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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-1455

THE N-BODY CODE - A GENERAL FORTRAN CODE FOR
SOLUTION OF PROBLEMS IN SPACE MECHANICS
BY NUMERICAL METHODS

By William C. Strack, Wilbur F. Dobson,
and Vearl N. Huff

SUMMARY

A general astronomical integration code designed for a large class of prob-
lems in space mechanics that may be solved by numerical integration is described.
The equations of motion provide for the effects of up to eight gravitating celes-
tial bodies, oblateness and aerodynamic forces from the celestial body at the
problem origin, propulsion system thrust, and rotation of the body at the origin.

INTRODUCTION

The general problems of space mechanics (i.e., n-bodies plus nonconservative
forces such as thrust) cannot be solved analytically. Therefore, numerical inte-
gration through the use of computing machinery is usuelly employed.

Several codes have been written for the numerical solution of problems in
orbit mechanics; for example, the Themis Code of reference 1 1s a double-
precision code intended primarily for close satellites or interplanetary coasting
flight. Reference 2 describes a space-trajectory program of considerable merit.
A listing of several other trajectory codes may be found 1n reference 3.

The general purpose code described hereln has several distinctive fegtures
not all of which are found in any one of the previously available codes. As de-
scribed herein, this code is designed to operate on an IBM 704 computer that has
an 8000 word (8 K) memory and at least 1 K of drum. The fact that the program is
written in FORTRAN should maeke it applicable to installations having other types
of equipment that accept the FORTRAN language. An edition of this program (dif-
fering primarily in that segmenting of the program is not required) is available
for an IBM 7090 computer that has a 32-K core.

The program is compartmented into 25 subroutines to facilitate modifications
for specific problems. The integration is carried out in either rectangular co=-
ordinates or orbit elements at the option of the user. A compact ephemeris that



occupies about one-seventh of a reel of tape is utilized for positions and veloc=-
ities of the planets (except Mercury) and the moon. An atmosphere is included so
that aerodynamic forces may be consildered.
STATEMENT OF PROBLEM

The problem to be solved may be stated as follows: Given certain initial
conditions, compute, using three degrees of freedom, the path of an object, such
as a space vehicle, subject to any or all of the following forces:

origin body gravitational field

other celestial body gravitational fields

propulsive thrust

aerodynamic forces

any other defined forces

or, in equation form, with respect to a noninertial Cartesian coordinate system,
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where n equals the number of perturbating bodies and ¥ denotes the del oper-
ator. (A1l symbols are defined in appendix A.)

Origin Body Gravitational Field and Oblateness Perturbations

The first term, WU, in the equation of motion (eq. (1)) represents the
gravitational forces due to the origin body. When the origin body_is spherical
and made up of homogeneous layers, this term becomes simply -Q?/rs. In the case
of the Earth, however, the effect of oblateness may be important, and additional
terms must be added to account for the oblateness effects. The expression for
the gravitational potential U of an oblate spheroid may be written, sccording
to reference 4, as

ol ofE) - 5) SR @] o

where the x,y plane lies in the equatorial plane. The components of gravita-
tional acceleration are as follows:
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The first terms exist for a spherical planet composed of concentric layers of
uniform density. The terms containing J and K are frequently called the sec-
ond and fourth harmonic terms, while J and K are known as the harmonic coef-
ficients.

It is expected that oblateness perturbations need to be computed only for
the origin body, since at large dilstances, such as that between celestial bodies,
the gravitational field of an oblate body is essentlally an inverse-square field.
Consideration of oblate bodies other than the Earth requires only different val-
ues of J and K if that body's rotation axis is parallel to the z-axis. When
the body has triaxial asymmetry or when the z-axis cannot conveniently be alined
with the rotation axis of the origin body, the equations must be extended if ob-
lateness 1is to be 1ncluded.

Celestial Body Perturbations

The presence of more than one gravitating body in addition to the object re-
sults in the inclusion of the second term of equation (1). The evaluation of
this term requires a knowledge of the positions of the bodies as a function of
time. The degree of precision desired determines the method to be used to obtain
the positions such as elements of ellipses or an ephemeris.

Propulsive Thrust

The propulsive acceleration is completely specified by a direction and a
magnitude. The thrust direction may be referred to the velocity vector by two
angles: a, the angle between the velocity and the thrust vectors, and B, the



angle between the orbit plane and the velocity-thxust plane. The sense of each
angle 1s indicated in sketch (a).

Orbit plane-
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The velocity may be referenced with respect to one of several coordinate
systems. If the computation refers to a takeoff of a rocket or winged vehicle,
the coordinate gystem rotating with the Earth may be preferred. In such cases
the relative velocity (i.e., the velocity of the object relative to the atmos-
phere) will serve to orient the thrust vector. Resolution of the thrust-vector
components along the x,y,z axes is shown in appendix B.

The thrust magnitude of a rocket engine is

F = ilg, - PA (4)

This relation i1g sufficient for many space powerplants and is used in the present
program.

Aerodyriamic Forces

The aerodynamic forces are usually dlvided intc the two components, 1ift and
drag. The drag force is directed opposite to the relative wind vector, and the
1lift vector is perpendicular to the relative wind vector. The angles o and B,
defined in the previous section, serve as the angles of attack and roll, respec-
tively. Yaw effects are not considered. Resolution of the 1ift and drag vectors
into components along the x,y,z axes is given in appendix B.

The magnitudes of the 1ift and drag forces may be convenlently determined
through use of a tabular group of coefficlents in relatively simple equations.
The 1ift and drag magnitudes may then be expressed (as i1s usual in aerodynamics)
as
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where the quadratic constants aj may have different values for different re-
gions of the independent variebled” t and Ny-

It should be remembered that these cholces are arbitrary and are not re-
strictive because other functions mey easily be used by simply changing the equa-
tion where it appears in the program. In fact, any propulsion system and aerody-
namic configuration can presumably be incorporated by writing proper thrust and
aerodynamic subroutines.

The pressure, temperature, and density may be determined as a function of
altitude in accordance with the ICAO standard atmosphere. The coblate Earth model
is used to determine the altitude.



Other Forces

The ‘i forces may be any forces such as electrostatic, magnetic, or solar
radiation pressure that affect the trajectory. While these forces are not con-
sidered further herein, thelr inclusion would usually be feasible and would be
similar to thrust, 1ift, and drag.

METHOD OF SOLUTION

The method of solution selected for the stated problem is presented in this
section. A later section discusses the FORTRAN coding.

A description of several numerical integration techniques and theilr relative
merits are contained in reference 5. A straightforward method for finding the
position of the object as a function of time 1s to integrate the total accelera-
tion of the object expressed in rectangular components. An example of this
method is Cowell's method (ref. 5).

However, when the system under investigation consists of twe noncoblate
bodies (one of which is the object) with no forces other than gravitational at-
traction forces, an exact analytical solution for the motion of the body exists.
Further, if the conditions of the actual problem are such as to approximate the
two-body problem closely, ancother epproach is to use the exact two-body solution
as a basis and simply integrate the changes in the two-body parameters, since
they should be slowly varying. This technique, sometimes called the 'variation
of parameters," will be referred to as "integration of orbit elements."

Since problems both remote and near to the exact two-body problem are en-
countered in orbit mechanics, and since either type of problem is solved more ef-
ficlently by using the technique most sultably applicable, it was considered de-
sirable to use either of the previously mentioned integration techniques at will.
Accordingly, two methods of integration are provided in the program, namely, rec-
tangular coordinates and orbit elements.

Integration Variables

In order to use either of these integration techniques, it is necessary to
select a suitable set of variables for integration. Because a differential equa-
tion may determine the mass of the object (i.e., spacecraft), mass has been se-
lected as a variable to be integrated. Selection of the remalining parameters
follows in the subsequent paragraphs.

Rectangular coordinates. - In the first technique, the total acceleration
components ¥,¥, and ¥ are integrated to obtain x,y, and z wgere X,¥, and z are
the rectangular components of the origin-to-object radius r. The positive
x-axis points in the direction of the mean vernal equinox of 1950.0. The posi-
tive y-axis lies in the mean equator of 1950.0 and is perpendicular to and coun-
terclockwise from the positive x-axis. The z-axis points north and completes the




righthanded orthogoneal set. The integration in rectangular coordinates involves
numerical solution of three second-order linear differential equations; that is,
a double integration 1s required for integrating the accelerations to obtain ve-~
locities and the velocities to obtain positions. The rectangular variables have
advantages of complete generality and a minimum amount of computing per step.

Orbit elements. - In the variation-of-parameters technique, s set of six
independent two-body parameters called orbit elements are integrated. These six
parameters may be arbltrarily chosen from a host of possibilities. The set se-
lected for this progrem is composed of the eccentriclty e, the argument of peri-
center w, the equatorlal longitude of ascending node &, the inclination of the
orbit plane to the equatorisl plane 1, the mean anomaly M, and the semllatus
rectum p. The transformation equations between the two sets of variables are
given in appendix C.

The integration of orbit elements requires the numerical solution of six
first-order linear differential equations. The rather involved transformation by
which the three second-order linear differential equations in ¥X,¥,% are reduced
to six first-order equations in &, &, Q, 1, M, and p 1s contained in refer-
ence 6. Integration in orbit elements is frequently advantageous because the
smaller orbit-element derivatives may permit larger integration intervals that
result in fewer steps. In the special case of two-body motion, the derivatives
are zero (except M, which is a constant).

Mathematical difficulties may arise occasionally with most sets of orbit
elements. In particular, for the selected set, these occur when e approaches
unity (parabolic trajectory), which causes a loss of numerical accuracy in the
frequently used quantity (1 - e2); and when an asymptote is approached too
closely, which causes numerical difficulties in the itergtive solution for eccen-
tric anomaly from Kepler's equation. The selected solution to these difficulties
is to shift temporarily to rectangular-coordinate integration whenever the diffi-
culty arises.

Integration Method

It is clear that regardless of the choice of integration technique, the mag-
nitudes of the derivatives of the variables to be integrated may vary consider-
ably along the trajectory. With fixed step size (constant intervals in time),
the integration scheme will take unnecessary steps in the regions where the
changes in the derivatives are small and thus will waste computing time and in-
crease roundoff error. When the derivatives are large and change rapidly, a
fixed step size will result in large truncation error (error due to excessive
step size). Thus, in the interest of computing accuracy and economy, use of
variable step size along the trajectory becomes desirable.

One of the integration schemes that allows variable step-size control to be
incorporated easily is the Runge-Kutta scheme. ZFor this and other reasons, 1t
was decided to use a fourth-order Runge-Kutta method with variable step-size

control.



Truncation error and step size may be controlled by examining the relative
errors between the fourth-order Runge-Kutta integration scheme and a lower-order
integration procedure. The arbitrarily chosen low-order integration scheme was
an unequal~interval Simpson rule method. Details of the fourth-order Runge-Kutta
integration method and the step-size control are given in appendix D. Roundoff
error may be reduced by accumulating the integration variables in double preci-
sion.

Origin Translation

As noted previously, machine computing time and roundoff error may be mini-
mized by maximizing the integration interval. The largest intervals are possible
in orbit elements when the celestial body at the problem origin is the one that
has the greatest influence on the vehicle motion. For this and sometimes other
reasons, it may become desirable to translate the problem orlgin occasionally as
the vehicle moves along its path.

Such translations of the origin may be made when the object enters a body's
"sphere of influence,” that is, the sphere about a body within which the greatest
influence upon the object 1s due to forces originating from that particular body.
In this program, the orientation of the coordinate system is always alined with
the system determined by the Earth's mean equator and equinox of 1950.0, as is
standard in astronomy.

THE CODE AND ITS USAGE

The stated problem was programmed in FORTRAN routines that are separately
designed to accomplish one task but when combined form a complete program. This
feature facilitates modifications.

The program 1s labeled as a general-purpose code, but an efficient general-
purpose code cannot be a reality. As a result, this code is not especially gen-
eral, but an attempt has been made to retain efficlency and to provide for easy
modification of the routines to recover generaliiy as needed. For example, the
program is an "open system," that is, it solves an initial value problem. There
is no link provided to obtain specific end conditions. Provision of this link is
left to the user for his specific needs. In particular, when certain end condi-
tions of a trajectory are to be met by determining the correct initial conditions
(two-point boundary value problem), the user may program an iteration scheme to
compute initial conditions from end conditions of previous runs. -

The code is designed to operate on an IBM 704 computer that has an 8-K core
and drum and also a number of tape units. To operate the code on an 8-K com-
puter, it is necessary to divide the program into two segments (core loads). The
program of segment 1 arranges certain data in the core. The program of segment 2
overwrites the program but not the data of segment 1 when it is called for. Fig-
ure 1 is a simplified diagram that shows how the various major subprograms are
arranged in the segments. The segmenting was done as efficiently as possible in
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terms of execution time, but further gains can be realized by users of larger
computers who may wish to modify the code to utilize the increased computer ca-
pacity.

In the following sections, discussing the program in terms of the FORTRAN
variables and routines is sometimes desirable. A glossary of these varisbles
is given in appendix E.

Ephemerides

To determine the position of each celestlal body, there is offered a choice
between ellipses and a precision ephemeris. Any appropriate ellipse data may be
used, and an example of such data is given in table I.

The precision-ephemeris tape that is used in the program was so made that
position and velocity were obtainable through the use of a fifth-order polynomial
whose coefficients are stored on tape. The details concerning the making of the
tape and its structure are given in appendix F. This master tape is a merged
ephemeris containing all the planets (except Mercury), the moon, and the Earth-
moon barycenter from October 25, 1960 to about 2000 (except for the moon, which
has an ending date of 1970). The Earth ephemeris is called "sun" because it
gives sun to Earth distances.

Direct use of the master merged ephemeris tape would, in general, be waste-
ful of computing time, since excess tape handling would occur in order to bypass
data not required for the particular problem. To minimize tape handling during
execution, a shorter merged ephemeris containing only that data needed for a spe-
cific problem 1s constructed at execution time. Several of these working ephem-
erides may be constructed before the integration of the problem. (Several prob-
lems may be loaded simultaneously with the same ephemeris, or each problem msy
require a distinct ephemeris, or several ephemerides may be desired for a single
problem. )

Step Size and Output Control

Truncation error and step size are controlled by computing the relative
errors between the Runge-Kutta integration and the lower-order integration proce-
dure. If the greatest relative error between the methods is greater than a maxi-
mum limit (ERLIMT), the integration step will be repeated after a smaller step
size is computed. In either case, a new step size is computed from the relative
errors of the previous steps and is intended to result in an error that is close
to a reference value (EREF). Further, the step size may then be reduced by the
output controls. In any case, a step can be no larger than three times the size
of the previous successful step. (See appendix D.)

Output is sometimes desired at specific points along the trajectory, while

at other times this is unimportant. This option is provided for the user so that
he may choose output to occur at equal intervals 1in step number or equal time
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intervals (which places a constraint on the step size). Also, he may choose to
change from one mode to another along the trajectory. These cholces of output
spacing are effected through the use of the FORTRAN variables MODOUT, DELMAX,
STEPS, and TMIN, which is explained under the MODOUT entry of table II, a table
of program control parameters.

Computer Qutput

A basic output format was programmed to serve as a basis for modification
and is illustrated in table IITI. It is intended that a user of the code modify
the output to suit his purpose. In addition to examining the normsl output, it
is sometimes desirsble to examine the error-control date, such as the relative
errors in the integration variables, along the path. These data are printed as a
single block after completion of the problem if the sign of the input error ref-
erence value EREF is negative. The sign of EREF is irrelevant in the error-
control portion of the program since its absolute value is taken.

Computer Input

The user has a choice of three possible sets of input data that specify po-
sition and velocity: (1) the six orbital elements, (2) the three Cartesian com-
ponents of both velocity and position, and (3) the latitude, longitude, azimuth,
elevation, velocity, altitude, and time.

The third set mentioned is programmed for the Earth only where the latitude
and longitude are the geocentric latitude and longitude measured from the equator
and Greenwich, respectively. The azimuth angle is measured in a plane tangent to
the sphere of radius r at the point on the sphere determined by the geocentric
latitude and longitude, and relative to the local meridian, positive eastward
from north. The elevation angle is then measured in a plane normal to the tan-
gent plane, positive outward (sketch (b)). The tangent plene is teken horizontal

Long = longltude measured from
Greenwich in earth's
equatorial plane, posi-
tive east

Lat = latitude, measured posi-
tive north, geocentric

Azl = azimuth angle, measured
east from north from
local meridian

Elev = elevation angle, positlve
outward

Greenwich
y Vel = vehicle's initial velocity

b = radius of vehicle from
Earth's center



with the effects of oblateness and rotation considered if these effects are "on."
If oblateness and rotation are "off," the horizontal is perpendicular to the ra-

dial direction. This input option ignores the correction between universal time

and ephemeris time and between the Instantaneous equator and equinox and those cf
1950.0.

A list of input instructions is contained in appendix G along with an input
check list.

The input routine described in reference 7 was used because of its simplic-
ity; however, another input routine may be used if it is desired.

Sequence of Operations

Before the program begins to integrate a trajectory, it performs an assort-
ment of operations that may be called "initialization." All these operations are
expected to be done once or only a few times during the trajectory integration
and, for this reason, are contained wholly in segment 1. Likewise, at the end of
a problem, a return to the segment 1 causes several concluding operations to be
performed. A condensed description of the operations carried out in segment 1 1is
contained in the flow diagram of figure 2. Other than the normal end of a prob-
lem (reaching a maximum number of integration steps or a particular time) there
is only one way in which segment 1 may be called by segment 2, namely, a trans-
lation of the origin. When the translation occurs, segment 1 is needed to re-
order the body list and perhaps to cause input or ephemeris change.

After completion of the initialization, which leaves numerical data stored
in the common area, segment 1 is overwritten by segment 2, which may be termed
the integration segment.

CODING
General

Appendix H contains the code listing of the program. Although most of the
program 1s coded in basic FORTRAN II, on several occasions it was preferable to
use the pseudo-SAP statements of FORTRAN II. Typically, the pseudo-SAP statement
LXD (I),I is used whenever the index I was to be transferred from one subroutine
to another (since FORTRAN II does not do this automatically). Wherever such a
statement appears, the FORTRAN II statement I = I can be used instead to accom-
plish this initialization but with additional commands.

Some of the FORMAT statements are of the G-type. These statements will
print output in I, E, or F format depending on the nature of the variable.
Fixed-point variables will take the I format, while floating-point variables will
assume the F format unless the magnitude of the variable falls outside the useful
F range, in which case the E format is used. FORTRAN facilities that do not ac-
cept the G-type format statements may easily substitute E-type formats.

1z
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Table IV is a map of COMMON allocation (blanks are left for the user) and
table II contains a description of the program control parameters. The elements
of the integration variable array (XPRIM) are given in table V. The assumed
values of the astronomicel constants are given in table VI. These values are
easy to change to any set desired. A selected set is given in reference 8.

Examples

Two examples of code usage are presented in the following sections. The
first example is a problem of raising a low-altitude satellite into a 24-hour
orbit by using low-tangential acceleration. The other example is a more complex
problem involving a ground-~lsunched lunar probe with a three-stage rocket. Both
problems were selected to illustrate the usage of the program rather than to at-
tempt a detailed analysis of the example problem.

Example I: Low-tangential thrust. - The trajectory tc be determined is that
used to raise a 3850-kilogram package from an initial 300-statute-mile circular
equatorial orbit to a 24-hour orbit using a 60,000-watt nuclear electric system
with a specific impulse of 2540 seconds and an overall efficiency of 40 percent.
The required engine parameters may be calculated as follows:

thrust force:

2P.m
wl 2 x60,000 X 0.4 _ 1.927 newtons

- Igc T 2540 x 9.80665
initial acceleration:
I _ 23927 _ 5. 0051948x107% n/sec?
g 3850

propellant flow rate:

F 1.927

- - - -5
i = g = 3520 X 9.50655 " 7.7361935x107™ kg/sec

A detailed account is given in the following paragraphs for the solution of
this problem by the prescribed program. Only those features of the program that
have a direct bearing on this particular problem are discussed. Additional pro-
gram features are dlscussed in the account of the second example problem. It may
prove beneficial to refer to figure 2 during these two discusslons.

It is assumed in the program that all memory data stores are cleared (set
equal to zero) before operation begins. Control begins when the routine MAIN 1
is entered in segment 1. After several noninfluencing commands, the reading of
a "clock" takes place at statement 10 and this value is stored. This value is
later subtracted from the subsequent reading in order to yield the computing
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time. (All references to the "clock" may be deleted without ill effect.) Then
a set of so-called "standard data" is initialized by executing subroutine STDATA.
Before initializing, STDATA clears most of COMMON C.

The next step is calling for input at statement 21. The following list of
parameters constitutes the input:

Parameter FORTRAN Value
name
Initial mass, mg, kg RMASS 3850
Semilatus rectum, p, m P 6.86x10°
Specific impulse, I, sec| SIMP 2540
Flow rate, -m, kg/sec FLOW | 7.7361935x10™°
Time limit, sec TMAX 842605
Initial step size, sec | DELT 81500
Step number 1limit, steps|STEPMX 82000
Freguency of output, STEPS 8200
steps /output

@Assumed value.

Variables such as eccentricity and mean anomaly that are initially zero are
not included in this list since all memory data stores are initially zero.

In accordance with the input routine of reference 7, the input cards may
appear as

SDATA=1+FTABLE »41=RMASS»47=P45=5IMP433= $% IDENTIFICATION AND
FLOWs10=DELT+30=TMAX+20=STEPMXs21=STEPS/ $¢ TABLE DEFINITION
RMASS5=38503SIMP=25409FLOW=77361935E~5 $% VEHICLE MASS, ISPs MASS FLOW
P=6+86E6s TMAX=426053sSTEPMX=2000 $$ SEMILATUS-RECTUM»s TIME LIMITs STEP LIMIT
DELT=1500+STEPS=200 $% INITIAL STEP SIZEs OUTPUT EVERY 200TH STEP

SDATA=1) $% LAST CARD

where the entries between the $TABLE and slash (/) reference the subsequent en-
tries to the second argument C of the calling statement. Thus, for example,
RMASS is equivalent to C(41), the 415t location from the beginning of COMMON C.

Several commands follow the input none of which has an Important effect on
this particular problem with one exception: subroutine ORDER (part 11) computes
the gravitational constants p  and 1/3. The initialization process is now
completed.

Segment 2 overwrites segment 1, except COMMON C(1) to COMMON C(800), and
control begins when the routine MAIN 2 ig entered. Immediately, the tape that
stores the two segments (tape 2 at Lewis) is rewound to position this tape at the
beginning of segment 1.

15



The next sequence is that of integrating the first two steps. These two
steps are of equal size and are integrated before an error check is made. If the
first two steps are satisfactory (determined by statement 25), the remaining
steps are integrated while the relative error is being checked at the end of each
step. Parts 1 and 5 of MAIN 2 are concerned solely with this starting phase.
Part 1 sets up the starting sequence and causes the initial conditions to appear
on the output sheet. Parts 2 to 4 accomplish the Runge-Kutta integretion for a
single step.

The derivatives used in the integration are obtalned from subroutine EQUATE.
The first half of this subroutine finds the Cartesian coordinates and velocities
through use of Kepler's equation. The thrust is computed in statement 34, and
then subroutine THRUST is called to determine the components of the thrust accel-
eration in the Cartesian coordinate system. (After control is returned to sub-
routine EQUATE, the thrust accelersgtion 1s resolved into circumferential, radial,
and normal components.) Finally the derivatives of the orbit elements are calcu-
lated, and a return is made to MAIN 2.

After the Runge-Kutta integration 1s performed, the error check is made in
part 5B (part 6 after the starting sequence) by computing the difference between
the Runge-Kutta integration and the low-order integration. Subroutine ERRORZ is
called to determine the largest of the relative errors. If the largest of the
relative errors is greater than the limit value, ERLIMT (set in STDATA), part 8,
which computes a smaller step size for the same interval, is entered and control
is returned to part 1. If the greatest relative error is smaller than the limit
value, part 7, which advances the variables of integration, is entered and calls
subroutine STEP to compute the next step size and print out the variables of the
first step. Part 7 also counts the revolutions past the x-axis and adjusts the
argument of pericenter and mean anomaly to within #*x to retaln accuracy in the
sine-cosine routines. If the step size exceeds 1/2 revolution, the revolution
count may be short by an integral number. Control is finally transferred to
part 1 to begin computation of the next step.

The problem is terminated when the time limit TMAX is reached. This check
is done in subroutine STEP. Had the problem exceeded the step number limit
STEPMX, it would have terminated at that point. In either case, control is re-
turned to MAIN 1 in segment 1 to print out the computing time and begin the next
problem. When no data for another problem are given, the execution is terminated
(i.e., control is returned to the monitor by subroutine INPUT as a result of an
end of file on tape 7). The output of the last step is:

STEP= 821. + 45. ECCENTRICITY= 2.37578762E-04 OMEGA= 1.57668670

TIME= 42605.000 SEMILATUS R.= 6898571.50 TRU A= 1.57089765
JDAY= 2440000.4927 MEAN ANOMALY= 1.57042252 NODE= O.
ALFA= O. PATH ANGLE= 1.36122511E-02 INCL= O.

V= 7599.09540 R= 6898571.62 REFER=EARTH ORBIT 1
VX= 43.7259269 X=-6898447.56 RMASS= 3846.70401
=-7598.96967 Y=-41333.9687 REVS.= 7.50095356
VZ=-0. Z=-0. - DELT= 263.055664



The time histories of several trajectory parameters for this example are
shown as solid lines in figure 3. The oscillations of the eccentricity and mean
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Figure 3. - Time histories of aeversl trajegctory parameters for example 1.

anomaly cause a rather small step size, as is notéd in the figure. To indicate
how exercising care in selecting the input can increase the computational effi-
ciency, the same problem may again be run with the following initial values (ac-
cording to ref. 9) of eccentricity and mean anomaly:

0= Y =3"0 "7

The input cards for this case make use of the algebraic properties of the input
routine to compute the desired value of these parameters. The cards are:

$DATA=14STABLE+41=RMASSs47=P45=5IMP,33= $$ IDENTIFICATION AND
FLOWs10=DELT930=TMAXy20=STEPMX+21=STEPS/ $% TABLE DEFINITION

RMASS=38509SIMP=2540+FLOW=7«7361935E-5 $$ VEHICLE MASSs ISPy MASS FLOW
P=6+86E69 TMAX=426059STEPMX=200C $$ SEMILATUS=-RECTUMs TIME LIMITs STEP LIMIT
DELT=1500,STEPS=200 $% INITIAL STEP SIZEs OUTPUT EVERY 200TH STEP
STABLE»42=Ey46=MA/ E=2%5,0051948E-4*P*P/3,.,983667E14 $$ ECCENTRICITY
MA==T7620e429/5IMP/9+80665-6%E+341415926/2+STEPS=5 $% MEAN ANOMALY»OUTPUT CONTROL
$DATA=1, $$ LAST CARD

The dashed lines in figure 3 show the time histories of the same trajectory
parameters when initial values of e and M given immediately preceding are
used. The increase in average step size is 20 to 1. To compare the accuracy of
this approximation with the exact case (eo =My = 0), the final time was chosen
when the corresponding orbit positions were identical (when the true anomalies
were equal). At t = 42,605 seconds, the orbit positions are nearly identical,
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and, at this time, the values of position and velocity may be compared as fol-
lows:

Case A: Case B:
eg =My =0ley and My #0
Radius, m £6898571.62 6898571.56
Velocity, m/sec | 7599.09540 7599.09546
Number of steps 8zl 39

For most purposes the two answers would be accepted as equivalent and case B
would be preferred bhecause of the smaller computer time required.

