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Good management is the art of making problems so interesting and their solutions so
constructive that everyone wants to get to work and deal with them.

Paul Hawken

The essence of mathematics is not to make simple things complicated, but to make com-
plicated things simple.

S. Gudder

There was a young man from Trinity,
Who solved the square root of infinity.
While counting the digits,
He was seized by the fidgets,
Dropped science, and took up divinity.

Anonymous
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PREFACE

We live in a competitive world. Competition, in all its forms, is the name of the game
everywhere: across cultures, times, environments, and whether the economy is in boom
or recession; it is particularly crucial in a free market economy. Business managers are
among the few, at the forefront, who feel the brunt of having to compete in order to,
first, secure their firm’s survival and, second, insure a prosperous and progressive state
of their business. The core of their performance is defined by their ability to make the
best decisions they can and be capable of confronting increasingly complicated conditions
and tangled circumstances, in their own market and beyond. Economic theory and other
supporting fields have proved significantly useful in providing the required efficient tools
to best understand and handle the decision-making process. Managerial economics is an
application of microeconomics as it is bound with its supportive quantitative methods
of mathematics and statistics, business sciences, and decision sciences, all in pursuit of
recognizing and utilizing the optimal treatments of and solutions to managerial problems.
The ultimate purpose is to maximize the firm’s effectiveness and efficiency. This is one
reason why the collective and integrative nature of the material in managerial economics
perfectly reflects the interdisciplinary quality of managerial decisions and the structure of
business firms as a unified whole of different, multifaceted, and multifunctional parts. All
of these parts strive to work in sync for an ultimate collective goal.

This book is reasonably traditional in its scope and coverage, but it is different in its ap-
proach, as compared to the rest of the available books in the field. First, there is a central
theme that encloses all the material together and serves as the spine that tightly holds
the book’s organization. The theme is decision making at four levels: the consumer, firm,
market, and the future. They, along with the preliminary fundamentals, form the five major
units of the book. Second, the approach is mathematical, to stress the problem-solving and
analytical nature of the decisions, as the theoretical concepts are put to practice and testing.
The book is written under the assumption that readers are familiar with micro- and macroe-
conomics, algebra, calculus, and statistics. However, Chapter 2 is dedicated to a general and

xix



xx PREFACE

brief review of selected mathematical and statistical topics to refresh the readers’ memory.
The exposition of material in this book is intended to strike a good balance between the theo-
retical and technical on the one hand, and practical on the other. The material is presented in
a straightforward, right-to-the-point manner with no “fluff” or extra “fat,” to avoid making it
less relevant or heavy and boring. Concepts and models are presented in multilevel learning
forms and styles to enhance the overall comprehension and to fit into the diverse learning
patterns of all students. They are presented in an integrative combination of description,
tabular analysis, mathematical and statistical expressions, geometrical representation, and
diagrammatical illustration. A great number of numerical, step-by-step-solved, examples
are given after each concept. Throughout the concepts and their examples, the emphasis is
put on economic intuition rather than technical manipulation or mathematical proofs. With
this level of exposure, we hope that the book would challenge and motivate three-fourths
of the students in a standard class and lift them up to the level of the one-fourth already at
the top. Our central objective is to help students comprehend, develop, and appreciate the
ultimate connection between the descriptive concepts and their mathematical face, and be
able to deal with the real and practical decisions they face every day at work and beyond,
particularly in the matter of resource allocation that would lead to maximizing the benefit
and minimizing the cost.

Each chapter ends up with a general summary, a list of key terms, a list of formulas used
throughout the chapter, and review and exercise questions. The main intention behind this
end-of-chapter material is to help students review the concepts, test their comprehension,
and verify their ability to apply the theoretical models and realize their usability, as well as
practice and develop their problem-solving skills.

The book is intended for the upper-level undergraduate and first-year graduate in business
and economics majors, MBA, and other related majors such as industrial organization
and engineering. It also serves as an excellent reference material for business managers,
executives, and researchers. It covers material for more than one semester, but there is a
degree of flexibility in the way this material has been organized so that an instructor can
prioritize and choose what can efficiently fit into his or her own single semester agenda.

The book is organized into five units with a total of 14 chapters. The first unit presents
the methodological preliminaries as an essential introduction to set the tone for the type
of approach and the nature of analytical treatment in this book. It includes two chapters:
Chapter 1 addresses the qualitative fundamentals, and Chapter 2 addresses the quantitative
fundamentals in a brief review of selected mathematical and statistical topics. The second
unit introduces the managerial decisions at the consumer level. It includes four chapters:
Chapter 3 is on the theory of consumer choice, Chapter 4 on the theory of consumer demand,
Chapter 5 on the empirical estimation of consumer demand, and Chapter 6 on the economic
forecasting of consumer demand. The third unit discusses the managerial decisions at the
firm level. It includes three chapters: Chapter 7 is on production theory, Chapter 8 on cost
theory, and Chapter 9 on the empirical estimation and economic forecasting of cost and
production. The fourth unit addresses the managerial decision at the market level. It consists
of two chapters: Chapter 10 is on market structure and organization, and Chapter 11 on
pricing practices, models, and policies. The fifth unit addresses the managerial decisions in
the long run. It includes three chapters: Chapter 12 is on capital budgeting and investment
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project evaluation, Chapter 13 on risk analysis and decisions under uncertainty, and Chapter
14 on management consultants and information.

Every possible effort has been made to make the book error free, but we believe that there
will always be some flaws and errors that may slip below the radar, despite our diligent
attempt to perfect the work. All the flaws and errors remain our sole responsibility, and
only great appreciation goes to those who lent their hands in the preparation of the book.
Readers, particularly students and instructors, are invited to submit any error they may
catch or suggestions they may have to improve the quality of this book for the next edition.
We are indebted to our senior departmental secretary Peggy Cialek, who typed up the
entire manuscript with exceptional patience and efficiency. We are also very grateful to our
former student, now an architect to be, G. Marius De La Pena, who highly competently
rendered all the graphs and diagrams, and to our former graduate student Don Hedeman for
his continuous help and support. A special word of appreciation goes to our Wiley editor
Susanne Steitz-Filler and associate editor Jackie Palmieri for their professional competency,
understanding, and patience. Many thanks and appreciation also to our production editor
Stephanie Loh and our project manager Baljinder Kaur for their remarkable punctuality and
care. My deep appreciation also goes to our copy editors Asha Kumari and Ammu Ajith
for thoroughly and meticulously checking the manuscript and giving smart and sensible
editing suggestions. The author feels very lucky to have the help and support of his friends
and international artists. Special thanks to the German artist Heike Schenk Arena, who
provided the beautiful image of the book cover, and the British artist Sevina Yates for her
follow-up and continuous support of the project.

M. J. Alhabeeb
Belchertown, MA

April 2012
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PRELIMINARIES





1
QUALITATIVE FUNDAMENTALS

1.1 ECONOMIC THEORY AND MANAGERIAL ECONOMICS

The concept of economic scarcity epitomizes the paradox of the finite nature of resources
and the infinite nature of human needs and wants. This inherent structural contradiction in
our life is not only what characterizes our societies’ natural and human resources in contrast
to their needs, but also what stands as the very phenomenon that necessitates choices and,
therefore, bears the responsibility for the existence of prices. It is also the best reason that
signifies the concept of opportunity cost, which is one of the central premises in economic
theory, where economists consider all costs as opportunity costs in the final analysis, for
they are nothing more than the foregone opportunities of some other alternatives. The
opportunity cost amplifies the economic notion that for any gain there has to be some loss,
for any benefit there is some cost, and for any reward there is a sacrifice. It is because of
this logic that economics has been described as the science to study and analyze human
choices, subject to their constraints.

The macroeconomics side of the theory is concerned with the “whole” versus the
“parts.” It studies the entire economic system and considers the society’s aggregate nation-
wide parameters such as national income and national debt, economic growth, fluctuation
of interest and inflation rates, employment, national budget, and international trade. The
other side of the theory is microeconomics, where the main focus is on the “parts,” or
the components and the comprising agents of that whole system. It considers the behav-
ior of individuals, families, and firms as they seek to maximize their economic utility.
Microeconomics considers consumers’ optimization of their own utility, firms’ maxi-
mization of their profits and minimization of cost, and all of what entails, such as eco-
nomic efficiency, market structure, capital budgeting, production, distribution, marketing,

Managerial Economics: A Mathematical Approach, First Edition. M. J. Alhabeeb and L. Joe Moffitt.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.
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4 QUALITATIVE FUNDAMENTALS

pricing, revenues, and sales. It is, therefore, the right domain and proper atmosphere to see
where managerial economics stands, for it is how managers can function and make their
business decisions.

Microeconomics is capable of identifying the nature of economic problems, understand-
ing their logic, laying out their structure, and specifying their functions and conditions.
However, since all of that cannot be done only verbally or in a qualitatively descriptive
manner, there has been a growing need to quantify the ranges, estimate the parameters,
analyze and assess the changes, and hence, the need to employ mathematical and statistical
methods within microeconomics. Managerial economics is, therefore, an application of
microeconomics and its supportive quantitative methods (drawn from mathematics and
statistics) in the decision-making process for managers who are in pursuit of recognizing
and utilizing the optimal treatments and solutions to managerial problems and issues in
order to reach a certain level of efficiency in achieving the firm’s objectives.

Managerial economics is concerned with both effectiveness and efficiency of the de-
cisions made by managers and management teams regarding the economic function of
the firm in its utilization of scarce resources. This multifaceted task includes organiza-
tional design, management strategies, finances and accounting of capital management, and
economic analysis of production, distribution, marketing, pricing, consumer demands for
output, controlling the supply of input, monitoring markets and reacting to competition. The
major thrust in undertaking these functions is to identify the general and specific problems,
analyze the opportunities, and evaluate the alternatives in preparation for making the final
choices.

 

Quan�ta�ve 
economics 

Micro 
Func�onal 

fields  
Decision 
making 

Accoun�ng 

Management 

Marke�ng 

Macro 

Math 

Stat 

Finance 

Managerial 
economics 

Alterna�ves Problems Choice Assessment 

FIGURE 1.1

Figure 1.1 shows how managerial economics acquires its essential identity through the
contributions of three components: (1) quantitative economics, (2) the scientific procedure
of decision making, and (3) the related functional fields. Economic theory, especially mi-
croeconomics, provides the foundation for marginal analysis, theory of consumer choice,
theory of the firm, industrial organization and behavior, and theory of public choice and
policy. The quantitative approach would provide many technical tools such as numerical



SOME METHODOLOGICAL FALLACIES 5

analysis, statistical estimation, mathematical optimization, econometrical models, forecast-
ing procedures, game-theoretic scenarios and simulations, information system schemes, and
linear programming. The scientific approach to decision making requires four sequenced
and integrated steps:

1. Identifying and clearly defining the problems and their contexts, as well as setting
clear and feasible objectives to deal with those problems.

2. Exploring all possible ranges of alternatives and their constraints, and evaluating
them comparatively.

3. Deciding on the best choice among the deliberated alternatives.

4. Assessing the final choice as it is put to test in order to move to the next step, which is
benefiting from the entire experience. This step also includes running some sensitivity
analysis in which the chosen best alternative is examined against the possibility of
changing the conditions and circumstances around it.

1.2 SOME METHODOLOGICAL FALLACIES

As stated earlier, managerial economics connects primarily to microeconomics because of
its domain that is more relevant to managers and their business decisions. This does not
mean a total disconnection from macroeconomics. It is more appropriate to say that the
relevance of managerial economics to macroeconomics is not as certain and strong as it is
to microeconomics. In some cases, there will be clear evidence of the connection, and in
other cases, there would be none. Managers make many important decisions that may have
implications for public policy and have to conform to state and federal rules and regulations,
and abide by the local government codes. Also, many firm-specific decisions may be made
in strong connection to macro parameters such as inflation and employment levels. The point
here is that understanding the nature and level of connection with micro- or macroeconomics
requires the problems in question to be well defined, their context to be well set, and the
objectives to be correctly placed. Suffice it to say that borrowing the philosophical logic
of size fallacies may help here. This fallacy is methodological in nature and is about the
possibility of separating the “whole” from the “parts” (its components) and making them
independent entities. Such entities may have their own characteristics, which may or may
not be associated with each other. What has come to be known as the fallacy of division is
about refuting the common logic that whatever is considered true of the “whole” is also true
of the “parts.” It is a fallacy because it is misleading. It may or may not be correct. Consider,
for example, a well-known brand name of a product that has been dominating the market
for a long time, and has acquired strong consumer loyalty. It is possible that one or more of
its specific product lines may not live up to that whole good reputation and may fail in the
market. On the other hand, the reversed fallacy is the fallacy of composition, which also
refute the statement that whatever is true of the parts is also true of the whole because it may
not necessarily be correct. Consider one or a few brilliant graduates who went on to become
renowned scientists, poets, or artists, but their success and fame may not necessarily mean
that the department or school they graduated from is as accomplished, successful, or famous
as they are.

Another common methodological fallacy that should be well understood is the fallacy
of causation and correlation. It simply refers to the fact that correlated events may
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not necessarily stand as causes for each other, since the correlation may only mean that
they happen to occur at the same time or in the same place, but cause-and-effect relation
requires a much deeper organic connection and more complicated structural ties. Consider,
for example, that in inner large cities, there would be a high correlation between high-rise
buildings and crime rates but, of course, it would seem preposterous to suggest that the
existence of skyscrapers increases crime (!) or a high crime rate in inner cities motivates
developers to build high-rise constructions (!!). A similar discussion would hold for the
reverse statement that events known to be a cause or effect to each other may not necessarily
be found correlated at certain circumstances such as in the case when they just happen to be
there for different independent reasons. An example would be about the well-known fact
that Lyme disease is caused by being bitten by a deer tick carrying the bacteria, but it is
highly possible to find none or a weak correlation between being bitten by ticks and having
the disease simply because it is estimated that the chances of contracting the disease after
being bitten by a tick is only 1%.

Considering these fallacies, and going by the logic of serutinizing the generalized
statements would eliminate the stereotypical conclusions and allow a more careful analysis.
The connection of all elements in the economy and their intermingled relations are always
there, but they occur in different degrees and priorities, which need to be tracked down
and investigated. Consider, for instance, a macroeconomic decision by the federal or state
government to increase taxes on consumption and its implications at micro levels on
consumer demand on one hand and on the firm’s managerial decisions on the other. Also
consider the feedback of the firm’s policies on consumers and the effects of both, firms and
consumers, on the public policies in regard to inflation and employment.

1.3 PARADIGMS, MODELS, AND THE SCIENTIFIC METHOD

The overarching paradigm in economics pivots around three major assumptions on market
participants, who are the main constituents in the economic activity (consumers, house-
holds, firms, and other economic agents). The first assumption is that they are goal-oriented,
who tend to engage in a reasonably clear and purposeful participation, centered on the par-
ticipants’ own interest. The second assumption is that they have stable and well-defined
preferences, which enable them to make rational choices that would ultimately maximize
their gain, and to a certain degree, minimize their loss. The third assumption is that those
participants operate in the reality of the scarce resources, which is exemplified by the re-
sources’ inability to satisfy all people’s ever-increasing and changing needs and wants. In
their own right, and as bold assertions as they are about the economic system, those assump-
tions serve as the foundation to build our economic models, which are supposed to depict
the essential state of the economic system and the way it works. As basic and fundamental
representation of reality, theoretical models are often simplistic, abstract, conditioned, and
may very well seem unrealistic in their abstraction and intangible depiction. However,
simplicity and abstraction are necessary characteristics to make models understandable,
as well as make them subject to logical manipulation. Furthermore, such characteristics
have to be reasonable and close enough to reality in order to be credible and capable of
producing meaningful outcomes.
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Figure 1.2 shows the flow of the scientific method by which observations on reality lead
to theories and models, which may transfer to empirical models that can be tested, not only
to validate the logic of the theoretical models but also to improve on them and take the
improvements forward to modify the current realities, and create new realities so that the
whole pattern would be repeated in a continuous cycle of progression.

By this scientific process, we would be sure to get an abstraction of reality that is
objective, consistent, nonarbitrary, and reliable. It would make it possible to devise a set of
testable hypotheses in order to explain, predict, and control that reality for

(a) achieving a higher performance in the current time;

(b) achieving the highest possible level of efficiency in a foreseeable future time. Relying
on objectivity and nonarbitration as crucial characteristics of the scientific method is
to prevent all sorts of possible personal, cultural, and spiritual beliefs from interfering
with the interpretation of reality. It is also to allow the process to undergo evaluation
in order to check for its degree of closeness to reality and eliminate the possibility
of holding the “absolute” truth.

The quantitative approach to managerial economics, which may include optimization,
statistical methods, geometrical depiction, game theory, and capital budgeting, is ultimately
to derive optimal solutions to a wide variety of managerial problems. Proper solutions
require the use of the scientific method to identify and quantify the changes among various
important variables in the active domain of the business performance. The process would
track down the interactions and recognize the major determinants and estimate their impact.
Since the ultimate goal of any society is to reach the level of most efficient allocation of
resources, the three classic economizing questions of what to produce, how much and
how, and for whom, can effectively be answered with the help of economic theory and its
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quantitative models. It would remain true that the best models are those that can make good
sense of a complex reality through an explanatory simplification and reliable prediction.
The key to that is to construct positive and directional hypotheses that can be practically
tested in order to delineate the map of causes and effects, determine how much and how
crucial is the influence on each other, and predict what would happen to them under different
circumstances. Beyond the practical benefits of the scientific process and the quantitative
methods in the managerial world, the analytical approach in general is deemed to be crucial
in modeling our thinking into more logical and structured patterns. It would help build higher
conceptual mentalities and develop more critical thinking skills and fancier imagination,
which would make it possible to creatively apply knowledge across boundaries of time and
place and be better prepared for the real world beyond the present reality.

1.4 THE DESCRIPTIVE AND PRESCRIPTIVE TREATMENTS

The descriptive approach is concerned with positive economics. It is concerned with what
was, is, and will be in actuality, with a certain degree of objectivity and regardless of any
subjective positions. It considers the given conditions and circumstances, investigates any
causes and effects, formulates theories and designs models, and predicts what might happen
and what would change, and in what direction, all in a reasonable of neutrali. On the other
hand, the prescriptive approach adopts a normative stand. It is based on subjective views
and value judgment. It is all about “what ought to be” from a certain perspective. Outcomes,
therefore, are deemed to be presented as good or bad. Economics is basically considered
a descriptive and positive science. It is for this reason that economists have been for long
taking a defensive stand against the charge that their analyses are often cold and heartless.

Positive economic analyses of many contentious issues can appear to be harsh just
because they are deliberately separated from any value judgment and sentimental consider-
ation. Examples of these issues are rent control, minimum wage, welfare system, housing
subsidies, comprehensive healthcare, and many more. Just like economics, managerial
economics is essentially a positive science where managers are not suppose make their
decisions on the basis of their sentiments. They are supposed to observe data and trends
and use a scientific approach to predict consequences of their actions. The other dimension
of their positive approach is that all decisions and actions can be tested empirically either
by research or by plain experience. However, managerial economics does have its own pre-
scriptive side too, especially when it comes to the issues in which managers and decision
makers in general find themselves at a position in which they have to use their own value
judgment and personal positions when only gut feelings can be the determinant.

1.5 THE PROFIT FUNCTION: ACCOUNTING VERSUS ECONOMICS

Seeking profit is a natural, human, and an essential self-interest motive. It is for this
reason that making profit becomes a central characteristic of the for-profit firms in a free-
market enterprise system. It can be stated further that, with bounded rationality and healthy
conscience, making profits can elevate itself to be a virtue, especially if all standard business
ethics are observed and honored. As firms pursue their self-interest, the mechanism of profit
maximization works wonders for the efficient allocation of resources. It would constantly
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move resources toward the production of goods and services that are most valued and
demanded by consumers. Other firms may leave less profitable projects and enter more
lucrative markets, and eventually, the aggregate welfare is served. Under this consideration,
profit would represent the society’s reward for the greatest efficiency, while the lack of
profit motive, especially if it translates itself into losses, would signal the lack of efficiency
in the utilization of resources and result in an aggregate detriment to the society.

Conceptually, profit refers to the difference between the total cost of production and
the total revenue brought by the sale of the products. While the total revenue is a clear-cut
concept (referring to the dollar value of the product sold, as generated by multiplying
the product market price by the quantity sold), the concept the total cost introduces the
divergence between business profit and economic profit. In the business culture, the total
cost consists of all the explicit or out-of-pocket expenditures on the major factors of
production such as land, capital, and labor. However, the economists tend to think of the
opportunity cost of all these resources and include their foregone value as an implicit part of
the total cost. For example, according to the economist’s view, the total cost would include
the income the entrepreneur would have earned had he been hired by another firm or the
return on land had it been utilized in a different project. Therefore, the business profit or
the accountant’s profit (πa) would be different from the economist’s profit (πe) by

πa = TR − ETC,

πe = TR − (ETC + ITC),

where the latter includes the implicit total cost (ITC) in addition to the explicit total cost
(ETC), and TR is the total revenue. The business profit is a practical concept, especially
for the purpose of calculating the book value, and considering the accounting and taxes,
while the economist’s concept of profit is important for a real understanding of the business
decisions especially on investment, risk, and return.

1.6 ENTREPRENEURSHIP, MANAGEMENT, AND LEADERSHIP

Terms such as “entrepreneur” and “manager” or “owner-manager” are often used inter-
changeably, especially in the small business setting and entrepreneurship literature. For
more accuracy, we can link these terms to the nature of activity of both entrepreneurship
and management, as they are distinct phases of the production process. To a less extent,
there has also been a certain mix-up between the management and leadership functions in
the private and public administration process. Very early on, the French term entrepreneur
meant the person who could organize and direct resources into a production process. At the
start of the nineteenth century, Jean-Baptiste Say, a French economist and businessman,
elaborated on the role of the entrepreneur in creating new values by simply knowing when
and where to employ the economic resources and have them yield a higher return. In modern
times, entrepreneurship is defined as the process of creating a new business by utilizing
resources and taking them through the possible risk and bearing the responsibility for it.
Accordingly, an entrepreneur is the person who has the vision for a business project and
can start it up. That would be the individual who can assemble and combine the necessary
economic resources for a project, employ them, and make a profit out of them. It takes
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a special personality with certain traits to become an efficient entrepreneur. Successful
entrepreneurship requires the following:

� An ability to foresee the right opportunities and perceive their dynamics.
� A capacity to come up with innovative ideas that fit their time, place, and other

circumstances.
� An attitude of courage, energy, and optimism to start up the project, go all the way

with it, assume full responsibility for its ups and downs, and know and count for all
risk involved.

� A spirit of commitment, flexibility, and tenacity, coupled with tolerance and ability
and willingness to learn from mistakes.

� A natural talent for organizing the resources and utilizing them to achieve their highest
yield.

The most important thing to realize here is that entrepreneurship is only the first phase
of production, which is the innovative phase. This phase would end when the project can
stand on its feet after starting production. Next, the project would enter the second phase of
production and earning, which would need a different set of skills and a different process,
and that would be the management phase. Here, the top performer is the manager and the
required skills are managerial as opposed to entrepreneurial (Figure 1.3).

$

Earnings

Entrepreneurship
phase

                  Management phase 

 

Time 

FIGURE 1.3

As for management, it is the effective and efficient use of resources to accomplish
certain economic and administrative objectives for the managed unit. In the production
phase and throughout the life of the project, management involves five integrative functions:
planning, organizing, staffing, directing, and controlling. As for leadership, the focus is
on the capacity and quality of making strategic decisions, oversee operations, and bring
about changes. Leadership is not associated with a specific production phase. It can work
anywhere and it may be required at all levels, any time, and under any circumstances.
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SUMMARY

� The first unit of this book is dedicated to the fundamentals that would establish
the approach and set the tone for the remaining four units. It is the springboard
from which we leap, well equipped, to better understand the whole material on this
subject matter.

� The unit includes two chapters. This first chapter is on the qualitative fundamentals. It
started by defining economics and managerial economics and explained the link between
them. It expanded the discussion to delineate the domains of micro- and macroeco-
nomics and described the scientific approach to the process of decision making. In
Section 1.2, the discussion moved to the most common methodological fallacies: the
fallacy of division, which is about setting the logic that whatever might be consid-
ered correct on the “whole” may not necessarily be correct on the parts of that whole.
The fallacy of composition would stand on the opposite side. Its logic suggests that
whatever might be considered correct on the parts may not necessarily be correct on
the whole. The third fallacy is of the causation and correlation. It refers to the fact
that correlated events may not necessarily stand as causes for each other. The reason
is that the correlation may only mean the events happen to occur at the same time, in
same place, or under same circumstances, but the cause-and-effect relation requires a
much deeper organic connection and more structural ties.

� More methodological clarification was presented in Section 1.3. The assumptions of
the major paradigm in economic analysis were addressed, and they were all about
the main economic players such as individual consumers, households, firms, and other
constituents. Models were explained as basic and fundamental representation of reality,
and the scientific method was presented in a descriptive and graphic way. It showed the
flow from observations on reality to theoretical and, then, to empirical work that could
be tested to either validate or refute the theoretical models.

� Positive and normative economics were discussed in terms of their descriptive and
prescriptive approaches. The descriptive approach is concerned with what was, is, and
will be in actuality with a certain degree of objectivity. The prescriptive approach is based
on a subjective view and value judgment. It is more concerned with “what ought to be.”
Managerial economics basically belongs to the positive approach although it may have
some sides of the normative approach too.

� Profit is reviewed from two perspectives: the economic and the accounting perspective.
While profit is the difference between the total revenue and the total cost, it is the
multifaceted concept of cost that would cause the difference between the accounting, or
business, profit and the economic profit. The economists tend to think of the opportunity
cost of all the resources as an implicit part of the total cost. Accountants are concerned
with the explicit or out-of-pocket cost.

� Section 1.6 covered the concepts of entrepreneurship, management, and leadership. En-
trepreneurship refers to the process of creating a new business by utilizing resources
and taking them through the possible risk and bearing all the responsibilities of the
task. The requirements of successful entrepreneurship are addressed, and manage-
ment is distinguished from entrepreneurship not only by the nature of function but
also by the timing of their effectiveness in the life of business projects. Management
is defined as the effective and efficient use of resources to accomplish certain eco-
nomic and administrative objectives for the managed unit, while leadership focuses on
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the capacity and quality of making strategic decisions, oversee operations, and being
about changes.

KEY TERMS

economic scarcity macroeconomics microeconomics
opportunity cost managerial economics scientific approach
scientific process methodological fallacies fallacy of division
fallacy of composition fallacy of causation and correlation paradigm
model economizing descriptive approach
prescriptive approach positive analysis normative analysis
accounting profit economic profit entrepreneurship
management leadership

EXERCISES

1. What are the qualitative fundamentals and why are they important to know for the
study of managerial economics?

2. How different is managerial economics from economics and how is it related to both
microeconomics and macroeconomics?

3. What is opportunity cost? Is it one of the important considerations for economists?

4. List and explain the four major steps of the decision-making process according to the
scientific approach.

5. What are the major methodological fallacies and why should we be concerned about
them? Try to provide an example of each fallacy, especially something that you may
have already contemplated in your daily life.

6. What is paradigm and how is it different from theory? Can you provide an example to
set the two apart?

7. What is the scientific method and how is it different from the nonscientific methods?
Why is it important for students to know this kind of material? Does it really have any
significance in real life? If so, try to provide an example.

8. What is the descriptive approach? How is it different from the prescriptive approach
and where would managerial economics stand?

9. Explain the concept of profit from both accounting and economic perspectives. What
would make the two different from each other? Will this difference have any practical
mix-up when it comes to the managerial decision making?

10. Explain the concepts of entrepreneurship, management, and leadership and set the link
between an entrepreneur, a manager, and a CEO of a firm. How do the three work to
set the firm and optimize its efficiency?
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QUANTITATIVE FUNDAMENTALS

2.1 INTRODUCTION

The quantification of economic principles and analysis remains prominent even today,
many decades after it began in earnest during the twentieth century. Inherently, the use of
mathematics and statistics in economics encourages rigor and precision and is, therefore,
appealing to economic theoreticians and practitioners alike. Even so, and often for different
reasons, there are many naysayers, especially in the popular press (see, Jennings, 1994).
However, this is not new, as the well-known quote by economist Kenneth Boulding explains:
“Mathematics brought rigor to economics. Unfortunately, it also brought mortis.” However,
a quantitative approach to economics continues to flourish in spite of such criticisms. It
is suggested that the use of quantitative methods in economics will continue, but the type
of methods and the way they are applied may change in the future (e.g., Colander, 2000).
We cannot be certain about what the future holds for quantitative economics, but we are
certain that a number of fundamental quantitative methods will remain important in every
managerial economist’s toolkit even if there are some major changes in the way economics
is taught and practiced in the years ahead. The mathematical and statistical fundamentals
and terminology we emphasize in this chapter are used throughout the book. We focus
on the fundamentals that we consider indispensable to rational application of economic
principles under a robust set of circumstances, which will be an essential part of every
managerial economist’s training for years to come.

This chapter is intended as a refresher course on the basic mathematical and statistical
tools that managerial economists use and, as already mentioned, will use in the foreseeable
future. The refresher is intended, along with the rest of this book, to accommodate the
aspirations of students who have fulfilled the prerequisites for an upper division managerial
economics course and have done well in those prerequisites. We begin with the general
notion of a function and follow that discussion with two specific functions, logarithms
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and exponents, which we will use frequently. Then, we review some essentials of dif-
ferential calculus along with multivariate and constrained optimization. Probability and
statistical concepts along with a very important inference method, the method of maximum
likelihood, are covered in the final sections of the chapter.

2.2 FUNCTIONS

Much of the mainstream economics depicts economic phenomena using the notion of a
functional relationship between variables as described in mathematics. The key feature of a
mathematical function is that it associates a unique value of one variable with every distinct
value of other variables. An abstract example of a functional relationship, f, includes the
association of a unique value of a variable, y, with every value of another variable, x1. This
relationship is often expressed as y = f(x1).

Similarly, y = f(x1, x2, . . . , xn) expresses a relationship that associates a unique value
of y with every distinct value of n variables x1, x2, . . . , xn. Figure 2.1 shows graphs of
functions with n = 1 in panel (a) and n = 2 in panel (b). The key feature of a mathematical
function is revealed in the graphs by a unique value of y appearing on the curve above each
distinct value of x1 in panel (a) and a unique value of y appearing on the surface above each
distinct value of (x1, x2) in panel (b).
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FIGURE 2.1

As already mentioned, economics abounds with functional relationships. For example,
demand and supply relationships in a market can be depicted using functional relationships
between quantity demanded, D, quantity supplied, S, quantity transacted, Q, and market
price, P:

D = f (P),
S = g(P),
Q = D = S.

This economic model is graphed differently by mathematicians and economists as shown
in Figure 2.2.
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FIGURE 2.2

To examine the difference between the graphs shown in Figure 2.2 more specifically,
suppose that the functional relationships are as follows:

D = 14 − 2P,

S = 2 + 4P,

Q = D = S.

The mathematician’s graph shows these functional relationships as they are written above.
The economist’s graph shows

P = 7 − 1
2 D,

P = − 1
2 + 1

4 S,

where each relationship has been solved for P. Both graphs reveal Q = D = S = 10 and
P = 2 as the solution to the model.

An important use of functional relationships in economic models is to predict the change
in economic variables due to a change in one of the model’s functional relationships.
Figure 2.3 depicts a shift in the demand function from D1 to D2.

P

S

D2

D1

D,S

Demand shift

FIGURE 2.3
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Now consider the algebra associated with the demand shift as depicted in Figure 2.3:

D = 14 − 2P + A,

S = 2 + 4P,

Q = D = S.

Changes in Q and P when the variable A changes from 0 to a number greater than 0 are of
significant interest. This use of economic models to compare the changes in economic vari-
ables is known as comparative statics analysis. Note that comparative statics analysis can
produce either qualitative or quantitative results, depending on how specific the economic
model’s functional relationships are.

2.3 EXPONENTS

Exponents are used throughout managerial economics and should be thoroughly under-
stood. Both exponents and logarithms are examples of functions. We begin with definitions
followed by examples to illustrate the definitions.

By definition, an, where a is the base (simply a number) and n is the exponent (for now,
simply a nonnegative integer) is a a a . . . a (n times), that is, the product of a with itself
n times.

Some examples that illustrate the definition of exponents are

a5 = a a a a a,

a1 = a,(
p

q

)5

=
(

p

q

) (
p

q

) (
p

q

) (
p

q

)(
p

q

)
,

x4 = x x x x,

(n + 1)3 = (n + 1)(n + 1)(n + 1),

a0 = 1 if a �= 0,

00 is undefined.

Negative exponents are by definition a−n = 1
an . Some examples to illustrate this definition

are as follows:

a−1 = 1

a
,

8−3 = 1

83
,

(x2 + 5)−10 = 1

(x2 + 5)10
,

(−10)2 = (−10)(−10) = 100,

−102 = −(10 × 10) = −100,
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(2x)−1 = 1

2x
,

2x−1 = 2

x
.

There are five general properties of exponents:

1. anam = an+m

2. an

am = an−m

3. (an)m = an m

4. (a b)n = anbn

5.
(

a
b

)n = an

bn

Some examples of these general properties are as follows:

a3a2 = (a a a) (a a) = a3+2 = a5,

(
a3

a2

)
= aaa

aa
= a3−2 = a,

(a2)3 = a2 a2 a2 = a2+2+2 = a6,

(a b)3 = (a b) (a b) (a b) = a a a b b b = a3 b3,

a−3 a5 = a−3+5 = a2,

(x y)−2 = x−2 y−2,

(a

b

)−n
= a−n

b−n
= bn

an
.

By definition, am/n = the nth root of am.
Some examples of fractional exponents are as follows:

a1/2 = √
a = the square root of a,

a3/2 = the square root of a3,

10
5
3 = the cube root of 105 = the cube root of 100,000 = (100,000)

1
3

= 46.42 . . . since (46.42 . . .) (46.42 . . .) (46.42 . . .) = 100,000,

42.5 = 4
5
2 = the square root of 45 = 32.

We will use exponents repeatedly, so you should ensure that you understand and can apply
these definitions and properties.
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2.4 LOGARITHMS AND THE NUMBER e

The natural logarithm, denoted by ln, is defined with reference to Figure 2.4—the graph of
curve 1/t for t > 0. The function ln x1 is defined as the area under the curve between 1 and
x1 (shown as the shaded area). Hence, ln x1 is increasing on x1 and is positive (negative) for
x1 greater (less) than one and is zero for x1 equal to one. The value of x1 that makes the area
equal to 1 is the number e (a nonrepeating decimal number that is about 2.71). Moreover,
the value of x1 that makes the area equal to y is the number ey, where y is a real number.
Note that ey is often written as exp(y).
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FIGURE 2.4

A remarkable property of function ln x1, which no other mathematical function has, is
that the natural logarithm of the product of any two positive numbers is the sum of the
natural logarithms of the two numbers, that is,

ln x1 x2 = ln x1 + ln x2 for all positive numbers x1 and x2.

This property of natural logarithm extends to the product of n positive numbers:

ln
∏

xi =
∑

ln xi for all xi > 0.

If one keeps the definition of logarithm in mind, there is no mystery associated with ln x1

or the number e.
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2.5 DIFFERENTIAL CALCULUS

The derivative of a function is used in defining several basic economic concepts including
elasticities and various “marginal” quantities. Derivatives can also be used to characterize
critical values of a function such as a maximum. This section provides a brief review of the
derivative of a function for its use in the later chapters.

The limit of a function, usually written as Limx1→a f (x1), is defined as the number that
the function f(x1) can be made arbitrarily close to by choosing the value of x1 sufficiently
close to a. The notion of a limit underlies differential (and integral) calculus. The derivative
of a function y = f(x1) can be found directly from the definition of the derivative, Lim h → 0

[f(x1 + h) − f(x1)]/h, and is usually written as dy/dx1. The geometric interpretation of
the derivative is: “A one unit move to the right along the x1 axis will produce a change
in f(x1) approximately equal to the derivative.” Hence, the geometric interpretation of the
derivative of y = f(x1) at a point is the slope of the tangent line to f(x1) at that point.

There are seven rules for finding the derivative of a function. Each rule along with an
example is given below.
Differentiation rule 1: derivative of a constant

y = f (x1) = a,

dy

dx1
= 0.

Example: y = 3

dy

dx1
= 0.

Differentiation rule 2: derivative of a function involving an exponent (power function)

y = xb
1 ,

dy

dx1
= b xb−1

1 .

Example: y = x1
2

dy

dx1
= 2x1.

Differentiation rule 3: derivative of a constant times a function

y = af (x1),

dy

dx1
= af ′(x1).
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Example: y = 3x1

dy

dx1
= 3.

Differentiation rule 4: derivative of the sum or difference of two functions

y = f (x1) + g(x1),

dy

dx1
= f ′(x1) + g′(x1).

Example: y = 10 + 5 x1 + 6 x1
2

dy

dx1
= 5 + 12x1.

Differentiation rule 5: derivative of the product of two functions

y = f (x1)g(x1),

dy

dx1
= f (x1)g′(x1) + g(x1) f ′(x1).

Example: y = (x1
2 − 4) (x1

2 + 2 x1 + 2)

dy

dx1
= (

x2
1 − 4

)
(2x1 + 2) + (

x2
1 + 2x1 + 2

)
(2x1).

Differentiation rule 6: derivative of the quotient of two functions

y = f (x1)

g(x1)
,

dy

dx1
= g(x1) f ′(x1) − f (x1)g′(x1)

(g(x1))2
.

Example: y = x2
1 − 3x1

x2
1

dy

dx1
= x2

1 (2x1 − 3) − (
x2

1 − 3x1
)

(2x1)(
x2

1

)2 .

Differentiation rule 7: derivative of a composite function (function of a function)

y = g(u),

u = f (x1),
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y = g( f (x1)),

dy

dx1
=

(
dy

du

) (
du

dx1

)
.

Example: y = u2

u = 2x1 + 5,

y = (2x1 + 5)2,

dy

dx1
= (2u)(2),

= (2(2x1 + 5))(2).

The derivative of the natural logarithm function, y = ln x1, and the derivative of the
exponential function, y = ex1 , are needed in the following chapters. The derivative of the
natural logarithm, y = ln x1, is

dy

dx1
= 1

x1
.

The derivative of the exponential function, y = ex1 , is

dy

dx1
= ex1 .

A derivative of a function is also a function that can often be differentiated. Derivatives
of a derivative are referred to as higher order derivatives. For example, the second-order
derivative of a function is

d

dx1

(
dy

dx1

)
= d2 y

dx2
1

= f ′′(x1).

The seven differentiation rules are also used to find higher order derivatives. An example
of higher order derivatives is given below. You should make sure that you can use these
seven rules to reach the same results as shown in the example.

Example: y = 10 x1
3 + 3 x1

2 − 5 x1 + 6

dy

dx1
= 30x2

1 + 6x1 − 5,

d2 y

dx2
1

= 60x1 + 6,

d3 y

dx3
1

= 60,

d4 y

dx4
1

= 0.
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Derivatives of function f(x1, x2, . . . , xn) are also found using the seven differentiation rules.
The partial derivative of a function y = f(x1, x2, . . . , xn) with respect to variable x1 can be
found directly from the definition of the derivative, Lim h → 0 [f(x1 + h, x2, . . . , xn) − f(x1,
x2, . . . , xn)]/h, and is usually written as ∂y/∂x1. Note that the partial derivative is the same
as the derivative previously discussed with all variables other than x1 treated as constants.
The geometric interpretation of the partial derivative of f with respect to x1 is: “A one unit
move to the right along the x1 axis will produce a change in f(x1, x2, . . . , xn) approximately
equal to the derivative.” The geometric interpretation of the partial derivative of y = f(x1,
x2, . . . , xn) at a point is the slope of the tangent line to f(x1, x2, . . . , xn) at that point with
variables other than x1 treated as constants. The partial derivative for variables other than
x1 is similarly defined and interpreted.

Example: y = x1 x2

∂y/∂x1 = x2,

∂y/∂x2 = x1.

2.6 MULTIVARIATE AND EQUALITY CONSTRAINED OPTIMIZATION

Maximization and minimization are widely used throughout microeconomics and statis-
tics, and sometimes optimization is subject to constraints on the variable(s) of choice. In
this section, the discussion and examples are limited to one or two decision variables;
however, the techniques extend to more than two decision variables. A function, f(x1), can
be maximized by choosing a value x1

∗ so that f(x1
∗) ≥ f(x1) for all possible values of x1.

Often, it may be possible to find x1
∗ where the derivative of f with respect to x1 is zero.

Similarly, a maximization problem can be expressed as choosing values of variables x1 and
x2 to make the value of the function, f, as large as possible, that is,

Maximize f (x1, x2).

The solution, for example, (x1
∗, x2

∗), can be characterized by f(x1
∗, x2

∗) ≥ f(x1, x2) for all
values of x1 and x2. Frequently, derivatives are used to characterize the solution when the
function f and the possible values of x1 and x2 permit differentiation. In such cases, the
solution is necessarily a flat spot of the function and could be characterized by a zero value
of the derivative of f with respect to x1 and x2:

∂ f

∂x1
= 0,

∂y

∂x2
= 0.

Example: Maximize f(x1, x2) = −5x2
1 − 10x2

2 + 50x1 + 60x2

∂ f

∂x1
= 50 − 10x1 = 0,

∂y

∂x2
= 60 − 20x2 = 0.
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Solving these two equations gives x1
∗ = 5 and x2

∗ = 3 as the solution to the maximization
problem.

In some cases, the choice variables, x1 and x2, in an optimization problem are constrained
to satisfy an equation. The general equality constrained maximization problem with two
choice variables and one equality constraint is

Maximize f (x1, x2),

Subject to g(x1, x2) = b.

We use the Lagrangian method for solving this equality constrained maximization prob-
lem. The method is based on introducing a new decision variable and forming a new
function using it and the remaining parts of the maximization problem. The new function
often possesses a “flat spot” for values of the decision variables that solve the constrained
maximization problem. Hence, we can use derivatives to characterize the solution to the
original problem.

The three steps that comprise the method for solving the general equality constrained
maximization problem are described below.

First, form the Lagrangian, L(x1, x2, λ), where

L(x1, x2, λ) = f (x1, x2) − λ[g(x1, x2) − b].

The variable λ in the Lagrangian is referred to as the Lagrange multiplier. x1 and x2 are the
decision variables, f(x1, x2) is the objective function, g(x1, x2) is the constraint function,
and b is the constraint constant.

Note that the Lagrangian should always be formed as

L(x1, x2, λ) = Objective function − λ(Constraint function − Constraint constant).

Second, set the derivatives of L with respect to the decision variables and the Lagrange
multiplier equal to 0:

∂L

∂x1
= ∂ f

∂x1
− λ

∂g

∂x1
= 0,

∂L

∂x2
= ∂ f

∂x2
− λ

∂g

∂x2
= 0,

∂L

∂λ
= b − g(x1, x2) = 0.

Third, solve these three equations for the optimal values of the decision variables and the
Lagrange multiplier.

Example

Maximize x1 + x2,

Subject to x2
1 + x2

2 = 1.
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The Lagrangian in this case is given by

L(x1, x2, λ) = x1 + x2 − λ
[
x2

1 + x2
2 − 1

]
.

The “flat spot” of the Lagrangian is indicated by

∂L

∂x1
= 1 − 2λx1 = 0,

∂L

∂x2
= 1 − 2λx2 = 0,

∂L

∂λ
= 1 − x2

1 − x2
2 = 0.

The solution to these three equations is (x1, x2, λ) = (2−0.5, 2−.05, 2−0.5).

In case the “flat spot” of the Lagrangian is a saddle point (defined below), it has special
significance for the solution to the equality constrained optimization problem.

Let us consider the problem again:

Maximize f (x1, x2),

Subject to g(x1, x2) = b,

with Lagrangian given by

L(x1, x2, λ) = f (x1, x2) − λ[g(x1, x2) − b].

By definition, a saddle point of the Lagrangian, (x1
∗, x2

∗, λ∗), satisfies

1. L(x∗
1 , x∗

2 , λ∗) ≤ L(x∗
1 , x∗

2 , λ) for all λ;

2. L(x∗
1 , x∗

2 , λ∗) ≥ L(x1, x2, λ
∗) for all x, y.

Let us first focus on condition 1:

L
(
x∗

1 , x∗
2 , λ∗) ≤ L

(
x∗

1 , x∗
2 , λ

)
for all λ.

After writing the expression for the Lagrangian explicitly,

f
(
x∗

1 , x∗
2

) − λ∗ [
g

(
x∗

1 , x∗
2

) − b
] ≤ f

(
x∗

1 , x∗
2

) − λ
[
g

(
x∗

1 , x∗
2

) − b
]

for all λ.

After eliminating f (x∗
1 , x∗

2 ) from both sides,

−λ∗ [
g

(
x∗

1 , x∗
2

) − b
] ≤ −λ

[
g

(
x∗

1 , x∗
2

) − b
]

for all λ.

The last expression can be simplified as

(λ − λ∗)
[
g

(
x∗

1 , x∗
2

) − b
] ≤ 0 for all λ,
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which implies that

g
(
x∗

1 , x∗
2

) − b = 0.

Keeping the above result in mind, let us now focus on condition 2:

L
(
x∗

1 , x∗
2 , λ∗) ≥ L

(
x1, x2, λ

∗) for all x, y.

Upon rewriting,

f
(
x∗

1 , x∗
2

) − λ∗ [
g

(
x∗

1 , x∗
2

) − b
] ≥ f (x, y) − λ∗[g(x, y) for all b] for all x, y.

This last expression can also be simplified by eliminating −λ∗ [g(x∗
1 , x∗

2 ) − b] from the
left-hand side, since analysis of condition 1 has already shown that g(x∗

1 , x∗
2 ) − b = 0. The

result is

f
(
x∗

1 , x∗
2

) ≥ f (x, y) − λ∗[g(x, y) − b] for all x, y.

Therefore, it must also be true that

f
(
x∗

1 , x∗
2

) ≥ f (x, y) for all x, y including those for which g(x, y) = b.

The last expression implies that a saddle point of the Lagrangian solves the equality
constrained optimization problem.

The derivatives of the Lagrangian can be interpreted in terms of some basic economic
principles that you know from previous coursework. Suppose the problem is simplified to
involve only a single choice variable:

Maximize f (x),

Subject to g(x) = b.

The Lagrangian is

L(x, λ) = f (x) − λ[g(x) − b].

A graph of the Lagrangian that applies to this problem is shown in Figure 2.5.
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The marginal conditions associated with the Lagrangian are as follows:

f ′(x) − λg′(x) = 0,

b − g(x) = 0.

Let us focus on interpreting the first condition since the interpretation of the second con-
dition is obvious. We envision a simple production problem where a single input is used
to produce a single output and b units of input is employed. Suppose that x = output,
f(x) = value of output, λ = input value per unit, g(x) = units of the input used, and b =
units of input to be used. Then, the slope of the Lagrangian in the x-direction (the first
condition) can be interpreted as involving familiar economic concepts. First note that, since
x = output and input = g(x), then x = g−1(input), where g−1 is the inverse of function
g and is also known as the total product (TP). So dx/d input = d g−1(input)/d input =
dTP/d input = marginal product (MP) of the input. In general, the derivative of a function’s
inverse is the reciprocal of the derivative of the function itself. With this in mind, note that
MP = d g−1(input)/dx = 1/g′(x). The latter implies that g′(x) is 1/MP. Looking at the
first condition, we see that λ g′(x) = λ/MP. However, from your previous coursework in
economic principles, you know that factor price/marginal product is marginal cost (MC).
So the first condition can be interpreted as f ′(x) − MC = 0. However, f′(x) is marginal
revenue (MR). Hence, the slope of the Lagrangian in the x-direction involves one of the
most important elements of introductory microeconomics, that is, the slope is the difference
between MR and MC.
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The Lagrangian is specified so that in the λ-direction, the slope is the difference between
the constraint function and the constraint constant (g(x) − b)). So this slope changes sign
around the constraint. This means that the slope is zero along the constraint.

Therefore, the flat spot of the Lagrangian where the slopes in the λ- and x-directions
are simultaneously zero is a significant point. At that point, the amount of output (x) and
resource price (λ) are such that (1) the constraint is satisfied (zero slope in the λ-direction)
and (2) MR = MC (zero slope in the x-direction). These conditions mean that the flat
spot solves the equality constrained maximization problem. This is the essence ofwhat is
referred to as saddle point sufficiency.

The interpretation of the Lagrange multiplier can be derived as follows. Suppose that
the equality constrained maximization problem

Maximize f (x1, x2),

Subject to g(x1, x2) = b,

is solved by (x∗
1 , x∗

2 ). Note that, in general, x1
∗ and x2

∗ depend on b.
Assuming that x1

∗(b) and x2
∗(b) are differentiable functions of b, then the associated

value of the objective function is also a function of b:

f ∗(b) = f
[
x∗

1 (b), x∗
2 (b)

]
.

The function, f ∗(b), is called the value function for the problem or the indirect function.
The Lagrange multiplier, λ, is the change in the value function due to an (one unit)

increase in the constraint constant, b. Denote ∂f/∂x1 = f1, ∂f/∂x2 = f2, ∂g/∂x1 = g1, and
∂g/∂x2 = g2 and define the total differential of f(x1, x2) to be df = ∂f/∂x1 dx1 + ∂f/∂x2

dx2 = f1 dx1 + f2 dx2.
Since f ∗(b) = f[x1

∗(b), x2
∗(b)],

d f ∗(b) = f1
[
x∗

1 (b), x∗
2 (b)

]
dx∗

1 + f2
[
x∗

1 (b), x∗
2 (b)

]
dx∗

2 .

From the necessary conditions for a maximum,

f1
(
x∗

1 , x∗
2

) = λ g1
(
x∗

1 , x∗
2

)

and

f2
(
x∗

1 , x∗
2

) = λ g2
(
x∗

1 , x∗
2

)
.

Substituting for f1(x1
∗, x2

∗) and f2(x1
∗, x2

∗) in the expression for df∗(b) above gives

d f ∗(b) = λ g1
(
x∗

1 , x∗
2

)
dx∗

1 + λ g2
(
x∗

1 , x∗
2

)
dx∗

2 .

Also, since (x1
∗, x2

∗) satisfies the problem constraint,

g
(
x∗

1 , x∗
2

) = b
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and

dg
(
x∗

1 , x∗
2

) = g1
(
x∗

1 , x∗
2

)
dx∗

1 + g2
(
x∗

1 , x∗
2

)
dx∗

2 = db.

Forming the ratio of df ∗(b) to db gives

df ∗(b)

db
= λ.

A value of the Lagrange multiplier that is consistent with this interpretation will al-
ways be obtained from solving for a critical point of the Lagrangian if the Lagrangian is
formed as

L(x, λ) = Objective function − λ(Constraint function − Constraint constant).

Hence, the Lagrangian should always be formed this way.

Example

Maximize x1 + x2,

Subject to x2
1 + x2

2 = 1,

f ∗(b) = f
[
x∗

1 (b), x∗
2 (b)

]
= x∗

1 (b) + x∗
2 (b)

=
√

b

2
+

√
b

2

= 20.5 b0.5.

Hence,

d f ∗(b)

db
= 0.5 20.5b−0.5.

For b = 1,

d f ∗(b)

db
= 2−0.5 = λ.

The working of the Lagrangian method can be described as the result of an equilibration
process to further illustrate the forces behind the method. The method works because a
critical point of the Lagrangian is seen as representing an equilibrium for a resource planner
and a producer using price and quantity signaling, respectively.

In this discussion, an equilibrium is regarded as a state in which none of the parties to
an exchange have an incentive to change their present decisions. This interpretation can be
illustrated in a one good–one factor scenario.
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We begin with the producer’s problem, which is to select output, x, to maximize profit
using an input purchased at price λ per unit from the resource planner. So the producer’s
problem is to

Maximize f (x) − λ g(x).

Note that g(x) is the amount of resource used, λ is the resource price, and f(x) is the value of
the output. Also note that this problem has the same solution, x∗, as the following problem:

Maximize f (x) − λ g(x) + λ b,

since λb is a constant with respect to x.
The producer’s objective function can be written as

f (x) − λ[g(x) − b].

So the producer’s problem is equivalent to choosing x to maximize the Lagrangian by taking
λ as given.

We now turn to the resource planner’s problem, which is to select the resource price,
λ, per unit of input to minimize the value of unused (overused) resources by taking x as
given:

Minimize λ[b − g(x)],

where g(x) is the amount of resource used and b is the planning goal for resource use.
Note that this problem has the same solution, λ∗, as the following problem:

Minimize λ[b − g(x)] + f (x),

since f(x) is a constant for the resource planner.
The resource planner’s objective function can be rewritten as

f (x) − λ[g(x) − b)].

So the resource planner’s problem is equivalent to choosing λ to minimize the Lagrangian
by taking x as given.

We now turn to an equilibration process that can occur with price and quantity signals
from the resource planner and producer, respectively. The equilibration process begins with
the resource planner specifying λ1. The producer responds with x1. In response, the resource
planner selects λ2. The producer then selects x2, and so on.

Suppose λ1 and x1 are such that b − g(x1) < 0. From the resource planner’s perspective,
there is oversupply of x at x1 when the resource price is λ1.

The resource planner sees that λ1 [b − g(x1)] < 0 and raises λ1 to λ2 (note that a plus
times minus is a minus and a minus is small).

The producer sees the higher resource price λ2 and maximizes at x2.
The equilibration process ends when λ∗ and x∗ are such that b − g(x∗) = 0. In this

situation, λ∗ [b − g(x∗)] = 0. So the resource planner has no incentive to change and sends
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the price signal λ∗ again. The producer then has no incentive to change and sends the
quantity signal x∗ again.

At the equilibrium, (x∗, λ∗), the producer has solved Maximize f(x) − λ∗ [g(x) − b] by
choosing x = x∗.

So f(x∗) − λ∗ [g(x∗) − b] is maximized at x∗. Also, g(x∗) − b = 0. So x∗ maximizes f(x)
while satisfying g(x∗) = b. Hence, x∗ solves the producer’s problem. At the equilibrium,
(x∗, λ∗), the resource planner has solved Minimize f(x∗) − λ [g(x∗) − b] by choosing
λ = λ∗.

