous transformations. This occurs in the method

sin x
cos X

which substitutes for tanx, since this method may later substi-

tan x
sec x

tute for sin x. In this case SAINT did communicate the existence
of the previous transformation. While we do not wish to minimize the
need for explicit communication in complex problem solving programs,

we do want to point out the usefulness of highly implicit communication
in certain situations. If a parent routine knows emough about the oper-
ation of its subroutines, then it is not necessary to communicate a

great deal of information, the parent routine can determine what has
probably occurred with just a few key works of exchange. We think that
such implicit communication occurs when FORM finds excuses for the
failure of its methods to solve certain problems. In fact in these cases
the methods are not aware of the situation as much as FORM is. SIN will
not attempt the tan%x transformation if another trigonometric transfor-
mation is possible since this choice was built into the program. Similar
remarks hold for the trigonometric identity transformation. What these
examples appear to point out is that when one is able to centralize con-
trol in a routine which has sufficient understanding of a task, then the
communication requirements in the program are markedly reduced.

We noted in the discussion in Chapters 2 and 4 that SIN employs
tighter progress constraints than does SAINT. This implies that there
may be some problems which SIN will not attempt to handle though it has
sufficient machinery for solving them. (On the other hand, we believe

that SAINT will attempt to solve JSi: X

dx until it runs out of time or

space.) We are not particularly worried by, such occurrences. It appears
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to us that it is more important at present that a program have a good

understanding of what it is able to do rather than that it have a medi-
ocre understanding and be able to solve more problems. If one desired
to increase the power of SIN we would wish that he spend the effort on
improving the analysis done by FORM rather than that he spend it on in-
creasing the search in FORM. We understand, of course, that it is not
always possible to take this approach. The domain of nonlinear differ-

ential equations is a good example of such a situation,

On_the Organization of SOLDIER

We noted in the Introduction that we did not expect to find a con-
cept as powerful as the Edge heuristic in the domain of first-order,
first-degree ordinary differential equations. Thus we were not surprised
to fail to find a practical method similar to Edge. 1In fact the most
notable aspect of SIN's organization that we carried over was the reli-
ance on tight progress constraints. It seems to us that human analysis
of this problem domain also employs tight progress constraints in the
solution methods.

Let us recall from Chapter 6 that SOLDIER employs eight solution
methods. These methods are attempted one at a time. If a method decides
that it is able to make a simplifying transformation (i.e., a direct re-
duction to integration or a reduction to a known and simpler differential
equation form), then it will attempt it, and the result of the transfor-
mation will be the value of SOLDIER. Otherwise the next method will be
considered.

In Appendix E we tested SOLDIER on some problems given in a differ-
ential equations text. SOLDIER was able to solve 67 out of 76 of these

problems. We do not believe that one should conclude from this perfor-
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mance that SOLDIER is far removed from being as powerful a differential
equation solver as expert humans are. We think that if the improvements
and extensions to SOLDIER that we suggest in Chapter 6 and below are made
then SOLDIER will be a powerful program indeed. We were disappointed
when we recognized this to be the case. The reason for it is that mathe-
maticians have not made great advances in this problem domain over the

past three hundred years.

On the Applications of LISP

Unfortunately, and mainly wrongly, LISP has acquired the reputation
of being a language with very low execution speed. One factor leading
to this reputation is the slow speed of arithmetic in most LISP imple-
mentations. (The Hawkinson-Yates system for the 7090 is an exception.)
Yet when one declares variables to be fixed or floating it is possible
for LISP to execute arithmetic statements as well as any other processor.
It is the convenience of mixed data types (during execution) which forces
the slow, interpretive execution speed of arithmetic operations in LISP.
Another factor leading to this reputation is that old and famous programs
such as SAINT ran interpretively. Compilation usually results in approx-
imately a twenty fold gain in speed. However the largest factor leading
to this reputation is due to the attitude of the LISP programmers. LISP
programs were usually developed in research projects where speed was only
a minor consideration. (It is safe to say that many impressive programs
such as Bobrow's STUDENT [ 4 ], Evans' ANALOGY and Slagle's SAINT could
not have been written as doctoral dissertations except in LISP.) The

trend in the recent past has been toward using LISP as a practical language
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for projects with real time constraints on response. For example the
MATHLAB system of Engelman and the robot projects at MIT and STANFORD
have such real time constraints. It is thus important to recognize
that LISP programs can be written which are relatively fast provided
that one takes speed into consideration in designing the programs. It
is our hope that SIN can serve as a model for this lesson and remove
some of the stigma attached to LISP. It is far too easy to write LISP
programs which execute slowly if one becomes beguiled by the ease of
using LISP's recursive mechanisms. SAINT's pattern matching program
Elinst was far too recursive to run efficiently. However it was a much
smaller program thereby and this factor wis crucial in the implementation
of SAINT. The rational function package dsed in SIN runs slowly when
parameters are introduced into a rational function. While such a de-
crease in speed is inherent in the task, it is also due to the extensive
utilization of the recursive nature of the LISP list structure in the
representation of rational functions. A special purpose representation
of rational functions such as used in Brown's ALPAK [ 6] or Collins'
PM system [ 121 should increase the speed of the rational function pack-
age by one to two orders of magnitude.
On the Teaching of Integral Calculus

We would like to see the introduction into first year calculus
courses of the concepts underlying the Edge heuristic and the Liouville
Theory. Besides giving the student a very powerful integration method,
such a study might acquaint him with practical applications of notions
derived from modern logic such as Godel numbering or decidable problem

2
: x
domains. Such a course might also indicate why Je dx is not an ele-
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mentary function rather than leave such a statement without proof. The
relationship of the Edge heuristic and the problem solving technique of
guessing could reasonably be emphasized in courses aimed at a more prac-

tical foundationm.

Improvements and Extensions to SIN and SOLDIER

All the programs discussed in this thesis would profit by being
rewritten for the LISP system of the MAC PDP-6. The PDP-6 LISP system
executes about three times as fast as the 7094 LISP system on compiled
function and even faster on interpreted ones, This is due to the im-
proved instruction set of the PDP-6 and to improved system's programming
rather than an increase in the machine speed. The MAC PDP-6 also has
256 K of memory which would mean that all the routines could certainly
be loaded at one time. This would allow greater interchange between
SIN and SOLDIER and the rational function package. It would allow
SIN and SOLDIER to be used as subroutines to the MATHLAB system of Engel-
man. The excellent scope output routines of Martin [ 37 ] are available
on the PDP-6 as are teletype output routines written by Millen for the
MATHLAB System [ 40], Routines which accept FORTRAN-like (i.e., infix)
notation for algebraic expressions are available and should be used in-
stead of the LISP (i.e., prefix) notation which is now used in inputs to
SIN and SOLDIER. Anderson of Harvard University is currently working on
a program which permits hand written input of algebraic expressions from
a Rand Tablet [ 1 ]. Such a program could be used in the future as well.

SCHATCHEN should be rewritten so that new modes can be defined by
the user without reprogramming relevant sections of SCHATCHEN. The
simplifier SCHVUOS served us well while we required a small simplifier.

However a new, more powerful and efficient simplifier written along the
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lines indicated in Chapter 3 should be used. As is clear from Chapter 6
and Appendix E this simplifier should have factoring and division capabi-
lities not currently available in general purpose simplifiers. The task
of matching expressions for identity should be performed by a program such
as Martin's matching program rather than by SCHATCHEN [ 37].

SIN's second stage would profit from a better handling of algebraic
integrands. This is clear from Appendix D. Another lesson learned in
that appendix is the usefulness of a capability whereby the user can com-
municate with FORM and some of the methods used in SIN in order to intro-
duce new functions such as the error function. A table of integrals invol-
ving the error function which contains 145 entries was computed by Maurer
in 1958 [ 38 ]. Such a table should be computable by SIN as well.

It is clear that much more work needs to be dome on the Edge heuris-
tic both as a method for solving integration problems and as a possible
tool for teaching freshman calculus students. We understand that Risch
is currently programming his method of integration using the ratiomal
function package. Such a program could be included in SIN's third stage
as well.

In discussing SOLDIER in Chapter 6 we noted that a great number of
methods are known which have not yet been programmed. An interesting
project is involved in finding particular solutions to differential equa-
tions. Such solutions can be used to find general solutions to Ricatti
differential equations. In Appendix E we noted that the output of SOLDIER
rarely conforms with the form of the text books' output. Another project
would be to devise a routine which translates SOLDIER's output to conform

with the implicit conventions used in text books.
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We believe that if work is continued on the implementation of new
methods for SOLDIER, then this program will become a truly formidable
tool in solving ordinary differential equations. In fact a program such
as SOLDIER can become an active competitor with text books or journal
articles as a medium for the permanent storage of knowledge about methods

of solution.

On a Mathematical Laboratory

In a forthcoming monograph by Martin and Moses the concept of a math-
ematical laboratory will be introduced. In a mathematical laboratory a
user will be able to solve symbolic problems in mathematics. A mathema-
tical laboratory is envisioned to consist of two major components, a
general purpose system and a set of specialized programs. The general
purpose system will deal with input and output and will provide a
command-oriented language with many capabilities. The specialized
programs will deal with tasks which are sufficiently complex to require
a separate organization. SIN and SOLDIER are prototypes of such special-
ized programs. Specialized programs will in the future employ a set of
rather general routines such as a pattern directed language similar to
SCHATCHEN or a simplifier such as SCHVUOS. These frequently used routines
will form a data base from which new specialized programs will be more
easily written in the future. Work is proceeding in this country on all
aspects of such a mathematical laboratory, but we shall concentrate our
discussion on the specialized programs. In a recent thesis [ 28 ], Itur-
riaga has written a program in FORMULA ALGOL for finding limits of expres-
sions and for determining whether one expression is greater in value than

another over some domain. This work represents an extension of work on
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limits performed by Fenichel [ 19 ]. No work has been done to our know-
ledge, on finding sums of infinite series. Jolley provides a table of
such series [ 29 ]. Nor has any significant work been done on definite
integration. Bierens de Haan's monumental work on this area can be
consulted [ 24 ]. 1In both of these cases one might at first utilize a
table look up as described in Appendix A.

Leaving aside the area of analysis we note that Maurer [ 39 ] and
McIntosh [ 57 ] reported on systems which deal with finite groups. Some
routines have also been written for solving specialized tasks in topology.
In fact a new theorem in topology was proved as a result of experiments
performed by such programs [ 50 ]. Likewise specialized programs in com-
binatorics have been writtem [ 16 ]. Such programs should be expanded
upon, systematized, and made available as part of a larger symbolic mani-
pulation system in pure mathematics.

Along with the need for practical work in algebraic manipulation
there is a need for parallel work on theoretical results. Collins' study
of the Greatest Common Divisor algorithm led to a major imporvement of
the Euclidean GCD method [ 13 ]. Similar studies are needed of methods
for factoring polynomials, especially over extensions of the ring of in-
tegers. We need a study of the degree of growth of the results of certain
algebraic transformations. We should have examples of very bad problems.
In [ 42 ] we present such a problem in the domain of polynomial equations.
Recursively unsolvable results such as those in Appendix B point out cer-
tain difficulties in algebraic manipulation. Proofs of the decidability
of certain subcases such as in Richardson [ 52], Caviness [ 9 ], Brown [7],

Risch [ 53], and Tobey [ 63] are useful also and these may in turn lead to
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programs which implement the decision procedures used.

On_Artificial Intelligence

In the area of Artificial Intelligence we would applaud all projects
which required and utilized a large base of specialized knowledge. Robot
projects are examples of such projects. On a less ambitious level we
would like to note that it might be useful to develop a program which
solves word problems in the calculus. Such a program would counter, (if
only temporarily'!) the objections of those who claim that the semantic
approach of Bobrow cannot be extended. One approach toward this problem
would be to construct several methods of solution (e.g., "rate" problems
of several types). Then the program would use local clues (probably key
word analysis as in Weizenbaum's Eliza [ 66 ] will do) to determine which
solution method is appropriate. Then the method chosen should guide the
program in extracting the information from the problem statement necessary
for a complete solution.

It would also be imteresting to have some work leading toward a
program which solves multiple choice questions on the level of the MAA
high school prize examinations. Let us consider a typical problem.

"At what time between 4 and 5 PM are the hands of the clock exactly
opposite each other?"

If the program knows that the answer involves the denominator of 11
and one such answer is presented, then it should guess that answer. If
only one answer involves a denominator of 11 and is moreover between 4:50
and 4:55 PM, the program should guess it. These guesses would be made at

stage 1 of the program.
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If stage 1 is not effective but if the program knows the method of
solution (a linear equation), then it should solve the equation. This
would be done at stage 2 of the program.

If neither of these stages is appropriate, then the program must
obtain an analysis of this situation. Such an analysis is presently
beyond the capabilities of AI programs, but not grossly beyond these
capabilities.

Presumably one of the methods available to this program is a rate
problem solver. The statement of the problem does not immediately imply
a rate problem but the knowledge that the minute hand and the hour hand
travel at different rates could lend weight to such an hypothesis. Let
x be the time in minutes past &4 o'clock at which the event occurs. Then
the minute hand travelled x minutes between 4 o'clock and the occurrence
of the event. The hour hand travelled I% minutes during that time. How-
ever the hour hand started with a 20 minute advantage and ended thirty

minutes (one half a revolution) behind. Thus

= X
x =20 + 30 + 12
_ 600 _ 6 .
x =77 SéIT minutes

The solution above required the use of information about clocks
and the relationship between clocks and circles. It also required a
sophisticated word problem solver that was able to utilize this infor-
mation to set up the linear equation. Another method of solving this
problem relies somewhat more heavily on making inferences about diagrams.
In either case it appears that a good deal of machinery is required for
the analysis of this problem. Besides the word problem solver a program
which makes inferences based on diagrams of plane figures is also useful.

While such programs may not be sufficient in order to perform the analy-
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sis of this problem, they certainly go a long way in that direction.



APPENDIX A

ITALU - AN INTEGRAL TABLE LOOK - UP

This appendix describes some experiments which were performed
with an integral table look-up. Although a table look-up is
probably inferior in the long run to an integration program with
regard to power or speed, the techniques employed in this routine
could be found useful in other areas of symbolic mathematics such
as exact definite integration, summation of series, or differential
equations.

There are several ways in which one could search a table of
integrals. There is the brute force approach. In this case each
entry in the table is matched for equivalence with the expression
to be integrated. This scheme is used in SIN's Derivative-divides
routine. Such a scheme takes a long time when the table is large,
of course. A better approach is to sort the entries in the table
by the factors which appear in them (e.g., all entries with sin x
as a factor are in one subtable). Thus when presented with
sinxex,one checks all subtables for the one which contains sinx.
In that subtable one checks ‘for another part of the table which
contains sinxe™ and there one presumably finds the entry desired.
This approach would require that there be n! entries for an
integrand with n factors (unless the expressions are canonically
ordered). A table look-up along these lines was discussed in

Klerer and May [32]_

153
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Besides being relatively slow these approaches are not sensitive
to the fact that an integral table usually presents generalized forms
of integrands (e.g., \Lx2+bx+c) and not just particular integrands.
(e.g., yx +1). This is due to the presence of undetermined constants
in the integrand. These constants are used as coefficients as in
I sin(ax+b)dx or exponents as in Ixndx or [xnsinxdx. The example
I x"sinxdx points out a further feature of the integral table, that
is, the presence of iterated integrals in the table. A good integral
table look-up should be required to make use of all of these features
of the tables.

An integral table look-up, called ITALU, was programmed to
account for the features of the table just mentioned. It had the
additional property of being relatively fast by making use of the
technique of hash-coding.

By carefully hash-coding the expression to be integrated one
can expect to obtain a number which would correspond to relatively
few expressions in the table. Furthermore the hash-code can be
designed to account for the distinctive features of the table. The
hash-coding scheme which was implemented ignored constants in sums
and products. Thus sin (ax+b) coded the same as sin(2x), sin(x+2),
sinx, and sin(3 %t x+5y+z). The hash-code, moreover, was a floating-
point number and the code of a sum was the sum of the codes of the
terms in the sum, with a similar rule for products. Thus the code
maintained the algebraic identities for sums and products. Hence

X X . X . . .
sinxe” coded like e~ sinx. In this manner we avoid the need for
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a canonical form of an expression. One further feature of this
coding scheme was that terms in a sum which had codes identical
with those of previous terms were ignored. Thus sin (x+yx)
coded like sinx and x2+2xy+3x coded like (2y+3) x + x2 and
ax2+bx+c.

The coding scheme was obtained recursively. The variable of
integration had a fixed code of 0.95532. Any trigonometric,
arctrigonometric or logarithmic function had associated with it
a fixed floating~point constant which generally was exponentiated
by the code of its argument in order to obtain the code of the
expression. Sums and products were treated as described above.
Exponentiation was a relatively complex operator for the coding
scheme. This is due to the frequent occurrence of exponents

-%, %, 2 in the tables. When these exponents occurred the

-2, -1,
code for the base was raised to the exponent and the result was the
code of the expression. Any other constant exponent was coded as
1.43762 and the value of the subsequent exponentiation became the
code. Thus x" is coded like x3 or x* or x-h's. Fixed bases were
all coded alike. Thus e~ coded like 2% or yx.

An advantage of this coding scheme was that SCHATCHEN patterns
could be coded easily as if they were expressions. This was due to
the fact that the variables in the pattern were considered constants
with respect to the variable of integration (assumed to be x

throughout the table), and hence were ignored in sums and products

and had a fixed value in exponents. Entries in the tables had
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integrands which were SCHATCHEN patterns (e.g., sin (A/COEFFPT,
NONZERO-AND- FREEOFX X+B/COEFFP, FREEOFX). Thus the full matching
capability of SCHATCHEN could be employed in order to obtain the
values of the constants in the integral table entry.

ITALU had an internal table of code numbers for the expressions
in the table. This internal table was searched using a binary
search (i.e., the codes were linearly ordered by their numerical
values). Corresponding to each code in this table was the location
on the disk where the integral table entry resided. Once a code was
assigned to an expression, it was determined if an entry in the
table had an identical code, and the file on the disk containing
that entry (if any) was read. In order to conserve disk space
several entries were on the same file, but these entries were
associated with their codes so that the search of the file was
linear but rapid. For each expression having the desired code
(several are possible), SCHATCHEN was used to determine if there
was a match between the pattern which represented the integrand in
the table and the original expression. If no match was found, the
next expression was examined, and so on until all the expressions
with the appropriate code were examined. If a match was obtained,
the integral was evaluated after making appropriate substitution for
the result of the match. Thus the integral contained the values
of the constants in the integrand. The device of evaluating the

the integral allowed the integral to be a LISP function. In this
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manner iterated integrals could be obtained. Hence the ITALU
program satisfied the requirements of an integral table look-up
that we considered above.

The implementation of ITALU was carried through up to the
point where all of the steps above had been implemented and the
program was tested on several problems. The largest number of
entries in the table was only ten at any given time, and thus
the properties of the coding could not be fully assessed (e.g.,
one could not tell how frequently unrelated entries yielded the
same code number). The execution time of a call to ITALU was
generally about 1 second. Most of this time was spent accessing
and reading the disk. A set of routines were written for
facilitating the addition of new entries to the table. However
the description of each entry as a SCHATCHEN pattern with a
corresponding integral was a fairly tedious job. A compact
representation of the expressions in the table was obviously
desirable, but was not implemented.

Modifications to the hash code of ITALU were considered.
Under the current coding scheme Jx2+1 codes like x. One
possibility is to ignore the value of constants in sums and
products, but recognize their existence. Such a scheme would be
useful in handling algebraic expressions.

We also considered using a hash-coding scheme, such as
B

Martin's Martin's hash codes are elements of finite

fields rather than floating point numbers. Finite field
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arithmetic is preferable when there is a risk of a floating-point
overflow or a round-off error during the computation of the hash
code. We felt that these difficulties could be ignored or easily
overcome in the coding of expressions to be integrated. In order
to account for round-off errors, we thus allowed for a variance
of 1 )(10-6 between the code of an expression and one in the table.
In the domain of symbolic integration, a table look-up is
probably not the best solution. Programs can now compete
effectively in many cases with the tables with regard to speed
and completeness. The situation in the future can only improve
the relative position of the integration programs. Tables such

b1]

as Petit Bois' with its 2500 entries contain many errors,

some of which are serious (e.g., Ilog cosxdx = z;%;" , [51]1 p. 150).

However table look-up devices appear to have current
usefulness in other areas of symbolic mathematics. Very little
work is being done at present on summation of series and exact

29

definite integration. Tables in these areas exist - Jolley's
[2]

in summation and Bierens de Haan's monumental work on definite
integration. For differential equations we reported solutions
methods.in Chapter 6. However much still remains to be done, and
tables could be used as long as programs have not caught up with

BO]. Tables could be

the full power of. tables such as Kamke's
extended ta include a great deal of information besides exact

solutions. For example, tables could be employed to obtain good

numerical techniques for solution or references to papers on
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particular cases. We should point out that some entries in a
table would be hard to look-up in any reasonable way. For
example, the entry xy'=yH(xny) properly deserves a special
purpose program as was done in Chapter 6. Information about
chemical compounds is currently being stored in tables which
are searched by specialized techniques. Similar methods could
be used in mathematics. The exact methods of ITALU are clearly
not extendable to the other problem domains - special purpose
programs should be used in each case. However the hash-coding
technique coupled with the use of a matching program for

increased power seem relevant to each of the areas considered.
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RECURSIVELY UNSOLVABLE RESULTS IN INTEGRATION

A recent theorem by Richardson [52] showed that the matching
problem for a class of functions we shall call R-elementary is
recursively unsolvable. This result is easily applied to show that
the question of determining whether integrals of R-elementary functions
possess R-elementary solutions (or elementary solutions in the sense
of Liouville (Chapter 5)) is likewise recursively unsolvable.
Richardson's result, announced January 1966, is probably the first
theorem about recursively unsolvable problems in analysis and has
aroused great interest in the field of algebraic manipulation. Refer-
ences to it are made in Brown [ 7], Caviness [ 9], Fenichel [19],
Moses [42], and Tobey [63].

There is, however, a feeling among some (e.g., Risch [53]) that
Richardson's unsolvability result may be due to the fact that the
integration problem he showed unsolvable is not well-posed. In this
appendix we shall sketch Richardson's unsolvability proof and indicate
points in the proof where some of this contention has arisen. We
shall then present results of a similar nature to Richardson's which
avoid these difficulties in the proof by extending the domain of the
problem to nonlinear differential equations. These results are proved
using similar techniques to Richardson's and were originally proved,

interestingly enough, over a year before Richardson announced his proof.
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In order to proceed we shall require the following definitions.

The R-elementary functions are obtained by the operations of
addition, multiplication, division and substitution upon real variables,
Xps Xy oeees X using the constants n, the rational numbers, 1oge2,
and the functions ex, sin x, cos x, and loglx}

The constant problem is to decide, given an R-elementary
function f(x), whether f£(0)=0.

The identity(matching)problem is to decide, given an R-

elementary function f (x), whether f (x)=0.

The integration problem is to decide, given an R-elementary

function f(x), whether there exists an R-elementary function g(x),
such that g'(x)=f(x).

Richardson first showed that the identity problem reduced to
solving the constant problem. Thus, if one restricts the R-
elementary function to a domain where the constant problem is pre-
sumably solvable (e.g., by allowing only the rational operations), then
the matching problem is likewise solvable.

He then showed that the matching and integration problems for
the R-elementary functions is recursively unsolvable. In order to
proceed with our sketch of that proof, we shall require the following
definitions.

Hilbert's 10th Problem (The Diophantine Problem)

Does there exist a procedure for determining whether the
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equation P(xl’ X ceey xn)=0, where P is any polynomial with

2:

integer coefficients, has a solution where each L is an integer?

Exponential Diophantine Problem

Does there exist a procedure for determining whether the

equation P(xl’ X < X, X =0, where P is any polynomial with

2’ n+l)

integer coefficients and where x is replaced by 2x1, (i.e.,

n+1
P(xl, cees X 2X1)=0) has a solution with each X, i=l, ..., n an
integer?

Theorem (Davis, Putnam, Robinson) [14]

The exponential diophantine problem is recursively unsolvable.

The version of the Davis-Putnam-Robinson result that Richard-
son used is as follows;:

Theorem A  There exists a polynomial Q(y, x s X 2x1) such

1,
that the problem of determining whether for each integer value of y

there exist integer solutions x x to the equation

1* toeo
Qy, Xy eeey X 2x1)=0, is recursively unsolvable.

Hilbert's 10th problem has not yet been decided although it is
suspected that the problem is recursively unsolvable as well.

Let us now proceed with Richardson's argument.

Consider the polynomial Q of Theorem 1. Let the X, be real

numbers. Then, if the equation I

n
(1) z sinzﬂx. + Qz(y, Kis wens Xy 2x1) =0
i=1 t n
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possesses real-valued solutions for an integer value of y, then the
xg must be integers, and if Q possesses integer solutions, equation I
certainly has real solutions.

Note that since each term in I is real-valued, the'sum of the

squares' device forces each term to be zero. Since sinn x, = 0 * x,

i i
is an integer, the X, must all be integers. This illustrates a con-
cept we shall call forcing. Forcing will be frequently used in this
appendix. The term E sinzﬂ X, forces Q to possess integer solu-

i=1
tions. The use of % and sin x in this manner was foreshadowed by
Tarski [61].

The next step is to show that there exists and R-elementary
function f(y, Xys vees xn) such that f(y, Xis e xn)< 1 for a given
integer y and for some real X, if and only if Q(y, xf, x¥, .., 2xf)=0
for some integer values of the xf, and for the same integer value of y.

Richardson shows that we can take f(y, x o xn) to be of

1’
the form

2 . 2 4 2 X]
A(n) iil sin ﬂxi Ki(y, Xy eees xn) + Q (v, Kps v X 2 i]

where A is a large R-elementary function of n and each Ki is a
suitably chosen large R-elementary function of its arguments. 1In this

form f is an R-elementary function. The proof that f has the desired
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property utilizes an argument based on the consideration that if f

is sufficiently close to 0 in value, let us suppose that

f(y, ;1’ iz, e Rn) < 1, and let each ii be close to the integer,
- - - X1 1 s : .
x?, say, then Q(y, Xy Xy eeey Xy 274 < KT;}. What is desired is

to force Q to have the value 0 at the x{. Since Q is continuous in
its variables (it is a polynomial in them) and moreover has integer
values for integer arguments (the coefficients are integers), what
is necessary is that the derivative of ) is sufficiently small so
that Q does not materially change its value on the interval between
ii and x{. For this purpose the Ki which are based on the partial
derivatives of Q are forced to be small as well. This is done by

L

r iring sin n Kz <
equ g x, Ky O

Now Richardson shows that one can obtain a coding which re-
duces the problem for the n variables xy of Q to a single variable

x. He obtains a function G(y, x) such that G(y, x) < 1 for real

x <+ (v e0)(G(y, x) < e) * g real X,
£y, Xy enes xn)Sl - Qy, x*, ..., x:, ZXY) = 0 for some integers xf.
The coding is
x; =h&x), x, =h(e®), x; =h(gEk)),
) .3
where h(x) = xsinx, g(x) = xsinx™.

Richardson now uses the log|xlfunction to obtain a decision.

Consider the following equations:



165

log |x
le= e gl J thus the absolute value function is R-elementary.

x-x+|x-z

xiy = 7 > this subtraction has value 0 if y=x.

Min(y,x) = y~(y-x), the minimum function restricted to non-
negative values.

Now if G(y,x) £ 1 for some real x and integer y, then
G(y,x) < $ for some real x by the ¢ case above, and for this x,
2-2G(y,x) > 1 . Thus, min(l, 2-2G(y,x)) = 1 for some real x. If
G(y,x) > 1 for all real x, then for all real x,min(l,2°2G(y,x)) = 0.
By the continuity of G which is preserved either min(l, 2:2G(y,x))=1
for some interval of values on the real axis for x and for 3

fixed integer value of y, or min(l, 222G(y,x)) = 0 for all real x.

Now if we let M(y,x) = min(l, 2-2G(y,x)), then the question of
deciding whether M(y,x) is identically O is equivalent to deciding
whether Q(y, Xis woes X 2X1) = 0 has integer solutions and is thus
recursively unsolvable. M(y,x), we note, is R-elementary.