Example IL: Lunar impact probe. This example of a lunar impact probe il-
lustrates the use of the ephemeris tape and the control parameters needed to con-
sider the effects of perturbing bodies, atmospheric forces, oblateness, rotating
Earth, and thrust. No effort was made to optimize this trajectory but rather to
use gt least plausible values for illustrative purposes.

Suppose the probe is launched at Cape Canaveral on December 7, 1961 by a
three-stage vehlcle with stage parameters as shown in the following table:

Parameters Stage
1 Z 3 4

Initial mass, mg, kg 150,0001(52,500 23,625 945
Engine exit area, A, m? 3.0 1.0 .5|(Coasting
Vacuum specific impulse, I, sec 300 420 420 payload)
Propellant loading, W,/W 65| .55 .96
Propellant fraction, Wor/W, .9 .9 (.91765873
Propellant flow rate, -m, kg/sec 750 125 56.25

Burning time, ty = wa/w, sec 117| 207.9 370
Aerodynamic reference area, S, m? 7.5 4.0 2.0 2.0

Figure 4 shows the assumed variation of CD,OJ CD,iJ and Cp with Mach number as
well as the angle-of-attack schedule.

The vehicle will be flown as follows: First, a short nondrag vertical
flight, after which the desired velocity orientation will be set, and then a turn
determined by gravity and the angle-of-attack schedule until first-stage burnout.
The second and third stages follow the same turn pattern. The final stage con-
gists of the payload. The staging will be accomplished by treating each stage as
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a single flight, with the burnout conditions of the previous stage used as ini-
tial conditions. The chosen integration mode will be rectangular for the powered
flight but the mode of orbit elements will be used for the coast portion. Other
bodies considered besides the Earth and the vehicle are the sun, the moon, and
Jupiter. Jupiter is included to illustrate the use of ellipse ephemerides. The
sun and moon will illustrate the use of the tape ephemeris.

The correct firing direction and launch time remain to be determined. This
determination can be made by finding approximate values and then adjusting these
values after one or more shots are fired. The adjustments could be made by an
iteration scheme programmed internally to mske a closed system. For this exam-
ple, however, they were made by hand by firing several shots at various azimuth
angles close to an estimate obtained by using reference 10 and an ephemeris.
From a plot of the z-direction cosine of the vehicle-moon distance against
vehicle-Earth distance, the azimuth angle that will intersect the moon orbit can
be determined. The correct launch time is found by using the previously deter-
mined azimuth angle and various times of day to determine the time of day at
which the vehicle intersects the correct position in the moon orbit (location of
the moon). This type of analysis gives an azimuth angle of about 78.9° and a
time of day of about 7.940 E.T. (E.T. is ephemeris time which is approximately
equal to Greenwich mean time.) For the present purpose, these values will be

used.
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The problem begins by constructing the merged ephemeris tape for the sun and
moon. This is done by subroutine TAPE in conjunction with the input shown as
follows:

$DATA=300s3TABLE»2=TAPE3+17=ELIST+29=TBEGINs30=TEND/ $% IDe AND TABLF DEFINITION

TAPE3=0 $% NECESSARY TO MAKE TAPE
TBEGIN=2437640.5 $3% JULTAN BEGINNING DATE
TEND=TBEGIN+5 $% JULIAN ENDING DATE
ELTIST=(A3)SUNs (A4 }MOON $$ LIST OF DESIRED EPHEMERIS BODIES

After the merged ephemerils tape 1s constructed, the clock 1is read, the standard
deta are initialized, and the first-stage input is loaded as shown:

$DATA=135TAB104=LAT»105=LONG»106=AZI+s107=ELEVs108=AL Ty, $5 STAGE 1
28+=IMODE431=DTOFFJs32=TOFFT4811=BODYCD126=ATMN29=RATM$459= $3% IDes AND
ROTATEs41=RMASSs5=5IMPy33=FLOW»35=AREAy24=AEXIT+27=0BLATNs»941= $$ TABLE
ELIPS+601=COEFN2380.=1CCy37=ERE=y17=ERLIMT+19=CLEAR430=TMAX,20= $% DEFINITION
STEPMX»7=TKICK310=DELT9103+=MODOUT»23=DELMAXs22=TMINs21=STEPS/ $%

s
LAT=28¢280sLONG=—-80+5719ELEV=89.7 3% LATITUDE+LONGITUDESELEVATION
AZI1=784¢95ALT=10,IMODE=4 $3 AZIMUTHLALTITUDE s INTEGRATION MODE

DTOFFJU=2437640e59TOFFT=Te%94/24 $% TAKE-OFF DATE AND FRACTION OF DAY
BODYCD=(AS'EARTHs {A4 )MOON s (A6 ) JUPITE» {A3) SUN $% BODY NAMESs 1ST IS ORIGIN
ATMN=(AS5}EARTH)RATM=1E11+ROTATE=7+29211585E~5 $3% ATMOSPHERE NAME ) RADIUSsROTATION
RMASS=150000sSIMP=300sFLOW=750 $% VEHICLE MASSsISP{VAC)+MASS FLOW RATE
AREA=Te5,AEXTT=3.090BLATN={AS)EARTH $% DRAG AREASENGINE EXIT AREASOBLATE BODY
ELIPS={ALF6)JUPITEs (ALF3)SUN»«9547861E-344481FE+109561913995, $% ELLIPTIC DATA
s048B6288,4176593554056971884454405871949243306449466649433347153%% FOR JUPITER
COEFN=05045094691910153060~2163269¢01020498545599100921099s $% AEROs COEFFe AND
10093002599 910099999159-063e¢08934050799s11799991F691CC=2441491941 &% INDICES
EREF=1E-5,ERLIMT=85E-59CLEAR=1 $3 REFERENCE ERRORyLIMIT ERROR¢STDATA BY~PASS SWT
TMAX=117,STEPMX=250 $% MAXIMUM ALLOWED PROBLEM TIME AND STEP NUMBER
TKICK=10sDELT=2 $% TIME OF THE VERTICAL NON-DRAG STEPs1ST INTEGRATION STEP SIZE
MODOUT=2,DELMAX=60y $% MODE OF QUTPUT,,TIME INTERVALS OF OUTPUT

The value of IMCDE is set equal to 4, which causes execution of subroutine
TUDES. TUDES transforms the spherical Earth coordinates into rectangular coordi-
nagtes, which are the variables of integration. In addition, TUDES computes the
closed-form solution for the initial vertical nondrag step. From this point on,
the trajectory is integrated with the initisl orientation specified by the spher-
ical coordinates. The small error introduced by this procedure is offset by
avoiding the complications associleted with integrating the tskeoff. One such
difficulty is the thrust-direction specification when the velocity is zero, espe-
cially if the origin body is rotating.

Subrcutine ORDER reorders the list of bodies putting the sun before Jupiter
(i.e., the sun's position relative to the vehicle must be found before Jupiter's
relative position can be computed). The elliptic data for finding Jupiter's
position are modified somewhat and relocated according to the computed body list.
After calculating the gravitational constants, control is returned to MAIN 1.
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The atmosphere belongs to the body at the origin (Earth) so that the rota-
tion rate and atmospheric radius are set. The final duty of MAIN 1 is to posi-
tion the merged ephemerides tape at the beginning of the correct ephemeris. 1In
this case, only one merged ephemeris was constructed; nevertheless, 1t still must
be identified and spaced to the beginning of the data.

Control then passes to MAIN 2, where integration takes place in the same
manner described in example I. Additional subroutines called from EQUATE are
EPHMRS, ELIPSE, ICAO, AERO, THRUST, and OBLATE. Subroutine EPHMRS is responsible
for computing the perturbations that result from bodies other than the origin
body. This computation is accomplished by determining the perturbating bedy
position through use of the merged ephemeris tape or subroutine ELIPSE.

The AERO subroutine determines the aerodynamic accelerations through use of
quadratic equations for the 1ift and drag coefficients and subroutine ICAO, which
determines density, pressure, and temperature as functions of altitude. Oblate-
ness accelerations are found in subroutine OBLATE. The thrust direction is de-
termined by subroutine THRUST, while the thrust magnitude is computed in EQUATE
as mg.I - PA..

The first vehicle stage integration is terminated by subroutine STEP when
t = 117 seconds. Control is then transferred to MAIN 1, where the following in-
put initiates the second vehicle stage integration:

$D=1sRMASS=525009SIMP=420sFLOW=125s TMAX=TMAX+207+9sAREA=4+AEXIT=]1 $% STAGE 2

Integration of the second stage proceeds in a manner similar to the integra-
tion of the first stage and is terminated when t = 324.9 seconds. The third-
stage data are similar to the second-stage data and are as follows:

$D=19RMASS5=236259FLOW=56425+sDELMAX=100s TMAX=TMAX+3709AREA=23AEXIT=45 $3 STAGE 3

The fourth stage differs from the preceding stages since the thrust is turned off
and integration proceeds in orbit elements rather than in Cartesian coordinates.
Output occurs every 6 hours until t = 1 day; then it occurs at every tenth step.
Also, the error-control data are printed (therefore, make EREF negative). The
fourth-stage input is as follows:

$0=1+RMAS5=94509DELT=3600+sFLOW=0+TMAX=172800 $% STAGE ¢4

IMODE==245REF=-{) $% INTEGRATE ORBIT ELEMENTSe RECORD ERROR DATA,

MODOUT=3 s CELMAX=DELT*#6+sSTEPS=10+TMIN=86400 %% OUTPUT EVERY 6 HOURS UNTIL TIME =
$% 864009 THEN EVERY 10TH STEP

$D=1y 3% LAST CARD

About 1/2 day later the vehicle is close enough to the moon that the coordi-
nate system origin is translated to the moon. This translation is accompanied by
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a shift in integration mode to Cartesian coordinates, since the vehicle is ap-
proaching the moon far out on a hyperbolic leg. The last step output is repro-
duced as follows:

STEP= 184. + 17. ECCENTRICITY= 10.6771772 OMEGA=-3.22087839
TIME= 172800.00 SEMILATUS R.= 3.16835663E 09 TRU A= 1.16945998
JDAY= 2437642.8306 MEAN ANOMALY=-18.8108633 NODE= 0.77242933
ALFA= O PATH ANGLE= 62.2506247 INCL= 0.51408862

MOON é= 2.5560079E 08 -0.391661 0.734785 0.553798
JUPITE R= 8.4571112E 11 0.581702 -0.741635 -0.334068

V= 3938.07312 R= 6.12713230E 08 REFER=EARTH RECTAN 3
VK= 2403.45856 X= 1.27258404E 08 RMASS= 944.999992
VY¥=-2445.76614 ¥=-5.36514068E 08 REVS.= 0.78706574
VZ=-1936.50073 Z=-2.67161870E 08 DELT= 5887.73633

SUN R= 1.4668335E 11 -0.229169 -0.893118 0.387068
At this time the vehicle is again primarily under the Earth's influence after

missing the point mass moon by 1.2x10° meters.

Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio, September 6, 1962
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APPENDIX A

SYMBOLS
R relative angular momentum per unit mass, T X ?' (appendix B)
Ae engine exit area, m@
ai,3j coefficlents for quadratic functions
Cp total drag coefficlent

CD,O zero angle-of-attack drag coefficilent

CD,i induced drag coefficient

Cy, 1ift coeffilcient

D drag force, newtons

E eccentric anomaly, radians
e eccentricity

F thrust force, newtons

f1,f; functions of Mach number

8o gravitational conversion factor, 9.80665 m/secz (sometimes referred to
as standard Earth gravity)

h altitude above Earth's surface, m

I vacuum specific impulse, sec

i orbit inclination to mean equator of 1950.0, radians

) second harmonic coefficlent in oblateness equations

X fourth harmonic coefficient in oblateness equations

k& universal gravitational constant, 1.32452139X1020,
m3/(sec?)(sun mass units)

L lift force, newtons

M mean anomaly, radians

m obJject mass, kg
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mj

v

oy

X3¥Y,2

24

mass of ith perturbating body, sun mass units
mass of reference body plus m, sun mass units
Mach number

atmospheric pressure, newtons/m2

V' x & (appendix B)

power, w

semilatus rectum, m

dynamic pressure, %'D(V')Z, newtons,/m?

radlus of reference body, m

radius from origin to object, m

radius from origin to jth perturbating body, m
aerodynamic reference area, m?

temperature, K

time, sec

gravitational potential

X,y,z accelerations.due to gravity, m/sec2

w+ v

absolute wvelocity, m/sec

relative velocity, m/sec

true anomaly, radians

object weight, newbtons

propellant loading, fraction of mass that deparis during a stage

propellant fraction, fraction of Wf used for propellant

forces acting on obJect other than gravity, thrust, 1ift, drag, and

perturbations due to perturbating bodles

components of r, m



a angle between thrust and velocity vectors (sketch (a)), deg

8 angle of rotation of thrust out of orbit plane (sketch(a)), deg
n power efficiency factor

M kzmr

o} atmospheric density, kg/m3

w argument of pericenter, radians

@ origin body rotation rate, radians/sec

9} equatorial longitude of ascending node, radians
Subscripts:
0 initial value

1,2,5,4 values at consecutive points along trajectory
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APPENDIX B
VECTOR RESOLUTION
Relative Veloclty
The relative velocity is defined as the velocity of the object with respect

to the origin body. If the origin body is assumed to rotate about the z-axis,
this velocity 1s given by

V'=V-oxr (B1)
In x,y,z component form,
VL=V, + ay (B2a)
Vg o=V - ax (B2b)
Vi =Y, (B2¢)

In the following sections, the atmosphere of the origin body is assumed to ro-
tate as a solid body at the rate .

Thrust Resolution Along x,y,z Axes

The_thrust dlrection is specified with respect to the relative velocity
vector V! by the angles o and B, as shown in sketch (a). For resolution
of thrust vector into x,y,% compongpts, it is convenient to define vectors X
and B normal to and within the r, V' plane, respectively, such that V'
A, and P form an orthogonal set. Thus,

R =2 X V' = Relative angular momentum per unit mass (B3)

- =
P=V'XA (Ba)

The thrust vector can then be resolved in the V“, K, P set as:

§5 A FV' cos a (B5a)
F+A = FA sin o sin B (B5b)
F.P = FP sin a cos B (B5c)
Solving for F ylelds
F = ﬁ% (V' cos o AxB+Asinasing Bx V' +P sina cos g B) (B6)
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or, in x,y,z component form,
F, = ;'_z[vv cos a(AP, - A,P,) + A sina sin B(PyVé.- P, V)

+ P sin o cos B PX] (B7a)
F, = EEE" cos a(AzPy - AyP,) + A sin a sin B(PZV% - PxV3)

+ P sin o cos B Py] (B7b)
F, = ﬁ%wy‘ cos a(AxPy - AyPx) + A sin a sin B(PyVy - PyVi)

+ P sin a cos B PZ] (B7e)

Aerodynamic Lift and Drag Resolution Along x,y,z Axes

The drag vector is alined with the relative velocity vector V' and is
therefore given in x,y,z components as
VY V‘ Vl
= z
D:-DV—J,E-D%—DVT (B8)
The 1lift vector f>ﬁmayﬂbe resolved into components along the previously
defined orthogonal set V', A, and P by the following relations:

L-V' =0 (B9a)
T-A =TIA sin B (B9b)
T-P = LP cos B (BYe)
Solving for L ylelds
f=-1;IJ§(AsinB?xV'+PcosB§) (B10)
or, in x,y,z component form,
_ L Do
Ly = =5 EA sin B(PyV; - P,Vy) + P cos B PX] (Blla)
L .
Ly = P—Z[A sin B(PgV4 - PxVi) + P cos B Py (Bl1b)
L )
L, = EE—[A sin B(RYV] - B,V1) + P cos B P,] (Blle)
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APPENDIX C
TRANSFORMATION EQUATIONS BETWEEN RECTANGULAR

COORDINATES AND ORBIT ELEMENTS

~—0rbit
plane

= ~Cbject

Hi

~Equatorial
plane

(e)

From spherical trigonometry used in reference to the celestial sphere
shown in sketch (c) the following relations may be derived for the position
coordinates!:

x =r(cos & cos u ~ sin Q sin u cos i) (C1a)
y = r(sin Q cos u + cos 2 sin u cos 1) (Cib)
z = r(sin u sin i) (Cle)
where

r= 1+ ecosv (CZa)
u=w+v (c2b)

and v 1is found from the relations
cos vV = _CES__E_-G_ (CZC)

l-e cos E

and

M=E-esinE (cad)
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The velocity components may be obtained by differentiating the position equations

using the two-body relations U=V = ﬂ and t = J% e sin v:

P2

}'(=-J%(Ncosisin$2+Qcos$2)

3'r=J%(NcosicosSZ-Qsin£2)

z = ‘ﬁg (N sin 1)
where
N=ecos ®w+cosu
Q =e sin w+ sin u

(C3a)

(Cc3b)

(CSc)

(Cc4a)

(C4b)
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APPENDIX D
RUNGE-KUTTA AND LOW-ORDER INTEGRATION SCHEMES WITH ERRCR CONTROL

The Runge-Kutta formuls used is of fourth-order accuracy in step size h.
It is of the form

2
= 1

where

X = a dependent variable

2
X] = increment in the dependent wvariable
1

h, = increment in the independent variable +t

- hp ky

. h, Ko
hZXZ tl + T, Xl + ?

-
(&}]
1

kg = hpXp (81 + By, Xy + ki)

A lower-order formula may be found by utilizing the three derivatives at
t = to, tl, and tz- If hl = tl - 'to and h2 = tz - tl, the fOllOWing Lagran-

glan interpolation formula gives the derivative at any time to <t <<t

. Eatd(e - b)) (8- g - tp) L (% - £t - tq)
X=X ny(h + hy) 1 hihy e ThyE ¢ hy) (02)

Integration of this equation from t] to t, ylelds

h h2

X'Z-_l. 32_2____}12 X + 2(h + 3hq)X 2h —= 13
=gl\m ol Rl A N e b (p3)
1+ -2 _
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The difference in the increments over the interval hy between the Runge-Kutta
scheme and the_low-order scheme may be divided by a nominal value of the depend-
ent variable X to obtain the relative error dp. Thus,

2 2
x] -1
5y = ——l—i———i (D4)

The error 1s expected to vary as approximately the fifth power of h, which
leads to

& = Ah® (Dsa)
(where A 1s a suitable coefficient) or in the logarithmic form
log 8 = A' + 5 log h (D5b)
where
A' = log A (D6a.)

Let it be assumed that A' will vary linearly with t, the variable of integra-
tion. Then A' at a time corresponding to t3 can be found from A' at two
previous points t7 and t, as

Aé - Ai
AL = A + — (tz - tp) (Deb)

and if hz = (tz - t5) and hy = (ty = 1)

h
3
AL = AL + (A} - A7) EE (D6e)
and on this basis Jz would be predicted to be
log d3 = AL + 5 log hz (D7)

It is desired that 83 should approximate g} the reference error; therefore,

log hz = % (log B - Aé) (D8)

Each dependent variable has an associated relative error and would lead to com-
putation of a different step size for each variable; however, the maximum rela-
tive error of all variables may be selected for . Obviously, inaccurate pre-
dictions of step size can occur when the maximum relative error shifts from one
variable to another or when any sudden change occurs. When a step size produces
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an excessively large error (® > ®yipit), @ reduced step size must be used. It
may be obtained from the reference error o as

hg = exp[% (log & - Aé)] (D9)

Starting the integration. - The Runge-Kutta scheme is simple to start, since
integration from X, to Xp4] requires no knowledge of X 1less than Xp.
Since the error control coefficient A has no value at t = O, however, a pre-
diction of the second step size 15 difficult. To overcome this difficulty, two
equal size first steps may be made before checking the error. The A for the
first step may be arbitrarily set equal to the A for the second step so that
hz may be predicted. The low-order Integration scheme equation in this case
becomes, with hp = hj,

2 hy . . .
x']l =5 (Xg + 4% + Xp) (p10)

Failures. - Should two consecutive predictions of the same step fail to
produce an error & less than Ojipit, & return to the starting procedure will

be made with a third prediction on step size, which is no larger than one-half

of the second estimate. The step-size control described here will operate stably
with nearly constant error per step only for a well-behaved function. For most
problems it will repeat a step occasionally to reduce a large error, and on sharp
corners it will restart. This action is not regarded as objectionable. The ob-
Jective 1s to attain a desired level of accuracy with a minimum total number of
steps.
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APPENDIX E

GLOSSARY OF VARTABLES

Variable COMMON Definition
location

A 562 Total angular momentum per unit mass, mZ/sec

A (3) 559-561 X,y,z components of angular momentum per unit mass,
mé/sec

Al 236 Error control parameter defined by eq. (D6a) at t7

A2 237 Error control parameter defined by eq. (DGa) at to

ACOEF 1 265

Interpolation polynomial coefficients for variable

ACOEF 2 266 step size (coefficient of X0, X1, X2 in
eq. (D3))

ACOFEF 3 267

AK (3) 233-235 Runge-Kutta coefficients; set in STDATA

ALPHA 564 Angle between velocity and thrust vectors, positive
when thrust vector is outward (sketch (a))

ALT 463 or 108 | Vehicle altitude above an elliptic Earth, m

AMASS (30) 881-910 Permanent list of body masses (sun mass units) in
order of PNAME 1list; set in STDATA; masses from
ELIPS data begin at AMASS(21)

ANGLES (4) 104-107 Same as LAT, LONG, AZI, and ELEV, respectively

AREA 35 Effective area used to compute 1ift and drag forces
in AERO, m®

ASQRD 563 Square of total angular momentum, Az, m4/sec2

ASYMPT 543 See table IT

ATMN 26 See table II

AW (4) 261-264 Runge-Kutta coefficients; set in STDATA

AZT 106 Azimuth angle, measured east from north at local
meridian, input in deg

BETA 565 Angle between velocity-thrust plane and orbit plane

(sketch (a))
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Variable COMMON Definition
location

BEX (14) 801-813 List of error data

BMASS (8) 417-424 Body masses selected from AMASS list in seguence
corresponding to BNAME list

ENAME (8) 402-409 Ordered list of BCD body names

BODY CD (8) 811-818 Original unordered list of BCD body names read from
cards

BODY L (8) 801-808 Auxiliary ordered list of BCD body names

CD 797 Total drag coefficient per unit area, secz/m

CDI 795 Induced drag coefficient per unit area, secz/m

CEX (800) 801-1600 | Common extension; common used in segment 1 but not
needed in segment 2 and therefore saved on drum 2
during execution of segment 2

CF (126) 276-401 Coefficients from ephemerides tape used to determine
positions of perturbing bodies

CINCL 495 cos 1

CIRCUM 541 Circumferential component of total perturbative
acceleration

CHAMP 246 Smallest critical radius within which object lies

CL 796 Lift coefficient per unit area, secz/m

CLEAR 19 See table II

CLOCK 3 Contains reading of clock (to compute time used for
particular problem)

COEFN (190) 601-7390 Storage array for coefficients used to compute
ALPHA, CL, CDI, CD, or other parameters

COMPA (3) 537-539 Components of total perturbative acceleration in
X,y,z coordinate system

CoN (9) 576-581 Constants in the oblateness equations; set in STDATA

CONSTU 18 See table II
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Variable COMMON Definition
location

CONSU 36 See table II

COS ALF 575 cos a

COS BET 599 cos B

COSTRU 493 cos v

Cosv 497 cos u

DE 162 é

TEL 255 Used to control output in STEP

DETMAX 23 See table II

DELT 10 Step size, sec

DINCL 165 i

M 161 m

DMA 166 M

DNODE 164 Q

DNSITY 460 Atmospheric density, kg/m3

DOMEGA 163 b

DRAG (3) 531-533 X,y,z components of the drag acceleration

DICFF J 31 Julian date of takeoff

E 42 e

E2 260 Largest of relative errors between Runge-Kutta and
Simpson rule integration methods defined by
eq. (D4)

EFMRS (7) 410-416 List BCD body names whose positions are to be deter-
mined from ephemerides-tape data

ELEV 107 Elevation angle, measured outward, deg
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Variable COMMON Definition
location
ELIPS (120) é41—1060 Ellipse data for perturbing bodies, read from cards;
for each body there are 15 pieces of data
[NOTE: SUBROUTINE ORDER then converts 15 pieces of
data into working set of 15]

EPAR 245 e -1
EREF 37 See table II
ERL.IMT 17 See table IT
ERLOG 259 Natural logarithm of EREF
ETOL 25 See table II N
EXMODE 244 Eccentricity (used when IMODE = 3)
EMONE 243 e -1
FILE 249 See table II
PLOW 33 Rate of propellant flow, kg/sec
FORCE (3) 525-527 X,y,z components of acceleration due to thrust
GASFAC 458 Defined in AERO; set in STDATA
GEOH 465 Geopotential, m
GK2M 469 Gravitational constant, u, m3/sec2
GEM 470 Square root of GK2M
Hz2 256 Value of DELT for previous step
IBODY (8) 425-432 Defined in SUBROUTINE ORDER
Icc (s) 238-242 See table II
IMODE 28 See table IT
INCL 45 i, radians
IND (3) 791-793 | Index set in STDATA
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Variable COMMON Definition
location
INDERR 491 Number of sets of error dataj set in ERRORZ for use
in MAIN 1
KSUB 254 Index of Runge-Kutta subintervals
LENGTH 257 See table II
LAT 104 Geocentric latitude, positive northward, deg
LONG 105 Longitude relative to Greenwich, positive eastward,
deg
MA 46 M
MBODYS 4471 Number of perturbing bodies
MODOUT 103 See table II
NBODYS 489 Total number of bodies, excluding vehicle
NDUMP (4) 268-271 See table II
NEFMRS (8) 433-440 Defined in SUBROUTINE ORDER
NODE 44 Q, radians
NPONG (5) 11-15 See table II
NSKIP (4) 272-275 See table II
NSTART 247 Internal control in MAIN 2 and EQUATE
OBLAT (3) 534-536 x,y,Z components of oblateness acceleration
OELAT J 38 Oblateness coefficient of 2R% harmonic
ORLAT K 39 Oblateness coefficient of 4%P harmonic
OBLAT N 27 See table II
OMEGA 43 w, radians
OLDDEL 225 Value of DELT for previous good step
OREELS (6) 227-232 Array of output variables, either rectangular or

orbit elements
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Variable COMMON Definition
location

p 47 p, m

P (3) 571-573 Defined in eq. (B4)

PAR (3) 798-800 Defined by equations in SUBROUTINE THRUST

PMAGN 574 Defined in equation form by SUBROUTINE THRUST

PRESS 466 Atmospheric pressure, mb

PUSH 34 Thrust force, newbons

PNAA -— ATF list of body names

PNAME (30) 821-850 Permanent list of body names made from PNAA list in
SUBROUTINE ORDER; ELIPS names begin at PNAME(Z21)

PSI 462 Path angle, angle between path and local horizontal,
deg

QVAL 794 Defined in SUBROUTINE AERO

QX (3) 522-524 X,V % perturbétive acceleration components due to
perturbing bodies, m/se02

R 442 Origin to object radius, m

RADIAT 540 Radial component of total perturbative acceleration,
positive outward, m/sec2

RATIO 600 Ratio of adjacent step sizes

RATM 29 Radius of atmosphere, m

RATMOS 248 Set equal to RATM when ATMN equals reference body
name (BNAME (1))

RB (3,8) 200-223 X,y,z components of distance from all bodies to
object, m

RBCRIT (8) 450-457 List of sphere-cof-influence radii of all bodies in
BNAME list, m

RCRIT (30) 911-940 Permanent list of sphere-of-influence radil corre-
sponding to PNAME list of body names, m; radil
from ELIPS data begin at RCRIT(21)

RECALL 9 See table TI
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Variable COMMON Definition
location

REFER (30) 851-880 List of reference bodies corresponding to FNAME list;
reference bodies from ELIPS data begin at REFER(21)

REVOLV 250 Rotation rate (rad/sec) of reference body when
ATMN = ENAME (1)

RESQRD 40 Square of Earth's equatorial radius, m?; used in
SUBROUTINE OBLATE; set in STDATA

REVS 490 Revolution counter, used only for output

RMASS 41 m, kg

ROTATE 459 Rotation rate of a reference body, radians/sec

RREL (8) 442-449 Distances between bodies and object in order of
BNAME list, m

RSQRD 567 Radius squared of object to origin, m2

SAVE 8 See table II

SIMP 5 Specific impulse, I, sec

SINALF 569 sin a

SINBET 568 sin B

SINCL 494 sin 1

SINTRU 492 sin v

SINV 496 sin u

SPD 253 Seconds per day; set in STDATA

SQRDK 468 Gravitational constant k2,
m3/(sec2)(sun mass units); set in STDATA; value of
1.495x10M m/AU (equivalent to solar parallax of
8.80008445 sec of arc) was used to convert units
from 2.959122083x10-4
(AU)S/(mean solar day)2(sun mass units) to
1.32452139x2.020 m3/(sec?)(sun mass units)

STEPGO 101 See table IT

STEPNO 102 See table II
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Variable COMMON Definition
location

STEPMX 20 See table II

STEPS 21 See table IT

TAB (189) 1301-1483 Table array of input variables and their common
storage assignment; used by SUBROUTINE INPUT;
room for 94 variables

TABLT 252 Time measured relative to DIOFFT, days

TAPE 3 2 See table II

TDATA (126) 276-401 Same as CF

TDEL (7) 592-598 One-half of time spacing between two particular
adjacent entries of like body name on ephemerides
tape; read from tape for each body

TEST 1 See table IT

TFILE 16 See table II

TIM (7) 585-591 Time for set of ephemeris data; read from ephem-
erides tape; one for each body

TIME 48 Time, t, independent variable, sec

™ 467 Temperature, CK, times ratio of molecular to actual
molecular weight

T™AX 30 See table II

TMIN 22 See table II

TOFFT 32 Fractional part of takeoff day (Julian), days

TRSFER 224 See table II

TRU 483 v, radians

TTEST 251 See table II

TTOL 226 Time tolerance within which problem time minus TMAX
must lie to end problem

i 475 Velocity of object relative to origin V, m/sec
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Variable COMMON Definition
location

VATM (3) 477-479 X,¥,z components of VQ

VEFM (3,8) 498-521 X,y,2z components of object velocity relative to all
various bodies, m/sec

VEL 109 Initial velocity at input

Ve 480 Velocity of object relative to atmosphere, m/sec

VQSQRD 481 (VQ)Z, mz/sec2

VMACH 471 Mach number of object, Ny

VSQRD 476 V2, m2/sec?