Note that (x∗, λ∗) simultaneously solves Maximize f(x) − λ [g(x) − b] and Mini-
mize f(x) − λ [g(x) − b]. Hence, L(x, λ) is simultaneously maximized over x and
minimized over λ.

2.7 INEQUALITY CONSTRAINED OPTIMIZATION:
LINEAR PROGRAMMING

Optimization with constraints can often involve inequalities rather than constraint equations.
Decision variables may often be required to be nonnegative. The most popular model
of optimization with such inequality constraints features a linear objective function and
linear constraint functions as well. Optimization models of this form are known as linear
programming models. A linear programming model may involve many decision variables
and many inequality constraints; however, the form of the model when there are two
decision variables and two inequality constraints reveals the characteristics of all linear
programming models. In the following linear programming model, x1 and x2 are decision
variables and the a, b, and c denote numbers:

Maximize c1 x1 + c2 x2,

Subject to a11 x1 + a12 x2 ≤ b1,

a21 x1 + a22 x2 ≤ b2,

where x1, x2 ≥ 0.

Linear programming models can be solved rapidly by computers even when the number of
decision variables is large. For this reason, and for other reasons described in Chapter 7,
linear programming models have been applied in many decision contexts.

2.8 SELECTED STATISTICAL CONCEPTS

The use of sample data to make inferences about uncertain circumstances is an important
component of managerial decision making today. Marketing, production, and finance deci-
sions are no exceptions in this regard. We anticipate that this practice will become far more
sophisticated and important in the years ahead.
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This section focuses on the statistical concepts that underlie the estimation by the
method of maximum likelihood. Maximum likelihood estimation (MLE) is a corner-
stone of statistics. MLE is an appealing estimation method because of its excellent statis-
tical properties, its intuitiveness, and the fact that many other estimation techniques used
by managerial economists can be shown as approximations to MLE. Anyone who aspires
to do estimation with economic data needs to be familiar with MLE. It would be hard
to overstate its importance for anyone who applies statistical analysis to economic data.
In the following, the acronym MLE is used to denote both maximum likelihood estima-
tion and maximum likelihood estimate—the precise meaning will always be clear from
the context.

MLE is the most generally applicable estimation technique. It is applicable for esti-
mation in every sub-area of managerial economics, including demand, production, cost,
and forecasting. The MLE principle is that the best estimator of an unknown parame-
ter is the value of the parameter that makes the sample data most likely. Concepts from
statistics such as random variables (rv), probability (Pr), probability density function
(pdf), and Likelihood (L) must be understood to apply MLE. These concepts are reviewed
here.

It is important to note at the outset that economic (and other) phenomena may actually
be random or they may be simply so complicated and critically dependent on initial
conditions that we cannot analyze them. Some classic statistics texts (e.g., Harald Cramer’s
Mathematical Methods of Statistics) include much more information on this issue than
many modern texts do. Even so, you do not need to look far on the Internet today to find
current discussions on this issue. Nevertheless, we treat economic phenomena as if they
were random. With this perspective, consider the following interpretations of two important
concepts, namely, random variable (rv) and probability (Pr).

We regard any variable whose value cannot always be determined exactly as a random
variable (rv).

Probability (Pr) is the relative frequency with which the value of a random variable
occurs in a sequence of many trials.

Note that neither random variable (rv) nor probability (Pr) can be defined in a manner
that is both intuitively satisfying and rigorous; however, we can use the concepts effectively
by treating their interpretations as if they were definitions.

Example
If we flip a coin twice, the number of heads resulting from the two flips can be regarded as
a random variable. Note that we cannot predict exactly the number of heads beforehand.

We can talk about the probability of getting 0, 1, or 2 heads without being able to define
precisely the term “probability.”

Let us use notation to describe this example. Let X be a random variable, where X is the
number of heads observed from flipping a coin twice: X = 0 or X = 1 or X = 2. Assuming
that the flips are independent and the coin is fair, we define

Pr[X = 0] = 1/4, Pr[X = 1] = 1/2, Pr[X = 2] = 1/4.

Note that “pdf” is a common acronym for “probability density function.” The pdf relates
the value of a random variable to the probability of that value. Here is its definition.
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The probability density function (pdf) at a value of an rv is the relative frequency with
which the value occurs in a sequence of many trials.

Example: Flipping a coin twice
Let X = number of heads in two successive flips: X = 0 or X = 1 or X = 2.

Pr[X = 0] = 1/4, Pr[X = 1] = 1/2, Pr[X = 2] = 1/4.

The pdf of X, called fX(x), is fX(0) = 1/4, fX(1) = 1/2, fX(2) = 1/4.
Note that the pdf is indeed a function as described in Section 2.2. That a random variable

X has a pdf fX(x) is usually written as

X ∼ fX (x).

Here ∼ means “is distributed as.” So this is read as “X is distributed according to fX(x)”:

fX (x) = 1/4, if x = 0; 1/2, if x = 1; 1/4, if x = 2; 0, otherwise.

The normal probability density function is the most important example of a pdf.

Example: Normal probability density function

X ∼ fX (x),

where

fX (x) = 1√
2πσ 2

exp

[
1√
2σ 2

(x − μ)2

]
, where μ and σ are parameters.

Here X is said to be normally distributed with mean μ and standard deviation σ ; this is
often written as

X ∼ N (μ, σ ).

Figure 2.6 shows (a) the standard normal (μ = 0; σ = 1) probability density function, and
(b) the normal probability density function with different values of the parameters (μ = 5;
σ = 2). Note that the new parameter values do not change the shape of the pdf but rather
only shift it to the right and flatten it out.
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Recall, from your previous coursework, that the joint probability of n independent events
is the product of the individual probabilities of those events.

Example: Flipping a fair coin
Let X = the outcome of flipping a fair coin (so X is either heads or tails, that is, either H or
T for short). The pdf of X is fX(x) = 1/2 if X = H; 1/2 if X = T.

The data from a sequence of three coin flips are H–T–H.
The likelihood (joint probability) of these data is

L = fX (H ) × fX (T ) × fX (H )

= (1/2) × (1/2) × (1/2)

= 1/8.

This means that if we replicated flipping a coin three times over and over again, then we
would observe the sequence H–T–H in about 12% of the replications.

Example: Drawing numbers randomly from the standard normal pdf
Let X = the outcome of drawing a number from a normal pdf (so X is any real number).
The pdf of X is

fX (x) = 1√
2πσ 2

exp

[
− 1

2σ 2
(x − μ)2

]
.

The data from a sequence of three draws are (0.365725, –0.707673, –0.0657183).
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The likelihood of this sample is

L = fX (0.365725) × fX (−0.707673) × fX (−0.0657183)

= 1√
2πσ 2

exp

[
− 1

2σ 2
(0.365725 − μ)2

]
× 1√

2πσ 2
exp

[
− 1

2σ 2
(−0.707673 − μ)2

]

× 1√
2πσ 2

exp

[
− 1

2σ 2
(−0.0657183 − μ)2

]

= 1√
2πσ 2

exp

[
− 1

2σ 2
(0.365725 − μ)2 − 1

2σ 2
(−0.707673 − μ)2

− 1

2σ 2
(−0.0657183 − μ)2

]
.

Most of statistical inference is concerned with estimating an unknown parameter in a
pdf where, of course, a parameter is an unknown constant. The pdf in the coin flipping
example earlier involved no parameters because we assumed that the coin was “fair”, that
is, we assumed that the probability of getting “heads” was one-half. Had we not assumed
that the coin was fair, but rather that Pr[X = H] = p, then p would have been an unknown
parameter in the pdf of X. For the previous example where X ∼ N(μ, σ ), μ and σ are
parameters that characterize the pdf of X. Because of the widespread use of the normal pdf,
much of statistics involves making inferences about population parameters such as μ and
σ from data and using the inferred pdf to make predictions about the associated rv.

To perform MLE, it is necessary to know the pdf of the data (observed values of an rv),
at least in form, though unknown parameters will often remain to be estimated. There are
two definitions and three expectation rules that are very helpful in finding the pdf of an rv:

The two definitions are as follows:

Definition: The average value of a random variable in a very large sample, denoted by
E(X), is called the expected value of the rv X.

Definition: The average distance of an rv from its expected value in a very large sample,
denoted by SD(X), is called the standard deviation of the rv X: SD(X) = √

E
[(X − E(X))2].

The three expectation rules are as follows:

Expectation rule 1: If E(X) = μ, then E(a X) = a E(X) = a μ for any constant a and
any rv X.

Expectation rule 2: E(X + Y) = E(X) + E(Y) for any rv X and Y.

Expectation rule 3: If SD(X) = σ , then SD(a X) = a SD(X) for any constant a and any
rv X.

Let us apply these definitions and expectation rules to the consumption function of
macroeconomics, which is often illustrated with a linear function. Consider the consumption
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function from macroeconomics (C is consumption; Y is income; a and b are unknown
parameters; and U is a random error):

C = a + bY + U, where it is assumed that U : N (0, σ ).

C is a random variable since we cannot predict its value exactly. The mean of the random
error is assumed to be 0, that is, E(U) = 0. The standard deviation of U is

SD(U ) =
√

E[(U − E(U ))2] =
√

E(U 2) = σ.

Let us find the expected value of C:

E(C) = E(a + bY + U )

= E(a) + E(bY ) + E(U ) (because of expectation rule 2)

= a + bY + 0 (because a and bY are numbers (not rv) and E(U ) = 0 by assumption)

= a + bY.

Let us find the standard deviation of C:

SD(C) =
√

E [(C − E(C))2]

=
√

E[(a + bY + U − a − bY )2]

=
√

E(U 2)

= σ.

Using the two definitions and the three expectation rules, we have found that the rv con-
sumption, C, has expected value a + bY and standard deviation σ .

Under the assumption of a normally distributed additive error, the pdf of C is

fC (c) = 1√
2πσ 2

exp

[
− 1

2σ 2
(c − a − by)2

]
,

where a, b, and σ are parameters to be estimated and lower-case letters c and y denote
observed values of the rv C and Y, respectively.

Now let us find L for the case of the consumption function. The consumption function
is again

C = a + bY + U, where it is assumed that U ∼ N (0, σ ).

Suppose now that we have a data sample consisting of n observations on rv Ci, denoted by
(c1, c2, . . . , cn), and income variable Yi, denoted by (y1, y2, . . . , yn).

The pdf of each Ci (using the reasoning we used earlier) is

fCi (ci ) = 1√
2πσ 2

exp

[
− 1

2σ 2
(ci − a − byi )

2

]
.
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The observations are assumed to be independent so the likelihood L (joint probability) is
the product of the pdfs of the individual observations:

L = fC1(c1) × fC2(c2) × · · · × fCn(cn) (a shorthand way to write this is
∏

fCi (ci )).

Thus, L is just the product of the pdfs.

2.9 MAXIMUM LIKELIHOOD ESTIMATION

MLE is a general estimation technique (as previously mentioned, the most generally appli-
cable estimation technique). It applies in many areas of estimation in managerial economics,
including demand, production, cost, and forecasting. The MLE principle is that the best
estimator of an unknown parameter is the value of the parameter that makes the sample
data most likely.

To do MLE, recall the following problem. Suppose you have a sample of independent
observations on a random variable and you believe that these observations occur with
relative frequencies given by a pdf that has a parameter, μ. In other words, you have some
data and you assume that these were drawn from a pdf with a known form, such as the
normal, bell-shaped curve, but with an unknown parameter, μ. The method of maximum
likelihood is based on forming the likelihood function (joint probability of the observations),
L, from the pdf and then choosing as the estimate of the parameter μ the value that makes
the observations most likely.

Example: Flipping a coin
Suppose that we flip a coin 50 times and get all heads. Our dataset consists of 50 observa-
tions, all of which are heads. The unknown parameter is the probability of heads, which we
call, p.

The pdf of the outcome of a single flip, X, is fX(x) = p; if x = heads, 1 − p; if x = tails,
0; otherwise.

So the data we have are the result of 50 flips of the coin, xi, i = 1, 2, . . . , 50, which in
this case is all heads:

L =
∏

[ fXi (xi )] =
∏

[ fXi (heads)] =
∏

p = p50.

Now let us apply the MLE principle. What value of p makes it most likely that we would
observe the sample we have? The answer to this question is the maximum likelihood
estimate of p.

To find the MLE, solve

Maximize L = p50,

where p, as any other probability, must be between 0 and 1, that is, 0 ≤ p ≤ 1.

Example: X is an rv and it is assumed that X ∼ N(μ, σ )
Unknown parameters to be estimated are μ and σ .
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Given a sample x1, x2, . . . , xn of observations on X, the pdf associated with each sample
observation is

fX (xi ) = 1√
2πσ 2

exp

[
− 1

2σ 2
(xi − μ)2

]
.

Assuming independent sampling, the likelihood of the sample data, x1, x2, . . . , xn, is

L =
∏

[ fXi (xi )].

MLEs of μ and σ are the values of μ and σ that solve

Maximize L =
∏

[ fXi (xi )].

Example: The consumption function from macroeconomics

C = a + bY + U, where it is assumed that U ∼ N (0, σ ).

The parameters to be estimated are a, b, and σ .
Suppose now that we have a data sample consisting of n observations on the rv Ci,

denoted by (c1, c2, . . . , cn), and the income variable Yi, denoted by (y1, y2, . . . , yn).
The pdf associated with each Ci (using again the method we used earlier) is

fCi (ci ) = 1√
2πσ 2

exp

[
− 1

2σ 2
(ci − a − byi )

2

]
.

Assuming that the observations are independent, the likelihood, L, is

L = fC1(c1) × fC2(c2) × · · · × fCn(cn) =
∏

[ fCi (ci )].

MLEs of a, b, and σ are the values of a, b, and σ that solve

Maximize L =
∏

[ fCi (ci )].

MLEs of parameters such as a, b, and σ will, of course, differ from sample to sample taken
from the same population. As a result, the MLEs of population parameters are themselves
rv with pdfs. Computerized statistical packages find the standard deviation of MLEs by
studying the curvature of the likelihood function, L. The estimated standard errors reported
by statistical software are based on the second derivatives of the likelihood function, which
reflect curvature.

2.10 ORDINARY AND NONLINEAR LEAST SQUARES ESTIMATION

Ordinary least squares (OLS) estimation offers an alternative to MLE for estimation prob-
lems that are linear in parameters, whereas nonlinear least squares (NLS) is an alternative
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for estimation of parameters that are in a nonlinear form. OLS estimates of parameters
minimize the sum of the squared residuals in a linear model, whereas NLS pursues a
similar objective for nonlinear models. In fact, the estimates obtained through MLE and
OLS/NLS will coincide in many problems and are very similar in cases where the number of
sample observations is large. Estimated standard errors of parameter estimates will exhibit
similarities.

To see the close relationship between least squares estimation and MLE, observe how
OLS, applied to estimate the parameters of the consumption function considered in the last
section, seeks to solve the following problem by choosing values of parameters a and b:

Minimize
∑

(ci − a − b yi )
2.

MLE seeks to solve the following problem by choosing the values of parameters a, b,
and σ :

Maximize L =
∏

[ fCi (ci )],

where fCi (ci ) = 1√
2πσ 2

exp

[
− 1

2σ 2
(ci − a − byi )

2

]
.

Using the properties of natural logarithm reviewed in Section 2.4, we see that an equivalent
problem can be used to define the MLE:

Maximize ln L =
∑

[ln fCi (ci )]

or

Maximize ln L =
∑[

1

2πσ 2

]
−

∑ [
1

2σ 2
(ci − a − byi )

2

]
.

Hence, the MLE involves making the likelihood function large, which necessitates
minimizing the second term in the expression for ln L. As a result, the OLS and MLE
estimates of the parameters are identical in the case of the consumption function. Moreover,
parameter estimates associated with MLE and minimum distance methods, such as NLS,
have the same large sample distribution in the cases where both estimators are feasible.
In such cases, parameter estimates and their estimated standard errors may be regarded as
equally efficient whether derived via MLE or minimum distance alternatives.

SUMMARY

� Managerial economics relies on quantitative methods because of the precision and rigor
such methods introduce to economic analysis. Functions are special mathematical re-
lationships that have found application in managerial economic models and compar-
ative statics analysis. Exponents and logarithms are important functions that are used
throughout the subfields of managerial economics, including demand, production, cost,
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and forecasting. Calculus tools enable analysis of functional relationships as well as opti-
mization and constrained optimization. Inequality constrained optimization is most com-
monly accomplished in linear programming models. Statistical notions such as random
variables, probability, probability density function, and likelihood provide the foundation
for estimation and economic forecasting based on the method of maximum likelihood
and least squares techniques.

� This chapter provided a review of the mathematical and statistical methods needed to fully
understand the topics covered in this book and regularly used by managerial economists.
By “review” we mean that the mathematical and statistical topics covered in this chapter
have been presented to refresh your memory about quantitative material covered in the
prerequisites for an upper division course in managerial economics. The prerequisites
we refer to usually include methods that are introduced as part of courses in interme-
diate microeconomic theory, introductory calculus, statistics and/or econometrics, and
quantitative methods featuring decision analysis and constrained optimization. We hope
that renewing acquaintance with the quantitative foundations of this past coursework
will enable a smooth transition to useful applications that form the field of managerial
economics.

� This chapter began with the general notion of a mathematical function. Functional rela-
tionships are prevalent throughout economics and statistics. Understanding of functions
is essential to every quantitative method covered in this chapter as well as compara-
tive statics analysis in economics. The review then focuses on two specific functions,
logarithms and exponents, both of which are used frequently in economic theory and
statistical analysis based on the theory.

� Optimization and constrained optimization also lie at the center of both economic theory
and statistical analysis. Because differential calculus plays such an important role in
applied optimization, this chapter provides a comprehensive review of the techniques
you have learned during your previous study of calculus. In particular, ordinary, partial,
first, and higher order derivatives were reviewed with examples to remind you of these
concepts, which are used repeatedly in the chapters that follow. An immediate appli-
cation of the calculus techniques reviewed was made in our review of multivariate and
constrained optimization methods, including the Lagrangian method, which followed
the calculus presentation. The widely used technique for optimization with inequality
constraints, known as linear programming, was also reviewed. Linear programming was
undoubtedly the centerpiece of your previous coursework in quantitative methods for
management.

� Following the review of functions, calculus, and optimization, the focus shifted to statis-
tics and estimation, which, once founded on economic theory, form the basis of empir-
ical analysis that is so common in managerial economics. Critical statistical concepts,
including the notions of random variable, probability, probability density function, and
likelihood function, detailed in your previous statistics and econometrics coursework,
were reviewed with examples to reinforce their meaning. Each of these statistical con-
cepts found immediate use in our review of statistical inference based on the method of
maximum likelihood, ordinary least squares, and nonlinear least squares criteria. These
estimation techniques, particularly the method of maximum likelihood, have been used
repeatedly throughout the remainder of this book and throughout empirical analysis in
economics.
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KEY TERMS

function
exponents
comparative statics analysis
limit of function
maximization
Lagrange multiplier
value function
linear programming
probability density function
nonlinear least squares

estimation
mathematician’s graph

of demand and supply

economist’s graph of
demand and supply

differentiation
partial derivative
minimization
objective function
indirect function
maximum likelihood
random variable
number e
logarithms

derivatives
equality constrained

optimization
Lagrangian method
constraint function
inequality constrained

optimization
probability
ordinary least squares

estimation

LIST OF FORMULAS

Exponents:

an = a a a . . . a (n times; n is a nonnegative integer),

a−n = 1

an
,

anam = an+m,

an

am
= an−m,

(an)m = an m,

(a b)n = an bn,

(a

b

)n
= an

bn
,

am/n = the nth root of am .

Calculus:

dy

dx1
= Limh→0

[
f (x1 + h) − f (x1)

h

]
,
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y = f (x1) = a(a is a constant) ⇒ dy

dx1
= 0,

y = xb
1 ⇒ dy

dx1
= b xb−1

1 ,

y = a f (x1) ⇒ dy

dx1
= a f ′(x1),

y = f (x1) + g(x1) ⇒ dy

dx1
= f ′(x1) + g′(x1),

y = f (x1)g(x1) ⇒ dy

dx1
= f (x1)g′(x1) + g(x1) f ′(x1),

y = f (x1)

g(x1)
⇒ dy

dx1
= [g(x1) f ′(x1) − f (x1)g′(x1)]

(g(x1))2
,

y = g(u); u = f (x1); y = g( f (x1)) ⇒ dy

dx1
=

(
dy

du

) (
du

dx1

)
,

y = ln x1 ⇒ dy

dx1
= 1

x1
,

y = ex1 ⇒ dy

dx1
= ex1 ,

d

dx1

(
dy

dx1

)
= d2 y

dx2
1

= f ′′(x1),

∂y

∂x1
= Limh→0

(
f (x1 + h, x2, . . . , xn) − f (x1, x2, . . . , xn)

h

)
.

Multivariate and constrained optimization:

Maximize f (x1, x2),

∂ f

∂x1
= 0;

∂y

∂x2
= 0.

Maximize f (x1, x2), subject to g(x1, x2) = b,

L(x1, x2, λ) = f (x1, x2) − λ[g(x1, x2) − b],

∂L

∂x1
= ∂ f

∂x1
− λ

∂g

∂x1
= 0,

∂L

∂x2
= ∂ f

∂x2
− λ

∂g

∂x2
= 0,

∂L

∂ λ
= b − g(x1, x2) = 0,
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f ∗(b) = f [x∗
1 (b), x∗

2 (b)],

d f ∗(b)

db
= λ.

Linear programming model:

Maximize c1 x1 + c2 x2.

Subject to a11 x1 + a12 x2 ≤ b1,

a21 x1 + a22 x2 ≤ b2,

where x1, x2 = 0.

Probability:

X ∼ N (μ, σ ),

fX (x) = 1√
2πσ 2

exp

[
− 1

2σ 2
(x − μ)2

]
.

Expectation:

E(X ) = average value of rv X,

SD(X ) =
√

E[(X − E(X ))2] = standard deviation of rv X,

E(X ) = μ ⇒ E(aX) = aE(X ) = a μ for any constant a and any rv X,

E(X + Y ) = E(X ) + E(Y ) for any rvs X and Y,

SD(X ) = σ ⇒ SD(aX) = a SD(X ) for any constant a.

Estimation:

MLE: Maximize L =
∏

fXi (xi ).

EXERCISES

1. What is the difference between the mathematician’s and economist’s graphs for demand
and supply? Take any set of demand and supply functions and graph them according
to both perspectives.

2. How are exponents related to logarithms? Provide an example to illustrate your
explanation.
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3. What is a derivative and how important is it to economics?

4. What is optimization? What are the types of optimization and how significant is this
mathematical concept in economic applications?

5. Explain the following statistical concepts and their need in economics and, specifically,
their application in managerial economics:
� Random variable
� Probability density function
� Maximum likelihood
� Ordinary squares method

6. Evaluate: (3.141592.71828) (3.14159−2.71828).

7. Evaluate: 3.41592.1828/3.14159−2.71828.

8. Maximize x + y; subject to x y = 100.

9. Interpret the symbol ln graphically.

10. Maximize x, y; subject to x + y = 10.





UNIT II

DECISIONS AT THE CONSUMER LEVEL





3
THEORY OF CONSUMER CHOICE

According to the economic theory of consumer choice, consumers are rational enough
to choose the best possible bundle of commodities that they can afford. In other words,
this theory explains the notion of choice, at its core, as a continuous interaction between
people’s preferences and the constraints they face. Therefore, it can be summarized that
consumer choice is often made on the basis of interaction between two major elements:

1. Consumer’s preferences and willingness to trade among the available alternatives of
commodities.

2. Consumer’s affordability or ability to buy those alternatives.

3.1 CONSUMER PREFERENCES

Economists model consumer preferences by assuming that consumers have a set of prefer-
ences that are formed on the basis of personal taste. Since people are substantially different
in their tastes, their preferences of commodity alternatives would be highly subjective, given
certain circumstances. However, on general and universal bases, consumer preferences are
supposed to have specific properties, which confirm the assumption that consumers have
the ability to rank their preferences in a logically consistent manner. Such properties can
be illustrated by the following axioms.

Axiom 1 Completeness
Preferences are said to be complete if the consumer

(a) prefers x-bundle over y-bundle (x1, x2) � (y1, y2);

Managerial Economics: A Mathematical Approach, First Edition. M. J. Alhabeeb and L. Joe Moffitt.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.

47



48 THEORY OF CONSUMER CHOICE

(b) prefers y-bundle over x-bundle (y1, y2) �(x1, x2); or

(c) prefers them equally well (the consumer would be indifferent to have either of the
bundles).

(x1, x2) ∼ (y1, y2).

This axiom rules out the case where the consumer cannot make any choice among these
alternatives. In other words, the consumer would certainly have one clear choice from the
three possibilities stated above.

Axiom 2 Transitivity
Preferences are transitive when a consumer prefers x-bundle over z-bundle (x1, x2) �
(z1, z2), usually as a result of

(a) preferring x-bundle over y-bundle (x1, x2) �(y1, y2) and

(b) preferring y-bundle over z-bundle (y1, y2) �(z1, z2).

Axiom 3 Nonsatiation
This axiom states that given a desirable bundle of commodities, a consumer would prefer
more over less. Technically, this would require that all first-order partial derivatives of the
utility function or the marginal utilities to be positive:

U = f (x1, x2, . . . , xn),

MU j = ∂U

∂x j
> 0 j = 1, . . . , n.

Geometrically, a nonsatiated preference can be illustrated as in Figure 3.1. Compared to
the bundle of x and y offered by point Z, all the points in the shaded area such as A, B, and
C would offer

(a) either more of x and equal amount of y;

(b) or more of y and equal amount of x;

(c) or more of x and y.

While all points outside the shaded area, such as D, E, and F, would offer at least one
commodity less, if not less of both commodities, than in Z. Therefore,

A, B, C, � Z, but Z � D, E, F.

Axiom 4 Convexity
This axiom basically describes the consumer’s tendency to prefer an average of the desired
bundles of commodities over extreme bundles. For example, if a consumer prefers X and
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FIGURE 3.1

Y over Z, then this consumer would most likely prefer a combination of X and Y or their
weighted average over Z:

βX + (1 − β)Y � Z, 0 < β < 1.

Geometrically, and as a matter related to the shape of the indifference curve (IC), a set
of points is said to be convex if any two points within the set can be reached by a straight line
(DE in Figure 3.2) that is entirely contained within the set. This would imply a diminishing
marginal rate of substitution (MRS), which will be explained later. However, the notion
of preference for the average over the extremes can be explained in Figure 3.2.

Point A offers the bundle of (x1, y2), and point B offers the bundle of (x2, y1). Both points
would yield the same satisfaction. In other words, a consumer would be equally satisfied
at both points because if A offers less of x, it certainly offers more of y, and if B offers
less of y, it would offer more of x. Now, if we consider points such as x3 and y3, which are
midpoints between the two amounts of x and y offered earlier, these points would offer the
averages of x and y:

x3 = x1 + x2

2
and y3 = y1 + y2

2
.

If we extend a vertical line from x3 and a horizontal line from y3, the two lines would meet
at C, which is clearly outside IC1. This indicates that C is on a higher indifference curve
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FIGURE 3.2

such as IC2, which offers a higher level of utility, making the consumer better off than on
either A or B.

3.1.1 Indifference Curve

Based on the preference axioms, economists modeled the theory of consumer choice on a
geometrical tool called an indifference curve. As shown in Figure 3.3, an indifference curve
is a locus of points representing commodity bundles that a consumer would prefer equally
well. These points are supposed to yield the same level of utility, despite the different
combination of commodities they stand for. This tool is called an indifference curve to
signify that a consumer would be indifferent in terms of satisfaction level obtained if he/she
moves to any point on the same curve. This implies that higher or lower levels of satisfaction
can be obtained by different bundles depending on higher or lower ICs running parallel,
above and below the one with which we started. This would lead to the existence of what is
called an indifference space or indifference map. It contains an infinite number of curves
representing all the possibilities of consumer tastes and preferences. The typical shape of
an IC, as shown in Figure 3.3, is convex to the origin, and running from northwest to the
southeast. However, there are exceptions to this typical shape of the IC. The geometrically
different shapes can be obtained depending on the nature of commodities and the extent of
consumer preference toward these commodities. Technically, the shape of the ICs would
be dictated by the marginal rate of substitution (MRS). However, all ICs have to share the
following fundamental properties:

1. Total utility remains constant at any point on a single curve. However, it increases
as the ICs move away from the origin, and decreases as they move toward the origin.
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2. Any single IC is basically one of many in the commodity plane.

3. ICs on a single plane cannot intersect.

Let us consider the following case:
Suppose we make IC1 intersect with IC2 at point A, and we consider two other points

on the curves, B on IC1 and C on IC2, then

A ∼ B and A ∼ C (based on property #1), then
B ∼ C (based on the transitivity axiom), but
C � B (based on property #1 again).

Therefore, if we allow the ICs to intersect, we would be violating the transitivity axiom,
and for this reason ICs must not intersect.

y

x

A

B C
IC2

IC1

FIGURE 3.3

Typically shaped ICs share the following properties (see Figure 3.4):

1. They slope downward from the northwest to the southeast. Therefore, they have a
declining (negative) value of MRS.

2. They are convex to the origin:

A ∼ B ∼ C,

E � (D, A, B, C),

D � (A, B, C).
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3.1.2 Marginal Rate of Substitution (MRS)

The IC provides a great technical tool to analyze how consumers can trade off between
their available alternatives of bundles to reach their best choice. A central concept in this
analysis is the marginal rate of substitution. It is defined as the amount of commodity
(y) that a consumer is willing to give up in order to have one unit of the other commodity
(x). Therefore, it can be measured by the change in commodity y (a loss) with respect to a
standardized change in commodity x (a gain by one unit). In this case, the MRS would be
equal to the negative slope of the IC at the point of change (see Figure 3.5):

MRS = Slope of IC = −�y

�x
.

Since the change in x is standardized by only one unit (�x = 1), the MRS would end up
equaling to the marginal value (MV):

MRS = −�y

�x
= −�y

1
= −�y = MV.

Let us assume that a consumer’s choice is to have the bundle (x1, y1) at point A. If this
consumer wants to have one more unit of x (moves to x2), but does not want his overall
satisfaction to diminish as a result of this change, then he must give up some amount of y
in order to gain a unit of x and still enjoy the same level of satisfaction (being on the same
IC). Having this particular slope of IC would dictate that this consumer has to give up an
amount of (y) measured by (y1 − y2) when he/she moves to point B (x2, y2), which would
offer an additional unit of x (x2 − x1). Note that if this consumer would want to have one
more unit of x, he can still move down along the curve to C and D. However, every time
in which one unit of x is gained, the consumer would lose less and less of commodity (y)
than he/she did before. This would illustrate the diminishing MRS (losing 3 units, 2 units,
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1 unit) consecutively, as the consumer moves from A to B to C, where one additional unit
of x is gained each time.

The essence of the diminishing marginal utility is reflected by the fact that when we
move from one point to another on an IC, for example from A to B, we are going to give up
some of commodity y, and as a result our utility gets reduced. This reduction in utility must
be compensated by an alternative gain in utility by getting more of commodity x. This can
be mathematically expressed as

[
�y · �TU

�y

]
+

[
�x · �TU

�x

]
= 0,

[
�y · �TU

�y

]
= −

[
�x · �TU

�x

]
,

�y = (−�x)

[
�TU

�x

]
[
�TU

�y

] ,

−�y

�x
=

[
�TU

�x

]
[
�TU

�y

] ,
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where the left-hand side of the last equation is the MRS, and the right-hand side is the ratio
of the marginal utilities of the two commodities x and y:

MRS = −�y

�x
= MUx

MUy
.

It is important here to note that a common mistake often made by students is to keep x and
y in the same order when they write the equation above. The right format, though, is to
switch their places between the top and bottom when you equate the ratio of the change in
quantities with the ratio of their marginal utilities.

Using the utility function U = f(x, y), the MRS can be expressed in calculus as

MRS = dy

dx

= −
∂U

∂x
∂U

∂y

= −MUx

MUy
,

which can be read as the negative ratio of the marginal utilities of the two commodities x
and y. If we consider, for example, a Cobb–Douglas utility function such as

U = xa y1−a, where a > 0,

we can obtain the MRS between x and y from the marginal utilities of x and y and dividing
them by each other. The marginal utilities are the first derivatives of the function with
respect to x and y, respectively:

U = xa y1−a,

MUx = ∂U

∂x
= axa−1 y1−a

= ax−1xa y1−a

= a
1

x
xa y1−a

= a
xa y1−a

x

= a
U (x, y)

x
. (3.1)
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Similarly,

MUy = ∂U

∂x
= (1 − a)

U (x, y)

y
,

MRS = −
∂U

∂x
∂U

∂y

= −
a

U (x, y)

x

(1 − a)
U (x, y)

y

= − a

1 − a
· U (x, y)

x
· y

U (x, y)

MRS = − a

1 − a
·
[ y

x

]
. (3.2)

Example 3.1
If x is the amount of white meat and y is the amount of red meat that Jack purchases in a
week, what would be his MRS between red and white meats for a weekly amount of 8 lb
of hamburger and 4 lb of chicken, given that “a” in the general Cobb–Douglas equation for
a typical consumer is 0.75.

Solution:

MRS = − a

1 − a
· y

x

= − 0.75

1 − 0.75
· 4

8

= −3

2
= −1.5.

This MRS value means that Jack has to give up 1 1
2 lb of hamburger for every additional

pound of chicken he may want to consume.

3.1.3 Nontypical Indifference Curves

For all consumer preferences, where the MRS is not declining, the IC would not be typically
convex to the origin. It would take different shapes (see Figures 3.6, 3.7, 3.8, 3.9, 3.10,
and 3.11):

1. Straight downward line exhibiting constant MRS in the case of the commodities that
are perfect substitutes (Fig. 3.6).

2. L-shaped, exhibiting proportional MRS in the case of the commodities that are perfect
complements (Fig. 3.7).

3. Vertical or horizontal line with unidentified MRS in the case of neutral commodities
(Figs. 3.8 and 3.9).

4. Straight upward sloping line exhibiting an increasing MRS in the case of undesirable
commodities (Fig. 3.10).

5. Concave curve with an increasing MRS in the case of concave preferences (Fig.
3.11).
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3.2 CONSUMER’S AFFORDABILITY

Affordability is the second major element of consumer choice. It refers to consumer’s
ability to buy the alternatives of the commodities he/she prefers. While the consumer’s
preferences were analyzed by the indifference curve as an appropriate technical tool,
his/her affordability would be analyzed by another technical tool called the budget line.

3.2.1 Budget Line

The budget line refers to the geometrical boundary between two zones, what a consumer can
and cannot afford to buy. In particular, it is a tool to depict the two fundamental constraints:
size of income or budget a consumer has, and prices of the commodities to be purchased.
A budget line is, therefore, defined as the line representing all maximum combinations
of commodities that a consumer can buy, given a certain income and specific prices. It
implies that the line would be a locus of all points that refer to the bundles which would
require spending the entire available budget. In this perspective, the whole area below the
line would logically contain an infinite number of points referring to all possible bundles
that are affordable but require less than the maximum budget available. This area is called
the opportunity set or the affordability zone. We can, therefore, conclude that the area
above the line would be the zone of unaffordability.

Let us imagine a consumer having a certain budget such as (I) and that this consumer
is interested in spending that budget on two commodities, x and y, priced at Px and Py,
respectively. In a two-dimensional scenario, a budget line equation would be

x Px + y Py = I.

In order to draw the budget line, first we need to find out the two intercepts: the vertical
and horizontal. Those intercepts would represent the extreme affordable bundles. In other
words, each one of them would stand for the maximum possible amount of a commodity if
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the entire budget is spent on that commodity alone. This would require assuming that none
would be spent on the other commodity. For such assumption, we set the expenditures on
the skipped commodity to zero:

x Px + 0 = I

x = I

Px
, the horizontal intercept.

That would stand for the maximum affordable amount of x, which can be obtained if the
entire budget is spent only on x. Similarly, we can obtain the maximum affordable amount
of y, if the entire budget is spent only on y:

0 + y Py = I

y = I

Py
, the vertical intercept.

The budget line can then be drawn as the line extended between the two intercepts.

Nonaffordable

F

D

Oppt. set
affordable

E

G

B

BL

y

x

C

A

I
Px

I
Py

FIGURE 3.12

In Figure 3.12, we can observe that

A, B are the extreme bundles;

A, B, C are affordable bundles that require the entire budget;

D, E are affordable bundles that require less than the entire budget;

F, G are nonaffordable bundles.
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The fact that points such as A, B, and C require exhausting the whole budget implies that
if a consumer is at any point on the line, the desire to increase any of the commodities
requires giving up some of the other commodity, unless there is a change in either income
or prices. Therefore, a trade-off must occur to achieve any movement from one point to
another on the line.

3.2.2 Slope of the Budget Line

The most important characteristic of the budget line is its slope, especially what it means
and how it changes or stays fixed. Obviously, the slope visually depicts how flat or steep
the line is. The value of the slope is determined by the negative ratio of the prices of the
two commodities x and y. It stands for the rate at which commodity y can be substituted for
commodity x, while still satisfying the budget constraint:

Slope = �y

�x
= − Px

Py
.

This is why the slope of the budget line is called the marginal rate of transformation
(MRT) in the same fashion as the marginal rate of substitution (MRS) was identified. From
a slightly different perspective, the slope of the budget line or MRT expresses how the
price of commodity x stands, in the market relative to the price of commodity y. From this
perspective, we can understand that the higher the price of x, relative to the price of y, the
higher the slope and steeper the budget line. In contrast, the lower the price of x, relative
to the price of y, the lesser the slope and flatter the budget line. This will be clearly seen
when we discuss how the slope changes in the next section. From yet another perspective
on the slope, economists believe that the slope of the budget line can actually measure the
opportunity cost of consuming commodity x. This notion logically refers to the fact that in
order to increase the consumption of x, you must give up some of the consumption of y,
and that can measure the true cost of the gained amount of x.

3.2.3 Shift, Swing, and Kink of the Budget Line

There are three important changes in the budget line: the shift, the swing, and the kink.

The Shift The shift of the budget line, right and left, occurs due to changes in the size
of the consumer budget or when consumer income increases or decreases. The higher the
budget, the farther the budget line from the origin, making the affordability zone larger, and
vice versa. Technically, this would occur because changes in income would only affect the
intercept term in the budget line equation:

x Px + y Py = I.

If we rewrite this budget line equation in the form of the linear function Y = a + bx,
where “a” is the y-intercept and “b” is the slope:

y Py = I − x Px ,

y = I

Py
− Px

Py
x . (3.3)
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In this form, the intercept would be (I/Py) and the slope would be −(Px/Py).
Now let us assume that consumer income has changed in the following manner:

1. In period 1, income increases from I to I1.

2. In period 2, income decreases from I to I2.

Equation (3.3) would be adjusted to these changes as follows:

1. y = I1

Py
− Px

Py
x

2. y = I2

Py
− Px

Py
x

Since I1 > I and I2 < I, the y-intercept
(
I1/Py

)
in the first change would be higher than

the original intercept
(
I/Py

)
. Also, in the second change, the intercept I2/Py would be

lower than the original I2/Py. Furthermore, since the slope − (
Px/Py

)
did not change in

both cases, the line would only shift right or left, in a parallel manner, following the new
intercepts, respectively.

Example 3.2
Suppose that a consumer budget (I) is equal to $12, and spent on meat (x) and potatoes (y)
where the price of meat is $3 per pound, and the price of potatoes is $2 per pound. Draw
the budget line and show how it would shift in two cases: (1) when the budget increases to
$18 and (2) when the budget decreases to $9. Assume that the prices remain unchanged in
both cases (see Figure 3.13):

Solution:

Px x + Py y = I,
3x + 2y = 12.

� The horizontal intercept:

Px x + 0 = I,
Px x = I,

x = I

Px
= 12

3
= 4.

� The vertical intercept:

0 + Py y = I,
Py y = I,

y = I

Py
= 12

2
= 6.
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1. When the budget or income increases to 18:
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x
(Meat)

9

8

7

6

4

5

BL
1

BL

BL
2

4.5

3

2

1

1 2 3 4 5 6

FIGURE 3.13

� The horizontal intercept:

x = I

Px
= 18

3
= 6.

� The vertical intercept:

y = I

Py
= 18

2
= 9.

2. When the budget or income decreases to 9:

� The horizontal intercept:

x = I

Px
= 9

3
= 3.

� The vertical intercept:

y = I

Py
= 9

2
= 4.5.
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The Swing The other change of the budget line is the inward and outward swing from the
origin point, while pivoting on one intercept. It occurs due to changes in the price of either
of the two commodities. Unlike the shift of the line, which is brought about by changes in
both intercepts, the swing of the line would be characterized by changes in both, the slope
of the line and the intercept of the commodity whose price has changed. Technically, this
time, both terms on the right side of the modified budget equation would be affected:

y = I

Py
− Px

Py
x,

x = I

Px
− Py

Px
y,

we can see that any change in the price of x or y would affect the value of the slope (− Px
Py

),

as well as the value of the intercepts, ( I
Px

) and ( I
Py

), resulting in a certain swing of the line.

Example 3.3
Follow the changes in the budget line of the last example when (1) the price of meat goes
up to $6 one time, and down to $1.50 the other time, while the price of potatoes remains
the same; and (2) the price of potatoes goes up to $4 one time and down to $1 the other
time, while the price of meat remains the same. Also, income would remain the same at
$12 throughout the changes in price:

Solution:

1. Since the change is only in the price of meat (x), y-intercept would not change and
the budget line would pivot over y and swing around x-axis:

x = I

Px
= 12

6
= 2

⎛
⎜⎝

Line pivots at y = 6 and
swings inward to BL1

slope = −6

2
= −3

⎞
⎟⎠ ,

x = I

Px
= 12

1.50
= 8

⎛
⎜⎝

Line pivots at y = 6 and
swings outward to BL2

slope = −1.5

2
= −0.75

⎞
⎟⎠ .

2. Since the change is only in the price of potatoes (y), x-intercept would be the pivot
point and the budget line would swing around y-axis (see Figure 3.14):

y = I

Py
= 12

4
= 3

⎛
⎜⎝

Line pivots at x = 4 and
swings inward to BL3

slope = −3

4
= −0.75

⎞
⎟⎠ ,
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y = I

Py
= 12

1
= 12

⎛
⎜⎝

Line pivots at x = 4 and
swings outward to BL4

slope = −3

1
= −3

⎞
⎟⎠ .

The Kink Typically, the budget line is a straight line unless there is a price change related
to a certain quantity of one of the commodities. In such case, the budget line would be
kinked either inward or outward to reflect the nonuniform price of one of the commodities.
Let us consider one of the last swing cases, say when the budget line swung from BL to
BL2 due to the decrease in the price of meat from $3 to $1.50 per pound and the resulting
purchase of 8 lb of meat (see Figure 3.15).

Now, let us assume that a grocery store sale coupon states that the low price of $1.50 per
pound is good only for the first 2 lb purchased, and the original price of $3 would apply on
all quantities beyond 2 lb. In this case, 2 lb would be purchased at $1.50 per pound. That
would exhaust $3 from the budget, leaving $9 that would buy 3 additional pounds at $3.00
each.

2 × $1.50 = $3.00,

$12.00 − $3.00 = $9.00,

$9.00

$3.00
= 3 lb.
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So, the maximum amount of meat that can be purchased under this two-price system
would be 5 lb, and that is the x-intercept:

2 @$1.50 + 3@$3 = 5 lb.

If the consumer buys 2 lb at $1.50 spending $3, the remaining $9 would buy 4.5 lb of
potatoes at $2 per pound, and if the consumer chooses to spend the rest of the money on
potatoes:

2 lb of meat@$1.50 = $3.00,

$12.00 − $3.00 = $9.00,

$9.00

$2.00
= 4.5 lb of potatoes.

This 4.5 lb of potatoes would be the y-intercept and together with the 2 lb of meat, it would
give us point of K1 on BL2, which is the kink point. The kinked budget line, then, would be
A1 K1 B1, with two segments: A1 K1 with a slope of −0.75 just like BL2 and segment K1

B1 with a slope of −1.5 just like BL.
In addition to this type of kink, the budget line can also be kinked down. Let us assume

there is a different type of grocery store sale that benefits consumers who buy in bulk,
one such sale states: the low meat price of $1.50 per pound is applicable only on large
purchases, that is more than 2 lb. In this case, the consumer would pay the original price of
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$3 per pound for the first 2 lb, and pay $1.50 for all that he can buy beyond the first 2 lb.
That would be 4 lb in the remaining budget of $6.00:

2 lb @$3.00 = $6.00,

$12.00 − $6.00 = $6.00,
$6.00

$1.50
= 4 lb.

This would make the total purchases of meat 6 lb (2 + 4), and that is the new x-intercept
of the kinked line. Now, after purchasing the initial 2 lb of meat and spending $6.00, the
remaining $6.00 would buy 3 lb of potatoes, if that consumer still wants to buy some
potatoes after buying 2 lb of meat. This point, together with the 2 lb of meat, would form
the kink point K2 on the original BL. Therefore, a kinked budget line A2 K2 B2 is formed
with a down kink point of K2. Segment A2 K2 would have a slope of −1.5, and segment K2

B2 would have a slope of −0.75 (see Figure 3.16).

3.2.4 Three-Dimensional Budget

Suppose the consumer in the last example wants to add green vegetables along with meat
and potatoes while his budget is still $12.00, given that the price of green vegetables is $2.40
per pound, we can construct a three-dimensional budget constraint graph by adding a third
axis, Z, to represent green vegetables. We can also find the z-intercept for the maximum
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amount spent on green vegetables, assuming the entire budget of $12.00 would be spent on
them:

z-intercept: Z = I

Pz
= 12.00

2.40
= 5.

y
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P4

P3

P2

5

A6

3

4
B
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C

x

z

2

2.5

1.45

Potatoes

FIGURE 3.17

Here, the consumer would have four choices to split his budget (see Figure 3.17):

1. between potatoes and meat, along AB line;

2. between potatoes and vegetables, along AC line;

3. between vegetables and meat, along CB line;

4. between meat, potatoes, and vegetables, around the triangle.

For example, we can consider the following bundles:

P1 : 2x + 3y,

2($3) + 3($2) = $12,
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P2 : 2x + 2.5Z ,

2($3) + 2.5($2.40) = $12,

P3 : 3y + 2.5Z ,

2($3) + 2.5($2.40) = $12.

If the budget is split between the three commodities, the fourth bundle, P4, has to be
somewhere inside the cube. Such a bundle would be

P4 : 1.5x + 2y + 1.45Z ,

1.5($3) + 2($2) + 1.45($2.40) = $12.

3.3 THE OPTIMAL CHOICE

The consumer’s optimal goal is to gain the highest possible satisfaction that is affordable.
In other words, it is to maximize utility within the constraints of one’s income and market
prices. This ultimate goal can be achieved by combining the two aforementioned elements
of choice and deriving the optimality produced by their interaction. Figure 3.18 shows that
a consumer would like to have his bundles of commodities at the highest possible IC, such
as at D on IC3. But this bundle is not affordable because it is outside the affordability zone.
All of A, D, C, and E are within the affordability zone, but they are on lower ICs. A, B, and
C exhaust the entire budget, but C is on a higher IC than A and B. In fact, C is absolutely the

x

y

BL

B

IC4

IC3

IC2

IC1

D

E

C

FIGURE 3.18
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best bundle for it is the only point that is on the highest affordable IC. This would establish
the rule that the consumer’s optimal choice would be at the point of tangency between the
budget line and the highest possible IC. Technically, the point of tangency is where the
slope of the IC (MRS) is equal to the slope of the budget line (MRT):

Slopec IC3 = Slopec BL,

MRS = MRT,

MUx

MUy
= Px

Py

(
No sign is assigned because
both slopes are negative.

)
.

This means that the optimal point implies the equality between the marginal utility (MU)
of x in terms of y marginal value and the relative price of x in terms of y price. If we
rearrange this equality, we obtain

MUx

Px
= MUy

Py
,

which refers to the general condition of consumer equilibrium. This condition states that
a consumer’s optimal choice occurs at a point when he implicitly equates between the
marginal value of the commodities as they are related to their prices. Specifically, we can
say that a consumer would make an optimal choice of two commodities when the marginal
utility of the last dollar spent on one commodity (x) is equal to the marginal utility of
the last dollar spent on the other commodity (y). This equality is logical for the following
reason:

Let us assume that the marginal utility of x relative to its price MUx/Px is larger than
the marginal utility of y relative to its price MUy/Py. A consumer would then act wisely
by pulling out $1 from the expenditure on y and spending it on x. Such an act would
increase the consumption of x by certain additional units, and as a result, it would reduce
its marginal utility. On the other hand, decreasing the expenditure on y by $1 would reduce
its consumption by certain units leading to an increase in its marginal utility. If this process
continues, MUx/Px would decrease while MUy/Py increases until there will be no incentive
to have either term changed. That would be the point where they experience no changes
and become equal, and that explains the logic behind the equality of those terms in the
equilibrium condition.

3.3.1 Interior and Corner Solutions

Achieving an optimal choice at the point of tangency (C) between the highest possible IC
and the budget line would be called the “interior” solution. It would still be considered
an interior solution as long as that point of tangency lies anywhere on the budget line
between its ends. However, if this point of tangency occurs exactly on either of the budget
line ends, then the solution is called the corner solution and the point is called the boundary
optimum. The corner solution case occurs when a consumer is interested in buying only
one of the two commodities, and his budget would be entirely spent on that commodity
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alone while the other commodity remains irrelevant. In other words, his marginal utility
obtained from the purchased commodity would be larger than the marginal utility obtained
by the skipped commodity. For example, if a consumer is not interested in purchasing a cell
phone and he would rather spend his budget on other electronics, his optimum purchase
would occur on the other electronics intercept.

Technically, he would have

MUo

Po
>

MUc

Pc
,

where (o) refers to the other electronics measured on the x-axis and (c) refers to a cell
phone measured on the y-axis. His optimal choice would be at C in the corner (see
Figure 3.19).

x

y

BL

C

IC3IC2IC1

FIGURE 3.19

It is important here to remind that having only the tangency point between the budget line
and the IC may not assure optimality of the choice, although it is a necessary requirement.
What guarantees optimality is the second necessary condition, and that is the convexity
of the IC. In the graph shown in Figure 3.20, points A, B, and C are all tangency points
but only A and C achieve optimality of the consumer choice in terms of the utility maxi-
mization. Point B cannot achieve any maximization since it is on the concave segment of
the IC.
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3.3.2 Utility and Its Measurability

Consumer utility is a term coined by the British philosopher Jeremy Bentham in 1823.
In classical economic literature, utility has been a synonym to satisfaction, welfare, and
happiness. The most commonly used definition of utility states that it is the satisfaction
derived by a consumer through the use or consumption of goods and services. Another
definition focuses on the consumed products more than on the consumer response to them.
Such a concept would consider utility as the ability or power of a commodity to satisfy
consumer’s needs and wants. Yet another view would shift focus to the measurability issue.
Utility, according to this view, would be the index for the consumer’s sense of well-being.
The issue of measurability of utility gave two doctrines:

1. Ordinalism, which assumes that utility can only be measured by ranking the pref-
erences by unspecified and unquantifiable relationships between certain levels such
as higher, lower, or in-between. This ordinal measure and its relative ranking is the
cornerstone of the neoclassical theory of consumer choice despite the fact that it
would not provide a discrete level of satisfaction, nor would it be able to provide the
magnitude of the change in satisfaction. Most economists believe that when it comes
to understanding consumer preferences, it is only important to know which bundle
of commodities is preferred over what?

2. Cardinalism, which assumes that utility can be measured either by (a) units of
absolute values such as a util where a consumer can determine that 6 utils were
obtained by consuming two apples and can also determine the magnitude of change
in the utility as in determining that the second apple added only 2 utils, while the rest
of 4 utils were attributed to the first apple; or (b) quantifying the comparison between
interval levels such as in saying the difference between level 1 and level 2 of utility
is twice as much the difference between level 3 and level 4 of utility.
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Classic economists theorized that consumers’ satisfaction or utility gained out of con-
suming commodity x can be expressed in proportion to the logarithm of x:

U (x) = ln x,

such that as x increases the utility of x would increase in a decreasing rate (Figure 3.21)
where the slope is

x

u(x)

0

FIGURE 3.21

dU

dx
= 1

x
> 0

and

d2U

dx2
= 1

x2
< 0.

This forms the basis of classifying utility into total utility (TU) and marginal utility (MU)
and establishes the law of diminishing marginal utility. TU is the overall satisfaction derived
from consuming a particular number of units of a product, while the marginal utility is the
change in the total utility that results from consuming the last unit of that product.

Example 3.4
Let us consider that a number of small pieces of chocolate are being offered to a chocolate
lover who is able to translate the overall satisfaction he gets out of chocolate consumption
as shown in the total utility column of Table 3.1.
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TABLE 3.1

Q TU MU

1 16 16
2 30 14
3 42 12
4 52 10
5 60 8
6 66 6
7 70 4
8 72 2
9 72 0

10 69 −3
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Considering Table 3.1 and the graph in Figure 3.22, we can make the following obser-
vations:

� Total utility is a function that increases all the way but at a decreasing rate. It reaches
its maximum of 72 utils on the consumption of the ninth piece of chocolate.

� Marginal utility is a function that is decreasing all the way. It reaches zero on the
consumption of the ninth piece of chocolate and it continues to decrease to reach a
negative value (−3). This would establish the “law of diminishing marginal utility,”
which states that “consumption of successive units of a given commodity would
eventually cause the marginal utility to decline as shown by adding smaller and
smaller contributions to the overall satisfaction.”

� Since the marginal utility represents the change in total utility that is brought about
by the last unit, it is clear that the zero value indicates that the ninth piece consumed
did not do any good because the total utility remains at 72 utils, the same as in the
eighth piece. This is where the consumer has to stop eating. The consumption of the
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ninth piece gave the signal that the total utility has reached its maximum. Any further
consumption would be detrimental. At the consumption of the ninth unit, a consumer
would have reached the point of saturation.

� If the total utility function is known, the marginal utility function would be dU (x)
dx .

Example 3.5
Given below is the total utility (TUx) and the marginal utility (MUy) that are derived from
consuming a combination of two commodities x and y.