The above is a sketch of the proof of the recursive unsolvability
of the matching problem. The recursive unsolvability of the integra-

tion problem is obtained as follows:

Consider

j M(y,x)exzdx

If M = 0 for some integer value of y, then the integrand is 0

and possesses a solution (e.g., 0). If M= 1, on some interval then
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the integrand is equivalent to ex2 which possesses no elementary
solution on any interval, as is well-known. Hence, the integration
problem for R-elementary functions is unsolvable since one cannot
tell whether M = 0.

This completes the sketch of Richardson's proof. As was seen,
the decision step in the matching problem necessitated the use of
the absolute value function. Caviness argues that either the abso-
lute value function or the constant n (used in sin x x and needed
to assure a zero value on integer arguments) are the culprits in
allowing Richardson's results to hold. The constant n should not
be too surprising in the context since there are many problems re-
lated to the constants e and n which are not yet solved (note

inx ~inx

e - € ).

sin ® x = -
2i

For example, it is not known whether

e+n is a rational number.

We should note that the absolute value function arose when we
considered only one of the infinite number of inverses to the log
function. For example we can obtain the absolute value function by
considering J;Z to possess only one solution. If we were to
evaluate each of the values of an R-elementary function and were to
consider f(x) to be equivalent to 0 if it were O for each of its
values, then one might obtain a more tractable problem. One would
still be left with ticklish problems regarding the constants e and =.

These one might suppose are not very interesting from a practical
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standpoint. However, by introducing square-roots into the picture,
one might complicate the situation once more since such an intro-
duction appears to lead to difficulty in integration (see Ritt [54],
Risch [53]).

The recursive unsolvability of the integration problem was
obtained by making use of the fact that one could not tell what the
simplest description of the integrand was. In previous work on the
problem of integration in finite terms such a difficulty was usually
ignored. If one could ignore such a difficulty in the matching or
in the constant problem, then these problems would disappear. The
same cannot be said of the integration problem, of course.

The question now arises as to whether there are unsolvable
problems in the area of symbolic integration which avoid the use of
the absolute value function and which do not simply reduce to the
matching problem. Below we give some simple and hardly surprising
results which indicate that such problems do exist when one considers
nonlinear differential equations.

We shall require the following result:

Theorem B (see Ritt p. 73)

The equation

+1
(11) y'+y2=l+P—g§—Z

where p is a constant (a computable complex number, say), has a parti-

cular solution which is a rational function in x (with computable
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comp lex coefficients) if and only if p is an integer.

Theorem 1

The exponential diophantine problem (Theorem A) is equivalent
to the problem of determining whether, for integer values of y, the
system of differential equation S has particular solutions which
are rational function in x.

(Hence, the latter problem is recursively unsolvable)

dpi
a) = - 0, i=l, ..., n
dy. p.(p.+1)
-t 2 _ X e
(S) b) = +y 1+ o , i=1, , n
2
iz 2 s Py, s Py 2PD)
c) wte = 1- —7

X

Proof. Suppose S has such a set of solutions for a given integer
value of y.
By a) each 1 is a constant.

By b) and Theorem B each P; is an integer.

Y, Py» -cc» Py 2p1) =0 by c) for y an integer.

This is so since by a) and b) Q is a constant. Thus, for z to
have a particular solution which is a rational functionm, -Q2=q(q+l)

for some integer q. But q(q+l) = O for integers q and -st 0 since

Pl .
Q is integer valued. Thus, Q(y, Pys ooy Ppo 2 ") = 0 for integer



169

values of Py =+vs P

Suppose Q did possess integer solutions ¢y for some integer
value of y, then by fixing each P to be the corresponding ¢y we
obtain a set of rational solutions for §.

Theorem B has a corollary which states that the differential
equation II has a general solution which is a Liouville function if p
is an integer.

Theorem 1 can, therefore, be extended to show that the problem
of determining whether systems of differential equations of the
form S have solutions which are Liouville functions is recursively
unsolvable.

Let us consider the diophantine analogue of the system S (i.e.,
no exponentiation in Q). We now have a system of polynomial equa-~
tions with integer coefficients. The solutions of such systems of
equations is in the domain of differential algebra (see Kaplansky [31]).
Theorem 1 leads to the result that Hilbert's 10th Problem reduces
to a decision problem in differential algebra.

Let us now consider the problem of determining whether a
differential equation f£(x, z, z', ..., z(n)) = 0 has a solution z(x)
where z and all its indicated derivatives are real-valued functions

of x.

More precisely consider



g(y, X5 2" vvus z(n))

(n)?
z

W n

2 1 .2
+Q°(y, Wys W eees Woo 2 7))+ i§1 sin®x w,

In g, y is an integer, x is the independent variable and is

real, z is the dependent variable and the w, are defined as follows:

Yo T (n-1)!
} L2 (@1)
Yn-1 (n-2)!
2 _ (n-1) (n-1)
v, Tz- xz' + xz? + ...+ (-l)(n 1)§—~z;:%$T———

Theorem 2 The problem of deciding whether
L@

g(y, X, 2, 2'5 vuuy ) = o has a real-valued solution which
possesses n real-valued derivatives is recursively unsolvable as
y varies over the integers.

Proof. Let y be fixed.

Suppose g has such a real-valued solution z(x). Since we are

(n))2

dealing only with real-valued functions the term (z

L™

forces

= 0 and thus z must be a polynomial of degree (n-1) at most.

Each w, was so chosen that if z = a xn-l + ags then w, = a

i n-1 i =8y Since




171

sin =« w, = 0, a, is forced to be an integer. Moreover, since

wi
Qy, Wis Wys eens 2 ') = 0, Q must possess a set of integer solu-

i

tions wi= ai+1
X1
Suppose Q(y, Kps vees X 2 ") = 0 has solutions x, = a,

n-1

a; integers. Then z(x) = a X + eee + agy is a solution to g=0.

n-1
The statement of Theorem 2 is too general to make it a
satisfying decision problem since the set of all real-valued
functions with real derivatives is not computable. The theorem
would hold for any computable superset of functions of the set of
polynomials of degree n with integer coefficients.
Theorem 2 seems to indicate the concept of a real-valued

solution to a differential equation is quite elusive.



APPENDIX C

SIN'S PERFORMANCE ON SAINT'S PROBLEMS

As an experiment for testing SIN's performance, we attempted the
86 problems attempted by SAINT and reported in Slagle's thesis. SAINT
integrated 84 our of these 86 problems and announced failure to integrate
x V1 + x and cos /x. Slagle reports that SAINT solved the 84 problems
with an average time of 2.4 minutes (144 seconds). SIN solved all 86
problems with an average time of 2.4 seconds. This average becomes 1.3
seconds when one discounts the cost of chaining. Chaining occurred on
22 our of the 86 problems. Chaining is considered to take 4.5 seconds
in this accounting. That time appears to be a minimum bound for the
operation. In order to determine the time required by SIN to solve a
problem, we used the execution time reported by CTSS. The swap time in
CISS is ignored here.

Over half of the 86 problems (more precisely 45) were completely
solved by SIN's first stage. These problems were solved with an average
time of 0.6 seconds. Of the remaining problems only two required the
Integration-by-parts routine (i.e., x cos x and cos /% - the latter gene~
rates the subproblemj%y cos y dy). Two routines were added to SIN in
order to solve the definite and double integrals among the 86 problems.
These routines call SIN to perform the integrations indicated and make
appropriate substitutions at the upper and lower bounds.

Below we list problems for which SAINT results are available and

the comparative results for SIN.
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Problem
2
‘[ 1 dx
1x
f sec2t dt

1+ sec2t -3 tan t

‘[ dx
2

sec X

[+,
X
Vx

J‘x*dx
V¥ ¥ 2x + 5
[ w2

sin x cos x dx

J (sinzx + 1)2 cos x dx

J exdx
1+ ¥

J’ er
T +ex &

[ 2w

1 - cos x
b1

3 2
otan X sec X dx
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integrated by table

SAINT time SIN time discount
in seconds in seconds for chain Notes
1.8 0.20 Fastest problem
solved by SAINT,
look up in IMSIN
1080 9.18 4.6 Longest solution
time in SAINT.
9 subgoals in
SAINT, 1 in SIN
126 0.87 7 subgoals in
SAINT, 3 in SIN
102 5.87 1.3 3 subgoals SAINT
1 SIN
960 9.68 5.2 14 subgoals SAINT
1 SIN
120 0.33
228 2.48 !
102 0.28 2 subgoals SAINT
0 SIN
222 6,23 1.7
120 9.78 5.3
144 0.47
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SAINT time SIN time discount

Problem in seconds in seconds for chain Notes
1
J x log x dx 132 0.70
0 e
J' 6
sin x cos x dx 156 0.30 Largest speed
Y ratio between
SIN and SAINT
J ___EL:;E_ dx 576 10.1 5.6 Longest solution
/2x - x2 in SIN.
13 subgoals SAINT
1 SIN
2e*
. o% dx 360 8.25 3.7 4 subgoals SAINT
2 + 3e 1 SIN
.
?I_:_;ZSS77 dx 660 8.77 4.3 13 subgoals SAINT
2 SIN
e6x
J R dx 510 7.92 3.5 10 subgoals SAINT
e+l 1 SIN
f log (2 + 3x%)dx 390 7.20 2.7 10 subgoals SAINT
€ 1 SIN

The last 3 problems were solved by SAINT in 540, 318 and 210 seconds
respectively after an entry was added to SAINT's table which was used in

the solution of these problems.
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In order to fully account for the effect of garbage collection the
problems were run in large batches. Thus garbage collection time was
distributed over the set of problems. Garbage collection time probably
accounts for less than 20% of the total time in SIN.

We should note some of the reasons for the time difference in the
results of SAINT and SIN. SAINT was run on the 7090 and SIN on the 7094.
This accounts for about 40% of the gain (2.18 vs. 2.00 microseconds in
the cycle time and overlapped instruction execution in the 7094). The
single major difference in the time is due to the fact that SAINT ran
mostly interpreted (a major exception being the simplifier), and SIN was
run mostly compiled. Compilation is usually considered to gain a factor
of 20-30 in the speed of the program. We tested some problems with SIN
being executed completely interpretively. We noted an average speed loss
of a factor of 15. However none of the problems which were run inter-
pretively included problems which required chaining. Thus we were unable
to run some of the more complex problems in the set interpretively.

By taking these factors into account we note that SIN would only
run about three times faster than SAINT on the average when both are
executed under optimal conditions. The reason for the relatively small
ratio in SIN's favor we believe is because most of the time spent in SIN
in solving the harder problems in the set is spent in algebraic manipu-
lations (e.g., simplifications). Algebraic manipulation in SIN is not
materially faster than it is in SAINT. Though the analysis performed in
SIN yields a very direct solution, the total time spent to obtain the
solution is still significant. Hence the contrast with SAINT in regard

to total solution time is not very great.



APPENDIX D
Solution of Problems Proposed by McIntosh

Professor McIntosh (National Poleytechnic Institute of Mexico)
required the solution of eleven nontrivial integration problems for

sl

a physics paper that he was writing He found the solution to
these problems in Petit Bois' table. He also asked us to solve
these problems using SIN. The problems involved variable coefficients
in a square root of a quadratic which the version of SIN current at
that time was not equipped to handle. Although we had intended to
add the variable coefficient capability to Method 5, it was not
needed for the SAINT experiment described in Appendix C. We rewrote
Method 5 to account for variable coefficients. Interestingly enough
this was not sufficient for a satisfactory solution of the problems
since Professor McIntosh required that the output be in terms of

the arcsin function. In some cases the transformations proposed

by Method 5 yielded an answer in terms of the log function. To
force the arcsin result a further method was added. Thus if the

integral was of the form
f—e—
x Vax +tbx+tc

. 1 : . . .
the substitution y= % vas made. This substitution rids the

denominator of the factor x. With these modifications SIN was able

to solve all eleven problems. 1In the solutions obtained by McIntosh
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we noted some discrepancies from solutions obtained by SIN. It
should be noted, however, that McIntosh was only interested in
the coefficient of the arcsin terms and not in the argument. All
the errors were minor and occurred only in the arguments of the
arcsin function.

Important lessons are to be obtained from this experiment.

It is quite likely that other users of SIN will have similar
requirements regarding the form of the output. SIN should there-
fore be modified so that FORM can accept simple descriptions of new
substitutions written, say, as a SCHATCHEN and REPLACE rule.

An examination of the eleven problems will indicate that a
great deal of SIN's machinery was involved in solving these
problems. Thus it would appear that a program such as SIN is more
useful than a special purpose integration routine written for
solving just this set of problems. Such a special purpose program
will require so much machinery as to make it uneconomical.

Finally we should note that this experiment points out the need
for further work on methods which transform algebraic integrands.
The method we introduced to force the arcsin result also decreased

the labor involved in the solution and should be normally available

in SIN.
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3)

4)

5)

6)

7

8)

[
ur\/ZHrz - otz - 2Kr4

r,/21-lr - a - 2Kr
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McIntosh Problems

Problem Constraints
dr
v /20c% - &2 H>0
J‘ dr
H>0
rJZHr2 - a2 - €2
dr
w > 20K

J\ dr
r/ZHeZ - otz - eZ - 2Kr4

H2 > 2(on2 + €2) K

dr K2 + 200% > 0

dr

r\/ZHrz - otZ - e‘

~ 2Kr

K2 + 20 + eHu > 0

r dr

I 21":r2 - Otz

r dr

2Exr” - O - €

Answer equivalent to

1 a
"a' arcsin fZ—H r

- €
S SR
Jozz + 62 V2H r
L aresin B - o
20 2 Ju? - xd?

1 arcsin Hrz ~ (a—._zz + 62)

2 ,/az + ez r2 Hr-z(a +ez)1(
1 . Kr - Ozz
= arcsin — rEmy—_——o——
a rf K° + 2

1 -Kr - ((12 + 62)¥

arcsin
Jaﬁ + €§ T \/!Zz + z(otz+€z)H

2Er” - O

1 [ 2, 2
2E 2Er” - (@7 + €7)
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Problems Constraints Answer equivalent to
dr 2 2 2
9) J = E” > 2Ka 1 XK _r° - E
JZErZ ? Otz - 2Kr4 ﬁ arcsin
E“ - 2Ko
r dr
10)
J2ED - o - ef - ket
2 2 2 1 21(1‘2 - E
E” 5 2RK(@" +€7) 5 arcsin
JE© - 2R(@" + €7)
K> 0
11) f L d; E<O
\/ZEr - a° - Kr
Jome? o e 1
2E 2HE v/ -2E

2Er + K

arcsin
JK - 2EQ




APPENDIX E

AN EXPERIMENT WITH SOLDIER

As an experiment for testing the effectiveness of the
differential equations routines we attempted to solve the review
problems appearing in pages 54-56 of "Applied Differential Equations"
by Spiegel [60]. This text was chosen for sentimental reasons since
it was the book through which we first learned methods for sotving
ordinary differential equations. The methods described in Chapter 6
were mostly influenced by Ince's "Integration of Ordinary Differential
Equations" [27], and Kamke's "Differentialgleichungen” [30]. As
it turns out the methods in Spiegel were quite similar, which is not
a surprising fact. However, there were some differences and these
will be pointed out below.

Briefly, the results of the experiment were as follows: Of the
80 problems in pages 54-56 of the book, 4 involved second and higher
order equations (i.e., y", y'''). These problems were not attempted
since SOLDIER had no machinery to deal with them. Thus the number of
problems actually attempted was 76. Of the 76, SOLDIER satisfactorily
solved 67 problems with an average time of 6.6 seconds. Discounting
the cost incurred by chaining (chaining occurred on 26 of these 66
problems), the average time was 4.3 seconds. Two problems were com-

pletely reduced to integration problems, but were not integrated by
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problems were not solved at all. An examination of the result re-
ported by SOLDIER for one of the problems (i.e., 51) indicated a
misprint in the book. As before, our timing information is based
on the report by CTISS of the execution time of the program.

The system on which this experiment was carried out had the
following characteristics: SCHATCHEN, SCHVUOS, FORM, REPLACE, SOLDIER,
and all the solution methods for differential equations were com-
piled. A few integration methods, especially the Derivative-divides
method, were also compiled. The rest of the integration methods were
run interpretively. This accounted for a noticeable increase in
solution time when one of the integration subproblems required a
solution method in stage 2 or 3 of SIN. As was the case in the ex-
periment reported in Appendix C, the 76 problems were attempted in
large batches (about 15 at a time) so that the effects due to garbage
collection were fully considered.

Below we shall describe on the performance of SOLDIER on some
of the more interesting fully solved problems. We shall then describe

each of the 9 problems which it failed to solve fully.
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Representative Solved Problems

The largest number of integrations needed to solve one of the

67 problems was 3. This was achieved by problem 69 among others.

(69) (& x+3)y' =1 or (el+x+3)dy - dx =0

This problem is solved by one of the multiplier methods (Chap-

ter 6, Method 3)

O_ (Y =
- (e’ +x+3) 1

(]
o

= 1

-= (1-0) -1, and -1 is a function of y.

Thus the first integral is

I -l dy = -y

y

The multiplier is e’ resulting in the exact equation

(l+xe'y+3e_y)dy -eYax =0
The second integral is

f -e-ydx = -xe-y ,
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and the final integral is
I (1+3e-y)dy = y-3e_y
The solution reported by SOLDIER is thus

Co = -xe-y-Be-y+y
The solution in Spiegel is

X = yey-3+cey.

This solution is equivalent to the one obtained by SOLDIER.

This problem was solved in 5.2 seconds.

The most complex solution was obtained as a result to prob-

lem 73.

dy _ x#3y
73) dx  x-3y

This homogeneous problem required the solution of

du

“—

Y71-3u

The final solution given by SOLDIER was
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2
1 Iy . L 3 > =
logex + gloge(l-é-Bé— + Zx) N2 arctan (:7-2- + ﬁi- = Co

The solution in Spiegel was
1v;>ge (x2+2xy+3y2) = ZA/Z_ arctan (%’%X

This problem was solved in 15.3 seconds and required a chain

to the rational function package.

The problem in which we discovered a misprint in the book's

solution was problem 51.
(51) y' = 3x2y or y'-3x-2y =0

The problem is linear (Chapter 6, Method 1) and the first

integral required is
J -2dx = -2x

The next integral is
J‘ -3x e-zxdx = (

The final answer given by SOLDIER was

-2x 3 .3 -2x
Co = ye +(4+2x>e
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The book's solution was

This solution differed from SOLDIER's in that the sign of
-2x
the exponent of e is wrong.
The answer was obtained in 9.0 seconds and required a chain
to solve the second integral.

The fastest solution time was obtained for problem 5.
(5) (3-y)dx + 2xdy =0, y(l) =1

This problem is also linear.

The first integral is
1 1
I_Zx dx = -3 1ogex
The next integral (after simplifying e-1/2 logex i/i) is

[ Sz ax=
2% / Vx

The final result is

co =72



fa
o
(=N}

The book's solution is

(3-y)2 = 4x

which is equivalent ot SOLDIER's except that the constant of
integration was determined by using the initial condition.

This problem was solved in 0.8 seconds.
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The Nine Unsolved Problems

Problems 48 and 75 were not solved primarily because SOLDIER

had no machinery for factoring them. In these two

dq _p p-d’

48 =%Le

(48) d " q

) X Vg + I 2%gy = 0

problems what is needed is to recognize that ea+b = eaeb. A

powerful factoring routine would have yielded the result that both
of these problems are separable.

Problem 50 is also recognized to be separable

(50) (xt+xcosy)dy - (y+siny)dx =0

if one factors x+xcosy. When SOLDIER solved this problem it utilized
one of the multiplier methods.

The difficulties due to the lack of a general factoring or
division routine which was pointed out in Chapter 6 is one of the
outstanding problems which must be solved in order to achieve a
powerful routine for solving differential equations. The rational
function package which is not directly utilized by SOLDIER can

factor polynomials and some more general expressions (e.g., x+xcosy



could be factored by it), however, it must be extended in order to
recognize factorizations involving exponentials and logs.
A similar difficulty to factoring faced the program in

problem 65.
(65) xy' + ylogex = ylogey +y

This problem is easily solved by the homogeneous method if it

is first transformed into
xy' - ylog L=y
SOLDIER does not possess enough machinery to realize that this
transformation can be effected. Method 8 of Chapter 6 which normally
would have solved problem 65 without the log transformation failed
because SCHVUOS could not simplify a quotient which arose in the
course of the solution.

Problems 47 and 64 were not solved because SOLDIER lacked a

method given in Spiegel.

“7) xdy - ydx xzydy

(64) xdy - ydx = szyzdy

Spiegel suggested that one should watch out for frequently
occurring combinations such as xdy+ydx or xdy-ydx. He gave a method

which deals with some of these cases. In 47 he points out that by
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dividing by x2 one obtains the derivative of % on the left hand
side and ydy on the right hand side. In 64 one obtains 2y2dy on the
right hand side and once again the derivative of % on the left
hand side. SOLDIER lacked this particular method and was unable to
solve these problems. Once again Method 8 of Chapter 6 was applicable
and did not find a solution due to problems in division.

Another method lacking in the program is pointed out by prob-
lem 57.

ds 1

7) dt ~ s+t+4l

Here the linear substitution u(t) = s+t+l would have left a
separable equation. Also a reversal of the independent variable
followed by multiplying out the denominator would have left the

equation

[=%

t
S

= s+t+l

[=%

which is linear. The method of multiplying out the denominator is

also useful in problem 17.

4
1n) g = 2R
3x2

SOLDIER solved 17 by dividing through the denominator and using the

Bernoulli method. By multiplying out the denominator, the multiplier
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method would solve the problem.

Problem 22 was not solved by SOLDIER because the almost-

linear method is not powerful enough.

22) (tan y - tanzy cos x)dx - xseczy dy = 0

The substitution u(x)=tan(y) results in the equation
2
(u-u"cos x)dx - x du = 0

which is Bernoulli. However, the almost-line%r method checks only
for the possibility that the resulting equation is linear and com-
pletely misses the possibility that it is Bernoulli.

Finally, two problems, 56 and 74, were not completely solved

because SIN did not have powerful enough machinery.

dl :
(56) ac + 31 = 10sin t
74) y'cos x =y - sin2x

In 56 the linear method generates the subproblem
I -10e3tsin t dt

Without the Edge heuristic, SIN cannot integrate this problem.
There was not enough room in the system to include the Edge heuristic

(only 1500 words were left in free storage), so SIN failed to
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integrate this problem.

SIN failed to handle the integration problems needed in 74
because it does not currently possess enough machinery for dealing
with sin(2x) and cos(x) in the same integrand. As has been indi-
cated in Chapter 4 some machinery for just this situation was

designed but not fully implemented.
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Modifications to SOLDIER

Following the experiment reported above we made two changes
to the methods employed by SOLDIER. First we added a simple factori-
zation routine to Method 8 of Chapter 6. With this routine Method 8
was able to solve problems 47, 64, and 65, as expected.

In addition we added an indicator to SCHVUOS. When this
indicator was on, SCHVUOS executed the rule ea+b - eaeb. This
indicator was turned on in running Method 2 of Chapter 6 (Separable).
Thus, problems 48 and 75 were solved as well. The use of indicators
illustrates the approach toward simplification programs we had out-
lined in Chapter 3. 1In that chapter we said that simplifiers should
be considered as black boxes with strings attached. When a decision
has to be made inside the simplification program, it can check to
see whether it had been given an instruction regarding the choice to
be made.

These changes must be considered as stop-gap measures and not

as solutions to the factoring problems which still remain in SOLDIER.



APPENDIX F

LISTINGS

The listings of SIN and SOLDIER given below were produced by a LISP
program written by Diffie of the MATHLAB project and modified by us.
Listings of LISP programs are frequently printed by using the intermal
representation of the program. The listings of programs written in most
other languages usually bear a close correspondence to the input form of
the program. This need not be the case for LISP programs. The routine
Edge which was not listed using Diffie's program is presented last. The
listing of this routine may be used to guage the effect of Diffie's pro-
gram.

The listings of two recent LISP programs (i.e., Martin [ 37 ], Nor-
ton { 47]) are also available. One can use these listings to compare
different styles of LISP programming. Norton accentuates the use of the
PROG feature and his programs thus have a FORTRAN-like appearance. Mar-
tin's style is richer and leans toward greater use of '"pure" LISP. Our

style is intermediate to these two styles,

193
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SCHATCHEN

DEF INE
({ {SCHATCHEN M2}
{M2 (LAMBDA (E P SPLIST)
(PROG (ANS)

{RETURN (COND

{M1 (LAMBDA (E P)

(COND {(EQUAL E P)

(INULL (M1 E P))
((NULL ANS} T)
(T ANS) 1))))

NIL)

™

((ATOM P) NIL)

((ATOM
(COND

{LATOM
{COND

(T NIL)

DEF INE
(((LOOPP {(LAMBDA (E P)

(PROG

(CAR P))
{(OR (EQ (CAR P)
(EQ (CAR P)
(LOOPP E P) )
((EQ (CAR P) (QUOTE EXPT)) (ZEPOW E P))
({EQ (CAR E) {CAR P)) [EACHP E P))
((oP (CAR P)) NIL)
((EQ (CAR P) (QUOTE COEFFT))
(COEFFPORT E P (QUOTE (TIMES 1 T))) )
({EQ (CAR P) (QUOTE COEFFPT)) (COEFFPT E P T))
({EQ (CAR P) (QUOTE COEFFP))
(COEFFPORT E P (QUOTE {PLUS O T))) )
{(EQ {CAR P} {QUOTE COEFFTT))
(COEFFTT E (CADR P) T (QUOTE TIMES)) )
((EQ (CAR P) (QUOTE COEFFPP})
t{COEFFTT E (CADR P) T (QUOTE PLUS)) )}
{(EQ (CAR P} (QUOTE DVCOE)) (DVCOE E P T))
((EQ (CAR P) (QUOTE ZEPOW)) (ZEPOW E P))
((AND {(SETQ ANS (CONS NIL ANS}) (TESTA P E NIL))
(RESTOREL) )
{T (RESTORE))
{CAAR P))
({ATOM E} NIL)
{(PRDG2 (SETQ ANS (CONS NIL ANS))
(TESTA {CAR P} (CAR E) E) )
(COND {{OR (EQ (CAR E) (QUOTE PLUS))
(EQ (CAR E) (QUOTE TIMES)) )
(COND {((LOOPP E
(CONS

(QUOTE PLUS))
(QUOTE TIMES)) )

3]

(CAR E}
(COR P}
{RESTOREL) )
{T (RESTORE)) )
((AND (SETQ P (CONS (CAR E)
(EACHP E P) )
(RESTOREL) )
(T (RESTORE))
(T (RESTORE)} ))
1))

")

{CDR P)))

)}

(X Z EE)

(SETQ EE

(COND ((NOT (EQ (CAR E} (CAR P))}

(LIST (CAR P} E) )}



LOOP

L5

L8

L2

L19

L18

L1l

L12

L13

L14

L15

La47
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(re)ymn
(SETQ Z M)
{SETQ ANS (CONS NIL ANS))

{SETQ Z (CDR 2))
(COND ((NULL 2}
(RETURN (COND ({NULL {CDR EE)}) (RESTOREl})
(T (RESTORE}) 1))}
(SETQ X EE)

(COND ( (NULL (CDR X)) (GO L17))
((OP1 (CAAR Z)) (GO L10))
({EQ (CAAR Z) (QUOTE EXPT)) (GO L14))
({M1 (CADR X} (CAR Z)) (GO L2)} )

(SETQ X (CDR X})
(GO L5)

(SETQ ANS (CONS (CONS X (CDR X)) ANS))
(RPLACD X (CDDR X))
(GO tOooP)

(COND ((NOT (EQ (CAR P) (QUOTE PLUS))) (GO L18))
((ML 0 (CAR Z)) (GO LOCP)) )

(RETURN (RESTORE))

(COND [(AND (EQ (CAR P) (QUOTE TIMES})
(ML 1 (CAR 2§) )
(GO LOOP) )
(T (RETURN (RESTORE})) )