VX 42 x-component of V; also in COMMON location C(472),
m/sec

VY 43 y-component of V; also in COMMON location c(473),
m/sec

VZ 44 z-component of V; also in COMMON location C(474),
m/sec

X 45 x-component of R, m

X (15) 131-145 Working set of integration variables

XDOT (15) 161-175 Array of integration derivatives

XIFT (3) 528-530 X,¥,2 components of lift acceleration, m/sec?

XINC (15) 146-160 Increments of integration variables per step

Xp (3,8) 176-199 X,¥,Z components of perturbing body positions rela-
tive to origin

XPRIM (15,2) 41-70 Two 15-variable arrays; second is integrated and
first contains values of Integration variables for
last good step; see table V

XPRIMB (15,2) 71-100 Least significant half of double precision integra-
tion varilables corresponding to XPRIM

XWHOLE (15) 544-558 Temporary storage for integration variables

Y 46 y-component of R

41



Variable COMMON Definition
location
Z . 47 z-component of R
ZN 487 Mean angular motion of object, radians/sec
ZMA 46 M
ZORMAL 542 Z—c7mpogent of total perturbative acceleration,
m/sec
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APPENDIX F

IEWIS RESEARCH CENTER EPHEMERIS
General Description

The ephemeris data initially available on magnetic tape for use on the
IBM 704 computer were from the Themis code prepared by the Livermore Iabora-
tory, evidently from U. S. Naval Observatory data. ILater, an ephemeris was
obtained from the Jet Propulsion Iabormtory assembled as a joint project of
the Jet Propulsion Laboratory and the Space Technology Laboratory. These data
are given relative to the mean vernal equinox and equator of 1950.0 and are
tabulated with ephemeris time as the argument.

An ephemeris was desired for certaln uses in connection with the IBM 704
computer that would be shorter than the original ephemeris tapes mentioned and
would be as asccurate as possible consistent with the length. A short investi-
gation of the various possibilities led to adoption of fitted equations. 1In
particular, fifth-order polynomials were gimultaneously fitted to the position
and velocities of a body at three points. This procedure provides continuity
of position and velocity from one fit to the next, because the exterior points
are common to adjacent fits. Polynomials were selected rather than another
type of function, because they are easy to evaluate. Three separate polynomi-
als are used for the x,y, and z coordinates, respectively.

Procedure Used to Fit Data
The process of computing the fitting equations is as follows:

(1) A group of 50 sets of the components of planetary position was read
into the machine memory for a single planet together with differences as they
existed on the original magnetic tape. The differences were verified by compu-
tation (in double precision because some data required it); and any errors were
investigated, corrected, and verified. Published ephemeris data were adequate
to correct all errors found.

(2) The components of velocity vy, Vys and v, were computed and stored
in the memory for each of the 50 positions by means of a numerical differenti-
ation formula using ninth differences, namely,

‘e (m T ATy + AL, AL, + AIIL, AV, + AV,
171 z 12 60
CAVITy 4 AVIT, AR )+ ATK, (71)
280 1260
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(See ref. 11 pp. 42 and 99 for notation,) Double-precision arithmetic was used
for differences, but velocities were tabulated with single precision.

(3) Coefficients C, D, E, and F in the fifth-order polynomial

X = X + X(T - Tp) + (T - 7.)% + (T - 7,)° + B(T - 7.)* + F(T - 1,)° (F2)

and its derivative

X =Xy + 20(T - Ty) + 3D(T - Tg)? + 4E(T - Ty)® + SF(T - Tp)* (F3)

were found to fit a first point (which was far enough from the beginning point
to have all differences computed) and two equally spaced points for each com-
ponent of position and velocity. (The initial spacing is not important, as will
be seen later.) Spacing is defined as the number of original data polnts fit-
ted by one equation. Single-precision arithmetic was used.

(4) The coefficients C, D, E, and F in step (3) were then used in equa-
tions (F2) and (F3) to calculate components of all positions and velocities
given in the original data and lying within the interval fitted. These values
were checked with the original data. Radius R and velocity V were com-
puted at the times tabulated in the original data. If any component of the
position differed from the original data by more than RX10™7 or if any ve-
locity differed from the original by more than VXJO'S, the fit was considered
unsatisfactory.

(5) If the fit were considered unsatisfactory, this fact was recorded; and
the spacing was reduced by two data points. Steps 2 to 4 were then repeated.
If the fit were consldered satisfactory, this fact was recorded; and the spacing
was increased by two spaces. Steps 2 to 4 were repeated. The largest satisfac-
tory flt was identified when a certaln spacing was satisfactory and the next
larger fit was not satisfactory.

(6) The coefficients that corresponded to the largest satisfactory fit were
recorded on tape in binary mode as follows:
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Word Data Mode Definitions and/or units
number
1 Planet name BCD Six characters (first six)
2 Julian date | Floating point | Date of midpoint of fit,
Julian date
3 Delta T Number of days on each
slde of midpoint
4 Fy 8AU/day®
5 Ex 2pu/day*
6 Dy &pU/day®
7 Cy 8AU/day?
8 X 8au/day
9 x eau
10 Fy &pU/day®
11 B &pru/dayt
a 3
12 Dy, AU/day
13 ¢, 85U/day?
14 ¥ 8AU/day
15 v 8AU
16 F, &1y/day®
17 E, 8pu/day*
18 D, 2AU/day”
19 c, 8yu/day®
20 z aAU/day
21 z \ 8au

8Fxcept for moon data, which are in Earth radii and days.

(7) As soon as a set of coefficients was selected for an interval, addi-
tional data were read from the source ephemeris tape and used to replace the
points already fitted (except the last point). These data were processed as
described in steps 1 and 2 so that the next 50 points were ready to be fitted.
Steps 3 to 6 were then used to find the next set of coefficients, and steps 1
to 8 were repeated until all data for all planets and so forth, were fitted.

Data Trested

The preceding process was applied to all data available at the time. For
the moon, the technique usually led to the use of every point in the fitted
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interval (i.e., only three points were fitted). Thus, a check of accuracy was
not available. The error on the attempt to fit the next greater interval

(five points) was not excessive, however, and it is judged that the accuracy ob-
tained from these fits is about equal to that held on the other bodies.

Merged Ephemeris Tape
Once all the positions and velocities of gll the bodies then available were
fitted, the coefficients were merged in order of the starting date of each fit.

The resulting tape was written in binary mode with 12 sets of fits per record.

The detail of this record is as follows:

15% word: FORTRAN compatible

204 yord:  file number, fixed point in decrement

3§% word: planet name, code in BCD, first six characters
47" word: Julian daste, floating point

Set 1 - etc., according to list in paragraph 6
- 21 words
237 word: 2

24EE word: planet name, code in BCD, first six characters
2577 word: Julian date, floating point

Set 2 -
44th word: z

Successive sets follow one another with a total of 12 sets.

234th word: planet name

235th word: Julian date, floating point
Set 12 25450 yord: =
(last set) | 25581 word: zero

256 word: zero

End-of -record gap

One record contains 256 words, the first is for FORTRAN compatibility, the
second is a file number used for identification in the system. It is a fixed
point 2. The third is the beginning of the first set of dats, and 12 sets fol-
low, each with 21 words. The last word is the 256°! word (counting the FORTRAN
compatible word) followed by an end-of-record gap. The remalning records are
compiled in the same manner with an end-of-file recorded as a terminating mark.

Because of the merging operation, all bodies are given in one list in a
random order according to the starting date of the interval. The starting date
is the Julian day (word 2) minus the half interval (word 3) (see procedure,
paragraph 6). The entire ephemeris occupies about one-seventh reel of tape. A
summary of data is given 1n table VII.
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APPENDIX G

INPUT-DATA REQUIREMENTS

The procedure needed to run actual problems with the ald of this routlne is
described herein. It 1s intended to permit a person with a specific problem in
mind to make a complete list of data required and to select desirable operating
alternatives from those available to him. The detalls of this procedure are
contained in the following instructions:

(1) Provision has been made for two types of ephemeris data to specify the
locations of celestial bodies that perturb the vehicle. They are ellipse data
and ephemeris-tape data. If the problem does not involve perturbing bodies (ex-
cept a reference body) or if elliptic data are used for all the perturbing
bodies, skip to instruction 5.

(2) If the perturbing~-body data are to be taken from an ephemeris tape,
list the names of the ephemerides and Jullan dates to be covered along with the
following guxiliary Information:

15% card: $DATA = 300, $TABLE, 2 = TAPE 3, 17 = ELIST, 29 = TBEGIN,
30 = TEND/

i

Other cards: TAPE 3 0

TBEGIN

n

ephemeris beginning Julian date
TEND = ephemeris ending Julian date

ELIST = (names of perturbing bodies in "AIF" format, see
example in text)

The ephemerides of all planets except Earth bear the name of the planet. The
ephemeris giving the distance from Earth to the sun is called "sun," as 1is
astronomical practice.

(3) If successive files on the ephemeris tape are to be made, punch the
corresponding sets as follows:

$DATA = 300, TAPE 3 = 0, TBEGIN = , TEND = , ELIST =
As many similar sets as are needed may be appended.

(4) If ellipse data are to be loaded from cards, they are prepared later
under instruction 12.

(5) On the first execution after loading the routine, the common area is
cleared whether an ephemeris tape is constructed or not. It is now necessary
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to load a table of variable names. Once loaded, this table willl not be cleared
again (except if the control variable TAPE 3 is set to zero). These names are

for use on the input cards. If a different name is desirable for any variable,
it may be changed in the table and where it appears on the input card (ref. 7).
The cards are:

SDATA=193TABLEs104=LAT+105=LONG»106=AZ19107=ELEVs108=ALTs109=VELs7=TKICK
1284=IMODE945=Xs46=Ys4T=2442=VXs43=VY944=VZ142=E943=0MEGA+44=NODES+45=
INCL 946=MAs47=P441=RMASS931=DTOFFJs32=TOFFT»48=TIME+811=BODYCD+16=TFILE>»
941=FELIPSy27=0BLATN38=0BLATI+39=0BLATK»34=PUSHsE=SIMP+33=FLOWs24=AEXIT
565=BETAy601=COEFNs238s=1CC+26=ATMNs29=RATM+459=ROTATE+35=AREA937=EREF
17=FERLIMT 9103+4=MODOUT 930=TMAX#20=STEPMX9»23=DELMAX»2]1=STEPS322=TMINs 1=
TEST92684=NDUMP272e=NSKIPs257e=LENGTH»19=CLEAR»8=SAVEs9=RECALL+10=DELT/

(6) The initial position and velocity of the vehicle may be given in any
one of three coordinate systems. If the initial data are given in orbit ele-
ments, skip to instruction 8. If the initial data are given in rectangulasr co-
ordinates, skip to instruction 7. If the inltial data are given in Earth-
centered sphericael coordinates, the following variables should be punched:

TAT = latitude, deg, positive north of equator
LONG = longitude, relatlve to Greenwlch, deg

AIT

I

altitude above sea level, m

AZI = azimuth angle, east from north, deg

EIEV = elevation angle, horizontal to path, deg
VEL = initial velocity, m/sec

TKICK = size of initial vertical, nondrag step to facilitate starting,
sec

IMODE = 4

These geocentric coordinates are converted by subroutine TUDES to rectangular
coordinates and IMODE will be changed to 2 with 1ts original sign. Skip to in-
struction 9.

(7) If the initial dats are in rectangular coordinates, set the following
variables:;

X

x-component of position 1In x,y,z coordinate system, m

Y

1]

y-component of position in x,y,z coordinate system, m
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Z = z-component of position in x,y,z coordinate system, m

VX = x-component of veloclty in x,y,z coordinate system, m/sec

VY = y-component of velocity in x,y,z coordinate system, m/sec
VZ = gz-component of velocity in x,y,z coordinate system, m/sec
IMODE = 2

Skip to instruction 9.
(8) If the initial data are in orbit elements, set the followlng variables:
E = eccentricity

OMEGA

argument of pericenter, radians

NODES = longitude of ascending node (to mean vernal equinox of 1950.0),
radlans

INCL = orblt inclination to mean equator of 1950.0, radlans
MA = mean anomaly, radilans
P = semllatus rectum, m
IMODE = 1
(9) Integration is performed on either rectangular variables or orbit ele-
ments. If the initial data are of the same type as the desired integration
variables, the positive sign on IMODE, as glven in instruction 8, will signal a
matching condition; but if the desired integration varlables are of the opposite
type to the input varisbles, a minus sign should be affixed to the value of
IMODE. ©Note that in the case of geocentric coordinates, an automatic conversion
to rectangular coordinates 1s effected. To convert geocentric coordinates to
orbit elements requires IMODE = - 4, whereupon subroutine TUDES will convert the
geocentric coordinates to rectangular coordinates, IMODE will be set to -2, and
then in MAIN 2 the further conversion to orbit elements will be sensed with
IMODE finally belng set to +1 by the program.
(10) To specify vehicle mass and takeoff time, set the following variables:
RMASS = mass of vehicle, kg
DTOFFJ = Julian day number
TOFFT = fraction of day

TIME = time from previously set Julian date, sec
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Takeoff occurs at the instant corresponding to the sum of the last three gquan-
tities. If a specific date or time is not required, these variables may be
skipped. In that case, the STDATA subroutine sets DTOFFJ to 2440 000.

(11) To specify the origin and any perturbing bodies, list them as BODYCD
(1ist of body names in "AIF" format, see text example). The first body in the
list 1s tasken to be the reference body. The dlstances between the bodies in
this list must be computable from elther ellipse data (instruction 12) or
ephemeris-tape data (instruction 2). There may be no more than eight names in
the list. Also, if the ephemeris tape 1s being used, the correct file must be
found on it. TFor this purpose, set TFILE = desired ephemerls tape file. The
ephemeris files were numbered in sequence when written in instruction 2. If
TFILE 1s not given, it will be set equal to 1.0 by the STDATA subroutine.

(12) For each body whose path is represented by an ellipse, a l5-element
set of data must be loaded. A 15-element set consists of:

1. body name in "AIF" format (maximum of six characters)

2. reference body name in "AIF" formst (maximum of six characters)
3. mass of body, sun mass units

4. radius of sphere of influence, m

5. semilatus rectum, AU

6. eccentricity

7. argument of pericenter, radians

8. longltude of ascending node (to mean vernal equinox of 1950.0),
radians

9. orbit inclination (to mean equator of 1950.0), radians
10, Julian day at perihelion

11, fraction of day at perihelion

12, period, mean solar days

13.

14. zZero

15.

It is convenient to punch a 15-element set in sequence and to separate the
elements by commas on as many cards as are required. Several sets may then be
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loaded consecutively. The order of the sets is lmmaterial. Ellipse dats, if
present, take precedence over ephemeris-tape data. The sets are loaded consecu-
tively, in any order, as follows:
ELIPS = set 1, set 2, set 3, . . ., set n; n < 8 (see example in text)
(13) To specify the initial Integration step size, set
DEIT = initial integration step size
If no value of DEILT is given, it will be set to TMAX/lOO by MAIN 1.
(14) If oblateness effects of the Earth are to be included, set
OBLATN = (ALFS)EARTH

(15) If thrust forces are present, set either

(1) PUSH = thrust megnitude, newtons (for m = O)
or
(2) SIMP = specific impulse (vacuum), sec
FLOW = mass-Tlow rate, m, ke/sec

For either choilce, set
AFXIT = engine exit ares, m2
Also, the thrust orientation must be specified by setting
BETA = angle B, deg (see sketch (a))
COEFN (I) = angle-of-attack schedule, o = a(t) (see instruction 17)
ICC = fixed-point integer (see instruction 17)

For the specisl case of tangentisl thrust, none of the last three variables need
be set. :

(16) If aerodynamic forces are present, set

ATMN

name of body that has atmosphere, in "AIF" format

RATM = radius above which atmospheric forces are not to be consid-
ered, m

ROTATE = atmospheric-rotation rate, radians/sec (7.29211585X10-5 for
Earth)
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ARFA = reference area, m

BETA = angle B, deg (see sketch (a))

COEFN (I) = angle-of attack schedule, a = a(t), Cp/sin a, Cp,0» and
Cp, l/CL curves (see instruction 17)

ICC = fixed-point integers (see instruction 17)

(17) If neither thrust nor aerodynamic forces are present, skip to instruc-
tion 18. The relations af(t), CL/Sln L, CD 0, and CD 1/CL are assumed to be
quadratic functions that involve coeffic1ents which are located in the COEFN(J)
array. The srrangement of these coefficients 1s best explained by an example.
Suppose the functions o(t) is as follows:

(ayy + ajpt + ajst (1 <t < t5)
2
8o7 + 8ot + 852t (to <t < tz)
@ =% B, + Byt + Bgcbl (b, <t < ty)
31 32 33 3 = 74
etc. ete.
\.

The coefficients aj jy should then be loaded into the COEFN(J) array as:

COEFN(J) =t1, 811, 2125 813 tas 821, 8pp 823 b3 831, 832 833 te - - o Iy

Furthermore, additional sets of coefficients for the other functions may simply
be added to the COEFN(J) array, which results in a string of sets of coeffi-
cients, and can be represented, for example, as:

COEFN(J)

a coefficients, CL/sin o coefficients, CD,O coefficients,
ete.

= tl’ all, 3.12 Y tn, NM,l’ bll’ blz, e v ey NM,k’ ete.

The starting point in the COEFN(J) array of each function must also be loaded to
identify the correct region of coefficients. To this end, the followlng array
must also be loaded:

ICC(1) = fixed-point value of J where a coefficients begin

1cc(2) = fixed-point value of J where CL/sin a coefficients begin

1
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ICC(E) fixed-point value of J where CD i/C%J coefficients begin
2

Icc(4)

fixed-point value of J where C coefficients begin

D, 0

For this purpose, all values in the COEFN(J) array are called coefficients (i.e.,
the t's and the Ny's are coefficients). The sequence of the sets is arbi-
trary, since changing the sequence requires only a change in the ICC(I) array.
See Example II - Lunar impact probe section.

(18) The size of the integratlion steps 1s determined primarily by the error
control variasbles. These are loaded as:

EREF = error reference value; % in appendix D
ERLIMT = maximum value of & that is acceptable on any particular step

EREF is always treated as & positive number; however, if it 1s loaded with a
minus sign, this will cause error information to be printed at the completion of
the problem. If no error control data is loaded, STDATA subroutine will set

EREF = 1x10-6, ERLIMT = 3x1076.

(19) The output control offers a cholce on the frequency of output data as
follows:

Tf MODOUT = 1, output will occur every nth step (n = STEPS) until
t = TMIN, and then MODOUT is set equal to 2 by the program

If MODOUT = 2, output occurs at equal time intervals of DEIMAX until
t = TMAX

If MODOUT = 3, output occurs at equal time intervels of DEIMAX until
t = TMIN, then MODOUT is set equal to 4 by the program

Tf MODOUT = 4, output occurs every nth step (n = STEPS) until
t = TMAX

M™MAX = maximm time 1imit before problem is completed

STEPMX

maximm step limit before problem is completed

DEIMAX

"

time interval between outputs
STEPS = number of steps between outputs
T™IN = time when MODOUT changes
Note that output control may, at times, strongly influence the integration step

size especially if MODOUT is 2 or 3 and DEIMAX is small. TMAX must be loaded.
All others may be skipped; if so, STDATA will put MODOUT = 4, and STEPS = 1.
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(20) For debugging operations and for occasional supplementary output, it
may be desirable to obtain G-type format dumps. These may be obtained through
strategic positioning of the FORTRAN calling statements CALL DUMP (ID, DATA,
LENGTH) where ID is the identification number to appear in the output, DATA is
the starting location of the dump ares, and LENGTH is the number of consecutive
words to be dumped. To actually obtaln dumps at execution time, set

TEST = total desired number of dumps

NDUMP(J) = identification numbers of desired dumps, corresponding to
ID's of calling statement, J < 4

NSKIP(J) = number of skips to occur between dumps, NSKIP(J) acts upon
NDUMP(J), J < 4

LENGTH = number of consecutive words to be dumped
Note NDUMP(J) will occur the NSKIP(J)th time control passes through the calling
statement and will occur every NSKIP(J)PPE time thereafter. If NSKTP(J) is omit-
ted, it is taken to be 1. DATA may be a common location or the name of a rela-
tive variable. If the value of a word to be dumped is zero, it is skipped.

(21) FPor certain problems, it is desirable to save the initial data read in
on cards or the data generated at the completion of a part of a problem. The
saved data may then be recalled at a later time to be used as intial conditions
for another problem. To prevent the "standard data" set from being loaded (and
the accompanying common clearing loop), set

$DATA = 99, CLEAR = any nonzero number

To save the initial data before the input is read in (i.e., the result of a pre-
vious calculation), set

SAVE = 2
To save the initial datae after the Input 1s read in, set
SAVE = 1
To recall the saved data, set
RECALL = any nonzero number
CLEAR = any nonzero number

By taking‘adVantage of the place In the program where each discrimination is
- made, several useful combinations of these controls are possible (see fig. 2).
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(22) When a transfer of origin occurs, provision has been made to read

input into the program.

the dats statements desired.

This 1s done with the aid of $DATA = 101, followed by

(23) Following is an input check list that may be helpful at execution

time:

INPUT CHECK LIST®

Time and Mass Position and velocity Reference and perturbing bodles
(completely fill in one and only one block)
Rectangular Orbit elements Spherical BODYCD =
Tape Elliptic
DTOFFJ = X = E = IAT = TAPE 3 = 0 (b) | ELIPS =
TOFFT = Y = OMEGA = IONG = TBEGIN =
DEIT = Z = NODES = AZT = TEND =
TIME = VX = INCL = ELEV = ELIST =
RMASS = VY = MA = AIT = TFILE =
vz = P = VEL =
IMODE = 2 IMODE = 1 IMODE = 4

Output control|Error control Restart Thrust {d) Atmosphere Oblateness Dump
™AX =  (c¢) [EREF = SAVE = SIMP = ATMN = OBLATN = NDUMP =
T™MIN = ERLIMT = RECALL = FIOW = RATM = NSKIP =
MODOUT = CLEAR = PUSH = ROTATE = LENGTH =
STEPS = ARFA = TEST =
DEIMAX =
STEPMX = COEF =

ICC =

BETA =

AThe following standard data are loaded by subroutine STDATA:

DIOFFJ = 24
IMODE = 1

BODYCD(1) =
RMASS = 1.0

40 000.0

( ALFS )EARTH

FREF = 1x10-8
ERLIMT = 3x10°8
TFILE = 1.0

MODOUT = 4
STEPS = 1.0
STEPMX = 100.0

(b)At input 300, setting TAPE 3 = O 1s necessary to make an ephemeris tape.

(C)A value for TMAX is always required.

(d)Use either SIMP =

and FLOW =

or PUSH =
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AFPENDIX H

PROGRAM LISTING

MAIN 1 -- FLOW CONTROL PROGRAM FOR SEGMENT 1. THIS ROUTINE IS ENTERED FOR
EITHER (1) THE STARY OF A PROBLEM DR (2) AN IN-FLIGHT ORIGIN BODY CHANGE.
THE REGION OF COMMDN FROM 801 TO 1600, CEX, IS5 NOT NEEDED IN SEGMENT 2 ARD
1S THEREFORE SAVED ON DRUM 2 DURING EXECUTION OF THAT SEGMENT TO OPEN UP
THE ADDITIONAL 800 STORES.