TUx : 7, 13, 18, 22, 25, 27, 27, 26, 25, 23.

MUy : 4, 10, 8, 6, 4, 2, 0, − 1, − 2, − 3

(a) Derive a column for the marginal utility of x (MUx), and a column for the total utility
of y (TUy).

(b) On separate graphs, plot the total and marginal utilities of each commodity.

(c) Determine at what unit of each commodity a consumer would reach the point of
saturation.

(d) If the consumer buys a combination of the two commodities and if their prices are
$2.00 for commodity x and $1.00 for commodity y, where would his equilibrium
be?

(e) What would be the consumer budget for his equilibrium combination?

Solution:

TABLE 3.2

1 2 3 4 5 6 7
Q TUx MUx TUy MUy MUx/Px MUy/Py

1 7 7 4 4 3.5 4
2 13 6 14 10 3.0 10
3 18 5 22 8 2.5 8

4 22 4 28 6 2 6
5 25 3 32 4 1.5 4

6 27 2 34 2 1.0 2
7 27 0 34 0 0.0 0
8 26 −1 33 −1 −1/2 −1
9 25 −1 31 −2 −1/2 −2

10 23 −2 28 −3 −1 −3

(a) Each value of the marginal utility of x in Column 3 in Table 3.2 is the corresponding
value of total utility minus the one before. So, 7 is (7 − 0), 6 is (13 − 7), and so on.
Opposite to that is the creation of total utility of y. Each value in Column 4 is the
sum of the corresponding value of marginal utility and all other values before it. So,
14 is (10 + 4), 22 is (8 + 10 + 4), and so on.

(b) See Figure 3.23.
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(c) Point of saturation is reached at the seventh unit for both commodities where the
total utility of x reaches the maximum of 27 and the marginal utility of x reaches
zero. Also, when the total utility of y reaches the maximum of 34 and the marginal
utility of y reaches zero.

(d) Consumer equilibrium is achieved when

MUx

Px
= MUy

Py
.

After creating Columns 6 and 7, we can where the equality occurs: It occurs at 2
and 0. Since the case of zero is negligible, the equality of 2 is the equilibrium. It
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indicates that the consumer equilibrium is achieved when buying 4 units of x and 6
units of y.

(e) The consumer’s budget would be

x Px + y Py = I.

4($2.00) + 6($1.00) = $14.00.

3.3.3 Utility Maximization

The consumer preference that we discussed earlier can be viewed as a utility function
that can be mathematically maximized, subject to the consumer budget constraint. In this
manner, the utility maximizing bundle of consumer commodities can be determined, if not
for estimating the individual optimal consumption per se, it would be more important for
the many interesting implications that can be drawn on the aggregate resource allocation
and the maximization of the efficiency of such allocation.

So, on the basis of mathematical logic, consumer utility can be viewed as a function of
the consumed commodities, the purchase of which is constrained by a certain income or
budget available to a consumer, and by the prevailing market prices of the commodities
that consumer is interested in. Such a function can be maximized using calculus methods:

max U = f (x, y), (3.4)

s.t. x Px + y Py = I. (3.5)

This constrained function can be converted into an unconstrained function in order
to solve the optimum quantities of x and y that would grant the maximum consumer
satisfaction. There are two ways to turn the constrained function into an unconstrained one:
(1) by substituting the budget constraint equation into the original objective function, and
(2) by the Lagrangian method.

1. By substitution: Rearrange Equation (3.5) to express y-value:

x Px + y Py = I ,

y Py = I − x Px ,

y = I − x Px

Py
,

y = I

Py
− Px

Py
x . (3.6)

Substitute the value of y from Equation (3.6) into Equation (3.4):

max U = f

(
x,

I

Py
− Px

Py
x

)
.
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Differentiate the function in terms of x, and set it to zero for the first-order condition
(FOC):

∂U (x, y)

∂x
+ ∂U (x, y)

∂y
· dy

dx
= 0. (FOC)

Now, we differentiate Equation (3.6) in terms of x:

y = I

Py
− Px

Py
x,

dy

dx
= − Px

Py
, (3.7)

and substitute the value of
dy

dx
from Equation (3.7) into

dy

dx
in FOC:

∂U (x, y)

∂x
+ ∂U (x, y)

∂y
· − Px

Py
= 0,

∂U (x, y)

∂x
= ∂U (x, y)

∂y
· Px

Py
,

∂U (x∗, y∗)

∂x

∂U (x∗, y∗)

∂y

= Px

Py
,

Mux

Muy
= Px

Py
,

or MRS = MRT,

which states that the optimal quantities (x∗, y∗) would satisfy the condition where the
slope of the indifference curve (MRS) would be equal to the slope of the budget line
(MRT), and that was the case of consumer equilibrium that we have seen before at
point C.

2. By the Lagrangian Method: Using the Lagrangian function developed by the Italian-
French mathematician Joseph Louis Lagrange in 1804, we can maximize our utility
function by first setting the L-function as a sum of the objective function, which is to
be maximized U = f(x, n), and the budget constraint function:

max U = f (x, y),

s.t. x Px + y Py = I ,

x Px + y Py − I = 0,

max L(x, y, λ, I ) = f (x, y) − λ(x Px + y Py − I ).
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First, we obtain the FOC for x, y, and λ:

∂L

∂x
= ∂U (x∗, y∗)

∂x
− λPx = 0, FOC (3.8)

∂L

∂y
= ∂U (x∗, y∗)

∂y
− λPy = 0, FOC (3.9)

∂L

∂λ
= Px x∗ + Py y∗ − I = 0. FOC (3.10)

Dividing FOC (3.8) by FOC (3.9), we get

∂U (x∗, y∗)

∂x
∂U (x∗, y∗)

∂y

= Px

Py
,

MUx

MUy
= Px

Py
.

MRS = MRT,

while FOC (3.10) remains as the budget constraint.

Example 3.6
Maximize the utility function of the Cobb–Douglas form U = f(xa y1−a), subject to the
usual budget constraint xPx + yPy = I:

max U = f (xa, y1−a), (3.11)

s.t. x Px + y Py = I. (3.12)

Solution:
First, we take the natural logarithm of the objective function (3.11), and then we
maximize it:

ln U (x, y) = a ln x + (1 − a) ln y,

max va ln x + (1 − a) ln y, (3.13)

s.t. x Px + y Py = I.

� Substitution Solution: First, we obtain MRS from Equation (3.13):

U (x, y) = a ln x + (1 − a) ln y,
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MRS =
∂U (x, y)

∂x
∂U (x, y)

∂y

=
a · 1

x

(1 − a) · 1

y

=
a

x
1 − a

y

= a

x
· y

1 − a

MRS = ay

(1 − a)x
.

Obtaining y-value from Equation (3.12),

Px x + Py y = I ,

Py y = I − Px x,

y = I − Px x

Py
. (3.14)

Since MRS = Px
Py

, we can use the value of MRS for this particular function that was
obtained in Equation (3.14), and substitute for y-value obtained in Equation (3.15) to
get x-value:

ay

(1 − a)x
= Px

Py
,

a

(
I − Px x

Py

)

(1 − a)x
= Px

Py
,

a

(
I − Px x

Py

)
Py = (1 − a)Px x,

a(I − Px x) = (1 − a)Px x,

aI − a Px x = Px x − a Px x,

aI = Px x,

aI

Px
= X. (3.15)
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Substitute x-value from Equation (3.16) into x in Equation (3.15) to get y-value:

y =
I − Px

(
aI
Px

)
Py

,

y = I − aI

Py
,

y = I (1 − a)

Py
.

� The Lagrangian Solution:

max L = a ln x + (1 − a) ln y − λ(Px x + Py y − I ),

we obtain the FOCs:

∂L

∂x
= a

x
− λPx = 0, FOC (3.16)

∂L

∂x
= (1 − a)

y
− λPy = 0, FOC (3.17)

∂L

∂y
= Px x + Py y − I = 0. FOC (3.18)

From FOC (3.17), we get

a

x
= λPx ,

a = λPx x . (3.19)

From FOC (3.18), we get

1 − a

y
= λPy,

1 − a = λPy y. (3.20)

Adding Equation (3.20) to Equation (3.21), we get a + 1 − a = λPx x + λPy y,

1 = λ(Px x + Py y),

1 = λI ,
1

I
= λ. (3.21)
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Substituting the value of λ from Equation (3.22) into λ in Equation (3.20):

a = λPx x,

a = 1

I
Px x,

a
Px

I

= x,

aI

Px
= x . (3.22)

Substitute the value of λ from Equation (3.22) into λ in Equation (3.21):

1 − a = λPy y,

1 − a = 1

I
Py y,

1 − a
Py

I

= y,

(1 − a)I

Py
= y.

3.4 EFFECTS ON THE OPTIMAL CHOICE

There are two major changes that would directly and effectively affect the consumer’s
optimal choice and for which consumer demand would respond accordingly. They are the
change in income and consequently in the consumer’s ability to buy, and the change in
the market price of commodities, and consequently in the willingness to trade among the
alternatives of those commodities.

3.4.1 Change in Income

We have seen earlier how an increase or decrease in consumers’ budget or income would
only affect the intercepts, resulting in a parallel shift of the budget line to the right or
left, which either expands or shrinks the affordability zone. This, of course, would occur
under the assumption of holding the prices of commodities constant. The question now is
what would happen to the optimum point (C) when the budget line shifts right or left? The
answer would be visually clear in the graph shown in Figure 3.24 where we assume that
an increase in income would cause the budget line, BL, to shift right to BL1. The optimum
point C can literally move to any spot on the new budget line BL1, but here are the five
general representative possibilities:

� C could move to A, which would offer more x (increase from xc to xa) and more y
(increase from yc to ya).
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� C could move to F, which would offer more of x (increase from xc to xf), but the same
amount of y.

� C could move to E, which would offer more of y (increase from yc to ye), but the same
amount of x.

� C could move to B, which would offer more of x (increase from xc to xb), but less of y
(decrease from yc to yb).

� C could move to D, which would offer less of x (decrease from xc to xd), but more of
y (decrease from yc to yd).

Another question is: What would determine which of these moves would be most likely
to occur? The answer lies in knowing the nature of the commodity, especially whether it is
normal or inferior.

Normal and Inferior Commodities A normal commodity is a commodity for which the
consumption would increase as consumer income increases and would decrease as income
decreases. The movement from C to A indicates that this specific consumer would consider
both x and y as normal commodities since the quantities of both increased as income
increased. The majority of the commodities we deal with are most likely to be normal
commodities. Specifically, we can say that good-quality goods and services are normal
commodities. In technical terms, we can say that the demand for normal commodities has
a positive relationship with income. If x is a normal good, then

�x

�I
> 0.
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An inferior commodity is the commodity for which the consumption would decrease as
income increases, and would increase as income decreases. The movement from C to B
when the consumption of y decreased and x increased, and the movement from C to D, when
the consumption of x decreased and y increased indicated that y and x, respectively, were
inferior commodities compared with their counterparts x and y in the same movements.
Generally, as shown in Figure 3.24, the consumption of whichever commodities decreased
were inferior commodities. In other words, income had a negative effect on the consumption
of the inferior commodities. If x is an inferior commodity, then

�x

�I
< 0.

Income–Consumption Curve In the graph shown in Figure 3.24, we saw the possibilities
of how the initial optimal point C may move to either A, B, D, E, or F depending on the
consumer preference and the type of commodities. If we follow any of these movements by
connecting the points with a line, we would get what is called the income–consumption
curve (I–CC), which is defined as a locus of all the points representing the optimum pattern
obtained as income changes while prices of commodities are held constant. In Figure 3.24,
we can identify a number of major I–CCs associated with movements of the optimum point.
Here are five types of I–CCs:

1. I–CCca, which is an upward sloping curve indicating a pattern of normal commodities.

2. I–CCcf, which is a horizontal straight line indicating a pattern of having more of x
and keeping y unchanged.

3. I–CCce, which is a vertical straight line indicating a pattern of having more of y and
keeping x unchanged.

4. I–CCcd, which is a backward sloping curve indicating a pattern of having normal y
and inferior x.

5. I–CCcb, which is a downward sloping curve indicating a pattern of having normal x
and inferior y.

Engel Curve: Nominal and Real The first scientific survey research on the way families
spent their income was conducted by a German statistician Ernest Engel in 1857. It was
famous for coining what is now known as the Engel curve that describes the relationship
between income and quantity demanded for commodities. This curve is defined as a locus
of all points representing the quantities of a commodity demanded at various levels of
consumer’s budget. Such a curve can be geometrically derived from the I–CC. But since we
can look at the value of income in two ways, the nominal income and the real income, we
can actually produce two curves: an Engel curve based on nominal income and an Engel
curve based on real income:

1. Nominal Income Engel Curve: Let us assume a certain consumer’s nominal in-
come of level I1 which has increased to level I2, and let us assume that this con-
sumer is interested in increasing the consumption of both x and y, which are normal
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commodities. The optimum would move from C1 to C2 producing an I–CC1. Now,
in a panel (see Figure 3.25), let us set the nominal income on the y-axis and keep the
x commodity on the x-axis. To draw a nominal income Engel curve on this panel, we
take the following steps to mark two points A and B:

(a) Drop two vertical lines from the optimum points C1 and C2.

(b) Extend two horizontal lines from the two levels of nominal income I1

and I2.

(c) Mark the intersection of the first vertical and first horizontal by A, and the
intersection of the second vertical and second horizontal by B.

(d) Connecting A to B would produce a nominal income Engel curve, for commod-
ity x.

2. Real Income Engel Curve: Real income is basically what nominal or money income
can buy. In other words, it is the consumer budget after consideration of the market
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prices of goods and services. So, if we have nominal income (I), real income would
be I

P . Specifically, we would have a real income for x and y.

RIx = I

Px
and RIy = I

Py
.

Therefore, we can obtain the following real income Engel curves (see Figure 3.26):

(a) Engel curve for x in terms of y prices: Raise verticals from C1 and C2 and cross
them with horizontals from the y-intercepts y1 and y2. Reach the two points of
intersections A and B to produce a real income Engel curve AB.

(b) Engel curve for y in terms of x prices: Extend horizontals from C1 and C2 and
cross them with verticals raised from the x-intercepts x1 and x2. Reach the two
points of intersections C and D to produce a real income Engel curve CD.

Engel Curve and Income–Consumption Curve for Homothetic and Quasi-Linear
Preferences A homothetic preference means that a consumer would increase or de-
crease his demand of a commodity by the same proportion of his increase or decrease in
income:

x1

I1
= x2

I2
= · · · = xn

In
= ∂x

∂ I
,

∂x j

∂ I
x j

= 1 j = 1, 2, . . . , n.

This equality in the way demand is scaled up or down with income results in a straight
I–CC through the origin as well as a similar straight line Engel curve. As for a quasi-linear



86 THEORY OF CONSUMER CHOICE

x1 x2 x3
x

y

x

I–CC

I

I3

Engel curve

I2
I1

FIGURE 3.27

preference, it is where a consumer would divert any change in income only toward one of
the commodities, say y, while the other, x, stays unchanged, the result would be a perfectly
vertical I–CC, as well as a vertical Engel curve (see Figures 3.27 and 3.28).

Income Elasticity of Demand We have seen the effect of income on the demand of
commodities but only in general terms. Now, we will be able to see to what extent the demand
responds to income change. That would be what is called the income elasticity of demand
that measures the degree of responsiveness of demand to income change. Specifically, the
term “income elasticity” is defined as the percentage change in the demand of a commodity
as a response to a 1% change in income. So, for example, the demand for commodity
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(x) in response to a change in income (I) can be measured by the income elasticity of
demand (ε):

εx = %�x

%�I

=
�x

x
× 100

�I

I
× 100

= �x

x
· I

�I

= �x

�I
· I

x

= x2 − x1

I2 − I1
· I

x
.
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Elasticity can tell us about the shape of the I–CC and Engel curve as well as about the
type of commodities for a certain consumer. Although consumers consider commodities in
a subjective way, we can generally categorize commodities according to their elasticities
in this manner:

� For normal commodities, ε≥ 0.
� For inferior commodities, ε< 0.
� For necessities, 0 ≤ ε ≤ 1.
� For luxuries, ε > 1.

Example 3.7
Calculate the income elasticity of demand for music CDs when Jack purchased 8 CDs in
October, at a time his monthly income was $2000, and 10 CDs in February when his income
raised to $3000 (Table 3.3).

TABLE 3.3

I 1x

October 2000 8
February 3000 10

εx = x2 − x1

I2 − I1
· I

x

= 10 − 8

3000 − 2000
· 2000

8
= 0.5 at the lower level.

This is the elasticity at the lower level. Note that we can use I = 3000 and x = 10 to in
substituting for (I/A) get the elasticity at the upper level, and we can use an average of (I)
as well as of (x) to get what is called the arc elasticity:

εx = 10 − 8

3000 − 2000
· 3000

10
= 0.6 at the upper level,

εarc = 10 − 8

3000 − 2000
· 2000 + 3000

8 + 10
= 0.55 Arc elasticity.

3.4.2 Change in Prices

In the budget line discussion, we have seen how the budget line would swing inward or
outward when the price of x decreased or increased, or swing downward or upward when
the price of y decreased or increased. This, of course, would occur under the assumption
that consumer budget or income as well as the price of one of the commodities remain
constant. Similar to the income change discussion, we can ask again. “What would happen
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to the optimum point when such a swing in the budget line occurs?” The answer can be
seen in the graph given in Figure 3.29. Let us assume that the price of x has decreased, and
let us recall that such a decrease would cause the change of both the slope of the budget
line and the x-intercepts. The slope value would be smaller, leading to a flatter budget line,
and the intercept would move right, which would mean causing the line to swing outward
on the x-axis, away from the origin.

The original optimum point C on BL1 can move to any spot on the new budget line BL2.
It would depend on consumer’s specific preference and the type of commodities. Generally,
we can identify the following five typical possibilities, where consumer equilibrium at C
could move to:

1. D, which would offer more of x (an increase from xc to xd) and more of y (an increase
of yc to yd);

2. B, which would offer the same amount of x but more of y (an increase from yc to yb);

3. E, which would offer the same amount of y but more of x (an increase from xc to xe);

4. A, which would offer less of x but much more of y (a big increase from yc to ya);

5. F, which would offer less of y but much more of x (a big increase from xc to xf).

Because the move from the original optimum point C to any of the alternative points above
is induced by a change in price, the nature of commodities in regards to their price change
would play a major role in those moves. Commodities, in this respect, can be categorized
as Giffen and non-Giffen.
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Giffen and Non-Giffen Commodities A Giffen commodity is a concept coined after the
nineteenth-century economist Robert Giffen who made a unique observation on the Irish
poor who increased their consumption of potatoes when their prices rose during a local
hardship. Since then, a Giffen commodity concept became known as any commodity that
would defy the common law of demand, which states a rise in price would cause a drop
in demand, and that the demand curve would be downward sloping. A Giffen commodity,
therefore, would be demanded more as its price rises and demanded less as its price drops.
Therefore, its demand curve would have a positive slope:

∂x

∂ Px
> 0.

Practically, it is very rare to find such a commodity. Logic dictates that for any commodity
to be Giffen, there would be two general conditions that have to be satisfied:

1. This commodity has to be an inferior one in the first place.

2. It has to be in a time and place that makes it requiring a substantial proportion of
consumer’s budget despite its inferiority.

The Irish potatoes at Giffen’s time must have satisfied these conditions, but generally
speaking, it is very uncommon to find a Giffen commodity for today’s consumers, and
therefore, this notion remains only a theoretical concept.

A non-Giffen commodity is the ordinary commodity that would normally obey the law
of demand and would exhibit a negative sloping demand curve:

∂x

∂ Px
< 0,

which reflects the inverse relationship between the demand for a commodity and its own
price. The vast majority of the commodities in our life are non-Giffen commodities.

Price–Consumption Curve Just like we did in our discussion of income change, we
can follow the movement possibilities of the optimum point to create a general pattern
curve called price–consumption curve (P–CC). We can also define such a curve in the
same manner we defined the I–CC. Price–consumption curve is, therefore, a locus of all
points representing the optimum pattern obtained as the price of a commodity changes
while income and price of the other commodity are held constant. Following the possible
movements outlined earlier, we can identify five major P–CCs:

1. P–CCcd, which is an upward-sloping curve indicating a pattern of consumer prefer-
ence toward having more of both commodities. Here, the decrease in the price of x
not only offered the consumer an opportunity to buy more of x, but also allowed the
consumer to buy more of y.

2. P–CCce, which is a horizontal line indicating that the consumer entirely dedicated
the gain offered by the decrease in the price of x to increase his consumption of x.
None was spared to buy more of y.
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3. P–CCcb, which is a vertical line. Here is the opposite case to the previous one. The
opportunity obtained by the decrease in the price of x was not used to buy more of x
but entirely dedicated to buy more of y.

4. P–CCcf, which is a downward sloping curve indicating that this consumer takes the
opportunity of the drop in the price of x to significantly increase the consumption of
x even on the expense of dropping the consumption of y.

5. P–CCca, which is a backward bending curve to confirm that x is an inferior commodity
and its consumption is reduced despite the drop in its own price. All benefits gained
from the price decrease are directed toward increasing the consumption of y.

Price Change and the Demand Curve Since the demand curve describes the relationship
between consumption of a commodity and its own price, this curve can be traced out of
the change in the optimum point and the resulting changes in the quantities induced by the
price change. Let us create a new panel below the previous graph as shown in Figure 3.30.
In this panel, the vertical axis would be the price where we mark the original price (P1) and
the dropped price (P2). The horizontal axis would measure the quantities of x. A demand
curve can then be obtained by

� dropping a vertical line from the first optimum point C, passing through XC1 in the
first graph and down to the x-axis in the second panel to mark x1;

� dropping a vertical line from the second optimum point, Cz, passing through XC2 and
down to mark x2 on the second panel.

Mark the intersection between the first vertical and a horizontal line extended from P1 as
point a, and mark the intersection between the second vertical and a horizontal line extended
from P2 as point b. Join a and b to form a demand curve D-curve.

Price Elasticity of Demand Just like in the case of income change, we can measure to
what extent the demand for commodities responds to the change in their own prices. This
kind of measure is what we call “the price elasticity of demand,” which is defined as the
percentage change in the quantity demanded of a commodity in response to a 1% change
in its own price, given that consumer budget and the price of the other commodity remain
constant:

ηx = %�x

%�Px

ηx =
�x

x
· 100

�Px

Px
· 100

,

ηx = �x

x
· Px

�Px
,

ηx = �x

�x
· Px

x
,

ηx = x2 − x1

P2
x − P1

x

· Px

x
.
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FIGURE 3.30

Just like with the income elasticity of demand, the second term of this formula
Px

x
can be

specified to calculate three types of elasticity: (1) at the lower level, where Px is the lower
price and x is its corresponding quantity of x; (2) at the upper level, where Px is the upper
price and x is its corresponding quantity; and (3) arc elasticity, where Px is the average of
the lower and upper prices and x is the average of the quantities:

ηarc = x2 − x1

P2
x − P1

x

· P1
x + P2

x

x1 + x2
arc elasticity.
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Example 3.8
Find the lower, upper, and arc price elasticities of demand for eggs (x) if Jim buys the
following dozens a year (Table 3.4).

TABLE 3.4

Eggs (x) Price (Px)

22 2.25
30 1.95

Solution:

ηx = x2 − x1

P2
x − x1

x

· Px

x
,

ηx = 30 − 22

1.95 − 2.25
· 1.95

30
= 1.73 elasticity at the lower level,

ηx = 30 − 22

1.95 − 2.25
· 2.25

22
= 2.72 elasticity at the upper level,

ηarc = 30 − 22

1.95 − 2.25
· 1.95 + 2.25

30 + 22
= 2.15 arc elasticity.

Note that since the demand would typically change in the opposite direction of the price
change according to the demand law, price elasticity would usually be negative for all
ordinary commodities. The resulting number of elasticity would just reflect the rate of
change in demand with respect to price change.

Substitutes and Complements We have seen how the price elasticity of demand measures
the response of demand to a change in the commodity’s own price. What if the demand for a
commodity responds to a change in the price of the other commodity? That would produce
the cross price elasticity of demand. But before we get into that, we need to define two
related types of commodities, the substitutes and the complements.

The substitutes are the commodities in pair for which an increase in the price of one
would cause an increase in the demand for the other commodity, or a decrease in the
price of one would cause a decrease in the demand for the other commodity. Basically, the
cross-relationship between the price of one and the demand for the other is positive:

∂x

∂ Py
> 0 or

∂y

∂ Px
> 0.

Typical substitutes are the commodities such as Pepsi and Coke or regular and herbal tea
that can easily replace each other. Usually the effect of a change in the price of x would go
to the quantity of y through the quantity of x. For example, a person is used to buying Pepsi
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(x). But, if the price of Pepsi (Px) increases, the purchased quantity of Pepsi (Qx) would
decrease because this person would most likely switch to Coke (y) leading to an increase in
the purchase quantity of Coke (Qy) would increase, assuming its price Py has not changed:

Px ↑→ Qx ↓→ Qy ↑ ,
| |−−−−− + −−−−−

also

Px ↓→ Qx ↑→ Qy ↓ .
| |−−−−− + −−−−−

The complements are a pair of commodities for which an increase in the price of one
would cause a decrease in the quantity of the other, or a decrease in the price of one
would cause an increase in the quantity demanded of the other. In other words, there is a
negative cross-relationship between the price of one commodity and the demand for the
other commodity:

∂x

∂ Py
< 0 or

∂y

∂ Px
< 0.

Typically, the complements are the commodities that are put to use together so that
they are needed at the same time and the demand for them is connected for an integrated
consumption. A classic example is cameras and films or cars and tires, or pancake and
syrup. The connection in use dictates that the effect of a change in price of one (Px) would
be passed on to the purchased quantity of the other (y) through the own quantity (x). Suppose
that the price of cameras dropped, people would buy more cameras and as a natural result,
they would buy more films:

Px ↓→ Qx ↑→ Qy ↑
| |−−−−− − −−−−−

or

Px ↑→ Qx ↓→ Qy ↓ .
| |−−−−− − −−−−−

Cross-Price Elasticity of Demand We can modify the price elasticity formula by intro-
ducing the price of one commodity and the quantity of the other commodity:

ex,y = �x

�Py
· Py

x
,

ex,y = x2 − x1

P2
y − P1

y

· Py

x
lower and upper.

ex,y = x2 − x1

P2
y − P1

y

· P1
y + P2

y

x1 + x2
arc.
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Example 3.9
Find the three forms of cross-price elasticity for the following data of the prices of cameras
(Py) and the purchased quantities of film (x) (Table 3.5).

TABLE 3.5

Py x

$400 2000
$200 5000

Solution:

elower
x,y = X2 − X1

P2
y − P1

y

× Py

X

= 5000 − 2000

200 − 400
× 200

5000
= 0.6,

eupper
x,y = 5000 − 2000

200 − 400
× 400

2000
= 3,

earc
x,y = 5000 − 2000

200 − 400
× 200 + 400

5000 + 2000
= 1.2.

3.5 INCOME AND SUBSTITUTION EFFECTS

The change in price of a commodity usually affects the quantity demanded in two inter-
twined effects, the substitution effect and the income effect. The substitution effect is
about the change in the relative price and the marginal value of the commodity. It reflects
the change in the balance between the marginal value and the new price because consumers
usually would not buy any commodity whose marginal value is less than the price paid. That
is why when the price of a commodity increases, a consumer would buy less so as to avoid
buying any extra units whose price became above their marginal value. By the same token,
if the price of a commodity falls, a consumer would want to buy more of a commodity
whose marginal value became more than what is paid for. Such consumer adjustments of
the quantity demanded refer to the substitution effect or the Hicksian substitution after the
British economist J.R. Hicks.

The income effect is about the change in the alternative opportunity offered by the
change in the consumer’s purchasing power brought about by the change in the price of
one of the commodities. So, if the price of a commodity falls, the consumer would be able
to buy more for the same money available. In other words, there will be some gain in real
income that would be translated into buying more commodities. Let us see how the entire
change in price can be decomposed into those two effects, substitution and income effects.
In the graph shown in Figure 3.31, suppose a consumer is originally at the optimum point
A, buying xa and ya. If the price of x falls, BL1 would swing to BL2, and the consumer’s
optimum point would move to another point such as C on a higher IC, offering more of
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x. This increase in x from xa to xc is the full price change that includes two parts by two
effects, substitution and income. In order to separate these two parts, we can assume that
the decrease in the price of x offered the opportunity to have a higher real income or higher
purchasing power. It became possible for the consumer to achieve the same satisfaction or
level of utility of bundle A with less money. We can represent that assumption by creating
another budget line such as BL3 that represents a lower budget than what BL2 projects.
This new budget line would touch IC1 at B as a third optimum point that offers the same
previous level of utility of A but with lower budget. The bundle offered by B is xb and
yb. Therefore, the movement of the optimum from C to B refers to the income effect
while the movement of the optimum from A to B refers to the substitution effect. In other
words, the entire price effect (xa to xc) is divided by the substitution part (xa to xb) and the
income part (xb to xc).

3.6 SLUTSKY EQUATION

Slutsky equation is a mathematical formulation that shows how the full change in
price is decomposed into the substitution and income effects. It is named after the
nineteenth-century Russian economist Eugene Slutsky. The original budget constraint
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equation is rewritten after a price change such as fall in the price of x from, say Px

to P ′
x :

Px x + Py y = I ,

P ′
x x + Py y = I, P ′

x < Px .

Such a fall in price from Px to P ′
x would cause a total effect on the quantity in a form of

increase from x to x ′
1, where

Total effect = ∂x

∂ Px
< 0

when the optimum point B was introduced on the new budget line BL3, in Figure 3.31 it had
to be to the right of the original optimum A because of the strict convexity of the IC, and be-
cause of the need to keep the original level of utility at IC1. This implies that the new bundle
at B would have more of x and less of y, hence the substitution effect has to be negative:

∂x S

∂ Px
< 0, where dU= 0.

This would define what is called the compensated law of demand where for a constant
level of utility, price and quantity would have an inverse relationship.
As for the change in income it would be expressed by:

∂ I

∂ Px
= x,

a decline in Px to P ′
x leads to an increase in the real income Ir:

∂ Ir

∂ Px
= −x,

where the minus sign refers to the negative relationship between price and real income. As
price decreases, the purchasing power and real income would increase. The income effect
can be obtained by multiplying two elements:

∂ Ir

∂ Px
,

which refers to the impact of the change in the price of x over real income, and

∂x

∂ I
,

which refers to the impact of income on the quantity of x:

Income effect = ∂ Ir

∂ Px
× ∂x

∂ I
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Since
∂ Ir

∂ Px
= −x, then

Income effect = −∂x

∂ I
x .

The full effect can, therefore, be formulated by adding both, the substitution and income
effects:

∂x

∂ Px︸︷︷︸
= ∂xs

∂ Px︸︷︷︸
− ∂x

∂ I
x︸︷︷︸

Full price Substitution Income
effect effect effect

and this is the Slutsky equation.

SUMMARY

� This chapter establishes that consumer choice is based on the interaction between his
preferences and willingness to trade among the available commodities and his afford-
ability.

� Consumer preferences are characterized by four major properties: completeness, transi-
tivity, nonsatiation, and convexity. Preferences and the consumer’s willingness to trade
among the commodities are represented by a technical tool called the indifference curve,
which has a certain shape and characteristics and a capacity to depict all the bundles of
commodities for which the consumer would be indifferent to choose.

� The marginal rate of substitution (MRS) is another technical tool to show how much a
consumer is willing to give up one commodity in favor of another. MRS is equal to the
negative slope of the indifference curve.

� Consumer’s affordability to obtain the desired goods and services is represented by
his budget line, which, in turn, is determined by consumer’s income and the price of
commodities. Analogous to the marginal rate of substitution is the marginal rate of
transformation (MRT), which is the ratio of the market prices of the commodities, and it
is equal to the negative slope of the budget line. The budget line has been shown through
its major changes: the shift, swing, and kink that can be brought about by changes in
income and the market prices. Also, a three-dimensional budget line has been constructed
as an example of dealing with three desired commodities.

� Consumer’s optimal choice has been addressed by matching his preferences to his af-
fordability. It is shown technically by combining the two technical tools, the indifference
curve and the budget line, such that his optimal choice is located at the point of tangency
between the highest possible indifference curve and his available budget line.

� Consumer utility and the way of measuring it have been discussed and the concepts
of total utility, marginal utility, and diminishing marginal utility have been addressed.
Utility maximization is detailed technically and examples have been given.

� The most common effects on the optimal choice are addressed under the topic of changes
in consumer’s income and changes in market prices. Changes in income lead to classifying
commodities into normal and inferior and result into deriving the income–consumption
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curve, Engel curve, and the income elasticity of demand. Price changes lead to the Giffen
and non-Giffen goods, price–consumption curve, demand curve, and the price elasticity
of demand, as well as substitutes and complements.

� The effect of the change in market price lead to the discussion of income and substitution
effect, which is a technical analysis to dissect the effect of price change into two parts:
one that is related to the change in the marginal value of the commodity in the eyes of
consumers when the commodity price changes, and the other that is related to the change
in consumer’s real income that would result from the price change. Finally, the Slutsky
equation is constructed to echo the income and substitution effects.

KEY TERMS

consumer preference
consumer affordability
transitivity
nonsatiation
convexity
indifference curve
indifference space
indifference map
utility
Cobb-Douglas function
marginal utility
total utility
marginal rate of substitution
marginal rate of

transformation
diminishing utility

budget line
optimal choice
consumer equilibrium
interior solution
corner solution
utility maximization
Lagrangian method
income change
price change
normal commodity
inferior commodity
Engel curve
income–consumption

curve
income elasticity
homothetic preference

quasi-linear preference
necessities
luxuries
Giffen commodity
non-Giffen commodity
price elasticity
price–consumption curve
substitute goods
complement goods
cross-price elasticity
income effect
substitution effect
compensated law of demand
Slutsky equation

LIST OF FORMULAS

� Marginal rate of substitution:

MRS = −�y

�x
= MUx

MUy
.

� Marginal value:

MV = −�y.

� Marginal utility of x:

MUx = ∂U

∂x
.
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� Budget line for x and y:

xpx + ypy = I.

� Horizontal intercept:

x = I

px
.

� Vertical intercept:

y = I

py
.

� Marginal rate of transformation:

MRT = SlopeBL = − Px

Py
.

� Consumer equilibrium condition:

MUx

px
= MUy

Py
.

� Cobb–Douglas Utility function:

U = f (xa y1−a).

� Income elasticity of demand:

εx = x2 − x1

I2 − I1
· I

x
.

� Arc income elasticity:

εarc = x2 − x1

I2 − I1
· I1 + I2

x1 + x2
.

� Price elasticity of demand:

πx = x2 − x1

p2
x − p1

x

· px

x

� Arc price elasticity:

πarc = x2 − x1

p2
x − p1

x

· p1
x + p2

x

x1 + x2
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� Cross-price elasticity:

ex,y = x2 − x1

p2
y − p1

y

· py

x
.

� Arc cross-price elasticity:

earc
x,y = x2 − x1

p2
y − p1

y

· p1
y + p2

y

x1 + x2
.

� Slutsky equation:

∂x

∂px
= ∂xs

∂px
− ∂x

∂ I
x .

EXERCISES

1. Explain how convexity of the indifference curve indicates that consumers generally
prefer average choices over extremes.

2. Compare the marginal rate of substitution (MRS) with the marginal rate of transfor-
mation (MRT) and explain what would each one convey about consumer choices.

3. Explain what would logically justify the equality of the following terms in the consumer
equilibrium condition:

MUx

Px
= MUy

Py
.

4. Think of two more examples of each of the following and determine the type of MRS
and draw the appropriate indifference curve for each:
� Perfect substitutes
� Perfect complements
� Neutral commodities
� Undesirable commodities

5. Explain why it is rare to find Giffen commodities in real life.

6. Find the optimal choice for Martin who buys ham (H) and potatoes (P) when their
prices are: Ph = $4.00 and Pp = $1.50. His utility function is

U = 5H + 21/4P.

7. Where would the consumer equilibrium be if the utility function is: U = 3x + 6y and
the price of x is $2.00 and the price of y is $4.00?
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8. If a CES utility function is

U (x1, x2) = xα
1 + xα

2 ,

where α is a positive constant. Find the MRS.

9. Tina has $40 to spend between chocolate (C) and milk (M) where the price of chocolate
is $8.00 and the price of milk is $4.00. Draw her budget line and redraw when (a) the
price of chocolate drops by 50% and the price of milk increases by 25%, (b) the price
of milk decreases to $2.00 and the price of chocolate remains the same at $8.00, and
(c) the price of chocolate decreases by 75% and the price of milk remains the same at
$4.00.

10. Using both the substitution and Lagrangian solutions, maximize the following utility
function:

U = 5x + 3y

s.t. 2x + 4y = 100.



4
CONSUMER DEMAND:
THEORETICAL ANALYSIS

4.1 DEMAND AND SUPPLY: FUNCTIONS AND LAWS

The model of demand and supply is the cornerstone of economics and a striking feature
of its theoretical analysis. It is an applicable model in the market that can be tested and
utilized as a significant analytical tool in market predictions.

Demand and quantity demanded are often used interchangeably, but it might be helpful
to distinguish between the two terms, especially at the technical observation and the sepa-
ration between the individual and the aggregate scales. Demand (D) is a set of quantities
of a good or service that consumers are willing and able to purchase at certain prices in
a specific frame of time and place. Quantity demanded (Qd) is the amount of a good
or service that consumers would buy at a certain price among alternative set of prices.
An individual demand function is often expressed by QD and it shows the relationship
between the individual demand of a good or service in relation to some major determinants.
For example, we can write the demand function for coffee (QC

D) as

QC
D = f (Pc, Pt , Ps, Y ),

where the amount of coffee a person purchases is determined by related factors such as the
price of coffee (Pc), the person’s income (Y), as well as the prices of related goods such
as tea (Pt) and soft drink (Ps). There are many determinants that can be included in the
function as the theory and life experience dictate. Suppose that this function is empirically
translated as

QC
D = 80 − 18Pc + 15Pt + 7Ps + 2Y.

Managerial Economics: A Mathematical Approach, First Edition. M. J. Alhabeeb and L. Joe Moffitt.
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However, the typical demand function in economics textbooks includes only the price
of the good. This is because the analysis focuses on the influence of price, holding the other
factors constant. We can do this, for instance, by assuming that income and other prices are
held at their average values. Suppose that the average price of tea is $5 and of soft drinks
$3, and let us assume that the consumer’s income is $25,000. We can adjust the function as

QC
D = 80 − 18Pc + (15 × 5) + (7 × 3) + (2 + 25)

QC
D = 226 − 18Pc.

This is the typical format of the demand function from which we can draw the demand
curve, derive the demand table, and observe all of their characteristics. In the same manner,
we can talk about supply, quantity supplied, and the supply function. Supply (S) is a set of
quantities of a good or service that producers (sellers) are willing and able to offer at certain
prices in a specific frame of time and place. Quantity supplied (QS) is the amount of a good
or service that a producer or seller would produce (sell) at a certain price among alternative
set of prices. An individual supply function of a firm is often expressed by QS, which is
determined based on some factors such as the price of the good or service offered, the cost
of producing this commodity, and other production-related factors such as technology of
production. As for the last example of coffee, we can express the supply function as

QC
S = g(PC , PB, PL , T ),

where the amount of coffee that can be produced and offered in the market by this firm
depends on the selling price of the produced coffee PC, the purchase price of coffee beans
(PB), the price of labor (wages) the firm pays to its employees, and the cost of technology
(T). As with the demand function, we focus on the selling price of the produced coffee
(PC) after holding the rest of the variables constant. The final typical supply function after
such adjustment can be given as

QC
S = 170 + 35PC .

This equation can be used to draw the supply curve and derive the supply table in a way
analogous to the operations on the demand function.

In drawing these two functions, the common way in economics is to put the price on the
y-axis, and both quantity demanded and supplied on the x-axis. This is different from the
typical way in mathematics, where the dependent variable (in this case Q) is assigned to
the vertical y-axis and the independent variable (in this case P) is assigned to the horizontal
x-axis. This difference in the axis assignment leads to the fact that the slope of both the
demand curve and the supply curve is equal to the reciprocal of the derivative of their
functions:

QD = 226 − 18PC ,

dQD

dPC
= −18,

SlopeD =
⎡
⎣ 1

dQD

dPC

⎤
⎦ = 1

−18
= −0.055.
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Similarly for the slope of the supply curve (SlopeS),

QS = 170 + 35PC ,

dQS

dPC
= 35,

SlopeS =

⎡
⎢⎢⎣ 1

d QS

d PS

⎤
⎥⎥⎦ = 1

35
= 0.028.

The slope can also be found by dividing the change on the vertical axis (the rise) by the
change on the horizontal axis (the run):

Slope = �P

�Q
.

The slope in this direct sense describes how the quantity demanded by consumers and the
quantity offered by firms relate to the price change. The slope of the demand curve of
–0.055 means that consumers would be willing to buy one more unit for each 5.5 cents
reduction in the price. Also, the supply curve slope of 0.028 means that firms would be
encouraged to produce one more unit if the product price rises by 2.8 cents.

Assuming that the demand and supply functions are continuous and differentiable,
their derivatives express demand and supply laws, respectively. The derivative of demand
function is negative, indicating that consumers would buy more of a commodity if its price
drops, and vice versa:

dQD

dP
< 0,

which is a direct expression of the demand law.
Also, the derivative of the supply function is positive, indicating that the firms tend to

produce and offer more of their products if the selling price goes up:

dQS

dP
> 0.

This is a direct expression of the supply law. However, demand and supply curves can take
shapes other than the typical downward sloping and upward sloping, respectively.

4.2 DERIVING A DEMAND FUNCTION FROM UTILITY MAXIMIZATION

We can derive a demand function directly from the utility maximization process. Suppose
that we have a household utility function of two commodities x and y:

U = f (x, y),

U = 9 ln x + 7 ln y,

max U = 9 ln x + 7 ln y,

s.t. xPx + yPy = I.
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Forming the Lagrangian function gives us

L(x, y, λ) = 9 ln x + 7 ln y − λ[Px + Py − I ].

Taking the first-order conditions (FOCs):

∂L

∂x
= 9

x∗ − Pxλ
∗ = 0,

∂L

∂y
= 7

y∗ − Pyλ
∗ = 0,

∂L

∂λ
= Px X∗ + Py y∗ − I = 0.

Getting the marginal rate of substitution (MRS) (y for x) from the first two FOCs,

MRS = 9y∗

7x∗ = Px

Py
,

and solving for y∗,

9y∗ Py = 7x∗ Px ,

y∗ = 7

9

[
Px

Py

]
x∗.

This equation represents the income consumption line, which can be substituted into the
budget constraint in its FOC format to obtain the demand function:

Px x∗ + Py y∗ = I,

Px x∗ + Py

[
7

9

(
Px

Py

)
x∗

]
= I,

Px x∗ + 7

9
Px x∗ = I,

Px x∗
(

1 + 7

9

)
= I,

16

7
Px x∗ = I,

x∗ = 9I

16Px
,

which is the demand function for the commodity x. It can be rewritten as

Qx = 9I

(
1

16Px

)
.

Or Qx = 9

16
− P−1

x
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To make sure that the demand curve is negatively sloping, we take the first derivative of the
function with respect to the price of x, and see if it has a negative value:

Qx = 9

16
IP−1

x ,

∂ Qx

∂ Px
= − 9

16
IP−2

x ,

∂ Qx

∂ Px
< 0.

By taking the second derivative, we can test if the demand curve is convex to the original
when the second derivative is positive:

∂2 Qx

∂ P2
x

= 9

8
IP−3

x ,

∂2 Qx

∂ P2
x

> 0.

Now we can obtain the demand function for commodity y by substituting the obtained
demand function for x into the budget constraint equations:

Px x∗ + Py y∗ = I,

Px

[
9I

16Px

]
+ Py y∗ = I,

Py y∗ = I − 9

16
I,

Py y∗ = I

(
1 − 9

16

)
,

y∗ = I

Py

7

16
,

y∗ = 7 I

16 Py
,

or Qy = 7

16
IP−1

y .

Similar to the demand function of x, the demand function of y has a negative slope with
convexity to the origin due to the negative first derivative and positive second derivative:

∂ Qy

∂ Py
= − 7

16
IP−2

y ,

∂ Qy

∂ Py
< 0,
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∂2 Qy

∂ P2
y

= 7

8
IP−3

y ,

∂2 Qy

∂ P2
y

> 0.

For graphing the demand curve from these derived functions for x and y, we can assume
certain values for income and prices of x and y (Figure 4.1). Suppose that income is $100,
and the price of x rises from $5 to $10,

Qx = 9I

(
1

16Px

)
,

Qx1 = 9(100)

[
1

16(5)

]
= 11.25,

Qx2 = 9(100)

[
1

16(10)

]
= 5.62.

Px

10

5

5.62 11.25

9I
16Px

Qx = 

Qx 

FIGURE 4.1

As for y, let us assume the price rises from $3 to $6, and income remains at $100 (see
Figure 4.2):

Qy = 7I

(
1

16Py

)
,

Qy1 = 7(100)

[
1

16(3)

]
= 14.6,

Qy2 = 7(100)

[
1

16(6)

]
= 7.3.



HOMOGENEITY AND THE NUMERAIRE 109

Py

6

3

7.3 14.6

7I
16Py

Qy = 

Qx 

Dy

FIGURE 4.2

4.3 HOMOGENEITY AND THE NUMERAIRE

Consumer demand function is said to be “homogeneous of degree zero.” This is illustrated
by

Q∗
x = f (Px , Py, . . . . . . , I )

= f (kPx , kPy, . . . . . . , kI), for k > 0,

which means that if all prices and income are multiplied by any positive constant, the
real optimal quantity demanded of a commodity would remain the same. This is basically
because the budget constraint

Px x + Py y = I

is essentially the same as

5Px x + 5Py y = 5I

and also as

kPx x + kPy y = kI.

The common implication of this characteristic is that if people’s income is raised by the
same proportion as inflation, there will be no change in their cost of living, given that it is
pure consistent inflation, and people would not have what is called “money illusion.”

Homogeneity of the demand function can be shown by the graph below (see Figure
4.3) in which the consumer budget line BL would remain the same as both the slope
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and intercepts do not change, and therefore the equilibrium point would not change
either.

I
Py

I
Px

5I=
5Py

5I=
5Px

= kI
kPy

= kI
kPx

Slope = 
–Px

Py

–5Px

5Py

–kPx

kPy
= =

e*y1

*x1

FIGURE 4.3

The numeraire price is an extension to the homogeneity in the demand function. It is
one of the prices of the commodities that would become the base for relative measurement
of other prices and income. If we consider that the k constant equals one of the prices, either
x price or y price, and this time we divide all the terms of the budget constraint by it, then
we would actually count that price as having the value of 1:

Px x + Py y = I,

Px

Py
x + Py

Py
y = I

Py
,

Px x + y = I.

This last equation can be understood as if Py was equal to 1. This would practically mean
eliminating the price of y and measuring the price of x relative to the price of y. This is why
the ratio of prices is called the relative price, and the ratio of income to price is called the
relative or real income.

We can also divide by income to get

Px x + Py y = I,

Px

I
x + Py

I
y = 1,

and in both ways setting either one of the prices or income to 1 would not change the
essence of the budget constraint.
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4.4 INVERSE DEMAND FUNCTION

The typical demand function is a direct function in that the quantity Qx is a function of price
Px, meaning that the quantity is the dependent variable and the price is the independent
variable. In the inverse function, price Px would be the dependent variable and the quantity
would be the independent variable. The common example is the auction where price usually
follows the quantity demanded. The more people want an item, the higher the price goes.
Another example would be the bulk buying in which higher quantity demand would lower
the price per unit.

The implication of having an inverse function on the MRS is to flip the ratio of the
change in commodities around between the MRS of a direct function (MRSd) and the MRS
of an inverse function (MRSi):

MRSd = −�Q y

�Qx
→ MRSi = −�Qx

�Qy
.

This means how much a consumer would be willing to give up of commodity x in order to
have more of commodity y.

4.5 DEMAND AND SUPPLY: TABLE AND CURVES

Demand and supply functions of two variables allow us to obtain values for these variables
and tabulate them in a demand and supply table in which a set of quantities that would
be demanded and supplied are shown corresponding to a set of prices. Let us consider the
following set of demand and supply equations for a certain market product:

Q D = 200 − 1.75P,

QS = 12 + 1.5P.

We can plug in possible product prices, for example, from $10 to $110 and calculate the
corresponding quantities demanded and supplied, as shown in Table 4.1.

TABLE 4.1

_______________D_____________________________S_________________

QD P QS

182.5 10 27
165 20 42
147.5 30 57
130 40 72
112.5 50 87

95 60 102
77.5 70 117
60 80 132
42.5 90 147
25 100 162

7.5 110 177
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We can, then, plot both columns of QD and QS on the horizontal axis against price on
the vertical axis. Each curve we obtain would be a locust of all the quantities demanded or
supplied at their corresponding prices to form the whole Demand or Supply into demand
curve or supply curve, respectively, as shown in Figure 4.4.

Px

Qx

D

98.8

12 20

120

Q
D =200−1.75P Q S

=12
+1.5

P
100

80

60

40

20

–8

57.8

114

40 60 80 100 120 140 160

S

FIGURE 4.4

Observations:

(a) To technically distinguish between quantity demanded (QD) and demand (D) on the
one hand, and between quantity supplied (QS) and supply (S) on the other hand,
we go back to the definitions stated earlier. QD and QS are any single quantities
demanded or supplied displayed at any price. D and S are the whole set of quantities
demanded or supplied at the corresponding set of prices, namely, that the combined
columns of QD and P constitute the demand (D), and the combined columns of QS

and P constitute the supply (S).

(b) As prices go up, the quantities demanded go down and the quantities supplied go
up. These types of relationships result in having a downward sloping demand curve
and an upward sloping supply curve. It confirms the negative relationship between
price and quantity demanded (demand law), and the positive relationship between
price and the quantity supplied (supply law):

P ↑→ QD ↓
P ↓→ Q D ↑

}
� Demand law,

P ↑→ QS ↑
P ↓→ QS ↓

}
⊕ Supply law.
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(c) As one column goes down and the other goes up, there has to be a point when they
meet. That occurs when the price is $57.85, resulting in the equality between the
quantity demanded and the quantity supplied at 98.77. This is where the demand
curve and supply curve cross each other. The point of intersection is called the
equilibrium point, the $57.85 is called the equilibrium price, and the 98.77 is
called the equilibrium quantity.

(d) At all prices below the equilibrium price, such as $20 or $40, the quantity to be
demanded would exceed the quantity to be supplied, creating an excess quantity
demanded called “shortage.” It would be the difference between quantity demanded
and quantity supplied at all the prices below the equilibrium price:

Shortage = Q D − QS

= 165 − 42 = 123 at price $20

= 130 − 72 = 58 at price $40.

It is illustrated by the lines between the two curves such as AB and CD at the prices $20 and
$40, respectively. For all prices below the equilibrium price, there will be shortages, and,
therefore, all the area between the two curves below the equilibrium point would represent
the market shortage (Table 4.2).

TABLE 4.2

P QD QS Shortage Surplus

10 182.5 27 155.5 –
20 165 42 123 –
30 147.5 57 90.5 –
40 130 72 58 –
50 112.5 87 25.5 –

Equilibrium 57.85 98.77 98.77 0 0
60 95 102 – 7
70 77.5 117 – 39.5
80 60 132 – 72
90 42.5 147 – 104.5

100 25 162 – 137
110 7.5 177 – 169.5

Similarly, for all the prices above the equilibrium price, such as $80 or $100, the
quantity to be supplied would exceed the quantity to be demanded, creating an excess
quantity supplied called “surplus” (Figure 4.5). It would be the difference between quantity
supplied and quantity demanded:

Surplus = QS − Q D

= 132 − 60 = 72 for price $80

= 162 − 25 = 137 for price $100.
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FIGURE 4.5

It is illustrated by the lines between the curves such as EF and GH at the prices $80 and
$100, respectively. Also, for all the prices above the equilibrium price, the whole triangular
area between the curves above the equilibrium point would represent the market surplus.

4.6 MARKET EQUILIBRIUM

There is a natural universal conflict in the interests of buyers and sellers. Each would want
to deal with a price that serves them best. For the buyer, the price better be the lowest
possible, and for the seller, the price better be the highest possible. Any market for any
product includes this implicit conflict among traders until they agree with each other in
an implicit and aggregate sense. From that agreement, their product price is born, and the
product market would be in equilibrium.

Market equilibrium is a case that reflects the mutual satisfaction for both sides of the
market traders so that there “are” no frustrated buyers who will bid prices up, nor any
desperate sellers who cut prices down. There will be no incentive for either party to change
their mind. Figure 4.6 illustrates that the equilibrium occurs only at point e for the following
reason: at a price lower than Pe, for example, PL, buyers would love to buy the largest amount
of the commodity they can afford, for example, Qb

L , but sellers would not find it in their
interest and would offer less quantity, for example, Qs

L . In this case, buyers will be willing
to offer a higher price as an incentive to make sellers offer more and also because their
marginal value is higher than the price they pay. So, they would be willing to bid the price
up for more commodities. For those reasons, the price will go higher than PL to anywhere
between PL and PV on the second panel. Similarly, at a higher price than Pe, for example,
PH, sellers would be glad to sell the largest amount they can, for example, Qs

H , but buyers
may not afford this high price and fewer of them would be willing to buy less amount, for
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example, Qb
H . So, automatically all prices lower than the equilibrium price would go up

and all prices higher than the equilibrium price would go down until they are on Pe, where
QD = QS = Qe.

P P

D

e

S

PH

PvPe

PL

Q

PH

Pe

QL
s

QL
s

QH
b

QL
b

QL
b

QH
s

Qp

PL

MV

FIGURE 4.6

Mathematically, we can obtain the equilibrium price and equilibrium quantities by setting
the demand and supply functions equal to each other and solve for the price, then substitute
for it to get the quantities:

Q D = 200 − 1.75P,

QS = 12 + 1.5P,

Q D = QS,

200 − 1.75P = 12 + 1.5P,

200 − 12 = 1.75P + 1.5P,

188 = 3.25P,

188

3.25
= P,

57.85 = P.