{COND ((EQ (CAAR Z) (QUOTE COEFFT)) (GO L11)
((EQ (CAAR Z) (QUOTE COEFFP)) (GO L12)
((EQ {CAAR Z) (QUOTE COEFFPT)) (GO L13))
[(EQ (CAAR Z§ {QUOTE COEFFTT)) (GO L16))
((EQ (CAAR Z) (QUOTE COEFFPP}) (GO L47))
((EQ (CAAR Z) (QUDTE ZEPOKW}) (GO L14))
({EQ (CAAR Z) (QUOTE DVCOE}) (GO L43))
(T (GO L15)) )

(COND ((COEFFPORT EE (CAR Z) (QUOTE (TIMES 1 NIL)))
(GO LoOP) )
(T (RETURN (RESTORE))) )

(COND ((COEFFPORT EE (CAR Z) (QUOTE (PLUS 0 NIL}))
(GO LOOP) )
(T {RETURN (RESTORE})) )

(COND ((COEFFPT EE (CAR Z) NIL) (GO LOOP))
{T (RETURN (RESTORE))) )

(COND ((ZEPOW {CADR X} {CAR Z)) (GO L2)) (T (GO L8)))

(COND ((LOOP EE (CDAR 2)) (GO LOOP))
(T (RETURN (RESTORE))) )}

(COND ({COEFFTT EE (CADAR Z) NIL (QUOTE TIMES))
(G0 LOOP) )
(T (RETURN (RESTORE))) )
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(COND ({COEFFTT EE (CADAR Z) NIL (QUOTE PLUS})
(GO LOOP) )
(T {RETURN (RESTORE)}) )
L43
(COND (IDVCOE (CADR X) (CAR Z) NIL) {GD LOOP))
(T (GO L8)) 1))
DEF INE
(({COEFFPORT
(LAMBDA
(E P IND)
(PROG (X Z EE)
(SETQ ANS {CONS NIL ANS))
(SETQ EE E)
(COND
((EQ (CAR IND) (QUOTE PLUS)} (GO L30))
((EQ (CAR E) (QUOTE PLUS)) (GO L31})
({EQ (CAR E) (QUOTE TIMES)) (GO L32)}) )
{SETQ EE (LIST (QUOTE TIMES) E))

(GO L2)
L32
(COND ((CADDR IND) (GO L2)) (T (GO L1)))
L31
(COND
((NOT (CADDR IND))} (GO L1})
({NULL (CDDR E}) (GO L2))
(T (60 L20)) )
L30
(COND ((EQ (CAR E) [QUOTE PLUS)) (GO L35)))
(SETQ EE (LIST (QUOTE PLUS) E))
(GO L2)
L35
{COND
((NULL (CDDR E}) (GO L2}))
((EQ (CAR IND) (QUOTE PLWS)) (60 L2))
((CADDR IND)} (GO L2})
(T (60 L1)) )
L2

(COND ((EQUAL E 0) (GO L71))
(SETQ Z (CDR P))
LOOP1
(SETQ Z (CDR Z))
(COND {(NULL Z) (GO LT)))

{SETQ X EE)
Lé
(COND
C{NULL (CDR X)) (GO L10))
({EQ (CAAR 2) (QUOTE COEFFTT)) (GO L16})}
{(EQ (CAAR Z) (QUOTE COEFFPP)) (GO L17))
({ML (CADR X) (CAR Z)1) (GO L5)) )
(SETQ X (COR X))
(GO Lé6)
L5
(SETQ ANS (CONS (CONS X (CDR X)) ANS))
{RPLACD X (CDDR X}}
(GO LOOP1)
L17
{COND ((COEFFTT EE (CADAR Z)} NIL {QUOTE PLUS)} (GO LOOP1)})
(GO L7)
L16

(COND ((COEFFTT EE (CADAR Z) NIL (QUOTE TIMES)) (GO LOOP1)}))
L7
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(COND
({NULL (CDR EE))
(RETURN (COND ((TESTA (CADR P) (CADR IND) NIL)
(COND ((CADDR IND) (RESTOREL)) (T {RESTORE2))) )
(T {RESTORE)} )))
((NULL (CDDR EE))
(RETURN (COND ((TESTA (CADR P) (CADR EE} NIL)
(PROG2 (SETQ ANS
(CONS (CONS EE (CDR EE)) ANS) )
(PROG2 {RPLACD EE (CDDR EE})
(COND ((CADDR IND)
(RESTOREL) )
(T (RESTORE2)) 1))
(T (RESTORE)) ))))

L69
(SETQ X (COPYLl EE))
(COND ((NULL (TESTA (CADR P) X NIL)) (RETURN [RESTORE))})
({CADDR IND) (RETURN (RESTORE1l}}) )
(COND {(AND (CDDR E) (EQ (CAR IND) (QUOTE PLUS)))
(PROG2 (SETQ ANS (CONS (CONS EE (CDR EE)) ANS)) (RPLACD EE NIL)) V)
(RETURN (RESTOREZ2})
L10 :
[COND ((NULL (M1 (CADR IND) (CAR Z)})) (RETURN {RESTORE})))
(GO LOOP1)
L20
{RETURN (RESTORE))
L1
(SETQ X EE)
L3
(COND ((NULL {CDR X)) {GO L4))
((COEFFPORT (CADR X) P {LIST (CAR IND) (CADR IND) T)) (GO L12)) )
{SETQ X (CDR X))
(GO L3)
L12
(SETQ ANS (CONS (CONS X (CDR X)) ANS))
{(RPLACD X (CDDR X))
(RETURN (RESTORE2))
L4
(COND ((NULL (M1 {CADR IND) P)) (RETURN (RESTORE)}))
(RETURN (RESTORE2)) )})))
DEFINE

(({COEFFPT {LAMBDA (E P IND)
(PROG (Z ZII1)
(SETQ Z
(COND ((EQ (CAR E) (QUOTE PLUS)) E)
(T (LIST (QUOTE PLUS) E}) })
(SETQ ANS (CONS NIL ANS}))
(SETQ ZZ (CONS (QUOTE COEFFT) (CDR P}))

L19
(COND ((NULL (CDR 2)) (GO rL21))
((NULL (M1 (CADR Z) 2Z)) (GO L20)) )
L22
(SETQ ANS (CONS (CONS Z (CDR Z)) ANS})
(RPLACD Z (CDDR 2))
(G0 L19)
L20
(SETQ Z (CDR Z))
(GO L19)
L21
(SETQ Z

(FINDIT (COND [(EQ (CAADR P) {QUOTE VAR#))
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(CAR (CDDADR P)) )
(T {CAADR P)) )))
(COND ({NULL 2Z)
(RETURN (COND ((NULL (TESTA {CADR P)
[

NIL ))
{RESTORE} )
(IND (RESTORE1l))
(T (PROG2 (RESTOREZ2) 0)) 1))
((NULL {(CDR Z))
(RETURN (COND ({NULL (YESTA (CADR P)
[CAR Z)
NIL )
(RESTORE) )
(IND (RESTOREL))
(T (PROG2 (RESTOREZ2)
(CAR Z) 1)) ))
(SETQ Z (SIMPPLUS Z))
(COND {(NULL (TESTA (CADR P) Z (QUOTE COEFFPT)))}
{RETURN (RESTORE)} )
(IND (RETURN (RESTOREL))) }
(RETURN (PROG2 (RESTORE2} 1)) )))
(EACHP {LAMBDA (E P)
{PROG NIL
(COND ((NOT (EQUAL (LENGTH E} (LENGTH P)))
(RETURN NIL) ))
(SETQ ANS (CONS NIL ANS)}
EACHPL
(SETQ E (COR EM)
(COND ({NULL E) (RETURN (RESTORELl)})
C(NULL (M1 (CAR E) (CADR P)))
(RETURN (RESTORE)} )}
(SETQ P (CDR P))
(GO EACHPL) )))
{ZEPOW (LAMBDA (E P)
(PROG NIL
{SETQ ANS (CONS NIL ANS))
(COND {(ATOM E) (GO L6)))

L5
(COND ({NOT (EQ (CAR E) (QUOTE EXPT)}} (GO L8}))
((NOT (M1 (CADR E) (CADR P)))} (GD L8}}
((NOT (M1 (CADDR E) {CADDR P))}
(RETURN (RESTORE}) })
L9
(RETURN {RESTORE1))
L10
(COND ((AND (NOT (M1 O (CADDR P}})
(NOT (ML 1 (CADR P))) )
(RETURN (RESTORE))} ))
(GO L9)
L8
(COND {(NQT (M1 € (CADR P}}) (RETURN (RESTORE)})
(INOT (M1 1 [(CADDR P)})} {RETURN (RESTORE))) )
(GO LS)
L7
(COND ((NOT (M1 O (CADR P))) (RETURN (RESTORE})))
(GO L9}
L6

(COND ((EQP E 1) (GO L10))
((EQP E 0) (GO L7))
(7T (GO L8)) YN}
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(LOOP (LAMBDA (E LP)

(PROG (Z Y X)
(SETQ ANS (CONS (QUOTE =LOOP) (CONS NIL ANS)}))
(SETQ X LP)

L5
(SETQ Z E)

L6
(COND ((NULL (M1 (CADR Z) {CAR X))} (GO L10)))
(SETQ Y (CONS (LIST X Z (CDR Z)) Y))
(SETQ ANS (CONS (CONS Z (CODR Z)) ANS))
(RPLACD Z (CDDR 2Z))
(SETQ X (CDR X})
(COND ({NULL X) (RETURN [RESTORE2))))
(SETQ ANS (CONS (QUOTE «LOOP) ANS})
(GO L5)

(SETQ 2 (CDR 2))
{COND ((NOT (NULL (CDR Z))} (GO L6})
((EQUAL X LP) {RETURN (RESTORE})) )
L8
{SETQ X (CAAR Y))
(RPLACD (CADAR Y) (CADDAR Y))
(SETQ Z (CADDAR Y))
{SETQ Y (CDR Y))
(SETQ ANS (CDR ANS))
(RESTORE3}
(GO L&) 1))}
DEF INE
(({RESTORE3 (LAMBDA NIL
(PROG NIL
L1
(COND ((NULL ANS) (ERROR (QUOTE RESTORE3)))
((NULL {CAR ANS)) (ERROR [QUOTE RESTORE3)})
({EQ (CAR ANS) (QUOTE =LOOP)) (RETURN NIL)}
((NOT (ATOM (CAAR ANS)))
(RPLACD (CAAR ANS) (CDAR ANS)) 1))
{SETQ ANS (CDR ANS))
(GO L1} 1))
[RESTORE (LAMBDA NIL
{PROG (Y}
{SETQ Y ANS)
L1
{COND ((NULL Y) (RETURN NIL))
((EQ (CAR Y) (QUOTE =LOOP))
{PROG2 (RPLACA Y (CADR Y))
(RPLACD Y (CDOR Y} )
(INULL (CAR Y))
(RETURN (PROGZ2 (SETQ ANS (CDR Y)) NIL}) )
((NOT (ATOM (CAAR Y)))
(RPLACD (CAAR Y) (CDAR Y)} ))
{SETQ ¥ {CDR Y))
(60 L1) 1))
(RESTORE1 {(LAMBDA NIL
{PROG (Y)
L2
[SETQ Y ANS)
(COND {{NULL ANS) (RETURN T)}
{(NULL {CAR ANS)}
(RETURN (PROG2 (SETQ ANS (CDR ANS}) T)) )
((NOT (ATOM (CAAR ANS))) (GO L3} )
L1
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(COND ((NULL (CODR Y}) (RETURN T))
({NULL (CADR Y))
(RETURN (PRDOG2 (RPLACD Y (CODR Y)} T)) )
{(NOT (ATOM {CAADR Y)))
(PROG2 (RPLACD {CAADR Y) [CDADR Y))
(RPLACD Y (CODR Y)}) ))
{T (SETQ v (CDR Y))) )
(60 L1)
L3
(RPLACD (CAAR ANS) (CDAR ANS))
(SETQ ANS (CDR ANS)})
(GO L2) 1))
(RESTORE2 (LAMBDA NIL
{(PROG 1Y)
(SETQ Y ANS)
(COND ((NULL ANS) (RETURN T))
((NULL (CAR ANS})
(RETURN (PROG2 (SETQ ANS (CDR ANS))} TN })
Ll
(COND ((NULL (CDR Y)) (RETURN T))
(lEQ (CADR Y) (QUOTE =LOOP))
(RPLACD Y (CDDR Y)}) )
({NULL (CADR Y))
(RETURN (PROG2 (RPLACD Y (CDDR Y)) T}) 1))
{SETQ Y (CDR Y))
{60 L1} M)
(TESTA« (LAMBDA (ALA EXP LOC)
(COND ((COND {((EQ (CADR ALA) (QUOTE FREE)) (FREE EXP})
{(EQ (CADR ALA} (QUOTE NUMBERP))}
(NUMBERP EXP) }
({EQ (CADR ALA) (QUOTE TRUE)) T)
(T (APPLY (CADR ALA)
(FINDTHEM (CDDR ALA})
(ALIST) ) })
(COND ((NOT (MEMBER (CAR ALA) SPLIST))
(PROG2 (SETQ ANS
{CONS (CONS (CAR ALA) EXP)
ANS )
TH
(T 1Ty M)
(T NIL) )))
(FINDTHEM (LAMBDA {ARGS) (FINDTL ARGS ANS (CONS EXP NILI)))
(FINDT1 (LAMBDA (X Y 1}
(COND ((NULL X} 2)
(INULL Y)
(FINDT1 (COR X)
ANS
(NCONC Z (LIST (EVAL (CAR X) (ALISTI})} })
((EQ (CAAR Y) (CAR X))
(FINDT1 (CDR X) ANS {(NCONC Z (CONS (CDAR Y) NIL)I)}) )}
(T (FINDTL X (CDR Y) Z}) 1ih))
DEFINE
({(OP (LAMBDA (FN)
(MEMBER FN
(QUOTE (PLUS TIMES
EXPT
SIN
cas
TAN
LOG
SEC
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INTEGRAL
ARCSIN
ARCCOS
ARCTAN ) ))))
(COPY1 (LAMBDA (A) (COND ((NULL A} NIL) (T (CONS (CAR A) {COPYLl (COR A)))IN))
(FINDIT (LAMBDA (A)
(PROG (Y Z)
(SETQ Y (CONS NIL ANS))
L1
{COND ((NULL (CDR Y)) (RETURN Z})
CINULL (CADR Y)) (RETURN Z})
((EQ (CAADR Y) A)
(PROG2 {SETQ Z (NCONC Z (LIST (CDADR Y))))
(RPLACD Y (CDDR Y)) ))
(T (SETQ Y (CDR Y})}) )
(GO L1) 1))
(FREE (LAMBDA (A)
(COND (({ATOM A) (NOT (EQ A VAR})}
(T (AND (FREE (CAR A)) (FREE (COR A)))) )))
{OP1 (LAMBDA (A)
(MEMBER A
(QUOTE (COEFFPT COEFFP
COEFFT
ZEPOW
COEFFPP
COEFFTT
LGoP 1) 1)
(COEFFTT (LAMBDA (EXP PAT IND OPIND)
(PROG (RES 2}
(SETQ ANS (CONS NIL ANS))
(COND ((AND IND (NOT (EQ (CAR EXP)} OPIND)))
(SETQ EXP (LIST OPIND EXP)) ))
(SETQ Z EXP)
{SETQ SPLIST {(CONS (CAR PAT) SPLIST))
L1
(COND ((NULL {CDR Z)}} (GO L3})
({TESTA PAT (CADR Z) NIL) {GO L2)) )
{SETQ Z (CDR 2))
(GO L1)
L2
(SETQ ANS (CONS (CONS Z (CDR Z)) ANS))
(SETQ RES (CONS (CADR Z) RES))
(RPLACD Z (CDOR 2))
(GO L1)
L3
(SETQ SPLIST (COR SPLIST))
(COND (RES (GO L4})
({NOT (TESTA PAT
(COND ((EQ QPIND
(QUOTE PLUS) )
0 )
(T 1))
NIL M)
(RETURN {RESTORE}) )]
(COND (IND (RETURN (RESTORELl)))}
(T (RETURN (RESTORE2})) )
L4
(SETQ RES
{COND ({CDR RES)} {(CONS OPIND RES))
(T (CAR RES)) 1))
(SETQ ANS (CONS (CONS (CAR PAT) (SIMP RES)) ANS})
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(COND (IND (RETURN (RESTOREL1)))
(T (RETURN (RESTORE2))) 1))
(TESTA
(LAMBDA (ALA EXP B)
(PROG (Y Z FUNC VAL)
(COND ({NOT (EQ (CAR ALA) (QUOTE VAR#)))
(RETURN (TESTA# ALA EXP NIL)) ))
(SETQ Z (CADR ALA})
{SETQ ALA (CDDR ALA))
Loop
(COND ((NULL 2}
(RETURN (PROG2 (SETQ Y
{COND (VAL (M1 EXP Y))
(T (TESTA= ALA
EXP
NIL ))))
(COND ({(NULL Y} NIL)
{FUNC (SET (CAR ALA) EXP})
(T v) 1))
{{EQ (CAR Z) (QUOTE SET}} (SETQ FUNC T)}
({EQ (CAR Z) (QUOTE UVAR))
(COND ((SETQ Y
(CDR (SASSOC (CAR ALA)
ANS

(QUOTE NILL) 1))
(SETQ VAL T} )
(T NIL) ))
({(AND (EQ B {(QUQTE COEFFPT))
{EQ (CAAR Z) (QUOTE COEFFPT)) )
(SETQ ALA (CADAR Z21) ))
(SETQ Z (CDR 2Z})
(G0 LOGP) 1))}

SCHVUOSs REPLACE, DIFF

DEF INE
(L(sIMPPLUS
(LAMBDA
(EXP)
(PROG (Y IND Z W ANS A B Al)
(SETQ A 0)
8
(COND ((NULL EXP) (GO AA))}}
(SETQ Y (SIMP (CAR EXP)))
(COND
(T{EQ (CAR Y) {QUOTE PLUS)) (GO C))
((NUMBERP Y) (SETQ A (PLUS Y A)})
(T (SETQ Z (CONS Y Z1)) )
88
(SETQ EXP (CDR EXP))
(GO 8)
C
(COND
( {NUMBERP (CADR Y))
(PROG2 (SETQ Z (APPEND (CDDR Y) Z)) (SETQ A {(PLUS (CADR Y) A})) )
{T (SETQ Z (APPEND (COR Y) Z))) )
(GO 8B)
AA

{COND
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({NULL Z) (0 E1))
((NULL (COR 2)) (GO EE})
(LEQ (CAAR 2} (QUOTE TIMES)) (GO E)) }

H
{SETQ Al 1)
(SETQ IND T)
(SETQ B (CAR 2)}
(GO FF)
E
(COND ({NOT (NUMBERP (CADAR Z))) (GO P)))
{SETQ Al (CADAR 2))
(COND ((NULL (CDDDAR Z}) (GO G)))
(SETQ B (CDDAR Z))
(SETQ IND NIL)
(GO FF)
[
(SETQ Al 1)
{SETQ B (CDAR 1))
(SETQ IND NIL)
(GO FF)
G
(SETQ B {CADDAR 7))
(SETQ INO T)
FF
(SETQ Z (CONS (QUOTE PLUS) (CDR Z)))
{SETQ Y
(COND
(IND (COEFFPT Z (LIST NIL {QUOTE (C NUMBERP)} 8) NIL))
(T (COEFFPT Z (CONS NIL (CONS (QUOTE (C NUMBERP}) B)) NIL)I) ))
(SETQ Y (PLUS Al Y))
(COND
((ZEROP Y) T)
((ONEP Y)
(SETQ W (CONS (COND (IND B) (T (CONS (QUATE TIMES) B))) Wi) )
(IND (SETQ W (CONS (LIST [QUOTE TIMES) Y B) W))
(T (SETQ W (CONS (CONS (QUOTE TIMES) (CONS Y B)) W)}) )
[SETQ Z (CDR Z))
{GO AA)
EE
(SETQ W (CONS (CAR Z} W))
33
(SETQ W (COND {(ZEROP A) W) (T (CONS A W))))
(RESTORE)
(COND
({NULL W) (RETURN 0))
(INULL (CDR W)} (RETURN {CAR W)))
(T (RETURN (CONS (QUOTE PLUS) W})) 111)))
DEFINE
({{SIMPTIMES
(LAMBDA
(EXP)
(PROG (Y DIV Z W A Al B 12)
(SETQ A 1)
68

(COND ((NULL EXP) (GO START))}
(SETQ Y (SIMP (CAR EXP)))
(COND ((EQ (CAR Y) {(QUOTE TIMES))
(COND ((NUMBERP (CADR Y}}
EPROG2 (SETQ A (TIMES (CADR Y) A))
(SETQ Z (APPEND (CDDR Y) 21} ))
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(T (SETQ 2 (APPEND (CDR Y} 211} 1))
({AND (NUMBERP Y} (ZEROP Y)) (RETURN 0))
((NUMBERP Y) (SETQ A (TIMES Y A)))
(T (SETQ Z (CONS Y 2))) )
(SETQ EXP (CDR EXP))
(GO B)
START
(COND ((AND {EQ (CAAR Z) (QUOTE PLUS))
(NULL (CDR Z))
(NULL W)
(NOT (ONEP A}) )
(RETURN (PROG23 (CSETQ SIMPIND T)
(TIMESLOOP A (CDAR 1))
{CSETQ SIMPIND NIL) ))))
{COND ((NULL Z) (GO E1))
({NULL (CDR Z)) (GO EE))
(EXPTSUM {RETURN (CONS {QUOTE TIEIMES) {CONS A Z))})
((EG (CAAR Z) (QUOTE EXPT)) (GO G)) )
{SETQ Al 1)
(SETQ 8 (CAR Z))
(GO FF)

(SETQ B (CADAR Z))
(SETQ Al
{COND ( (NUMBERP (CADDAR 2)) (CADDAR 2))
(T (CONS (CADDAR Z) NIL}) })
FF
(SETQ 2Z 2)

(COND ((EQ (CAADR ZZ) (QUOTE EXPT)) (GO H))
((M2 {CADR ZZ) 8 NIL) (GO 1)} )
(COND {((AND GQUOTIND
(EQ (CAR B) {(QUOTE PLUS)}
(EQ (CAADR 2Z) {QUOTE PLUS))
(SETQ Y (MATCHSUM1 B (CADR ZZ)})) }
(60 DIVL) M)
JK
(SETQ 2Z (COR Z1))

(COND ((COR 2Z) (GO K}))
(GO M)

{COND ((M2 (CADADR ZZ} B NIL) (GO L)))

(COND ((AND QUOTIND
(EQ (CAR B) (QUOTE PLUS)}
(EQ {CAR (CADADR ZZ)) (QUOTE PLUS))
(SETQ Y (MATCHSUM1 8 (CADADR 2Z))}) )

(s0 DIV2) D)
(G0 JK)
JJ
(RPLACD ZZ (CDDR 21))
(G0 J)

(SETQ Al (COND ((NUMBERP Al) (ADD1 Al)) (T (CONS 1 A1})))
(GO JJ)

(SETQ Al
(CUND ({AND (NUMBERP Al} (NUMBERP (CADDAR {COR ZZ})))
(PLUS Al (CADDAR (CDR ZZ))) )
[T (CONS (CADDAR (CDR ZZ})
(COND ({ATOM Al) (LIST AL)) (T Al)) 1)))



205

(G0 JJ)
M
(SETQ Al (COND {(NUMBERP Al) Al) (T (SIMPPLUS Al}}))
(SETQ W
(COND ((NUMBERP Al)
(COND ({ZEROP Al} W)
({{ONEP Al) (CONS B8 W)}
(T (CONS (LIST (QUQOTE EXPT) B Al) W)} 1))
(T (CONS (LIST (QUOTE EXPT) B Al) W)) ))
(SETQ Z (CDR 2))
(GO START)
EE
(SETQ W (CONS (CAR Z) W))
El
(SETQ A
(COND {((NULL W) A)
({NULL (CDR W))
(COND ((ONEP A) (CAR W))
(T (LIST (QUOTE TIMES) A (CAR W))) ))
{(ONEP A} (CONS (QUOTE TIMES) W))
(T (CONS {QUOTE TIMES) (CONS A W})) })
(COND ((NULL DIV) (RETURN A))
(T [(RETURN (SIMPTIMES (LIST (CONS (QUOTE TIMES) DIV) AN} )
DIVl
(COND ((AND (NUMBERP Y) [SETQ A (TIMES A Y)})} (GO IV}
({SETQ DIV (CONS Y DIV)) (GO 1)) )
DIV2
(SETQ DIV (CONS (SIMPEXPT (LIST Y (CAR (CDDADR ZZ)))) DIV))
(GO L) i)
DEFINE
{(LISIMPEXPT
{LAMBDA
(EXP)

(PROG (A B)
(SETQ B (SIMP (CADR EXP}}))
(SETU A (SIMP (CAR EXP)))
{COND
({EQP A 0) (RETURN 0))
{ {AND
(EQ (CAR A) (QUOTE EXPT))
(SETQ B (SIMPTIMES {LIST B8 {(CADDR A))))
(SETQ A (CADR A))
NIL )
NIL )
((EQP B 0) (RETURN 1})
((EQP B 1) (RETURN AY)
({EQP A 1) [RETURN 1))
({AND (NUMBERP A) (NUMBERP B))
(RETURN (COND
({NOT EXPTIND) (EXPT A B))
((AND (FIXP B) (GREATERP B -1)) (EXPT A B))
(T (LIST {QUOTE EXPT) A B)) 1))
({EQ (CAR A) (QUOTE TIMES))
{RETURN (CONS (QUOTE TIMES) (EXPTLGOP (CDR A)))) )
((AND EXPTSUM (EQ (CAR B8) (QUOTE PLUS)))
(RETURN
(CONS
(QUOTE TIMES)
[(MAPLIST (CDR B)
(FUNCTION {LAMBDA ({C) (SIMPEXPT (LIST A (CAR C)1})) 1))}



206

{{NOT (ATOM B))
(RETURN
{PROG (W)
{RE TURN
(COND
({NOT ({SETQ W
(M2

[}
(QUOTE {PLUS (COEFFT (C TRUEL}
(LOG (Bl TRUE) (A TRUE)} )
(COEFFP (E TRUE)) )
NIL 1))
(LIST (QUATE EXPT) A B) )
{ (NOT (EQUAL A [(SUBLIS W (QUOTE B1))))
(LIST (QUOTE EXPT} A B} )
(7
(SIMPTIMES (LIST
(SIMPEXPT (LIST (SUBLIS W {(QUCTE A)}
(SUBLIS w (QUOTE C)) 1))
(SIMPEXPT (LIST A (SUBLIS W {(QUQTE E})) 1311110 D)
(RETURN {LIST (QUOTE EXPT) A BI) 1))
(EXPTLOGP
(LAMBDA
(a)
{PROG23
(CSETG SIMPIND T)
(MAPLIST A (FUNCTION (LAMBDA (C) (SIMPEXPT (LIST (CAR C) 811)1))
(CSETQ SIMPIND NIL) 1)}

(S IMP
{LAMBODA
(EXP)
(PROG (2}
(RETURN
{COND
((ATOM EXP) EXP)
(SIMPIND EXP)
((NULL (SETQ Z (GET (CAR EXP) (QUOTE SIMP}I))
(CONS (CAR EXP)
(MAPLIST (CDR EXP) (FUNCTION (LAMBDA {(C) (SIMP (CAR C)1))) )}
({Ew Z (QUOTE SIMPTIMES)) (SIMPTIMES (CDR EXP))}
({EQ Z (QUOTE SIMPPLUS)) (SIMPPLUS (CDR EXPI))
{(EQ 2 (QUUTE SIMPEXPT)) (SIMPEXPT (CDR EXP)})
(T (APPLY Z (LIST (COR EXP}) (ALISTI)) )¥i1))
ATTRIB

(PLUS (SIMP SIMPPLUS))

ATTRIAB
(TIMES (SIMP SIMPTIMES))

ATTRIb
(2XPT (SIMP SIMPEXPTY})

DcFINE
{{(SIMPLOG
(LAMBDA
(a)
(PrROG (B}
{SETQ B {SIMP (CADR A)))
{SETQ A (SIMP (CAR A)Y)
{COND ({EQUAL A B) (RETURN 1))
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({EQP 8 1) (RETURN 0)})
{{cQ (CAR B) (QUOTE EXPT))
(COND ((EQUAL A (CADR B)) (RETURN [(CADDR B8)))
(T [RETURN (LIST (QUOTE TIMES)
{CADDR 8}

fLIST (QUOTE LOG) A {CADR B)) )))))
(T (RETURN {LIST (QUOTE LOG) & B})) ))1}))