COMMDN C

DIMENSION

1 € {1600), BNAME (8}, NPONG (5},
2 CEX (800), BOOYCD (8), BEX (14)
EQUIVALENLCE

1( CLEAR,CU 193),1 TLOCK,CU 31,0 BEX,C{8011),{INDERR,CU491}),
20 TTOL,Ct2263) . TMODE,C( 28)),{RECALL,CU 9}3,{ SAVE,C{ B}),
3 DEL+C(2553),0 EREF,CU 37)),(LENGTH,L(257)),( THAX,C{ 30)),
4( TAB ,CI1301)),(DELRAX,C( 23)},( OELF,C( 10}),{ ERLOG,CI259)1),
S{REVOLVC(250)),(ATM N ,CU 26)),{R ATM ,C( 291),(RATMOS,C{248}),
6(ROTATE,C{459)),( NPONG,C{ 11)},(800YCD,C(811)),1 BNAME,L1402)),
70 TFILE,CO 163,01 FILE,C(249)),( TAPE3,C( 2)},ITRSFER,C(224)),
8l CEX,CI801))

THE COMMON EXTENSION, CEX, [3 RESTORED (JUNK IS BROUGHT IN UPON THE FIRSTY
ENTRY}. WHEN TAPE3=0.0, SUBROUTINE TAPE 15 CALLED TO COMPILE THE
EPHEMERIDES. SUBROUTINE TAPE ALWAYS SETS TAPE3=3,

READ DRUM 2,0,CEX

IF (TAPE3) 2,1,2

CALL TAPE

WHEN AN IN-FLIGHT ORIGIN TRANSFER DCCURS, SEGMENT 1 IS CALLED WITH TRSFER
=1.0. HERE, AN INPUT IS ALLOWED AND THEN CONTROL IS SENF TO REORDER THE
BODY LIST.

IF (TRSFER) 44443

TRSFER = 0.

CALL INPUTI(101+C,TAB)

GO TO 28

PRINT DUT THE ERROR INFORMATION [F EREF HAS A - SIGN.
IF {EREF) 5,10,10

WRITE OUTPUT TAPE 6,8

REWIND 4

DO 6 I=1,INDERR

READ TAPE 4, BEX

WRITE DUTPUT TAPE 6,9, [BEXIJ)yJ=1s14)

REWIND 4

INDERR = O

READ DRUM 2,786,BEX

FORMAT{THL STEP,6X,4HTIME»6X) 4HDELTy7Xy2HA2,8X ) ZHEZ» TX 4 #HMASS, 6Xy
TAHE s VX p& Xy BHOMEGA VY 1 2X o BHNODES » VZ o IX 2 6HINCL 4 X ¢ SX ¢ 4HMA, Y, 6Xy 3HP 4 2
24Xy 1HK/ /)

FORMAT(F5.,1H+F3.,1P11510.2,12}

PRINT DUT THE COMPUTATION TIME ELAPSED SINLE THE LAST ENTRY TO MAIN 1.
CALL TIMEL {(CLOCKL}

IF (CLOCK} 11413,11

TUSED = CLOCK1 - CLOCK

WRITE OUTPUT TAPE 6 ,12,TUSED

FORMAT( 15HOMINUTES USED =F7.1/1H1}

CLOCK = {LOCKL

CALL IN THE STANDARD DATA IF CLEAR=0. INPUT 99 IS BASICALLY AN AUXIALLARY
INPUT TO ALLOW A CHANGE IN CLEAR. IF SAVE=2.0, THE DATA FROM COMMON

5 YO 145 IS SAVED.

CALL INPUT (99.,C,TAB)

IF {CLEAR) 15,14,15

CALL STOATA

IF (SAVE-2.} 18,416,18

00 17 J=5,115

ClJ+1485) = CLJ}

WHEN RECALL DOES NDT EQUAL ZERO, THE INITIAL DATA PREVIOUSLY STORED BY A
SAVE STATEMENT WiLL BE RECALLED IN ORDER TO RESTART WITH THE SAME DATA.
IF {RECALL ) 19,21,19

D0 20 J=5,115

Cid) = C{J+1485)

INPUT | IS THE MAIN INPUT STATEMENT, DATA READ IN HERE OVERWRITES ANY
STANDARD VALUES SET BY STDATA. IF SAVE=1.0, THE INITIAL SET OF NATA FROM
COMMON 5 TO 115 WILL BE SAVED FOR LATER USE.

CALL INPUT (1,C,74B)

IF {SAYE-l.) 24,22.,24%

D0 23 J=5,115

CtJ+1485) = LU}

IF (DELT) 26,25,26

DELY = TMAX/100.

ERLOG = LOGF(ABSFIEREF))

DEL = DELMAX

TTOL = SE-8«TMAX

BNAMEIL1} = BDDYCD(1)
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27
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31
32
33

34
35

36

I IMODE IS 4, THE INITIAL DATA [S EARTH CENTERED SPHERICAL

COORDINATES AND IS TO BE TRANSFORMED INTO RECTANGULAR COORDINATES. THIS
IS DONE BY SUBROUTINE TUDES WHERE, ALSO, AN INITIAL STEP MAY BE TAKEN TO
FACILITATE STARTING. THE COMMUON EXTENSION, CEX, IS SAVED. SUBROUTINE
DRDER 1S CALLED TD ORDER THE LIST OF BODIES, COMPUTE THEC GRAVITATEONAL
CONSTANT, AND MODIFY ANY ELLIPTIC EPHEMERIS DATA.

IF {XABSF{IMDDE)-%) 28,27,28

CALL TUDES

IMODE = XSIGNF{2, IMODE}

WRITE DRUM 2404CEX

CALL ORDER

CALL DUMP (1,CoLENGTH)

IF ORIGIN BODY HAS AN ATMOSPHERE, SET 30TATION RATE AND ATMOSPHERE RADIUS.
REVOLV = 0.

RATMOS = 0.

IF {ATMN - BNAME{1])) 31,29,31

REVOLV = ROTATE

RATMOS = RATM

POSITION THE EPHEMERIDES TAPE AT THE BEGINNING OF THE CORRECT EPHEMERIS
BY MATCHING THE EPHEMERIS NUMBER RtAD FROM TAPE (FILE) WITH THE DESIRED
EPHEMERIS NUMBER {TFILE}. THEN CALL IN SEGMENT 2.

IF {FILE) 36,3632

CALL BKFILE(3)

READ TAPE 3, FILE

IF (FILE-TFILE) 34,36,32

RTB 3

cpy

TRA =35

TRA 33

TRA &34

CALL PONGUINPONG(1))

END OF THE FORTRAN STATEMENTS. sanmanee

SUBROUTINE TAPE

SUBROUTINE TAPE USES THE MASTER MERGED EPHEMERIDES TAPE (TAPE 8 AT LEWIS)
TO COMPILE A WORKING EPHEMERIS TAPE (TAPE 3 AT LEWIS) WHICH CONTAINS ONLY
THAT DATA NEEDED AT EXECUTION TIME. THIS MINIMIZES TAPE HANDLING DURING
EXECUTION. THERE ARE 2 FILES ON TAPE B, FIRST FILE HAS THE DATA AND IS
IDENTIFIED BY THE SECLOND WORD DF EACH 256 WORD RECORD {FIRST WORD IS THE
DUMMY FORTRAN COMPATIBLE WORD, SECOND WORD=Z2), THE SECOND FILE IS ONLY 2
WORDS LONGs FIRST WORD IS FORTRAN COMPATIBLE, SECOND WORD=3).
MASTER FILE 1 -- PLANETS [EXCEPT MERCURY AND EARTH}, SUN, MUON, AND
EARTH-MOON BARYCENTER FROM SEPT.25, 1960 TO ABOUT 2000.
EACH EPHEMERIS COMPILED REQUIRES A SET OF INPUT 300 DATA. THE FIRST PIECE
OF DATA WRITTEN ON A FILE IS THE FILE IDENTIFICATION NUMBER, FILE. EACH
FILE IS NUMBERED CONSECUTIVELY STARTING WITH FILE=1l. SINCE MOON DATA 1S IN
TERMS OF EARTH RADII, THE CONVERSION OF MOON DATA 7O A.U. IS MADE BEFORE
WRITING ON TAPE 3. THE COMMON USED IN SUBROUTINE TAPE IS LOCAL AND ALL
BUT TAPE3 IS CLEARED BY A FINAL CLEARING LDOP,
FUNCTION COMPARF(A,B) IS EQUIVALENT TO {A-B) BUT WILL NOT OVERFLDW.
NORMAL INPUT - ELIST, TBEGIN., TEND, TAPE3

ELIST- THE BCD LIST OF EPHEMERIS DATA NAMES TO BE PLACED ON
TAPE 3 . THE NAMES ARE READ FROM LARDS, AND [S USED TO
MAKE THE TMAKE LIST. ELIST IS NOT CHANGED IN STORAGE UNTIL
THE FINAL CLEAR FOR THIS SUBROUTINE.

TMAKE- THE LIST OF EPHEMERIS NAMES WITH DUPLICATES DROPPED AND
ZERD SPACES CLOSED IN. AS THE EPHEMERIDES ARE FINISHED THE
NAMES ARE ERRASED FROM THIS LIST.

TMADE- LIKE TMAKE BUT 1S HELD FOR QUTPUT.

TBEGIN- THE BEGINNING DATE EXPRESSED AS A JULIAN DAY,

TEND- ENDING DATE EXPRESSED AS A JULIAN DAY.

INTVAL- THE APPROX. NUMBER OF DAYS COVERED BY ONE SET OF COEFF. IT
IS USED TO DECIDE WHICH DATA ARE TO BE ENTERED DOUBLE. THE
DOUBLE ENTRIES PERMIT FASTER OPERATION IF REVERSAL OF
INTEGRATION IS REQUIRED FOR ANY REASON.

EDATE- JULIAN ENDING DATE FOR THE MASTER EPHEMERIS.

ERTOAU- EARTH RADII PER A.U.

COMMON c

DIMENSION

1 C (1600}, TMAKE (12), LIST (30},

2 EDATE (12), INTVAL (30}, KTAG (12},

3 ELIST (12}, TMADE (12), INTVA (2],

4 PNAME (30), TDATUM {1100}, DATUMT (21,12}
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EQUIVALENC
1t TAPE3CI
20 ELIST.CI

E

211, {ERTOAU,CL 3,4 KTAG,C{ 4)),( FILE,CL 16}),
17)) o (TBEGIN,CI 29)), 0 TEND,C{ 30)),( PNAME,C{ 311},

3( KHAMP,C( 61)),{ TMADE,C{ 73}),{ TMAKE,C{ B5)),{TDATUM,Cl441}),
4 EDATE,C{127)),CINTVAL,CUL15T}),{ INTVA,C{156)),{DATUNMT,L{189]))

PART 1. REWIND 3 AND CLEAR COMMON.
COMPARF {A48) = (A+B)el-(AsB)}]

REWIND 3

DO 1 K=1,1600

CiK} = 0.0

THE FOLLOWING NH STATEMENTS LDAD THE BODY NAMES INTO THE MACHINE.

NOTE. THE EARTH IS NOT IN THIS LIST {NO EPHEMERIS FOR EARTH.)
PNAME{1) = 3HSUN
PNAME(2) = B6HMERCUR
PNAME({3) = SHVENUS
PNAME(4) = 4HMARS
PNAME(5]) = 6HJUPITE
PNAME{6) = GLHSATURN
PNAMEIT7) = 6HURANUS
PNAME(B) = 6HNEPTUN
PNAME{9) = SHPLUTD
PNAME{10Q)= 4HMDDN
PNAME{11)= 6HEARTHM
PART 2. SET UP JULIAN DATES ENDING EACH EPHEMERIS.
EDATE{(1) = 2451B72.5
EDATE(3) = 2451848.5
EDATE(4) = 2451020.5
EDATE(S) = 2473520.5
EDATE(6) = 2473520.5
EDATE(7) = 2473520.5
EDATE(8) = 2473520.5
EDATE[9) = 2473520.5
EDATE(10}= 2440916.5
EDATE(ll}= 2451848.5
INTVA = 30000
INTVAL{Ll) = B
INTVAL{2)} = 5
INTVAL{3) = 15
INTVAL[4) = 44
INTVAL{5) = 330
INTVALIG6) = B25
INTVAL{T7) = 1211
INTVAL(B) = 1172
INTVAL(S) = 1101
INTVAL(1C) = 2
INTVAL(LL) = 15

FILE = 1.

ERTOAU = 4.26546512 E-5
END FILE 3

MOODN = 0

LI = 1

PART 2B. CALL INPUT AND SEE IF TAPE IS TO BE MADE.

MAKE TAPE3=0.0 IF TAPE I5 TO BE MADE.

TAPE3 = 3.

CALL INPUT(300,C,LIST)
IF (TAPE3) 63,3,63

PART 3. TAPE IS TO BE MADE SO MOVE EPHEMERIS LIST TO TMAKE AND
TO TMADE (FDR OUTPUT)}, CANCEL ANY ZERO OR DUPLICATE NAMES.

KOUNT = 1

DO &6 K=1,1
TMAKE(K} =
TMADE(K]} =

2

0.
0.

DO 5 J=1,KOUNT
IF (COMPARFIELISTU{K) ,TMAKE(J=1)1) 5,645

CONTINUE

TMAKE (KOUNT) = ELISTI(K)
TMADE[KOUNT) = ELISTIK)
KOUNT = KOUNT+1

CONTINUE

KOUNT = KDUNT - 1

PART 4. FIND INPUT ERRORS.
IF{TBEGIN-243T7202.5) 664949

KM = 2
ERROR = 0.

WRITE TAPE 3,FILE
DO 21 J=1,KOUNT

KTAG(J) =

0

00 13 X=1,20
IF {COMPARF (PNAME{K),TMAKE(J)]) 13416413

CONTINUE

11724700
10/31/00
1/726/98
2060
2060
2060
2060
2060
11726/70
10/31/00

INPUT MUST ALWAYS
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PART 5. PRINYS OUT THE MISSPELLED NAMES AND OTHER ERRORS.

PRINT 15, TMAKEU(J}, TBEGIN, TEND

WRITE OUTPUT TAPE 6 , 15, TMAKE(J}, TBEGIN,s TEND, (PNAME(K],

EDATE(K) 4K=1,20)

FORMAT( 23H TROUBLE ON TAPE 3 MAKE / 2X,A6,10H T BEGIN= F10.1,8H
T END= F10.1//72(2X%,A6,F20.1))

ERROR = 1.

GO 10 21

PART 4B. CHECKS DATES AND STORES INDEX FOR MOON SO THAT EARTH
RADII CAN BE CONVERTED TO A.U.

IF {10-K} 18,17,18

MOON = J

KTAG(J) = K

IF (EDATE{(K)- TEND) 14,21,21
CONTINUE

ASSIGN 36 TO Nsl
IF (ERRDR) 22,22,68

PART 6. FIX UP A TAG [KTAG) TO INDICATE WHETHER TD ENTER DATA DOUBLE OR
NOT. KHAMP WILL BE SHORTEST INTERVAL. KTVTAG WILL BE NON-ZERO IF
ANY DATA ENTERS MORE THAN ONCE FOR 10 ENTRIES OF THE MDST
FREQUENT DATA.

KHAMP = INTVAL{O)

00 23 J=1,KOUNT

K = KTAGIJ)

KHAMP = XMINOF{KHAMP,INTVAL(K}}

CONTINUE

KHAMP = KHAMP #10

D0 24 J=1,KOUNT

K = KTAG(J)

KTAGUJ) = INTVALIK} / KHAMP

PART 7. LOCATE FILE 2 ON TAPE B.
RTB @8

512 Ji

cPyY OUD

CPY KFILE

TRA =26

TRA =25

TRA 25

1F [KM-KFILE) 27,32,29
IF (KFILE - 3} 28,28,29
CALL BKFILE(8}

GO TC 25

BY PASS A FILE.
RTE B8

CPY DUD

TRA #29

TRA #25

TRA «29

PART 8. THIS IS CORRECT FILE ON TAPE 8, READ DATA. THERE CAN BE UP
TO 12 SETS DF DATA PER RECORD. A SET DF DATA IS 21 WORDS.

Ji = -1

RTB B

CPY DUD

TRA €32

TRA #34

TRA =34

Jl1 = J1 +1

CPY TDATUMIJL)

TRA + 32

TRA =34

TRA =33

Jl = J1 -1

GO TO NS1,136,46)

WRITE DUTPUT TAPE 6435, KFILE, (TMAKE(K)K=1,KOUNT)

FORMAT (13H END OF FILE 13,67H ENCOUNTERED ON TAPE B BEFORE END TI

ME SATISFIED FOR THE FOLLOWING /71203X,A6))

GO TO 68

PART 9. IS THIS A SATISFACTORY STARTING POINY, QUESTION MARK.
THE 1ST SET OF DATA FOR EACH PLANET MUST PRE DATE TBEGIN.
PART 9 IS EXECUTED ONLY ONCE.

00 42 J=L1,KOUNT

D0 37 K=1,J1,21

IF (COMPARF(TDATUMIK) ,TMAKE(J)}] 37,39,37

CONTINUE

Ll =J

BACKSPACE 8

BACKSPACE B

GO ¥0 31

IF (TDATUMIK+1)-TDATUM(K+2)}-TBEGIN} 40,40,38

D0 41 KJ=1,21

Kl = K ¢« KJ - 1

DATUMT{(KJ,J) = TDATUMIKL)

CONTINUE

IF (MOON) 43,45,43

DO 44 KJ=4,21

DATUMT{KJ,yMOON} = DATUMT(KJ,MOON) «ERTOAU

ASSIGN 46 TO NS1
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62

63
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65
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PART 10. PUT AWAY NEEDED DATA. TEST NAME, TIME OF BEGIN AND END. DO NOT
WRITE TAPE 3 UNTIL TBEGIN PREDAYES THE END OF THE FITTED
INTERVAL. 50 REPEATS DLD DATA, S7 WRITES NEW DATA. THE NAMES
ARE ERASED FROM TMAKE AS SOON AS THE DATA POST DAYES TEND. WHEN
ALL NAMES ARE GONE, RETURN TO INPUT 300 TO SEE IF ANOTHER
EPHEMER1S IS TO BE CONSTRUCTED.

DO 65 K=1,J1,21

DD 47 J=1,KOUNT

IF (COMPARF (TDATUM(K) , THAKE{J))) 4T,48,47

CONTINUVE

GO TO 65

SWT = TBEGIN-TDATUMIK#1}-TDATUM{K+2)

IF {SWT) 49,49,52

IFIKTAGLJ)) 50,52,50

WRITE TAPE 3,(DATUMTI(KJ,J) » KJ=1,21]

FORMAT (1XsA6,F10.1)

DO 53 KJ=l.21

Kl = K ¢ KJ

DATUMTIKJ,J) = TDATUM{KI-1)

IF (J-MDON} 56+54,56

DO 55 KJ = 4,21

DATUMT(KJ,J)} = DATUMTIKJ+J)#»ERTOAU

IF (SWT) 57,57.58

WRITE TAPE 3,{DATUMTIKJ,J),KJ=1,21}

IF{TEND-DATUMT{2,J)}-DATUMT(3,J)]) 59559,:65

TMAKE(J) = O

DD 60 KK=1,KOUNT

1F {THAKEIKK)) 65,60,65

CONTINUE

WRITE OUTPUT TAPE 6, 61, FILE,TBEGIN,TEND, KOUNT,(TMADE(KK]),

1KK=1,KOUNT)

FORMAT (28HOEPHEMERIS COMPLETED, FILE=F3.,6H, FROM F10.1l,3H TO

1 F10.1, &H FOR 12, 18H BODIES AS FOLLOWS / 12(2X,A6}}

FORMAT(LX,A6,TELG6.8/(1%,7EL6.8})

FILE = FILE + 1.

GO 1O 2

WRITE TAPE 3, FILE

REWIND 3

REWIND 8

TAPE3 = 3.

DO 64 J=3,1600

CtJy =0

RETURN

CONTINUE

GO TO 31

PRINT 67, TBEGIN

WRITE QUTPUT TAPE 6,67,TBEGIN

FORMAT(33H TBEGIN PREDATES 2437202.5,IT7 1S F10.1)

CONTINUE

REWIND 8

END OF THE FORTRAN STATEMENTS. sasnnsen

SUBROUTINE STDATA

THIS ROUTINE CLEARS COMMON 4 TO 1300 AND LOADS A SET OF STANDARD DATA INTO
THE MACHINE. ANY VALUES SET HERE MAY BE OVERWRITTEN 8Y INPUT 1 IN MAIN 1.

COMMON C

ODIMENSION

1 PNAME (12}, AMASS (30}, NPONG (5},
2 CON (9), COEFN (190}, ICC 14),
3 AK (3), XDOT {15}« IND {31,
4 REFER (12}, RCRIT {30), AW (41,
5 c 1

EQUIVALENCE

LISTEPMX,C{ 20)),(CONSTU,CL 18)),I 1CCyCL238)),1 IMODE,C( 28)),
20 ETOL.C{ 25)),{ERLIMT,CUl L7)0,( EREF,CL 371),0 SQRDK,C{488)]),
3( TFILE,Cl 16))4( NPONG,CU 11)),0 RCRIV,CI911)},( AMASS,C(881)),
4(BODYCD,C(811)),(MDDOUT,CL103)),1 IND,C{TIL}),{ STEPS,C( 2111},
5( XDOT,C(161)),1 SPD,C{253) 1,1 CONSU,CL 36)1,1 COEFN,C(601)),
6{OBLATK,C{39 )),(RESQRD,C{ 40)),{PNAME ,C{821)),(REFER ,C(851)},
7( RMASS,C( 41)),(GASFAC,C{458)1,{0BLATI,C( 38)),I AWsCl261)1),
8 CONLC(5TE)) ! A ,C{233)){DTOFFJLCT 31)),¢ AUsC(4561]))

CLEAR COMMON FROM & TO 1300.
DO 1 J = 4,1300
CtJ) = 0.0



[aXal

[aNul

(aNul

THE FOLLOWING NH STATEMENTS LOAD THE 80DY NAMES INTO THE MACHINE.

PNAME(1) = 3HSUN

PNAME{2) = 6HMERCUR

PNAME(3]} = SHVENUS

PNAME(4) = SHEARTH

PNAME(5) = 4HMARS

PNAME(6) = 6HJUPITE

PNAME(T7) = 6HSATURN

PNAME(8) = 6HURANUS

PNAME(9) = 6HNEPTUN
PNAME(10}= 5HPLUTO
PNAME(L11)= 4HMOON

PNAME(12)= GHEARTHM

FILL OUT SUN REFERENCE LIST.
Do 2 K = 2,12

REFER{K) = PNAME(L)

FILL OUT EARTH REFERENCE LIST.
REFER{1)} = PNAME(4}

REFER{4) = S5HIERO+

REFERI11} = PNAME(4)

LOAD THE REMAINING STANDARD DATA.
AK{1l) = 0.5

AK{2) = 0.5

AK(3) = 1.0

AMASS(1} = 1.0

AMASS{2) = 1.0/6120000.0
AMASS{3}) = 1.0/406645.0
AMASS{4) = 1.0/332488.0
AMASS(5) = 1.0/3088000.0
AMASS({6) = 1.0/1047.39
AMASSI7) = 1.0/3500.0
AMASS{8) = 1.0/22869.0
AMASS{9) = 1.0/18889.0
AMASS{10) = 1.0/400000.0
AMASS{11) =AMASS{4}/81.375
AMASS(12) =AMASS{4}+ AMASSI(11)

AU = 1.495 Ell

AW(l)=1./6.

AW(2)=AW(1]}+An(l)}

AW(4)=ANWIl)
AW{3)=1.-{AWI2)+[ANW(1]}+AN(4]}]}
BODYCD = PNAME(4)

COEFN{(83) = 1E20

CON{L} =
CON{2}
CON{( 3}
CON{4)
CONI[5)
CON{6)
CONIT)
CON(8)
CON(9)
CONSTU
CONSU = 1
ETOL = 0.
DTOFFJ =

3333333

-
.
.
-
.
.
.
.
.
.

OWVip st & & OO N

0
0
0
1
1
2
0
]
[¢]
1

m
i
o

E-6
01
244.E4

EREF = 1E-6

ERLIMY
GASFAC
ICCiL)
1CCL2)
ICCE3)
ICC L4}
IMODE = 1
IND{1)=2
IND(2)=3
IND(3)=1
MODOUT =
NPONG( 1)
NPONG(2)
NPONG{3)
NPONG{5)
08LATJ=1.
O8LATK =
RCRIT(1)
RCRIT(2)
RCRITI(3)
RCRIT{%)
RCRIT(5)
RCRITL6)
RCRIT(T)
RCRIT(8)
RCRIT(9)
RCRIT(10}
RCRIT(11)

W HN N

3E-6
20.064881
79

79

79

719

8E-3

- N
Sw W= N
m
]
o

1.0 E+20
1.0 E+8
6.14 E+8
9.25 E+¢8
5.78 E+8
4.81 E+10
S5.46 E+10
5.17 E+10
8.61 E+lC
=3.81 E+10
=1,60 E+8

L T - - TR I I P
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RESQRD =4.068098877 E+13
RMASS = 1.

SPD = 86400.0

SQRDK = 1.32452139 E+20
STEPMX= 100.0

STEPS = 1.

TFILE = 1.

XDOY(8) = 1.0

WRITE OUTPUT TAPE 6,3
FORMAT {7HOSTDATA}
RETURN

END OF THE FORTRAN STATEMENTS. (21222123

SUBROUTINE TUDES

THIS ROUTINE COMPUTES THE RECTANGULAR POSITION AND VELOCITY COMPONENTS
WITH RESPECT TO THE EARTH MEAN EQUINOX AND EQUATOR OF 1950.0 FROM THE
LATITUDE, LONGITUDE, AZIMUTH, ELEVATION, ALTITUDE, TOTAL VELOCITY, AND
TIME. ALSO, WHEN TKICK DOES NDT EQUAL ZERO, A NON-DRAG VERTICAL STEP OF
SIZE TKICK IS MADE IN CLOSED FDRM (STATEMENTS 2 TO 4). THE INTEGRATION
WILL THEN BEGIN AT TIME EQUAL TO TIME+TKICK WITH THE ORIENTATION SPECIFIED
8Y THE ABOVE FOUR ANGLES AND THE COMPUTED VALUES OF ALTITUDE AND VELOCITY.
FOR THE CLOSED FORM APPROXIMATION, A CONSTANT FLOW RATE (FLOW), VACUUM
SPECIFIC IMPULSE (SIMP) AND ENGINE EXIT AREA {AEXIT) ARE ASSUMED KNOWN,
THE ATMOSPHERIC PRESSURE 15 TAKEN TO BE THE SEA LEVEL VALUE.