We can plug this equilibrium price in any of the equations to get the equilibrium quantity:

QD = 200 − 1.75P

= 200 − 1.75(57.85)

= 98.77.
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QS = 12 + 1.5P

= 12 + 1.5(57.85)

= 98.77.

Example 4.1
Suppose the individual demand function for a specific contractual project (measured by
millions of dollars) is given by

QD = 12 − 2P,

and the individual supply function for the same project is given by

QS = 20P.

Suppose also that there are in the market 1000 contractors willing and able to submit their
bids to the 100 offices which want to contract out these projects:

(a) Find the market demand and supply functions for this project.

(b) Mathematically derive the equilibrium price and quantity.

(c) Construct the demand and supply table and mark the equilibrium price and quantity.

(d) Plot the demand and supply curves and show where the market equilibrium occurs.

(e) Add to the table obtained in point (c) above the market potential shortage and surplus
quantities and mark their areas on the graph.

Solution:

(a) Market demand:
QD = 1000 Q D

= 1000(12 − 2P)

= 12,000 − 2000P,

and market supply:

QS = 100QS

= 100(20P)

= 2000P.

Q D = QS

12,000 − 2000P = 2000P

(b) 4000P = 12,000

P = 12,000

4000
= 3 million the equilibrium price of the project.
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We substitute the equilibrium price into either market demand or supply function
to get the equilibrium quantity:

Q D = 12,000 − 2000P

= 12,000 − 2000(3).

(c) Q D = 6000 project (see Table 4.3).

TABLE 4.3

P Qd Qs

0 12,000 0
1 10,000 2,000
2 8,000 4,000

3 6,000 6,000 Equilibrium price and quantities

4 4,000 8,000
5 2,000 10,000
6 0 12,000

(d) See Figure 4.7.

6

5

4

3

2

1
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S

D

e

Shortage

Surplus

FIGURE 4.7
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(e) See Table 4.4.

TABLE 4.4

P QD QS Shortage Surplus

0 12,000 0 12,000 –
1 10,000 2000 8000 –
2 8000 4000 4000 –

3 6000 6000 0 0

4 4000 8000 – 4000
5 2000 10,000 – 8000
6 0 12,000 – 12,000

Example 4.2
The following set of simultaneous equations represents the demand and supply functions
for beef (B) and chicken (C) fillets in the barbeque market:

For beef QdB = 82 − 3PB + PC ,

QsB = −5 + 15PB .

For chicken QdC = 92 − 2PB + 4PC ,

QsC = −6 + 32PC .

(a) Mathematically, find the equilibrium condition (price and quantity) for beef and
chicken.

(b) Show the equilibrium on a graph for each product.

Solution:

(a) First, we set the equilibrium condition for beef:

QdB = QsB,

82 − 3PB + PC = −5 + 15PB,

PC = −87 + 18PB .
(4.1)

Second, we set the equilibrium for chicken:

QdC = QsC ,

92 − 2PB + 4PC = −6 + 32PC ,

98 = −2PB + 36PC .
(4.2)

Now, we substitute PC value from (4.1) in (4.2):

98 = −2PB + 36(−87 + 18PB),

98 = −2PB − 3,132 + 648PB ,
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3230 = 646PB,

3230

646
= PB,

$5 = PB equilibrium price of beef.

We substitute the price of beef into (4.1) to get the price of chicken:

PC = −87 + 18PB

= −87 + 18(5)

= $3 equilibrium price of chicken.

Now we substitute the price of both beef and chicken in either of the functions in
the first set to get the equilibrium condition for beef:

QdB = 82 − 3PB + PC

= 82 − 3(5) + 3

= 70

or
QsB = −5 + 15PB

= −5 + 15(5)

= 70 equilibrium quantity of beef.

(b) See Figures 4.8 and 4.9.

PB

e

QB

28.3

Q
d
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C

QsB = –5+15PB

5

70 85

FIGURE 4.8
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FIGURE 4.9

We also substitute the prices in the second set of functions to get the equilibrium
condition for chicken:

QdC = 92 + 2PB − 4PC

= 92 + 2(5) − 4(3)

= 90

or

QsC = −6 + 32PC

= −6 + 32(3)

= 90 equilibrium quantity of chicken.

4.7 FROM INDIVIDUAL TO MARKET DEMAND

Market demand is an aggregate concept obtained by adding up all the individual demands
for any commodity for any price at any market. Technically, the market demand function
is the mathematical sum of all individual demand functions comprising a specific market.
Let us take, for example, three hypothetical individuals who are demanding commodity x,
facing the same prices (Px) but having three different incomes (I1, I2, I3). Their individual
demand functions are written as

Q1
x = α1 + β1 Px + I1,

Q2
x = α2 + β2 Px + I2,

Q3
x = α3 + β3 Px + I3.
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Adding up these three functions would give us the market aggregate demand function
for commodity x, Qm

x :

Qm
x = Q1

x + Q2
x + Q3

x

= α1 + β1 Px + I1 + α2 + β2 Px + I2 + α3 + β3 Px + I3

= (α1 + α2 + α3) + (β1 + β2 + β3)[Px ] + I1 + I2 + I3)

=
n∑

i=1

[αi + βi Px + Ii ] i = 1, 2, 3, . . . , n.

As for the market demand curve of a certain commodity, it is too a horizontal summation
of all the individual demand curves for that commodity. Figure 4.10 shows how the market
demand curve Dm is derived by adding the three individual curves representing the following
demand equations for commodity x:

a

b

GF
E

C
H

d

18

12

7.3

5 7 9 10.2 15 22.5 25 49

D m
x

D 3
x

D2
x

D1
x

5

FIGURE 4.10

Q1
x = 9 − 0.5Px ,

Q2
x = 15 − 1.2Px ,

Q3
x = 25 − 5Px ,

Qm
x = 49 − 6.7Px .

The aggregate demand curve Dm
x is the kinked line abcd. The kink points b and c are on

horizontal lines originating from the upper extreme points of D2
x and D3

x . These points
indicate that consumer 2 cannot afford to buy x if its price exceeds $12, whereas consumer
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3 can only afford it if its price is less than $5. We can, for example, observe how much of
commodity x each of those individuals would buy if its price is $4:

Q1
x = 9 − 0.5(4) = 7,

Q2
x = 15 − 1.2(4) = 10.2,

Q3
x = 25 − 5(4) = 5,

Qm
x = 49 − 6.7(4) = 22.2.

Graphically, a horizontal line extended from $4 price would intersect with three individ-
ual demand curves as well as with the market demand curve. From the intersection points
e, f, g, h, we can drop vertical lines to mark the individual quantities demanded, that is, 7,
10.2, 5, as well as the market quantity demanded, that is, 22.2.

Note also that the market demand of 22.2 units of commodity x is the mathematical sum
of the three individual demands of 7, 10.2, and 5, that is, 22.2.

4.8 DEMAND AND NETWORK EXTERNALITIES

When we defined market demand as the horizontal summation of all individual demands,
we assumed that consumers in the market made their purchase decisions independently.
However, reality shows a different picture in which consumers are increasingly influencing
each other, and their tastes and preferences get intertudine as the means of communication
increase rapidly and efficiently. This kind of mutual influence forms what is called a net-
work externality, which describes the extent to which the demand of individual consumers
can be affected by the demand of other consumers in a specific market.

This externality can be either positive, which is also called the “bandwagon effect,” or
negative, which is called the “snob effect.”

4.8.1 The Case of the Bandwagon Effect

The bandwagon effect on market demand appears when consumers tend to increase their
demand of a particular commodity just because it is demanded more by others. The utility
of these consumers is derived from “going with the joneses,” or being fashionable, or
desiring to own a popular brand, or just to be associated with other. Firms understand
this economic externality very well and prefer to spend hundreds of millions of dollars on
celebrity endorsements to their products. Such endorsement campaigns have proved time
and time again to have significantly increased the demand for the endorsed products. It
would still do more of boosting the demand, the more famous and likable the endorsing
celebrity is.

When the bandwagon effect is counted for, the derived market demand becomes more
price elastic and tends to look flatter than any individual demand for that product. Let us
see this in Figure 4.11. Suppose we start with one demand curve such as D1 representing a
certain group of popular consumers buying a particular commodity, the quantity demanded
of which is initially 2000 units at a price of $100. Now suppose that the price falls down to
$80. This group of consumers will increase their quantity demanded to 2500, moving from
a to b on D1. This drop in price will enable even larger groups of consumers to buy this
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commodity for its popularity or the popularity of its initial consumers. The second group is
represented by the demand curve D2 and will buy 4000 more units at the reduced price of
$80. Let us assume that the price falls again to $60. This will encourage the second group
to increase their consumption from 4000 to 5500, moving from c to d on D2. However, the
increasing popularity of the product and the two consecutive drops in its price will again
entice another group of consumers such as those who are represented by D3 to buy 8000
more units. In deriving the market demand curve Dm, we connect points a, c, and e for they
are the transfer points based on the bandwagon effect. They are different from points such
as b and d, which are the transfer points based on the pure price effect and each lies on its
own curve, namely, D1 and D2, respectively.

Market demand curve is more price elastic, as we calculate its price elasticity, compared
with the individual demand (Table 4.5).

TABLE 4.5

D1 D2 D3

P Q P Q P Q

P1 100 2000 Q1 P1 80 4000 Q1 P1 100 2000 Q1

P2 80 2500 Q2 P2 60 5500 Q2 P2 60 8000 Q2
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ηQ = Q2 − Q1

P2 − P1
· P1 + P2

Q1 + Q2
,

η1
Q = 2500 − 2000

80 − 100
· 100 + 80

2000 + 2500

= −1,

η2
Q = 5500 − 4000

60 − 80
· 80 + 60

4000 + 5500

= −1.10,

ηm
Q = 8000 − 2000

60 − 100
· 100 + 60

2000 + 8000

= 2.4.

If we consider one movement on the market demand curve Dm, for example, moving from
c to e, we will observe that the whole price effect on the market demand was to increase
the quantity demanded from 4000 to 8000 as the price dropped from $80 to $60. But only
1500 units were increased due to the pure price effect and the rest of 2500 units were up
due to the bandwagon effect.

4.8.2 The Case of the Snob Effect

The snob effect on market demand is the opposite case of the bandwagon effect. It appears
when certain groups of consumers are driven to have an exclusive consumption of a
commodity. They derive their utility from seeing fewer and fewer of other people buying
the commodity they desire. They would reduce or even stop their purchase if they see more
consumers obtaining that commodity. Rare collectible items are typical for the commodity
that becomes a subject for the snob effect.

As shown in Figure 4.12, it is assumed that there are three groups of snob consumers
who, for some commodities, prefer to be the exclusive buyer. Those groups are represented
by the demand curves D1, D2, and D3. They are set in a way that the higher the demand (D3 is
the highest), the fewer the potential snob consumers who would be willing to buy this highly
collectible item, and vice versa, the lower the demand (D1 is the lowest), the more the snob
consumers who would be willing to purchase this item. Suppose at a price $60,000 there
would be 10 snob consumers on D1 willing to buy, and if the price goes up to $100,000, those
consumers would be only 3. This is the movement from point a to point b on D1. The rise in
price and the reduction in the number of people buying the item would entice consumers of
D2 to buy eight items. The third group, who are the most snobbish, are waiting to see even
fewer others to buy no matter how much the price will be. Now suppose the price goes further
up to $200,000 where only the group of D3 is willing and able to buy five items. The market
demand curve would be derived by connecting points a, c, d each on an individual curve
representing the transfer points due to the snob effect. Point b on D1 would not be included
because it is the transfer point from point a due to the pure price effect. The whole reduction
in the quantity is 7 (from 10 to 3), but 5 of which is due to the snob effect. The market demand
curve is steeper than any of the individual demand curves for it has the lowest elasticity



DEMAND AND NETWORK EXTERNALITIES 125

of all. Compared with D1, market demand curve (Dm) has –0.62 price elasticity while
D1 has −2.15.
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FIGURE 4.12

Individual demand:

D1 D2

P Q P Q

P1 60,000 10 Q1 P1 60,000 10 Q1

P2 100,000 3 Q2 P2 200,000 5 Q2

η1
Q = 3 − 10

100,000 − 60,000
· 60,000 + 100,000

10 + 3

= −2.15,

ηm
Q = 5 − 10

200,000 − 60,000
· 60,000 + 200,000

10 + 5

= −0.62.
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4.9 DERIVING A MARKET DEMAND FUNCTION UNDER EXTERNALITIES

Mathematically, we can show the effect of the positive and negative externalities on
market demand. Let us first assume that we have two households, A and B, represented by
the following demand functions for commodity X:

X A = 5

4Px
[IA],

X B = 5

4Px
[IB],

where IA and IB are the two households income, respectively, and Px is the price of X.
First, we find the market demand function without any effect of an externality. It is

simply the horizontal summation of the individual demand functions:

X M = X A + X B

= 5

4Px
[IA] + 5

4Px
[IB]

= 5

4Px
[IA + IB].

(4.3)

Now, let us consider the effect of the positive externalities where households positively
affect each other. Their demand functions can reflect this mutual effect as

X A = 5

4Px
[IA] + 1

2
X B,

X B = 5

4Px
[IB] + 1

2
X A,

where

∂ X A

∂xB
= 1

2
and

∂ X B

∂ X A
= 1

2
.

Substituting XB into XA function, we get

X A = 5

4Px
[IA] + 1

2

[
5

4Px
[IB] + 1

2
X A

]
,

X A = 5

4Px
IA + 5

8Px
IB

1

4
X A,

3

4
X A = 5

4Px
IA + 5

8Px
IB,

X A = 5IA

3Px
+ 5IB

6Px
,
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and substituting XA into XB, we get

X B = 5

4Px
[IB] + 1

2

[
5

4Px
[IA] + 1

2
X B

]
,

X B = 5IB

4Px
+ 5IA

8Px

1

4
X B,

3

4
X B = 5IB

4Px
+ 5IA

8Px
,

X B = 5IB

3Px
+ 5IA

6Px
.

Market demand would be

X M = X A + X B

= 5IA

3Px
+ 5IB

6Px
+ 5IB

3Px
+ 5IA

6Px

= 15[IA + IB]

6PX

= 5

2Px
[IA + IB].

(4.4)

Finally, let us consider the effect of the negative externalities where households affect each
other negatively. Their demand function can reflect this mutual negative effect as

X A = 5

4Px
[IA] − 1

2
X B,

X B = 5

4Px
[IB] − 1

2
X A.

Substituting XB into XA, we get

X A = 5IA

4Px
− 1

2

[
5IB

4Px
− 1

2
X A

]
,

X A = 5IA

4Px
− 5IB

8Px
+ 1

4
X A,

3

4
X A = 5IA

4Px
− 5IB

8Px
,

X A = 5IA

3Px
− 5IB

6Px
.
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Substituting XA into XB, we get

X B = 5

4Px
IB − 1

2

[
5IA

4Px
− 1

2
X B

]
,

X B = 5IB

4Px
− 5IA

8Px
+ 1

4
X B,

3

4
X B = 5IB

4Px
− 5IA

8Px
,

X B = 5IB

3Px
− 5IA

6Px
.

Market demand would be

X M = X A + X B

= 5IA

3Px
− 5IB

6Px
+ 5IB

3Px
− 5IA

6Px

= 10IA − 5IB + 10IB − 5IA

6PX

= 5[IA + IB ]

6Px

= 5

6Px
[IA + IB].

(4.5)

If we assume that household A income is $20,000, household B income is $40,000, and
the market price for X is $5.00, then market demand for X before any externality effect and
as determined by Equation (4.3) would be

X M = 5

4Px
[IA + IB]

= 5

4(5.00)
[20,000 + 40,000]

= 15,000 units of X.

Market demand for X under the positive externalities effect as determined by Equation (4.4)
would be

X M = 5

2Px
[IA + IB]

= 5

2(5.00)
[20,000 + 40,000]

= 30,000 units of X.
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Market demand for X under the negative externalities effect as determined by Equation
(4.5) would be

X M = 5

6Px
[IA + IB]

= 5

6(5.00)
[20,000 + 40,000]

= 10,000 units of X.

As shown in Figure 4.13, the market demand curve would shift right under the positive
externalities and shift left under the negative externalities.

Px

5.00

10,000 15,000 30,000

(–extern.)
(+extern.)

x

D1

D2
D

FIGURE 4.13

4.10 CHANGES IN QD AND QS VERSUS CHANGES IN D AND S

We have already distinguished between the terms quantity demanded/supplied and de-
mand/supply. The changes in them ought to be distinguished too, for they occur due to
different reasons. Those reasons are related to the affecting factors (independent variables)
and their changes as mentioned below:

1. Changes in the commodity’s price would result in changes in the quantities demanded
or supplied, causing movements along the same curve (demand or supply).
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2. Changes in any of the affecting factors other than the commodity’s price would result
in shifting the entire curve right or left. Those affecting factors in case of the shift
in demand curve are, for example, consumer income, price of related commodities,
government interventions such as taxes and subsidies, consumer expectations, tastes,
and preferences, and alike. In the case of the shift in supply curve, those factors could
be cost of production, level of production technology, market expectations, and alike.

The vertical axis of the graph below shows that as the price of x increases from P1 to
P2, the quantity demanded would decrease from QD1 to QD2, and if the price drops from P2

to P1, the quantity demanded would increase from QD2 to QD1. This type of change in the
commodity’s price can be traced down as a movement along the demand curve Dx from a
to b or the other way around, from b to a (Figure 4.14).

Px

P2

P1

Dx

Qx
QS2QS1 QD1QD2

b

a c

d

Sx

FIGURE 4.14

Also, along the supply curve we can observe a similar type of movement. If the price
of x goes up from P1 to P2, the quantity supplied would go up from QS1 to QS2 and point
d would move up to point c. If the price drops from P2 to P1, the quantity supplied would
follow, dropping from QS2 to QS1 and point c moves down to point d along the supply curve.
If any affecting factor other than the commodity’s price changes, the effect on the demand
or supply curves would be shifting the whole curve right (for more) or left (for less). If,
for example, consumer income increases and as a result consumer demand of commodity x
increases too, this demand change would be represented by a shift in the demand curve to
the right such as from Dx1 to Dx2 in graph 4.15. The curve would shift to the left from Dx1

to Dx3 if income decreases, causing a decrease in demand. Similarly, supply curve can shift
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right to indicate higher supply due, for example, to a decrease in the cost of production or
it could shift left to indicate a lower supply for facing an increase in the production cost
(Figure 4.15).

Px

Sx 3 Sx 1 Sx 2

Dx 2

Dx 1

Dx 3

Qx

FIGURE 4.15

It is the shift in either demand or supply curves or both that would lead to a change in
equilibrium, as it is illustrated in the following case of taxes.

4.11 CHANGES IN EQUILIBRIUM

Changes in equilibrium point, price, and quantities occur only when there are shifts in
demand or supply. Normally in the free market system, any shift in either of the curves or
in both would automatically trigger the price mechanism that would control the situation
and bring back equilibrium. It is usually the price that follows any change in either demand
or supply, and then the quantities follow the price into a new equilibrium. Figure 4.16
illustrates the possibilities of shift in both demand and supply and in both directions, rise
and fall. In the upper panel we see four possible cases, increase and decrease in demand,
and increase and decrease in supply. In the first case, only demand increases and its curve
shifts right causing the price to rise from Pe1 to Pe2 and the quantity from Qe1 to Qe2,
establishing a new equilibrium point at e2. In the second case, demand would fall shifting
left and causing the price to drop from Pe1 to Pe2 and the quantity to drop too, from Qe1

to Qe2. In the third case, supply would increase and demand remains the same as before.
This would cause the price to drop from Pe1 to Pe2 but for an equilibrium quantity that
is higher than before. In the fourth case, supply would decrease and shift left. The price
would increase but for an equilibrium quantity that is lower than before.
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What happens when both demand and supply change in the same time? We can see
this possibility in the lower panel of the graph, assuming the changes occur in the same
proportion for simplicity. The first case combines cases 1 and 3 discussed above, that is, a
rise in demand and supply that causes the price to stay at the same level of last equilibrium
but for new equilibrium quantity that is higher than before. The second case combines cases
1 and 4 discussed above, that is, an increase in demand but a decrease in supply. That would
be a double reason to increase the price probably to a double of the previous level but for
the same equilibrium quantity as before. The third case combines cases 2 and 3 discussed
above, that is, a decrease in demand but an increase in supply. This would be a double
reason to lower the price, probably to half as it was before but for the same equilibrium
quantity as it was before. The last case combines cases 2 and 4 discussed above, that is,
a decrease in both demand and supply that would keep the price at the same equilibrium
level as before but for lower quantity than before.

The chances of both demand and supply to change in exactly the same percentage
are only a hypothetical situation that is good for the illustration of theory. In reality, the
magnitude of the changes in the equilibrium price and quantity depends not only on the
differential in demand and supply change but also on the shape and slopes of the curves, as
it is shown in the following cases.

4.11.1 The Case of Thanksgiving Turkey

In this case, we show that the changes in equilibrium price and equilibrium quantity also
depend on the nature and slope of the curves. The largest ever surge in sales of turkey
(fresh and frozen) usually occurs in the week before Thanksgiving. Figures 4.17 and 4.18
show how the difference in the slope of supply curves between the fresh and frozen birds
affect the equilibrium price and quantity for an assumed same surge in demand. The right
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shift in demand from D1 and D2 represents the surge in demand for the turkey in the days
before Thanksgiving and it is kept the same in both panels. The supply of the fresh birds is
relatively price inelastic and its curve is steeper than the supply for frozen birds. The reason
is that producer’s and retailer’s capacity to prepare frozen birds and build up large stocks
of them during the year is much higher than their capacities to raise birds and prepare their
fresh meat for that week before Thanksgiving. That is why the supply of the fresh birds
is somehow limited even when the price rises substantially, such as from Pe1 to Pe2 in the
upper panel, resulting in increasing the equilibrium quantity only from Qe1 to Qe2. On the
other hand, the large supply of frozen birds stocked ahead of time would naturally allow
the price to perhaps rise just a little or stay unchanged. In some cases, it can even go down
a little bit.

S fresh

D2

D1

e2

e1Pe1

Pe2

Qe1 Qe2

FIGURE 4.17

S frozen

D2

D1

Pe2

Pe1

P

Qe1 Qe2

e1

e1

FIGURE 4.18
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4.11.2 The Case of Sales and Excise Taxes

Let us take the case of imposing a sales tax on a certain commodity, say 50/c per pound
of lamb sold. In Figure 4.19, suppose that Pe1 is the equilibrium price and Qe1 is the
equilibrium quantity in the lamb market before imposing the tax. Now the tax will be an
additional burden carried by consumers and will cause a drop in their demand of lamb
represented by shifting the D1 curve left to D2, where the vertical distance ae2 is equal to
the amount of tax per pound (50/c). Now with the new demand curve D2, we would have
a new equilibrium point (e2), and a new equilibrium quantity Qe2, which is less than the
previous equilibrium quantity Qe1. As for the equilibrium price, it would be Pe2, which is
the price received by producers, and Pe3 (which is equal to Pe2 + 50/c) would be the price
paid by consumers, and the difference between them is the amount of tax, 50/c (Pe3 − Pe2).

Consumers’ price 
(Pe2 + 50¢)

Producers’ price 

tax

a

S1

e1

D1

D2

Qe2 Qe1

e2

50¢
Pe3

Pe1

Pe2

FIGURE 4.19

Similarly, Figure 4.20 shows the case of the excise tax. If a 50/c excise tax is imposed
on the producers of lamb, it will be considered an increase in the production cost, and it
would, therefore, cause the supply of lamb to fall and its curve to shift left to S2 where the
vertical distance between S1 and S2 represents the 50/c excise tax. Assuming the original
demand stays the same, the equilibrium point will move from e1 to e2. The equilibrium
quantity will decrease from Qe1 to Qe2, and the equilibrium price will be Pe2 that would
be the price that consumers pay, now that their demand is faced with less supply. However,
producers would not keep this whole price since they have to pay 50/c to the tax collector.
So, the producer’s price would be Pe3 (which is equal to Pe2 − 50/c) and the difference
between the two prices would be the 50/c excise tax (Pe2 − Pe3).

Although the legal incidence of taxes places the burden of paying the sales taxes on
consumers and excise taxes on producers, in reality both parties share paying both types
of taxes. In other words, the economic incidence of taxes is shared between consumers
and producers. Their shares are determined by the slopes of the curves. The following is an
example to calculate the shares of a sales tax between consumers and producers.
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Consumers’ price

Producers’ price 
(Pe2 − 50¢)

tax

S1

e1

D1

Qe2 Qe1

e2

S2

50¢Pe1

Pe3

Pe2

FIGURE 4.20

Example 4.3
The following are the market demand and supply functions for salmon steak:

QD = 8000 − 1000P,

QS = 2000P − 4000.

Suppose that the local government imposes a sales tax of $0.75 per pound of salmon steak,
find the following:

(a) The original equilibrium price and quantity.

(b) The after-tax equilibrium price and quantity.

(c) The absolute and percentage share for consumers and producers of the tax burden.

(d) Graphically show the tax burden and how it is divided between consumers and
producers.

Solution:
(a) Let us start with equating the functions to solve for the equilibrium price and

equilibrium quantity:

Q D = QS,

8000 − 1000P = 2000P − 4000,

12,000 = 3000P,

12,000

3000
= P = $4.00 the original equilibrium price.
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We substitute the equilibrium price in either of the functions to get the equilibrium
quantity:

Q D = 8000 − 1000(4)

= 4000 pounds of quantity demanded of salmon steak,

Q S = 2000(4) − 4000

= 4000 pounds of quantity supplied.

(b) Since it is a tax problem, it would be better to modify the demand and supply function
in terms of price instead of in terms of quantity:

Q D = 8000 − 1000P,

P = 8000

1000
− QD

1000
,

P = 8 − 1

1000
Q D,

QS = 2000P − 4000,

P = 4000

2000
− QS

2000
,

P = 2 − 1

2000
QS.

Since introducing the sales tax causes a drop in demand equal to the amount of tax, the
demand function above would be modified as

P = 8 − 1

1000
Q D − $0.75.

Now we get the new equilibrium after imposing the tax by equating the above after-tax
demand function with the supply function:

8 − Q

1000
− 0.75 = 2 + Q

2000
,

8 − 0.75 − 2 = Q

1000
+ Q

2000
,

5.25 = 3 Q

2000
,

3 Q = 10,500,

Q = 10,500

3
= 3500 the new equilibrium quantity.
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We substitute the new equilibrium quantity into either function to get the new equilibrium
price:

P = 8 − 3500

1000
= −$0.75,

P = $3.75,

or P = 2 + 3500

2000
,

P = $3.75 the new equilibrium price.

Since consumers bear the legal burden to pay the sales tax, they would pay

$3.75 + $.75 = $4.50 consumer’s price.

Though the producers collect $4.50, they keep only $3.75 and they forward $0.75 to the
government (see Figure 4.21).

Consumers’

Producers’

Tax e1

D1

Q4000
3500

D2

e2

P

P

Consumers’ price

Old equilibrium price
Producers’ price

8

7

6

5

4

3

2

1

3.75

4.50

FIGURE 4.21

Another way to look into this solution is to equate the before-tax functions but modifying
the demand function by replacing its price (P) with the price plus tax (P + $0.75):

Q D = 8000 − 1000P,

QS = 2000P − 4000,

QD = QS,
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8000 − 1000(P + 0.75) = 2000P − 4000,

3000P = 11,250,

P = 11,250

3000
= $3.75 the new equilibrium price.

We substitute this new equilibrium price into either of the functions to get the equilibrium
quantity:

Q D = 8000 − 1000(3.75 + 0.75),

Q D = 3500,

QS = 2000(3.75) − 4000,

QS = 3500 the new equilibrium quantity.

(c) The sales tax made consumers pay $4.50, which is 50/c more than what they used
to pay before taxes. The 50/c is their absolute share of the tax burden, which is equal to
two-thirds of the tax (0.50/0.75) or 66.6%.

As for producers, they now collect $3.75. That is 25/c less than what they used to get
before the imposition of the sales tax. So, their absolute share is 25/c, which is one-third of
the tax (0.25/0.75) or 33.4%.

(d) Figure 4.21 shows the consumer’s share of the tax as the large rectangular area
constituting 2/3, as compared to 1/3 for the producer’s share shown in the smaller rectangular
area.

4.12 MARKET DISEQUILIBRIUM

In what is known as “the rationing function of prices,” market price plays a crucial role
in controlling the market forces and brings back the state of market equilibrium any time
the interplay between demand and supply and their influencing factors pushes the market
away from the stable state of equilibrium. So, it is the nature of the free market system
that market prices have the ability to converge toward equilibrium when some external
factors disturb it. However, under certain circumstances, powerful external factors such
as the government can interfere and short-circuit the mechanism of the price rationing
function and bring about a state of market disequilibrium. It should be noted here that
many government policies may lead to shifts in demand or supply here and there, but the
effect of such policies can naturally be mitigated by the price self-adjusting mechanism.
It is only those policies that tamper with market price that would lead to disequilibrium;
this is because once the price is set by the conscious choice of anybody other than the
market natural forces, the self-rationing function would not work anymore. Needless to
say that in most cases, government interventions often come with the best intentions. But
despite the fact that those intervention policies may be morally justified for fairness and
protecting the public interest, they often end up backfiring and defeating their own purpose,
and sometimes even causing many negative consequences, the aggregate cost of which may
exceed any benefit. The typical examples of such policies are the price control in its two
faces, the price ceiling and price floor.
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4.12.1 The Case of a Price Ceiling

A price ceiling refers to the maximum level of price that can be mandated by law under
certain circumstances. When such a price is imposed on a particular good or service that is
subject to government control, it would mean that this commodity must not be sold for a
price above the legislated level. A price ceiling is usually either equal or below the previous
equilibrium price for that commodity. There have been many real-life price ceilings imposed
by the government for a certain period of time. The most popular examples are rent control,
a cap for gas prices, upper limit for insurance premium, and alike. Figure 4.22 shows an
example of a price ceiling application on gasoline. Suppose that due to war in the Middle
East, the supply of gasoline in the United States dropped from S1 to S2, which caused the
price to rise from P1 to P2, given that the demand for gasoline stayed at the same level D1.
Suppose that this hike in the gasoline price is high enough that most people cannot afford
it; it would eventually constitute a compelling reason for the government to act and impose
a price level and declare it as a maximum that gasoline prices must not go beyond.

MV

Shortage

Pe2

Pe1

Pc Pc

e1

e2

S2

S1

Qe1Qs

Qd Qs

Qd

D1

FIGURE 4.22

Suppose that the imposed price ceiling is Pc. At this price, consumers would love to
buy QD, but producers would be willing to only offer QS. This is a classic case of market
disequilibrium where quantity demanded QD exceeds quantity supplied QS, creating a
market shortage equal to (QD − QS). At the offered quantity supplied of QS, some able
consumers may become willing to pay a higher price than Pc in order to get the amount of
gasoline they used to get. The offered price may reach up to the marginal value at MV. It
is also seen that the added cost of time and energy the rest of consumers indirectly incur
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trying to get the gasoline they need would be considered and may push the real price for
them up to MV too. People may spend many hours standing in lines or offer whatever
they can afford as bribes, or pay more in the black market to get some gasoline. All of
these possibilities would be example of the additional cost that would raise the real price
to MV. Eventually and collectively the gasoline price may practically settle somewhere
definitely above Pc but below MV. Most likely, the price may get stabilized between the
two equilibrium prices Pe1 and Pe2.

Let us consider the following numerical example (see Figure 4.23).

MV = 95

Shortage

Pe2 = 35

Pe1 = 20

P

Pc

S2

S1

e1

e2

D1

Q

15 = Pc

= 160

230 350 380 390

FIGURE 4.23

Example 4.4
The following are the market demand and supply functions for a product:

Q D = 420 − 2P,

QS = 260 + 6P.

Suppose that some unexpected circumstances caused a rise in the cost of production that
led the supply to fall to

QS = 140 + 6P,

which caused the price to rise beyond the affordability of most consumers. What would
happen in the market of this product if the government imposes a ceiling price equal to
25% less than the equilibrium price?
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Solution:

First, we find the market equilibrium before the imposition of the legislated ceiling price:
QD = QS,

420 − 2P = 260 + 6P,

160 = 8P,

160

8
= Pe1 = $20, the market equilibrium price

Qe1 = 420 − 2(20) = 260 + 6(20),

Qe1 = 380.

Second, we find the market equilibrium when supply fell:

Q D = QS,

420 − 2P = 140 + 6P,

280 = 8P,

280

8
= Pe2 = $35,

Qe2 = 420 − 2(35) = 0.140 + 6(35),

Qe2 = 350.

Price ceiling = 20 − (20 × 0.25) = 15.
At this price, consumers will demand

QD = 420 − 2(15)

= 390.

But producers will only offer

QS = 140 − 6(15),

Q D = 230.

The market shortage will be

Sh = 390 − 320 = 160.

The price equalling the consumer’s marginal value will be

QD = 420 − 2P,

230 = 420 − 2P,

2P = 190,

P = 190

2
= 95.
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4.12.2 The Case of a Price Floor

Similar to the price ceiling, a price floor is a legislated price too, but it refers to the
minimum level, below which prices of goods and services subject to control must not fall.
It is usually either at or above the previous equilibrium price. The typical example for the
actual price floor is the price of some agricultural commodities that the government wants
to protect in support of their farmers. Another typical example is the labor price in terms of
a minimum wage that the government imposes to protect workers and assure decent living
conditions for them. Once again, although such policies may seem normally sound, they
most likely create negative economic consequences. The big problem with the price floor
is that it eventually leads to a market surplus, as shown in Figure 4.24.

Qd

(QS − QD)
Surplus

D1

D2

D3

Pf
Pf

Pe1

Pe2

S2

S1

e1

e2

e3

e4
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Q
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If, for any reason, the supply of a good increases to the point way beyond the current
demand (S1 shifting to S2), the price would automatically decrease (from Pe1 to Pe2) to bring
about a new equilibrium at e2. But a decrease like this may sometimes go below the level
necessary to sustain production, which may collectively hurt the majority of producers. In
this case, the government may interfere and impose a better price to save producers. This
is the price floor Pf, which could be above the first equilibrium price. Producers would be
thrilled to sell QS at this price, but consumers would not be willing to buy at this price but
a maximum amount of QD, and that is what sets the market for big surplus equal to (QS −
QD). It happened in reality many times where the government found itself eventually either
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subsidizing producers for what they cannot sell or buy out the excess amount of production
that cannot be sold in the market normally. In this latter case, the government would act
as if it is creating a shadow extra demand represented by D2 to partially absorb the excess
supply and bring about a new market equilibrium at e3, or go all the way to D3 in order to
accommodate all the surplus in the market and achieve a new equilibrium at e4 at the price
floor. The bigger problem is that the cost of any of these corrective actions would be carried
by the taxpayers. In some cases of mandating a price floor in the form of a minimum wage
for the unskilled workers, the eventual detrimental economic consequences may be as dire
as to increase a wide-scale unemployment, although it would help employ a certain group
of workers.

Example 4.5
The following are demand and supply functions for lettuce:

QD = 12 − 31/2P,

QS = 3 − 21/2P.

Suppose that at some point the price of lettuce fell to a level below what keeps the lettuce
farmers coping and maintaining their living. Also, suppose that the local government found
it necessary to intervene to protect the farmers and their community by imposing a price
floor of $2.50 per head of lettuce sold (see Figure 4.25). What would be the consequences
on the lettuce market?

P

S

Pf
Pf = 2.5

Pe = 1.5

Surplus
9.25−3.25=6

e1 

QD= 3.25 Qe= 6.75 QD= 9.25

D 

Q

FIGURE 4.25
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Solution:

First, let us obtain the original equilibrium condition in the lettuce market:

Q D = QS,

12 − 31/2 P = 3 + 21/2 P,

9 = 6P,

9

6
= P = $1.50 the original equilibrium price,

QD = 12 − 31/2/(11/2) = 3 + 21/2(11/2) = 6.75 equilibrium quantity.

When the price floor of $2.50 is imposed, the quantity demanded will be

Q D = 12 − 31/2(21/2)

= 3.25,

and the quantity supplied would be

QS = 3 + 21/2(21/2),

QS = 9.25,

QS > QD.

That would create a surplus of

QS − QD = 9.25 − 3.25 = 6.

4.13 MARSHALLIAN VERSUS HICKSIAN DEMAND CURVES

Let us recall the income and substitution effect that we discussed in the previous chapter.
It showed that the price effect on the quantity demanded was dissected into income effect
and substitution effect. Let us also recall from the previous chapter how demand curve
was derived from subsequent changes in price and the responses of the quantity demanded
to them. The demand curve we obtained was the regular demand curve that is commonly
used everywhere in microeconomics. It is called the Marshallian demand curve after
Alfred Marshall (1842–1924). It reflects both of the changes in price effects on the quantity
demanded, that is, income and substitution effects combined. However, because the income
effect was shown by hypothetically assuming different income (another budget line) to keep
the consumer on the same utility level, the segment becomes compensatory and would allow
to create another demand curve called the compensated demand curve that would reflect
only the substitution effect of the price change and quantity demanded holding the utility
level constant. Given the fact that only the substitution effect is reflected, and that it is
negative since increasing the price of a commodity with holding utility constant would
result in cutting the consumption of that commodity, the compensated law of demand
would act exactly like the regular law of demand in that the price and the quantity of a non-
Giffen commodity would always move in opposite direction to each other when consumer
utility is maintained at a certain level. The compensated demand curve is also called the
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Hicksian demand curve after John Hicks. It reflects a compensated demand function of the
price of commodities and the consumer utility level:

Qcomp
D = f (Px , Py, U ).

The compensated demand function can be derived according to Shephard lemma.

4.13.1 Shephard Lemma and the Expenditure Function

We have seen in the previous chapter that for consumer equilibrium we maximize consumer
utility subject to a budget constraint. Analogous to this is the approach of minimizing
consumer expenditures subject to a certain level of utility. This would lead to

Min E = Px x + Py y,

s.t. U = u(x, y).

Solving this by the same Lagrangian method we had before would express what is called
the expenditure function:

E = e(Px , Py, u),

which is to say that the consumer expenditures for the optimal utility is a function of the
prices of the commodities and the utility level that is to be maintained.

It is this expenditure function that, according to Shephard lemma, would give us the
compensated demand function when it is differentiated with respect to the price of one of
the commodities.

Example 4.6

1. Obtain the expenditure function from the utility function

u = xa y1−a.

2. Derive the compensated demand function from the expenditure function.

3. How the compensated demand function would look like if a = 0.45.

Solution:

1. We start with the Lagrangian expression1

L = Px x + Py y + λ[u − xa y1−a],
∂L

∂x
= Px − λa xa−1 y1−a,

substitute for y1−a = u

xa
= u−a

x ,

∂L

∂x
= Px − λa xa−1u−a

x ,

= Px − λa
u
x = 0,

(4.6)

1The form of the Langrangian in this minimization problem is consistent with the Language multiplier
being interpreted as improvement in the optimal value of the objective function. Improvement in this
case of minimization means becoming smaller. However, the Lagrangian form used in Chapter was
for maximization problems.
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∂ L

∂y
= Py − λ(1 − a)xa y1−a−1,

substituting for xa = u

y1−a
= u y−(1−a) = ua−1

y ,

∂L

∂y
= Py − λ(1 − a)u ya−1 y−a,

∂L

∂y
= Py − λ(1 − a) u

y = 0,

(4.7)

∂L

∂y
= u − xa y1−a = 0. (4.8)

Dividing (4.6) by (4.7) we obtain

(1 − a)Px x = a Py y. (4.9)

From (4.9), we get the value of Pyy as

Py y = (1 − a)Px x

a
. (4.10)

If we substitute (4.10) into the expenditure equation E, we get

E = Px x + Py y

= Px x + (1 − a)Px x

a

= a Px x + (1 − a)Px x

a

= Px x(a + 1 − a)

a

= Px x

a
.

From this, we obtain the value of x:

x = a
E

Px
. (4.11)

Similarly, we can obtain the value of y from getting Pxx from (4.9) and substituting
it in E. It would be equal to

y = (1 − a)
E

Py
. (4.12)
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Now we substitute x and y values above into the utility function:

U = xa y1−a

=
[

a
E

Px

]a [
(1 − a)

E

Py

]1−a

= E

[
a

Px

]a [
(1 − a)

Py

]1−a

,

and the expenditure function E would be

E = U[
a

Px

]a [
(1 − a)

py

]1−a

or

E = U

[
Px

a

]a [
Py

1 − a

]1−a

.

2. Now that we have the expenditure function E, we can differentiate it with respect to
the price of x (Px) in order to get the compensated demand function for x:

∂ E

∂ Px
= U

[
a

1 − a

(
Py

Px

)]1−a

,

and if the demand function is often expressed by the quantity of the commodity, this
one would be

Qx
D = U

[
a

1 − a

]a (
Py

Px

)1−a

.

3. If a = 0.45, then 1 – a = 1 – 0.45 = 0.55, and the function would be

Qx
D = U

[
0.45

0.55

(
Py

Px

)]0.55

= 0.9U

[
Py

Px

]0.55

.

4.14 DERIVING THE HICKSIAN (COMPENSATED) DEMAND CURVE

The next two figures show that the Hicksian or compensated demand curve can be derived
from an equilibrium change due to price change scenario. Figure 4.26 shows an initial
equilibrium e1 for the original budget line BL1 and the indifference curve IC. When the
price of x goes up and down, budget lines BL2 and BL3 represent the adjusted income so as
to keep the utility level the same as before the change in price. This is why all budget lines
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stay in tangency with the same IC, forming the equilibrium points e2 and e3. This is where
the compensation term comes to make more sense. The consumer’s income is compensated,
positively or negatively, where the price of x increases and decreases, respectively, so that
the equilibrium can stay on the same indifference curve. In this case, the corresponding
quantities of x projected in Figure 4.27 from the three equilibrium points in the upper
panel would represent only the substitution effect of the price change. Along with their
corresponding prices, they form points A, B, and C to create the compensated demand curve
(Figure 4.27).

e2

e1

Qx3Qx1Qx2

Qy3

Qy1

Qy2

e3

ICBL3
BL

1

B
L

2

FIGURE 4.26
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C
Regular D
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A

P

Px2

Px1

Px3

c2 Qx2 Qx1 Qx3 c3

Q

FIGURE 4.27
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Compared with the regular demand curve, the only common point between the two
curves is the original equilibrium e1 since the consumer was able to get Qx1 at Px1 without
any compensation. This is exactly why the two curves would intersect at B. At higher
prices than Px1, such as Px2, there would be an increase in the consumer income (positive
compensation) and more of x is demanded on the compensated than on the regular curve
(Qx2 > C2). At prices lower than Px1, such as Px3, the consumer income is decreased
(negative compensation) and as a result less x is demanded on the compensated than on the
regular curve (Qx3 < C3).

Another point of comparison between the two curves is that the compensated curve is
steeper than the regular because it reflects only the substitution effect compared with the
regular curve that reflects both substitution and income effects.

4.15 REVEALED PREFERENCES

The notion of the revealed preferences goes back to the economic literature of the 1940s,
specifically to the book published in 1947, Foundation of Economic Analysis, by Paul
Samuelson who proposed that consumer preference could be inferred from consumer
behavior. That notion was opposite to what had been known in the traditional economic
theory that built a model of consumer behavior based on his preferences. Such a proposal
depended on the fact that we can observe people’s actual choices of goods and services,
given a certain combination of income and prices. Knowing more and better information
about consumer preferences would lead to better estimation of consumer demand and the
substitution effect.

The basic idea of the revealed preferences is illustrated in Figure 4.28. Suppose that
a consumer is to choose between A and B bundles of commodities. Point A with the
coordinates (x1, y1) is on budget line 1 (BL1) and point B with the coordinates (x2, y2) is on
budget line 2 (BL2). Whereas both points are affordable to this consumer, let us suppose
that he chooses A over B. In such a choice, A would be considered revealed preferred.
This scenario is qualitatively different from saying that the consumer just prefers A over

y

y1

y2

y3

x1 x2 x3
x

BL
2

BL
1

A

B

C

FIGURE 4.28
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B, although he would in the final analysis. Revealed preferred is a term to indicate that
the consumer chose A while he could have chosen B at a time where both A and B were
affordable. In other words, it might be more succinct to say that this consumer has chosen
A over B, or B has been passed on in favor of A. This implies that the major condition
for the revealed preference is the affordability of both commodities but the choice of one.
If consumer income is I and price of commodities is P, then choosing A bundle means
spending all income, and therefore,

x1 Px + y1 Py = I,

and for B being affordable means that

x2 Px + y2 Py ≤ I.

Taking the left-hand side of both equations gives us

x1 Px + y1 Py ≥ x2 Px + y2 Py. (4.13)

This describes the relationship between the bundle of commodities that could have been
demanded and those that have actually been demanded. This relation can be stated as that
the bundle (x1, y1) is directly revealed preferred to the bundle (x2, y2). If that means that
the consumer is choosing the most preferred bundle that he could afford (x1, y1) over the
less preferred that he could afford too, then it can be stated unequivocally that bundle A is
preferred over bundle B:

(x1, y1) 
 (x2, y2).

If we repeat the same scenario of A and B but between B and another point, for example, C,
where B and C are affordable for B being on BL2 and C being inside of it, then we would
reach to a similar relation as the one in (4.13):

x2 Px + y2 Py ≥ x3 Px + y3 Py. (4.14)

Combining with (4.13), we get

x1 Px + y1 Py ≥ x2 Px + y2 Py ≥ x3 Px + y3 Py, (4.15)

which ends up as

(x1, y1) 
 (x2, y2) 
 (x3, y3),

and by transitivity

(x1, y1) 
 (x3, y3)

or

A 
 C.
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This is to say that bundle A is indirectly revealed preferred to bundle C.
This discussion leads to what is called the weak and strong axioms of revealed prefer-

ence. The weak axiom of revealed preference states that if A is directly revealed preferred
to B, given that they are different, then B can never be directly preferred to A. A stronger
axiom includes the indirect revealed preference too. The strong axiom of revealed pref-
erence states that if A is directly or indirectly revealed preferred over B, then it must not
happen that B is directly or indirectly revealed preferred over A. The distinction of the
strong axiom here is its inclusion of the indirect revealed preference.

Knowing more on the consumer-revealed preferences allows us to derive where his
indifference curve would lie. Let us assume that we add three more budget lines to the
earlier BL1 and BL2. In Figure 4.29, we introduce five budget lines. Let us take three
points, for example, D, E, F on the added three budget lines BL3, BL4, BL5, and let us
assume that all are revealed preferred to A. If we assume that consumer preference is
convex and monotone, then we can state that the weighted average values of D, E, and
F are preferred to x. Also, we can say that any bundle which can offer more of the two
commodities than any of the points D, E, and F would be preferred to x. This, in other
words, says that the whole shaded area to the northeast of these points would offer more
than A can offer. Contrary to that, the whole area to the southwest of the BL1 and BL2

would offer less than A can offer. From that we can conclude that the indifference curve
where A is at must lie in the remaining area between the upper and lower shaded areas.

y

x

Better choice
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F
D

E

A

Worse choice
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1

BL
4BL

3
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In addition to deducing consumer preferences from consumer’s behavior and the actual
choices he makes in the marketplace, the theory of revealed preference can also help
estimate the substitution effect and prove its negativity.
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Let us assume that a consumer is indifferent between two bundles of goods, A(xa, ya)
and B(xb, yb), and let us assume that these bundles are purchased for the prices Pa

x , Pa
y and

Pb
x , Pb

y . If this consumer finds himself indifferent between A and B but he still chooses A,
the logical conclusion would be that A must cost less than B:

Pa
x xa + Pa

y ya < Pa
x xb + Pa

y yb, (4.16)

and if he chooses B, it must be that B cost less:

Pb
x xb + Pb

y yb < Pb
x xa + Pb

y ya. (4.17)

If we rearrange (4.16) into (4.17),

Pa
x xa + Pa

y ya − Pa
x xb − Pa

y yb < 0,

Pa
x (xa − xb) − Pa

y (ya − yb) < 0,
(4.18)

and rearrange (4.17) into (4.18):

Pb
x xb + Pb

y yb − Pb
x xa − Pb

y ya < 0,

Pb
x (xb − xa) − Pb

y (yb − ya).
(4.19)

Now, if we assume that only the price of x changes and the price of y remains the same(
Pa

y = Pb
y

)
, and if we add (4.18) to (4.19), we get

Pa
x (xa − xb) + Pb

x (yb − ya) < 0

or

Pa
x (xa − xb) − Pb

x (xa − xb) < 0

and we rearrange it to

(
Pa

x − Pb
x

)
[xa − xb] < 0. (4.20)

Expression 5 says that the product of the difference in prices and the difference in quantities
is less than zero. It means that prices and quantities go in opposite directions to each other,
which is to confirm the negativity of the substitution effect when the utility is held constant.
This is traditionally expressed as

∂ Qx

∂ Px

∣∣∣∣∣∣∣∣
< 0

U : constant
.

4.16 INTERDEPENDENT DEMAND

Some firms produce multiple products or multiline products. Sometimes, there is a com-
petitive relationship between these products or lines of products, and at other times, there
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is a complementarity between them. How does such a firm draw a collective strategy in
production, pricing, and marketing in order to maximize profits for the firm as a whole and
allow that maximization to occur in the individual subsection of the firm? Let us take, for
example, a giant automaker such as Ford or General Motors, which produce many models
and many lines within, where it is possible that a marketing or price policy in one plant may
inadvertently end up hurting the other. The parent firm has always to consider all potential
effects of business policies in one of its companies on the other affiliated companies, taking
into consideration whether the products are compliments or substitutes. Suppose that Sears
compa produces the lines of appli Sears ad Kent and consider for example, what a reduc-
tion in pricing of Kenmore washing machines would do to Sears washing machines and to
Kenmore and Sears dryers when all of these items are produced by companies belonging
to Sears. The typical strategy for maximizing profits for the entire firm is to go by the
equimarginal principle that stipulates equating the marginal revenue with the marginal cost
to get the optimal quantities and prices that would maximize profits.

Let us consider two products, x and y, produced by the same company C. The profit of
the company would be reached by subtracting the total cost (TC) of both products from the
total revenue (TR) of both items:

πC = TRC − TCC

= [TRx + TRy] − [TCx + TCy].

The marginal revenue for product x would be

MRx = ∂TRx

∂ Qx
+ ∂TRy

∂ Qx
, (4.21)

and the marginal revenue for product y would be

MRy = ∂TRy

∂ Qy
+ ∂TRx

∂ Qy
. (4.22)

The last term in the equation, which is ∂TRy/∂Qx in Equation (4.21) and ∂TRx/∂Qy in
Equation (4.22), is the cross-marginal revenue (CMR). It is the sign of this term that
indicates whether the products are complements, substitutes, or just not connected by any
relation (independent from each other):

CMR < 0 for substitutes,

CMR > 0 for compliments,

CMR = 0 for independents.

Compared with the case of independent products, having CMR negative would lead to
cutting on the optimal quantities and increasing the optimal price. Inversely, having a
positive CMR would lead to increasing the optimal quantities and reducing their optimal
prices. This type of knowledge would alert the company to adopt a strategy of neither
lowering the price nor increasing the supply of its substitute products, and may do the
opposite for its complement products.
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Example 4.7
Consider the following demand functions for two substitute products, (x and y), which are
produced by the same company. Their marginal costs are 160 and 80, respectively:

Px = 560 − 4Qx ,

Py = 360 − 2Qy − 4Qx .

TRx = Qx Px

= Qx [650 − 4Qx ]
= 560Qx − 4Q2

x .

(4.23)

TRy = Qy Py

= Qy[360 − 2Q y − 4Qx ]
= 360Qy − 2Q2

y − 4Qx Qy .

(4.24)

We combine the total revenues of the two products, (4.23) and (4.24), into the company’s
total revenue TRC:

TRC = TRx + TRy

= 560Qx − 4Q2
x + 360Qy − 2Q2

y − 4Qx Qy .
(4.25)

For marginal revenue of the two products, we take the partial derivative with respect to Qx

and Qy, respectively:

MRx = ∂TRC

∂ Qx
= 560 − 8Qx − 4Qy. (4.26)

MRy = ∂TRC

∂ Qy
= 360 − 4Qy − 4Qx . (4.27)

Applying the equimarginal principle MR = MC, we get

560 − 8Qx − 4Qy = 160, (4.28)

360 − 4Qx − 4Qy = 80. (4.29)

Subtracting (4.28) from (4.29), we get

200 − 4Qx = 80,

120 = 4Qx ,

30 = Qx .

We substitute Qx into the original demand function for x to get the price of x:

Px = 560 − 4Qx

= 560 − 4(30)

= 440.
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We substitute this Qx value into (4.29) to get the value of Qy:

260 − 4(30) − 4Qy = 80,

160 = 4Qy,

40 = Qy.

We substitute Qx into the original demand function for y to get the price of y:

Py = 360 − 2Qy − 4Qx

= 360 − 2(40) − 4(30)

= 160.

These are the equilibrium quantities Qx = 30 and Qy = 40 and the equilibrium prices
Px = 440 and Py = 160 that would maximize profit. Had the company let these product
managers maximize profits individually and without any consideration for the other product,
the result would have been different. The equilibrium quantities will not be able to maximize
the entire company’s profit. Let us see what would be those optimal quantities and prices if
the maximization is done independently:

TRx = 560Qx − 4Q2
x ,

MRx = ∂TRx

∂ Qx
,

MRx = 560 − 8Qx ,

MRx = MCx ,

560 − 8Qx = 160,

400 = 8Qx ,

50 = Qx ,

Px = 560 − 4(50),

Px = 360.

We have seen previously that to maximize profit in the case of having substitute products,
the firm should avoid increasing output or lowering the price. Acting as an independent
manager of product x resulted in higher quantity (50 instead of 30) and lower price (360
instead of 440), an equilibrium set that will not lead to maximizing profit for the firm as a
whole.