ATTRI1B
{LOG (SIMP SIMPLOG))

DEFINE
({{SIMPTRIG
(LAMBDA
(A B C D)
(PROG (Y)
(RETURN (COND
{TEQUAL O B) C)
([ATOM D} (LIST A D))
{(SETQ Y
{CDR {SASSOC (CAR D)
(GET A (QUOTE SIMPTRIG))
(QUOTE NILL) 1))
{SIMP (SUBST (CADR D) {QUOTE X) Y)) )
(7T (LIST A D}) )))))
(SIMPTRIGL (LAMBDA (A) [SIMPTRIG (QUOTE SIN) 0 O (SIMP {CAR A)}))) ))

ATTRIE
{SIN (SIMP SIMPTRIG1))

ATTRIB
(COS (SIMP SIMPTRIG2)}

DEFINE
(C(SIMPTRIG2 (LAMBDA (A) (SIMPTRIG (QUOTE COS) O ) (SIMP {CAR A)))IN))

DEFINE
C((TIMESLOOP
(LAMBDA
(A 8)
(CONS
{QUOTE PLUS)
{MAPLIST B
(FUNCTION (LAMBDA (C)

(SIMPTIMES {PROG23 (CSETQ SIMPIND T) (LIST A (CAR C)) {CSETQ SIMPIND NIL})
{EXPAND

{LAMBDA
(A B)
(SIMPPLUS (MAPLIST B (FUNCTION {LAMBDA {C) (TIMESLOOP [CAR C)} A}}))) )
(PROG23 (LAMBDA (A B C) B)) )}
DEF INE
({{SIMPTAN (LAMBDA (A)
{COND ((EQ (CAAR A} (QUOTE ARCTAN)} {SIMP {CADAR A)})
(T (SIMPTRIG (QUOTE TAN) 0 O (SIMP {CAR A))}} D)}
{SIMPARCTAN {LAMBDA (A)

(COND ((EQ (CAAR A) (QUOTE TAN)} (SIMP (CADAR A)})
(T {(SIMPTRIG (QUUTE ARCTAN) O O (SIMP (CAR A))}) 11)))

ATTRIB
{TAN (SIMP SIMPTAN))

[BRRERD]



ATTRIB
(ARCTAN (SIMP SIMPARCTAN))

DEFINE
({(SIMPDIFFERENCE (LAMBDA (A)
(SIMPPLUS (LIST {CAR A)
{SIMPTIMES (LIST =1 {CADR A}))} 1)))
(SIMPQUOTIENT (LAMBDA (A)
(SIMPTIMES (LIST (CAR A)
(SIMPEXPT (LIST (CADR A) =1)) })))
{SIMPMINUS (LAMBDA (A) (SIMPTIMES (LIST -1 (CAR A)}))) 1))

ATTRIB
{DIFFERENCE (SIMP SIMPDIFFERENCE))

ATTRIB
(QUDTIENT (SIMP SIMPQUOTIENT))

ATTRIB
(MINUS (SIMP SIMPMINUS))

ATTRIB
(SIN (SIMPTRIG ((ARCSIN « X)
(ARCCOS EXPT (DIFFERENCE 1 {EXPT X 2)) 0.5E0}
(ARCTAN QUOTIENT X (EXPT (PLUS 1 (EXPT X 2)) 0.5E0)) )))

ATTRIB

(COS (SIMPTRIG ((ARCSIN EXPT (DIFFERENCE 1 (EXPT X 2)) 0.5E0Q)
(ARCCOS . X)
(ARCTAN EXPT (PLUS 1 (EXPT X 2)) -0.5E0) 1))

ATTRIB

(TAN (SIMPTRIG ((ARCSIN QUOTIENT X (EXPT (DIFFERENCE 1 (EXPT X 2}) 0.5E0))
(ARCCOS OUOTIENT (EXPT (DIFFERENCE 1 (EXPT X 2)) O0.5E0) X)
(ARCTAN .« X) }))

ATTRIB
({ARCSIN (SIMPTRIG ((SIN . X) (COS PLUS X (QUCTIENT PI 2010}

ATTRIB
(ARCCOS (SIMPTRIG ((SIN DIFFERENCE X (QUOTIENT PI 2)) (COS . X)}))

ATTRIB
(ARCTAN (SIMPTRIG ((TAN . X))})

DEF INE
(((NILL (LAMBDA NIL (QUOTE (NIL))I}DI}

DEF INE
({(SIMPARCSIN (LAMBDA (A} (SIMPTRIG (QUOTE ARCSIN} O O (SIMP {CAR A))))}}
{ SIMPARCCGS
(LAMBDA (A)
{SIMPDIFFERENCE (LIST (SIMPQUOTIENT (LIST (QUOTE PI) 2))
(SIMPARCSIN (LIST A)) 1))
{ SIMPARCCOT
(LAMBDA (A)
{SIMPDIFFERENCE (LIST (SIMPQUCTIENT (LIST (QUOTE PI) 2))
(SIMPARCTAN {LIST A))} 11)}})
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ATTRIB
(ARCSIN {SIMP SIMPARCSIN)}

ATTRIB
(ARCCOS (SIMP SIMPARCLOS))

ATTRIB
(ARCCOT {SIMP SIMPARCCOT))

DEFINE
(({MATCHSUM1 (LAMBDA {ASUM BSUM)
(PROG (Z W LENGTH MINLENGTH QUOT MINQUOT)

(COND ((NOT (EQUAL (LENGTH ASUM) (LENGTH BSUM)))

(RETURN NIL) 1))
{SETQ Z (CADR ASUM)}
(SETQ W {CDR BSUM))
(SETQ MINLENGTH 1000)

Lagp
(SETQ QUOT (SIMPQUOTIENT (LIST (CAR W) Z)))
(SETQ LENGTH
(LENGTH (COND ({EQ (CAR QuOT)
(QUOTE TIMES) )
(COR QUOTY )
{T (QUOTE (NIL))) 1))
(COND ((GREATERP LENGTH MINLENGTH) (GO A}})
(SETQ MINLENGTH LENGTH)
(SETQ MINQUOT QuoT)
A
(COND ((EQUAL MINLENGTH 1) (GO OUT)))
(SETQ W (CDR W))
(COND (W (GO LCOP)))
out

(COND ((M2 BSUM
(TIMESLCOP MINQUOT (CDR ASUM))
NIL )
{RETURN MINQUOT) )}
{RETURN NIL) I ))

DEFINE
(C{SIMPCOT (LAMBDA (X) (LIST {QUOTE EXPT) (SIMPTAN X)} =1)1)}))

ATTRIB
(COT (SIMP SIMPCOT))

DEFINE
({(REPLACE (LAMBDA {DICT EXP1)
(PROG23 (CSETQ SIMPIND T) (REPLAC EXP1) (CSETQ SIMPIND NIL)) )}
(REPLAC
({LAMBDA
(exP1)
(PROG (Z1)
(RETURN
(COND
((NULL EXP1l) NIL)
{INOT (ATOM EXPLY¥)

(COND
({EQ (CAR EXP1) (QUOTE EVAL))
{PROG2
(SETQ Z1 (EVAL (REPLAC (CADR EXP1)) (ALIST)))
{PROG23

(CSETQ SIMPIND NIL)
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(SIMP 21)
(CSETQ SIMPIND T) )))
({EQ (CAR EXP1) (QUOTE QUOTE#}) (CADR EXP1))
(T (PROG (Z1 W1)
{SETQ Z1 (REPLAC (CAR EXP1)))
(SETQ Wl (REPLAC (CDR EXP1)))
(RETURN (COND ((AND {EQ Z1 {CAR EXP1)) (EQ Wl {CDR EXP1)1})
EXPL )
(7T (SIMP1 (CONS Z1 W1)}) 1))}
( (NUM3ERP EXP1) EXP1)
({SETQ Z1 (SASSOC EXPl DICT (FUNCTION (LAMBDA NIL NIL))))
(COR 21} )
(T EXPL) ) ))
(SIMP1 (LAMBDA (EXP1)
(COND
[(ATOM EXP1) EXP1)
((NOT {GET (CAR EXPl} (QUOTE SIMP))} EXPY)
((EQ (CAR EXP1l) (QUOTE TIMES)) (SIMPTIMES (CDR EXPl}))}
({EQ (CAR EXP1) (QUOTE PLUS)) (SIMPPLUS [CDR EXP1)}}
((EQ (CAR EXP1) (QUOTE EXPT)) (SIMPEXPT (CDR EXP1)))
(T (APPLY (GET (CAR EXP1) (QUOTE SIMP)) (LIST (CDR EXPL))} (ALIST))) IN))

DEF INE
{((DVCOE
{LAMBDA (E P IND)
(PROG (X Y 2)
(SETQ ANS (CGNS NIL ANS))
(COND ((NOT (EQ (CAR E) (QUQTE TIMES)))
(SETQ E (LIST (QUOTE TIMES) E)) )}

(SETQ Z (CDR P})

Loge
(SETQ Z (CDR Z))
(COND ({NULL 2)
{COND ((TESTA (CADR P) {(SIMP (COPYl E)) NIL)
(RETURN (COND (IND (RESTORELl})}
{T (RESTORE2}) )))
(T (RETURN {RESTORE)}) 1))}
(SETQ X E)
(GO LOOP2)
Loorl
(SETQ X (CDR X))
LooP2
(COND ((NULL (CDR X)) (GO L6)))
{COND ((EQ (CAADR X) {QUQTE EXPT})} (GO L1)}
({M1 (CADR X) (CAR Z)) (GO L2)} )
(GO LOOPL)
L2
(SETQ ANS (CONS {CONS X [CDR X)) ANS))
(RPLACD X (CDDR X))
(GO LOOP}
L1
(COND ({EQ (CAAR Z) (QUOTE EXPT)) (GO L3))
{(NOT (M1 (CADADR X) (CAR 2))) (GO LOOP1)) )
{SETQ Y -1}
L7
{SETQ ANS (CONS (CONS X (CDR X)) ANS))
(RPLACD X
(CONS (SIMP (LIST (CAADR X)

{CADADR X)
(LIST (QUOTE PLUS)
(CAR {CCDADR X))}
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Y o1
{CDDR X) ))
(G0 LooP)
L3
{COND [{M1 {CADADR X} (CADAR Z)) (GC L5)))
(GO LOOP1)
LS
(COND ({M1 (CAR (CDDADR X}) (CADDAR Z)) (GO L2))}
(SETQ Y (SIMPMINUS {(LIST (CADDAR Z})})
(G0 L7
Lé
{CONC ( (M1 1 (CAR Z)) (GC LOOP)))
(SETQ E
(CONS {CAR E)
(CONS (SIMPEXPT (LIST (CAR Z) ~-1)) (CDR €)) ))
(GO LOGP) 1) )))
DEFINE
(U{DIFF1 (LAMBDA (EXP VAR} (PROG23 (CSET SIMPIND T) (DIFF EXP) (CSET SIMPIND NIL))) )
(DIFF
(LAMBDA
{(EXP)
(COND

((ATOM EXP) (COND ((EY EXP VAR) 1} (T 0)))
{{EQ (CAR EXP) (QUOTE EXPTY)
{COND
} ((FREE (CADDR EXP))
(SIMPTIMES (LIST
' (CADDR EXP)
(SIMPEXPT (LIST (CADR EXP) {SIMPPLUS (LIST (CADDR EXP) -1))))
(DIFF (CADR EXP)) )})
((FREE (CADR EXP))
(SIMPTIMES (LIST
Exp
(SIMPLOG (LIST (QUOTE E£) (CADR EXP)))
(DIFF (CADDR EXP)) 1))
{7
(SIMPTIMES
(LIST
EXP
(SIMPPLUS (LIST
(SIMPTIMES (LIST
{CADLR EXP)
{(DIFF (CADR EXP))
(SIMPEXPT (LIST (CADR EXP) -1)) )}
(SIMPTIMES (LIST (SIMPLOG (LIST (GUOTE E) (CADR EXP}))
{DIFF (CADDR EXP)) )}1))1})))
({EQ (CAR EXP) (QUOTE TIMES))
(SIMPPLUS
{MAPLIST
(CDR EXP)
(FUNCTION (LAMBDA (Y)
(SIMPTIMES {CONS (DIFF (CAR Y}) (CHOICE (CAR Y) (CDR EXP)1}) 1))))
((EQ (CAR EXP) (QUOTE PLUS))
(SIMPPLUS (MAPLIST (CDR EXP) (FUNCTION (LAMBDA (Y) (DIFF (CAR Y}))
(T {APPLY (GET (CAR EXP) (QUOTE DIFF)) (LIST (CDR EXP)) (ALIST))} )
(CHOICE (LAMBDA (A B)
(COND (({EQ A {CAR B)) (CDR B)) (T (CONS (CAR B) (CHOICE A (CDR B)}))) ))))

11y )
3

DEFINE
(({BIGDIFF (LAMBDA (A 8)
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(SIMPTIMES (LIST (DIFF (CAR A))
(SUBST {(CAR A) (QUOTE X) B} 1)) ))

DEF INE
{((DIFLOG (LAMBDA (A}
{PROG NIL (SETQ A (CDR A)) (RETURN (BIGDIFF A {QUOTE (EXPT X —-1))})}
(DIFSIN (LAMBDA (A) (BIGDIFF A (QUOTE (COS X)))})
(DIFCOS {LAMBDA (A) (BIGDIFF A (QUCTE (TIMES -1 (SIN X)))}})
(DIFTAN (LAMBDA (A) (BIGDIFF A {(QUOTE (EXPT (SEC X} 2))1))
(DIFSEC (LAMBDA {A) (BIGDIFF A (QUOTE (TIMES (SEC X) (TAN X))})})

)}

(DIFARCTAN (LAMBDA (A) (BIGDIFF A (QUOTE {EXPT (PLUS 1 [EXPT X 2)) —-110)1))

(DIFARCSIN (LAMBDA (A)

(BIGDIFF A (QUOTE (EXPT (PLUS 1 (TIMES -1 (EXPT X 2))) -0.5E0)})
(DIFCSC (LAMBDA (A) (BIGDIFF A (QUOTE (TIMES -1 (COT X} (CSC X)1})
(DIFCOT (LAMBDA (A) (BIGDIFF A (QUOTE (TIMES -1 (EXPT {CSC X} 21 ))
(DIFARCCOS (LAMBDA (A) (MINUS (DIFARCSIN A)}))

(DIFARCSEC
{LAMBDA (A)
(BIGDIFF A
(QUQTE (EXPT (TIMES X
(EXPT (DIFFERENCE (EXPT X 27 1)
0.5E0 })

1)
)
1))

-1 1N
(OIFARCCSC (LAMBDA (A) (SIMPMINUS (LIST (DIFARCSEC A)))})
(DIFINTEGRAL (LAMBDA (X)
(COND ((EQ (CADR X) VAR) (CAR X))
{T (SIMP {(LIST (QUOTE INTEGRAL) (DIFF {(CAR X)) (CADR X1})) }})))

ATTRIB
(INTEGRAL (DIFF DIFINTEGRAL)}

ATTRIB
(SIN (DIFF DIFSIN))

ATTRIB
(COS (DIFF DIFCOSH)

ATTRIB
{TAN (DIFF DIFTAN})

ATTRIB
(SEC (DIFF DIFSEC))

ATTRIB
({ARCTAN (DIFF DIFARCTAN))

ATTRIB
(ARCSIN (DIFF DIFARCSIN))

ATTRIB
(LOG (DIFF DIFLOG))

ATTRIB
(CSC (DIFF DIFCSC))

ATTRIB
{COT (DIFF DIFCOT))

ATTRIB
(ARCCOS (DIFF DIFARCCOS))
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ATTRIB
{ARCSEC (DIFF DIFARCSEC))

ATTRI1B
(ARCCSC (DIFF DIFARCCSC))

DEFINE
(({EXPAND2 (LAMBDA (EXP)} [PROG23 (CSET SIMPIND T} {EXPAND1 EXP) (CSET SIMPIND NIL)})
)
{EXPANDL
(LAMBDA
(ExP}
{COND
({ATOM EXP) £XP)
{{AND (EQ (CAR EXP) (QUQTE EXPT})
(NOT (ATOM (CADR EXP))}
(INTEGERP (CADDR EXP)}
(EQ (CAADR EXP) (QUOTE PLUS))
{GREATERP (CADDR EXP) 0)
(LESSP (CADDR EXP) 6) }
{EXPANDEXPT (CADR EXP) {(CADDR EXP}) )
({EQ (CAR EXP)} (QUODTE TIMES))
(COND ((CODR EXP)
{PRODEXPAND (EXPANDY (CADR EXP))
(EXPANDL (CONS {QUOTE TIMES) (CDDR EXP))) ))
((COR EXP} (EXPANDL (CADR EXP)})}
(T NILY ))
(T (SIMP1 (MAPLIST EXP (FUNCTION (LAMBDA (C) {EXPANDL (CAR C)})))}1) )}
{PRUDEXPAND (LAM3DA (A B)
{COND
({NCT (OR (EQ (CAR A) (QUGTE PLUS)) (EQ (CAR B) (QUOTE PLUS}I)}
(SIMPTIMES {(LIST A 8)) )
{(NOT (EQ (CAR A) (QUUTE PLUS))) (TIMESLCOP A (CDR B)))
L(NGT (EQ (CAR B) (QUOTE PLUS))! (TIMESLOOP B {COR A}))
(T {EXPAND (CDR A) (CDR B)}) 1))}

DEFINE
({(RATIONALIZE
(LAMBDA
(EXP)
(PROG (W}
{RETURN
{COND
(INOT (EG {CAR EXP) (QUGTE PLUS})) NIL)
((SETQ
L}
(M2
EXxP
(QUOTE
(PLUS
{TIMES
{(COEFFTT
(c
(FUNCTION
{LAMBDA
[{o8]
(M1
C
(QUOTE
(EXPT

(AA (FUNCTION (LAMBDA (AA)
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(AND (NOT (EQUAL AA 1))
(NOT (EQUAL AA 0}) ))))
(N (FUNCTION (LAMBDA (N}
(AND {NUMBERP N) (LESSP N 01} }11)}1)))))
(COEFFTT (8 TRUE)} )
(COEFFPT (A TRUED)) })
NIL 1)
(REPLACE W (QUOTE (TIMES (PLUS (QUUTIENT A C} B) C))} )
(T NILY Dan))

FORM,SIN,DERIVATIVE-DIVIDES

DEFINE
(((TRUEL (LAMBDA (A} (OR (NOT (NUMBERP A)) {NOT (ZERCP A})
(INTEGERPL (LAMBDA (A) (INTEGERP (SIMPTIMES (LIST 2 A)})
(VARP (LAMBDA (A) (EQUAL A VAR)))
(FREEL (LAMBDA (A) (AND (FREE A) (DR (NOT (NUMBERP A)) (NOT (ZEROP A))I))))
(FIXP1l (LAMBDA (A) (AND (NUMBERP A) (FIXP A))))}
(MASTER (LAMBDA (A)
{PROG NIL
(FILEWRETE {QUOTE MANOVE) (QUOTE LISP) {QUOTE MASTER})
(FILEAPND
(QUOTE MANOVE)
(QUOTE LISP)
[LIST (CONS {CAR A} (TRANSL (SIMP (CDR A})))) )
(CHAIN (QUOTE ((SAVE MOSES T} (R FULMAN MANQOVE))))
(FILESEEK (QUUTE MANOVE) (QUOTE ANS))
(RETURN {SIMP (UNTR (READ})))} 11))1})

| BB
1)

DEFINE
{ ({FORM
(LAMBDA
(EXPRES)
(COND
((FREE EXPRES} NIL)
({ATOM EXPRES) NIL}
({MEMBER (CAR EXPRES) (QUOTE (PLUS TIMES)))
((LAMBDA (L)
(PROG LY}
LGOP
(COND
((SETQ Y {(FORM {(CAR L})) [(RETURN Y))
((NOT (SETQ L (CDR L)}}) (RETURN NIL))
(T (60 LOQP)) )))
(CDR EXPRES) )
({MEMBER (CAR EXPRES) (QUOTE {LOG ARCTAN ARCSIN}))
{COND
({SETQ ARG
(M2
EXpP
(LIST
{QUOTE TIMES)
(QUOTE (COEFFTT (C RATBPRIME) )}
(CONS {CAR EXPRES)
(COND {((EQ (CAR EXPRES) (QUOTE LQG))
(CONS (CADR EXPRES) (QUOTE ({B RAT8)))) )
(T (QUOTE (B RATS8)))) I ))
NIL })
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(RATLOG EXP VAR (CONS {CONS (QUOTE A) EXPRES) ARG)) )

(7
(PROG (Y Z)
(COND
((SETQ Y

(FORM (COND ((EQ (CAR EXPRES) (QUOTE LOG)) (CADDR EXPRES))
{T (CADR EXPRES)}) 1)}
(RETURN Y) )
{(AND
(EQ (CAR EXPRES) (QUOTE LOG))
(SETQ Z (M2 (CADDR EXPRES) C NIL))
(FREE (CADR EXPRES))
(SETQ ¥
(M2
EXP
{QUOTE (TIMES (COEFFTT (C RAT8)) (COEFFTTY (D ELEM))) )
NIL 1))
{RETURN
{({LAMBDA
(A 8 C D BASE)
{SUBST
EXPRES
VAR
(INTEGRATE
(SIMPTIMES (LIST
(SUBST
(LIST
{QUOTE QUOTIENT)
(LIST
(QUOTE DIFFERENCE)
(LIST (QUOTE EXPT) BASE VAR)
A}
8 )
VAR
c)
(LIST
(QUGTE QUOTIENT)
(LIST (QUOTE EXPT) BASE VAR)
8
(SUBST VAR EXPRES D) )}
VAR 1))
(COR (SASSOC (QUOTE A) 2))
{CDR (SASSOC (QUOTE B)
(CDR (SASSOC (QUOTE C) Y))
(CDR (SASSOC (QUOTE D) Y))
{CADR EXPRES) 1}}
(T (RETURN NIL)) )11 ))
({OPTRIG (CAR EXPRES))
(COND
(INOT (SETQ W (M2 (CADR EXPRES) C NIL))) (FORM (CADR EXPRES)))
(T (PROG2 (SETQ POWERLIST T) (MONSTERTRIG EXP VAR (CADR EXPRES)})) ))
(CFIXP1 (CADDR EXPRES)) (FORM {CADR EXPRES)))
((FREE (CADR EXPRES))
(COND
((SETQ W
(M2
EXP
(QUOTE (TIMES (COEFFTT (R RAT8)) (EXPT (BASE FREE) (P POLYP))) )
NIL )
(CALLALGORT (SUBLIS W (QUOTE (R P BASE})) VAR) )
({M2 (CADDR EXPRES) C NIL) (SUPEREXPT EXP VAR (CADR EXPRES)))
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(T (FORM (CADDR EXPRES))) )}
{{NOT (RAT8 {CADR EXPRES))) (FORM [CADR EXPRES)))
{{AND (SETQ W (M2 (CADR EXPRES) RATROOTFORM NIL))
(ODENOMFIND (CADDR EXPRES)) )
(PRDOG2 (SETQ POWERLIST T) [RATROOT EXP VAR (CADR EXPRES) W)) )
({NOT (INTEGERP1 (CADDR EXPRES)))
[{COND ((M2 EXP CHEBYFORM NIL) (CHEBY EXP VAR})
(T (FORM (CADR EXPRES))) ))
((SETQ W (M2 (CADR EXPRES) D NIL)})
(COND
({SETQ ARG
(M2
EXP
(QUOTE (TIMES
{EXPT (VAR VARP) -1)
(COEFFTT (AA FREE))
(EXPT (SQ M1 D) -0.5E0} })
NIL )}
(SIMP
(SUBST
(LIST {(QUOTE EXPT) VAR -1)
VAR
(ALGEB2
{LIST
{QUOTE TIMES)
-1
(REPLACE ARG (QUQCTE AA))
(LIST
(QUATE EXPT)
(SETQ Y
(REPLACE ARG
(QUOTE (PLUS (TIMES A (EXPT VAR 2)) (TIMES B VAR) C) )))
-0.5€E0 ))
VAR
Y
(REPLACE ARG
(QUOTE ({(QUOTE+ C) . A) ({QUOTE= 8) . B) ((QUOTE= A) . C)} 1))}})
{T (ALGEB2 EXP VAR (CADR EXPRES}) W)} ))
({SETQ W (M2 {CADR EXPRES) E NIL))
(PROG2 (SETQ POWERLIST T) {ROOTLINPROD EXP VAR {CADR EXPRES) W}) }
({M2 EXP CHEBYFORM NIL) (CHEBY EXP VAR})
((NOT (M2 (SETQ W (EXPAND2 (CADR EXPRES})) (CADR EXPRES) NIL))
(PRDG2
(SETQ £XP (SIMP {SUBST W (CADR EXPRES) EXP)))
(FORM (SIMP (LIST (QUOTE EXPT) W (CADDR EXPRES))I) })
{(SETQ W (RATIONALIZE (CADR EXPRES)))
(PROG2
(SETQ EXP (SIMP (SUBST W (CADR EXPRES) EXP)))
(FORM (SIMP (LIST (QUOTE EXPT) W (CADDR EXPRES)I))) ))
(T NILY D21 D)

DEF INE
(({INTEGRATE
(LAMBDA
(EXP VAR)
(PROG (Y ARG POWERLIST 8 W C O E RATROOTFORM CHEBYFORM}
(COND ((FREE EXP) (RETURN (SIMPTIMES (LIST EXP VAR})}})
(COND
((NOT (EQ (CAR EXP) (QUOTE PLUS))} (GO D}}
(7
(RETURN
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(SIMPPLUS (MAPLIST (CDR EXP)
{FUNCTION (LAMBDA (C) (INTEGRATEL (CAR C)))) 1))

D
(COND ((SETQ Y {DIFFDIV EXP VAR)) (RETURN Y}})
(SETQ Y
(COND ((EQ (CAR EXP) (QUOTE TIMES)) {CDR EXP)) (T {LIST EXP)}) )
{SETQ C
(QUOTE (PLUS (COEFFPT (B FREE) (X VARP)) (COEFFPT (A FREE)))) }
(SETQ RATROOTFORM
(QUOTE (TIMES
(COEFFTT (E FREE)}
(PLUS (CDEFFPT (A FREE) (VAR VARP)) (COEFFPT (B FREE}))
(EXPT (PLUS (COEFFPT (C FREE) (VAR VARP)}) (COEFFPT (D FREE)))
-1 1))
(SETQ
CHEBYFOKM
{QUOTE (TIMES
(EXPT (VAR VARP) (Rl NUMBERP})
(EXPT (PLUS (TIMES (COEFFTT (C2 FREE)) [EXPT (VAR VARP) {Q FREE1)})
(COEFFP (C1l FREE)) )
(R2 NUMBERP) }
{COEFFTT (A FREE)} 1))
{SETQ D
(QUOTE (PLUS
(COEFFPT (C FREE) {EXPT (X VARP) 2))
(COEFFPT (B FREE) (X VARP))
(COEFFPT (A FREE)) )}
(SETQ E
(QUOTE (TIMES (PLUS (COEFFPT (A FREE) (VAR VARP)) (COEFFPT (B FREE)))
{PLUS (COEFFPT (C FREE] (VAR VARP)) [COEFFPT (D FREE})) 1))
Lgop
(COND
({RAT8 (CAR Y)} (GO SKIP))
({SETQ W (FORM (CAR Y}})} (RETURN W))
(T (GO SPECIAL)) )
SKIP
{SETQ Y (CDR Y))
(COND (({MULL Y)
(RETURN (COND ((SETQ Y {POWERLIST EXP VAR)) Y)
(T (MASTER (CONS VAR EXP)}) M)
(GO LOOP}
SPECIAL
{RETURN {COND
(INOT (M2 EXP (SETQ Y (EXPAND2 EXP)) NIL}) (INTEGRATE Y VAR))
((AND (NOT POWERLIST) (SETQ Y (POWERLIST EXP VAR}}) Y)
({SETC Y (PARTS EXP VAR}) Y)
(T (LIST (QUOTE INTEGRAL)} EXP VAR)) ))})))}
DEF INE