COMMON C
DIMENSION
1 AMASS (30), ANGLES {4}, SINA (4},
2 COSA (4}, ANGLEB (4)
EQUIVALENCE
bl XeCU 45}) 41 YOl 461141 I,C1 4T)), ¢ VXCl 42)),

21 VY,Cl 43) 1,1 V2,04 44)1,IDTOFFJ,CU 31)),{ TOFFT,C{ 32}},
3(ANGLES»C(104) )41 ALT,C{108) )¢ VEL,C{109)),(ROTATE,C[459)),
4l TIMELC{ 48)),( SIMP,CU 5)},{ RMASS,C{ 41)),( TKICK,C{ T},
5{ FLOW,Cl 33)),(STEPGO,C{L0L} ), (STEPND,C(102))y{ AEXIT,C[ 24)),
6(OBLATN,C{ 27)),( BNAME,C{402)),{RESQRD,C{ 40)),(0BLATJS,CL 3B)1},
7{ AMASS,C(881))4y( SQRDK,C{468)),1 SPD,C(253})

ALTL = 0.
VELLl = VEL
DELL = O.
DEL = 0.

ASSIGN 1 TO NGO

GREEN = 360.0¢(MODF({DTOFFJ-2437665.5)/.997269566,1.1+
1 MODF{(TOFFT+TIME/SPD-.719793011/7.99726956641.))
SINA{1) = SINF{ANGLES(1)/57.,2957795]
RADIUS=6356783.28/SQRTF1.9933065783+.006693421685=5INA(L)en2)+ALT
GO TO 8

X = COSA(2)#COSA(1)«RADIUS

Y = SINA(2)}#COSA(L)«RADIUS

1 = SINA(1)#RADIUS

IF (TKICK) 24442

RMASSO = RMASS

RMASS = RMASS-FLOW#TKICK

1 RMASSO¢X,Y,sZ

3 FORMAT{6HOSTEP=F5.,2H +F4.,4X,6H LAT.=1PGL5.8,7TH LONG.=G15.8,6H AZ

11.2G15.8,7H ELEV.=G15.8,6H ALT.=G15.8/6H TIME=G15.8,6H VEL.=G15.8,
6TH RMAS5=G15.8,4Xs 2HX=2G15.8,5X+2HY=GL5.8,4X,2HZ=G15.8)
TIME = TIME+TKICK

Bl = LOGF(RMASSO/RMASS]

SIMPSL = SIMP-AEXIT/FLOW®10332.275

VELL = VEL+SIMPSL=9.80665+B1-GuTKICK

ALTL = TKICK®{VEL-GSTKICK/2.+9.80665%SIMPSLe{]l.-BL#RMASS/
1 (RMASSO-RMASS}))

RADIUS = RADIUS + ALTI

GREEN = GREEN + ROTVATE«TKICK®57.2957795

ASSIGN 5 TO NGO

GO TO 8

X = COSA{2)#COSA(1l)#RADIUS

Y = SINA(2}#COSA({1)#RADIUS

Z = SINA[1)}=RADIUS

IF (OBLATN-BNAME) 7,6,7

DEL1 = ATANF(IC2-1.)/(C3-1.)#SINA[L}/CISA{1])])#57,2957795-ANGLESIL]}
DEL2 = RADIUS/G#SINA{L) COSALL}#RUTATE#ROTATE#57.29577951
DEL = DEL1 + DELZ

ASSIGN 10 TO NGO

ANGLEBI{1) = ANGLES{1) + DEL

ANGLEBI2) = ANGLES(2) + GREEN

ANGLEB(3}) = ANGLES{3)

ANGLEB(%) = ANGLES{4]
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DO 9 I=1,4

SINA(I} = SINF(ANGLEB{11)/57.2957795)

COSA{I} = COSF(ANGLEB(I)/57.2957795)

Cl = 5.eRESQRD/RADIUS/RADIUS#0OBLATJ

C2 = CL*(SINA{L1)«SINA{L)-.6)

C3 = Cle(SINA(1)=SINA(L1)-.2)

G = SQRDK#AMASS(4)/RADIUS/RADIUS

GO TO NGO, {1,5,10)

€OS1l = COSA{1}=SINA{4)-COSA(4)=LDSA{3)+SINA{L)
COS2 = COSA{4)»SINA(3)

VX = VEL1s(CDS1=COSA(2}-COS2eSINA(2))-YeROTATE
VY = VEL1#{COS1=SINA{2}+COS2+COSA(2})+X*ROTATE
VZ = VELLS({SINA(1)«SINA{4}+COSA{1)#CDSA(3)eCOSA(4))
RETURN

END OF THE FORTRAN STATEMENTS. [ IXITTT]

SUBRODUTINE QRDER

THIS ROUTINE TAKES THE BODY LIST READ FROM CARDS AND SORTS THEM IN
ORDER SO THAT THE DISTANCE FROM THE REFERENCE TO EACH BODY IS
DEPENDENT UPON ALREADY COMPUTED DISTANCES ONLY.

ELLIPSE OATA ARE READ INTO A BLOCK OF 120 STORES RESERVED FOR
EIGHT ELLIPSES. ONE ELLIPSE IS READ INTO A 15 STORE BLOCK.

THE SINES OF THE 3 ANGLES ARE COMPUTED AND REPLACE THE 3 ANGLES.
THE COSINES ARE COMPUTED AND STORED LAST IN A BLOCK.

A BLOCK IS ARRANGED AS FOLLOWS-

{1} = NAME OF BODY [N BCD,ONLY & CHARACTERS.

(2) = NAME OF REFERENCE BODY IN BCD,SAME RESTRICTION.

{3) = MASS OF THE BODY IN SUN MASS UNITS.

(4) = RADUIS INSIDE OF WHICH COORDINATES WILL BE TRANSLATED TO THIS BODY.
(5) = SEMILATUS RECTUM IN ASTRONOMICAL UNITS.

(6} = ECCENTRICITY OF THE ORBIT.

(7} = SINE OF ARGUMENT OF PERIGEE.

(8) = SINE OF NDDES.

(9} = SINE OF INCLINATION OF THE ORBIT.

(10}= PERIGEE PASSAGE JULIAN DAY.

(11)= PERIGEE PASSAGE FRACTION OF DAY.

(12)= PERIOD DOF THE ELLIPSE IN MEAN SOLAR DAYS.
{13)= COSINE OF ARGUMENT OF PERIGEE.

{14)= COSINE OF NDDES.

{15)= COSINE OF INCLINATION OF THE DRBIT,

DEFINITIONS-- NOTE. COMMON EXTENSION IS TRANSFERRED TO DRUM 2 DURING SEG2.
AMASS = MASS DF EACH BODY, SUN MASSES. ORDER OF PNAME. COMMON EXTENSION.
BMASS = SELECTED FROM AMASS. CORRESPONDS TO BNAME LIST. COMMON EXTENSION.
BNAME = THE ORDERED LIST OF 8CD BODY NAMES. CAN BE USED IN OUTPUT.COMMON.
BODYCD = THE ORIGINAL BCD NAMES READ FKOM CARDS. COMMON EXTENSION.
BODY L = THE LIST OF BCD BODY NAMES WITH THE REFERENCE BODY AT ToP.
INITIALLY EQUAL TO BODY CARD LIST (BOOYCD). COMMON EXTENSION.
IBODY = ARRAY OF SUBSCRIPTS. WHEN A DISTANCE IS FOUND FROM EPHEMERIS, IT
MAY BE ADDED {OR SUBTRACTED) FROM THE BODY POSITION GIVEN BY
XP(IBODY) TO OBTAIN THE POSITION OF THE PRESENT BODY. COMMON.
KZERO = COUNT OF ZERO REFERENCES. THERE MUST BE ONE AND ONLY ONE ZERD.
NAME = ARRAY OF SUBSCRIPTS. GIVES OLD LOCATION OF NAMES IN BODYL
FROM LOCATION IN BNAME LIST. NOT IN COMMON.
MANE = ARRAY OF SUBSCRIPTS. [INVERSE OF NAME. GIVES NEW LOCATION OF
BNAME LIST IN TERMS DF BODYL. NOT IN COMMON.

NBODYS = COUNTED INTERNALY. TOTAL NUMBER OF BODYS.
MBODYS = COMPUTED INTERNALY. TOTAL NUMBER OF EPHEMERIDES (N8ODYS-1}.
NEFMRS = ARRAY OF SUBSCRIPTS. GIVES LOCATION OF BODY IN PNAME LIST

IN TERMS OF THE EFMRS LIST. STORED IN COMMON.

NREFER = ARRAY OF SUBSCRIPTS. LOCATES THE REFERENCE 80DY IN BODYL.
ORDER OF THE ARRAY CORRESPONDS TO BODYL. NOT IN COMMON.

NNREFR = ARRAY OF SUBSCRIPTS. LIKE NREFER BUT REFERS AND CORRESPONDS TO
BNAME LIST. NOT IN COMMON.

PNAME = A PERMANENT LIST OF BCD BODY NAMES. 1 WORD EACH (6 CHARACTERS
MAX). USED TO IDENTIFY MASS, REFERENCE NAMES, ETC. THE LIST IS
A MAXIMUM OF 30 NAMES. PRECISION TAPE NAMES ARE FROM I TO 20,
ELLIPTIC NAMES ARE FROM 21 TO 30. CDMMON EXTENSION.

REFER = A PERMANENT LIST OF B8CD BODYS THAT ARE THE REFERENCES OF
DISTANCES GIVEN IN EPHERMERIDES (TAPES OR ELLIPSE). CORRESPONDS
TO PNAME LIST. STORED IN COMMON EXTENSION.

COMMON C
DIMENSION
AMASS (30), BMASS (8}, BNAME (8},
BODYL (8], EFMRS (7)), 1BODY (8},
MANE (8), NAME (8}, NEFMRS (8],
NEFMRT (8), NNREFR (8]}, BODYCD (81,
NREFER (8), PNANE (30}, RBCRIT Ty,
RCRIT (30), REFER (301, TOATA (18,7},
TDEL (7)), TIM (7}, ELIPS (120},
NDUD (9)
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EQUIVALENCE

1{ AMASS,C(B81)),(MBODYS,C(4411),{ GK2M,LL1469)),[ SQRDK,C1468)1),
21 BMASS,C{417)),(NBODYS,C{483)) .1 GKM,Cl470)),( TDATA,C{276}},
3{BNAME ,C{402)),(NEFMRS,C(433)}),(P NAME,C(821)),( TDEL.C(592)),
4{BODY L,C(801)),(800YCD,C{81L)),{RBCRIT,C(450)),1 TIM,C{585)),
5{ EFMRS,C{410)),({ RMASS,C{ 4l)},{ RCRIT,C(911)),( ELIPS,CI941)),
6(180DY Cl425)),( FILE,C(249)),{ REFER,C1851)),(MANE{1)NDUD(2])}

THIS SECTION SEES WHAT ELLIPSE DATA wAS READ FROM CARDS AND PUTS THE
NAMES IN PLACE SO THAT DATA WItL BE USED IF NEEDED. ELLIPSE DATA HAS
PRIDRITY OVER TAPE DATA BECAUSE LAST DATA [IN LIST 1S THAT ACTUALLY USED.
FUNCTION COMPARF{A,B) IS EQUIVALENT TO (A-B) BUT WILL NOT OVERFLOW.

COMPARF{A,B) = (A¢B)e{~-{AwB]}])
00 3 K=1,120,15

IF(ELIPSIK)) 143,1

KOUNT = (K-1)/15+21
PNAMEIKOUNT) = ELIPSIK)

REFERIKOUNT} = ELIPS{K+l}
AMASS{KOUNT) = ELIPS{K+2)
RCRIT(KOUNT) = ELIPS{K+3)
DO 2 J=6,8

I=K+d

ELIPS(I+6) = COSF{ELIPS(IN)
ELIPSIT) = SINFUELIPS(I))
CONTINUE

PART O. THROW AWAY BLANKS AND DUPLICATES IN BNAME LIST.
ALSO COUNT THE BODIES.

DO 5 K=1,8
BNAME{(K+1)= BODYCD(K]}
L =1

80DYL(0) = 0.

DO 8 I=1,9

8ODYL{I) = O.

D0 & K=l,L

I1# [COMPARF (BNAME(T), BODYL(K~1})) 64746
CONTINUE

BODYL(L) = BNAME(I)
L= L+l

BNAME(I) = O.
CONTINUE

NBODYS = L-1
MB0DYS = NBDDYS-1

PART 1. FIND THE REFERENCE BODY FOR EACH BOOY IN THE LIST OF BODOYS
READ FROM CARDS. CLEAR NREFER AND BNAME.

DO 13 KiL=1,NBODYS

NREFERIKL) = O

NEFMRT(KL} =0

BNAME (KL) = O.

Do 12 KP= 1,30

1F (COMPARF {BODYLIKL]} PNAME(KP))) 12,9412

NEFMRT{KL} = KP

18] 11 KR = 1,8

IF (COMPARF (REFER[KP},BOOYLIKR))} 11,10411

NREFER(KL]) = KR

CONT INUE

CONTINUE

CONTINUVE

PART 2 . CDUNYS 0 REFERENCES AND SAVES TEMPORARY SET OF INDEXS.
IF (NBODYS} 24424,15
KZERDS = 0O

MISPEL = 0

DO 20 K = 1,NBODYS
NNREFR{K) = NREFERIK)

IF (NEFMRT{K)) 18,17,18
MISPEL = MISPEL + 1
IF(NREFERI{K})} 20,419,20
KZERDS = KZERDS + 1
CONTINUE

IF  (KZEROS- 1) 24,22,2%
IF {(MISPEL) 24,23,24

IF (NBODYS-8) 28,28,24

PART 3 . REPORTS ERRDRS IN BODY LIST.

WRITE OUTPUT TAPE 6,25 ,NBODYS,MISPEL,XZERDS,(BODYLI(XK)4K=1,NBODYS)
WRITE QUTPUT TAPE 6,26 ,(NREFER{K),K=1,NBODYS)

WRITE QUTPUT TAPE 6,27 ,(K,PNAME(K) REFER{K),K=1,30)

FORMAT {26HOGOOFY BUDY LIST (NBUDYS =12,13H, MISSPELL =I2,

1 LiH, KZIEROS =12,1HI/TIHOBODYLIST =8{3X,46))

FORMAT (11H NREFER =16,719)

FORMAT [/5(3H K3X,4HB0DY4X ySHREFERSX, }/5013,2X1A6,2X4A6,5X)]}

GO 10 50
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32
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35
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37
38

39

40
4l
42

43

4%
45

46

47

48

49

50

PART 4. TRACES OUT ..REFERENCE TO BODY.. RELATIONSHIPS
KK = 2

KN = 1

NAME(L) =1

IF (NREFER[KN)) 24,31,30

NAME {KK) = NNREFR(KN)

NNREFR({KN) = 0

KN = NAME (KK}

KK = KK + 1

GO TO 29

PART 5. TRACES QUT ..BODY TO REFERENCE.. RELATIONSHIP
DO 34 KN = 1,NBODYS

D0 34 K = ]1,NBODYS

IF (NNREFR{K]} - NAME(KN)) 34,33,34

NAME (KK} = K

KK = KK + 1

CONTINUE

PART 6. INVERTS NAME TO MANE,STORES BNAME, BMASS, RBCRIT, AND A
TEMPORARY NEFMRS,

00 35 K = 1,NBODYS

N = NAME(K)

MANE (N} = K

NEF = NEFMRT{N}

BNAME{K) = PNAME(NEF)

BMASS{K] = AMASS{NEF)

RBCRIT{K} = RCRIT(NEF)

NEFMRS(K) = NEF

CONTINUE

PART 7. FINDS NNREFR REFERENCE FOR BNAME LIST , ALSO TEMP. IBODY
D0 36 K = 1, NBODYS

N = NAMEI(K)

NRF = NREFER(N)

NNREFR(K) = MANE(NRF}

IBODY(K} = MANE (NRF)

PART 8 . FINDS [BODY FOR BACKWARD REFERENCE.
D0 39 K=1,8

IFINNREFR(K)}] 24,40,38

N = NNREFR(K)

IBODY{N)} = -K

CONTINUE

IBODY LIST IS COMPLETE.

PART 9 . WRITES OUT EPHEMERIS LIST TD BE USED IN STORING DATA AND
MAKES FINAL NEFMRS LIST.

KK = 1

DO 43 K=1,NBODYS

TFINNREFR(K]}] 42,43,42

EFMRS(KK} = BNAME{K)

NEFMRS{KK) = NEFMRS(K)}

KK = KK + 1

CONTINUE

NEFMRS(NBODYS) = 0

PART 10. SAVES ELLIPSE DATA
FILE = 0.

DO 48 K=1,MBODYS
IFINEFMRSIK]-20) 47,47,45
DO 46 J=5,15

L= (NEFMRS(K) - 21} » 15 #J
TOATAUlJ-4,K) = ELIPSIL)
CONTINUE

GD TD 48

PART 10A. LOADS A FALSE (VERY CARLY) TAPE TIME TO FORCE TAPE
READING BY THE EPHMRS ROUTINE. FILE = O UNLESS TAPE IS USED.
TOEL (K} = 0.
TIM{K) = 2400000.5
FILE = 10,
CONTINUE

PART 11. COMPUTE GRAVITATIONAL CONSTANTS. 1.9866 E+30 = KILOGRAMS/SUN MASS
GK2M = SQRDK#{BMASS(1}+RMASS/ 1.9866 €+30 1}
GKM = SQRTFI{GK2ZM)
PART 12. WRITES THE BNAME LIST ON TAPE 6 .
WRITE OBUTPUT TAPE 6,49,BNAME(L), (BNAME(K)},K=2,NBODYS]
FORMAT (19HOREFERENCE BODY [S A6,5X,23H PERTURBING BODIES ARE
T(2X,461)
RETURN
CONTINUE

END OF THE FORTRAN STATEMENTS. (X223 T2
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AIN 2

AIN 2 CONTROLS THE PROGRAM SEQUENCING FOR THE SECOND SEGMENT. IT ALSO
ONTAINS THE INTEGRATION SCHEMES. THE SET OF INTEGRATION VARIABLES (5
DENTIFIED BY IMODE ACCORDING TO THE FOLLOWING

IMDDE VARIABLES
1 DRBIT ELEMENTS
2 RECTANGULAR
3 RECTANGULAR TEMPORARY
-1 DRBIT ELEMENTS-~CHANGE TD RECTANGULAR
~2 RECTANGULAR--CHANGE TO ORBIT ELEMENTS
-3 ORBIT ELEMENTS-—-CHANGE TO TEMPORARY RECTANGULAR

COMMON €

ODIMENSION

1 XPRIM [15,2), XPRIMB (15,21, XDOTPM (15,21},
2 X {15), XINC {15}, OLDINC (151,

3 XDOT {15), RB (3}, XK {15),

4 C (1) AK (3), AW (4),

5 XWHOLE (15}, vx (3}

EQUIVALENCE

L{ IMODE,C{ 28)){TRSFER,C(224)), [XWHOLE,C{544)),1 XPRIM,CL 4111,
2(XPRIMB,C( 71)),( RATID,C(600}),( XDOT,C(l61)),{ DELT,C( 10)),
3t AW, Cl261) ), AK,C(233)),{OLDDEL,C1225}),{ACQEFL,C(2651}),
4{ACOEF2,C1266)),[ACOEF3,C(267)),( XINC,C{146)),1 €2,01260)1,
SCERLIMT,Cl 1711, KSUB,C(254)),¢( DEL,C(255) ), {STEPGO,C(10L)1},
6{STEPND,C{102)},{ ASQRD,C(563)),( GK2M,Cl469}),{ REVS,LL490}1,
70 ETOL,Cl 25)),( TTEST,C(251)),(CONSTU,CL 18)),{ASYMPT,C(543}),
81 TRUSC1483)),( VSQRD,CL4T6)),! RB,C1200)),1 VX, CLaT2)),

9( ERLOG,C{259) )4 A1,0(236) )41 XeCUL3L)) o ISTEPMX,C( 20}

EQUIVALENCE

LUNSTART,C(247)) 4! RyC{442)),(MBODYS,C(%41)),( TIME,C(138)),
2(LENGTH,C (25T} ) 4! H2,C(256)} ), A2,00237)),1 INGCT48T)),

3( EMONE,C{243))

PART 1. SET UP THE STARTING SEQUENCE FOR ERROR CONTROL AND DELAY CHECKING
THE ERROR UNTIL TwD STEPS ARE COMPLETED. THE ASSIGNED GO TOS NSTART AND
IBEGIN CONTROL STARTING., REWINDING 2 USUALLY SAVES TIME ON PING-PONG TAPE.
REWIND 2

0D 2 J=1,8

XPRIM{J, 2} = XPRIMUJs1)

XPRIMB{J,2} = XPRIMB(J,1}

X{J} = XPRIMIJ,y1)

NSTART = 0

H2 = DELY

DELT = DELT/2.

CALL EQUATE

CALL OUTPUT

DO 3 J=1,3

XWHOLE (J)=VX(J)

XWHOLE(4+3) = RB{J)

CHANGE INTEGRATION VARIABLES IF IMODE IS -. RETURN FROM TESTTR IS AY
BEGINNING OF MAIN 2.

IF {(IMDDE} 4+5,5

CALL TESTTR

ASSIGN 21 TO NSTART

STATEMENTS 7 TD 9 INITIALIZE NREVL AND NREV2Z FOR USE IN PART 7A.

IF (RBI2)) T+648

IFIVXI2)) 7,88

ASSIGN 37 TO NREV1

ASSIGN 35 TO NREVZ

GO T0 9

ASSIGN 33 TO NREVL

ASSIGN 37 TGO NREVZ

DO 10 J=1.8

X00TPM{J,1} = XDOT(J)

XINC{J) = O.

CONTINUE

KsuB = 1

ASSIGN 16 TO N

PART 2. RUNGE-KUTTA SUBINTERVAL SCHEME. EQUATE PRODUCES THE NECCESSARY
DERIVATIVES XDOT(J].

DO 13 J=1,8

XK{J) = XDOT(J} = DELT

XINC(J} = XINC{J) # AW{KSUB)sXK(J)

X{J4) = XPRIM(J,2) + AK(KSUB}*XK(J)

CALL EQUATE

CALL DUMP (3,C4LENGTH)

GO TO N,(16,17,18,20)
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PART 3. SUBINTERVALS 2, 3, AND 4, TO STATEMENT 19 FINISH A
RUNGE-KUTTA STEP AND INCREMENT XPRIM{J,2) IN DOUBLE PRECISION.

16 KSUs = 2
ASSIGN 17 TO N
GO TO 12

L7 KSUB = 3
ASSIGN 18 TO N
GO 70 12

18 DO 19 J=1,8
XINCIJ) = XINC{J4) + AW(4) exXDOT(J) » DELT
CALL EXADD(XPRIMIJ,2)s XPRIMBUJs2}y XINC{J)})
X{J1 = XPRIM{J4,2)

19 CONTINUE

PART &4, BEGIN A NEW RUNGA-KUTTA STEP. THIS ALSO GIVES DERIVATIVES
FOR THE LDWER ORDER INTEGRATION CHECK.
ASSIGN 20 TO N
GO TO 14
20 GO TO NSTART,(27+23,21)

PART 5. STARTING PHASE PRDGRAM.

PART SA. THIS SECTION COMPLETES THE FIRSY STEP OF STARTING PHASE.
21 ASSIGN 23 TO NSTART

Do 22 J=1,8

OLOINC{JY=XINC(J}

XINCUJ}=0.

XDOTPM{J4,2) = XDOT(J)
22 CONTINUE

GO TO 11

PART 5B. MAX ERROK TEST--STARTING ONLY--CHECK THE MAX ERRDR AND
EITHER ENTER RUNNING MODE OR REPEAT START WITH SMALLER STEP.
23 DO 24 J=1,7
24 XINC(J) =(XINC{J)+OLDINC{J)} }#3.-(XDOTP4{J, 1) +XDOTPM(J,2)=4.
14+XDOT{J))=DELT
CALL ERRORZ
25 IF{E2-ERLIMT) 26,426,556
26 ASSIGN 27 TO NSTART
ASSIGN 11 TO IBEGIN
Al = A2
GO YO 31

PART 6. RUNNING PHASE PROGRAM.
PART 6A. CHECK THE INTEGRATION BY INTEGRATING OVER THE LAST
RUNGE KUTTA STEP BUT USE DOTS FOR LAST TWO INTERVALS, OLDDEL
AND DELT RESPECTIVELY. STATEMENT 28 IS THE LOWER INTEGRATION
MINUS RUNGE-KUTTA INCREMENTS. ERRORZ COMPUTES THE MAXIMUM RELATIVE
ERROR AND STATEMENT 29 TESTS THIS €RRODR AGAINST THE LIMIT VALUE.
27 RATIO = DELT/OLDDEL
HFACT=DELT/(1.+RATIOQ)
ACOEF1=~RATIO#RATIO®HFACT
ACOEF2=RATID#(DELT+3,.#0LDDEL)
ACOEF3=DELT+DELT+HFACT
D0 28 J=1,8
28 XINC(J) = ACDEF1eXDOTPM({J,1)+ACDEF2#XDOTPMIJ,2)~6.2XINCIJ)
1+ACOEF3=XDOT(J)
CALL ERRORZ
29 IF [E2-ERLIMT)} 30,430,57

PART TA. LAST POINT OKAY, COUNT THE REVOLUTIONS PAST THE X-AXIS.
A STEP GREATER THAN 1/2 REV. MAY FAIL TO ADO IN.
30 H2 = DELY
31 IFIRBI{2)) 32,34+34
32 GO VO NREV1, (37,33])
33 ASSIGN 37 TO NREVL
ASSIGN 35 TO NREVZ2
GO TO 37
34 GO TO NREVZ, (37.+35)
35 ASSIGN 33 TO NREV1
ASSIGN 37 TO NREvV2
36 REVS = REVS + 1.
37 LXD IMDDE,{IMODE)
GO TO 138442,42), IMODE

PART 78. IN ORBIT ELEMENTS. ADJUST ARGUMENT OF PERICENTER AND MEAN ANOMALY
YO + OR -~ PI TO MAINTAIN ACCURACY IN SIN-COS ROUTINES. '
38 IF [EMONE) 29,42,42
39 DO 41 J=3,6,3
ADJ2=INTF(XPRIM(J,2)76.283185324SIGNF{.5,XPRIM{J,2)))
IF {ADJ2) 40,41,40
40 ADJ3 = -ADJ2#6.28125
CALL EXADDI{XPRIMUJ,2),XPRIMBIJI,2),ADJ3)
ADJ3=-ADJ2¢.0019353072
CALL EXADD{XPRIM(J,2)XPRIMBIJ,2),ADI3)}
41 CONTINUE
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PARY 7C. ADVANCE THE REMAINING PARAMETERS, FIND NEW STEP SIZE,
AND TEST FOR AN OQRIGIN TRANSLATION.
DO 43 K=1,3

XWHOLE{K ) =VX{K}

XWHOLEIK+3) = RB({K)

DO 44 J=1,8

XDOTPM(J,y1) = XDOTPM{J,2])
XDDTPM{J,2) = XDOTI(J)

XPRIM{J,1) = XPRIMI{J,2)

XPRIMB{J,1) = XPRIMBIJ,2}

XINC{J) = 0.