SUMMARY

� This chapter discusses the fundamental topics of demand and supply. It starts by making
a distinction between the two basic terms that are very frequently confused: quantity
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demanded/supplied and demand/supply. Quantities refer to one case in which a certain
quantity would be purchased or sold at a certain price. That is one point on the demand or
supply curve. Demand or supply refers to an entire set of those quantities that a consumer
or producer is willing and able to purchase or sell at a set of corresponding prices. Demand
and supply laws were explained, their curves were illustrated, and the demand function
was derived from the utility function. Homogeneity and the numeraire of the demand
function was explained as a property that let the optimal quantity demanded remain the
same when income and prices were multiplied by a positive constant. Related to the
format in which the demand function is expressed, the inverse demand function has also
been explained.

� Market demand was addressed as the horizontal summation of the individual demands,
and the effects of the network externalities were detailed in both the positive and negative
impacts on the market demand. The bandwagon and snob effects represented both sides
of the externalities and the market demand function was derived from both of these
influences.

� Market equilibrium was explained in detail and two types of changes were addressed.
Changes in the quantities demanded and supplied are due to price change, and changes
in the entire demand or supply are due to several factors other than the price. Changes in
the quantities demanded or supplied were depicted as movements along the same curves;
and changes in the entire demand or supply were depicted as shifts of the whole demand
or supply curves, either to the right, in the case of an increase, or to the left, in the case
of a decrease. This shift type of change is what usually leads to changes in equilibrium.
Two popular cases illustrated the change in equilibrium, the case of Thanksgiving turkey
and the case of sales and excise taxes.

� Along the market equilibrium, market disequilibrium cases were addressed too. Under
certain circumstances, the natural market equilibrium, which occurs because of the
rationing function of prices in the free market system, may not exist. Powerful external
forces such as the government may sometimes impose policies that tamper with market
price and may lead to the state of disequilibrium. Two typical examples of government
intervention were addressed, the case of price ceiling and the case of price floor.

� Related to the discussion of the income and substitution effect in Chapter 3, the com-
pensated or Hicksian demand curve was addressed as the curve that could be created to
reflect the compensatory effect of the income effect segment in the state of the income
and substitution effect on consumer choice after a price change. Shephard lemma was
also explained in relation to the expenditure function that would lead to the derivative of
the compensated demand function when differentiated with respect to the price of one
of the commodities.

� Revealed preferences were discussed as the notion that consumer preferences, and their
indifference curve could be inferred from observing consumer behavior as in the case
of knowing consumer choices of commodities at various income levels and different
prices. Two states of the revealed preferences were defined, the strong axiom and the
weak axiom of the revealed preferences.

� The last topic in this chapter was the interdependent demand where firms produced
multiple products, and the demand of one would be affected by the other whether
the commodities were substitutes or complements. Examples were given to illustrate
the best strategy from these firms to maximize their profits under the conditions of the
interdependent demand on their various products.
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KEY TERMS

quantity demanded demand quantity supplied
supply demand law supply law
money illusion relative price relative income
demand function equilibrium point equilibrium quantity
equilibrium price market equilibrium network externalities
positive externalities negative externalities bandwagon effect
snob effect market disequilibrium price ceiling
price floor compensated demand Hicksian demand
Marshallian demand Shephard lemma expenditure function
weak axiom of revealed

preference
interdependent

demand
revealed preference

strong axiom of revealed
preference

cross-marginal revenue
(CMR)

LIST OF FORMULAS

� Marshallian demand function:

QM
x = f (Px , Py, I ).

� Hicksian (compensated) demand function:

QH
x = g(Px , Py, U ).

� Expenditure function:

E = e(Px , Py, u).

EXERCISES

1. While the change in quantity demanded or supplied is only caused by price change,
list as many factors as you can that would cause shift in demand and supply
separately.

2. If there is a new sales tax of $100 on wide-screen TVs and an excise tax of $1.00 on
tobacco farmers, how would the demand of wide-screen TVs and the supply of tobacco
be affected?

3. Explain the difference between the legal incidence of taxes and the economic incidence
of taxes.

4. What does it mean to say a demand function is homogeneous of degree zero and what
is the significance of that?
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5. Compare the weak axiom of revealed preference with the strong axiom of revealed
preference.

6. Suppose that the demand and supply functions of pineapples are given by

Qd = 2000 − 400P,

Qs = 1600P.

(a) Find the equilibrium price and quantity.

(b) Find the equilibrium price and quantity after the local government imposes a 20/c
sales tax on pineapples.

(c) Find the equilibrium price and quantity if there is a 20/c excise tax on growers
instead of the sales tax.

7. The following are the total utilities of commodities x and y:

Q TUx TUy

1 30 20
2 55 38
3 75 54
4 90 68
5 100 80

(a) Find the marginal utilities of both commodities.

(b) Draw the total utility and marginal utility curves for both commodities separately.

(c) Find the consumer’s optimal combination choice if Px = $5.00 and Py = $4.00.

(d) Find the necessary consumer budget required to purchase the optimal choice.

8. The following are the demand and supply functions of milk:

QD = 100 − 20P,

QS = 40 + 5P.

(a) Find the equilibrium price and quantity.

(b) If a price ceiling of $6.00 is imposed and the demand rises to QD = 150 − 20P,
what would be the consequences in the market?

9. The following are the demand and supply functions of all-purpose flour:

QD = 6000 − 3000P,

QS = 2400 + 3000P.

(a) Find the equilibrium price and quantity.

(b) If the government imposes a price floor of $1.20 on this commodity, what would
happen to the quantities demanded and supplied?
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10. Consider a consumer’s demand function for a small window air conditioner:

P = 100 − 2Q.

(a) If this consumer is willing to pay $96.00 a piece, how many units would he or she
buy?

(b) If at the store the consumer finds this item on sale for $82.00, how many units
would he or she buy?

(c) How would these scenarios be depicted on a graph?

(d) Calculate the arc price elasticity of demand for this item.



5
CONSUMER DEMAND:
EMPIRICAL ESTIMATION

The theory of consumer demand that was explained in the previous chapters would not
be valid unless it is tested and verified in the real world. However, demand estimation not
only is necessary to merely validate the theory but also can serve as a powerful tool for
managers to explore and test the nature of market, behavior of consumers, appropriateness
of strategies, and effects of policies, all in order to make the best managerial decisions in
production, pricing, promotion, and expansion of the business.

Technically, demand estimation means identifying the demand function, recognizing its
determinants, and quantifying the impact of the significant determinants. This can be done
in many ways ranging from the simple common-sense market experimentation to the
most prominent statistical method of regression analysis.

5.1 SIMPLE MARKET EXPERIMENTATION

Suppose that a manager of a small pizza restaurant wants to estimate the demand of his
pizza in a simple way of trial and error by changing the price and watching the response of
the sale. In this case, he would implicitly assume that his pizza demand function is linear,
where the amount of sale or demand depends only on the price of the product. Suppose that
he took a look at his records and saw that his pizza had been sold for a while for $14.00
and averaging 15,000 pizzas in annual sales. He decided to test the response of demand if
he cut the price to $10.00. Suppose that after a year he watched the sale climbed to 20,000
pizzas. Right here, the manager can draw the simplest demand curve by identifying two
points A and B for two pairs of price–quantity readings (Table 5.1; Figure 5.1).
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TABLE 5.1

P Q

A $14 15,000
B $10 20,000

P

A

B

Q
15,000

10

14

20,000

FIGURE 5.1

Due to the assumption that the demand function is linear, it can be written as

Q = a + β P,

and it can be switched in terms of price as

P = α + βQ.

Now, values can be plugged in from the table as

14 = α + β(15,000), (5.1)

10 = α + β(20,000). (5.2)

α and β can be solved by subtracting Equation (5.2) from (5.1):

14 = α + 15,000 β,

−10 = −α − 20,000 β,

4 = −5000 β,

4

−5000
= β = −0.0008.
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Plugging in β in either of the functions (5.1) or (5.2), one can get α:

14 = α + (−0.0008)(15,000),

14 + 12 = α = 26,

or
10 = α + (−0.0008)(20,000),

10 + 16 = α = 26.

The manager can now construct the general demand function for pizza as

P = α + β(Q),

P = 26 − 0.0008Q.

He can now use this general demand function to predict what would happen to the sales of
pizza if he increases or decreases the price to any level he wants. However, he should realize
that the prediction would be reasonable only to prices close to the range of $10–$14 and
may not be applicable to any extreme change in the price. He can also know the appropriate
price he must charge if his production increases or decreases for any reason.

Inspecting the impact of price change on the restaurant revenue reveals that dropping
the price of pizza to $10 results in reducing the annual revenue by $10,000:

TR = Q · P

= 15,000($14.00) = $210,000

= 20,000($10.00) = $200,000

= $200,000 − $210,000

= −$10,000.

Therefore, it is obvious that the drop of $4 per pizza boosted the sales but was not enough
to increase the revenue or even to keep it close. In this case, the experimenting manager
would realize that he went too far cutting the price by $4 (from $14 to $10). He may try to
cut it by a lesser amount, such as $2, so the price would become $12. With the help of the
demand function he has constructed, he can see what kind of revenue this new price of $12
would bring. First, see how much would be the sales:

P = 26 − 0.0008Q,

12 = 26 − 0.0008Q,

0.0008Q = 26 − 12,

Q = 14

0.0008
= 17,500.

The size of sales would bring a revenue of

TR = Q · P,

= 17,500($12.00) = $210,000.
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It is exactly the same as the revenue when the price was $14.00. In this case, it would not
make any sense to drop the price. Therefore, there has to be a price that would give the
maximum possible revenue. So, what would that price be? If the manager knows a little bit
of economics, he would remember that the total revenue is maximized when the marginal
revenue reaches zero. This would lead him to get the marginal revenue function by taking
the first derivative of the total revenue function, and set the marginal revenue function to
zero and solve for P, which would be the optimal price that would maximize revenue:

TR = Q · P

= Q(26 − 0.0008Q)

= 26Q − 0.0008Q2.

MR = ∂TR

∂ Q
,

MR = 26 − 0.0016Q = 0,

26 = 0.0016Q,

26

0.0016
= Q = 16,250.

He can plug the quantity of 16,250 into the original demand equation to find the price:

P = 26 − 0.008(16,250),

P = 13.

So, $13.00 would be the optimal price for the pizza that would result in selling 16,250
pizzas a year, which would maximize the revenue to $211,250:

TR = Q · P

= 16,250($13.00) = $211,250.

This revenue is more by $1250 than the revenue that would be obtained when the price is
$14.00 or $12.00, and more by 11,250 than when the price is $10.00.

The conclusion is that a manager can experiment with affecting factors, such as price,
advertising expenditures, packaging expenditures, and see what happens. This method, of
course, is risky as it may result in a drop in revenue or profits. It is also limited to its range
of flexibility.

5.2 LINEARITY OF THE DEMAND FUNCTION:
FROM VISUAL TO REGRESSION

As seen before, demand function is primarily a relationship between the quantity demanded
and the price of a product. We further know from the demand law that this relation is
typically negative especially for the non-Giffen commodities, which constitute the vast
majority of the goods and services we deal with. We may further know from experience
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that this relationship is often linear. These two important characteristics of the function,
linearity and negative correlation, can actually be observed visually before the utilization
of more involved mathematical or statistical methods. Plotting data where each point would
represent a pair of readings, the quantity purchased for a price, would be the way to visually
and roughly observe those characteristics of the relation. This plotting of data would form
what is known as the “scatter diagram.” The major advantage of this two-dimensional graph
is to enable us to visually recognize the general relationship between the two variables.

Let us consider the following data on the number of TV sets sold at various prices and
locate 10 points for 10 pairs of data where the price would be on the vertical axis and the
quantity on the horizontal axis (Table 5.2; Figures 5.2 and 5.3).

TABLE 5.2

Price 1,000 1,100 1,200 1,300 1,400 1,500 1,600 1,600 17,000 2,000
Quantity 17 20 15 10 12 12 10 5 5 6

P

2000

1300
1200
1100
1000

1 2 3 17 20
Q

FIGURE 5.2

P

2000

1300
1200
1100
1000

1 2 3 17 20
Q

FIGURE 5.3
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From a general look at the diagram we can note that the scattered points visually reveal
three clusters of points (1, 2, 3), (4, 5, 6, 7), and (8, 9, 10). These clusters are placed as
if on a line running from southeast to northwest. This would hint that the relationship of
quantity and price is linear. We can also visually recognize that the higher the price, the
lesser the quantity. This would hint that the linear relation is negative. Now, we can take a
step further and attempt to visually place a line that would be as close as possible to each
and every one of the 10 observations. One approximation method to locate this line is to
take an average of each of the three clusters to produce three points (A, B, and C). The line
connecting these three points would be the best fit possible, determined visually. However,
since visual fitting is an arbitrary and subjective process and can result in certain differences
in the subsequent estimation, the statistical technique of regression would present the best
alternative and the most objective fitting process to date. The regression analysis is based on
what is called the ordinary least squares (OLS) method . The major premise of this method
is to minimize the vertical distances between the observations and the regression line.

The regression line is assumed to be a straight line with the typical equation of

Y = α + βx,

where the value of x is given as the independent or explanatory variable that would have
an impact on the value of the dependent variable Y. The purpose of the regression method
is to estimate the value of Y and quantify the effect of x on Y. Throughout this process, x
(Y-intercept), and β (slope of the line) are also estimated, in addition to adding the error
term (e) that would sum up all other factors that may contribute to the reasons why, and to
what extent, the estimated value of Y is different from the actual observation. The estimated
values of Y, α, and β would be marked by (∧):

Ŷ = α̂ + β̂x .

The value of the error term (e) would be obtained by the difference between the actual
observation (Y) and the estimated value of it (Ŷ ) for each observation:

e = Y − Ŷ ,

and if we substitute Ŷ from the previous equation, we get

e = Y − α̂ − β̂x .

This would stand for the deviation in value for each observation as it is estimated. Those
deviations would be squared and summed up as

�e2 = �[Y − α̂ − β̂x]2.

It is this sum of all deviations that would be minimized to get the best fit of the line, where
the values β and α are determined:

β̂ = �[x − x̄][Y − Ȳ ]

�[x − x̄]2
,

α̂ = Ȳ − β̂ x̄,
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where x̄ and Ȳ are the mean values of the x and Y observations. In addition to the estimation
of the parameters, the regression process should also examine how significant these
estimators are, and to what extent (i.e., the confidence level in these values), as well as how
effective the explanatory role of the model is as a whole.

Now, let us use the OLS method on the following example, performing the manual
calculations first and then the usual computer analysis so that we can clearly comprehend
the connection:

Example 5.1
Table 5.3 shows the monthly revenues and the advertising expenditures from an appliance
store records.

TABLE 5.3

Monthly Revenue 13,000 12,000 8,500 18,000 16,000 18,000 8,000 16,800 17,000 22,000
Monthly Adv. Exps. 1,000 750 580 1,400 1,500 1,250 550 1,100 1,600 2,000

Assess how spending on advertisement can affect the sales revenue by estimating and
testing the regression equation (Table 5.4).

TABLE 5.4

Obs. Y Revenue X Adv. [Y − Ȳ ] [x − x̄] [Y − Ȳ ][x − x̄] [x − x̄]2

1 13,000 1,000 −1,930 −173 333,890 29,929
2 12,000 750 −2,930 −423 1,239,390 178,929
3 8,500 580 −6,430 −593 3,812,990 351,649
4 18,000 1,400 3,070 227 696,890 51,529
5 16,000 1,500 1,070 327 349,890 106,929
6 18,000 1,250 3,070 77 236,390 5,929
7 8,000 550 −6,930 −623 4,317,390 388,129
8 16,800 1,100 1,870 −73 136,510 5,329
9 17,000 1,600 2,070 427 883,890 182,329

10 22,000 2,000 7,070 827 5,846,890 683,929
�Y = 149,300 �x = 11,730 �[Y − Ȳ ] �[x − x̄] �[Y − Ȳ ][x − x̄] �[x − x̄]2

Ȳ = 14,930 x̄ = 1173 = 0 = 0 = 17,854,120 = 1,984,610

Solution:
First, we need to construct a calculation table so that we can obtain β̂:

β̂ =

10∑
i=1

[Y − Ȳ ][x − x̄]

10∑
i=1

[x − x̄]2

,

β̂ = 17, 854, 120

1, 984, 610
,

β̂ = 8.86.
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Now, we can obtain α̂ by

α̂ = Ȳ − β̂ x̄,

= 14,930 − (8.86)(1173)

= 4538.

We can also obtain α̂ by using the original equation but substituting for Y and x by their
mean values Ȳ and x̄ :

Y = α + βx,

Ȳ = α̂ + β̂ x̄,

14,930 = α̂ + (8.86)(1173),

α̂ = 14,930 − 10,392,

α̂ = 4538.

Now, we can write the equation of the estimated regression line:

Ŷ = α̂ + β̂x,

Ŷ = 4538 + 8.86x .

We can simply draw the regression line by substituting the two extreme values of x in the
observed data. The lowest advertising expenditure is at observation 7, which is equal to
$550, and the highest expenditure on advertisement in these data is at observation 10, which
is equal to $2000. Plugging these values into the equation would give us the corresponding
revenues and enable us to locate two points of the two pairs of values:

Ŷ = 4538 + 8.86x

= 4538 + 8.86(550) = 9,411.

This is point B (550, 9411) on the graph.

Ŷ = 4538 + 8.86(2000) = 22,258.

This is point C (2000, 22,258) on the graph.
Connecting B to C would give us the regression line. Furthermore, we can extend the

line until it crosses the vertical axis. The intersection point would be the Y-intercept. We
can see that it occurs at 4538, which is exactly the value of x.

The estimated α of $4538 means that when the firm does not spend any dollars on adver-
tisement, it can still sell some appliances and collect revenue equal to $5438 per month:

If x = 0, then

Ŷ = 5538 + 8.86(0),

Ŷ = 4538.
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It is shown on the graph that at x = 0, Y is represented by the vertical distance A0, which
is equal to 4538.

Plugging in any value of x from these data will produce a value of Y based on the
relationship between x and Y that is explained by β. This β is the slope of the line. It
indicates how the firm’s revenue changes according to how much is spent on advertisement(

�Y
�x

)
. On the graph, we marked an arbitrary change in advertisement expenditures equal

to $400, say from $100 to $500. This change is shown as a movement along the line from
point i to ii, which can be translated on the vertical axis as an increase from $5400 to $8944.
That is the change in Y(�Y ) due to the change in x(�x), which is the slope of the line:

Slope = �Y

�x

= 8944 − 5400

400
= 8.86,

and this is exactly the value of β.
β means that for each $100 increase in advertisement, the revenue will increase by $886.

It can be generalized in these data that any expenditure on advertisement would bring more
than eight times its value in more revenue. However, it is not wise to generalize this beta
power for much more than the range of data in this specific example. In other words, we
can predict the size of revenue the firm would collect if it spends $3,000 on advertisement,
but we should not rely on the prediction if we move further than that.

5.3 RELIABILITY OF THE ESTIMATION

We have established that the regression equation explained how x can affect Y, namely, how
spending on advertisement would increase sales and revenue. We have also established the
quantitative impact of x in obtaining the value of β. However, the question is, how reliable
is the role of β that we calculated and how confident can we be in this estimated value? For
the answer, we need to run a t-statistic test or a t-ratio test. It is a ratio of the estimated β to
the standard deviation of β. So, having calculated β already, we now need to calculate the
standard deviation sβ , which is obtained by

sβ =
√

�ε2

(n − k)�[x − x̄]2

=
√

�[Y − Ŷ ]2

(n − k)�[x − x̄]2

where �ε2 is the sum of the squared errors, which is the sum of the squared differences
between the actual and estimated values of Y (revenues) [Y − Ŷ ]2, n − k is the degree of
freedom (DF) or the difference between the number of observations and the number of
coefficients in the regression equation including the constant term (α), and �[x − x̄]2 is
the sum of the squared deviations of the advertising expenditures from its mean. Table 5.5
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allows us to obtain the standard deviations of β by calculating the terms needed, including
creating the column of the estimated quantitative Ŷ . Each value in this column is calculated
by substituting the corresponding x in the regression equation. For example, the first value
of Ŷ is that obtained by substituting the first value of x in the equation:

Ŷ = α + βx,

= 4538 + (8.86)(1000) = 13,398.

TABLE 5.5

Obs. X Y Ŷ ε = [Y − Ŷ ] ε2 = [Y − Ŷ ]2 [x − x̄]2

1 1,000 13,000 13,398 −398 158,404 193,600
2 750 12,000 11,183 817 667,489 115,600
3 580 8,500 9,677 −1,177 1,385,329 57,600
4 1,400 18,000 16,942 1,058 1,119,364 19,600
5 1,500 16,000 17,828 −1,828 3,341,584 1,600
6 1,250 18,000 15,613 2,387 5,697,769 3,600
7 550 8,000 9,411 −1,411 1,990,921 25,600
8 1,100 16,800 14,284 2,516 6,330,256 25,600
9 1,600 17,000 18,714 −1,714 2,937,796 67,600

10 2,000 22,000 22,258 −258 66,564 313,600
�ε2 = �(x − x̄)2 =

23,695,476 1,984,610

DF is n − k = 10 − 2 = 8:

sβ =
√

�[Q − Q̂]2

n − k[P − P̂]2

sβ =
√

23,695,476

8(19,846(0)

sβ = 1.22.

Now we get t-statistics by dividing β by its standard error (sβ):

t = β

sβ

,

t = 8.86

1.22
= 7.26.

We compare this calculated value of t with the critical value of the t-distribution given in
Table A.2 in the appendix. We choose the two-tailed test because it is also important to
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test for the sign of the coefficient ( + or −). The calculated value of 7.26 is larger than
the critical values at both 95% confidence (value = 2.306) and 99% confidence (value =
2.355). The reading of the table value is across both the DF (n − k = 10 − 2 = 8) and
the chosen confidence level. Typically, 95% is the level of choice, which is listed at the
5% column of the table. The 99% confidence level is listed in the 1% column. Choosing
this level of confidence means that there would only be a chance of 1% of being wrong.
Therefore, having a t-ratio value larger than the critical value under 5% and 1% means that
there is indeed a positive and significant relationship between spending on advertisement
and revenue growth.

Furthermore, the critical value of the t-test can be used to establish the confidence
interval of the true value of the estimated coefficient. For example, at 95% confidence, the
true value of the coefficient would be in the range specified as

+β̂ ± [(table value)(sβ)],

that is, between

8.86 − [(2.306)(1.22)] = 6.05,

and
8.86 + [(2.306)(1.22)] = 11.67.

That is, there is a 95% chance that the true value of our coefficient estimate is between 6.05
and 11.67 and if we choose the 99% chance, then we replace the 2.306 by 3.355.

Naturally, if we increase our confidence from 95% to 99%, the range of the true value
would increase so as to say that there is a 99% chance that the true value of the coefficient
is between

8.86 − [(3.333)(1.22)] = 4.77

and
8.86 + [(3.355)(1.22)] = 12.95.

That is, β is between 4.77 and 12.95, and there is only 1% chance to be wrong about that.

5.4 QUALITY OF FITTING

To test how well the explanatory variable(s) can explain the variation in the dependent
variable, we utilize the coefficient of determination (R2). It is calculated as the proportion
of the explained variation in the dependent variable �[Ŷ − Ȳ ]2 to the total variation in the
dependent variable �[Y − Ȳ ]2:

R2 = �[Ŷ − Ȳ]2

�[Y − Ȳ]2
.

Note that while the total variation in the dependent variable is �[Y − Ȳ ]2 and the explained
variation is �[Ŷ − Ȳ ]2, the unexplained variation would be �[Y − Ŷ ]2. Let us note these
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differences on one observation on the graph, say observation 4 in the table where Y is
$18,000 and x is $1400. The total variation is the difference between the observation at
point D, which is $18,000, and the mean value, which is $14,930; that is, the vertical
distance between D and F. The explained part of the variation is the difference between
the estimated value, which is $16,942, and the mean value, which is the vertical distance
between E and F. So the remaining is the unexplained portion of the variation, which
is the difference between the observation value of $18,000, and the estimated value of
$16,942. This portion is what constitutes the error term (e). Similarly, the whole error term
of the model would be the sum of all the vertical distances between the observations and
the regression line. Note that the error terms are squared mathematically to treat both the
negative and positive values of the errors, as they tend to cancel each other out and defeat
the purpose (Table 5.6).

R2 = �[Ŷ − Ȳ ]2

�[Y − Ȳ ]2
,

R2 = 102,144,404

179,441,000
= 0.57,

r =
√

R2 =
√

0.57 = 0.76.

TABLE 5.6

Obs. X Ŷ [Ŷ − Ȳ ] [Ŷ − Ȳ ]2 [Y − Ȳ ] [Y − Ȳ ]2

1 13,000 13,398 −1,532 2,347,024 −1,930 3,724,900
2 12,000 11,183 −3,747 14,040,009 −2,930 8,584,900
3 8,500 9,677 −5,253 27,594,009 −6,430 41,344,900
4 18,000 16,942 2,012 4,048,144 3,070 9,424,900
5 16,000 17,828 2,898 8,398,404 1,070 1,144,900
6 18,000 15,613 683 466,489 3,070 9,424,900
7 8,000 9,411 −5,519 30,459,361 −6,930 48,024,900
8 16,800 14,284 −647 418,609 1,870 3,496,900
9 17,000 18,714 3,784 14,318,656 2,070 4,284,900

10 22,000 22,258 7,328 53,699,584 7,070 49,984,900
n = 10 Ȳ = �(Ŷ − Ȳ )2 = �(Y − Ȳ )2 =

14,930 102,144,404 179,441,000

Since R2 is suited for multiple regression in testing how effective the independent variables
is in explaining the variation in the dependent variable, here we would rely on the correlation
coefficient (r), which is the square root of R2. This measure is suited for simple regression
in that it would test how a single independent variable is able to explain the variation in
the dependent variable by simply referring to how correlated the two variables are and in
which direction. A result of 0.75 for the correlation coefficient indicates that spending on
advertisement is positively related to the growth of revenue and that the two variables are
associated with each other by 75%. However, in multiple regression, when there are more
than one independent variable, the R2 would tend to have a higher value simply because
more variables can explain more than one variable (see Figure 5.4).
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FIGURE 5.4

5.5 FITTING BY COMPUTERIZED REGRESSION

There is no need to perform tedious calculations of any mathematical or statistical technique
such as regression since they can be done in a few minutes by computers and calculators.
However, it is very important to know the manual operation in order to understand what the
computer does. Running the previous example by computer would give us the following
information in a printout complete with a graph of the scatter diagram and the regression
line (Tables 5.7, 5.8, 5.9, 5.10, 5.11, 5.12, 5.13, and 5.14):

x: Exogenous variable = monthly advertisement expenditures $.

Y: Exogenous variable = monthly revenue $.

TABLE 5.7

Data Y Data x

13,000 1,000
12,000 750

8,500 580
18,000 1,400
16,000 1,500
18,000 1,250
8,000 550

16,800 1,100
17,000 1,600
22,000 2,000
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TABLE 5.8

Simple Linear Regression—Ungrouped Data

Parameter Value SE T-Stat Notes

Constant 4538.723981
Beta 8.858718 1.221647 7.251455 H0: beta = 0
Elasticity 0.696000 0.095981 −3.167306 H0: elast. = 1

TABLE 5.9

Simple Linear Regression—Analysis of Variance

ANOVA DF Sum of Squares Mean Square

Regression 1.000000 1.557460 E + 8 1.557460 E + 8
Residual 8.000000 2.369500 E + 7 2.961874 E + 6
Total 9.000000 1.794410 E + 8 1.993789 E + 7
F-Test 52.583594

TABLE 5.10

Simple Linear Regression—Autocorrelation

Statistic Value

Durbin–Watson 3.646751
Von Neumann ratio 4.051946
Rho-least squares −0.830393
Rho-serial correlation −0.920104
Rho-Goldberger −0.832020

TABLE 5.11

Simple Linear Regression—Descriptive Statistics

Statistic Value

Mean x 1173.000000
Biased variance X 198461.000000
Biased SE X 445.489618
Mean Y 14930.000000
Biased variance Y 1.194410 E + 7
Biased SE Y 4236.047686
Mean F 14930.000000
Biased variance F 1.557460 E + 7
Biased SE F 3946.466826
Mean e 0.000000
Biased variance e 2.369500 E + 6
Biased SE e 544.231062
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TABLE 5.12

Student Distribution Probability (Mathematical Equation Plotter)

T-Test 7.2514545805782

DF 8

Tails (1 or 2) 2

Student Probability

TABLE 5.13

Student Distribution Probability (Mathematical Equation Plotter)

T-Test − 3.1673059922745

DF 8

Tails (1 or 2) 2

Student Probability

TABLE 5.14

Fisher Distribution Probability (Mathematical Equation Plotter)

T-Test 52.5835

DF numerator 1

DF denominator 2

Fisher Probability

Note that the manual calculations gave very close results, and the slight differences were
due to the rounding up of values. The printout contains more information that would make
more sense to explain in the following case of multiple regression.

5.6 DEMAND ESTIMATION BY THE MULTIPLE REGRESSION METHOD

The multiple regression method uses the same technique as in simple regression except that
there is more than one independent variable to explain the variation in the independent vari-
able. With more variables in the regression equation, the manual calculations become more
complex and tedious to the point they warrant the use of computers or calculators equipped
with a regression program. But all the calculations are based on the same techniques except
that they are performed with much more accuracy and speed when done electronically.
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The simple regression equation of

Y = α + βx + e

would be expanded to more than one x to represent all the major variables that would be
hypothesized to influence the dependent variable by theory, experience, or most likely both.

Our typical demand function is

Qx = α + β Px + e,

where demand (Q) of a commodity (x) would depend on the price of that commodity (Px).
This function can be expanded to include other variables such as consumer income (I), the
price of an alternative commodity Py, advertising expenditures in order to sell more of that
commodity (Advx), the size of the market in which the commodity is sold (MSizex) and
any other variables that we may think have the potential to be influential in changing the
amount of demand on that commodity.

The regression equation would then be adjusted in the following way to include all of
the aforementioned variables:

Qx = α + β1 Px + β2 I + β3 Py + β4Advx + β5MSizex + β6T + e.

Here, we have six independent variables in addition to the constant term and the error term.
T is the time sequence of the data.

Table 5.15 shows the demand data on frozen pizza with the influential variables as they
are specified in the equation above. The regression analysis was run by computer and the
following were obtained: the estimated regression equation, the results of the analysis as
they appear on the computer printout, and their interpretation.

The estimated demand equation is

Qx = 2,047,850 − 75,554Px − 52I + 34,039Py + 5.43Advx

+ 0.06MSize + 8,927T + e,

where

Qx is the demand for frozen pizza;

Px is the unit price of frozen pizza;

I is the consumer’s disposable income;

Py is the price of an alternative good such as a frozen pocket pizza;

Advx is expenditures on advertising for this pizza;

MSize is the market size (population) where the pizza is sold;

T is the time sequence;

e is the error term.
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TABLE 5.15

Advertising Market
Quantity Price Income Alternative Expenditure Size Time

Obs. (Sales, Qx) (Px) (I) (Py) (Advx) (MSize) (T)

1 247,709 5.75 33,599 5.28 14,062 4,218,965 1
2 183,259 6.75 33,797 6.17 16,973 4,226,070 2
3 282,118 6.36 33,879 6.36 18,815 4,278,912 3
4 203,396 5.98 34,186 4.88 14,176 4,359,442 4
5 167,447 6.64 35,691 5.22 17,030 4,363,494 5
6 361,677 5.30 35,950 5.80 14,456 4,380,084 6
7 321,972 7.24 35,898 5.82 34,367 9,254,182 7
8 445,236 6.08 36,113 6.05 26,895 9,272,758 8
9 479,713 6.40 36,252 5.37 30,539 9,300,401 9

10 459,379 6.00 36,449 4.86 26,679 9,322,168 10
11 444,040 5.96 37,327 5.29 26,607 9,323,331 11
12 376,046 7.21 37,841 4.89 32,760 9,348,725 12
13 330,271 5.62 35,972 6.03 15,743 5,386,134 13
14 313,485 6.06 36,843 5.08 17,512 5,409,350 14
15 311,500 5.83 37,573 5.29 16,984 5,409,358 15
16 370,780 5.38 37,781 6.19 15,698 5,425,001 16
17 152,338 7.41 37,854 6.94 22,057 5,429,300 17
18 320,804 6.19 39,231 6.38 17,460 5,442,595 18
19 699,051 5.03 28,633 5.04 37,364 4,657,425 19
20 628,838 6.76 28,833 4.61 50,602 4,655,395 20
21 631,934 7.04 29,242 5.85 53,562 4,658,743 21
22 651,162 6.70 29,876 5.63 48,911 4,668,078 22
23 765,124 6.54 30,327 6.94 49,422 4,671,693 23
24 741,364 5.73 30,411 6.37 44,061 4,671,793 24
25 574,486 5.94 30,598 6.70 31,631 2,989,720 25
26 375,396 7.00 30,718 4.58 39,176 3,020,244 26
27 590,190 5.19 30,922 5.17 33,538 3,021,618 27
28 288,112 7.02 31,199 5.15 53,643 3,025,298 28
29 276,619 7.02 31,354 5.46 60,284 3,042,834 29
30 522,446 5.23 31,422 6.06 53,595 3,063,011 30
31 451,321 5.95 39,552 6.31 25,734 7,710,368 31
32 352,181 6.01 39,776 6.24 23,777 7,713,007 32
33 317,322 7.02 41,068 4.86 27,544 7,752,393 33
34 422,455 5.71 41,471 4.86 23,852 7,754,204 34
35 290,963 7.36 41,989 5.32 30,487 7,782,654 35
36 395,314 5.80 39,992 6.56 24,626 7,611,304 36

P̄ = 5.56 Ī = 25,027 Ad̄v = 19,036 MSīze = 4,538,692

Economic Regression Equation (Tables 5.16, 5.17, 5.18, 5.19, 5.20, 5.21, 5.22, 5.23,
and 5.24)

TABLE 5.16

Multiple Linear Regression—Estimated Regression Equation

Quant[t] =− 75554.380995695 Price[t] − 52.093823650183 Income[t] + 34039.145543355
Altprice[t] + 5.4264602658647 Advs[t] + 0.062648748988615 Msize[t] + 8927.0959264093
Time[t] + 2047850.9667688 + e[t]
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TABLE 5.17

Multiple Linear Regression—Ordinary Least Squares

T-Stat H0: Two-Tail One-Tail
Variable Parameter SE Parameter = 0 p-Value p-Value

Price[t] −75554.380996 24092.234634 −3.136047 0.003905 0.001953
Income[t] −52.093824 9.92233 −5.25016 1.3 E − 5 6.0E − 6
Altprice[t] 34039.145543 18958.255227 1.795479 0.083006 0.041503
Advs[t] 5.42646 1.262363 4.298654 0.000177 8.8 E − 5
Msize[t] 0.062649 0.010421 6.012041 2.0 E − 6 1.0 E − 6
Time[t] 8927.095926 2359.896594 3.782834 0.000719 0.00036
Constant 2047850.966769 305081.19038 6.712479 0 0

TABLE 5.18

T-Stat H0: Two-Tail One-Tail
Variable Elasticity SEa [Elast] = 1 p-Value p-Value

%Price[t] −1.153956 0.367965 0.418399 0.678738 0.339369
%Income[t] −4.450076 0.847608 4.070369 0.00033 0.000165
%Altprice[t] 0.470024 0.261782 −2.024496 0.052215 0.026108
%Advs[t] 0.403103 0.093774 −6.36525 1.0 E − 6 0
%Msize[t] 0.877863 0.146018 −0.836452 0.40974 0.20487
%Time[t] 0.403206 0.106588 −5.599066 5.0 E − 6 2.0 E − 6
%Constant 4.999688 0.744835 5.369899 9.0 E − 6 5.0 E − 6

aNote: Computed against deterministic endogenous series.

TABLE 5.19

T-Stat H0: Two-Tail One-Tail
Variable Stand. Coeff. SEa Coeff. = 0 p-Value p-Value

S-Price[t] −0.312537 0.09966 −3.136047 0.003905 0.001953
S-Income[t] −1.260259 0.240042 −5.25016 1.3 E − 5 6.0 E − 6
S-Altprice[t] 0.141319 0.078708 1.795479 0.083006 0.041503
S-Advs[t] 0.451487 0.10503 4.298654 0.000177 8.8 E − 5
S-Msize[t] 0.8331 0.138572 6.012041 2.0 E − 6 1.0 E − 6
S-Time[t] 0.577989 0.152793 3.782834 0.000719 0.00036
S-Constant 0 0 0 1 0.5

aNote: Computed against deterministic endogenous series.
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TABLE 5.20

Variable Partial Correlation

Price[t] −0.503236
Income[t] −0.698075
Altprice[t] 0.316295
Adv[t] 0.623856
Msize[t] 0.744874
Time[t] 0.57481
Constant 0.780007

Critical Values (Alpha = 5%)

One-tail CV at 5% 1.7
Two-tail CV at 5% 2.05

TABLE 5.21

Multiple Linear Regression—Regression Statistics

Multiple R 0.908842
R-squared 0.825994
Adjusted R-squared 0.789993
F-Test 22.943549
Observations 36
Degrees of freedom 29

Multiple Linear Regression—Residual Statistics

Standard error 74570.802224
Sum squared errors 161263331785.2
Log likelihood −451.091927
Durbin–Watson 1.493541
Von Neumann ratio 1.536214
e[t] > 0 18
e[t] < 0 18
Number of runs 19
Stand. normal runs statistic 0

TABLE 5.22

Multiple Linear Regression—Analysis of Variance

ANOVA DF Sum of Squares Mean Square

Regression 6 765507562071.02 127584593678.5
Residual 29 161263331785.2 5560804544.3173
Total 35 926770893856.22 26479168395.892
F-Test 22.943549
p-Value 0
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TABLE 5.23

Student Distribution Probability (Mathematical Equation Plotter)

T-Test −3.1360470352051

DF 29

Tails (1 or 2) 1

Student Probability

TABLE 5.24

Fisher Distribution Probability (Mathematical Equation Plotter)

T-Test 22.9435

DF numerator 6

DF denominator 29

Fisher Probability

5.6.1 Results and Interpretation

All the variables in the equation except the price of the alternative good were significant.
Therefore, it would be wise to drop the alternative price from the estimated equation:

Qx = 2,047,850 − 75,554Px − 52I + 5.43Advx + 0.6MSize + 8,927T + e.

Significance of the variables was determined due to having t-values larger than the critical
values in Table A.2 in the appendix). The coefficient t-statistics values were as follows
(Table 5.25):

TABLE 5.25

−3.136047 For the price of pizza (Px)
−5.25016 For consumer’s income (I)

1.795479 For the alternative good price (Py)
4.298654 For advertising expenditures (Advx)
6.012041 For market size (MSize)
3.782834 For time (T)
6.712479 For constant term (α)

All of the t-values except the alternative price value (1.795479) are larger than the
critical value (in the table) at both 95% and 99% levels of confidence. This critical value is
determined by looking across the confidence level and the DF:

DF = n − k

= 36 − 7 = 29.
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The third column of the table gives the 95% confidence level at one- and two-tail prob-
abilities. The last column gives the 99% level. The critical values are 2.045 and 2.756,
respectively.

The computer calculated these values by dividing each value of the coefficient by its
standard error:

t-Statistics = Coeff. value

SE
.

For example,

−75554.380996

24092.234634
= −3.136047.

If we look at the 2-tail p-value column in the printout and across the alternative price
coefficient, we will read 0.083006. This number indicates that the alternative price estimate
came at 91.6994% confidence and this was rejected because we wanted the confidence to
be at least 95%.

All coefficients reflect the potential changes in revenue due to changes in the independent
variables individually, and the signs reflect the direction of the relationship between the
affecting factor (the independent variable) and the affected factor (the dependent variable).
The price has a negative sign as it is consistent with the inverse relationship between price
and demand. It is interesting enough that consumer income came with a negative relationship
with demand contrary to the typical positive relationship for normal commodities. Here, it
indicates that the frozen pizza has been considered by these consumers as an inferior good.
It is most likely that the majority of those consumers would switch to fresh pizza or any
other better-quality good as their income increases; hence, they divert from frozen pizza
consumption the more they earn.

Advertising expenditures, market size, and time came with positive signs, indicating
that demand or revenue would increase as the firm spends more on advertising as the size
of the market increases, and as time moves forward. All of these results are consistent with
the expected outcome.

As far as how the coefficients are explained in terms of quantifying the impact of the
independent variable on the variation of the dependent variable, we can state the following:

� A drop in the price of frozen pizza by $1 per unit would result in increasing the
demand and eventually the sales by $75,554.

� For each dollar the company spends on advertising, the sales of frozen pizza would
increase by more than $5 ($5.43).

� As for the negative impact of income, we can state that for each dollar increase in the
consumer’s disposable income, the makers of this frozen pizza would experience a
decrease in their sales by $52.09.

� Since market size is proxied by the population size in those specific areas where the
frozen pizza is sold, we can state that for each additional consumer in the market, the
sales of frozen pizza would increase by 6/c.

� The data in this example were collected quarterly. Therefore, we can state that moving
forward from one quarter to the next has increased the sales by $8,927.
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� The demand for frozen pizza was found elastic in terms of both price and income.
Both price elasticity of demand and income elasticity of demand had values larger
than 1, specifically 1.15 and 4.45, respectively.

In practice, we can calculate an estimated value of sales (Qx) based on the average value
of the independent variables:

Qx = 2,047,850 − 75,554Px − 52I + 5.43Advx + 0.06MSize,

Qx = 2,047,850 − 75,554(5.56) − 52(25,027) + 5.43(19,036) + 0.06(4,538,692),

Qx = $702,052.

Now, let us suppose the manager wants to see how much revenue he may expect if he raises
the price of pizza by 44/c, that is, to make it $6.00.

The predicted sales, according to the equation above, would be

Qx = 2,047,850 − 75,554(6.00) − 52(25,027) + 5.43(19,036) + 0.06(4,538,692),

Qx = $668,808.

So, raising the price by 44/c would result in reducing the sales revenue to $668,808, that is,
by $33,244.

5.6.2 Goodness of Fit

In order to test how good the choice of that group of independent variables is as they impact
the dependent variable, and to what extent they work as explanatory factors in the variation
of the dependent variable, we need to look at the coefficient of determination (R2). It is a
measure of how much all the independent variables together can explain the variation in
the dependent variable. In other words, it is a measure of how well the regression equation
fits the data or how fit the estimation model is to reality:

R2 = Explained variation by all indepednent variables

Total variation in the dependent variable
.

Between the two extreme values of R2, giving a 100 for all the observations lined up
perfectly on the regression line and zero for no relationship between the observations and
the line, we should be able to understand any figure for R2. In our printout, the R2 is 82.6%,
which is considered a very good fit. However, it is statistically advisable to rely on the
adjusted R2 when the number of observations gets larger.

While R2 is obtained by subtracting the ratio of sum of squared errors (SSE) to sum
of squared total (SST) from 1:

R2 = 1 − SSE

SST
.
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The adjusted R2 considers the sample size or the number of observations (N) and the DF
(N − k) in that ratio:

adj R2 = 1 −

(
SSE

N − k

)
(

SST

N − 1

) ,

where k is the number of coefficients including the constant term (α). Our printout shows
an adjusted R2 of 79%, which is still a very good indication of a good fit. It means that all
the independent variables together are able to explain 79% of the variation in the dependent
variable.

5.6.3 The Overall Explanatory Power of the Model

How significant is the explanatory capacity of all the independent variables in their impact on
the dependent variable can be tested by the analysis of variance (ANOVA) or F-statistics.

F-ratio uses R2 and its complement in consideration of the number of observations and
the DF:

F =

(
R2

k − 1

)
(

1 − R2

N − k

) ,

where R2 represents the explained portion of the variation in the dependent variable, 1 −
R2 stands for the unexplained portion, k is the number of coefficients, and N is the number
of observations.

The model would be significant if the calculated value of F-statistics is larger than the
critical value in the table. The calculated value is

F =
0.825994

7 − 1
1 − 0.825994

36 − 7

= 0.137665666

0.006000206897
= 22.9435.

The critical value is to be seen in the table across k − 1 and N − k, and depending on a
level of significance (Tables A.3 and A.4 in the appendix):

k − 1 = 7 − 1 = 6,

N − k = 36 − 7 = 29.

Moving 6 rows vertically and 29 columns horizontally, we read the critical value of 2.43
at 5% significance and 3.50 at 1% significance. Our printout shows an F-ratio of 22.94. So
the regression equation is significant at 95% and 99% confidence.
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5.6.4 Major Problems to Check On

Multicollinearity The regression model requires that there be no or at most weak corre-
lations among the set of independent variables so that the model can accurately show the
individual impact of those independent variables on the dependent variable. If it happens
that there is some strong correlation among the independent variables, we would know that
we have a problem of “multicollinearity.” Most of the regression programs have the capac-
ity to prompt an error message when the system detects strong correlations, and probably
cease to perform the analysis. However, most systems would probably continue to perform
with some degrees of correlation. This is why it would be up to the researcher to check
the correlation matrix that would calculate and list all the correlations between all possible
pairs of the independent variables. Strongly correlated variables should be dropped off the
analysis. If, for example, there are five independent variables in the regression equation
(x1 to x5), the correlation matrix may look similar to Table 5.26.

TABLE 5.26

x1 x2 x3 x4 x5

x1 100
x2 0.32 100
x3 0.25 0.87 100
x4 0.41 0.38 0.43 100
x5 0.37 0.91 0.19 0.36 100

The diagonal line always shows perfect correlation of 1 or 100 since variables are
perfectly correlated with themselves. The triangle above the diagonal line is usually left
blank because it contains complete symmetrical values to the lower triangle since, for
example, there is no difference between the correlation of x1 and x4, and x4 and x1. A
correlation matrix like this clearly shows that there is a strong correlation between x2 and x5

(0.87) and between x2 and x3 (0.91). This suggests that x2 should be dropped off the model.
All the rest are tolerable correlations. There is another way to detect multicollinearity in the
regression model. It is related to the major problem caused by multicollinearity shown by
inflating the variance of the regression coefficient. Let us assume that we take the variable
that showed a high correlation such as x2 in the last correlation matrix, and run a new
regression with it as a dependent variable for all the other independent variables. Then
we can use the R2 obtained in this regression R2

x2
as a measure for the variance inflation

factor (VIF):

VIF = 1

1 − R2
x2

.

Most of the computer programs for running regression can report the VIF data. Having a
list of VIF for all coefficients in the equation can tell a great deal. For example, a VIF of
5.5 across from the coefficient of x3 means that the variance of the regression coefficient is
5.5 times what it would be had the multicollinearity problem not existed. The following
graph depicts the relationship between R2

x2
and VIF, which shows that at a perfect coefficient

of determination (R2
x2

= 1), the VIF would reach infinity. The point is that higher R2
x2

are
associated with higher VIFs (see Figure 5.5).
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FIGURE 5.5

The conclusion is that multicollinearity can be a serious problem in producing less than
reliable coefficient estimates. It can affect the regression model by inflating the variance of
coefficient, altering their magnitude, and changing their signs. Remedies for multicollinear-
ity include dropping off the culprit variable, creating a new variable by combining the highly
correlated ones, running different regressions such as ridge regression and other statistical
methods to remove or minimize the effects of multicollinearity.

Autocorrelation Another problem that regression estimation may face could stem from
violating one of the basic assumptions of the regression model, that is, the independence
of the error terms through observations. So, if it happens that the error terms are found
to be correlated through the lagged terms, we would have another problem at hand called
“autocorrelation.” It is defined as the correlation among the values of a variable throughout
time, between the current time (t) and the previous periods (t − 1, t − 2, . . . t − n).

The Durbin–Watson statistical test was developed in 1951 to detect any evidence of a
first-order autocorrelation in the regression model. Its value (d) is calculated as

d =

n∑
t=2

[et − et−1]2

n∑
t=1

e2
t

.

Most statistical programs for running regression analysis would produce the Durbin–Watson
value, which should be compared against the critical values of the lower and upper d
(Tables A.5 and A.6 in the appendix). The critical value is read based on either 95% or
99% level of significance (5% and 1% tables) where n is the number of observations and
k is the number of independent variables in the regression equation. This test is good only
for regression equations estimated for at least 15 observations. The test of the estimated
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Durbin–Watson statistic (d) against the critical value can be done for both positive and
negative autocorrelations:

If d > du: There is no evidence of positive autocorrelation.

If d < dL: There is evidence of positive autocorrelation.

If d between dL and du: The test is inconclusive.

As for the negative autocorrelation, we use four as the maximum value of d according to
its range (0–4):

If d > (4 − dL): There is evidence of negative autocorrelation.

If d < (4 − du): There is no evidence of negative autocorrelation.

If d between (4 − dL) and (4 − du): The test is inconclusive.

Generally, we can say that if the estimated d turns out to be equal to two or more, it would
be a sure confirmation that there is no evidence of any autocorrelation.

In our printout, the Durbin–Watson statistic is 1.49. Looking at the 5% table, across n =
36 and k = 5 (the maximum value in the table), we find that dL = 1.18 and du = l.80, which
says that the test for positive autocorrelation is inconclusive since the estimated value of
1.49 is in between the lower and upper critical values. The estimated d is also in between
the critical values in the 1% table where dL = 0.99 and du = 1.59.

As for the negative autocorrelation, the estimated d of 1.49 is less than 4 − du (4 −
1.80 = 2.20) at the 5% table, and less than (4 − 1.59 = 2.41) at the 1% table, which
indicates that there is no evidence of any negative autocorrelation.

If the Durbin–Watson test confirms the existence of autocorrelation, it would be a reason
to doubt the accuracy of the estimates. In such cases, there are several remedies to remove
or reduce the harmful effects of autocorrelation. These remedies include adding time as an
independent variable to give the trend dimension to data, adding other important but missed
independent variables, rerunning the regression in a nonlinear format, and changing the
OLS method to an alternative technique such as the generalized least squares (GLS) method.

Heteroscedasticity Another problem that may distort the regression estimation is het-
eroscedasticity. One of the basic assumptions in the regression model is that the error term
would have a normal distribution with zero mean and constant variance. Therefore, if it
happens that the variance of the error term is nonconstant, whether decreasing or increas-
ing, the model would suffer heteroscedasticity. Look at the following scatter graph to make
sense of both decreasing and increasing variances of the error term around the regression
line, and the increase in the value of the independent variable.

One of the ways to test for the existence of heteroscedasticity is to divide the errors
(the difference between actual and predicted data) into two groups based on low and high
values of the independent variable and test whether the two groups differ from each other
significantly. If they do, then that would be a sign for heteroscedasticity. To overcome
the effects of heteroscedasticity on the accuracy and reliability of the estimates, many
options may be tried such as running the logarithmic form of the regression equation, using
weighted data such as dividing all variables including the dependent variable by the value
of the variable that is the source of heteroscedasticity, and last but not least, using the GLS
(see Figures 5.6 and 5.7).
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5.7 NONREGRESSION APPROACHES TO ESTIMATION

There are many ways other than regression, and its highly involved statistical procedures,
to estimate market demand and assess its parameters. Many managers have handled market
information and understood consumer behavior and preferences and in many respects
succeeded to capture a good picture of the market demand. We can briefly group these
nonregression methods into three categories.

5.7.1 Market Experimentation

This method takes place in the real market and in real time. It basically involves changing
one major factor such as price, packaging, taste, and flavor and recording the consumer
response to that change. It can be done either across different markets, different group-
ing of consumers, or in the same market against a competitor. Fast-food franchises and
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soft-drink and food companies are typical examples of firms practicing this method. Mc-
Donalds may come up with a new menu or modified recipe to test the response of its
customers as well as to test against the products of its competitors such as Burger King
or Wendy’s. Pepsi Cola may come up with a new flavor or introduce a new sweetener in
its diet Pepsi and gauge the response against its own products and the competitor’s prod-
ucts. Price can always be the factor to change in such experiments to see how the demand
would respond. One of the disadvantages of this method is that only one factor is being
changed in each experiment and in conditions that may not be fully controlled. Also, these
experiments are expensive, short run, small scale, and there are many questions about their
generalizability.

5.7.2 Observational Studies

Watching what consumers buy and do not buy is one of the most basic and oldest ways to
directly know about market demand without any complications. However, the expansion
of the market and of the variety of products, and the change in consumers’ tastes and
preferences made this simple way harder to be efficient. Asking consumers directly about
what they prefer and how they feel about these changes opens the way for a wide variety of
market research. The research methodology includes questioning a sample of consumers
and obtaining their direct answers by email or phone surveys, market interviews, focus
groups, panel or case studies, consumer seminars or clinics, and laboratory and experimental
economies. All these methods can provide a wealth of valuable information on consumers
and their demand, but they all remain, by their nature, subject to serious shortcomings such
as the extent to which the studied sample is highly representative of all consumers, and
to what extent consumer answers are reliable. It is very well known that most consumers
cannot or would not provide accurate answers to some questions, either because they are
hypothetical, involves memory, or because consumers usually give the answers that they
may think are more acceptable than the true answers. This is why it becomes much wiser
for firms to supplement data obtained by these methods by more accurate data obtained by
observations. Nowadays, store scanners can provide very accurate information on demand
on everything that is sold. This information is truly valuable in the whole scheme of
estimating consumer demand.

5.7.3 Micromarketing and Virtual Shopping

Micromarketing is the latest trend that narrows down the scale of targets and focuses on
smaller units such as individual stores or specific groups of consumers or even individual
consumers. Information from secondary data such as the census or primary data such
as shop scanners and marketing research are used to identify specific targets for specific
marketing schemes. For example, the demographics of consumers such as income, age, sex,
family size, hobbies and interests, number of children, and number of pets are the pieces
of information needed to tailor the marketing strategies to such a population of consumers.
Banking industries, financial services, and insurance companies were among the first to
try one-on-one marketing in which products are fitted to individual consumers. Dell is
considered among the first to individually customize orders. Also, the auto industries have
done that but on a very limited scale that got expanded later. Nowadays, online firms of
many products can target and individually customize orders.
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With the remarkable advancement in computers and their applications, along with ex-
pansion in their acceptance and use by people, many new marketing strategies have been
played out in the market. One of these innovative ways is virtual shopping. It is an entire
shopping experience done visually through a computer screen. A simulation program can
create an entire store that a consumer can go through visually and inspect and compare
products, read labels, and know other information, then choose and pay for them, all in
visual effects. After overcoming the initial cost of this technology, this method can be eco-
nomical in conducting consumer and marketing research without the real work of tracking
down consumer purchases in the real market.