({{RAT8 (LAMBDA (EXP)
(COND ((FREE EXP) T}
((ATOM EXP) T}
({MEMBER (CAR EXP) (QUOTE (PLUS TIMES)))
[(AND {RAT8 (CADR EXP))
(COND ({CDDR EXP)
(RAT8 (CONS (CAR EXP) (CDDR EXP))) )
(v 1) )
((NOT (EQ fCAR EXPJ (QUOTE EXPT))) NIL)
((FIXP1 (CADDR EXP)) (RAT8 (CADR EXP)})
(T NIL) 200))
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DEFINE
((UCINTEGRATEL (LAMBDA (A) (INTEGRATE A VAR))}))

DEFINE
({{POLYP (LAMBDA (EXP}
{COND
((FREE EXP) T}
({ATOM EXP) T)
((MEMBER (CAR EXP)} (QUOTE (PLUS TIMES)))
(AND (POLYP (CADR EXP))
(OR (NULL (CODR EXP)} (POLYP {(CONS {CAR EXP) (CODR EXP)))) )}
((EQ (CAR EXP)} (QUOTE EXPT))
{ AND
(NUMBERP (CAODR EXP))
(INTEGERP (CADDR EXP})
(GREATERP (CADDR EXP) 0)
(POLYP (CADR EXP)} 1))
(T NIL) )})
(CALLALGORT
(LAMBDA
{A VAR)
{(PROG NIL
[FILEWRITE (QUOTE MANOVE) (QUOTE LISP) (QUOTE SUPERALGORT))
(FILEAPND
(QUOTE MANOVE}
{QUUTE LISP)
(LIST
( TRANSL (CAR A)}
(TRANSL (SIMPTIMES (LIST (CADR A) (SIMPLOG (LIST (QUOTE E) (CADDR A}))}) )
VAR })
(CHAIN (QUOTE ({SAVE MOSES T) (R FULMAN MANOVE))))
(FILESEEK (QUOTE MANOVE) {(QUOTE ANS)}
(RETURN (SIMP (UNTR (READ)}I) 1)} D)

DEF INE
(({SIN (LAMBDA (EXP VAR) (INTEGRATE (SLMP EXP) VAR}))

{OPTRIG (LAMBDA (A) (MEMBER A (QUOTE (SIN COS SEC TAN CSC COT)))))
(ELEM

(LAMBDA
(A)
{COND
{{FREE A) T}
({ATOM A} NIL)
({M2 A EXPRES NIL) T}
(T (EVAL {(CONS {(QUOTE AND}

(MAPLIST (COR A) (FUNCTION (LAMBDA (C) (ELEM (CAR C))))) }
NIL 1)) ))

DEF INE
(((FREE (LAMBDA (A}
{COND ((ATUM A) (NOT (EQ A VAR))}

tT (AND (FREE (CAR A)) (FREE {(CDR A}})) )))
{VARP [(LAMBDA {A) (EQ A VAR))} )

DEF INE
(((DEFINITEINTEGRAL
(LAMBDA (EXP VAR LOWER UPPER)
(PROG (Y}
(SETQ Y (PRINT (INTEGRATE EXP VAR)))
(RETURN {SIMPDIFFERENCE (LIST (SUBST UPPER VAR Y)
{SUBST LOWER VAR Y) 1)1 1))
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(DOUBLEINTEGRAL
(LAMBDA (EXP L)
{PROG (Y)
(SETQ Y
{DEFINITEINTEGRAL EXP
(CAAR L)
(CADAR L}

{CAR (CDDAR L)) 1)
(RETURN (DEFINITEINTEGRAL Y

(CAADR L)
(CADADR L)
(CAR (CDDADR L)) ) ))))))
DEFINE
(C CINTEGRALLOOKUP
(LAMBDA
(EXP)
(COND

({EQ (CAR EXP) (QUOTE LOG})
(SIMP (SUBST

(CADDR EXP)

{(QUOTE X)

(QUOTE (PLUS (TIMES X (LOG E X)) (TIMES -1 X))} }})
((EQ (CAR EXP) (QUOTE PLUS)) (SIMPTIMES (LIST O0.5E0 EXP EXP)))
((EQ (CAR EXP) (QUOTE EXPT})

(COND
({FREE (CADR EXP}}
(SIMPTIMES (SUBST
EXP
(QuOTE A)
(SUBST (CADR EXP} (QUOTE B) (QUOTE (A (EXPT (LOG E B) =1)1})) )))
((EQP (CADDR EXP) -1)
(SIMP (SUBST (CADR EXP} (QUOTE X) (QUOTE (LCG E X)))) )
(T (SIMP {SUBST
(SIMPPLUS (LIST (CAGDR EXP) 1})
{QUOTE N)
(SUBST
(CADR EXP)
(QUOTE X)
(QUOTE (TIMES (EXPT N =1} (EXPT X N})} D)D)}
(T (SuBST
(CADR EXP)
(QUOTE Xx)
{COR (SASSOC
(CAR EXP)
(QUOTE ((SIN TIMES -1 (COS X))
(COS SIN X)
{TAN LOG E (SEC X))
(SEC LOG E (PLUS (SEC X) (TaN X))
{COT LOG E (SIN X)}

(CSC LOG E (PLUS (SEC X) (TAN X))) ))
(QUOTE NILL) )))))))
(DIFFDIV
(LAMBDA
{EXP VAR)
{PROG (Y A X VD Z WR)
(SETQ X
(M2
EXP

(QUOTE (TIMES (COEFFTT (A FREE)}) (COEFFTT (B TRUE})})
NIL ))
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(SETQ A (CDR (SASSOC (QUOTE A} X))
(SETQ EXP (CDR (SASSOC (QUOTE 8) X)))
{COND
((AND
(EQ (CAR EXP) (QUOTE EXPT))
[EQ (CAADR EXP) {QUOTE PLUS))
(INTEGERP (CADDR EXP))
(LESSP (CADDR EXP) 6)
(GREATERP (CADOR EXP} 0) )
(RETURN (SIMPTIMES (LIST A
(INTEGRATE (EXPANDEXPT (CADR EXP) (CADDR EXP)) VAR} ))1}))
(SETQ EXP
(COND ((EQ (CAR EXP) (QUOTE TIMES}) EXP)
(T (LIST (QUOTE TIMES) EXP}} )
(SETQ Z (CDR EXP})

(SETQ Y (CAR Z})
(SETQ R
(LIST (QUOTE PLUS)
{CONS (QUOTE COEFFPT)
(CONS (QUOTE (C FREE1)) (CHOICE Y (COR EXP))) 1))
{COND
((SETQ W (M2 (DIFF1 Y VAR) R NIL))
(RETURN
(SIMPTIMES
(LIST
Y
A

Y
(SIMPEXPT (LIST (SIMPTIMES (LIST 2 (CDR (SASSOC (QUOTE C) W) )N
=1 1))
(COND
[ (MEMBER (CAR Y) (QUOTE (EXPT L0OG}))
(COND
({FREE (CADR Y)) (SETQ W {CADDR Y}))
({FREE (CADDR Y)) (SETQ W (CADR Y}))
(T {SETQ w C)) 1))
({ (MEMBER (CAR Y) (QUOTE (PLUS TIMES}))) (SETQ W Y))
(T {(SETG W (CADR Y})} )
(COND
({SETQ
W
(COND
( {AND
(EQ {CAR (SETQ X {DIFF1 W VAR))) (QUOTE PLUS))
(EQ
(CAR (SETQ V (CAR (SETQ O (CHOICE Y (COR EXP1)))))
{QUOTE PLUS) )
(NOT (CDR D)} )
(COND ({SETQ D (MATCHSUM (CDR X) (CDR V)))
(LIST (CONS (QUGOTE C) D)) )
(T NIL) ))
(T (M2 X R NIL)) ))
(RETURN
(COND
((NULL (SETQ X (INTEGRALLCCKUP Y))} NIL}
()
(SIMPTIMES
(LIST
X
A
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(COND

(LEQ W T) 1)

(T (SIMPEXPT (LIST (COR (SASSOC {(QUOTE C) W)) =111} 1)1
({SETQ Z (CDR Z})
(COND ({NULL Z} {(RETURN NIL)))
(GO A} 1))})

DEFINE
({(TRUE (LAMBDA (A) T}))}

DEFINE
[{IMATCHSUM
(LAMBDA
(ALIST BLIST)
{PROG (R S C D}
(SETQ S
(M2
{CAR ALIST)
(QUOTE (TIMES (COEFFTT (A FREE)) (COEFFTT (C TRUE)}))
NIL ))
(SETQ C (CDR (SASSOC {QUOTE C) S)))
(COND
((NOT (SETQ R
(M2
(CONS (QUOTE PLUS) BLIST)
(LIST
(QUOTE PLUS)
(CONS (QUOTE TIMES)
(CONS
(QUOTE (COEFFTT (B FREEL1)))
(COND ((EQ (CAR C} (QUCTE TIMES)} (CDR C))
(T (LIST C)) 1))
(QUOTE (D TRUE)) )
NIL 1))
(RETURN NIL) ))
(SETQ D
(SIMP (LIST
{QUOTE TIMES)
{SUBLIS S (QUOTE A))
{LIST (QUOTE EXPT} (SUBLIS R (QUOTE 8)) -1) }))

(COND ({M2 (CONS (QUOTE PLUS) ALIST) (TIMESLOOP D BLIST) NIL)
(RETURN D} )

(T (RETURN NIL)) 1)))))

DEFINE
({{EXPANDEXPT {LAMBDA (A N)
(PROG (Y)
(SETQ Y A)
Laop

(SETQ N (SUB1L N))
(COND ((ZEROP N) (RETURN Y)1))
(SETQ Y
(EXPAND (CDR A)
(COND ((EQ (CAR Y)
(QUOTE PLUS) )

(CODR Y) )

(T (LIST Y)) 1))
(GO LOGP) )))))

METHODS 1~9 OF SIN'S SECCND STAGE
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OEF INE
({(SUPEREXPT
(LAMBDA
[EXP VAR BASE)
(PROG (EXPTFLAG Y W) N
{SETQ Y (ELEMXPT EXP))
{COND {EXPTFLAG {RETURN NIL})}}
(RETURN
{SIMP
{SUBST
(LIST (QUOTE EXPT) BASE VAR)
VAR
{INTEGRATE
(SIMPQUOTIENT
(LIST Y
(SIMPTIMES (LIST VAR (SIMPLOG (LIST (QUOTE E) BASE)})) ))
VAR 111 h)
{ELEMXPT
(LAMBDA
(EXP)
(COND
({FREE EXP) EXP)
({ATOM EXP) (SETQ EXPTFLAG T))
{{NOT (EQ (CAR EXP) {(QUOTE EXPT)))
(CONS (CAR EXP)
(MAPLIST (CDR EXP) (FUNCTION (LAMBDA (C) (ELEMXPT (CAR C))))) 1)
({NOT {(FREE (CADR EXP)))
(LIST (QUUTE EXPT) (ELEMXPT (CADR EXP)) {(ELEMXPT {(CADDR EXP})) )
({NOT (EQ (CADR EXP) BASE))
(ELEMXPT (LIST
(QUOTE EXPT)
BASE
(SIMP (LIST
(QUOTE TIMES)
(LIST (QUOTE LOG) BASE {CADR EXP)}
{CADDR EXP) )})})
(INOT (SETQ W
(M2
(CADDR EXP)
{(QUOTE (PLUS (COEFFPT (A FREE) (VAR VARP)) (COEFFPT (B FREE))))
NIL )))
(LIST (CAR EXP) BASE (ELEMXPT (CADDR EXP))) )
(T (SIMP (SUBST
BASE
(QUOTE BASE)}
(SUBLIS W (QUOTE (TIMES (EXPT BASE B) (EXPT VAR A)}}} H1)1HY)

DEFINE

(tesussylo
(LAMBDA (EXP)
(COND

((ATOM EXP) EXP)
({AND (EQ (CAR EXP) (QUOTE EXPT)) (EQ (CADR EXP) VAR))
(LIST (CAR EXP) VAR (INTEGERP {QUOTIENT (CADDR EXP) D))) )
(T (MAPLIST EXP (FUNCTION (LAMBDA (C) (SUBST10 (CAR C)))}}} 1))
(POWERLIST
{LAMBDA
(EXP VAR)
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(PROG (Y Z C D POWERLIST 8)
(SETQ Y
(M2
EXP
(QUOTE (TIMES
(EXPT (VAR VARP) (C INTEGERP))
(COEFFTT (A FREE))
(COEFFTT (B TRUE}) })
NIL 1))
(SETQ B (CDR (SASSOC (QUOTE B) Y)))
(SETQ C (CDR (SASSOC (QUOTE C) Y)))
(COND ((NOT [SETQ Z (RATIO 8))) {RETURN NIL)))
(SETQ D (LISTGCD (CONS (ADD1 C) POWERLIST)))
(COND (INULL D} (RETURN NIL)}))
(RETURN
{SIMP
(SUBST
(LIST (QUOTE EXPT) VAR D)
VAR
(INTEGRATES (SIMP (LIST
(QUOTE TIMES)
(EXPT D -1)
(COR (SASSOC (QUOTE A) Y))
(LIST {QUOTE EXPT) VAR (SUB1 (QUOTIENT (ADD1l C) D}))
(SuBsST10 B) })
VAR )11 }))
(RAT10 {(LAMBDA (EXP)
{COND
((FREE EXP} T)
(CATOM EXP) NIL)
({EQ (CAR EXP) (QUOTE EXPT)
({COND
({EQ (CADR EXP) VAR)
{COND {(INTEGERP (CADDR EXP))}
(SETQ POWERLIST (CONS (CADDR EXP) POWERLIST)) )
(T NIL) ))
(T (AND (RATIO (CADR EXP)) (RATL10 (CADDR EXP)))) )}
({MEMBER (CAR EXP) {QUOTE (PLUS TIMES))}
({AND (RAT10 (CADR EXP)}
(OR {NULL (CDDR EXP)) (RAT10 (CONS (CAR EXP) (CDDR EXP)))) 1))
((EQ (CAR EXP) (QUOTE LOG)) (RAT10 (CADDR EXP)})
(T (RAT1O0 (CADR EXP))) 1)}
(LISTGCD (LAMBDA (POWERLIST)
(PROG (D)
(SETQ D (CAR POWERLIST))

LoopP
(SETQ POWERLIST (CDR POWERLIST))
(COND ((ONEP D) (RETURN NIL)))
(COND ({NULL POWERLIST) {(RETURN D)))
(SETQ D (GCD D (CAR POWERLIST)))
(GO LoaoP) Y1)
DEFINE

(({INTEGRATES (LAMBDA (EXP VAR)
(COND ((RAT8 EXP) (MASTER (CONS VAR EXP)})}
(T (INTEGRATE EXP VAR)) 1))))

DEFINE
(((ABSOLUTE (LAMBDA (A) (COND ((LESSP A O} (MINUS A)} (T AVIN)I))
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DEFINE
({{INTEGERP (LAMBDA (A}
(PROG (Y)
(SETQ Y 1)
(COND ({NOT (NUMBERP A)) {RETURN NIL})
((NOT (FLOATP A)}) (RETURN A)) )
C

{COND

((EQP Y A) (RETURN Y})

((LESSP Y A} (GO A))

{(NOT (GREATERP (DIFFERENCE Y A) 0.98999999E0)) (RETURN NIL)} )
{SETQ Y (SuBl Y))
(60 C)

{COND ((NOT (GREATERP (DIFFERENCE A Y) 0.98999999E0)} (RETURN NIL)) )
(SETQ Y (ADDLl Y))
(G0 C) 1))
(FIXP1 (LAMBDA [(A) (AND (NUMBERP A} (FIXP A} ))
(RAT3 (LAMBDA (EXP IND)
(COND
((FREE EXP) T)
{(ATOM EXP) IND)
( (MEMBER (CAR EXP) (QUOTE (TIMES PLUS)))
(AND {RAT3 (CADR EXP) IND)
{OR (NULL (CDDR EXP)) (RAT3 (CONS (CAR EXP) (CODR EXP)) INDJ}} 1))
{{NOT {EQ (CAR EXP) (QUOTE EXPT)})
(COND ((EQ (CAR EXP) (QUOTE LOG)) (RAT3 (CDDR EXP) T)}
(T (RAT3 (CADR EXP} T)} )}
((FREE (CADR EXP))} (RAT3 (CADDR EXP) T))
((FIXPl (CADDR EXP)) (RAT3 (CADR EXP) IND})
({AND (M2 (CADR EXP) RATROOT NIL) (DENOMFIND (CADDR EXP))})
(SETQ ROOTLIST (CONS (DENOMFIND (CADDR EXP)) RCOTLIST)) )
(T (RAT3 (CADR EXP) NIL}) ) ))
{SUBST4 {LAMBDA (EXP)
(COND
({FREE EXP) EXP)
((ATOM EXP)} A}
((NOT (EQ (CAR EXP) (QUOTE EXPTI))
(MAPLIST EXP (FUNCTION (LAMBDA (C) (SUBST4 {CAR CI}}}) )
({M2 (CADR EXP) RATROOT NIL)
(LIST (CAR EXP) B (INTEGERP (TIMES K (CADDR EXP))}} )
T (LIST {CAR EXP) (SUBST4 (CADR EXP)) {(SUBST4 (CADDR EXP))}} 1))
(FINDINGK (LAMBDA (LIST)
(PROG (K}
(SETQ K 1)
A
(COND ({NULL LIST) (RETURN K}))
(SETQ K (QUOTIENT (TIMES K (CAR LIST)) {(GCD K {CAR LIST))}}
{SETQ LIST (CDR LIST)}

(GO A) 1))
{DENOMFIND (LAMBDA (K)
(PROG (Y}
(COND ((NOT (NUMBERP K)) (RETURN NIL})}
(SETQ Y 1)

{COND ((INTEGERP (TIMES K Y)) (RETURN Y1})
(SETQ Y (ADD1 Y))
[COND ({LESSP Y 25) {GO A}})
(RETURN NIL) I))
(GCD {LAMBDA (A B)
(PROG NIL
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(COND ((ZEROP A) (RETURN {ABSOLUTE B))}})
{SETC 8 (REMAINDER B A}}
(COND ((ZEROP B) (RETURN (ABSOLUTE A))}))
{SETQ A (REMAINDER A 8))
(GO A} ')}
(RATROOT
(LAMBDA
(EXP VAR RATROCT W)
(PROG (ROOTLIST K Y W1}
(COND ((SETQ Y (CHEBY EXP VAR)) (RETURN Y)})
(COND (INOT (RAT3 EXP T}) (RETURN NIL)))
{SETQ K (FINDINGK ROOTLIST))
(SETQ Wl (CONS (CONS (QUOTE K) K} W))
(SETQ
Y
(SUBST41
EXP
{SIMP (SUBLIS Wl
(QUOTE (QUOTIENT
(DIFFERENCE B (TIMES D (EXPT VAR K)))
(DIFFERENCE (TIMES C (EXPT VAR K)) A) 1))
VAR 1))
(SETQ
Y
(INTEGRATE
(SIMP
(LIST
(QUOTE TIMES)
Y
{suBLIS
Wl
(QUOTE {(QUOTIENT
(TIMES E
{DIFFERENCE
(TIMES A D K {EXPT VAR (PLUS -1 K)))
(TIMES B C K (EXPT VAR (PLUS -1 K})) 1))
(EXPT (DIFFERENCE (TIMES C (EXPT VAR K}) A) 2} 1))
VAR )
(RETURN (SIMP (SUBST
(SIMP (LIST (QUOTE EXPT) RATROOT (LIST (QUOTE EXPT) K -1)))

VAR
Y O R
DEFINE
({(SUBST41 (LAMBDA (EXP A B) (SUBST4 EXP})))}
DEFINE
(({CHEBY
{LAMBDA
(EXP VAR)
(PROG (R1 R2 D1 D2 N1 N2 W Q)
(COND
(INOT
(SETQ
W
(M2
EXxP

{QUOTE (TIMES
{(EXPT {VAR VARP) (Rl NUMBERP)
(EXPT (PLUS (TIMES (COEFFTT (C2 FREE)})
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(EXPT (VAR VARP) (Q FREEL)) )
(COEFFP (Cl FREE)) )
(R2 NUMBERP) )
(COEFFTT (A FREE))} ))
NIL ) ))
(RETURN NIL) 1)
(SETQ Q (CDR (SASSQOC (QUOTE Q) Wi ))
{SETQ
W
(CONS
(CONS (QUOTE A)
(SIMPQUOTIENT (LIST (CDR (SASSOC (QUOTE A) W)) Q)) )
{CONS
(CONS
(QUOTE R1)
(SIMPQUOTIENT (LIST (SIMPPLUS (LISTY
1
(SIMPMINUS {LIST Q))
(CDR (SASSOC (QUOTE R1) wWi) 1))
Q 1))
W)
{SETQ R1 (CDR (SASSOC (QUOTE R1)
(SETQ R2 (CDR {SASSOC (QUQTE R2)
{SETQ W (REVERSE W))
(COND
({NOT (AND
[SETQ D1 (DENOMFIND R1))
(SETQ D2 (DENOMFIND R2)}
(SETQ N1 (INTEGERP (TIMES Rl D1
(SETQ N2 (INTEGERP (TIMES R2 D2
(SETC W
(CONS (CONS {QUOTE D1) O1)
(CONS (CONS (QUOTE D2) D2)
(CONS (CONS (QUOTE N1) N1)
(CONS (CONS (QUOTE N2} N2) W) )}1)))
(RETURN NIL) )
((AND (INTEGERP R1) (GREATERP Rl 0})
(RETURN
(SIMP
(SUBST
{SUBLIS W [QUOTE (PLUS C1 (TIMES C2 (EXPT VAR Q)))))
VAR
(INTEGRATE
(EXPAND
(SUBLIS W
(QUOTE ((TIMES
A
(EXPT VAR R2)
(EXPT C2 (MINUS (PLUS R1 1))} 1) ))
{COR (EXPANDEXPT (SUBLIS W (QUOTE (PLUS VAR (TIMES -1 C1)1})
R1 1))
VAR 1)) 1))
((INTEGERP R2)
{RETURN
(SIMP
{SUBST
{SUBLIS W (QUOTE (EXPT VAR {QUOTIENT C D1)}})}
VAR
{MASTER
(CONS
VAR

X
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(SIMP
{SUBLIS W
(QUOTE (TIMES
D1
A
(EXPT VAR (PLUS N1 D1 -1))
(EXPT (PLUS {TIMES C2 (EXPT VAR D1)) Cl) R2} 1}11))0)))
({AND (INTEGERP R1)} (LESSP Rl 0))
(RETURN
(SIMP
(sussT
(SUBLIS W
(QUOTE (EXPT (PLUS Cl (TIMES C2 (EXPT VAR Q)))
(QUOTIENT 1 D2) )})
VAR
(MASTER
{CONS
VAR
(SIMP ISUBLIS W
(QUOTE (TIMES
A

D1
(EXPT C2 (MINUS (PLUS R1 1}))
(EXPT VAR (PLUS N1 D1 ~1)}
(EXPT (DIFFERENCE (EXPT VAR D1) C1) R1) )))))))I))
((INTEGERP (SIMPPLUS {(LIST Rl R2)))
(RETURN
(SIMP
(SUBST
(SUBLIS w
(QUOTE (EXPT (QUOTIENT (PLUS Cl (TIMES C2 (EXPT VAR Q)))
(EXPT VAR Q) )
(QUOTIENT 1 D1} 1))
VAR
{MASTER
(CONS
VAR
(SIMP (SUBLIS W
(QUOTE (TIMES
-1
A
D1
(EXPT C1 (PLUS R1 R2 1))
(EXPT VAR {PLUS N2 D1 ~1}}
(EXPT (DIFFERENCE (EXPT VAR D1) C2)
({TIMES -1 (PLUS Rl R2 2}) 1IN
(T (RETURN NIL)) )1)))}

DEFINE
({UALGEB (LAMBDA (A B C D) (ALGEB2 A B C {(CONS NIL D))))})

DEFINE
(((ALGEB2
(LAMBDA
(EXP VAR SQUARE W)
(PROG (A Y B C F1 AL Y1 X1 E D H 6)
(SETQ A (CDR (SASSOC {QUOTE A) W)))
(SETQ B (CDR (SASSOC (QUOTE 8) W)))
(SETQ C (CDR (SASSOC {QUOTE C) W)))
{COND ((NOT (RAT6 EXP)) (RETURN NIL)))
(SETQ Y1
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(SIMP (LIST
(QUOTE PLUS)
VAR
(LIST (QUOTE QUOTIENT) 8 (LIST (QUOTE TIMES) 2 C)} D)}
{SETQ X1
(SIMP (LIST
{QUOTE DIFFERENCE)
VAR
(LIST (QUOTE QUOTIENT) B (LIST (QUOTE TIMES) 2 C)) )))
(SETQ Al
(SIMP (LIST
(QUOTE DIFFERENCE)
A
(LIST
(QUOTE QUOTIENT)
(LIST (QUOTE EXPT) B 2)
(LIST (QUOTE TIMES) 4 C) ))))
{COND
({AND (NUMBERP C) (GREATERP C 0)) (GO L1I))
((AND (NUMBERP C) (LESSP C 0)) (GO L2))
((ASKPOS C) (GO L1)}
((ASKNEG C) (GO L2))
((ASKIT C (QUOTE POSITIVE)) (GO L1})
({ASKIT C {QUOTE NEGATIVE)} (GO L2)}
(T (RETURN (ALGEB EXP VAR SQUARE W))) )

(COND

((AND (NUMBERP Al) (GREATERP Al 0)) (GO L3))
((AND (NUMBERP Al) (LESSP Al 0)) (GO L5))
(LAND (NUMBERP Al) (ZEROP A1)} (GO L4})
((ASKPOS Al) (GO L3))

({ASKNEG Al) (GO L5))

((ASKIT Al (QUOTE POSITIVE)} (GO L3}))
((ASKIT Al (QUOTE NEGATIVE)) (GO L5))
((ASKZERO Al) (GO L4))

(T (RETURN (ALGEB EXP VAR SQUARE W))) )

(COND
((AND (NUMBERP Al} (GREATERP Al 0)) (GG L6))
({AND (NUMBERP Al) (LESSP Al 0))
(RETURN (ALGEB EXP VAR SQUARE W)) )
{ (ASKPOS Al) (GO L6))
(CASKIT Al (QUOTE POSITIVE)) (GO L6))
(T {RETURN (ALGEB EXP VAR SQUARE W)}) )

(SETQ C (SIMPEXPT (LIST C 0.5E0}))

(SETQ Y (SUBST6 EXP XI (SIMP (LIST (QUOTE TIMES) C VAR))))
(SETQ Y (INTEGRATE (SIMP Y) VAR})

(RETURN (SIMP (SUBST Y1 VAR Y}))

(SETQ H (QUOTE (ARCTAN X))}

(SETQ E (QUOTE (TAN X))}

(SETQ F1 (QUOTE (SEC X)))

(SETQ G (QUOTE (EXPT (SEC X) 2)})
(GO GETOUT)

(SETQ H (QUOTE (ARCSEC X))

(SETQ E (QUOTE {SEC X)))

(SETQ Al (SIMPMINUS (LIST Al)))

(SETQ F1 (QUOTE (TAN X)))

(SETQ G (QUOTE (TIMES (TAN X) (SEC X)}))
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(GO GETOUT)
L6
(SETQ E (QUOTE (SIN X}))
{SETQ G {QUOTE {COS X))}
{SETQ C (SIMPMINUS (LIST C))}
{SETQ H {QUOTE (ARCSIN X))}
{SETQ F1 {(QUOTE (COS X)))
GETOUT
(SETQ C (SIMPEXPT (LIST (SIMPQUOTIENT (LIST Al C)) O0.5E0}))
(SETQ D (SIMPEXPT (LIST Al 0.5E0)))
(SETC
Y
{SUBST6
EXP
(EXPAND2 (SIMP {LIST (QUOTE PLUS)
(LIST (QUOTE TIMES)
o

(SUBST VAR (QUOTE X) E) )
(SIMPDIFFERENCE (LIST X1 VAR)} 1))

(SIMP (LIST (QUOTE TIMES) D (SUBST VAR (QUOTE X) F1))) )
(SETQ ¥ (SIMP (LIST (QUOTE TIMES) C (SUBST VAR (QUOTE X) G) Y)))
(SETQ Y (INTEGRATE (EXPAND2 Y) VAR))