CONTINUE

OLDDEL = DELT

CALL 5TEP

IF [MBODYS) 46,47446

CALL TESTTR

GO TO {11,11,48) , IMODE

PART 7D. IF IN TEMPORARY RECTANGULAR COORDINATES, TEST FOR RETURN

TU ORBIT ELEMENTS. FIRST, E [S FOUND. IF TIME HAS NOT ADVANCED
SUFFICTENTLY, INTEGRATION CONTINUES IN RECTANGULAR VARIABLES {STATE. 48}.
STATEMENT 49 DETERMINES IF KEPLERS EQUATION CAUSED [MDDE = 3. IF NOT,
AN E CLOSE TO 1 CHECK IS MADE IN STATEMENT 50, IF IT DID, RECTANGULAR
VARTABLES WILL BE USED IF THE LIMIT IS TDO SMALL (STATEMENT S52), DR

IF E [S 5 OR GREATER (STATEMENT 53) OR IF THE PATH LIES CLOSE YU AN
ASYMPTOTE {STATEMENT 55).

CALL CONVTL (VX,L{559))}

EXMODE=SQRTF{1.+ASQRD/GK2M» {VSQRD/GKZM-2./R))

EMONE=EXMODE-1.

IF U(VIME-TTEST)#DELY) 11,11,49

IF [ASYMPT) 51,50,51

IF (ETOL-ABSF(EMONE}) 55,11,11

IFIEMONE} 55,55,52

IF{CONSTU-1.E-7) 11,53,53

IF (EXMODE-5.) 5&4,11,11

CALL CONVT2

IF (ABSFITRU)-2.2/SQRTF{EXMODE)) 55,55,11

ASYMPT = 0.0

IMODE=-2

GO TO 46

PARV 8. COMES HERE WHEN ERROR TEST FAILED--BOTH STARTING AND RUN.
RETRIEVE OLD POINYT AND RECOMPUTE WITH SMALLER INTERVAL.

IF TWOD CONSECUTIVE TRYS FAIL (STATEMENT 59) THE STARTING SEQUENCE OCCURS.
ASSIGN 1 TO IBEGIN

DO 58 J=1,8

XPRIM{J,2} = XPRIM{J,1)

XPRIMB{J,2) = XPRIMB{J,1}

XDOTUJ)=XDOTPMI{J,2)

XINCULI)= 0.

CONTINUE

STEPNO=STEPNO+1.

HZ = DELT

DELT=SIGNFIEXPFI{ERLDG-AZ)/5.),DELT)

A2 =Al

IF {FAIL-STEPGO) 60,61,60

FAIL = STEPGOD

GO TO IBEGIN, {11.,1)

ASSIGN 1 TO IBEGIN

IF (STEPNO + STEPGD ~ STEPMX) 62,62445

GO YO IBEGIN, (1ll,1)

END OF THE FORTRAN STATEMENTS. [T YY)

SUBROQUTINE EQUATE

THIS SUBROUTINE IS CALLED FROM MAIN 2 TO EVALUATE THE DERIVATIVES OF THE
VARIABLES OF INTEGRATION. EITHER RECTANGULAR COORDINATES DR DRBIT ELE-
MENTS MAY BE USED AS THE VARIABLES OF INTEGRATION, BUT IN THE CASE OF THE
LATTER, THE CORRESPONDING RECTANGULAR CODRDINATES MUST FIRST BE FOUND.
THIS IS DONE AT THE BEGINNING THRU THE USE OF KEPLERS EQUATION. THE
PERTURBATING ACCELERATIONS ARE FOUND BY CALLING VARIOUS OTHER SUBROUTINES
AND THEIR SUM RESOLVED ALONG THE X,Y,Z AXIS. FINALLY, THE DERIVATIVES
ARE CALCULATED. [N THE CASE OF ORBIT ELEMENTS, THE X,Y,Z PERTURBATING
ACCELERATION COMPONENTS MUST FIRST BE RESOLVED INTO CIRCUMFERENTIAL ,RADIAL
AND NORMAL COMPONENTS. THIS ROUTINE ALSO CHANGES THE INTEGRATION VARI-
ABLES FROM ORBIT ELEMENTS TO RECTANGULAR VARIABLES IF THE ECCENTRICITY
APPROACHES UNITY.

COMMON C
DIMENSION
C (1), vx (3), Qx (3},
RB 13), NEFMRS (8), X (3},
XPRIMB (15,2}, FORCE (3), XIFT (3),
DRAG {3}, 0BLAT (3), COMPA {3},
XOD (6], XDOTTR {6}, XPRIM{15,2)
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EQUIVALENCE

1 DM,Cl161)) .1 DMA,C(166)) 41 PeC{L137)1,( DRAG,C(531)),
21 ASQRD,C(563)) 41 ELC(132)) .1 PHI,C(485)),{TRSFER,L(224)),
3INSTARTY,C{247)) 41 PRESS5,C(466)) ! QX,»C(522}1 ), (RATMDS,C(248)),
4 CINCL,C(495)),( EMONE,C(243)),1 ReCl442)},1 TTEST,C(251)),
S(CTRCUM,C(541)),( EPAR,C[245)),(RADIAL,C(54011),{ INODE,C(134}),
60 SIMP,CL S5)),{ ETOL,CL 25)),(OBLATN,C{ 2711, ViCl4T5) ),
TU COMPA,C{537)),(EXMODEC{244)),1 RB,C1200)),( VSQRD,L(4T76)),
81 BNAME,C{402)),( FORCE,C{525)),( TOFFT,C{ 321),¢ VX, L(472)),
SUZORMALC(542])) 01 GKM,C{470)) 0 RMASS,L(131)),¢ X,C{135))

EQUIVALENCE

LUASYMPT,C{543)),( GK2M,C(469)),0 RSQRD«C(56T7)) 4 X00,C(162}]),
2{CONSTU,C( 18)) 40 IMODE,C[ 28)),( SINCLsC(494)),(XDOTTR,C(132)),
3(CDSTRU,C(493)) 40 KSUB,CI{254))4( SINV,CL496)),( XIFT,L(528)}),
40 COSV,Cl497)) [SINTRU,C(492))41( SPDsC(253)),( XPRIMyCI{ 41)1),
51 DELC(162)),(MBODYS,C(441)),( DPyCUL6T) ) (XPRIMB,CL T1}},
61 IN,C(487) ), (OMEGA ,CU133)),( TABLT,CU252))(XWHOLE,C(544)),
70 DINCL,C{165)), (NEFMRS,C{433}),{ PUSH,Cl 34)),( ZINCL,CU(135}},
B( DNODE.C{164)),0 DBLAT,C(534}),{ FLOW,Cl 33)),1 IM,C{1361),
9(DOMEGA,C(163)),{0BLATJS,C( 3B)}},( TIME,C{138)),( AEXIT,C{ 24))

TABLT=TIME/SPD+TOFFT
LXD IMODE, { IMODE)
GO YO (2,16,416),IMODE

STATEMENTS 2 TO 16 FIND THE RECTANGULAR POSITION AND VELOCITY FROM ORBIT
ELEMENTS AND TRUE ANOMALY. THE TRUE ANOMALY [S FOUND FROM ITERATIVE

SOLUTION OF KEPLERS EQUATION.
E2 = E*E

E2MI=1.-E2

EMONE=E-1.
EPAR=SURTF{ABSF(E2ML))
VCIRCL=GKM/S5QRTF{P]}

COMPUTE SINE AND COSINE OF TRUE ANDMALY.
PART A. E=1

IF [EMONE) 10,445

SINTRU = 0.

COSTRU = 1.

GO 7O 14

PART B. E I5 GREATER THAN 1
D0 7 J=1,100
DELM=ZM-U+ESINHF{U)
ECOSU=E*COSHF (U}

DELU = DELM/(1.0-ECOSU)

U = U+DELU

IF (ABSF(DELM)}-CONSTU) 9,9,7
CONTINUE

ASYMPT = 1.0

IF (MB0ODYS) 8,23,8

CALL EPHMRS

GO TO 23

COSU = COSHF(U}

DEM1l = 1.0-E=COSU

COSTRU = (LOSU-E)/DEML
SINTRU =-EPAR#SINHF{U)/DEM]
GO TO 14

PART C. E IS LESS THAN 1

DO 12 J=1,5

DELM=ZM-U+E«SINF{U]

ECOSYU = E«[OSF(U)

DELU = DELM/{1.0-ECOSU+0.01#ECDSU»#3)
U = U+DELU

IF (ABSF(DELM)-CDONSTU)} 13,13,12
CONT INUE

COSU = COSF(U)

DEML = 1.0-E*COSU

COSTRU = [LOSU-E)/DEML

SINTRU = EPARsSINF(U)/DEM]

PDVR = 1.+E«COSTRU

COMPUTE POSITION AND VELOCITY FROM ORBIT ELEMENTS AND TRUE ANDMALY.

ALSO, CLEAR THE PERTURBATING ACCELERATIONS.
SOMEGA=SINF {OMEGA)

COMEGA=COSF (OMEGA)

SNODE=SINF { ZNODE)

CNODE=COSF [ ZNODE)

SINCL=SINF{ZINCL)

CINCL=COSF{ZINCL)
SINV=SINTRU*COMEGA+COSTRU«SOMEGA
COSY=COSTRU#COMEGA-SINTRU=SOMEGA
AR=COSYsCNODE-SINVeSNODE®CINCL
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Bl=SINVaCNDDE+COSV#SNODE=CINCL
C1l=COSV#SNODE+SINV=CNODE«CINCL
D1=5INVeSNODE~COSV*CNDDE=CINCL
E1=E#+SOMEGA+SINV
F1=E=COMEGA+COSV
AS=E1eCNODE+F1»SNODE«CINCL
B2=F1e¢CNODE«CINCL-EL»SNODE

R = P/PDVR

RSQRD = ReR
SINVY=S5INVaSINCL

RB(1) =

R#AR

RB(2) = R#(Cl

RB(3) =

R#*SINVY

VX{1)=-VCIRCL#AS
VX(2)=VCIRCL*B2
VX{3}=VCIRCL#F1#SINCL

GO TO 18

DO 17 K=1,3
VX{K1=XDOTTRIK)
RB{K] = X[K}

RSQRD = RB(1)«RB{1)

R=SQRTF{R5QRD]
VSQRO=VX (1) #VXIL}+VXI2)#VX{214VX{3)mVX(3)
V = SQRTF(VSQRD)
DO 19 I=1,415
= 0.

ClI+521)

+ RB{Z2}=RBI{2) + RBU3)eRB(3)

TEST FOR PRESENCE OF PERTURBING BODIES.
iF [MBODYS) 20,21,20
CALL EPHMRS

IF (XABSF{IMDDE)~-1)

26422,26

TEST FOR CHANGE FROM ORBIT ELEMENTS TO TEMPORARY RECTANGULAR
COORDINATES IF E IS TOD NEAR TO UNITY.
IF (ETOL-ABSF{EMONE) )

If {IMODE
IMODE=-3

)

54424924

IF [NSTART} 25,54,25

TTEST=TIM

E

CALL TESTITR

26,23,23

TEST FDR OBLATENESS PERTURBATION COMPUTATION.
CLA OBLATN

CAS BNAM
TRA =30
TRA =29
TRA #30

E

CALL OBLATE

TEST FOR PRESENCE OF THRUST.

COMPUTE THRUST MAGNITUDE IF NOT SPECIFIED.

DM = -FLOW

IF (R~RATMOS) 31,31,32

CALL ICAD

GO 10 33

PRESS=0.

IF(SIMP) 34,35,34%

PUSH = SIMP#FLOW®#9.B0665 - AEXITePRESS#100.
IF(PUSH) 37,36,37

ASSIGN 40 TO NDONE

GO TO 38

CALL THRUST
ASS5IGN 41 TD NDONE

TEST FOR EXISTENCE OF ATMOSPHERE. FIND AERODYNAMIC FORCES.
IF (PRESS ) 39,42,39
GO TO NDONE, (40,41)
CALL THRUST

CALL AERO

SUM COMPONENTS OF THE PERTURBING ACCELERATION.
D0 43 J=1,3
COMPATJ) = -QX{J)+0BLAT(J)+FORCE(J) ¢XIFT{J)+DRAG(J)
GO TO {47,45,45),IMODE

COMPUTE DERIVATIVES FOR THE RECTANGULAR VARIABLES OF INTEGRATION.
D0 46 K=1,3
XDD{K) = COMPAIK)-GKZMeX{K}/R/RSQRD

XDDUK+3)
GO TO 54

XDBOTTR(K)
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COMPUTE THE DERIVATIVES OF THE ORBIT ELEMENTS. {AFTER RESOLVING
PERTURBATING ACCELERATION INTO CIRCUMFERENTIAL, RADIAL, NORMAL COMPONENTS)
CIRCUM=COMPA{3)# 0SV4SINCL-COMPA(1)«Bl-COMPA{2)eD]
RADIAL=COMPA[ 1} #wAR+COMPA(2) #C1+COMPA{3]#SINVY

ZORMAL=COMPA[1} »SNDDE€SINCL-COMPA({2)}#CNODE*SINCL+COMPA{3)sCINCL
IN=VCIRCL#E2MI#EPAR/P

ROVPPL = L./PDVR ¢ l.

RDVA = EZM1/PDVR

DP=2.#R/VCIRCL&CIRCUM

[F{E) 4B,4B,49

CSQRD = CIRCUM=CIRCUAM

RASQRD = RADIAL=RADIAL

DEM1 = [4.»CSQRD+RASQRD)#VLIRCL

VOV2R=VCIRCL/R/2.

DE = SQRTF{4.*CSQRD+RASQRD}/VCEIRCL

DOMEGA = VDVZ2R+(2.#CSQRD+RASQRD}/DEML+RADIAL

DMA = IN-VDOVZR+(6.«USQRO+RASQRD}I/DEM1«RADIAL

G0 TO 50

DE = {SINTRU#RADIAL+{PDVR-RDVA})/E#CIRCUM)/VCIRCL

DOMEGA= { SINTRU/E#«RDVPP1#CIRCUM-COSTRUSRADIAL/E)/VCIRCL
DMA=ZN+EPAR/VCIRCL# ({COSTRU/E-2./PDVR)*RADIAL-{SINTRU/E«RDVPPL=(IR
1 CuM}}

IF(SINCL) 51452,51

DNODE = SINV/SINCL#ZORMAL/VCIRCL/PDVR

GD TO 53

DNODE = 0.0

DINCL = COSVeZORMAL/PDVR/VCIRCL

RETURN

END OF THE FORTRAN STATEMENTS. ssssnnns

SUBROUTINE ERRORZ
HIS SUBROUTINE COMPUTES THE RELATIVE ERRORS BETWEEN THE R-K AND LOW-ORDER
NTEGRATIDN SCHEMES. IT ALSO COMPUTES THE ERROR COEFFICIENT, A, AND SAVES
HE ERROR DATA WHEN EREF HAS A - SIGN. THE BRANCH ON IMDDE DETERMINES
HICH SET OF NORMALIZING FACTORS ARE TO BE USED.

COMMON C

DIMENSION RELERR{7}

EQUIVALENCE
L{ RMASS,C{ 56))41 ELCC 5T) )0 AS,C{151}),{0OMEGAS,C(148)),
2{RMASSS,C146) 1,4 PsCl 62)),¢ ES,L{L47)), {ZINODES,CI149)),
31 ReClG423]1 41 PSsCIL52) )y [ZINCLS,CULE50)){XINC ,C{1461),
4 V,yC(475) 1,0 IMODE,C( 28)),( TIME,C(138)),! E2,C(2601),
50 VX,CI147)) 4l VY C(148) )4 VICl149)],1 X,CU{1501),
61 ¥,C(151)1}.¢( Z,C(152))(RELERR,C(146)),1 a2,00237)),
T{ DELT,CU 10) )4 AL2C(236)) 44 EREF,C( 37)},(STEPGD,C{101}),

BISTEPND,C(102)), {INDERR,C(491))

E2 = 0.
RELERR{11=RMASSS/RMASS
IF {IMODE-1) 2,1,2

COMPUTE THE NORMALIZED INTEGRATION ERRORS FOR THE ORBIT ELEMENTS.
RELERR(2)=ES5/{E+1.0}/10.0

RELERR{3)=0MEGAS/62.831853

RELERR{4)=INODES/62.831853

RELERR{5}=2ZINCLS5/62.831853

RELERR{6)= AS/62.831853

RELERR{T)=P5/P/10.0

GO TO 3

COMPUTE THE NORMALIZED INTEGRATION ERRORS IN RECTANGULAR VARIABLES.
Vi = V+100.

RELERR{Z2}=VX/V1

RELERR(3)=VY/VL

RELERR{4)=VZ/V1

RELERRI[5)=X/R

RELERR{6)=Y/R

RELERRIT)=Z/R

SELECT MAXIMUM ERRDR, COMPUTE ERROR COEFFICIENT, PDSSIBLY SAVE ERROR DATA.
00 5 J=1,7

IF (ABSF{RELERR(J}II-~E2) 5,5,4

K=J

€2 = ABSF{RELERR{J])

CONT INVE

E2 = E2 + 2E-B

Al = A2

A2 = LOGF{E2)~5.#LOGF{ABSFIDELT)}

IF (EREF) 6,7,7

WRITE TAPE 4,K,RELERR4E2,42,DELT,TIME,STEPNO,STEPGD
INDERR = INDERR + 1

RETURN

END OF THE FORTRAN STATEMENTS. sEsnsese
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SUBROUTINE STEP

SUBROUTINE STEP TESTS FOR THE END OF THE PROBLEM, COMPUTES STEP SIZE, AND

CONTROLS QUANTITY OF JOUTPUT DATA. WHEN END OF PROBLEM IS DETECTED, OUTPUT
OCCURS, THE ERRDR DATA TAPE IS REWOUND, AND YHE FIRST SEGMENT IS LALLED TO
ALLOW INPUT. FOLLIWING IS AN EXPLANATION OF CONTROL DN QUANITY OF DUTPUT.

Sw N

o

11
12

i3
14

[§]
16

i8

MODOUT=1 OUTPUT EVERY NTH STEPIN=STEPS) UNTIL TIME = TMIN, THEN
GO TO MODE 2 .
2 OUTPUY AT INTERVALS OF DELMAX UNTIL TIME = TNAX.
3  OUTPUT AT INTERVALS OF DELMAX UNTIL TIME = TMIN, THEN
GO TO MODE 4 .
4 OUTPUT EVERY NTH STEP UNTIL TIME = TMAX.

COMMON C
DIMENSION NPONG{5)

EQUIVALENCE

10 DELTY,CU 10)),.1 E2,C1260) )94 NPONGoC( L1)),1 Al,Ci236)),
21 DEL,C{255) ), ERLOG,C(259)},{ TIME,CI138B)),0 TMIN,C{ 22)),
3{DELMAX,C{ 23}),{STEPNO,C(102}) .0 STEPS,CI 21)),(SPACES,l(258)),
G{STEPMX,C{ 20)),{STEPGO,C(101}),{ TMAX,Cl 301! H2,0{256)1,
5{MODOUT,C{103)) .1 A2,C(2371) .1 RATED,C{(600)),{ TTOL,CU226))

PART 1. TEST FOR END OF THE PROBLEM {MAXIMUM PROBLEM TIME DR MAXIMUM
NUMBER QOF STEPS).

STEPGD = STEPGD ¢ 1.

IF {ABSF{TMAX-TIME)-TTOL) 141.3

CALL OUTPUT

WRITE QUTPUT TAPE 6,2

PRINT 2

FORMAT{25HOCASE COMPLETED,TIME=TMAX)

GO TO &

IF {(STEPGD+STEPNO-STEPMX) Tir4.%

CALL OutvPur

WRITE OUTPUT TAPE 6,5,STEPMX

FORMAT {22HOSTEPGO+STEPND=STEPMX=F6.)

REWIND 4

CALL PONGINPONGI(5))

PART 2. COMPUTE STEP SIZE (DELT) AND CONTROL OUTPUT.
A3 = (A2-AL)*RATIO+A2
DELT = SIGNF({EXPF((ERLOG-A3)/5.),DELT)
IF (DELT/H2-3.) 10,10.9
DELYT = 3.sH2
LXD MODQUT, {MODOUT}
60 70 {11,15,13,21),M0D0OUTY
IF(DELT#(TIME + 3.eDELT-THMIN)} 21,12,12
MODOUT = 2
DEL = TMIN - TIME
GO TO 16
IF(DELT = (TIME - THIN)) 15415,14
MDDOUT = &
G0 TO 21
DEL = DEL-H2
SPACES = INTF{(DEL/DELT)+SIGNF(.9,(DEL/DELT)})
IF(SPACES) 20, 18,20
CALL DUTPUT
DEL = DELMAX
IF (ABSFI{DEL) - ABSF{DELT}) 19,16,16
DELT = SIGNF{DEL.DELT)
GO TO 1é
DELY = DEL/SPACES
GO 70 23
1F (MODF(STEPGO,STEPS)} 23,22,23
CALL ouTeuT
GO TO {26,24+26+24),HK00D0UT
IFI{TIME + DELT - TMAX)}®DELT} 26,25,25
DELT = TMAX-TIME
RETURN

END OF THE FORTRAN STATEMENTS. (212 YT

SUBROUTINE TESTTR

SUBROUTINE TESTTR MAY BE CALLED FOR ONE DF TWQO REASONS, (1) TO TEST FOR AND

POSSIBLY TRANSLATE THE ORIGIN (WHEN IMODE IS +) OR {2} TO CHANGE THE
VARIABLES OF INTEGRATION [WHEN IMODE IS -). A TRANSLATION OF THE ORIGIN
OCCURS WHEN THE OBJECT MOVES INTO A SPHERE OF INFLUENCE WHICH IS SMALLER
THAN ANY DTHERS IT MAY ALSDO BE IN. WHEN THIS HAPPENS, THE NAME OF THE NEW
ORIGIN 15 MOVED YD THE BEGINNING OF THE BNAME LIST AND THE FIRST SEGMENT
CALLED YO REORDER THE BNAME LIST.

COMMON C
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10

11

12

13

15

16
17
18

19
20
21

22
23

24
25
26
27
28
29

DIMENSION BMASS{B), BNAME(8), RBI3,8), RBCRIT{8), RREL(8), Cl1),
1X{3) ¢XPRIM{15,2) yXPRIMB(15,2) 4 XWHOLE(6),VEFM(3,8), NPONGI(S),
2VX{3),0RBELS(6)

EQUIVALENCE

L{ BMASS,C(417)),( BNAME,C{402)),l CHAMP,L(246)),( NPONG,C( 11}}),
2{ GK2HM,C(469)),{ TMDDE,C{ 2B} ),(NBODYS,C(489)),{STEPNO,L{257)),
3 RBsC(200)) 4 (RBCRIT,C(450)),( RREL,CU442)]},0 SQRDK,C1468)),
4({ORBELS,C(227)),(TRSFER,C(224)) ! X CL200) )5 ( XPRIM,C{ 41)),
SUXPRIMB,C[ T71)),{XWHOLE,C(544)),( TTEST,C(251)),( VEFM,C(498)}),
6l VK.C(4721),{ REVS,C{490)),{ DELT,Cl 10}),{ THAX,C( 30)),
T{ TIME,C(138)),1 €+C1227)) 4t TRU,C{483)), (ASYMPT,C(543))

LXD IMODE,{IMODE}
IF (IMODE) 12,1241

IF IMODE IS +, TEST FOR TRANSLATIUN OF THE ORIGIN.
ASSIGN 27 TO N

CHAMP= 1.E+30

DO 4 JB=1,NBODYS

IF (RREL{JB)-RBCRITIJB)) 2,4,4
IF {CHAMP-~RBCRIT(JB}} 4,4,3
CHAMP = RBCRIT(JB)

NCHAMP = JB

CONT INUE

IF INCHAMP-1] 26,26,5

TRSFER = 1.0

ASSIGN 29 TO N

BTEMP = BNAME(1)

BNAME(1) = BNAME(NCHAMP)

BNAME (NCHAMP) = BTEMP

TTESY = 0.

REVS = 0.

PRINT 10, BNAME{NCHAMP) ,BNAME(1)
WRITE OUTPUT TAPE 6,10,BNAME{NCHAMP) ,BNAME(1)
FORMAT (28HODRIGIN IS TRANSLATING FROM A6s4H TO A6)
CALL EPHMRS

DO 11 K=1,3

VXI(K) = VX{K)-VEFM(KyNCHAMP}
X(K} = RBIKyNCHAMP)
XPRIMIK+1,1)=VX(K)
XPRIM{K+4,1)=X{K)

XPRIMB(K+1l,1) = 0.

XPRIMB{K+4,1) = 0.

XWHOLE(K)= VX(K)

XWHOLE{K+3} = X{K)

GO 1O 20

IF IMODE 1S -, CHANGE THE VARIABLES OF INTEGRATION.
ASSIGN 28 TO N

DO 13 K=1,3

XPRIM{K+1,y1)=XWHOLEIK)

XPRIM{K+4,1)=XWHOLE{K+3)

XPRIMB(K¢1,1) = O,

XPRIMB{K+4,1} = 0.

VX{K} = XWHOLE(K)

X(K) = XWHOLE(K+3)

GD TO (16414,15),IMDDE

CODE = SHORBIT

IMODE = 1

GO TO 18

IMOOE = 3

G0 1O 17

IMODE = 2

CODE = 6HRECTAN

NCHAMP = 1

PRINT 19, [ODE

WRITE OUTPUT TAPE 6,19,CO0E

FORMAT (33HOINTEGRATION MODE IS CHANGING TO Aé)

GO TO 1(21+26,26),IMODE

CALL CONVTL{VX,C(559})

GK2ZM= SQRDK# (BMASSINCHAMP)+XPRIMIL,1171.9866 E+30)
CALL CONVT2

IF ORIGIN TRANSLATION CAUSES PATH TO LIE NEAR AN ASYMPTOTE, CHANGE
INTEGRATION VARIABLES TO RECTANGULAR IF THEY ARE ORBIT ELEMENTS.
IF (E-1.) 24,24,22

IF {ABSFITRUI~2.3/SQRTFIE)) 24,24,23

ASYMPT = 1.0

GO Y0 15

D0 25 J=1,6

XPRIM{J+1,1) = DRBELS(J)

GO TO N,{27,28,29)

RETURN

CALL PONG (NPONG(1))

CALL PONG {NPONG{5))

END OF THE FORTRAN STATEMENTS.

LE2X2 2222 3
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SUBROUTINE ICAD

SUBROUTINE ICAO DETERMINES THE ATMOSPHERIC TEMPERATURE, PRESSURE, AND
DENSITY AS A FUNCTION OF ALTITUDE ABOVE AN DBLATE EARTH IN ACCORDANCE WITH
NACA 1235 AND U.S. EXTENSION TO THE ICAD STANDARD ATMOSPHERE. A SHORT SAP
PROGRAM FOLLOWS ICAD WHICH PROVIDES A MEANS OF LOADING DATA INTO MACHINE.
T MUST BE LOADED DIRECTLY AFTER ICAO. IF THE LENGTH OF ICAC IS CHANGED,
HE DATA MUST BE RELOCATED.