5.8 ADVANCED DEMAND ESTIMATION: THE PAD MODEL

Economists have frequently modeled consumer demand in the presence of consumer habit
persistence using the partial adjustment demand (PAD) model. The use of the model
has also sometimes been motivated by consumer capital goods rigidities. Because of the
apparent pervasiveness of habit persistence in the consumption of basic goods, this model
of demand has achieved widespread use in modeling demand for consumer goods.

There are two standard forms of the PAD model—linear and constant elasticity. A critical
feature of the linear PAD is its distinction between “desired” and “actual” demand for a
good at a point of time. The change in actual quantity demanded is specified as a linear
function of the difference between the desired quantity demanded and lagged consumption.
The lag period used in the PAD is very often 1 year. (This means that the lag period
is 1 when annual data are being used, 4 when quarterly data are being used, 12 when
monthly data are being used, etc.) Hence, the PAD comprises two equations—an equation
that expresses desired demand and an equation that expresses the adjustment in actual
demand. However, as shown below, only one equation (the “estimating equation” or more
formally the “reduced form of the PAD”) need be estimated statistically in order to have
estimates of all the unknown parameters in the linear PAD.

5.8.1 Model Specification

The complete specification of the PAD in its linear form is as follows.

Desired Demand Desired demand during period t, Q∗
t , is expressed as a linear function

of the demand variables such as price, income, other prices, and so on. Hence, desired
demand is the demand derived from consumer utility maximization subject to an income
constraint. It would arise in the same manner as the demand for any product would and in
a manner that we have already seen. The linear form of desired demand is given by

Q∗
t = a + bPt + cIt .

Note that for brevity in the exposition of the PAD here, desired demand is expressed as a
function of only price and income, with the understanding that other variables can also be
included when it is important to do so.

Adjustment Equation Due to habit persistence, desired demand is not assumed to
be observed in the PAD during period t, but rather, only the actual quantity demanded
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during period t is observed. The change in the actual quantity demanded between periods
t and t − 1 is assumed to be proportional to the difference between the desired quantity
demanded during period t and the lagged (by 1 year, typically) actual quantity demanded.
Algebraically,

Qt − Qt−1 = ρ
(
Q∗

t − Qt−1
)
.

This latter equation is referred to as the adjustment equation since it shows how actual
quantity demanded adjusts over time. The adjustment parameter is traditionally represented
by the Greek letter ρ (pronounced “row”).

To find the estimating equation that follows from the equations for desired demand
and the adjustment equation shown above, first substitute the desired demand into the
adjustment equation to obtain

Qt − Qt−1 = ρ(a + bPt + cIt − Qt−1).

Estimating Equation Solving the expression immediately above for the actual quantity
demanded at time t, Qt , would give us

Qt = ρa + ρbPt + ρcIt + (1 − ρ)Qt−1,

which is the estimating equation. Given observations on the actual quantity demanded,
price, and income, all of the unknown parameters can be estimated using a method such as
maximum likelihood estimate (MLE).

5.8.2 Graph of the Linear PAD Model

To get a better understanding of the PAD model of consumer demand, consider Figure 5.7,
which shows how it works. For simplicity, the income variable is omitted from the
exposition.

Initially, the market is in equilibrium (P0, Q0 = Q∗
0) with the same actual and desired

demand:

Q0 = ρa − ρbP0 + (1 − ρ)Q∗
0,

= ρa − ρbP0 + (1 − ρ)Q0

(
since Q0 = Q∗

0

)
,

so
Q0 − (1 − ρ)Q0 = ρa − ρbP0.

Simplifying the left-hand side gives

ρQ0 = ρa − ρbP0,

or

Q0 = a − bP0.



190 CONSUMER DEMAND: EMPIRICAL ESTIMATION

Now, suppose that price increases to P1 > P0:

Period 1

Desired demand: Q∗
1 = a − bP1.

Actual demand: Q1 = ρa − ρbP1 + (1 − ρ)Q∗
0.

Note that Q1 is found by moving along the actual demand curve. This is the short-run
demand curve labeled Q1 on the diagram.

Period 2

Desired demand: Q∗
2 = a − bP1,

which is the same as during period 1.

Actual demand: Q2 = ρa − ρbP1 + (1 − ρ)Q1.

Note that the actual demand curve shifts down (the downward shift occurs because
Q1 < Q∗

0) and that Q2 is shown as the new (shifted) actual demand curve on the
diagram. Q2 < Q1, as some further adjustment toward desired demand at the higher
price has occurred.

Beyond period 2
The actual demand curve continues to shift down each period until it passes through
P1, Q∗

1. This is the new long-run equilibrium (desired) demand. In practice, the number
of periods until at least 90% of the shifting to Q∗

1 is regarded as the long run (later we
will see how to find out how long the long run is).

Short- and long-run price and income elasticities and the length of the long run
Short- and long-run prices and income elasticities are found as

SRPrice = ρb1

⎡
⎢⎢⎣

Mean of
Pt

CPIt

Mean of
Qt

Popt

⎤
⎥⎥⎦ ,

SRInc = ρb2

⎡
⎢⎢⎣

Mean of
It

CPIt Popt

Mean of
Qt

Popt

⎤
⎥⎥⎦ ,

LRPrice = b1

⎡
⎢⎢⎣

Mean of
Pt

CPIt

Mean of
Qt

Popt

⎤
⎥⎥⎦ ,

LRInc = b2

⎡
⎢⎢⎣

Mean of
It

CPIt Popt

Mean of
Qt

Popt

⎤
⎥⎥⎦ .
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The number of periods (usually years) until at least 90% of the effect of a change in
price or income is realized is taken to be the long run.

With this definition, it can be shown that for the PAD, the long run is the smallest
value of n that solves

ρ(1 − ρ)0 + ρ(1 − ρ)1 + ρ(1 − ρ)2 + · · · + ρ(1 − ρ)n ≥ 0.90.

The complete specification of the PAD in its constant elasticity form is as follows:

Desired demand

Q∗
t = aPb

t I c
t .

Adjustment equation

Qt

Qt−1
=

[
Q∗

t

Qt−1

]ρ

.

Estimating equation

Qt = ρa Pρb
t I ρc

t Q1−ρ

t−1 .

Short- and long-run price and income elasticities are found as

SRPrice = ρb1,

SRInc = ρb2,

LRPrice = b1,

LRInc = b2.

The number of periods (usually years) until at least 90% of the effect of a change in
price or income is realized is taken to be the long run.

With this definition, it can be shown that, as for the linear case, for the constant
elasticity PAD, the long run is the smallest value of n that solves

ρ(1 − ρ)0 + ρ(1 − ρ)1 + ρ(1 − ρ)2 + · · · + ρ(1 − ρ)n ≥ 0.90.

Example 5.2
Estimates of US Gasoline Demand with the PAD Model
We estimate the linear and constant elasticity PAD models with parameter vectors, θj by
MLE as discussed in Chapter 2. First, a monthly linear demand relationship in the gasoline
market is estimated assuming a partial adjustment framework consisting of desired demand,
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an adjustment equation, and an estimating equation with an additive normal error where
Qt is the gasoline quantity demanded, It is the personal income divided by the consumer
price index, and Pt is the gasoline price divided by the consumer price index, all at time t.
The disturbance term, ut , is assumed to be independent and identically normally distributed
with mean zero and constant variance:

Desired demand: Q∗
t = a + bPt + cIt ; t = 1, 2, . . . , T,

Adjustment equation: Qt − Qt−12 = ρ(Q∗
t − Qt−12),

Estimating equation: Qt = ρa + ρbPt + ρcIt + (1 − ρ)Qt−12 + ut ,

or Qt = θ01 + θ11 Pt + θ21 It + θ31 Qt−12 + ut ,

where ut ∼ N (0, σ 2
1 ) and θ1 = (

θ01, θ11, θ21, θ31, σ
2
1

)
.

The log-likelihood function is

lnL (θ1) = − (T − 12) ln

[√
2πσ 2

1

]
− 1

2σ 2
1

�T
t=13 [Qt − θ01 + θ11 Pt + θ21 Itθ31θt−12]2 .

With the same notation, a constant elasticity demand relationship in the gasoline market
is estimated assuming a partial adjustment framework consisting of desired demand, an
adjustment equation, and an estimating equation with an additive normal error:

Desired demand: Q∗
t = aPb

t I c
t ; t = 1, 2, . . . , T,

Adjustment equation:
Qt

Qt−1
=

(
Q∗

t

Qt−12

)ρ

,

Estimating equation: Qt = aρ Pρb
t I ρc

t Q1−ρ

t−12 + ut ,

or Qt = θ02 Pθ12
t I θ22

t Qθ32
t−12 + ut ,

where ut ∼ N (0, σ 2
2 ) and θ2 = (

θ02, θ12, θ22, θ32, σ
2
2

)
.

The log-likelihood function is

ln L (θ2) = −(T − 12) ln
[√

2πσ 2
2

]
− 1

2σ 2
2

T∑
t=13

[
Qt − θ02 Pθ12

t I θ22
t Qθ32

t−12

]2
.

Data used to estimate the linear and constant elasticity PAD models are shown in
Table 5.27. MLEs of the parameters in the linear and constant elasticity PAD models
of US gasoline demand are shown in Table 5.28, while estimates of short-run and long-run
price and income elasticities and the length of the long run are shown in Table 5.29 (see
Figure 5.8).
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TABLE 5.27 Gasoline Quantity, Gasoline Price, Personal Income, and Consumer Price
Index, January 2000–December 2005

Date

Gasoline
Quantity

(1000 barrels)

Gasoline
Price

(< per gallon)

Personal
Income

(billion $)

Consumer
Price Index

(1967 = 100)

2000
January
February
March
April
May
June
July
August
September
October
November
December

2001
January
February
March
April
May
June
July
August
September
October
November
December

237,243
232,148
257,455
251,250
268,491
264,720
267,902
276,551
255,540
260,927
251,520
268,770

244,528
219,016
248,341
253,500
268,181
259,110
262,911
256,587
251,430
261,826
250,980
257,331

135.6
142.2
159.4
156.1
155.2
166.6
164.2
155.9
163.5
161.3
160.8
154.4

152.5
153.8
150.3
161.7
181.2
173.1
156.5
150.9
160.9
144.2
132.4
120.0

8056.4
8099.6
8161.6
8209.3
8237.6
8279.5
8300.0
8326.5
8420.6
8405.7
8420.1
8455.5

8504.3
8640.2
8676.2
8697.0
8709.3
8737.6
8768.5
8775.9
8771.0
8761.4
8760.0
8794.6

505.8
508.7
512.8
513.2
513.6
516.5
517.5
517.6
520.3
521.2
521.5
521.1

524.5
526.7
528.0
529.9
532.2
533.3
531.6
531.8
534.0
532.2
531.3
529.2

2002
January
February
March
April
May
June
July
August
September
October
November
December

252,061
227,836
250,263
258,180
271,188
259,830
268,987
268,088
251,370
253,146
253,530
271,777

120.9
121.0
132.4
149.3
150.8
148.9
149.6
150.8
150.7
153.5
153.4
147.7

8766.8
8807.2
8836.3
8865.5
8904.9
8971.7
8965.0
8992.2
9022.2
9048.7
9078.3
8994.1

530.6
532.7
535.5
538.6
538.5
538.9
539.5
541.2
542.1
543.2
543.1
541.9

(Continued)
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TABLE 5.27 (Continued)

Date

Gasoline
Quantity

(1000 barrels)

Gasoline
Price

(< per gallon)

Personal
Income

(billion $)

Consumer
Price Index

(1967 = 100)

2003
January
February
March
April
May
June
July
August
September
October
November
December

2004
January
February
March
April
May
June
July
August
September
October
November
December

2005
January
February
March
April
May
June
July
August
September
October
November
December

243,970
218,400
239,444
244,830
257,641
248,790
257,920
259,005
246,840
255,843
253,500
264,740

246,636
223,412
251,162
246,990
261,857
250,080
259,470
259,067
239,790
259,904
250,380
268,429

250,914
229,712
249,240
254,640
260,741
256,110
256,959
255,595
238,260
245,018
251,160
259,532

155.7
168.6
179.1
170.4
158.7
155.8
156.7
167.1
177.1
164.6
157.8
153.8

163.5
171.5
180.9
187.5
205.0
208.3
198.2
194.1
193.4
207.2
205.3
192.6

186.6
196.0
210.7
232.5
225.7
221.8
235.7
254.1
296.9
278.5
234.3
218.6

9012.5
9046.9
9086.6
9100.8
9151.0
9186.0
9219.6
9239.6
9268.4
9285.1
9317.0
9335.8

9404.1
9445.9
9484.9
9550.0
9603.8
9624.2
9668.5
9706.3
9726.4
9800.0
9924.9

10204.9

10025.2
10072.9
10122.0
10145.1
10180.6
10231.5
10274.7
10058.7
10359.6
10413.1
10442.9
10504.9

544.2
548.5
551.8
550.5
549.7
550.4
550.9
553.0
554.7
554.3
552.7
552.1

554.9
557.9
561.5
563.2
566.4
568.2
567.5
567.6
568.7
571.9
572.2
570.1

571.2
574.5
579.0
582.9
582.4
582.6
585.2
588.2
595.4
596.7
592.0
589.4
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TABLE 5.28 Estimated Linear and Constant Elasticity PAD Models of US Gasoline
Demand, January 2000–December 2005

Model Parameter

Maximum
Likelihood
Estimate

Estimated
Asymptotic

Standard Error

Estimated
Asymptotic
t-Statistic

_________
Linear
lnL
−611.864

θ 01

θ 11

θ 21

θ 31

σ 1

−20228.2
−37409.2
5103.11
0.761989

6495.1

46968.7
21996.8
2834.4

0.067879
592.919

−0.43067
−1.70067
1.80042
11.2257
10.9544

Constant
Elasticity
lnL
−611.828

θ 02

θ 12

θ 22

θ 32

σ 2

7.0888

−0.047263
0.348746
0.758617
6491.13

7.2768

0.029151
0.189944
0.068130
592.556

0.974164

−1.62131
1.83605
11.1348
10.9544

TABLE 5.29 Estimated Linear and Constant Elasticity PAD Model of US Gasoline Demand,
January 2000–December 2005

Linear Constant Elasticity

Price elasticity
Short run
Long run

Income elasticity
Short run
Long run

Length of long run

−0.047155
−0.198121

0.361091
1.51712

8.5

−0.047263
−0.195801

0.348746
1.44478

8.3

Q

a

P0 P1 P

Q*= a–bp

Q0,Q0*

Q1

Q2

FIGURE 5.8
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SUMMARY

� In this chapter, we moved from the theoretical analysis of demand, discussed in the
previous chapter, to the empirical estimation of demand in order to validate the theory
that we learned throughout Chapters 3 and 4. We started with the most simple market
experimentations that were commonly tried by many managers to estimate the demand
for their products and to adjust to what they experienced and expected.

� The central part of the chapter was the method of estimation by regression, which is
the most common and dependable way to provide reasonable and reliable results. The
discussion included the fitting process, reliability of the estimated results, and the in-
terpretation of the results, along with examining the estimated parameters and checking
their ability to explain. The discussion also included an overview of the potential estima-
tion problems and the appropriate ways to deal with them. Among these problems are
multicollinearity, autocorrelation, and heteroscedasticity. Practical and comprehensive
examples were worked out to show the process of estimation by regression analysis.

� Other nonregression methods of estimation were discussed, such as market experimen-
tation, observational studies, micromarketing, and virtual shopping. The chapter was
concluded by a section on advanced demand estimation where the partial adjustment
demand (PAD) model was explained.

KEY TERMS

market experimentation
regression analysis
reliability of estimation
goodness of fit
coefficient of

determination (R2)
parameters
independent variable
dependent variable

intercept

error term
explanatory power
analysis of variance

(ANOVA)
F-ratio
sum of squared errors

(SSE)
degree of freedom
multicollinearity
autocorrelation

Durbin–Watson test
heteroscedasticity
observational studies
micromarketing
virtual shopping
partial adjustment demand

(PAD) model
desired demand
adjustment equation

LIST OF FORMULAS

� The estimated value of Y:

Ŷ = α̂ + β̂x .

� The error term:

e = Y − Ŷ

e = Y − α̂ − β̂x .
� Sum of squared errors: ∑

e2 = ∑
[Y − α̂ − β̂x]2.
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� Estimated β:

β̂ =
∑

[x − x̄][y − ȳ]∑
[x − x̄]2

.

� Estimated α:

α̂ = Ȳ − β̂ x̄ .

� Standard deviation:

Sβ =
√ ∑

[Y − Ŷ ]2

(n − k)
∑

[x − x̄]2
.

� t-Statistic:

t = β

Sβ

.

� Coefficient of determination:

R2 =
∑

[Ŷ − Ȳ ]2∑
[Y − Ȳ ]2

,

also : R2 = 1 − SSE

SST
.

� Adjusted R2:

Adj R2 = 1 −

[
SSE

N − K

]
[

SST

N − 1

] .

� Correlation coefficient:

r =
√

R2.

� Estimated demand function:

Qx = α + βPx + e.

� Degree of freedom:

df = n − k.
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� F-statistic:

F =

[
R2

K − 1

]
[

1 − R2

N − K

] .

� Variance inflation factor:

VIF = 1

1 − R2
x2

.

� Durbin–Watson statistic:

d =

n∑
t=2

[et − et−1]2

n∑
t=1

e2
t

.

� Desired demand:

Q∗
t = a Pb

t I c
t .

� Adjustment equation:

Qt

Qt−1
=

[
Q∗

t

Qt−1

]ρ

.

� Estimating equation:

Qt = ρa Pρb
t I ρc

t Q(1−ρ)
t−1 .

EXERCISES

1. What is the significance of demand estimation? Discuss how it is important to the theory
and to managers and their business strategies.

2. Review and compare the advantages and disadvantages of the different methods available
for demand empirical estimation.

3. Describe the process of demand estimation by the regression method from the beginning
to the end and specify what it needs to be a reliable method of estimation.

4. What are the major problems that may arise in the execution of the regression method?
Explain how they are checked, their effects on the results and their interpretation, and
how they are corrected.

5. What is PAD? How does it work? How important is it to empirically estimate market
demand?
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6. The following data are for a small firm:

Revenue Advertising Expenditures

88,000
80,000
84,000
92,000
96,000

104,000
108,000
116,000
118,000
120,000

20,000
18,000
22,000
24,000
22,000
24,000
26,000
26,000
28,000
30,000

(a) Use the regression method to show how spending on advertisement affects the firm’s
revenue.

(b) Draw the estimated regression line to illustrate the errors, the slope, and the
intercept.

(c) Estimate the firm’s revenue if the expenditure on advertisement becomes $45,000.

7. Estimate the regression equation (Q) for the following demand data where the indepen-
dent variables are price (P) and consumer income (I). Also, test the statistical significance
of the estimated parameters at the 5% level and show to what extent the independent
variables can explain the variation in the quantities demanded.

Qx Px I

2880
3600
3241
3420
3042
3600
3423
3600
3965
3786

12.00
8.00

10.00
8.00

10.00
8.00

10.00
8.00
8.00
8.00

32,000
31,500
34,600
33,160
33,980
35,610
36,720
38,000
37,190
39,890



6
CONSUMER DEMAND:
ECONOMIC FORECASTING

Demand forecasting is closely related to the process of estimation explained in Chapter 5.
Both processes are mostly related on the common ground of regression analysis, which
involves setting the real data into dependent–independent variables and quantifying their
impact by obtaining the estimated values of parameters.

Forecasting is the process of predicting the future state and value of economic variables
and their change using current knowledge and present and past data. It is all about projecting
the past and present into the future. Some might say that it is very difficult to be accurate
to the point of certainty because forecasting is an adventure into the practically unknown
and what has not happened yet. Ironically, though, the major justification of forecasting is
the very need to reduce life’s uncertainties and minimize risks. All decisions taken today
are connected to past experience as given facts and are to be connected to potential future
development. This is the reason why decision makers in public and private enterprises, as
well as at an individual level, need to predict the future events.

Most business managers know that forecasting can be a difficult and daunting process,
but they also recognize it as one of the most important tasks to facilitate decision making.
Managerial choice to predict sales, for example, would have a significant impact on planning
for material and equipment capacities for production, employment size, inventories and
storage requirements, and maintenance services. It would impact the financial manager’s
plans for the firm’s cash flow, investment and capital budgeting, and projected profits and
losses. In marketing, the sales forecast would be essential to plan for a sensible distribution
program, promotional strategy, and marketing budget. Forecasts of future sales would also
be used in personnel plans for hiring, promotion, staff structure, reward and retirement
programs, and so on. The major point to emphasize here is that any decision would not be
sound if it is isolated from the future development of the contributing and related factors.

Managerial Economics: A Mathematical Approach, First Edition. M. J. Alhabeeb and L. Joe Moffitt.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.
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6.1 FORECASTING MODELS

Forecasting is both an art and science. Its major objective is to help make the best possible
judgment about the future circumstances and conditions as they are predicted by a variety of
methods. The most sensible approach is to combine the hard statistical fact with thoughtful,
unbiased, and fair subjective judgment that utilizes solid experience and practical wisdom.
There are many types of forecasting models. Each can be more appropriate than the others
depending on a host of determinants such as

� what is being predicted and whether the purpose is to examine the trend continuation
or certain turning points;

� the time factor, which includes
� projection time, whether it is for a short or long term;
� time frame available to conduct the forecasting;
� lead time, during which the firm can make decisions using the estimations of the

forecasting model;
� cost of the process;
� the accuracy level needed for the forecasts;
� availability of the data needed;
� complexity of the forecasting model.

In terms of the scale of the process and its variables, forecasting can be either macro-
forecasting, where the subjects are at the aggregate level such as the gross domestic
product, national employment, national inflation rate, interest rate fluctuation, and national
money supply, or micro-forecasting, which involves variables at the level of an industry,
a firm, or specific market such as predicting the demand of a certain product or a product
line. Forecasting can also be conducted at a subset micro-level or an individual level of
consumers, markets, and products.

Types of forecasting depend on the use of analytical methods, which can be broadly
categorized into quantitative and qualitative models.

6.1.1 Quantitative Models

Quantitative models involve utilizing historical data and relying on numerical representation
of the observations for the purpose of describing and explaining the trend and changes that
the observations reflect. There are two kinds of the quantitative models:

(a) Structural models, which focus on the dependent–independent relationships be-
tween variables for the purpose of quantifying the impact of the independent vari-
ables on the variations in the dependent variable. Econometric models of forecasting
are representative of the structural type.

(b) Nonstructural models, which are concerned with observing patterns of change in
the variables over time. The time series models and barometric models are represen-
tative of this type.
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6.1.2 Qualitative Models

These models use nonnumerical examination and interpretation of observations for the
purpose of discovering the underlying patterns of relationships and inferring their meaning
and significance. Value judgment is the major tool in the qualitative analysis in contrast to
relying on the objective technical facts as in the case of quantitative models. Models that de-
pend on expert opinion, polls and market research, and consumer surveys are representative
of qualitative forecasting models.

In this chapter, first we focus on quantitative models and then briefly describe qualitative
models. We start here with the most common model of time series, which constitutes
more than two-thirds of the forecasting techniques used by businesses in the United States,
according to a recent survey by the Institute of Business Forecasting.

6.2 TIME SERIES ANALYSIS

The time series method of forecasting uses historical data and applies the ordinary least
squares statistical techniques to obtain predictions of future values. It basically extrapolates
data from the past and present into the future period for the purpose of identifying general
patterns in the development of a single variable throughout the time. This method allows us
to make forward projections from the data that have long-term trends through the utilization
of a simple bivariate regression model, where the time trend (t) serves as the explanatory
variable for the changes in the dependent variable.

The long-term development of a variable can be plain and smooth if it follows a straight-
forward secular trend, but often, it contains several sorts of variations that would affect
the real value of the variable if it is predicted from the general unadjusted progress. This is
why an essential part of this analysis is to recognize and count for these possible fluctua-
tions within the general flow of data. Calculating the impact of these variations allows the
adjustment of the forecasts made on the basis of the estimates that the regression equation
yields for more realistic values. Most of the variations in the time series data are due to the
following common patterns.

6.2.1 Secular Trends

A secular trend is a long-term consistent development in a variable value that is often
characterized by a general steadily increasing or decreasing pattern and most likely rep-
resented by a solid smooth line going upward or downward. Population growth and per
capita income are typical examples of the increasing secular trend, whereas goods that go
out of date over time such as typewriters, cable phones, and personal train transportation
are typical decreasing secular trends.

6.2.2 Seasonal Variations

These are recurring rhythmic fluctuations that usually reflect certain seasons, weather
conditions, or specific periodic occasions such as school time or holidays like Christmas
or Thanksgiving. The sales of many products can reflect typical seasonality such as air
conditioners, fans, swimsuits, shorts, and tourism services in summer; snow blowers, snow
tires, heavy coats in winter; garden products in spring; turkey on Thanksgiving; and gifts
during Christmas times.
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6.2.3 Cyclical Fluctuations

These are long-term patterns of expansion and contraction in the economic activityin general
that reflect the recurring conditions of the economic business cycle that characterizes the
free-market economy. The construction and housing sector, for example, exhibits a typical
long-term cycle in its activity that could last 10 years or more, whereas other sectors may
experience shorter cycles.

6.2.4 Random Changes

These changes are reflection of the irregular, unpredictable fluctuations that are due to
events such as war, political instability, natural disasters, and strikes. This type of variation
is very difficult to count for in any modeling due to the random nature of its occurrence and
the degree of its impact.

Mathematically, the actual value of a variable in the time series data (Yt) can be expressed
as a function of all of the above variations:

Yt = f [Sect , Seat , Cyct , Rant ],

where

Sect is the secular effect for t period;

Seat is the seasonal effect for t period;

Cyct is the cyclical effect for t period;

Rant is the random effect for t period.

Geometrically, Figure 6.1 shows each of the patterns.

Secular
Random
Cyclical
Seasonal

FIGURE 6.1

6.3 FROM SYMBOLIC TO NUMERIC FITTING

Time series data are different in terms of their appropriateness to fit into a certain function
for the purpose of regression estimation. Fortunately, most of the economic data can easily
fit into the linear function

Yt = α + βt.
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However, some may fit better into the quadratic function

Yt = α + βt + γ t2,

where the coefficient of t2 reflects the type of growth. A positive coefficient (γ > 0) refers
to an increasing rate of growth and a negative coefficient (γ < 0) refers to a decreasing rate
of growth. Figure 6.2 shows both quadratic functions against the linear trend.

Increasing
quadratic

Increasing
linear

Decreasing
quadratic

FIGURE 6.2

Some data may need to be fitted into an exponential function of the form

Yt = αβ t ,

which has to be transformed into a linear function by the logarithmic function in order to
be estimated by the ordinary least squares method,

Log Yt = Log α + t Log β,

and with a slight rearrangement, we can better identify the parameters:

Log Yt = Log α + t Log β t,

where Log α is the constant term and Log β is the time coefficient. The antilog function
would return the parameters to their original state after estimation:

Yt = Antilog α and Antilog β(t).

The following example shows how supportive information about a product can be used in
the fitting of a certain function.

Example 6.1
This example uses the linear function. It is about forecasting the size of membership in an
athletic gym of a club. Suppose that the firm that owns the club has conducted a survey and
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collected a list of related information:

� During any time period (t), the number of members of the club who resume their
membership from a previous period is a certain percentage (x) of the total number
of members in the previous period [Mt− 1]. Therefore, we can say that the number
of members of the club during any time period t [Mt] would include those who were
carried over from the previous period (xMt− 1).

� Also, during any time period (t), there would be a number of new members joining the
club for the first time. Suppose that this number is a certain percentage (y) of the esti-
mated total market demand on this particular service (D). Therefore, this number can
be expressed as a y-percentage of D after excluding those who already joined before:

y[D − Mt−1].

� Total number of members during period (t) can then be obtained by adding the two
previous parts:

Mt = x[Mt−1] + y[Dt−1].

Combining the similar terms, we get

Mt = x[Mt−1] + y D − y[Mt−1],

Mt = y D + (x − y)[Mt−1].

� Now, let us go back to the firm’s survey. Suppose that the survey has revealed that
the total demand on this service in the market is estimated at 1200 members and that
those who carry their membership over to the next period average 76% of those who
already have membership from the last period, and that those who join the club for
the first time are usually an average of 18% of the market demand. Plugging these
real figures in the equation will give us the numeric form of the function:

Mt = 0.18[1200] + [0.76 − 0.18]Mt−1

or

Mt = 216 + 0.58Mt−1.

This is the linear function format that is to be used to forecast for the next period using
the previous period. So, if, for example, we look at the record of membership for the
last year and find it to be 450 members, we can immediately extrapolate an estimation
of the next year membership and probably for a few more years into the future:

Mnext = 216 + 0.58(450),

Mnext = 477.

However, this kind of function is usually obtained by running a simple bivariate
regression analysis on two columns of data. The first is the membership size for a
number of previous periods, say years, and second, the trend of time from 1 to n.



206 CONSUMER DEMAND: ECONOMIC FORECASTING

The number 216 above would be the y-intercept of the equation or the constant term,
and 0.58 would be the β-value or the slope of the regression line. If the last year
membership was 450, we can project the membership status for the next 7 years to
see that it is a secular trend that is increasing but at a decreasing rate. Table 6.1 shows
the membership forecasts for the next 7 years.

TABLE 6.1

T Mt − 1 Mt �Mt

0 450 477
1 477 493 16
2 493 502 9
3 502 507 5
4 507 510 3
5 510 512 2
6 512 513 1
7 514 514 0

It is essential for the manager to know that the growth of membership is decreasing and
that 7 years from now there will be not be a single person joining the club when the number
of members in the current year would equal the number in the previous year. It is a wakeup
call to change strategies and try to turn the tide around into an increasing rate of growth.

The function to estimate the data at hand could be nonlinear, had the conditions and
information been different. Let us assume that the data would fit an exponential function
such as

Mt = β[N ]t ,

where the coefficients to be estimated are β and N. The value of Mt or the membership size
during any period (t) would grow proportionally with time if N is larger than 1 (N > 1).
However, it would decline proportionally with time if N is less than 1 (N < 1).

For example, if running the regression yields that N is 1.23, it would mean that Mt or
annual membership would increase by (N − 1) or by 23% annually. However, if the estimate
of N is 0.89, it would mean that membership would decline annually by 11%.

As we have seen before, an exponential function should be transformed into a linear
function by applying the logarithms in order to be estimated by the ordinary least squares
method:

log[Mt ] = log[βN t ],

log[Mt ] = log[β] + log N [t].

To estimate Mt, we need to take the antilog of both coefficients,

Mt = Antilog β + Antilog N (t),

and the figures of antilog will be the values of the parameters.
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6.4 ADJUSTING FOR SEASONALITY

Since time series data are inherently characterized by the sorts of variations mentioned
above, it is essential to adjust the estimation of the regression equation for those variations
so that we can get forecasts that reflect the realities of data. We focus on seasonal variation
as it is the most common variation in the time series data, and we calculate its impact using
more than one method. It is worth noting here that isolating these variations and adjusting
the value of data according to their impacts is called the “decomposition process.”

Let us first consider some quarterly data on a product’s sales for 20 quarters and let
us use the following fitted regression equation to calculate quarterly forecasts from the
actual data:

St = S0 + β t,

St = 479.1 + 3.01 t,

where S0 (value 479.1) is the constant coefficient that stands for the average of initial sales
and β (value 3.01) is the coefficient of t. Table 6.2 shows the actual and forecasted sales
from the first quarter in 2006 to the fourth quarter in 2010 and Table 6.3 illustrates simple
average errors.

TABLE 6.2 Sales Forecasts for 20 Quarters

1 2 3 4

Year.Quarter t Actual Sale (A) Forecasted Sale (F)

2006.1 1 529.8 482.11
2006.2 2 487.6 485.12
2006.3 3 505.7 488.13
2006.4 4 512.2 491.14
2007.1 5 507.0 494.15
2007.2 6 486.5 497.16
2007.3 7 466.2 500.17
2007.4 8 474.7 503.18
2008.1 9 492.7 506.19
2008.2 10 496.0 509.20
2008.3 11 490.6 512.21
2008.4 12 483.1 515.22
2009.1 13 519.0 518.23
2009.2 14 510.6 521.24
2009.3 15 515.4 524.25
2009.4 16 525.6 527.26
2010.1 17 526.7 530.27
2010.2 18 526.2 533.28
2010.3 19 560.7 536.29
2010.4 20 598.6 539.30
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TABLE 6.3 Simple Average Errors

1 2 3 4

Year.Quarter Actual Sales (A) Forecasted Sales (F) Errors (F – A)

2006.1 529.80 482.11 −47.69
2007.1 507.00 494.15 −12.85
2008.1 492.70 506.19 13.49
2009.1 519.00 518.23 −0.77
2010.1 526.70 530.27 3.57

Average error for the first quarter −8.85
2006.2 487.60 485.12 −2.48
2007.2 486.50 497.16 10.66
2008.2 496.00 509.20 13.2
2009.2 510.60 521.24 10.64
2010.2 526.20 533.28 7.08

Average error for the second quarter 7.82
2006.3 505.70 488.13 −17.57
2007.3 466.20 500.17 33.97
2008.3 490.60 512.21 21.61
2009.3 515.40 524.25 8.85
2010.3 560.70 536.29 −24.41

Average error for the third quarter 4.49
2006.4 512.20 491.14 −21.06
2007.4 474.70 503.18 28.48
2008.4 483.10 515.22 32.12
2009.4 525.60 527.26 1.66
2010.4 598.60 539.30 −59.3

Average error for the fourth quarter −4.28

The following subsections discuss three methods to capture the impact of seasonality.

6.4.1 The Simple Average of Errors Method

According to this method, we calculate the simple average of errors for each quarter and
adjust the next prediction by its value. So, let us rearrange Table 6.3 first by grouping
the similar quarters together. The next step is to create Column 5 for the errors that show
difference between the forecasted and the actual values. Then we calculate the simple
average for each similar quarter individually.

If we want to predict the four quarters of 2011, their t-values would be 21, 22, 23, and
24. Plugging these t-values into the regression equation gives us the forecast for 2011 (see
Tables 6.4, 6.5, 6.6, 6.7 and Figure 6.3).

TABLE 6.4

Year.Quarter t St = 479.1 + 3.01t Forecasted Sale (F)

2011.1 21 479.1 + 3.01(21) 542.31
2011.2 22 479.1 + 3.01(22) 545.32
2011.3 23 479.1 + 3.01(23) 548.33
2011.4 24 479.1 + 3.01(24) 551.34
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TABLE 6.5

Multiple Linear Regression—Estimated Regression Equation

Sales [t] = + 479.097368421053 + 3.01406015037595 Time[t] + e[t]

TABLE 6.6

Multiple Linear Regression—Ordinary Least Squares

T-Stat Two-Tail One-Tail
Variable Parameter SD (H0: Parameter = 0) p-Value p-Value

Intercept 479.097368421053 11.742379 40.8007 0 0
Time 3.01406015037595 0.980235 3.0748 0.006529 0.003264

TABLE 6.7

Multiple Linear Regression—Regression Statistics

Multiple R 0.586832495103272
R-Squared 0.344372377309132
Adjusted R-Squared 0.307948620492972
F-Test (value) 9.45460895336176
F-Test (DF numerator) 1
F-Test (DF denominator) 18
p-Value 0.00652875667517216

Multiple Linear Regression—Residual Statistics

Residual standard deviation 25.2778977211252
Sum squared residuals 11501.498037594
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However, these forecasts are not adjusted for any seasonal variation as reflected by the
simple average errors. This is why we should perform the adjustment (Table 6.8). Looking
at the average of errors, we get that the forecast for the first quarter was, in general, less
than the actual by an average of 8.85. So, we can add back this difference to the forecast of
the first quarter in 2011:

S21 = 542.31 + 8.85 = 551.16.

For the second quarter of 2011, the forecasted value was more than the actual by an
average of 7.82. So, this difference should be discounted:

S22 = 545.32 − 7.82 = 537.50.

For the third quarter, the average error is 4.49. So, the third quarter of 2011 would be
adjusted by discounting 4.49:

S23 = 548.33 − 4.49 = 543.84.

The fourth quarter has a −4.28 average error, which means it is underestimated by 4.28.
So, adjusting the fourth quarter of 2011 requires adding this amount:

S24 = 551.34 + 4.28 = 555.62.

TABLE 6.8

Year.Quarter Fsa = F ± SAE Fsa

2011.1 542.31 + 8.85 551.16
2011.2 545.32 − 7.82 537.50
2011.3 548.33 − 4.49 543.84
2011.4 551.34 + 4.28 555.62

6.4.2 The Actual-to-Forecast (A/F) Ratio Method

We arrange our data as in Table 6.8, where similar quarters of all years are grouped together.
This time we calculate the A/F ratio by dividing the actual data by the forecasted data. Then,
we obtain a 5-year average of the ratio for the similar quarters individually. It is the A/F
ratio for a specific quarter that would serve as a multiplier of the predicted values to adjust
them for seasonality:

Fsa = F(A/F)q , q = 1, 2, 3, 4.
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Here Fsa is the seasonally adjusted forecast, F is the unadjusted forecast, and (A/F)q is the
quarterly average ratio (see Tables 6.9 and 6.10):

(A/F)1 = 1.02,

(A/F)2 = 0.98,

(A/F)3 = 0.99,

(A/F)4 = 1.00.

TABLE 6.9 Five-Year Quarterly Average Ratio

Year Quarter Actual Sale (A) Forecasted Sale (F) A/F Ratio

2006 1 529.80 482.11 1.10
2007 1 507.00 494.15 1.03
2008 1 492.70 506.19 0.97
2009 1 519.00 518.23 1.00
2010 1 526.70 530.27 0.99

5-year average ratio for the first quarter 1.02 (A/F)q1

2006 2 487.60 485.12 1.01
2007 2 486.50 497.16 0.98
2008 2 496.00 509.20 0.97
2009 2 510.60 521.24 0.98
2010 2 526.20 533.28 0.97

5-year average ratio for the second quarter 0.98 (A/F)q2

2006 3 505.70 488.13 1.04
2007 3 466.20 500.17 0.93
2008 3 490.60 512.21 0.96
2009 3 515.40 524.25 0.98
2010 3 560.70 536.29 1.04

5-year average ratio for the third quarter 0.99 (A/F)q3

2006 4 512.20 491.14 1.04
2007 4 474.70 503.18 0.94
2008 4 483.10 515.22 0.94
2009 4 525.60 527.26 0.99
2010 4 598.60 539.30 1.11

5-year average ratio for the fourth quarter 1.00 (A/F)q4

TABLE 6.10

Year.Quarter Fsa = F(A/F)q Fsa

2011.1 542.31(1.02) 553.16
2011.2 545.32 (0.98) 534.41
2011.3 548.33 (0.99) 542.85
2011.4 551.34 (1.00) 551.34
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6.4.3 The Dummy Variables Method

We can adjust for seasonality by using the regression equation obtained from the run that
includes dummy variables for the quarters:

Sd
t = 482.1 + 3.06t + Qi ,

where Qi is the estimated coefficient for each quarter (Q1, Q2, Q3), whereas the fourth
quarter (Q4) is represented by the intercept only. So, the estimation of the forecasted value
of sales for the first quarter of 2011 would use the intercept t (21) and the Q1 coefficient
(5.39). The forecasted value for the second quarter would use the intercept t (22) and the
Q2 coefficient (−11.33). The forecasted value for the third quarter would use the intercept
t (23) and the Q3 coefficient (−8.06). The fourth quarter would not have any Q4 coefficient
since it is considered the base period.

Table 6.11 shows the calculations of the forecasted sales for the four quarters of 2011
as they are adjusted for the seasonal variation according to the regression with the dummy
variables method (also see Tables 6.12, 6.13, 6.14 and Figures 6.4 and 6.5).

The results of the adjusted forecasts by the three methods would have been much closer
if it were not for rounding.

TABLE 6.11

Regression with Dummy Variables Adjusted
Year.Quarter t Equation (Sd

t = α + βt + Qi ) Forecast (Fd
sa)

2011.1 21 S21 = 482.1 + 3.06(21) + 5.39 551.75
2011.2 22 S22 = 482.1 + 3.06(22) − 11.33 538.09
2011.3 23 S23 = 482.1 + 3.06(23) − 8.06 544.42
2011.4 24 S24 = 482.1 + 3.06(24) 555.54

TABLE 6.12

Multiple Linear Regression—Estimated Regression Equation

Sales [t] = + 482.09 + 3.06250000000001 Time [t] + 5.38749999999994 Q1 [t] − 11.335
Q2[t] − 8.05750000000001 Q3[t] + e[t]

TABLE 6.13

Multiple Linear Regression—Ordinary Least Squares

T-Stat Two-Tail One-Tail
Variable Parameter SD (H0: Parameter = 0) p-Value p-Value

(Intercept) 482.09 17.359597 27.7708 0 0
Time 3.06250000000001 1.05258 2.9095 0.010784 0.005392
Q1 5.38749999999994 17.134764 0.3144 0.757533 0.378767
Q2 −11.335 16.972345 −0.6679 0.514374 0.257187
Q3 −8.05750000000001 16.874144 −0.4775 0.639885 0.319943
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TABLE 6.14

Multiple Linear Regression—Regression Statistics

Multiple R 0.627458670627651
R-Squared 0.393704383345819
Adjusted R-Squared 0.232025552238038
F-Test (value) 2.43510161873548
F-Test (DF numerator) 4
F-Test (DF denominator) 15
p-Value 0.0926907022517692

Multiple Linear Regression—Residual Statistics

Residual standard deviation 26.6284058854449
Sum squared residuals 10636.08
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6.5 SMOOTHED FORECASTS

Smoothing techniques are other ways to produce forecasted values based on past obser-
vations. It is more suited for the time series data that have a slow and infrequent change in
the underlying pattern and the data that exhibit a noticeable degree of randomness or irreg-
ularity. The objective of these techniques is to smooth out such irregularities and reduce
or eliminate the distortions arising from the random variations. The forecasted value of a
variable according to these techniques is basically an average of some previous data. The
most common of these techniques are the moving average smoothing and the exponential
smoothing.

6.5.1 Simple Moving Average Method

This method calculates the predicted value of a variable as a simple average of a number
of observations (p) that would overlap throughout the prediction list by adding the latest
observation while dropping off the earliest. For example, if we are at the end of July and
want to predict the sales for August, we can use the data we have for the previous months to
get an average to represent a predicted value for August. A 3-month average would include
the sales of July, June, and May divided by 3. If at the end of August and after recording
the actual sales of August, we want to predict for September, the 3-month moving average
requires that we add August (being the latest) and drop off May (being the earliest) so that
the September value becomes an average of August, July, and June. The predicted sales
for October would be an average of September, August, and July, while June is dropped
off, and so on—the average would move forward throughout the series, hence the name
“moving” average.

We can obtain the general formula for the moving average this way. Let us call the actual
data of sales At, where t is the current time and can reflect the number of observations, such
that if we are in July, At would be A7; the previous month is June and can be denoted by
A6, which is also At−1 = A7−1 = A6; the month after July is August, which can be denoted
by A8 or At + 1 = A7 + 1 = A8. So, the forecast for August is an average of July, June,
and May:

A8 = A7 + A6 + A5

3

or

At+1 = At + At−1 + At−2

3
.

The denominator, 3, is the number of periods (P) that would constitute the elements of the
average according to the forecaster, and it could be any number the forecaster chooses. This
would make the formula more general as

At+1 = At + At−1 + At−2 + · · · + At−p+1

P
.
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So, if we are in November [11] and want to calculate a 5-month forecast for December
[12], the forecasted value for December sales would be

At+1 = At + At−1 + At−2 + At−3 + At−4

P
,

A11+1 = A11 + A11−1 + A11−2 + A11−3 + A11−4

5
,

A12 = A11 + A10 + A9 + A8 + A7

5
.

The last observation is A7 and it is equal to the last term in the general formula:

At−p+1 = A11−5+1 = A7.

Column 3 of Table 6.15 shows the actual sales of customized computers at a local store
during the 16 quarters of 2008–2011. The three-quarter forecasts are shown in Column 4
starting at the fourth observation, 184.3, as the first average of observations 1, 2, and 3.

184.3 = 170 + 187 + 196

3
.

TABLE 6.15 Three-Quarter and Five-Quarter Moving Average

1 2 3 4 5 6 7 8 9

Three- Five
Year. Actual Quarter Quarter

Observation Quarter Sale (A) MA (F1) A – F1 [A – F1]2 MA (F2) A – F2 [A – F2]2

1 2008.1 170
2 2008.2 187
3 2008.3 196
4 2008.4 204 184.5 19.7 388.09
5 2009.1 153 195.6 −42.6 1814.76
6 2009.2 195 184.3 10.7 114.49 182 13 169
7 2009.3 162 184 −22 484 187 −25 625
8 2009.4 144 170 −26 676 182 −38 1444
9 2010.1 188 167 21 441 171.6 16.4 268.96

10 2010.2 196 164.6 31.4 985.96 168.4 27.6 761.76
11 2010.3 150 176 −26 676 177 −27 729
12 2010.4 194 178 16 256 168 26 676
13 2011.1 154 180 −26 676 174.4 −20.4 416.16
14 2011.2 190 166 24 576 176.4 13.6 184.96
15 2011.3 159 179.3 −20.3 412.09 176.8 −17.8 316.84
16 2011.4 140 167.6 −27.6 261.76 169.4 −29.4 864.36
17 2012.1 163 7762.15 167.4 6456.04

MA, moving average.
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Next on the column is 195.6 as the forecast value for sales in the first quarter of 2009.
It is obtained by averaging only the previous three observations and dropping off the
earliest:

195.6 = 204 + 196 + 187

3
.

Column 7 of Table 6.15 shows the forecasts using a five-quarter moving average. For
example, the predicted value of sales for the third quarter in 2011 (176.8) is obtained by
averaging out the previous five actual values:

176.8 = 190 + 154 + 194 + 150 + 196

5
.

As to why and when the forecast uses a specific value of p, it depends on the forecaster’s
design, objectives, and justifications of the forecast. Generally speaking, the larger the p
or the number of observations constituting the average, the smoother the forecasts and the
more effective the impact on dealing with randomness that would be spread out over more
observations, each of which would get less weight (1/P) as P increases. If we graph this
time series in its three columns of estimates as they are Table 6.16, it would be clearer that
the forecast values obtained by using five-quarter moving average produced a smoother
curve (C) as compared to the other curves [the actual data curve (A) and the three-quarter
moving average forecasts curve (B)]. It is a visual confirmation to the notion that a greater
value of p would result in ironing out most of the randomness in the time series data
(Figure 6.6).

TABLE 6.16 Time Series Data of Sales: Actual Versus Two Forecasts

Three-Quarter Five-Quarter
Observation Year.Quarter A MA (F1) MA (F2)

1 2008.1 120
2 2008.2 187
3 2008.3 196
4 2008.4 204 184.3
5 2009.1 153 195.6
6 2009.2 195 184.3 182
7 2009.3 162 184 187
8 2009.4 144 170 182
9 2010.1 188 167 171.6

10 2010.2 196 164.6 168.4
11 2010.3 150 176 177
12 2010.4 194 178 168
13 2011.1 154 180 174.4
14 2011.2 190 166 176.4
15 2011.3 159 179.3 176.8
16 2011.4 140 167.6 169.4
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The RMSE Check We can run a simple test to check which of the two procedures, the
three-quarter forecast or the five-quarter forecast, is better in the sense of being closer to
the actual data. This test uses the squared forecast errors and calculates and compares what
is called the root-mean-square error (RMSE). The smaller the RMSE, the better it is:

Min RMSE =
√

�[At − Ft ]2

n − p
.

Here n is the total number of observations, and p is the number of terms constituting the
average.

Columns 6 and 9 of Table 6.15 calculate the summation of the squared errors for both
procedures. Plugging the values in the formula above reveals the following.

For the three-quarter forecast, the RMSE is

RMSE3 =
√

7762.15

16 − 3
= 24.44,

and for the five-quarter forecast, the RMSE is

RMSE5 =
√

6456.04

16 − 5
= 24.22.

Since the five-quarter procedure has a relatively smaller RMSE, it would be a little better
than the three-quarter procedure. So, if we want to predict for the first quarter of 2012, we
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will use the five-quarter procedure that produces 167.4 instead of using the three-quarter
procedure that produces 163:

F17 = 140 + 159 + 190 + 154 + 194

5
= 167.4,

F17 = 140 + 159 + 190

3
= 163.

6.5.2 The Weighted Moving Average

The simple moving average method assumes uniformity among the observations of time
series data in terms of their impact on forming the predicted value. It is, in fact, one of the
shortcomings that counteracts the simplicity of the model. As a response to such a major
pitfall, forecasters came up with the idea of weighing the importance of the observations
constituting the average. The weighted moving average, therefore, allows the forecasters
to assign certain weights to each observation in the average based on their discretion, and
consistent with the external influences they may consider in giving more or less importance
to a specific observation or term of the observation. All assigned weights may or may not
total to 1. The forecast value for the next period (Ft + 1) will be calculated as

Ft+1 = w1(At ) + w2(At−1) + w3(At−3) + · · · + wp(At−p+1)

�wi
.

Here wi = w1, w2, . . . , wp: the number of weights assigned to as many observations as
available in the average. That is, the 3-month moving average, has a p = 3 and, therefore,
has three weights (w1, w2, w3) assigned to each of the three observations forming the
average.

Example 6.2
Suppose that the forecaster assigned the following weights to the four quarters of 2011:
0.15, 0.25, 0.37, and 0.23. What would be the four-quarter predicted sales for the first
quarter of 2012? Use the actual sales as mentioned in Table 6.16:

F2012.1 = w1 A2011.1 + w2 A2011.2 + w3 A2011.3 + w4 A2011.4∑
wi

.

Solution:

Since the summation of weights is 1, we can skip dividing by
∑

wi and simply calculate
the numerator part of the equation:

F2012.1 = 0.15(140) + 0.25(159) + 0.37(190) + 0.23(154),

F2012.1 = 166.5.

Example 6.3
What if the weights are 0.18, 0.24, 0.33, and 0.20?

Solution:

F2012.1 = 0.18(140) + 0.24(159) + 0.33(190) + 0.20(154)

0.95
,

F2012.1 = 165.12.
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Example 6.4
Suppose that at the end of the first quarter of 2012 the sales turn out to be l64. Use the
four-quarter weighted moving average to predict the sales in the second quarter of 2012
assuming the same weights as in the last example.

Solution:
Since we use the four-quarter moving average and we have new actual sales of the first
quarter of 2012, we should drop off the earliest quarter in the group, which is the first
quarter of 2011 (154). So, the four quarters forming the average now are 2012.1, 2011.4,
2011.3, and 2012.2:

F2010.2 = 0.18(164) + 0.24(140) + 0.33(159) + 0.20(190)

0.95
,

F2012.2 = 161.7.

6.5.3 Exponential Smoothing

The exponential smoothing model is another way to respond to the uniformity assumption
of the moving average method as it treats all time periods in the series equally. This method
assumes that the most recent past is more predictive of the future value of the forecast than
the distant past. This assumption has prompted the introduction of a constant (α) to signify
the weight of the immediate past, while the earlier data take a (1 – α) weight. In this case,
α is assigned by forecasters based on their discretion and the extent of their belief in how
strong the impact of the most recent data is on the prediction. The value of α is between 0
and 1, but traditionally has been assigned values between 0.10 and 0.35.

So, the exponential model calculates the value of the forecast for the next period (Ft + 1)
as a weighted average of the actual observation in the current period (At) and the forecast
value for the same period (Ft), where α is assigned to the current actual and (1 – α) is
assigned to the smoothed forecast (Ft):

Ft+1 = αAt + (1 − α)Ft . (6.1)

Logically, if we write this equation for the current period (t), we get

Ft = αAt−1 + (1 − α)Ft−1, (6.2)

and if we substitute (6.2) into (6.1), we get

Ft+1 = αAt + (1 − α)[αAt−1 + (1 − α)Ft−1],

Ft+1 = αAt + (1 − α)αAt−1 + (1 − α)2 Ft−1,

and if we substitute for Ft−1 as

Ft−1 = αAt−2 + (1 − α)Ft−2,

we get
Ft+1 = αAt + α(1 − α)At−1 + (1 − α)2[αAt−2 + (1 − α)Ft−2].

Ft+1 = αAt + α(1 − α)At−1 + α(1 − α)2 At−2 + (1 − α)3 Ft−2.
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If we keep substituting for the forecast of the past periods Ft−2, Ft−3, and earlier, we will
realize that we have an equation of an exponentially weighted moving average with its
weights forming a geometric progression:

α, α(1 − α), α(1 − α)2, α(1 − α)3, . . . , α(1 − α)n.

It illustrates that any value of α would produce a decreasing value of weights. For example,
if α is 0.40, the rest of the weights would be calculated as shown in Table 6.17.

TABLE 6.17

Term Weight Value

1 α 0.40
2 α(1 – α)1 0.24
3 α(1 – α)2 0.144
4 α(1 – α)3 0.0864
5 α(1 – α)4 0.0518
6 α(1 – α)5 0.0311
7 α(1 – α)6 0.0186
8 α(1 – α)7 0.0111

This shows that the weights get smaller and smaller as we go back in the past. It dropped
here to 1% at the eighth term back. It is a confirmation that assigning a higher α would
place greater importance on the most recent past as a predictor of the future, and logically
place less importance on the earlier observations. However, a greater value of α produces
less smoothing, so for a smoother line a smaller α would help. If we slightly rearrange the
original format of the exponential smoothing model,

Ft+1 = α(At ) + (1 − α)Ft ,

Ft+1 = α(At ) + Ft − αFt ,

we can get the most practical format for calculations:

Ft+1 = Ft + α[At − Ft ].