(RETURN (SIMP (SUBST

(SuUBST
(LIST (QUOTE TIMES) (LIST (QUOTE EXPT) C -1) Y1)
{QUOTE X)
H )
VAR
Y I
DEFINE
(C{ASKIT (LAMBDA (A B)
(AND

(NOT (PRIN1 (QUOTE IS)))
(NOT (PRIN1 BLANK))
(PRINT A)
(PRINT B)
(EQ (ROFLX) (QUOTE YES))} 1))
(ASKZERO (LAMBDA (A) (ASKIT A {QUOTE ZERO))))
(ASKPOS
(LAMBDA
(A
(M2
A
(QUOTE (PLUS (COEFFPT
(B (FUNCTION (LAMBDA (B) (AND (NUMBERP 8) (GREATERP 8 0))}})
(COEFFTT (C POSFN)) )))
NIL 1))
(ASKNEG
(LAMBDA
(A)
(M2
A
(QUOTE (PLUS (COEFFPT
(B [FUNCTION {LAMBDA (B) (AND (NUMBERP B) (LESSP B 0)))))
(COEFFTT (C POSFN)) )))
NIL 1))
{POSFN (LAMBDA (C)
(COND
((ATOM C) (GET C (QUOTE POSITIVE)))
(LEQ (CAR C) (QUOTE EXPT)}
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(COND

({NUMBERP (CADOR C)) (INTEGERP (QUOTIENT (CACDR C)

({ATOM (CADR C)) (GET {CADR C) (QUOTE POSITIVE)))
(T NIL) )

(T NIL) }))))

2))}

DEFINE
({(PFCTSQ (LAMBDA (X)
(PROG (Y)
(SETQ Y 1)}
A
(COND ((EQP (TIMES Y Y) X) (RETURN Y})
((GREATERP (TIMES Y Y) X) (RETURN NIL)} )}
(SETQ Y (ADD1 Y)})
(GO A) 1))
(RAT6 (LAMBDA (EXP)
(COND
((FREE EXP) T)
(CATOM EXP) T)
({MEMBER (CAR EXP) (QUOTE (PLUS TIMES)))
(AND (RAT6 (CADR EXP))
(OR (NULL (CDDR EXP}) {(RAT6 (CONS (CAR EXP)
({NOT (EQ (CAR EXP) (QUOTE EXPT})) NIL)
((FIXP1 (CADDR EXP}) (RAT6 (CADR EXP)))
({NOT (INTEGERP (SIMPTIMES (LIST 2 (CADDR EXP}})}} NIL}

(T (M2 (CADR EXP} SQUARE NIL)} »})
(SUBSTé

{LAMBDA
LEXP A B)
{COND ((FREE EXP) EXP)
((ATOM EXP) A)
( (MEMBER (CAR EXP) (QUOTE (PLUS TIMES)))
(CONS (CAR EXP}
(MAPLIST (CDR EXP)
(FUNCTION (LAMBDA (C) (SUBSTé6 (CAR C) A B))) D))
(INOT (EQ (CAR EXP) (QUOTE EXPT))) (ERROR))
[{FIXP1 (CADDR EXP))
(LIST (CAR EXP) (SUBST6 (CADR EXP) A B) (CADDR EXP}))

(T (LIST (CAR EXP} B (INTEGERP (TIMES 2 (CACDR EXP))})
(TRIGSQRT

(LAMBDA
{EXP VAR SQUARE W)
(PROG (Y A B C OEF1 GH)
(SETQ A (CDR {SASSOC {(QUOTE A) W)))
[SETQ B (CDR (SASSOC (QUOTE B) W)))
(COND ((OR (NOT (NUMBERP A)} (NOT (NUMBERP B)))
(RETURN (ALGEB EXP VAR SQUARE W}) )
((NOT (RAT6 EXP)} (RETURN NIL)) }
(COND ((GREATERP A 0)
(COND ((GREATERP B 0)
(AND (SETQ H (QUCTE (ARCTAN X))}
(SETQ E {QUCTE (TAN X))}
(SETQ F1 (QUOTE (SEC X}))
(SETQ G (QUOTE (EXPT (SEC X} 2))) ))
(T (AND (SETQ E (QUQTE (SIN X)))
(SETQ G (QUOTE (COS XN))
{SETQ B (MINUS B))
{SETQ F1 (QUOTE (COS X))

(SETQ H (QUOTE (ARCSIN X1)) 1))
{T (AND (SETQ E {(QUOTE (SEC X))}
(SETQ A (MINUS A))

(CDDR EXP)})) )}

)
)N
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(SETQ F1 (QUOTE (TAN X))}
(SETQ G (QUOTE (TIMES (TAN X} (SEC X))))
(SETQ H (QUATE (ARCSEC X))} )))
[(COND ((NOT (SETQ C (PFCTSQ (QUOTIENT A B)}))) (RETURN NIL))
{(NOT (SETQ D {PFCTSQ A))) (RETURN NIL)) )
(SETQ Y
(SUBST6 EXP
(SIMP {LIST (QUOTE TIMES)
C

(SUBST VAR (QUOTE X) E} })
(SIMP (LIST (QUOTE TIMES)

o]

{SUBST VAR (QUOTE X) F1) M)}
(SETQ v (SIMP (LIST (QUOTE TIMES) C (SUBST VAR (QUOTE X) G) Y)))
(SETG Y (TRIGINT Y VAR))
(RETURN (SIMP (SUBST (SUBST (LIST (QUOTE TIMES)

(LIST (QUOTE EXPT) C -1)

VAR }
(QUATE X)
H )
VAR
Y 1))
DEFINE
{({ALGEB
{LAMBDA

(EXP VAR SQUARE W)
(PROG (A B C A1 C1 Y PROBL)
(SETQ A (CDR (SASSOC (QUUTE A) W)))
(SETQ B (CDR (SASSOC {(QUOTE B8) wW)))
(SETQ C (CDR (SASSOC (QUOTE C) W))}]J
(COND ({NOT (RAT6 EXP)}) (RETURN NIL)))
(COND
((AND {NOT (NUMBERP C)) (ASK C))
(SETQ C1 (SIMPEXPT (LIST C 0.5EO0))) }
({NOT (NUMBERP C)) (GO A))
(INOT {GREATERP C 0}) (GO A))
(T (SETQ C1 (SIMPSQRT C))) 1}
(SETQ Y
(SUBSTé
EXP
(SUBSTL (A B Cl VAR)
(QUOTIENT (DIFFERENCE (EXPT VAR 2) A)
(PLUS B (TIMES 2 (TIMES VAR Cl))) )}
(SUBSTL (A B VAR C1}
(QUOTIENT (PLUS (TIMES (EXPT VAR 2) Cl) (TIMES B VAR) (TIMES A C1))
(PLUS B (TIMES 2 (TIMES VAR Cl))) N H)

(SETQ
PROBL
(LIST
(QUOTE TIMES)
Y
(SUBSTL (A B C1 VAR)
(TIMES 2
(TIMES (PLUS (TIMES B VAR) (TIMES {EXPT VAR 2) C1) (TIMES A C1}))
(EXPT (PLUS B (TIMES 2 (TIMES VAR C1))}) =2) 1))}
(SETQ ¥

{SUBSTL (VAR C1 SQUARE}

(PLUS (TIMES VAR C1) (EXPT SQUARE (QUOTIENT 1 2))) )}
(GO B)
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(COND
((AND (NOT (NUMBERP A}) (ASK A))

(SETQ Al (SIMPEXPT (LIST A 0.5€0))) )
((NOT (NUMBERP A)) (ERROR [QUOTE (NOT YET))}))
((LESSP A 0) (ERROR (QUOTE (NOT YET))))
(T (SETQ Al (SIMPSQRT A))) }

(SETQ Y
{SUBSTé
EXP
(SUBSTL (B C Al VAR)
(QUOTIENT (DIFFERENCE (TIMES 2 (TIMES VAR Al)) 8}
(DIFFERENCE C (EXPT VAR 2)) 1))
(SUBSTL (B C Al VAR)
{QUOTIENT (PLUS
(TIMES Al (EXPT VAR 2))
(TIMES -1 (TIMES B VAR))
(TIMES Al C) )
[DIFFERENCE C (EXPT VAR 2)) 1))
({SETQ
PROBL
(LIST
(QUOTE TIMES)

Y
(SUBSTL (B C Al VAR)
(TIMES
(TIMES 2
(PLUS
(TIMES Al (EXPT VAR 2))
(TIMES -1 (TIMES B VAR))
(TIMES A1 C) 1)
(EXPT (DIFFERENCE C (EXPT VAR 2)) =2) }}})
(SETQ Y
(SUBSTL (VAR Al SQUARE)
(QUOTIENT (DIFFERENCE (EXPT SQUARE (QUOTIENT 1 2)) Al) VAR) ))

(RETURN {SIMP (UNTR [SUBST Y VAR (MASTER {CONS VAR PROBLII}I)I)) 1)) M)

DEFLIST
(L(SUBSTL
(LAMBDA (A ALIST)
(SUBLIS (MAPLIST (CAR A)
(FUNCTION (LAMBDA (B)
(CONS (CAR B)

(EVAL (CAR B) ALIST) 1))
(CADR A) 1}1})

FEXPR )
DEF INE
(CCSIMPSQRT {(LAMBDA (X)
(PROG 1Y)
(SETQ Y 1)
A

(COND ((EQP (TIMES Y Y) X) (RETURN Y))
({GREATERP (TIMES Y Y) X)
(RETURN (LIST (QUOTE EXPT)

X

(QUOTE (QUOTIENT 1 2)) M ))
(SETQ Y (ADD1 Y)})
(GO A) ¥ ))
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DEF INE
({(ASK (LAMBDA (X}
(AND (NOT (PRIN1 (QUOTE IS)))
(NOT (PRIN1 BLANK)}
(PRINT X)
(PRINT (QUOTE POSITIVE))
{EQ (RDFLX) (QUOTE YES)) 1))))

DEF INE
({{TRIG1 (LAMBDA (A) (MEMBER A (QUOTE (SIN CO0S)))))
(SUPERTRIG
(LAMBDA (EXP}
(COND
((FREE EXP)} T)
({ATOM EXP) NIL)
([MEMBER (CAR EXP) (QUOTE (PLUS TIMES}))
(AND {SUPERTRIG (CADR EXP))
(OR (NULL (CDDR EXP}) (SUPERTRIG (CONS {CAR EXP) (CDDR EXP)))) ))
((MEMBER (CAR EXP) (QUQTE (EXPT LOG)}))
(AND (SUPERTRIG (CADR EXP)) (SUPERTRIG {CADDR EXP}}) )
((MEMBER (CAR EXP) {QUOTE (SIN COS TAN SEC COT CSC)})

(COND
({M2 (CADR EXP) TRIGARG NIL) T)
((M2
(CADR EXP)
(QUOTE (PLUS (COEFFPT (B FREE) (X VARP)) (COEFFPT (A FREE))))
NIL )

(AND (SETQ NOTSAME T) NIL)
(T (SUPERTRIG (CADR EXP))) )
(T (SUPERTRIG (CADR EXP))) 1))
(SUBST2 (LAMBDA (EXP PAT)
(COND
((NULL EXP) NIL)
((M2 EXP PAT NIL) VAR})
({ATOM EXP) EXP)
(T (CONS (SUBST2 (CAR EXP) PAT) (SUBST2 (CDR EXP) PAT))) 1))}
(MONSTERTRIG
(LAMBDA
(EXP VAR TRIGARG)
{PROG (NOTSAME W A B Y D)
(COND
((SUPERTRIG EXP) (GO A))
({NULL NOTSAME)} (RETURN NIL))
((NOT (SETQ Y
(M2
EXP
(QUOTE (TIMES
(COEFFTT (A FREE})
{(B TRIGL) (TIMES (X VARP) (COEFFTT (M FREE})))
((D TRIG1) (TIMES (X VARP) {(COEFFTT (N FREE)))}) ))
NIL )
(GO B) )
({(NOT (AND
(MEMBER (SETQ B (CDR [SASSOC (QUOTE B) Y)))
(QUOTE (SIN C0S)) )
{MEMBER (SETQ D (CDR (SASSQGC (QUOTE D) Y})}
(QUOTE (SIN COS}) )
{RETURN NIL) )
((AND (EQ B (QUOTE SIN)) (EQ D (QUOTE SIN)))
{(RETURN
{SIMPTIMES

}
)
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(SUBVAR
(SUBLIS
Y

(QUOTE (A (DIFFERENCE
(QUOTIENT
(SIN (TIMES (DIFFERENCE M N) X))

(TIMES 2 (DIFFERENCE M N)) }

(QUOTIENT (SIN (TIMES (PLUS M N) X))

(TIMES 2 (PLUS M N)) 1)) ))
({AND (EQ B (QUOTE COS))} (EQ D (QUOTE C0S)))
(RETURN

(SIMPTIMES

{SUBVAR
(SUBLIS
Y
(QUOTE {A (PLUS
(QUOTIENT

(SIN [TIMES (DIFFERENCE M N} X))
(TIMES 2 (DIFFERENCE M N}) )
(QUOTIENT (SIN (TIMES (PLUS M N} X))
(TIMES 2 (PLUS M N)) 1)))20))))
((OR (AND
(EQ B (QUOTE COS))
(SETQ W (CDR {SASSOC (QUOTE M) Y)))

(RPLACD (SASSOC (QUOTE M) Y) (CDR (SASSOC (QUOTE N) Y)})

(RPLACD (SASSOC (QUOTE N) Y) W) )
T
{RETURN
{SIMPTIMES
( SUBVAR
{SUBLIS
Y
(QUOTE (-1 A
(PLUS
(QUOTEENT
(COS (TIMES (DIFFERENCE M N) X))
(TIMES 2 (DIFFERENCE M N)) )
(QUOTIENT (COS (TIMES (PLUS M N} X))
(TIMES 2 (PLUS M N)) 1))

(COND
((NOT
(SETQ
Y
{PRDG2
(SETQ TRIGARG VAR}
(M2
EXP
(QUOTE (TIMES
(COEFFTT (A FREE))

((B TRIG1) (TIMES (X VARP} (COEFFTT (N INTEGERP))))

(COEFFTT (C SUPERTRIG)) 1)}
NIL ))))
(RETURN NIL) 1)
(RETURN
{ INTEGRATE
(EXPAND2
{LIST
(QUOTE TIMES)
(REPLACE Y (QUOTE C))
(COND
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((EQ (SETQ B {REPLACE Y (QUOTE B)}) (GQURTE COS})
(SUBST

VAR

(QUOTE X)

{SUPERCOSNX (REPLACE Y (QUOTE N))) })

(T {SUBST VAR (QUOTE X} (SUPERSINX (REPLACE Y {QUOTE NIY)) ))))
VAR })

(SETQ W (SUBST2 EXP TRIGARG))
(SETQ B
(COR (SASSOC (QUOTE 81}

(M2
TRIGARG
(QUOTE (PLUS (COEFFPT (8 FREE) (X VARP)) (CUEFFPT (A FREE))) )
NIL 1))}

(RETURN {SUBST TRIGARG VAR (TRIGINT (SIMPQUGTIENT (LIST W B)) VAR)) 1}))

(TRIG2 (LAMBDA (A} (MEMBER A {QUOTE (SIN COS TAM CCT SEC CS5CI)I1Y) ))

DEFINE
({{SUPERSINX {LAMBDA (N}
((LAMBDA (1)
(EXPAND2 (LIST (CQUOTE TIMES)

1
(SINNX (TIMES I N)) D))
(COND ({LESSP N 0) ~-1) (T 1)) 1))}
{SUPERCOSNX (LAMEDA (N)
((LAMBDA (1) [EXPAND2 (CGSNX (TIMES I N1}))
(COND {{LESSP N 0) -1) (T 1)) 1})
(SINNX (LAMBDA (N)
(COND ((EQUAL N 1) (QUOTE ISIN X))
{T (LIST (QUOTE PLUS)
{LIST (QUOTE TIMES)
(QUOTE (SIN X))
(COSNX (SUB1 N)) )}
(LIST (QUOTE TIMES)
(QUQTE (COS X))
(SINNX {SUBl N)) 1))
(COSNX {LAMBDA (N)
[COND {(EQUAL N 1) (QUGTE (COS X))
(T (LIST {(QUOTE PLUS)
{LIST (QUOTE TIMES)
(QUATE (Cas x)})
(COSNX (SUBL NI) )
(LIST {(QUOTE TIMES)
-1
(QUOTE (SIN X))
{SINNX (SUBL N}) 1)))) )

DEFINE
({(POSEVEN (LAMBDA (A) [(AND (EVEN A) (GREATERP A -1))}))
(TRIGFREE {LAMBDA (A}
(COND
(LATOM A) (NOT (MEMBER A (QUUTE (SIN® COS+ SEC# TAN=}))))
(T (AND (TRIGFREE (CAR A)) (TRIGFREE (CDR A}))) I))
[UNTR (LAMBDA (EXP)
(COND
{(ATOM EXP) EXP)
({EQ (CAR EXP) (QUOTE LOG))
(COND ((NULL (CDDR EXP))
(LIST (CAR EXP) (QUOTE E} {UNTR (CADR EXP)})} )
[T (LIST {(CAR EXP)} (CADR EXP) (UNTR (CADOR EXP))}) 1]
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((EQ (CAR EXP) (QUOTE MINUS)) (LIST (QUOTE TIMES) =1 (UNTR (CADR EXP)}))
((EQ {CAR EXP} {QUOTE SQRT))
(LIST (QUOTE EXPT) [UNTR (CADR EXP)) 0.5E0) )
((EQ (CAR EXP) (QUOTE INTEGRAL)) (LIST (CAR EXP) (CADR EXP) VAR))
({EQ (CAR EXP) (QUOTE DIFFERENCE))
{LIST (QUOTE PLUS)
(UNTR (CADR EXP)}
{LIST (QUOTE TIMES) -1 {UNTR (CADDR EXP}}) ))
((EQ (CAR EXP) {QUOTE QUOTIENT))
(LIST (QUQTE TIMES)
(UNTR (CADR EXP})
(LIST (QUOTE EXPT) (UNTR (CADDR EXP)) -1} )
(T (MAPLIST EXP (FUNCTION {(LAMBDA (A) (UNTR (CAR A}))1}) D)D)

DEFINE
(({TRANSL
(LAMBDA
(EXP)
(COND
( (NUMBERP EXP)
(PROG (TEMP)
(RETURN (COND
((FIXP EXP) EXP)
((SETQ TEMP (INTEGERP EXP)) TEMP)
((SETQ TEMP (DENUMFIND EXPi)
{LIST (QUOTE QUOTIENT) (INTEGERP (TIMES TEMP EXP)) TEMP) )
{T (ERROR (QUOTE TRANSLI)) 1))
({ATOM EXP) EXP}
({AND (MEMBER (CAR EXP} {QUQTE {PLUS TIMES)))
(GREATERP (LENGTH (CDR EXP)) 2} )
{(LIST
(CAR EXP)
(TRANSL (CADR EXP))
(TRANSL (CONS (CAR EXP} (CDDR EXP)}) 1))
(CAND (EQ (CAR EXP) (QUOTE LOG}) (CDDR EXP))
({COND ((EQ (CADR EXP) (QUOTE E)} [(CONS (CAR EXP) (CDDR EXP}))
(T (LIST
(QUOTE QUOTIENT)
(LIST (QUOTE LOG) (TRANSL (CADDR EXP))}
(LIST (QUOTE LOG) (CADR EXP)) 1))
(T (MAPLIST EXP (FUNCTION (LAMBDA (A) (TRANSL (CAR A}))IN)} }})
(RAT1 (LAMBDA (EXP)
(PROG (B1 NOTSAME)
(COND ((AND (NUMBERP EXP) (ZEROP EXP)) (RETURN NIL)))
(SETQ Bl (SUBST 8 (QUOTE B8) (QUOTE (EXPT B (N EVEN))II})

(RETURN (PROG2 (SETQ YY (RAT EXP)} (COND ({(NOT NOTSAME) YY) (T NIL))) ))))
(RAT
(LAMBDA
{EXP)
(PROG (Y}
{RETURN
{COND
({EQ EXP A) (QUODTE X))
{{ATOM EXP)
(COND ((MEMBER EXP (QUOTE (SIN= CGS# SECs TAN¢}))
{SETQ NOTSAME T) )}
(T EXP) 1))
((SETQ Y (M2 EXP Bl NIL)) (F3 Y))
{T (CONS {CAR EXP)
{MAPLIST (CDR EXP) (FUNCTION (LAMBDA (G) [RAT (CAR G))))} 1)) h)
(F3 {LAMBDA (Y}
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((EQ (CAR EXP) (QUOTE MINUS)) (LIST (QUOTE TIMES) -1 (UNTR (CADR EXP}))}
((EQ (CAR EXP)} (QUOTE SQRT))
(LIST (QUOTE EXPT) (UNTR (CADR EXP)) 0.5€80) )
({EQ (CAR EXP) tQUOTE INTEGRAL}) {(LIST (CAR EXP) (CADR EXP) VAR})
((EQ (CAR EXP) (QUOTE DIFFERENCE))
(LIST (QUOTE PLUS)
(UNTR (CADR EXP})
{LIST (QUOTE TIMES) -1 (UNTR (CADDR EXP)1) 1))
((EQ (CAR E£XP) {(QUOTE QUOTIENT))
(LIST (QUOTE TIMES)
(UNTR (CADR EXP))
(LIST (QUOTE EXPT) (UNTR (CADOR EXP)) -1} )
{T (MAPLISY EXP (FUNCTION (LAMBOA (A} (UNTR (CAR AJ))1})) 1)1 ))

DEFINE
({{TRANSL
(LAMBDA
(EXP)
(COND
( (NUMBERP EXP)
(PROG (TEMP)
(RETURN (COND
(LFIXP EXP) EXP)
((SETQ TEMP (INTEGERP EXP)) TEMP
((SETQ TEMP (DENUMFIND EXPi)
(LIST (QUOTE QUOTIENT) LINTEGERP (TIMES TEMP EXP)) TEMP) |
(T (ERROR {QUOTE TRANSLI}) 1)))
(LATOM EXP) EXP)
({AND [MEMBER (CAR EXP) (QUOTE (PLUS TIMES)))
(GREATERP (LENGTH {CDR EXP)) 2) )
(LIST
(CAR EXP)
{ TRANSL (CADR EXP))
(TRANSL (CONS (CAR EXP) (CDDR EXP))) })
((AND (EQ (CAR EXP) (QUOTE LOG)) (CDDR EXP))
(COND ((EQ {CADR EXP) (QUOTE E}) (CONS (CAR EXP) (CDDR EXP)))
(T (LIST
(QUOTE QUOTIENT)
(LIST (QUOTE LOG) (TRANSL (CADDR EXP)}})
(LIST (QUOTE LOG) (CADR EXP)) })))
(T (MAPLIST EXP (FUNCTION (LAMBDA (A) (TRANSL {CAR A}))})) }))
(RAT1 (LAMBDA (EXP)
(PROG (B1 NOTSAME)
(COND [(AND (NUMBERP EXP) (ZEROP EXP)) (RETURN NIL)))
(SETQ Bl (SUBST 8 (QUOTE B) (QUOTE (EXPT B (N EVEN))I))
(RETURN (PROG2 (SETQ YY (RAT EXP)) (COND ((NOT NOTSAME} YY) (T NIL))) )}))
(RAT
(LAMBDA
(EXP)
(PROG {Y)
(RETURN
(COND
((EQ EXP A) [QUOTE X)
((ATOM EXP)
(COND ( (MEMBER EXP (QUOTE (SIN# CGS* SEC* TAN®)))
(SETQ NOTSAME T) )
(T EXP) ))
((SETQ Y (M2 EXP Bl NIL)) (F3 Y)
(T (CONS {CAR EXP)
(MAPLIST (CDR EXP) (FUNCTION {LAMBDA (G) (RAT (CAR G))))) 1))))))
(F3 (LAMBDA (Y)
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C
{QUOTE C)
(SUBST
(QUOTIENT (CDR (SASSOC (QUOTE N) Y NIL})} 2)
(QUOTE N)
(QUOTE (EXPT (PLUS 1 (TIMES C: (EXPT X 2))) N)) 1}))

(ooD1
(LAMBDA
(N}

(COND {(NOT (ZERGCP {REMAINDER N 2)})
(SETQ YZ
(SuUBsST
[

{(QUOTE C)

(L

IsT

{QUOTE EXPT)
(QUOTE (PLUS 1 (TIMES C (EXPT X 2)11))
(QUOTIENT (SuUBl N) 2) 1)))
(1T NIL) 1)
{EVEN (LAMBDA (A) (AND INUMBERP A) (INTEGERP (QUOTIENT A 2)))1}))

(SUBVAR (LAMBDA (B) {SUBST VAR {QUGTE X) B)))
(TRIGINT
{LAMBDA

{EXP VAR)

{PROG (Y REPL Y1 Y2 YY Z M NC YZ A B)

(SETQ Y2
(SUBLIS (SUBVAR (QUOTE {({SIN X) . SIN#}
({COS X} . COS#}
({TAN X) . TAN®)
((COT X) EXPT TAN® -1)
({SEC X) . SECw»)
((CSC X) EXPT SEC+ -1) )))
EXP })
(SETQ Y1
{SETQ Y
(SIMP (SUBLIS (QUOTE ((TAN= TIMES SIN# (EXPT COS#* -1)) [SEC* EXPT COS* ~1}))
Y2 1))}
(COND ({NULL ¢SETQ Z
(M2
Y
EQUOTE (TIMES
(COEFFTT (B TRIGFREE))
(£XPT SIN# (M POSEVEN))
(EXPT COS# (N POSEVEN)) })
NIL O ))
(60 L1) ))
{SETQ M (CDR (SASSOC (QUOTE M) Z)))
(SETQ N (CDR (SASSOC (QUOTE N) Z)))
(SETQ A
(INTEGERP (TIMES
0.5€0
(COND ({LESSP M N) 1} (T -1))
{PLUS N (TIMES -1 M}) ))}
(SETQ Z (CONS (CONS (QUOTE A) A) Z))
(RETURN
(SIMP
(LIsy
(QUOTE TIMES)
(CDOR (SASSOC (QUOTE B) Z2))
0.5€E0
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(SUBST
(LIST (QUOTE TIMES) 2 VAR)
[QUOTE X)
(INTEGRATE
{SImpP
(COND
{(LESSP M N}
(SUBLIS Z
(QUOTE (TIMES
{EXPT (TIMES 0.5E0 (SIN X)) M)
{EXPT (PLUS 0.S5EO0 (TIMES 0.5E0 (CGS X)¥) A) 1))
(T (susBLIS Z
(QUOTE (TIMES
(EXPT (TIMES 0.5E0 (SIN X)) N)
(EXPT {PLUS 0.5€0 (TIMES =-0.5E0 {COS X1)) A) )y}
(QUOTE X} 1)1))
Ll
(SETQ C -1}
{SETQ A (QUOTE SIN#=))
(SETu B (QUDTE COS#))
(COND ((AND
{M2 Y (QUUTE (CUEFFPT (C RATL) (EXPT COSe (N 0DD1)))) NIL)
(SETC REPL (LIST (QUDTE SIN)} VAR)) )
(GO GETOLT) ))
(SETQ A B)
(SETQ B [QUUTE SIN#))
(COND [ (AND
(M2 Y (QUOTE (COEFFPT (C RAT1) (EXPT SINe [N GDD1}))) NIL)
[SETQ REPL (LIST (QUOTE COS) VAR)) )
(GO GET3) M)
{SETQ Y
(SIMP {SUBLIS {QUOTE {((SIN# TIMES TAN# (EXPT SEC# -1)) (COS# EXPT SEC* -1)))
Y2 )
(SETQ C 1)
(SETQ A (QUOTE TANw))
(SETQ B (QUOTE SEC#))
(COND ((AND (RATL Y} (SETQ REPL {LIST {QUOTE TAN) VAR))) (GO GET1)) )
(SETQ A B)
(SETQG B (QUOTE TAN«})
{COND ({AND
(M2 Y {QUOTE (COEFFPT (C RAT1) (EXPT TANs (N ODD1)))) NIL)
{SETQ REPL {LIST {QUOQTE SEC) VAR}) )
(GO GETOUT) )}
(SETQ Y
(SIMP (SUBLIS (QUDTE ((SIN# TIMES 2 X (EXPT (PLUS 1 (EXPT X 2))} -1)}
(COS#
TIMES
(PLUS 1 (TIMES -1 (EXPT X 2)))
(EXPT {PLUS 1 (EXPT X 2)} -1) ) })
Yl 1))
(SETQ Y
(LIST
(QUOTE TIMES}
A
(QUOTE (TIMES 2 (EXPT (PLUS 1 (EXPT X 2}) =1))) 1))
(SETQ REPL (SUBVAR (QUOTE (QUOTIENT (SIN X) (PLUS 1 (COS X)) H)
(GO0 GET2)
GET3
(SETQ Y (LIST (QUOTE TIMES) -1 YY YZ})
(GO GET2)
GET1
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(SETQ ¥
(LIST (QUOTE TIMES) (QUOTE (EXPT (PLUS 1 (EXPT X 2)) =1)) YY) )
(GD GET2)
GETOUT
(SETQ Y (LIST (QUGTE TIMES) YY YZ))
GET2
(SETQ Y (SIMP Y})
(RETURN (SIMP ([SUBST REPL (QUOTE X) (INTEGRATE Y [QUOTE X))1)) 131)))
DEFINE
{ CLALGORT
(LAMBDA