R 1S DISTANCE TO CENTER OF EARTH IN METERS.
ALT IS VEHICLE ALTITUDE ABOVE AN ELLIPTIC EARTH IN METERS.
GEDO H IS THE GRAVITATIONAL POTENTIAL IN METERS.
TABLE H 1S METERS OF ALTITUDE FROM THE EARTHS SURFACE AND IS
THE ARGUMENT OF ATMOSPHERE PROPERTY TABLE.
ALM IS THE MEAN SLOPE OF THE TABLE H V5. THM CURVE AT TABLE H.
TMR 15 TM AT TABLE H.
REF P 15 THE PRESSURE IN MILLIBARS AT TABLE H.
TM IS THE TEMPERATURE TIMES STD. MOLECULAR WEIGHT / ACTUAL
MOLECULAR WEIGHT. DEGREES KELVIN.
PRESS 1S PRESSURE IN MILLIBARS.
DNSITY 1S DENSITY IN KILOGRAMS PER CUBIC METER.

COMMON C
DIMENSION TABLE H{11),TMRUI1), REF PI11),ALNILL)

EQUIVALENCE
20 GED HoCl465)),( PRESS,L(466}).1 TM,C(46T)), (ONSITY,L{460)),
3 TABLT,C1252) )1 ALT,Cl463)),¢ ReLl442)) 41 2,C0137)),

4UTABLE H{12),TMR),(TABLE H{231,ALM),{TABLE H(34],REF P)

ALT = R-63567B3.2B/SQRTF(.9933065783+,006693421685(2/R)#e2)
GEO H = ALT/{1.0 + ALT/6356766.0)

FIND THE GEOPOTENTIAL HEIGHT IN A TABLE OF BASE DATA. DATA ARE
ARRANGED IN DECENDING GEO H WITH TEN REGIONS, AN 11TH IS GIVEN
FOR EXTRAPOLATIDN. ABOVE THAT, PRESSURE AND DENSITY ARE SET =0.
LXD K, {K)

IF (K-111 246.+6

IF (GED H - TABLE H(K+¢l)) 5,3,3

K = K+l

G0 10 1

K = K-1

IF {(K) 72746

H INC = GEO H -TABLE H(K}

{F {H INC)} 4,B,8

K =1

GO TO (9y11,9,1149¢11,9+9,9+s9,12}4K

CONTROL COMES HERE FDR NONISOTHERMAL LAYERS

TM = TMR{K) + ALM[K)#H INC

PRESS= REF PIK)I#{EXPFL{.D3416475/ALMIK)) «LOGFITMRIK}/TH)])
DNSITY = PRESS/(2.8704sTM)

GO 70 13

CONTROL COMES HERE FOR ISOTHERMAL LAYERS

TM = THRIK)

PRESS= REF P(K)®EXPF(-0.03416475sH INC/TMRIK})
GO TO 10

CONTROL COMES HERE FOR EXTREME ALTITUDES
PRESS = 0.0

ONSITY = 0.0

TH = 2000.

RETURN

END OF THE FORTRAN STATEMENTS. sesnanssn

REM THIS IS THE SAP PROGRAM WHICH LDADS ICAOD DATA INTO MACHINE.
REM THE 170 IN ORG 170 WAS FOUND BY SUBTRACTING 10 FROM THE DEC LDCATION
REM OF REF P [FROM SAP LISTING UF ICAD, THIS WAS FOUND TO BE 180).
REM THUS, 1B80-10=170.

REM

REM Al IS REF P{11}

REM A2 IS ALMI11}

REN A3 1S TMRIL11)

REM A4 1S TABLE H(1l)

REM

ORG 170

REL

DEC 1.01E-84Lle4TTE-846.19E-T,1.451E-5,1.815E-3,2.452E-2,5.832E-1
DEC 1.2044,24.B886,226.32,1013.25

DEC 0.0,0.0005,0.0058,0.01,40.035,0.0,-0.003940.0,0.003,0.0

DEC ~0.0065

DEC 0.0,1537.86,812.86,322.86,196.86,196.86,282.66,282.66,216.66
DEC 216.66,288.16

DEC 3000000,0,300000.0,175000.0,126009.0,90000.0,75000.0,53000.0

DEC 47000.,0,25000.0,11000.0,0.0

REM END OF THE SAP STATEMENTS. TEREEnnS
END 1
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SUBROUTINE THRUST

THIS ROUTINE COMPUTES X+Y,Z THRUST ACCELERATIONS. THE THRUSY VECTOR IS
ASSUMED COINCIDENT WITH THE LONGITUNDINAL AXIS OF THE VEHICLE, WHICH IS
ORIENTED TO THE RELATIVE WIND VELOCITY B8Y THE ANGLE OF AVTTACK (ALPHA) AND
THE ROLL ANGLE (BETA)}. ALPHA [S ASSUMED TO BE A QUADRATIC FUNCTION OF TIME
WHEREAS BETA 1S ASSUMED TO BE CONSTANT.

REVOLY IS THE EARTHS ROTATION RATE IN RADIANS/SEC [7.29211585E-5) AND THE
FACYOR 9589934592.= 2#e33 |5 REMUVED TD PREVENT OVERFLDW.

COMMON C

DIMENSION FORCE [3}, PAR(3), C(30),VATMI[3},P(3},AQ(5},IND{3)

EQUIVALENCE { SIMP,C{ 5))e0 FLOW,Ct 33])),1 FORCE4C{525}),
2{ RMASS,C{13L)).¢ PAR.LC{T798)1),{ RSQRD,C(5671)4(COSBET.L(59%})),
3 VX, Cla72) 1,1 IND,C{791) 1,1 XeCU200) )4 (SINALF,L(569)),
4f VY,C(4T73)1,( TIME,C(138)),41 ¥oCl{201)}, (SINBET,L(568)),
51 VI,Cl474) ), (COSALF,C(575) )1 2,0€202)),(REVOLV,C(250}),
GIALPHA ,C{564) ) ¢0 PMAGN,C{574} )41 P 4CE571) ), (RATMOS,C{248)),
71U BETA,C(565))4(VQSQRD,C{481) )+l RyCl442))s (0 VATM,C(4TT)I,
at VQ,C1480) )14 PUSH,C{ 34))

SINBET = SINF{BETA}
COSBET = COSF(BETA}
VATM(L}=VX+REVOLVeY
VATM(2)=VY-REVOLV#*X
VATM{3}=VZ
CALL CONVT1{VATM,AQ)
ALPHA = QUADITIME,11/57.29577951
SINALF=SINF (ALPHA)
COSALF=COSF{ALPHA)
00 1 Jl=1,3
J2=IND{J1)
J3=INDIJ2)
1 PUJL) = (VATM{J2)®AQ{J3)-VATMIJ3)#AQ(J2))/8589934592.
PMAGN= SQRTF(P(1}#P{11+P{2)4P(2)+P[3)sP(3)]
TOPMAG = PUSH/RMASS/PMAGN
R4 = SINBET/VQ
R5 = COSALF/AQU4)
00 2 J1l=1,3
J2=INDIJ1}
J3=INDI[J2)
PARIJ1)=P{J2)eVATMIJ3)-P{J3]sVATMIJ2)
2 FORCE(J1) = TOPMAG#* {SINALF*{COSBET#P{JL)+R4*PAR(JL)]I-RSe{P(J2)»AQ
1 (431-P1J31+AQ142)))
RETURN

END OF THE FORTRAN STATEMENTS. srsnsann

SUBROUTINE AERD

SUBROUTINE AERD COMPUTES THE LIFT AND DRAG ACCELERATIONS. AS IN SUBROUT-
INE THRUST, THESE VECTORS ARE REFERENCED TO THE RELATIVE WIND VELOCITY.
COEFFICIENTS OF LIFT, INDUCED DRAG, AND DRAG AT ZERD ANGLE OF ATTACK ARE
ASSUMED TO BE FUNCTLONS OF MACH NUMBER AND ANGLE OF ATTACK. TABLES OF
COI/CLe®2, CL/SIN{ALPHA), AND CDO ARE ASSUMED AS FITTED QUADRATIC EQUAT-
JONS IN THE COEFN ARRAY. GASFAC [S THE SQRTF{SPECIFIC HEAT RATIO s STAND-
ARD ACCELERATION OF GRAVITY » UNIVERSAL GAS CONSTANT). FOR EARTH, GASFAC=
20.0648B1 (METERS / SEC / KELVIN DEGREE).

COMMON C

DIMENSION C{1),VATMI3),P{3),XIFT{3),0RAG{3),PAR(3])

EQUIVALENCE

1 QVAL,CIT794}),0 AREA,C{ 35)1),( TIMEC(13B)),{DNSITY,0(460)},
21 BETA,C{5651) .1 PMAGN,CI{5T41),1 TM,C(467)), {SINALF,CI(569)),
30 PHIP,C1462)),(VASQRD,CI481)),( VU, C(480) ), {SINBET,C(568)),
4t XIFT,C{528}),( RMASS,Cl1311),¢{ ReCl442) ), ¢ CD1,CI795)),
5C DRAG,CI5311) 0 VATM,CL14TT)), 1 PeC(571)) . {GASFAL,C{458)1,
6{COSALF,C(575}),{ VMACH,C{4TLl}),{ ALPHA,C(564)),({COSBET,C(599)),
7t PAR»CL{T798}),( CDCIT7971),( CLeC{T96))

QVAL=0.52DNSITY#VQSQRD»AREA/RMASS
VMACH=SQRTF[VQSQRD/TM)/GASFAC

COMPUTE THE X,Y,Z COMPONENTS OF LIFT.
IF (ALPHA) 24142

1 CL = 0.0
CD1=0.0
XIFT(1) = 0.
XIFT{2) = 0.
XIFT{3) = 0.
GO TG &
2 CL = QUADIVMACH,2)#SINALF
D0 3 K=1,3

3 XIFT(K) = QVAL#CL/PMAGN®{SINBET#PAR(K)}/VQ+COSBETsP(K]))
CDI=QUAD{VMACH,3)sCL*CL
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COMPUTE THE X,Y.I COMPONENTS OF DRAG.
4 CD = CDI+QUADI(VMACH,4)

DO 5 K=1,3
5 DRAGIK) = -CD#QVALsVATMIK}/VQ

RETURN

END OF THE FORTRAN STATEMENTS. ssanenss

SUBROUTINE ODBLAYE

THIS5 SUBRODUTINE C(OMPUTES THE OBLATENESS ACCELERATIONS {OBLAT) DUE TO AN
AXTALLY SYMMETRIC EARTH. THE 2ND AND 4TH SPHERICAL HARMONIC COEFF, ARE
OBLATJ AND OBLATK, RESPECTIVELY. OBLATJ, OBLATK, RESQRD, AND THE CONSTANTS
CON ARE LOADED BY STDATA.

COMMON C
DIMENSION RBU(3), OBLATI3), CON{9}

EQUIVALENCE

I8 CON.CI576) ), ReCla42))4( GKZMyCU469)1,1 RSQRD,L(56T)),
Z{RESQRD,C{ 40)).(0BLATS,C{ 38)),{0BLATK,CU 39}),( RB,C{2001),
30 OBLAT,C(534))

{2DVR2=RB(3)#RB{3}/RSTURD
REDVR=RESQRD/RSQRD
DO 1 K=1,3
1 OBLAT(K)=RB(K])#REDYR#GK2M#5,0/R/RSQRO#{OBLATJ»(Z20VR2-CONIK) )+
1 OBLATK#REDVR»({Z20VR2#(CON(K+3)-2.1#Z2DVR2)-CONIK+6))}
RETURN

END OF THE FORTRAN STATEMENTS. AERBEENS

SUBROUTINE EPHMRS

SUBROGUTINE EPHMRS IS CALLED TO COMPUTE THE POSITIONS OF THE PERTURBING
BODIES RELATIVE TO THE VEHICLE AND, FROM THESE, THEIR PERTURBING ACCELERA-
TIONS UPON THE VEMICLE. OCCASIONALLY THIS ROUTINE IS CALLED FOR THE PURPOSE
OF TRANSLATING THE ORIGIN IN WHICH CASE (TRSFER=1) THE RELATIVE VELOCITIES
ARE ALSO CALCULATED. [IF A BODYS POSITIUN IS TGO BE COMPUTED FROM AN ELLIPTIC
APPROXIMATION SUBROUTINE ELIPSE IS5 CALLED. OTHERWISE, THE POSITION WILL BE
CALCULATED IN EPHMRS FROM THE PRECISION TAPE EPHEMERIS. THE 00D 19 LOOP
ENCOMPASSES ALMOST THE ENTIRE EPHMRS SUBROUTINE AND ,IN EFFECT, ELIPSE TOO.

COMMON C

DIMENSION QX(3),IBODY(8),EFMRS(T7},XP{3,B),RB(3,8),RREL(8),NEFMRS
1 (8)TDATAULB,7),CF{643,7),TIMIT7),TODEL(7),BMASS{8),XxDOT{3,8),C(1}

EQUIVALENCE {Qx 2C(522) 0,0 1BOOY,C1425)), (MBODYS,C(4411}),
L{EFMRS ,C{410}),(XP 2CL1T76) )4 {RB »CU200) )+ {RREL ,01442)),
2ZINEFMRS,C(433) ), (TRSFER,C(224)),{TABL T,C1252)),(DTOFFJ,CTL 311},
3{TDATA ,Cl27611)4(CF eCU2T61 ), (TIM »CE585)) 4 {TDEL  ,L(592)),

4{BMASS ,C{417}1,(5QRDK ,C{468)),(XDOT ,C{438)), (LENGTH,C(257)),
51{ AU,CL461) 1,1 IBF,FIB)

PART 2. SET INDEXS, FIND POSITION IF ELLIPSE IS USED INEFMRS = 20 OR UP).
DO 19 JB=1,MBODYS
JBLl = JB+1
IBF = 1800DY(JBL)
IB = XABSFIIBF)
TF (NEFMRS{JB)-20) 24241
1 CALL ELIPSE (JBI)
IF (TRSFER) 12412417

PART 3. TAPE EPHEMERIS IS TOD BE USED. FIND DIFFERENCE (DT) BETWEEN
CURRENT PROBLEM TIME (DTVTOFFJ+#TABLT) AND MIDPOINT TIME (TIM) OF CURRENTLY
STORED TAPE DATA. THEN SEE IF CURRENT DATA IS5 OKAY. TDEL = TIME [NTERVAL
ON EITHER SIDE OF TIM FOR WHICH CURRENT DATA IS GOOD.

2 DT = TABL T - (TIM(JB) -DTOFFJ)
[F {ABSF(DT)-TDEL{JB)) 10.,10,3

PART 4A. CURRENT DATA NOT OKAY. READ IN NEXT DATA SET. IF OT [S -,
BACK UP THE TAPE 2 RECORDS BEFORE READING.
3 IF (DT} 4,5,5
4 BACKSPACE 3
BACKSPACE 3
5 READ TAPE 3, (CUJ}, J=8051,8071)
LYE = 8051
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pART 4B. IF THIS DATA IS FOR A BODY IN THE BNAME LIST, STORE IT.
{IF NOT STORED, WE MIGHV HAVE TO RETURN FOR IT.) 1IF ELLIPSE DATVA IS
PROVIDED FOR THE BODY FOUND, BY-PASS THE TAPE DATA AND READ IN NEXT SET.
DO 7 J = 1,MBODYS
CLA C(LYE)
CAS EFMRS(J)
TRA =7
TRA #6
TRA =7
6 IF [NEFMRS{J)-20) B8,8,3
7 CONTINUE
GO T0 3

PART UC. MOVE THE DATA INTD PLACE AND THEN GO BACK AND SEE IF IT IS OKAY,
8 TIM(J} = CILYE+]))

TDEL{J} = C(LYE+2)

D0 ¢ JJ=1,18

TDATA(JJSsJ) = LU1JJ+8053)
9 CONTINUE

GO TO 2

PART 5. CURRENT DATA IS OKAY. GET POSITION FROM THE POLONOMIAL
P = A + BX ¢ CXew2 + DXes3 + EXuul + FXon5,
10 DO 11 K=1,3
XP(K,JB1) = CF{1,X,J4B)
DO 11 KT=2,6
XP[K,JB1) = XP(K,JBV)e DT +CF{KT,K,JB)
11 CONTINUE
IF {YRSFER] 12,12,15

PARY 6. COMPUTE DISTANCE FROM REFERENCE AND FROM ROCKET .
12 DO 13 K=1,3

XPI{K,JBT) = XP{K,IB)} +XP(K,JSB1)#SIGNF{AU,FIB)
13 RB{KyJB1}= RBIK,1) - XP{K,JB1)

PART 7. COMPUTE PERTJRBING ACCELERATIONS (QX). U419430u=2#w22 [S REMOVED
TO PREVENT OVERFLOW. 204B=2ee]] AND B8589934592=2es33 RESTORE ¥AE SCALE.
PRSQRD = [RB{1,JB11##2 + RB(2,JB1)#e2 + RB{3,)B81)#e2}/ulP430L,
RRELL = SQRTF{PRSQRD}
RSQRD = { XP{1,JBi)es2 & XP{2,JB1)%e2 + XP{3,JB1)ee2)/419U304.
RCUBE = RSQRD # SQRTF{R SQRD}
PRCUBE = PRSQRD *» RRELL
RREL(JB1) = RRELL» 20L4B.
DO 14 K=1,3
14 QX(K)=SQRDK » BMASS{JBT} = {{XP(K,JBV)/RCUBE) + RBIK,JB1)/PRCUBE})/
1 858993u4592. + QX{K]}
GO 70 19

PART B. COMPUTE VELOCITY FROM V = B + 2UX + 3DX##2 + HEXwe3 + SFXesl
AND FROM REFERENCE BODY VELOCITY (XDOT(IB)}.
15 DO 16 K=1,3
XDOT{K, 481} = 0.
DO 16 KT=1,5
16 XDOT(K,JBI} = (XDOT(K,JBY} & DV + CFIKT,K,JB) ®FLOATF(-KT+¢6) )
17 00 18 K=1,3
18 XDOT(K,JBi) = XDOT{K,IB) + XDOT(K,JB1)«SIGNF{AU/B6LOO.O,FIB)
GO 7O 12
19 CONTINUE
CALL DUMP (4,C,LENGTH)
RETURN

END OF THE FDRTRAN STATEMENTS. sasssnne

SUBROUTINE ELIPSE (JB1)

THIS SUBROUTINE IS CALLED FROM EPHMRS TO COMPUTE THE POSITION OF A BODY
USING APPROXIMATE ELLIPTIC DATA. THE VELOCITY IS ALSO COMPUTED IF THE
ORIGIN IS BEING TRANSLATED (TRSFER=1.0). THE ELLIPSE DATA IS READ FROM
INPUT CARDS AND ORGANIZED IN SUBROUTINE ORDER. TPD IS TIME SINCE PERIHELION
PASSAGE, ZM IS MEAN ANOMALY, U IS ECCENTRIZ ANOMALY, E IS ECCENTRICITY.

COMMON C

DIMENSION

1 Xp (3,8), XDOT (348), P (1),
2 E (1), SINCL (11, SNODE (11},
3 SOMEGA {1}, PPJID {11, PPFRAC (1),
L) PERIOD (1), CINCL (1}, CNDODE (1),
5 COMEGA (1)
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EQUIVALENCE
1{ XDOT,C{498))(DTOFFJ,C{ 31)),({COMEGA,C(284)),( CNIDE,C{2851}},

2( PyCl276))4¢ EC{277)),(SOMEGA,C(278)),( SNODE,C(279)),
30 SINCL,C(280)),t PPJD,C1281)),(PPFRAC,C(282)),(PERIOD,C(283)),
4( CONSU,C( 36)),1 TABLT,C(252)),¢ XPyCtLT76) ) {TRSFER,C(224)),

5( CINCL.C(286))

K = 18#{JB1-2)+1

TPD = (DTOFFJ-PPJD(K}I I+ (TABLT-PPFRAC(K]}])
IN 6.28318533/PERIOD(K)

M IN#MODF(TPD,PERIODIK])

GET THE SINE(SINTRU} AND THE COSIAE (COSTRU} OF THE TRUE ANOMALY
BY ITERATING KEPLERS EQUATION. THEN COMPUTE X,Y.Z [XP).
U = IMtE(K)#SINFIZMI+0.S#E(K) #8285 INF(2,.087ZM)

DO 1 J=1,10

DELM = IM-U+E([K)=*SINF{U)

DELU = DELM/({1.-E(K)#COSF(U}]}

U = U+DELU

IF (ABSF{DELM}-CONSU} 2+2.1

CONTINUE

COSU = COSFI{U)

DENOM = l.-E{K}*COSU

COSTRU = {COSU-E(K)}/DENOM

R = P{K)/{1.+E{(K)#CO5TRY)
SINTRU=SURTF({l.-ElK)®*=2)«SINF{U)/DENOM

SINV = SINTRUCOMEGA{K)+COSTRU#SUMEGAIK)

COSY = CUSTRU#COMEGA(K}-SINTRU*SOGMEGA(K)

XP(L4JdBL) = R#{COSV#CNODE(K}-SThveSNODE(K)*CINCL(K))

XP(2,J81) = R#{COSV#SNODE(K}+SINV*#INODEIK)#CINCLIK) ]
XP(3,481) = R#SINV#SINCLIK)
IF (TRSFER} 3,4,3

COMPUTE THE VELOCITIES FOR TRANSFER OF ORIGIN.
EX = b(XK)}*SOMEGA(K)+SINV

FX = E[K)*JOMEGAIK) +COSV

CFACT = IN#P(K)/(SQRTF{{1.0-E(K)#x2)ee3))

AX = EX®CNODE(K)+FX*SNODE(K) »CINCLIK)

BX = FX#CNODE(K)#CINCLI{K}-EX#*SNODE(K}
XDOV{l,J81) -AX+CFACT

XDOT(2,JB1)} BX*CFACT

XDOT{3,481) FX«CFACT#SINCL(K]}

RETURN

END OF THE FORTRAN STATEMENTS.

SUBROUTINE CONVTLIVX,A)

THIS ROUTINE COMPUTES -- (1) ANGULAR MOMENTUM, A{4)
{2} ANGULAR MDMENTUM SQUARED, A(S5)

{3) XsYel COMPONENTS OF ANG. MOM., AlLl},+AL2),A(3)

{4) VELOCITY, VX(4)
{S) VELUCITY SQUARCD, VXI(5}

COMMON C
DIMENSTON A{5)+VX{5)4X{3),IND(3}
EQUIVALENCE {(X,C(200)), ({IND,CL791})

DO 1 Ji=1,.3

J2=INDLlJ1)

J3=IND(J2)
ACJ3)=X{J1)avX(J2)-X(J2)eVX{Jl)
A(SI=ACL)I=A{1)+A(2)=A(2)+A{3]}*A(3)
A{4)=SQRTFLALS))

YXES =YX {L)eVXTL)+VX(2) #VX(2)1+VX(3}#VX{3)
VX(4)=SQRTF{VX(5))

RETURN

END OF THE FORTRAN STATEMENTS.
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SUBROUTINE CONVT2

THIS ROUTINE CONVERTS RECTANGULAR CUURDINATES INTO ORBIT ELEMENTS.

RECTANGULAR COORDINATES- POSITION CUMPONENTS,X,AND VELOCITY COMPONENTS,VX.

URBIT ELEMENTS = {1) ECCENTRICITY,E (4) INCLINATION, ZINCL
(2} ARG. OF PERICENTLR,0OMEGA (5) MEAN AMOMALY,ZIMA
(3)LONG. OF ASCENDING ~NODE, ZNODE {6) SEMILATUS RECTUM,P

COMMON C

DIMENSION C{1),VX{3),X(3)

EQUIVALENCE

il A2,C(559) 1,0 OMEGA,C(228)),{ ASQRD,C(563)),( VX,Cl472)),
21 A3,C(560)),1 ZNODE,C(229)),1 VaCl4a75) )1 GK2M,C1 46911,
3 ALoCU561)) st ZINCL,C(230)),( VSQRD,C{476)),{ EPAR,C(245])),
4( PyC(232)) 4 IMALC(231) ). ¢ TRU,C{483)),(TRSFER,C(224)),
5( RyC1442)) {SINTRU,C{492) ) (CUSTRU,C{493})), ¢ XoC{200)),
&l E+C(227) )41 A,L(562))

P=ASQRD/GKZM

R = SQRTF(X(Ll)we24X{2)nn2+X(3)wa2)
TRU=ARCTAN(A/GKZ2M# [ X{LYsVX{1)+X(2)nvX(2)+X{3)#VvX(3))},P=-R)
IF {(A2) 2,1,2

INGDE = 0.0

G0 70 3

INODE = ARCTAN{AZ,-A3)}

ZINCL = ARCTAN(SQRTF{A2#22+¢A3w22),A])

SNDOE = SINF({ZNODE)

CNODE = COSF(ZNOOE)

XTWOD = X{1)=CNODE+X{2)*SNODE

YTWOD = X{3)#SINF(ZINCL) + COSFUZINCL) #(X(2)+CNODE-X(1)=SNODE)

OMEGA=ARCTANIYTWUD, XTWOD)-TRU

E = SURTF{ABSF(1.+P*{VSURD/GK2M=-2./R1})
EPONE = SQRTF(1l.+E}

E2M1l = L.-Ext

EPAR = SQRTF(ABSF{E2ZMLl))

SINTRU=SINF (TRU)

COSTRU=COSF(TRY)

EPAS = SQRTFUABSFUl.-E))*SINTRU/{1.0+COSTRU)
ETHETA=E*SINTRU/(1.O+E#COSTRU) #EPAR

IF {E2ML) 54646

IMA = LOGFU(EPONE+EPAS) /{EPONE-EPAS)) - ETHLTA
GO 10 7

IMA = 2,0#ARCTAN(EPAS,EPONE) - ETHETA

RETURN

END OF THE FORTRAN STATEMENTS. reARRRES

FUNCTION ARCTAN (Y,X)

THE FORTRAN II LIBRARY ATANF{+ OR - Z=TAN(THETA)) USES A SINGLE
ARGUMENT wITH ITS SIGN TO GIVE THLCTA IN THE FIRST (+Z) OR FOURTH
{-Z) QUADRANT. \

THE ARCTAN FUNCTION MAY BE USED IF + OR - Z IS DERIVED FROM A
FRACTION SO THAT ARCTAN (Y,X} = TAN-1 {(+0R-Y=SINI{THETA))/{+0R-X=
COS(THETA)) ). THUS THE ARCTAN {Y,X) GIVES THETA IN ITS PROPER
QUADRANT FROM -180 DEGREES TO +180 DEGREES.