We use this equation to produce forecasts in the F1 and F2 columns of Table 6.18 using
two values of α, 0.20 and 0.45. For the first forecast of the first quarter of 2008, we use the
actual observation (170) for At and the general average of the actual (173.9) for Ft, but for
the rest of the forecasts, Ft would be the previous F. For example, to predict the sales for
the second quarter of 2010, using an α of 0.20, we use 188 for At and 170.9 for Ft as they
are the current data at the time to predict for the following quarter:

Ft+1 = Ft + α[At − F2],

F2010.2 = F2010.1 + .20[A2010.1 − F2010.1],

F2010.2 = 170.9 + .20[188 − 170.9],

F2010.2 = 174.3.
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TABLE 6.18 Exponential Smoothing with Two Values of α

α = 0.20 α = 0.45

Observation Year.Quarter
Actual

Sale (A) F1 A – F [A – F1]2 F2 A – F2 [A – F2]2

1 2008.1 170 173.9 −3.9 15.2 173.9 −3.9 15.2
2 2008.2 187 173.1 13.9 193.2 172.1 14.9 222
3 2008.3 196 175.9 20.1 404 178.8 17.2 295.8
4 2008.4 204 179.9 24.1 580.8 186.5 17.5 306
5 2009.1 153 184.7 −31.7 1004.9 194.4 −41.4 1714
6 2009.2 195 178.4 16.6 275.5 175.8 19.2 368.6
7 2009.3 162 181.7 −19.7 388 184.4 −22.4 501.8
8 2009.4 144 177.7 −33.7 1135.7 174.3 −30.3 918.1
9 2010.1 188 170.9 17.1 292.4 160.7 27.3 745.3

10 2010.2 196 174.3 21.7 470.9 173.0 23 529
11 2010.3 150 178.6 −28.6 817.9 183.3 −33.3 1108.9
12 2010.4 194 172.9 21.1 445.2 168.3 25.7 660.5
13 2011.1 154 177.1 −23.1 533.6 179.8 −25.8 665.6
14 2011.2 190 172.5 17.5 306.2 168.2 21.8 475.2
15 2011.3 159 176.0 −17 289 178.0 −19 361
16 2011.4 140 172.6 −32.6 1062.7 169.4 −29.4 864.4
Average = 173.9 8215 9737

As for the moving average method, we can use the RMSE test to see which α-value
produces a better forecast. For the forecasts produced with α = 0.20, we get

RMSE =
√

�[At − Ft ]2

n
,

RMSE =
√

8215

16
,

RMSE = 22.6,

and for the forecasts produced with α = 0.45, we get

RMSE =
√

9737

16
,

RMSE = 24.7.

Since using α of 0.20 produced a smaller RMSE, it means that this α-value is more
appropriate to bring the forecasts closer to their actual values.

This concludes that if we want to predict the sales of the first quarter of 2012, we should
rely on the estimate of 166.08 instead of the estimate of 157.9 as the first one uses an α of
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0.20 and the second uses an α of 0.45:

F2012.1 = F2011.4 + α[A2011.4 − F2011.4]

= 172.6 + 0.20[140 − 172.6]

= 166.08

or

F2012.1 = 172.6 + 0.45[140 − 172.6]

= 157.9.

Graphing the time series in its three forms, the actual, the forecasts using an α of 0.20, and
the forecasts using an α of 0.45, as they are in Table 6.19, shows that a smaller α (0.20)
produces a smoother line (see Figure 6.7).

TABLE 6.19

Observation Year.Quarter A F1 (α = 0.20) F2 (α = 0.45)

1 2008.1 170 173.9 173.9
2 2008.2 187 173.1 172.1
3 2008.3 196 175.9 178.8
4 2008.4 204 179.9 186.5
5 2009.1 153 184.7 194.4
6 2009.2 195 178.4 175.8
7 2009.3 162 181.7 184.4
8 2009.4 144 177.7 174.3
9 2010.1 188 170.9 160.7

10 2010.2 196 174.3 173.0
11 2010.3 150 178.6 183.3
12 2010.4 194 172.9 168.3
13 2011.1 154 177.1 179.8
14 2011.2 190 172.5 168.2
15 2011.3 159 176.0 178.0
16 2011.4 140 172.6 169.4
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Mean Absolute Deviation (MAD) This is similar to RMSE to test for the appropriateness
of the forecasting technique in terms of how close the estimates are to the actual data,
especially when conducting short-range forecasts such as those performed by the moving
average and the exponential smoothing. MAD is a simple measure of the overall forecast
error. It depends on the absolute value of the error terms, as opposed to squaring them
(as in the RMSE calculations). The absolute value is obtained by ignoring the signs of the
deviation between the actual and predicted values, or deeming all of them positive as they
are squeezed in between the two vertical lines:

MAD = � |A − F |
n

.

Table 6.20 shows the absolute values of the deviations between the actual sales and four
different forecasts as we calculated them earlier. In the last row of Table 6.20, MAD is
calculated for every forecast method. The results are very similar to what we got earlier
by the RMSE tests. The results confirm again that the least forecast error is found in the
exponential smoothing technique using an α-value of 0.20, a reason to consider this method
the best among the four methods followed for this specific time series. The results also
confirm that using the four-quarter moving average is better than the three-quarter moving
average, and using an α of 0.20 is better than an α of 0.45.

TABLE 6.20

|A − F1| |A − F2| |A − F| |A − F|
Observation Year.Quarter (Three-Quarter MA) (Four-Quarter MA) (α = 0.20) (α = 0.45)

1 2008.1 3.9 3.9
2 2008.2 13.9 14.9
3 2008.3 20.1 17.2
4 2008.4 19.7 24.1 17.5
5 2009.1 42.6 31.7 41.4
6 2009.2 10.7 13 16.6 19.2
7 2009.3 22 25 19.7 22.4
8 2009.4 26 38 33.7 30.3
9 2010.1 21 16.4 17.1 27.3

10 2010.2 31.4 27.6 21.7 23
11 2010.3 26 27 28.6 33.3
12 2010.4 16 26 21.1 25.7
13 2011.1 26 20.4 23.1 25.8
14 2011.2 24 13.6 17.5 21.8
15 2011.3 20.3 17.8 17 19
16 2011.4 27.6 29.4 32.6 29.4
� |A − F | 313.3 254.2 342.4 372.1
n 13 11 16 16
MAD 24.1 23.1 21.4 23.2

MA, moving average.
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6.6 BAROMETRIC FORECASTING

Because of the continuous and significant overlap between micro- and macro-levels of
economic activities, firm managers have traditionally realized the need to be aware of the
directions of the major macroeconomic variables when they forecast for their own variables
at the micro-level. For example, predicting the sales or profits for a specific product is
inextricably connected to consumer demand, income and employment levels, inflation, and
many aggregate economic variables. Generally, any business activity at the firm’s level
can be connected to the general conditions of the economy. Economists have noticed the
significant impact that some economic variables can have on the rest of the economy,
and the acquired importance in the prediction of many other variables at both macro- and
micro-levels. Researchers at the National Bureau of Economic Research have considered
some major economic variables as “indicators,” and have classified them into three groups:

1. The leading indicators: Those variables that change first, prompting other variables
to follow the change.

2. The lagging indicators: Those variables whose changes tend to follow the changes
of others.

3. The coincident indicators: Those variables whose changes simply coincide with the
changes of other variables.

This categorization and the fact that in practice certain variables tend to move ahead of
others implies that the changes in the leading economic indicators (LEIs) can be used to
predict the changes in others that follow. Figure 6.8 shows a typical set of time series for
these three groups. We can see that the turning points of peak and trough occur first in
the leading indicators followed after a period of time by the lagged indicators, while the
coincidental indicators move almost in tandem with the leading group.

Value of indicator

Leading

Coincidental

Lagging

Trough
lead time

Peak
lead time

Leading peak
Leading trough

Lagging trough
Coincidental peak

Coincidental troughLagging peak

FIGURE 6.8
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The time during which the leading change precedes the following change is called the
lead time. It varies from cycle to cycle and it is different in the peak and trough cases.
In the graph, we can see that the lagging indicator takes shorter time to follow the peak
of the leading as compared to the time it takes to follow the trough. This variability is a
classic characteristic of the business cycle. Recorded data on reference dates of all peaks
and troughs of the United States business cycle since 1854 show a great deal of variability,
especially in the lead time and how long each phase lasts. For example, in 1990–1991 the
trough lead time was 2 months and the peak lead time was 6 months. In 2001, the trough
lead time was 8 months and the peak lead time was 14 months.

Once again, the main idea of the barometric forecasting is to utilize the LEIs as a
predictor or barometer for short-term changes in a set of time series data that exhibits a
good correlation of their changes over time. A typical example to illustrate the plausibility
of this idea is the causal relationship among some variables: the changes in the number of
building permits issued in the entire economy can serve as a predictor of the activity in
the construction sector. An increase in the new consumer orders can indicate an increase
ahead in the production, employment, income, and so on. The other typical example is the
fluctuation of the stock market indices such as the Down Jones and Nasdaq and how they
are used as predictors of the state of the economy.

Economic indicators data are published monthly in Business Cycle Indicators that is
issued by The Conference Board. There are more than 300 major indictors, but the short
list of the most common ones include 21:10 in the leading category, 7 in the lagging, and 4
in the coincidental, as shown in Table 6.21.

TABLE 6.21 Major Economic Indicators

Leading Indicators
1 Average weekly hours in manufacturing
2 Initial claims for unemployment insurance
3 Manufacturer’s new orders, consumer goods and material
4 Vendor performance, slower deliveries diffusion index
5 Manufacturer’s new orders, nondefense capital goods
6 Building permits, new private housing units
7 Stock prices, 500 common stocks
8 Money supply
9 Interest rate spread, 10-year treasury bonds less federal funds

10 Index of consumer expectations

Lagging Indicators
1 Average duration of unemployment
2 Ratio, manufacturing and trade inventories to sales
3 Change in labor cost per unit of output, manufacturing
4 Average prime rate charged by banks
5 Commercial and industrial loans outstanding
6 Ratio, consumer installment credit to personal income
7 Change in consumer price index for services

Coincidental Indicators
1 Employees on nonagricultural payrolls
2 Personal income less transfer payments
3 Industrial production
4 Manufacturing trade sales
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Barometric forecasting depends on the composite indices that are developed from each
group of these indicators. Each composite index is, in fact, a weighted average of the
components of the group to signify the direction of movement in the whole group. Since
some of the components move up and some move down, a so-called diffusion index has
been developed to represent the collective movement in the group. A diffusion index value
of 100 means that all of the components in the group are increasing, a value of zero means
all of them are decreasing, and any other percentage would refer to the increasing aspect.
For example, a value of 60% means 6 out of 10 components are going up.

One of the most popular composite measures is the LEI. It has been developed by
the US Bureau of Economic Analysis. Typically, the LEI can signal the march toward
recession or the way to recovery. One of the known criteria is that three consecutive months
of decline is a strong signal for a recession, and three consecutive quarters of decline is
a confirmation to be in a recession. As for the diffusion index, history has shown that a
value of about 50 reflects growth in the economic activity and a value under 50 reflects a
downturn. Despite the fact that the leading indicators have correctly predicted all recessions
that occurred since 1948, it has also predicted some recessions that did not occur. This is
a matter of the extent of its accuracy that may have become part of its shortcomings in
forecasting in addition to its inability to measure the magnitude of the change and being
restricted to identifying only the direction of the change. Despite all the shortcomings of
the economic and business indicators, they remain an important tool in the prediction of
short-term changes in the general economic activity and the turning points in business
cycles. Their prediction can be highly useful, especially in conjunction with other types of
forecasting techniques.

6.7 ECONOMETRIC MODELS

Econometric models utilize a perfect combination of economic theory and mathematical and
statistical methods to identify and quantify relationships between variables and examine
their relative importance and elasticities toward each other. They are characterized by
being explanatory and rely on causal reasoning as opposed to other models of forecasting
that depend on extrapolating past data and projecting their extensions. This very feature of
distinction among other forecasting techniques sets econometric models on a higher ground
of advantages, which are as follows:

� They allow making explicit assumptions on how variables of the model are linked to
each other.

� They have the capability not only to identify the direction of the changes but also to
quantify the magnitude of changes in the related variables.

� They enable the forecaster to have more consistency and reliability in capturing the
interdependence of the components, not only at the firm’s level but also for the entire
economy, and make it possible to explain the whole economic picture in certain
conditions.

� They allow a flexible degree of adaptability, especially when managers can experiment
with changing the values of explanatory variables under their control after knowing
their measured impact.
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Econometricians usually approach the task of forecasting by following the typical pro-
cedures that may include the following:

� Identify a set of variables that are related to the variable being predicted. The choice
of these variables is often governed by economic theory, other theories, and past
experience. However, the choice of variables must be, in the first place, closely related
to the purpose of prediction. All variables have to operationalize in a sense that their
measurements have to be clear.

� Develop a set of hypotheses on the directional links of the variables. These too have
to be drawn based on the logic of the theory and in light of past experience and other
empirical work.

� Determine the mathematical link among variables by choosing the most suitable func-
tional equation to be estimated, especially whether the function is linear or nonlinear,
additive or otherwise.

� Identify a reliable source and select the appropriate breadth and depth of the data to
be used in the application of the model.

� Select the appropriate statistical technique to run the data through and achieve the
task of estimating the equation parameters.

� Run all the possible tests on the results to assure their specification, accuracy, relia-
bility, significance, and the extent of their relevance to the hypotheses set earlier.

� Explain the results and perform the forecast by plugging in new values of the exoge-
nous variables that affect the next value of the endogenous variable being subject to
forecast.

Forecasts performed by econometric models are successful if they are able to produce
the following:

� Correct signs of the parameters that are consistent with the theoretical model and the
set of hypotheses that was put forward.

� Significant t-test of all or most of the major parameters.
� Good adjusted R2, which shows that the model explains a great deal of variation in

the value of the variable to be predicted.
� Successful test of multicollinearity, autocorrelation, and heteroscedasticity.
� Ability to adapt the model into the forecast of the next period by changing the values

of the exogenous variables into the values that influence the next readings of the
forecasted variable.

Econometric models vary tremendously in terms of being simple or complex, plain or
sophisticated, macro or micro, as well as single-equation or multiple-equation models.

6.7.1 Single-Equation Model

This is the basic and most common econometric model in use. It is represented by a
single-equation containing one dependent variable, the subject of forecast, and a set of
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independent variables. For example, a simple single-equation model for the sales of a
manual SLR camera can be formulated as

S = α + β1 Pc + β2Y + β3 Pf + β4 Pd + β5 A + ε,

where the quantity of manual SLR cameras sold is a linear function of

Pc = price of camera;
Y = consumer’s disposable income;

Pf = price of film as a complement commodity;
Pd = price of compact digital camera as a substitute commodity;
A = expenditures on advertising for the SLR camera;
ε = the error term that sums all of the other influencing (but not included) variables,

the measurement errors, and all other irregularities in data and their collections.

Suppose that after collecting the appropriate data and running the model into the ordinary
least squares method, we obtain the following estimated equation:

S = 225 − 3.84Pc + 0.002Y + 0.0015Pf + 0.129A.

Suppose that both income and price of films turn out to be insignificant. They should be
dropped off the equation to be used for forecasting. This equation will predict the next
period sales of SLR cameras St + 1 and will use only two variables, price of camera and
advertising expenditures that have to have their values in the next period. The manager
has to decide here what will be the price of the camera next year and what is allocated for
advertisement spending. So, the variables that have to be plugged in are Pc

t+1 and At + 1:

St+1 = 225 − 3.84Pc
t+1 + .129At+1.

This will give the forecasted sales of the SLR camera for next year, assuming that the
estimated model passed all the necessary tests of specification and reliability.

Another example of the single-equation econometric model is one that would express
the dependent variable in a different format from the usual time series of amount of sales.
Suppose that a forecaster is targeting the percentage change in the stock of the product
between the current and the past period. In this case, it is expressed as

�S = St

St−1
= α + β1 Pp + β2V + β3 Pa + β4 M = ε,

log

[
St

St−1

]
= α + β1 log Pp + β2 log V + β3 log Pa + β4 log M,

where the percentage change of the stock of this product between the current time and the
previous time is a fraction of

Pp = price of the product;
V = inventory capacity;

Pa = price of the competitive product;
M = is the market size.



ECONOMETRIC MODELS 229

The function is transformed into a logarithmic function to be estimated by the ordi-
nary least squares and is turned back to the antilog function to perform the appropriate
forecasting.

6.7.2 Multiple-Equation Model

Most of the firm’s predictions can be performed using a single-equation econometric model
that involves one dependent variable whose value is determined by a set of independent
variables. The major assumption is that the values of these independent variables are deter-
mined by the factors and circumstances outside the model system. Sometimes a forecaster
faces a situation when values of some of those independent variables are determined within
the model system. In this case, a single-equation model can no longer be helpful. A sys-
tem of multiple equations would be the appropriate model. Such a model has endogenous
variables whose values are determined from within the system and exogenous variables
whose values are determined outside the system. Macroeconometric models dealing with
national-scale data can include a huge number of equations that may reach 1000 equations
and require a very sophisticated statistical method of analysis.

The multi-equation econometric model usually contains two kinds of equations: (1)
structural or behavioral equations, where the relationship among its variables comes in
the exogenous–endogenous format that is usually set up according to the researcher’s
hypotheses and in light of the theoretical model; (2) definitional or identity equations, which
state a fact or make a statement that is true by definition. It is the structural (behavioral)
equation that is to be estimated using the facts given by the identity equations. Since there
would be more than one endogenous variable, each need to have its own equation such that
the number of equations would match the number of endogenous variables in the system.
Having many equations simultaneously would warrant solving the system in order to reach
what is called the “reduced form” that is appropriate to perform the prediction. The reduced
form of an equation expresses the value of the endogenous variable in an estimatable format
in that it has the determinant variables and their coefficients.

Let us consider a macroeconomic multiple-equation system to show the structural and
identity components and how to reach the reduced form. It is about the value of the gross
national product (GNP), which is equal to the aggregate consumption (AC) and the gross
capital investment (V), where the AC is expressed as a function of GNP for the previous
period and the percentage change in GNP between the last and the current period (�GNP).
The gross capital investment is determined by the interest rate (r):

GNPt = ACt + Vt , (6.3)

ACt = α + β1GNPt−1 + β2�GNP + ε, (6.4)

�GNP = [GNPt − GNPt−1], (6.5)

ACt = α + β1GNPt−1 + β2GNPt − β3GNPt−1 + ε, (6.6)

Vt = β3r. (6.7)
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Substituting (6.6) and (6.7) into (6.3),

GNPt = α + β1GNPt−1 + β2GNPt − β2GNPt−1 + β3r + ε.

Subtracting β2GNPt from both sides and factoring out GNPt,

GNPt − β2GNPt = α + β1GNPt−1 − β2GNPt−1 + β3r + ε,

GNPt [1 − β2] = α + β1GNPt−1 − β2GNPt−1 + β3r + ε,

GNPt = α + β1GNPt−1 − β2GNPt−1 + β3r + ε

(1 − β2)
,

GNPt =
[

α

1 − β2

]
+

[
β1 − β2

1 − β2

]
GNPt−1 +

[
β3

1 − β2

]
r +

[
1

1 − β2

]
ε. (6.8)

This is the reduced form of GNP for the current period expressed as a function of GNP of
the last period and the interest rate, where the parameters are as follows:

[
α

1 − β2

]
: the constant term,

[
β1 − β2

1 − β2

]
: the coefficient for the GNP of the last period,

[
β3

1 − β2

]
: the coefficient for the interest rate.

As for the reduced form of AC, we substitute the value of the current GNP from the reduced
form (6.8) into Equation (6.6):

ACt = α + β1 GNPt + β2

[
α

1 − β2
+ β1 − β2

1 − β2
GNPt−1 + β3

1 − β2
r + 1

1 − β2
ε

]

− β2 GNPt−1 + ε,

ACt = α + β1 GNPt−1

+ β2

[(
α

1 − β2

)
+

(
β1 − β2

1 − β2
− 1

)
GNPt−1 +

(
β3

1 − β2

)
r +

(
1

1 − β2

)
ε

]
+ ε,

ACt = α +
[

β2α

1 − β2

]
+

[
β2(β1 − β2)

1 − β2
− β2 + β1

]
GNPt−1 +

[
β2β3

1 − β2

]
r

+
[

β2

1 − β2

]
ε + ε,

ACt =
[

α

1 − β2

]
+

[
β1 − β2

1 − β2

]
GNPt−1 +

[
β2β3

1 − β2

]
r +

[
1

1 − β2

]
ε. (6.9)

This is the reduced form of the current AC expressed as a function of GNP in the last
period and the interest rate. The reduced forms in Equations (6.8) and (6.9) are the suited
forms to be used in the prediction after estimating the parameters. A statistical method
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more advanced than the ordinary least squares is required to estimate the parameters of
this system.

Once the parameters are estimated, the value of the next GNP (GNPt + 1) and next AC
(ACt + 1) can be forecasted using the reduced form equations and plugging in the current
values of the determinants.

6.8 INPUT–OUTPUT MATRIX

The idea of forecasting using the input–output relations in the economy is related to
the famous analysis of the input–output matrix introduced by Wassily Leontief and his
colleagues in their book Studies in the Structure of the American Economy, published in
1953. An input–output matrix shows the interconnection among the economy’s industries
and sectors as they produce their goods and services and use other goods and services as
inputs to their output. It traces down all the inter-industry and intra-industry transactions and
record them in dollar values. For example, an increase in the production of furniture as an
output will lead to an increase in the production of many inputs such as wood, fabric, leather,
plastic, nails, glue, and the equipment and machinery required to produce them. Then, an
increase in each of these inputs may lead to increases in what is producing it. Producing more
wood would require cutting more trees and having the equipment and services necessary for
that and so on. It is a domino effect that would run through the entire economy to illustrate
the interdependence among its components. Tracking down this flow of input–output in
the entire economy requires constructing a comprehensive and intricate set of tables of
interconnection among the various components of the economy. It has been done by the
federal government under the responsibility of the US Department of Commerce. Table 6.22
is a basic sample to show how the input–output flow is arranged. Sectors of the economy
are listed both horizontally and vertically; the final markets are shown in their individual,
institutional, and governmental consuming units; and the value added is listed at the bottom
in its three components: employees, employers, and government. The table culminates into
producing the GNP at the lower right corner as a summation of both directions.

There are many tables in the matrix set; some involve more details and specifications.
Three of these types of tables are worth mentioning for their relevance to forecasting:

1. The output-distribution table: The values in this table are obtained by dividing the
rows of the input–output flow table by the row totals. It shows the patterns of industry
in comparison to the patterns of individual firms.

2. The direct-requirement table: The values in this table are obtained by dividing each
entry in the columns of producers by the column table. It shows the interdependencies
in the economy by relating each of the inputs to the total output in the industry. In this
table, the values stand for the amount of money each input requires for each dollar
of output in each industry.

3. The total-requirement table: It shows the direct and indirect requirements of each
industry to produce one dollar of output. This table is called the Leontief inverse
matrix. It takes into consideration all of the interrelations among the input and output
of all industries.

Despite the high significance of the input–output analysis, it may not be as impor-
tant nowadays for the purpose of forecasting. Among the shortcomings is the tedious,



TABLE 6.22 Input–Output Flow

Producers Final Markets

Agriculture Mining Construction Manufacturing Trade Transportation Services Other Persons Investors Foreigners Government

Agriculture
Mining
Construction
Manufacturing
Trade
Transportation
Services
Other
Employees Employee compensation
Owners of

businesses
and capital

Profit-type income and capital consumption allowances GNP

Government Indirect business taxes and current surplus of government enterprises, etc.

Source: US Department of Commerce, Bureau of the Census, Historical Statistics of the United States.
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time-consuming, and complex process of following all matrix details even if the tables
are constructed by the Department of Commerce. Also, the matrix is usually constructed
later in time. The lag may last 2 or 3 years during which many factors may change in this
rapidly moving world. Another shortcoming is that all changes between input and output
are assumed to be constant in addition to the lack of any explicit consideration of prices.

6.9 JUDGMENTAL MODELS

Judgmental models are qualitative in nature. These models depend on people’s intuitiveness
and experience in determining what product sells, what consumers want or do not want, and
what conditions and circumstances the market will experience. On these bases, they would
decide the size of production needed and the sales or profits expected. A bright example is the
late Steve Jobs of Apple Inc., who exhibited this ability as well as it has ever been exhibited.

6.9.1 Opinions and Polls

Firms often seek the opinions and views of others who are in touch with the market and are
knowledgeable about the product and its customers. It can take the form of polling several
groups, such as executives, the sales staff, the customers, and the market experts. Firms
can also use the Delphi method, which uses a panel of corporate executives and experts but
questioning them separately, which makes it different from the jury of executives mentioned
above that meet together and form a collective view. If the firm has an international
connection through its product, it can also form a council of distinguished foreign dignitaries
and business people to get their global perspectives on the events and issues related to its
market share and international consumer behavior.

6.9.2 Surveys and Market Research

The idea of utilizing surveys in forecasting stems from the fact that most major decisions
of individuals and firms are usually preconceived and mostly predetermined. The required
expenditures are planned and allocated before the actual spending. This constitutes a good
rationale for surveying people on their plans and intentions, which is most likely to reveal
valuable information for forecasting. This is why it is justified for US firms to spend billions
of dollars on surveys that enlist millions of people who are asked variety of questions that
ultimately have strong economic relevance. Among the famous surveys are the surveys
of consumer’s expenditures that are conducted by the Bureau of the Census; surveys of
business executives, which are conducted by a consortium of institutions such as the US
Department of Commerce, the Securities and Exchange Commission, the National Indus-
trial Conference Board, and McGraw-Hill Publishing Company. The third famous set of
surveys is the surveys of inventory changes and sales expectations that are conducted by the
US Department of Commerce, the Institute for Supply Management, and Dun & Bradstreet
Company. Another important survey related to consumers in the national context is the
Survey of Consumer Confidence, which produces three monthly indexes: the Consumer
Confidence Index, the Present Situation Index, and the Expectations Index.

When it comes to the short-term projections, surveying people proves most significant,
as people are assumed to provide insights into their intended actions on financial and
economic matters. This technique is perhaps the only available way to predict consumer’s
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responses on a new product. Over time, surveys have proved their great capacity to reveal
the nature and direction of changes in consumer tastes and preferences.

As for market research, it is a general area that may include questionnaires, observations,
“clinical tests,” field interviews, and focus groups. The primary purpose is to know the
consumer well, demographically, economically, socially, and psychologically. Knowing
the consumer means knowing what to produce and how to market the product. Market
research is often used to introduce a new product, a new improvement on an existing
product, or even to introduce a new business or new market. Data obtained through the
various research techniques are often extrapolated qualitatively and quantitatively to form
certain predictions.

6.10 FORECASTING ACCURACY AND RELIABILITY

Forecasting accuracy and reliability refer to the predictive consistency and effectiveness of
the forecasting process and to its capacity to come up with forecast values that are as close
as possible to the actual values that would be realized later. Such closeness and consistency
between the forecast value and the actual value mean that the difference between them has
to be kept as minimum as to make it totally insignificant. The difference or the error term
is typically due to many reasons related to the design of the model, its specifications, the
type of data and the way of collecting them, and the process of data analysis. The major
reasons of errors are as follows:

� The omitted variables.
� The equation misspecification.
� The random fluctuations.
� The economic misinterpretations.
� The explanatory variables identification and reliance.

As we have seen, there are typical tests of the forecast goodness that target the value of
error and see if it is at its minimum. Among these are the following:

� The average absolute error (AAE) or MAD:

AAE or MAD = � |A − F |
n

.

� The RMSE or the sample mean forecast error (SMFE):

RMSE = SMFE =
√

�1[A − F]2

n − p
.

� Correlation coefficient (r):

r = σAF

σA · σF
.

Accuracy of any forecast has an inverse relationship with the time horizon of the forecast.
The shorter the past period of time the forecaster uses and the shorter the future period
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he would predict for, the more accurate the forecast. In other words, the recent past is
much more predictive for the near future. Accuracy is often related to more careful and
sophisticated procedures that cost a lot, which should make managers aware that the more
the desire and enthusiasm to get accurate forecast, the more willingness is required to bear
the necessary cost. Despite the fact that the very idea of forecasting is invented basically
to help managers make educated and confident judgment in their decision process for the
future, sound subjective judgment about forecasting is required of them, so much as to
make this a circle of interdependent subjectivity in decision making.

SUMMARY

� Following both the theoretical analysis and empirical estimation of demand in Chap-
ters 4 and 5, this chapter completes the trend of thought into forecasting demand.
Forecasting is the process of predicting the future state and value of economic vari-
ables and probing into their potential changes. It is about projecting the past and present
data into the future using the current knowledge and skills. The major justification of
forecasting is to learn from past experience, reduce life’s uncertainties, and minimize
risks. As for the managerial purposes, economic forecasting helps in both the short-
term operational decisions as well as in the planning for the long-term growth and
stability.

� There are many forecasting methods. Each can be used for the most appropriate condition.
Choosing the right method depends on several factors such as the nature of what is being
predicted and the purpose of the forecast, time frame for the projection, time available and
lead time, cost of the process, the accuracy level, data availability and appropriateness,
and the complexity of the forecasting model.

� Models of forecasting are categorized into quantitative and qualitative models based
on the analytical methods used. Quantitative models are those that utilized numerical
historical data. They have two subcategories: (1) structural models, such as econometrical
models, depend on assessing the relationship between the related variables as dependent
and independent; (2) nonstructural models are concerned with observing the patterns of
change in variables over time. Barometric and time series models are representative of
the nonstructural types of models. The qualitative models depend on descriptive ways
to examine and interpret the observation in order to discuss the underlying patterns of
relationships and to infer their meaning and significance. These models utilize value
judgment, but by experts and collective measures such as polls, surveys, and market
research.

� This chapter focuses on the time series model as one of the most common and practical
models of forecasting. It uses historical data and utilizes a simple bivariate regression
analysis, where time trend serves as the explanatory variable for the changes in the
dependent variables. Several common possibilities of variation in the time series data
were addressed such as the secular trend, seasonal variations, cyclical fluctuations, and
random changes. Recognizing these variations requires that the regression estimates be
adjusted according to these variations in order to more closely and fairly reflect the
reality. Three methods to capture the impact of seasonality were addressed: the simple
average of errors method, the actual-to-forecast ratio method, and the dummy variables
method.
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� Smoothed forecast is another way to treat the time series data that are characterized by
slow and infrequent changes or certain degree of randomness and irregularity. Three
smoothing techniques were explained: the simple moving average, the weighted moving
average, and the exponential smoothing. Two more methods were addressed to check
for the appropriateness of the forecasting techniques in terms of how close the estimates
were to the actual data. These methods are the root-mean-square error (RMSE) and the
mean absolute deviation (MAD).

� Barometric forecasting is another way that depends on the composite indices of the
economy as they are assumed to smooth out random variations and provide more reliable
predictions and less confusing signals. One of the most popular composite indices is the
leading economic indicator (LEI), which can typically signal the march toward economic
recession or the way to recovery.

� The most common and reliable techniques used in forecasting are the econometric
models, whether they use the single-equation model or multiple-equation model. They
are distinct from other forecasting models in that they rely on causal reasoning as opposed
to mere extrapolating of past data. The process of forecasting in the econometric models
involves substituting the predicted values of the explanatory variables into the estimated
regression equation to obtain the predicted value of the dependent variable during the
period of forecast.

� Another way of forecasting involves using an input–output table that would show the
extent and degree of interdependence among the various variables, sectors, and indus-
tries. Other judgmental ways of forecasting can also include consumer surveys, market
research, people’s poles, and expert views and opinions. The last topic in this chapter
addresses forecasting accuracy and reliability, which refers to the predictive consistency
and effectiveness of the forecasting process and its capacity to deliver forecasted values
that are as close as possible to the actual values that will be realized later.

KEY TERMS

forecasting
structural models
nonstructural models
time series analysis
secular trend
seasonal variation
cyclical fluctuations
random changes
dummy variable

smoothing technique
simple moving average
root-mean-square error (RMSE)
weighted moving average
exponential smoothing
mean absolute deviation (MAD)
barometric forecasting
leading indicators
lagging indicators

coincidental indicators
single-equation model
multiple-equation model
input–output matrix
direct-requirement table
output-distribution table
total-requirement table
judgmental models
forecasting accuracy

LIST OF FORMULAS

� The linear function:

Yt = α + βt.
� The quadratic function:

Yt = α + βt + γ t2.
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� The exponential function:

Yt = αβ t .

� The logarithmic function:

log Yt = log α + t log β.

� Seasonally adjusted forecast:

Fsa = F[A/F]q .

� Sample moving average:

At+1 = At + At−1 + At−2 + . . . At−p+1

p
.

� Root-mean-square error (RMSE):

min RMSE =
√∑

[At − Ft ]2

n − p
.

� Weighted moving average:

Ft+1=
√

w1(At ) + w2(At−1) + w3(At−2) + . . . .wp(At−p+1)∑
wi

.

� Smoothed forecast:

Ft+1 = Ft + α[At − Ft ].

� Mean absolute deviation (MAD):

MAD =
∑ |A − F |

n
.

� Econometric equation:

Y = α + β1x1 + β2x2 + . . . βnxn + ε.

� Reduced form for the current AC:

ACt =
[

α

1 − β2

]
+

[
β1 + β2

1 − β2

]
GNPt−1 +

[
β2 + β3

1 − β2

]
r +

[
1

1 − β2

]
ε.
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EXERCISES

1. Explain the nature and purpose of economic forecasting and how significant it is in the
context of managerial economics.

2. List and compare the various models of forecasting in terms of their advantages,
disadvantages, and how they fit into specific needs of the business firms.

3. List and explain the possible variations in the time series data. How are they different
from each other? How would they affect the data and how would they be counted
for?

4. Explain the concept of smoothing in forecasting. List and compare the various types
of smoothing techniques and when they would be needed and how would they
work.

5. Explain the econometric method of forecasting and describe the process from specify-
ing the econometric equation to having the final results of forecasted variables. How
would you rank the econometric models among the rest of the forecasting models
and why?

6. Consider the following actual data for sales during the 12 months of 2012.

Month Actual Sales Three-Month Moving Average MAD1 MAD2

January 71,290
February 70,912
March 62,540
April 64,258
May 68,912
June 70,512
July 72,436
August 70,887
September 68,500
October 64,312
November 61,850
December 66,275

(a) Fill in the third column of 3-month moving average.

(b) Calculate the forecast value of sales in January of 2013.

(c) Calculate the forecast value of sales in February 2013 if January sales turn out to
be 70,937.

7. Use the data in question 6 to calculate 5-month weighted moving average to obtain the
forecast value of sales in January 2013 if the last 5 months of 2012 are weighted by
0.12, 0.17, 0.15, 0.21, 0.19, respectively.

8. Use the exponential smoothing technique to predict the sales value of January 2013
given that the actual sales for December 2012 is 66,275 and the forecast sale is what
you got in Column 3. Consider an α-value of 0.31.
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9. Use Columns 2 and 3 of the table in question 6 as the actual and forecasted values
to calculate the mean absolute deviation (MAD) for the period April to December.
Record the results in Column 4 of the table.

10. Repeat the process in question 9 to obtain the mean absolute deviation (MAD) after
dropping April values and adding January 2013 values as calculated and given in
questions 6(b) and 6(c). Record your results in Column 5.
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7
PRODUCTION THEORY

As is clear from the previous chapters, the focus of managerial economics is on the parts of
microeconomics that are useful in practical application. The unique contribution of manage-
rial economics is its formulation and the use of analytical models to facilitate application of
microeconomic principles. Managerial economics connects theory with quantitative meth-
ods using analytical models. For example, microeconomics provides a general model of
consumer behavior that leads to the notion of consumer demand for a product and related
concepts such as elasticity. Quantitative methods provide tools for estimating unknown pa-
rameters. Demand models bring the theory and methods together to enable applied demand
analysis. Similarly, microeconomics provides a general model of production and related
concepts such as the marginal rate of technical substitution (MRTS) and returns to
scale. Again, quantitative methods provide tools for estimating any unknown parameters.
This chapter provides a review of the economic theory of production, but more importantly,
it provides analytical models that tie the theory and quantitative methods together. This
leads to methods for measuring concepts such as factor substitution and returns to scale.

Neither theory nor quantitative methods can have much practical use without the critical
link between them. Due to epistemic (systems) and aleatory (random) uncertainty, the
analytical model should ideally be robust; that is, it should enable acceptable performance
in both kinds of uncertainty. As we continue, the managerial economics approach will be
applied to facilitate analysis of production.

7.1 VARIABILITY OF INPUTS THROUGHOUT TIME

In terms of how inputs of production are related to the time span, a simplified (but practical)
model of production considers three periods through which production takes place: (1)
market period, when all inputs are considered fixed; (2) short-run period, when at least
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one input is fixed; and (3) long-run period, when all inputs become variable. The span of
these periods progresses from shorter to longer. For example, for a young entrepreneur who
has just started his own landscape job, everything would seem fixed in the morning after
the storm. He might manage to clear a couple of driveways of the falling branches using a
handsaw and wheelbarrow. In the short run, he might buy a chainsaw and a larger cart, but
in the long run, every factor in his production setup would be subject to change. He will
have more employees, some of whom will be skillful and experienced; more equipment,
some of which will be sophisticated; a fleet of trucks; and a host of other services. This
period is extended into the future, and that is why it is called the long run.

In a more advanced analysis, dynamic models go beyond the assumptions of these three
discrete stages to a continuous and more flexible concept of variability of production inputs
throughout the time span.

7.2 PRODUCTION FUNCTION

The economic theory of production provides a framework for quantitative analysis of
production and cost. In addition, though not obvious, this theory provides a qualitative
guide to production decisions; this is illustrated in the following example.

The Wall Street Journal reports the case of a manufacturing firm in Connecticut, which
moved its operations from Bristol, CT, to Juarez, Mexico, and then moved back to Con-
necticut 4 years later, for economic reasons. Why do you think the firm may have moved
in the first place? Although there is usually a standard explanation for this type of move,
can you guess why it moved back; that is, what were the economic reasons for the return to
Connecticut? Is it possible that a production economics principle could have been consid-
ered “on the back of an envelope” rather than being ignored in making the move to Juarez?
Let us begin with an overview of some basic concepts such as the production function.

The production function is usually the starting point for describing the theory of
production economics. It describes the relationship between inputs and output of production.
In particular, it refers to the various ways to transform inputs into output. The production
function specifies the maximum level of output obtainable from any given inputs. In other
words, the production function implies (and targets) efficiency, specifically what is called
technological efficiency, the process that yields the highest possible level of output when
employing a particular set of inputs.

Using a very general algebraic form, the production function for a single product is
expressed as

y = f (x1, x2, . . . , xn),

where both sides of production, y the output and xi the input vector, are usually mea-
sured in physical units. Table 7.1 gives numerical examples of how we can obtain var-
ious levels of output by choosing different combinations of labor units (the first row)
and capital units (the first column). For example, employing 20 workers and 10 pieces
of equipment gives 60 units of output. However, if we want to increase production ten-
fold, that is, to obtain 600 units of output, we would need to increase the number of
workers to 50 and pieces of equipment to 20. The 600 units of output can also be pro-
duced by other combinations such as 80 workers and 10 pieces of equipment, or 60
workers and 15 pieces of equipment, and so on. The choice of a specific combination
of inputs to produce a certain level of output is a managerial decision that takes sev-
eral economic factors into consideration. Figure 7.1 discreetly depicts the production
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TABLE 7.1 Production Function

Labor →
↓Capital

10 20 30 40 50 60 70 80 90 100

5 10 20 40 60 160 290 440 500 550 520
10 30 60 160 290 430 550 580 600 590 560
15 60 160 290 440 550 600 620 620 610 590
20 100 240 440 550 600 620 630 630 630 620
25 160 290 550 580 610 630 640 640 640 640
30 160 320 550 600 620 630 640 650 650 650
35 160 440 550 600 620 630 640 650 660 660
40 130 440 500 550 600 620 640 650 660 670
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surface as it forms out of the top surfaces of the vertical bars, which represent the possible
levels of output that can be produced by various sets of inputs. The height of the bars stands
for the levels of output, while the right dimension on the ground displays the labor units
and the left dimension shows the capital units.

7.3 GRAPHICAL REPRESENTATION OF THE PRODUCTION FUNCTION

Let us consider a more specific model of the production function with a single variable input
using algebra. Assume an output of a synthesized hormone, y, and input of a microbe used
in its manufacture, x1. With this notation, we can characterize the manufacturing process
algebraically by the following production function with parameters, a and b, which could,
of course, be estimated by the maximum likelihood method using experimental data:

y = axb.

Let us take a look at the curve of this production function as it changes for different values
of parameter a, to see how it behaves. Note that as the value of parameter a increases, the
total product (TP) curve shifts upward (Figure 7.2a). Now, let us look at this production
function for different values of parameter b, as shown in Figure 7.2b. Note how the TP
curve pivots upward with increasing values of parameter b. If we focus on a particular
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(d)

TP with different values of parameter b
(b)

TP

AP MP

MP
AP

TP

150
80

70

60

50

40

30

20

100

50

4.0 5.0

4.5

4.0

3.5

3.0

2.5

3.5

3.0

2.5

2.0

1.5

20 40
4 6 8 10x

x

4 6 8 10
x

4 6 8 10
x

FIGURE 7.2



GRAPHICAL REPRESENTATION OF THE PRODUCTION FUNCTION 247

production function such as y = 10x1
0.5, we can see how the average product (AP) and

the marginal product (MP) get their shapes. Although we will discuss AP and MP later
in detail, it is sufficient to say here that AP is the output per unit of input at a certain level
of that input; that is, AP = y/x1. In this case, it is expressed as AP = 10x1

−0.5. AP can be
interpreted as a measure of the productivity of an input, where its value can be very small
but does not go below zero. MP of an input is the first derivative of output with respect to
that input, or (dy/dx1). In this case, it is expressed as MP = 5x1

−0.5. MP is interpreted as
the change in output per unit increase in input at a particular input level. Figures 7.2c and
7.2d show AP and MP, respectively.

The three popular analytical production functions involving two or more variable inputs
are (1) the linear function, given as y = ax1 + bx2; (2) Cobb–Douglas type, given as
y = ax1

bx2
c; and (3) the Leontief production function, expressed as y = min(ax1, bx2).

These functions are analytical models of production that can accommodate any number
of inputs. Each has implications for the ability to substitute one input for another and for
returns to scale.

If the number of inputs is 2 or if employment of all but two of the inputs is fixed, then the
production function is graphed as a surface in three dimensions. If output is on the vertical
axis, then the points of intersection between the production surface and a plane parallel to
either the y–x1 or y–x2 planes show TP. The points of intersection between the production
surface and a plane parallel to the x1–x2 plane reveal the input combinations on the x1–x2

plane, which correspond to a given level of output.
Let us look at the three-dimensional graphs (Figures 7.3, 7.4, and 7.5) for these produc-

tion functions. In this example, parameters for the linear function are a = 2 and b = 3, the
Cobb–Douglas function are a = 10, b = 0.2, and c = 0.5, and for the Leontief function,
a = 3 and b = 3.
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function

FIGURE 7.6

Any input combinations corresponding to a certain level of output form a contour line
called an isoquant, the slope of which is called the MRTS. This slope indicates how well
the inputs substitute for one another.

Factor substitution is an important characteristic of production with two or more vari-
able inputs. It can be investigated by a statistical analysis of production and, therefore,
can be studied to provide information of interest for management decisions. Substitu-
tion possibilities are indicated by the shape of isoquants. Linear isoquants show that
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substituting one input for another can be easily accomplished to maintain production
levels. They appear like parallel straight lines between the axes. Traditionally looking iso-
quants that are bowed toward the origin are exhibited by a production function such as the
Cobb–Douglas. They show that substitution is possible but becomes increasingly difficult.
Isoquants that are bowed to be L-shaped indicate that input substitution is not possible.
These types of isoquants are exhibited by the Leontief production function. Isoquant maps
associated with the three production functions are shown in Figures 7.6, 7.7, and 7.8.
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7.4 SHORT-RUN, ONE VARIABLE INPUT FUNCTION

Let us specify the production function (Y) as a short-run function for a certain product that
is produced by using two inputs, capital (K) and labor (L). Let us also assume that we hold
capital constant at a certain level and allow labor (L) to vary while we observe how the
output (Q) changes according to the change in labor:

QL = f (K0, L). (7.1)

Table 7.2 shows a similar scenario in numbers. The units of labor (L) used in production
are listed in Column 1, and the TP produced by the utilization of those labor units is listed
in Column 2 and shown in the upper panel of Figure 7.9.
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TABLE 7.2

L TP MPL APL εL Stages

0
1
2
3
4
5
6
7
8
9

10

0
8

20
33
47
60
69
75
77
76
73

0
8

12
13
14
13

9
6
2

−1
−3

0
8

10
11
11.75
12
11.5
10.7

9.6
8.4
7.3

0
1
1.2
1.18
1.19
1.08
0.78
0.56
0.21

−0.12
−0.41

/
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Equation (7.1) can also be written as equal to the TP related to the variable input, which
in this case is labor (L):

QL = f (K0, L) = TPL ,

where TPL is the TP of labor, defined as the maximum amount of product that can be
produced using a certain set of capital and labor inputs, K is constant, and L is variable.
The marginal product of labor (MPL) is the change in the total product of labor (TPL) as a
result of the change in units of labor. It is the change in TPL brought about by the last unit
of labor entering production. This change can be expressed as the partial derivative of the
production function with respect to labor:

MPL = �TPL

�L
,

MPL = ∂ f (K0, L)

∂L
,

MPL = ∂TPL

∂L
.

Column 3 of Table 7.2 and the lower panel of Figure 7.9 shows how the MPL changes
according to the change in TP.

Similarly, we can express the marginal product of capital (MPK) if we hold labor constant
and allow capital to vary:

MPK = �TPK

�K
,

MPK = ∂ f (K0, L0)

∂K
,

MPK = ∂TPK

∂K
.

Average product of labor (APL) is obtained by dividing TPL by the input units (L):

APL = TPL

L
.

Note how APL changes with the addition of more units of labor, as shown in Table 7.2 and
Figure 7.9.

7.5 DYNAMIC RELATIONS AMONG PRODUCTION CURVES

Looking closely at Table 7.2 and Figure 7.9, we can make the following observations,
which point out how the total, marginal, and average products are related to each other:

1. As labor input increases, such as hiring additional workers, while equipment stays
the same, the total output or TPL would change in three different ways:
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(a) It would increase at an increasing rate between points O and A on the upper panel
of the graph. This is represented by the number of workers up to 4 in Table 7.2.
Point A is called the point of inflection. It is the point at which the rate of growth
in TP changes from increasing to decreasing.

(b) It would continue to increase between points A and C but at a decreasing rate
at C, and TP reaches its maximum. Table 7.2 shows that this phase of growth
occurs between adding the fifth and the eighth worker. To be precise, it is a little
beyond the eighth unit, but we approximate it at the eighth unit since we are using
workers as non-divisible units.

(c) It would decrease right after point C, as shown by the dashed segment of the TPL

curve. Table 7.2 shows the decrease beyond the eighth worker as TP drops from
77 to 76 and 73 units when the ninth and tenth workers are added.

2. Since MPL is equal to the partial derivative of the TPL function, it is equal to the slope
of TPL at any point. The slope gets to its maximum at point A, corresponding to point
D in the lower panel of the graph, where MPL reaches its maximum. The slope of
TPL decreases to zero as it becomes a horizontal line at point C where TPL reaches its
maximum. This corresponds to point F in the lower panel where MPL reaches zero.

3. Since APL is obtained by dividing TP by the number of units of labor
(
APL = TPL

L

)
,

it can also be obtained as the slope of any line (cord) extended from the origin (O) to
any point on the TP curve. For example, the slope of OB can be obtained by

Slope OB = Rise

Run

= GB

OB
= 60

5
= 12.

It is the same as

APL = TPL

L
= 60

5
= 12.

This corresponds to point E on the lower panel of the graph, which happens to be
the highest point on the APL curve. Similarly, we can consider another cord such
as OH:

Slope OH = Rise

Run

= HJ

OJ
= 33

3
= 11.

It is the same as

APL = TPL

L
= 33

3
= 11.

It corresponds to point I on the APL curve.
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4. MPL intersects with APL at the point when APL reaches its maximum. This is point E
in the lower panel of the graph. Mathematically, this case can be derived by differen-
tiating the AP function and setting the first derivative with respect to labor to zero:

APL = TPL

L
= f (K0, L)

L
= QL

L
,

∂APL

∂L
=

L

[
∂ Q

∂L

]
− Q

L2
,

∂APL

∂L
= L[MPL ] − Q

L2
= 0,

L[MPL ] − Q = 0,

L[MPL ] = Q,

MPL = Q

L
,

MPL = APL .

The level of input (the number of workers in this case) at which this equality occurs
is called the extensive margin of production, because any added input beyond this
point (point K in the lower panel of the graph) would cause AP to fall.

5. At any level of input before the extensive margin of production (point K), MP is
higher than AP, but AP is rising to the top:

MPL > APL ,

∂APL

∂L
> 0.

At any level of input beyond the extensive margin of production (point K), MP is
lower than AP, which is falling from the top throughout this phase:

MPL < APL ,

∂APL

∂L
= 0.

This implies that only at the point of equality (E) does APL remain stationary, neither
rising nor falling:

MPL = APL ,

∂APL

∂L
> 0.

6. Relating MPL to APL would also produce what is called the production elasticity
of labor (εL). It is defined as the responsiveness of output to changes in input.
In this case, it would reflect how TP responds if we hire five additional workers.
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Like any elasticity, this is measured by the proportionate rate of change in Q with
respect to L:

εL = ∂ Q

∂L

[
L

Q

]
,

εL =
∂ QL

∂L
QL

,

εL = MPL

APL
.

So, the production elasticity is obtained by the ratio of MP to AP. It is calculated in
Column 5 of Table 7.2. We can observe that when

εL > 1 = MPL > APL ,

0 < εL < 1 = 0 < MPL < APL ,

εL < 1 = MPL < 0.

7. The above-mentioned ranges of production elasticity are distinctively related to what
is known as the three stages of production:

(a) Stage I: This stage of production extends from the start to the point of equality
between MP and AP at E. It is characterized by a steadily rising APL until it
reaches its maximum. The firm can continue to add additional workers during
this stage. MPL is above APL throughout this stage, although it has both rising
and declining segments. Production elasticity during this stage is larger than 1.
The number of labor units (K) that corresponds to the maximum APL is called
the extensive margin.

(b) Stage II: This stage extends between the extensive margin and the intensive
margin (F), which is the level of labor at which MP reaches zero. During this
stage, both APL and MPL decline, but APL is higher than MPL throughout this
stage. The production elasticity is larger than zero but less than 1.

(c) Stage III: This stage is beyond the intensive margin of labor at F, where MPL

becomes negative beyond that point. Both TPL and APL decline during this
stage, and production elasticity is negative. An effective management would not
recommend operating at this stage. In fact, even during Stage I, operation is not
recommended. Only Stage II would be recommended for the firm to operate; that
is to specify the maximizing profit operation between the extensive and intensive
margins of labor.

Example 7.1
Consider the following Cobb–Douglas production function:

TP = 70(K )0.6(L)0.4.

(a) Find APK and APL.

(b) Find MPK and MPL.
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Consider (a) and (b) if K = 20 and L = 100 units.

Solution:

(a) TP = 70(K )0.6(L)0.4:

APK = TP

K

= 70 (K )0.6 (L)0.4

K

= 70(K )−0.4(L)0.4

= 70

[
L

K

]0.4

= 70

[
100

20

]0.4

= 133.26.

APL = TP

L

= 70 (K )0.6 (L)0.4

L

= 70(K )0.6(L)−0.6

= 70

[
K

L

]0.6

= 70

[
20

100

]0.6

= 26.65.

(b) TP = 70(K )0.6(L)0.4:

MPK = ∂TP

∂K
= ∂[70 (K )0.6 (L)0.4]

∂K

= (0.6)(70)(K )−0.4(L)0.4

= 42

[
L

K

]0.4

= 42

[
100

20

]0.4

= 79.95.

MPL = ∂TP

∂L
= ∂[70 (K )0.6 (L)0.4]

∂L

= (0.6)(70)(L)−0.6(K )0.6
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= 42

[
K

L

]0.6

= 42

[
20

100

]0.6

= 15.99.

Example 7.2
Q is a Cobb–Douglas production function using two inputs, capital (K) and labor (L), and
expressed as

Q = 90(K )1/3(L)2/3. (7.2)

Derive the reduced formulas for (a) MPK, (b) MPL, (c) APK, and (d) APL.

Solution:

(a)

MPK = ∂ Q

∂K
= ∂[90 (K )1/3 (L)2/3]

∂K
,

MPK = 90

3
(K )−2/3 (L)2/3 .

Substituting the value of (L)2/3 from Equation (7.2), (L)2/3 = Q

90(K )1/3
:

MPK = 30(K )−2/3

[
Q

90(K )1/3

]
,

MPK = Q

3
(K )−1

or

MPK = Q

3K
.

(b)

MPL = ∂ Q

∂L
= ∂[90 (K )1/3 (L)2/3]

∂L
,

MPL = 60 (L)−1/3 (K )1/3 .
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Substituting the value of (K )1/3 from Equation (7.2), (K )1/3 = Q

90(L)1/3
:

MPL = 60(L)−1/3

[
Q

90(L)2/3

]
,

MPL = 2Q

3
(L)−1

or

MPL = 2Q

3L
.

(c)

APK = 90 (K )1/3 (L)2/3

K

APK = 90 (K )−2/3 (L)2/3 ,

APK = 90

[
(L)2/3

(K )2/3

]
.

Substituting the value of (L)2/3 from Equation (7.2), (L)2/3 = Q

90(K )1/3
:

APK = 90

⎡
⎢⎢⎣

Q

90(K )1/3

(K )2/3

⎤
⎥⎥⎦ ,

APK = QK−1,

APK = Q

K
.

(d)

APL = 90 (K )1/3 (L)2/3

L

APL = 90 (K )1/3 (L)−1/3 ,

APL = 90

[
(K )1/3

(L)1/3

]
.
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Substituting (K )1/3 = Q

90(L)2/3
:

APL = 90

⎡
⎢⎢⎣

Q

90(L)2/3

(L)1/3

⎤
⎥⎥⎦ ,

APL = QL−1,

APL = Q

L
.

Example 7.3
Find the values of TP, APK, APL, MPK, and MPL, if K = 15 and L = 65.