(R1 P1 VARL)

(PRGG (R OLDS) OLDREST P VAR PD Q S S1 S2 ANS Al A2 A3 NUM A M B REST)
(CSETQ VARLIST (LIST VAR1))
(NEWVAR R1)

(NEWVAR P1)

(SETQ R (REP R1})

(SETQ P (REP P1))

(SETQ VAR (REP VARL})
(SETQ PD (PFDERIVATIVE P))
{SETQ Q (DENOMINATORF R})
(SETQ S1 (NUMERATORF R))

(COND {(NOT (POLP S1)) (GO A)))
(SETQ B (LIST (CAR S1)))

(SETQ S (SIMPOL (CDR S1)))
(SETQ M (SUBL1 (LENGTH S1)))

(SETQ ANS (PLUSF A ANS))
(SETQ OLDS1 S1)
(SETQ OLDREST REST)
(SET¢ A (QUDTIENTF (TIMESF B (POLEXPT VAR M)) (TIMESF PO Q)))
(SETQ A3 (TIMESF A (PFDERIVATIVE Q)))
(SETQ A2
(QUOTIENTF (MINUSF (TIMESF B (POLDERIVATIVE (POLEXPT VAR M)})))
PD 1))
(SETQ Al
(QUOTIENTF (TIMESF (TIMESF B (POLEXPT VAR M)}) (PFDERIVATIVE PD))
(PULEXPT PD 2) 1))
(SETQ S2 (SEP (PLUSF [PLUSF S REST) (PLUSF Al (PLUSF A2 A3)))))
(SETQ S1 (CAR S2))
[SETQ REST (CDR S2))
(COND (S1 (GO L0OGP)))
(SETQ REST (SIMPSIMP (TRANS REST})}
(COND ((AND (NUMBERP REST) (ZEROP REST))
(RETURN {SIMPSIMP (LIST
(QUOTE TIMES)
(TRANS (PLUSF A ANS))
(LIST (QUOTE EXPT} (QUOTE E} P1) 1))
(RETURN
(PLUSSIMP
(LIsT
(QUOTE PLUS)
(SIMPSIMP (LIST
(QUOTE TIMES)
{TRANS ANS)
(LIST {QUOTE EXPT) (QUOTE E) P1) 1)
(LIST
{QUOTE INTEGRAL}
(LIST
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(QUOTE TIMES)

(COND ({NOT OLDREST) (TRANS (QUOTIENTF OLDS1 Q)})
(T (TRANS (QUOTIENTF (COR S2) Q))) )

(LIST (QUOTE EXPT) {QUOTE E) P1) )))))

A
(SETQ B (CONS (LIST (CAAR S1)) (CDR S1)))
(SETQ S
(COND (({SETQ S (SIMPOL {CDAR S1)))} (CONS S (CDR S1))) (T S)) )
(5ETQ M (SUBL [LENGTH (CAR S11)))
(GO B) 1))
DEFINE

(((SEP (LAMBDA {(R)
(PROG (S D N)
(COND ((POLP R) {RETURN (CONS R NIL)I))
(SETQ N (NUMERATORF R))
(SETQ D (DENOMINATORF R})
(COND ((AND (ONEP (LENGTH N))} {CNEP {LENGTH D)}))
(RETURN (CONS R NIL)) 1))
(SETQ S (POLDIVIDE N D})
{RETURN (CONS {CAR S) (QUOTIENTF (CDR S) D))) 103 ))

DEFINE
(({SUPERALGORT (LAMBDA (R P VAR)
(PROG NIL
(FILEWRITE (QUOTE MANOVE)
{QUOTE ANS)
(ALGART R P VAR) }
(CHAIN (QUOTE &(R MOSES)))) 11)))
DEFINE

(L(MASTER (LAMBDLA (Y)
{(PROG (FLIST)
(CSETQ VARLIST {(LIST (CAR Y)})
{NEWVAR (CDR Y))
(CSETQ REPSWITCH NIL)
(FILEWRITE (QUOTE MANOVE)
(QUOTE ANS)
(SIMPSIMP (FPROG (REP (CDR Y)))}) }
(CHAIN (QUOTE ((R MOSES)))) 1)) ))

DEFINE
({[RATBPRIME (LAMBDA (C) (AND (RAT8 C) (OR {(NOT {(NUMBERP C)} (NOT (ZERCP C))))})
(FINC (LAMBDA (EXP)
{COND {(ATOM EXP) (MEMBER EXP (QUOTE (LOG INTEGRAL ARCTAN)))}
(T (OR (FIND (CAR EXP)) (FIND {(CDR EXP)))) 1))
{RATLUG
(LAMBDA
(EXP VAR FORM)
(PROG (A BCCC DY ZW
(SETQ Y FORM)
(SETQ B (CDR [SASSOC (QUOTE B) Y)))
[SETQ C (CDR (SASSOC (QUOTE C) Y)))
(SETQ Y (INTEGRATE C VAR))
(COND {(FIND Y} (RETURN NIL}))
(SETQ D (DIFF1 (CDR (SASSOC (QUUTE A) FORMI) VAR))
(COND ({EQ (CADAR FORM) (QUOTE ARCSIN)) (GC B)})

{SETQ Z (INTEGRATE {SIMPTIMES (LIST Y D)) VAR)}

{SETQ D (CDR {SASSOC (QUOTE A) FORM)))
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(RETURN (SIMP (LIST (QUOTE DIFFERENCE)

(COND
((NOT
(SETQ

W
(M2
D
(QUOTE
(PLUS
(COEFFPT
(C TRUEL)
(EXPT
(CC (LAMBDA (CC)
(M1 CcC

(LIST (QUOTE TIMES) Y D) Z))

(QUOTE (PLUS (COEFFPT (B FREE) (EXPT (X VARP) 2))

(COEFFP (A FREE)) )1 )}
(N INTEGERPL} ))11}))))
(Go C) ))
(SETQ CC (CDR {(SASSOC (QUAOTE CC) W)))
(SETQ Z (TRIGSQRT (LIST (QUOTE TIMES)
{COND ((NULL Z) (RETURN NIL)})
(GO A) 1)) h)

DEFINE
(C(FIND1 (LAMBDA (Y A)
{COND
(LEQ Y A) T)
(LATOM Y) NIL}
(T (OR (FIND1 (CAR Y) A) (FIND1 (CDR Y) A))
(MAXPARTS
(LAMBDA
(A}
(PROG (Y)
(SETQ Y 1)
Leoe
(SETQ Y
(MAX Y
{COND ((EQ (CAR Y) (QUOTE EXPT))
(COND ({NUMBERP {(CADDAR Y))

Y D) VAR CC W))

1))

(CUND ((LESSP (CADDAR Y) 0} (MINUS (CADCAR Y}))

(T (CADDAR Y)) 1))
(T 1) )
(T 1) N
(SETQ A (COR A))
(COND ((NULL A) (RETURN Y)))
(GO LuorP) 1))

INTEGRATIUN-BY-PARTS

(PARTS
(LAMBDA
(EXP VAR)
(PROG (A B Y Z W G TOPPART)
(COND (NOPARTS (RETURN NIL)))

(COND ((NOT (GET (QUOTE TOP} (QUOTE APVAL)I})

(CSETQ TOP (SETQ TOPPART (GENSYM)})
(SETQ Y
(M2

1B

)
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EXP
(QUOTE (TIMES (COEFFTT (A FREE)) (COEFFTT (8 TRUE))))
NIL 1)
{SETQ A (CDR (SASSOC (QUOTE A) Y)))
{SETQ 8 (CDR (SASSOC (QUOTE B) Y}})
(COND ((NOT (EQ (CAR B) (QUOTE TIMES}}} (RETURN NIL)))
{COND
{(NOT (GET (QUOTE MAXPARTS) (QUOTE APVAL)))
{AND (CSETQ MAXPARTS (TIMES 2 (MAXPARTS B)))
{CSETC NUMPARTS 1) )}
((AND (CSETQ NUMPARTS (ADD1 NUMPARTS))
(GREATERP NUMPARTS MAXPARTS) }
(RETURN NIL} 1))

{SETQ Y (CDR B))
LOOP
(CSETQ NOPARTS T)
{SETQ Z (INTEGRATE {CAR Y) VAR})
(CSETQ NOPARTS NIL)
(COND {{FIND1 Z (QUOTE INTEGRAL)) (GO A))}
(SETQ G (CHOICE (CAR Y) B))
{SETQ W (INTEGRATE (SIMPTIMES (LIST (DIFF1 G VAR) Z}) VAR))
(COND ((FIND1 W (QUOTE INTEGRAL}) (GO A)))
(SETQ
Y
(SIMPTIMES (LIST A (SIMPDIFFERENCE (LIST (SIMPTIMES (LIST G Z)) Wi} )}
(RETURN (COND ((EQ TOPPART TOP)
{PROG23
(REMPROP {QUOTE TOP) (QUOTE APVAL))

Y
(REMPROP {QUOTE MAXPARTS) (QUOTE APVAL)) 1))
T Y)Y ))

(SETQ Y (CDR Y))

(COND ((NULL ¥) (RETURN NIL)Y})

{COND ((NOT (EQ TOP TOPPART)}) (GO LCOP)})
(CSETQ MAXPARTS (TIMES 2 (MAXPARTS B)))
(CSETQ NUMPARTS 1)

(GO LOOP) 1)) ))

CSET
(NUMPARTS 1)

CSET
(NOPARTS NIL)

SOLDIER

DEF INE
(eeson
{LAMBDA
(EXP INDVAR DEPVAR)
(SuBST
INDVAR
(QUOTE X}
(SUBST
DEPVAR
(QUOTE Y}
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(SOLDIER
{SuUBST
(QUOTE X}
INDVAR
(SUBST
(QUOTE Y)
DEPVAR
(SuBsT
{QUOTE DX)
(INTERN (MKNAM (u.. (CLEARBUFF) (PACK (QUOTE D)) (PACK INDVAR})) )
(SUBST
(QUOTE DY)
CINTERN (MKNAM (OR (CLEARBUFF) (PACK (QUOTE D)) (PACK DEPVAR) )}
(SUBST
(QUGTE YPR)
(INTERN (MKNAM (OR
(CLEARBUFF)
(PACK DEPVAR)
{PACK (QUOTE P))
(PACK (QUOTE R)} 1))
EXP )X )
(SOLCON
(LAMBDA
(EXP IMDVAR DEPVAR X Y)
({LAMBDA (2}
({LAMBDA (W)
(COND {(NULL W} NIL)
(T (LIST
(QUOTE EQUAL)
(SIMP (SUBST Y DEPVAR (SUBST X INDVAR W)))
W )
(COND
(INULL Z) wNIL)
((EQ (CADR Z) (QUOTE CO}) (CADDR Z})
(T {CADR Z)) 1))
(SOL EXP INDVAR DEPVAR) ) })
{SOLDIER
{LAMBDA
{PROG (W EXP1 EXP2)
[COND
((SETQ W
(M2
EXP
{QUOTE (PLUS (COEFFPT (A TRUE) DY) (CCEFFPT (B TRUE} D0X)))
NIL ))
(GO A) }
((SETQ W
M2
EXP
{QUOTE (PLUS (COEFFPT (A TRUE) YPR) (CCEFFPT (B TRUE))))
NIL )
NIL )
(T (RETURN NIL}) )
(SETQ EXP1 (REPLACE W (QUOTE (PLUS (TIMES A DY) (TIMES B DX)))I))
(SETQ EXP2 EXP)
(GO B)

(SETQ EXP2 (REPLACE ¥ (QUOTE (PLUS (TIMES A YPR) B))))
(SETQ EXP1 EXP)
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{COND ((TRYSOLD (QUOTE (LINEAK
SEP

EXACT
HOMUGTYPE
BERNOULLI
LINEARCOEFF
ALMOSTLINEAR
REVERSEVAR
XNYL1 D))
(QUOTE (EXPl EXP1 EXPl EXP1 EXP2 EXP2 EXP1 EXPl EXP2}) )
(RETURN W) )
{T (RETURN NIL)} }1}))
( TRYSOLC (LAMBDA (A B)
(COND
({NULL A) NIL)
{(SETG W ({CAR A) {COND ((EQ (CAR B) (QUOTE EXP1l)) EXPL} (T EXP2)}}) W)
(T {TRYSOLD (CDR A} (CDR 8))) t1)))

DEFINE
((LCFACTORXY
(LAMBDA
(EXP)
(COND
({NOT (EQ (CAR EXP) (QUOTE TIMES))) EXP)
(T
(SIMPTIMES
(MAPLIST
(CDR EXP)
(FUNCTION (LAMBDA (EXP)
(COND
({EQ (CAAR EXP) (QUOTE PLUS)} (FACTORXY2 (CAR EXP)})
({AND (EQ (CAAR EXP) (QUOTE EXPT})
(EQ (CAADAR EXP) (QUOTE PLUS)) )
(SIMPEXPT (LIST (FACTORXY2 {(CADAR EXP)) (CADDAR EXP})} )
{T (CAR EXP))Y 1))} Y)Y
(FACTCRXY2
(LAMBDA
{EXP)

{(PROG (Z IND RES W)
(SETG Z (CDR EXP))
(SETQ IND (QUOTE X))
Logp
(COND
({NOT
(SETQ
W

(M2
(CAR 2)
(QUOTE
(CUEFFT
(B TRUE)
(EXPT
(A M1 IND)
(N (FUNCTION (LAMBDA (N)
{AND (NUMBERP N) (GREATERP N 0.98999999E0)) 1)1})))
NIL }))
(50 NO} D)
(SETQ RES
[CONS (REPLACE W (QUOTE (TIMES 8 (EXPT A (PLUS N -111}}) RES) )
(COND ((NOT (SETQ Z (CDR Z2)))
(RETURN (SIMPTIMES (LIST IND (SIMPPLUS RES)II)) V)
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DEFINE
(L{SIMPEXP
(LAMEDA
{EXP)
(PROG
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(GO LooP)

(COND ((EQ IND (QUOTE Y)) (RETURN EXP})))
(SETQ IND (QUOTE Y))

(SETQ Z (CDR EXP))

(SETQ RES NIL)

(GO LOOP)} }))))

T

(A 8)
(SETQ B (SIMP (CADR EXP)})
{SETQ A (SIMP (CAR EXP)))
{COND
{{EOP A 0) (RETURN 0))
{ {AND
(EG (CAR A) (QUOTE EXPT))
(SETQ B (SIMPTIMES (LIST B (CADDR A))))
(SETQ A (CADR A))
NIL )
NIL )
({EQP B 0) (RETURN 1)}
{{EQP B 1) (RETURN A}}
{{EQP A 1) (RETURN 11
((AND (NUMBERP A) (NUMBERP B)) |
(RETURN (CUND
((NOT EXPTIND) (EXPT A B)) |
((AND (FIXP B) (GREATERP B =11} (EXPT A B)) |
(7T (LIST (QUOTE EXPT) A B)) ))) ‘
{(EQ (CAR A) (QUOTE TIMES))
(RETURN (CONS (QUOTE TIMES) (EXPTLOOP (COR A)})) )
{(AND EXPTSUM (EQ (CAR B) (QUCTE PLUS}))
{RETURN
(CONS
(QUOTE TIMES)
{MAPLIST (CDR B) |
(FUNCTION [LAMBDA (C) (SIMPEXPT {LIST A [CAR CIII}} 1))}
((NOT (ATOM B))
(RETURN
(PROG (W)
(RE TURN
(COND
{(NOT (SETQ W
(M2

8
(QUCTE (PLUS (CCEFFT (C TRUEL)
{LOG (81 TRUE) (A TRUE)) )
(COEFFP (E TRUE)) ))
NIL ' H)
(LIST (GUOTE EXPT) A B) )
({NOT (EQUAL A (SUBLIS W (QUOTE B1))))
(LIST (QUOTE EXPT) A B) )
(T
(SIMPTIMES (LIST
(SIMPEXPT (LIST (SUBLIS W {QUOTE A))
(SUBLIS W (QUOTE C)) )}
(SIMPEXPT {LIST A {(SUBLIS W (QUOTE E)1}) 11312 1)))
(RETURN (LIST (QUOTE EXPT) A B)) )))

(EXPTLONP
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(LAMBDA

(A}

{PROG23
(CSETQ SIMPIND T}
(MAPLIST A (FUNCTION (LAMBDA (C} (SIMPEXPT (LIST (CAR C) BI)))}
(CSETQ SIMPIND NIL) )))))

DEF INE
(C(LINEAR
(LAMBDA
(EXP)
(PROG (Y Z W)
(RETURN
(COND
({NOT
(SETQ
W
{M2
EXP
(QUOTE
(PLUS
(COEFFPT (F FREEX (QUOTE Y}) OY)
(COEFFPT (A M1
{QUOTE (PLUS (COEFFPT (G FREEX (QUOTE Y)) Y)
[COEFFPT (H FREEX (QUOTE Y))) M)
oOX 1)}
NIL 1)1}

(COND {{AND (THEREXNY EXP 1)
(NOT (M2 EXP (SETQ W (EXPAND2 EXP)) NIL)) )
(LINEAR W) }
(T NILY D)
(r
(LIST
(QUOTE EQUAL)
(QUOTE CO)
(SIMPPLUS
(LIST
(LIST
{QUOTE TIMES)
(QUOTE Y)
(SETQ

A
(SIMPEXPT
(LIST
(QUOTE E)
(SIN (SIMPQUOTIENT (LIST (REPLACE W (QUOTE G)
{REPLACE W (QUOTE F}) )}
(QUOTE X) 1))
(SIN
(SIMPTIMES (LIST Z
(SIMPQUOTIENT (LIST (REPLACE W (QUQTE H))
(REPLACE W (QUOTE F)) 1))
(QUOTE X) )13)130))}
(THEREXNY (LAMBDA (EXP N) (EQUAL N (COUNTY EXP))))
(COUNTY (LAMBDA (EXP)
(COND ((ATOM EXP) {(COND ((EQ EXP (QUOTE Y}} 1} (T 0))}
(T (PLUS (COUNTY (CAR EXP)) {COUNTY (CDR EXP}))) 11)))
DEF INE
((USEP
(LAMBDA
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(EXP)
(PROG (W)
(RETURN
(COND
({SETQ W
(M2
(PRUG23 (CSETQ EXPTSUM T) (SIMP EXP) (CSETQ EXPTSUM NIL)}
{QUUTE (PLUS
(TIMES
DX
(COEFFTT (M FREEX (QUOTE X)
(COEFFTT (R FREEX {QUOTE Y)
(TIMES
oY
(COEFFTT (N FREEX (QUOTE X}}))
(COEFFTT (S FREEX (QUATE Y))) }))
NIL )}
(LIST
(QUOTE EQUAL)
(SIMPPLUS (LIST
(SIN (SUBLIS W (QUOTE (QUCTIENT R S)
(SIN (SUBLIS W (QUOTE (QUOTIENT N M)
(QUUTE CO) M)
(T NIL) D))
(FREEX (LAMBDA (A VAR)
(COND ((ATOM A) (NOT (EQ A VAR}}}
{T (AND (FREEX (CAR A) VAR) (FREEX (CDR A) VAR})) }))))

1) (QUOTE X))}
)} {QUOTE Y1) ))

DEFINE
(CLEXACT
(LAMEBDA
(EXP)
(PROG (W P Q DPDY DQDX Y F1)
(COND ((NOT (SETQ W
(M2
EXP
(QUUTE [PLUS (COEFFPT (P TRUE) DX) (CCEFFPT (Q TRUE) DY)) )
NIL ) ))
(RETURN NIL) 1}
{SETQ P (SUBLIS w {QUQTE P)))
(SETQ Q (SUBLIS W (QUOTE Q)))
(SETQ DPDY (DIFF1 P (QUOTE Y)))
(SETQ DQDX (DIFF1 Q (QUATE X)))
(COND ({NOT (M2 OPDY DQDX NIL}) (GO A}))
auTt
(SETQ Y (SIN P (QUOTE X)})
(RETURN
(LIST
(QUOTE EQUAL)
(QUOTE CO)
(SIMPPLUS
(LIST
Y

{SIN
(EXPAND2 (SIMPDIFFERENCE (LIST Q (DIFF1 Y (QUOTE Y}))))
(QUOTE Y) 1))

(COND

(INOT
{FREEX
{SETQ F1
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(SIMPQUOTIENT (LIST (SIMPDIFFERENCE (LIST DPDY DQDX)) Q)) )
(QUOTE Y} )} :
(GO 8) ))
(SETQ Y (SIMPEXPT (LIST (QUOTE E} (SIN F1 (QUOTE X}))))
(SETQ P (SIMPTIMES (LIST Y P))}
(SETC Q (SIMPTIMES (LIST Y QN
{GO 0uT)

(COND
({NOT
(FREEX
(SETQ F1
(SIMPQUOTIENT (LIST (SIMPDIFFERENCE (LIST DGDX DPDY)) P)) )
{(QUOTE X) 1))
(GO C) )
{SETQ Y (SIMPEXPT (LIST (QUOTE E) (SIN F1 (QUOTE Y})}))
[SETQ P {(SIMPTIMES (LIST Y P)))
(SETQ Q (SIMPTIMES (LIST vy QN
(GO ouT)

{(COND ((NOT (AND (M2 DPDY (SIMPMINUS (LIST DQOX)) NIL}
(M2 (DIFF1 P {QUOTE X)) (DIFF1 Q (QUOTE Y)) NIL) )}
(RETURN NIL) 1))
(SETQ ¥
{SIMPPLUS (LIST (SIMPTIMES (LIST P P)}) (SIMPTIMES (LIST Q Q)))) )
(SETQ P (SIMPQUOTIENT (LIST P Y)))
(SETQ Q (SIMPQUOTIENT (LIST Q Y))J
(GO uvum) 1N ))

DEFINE
(({BERNOULLI
(LAMBDA
(eXP)
(PRCG (W)
(RETURN
{COND
LINOT
(SETC
W
(M2
EXP
(QUOTE
(PLUS
{COEFFPT (8 TRUE) YPR)
(COEFFPT (P FREEX (QUOTE Y)) Y)
(COEFFPT
{Q FREEX (QUOTE Y))
(EXPT Y
(N (LAMBDA (A)
(AND (NUMBERP A} (NOT (ZERGP A})) )}))))
NIL )))
(COND ((AND (THEREXNY EXP 2)
(NOT (M2 EXP (SETQ W (EXPAND2 EXP)) NIL)) )}
{BERNOULLI W) )
(T NIL) )}
((FREEX (REPLACE W (QUOTE B)) (QUOTE Y))
((LAMBDA
(P ¢ N1)
(SUBST
(SIMPEXPT (LIST (QUOTE Y) N1))
(QUOTE Y)
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(LINEAR (SIMPPLUS (LIST (QUQGTE DY)
(LIST
(QUOTE TIMES)
(QUOCTE DX)
(LIST
(QUOTE PLUS)
(LIST (QUOTE TIMES) N1 P {QUOTE Y})
(LIST (QUOTE TIMES) N1 Q) ))1)))))
(REPLACE W {QUOTE (QUOTIENT P B)))
(REPLACE W (QUOTE (QUOTIENT Q B)))
(SIMPDIFFERENCE (LIST 1 (SUBLIS W (QUOTE N1})) 11)))1)))

DEFINE
({{HOMOGTYPE
{LAMBDA
(EXP)
(PROG (Y Z W)
(COND
((NOT (SETQ W
(M2
EXP
{QUOTE (PLUS (COEFFPT (P TRUE) DX) (CCQEFFPT (Q TRUE) DY)) )
NIL 1))
{RETURN NIL) )
({NOT (AND

(SETQ Z (HOMOG (SUBLIS W {QUOTE P)))}
(SETQ Y [(HOMOG {SUBLIS W (QUOTE Q})))
(EQP Y Z) 1))
(RETURN NIL) )
(7
(RETURN
(LIST
(QUOTE EQUAL)
(LIST
(QUOTE PLUS)
(QUOTE (LOG E X))
{SIMP
(sussT
{QUOTE (QUOTIENT Y X))
(QUOTE Y)
(SIN
(SIMPQUOTIENT
(LIST
(SETQ Y
(SIMP (SUBST 1 (QUOTE X) (SUBLIS W (QUOTE Q))) )
(SIMPPLUS (LIST
(SIMP (SUBST 1 (QUOTE X} (SUBLIS W (QUOTE P1)) )
(SIMPTIMES (LIST {(QUOTE Y) Y)) N ))
(QUOTE Y) N M)
(QUOTE CO) 1IN
(HOMOG (LAMBDA (EXP}
(PROG (NOTHOM Y)
(SETQ Y (HOMOGEN EXP})
(COND (NOTHOM (RETURN NIL)) (T (RETURN Y))) 1)
{ HOMOGEN
(LAMBDA
(EXP}
{COND
(LATOM EXP) (COND ({EQ EXP (QUOTE Y)) 1) ((EQ EXP {(QUOTE X)) 1) (T 0)))
((EQ (CAR EXP) (QUOTE TIMES))
(EVAL (CONS (QUODTE PLUS)
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{MAPLIST (CDR EXP) (FUNCTION (LAMBDA (C) (HOMOGEN (CAR C)))}) )

(ALIST) 1))
{{EQ {CAR EXP) (QUOTE PLUS))
(LLAMBDA (Y)
(PROG (2Z)
(SETQ Z (HOMOGEN (CAR Y) 1))
LOOP
(SETQ Y (CDR Y))
(COND
CINULL Y) (RETURN Z))
((NOT (EQUAL Z (HOMOGEN (CAR Y))})
(RETURN {PROG2 (SETQ NOTHOM T) -10001}) )
(T (60 LOOP)) I ))
(COR EXP) )
((EQ (CAR EXP) (QUOTE EXPT))
(COND
( (NUMBERP (CADDR EXP)) (TIMES (HOMOGEN (CADR EXP))
((AND (ZEROP (HOMOGEN (CADR EXP))) (ZEROP [HOMOGEN
(T (PROG2 (SETQ NOTHOM T) -1000)) 1))
((EQ (CAR EXP) (QUOTE LOG))
(COND ((ZEROP THOMOGEN (CADDR EXP) )1 0)
(T (PROG2 (SETQ NOTHOM T) -1000}}) ))
( ({ZEROP (HOMOGEN (CADR EXP))}) 0)
(T {PROG2 (SETQ NOTHOM T} -1000)}) 1)1)))

DEFINE
(({ALMOSTL INEAR
(LAMBDA
(EXP)
(PROG (W D DDOY)
{RETURN
(COND
CINULL
(SETQ
W
(M2
EXP
{(QUOTE
(PLUS
(TIMES DY (COEFFTT (A TRUE)))
(TIMES
DX
(PLUS
(TIMES
(COEFFTT (C FREEX (QUOTE Y)))
(COEFFTT

(CADDR EXP)))
(CADDR EXP)))) 0)