IF (X} 2,1,2
ARCTAN=SIGNF(1.57079632,Y)

GO TO 4

ARCTAN=ATANF({Y/X)

IF(X) 3,1,4
ARCTAN=ARCTAN+SIGNF{3.14159265,Y)
RETURN

END OF THE FORTRAN STATEMENTS. I XXZTE YY)
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SUBROUTINE QUTPUT

THIS IS THE ROUTINE WHICH FORMS THE BASIC DATA JOUTPUT. BOTH ORBIT ELEM-
ENTS AND RECTANGULAR COORDINATES ARE DUTPUTTED. [IF THE OBJECT IS NOT WITH
IN AN ATMOSPHERE (PRESS=0.), ONE LINE OF DATA IS DELETED. LIKEWISE,

ONLY THOSE PERTURBING BODIES PRESLCNT HAVE THEIR DISTANCES OUTPUTTED.

COMMON €

DIMENS[ON

3 RREL (8), ORBELS (61}, C 1),

2 BNAME (8), RB{3.,8}, DIRCDS(3,8),

3 VAR (4)

EQUIVALENCE

1{ TABLT,C{252))4( TIME,C(138)),(STEPND,C{102)),(BNAME ,C(402)),
2( EsC{227))s{ OMEGA,C(228)),( ZINODE,C{229)),( ZINCL,C{230}),
3¢ IMA,C{231) )41 PaCL232) )4t RByC1200)),( TRU,C(483) ),
41 VeL{4T5) 1410 VXC{aT72) )1 VY Cl4T731) ¢ VZ,L(4T74)),
50 RREL,C{442))41 XsC{200)) 4t YoCU201) )41 L,C1202)1),

6(STEPGO,C(101) )4 DELT,C{256)),( RMASS,C{131)},[ ALPHA,C(564}]),
T(DIRCOS,C{176))+(ORBELS,C1227))},( IMODE.C{ 28)),( PRESS,L{466)),

8(MBODYS,C{441)),(NBODYS,C{489)),(DTOFFJ,C{ 31}, ( A,C(562)),
9(SINTRU,C(492)) ,(COSTRU,C{493) ), REVS,C{490)),{LENGTH,C(257))
EQUIVALENCE

L ALT,Cl463)),0 VATHML,C{477)},0 VATM2,C{478}),{ VATM3,C(479)),
21 VQsCleBO) YW1 PSI,.Cl462))

PATHANFIVXoVY,VZ) = ATANFUIX®VX+YRVY+Z0VI)}/A)#5T7.29577951

DAYJ=(DTOFFJ~2.4E6)1+TABLT
ALPHAL = ALPHA#57,295779351
REV = REVS + ARCTAN(-Y,-X)/6.28318532 + .5
CALL CONVTL{VX,C(553})
LXD IMODE, (IMODE}
GO 7O (241,1),IMODE
1 CODE=6HRECTAN
CALL CONvVT 2
GO TO &
2 DO 3 K=1,6
3 ORBELS(K) = CI[K+131)
CODE=5HORBIT
TRU=ARCTAN{SINTRU, ZOSTRU)
4 PSI = PATHANF{VX.VY,VZ)
WRITE OUTPUT TAPE 6y 11,STEPGO,STEPND,E,OMEGA,V,RREL(1),BNAME(]1),
1CODE s IMODEWTIME 4Py TRU VX4 X4 RMASS, DAY ), ZMA 4 INODE VY, Y,REV,ALPHAL,
2PST,ZINCL,VZ4Z,DELT

IF WITHIN AN ATMOSPHERE COMPUTE DRAG, LIFT, G, ETC., AND PRINT EXTRA LINE.

IF {(PRESS) 54745

5 J=0
DO 6 I=1,4
Jd = J+3

& VARUI) = SQRTF{CUJ+525)1202+0{J+526)um2+C(J¢527) 402 )aRMAS5/9.80665
G = VAR(4}/RMASS
CALL CONVT1(VATML,C(559))
PSI = PATHANF{VATM],VATM2,VATM3)
WRITE QUTPUT TAPE 6,124ALT,PSIVAR{2}4VQsGyVAR(L)

IF PERTURBATING BODIES ARE PRESENT, FIND THEIR DISTANCES AND PRINT

IF{MBODYS) B8,+10.8

0D % J=2,NBODYS

00 9 K=1,43

9 DIRCOS(K,J} = -RBIK,J}/RREL(J]
WRITE QUTPUT TAPE 6,13,
L{BNAME(J) yRRELIUJ) 4DIRCOSIL4J)sDIRCOS(2+4}4DIRCOS{3,J),J=2,NBODYS)

10 CALL DUMP{2,C4LENGTH)
RETURN

11 FORMAT{G6HOSTEP=F5.42H ¢F4.,4X, 1IHECCENTRICITY=1PG15.8,TH OMEGA=G15
leBy4H V=G153.8,3H R=G15.8,7TH REFER=AG6,1XyA6,12/6H TIME=LPGl4.T,14
2H SEMILATUS R.=G1%.8,7H TRU A=G15.8,4H VX=G15.843H X=G15.8,7H RMAS
35=G15.8/9H JDAY= 240PF10.4,15H MEAN ANOMALY=1PGl5.8,7H NODE=G15.
48y4H VY=(G15.843H Y=(G15.8,7H REVS.=G15.8/6H ALFA=Gl&4.7,14H PATH A
SNGLE=GI5.8y7H [INCL=G15.8y4H VI=G15.843H Z=G15.8y7H DELT=615.8)

12 FORMAT(6H ALT.=1PGl4,7,14H R PATH ANGLE=Gl5.8,7H DRAG=Gl5.8,4H VR
1=G15.8,3H G=G15.8,7H LIFT=6G15.8)

13 FORMAT(2(1X4A643H R=1PG14.7+0P3F10.6411X1})

® ~

END OF THE FODRTRAN STATEMENTS.

THEM,
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SUBROUTINE DUMP (IDENT,DATA,LENGTH)

THIS SUBROUTINE WILL DUMP IN G TYPE FORMAT A VARIABLE NUMBER OF CONSECUTIVE
WORDS, BEGINNING AT A SPECIFIED LOCATION. DUMP OCCURS WHEN THE FOLLOWING
CONDITIONS ARE SATISFIED

NOTE- IDENT

1
2

1

N

~ O

8
9

10
11
12

13

14

15

16
17

18
19

20
21
22
23
i
24

25
26

A) IDENTIFICATION NUMBER (IDENT) = AN INPUT DUMP NUMBER (NDUMP).

8) DUMP NUMBER IDENT HAS BEEN SKIPED NSKIP TIMES.

C) TOTAL NUMBER (TEST) OF DESIRED DUMPS HAS NOT BEEN EXCEED:ED. (IF TEST
IS NEGATIVE, DUMP ALWAYS OCCURS).

IDENTIFICATION NUMBER OF DUMP

DATA = STARTING LOCATION OF DUMP
LENGTH = NUMBER OF CONSECUTIVE WORDS TO BE DUMPED. (ZERDES COUNT BUT
ARE NDT DUMPED)
COMMON C
DIMENSION
DATA (1), 16 (6}, DATAG (&),

NSKIPN [4), NDUMP (4), NSKIP (4)

EQUIVALENCE

€ TEST,CU 1))s( NDUMP,CI268))+( NSKIP,C(272))

PART 1. TEST FOR DVERFLOW AND DIVIDE CHECK.
IF DIVIDE CHECK 142

ASSIGN 2 TO N

WORD1 = 6HDIVIDE

WORD2 = 6H CHECK

G0 TO &

IF ACCUMULATOR OVERFLOW 3,4

ASSIGN 4 TO N

WORD1 = 6HACC DV

WORD2 = 6HER FLO

GO TO &

IF QUOTIENT OUVERFLOW 5,8

ASSIGN 8 TO N

WORDL = 6HMQ OVE

WORD2 = 6HR FLOW

WRITE OUTPUT TAPE 6,7,WORDL,WORD2, IDENT
FORMAT({1H02A6,18H IDENTIFICATION=14)
GO TO Ny(244,8)

PART 2. DETERMINE If DUMP MAY UCCUR.
IF {TEST) 15,26,9

DO 12 T=1,4

IF {IDENT-NDUMP(I)) 12,10,12

[F {XABSF(NSKIPUI)}-NSKIPN(I}) 13,13,11
NSKIPN(I) = NSKIPN{I)+1

CONTINUE

GO TO 26

NSKIPNII) = 0

IF (NSKIP(I)) 14,15,15

NSKIP{I) = 0O

PART 3. DOUMP OCCURS. OUMP NON-ZERQ WORDS AND THEN REDUCE TEST BY 1.
WRITE QUTPUT TAPE 6,23, TEST,IDENT,LENGTH

K2=6

J=0

DO 21 K=1,6

J o= J+l

IF (J-LENGTH)} 18,18,19

IF {DATA(J)) 20,417,20

K2=K-1

IFIK2) 22425,22

DATAG(K)=DATA(J)

16(K) = J

WRITE DUTPUT TAPE 6,24, (16(K1),DATA6(KL),K1=1,K2)

FORMAT (12HODUMP, TEST=F6.1,18H IDENTIFICATION IS,14, 20H, NUMBER
OF WORDS 1S, I5)

FORMAT (1Xy14,1PG15.8,5(17,1PG15.8})

GO 7O 16

TEST = TEST-1.

RETURN

END OF THE FORTRAN STATEMENTS. [XX2TE Y2

8l
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FUNCTION QUAD (X, IC)

THIS ROUTINE COMPUTES ANY VARIABLE, QUAD, AS A QUADRATIC FUNCTION OF X.

QUAD = A + BX + CXX. THERE MAY BEC SEVERAL SETS OF COEFFIENTS, EACH SET

BELONGING TO A PARTICULAR REGION OF X. THE COEFN ARRAY IS ARRANGED AS —-
X1eALsB1yCloX29A29B24C29X39A3,B3,C39X4) cacesscsrsccns

WHERE Al,B1,C1 ARE THE COEFFIENTS TO BE USED FOR X BETWEEN X1 AND X2,ETC.

AND X1 IS5 LESS THAN X2, X2 IS LESS THAN X3, X3 IS LESS THAN X4, ETC.

IC IDENTIFIES WHICH DEPENDENT VARIABLE, QUAD, IS BEING SOUGHT.

ICC{IC) DEFINE THE STARTING LOCATIONS IN THE COEFN ARRAY FOR VARIABLES X.

COMMON C
OIMENSION C(10),COEFN{190},ICC(5)
EQUIVALENCE { ICC,C{23B) ), CUEFN,C{6011)

[=1CC{IC)

IF (X-COEFN{I)} 23,3
I = I-4

GD 10 1
[FIX-COEFN{I+4)) 54594
I = I+4

G0 10 3

5 QUAD = COEFN{I+1)+Xe(COEFN{I+2)+X=COEFN{I¢3})

Q1
Q2
TEWPL
TEMP2

EXADD

0Pl
ARG1

80T1

10P2

8oT2
END

ICCiICi=1
RETURN

END OF THE FORTRAN STATEMENTS. sssannne

REM SUBRQUTINE EXADD {(A,8,C)
REM THIS ROUTINE WILL ADD IN DOUBLE PRECISION A QUANTITY C TO THE DOUBLE
REM PRECISION VARIABLE A+B WHERE A IS THE MOST SIGNIFICANT PART AND B IS
REM THE LEAST SIGNIFICIANT PART.
ORG O

PGM

PZE END+1,0,0

PZE

BCD 1EXADD

PLE EXADO

ORG O

REL

SYN 32700

SYN 32701

SYN 32702

SYN 32703

BCD LEXADD

CLA 1,4

STA TDP1

STA TOP2

CLA 2.4

STA 8DT1

STA B0OT2

CLA 3,4

STA ARG1

CLA »»

FAD ==

STQ Qi

FAD ==

$TQ Q2

FAD Qi

5TQ Q1

STO TEMPL

CLA Q1

FAD Q2

STO TEMP2

FAD TEMPZ

FAD TEMP1

STQ Q1

FSB TEMPZ

STO #»=

5TQ Q2

CLA Q1

FAD Q2

STO ==

TRA 4,4

REM END OF THE SAP STATEMENTS. Fassanny
END
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SPCO
PING
SELPGM
PONG

SPC1

sPC2
SPC3
SPC4

SPCS

SPCe
SPCT
SPC8
ERR]

ERR2
ERR

END
T
COMMON

SUBROUTINE BKFILEIN)
THIS ROUTINE SIMPLY BACKSPACES TAPE N ONE FILE.

CAL =1

STP «2
M = 10-N
BST 10,1{M)
85T 10,(M)
BST 10, (M}
NOP
RTB 10, (M)
CPY OUD
TRA #3

TRA =4

TRA =3

B8ST 10, (M)
RETURN

END OF THE FORTRAN STATEMENTS. [EXTXTTY)

REM SUBROUTINE PONG (N}

REM THIS ROUTINE FINDS THE SEGMENT N ON TAPE AND LOADS IT IN THE CORE.
REM IF SEGMENT N IS ALREADY IN THE CORE, CONTROL IS SIMPLY SWITCHED TO
REM THE BEGINNING OF SEGMENT N.

ORG

PGM

PIZE END+1,0,0

PIE -1

BCD 1SELPGM

PLE SELPGM

BCD 1PING

PLE PING

BCO LPONG

PZE PONG

REL

ORG

PIE DEC IS TOTAL RECORDS, ADDRS IS THIS RECORD, SET BY PING-PONG.

TSX 5PC4,1

CLA 1,4

CLA 1,4

STA »+]

CLA a5

SSP

TIE PING PROGRAM NUMBER TDO SMALL.

sua SPCO COMPARE WITH TOTAL

TPL ERR PROGRAM NUMBER TDO LARGE,

ADD SPCO

ARS 18

STO COMMON DESIRED NUMBER IN ADDRESS.

CLA SPCo PRESENT POSITION IN ADDRESS.

ADM SPCT ADD ONE IN ADDRESS.

ANA 5PC8 SAVE ADDRESS ONLY.

SUB COMMON

PAX ,1 NUMBER OF RECOROS TO MOVE.

TXL SPC4,1,0 PROPERLY POSITIONED IF ZERC.

TXH 5PCls1,1 CORE LOAD OK If ONE.

PXD

TRA SELPGM GO TD THE TRANSFER TO BEGINNING OF PROGRAM.

TM{ SPC2 ADVANCE TAPE.

BST T BACKSPACE TAPE.

TRA SPC3

RTE T

TIX SPCLl,1,1 KEEP MOVING TAPE.

RTB T

cePY O RIGHT POSITION NOW SO LOAD IT,

TRA SPCS

REW T EOF, NEXT IN SEQUENCE IS FIRST RECORD.

TRA SPC4 FALSE EOR,

CaL o

ANA SPCB ADDRESS OF FIRST WORD IS REQUIRED NUMBER.

5uUB COMMON DESIRED NUMBER.

TXH SPC7,1,1 BYPASS CHECK ON SELPGM ENTRY,

TIE SPLT PROPERLY FOUND.

HPR 145 IMPROPER POSITIONING DUE TO MACHINE ERROR.

TRA SPC6

CPY 1

TRA 0 G0 TO LOADER.

PLE -1 1S ONEA,

BCD 10PONG

BCD 1FAIL.

WTD & THES IS THE ERROR PRINTOUT ROUTINE.

CPY ERR1

CPY ERR2Z

10D
ROR
CPY
cPy
TRA
EQU
SYN -1

REM END OF THE SAP STATEMENTS. aEssRnRe
END 1

CALL MONITOR.

NO O
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TAHLE II. - PROGRAM CONTROL PARAMETERS
Control COMMON Poszlble values Setting Description of use
variables | location
ASYMPT 543 0.0 or 1.0 Internal Normally equal to 0.0, set equal to 1.0 in SUBROUTINE EQUATE when Kepler's equation
faila to converge for e > 1, and then used to control branching in MAIN 2 for
- IMODE = 3.
ATMN 26 Any ALF coded btody Input Containa name of body which 1s to have an atmeoaphere. Causea SUBROUTINE AERQ to be
] niame ealled in SUBROUTINE EQUATE If object im within that atmosphere.
CLEAR 19 Any value Input If CLEAR = O, SUBROUTINE STDATA 1s called from MAIN 1; If CLEAR ¥ O,
SUBROUTINE STDATA 1s bypassed. STDATA clears C{4) to C(1300).
CON3TU is >0, "10'8 to ~10-2 STDATA: 10'E fontrols branching in SUBRCUTINE EQUATE, which determines how accurate eccentric
radian Tnput anomaly wiil be computed by Kepler's equation.
CONSU 38 >0, '10'8 to ~1072 STDATA: 10'5 Similar to CONSTU except that 1t is used in SUBROUTINE ELIPSE for perturbing bodles
radian Input instsad of oblect.
DEIMAX 23 _Any number of seconds Input If MODOUT = 2 or 3, output i8 given only et intervals of DEIMAX.
EREF 37 Any number STDATA: 1078 Desired error value. Error control predicts step slze such that E2 ~ EREF. If
Input EREF < 0, 1t will be treated as +EREF; however, error data will be recorded and
printed.
ERLIMT 17 Any plus number STDATA: 5x10'57 Maximum error value that allows step in question to be passed as good Step.
Input If E2 > ERLIMT, step is recomputed with smaller step size
ETOL 25 Posltive mumber of STDATA: 0.01 If eccentriclity falls in reglon 1 + ETOL and Integration 1s in orbit elements,
order ¢ integration mode 1a awitched to temporary rectangular until eccentricity falls out-
Input side this region.
PILE 249 Any plus integer Internal Set equal to 10.0 in SUBROUTINE CRDER if tape data 1s used to determine positionsa,
velocities, and attractions of perturbing bodles. Then read as file number of
tape 3 in MAIN 1 3ee TFILE
10C{5)} 238-242 Any fixed-point in- Input Index of Independent verisble in JOEPN array used in FUNCTION QUAD. For each set of
teger Internal coefficlents there {s an ICC. They are set at input tlme and are reset each time
QUAD 18 called.
IMODE 28 1,2,3,4,-1,-2,-3,-4 STDATA: 1 Indicates integration mode. Must agree with Input data (if input data is rectangular,
{fixed point) Input IMODE should equal 2 or -2}. Values indicate:
Internal
1 = orbit elementa =1 = orbit elements, change to rectangular
2 = rectangulsr variables -2 » pectangular, chenge to orbit elementa
3 = temporary rectangular ~3 = orbit, o e to temporary rectangular
4 = Earth spherical change -4 = Earth spherical, change to orbit element
to rectangular
LENOTH 257 Any fixed-point in- Input Length of dump (1.e., number of words to be dumped}.
teger
MODOUT 103 1,2,3,4 STDATA: 4 MODOUT = 1 Output every nth atep (n = STEPS) until TIME = TMIN, then shift to mode 2.
(fixed polnt) Input = 2 Qutput at time intervals of DEIMAX until TIME = TMAX.
Internal = 3 OQutput at time %ntervals of DELMAX until TIME = TMIN, then shift to mcde 4
. L = 4 Qutput every nth step until TIKE = TMAX.
NDUMP (4} 268-271 Any fixed-polint in- Input If 1 1in CALL DUMP {1, ¢, LENGTH} command equals any number in NDUMP array,
teger dump will be executed conditionally (see N3KIP).
N3KIP{4) 272-275 Any flxed—;;olnt in- Input Causes skipping of NSKIP(1) dumps where NSKIP(1) corresponds to NDUMF(1). See SUB-
teger ROUTINE DUNP.
NPONG(5) 11-15 Any fixed-point in- STDATA: 2,1, , ,1 HPONG(1) refers to segment that is being called in statements CALL PONG {NPONG(1))
teger Input Control i1s to beginning of segment.
OBLATN 27 Any ALF coded body Input I oblateness effects are to be constidered, lcading a body name will cause SUBROUTINE
NEmME OBLATE to be called from SUBROUTINE EQUATE when OBLATN matches reference body.
RECALL 9 Any value Input If RECALL # 0.0, "starting” data will be restored from C(5) to C{115) 1n MAIN 1. 3See
SAVE.
SAVE 8 1.0, 2.0, or any TInput If SAVE = 1.0, "starting" data from C{5) to C(115) will be saved to be used later for
other value another start requiring same data. If SAVE = 2.0, same thing happens, only before
CALL INPUT (1} statement in MAIN 1. This saves result of previcus Integration for
future use.
STEPQO 10l Any plus number Internal Total number of good steps.
STEPNC 102 Any plus number Internal Total number of bad steps. Bad step does not paBs error control test
STEPMX 20 Any plus number STDATA: 100.0 If {STEPGO + 3TEPNO) > STEPMX, problem terminates.
Input
STEP3 21 Any plus numder STDATA: 1.0 Used when MODOUT = 1 or 4. Output will cccur at every nth step where n = STEPS.
Input
TAPE 3 2 0.0 or 3.0 Internal If "working” ephemeris tape ia to be made, TAPE 3 must be set equal to zerc through
Input input contained in SUBROUTINE TAPE. If no tape is to be mede, or after tape la
made, TAPE 3 1a set to 3.0
TEST 1 Any Integer Input Total number of dumps. Initlally set through input and thereafter decreased by one
Internal each time & dump occurs until TEST = 0. When TEST = 0.0 no more dumps will oceur,
If negative value of TEST 18 loaded, there is no Ilimit on number of dumps.
TFILE 16 Any plus integer | ETBATA: 1.0 Belects which file of "working” ephemeria tape is to be used. MAIN 1 positions
Input tape in correct position by matching desired file number {TFILE)} with code
word {FILE) written at beginning of each file on tape.
THMAX 30 Any number in seconds Input When TIME = TMAX control 1s switched to MAIN 1 to elither read new Input or end probtlem.
TMIN 22 Any number in seconds Input When TIME = TMIN output mode 1s changed. See MODOUT.
TRSFER 224 0.0 or 1.0 Internal - Normally TRSPER = 0.0, but when origin 13 being translated TRSFER = 1.0 which
causes SUBROUTINES EPHMRS and ELTPSE to compute velocities as well as positiocns.
TTEST 251 Any number in seconds Internal when integration mode 18 changed to temporary rectangular, TTEST 1s Bet &8 time at

which program will begin checking for return to orblt elementa.
part 7D.

See MAIN 2,
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TABLE III. - BASIC OUTPUT FORMAT

(&) Sample output

STEP= 0.
TIME= O

+ 0.

TDAY= 2437640.8350

ALFA= O

ALT.=-0.1875000
SUN R= 1.4728028E 11 -0.261730 -0.885466 —-0.383989

V= 9.99988976E-02 R= 6373346.50
VX=-3.86224359E-02 X=-2463371.37
7.90702742E-02 Y= 5043168.50
VZ= 4.74394606E-02 Z= 3019569.50
9.999993876E-02 G= 1.49946962

VY=
VR=

ECCENTRICITY= 1.00000000 OMEGA=-2.64801353
SEMILATUS R.= 1.93844640E-09 TRU A= 3.14159262
MEAN ANOMALY= O. NODE= 2.02516600

PATH ANGLE= 89.9209876 INCL= 1.57078409
R PATH ANGLE= 89.9209976

REFER=EARTH RECTAN 2
RMA33= 150000.000
REV3.= 0.32231534
DELT= 6.00000000
LIFT= O.

MOON R= 3.8293912E 08 -0.387660 -0.874846 -0.290456

DRAG= 4.99665982E-03

{t) Parameter identification

FORTRAN code name Identiflcatlon
Output Internal
format
mnemonic
STEP STEPGO, Count of fotal number of successful integratlion
STEPNO ateps to left of plus sign and count of fail-
ures on right
TIME TIME Time since beginning of integratiocn process, t, sec
JDAY DAYJ Current Jullan date
ECCENTRICITY E Ogculating orblt eccentricity, e
SEMILATUS R. P Semilatus rectum of osculating orblt, p, m
MEAN ANOMALY ZMA Mean anomaly of osculatling orbit, M
OMEGA OMEGA Argument of perlcenter, w, radians
TRU A TRU True anomaly of osculating orbit, v, radians
NODE ZNODE Equatorial longltude of ascending node of
osculating orblt, @, radlans
INCL ZINCL Orbit Inclination referred to mean equator and
equinox of 1850.0, 1, radlans
ALFA ALPHA Angle between thrust and veloclty, a, deg
PATH ANGLE PSI Angle between path and local horizontal, deg
v, VX,VY,VZ v,VX,VY,VZ Velocity and its x,y,z components, V, m/sec
R,X%,Y,Z RREL(1), Radius and iis x,y,z components, r, m
X,Y,Z
REFER BNAME(1) Name of reference body, followed by integration
mode, IMODE
RMASS RMASS Vehlcle mass, m, kg
REVS. REV Revolutions past x-axlis
DELT DELT Step size for current step, h, sec
ALT. ALT Altitude above oblate Earth, m
R PATH ANGLE PSIT Relative path angle, relative to Earth, deg
DRAG VAR(2) Total drag force, D, kg
VR ve Veloclty relative to rotating reference body
G G Total Earth g's acting on missile
LIFT VAR{1) Total 1ift force, L, kg
BNAME(1)R BNAME(1), | Vehicle to perturbing body distance, ry, plus
DIR COS direction coslnes
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TABLE VI. - ASSUMED VAIUES OF ASTRONOMICAL CONSTANTS
Constant Assumed value FORTRAN COMMON
name location
Astronomical unit, m 1.495x101 AU 461
Gravitational constant, k& 1.32452139x1020 SQRDK 488
mS/(sec? )(sun mass units)
Equatorial Earth radius 4.068098877x101% | RESQRD 40
squared, me
Earth oblateness coefficilent, J 1.62368x1073 | OBLATT 38
Earth oblateness coefficient, K 6.4x107% | 0BIATK 39
Earth radii per AU 4.26546512X10~° | ERTOAU a3
Day, sec 86400 SPD 253
Mass, reciprocal sun mass units:
Sun 1.0 | AMASS(1) 88l
Mercury 6,120,000 | AMASS(2) 882
Venus 406,645 | AMASS(3) 883
Earth 332,488 | AMASS(4) 884
Mars 3,088,000 | AMASS(5) 885
Jupiter 1047.39 | AMASS(6) 886
Saturn 3500.0 | AMASS(7) 887
Uranus 22,869 | AMASS(8) 888
Neptune 18,889 | AMASS(9) 889
Pluto 400,000 |AMASS(10) 890
Moon AMASS(4)/81.375 |AMASS(11) 891
Earth-moon AMASS(4) + AMASS(11) |AMASS(12) 892
Sphere-of-influence radii, m:
Sun 1.0x10%0 | RORIT(1) | 911
Mercury 1.0x108 | RCRIT(2) 912
Venus 6.14x10% | RORIT(3) | 913
Earth 9.25x10° | RCRIT(4) | 914
Mars 5.78x108 | RCRIT(5) 915
Jupiter 4.81x1010 | RCRIT(6) | 916
Saturn 5.46x1010 | RCRIT(7) | 917
Uranus 5.17x101° | RCRIT(8) | 918
Neptune 8.61x1010 | RCRIT(9) ! 919
Pluto 3.81x101° |RCRIT(10) 920
Moon 1.60x10% |RCRIT(11) | 921

8Tocation relative to COMMON of subroutine TAPE (TAPE has a COMMON that is
independent of all other subroutines).
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