(D (FUNCTION (LAMBDA (A) (NOT (FREEX A (QUOTE Y)))}

(COEFFPP (E FREEX tQUOTE Y1)} 1)}))
NIL )
NIL )
((EQUAL O
({SETQ DDDY

(DIFF1 {SETQ D {REPLACE W (QUQOTE D)}) (QUOTE Y)) 1)

NIL )
({NOT (EQUAL O {(DIFF1 DDDY (QUOTE X)})) NIL)
(T

(SUBST

o]

(QUOTE Y)

{LINEAR

(REPLACE

Ny
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(CONS (CONS (QUOTE B)
(SIMPQUOTIENT {LIST (REPLACE W (QUOTE A)) ODOY)) )
W
(QUOTE
(PLUS
(TIMES 8 DY)
{TIMES DX
{(PLUS
E
{TIMES C Y)
{TIMES -1 8 (EVAL {DIFF1l (QUQOTE D} (QUOTE X)))) ))112¥))H)IID)DD)

DEF INE

(((ZEROP1 (LAMBDA (A) (AND (NUMBERP A) (ZEROP A))})
(FREEXY (LAMBDA (A) (AND (FREEX A (QUOTE X)) (FREEX A {QUOTE Y)}))))
[LINEARCOEFF

(LAMBDA
[EXP}
{PROG (IND W A B APR BPR)
{RETURN
{COND
((NOT (ELEMLIN EXP)) NIL)
((OR
(AND

{ZEROP1 (SETQ A (SUBLIS W (QUCTE A)))
(ZEROP)L (SETQ B (SUBLIS W {QUQTE 8)))
{AND
({ZERDOP1 (SETQ APR (SUBLIS W (QUCTE APR)))}
{ZEROP1 (SETQ BPR (SUBLIS W {QUCTE 8PR)I))} )
(ZEROP1 (SIMPDIFFERENCE (LIST (SIMPTIMES (LIST A BPR))
(SIMPTIMES {LIST APR B)) 11}))
{RETURN NIL) )
(r
(REPLACE
{REPLACE
NIL
(QuoTE
(X
EVAL
{QUOTE+
(REPLACE
W
{QUOTE (PLUS X
{MINUS {QUOTIENT
(DIFFERENCE (TIMES BPR C)
(TIMES B CPR} )
(DIFFERENCE (TIMES APR B8}
(TIMES A BPR) 1)) ))

{y
EVAL
(QUOTE#
{REPLACE
W
(QUOTE (PLUS Y
(MINUS (QUOTIENT
(DIFFERENCE (TIMES A CPR)
(TIMES APR C) }
(DIFFERENCE (TIMES APR 8)
(TIMES A BPR) 1})))1)1))))
{HOMOGTYPE (SUBSTLIN EXP}) 1131))))
(ELEMLIN
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(LAMBDA
(EXP}
((LAMBDA (Y)
(COND ((NULL Y} NIL)

(T (ELEMLINL (REPLACE Y (QUOTE (QUOTIENT A B))))) 1))

(M2 EXP {QUOTE (PLUS (COEFFPT (B TRUE) YPR) (COEFFPT [A TRUE}))) NIL) )))
(SUBSTLIN

(LAMBDA
(EXP)
(LIST
{QUOTE PLUS)
{QUOTE DY)
(SIMPTIMES
(LIST
(QUGOTE DX)
(SUBSTLIN1 {(REPLACE (M2
EXP
(QUOTE (PLUS (COEFFPT (B TRUE) YPR)
NIL )
(QUOTE {(QUOTIENT A B)) )1))1})))
( ELEMLINI1
(LAMBDA
(EXP)
(COND
({FREEXY EXP) T}
((SETQ
W
(M2
EXP
{COND
(IND IND)
(7
(QUOTE (TIMES
(COEFFTT (AA FREEXY})
(EXPT (PLUS
(COEFFPT (A FREEXY} X)
(COEFFPT (B FREEXY) Y)
(C FREEXY) )
(N NUMBERP) )
(EXPT
(PLUS
(COEFFPT (APR FREEXY) X}
(COEFFPT (BPR FREEXY) Y)
(CPR FREEXY) )
(M (FUNCTION (LAMBDA (M N) (EQUAL M (MINUS N))}) N) 1))))
NIL ))

(COND {IND IND) (T (SETQ IND EXP))) )
((ATOM EXP) NIL)

(T (AND (ELEMLINL {CAR EXP)} (ELEMLIN1
(SUBSTLIN1
(LAMBDA
(EXP)
(CUND
((FREEXY EXP) T)
({M2 EXP IND)
{SIMP (SUBLIS W
(QUOTE (TIMES
AA
(EXPT (PLUS (TIMES A X) (TIMES B Y)) N)

(EXPT (PLUS (TIMES APR X) (TIMES BPR Y)} (MINUS N}) 1))
(T (MAPLIST EXP {FUNCTION {LAMBDA (C) (SUBSTLIN1

{COEFFPT (A TRUE}}}}

(COR EXPY}IY ) ))

m
(CAR CI1}1})) 1))
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DEFINE
{LEXNYY
(LAMBDA
(EXP)
(PROG (W C HFX S ABN)
(COND ((NOT (SETQ W
(M2
EXP
(QUOTE (PLUS (COEFFPT (A TRUE) YPR) (COEFFPT (B TRUE})))
NIL )))
(RETURN NIL) 1)
(SETQ C (REPLACE W {QUOTE (QUOTIENT (MINUS B) A))))
(SETQ
H
(COND
({EQ (CAR C) {QUOTE PLUS))
{SIMPPLUS
(MAPLIST
(COR C)
(FUNCTION (LAMBDA (G)
(SIMPTIMES (LIST (QUOTE X) QUOTE (EXPT Y -1)) (CAR G)) }3)))))
(T (SIMPTIMES (LIST (QUOTE X) (QUGTE (EXPT Y -1)}) C))) 1))
{SETQ FX (QUOTE (TIMES (EXPT X N} Y)))
{SETQ H (FACTORXY H})
(SETQ
S
(EXPAND2
(SIMPDIFFERENCE (LIST
(SIMPTIMES (LIST (DIFF1 H (QUOTE X)) (DIFFl1 FX (QUOTE Y)))
(SIMPTIMES (LIST (DIFF1 H (QUOTE Y)) (DIFF1 FX {QUOTE X))}
(COND ((NOT (SETQ W
(M2
S
(QUOTE (PLUS (COEFFPT (A TRUE) N) (CCEFFP (B TRUE))))
NIL 1))}
{RETURN NIL) 1)
(SETG A (CDR (SASSOC {(QUOTE A) W)))
(SETQ B (CDR (SASSOC (QUOTE 8) W)))
(COND {(OR (ZEROP1 A) (ZEROP1 B}) (RETURN NIL)))
(SETQ N
(COND
({AND (EQ (CAR A) (QUOTE PLUS)) (EQ (CAR B) (QUOTE PLUS}I))
(MATCHSUM (CDR (SIMPMINUS (LIST B))}) (COR A)) )
(T {SIMPQUOTIENT (LIST (SIMPMINUS (LIST 8)) A))) }))
(COND ({NOT (NUMBERP N)} (RETURN NIL)))
(RETURN
(LIST
(QUOTE EQUAL)
{QUOTE CO)
(SIMPQUOTIENT
(LIST
(SIMPEXPT
(LIST
(QUOTE E)
{(REPLACE
{LIST (CONS
{QUOTE U)
(SIMPTIMES (LIST (QUQTE Y) (SIMPEXPT (LIST {QUOTE X) N))) 1))
(SIN
(LIST

)
) )
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(QUOTE QUOTIENT)
1

{LIST
(QUOTE TIMES)
(QUOTE U)
(LIST
{QUOTE PLUS)
N
(REPLACE

(LIST (CONS (QUOTE Y)
(SIMP (LIST
{QUOTE QUOTIENT)
(QUOTE U)
(LIST (QUOTE EXPT) (QUOTE X) N} 1))}
H 1))
(QUOTE U) 1))
(QUOTE X} 1))113¥1))

ADDITIONAL METHQODS

DEF INE
(({REVERSEVAR
(LAMBDA
(EXP)
(PROG (Y)
(RETURN (COND ((SETQ Y
(LINEAR {SUBLIS (QUOTE ({X . Y) (Y . X) (DX o DY) (OY . DX))}
EXP }))
(SUBLIS (QUOTE ((X . Y) (Y . X))) Y) )
(T NILY D))

DEFINE
({{XAY8
{LAMBDA

(EXP)

(PROG (W
M
N
XYDMDY
XYDNDX
XM
YN
COEXM
COEYN
XAYB
A
8
FORM
XYDIFF
Al
A2
81
B2
Cl
c2
DET
FACT )
(COND ((NOT (SETQ W
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(M2
EXP
(QUUTE (PLUS (COEFFPT (M TRUE) DX) (CCEFFPT (N TRUE) DY)) )
NIL }))
(RETURN NIL} 1)
(SETQ M (REPLACE W (QUOTE M)}
(SETQ N (REPLACE W (QUOTE NJ)})
(SETQ XYDMDY
(EXPAND2 (SIMPTIMES (LIST (QUOTE X) (QUOTE Y) (DIFF1 M (QUDOTE Y)))) ))
(SETQ XYDNDX
(EXPAND2 (SIMPTIMES (LIST (QUOTE X) (QUOTE Y) (DIFF1 N {QUOTE X)))) )N
(SETQ XM (EXPAND2 (SIMPTIMES (LIST (QUOTE X) M))))
(SETQ YN (EXPAND2 (SIMPTIMES (LIST ~1 (QUOTE Y) N))})
(SETQ XYDIFF {SIMPDIFFERENCE {(LIST XYDNDX XYDMDY}))
(SETQ W
(M2
(COND ((EQ (CAR YN} (QUOTE PLUS)) (CADR YN)) (T ¥YN))
(QUOTE (TIMES (COEFFTT (B FREEXY)) (COEFFTT (C TRUE))))
NIL }}
(SETQ B1 (REPLACE w (QUOTE B)})
(SETQ FACT (REPLACE W (QUOTE C)))
(SETQ YN
{COND ((EQ (CAR Y¥YN) (QUOTE PLUS}) (CONS (QUOTE PLUS) (CODR YN)})
(1T 0) 1))
(SETQ FORM
(LIST
(QUOTE PLUS)
(CONS (QUOTE COEFFPT)
(CONS (QUOTE (B FREEXY))
(CONU ((EQ (CAR FACT) (QUOTE TIMES)) (CDR FACT))
(T (LIST FACT)) 1))
(QUOTE (COEFFPP (D TRUE})) ))
(SETQ W (M2 XM FORM NIL))
(SETQ Al (REPLACE W {QUOTE 8)))
(SETQ XM {REPLACE W (QUOUTE D)))
(SETQ W (M2 XYDIFF FORM NIL))
(SETQ Cl1 (REPLACE W (QUOTE B81))
(SETQ XYDIFF (REPLACE W (QUOTE D)))
(COND (iM2 YN O NIL) (GO B2ZERQ}}}
(SETQ W
(M2
(COND ((EQ {(CAR YN) (QUOTE PLUS}) (CADR YN)) (T YN))
(QUOTE (TIMES (COEFFTT (B FREEXY)) (COEFFTT (C TRUE})))
NIL })
(SETQ B2 (REPLACE W (QUQTE 8)))
(SETQ FACT (REPLACE W (QUOTE C)))
(SETQ FORM
(LIST
(QUOTE PLUS)
(CONS {QUOTE COEFFPT)
(CONS (QUUTE (B FREEXY))
(COND ((EQ {CAR FACT) (QUOTE TIMES)) (CDR FACT))
(T (LIST FACT)) )))
(QUOTE (COEFFPP (D TRUE))) 1))
(SETQ W (M2 XM FORM NIL))
(SETQ A2 (REPLACE w (QUOTE B8)))
B2BACK
(SETQ W (M2 XYDIFF FORM NIL})
(SETQ C2 (REPLACE W (QUOTE 81})
(SETQ DET
(SIMP (LIST



(QUOTE DIFFERENCE)
(LIST (QUOTE TIMES) 82 Al)
(LIST (QUOTE TIMES) Bl A2) }))
(COND ((M2 DET O NIL) (RETURN NIL)))
{SETQ B
(SIMP (LIST
(QUOTE QUOTIENT)
(LIST
(QUOTE DIFFERENCE)
(LIST (QUOTE TIMES) B2 C1)
(LIST (QUOTE TIMES) B1 C2) )
DET 1))
{SETQ A
(SIMP {LIST
(QUOTE QUUTIENT)
(LISTY
(QUOTE DIFFERENCE)
{LIST (QUOTE TIMES) Al C2)
(LIST (QUOTE TIMES) A2 Cl) )
DET 1))
(SETQ XAYB
(SIMPTIMES {LIST (LIST (QUOTE EXPT) (QUOTE X} A)
(LIST (QUOTE EXPT) (QUOTE Y) B) )})
(RETURN (EXACT (LIST
(QUOTE PLUS)
(LIST
(QUOTE TIMES)
(QUOTE DX)
(EXPAND2 (SIMPTIMES (LIST M XAYB))) )
(LIST
(QUOTE TIMES)
{QUOTE DY)
(EXPAND2 {SIMPTIMES (LIST N XAYB))) 1}))
B2ZERO
(SETQ 82 0)
(SETQ W
(M2
(COND ((EQ (CAR XM} {QUQOTE PLUS)} (CADR XM}) (T XM))
(QUOTE (TIMES (COEFFTT (B FREEXY)) (COEFFTT (C TRUE)}))
NIL )
(SETQ A2 (REPLACE W (QUQTE B)))
(SETQ FACT (REPLACE W (QUOTE Ci))
(SETQ FORM
(LIST
(QUOTE PLUS)
[CONS (QUOTE COEFFPT)
(CONS (QUOUTE (8 FREEXY))
(COND ((EQ (CAR FACT) (QUOTE TIMES)) (CDR FACT))
(T (LIST FACTH) 1)}
(QUDTE (COEFFPP (D TRUE})) )}
(GO B2BACK) 1))))

DEFINE
(L {KAMKE329
(LAMBDA
(EXP)
(PROG (W DET AA 88B)
(COND
({NOT
(SETQ
W
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(M2
(EXPAND2 EXP)
(QUUITE
(PLUS
{COEFFPT (C M1
(QUOTE (PLUS (COEFFPT {ALPHA FREEXY) X)
(COEFFPT
(A FREEXY)
(EXPT X (P FREEXY))
(EXPT Y {Q FREEXY)) 1))
YPR )
(COEFFPT (BETA FREEXY) Y)
(COEFFPT
(B FREEXY)
(EXPT X (R FREEXY))
(EXPT ¥ (S FREEXY)) 1))
NIL 1))
{RETURN NIL) )
((NOT (AND
(M2 1 {(REPLACE W {QUOTE (DIFFERENCE P R))) NIL)
(M2 1 (REPLACE W (QUOTE (DIFFERENCE S C)}) NIL) ))
(RETURN NIL) )
(M2
0
(SETQ DET
{REPLACE W
(QUOTE (DIFFERENCE (TIMES A BETA) (TIMES B ALPHA))} ))
NIL }
(RETURN NIL) ))
(SETQ AA
(REPLACE W
(QUOTE (QUOTIENT (DIFFERENCE (TIMES Q BETA) (TIMES R ALPHA)}
(EVAL DET) 1))
(SETQ BB
(REPLACE W
(QUOTE (QUOTIENT (DIFFERENCE (TIMES Q B) (TIMES R A)) {[EVAL DET)) )))
(RETURN
(REPLACE
W
(QUOTE
(EQUAL CO
(PLUS
(QUUTIENT (TIMES (EXPT Y (TIMES A (EVAL AA}Y)
(EXPT X (TIMES 8 (EVAL AA})) )
(EVAL AA) )
(QUOTIENT (TIMES (EXPT Y (TIMES ALPHA (EVAL BB}))
(EXPT X (TIMES BETA (EVAL BB))) )
(EVAL BB) 11)))))1))))

EDGE

DEFINE((

(FREE(LAMBDA(A) (COND{{ATOM A} {NOTIEQ A VAR)))

(TCAND(FREE(CAR A))(FREE (CDR A))))))) )}

DEFINE((

(EDGE[LAMBDA(EXP VAR){PROG

{PROBL ARCLOG POSEXPT OLDPROBL ONEMORE NCNRAT NEWB* G W CONST NONCON
B ANSW L FF AORA' H A
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NINTXP A' B* LDERIV M)

(SETQ B* (TRIGSUBST EXP})}

(SETQ NINTXP(M2 B*IQUOTE(TIMES(BB M1(QUOTE(EXPT(A (QUOTE(LAMBDA(X}INOT
(FREE X)) )N
(QUOTE(LAMBDA{ X) (NOT(NUMBERP X)11}) 1)))
(COEFFTTIC TRUE}IDIINIL))

{0 BEG)

LOUP(COND((RAT8 B*)} (GO FINISHED))}

{CONDUT{EQUCAR NONCON) (QUOTE TIMES)) (GO AA)))

(SETQ FF NONCON)

(GO GUESS)

AA{SETQ LDERIV{CONSIQUOTE PLUS) (MAPLIST (CDR NONCON}
(FUNCTION{LAMBDA(C)}(DIFF1(CAR C)VAR)))I)))

(SETQ M{CDR NONCON})

(SETQ L(CDR LDERIV}}

LOUP2(COND((RAT8{CAR M)} {GO SKIP)})

(COND{{NOT(M2 (CHOICE (CAR L) LDERIV)
(LIST{QUOTE PLUS){LIST(QUOTE TIMES){CAR M)
(QUOTE(COEFFTT(A TRUE))))
(QUUTE(B TRUE))) NIL)) (GO ENDP)})

SKIP{SETQ NONRAT(CAR M))

(SETQ M{CDR M)}

(SETQ L(CDR L))

(CONDIM(GO LOOP2)))

(SETQ FF NONRAT)

(GU GUESS)

ENDP(SETQ FF(CAR M))

GUESS(SETQ ARCLOG NIL)
(SETQ POSEXPT NIL)
(SETQ G{COND
((EQ(CAR FF){QUOTE COS)){PROGZ(SETQ AORA' T)(LIST(QUOTE SIN)ICADR FF)))
((EQ(CAR FF)(QUOTE SIN})}(PROG2(SETC AGRA' T)(LIST(QUQTE COSI{CADR FF)}))
((EQ(CAR FF)(QUOTE LOG}){PROG2{SETQ AORA' NILIFF))
((EQ(CAR FF)}{QUOTE ARCSINY) (PROG2(SETQ ACRA' NIL}FF))
(CEQICAR FF)(QUOTE ARCTAN)) (PRUG2(SETQ AGRA' NIL)FF}}
({EQ(CAR FF)(QUOTE EXPT)){COND
({FREE(CADR FF})(PROG2(SETQ AORA' TIFF})
((NOT{NUMBERP(CADDR FF))}) (PROG23(SETQ AORA' TH(LIST(QUOTE EXPT){CADR FF)
(SIMPPLUSILIST(CADDR FFI1))}
(SETQ POSEXPT T)))

)
}

((GREATERP(CADDR FF)O0) {PROG23(SETQ ACRA' TH(LIST(QUOTE EXPT)(CADR FF)
(SIMPPLUSILIST(CADDR FF)1)1})
(SETQ PUSEXPT T))}
{{LESSP{CADDR FF)-1)(PROG2(SETQ AORA* T)(LIST(QUOTE EXPT)
(CADR FF){SIMPPLUS(LIST(CADDR FF)1}))))
( CANDUEQUAL(CADDR FF}-0.5) {SETQ W{M2(CADR FF)
{QUOTE(PLUS(COEFFP(A FREEO))(COEFFT(C M2(QUOTE(EXPTID TRUEI(N EVEN)}INIL)
(B FREE)))INILT))
(PROG23(SETQ AORA' T) (REPLACE W
(QUOTE{ARCSINIEXPT(QUOTIENT(TIMES (MINUS B)C)AY0.5)}))(SETQ ARCLOG T)))
{(EQUALICADDR FF)-1)(COND({SETQ WI{M2{CADR FF)
(QUOTE(PLUSICOEFFP({A FREEO)){COEFFT(C M2(QUOTE{(EXPYI(D TRUE)(N EVEN))INIL)
{B FREE}))INIL))
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(PROG23(SETQ AORA®* T){REPLACE W(QUOTE(ARCTAN(EXPT(QUOTIENT{TIMES B C}A)0.5))))
(SETQ ARCLOG T) 1))
(T(PROG23(SETQ AORA' T){LIST(QUOTE LOG){QUOTE E)(CADR FF))(SETQ ARCLOG T)))))
(T(ERROR(QUOTE(NOT YET ACCOUNTED FOR))))))
(T{ERROR{QUOTE(GUESS NOT YET FINISHED)IF)I )

GOGO(COND( (NOT ACRA*)I[GO A'SET))}
(SETQ A(SIMPQUOTIENTI(LIST NONCON(DIFFL G VAR))})
(SETQ A(COND{(AND ARCLOGI(SETQ W{M2 A(QUOTE
(TIMES(B M2(QUOTE(EXPT(PLUS(COEFFP(BL FREEO))
(COEFFT(B2 TRUE) (B3 FREE)))-1)}INIL)
{C M2(QUOTE{PLUS(COEFFP(C1 FREEO))
(COEFFT{C2 TRUE1)(C3 FREE)))INIL) (COEFFTT(D TRUE}DI)INIL}))
(COND( (SETQ M(MATCHSUM(CDADR{REPLACE WI{QUOTE 8)))
(COR{REPLACE W(QUOTE C)))))
{SIMPQUOTIENT(LIST(REPLACE WIQUOTE D)})IM)))
(T A)))
(T A)))
(SETQ A'(DIFF1 A VAR))
(SETQ NEWB*(COND{(NOT(EQICAR A')(QUOTE PLUS))) (SIMPMINUSILIST
(SIMPTIMES(LIST G A*)))))
(T(TIMESLOOP({SIMPMINUS{LIST G}){CDR A)))})
(GO LOOPS)
A'SET{SETQ A*(SIMPQUOTIENTILIST NONCON G)})
(COND((FIND1{SETQ A(INTEGRATE A' VAR)) (QUOTE INTEGRAL))I(GO KILL}))
(SETQ NEWB*{COND((EQ(CAR A) (QUOTE PLUS) ) (TIMESLCOP{SIMPMINUS
(LIST(DIFF1 G VAR))}(CDR A}))
(TOSIMPTIMESILIST ~1{(DIFF1 G VARIA)))))

LOOPS{SETQ PROBL{CONS{LIST B* CONST NONCON G FF A A' ARCLOG POSEXPT)PROBL))
{COND{ (AND ARCLOG(NOT(FREE A})){SETQ ARCLOG 1)})

(COND((AND POSEXPT{NOT(FREE A)))(SETQ POSEXPT 1)))

(PRINT NEWB')

{SETQ B*' NEWB*)

BEG (SETQ WIM2 B*(QUOTE(TIMESICOEFFTT(A FREE}) (COEFFTT(B TRUE))IINIL))
{SETQ CONST{REPLACE W(QUOTE A)))}

(SETQ NONCONI(REPLACE W({QUGTE B)))

(SETQ L PROBL)

LOOP3{CONDUINULL L) (GO PROGRESS))

((M2(CADDAR LINONCON NIL}{GO A)))

(SETQ LICOR L))

(GO0 LOOP3)

A(SETQ M PROBL)

(SETQ W CONST)

A2{SETQ WISIMPTIMES(LIST W (CADAR M))))

(COND((EQ M L)(GO AL}))

(SETQ M{CDR M))

(GO A2)

A1{COND((M2 WICADAR LINIL) (GO KILL)))

(RPLACA(CDAR L}
(SIMPQUOTIENT(LIST(CADAR L) (SIMPDIFFERENCE(LIST(CADAR LIW)))))

[SETQ ANSW 0)

SKIP2{SETQ L PROBL)
LOOP4{CONDCINULL L)} (RETURN ANSW)))
{SETQ ANSWISIMPTIMES(LIST(CADAR L)
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(SIMPPLUS(LIST{SIMPTIMES(LIST(CADDR(CDDDAR L)) (CAR{CODDAR L)}})IANSW)I})))
(SETQ L(CDR L})
(GO LOOP4)
FINISHED(SETQ ANSW(INTEGRATE B' VAR})
(50 SKIP2)

PROGRESS(COND{ (RAT8 B') (GO FINISHED))

(ONEMDRE(RETURN{QUOTE{NO PROGRESS)}))

(({EQUAL POSEXPT 1)(SETQ ONEMORE T))

( (EQUAL ARCLOG 1){SETQ ONEMORE T)))

(COND((NOT NINTXP) (GO LOOP)))

(SETQ W(M2 B*(QUOTE(TIMESIEXPT{A EQUAL(REPLACE NINTXP{QUOTE A}))
(M TRUE>))(COEFFTT(D TRUE))IINIL))

(CONDU{INULL W){ERROR(QUOTE NINTXP))))

(SETQ MISIMPDIFFERENCE(LIST(REPLACE NINTXP(QUOTE N))
{REPLACE W(QUOTE M)))))

(COND((NOTINUMBERP M)} (ERROR(LIST(QUOTE NINTXP)M))})

{{ZEROP M) (GO LOOP))

({GREATERP M 0} (GO N1))

(ONEMORE(RETURN(QUOTE(NO PROGRESS NINTXP)I}))

(SETQ ONEMORE T}

(60 LOOP)

N1(SETQ ANSWILIST{QUOTE INTEGRAL) NIL (LIST(QUOTE QUOTEIB*) (LISTI(QUOTE QUATE )
VAR)))

(GO SKIP2)

KILL1 (SETQ PROBL(CDR PROBL))

KILL2(COND( (NULL PROBL) (GO MAYBEONEMORE)))
{SETQ L(CAR PROBL})

(COND{ (CAR(CDDDOR(CDDDDR L}}) (GO POSEXPT)})
(COND((NOT(CADDDR (CDDDDR L)}} {60 KILLL))
((EQ(CAR{CADDDR L)){QUOTE LOG)) (GO KILLL))
)

(SETQ FF{CADDDR(COR L) })

(SETQ B'{CAR L})

(SETQ CONST{(CADR L))

(SETQ NONCON(CADOR L))

(SETQ AORA' T)

(SETQ G(COND({EQ(CAR{CADDDR L)} (QUQTE ARCSIN))
(LISTIQUOTE EXPT) (CADR FF) (SIMPPLUS(LIST(CADDR FFI1))})
(TA{LIST(QUOTE LOG) (QUOTE E)}{CADR FF)})})

(SETQ PROBLICDR PROBL})

{SETQ ONEMORE NIL)

(GO GOGO)

KILL(SETQ OLDPROBL PROBL)

(GO KILL2)}

MAYBEONEMORE{COND(ONEMORE (RETURNIQUOTE(I GIVEUP))I)}))
(PRINT(LIST(QUOTE ONEMORE)OLDPROBL})

(SETQ PROSL OLDPROBL)

(SETQ ONEMODRE T)

{GO LOOP)

PDSEXPT{COND{{EQUAL (CAR(CDDDDR(CDDDDR L))})1) (GO KILLL)})
(SETQ FF(CADODR(CDR L)))

(SETQ POSEXPT 1}

(SETQ AQRA' T)

(SETQ B* (CAR L))

(PRINT(LIST(QUOTE POSEXPTIB'))

(SETQ CONST{(CADR L))

(SETQ NONCON(CADOR L)}
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(SETQ G FF)

{SETQ PROBLICDR PROBL))
(G0 60GO)

1)

DEFINE((

(TRIGSUBST{LAMBDAIEXP)

(COND

((ATOM EXP)IEXP}

((NOT{MEMBER(CAR EXP)}IQUOTE(TAN COT SEC CSC))))
(SIMP{MAPLIST EXPIFUNCTION(LAMBDA(C) [TRIGSUBST(CAR C}}}))))

((EQ(CAR EXP)(QUOTE TAN)) (SIMPQUOTIENT(LIST(LIST{QUGTE SIN){CADR EXP))
(LIST(QUOTE COS)(CADR EXP1)}1})

({EQ(CAR EXP){QUOTE COT)) (SIMPQUOTIENT(LIST(LIST{QUOTE COS){CADR EXP})
(LIST(QUOTE SIN){CADR EXP)))))

((EQ(CAR EXP)(QUOTE SEC))(SIMPQUOTIENT(LEST 1(LIST{QUQTE COS)I{CADR EXP}})1)

mn»
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