Solution:

TP = Q = 90(15)1/3(65)2/3 = 3588,

APK = Q

K
= 3588

15
= 239.2,

APL = Q

L
= 3588

65
= 55.2,

MPK = Q

3K
= 3588

3 × 15
= 79.7,

MPL = 2Q

3L
= 2(3588)

3 × 65
= 36.8.

Example 7.4
Find the production elasticity of capital (εK) and labor (εL), given the production function
Q = 20 (K )1/5 (L)4/5.

Solution:

MPK = Q

5K
,

APK = Q

K
,

εK = MPK

APK

=
Q

5K
Q

K

= Q

5K
× K

Q

= 1

5
.
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MPL = 4Q

5L
,

APL = Q

L
,

εL = MPL

APL

=
4Q

5L
Q

L

= 4Q

5L
× L

Q

= 4

5
.

7.6 LAW OF DIMINISHING MARGINAL RETURNS

The law of diminishing returns refers to the declining MP after a certain point in production.
It is a short-run concept and considered one of the major technical relationships in economics
that has crucial implications. It states that adding successive units of a specific input to
production, while holding other inputs constant, would eventually cause productivity to
decline. It is associated with the classic notion by Malthus who observed that continuous
addition of labor into a particular piece of land would eventually cause land production to
decline. Graphically, this decline starts to occur beyond the point of inflection (point A) on
the upper panel and the peak of MP at point D on the lower panel. The TP will continue to
increase but at a decreasing rate and the MP would still be positive but decline all the way
to zero and negative levels. Table 7.2 shows how the increments in TP go from the top 14
to 13, 9, 6, 2, −1, −3 as reflected by the MP figures beyond point D. Mathematically, the
case of diminishing marginal returns requires the first partial derivative of TP to be positive
and the second partial derivative be negative for any input that is variable:

∂TP

∂L
= MPL > 0,

∂2TP

∂L2
= ∂MPL

∂L
< 0,

or

∂TP

∂K
= MPK > 0,

∂2TP

∂K 2
= ∂MPK

∂K
< 0.
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7.7 LONG-RUN, TWO VARIABLE INPUT FUNCTION

The short-run analysis was about the production function with only one variable input,
holding the rest constant. In the long run, all inputs have the potential to become variable.
Here, we focus on a production function with two inputs, both of them variable. We can
assume that managerial decisions would allow the use of any appropriate combination of
the two inputs to produce a certain level of output. This should remind us of the theory
of consumer choice, when we discussed the utilization of two commodities, in different
combinations, to obtain a certain level of consumer utility. The technical tool for that was
the indifference curve (IC). Here, we use a parallel concept of isoquants and its related
concepts such as MRTS, which is an analogous tool to the marginal rate of substitution
(MRS) in consumer choice.

Isoquants An isoquant (IQU) is a locus of points representing various combinations of
two inputs to produce a certain level of output. The combination is assumed to be the most
technologically efficient way of combining the inputs. This refers to the combination that
is least costly to obtain the target level of output. As with the IC, a movement along the
isoquant changes the ratio of the inputs but does not change the level of output. The utility
level remains the same on the IC, so does the level of output on any given isoquant. Figure
7.10 shows a typical map of isoquants on a plane.
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L
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FIGURE 7.10

The three isoquants represent three levels of output: 100, 180, and 260. Each can be
produced by a combination of labor and capital determined by the location of a point on
the curve. Both points A and B on IQU1 can produce 100 units of product but A uses an
amount of labor represented by L1 and an amount of capital represented by K5, while B
also produces 100 units but with L5 and K1. The same conclusion can be drawn from the
other two isoquants and the points on them. Suppose that the firm wants to increase its
output from 100 to 260 but wants to keep the same number of workers at L5. Moving to the
isoquant of 260 holding L5 the same means that capital has to be increased from K1 to K3.
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We can visualize a map of isoquants in a three-dimensional graph as shown in Figure
7.11. As isoquants represent increasing output, if they are placed progressively away from
the origin in a two-dimensional graph, they would be projected up and toward the northeast
in a three-dimensional image. Collectively, their outer surface would form the production
surface that would resemble a half tent. Each projected contour would reflect the level
of production on the vertical axis. This is a more continuous visualization of production
surface compared with the discreet visualization shown previously in Figure 7.1.

K1
K2

K3

L1 L2 L3 IQU
3 = 600IQU

2 = 400
IQU

1 = 200

L

K

Q

600

400

200

FIGURE 7.11

Isoquants hold the same major characteristics of the ICs:

� They run parallel and do not cross each other.
� The farther they are from the origin toward the northeast, the higher the level of output

they represent.
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� They slope downward from northwest to southeast. This characteristic reveals the
nature of substitution between the two inputs if output is held constant. It leads to the
next topic of MRTS. As with the IC, the shape of an isoquant is typical unless
the production has a special case, such as the case of inputs as perfect substitutes or
the case of fixed-proportion production, in which the shape of isoquants would be,
respectively, a straight line going across the axis and a right-angle isoquant.

7.8 MARGINAL RATE OF TECHNICAL SUBSTITUTION (MRTS)

The concept of MRTS is parallel to the concept of MRS, which is related to the IC for
consumer choice. The negatively sloped, convex to the origin isoquant curve implies that
employing more labor units would require reducing capital units if output is to be held at
the same level. The MRTS shows how many units of capital have to be given up for each
additional unit of labor added to production, keeping the output level constant. It can be
expressed as the ratio of change in capital and change in labor, which in itself is equal to the
ratio of the partial derivatives related to the inputs, capital and labor, and ultimately equal
to the negative reverse ratio of MP of the two inputs:

MRTS = �K

�L
= dK

dL
= − MPL

MPK
.

Mathematically, this can be obtained by taking the total derivative of the standard production
function Q = f(K, L):

dQ =
[
∂ Q

∂L

]
dL +

[
∂ Q

∂K

]
dK,

= (MPL )dL + (MPK )dK.

Since the output level is held constant along the isoquant, we can say that dQ is equal to
zero (dQ = 0):

0 = (MPL )dL + (MPK )dK,

−(MPK )dK = (MPL )dL.

Rearranging the terms, we get

dK

dL
= − MPL

MPK
,

where Q is constant and dQ = 0,

dK

dL

∣∣∣∣
d Q=0

= − MPL

MPK
= MRTSK/L ,

and this is the MRTS of capital for labor.
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The strict convexity of the isoquant dictates that the MRTS is a diminishing value along
the curve if we descend from northwest to southeast. This can be observed in the graph
shown in Figure 7.12. As we move from A to B, we gain 1 unit of labor for giving up 3
units of capital, which makes the MRTS equal to (−3). However, if we move further down
from B to C, we still gain 1 unit of labor but lose only 1/2 unit of capital, which makes the
MRTS equal to

(− 1
2

)
. So, the amount of input we give up declines for the same amount of

input we gain.

A

B
C
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4 5
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1
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1

 = –0.5
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K

1 unit 1 unit

3 units
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3

2
1.5

1

FIGURE 7.12

In essence, as we gain L, its MPL decreases, and as we lose K, its MPK increases.
Consequently, their ratio (which is the MRTS) decreases because of the division of a

smaller value by a larger value: (MRTSK/L = MPL

MPK
).

Consider a Cobb–Douglas production function such as

Q = C(K )α(L)β.

The MRTS between labor and capital is obtained as the ratio of MPL and MPK:

MPL = ∂ Q

∂L
= αC(L)α−1(K )β

= αQ

L
,

MPK = ∂ Q

∂K
= βC(L)α(K )β−1

= βQ

K
,
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MRTS = − MPL

MPK
= −

αQ

L
βQ

K

= αQ

L
× K

βQ

= −α

β

[
K

L

]
.

Example 7.5
Suppose that, for an isoquant of 150 units, the production function is Q = 15(K)1/2(L)1/2.
Find

(a) the isoquant equation in terms of labor; and

(b) prove that this isoquant is descending from northwest to southeast and convex at the
origin.

Solution:

(a) 150 = 15(K )1/2(L)1/2

(K )1/2 = 150

15L1/2
= 10,

(K )1/2 = 10L−1/2,

√
K = 10

L1/2
,

K =
[

10

L1/2

]2

,

K = 100

L
.

(b) The down-sloping isoquant must have a negative derivative:

∂K

∂L
= −

[
100

L2

]
= −100L−2 < 0.

The convexity to the origin requires a positive second derivative:

∂2 K

∂L2
= 200L−3 = 200

L3
> 0.
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7.9 THE ECONOMICALLY EFFICIENT REGION OF PRODUCTION

The economically efficient region of production is where the firm restricts its production.
Technically, it is where the MPs of inputs is positive, which leads to a negatively sloped
isoquant. When the MP turns negative and the production reaches its third stage, it would not
be wise to produce because isoquants would have positive slopes and the total production
would go down. We can see in Figure 7.13 where that economically efficient point of
production lies. It is where the isoquants take the typical shape; that is, the negatively
sloped segments between the two ridgelines, OAE and OBE. The dashed segments on both
sides of each isoquant are not suitable for production since the slope (MRTS) is either zero,
where the tangent line is perfectly horizontal such as at point B of the second isoquant, or
is equal to ∞, where the tangent line is perfectly vertical such as at point A. In between A
and B, the isoquant would have its normal negative slope, which would make that region
the best time of production and which corresponds to Stage II. So, collectively all good
segments of the entire isoquant map would be stretched between the two ridgelines, OAE
and OBE, shown as the shaded area in the graph.
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Generally, the firm would prefer to produce at a negatively sloped segment of the isoquant
because it can minimize the cost of production. We can clearly see that on the graph. Let
u’s consider IQU2, where production is 400 units. The firm would prefer achieving this
level production at B, employing L3 of labor and K1 of capital, over achieving it at D by
employing more of both inputs (L4 and K2). It would also prefer achieving the same level
of production (400 units) at A, by employing L1 and K3, over achieving it at C, which
must employ more of both inputs (L2 and K4). Any point between A and B on the isoquant
would be more cost effective than any other point on the dashed segments on both sides of
the isoquant.
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7.10 RETURNS TO SCALE

Returns to scale refers to how output responds to proportionate changes (increase and
decrease) in all inputs. Three major types of responses can be observed:

(a) Constant returns to scale are obtained when output changes by the same percentage
as the change in inputs. For example, if both inputs, labor and capital, are doubled
and, consequently, the output is also doubled, we say that the production function
has exhibited constant returns to scale. We can express this mathematically. Suppose
that both inputs, labor and capital, are increased by a constant (C), then the output
would also increase by a factor equal to (C):

f (CL, CK) = Cf (L , K ) C > 0

Cf (L , K ) = hQ h = C.

Constant returns to scale is a condition that results from the production function
being homogeneous of degree 1.

(b) Increasing returns to scale are obtained when output changes by a higher percent-
age than the percentage of change in inputs. For example, if the inputs are doubled,
then the output would be more than double:

f (CL, CK) = Cf (L , K ) C > 0

Cf (L , K ) = hQ h > C.

Increasing returns to scale is a condition that results from the production function
being homogeneous of degree greater than 1.

(c) Decreasing returns to scale are obtained when output changes by a lower percentage
than the percentage of change in inputs. If the inputs are doubled, then the resulting
output would be less than double:

f (CL, CK) = Cf (L , K ) C > 0.

Cf (L , K ) = hQ h < C.

Decreasing returns to scale is a condition that results from the production function
being homogeneous of degree less than 1.

In Figure 7.14, the inputs of labor and capital are doubled, from (L = 4 units; K = 2
units) to (L = 8 units, K = 4 units), in all of the three panels. On the top panel, the output
increases from 400 units to 800 units illustrating the constant returns to scale, with a 100%
increase in output. On the middle panel, the output increases from 400 to 1000 units, which
is a 150% increase. On the bottom panel, the output increases from 400 units to 600 units,
which is a 50% increase.
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Example 7.6
What would happen to the total output, Q, of the Cobb–Douglas production function, Q =
C(L)α(K)β , if we triple the amount of both inputs, labor and capital?

Solution:

Q∗ = C(3L)α(3K )β

= (3)α+βC(L)α(K )β

= (3)α+β Q

The amount of new output Q∗ would depend on the value of (α + β):

� If (α + β) = 1, Q∗ = 3Q and the function would exhibit constant returns to scale.
� If (α + β) > 1, Q∗ > 3Q and the function would exhibit increasing returns to scale.
� If (α + β) < 1, Q∗ < 3Q and the function would exhibit decreasing returns to scale.



ELASTICITY OF SUBSTITUTION 269

7.11 ELASTICITY OF SUBSTITUTION

The elasticity of substitution in the production function refers to the extent to which one
input can substitute for another. More practically, it describes how easy or difficult it is for
a firm to substitute one input for another, such as the typical case of substituting capital
for labor. We know that the MRTS changes as we move along the typical isoquant. In fact,
it has been assumed that the MRTS decreases as the capital–labor ratio (K/L) decreases.
Substitution of input may be considered easy if MRTS does not change when there is a
change in K/L , and may otherwise be considered difficult if MRTS changes in response
to any change in K/L . The elasticity of substitution offers a measure of the proportionate
change in K/L relative to the proportionate change in MRTS. Since these changes occur
along one isoquant, they would determine the shape of the isoquant, as they reflect the degree
of its curvature. Mathematically, the elasticity of substitution (εS) can be expressed as

εS =
%�

K

L
%�(MRTS)

=
d(K/L)

K/L
dMRTS

MRTS

= d(K/L)

K/L
× MRTS

dMRTS
.

Rearranging:

εS = d(K/L)

dMRTS
× MRTS

K/L
.

Since both MRTS and K/L are positive along the same direction, elasticity can be expressed
as a logarithmic derivative:

εS = d ln(K/L)

d ln(MRTS)
.

Figure 7.15 shows how moving from one point (A) to another (B) along an isoquant
changes both the slope (MRTS) and the capital–labor ratio K/L , as in from AC

OC to BD
OD , and

how elasticity εS is simply an expression of that relative change:

%�(K/L) = (K/L)B − (K/L)A

(K/L)A
,

%�(MRTS) = (MRTS)B − (MRTS)A

(MRTS)A
,

εS = %�(K/L)A−B

%�(MRTS)A−B
.
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The elasticity of substitution can also be expressed in terms of the production function
derivatives:

εS =

[
∂ Q

∂L

] [
∂ Q

∂K

]

Q

[
∂2 Q

∂K∂L

] .

The elasticity of substitution (εS) is commonly assumed to be constant. There are four
values of elasticity according to the type of production function, as explained in Sections
7.11.1, 7.11.2, 7.11.3, and 7.11.4.

7.11.1 Elasticity of the Cobb–Douglas Production Function

This function has an elasticity of substitution equal to 1. It is characterized by the typical
convexity of the isoquant, which implies the diminishing MRTS:

Q = f (K , L) = C(K )α(L)β,

F(aK , aL) = C(aK )α(aL)β

= Caα+β(K )α(L)β .

The function would exhibit constant returns to scale when α + β = 1. However, when
the constant α + β exceeds 1, the function would exhibit increasing returns to scale, and
when α + β < 1, it would show decreasing returns to scale.

It is linear in its logarithmic form:

ln Q = ln C + α ln K + β ln L .
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To find that the elasticity of substitution in this case is equal to 1, let us take MPs of the
two inputs:

Q = C(K )α(L)β,

MPK = αC(K )−1 Q,

MPL = βC(L)−1 Q,

MRTS = MPL

MPK
= βC (L)−1 Q

αC (K )−1 Q
,

MRTS = β

α

(
K

L

)
,

K

L
= MRTS

β

α

= α

β
MRTS.

Taking the natural log of both sides,

ln

(
K

L

)
= ln

(
α

β
+ ln MRTS

)
,

εS =

⎡
⎢⎢⎣

∂

(
K

L

)

∂MRTS

⎤
⎥⎥⎦ ×

⎡
⎢⎢⎣MRTS(

K

L

)
⎤
⎥⎥⎦

=
∂ ln

(
K

L

)

∂ ln(MRTS)
= 1.

7.11.2 Elasticity of the Leontief Production Function

This function is also called the fixed-proportion production function. It has an elasticity of
substitution equal to zero. It is characterized by a single-point isoquant taking a right-angle
or L-shaped curve. There are only single points along a ray from the origin in which the
firm can operate, since the ratio K/L is fixed. It is similar to the case of perfect complements
for consumer commodities. The output in this function is given by the smaller of the two
inputs:

Q = min

[
K

a
,

L

b

]
a, b> 0,

MRTS = −
[

L

K

]−∞
,
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where MRTS approaches zero if L > K, and reaches infinity if L < K:

εs = 1

−∞ = 0.

This function also exhibits constant returns to scale:

f (αK , αL) =
[
αK

a
,
αL

b

]

= α min

[
K

a
,

L

b

]

= α f (K , L) .

7.11.3 Leontief Technology and Linear Programming

The Leontief production function does not permit the flexibility in factor substitution
or variety in returns to scale that often dominate the nature of production models in
microeconomic theory. Even so, the Leontief model has special importance as a model
of production in the short run; that is, a period of time during which at least one input
is fixed (as discussed earlier). If substitution possibilities and returns to scale are actually
associated with a choice of production process or technology, then the flexibility and variety
envisioned by microeconomic theory will be possible only in the long run, when investments
permit changes in technology. Under this circumstance, short-run factor substitution and
returns to scale may be very limited or nonexistent, and the Leontief production function
will characterize the nature of the production function faced by managers. The Leontief
production function is especially useful in multioutput situations with resource limits, as the
following example reveals. Suppose that two products that employ some of the same types
of inputs are denoted by y1 and y2 and that the amount of the inputs, x1 and x2, available is
fixed during the short run at x0

1 and x0
2 . Due to past investments in production processes, the

production of each can be characterized by the Leontief model: y1 = min(a1 x11, b1 x21):

y2 = min(a2 x12, b2 x22),

where xij is the amount of input i used to make output j. The production function for y1

indicates that (1/a1) units of input x1 and (1/b1) units of input x2 are required to produce a
single unit of y1. The production function for y2 indicates that (1/a2) units of x1 and (1/b2)
units of x2 are needed to produce a single unit of output y2. If the price of output y1 is p1

and the price of output y2 is p2, then the optimal allocation of the resources between the
outputs can be found from the solution of an inequality constrained optimization problem,
which features maximization of TVP (total value product) from both products subject to
resource limits:

Maximize p1 min(a1 x11, b1 x21) + p2 min(a2 x12, b2 x22),

Subject to x11 + x12 = x0
1 ,

x21 + x22 = x0
2 ,

where x11, x12, x21, x22 = 0.
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While in this description the optimization problem faced by a multioutput firm yields
an optimal production plan, a reformulation of the problem focused on the choice
of output levels results in the linear programming model described in Section 2.7,
which is more easily solved using the widely available computer programs. As an
added bonus, the following formulation also reduces the number of decision variables
by half:

Maximize p1 y1 + p2 y2,

Subject to a1 y1 + a2 y2 = x0
1 ,

p1 y1 + p2 y2 = x0
2 ,

where y1, y2 = 0.

This linear programming formulation is known as a product-mix model. We are able to
leverage solution methods due to linear programming, courtesy of the Leontief production
function.

7.11.4 Elasticity of the Linear Production Function

This production function is also called the perfect-substitute production function. It exhibits
an infinite elasticity, and it is analogous to the case of perfect substitutes for consumer
commodities. It is characterized by a straight-line isoquant parallel to the slope (− b

a ),
where MRTS is constant (%�MRTS = 0):

Q = aK + bL ,

ES =
%�

(
K

L

)

%�MRTS
,

where K/L is constant,

MRTS = −dK

dL
= 0

= 1

0
= ∞.

It can also be shown how this function exhibits constant returns to scale:

F(αK , αL) = aαK + bαL

= α(aK + bL)

= α f (K , L) = αQ.
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7.11.5 Elasticity of the CES Production Function

This function is well known as the constant elasticity of substitution (CES) production
function. It is characterized by an elasticity value that is equal to any positive value.
Mathematically, it is specified by

Q = γ [δK −ρ + (1 − δ)L−ρ]−
1
ρ .

Here

γ is an efficiency parameter with a positive value: γ > 0.

δ is a distribution parameter with a value between zero and one: 0 ≤ δ ≤ 1.

ρ is a substitution parameter with a value equal to or above −1: ρ ≥ −1.

Parameter ρ determines the value of elasticity as follows:

when ρ = 0, εS = 1,

ρ = ∞, εS = 0,

ρ = −1, εS = ∞.

Generally, the elasticity of substitution for this function is

εS = 1

1 + ρ
.

It also exhibits constant returns to scale:
For a > 0:

f (aK , aL) = γ [δ(aK )−ρ + (1 − δ)(aL)−ρ]−
1
ρ

= γ (a−ρ)
− 1

ρ [δK −ρ + (1 − δ)L−ρ]−
1
ρ

= a f (K , L).

Example 7.7
What would be the elasticity of substitution for the following CES production function?

Q = 10[0.75K −11 + 0.25L−11]−
1

11 ,

εS = 1

1 = ρ
= 1

1 + 11

= 0.083.



ELASTICITY OF SUBSTITUTION 275

7.11.6 Graphical Representation of CES

Let us consider a more general form of the CES production function with output y and
inputs x1, x2:

y = a(a1xρ

1 + (1 − α1)xρ

2 )ε/ρ,

where x1, x2 > 0; a > 0; 0 ≤ a1 ≤ 1; ρ ≤ 1; ε ≥ 0.

This takes on the linear, Cobb–Douglas-type, and Leontief forms as special cases; hence, the
CES model may be regarded as relatively robust with respect to the shape of the isoquants
it can accommodate and the returns to scale it can exhibit. This means that there are values
of the parameters (a, a1, ρ, ε) that enable this form to be essentially linear, Cobb–Douglas
type, or Leontief. Hence, statistical analysis of production based on this form enables the
data to inform about both input substitution and returns to scale. In fact, the CES model is
the workhorse of applied production analysis.

Because of the importance of the CES model in production analysis, we provide an
expression for it that can involve an arbitrary number of inputs. The CES production
function with output y and inputs x1, x2, . . . , xn has the form:

y = a
(
a1xρ

1 + a2xρ

2 + · · · + (1 − 
ai )x
ρ
n

)e/ε
,

x1 > 0,x2 > 0, . . . , xn > 0; a > 0; 0 ≤ a1 ≤ 1; ρ ≤ 1; ε ≥ 0 for i = 1, 2, . . . , n − 1.

As already mentioned, the shape of the CES production function surface depends on the
values of its parameters. The shape of its isoquants is determined by the value of parameter ρ.
Figure 7.16 shows the production surface of a CES when ρ = 1. The isoquants associated
with this function resemble the family of isoquants for the linear function, as shown in

10

5

0

5

0

10
0

5
X2

X1

10

FIGURE 7.16



276 PRODUCTION THEORY

10

5

0
0

5

10 0

5
X2

X1

10

FIGURE 7.17

Figure 7.6 earlier. When ρ = 0, the production surface would seem to be bowed downward,
as shown in Figure 7.17. The isoquants for this function are similar to the isoquants of the
Cobb–Douglas function in their standard convexity to the origin, as shown in Figure 7.7.
If parameter ρ is a large (in an absolute value) negative number approaching −∞, then
the production surface would look like a corner of a pyramid with a ridge at the diagonal
line and two triangles sloping downward (Figure 7.18). The isoquants look like those of
the Leontief of the L-shaped isoquant, as shown in Figure 7.8.

4

2

0
0

5

10
0

5
X2

X1

10

FIGURE 7.18



OPTIMAL EMPLOYMENT OF AN INPUT 277

100

50

0
0 5 10

10
50

X2

X1

FIGURE 7.19

Note that the value of parameter ρ has no effect on returns to scale. It only affects
the shape of isoquants. The returns to scale exhibited by the CES production function are
determined by the value of parameter ε. If ε < 1, then decreasing returns to scale are
evident. If ε = 1, there are constant returns to scale, and if ε > 1, there are increasing
returns to scale. Figure 7.19 shows a CES function with ρ value near 0 and ε > 1.

The statistical estimates of parameters ρ and ε inform about factor substitution and
returns to scale, respectively. The linear, Cobb–Douglas-type, and Leontief production
functions are special cases of the CES function when these parameters have particular
values. Table 7.3 summarizes the conclusions that can be drawn on the basis of statistical
analysis of production data with the CES model.

TABLE 7.3 Factor Substitution and Returns to Scale of the CES Production Function
Depending on Parameter Values

Parameter ρ → ε ↓ <0 0 1

<1 No substitution,
decreasing RTS

Some substitution,
decreasing RTS

Good substitution,
decreasing RTS

1 No substitution,
constant RTS

Some substitution,
constant RTS

Good substitution,
constant RTS

>1 No substitution,
increasing RTS

Some substitution,
increasing RTS

Good substitution,
increasing RTS

7.12 OPTIMAL EMPLOYMENT OF AN INPUT

A major question that many managers might ask is: “What would be the optimal amount
of a certain input to be employed in order to maximize profit?” The answer lies in one of
the most fundamental tools in economics: the “Equimarginal Principle,” which generally
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TABLE 7.4

Units of
Input (Q) TB MB (�TB) TC (QP) MC (�TC) NG (TB − TC)

1
2
3

{4
5
6

12
22
30
36
40
42

12
10

8
6
4
2

6
12
18
24
30
36

6
6
6
6
6
6

6
10
12
12}
10

6

states that an activity ought to be pursued until the marginal benefit (MB) equals the
marginal cost (MC). Let us take a look at Table 7.4.

Suppose that we are given the overall benefit that is obtained by adding successive units
of an input into a production process, such as what 1–6 units of that input generate and what
is in Column 2 of Table 7.4. On the basis of this column, we can track down the change that
each unit of input would cause; that is, the MB, calculated as the change in total benefit:
MB = �TB (Column 3). Suppose that each unit of input used costs the company $6.
The total cost can be obtained by multiplying the units used by per unit cost: TC = Q
× P (Column 4). As we could track down the change in benefits as a result of adding
any additional unit of input, we can track down the change in cost that is caused by any
additional unit of input used; that is, the MC, which is the change in the total cost for
successive units of input. There should be no surprise that every number in Column 5 is 6,
because it is $6 cost per unit the firm may decide to use. Now, in order to decide the optimal
number of units of input to use for maximizing the benefit, we apply the equimarginal
principle and note where MB equals MC. It would be at 4 units of input, where MB =
MC = 6. To prove that it maximizes the benefit, we can generate Column 6 to record the
net gain, which is simply the difference between the total benefit and the total cost. At the
fourth unit of input, the net benefit reaches its maximum of 12. One might ask the reason
for not choosing the third unit, where also the net gain is 12! The answer is that, at the third
unit, the MB is still larger than the cost (8 > 6), which keeps on the motivation to use more
input until the MB becomes equal to the MC, signaling the point to stop. After that point,
the MB would be smaller than the MC (4 < 6), which would cause the net gain to decline
from 12 to 10, incurring a loss of 2. Graphically, we can see the optimal size of input of 4
where the MB curve crosses the MC curve on the upper panel of Figure 7.20. On the lower
panel, we can see that, at the fourth unit of input, the total benefit curve rises above the
total cost, producing the longest vertical distance between the two curves. This distance is
the maximum net benefit of 12.

7.13 TECHNOLOGICAL PROGRESS, INVENTION, AND INNOVATION

Technological progress refers to how much our knowledge has expanded and how the
advances are applied in the production of goods and services. It is a systematic process and
endogenous to the economic system. It has an incremental nature that spreads over the long
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run. Invention is a form of technological progress. It refers to coming up with new products
or new ways of using a product or rendering a service. Those new ways are most likely to
increase efficiency, especially in terms of increasing output, improving its quality, reducing
cost, or any combination of these objectives. Innovation has to do with the applications of the
new discoveries and inventions, especially in their first commercial use. This too is a long-
run concept that is tied to the way the economic system is structured and run. Successful
innovation pivots around two major economic requirements: (1) supportive and sustained
demand, and (2) willingness and capacity to reduce cost. It is highly affected by competition
among firms and can easily become the “make it or break it” factor in the market. Staying
ahead of competition has become a major survival tool for firms in the business market.
Firms would compete not only for quantity and quality of innovative techniques but also
for the speed with which innovation spreads. Generally, the dissemination of innovation
passes through three stages by which a forward S-shaped curve emerges (Figure 7.21). The
first is the initial adaptation stage, which is characterized by an increasing growth rate.
The second stage is characterized by a decreasing growth rate. The third is the settling
stage, where the curve becomes flat toward the end of that innovation and the emergence
of others. Firms, industries, and economies can have various S-shaped curves for their own
innovation spread status. Figure 7.21 shows three random examples in which the innovation
spread curves are distinguished by their own three stages.
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For example, the first stage has different lengths of time for the three firms and probably
different rates of growth (compare OD, OE, and OF). The same observation can be made
by comparing the other stages, such as the second stage where we can see how the growth
of dissemination starts and ends (compare DG, EH, and FI). Points G, H, and I show where
the growth of innovation spread ceases and signals that the attention is shifting to a newer
and better innovation. We can observe that this stage starts and extends differently for the
three firms, but we can also see that an average time among the three firms, or say in an
industry or country, can be estimated by the length of line segment OK.

7.14 TECHNOLOGICAL PROGRESS AND PRODUCTION FUNCTION

The collective advances in production technology that we witnessed, especially in the
last two centuries, have profoundly changed the production process and its reflections on
the dynamics of the production function. Of specific interest is the change in substitution
among inputs and the change in their quality. Naturally, any change in the production
function would mirror the status of the innovative activities and nature and structure
of the economic system. It has been observed that total output has increased beyond
the effects of the changes in inputs. This has prompted economists to theorize on the
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impact of other factors over time and express it in the following form of the production
function:

Q = O(t) f [L , K ],

where O(t) reflects the impact of all other determining factors than the typical inputs.
Including (t) stresses that the changes in other factors over time are the right form of
representation where dO(t)/dt > 0. It was further hypothesized that the impact of other
factors can be brought about in three different forms:

1. When O(t) affects inputs in equal proportions; it would be the typical format of the
function, Q = O(t) f[L, K].

2. When O(t) specifically focuses its impact on labor,Q = f [O(t)L , K ].

3. When O(t) specifically focuses its impact on capital, Q = f [L , O(t)K ].

The structure of the economic system, the fundamental needs of a society, and the philos-
ophy on the orientation of the progress are the determinants of what form of production
function is followed. For example, it would not be wise to adopt a production format that
would cut back on labor as an input in a country like China, where labor is abundantly
available and need to be employed. Empirically, the impact of other factors over time ver-
sus the impact of the two typical inputs, labor and capital, has been estimated using the
following formula:

G Q = G O + G in,

where GQ is the rate of growth in output, GO is the rate of growth in other factors over
time, and Gin is the rate of growth in inputs, which can be broken down into two different
rates of growth in labor and capital in consideration of their own elasticities. The growth in
technical progress has been taken to represent GO. It is denoted by Gtp:

G Q = G tp + [εQL(GL) + εQK(GK)],

where εQL is the output elasticity of capital, and εQK is the output elasticity of labor.

Example 7.8
What would be the rate of growth in technological progress for a country’s output that has
been growing by 3.6% under the following growth conditions for labor and capital?

GL = 1.6, GK = 1.2, εQL = 0.75, εQK = 0.25,

G Q = G tp + [εQL(GL) + εQK(GK)],

3.6 = G tp + [(0.75)(1.6) + (0.25)(1.2)],

G tp = 3.6 − 1.5,

G tp = 2.1.
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SUMMARY

� This first chapter of the unit discussed the managerial decisions at the firm level. It
addressed the basic topics in the production theory. As the production process basically
meant the transformation of various resources (as inputs) into certain identified outputs,
called products, the discussion started with an explanation of the variability of inputs
throughout time. It clarified the frequently used terms in this field, such as short run and
long run. In the short run, at least one input is fixed, while in the long run, all inputs are
variable.

� The production function was the central topic in this chapter. It referred to the relationship
between the inputs into the production process and the resulting output. It was explained
and illustrated graphically with examples. A discussion on short-run, one variable input
flowed in where the typical inputs, capital and labor, were used and capital was held
constant. It was to illustrate the essential concepts related to changing labor units and ob-
serving the resulting change in output. These concepts were total product (TP), marginal
productivity of labor (MPL), and average productivity of labor (APL). They were all
explained mathematically and graphically to show the dynamic relationships that hold
them together. Output elasticity was obtained to depict the percentage change in output
relative to the percentage change in input. This elasticity value characterizes the three
stages of production: (1) larger than 1 in the first stage, (2) between 0 and 1 in the second
stage, and (3) less than 0 in the third stage.

� The three stages of production show the law of diminishing marginal returns, which
states that, after a certain point in production, the marginal productivity starts to decline.
So, as to the stages of production, during the first stage the average productivity usually
increases. During the second stage, the average productivity starts decreasing from its
maximum to the point when the marginal productivity becomes zero. During the third
stage, the marginal productivity decreases from zero to negative.

� The long-run, two variable input function was discussed asto continue the discussion of
the short-run, one variable input function. Here, the analytical tools were the isoquant,
isocost, and the marginal rate of technical substitution (MRTS), which are all analogous
to the consumer choice analytical tools of the indifference curve (IC), budget line, and
the marginal rate of substitution (MRS). The isoquant shows the possible combination
of two inputs to produce a certain level of output, while the isocost depicts a certain
cost required to produce a certain level of output. The MRTS represents the slope of the
isoquant, which, like the consumer’s MRS, declines as we move down the isoquant. The
optimal choice of production for the firm is achieved at the point of frequency between
the highest possible isoquant and the lowest possible isocost.

� Given the visualization of the isoquant map, the economically efficient region is where
the isoquants take their typical shape of the negatively sloped curves, for that is where
the MP of input is positive. In other words, a look at a group of isoquants reveals the two
areas that are not recommended for production: (1) where the tangents to the isoquants
have zero slope (horizontal lines) and (2) where the tangents are vertical lines. Anywhere
between these two areas are the segments of the negatively sloped isoquants, which
should be the target area for production.

� The term returns to scale refers to three cases in which output responds to changes in
inputs. Increasing returns to scale is where output changes by a larger proportion than the
changes in input. Decreasing returns to scale is the case of having an output changed by
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a proportion less than the change in inputs, and finally constant returns to scale is where
output and inputs change by an equal proportion.

� Elasticity of substitution refers to the extent to which one input can substitute for another.
Aside from the assumption that this elasticity is normally constant, there are four types
of production functions, which exhibit different values of elasticity of substitution. The
Cobb-Douglas function is where elasticity equals 1, the Leontief function is where
elasticity equals zero, the linear function is where elasticity equals ∞, and finally there
is the constant elasticity of substitution function (CES).

� The last topic discussed in this chapter covered technological progress, invention, and
innovation, which refers to the impact of knowledge and skills development over time
on the production process and products. Invention is concerned with producing new
and improved products, whereas innovation has to do with the applications of new
discoveries and methods that would impact the production process. They are vital for a
firm in the competitive system, not only to survive but also to go along with the trends,
be able to satisfy ever-changing consumer demand, and to carve its own place in the
industry.

KEY TERMS

short-run production
long-run production
production function
total product
marginal product
average product
law of diminishing

marginal returns
isoquant
isocost

marginal rate of technical
substitution

returns to scale
economically efficient

region of production
increasing returns to scale
decreasing returns to scale
constant returns to scale
production elasticity
elasticity of substitution

Cobb–Douglas production
function

Leontief production
function

linear production function
CES production function
equimarginal principle
technical progress
invention
innovation

LIST OF FORMULAS

� Short-run, one variable production function:

Q = f (K0, L).

� Marginal product of labor:

MPL = �TPL

�L
= ∂ f (K0, L)

∂L
.

� Marginal product of capital:

MPK = �TPK

�K
= ∂ f (K , L0)

∂K
.



284 PRODUCTION THEORY

� Average product of labor:

APL = TPL

L
.

� Production elasticity of labor:

εL = ∂ Q

∂L

[
L

Q

]
= MPL

APL
.

� Marginal rate of technical substitution:

MRTS = �K

�L
= dK

dL
= − MPL

MPK
.

� Elasticity of substitution:

εS = d(K/L)

d MRTS
− MRTS

K/L
.

also εS = dln(K/L)

dln(MRTS)

and

εS =

[
∂ Q

∂L

] [
∂ Q

∂K

]

Q

[
∂2 Q

∂K∂L

] .

� CES function:

Q = γ [δK −ρ + (1 − δ)L−ρ]−
1
ρ .

� CES elasticity of substitution:

εS = 1

1 + ρ
.

� Growth in technical progress:

G Q = Gtρ + [
εQL(GL) + εQK(GK)

]
.
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EXERCISES

1. Explain the concepts of short run and long run in production. Are they defined by
certain periods of time? What is the significance of this type of term variability in
production?

2. List as many aspects as you can of the dynamic relationships between total product,
marginal product of a variable of your choice, and the average product. Support your
explanation with graphs.

3. What is the production function? List and explain its various types. Also, explain its
significance in the managerial decision making context.

4. How would you tie the discussion on the three stages of production: production elas-
ticity, the law of diminishing returns, and the returns to scale?

5. Provide a comparative explanation of the analytical tools for the optimal decision-
making process between an individual consumer and a firm’s manager.

6. The following table shows the number of units produced (Q), total revenue (TR), and
the total cost (TC) of a product in a small firm. What would be the optimal size of
production? How would you determine it and what would be the firm’s profit at the
level of production? Is it the maximum profit that can be obtained?

Note: You need to fill in the blank columns to get your answer.

Q TR TC

100
200
300
400
500
600
700
800

1000
1800
2400
2800
3000
3000
2800
2400

900
1100
1400
1800
2300
2900
3600
4400

7. On a two-panel figure, plot the following curves:
� Total revenue (TR) and total cost (TC).
� Marginal revenue (MR) and marginal cost (MC).
� Show the maximum profit and the optimal production.

8. In the first and second columns of the following table, you find the units of la-
bor (L) used in a production process, and the total output (TPL) obtained. Calcu-
late the average production of labor (APL), the marginal product of labor (MPL),
and the production elasticity (εS). Fill in the columns with the results of your
calculations.
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L TPL APL MPL εL Stages

10
20
30
40
50
60
70
80
90

100
110
120

700
2,600
5,400
8,800

12,500
16,200
19,600
22,400
24,300
25,000
24,200
21,600

9. (a) Mark the three stages of production in the previous table based on the elasticity
values.

(b) Draw the three curves of TPL, APL, and MPL, and show the following:
� The three stages of production
� The inflection point
� The maximum production

10. The following is the production function of a small firm:

Q = 3K 0.45L0.55.

(a) Obtain the MPL and the APL functions.

(b) Obtain the MPK and the APL functions.

(c) Calculate the values of MPL, APL, and MPK, APK if K = 35 and L = 15.

(d) What would be the total product?



8
COST THEORY

8.1 COST CONCEPTS AND CATEGORIES

Fundamental understanding of the nature of cost, its types, conceptualization, measure-
ment, and use is a major requirement to be a successful manager. This is particularly true
for managers who pursue efficiency in their managerial decisions to offer better, more
affordable products of higher quality and faster services. Cost has never been evaluated
in isolation from other variables. Its judgment is inextricably bound with assessing, first
and foremost, the associated benefits. There are many concepts and categories of cost. The
most obvious distinction is between explicit and implicit costs. Explicit cost is the direct
monetary expenditure or out-of-pocket expenses paid for the firm’s obligations, such as
material, wages, interest on loans, rent, and other similar types of expenditures. Implicit
cost is the indirect nonmonetary cost that can only be estimated by the opportunity cost.
Here, we can refer to the economic versus accounting perspectives to recognizing and
measuring cost. From the efficiency standpoint, economists consider the foregone cost as
opportunity cost. It is the cost of the best alternative use of a resource. For example, energy
can be used to produce many different products. The accounting cost of a therm of heat
is simply the expenditure involved for the energy. The opportunity cost of a therm of heat
energy to produce one product is the value of the alternative product that could be produced
using that energy.

The efficient choice of a resource dictates that its value must be at least equal to its
opportunity cost. In other words, opportunity cost represents the payment necessary to keep
a resource in its present employment. Accounting perspective does not take opportunity cost
into consideration. It focuses mainly on what is called the historical cost that is explicit. This
signifies that implicit cost does not enter the accountant’s calculation. A typical example
of the implicit cost is the salary of an entrepreneur or self-employed manager, which is not
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really paid but can be estimated by what the person would get, had he been employed in
the market. So, the implicit cost can be estimated by the opportunity cost.

The accounting perspective relies on historical cost, which is the actual cash outlay or
what is paid for the production operations regardless of any market influences on the value
of what the payment was for. This is why the historical cost is the suitable measure for
formal purposes such as tax calculations, report to stockholders, and financial statements
for governmental purposes. The opposite of the historical cost is the current cost, which
takes into consideration the current market conditions that change the value of an asset,
such as inflation, supply and demand, consumer taste, alternative products, technology,
and appreciation and depreciation of the asset. For example, a piece of equipment that
was purchased 10 years ago for $20,000 has depreciated now to $8000. The original cost,
$20,000, is the historical cost and $8000 is the current cost. Another concept of the cost
that is related to the current cost is the replacement cost, which refers to the expenditures
in the real (adjusted) dollar value that is required to procure the asset. It means that the
replacement cost is similar to the current cost in terms of accounting for the current market
conditions. Not only inflation but also the state of technology can play a role here. For
example, computers are cheaper to replace now than 10 years ago, due to the advancement
of technology. This is why replacement cost is sometimes defined as the cost of duplicating
productive capacities under the utilization of an updated technology. A concept of cost
that is closely related to the direction of managerial decisions is the incremental cost,
which refers to the changes in cost due to implementation of certain courses of action by
management. An example of incremental cost is the extra cost incurred for a new product
line, establishing an extra labor shift, or renting some of the firm’s equipment. In this sense,
we can connect incremental cost to the concept of marginal cost (MC), which could be
considered a special case of incremental cost, as long as it means the cost incurred for
producing another unit of output. Managerial decisions on the incremental cost can be
related to considering another cost, namely, the sunk cost. Sunk cost is the cost that has to
be paid due to certain obligations that are unrelated to the efficiency of a current decision.
So, it is the cost that does not vary across alternative courses of action, and which cannot
play a role in the optimality of outcome. Suppose that for a reason related to the schedule
of operations, some equipment of the firm remains unemployed for a period of time. If the
manager decides to rent these pieces of equipment to another firm, he would bring about a
negative incremental cost that would reduce the original cost of paying for the maintenance
and storage of the equipment, which, in this case, is considered sunk cost since it will be
paid whether the equipment is used or not.

In terms of how it is related to output, cost can either be fixed, variable, or sometimes
cross-listed between the two types. Fixed costs (FC) are those that are not connected to
the size of production. Typical examples include rent, interest paid on loans, taxes, and
insurance. The firm would pay these costs whether it is producing or not, or whether it is
producing more or less. Variable costs (VC) are those that are tied directly and positively
to the size of production. The more the production, the higher the VC. Typical examples
include labor, material, and energy. During a production period, FC often refers to the cost
of assets that will be useful during multiple production periods. It may be measured by the
change in the market value of assets during the production period. Practically, it is often
evaluated as the sum of interest, taxes, insurance, depreciation, and other typical FC that
are not tied to the size of output.

The cost function or cost–output relation brings about one more major categorization of
cost, that is, short-run and long-run costs. Short-run cost refers to a period of time during
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which one or more factors of production cannot be changed. It reflects a phase of pro-
duction characterized by input inflexibility and where operating decisions are constrained
by previous capital expenditures. This is why the curves of short-run cost are called op-
erating curves, as opposed to planning curves, which depict the long-run costs. Long-run
cost refers to costs over a sufficiently long period of time, which permits all factors of
production to be changed. Long-term cost reflects much more flexible use of inputs. We
focus on the accounting perspective of cost for it is the relevant measure for the majority of
managerial decisions. Also, as far as the cost function is concerned, we focus on short-run
and long-run analyses of cost.

8.2 SHORT-RUN COSTS

Short-run costs are basic indicators for managerial operating decisions. They stand for the
minimum possible cost of production for a certain output level at a particular operating
condition. The basic component is the total cost (TC), which includes two parts: FC and
VC. To mark these costs for a short-run analysis, they can be preceded by S or SR such as
in the short-run total cost (STC or SRTC) though that is not often done:

STC = SFC + SVC.

As for the average cost (AC), it is a cost per unit of production. Since we have three mea-
sures of cost—total, fixed, and variable—each can be expressed as per unit of production.
Therefore, dividing each by the size of output Q produces the AC of any particular measure
of the three concepts:

� Average cost (AC) = TC

Q
.

� Average fixed cost (AFC) = FC

Q
.

� Average variable cost (AVC) = VC

Q
.

Therefore, the AC is the sum of the two averages:

AC = AFC + AVC.

The MC is the cost of the last unit of output. So, it is the change in TC (or VC) due to
producing one more unit of production:

MC = �TC

�Q
= ∂TC

∂ Q

= �VC

�Q
= ∂VC

∂ Q
since

∂FC

∂ Q
= 0.

Let us assume, for the purpose of illustration, that we follow the cost of production of a
certain product for the first 10 units of production. Suppose that the FC for this production
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is 50, which remains the same throughout all units of production. Also, suppose that the
VC changes throughout production in the following manner: 10, 19, 26, 31, 38, 45, 55, 67,
82, 100. We can construct a table (Table 8.1) and calculate all the cost measures.

TABLE 8.1

Q FC VC TC AC AFC AVC MC

1 50 10 60 60 50 10
2 50 19 69 34.5 25 9.5 9
3 50 26 76 25.3 16.66 8.66 7
4 50 31 81 20.25 12.5 7.75 5
5 50 38 88 17.6 10 7.6 7
6 50 45 95 15.83 8.33 7.5 7
7 50 55 105 15 7.14 7.86 10
8 50 67 117 14.62 6.25 8.37 12
9 50 82 132 14.67 5.55 9.11 15

10 50 100 150 15 5 10 18

Plotting the data obtained in this table would produce the short-run cost curves as shown
in Figure 8.1. Looking carefully at the graph, we can observe most of the characteristics of
the cost curves.

B
G

F
A

E

D
C

Cost
TC VC

FC

MC ATC
AFC

Per-unit
cost

FC

O

AFC

AFC

AVC

L

K

K
Q3

Q

Q2Q1

Q1 Q2 Q3

FIGURE 8.1
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Observations:

� The TC and VC curves in the upper panel are vertically parallel to each other. They
both are increasing all the way, but at a decreasing rate up to the inflection points A
and B, and at an increasing rate beyond those points. The TC mimics the changes of
the VC since the difference between them is the FC, which is a constant. Graphically,
the vertical distance between them (AB) represents the FC, which is also shown as
a horizontal line along increasing levels of output. The reason for the change in the
increasing rate of both TC and VC is that only after the inflection points the law of
diminishing marginal returns starts to work.

� The lowest point on the MC curve (point C) corresponds to the points of inflection.
The MC would pick up after C, and both VC and TC soar.

� The AFC curve descends all the way as output level increases. This is because it is a
constant value divided by an increasing value. It is also shown as a gradually shrinking
vertical distance between ATC and AVC curves.

� All other cost curves in the lower panel (MC, ATC, AVC) take roughly a U-shape
in a sense that they have two phases, decreasing and increasing, and they reach their
lowest points in between the two phases. For example, in the case of the marginal
cost curve this happens because the marginal product of an input, say labor (MPL),
would naturally rise up to its maximum then start to fall. The MC of such an input
would behave in the opposite direction. That is to say, it would gradually fall, reach a
minimum, then rise, and that is what the MC curve depicts:

MC = �TVC

�Q
.

The relationship between marginal and average products and costs can be rigorously
developed in the context of optimizing behavior by a firm, we can being to see
the relationship now. Since the total variable cost (TVC), say labor, is obtained by
multiplying the wage rate (w) by the amount of labor (L),

TVC = wL ,

then

MC = �wL

�Q
,

MC = w�L

�Q
,

MC = w
�Q

�L

,

and since the marginal product of labor (MPL) is the change in output due to the
change in labor, that is, �Q

�L ,

MC = w

MPL
,
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which confirms that the MC value would fluctuate in the opposite direction to the
MPL value, given a certain wage rate.

We can use a similar argument to justify the U-shape for AVC:

AVC = TVC

Q
,

AVC = wL

Q
,

AVC = w
Q

L

.

Since Q
L is the average product of labor APL, then

AVC = w

APL
,

and this again means that the AVC would fluctuate in the opposite direction to APL.
So, when APL is high, AVC would be low, and when the average product starts to
fall, AVC would rise. As for the AC curve, it would follow the changes of AVC where
only AFC is between them.

� The MC curve intersects with both the AVC curve and the AC curve at their lowest
points of D and E. These points correspond to output levels Q2 and Q3, respectively.
They also correspond to the points of tangency on VC and TC in the upper panel. This
is where the AVC curve and the AC curve would equal the slope of the cords OK and
OL at the tangency points F and G, respectively.

� The AVC curve and the AC curve would never intersect, although they get closer as
the output level increases. The shorter distance between them represents the minimum
value of the AFC, which cannot be zero.

Example 8.1
The TC function for a small business firm is given by

TC = 3000 + 10Q − 20Q2 + Q3,

where this firm produces 50 units.

1. Calculate the FC, VC, AC, AFC, AVC, and MC.

2. Verify the answers.
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Solution:
Since TC = FC + VC, we conclude that

FC = 3000,

VC = 10Q − 20Q2 + Q3

= 10(50) − 20(50)2 + (50)3

= 75,500.

AC = TC

Q

= 3000

Q
+ 10 − 20Q + Q2

= 3000

50
+ 10 − 20(50) + (50)2

= 1570.

AFC = FC

Q

= 3000

50
= 60.

AVC = VC

Q

= 10 − 20Q + Q2

= 10 − 20(50) + (50)2

= 1510.

MC = ∂TC

∂ Q

= 10 − 40Q + 3Q2

= 10 − 40(50) + 3(50)2

= 5510.

TC = 3000 + 10(50) − 20(50)2 + (50)3

= 78,500.

TC = FC + VC

= 3000 + 75.500 = 78,500.

AC = AFC + AVC
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1570 = 60 + 1510 = 1570.

MC = ∂TC

∂ Q
= ∂VC

∂ Q
,

5510 = 10 + 40Q + 3Q2,

5510 = 10 + 40(50) + 3(50)2,

5510 = 5510.

Example 8.2
Consider the TC function that is expressed as

TC = 9375 + 15Q2.

1. What would be the size of production that minimizes the AC?

2. Calculate the actual AC, TC, and MC at that level of output.

Solution:

AC = TC

Q
,

AC = 9375 + 15Q2

Q
,

AC = 9375Q−1 + 15Q.

The level of output that would make the AC at its minimum can be obtained when the first
derivative of this function is set to zero:

∂AC

∂ Q
= −9375Q−2 + 15 = 0

= 9375

Q2
= 15.

Q2 = 9375

15
= 625

Q =
√

625 = 25.

So, at 25 units of production, the average cost would be at its minimum, which is

AC = 9375

Q
+ 15Q

= 9375

25
= 15(25)

= 375 + 375 = 750.
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The AC curve would have its lower point when AC is $750 at output level of 25 as shown
in the graph (Figure 8.2).

Cost

25

750

1375

8750

Per-unit
cost

25

MC

AC

AVC

F

Q

Q

FIGURE 8.2

The TC would be

TC = 9375 + 15Q2,

= 9375 + 15(25)2,

= 18,750.

The TC can also be obtained by multiplying the AC by production size:

TC = AC(Q)

= 750(25)

= 18,750.

The MC can be obtained as the first derivative of the TC with respect to the calculated
output level:

MC = ∂TC

∂ Q
= 30Q,

= 30(25) = 750.
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Example 8.3
Follow the previous example and show the following:

1. The MC curve intersects with the AC curve at its lower point.

2. How many units of output would be produced to minimize the AVC?

3. Calculate the AVC, TC, and MC at that level of output.

Solution:
The fact that the MC turned out to be equal to $750—the same as the AC at the same level
of output (25 units)—means that the two curves intersect corresponding to point 25 on the
output axis. In order to prove that the point of intersection is the minimum, or that it is at
the dip of the curve, the first derivative of the MC has to be positive:

MC = 30Q,

∂MC

∂ Q
= 30 > 0.

Since the TC function is TC = 9375 + 15Q2, the FC would be $9375 and the VC would
be 15Q2:

AVC = VC

Q
,

AVC = 15Q2

Q
= 15Q.

Unlike the AC function, this AVC function is linear and can be minimized at the origin
when Q = 0:

AVC = 15(0) = 0.

The TC would then be

TC = 9375 + 15(0)2,

TC = 9375.

This means that even when there is no production, the firm would incur $9375, which is
the FC. The MC would be zero when there is no production:

MC = 30Q

= 30(0) = 0.

This means that both curves of AVC and MC emerge from the origin.
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8.3 THE OPTIMAL COMBINATION OF INPUTS

Before we understand the long-run costs, we need to know the analysis of optimal com-
bination of inputs, which would offer helpful tools to derive the long-run costs. Let us
recall the analysis of optimal choice in the consumer decision making, where equilibrium
is reached at the point where the highest possible indifference curve touches the lowest
possible budget line. Here, in the managerial decision making, we follow a similar analysis
to reach the optimal combination of inputs in order to maximize the firm’s profits. We shall
employ the previously explained isoquant with a new tool called isocost.

8.3.1 Isocost

Just as the budget line shows the combination of commodities that a consumer can afford,
given a certain budget, an isocost shows the combination of inputs that a firm can employ,
given a certain cost. Analogous to the budget-line equation, an isocost equation can be
expressed as a sum of the firm’s expenditures on the employed inputs, such as labor
and capital:

TC = wL + vK ,

where TC is the total cost to employ two inputs: labor (L) at a wage rate (w) and capital
(K) at a unit price (v). This is often referred to as total factor cost; we use TC without fear
of confusion with total cost discussed earlier. Solving this equation for K would provide us
with what we need to draw the isocost, analogous to the way we drew the budget line:

TC = wL + vK ,

TC − wL = vK ,

TC − wL

v
= K ,

or

K = TC

v
− w

v
L ,

where TC
v is the vertical intercept obtained by dividing the firm’s assigned cost by the rental

price of capital, and −w
v is the slope of the isocost. Suppose that the price of capital is

$10 and the wage rate is $5. For a given cost such as $100, the firm can allocate its budget
among various combinations of labor and capital where all of the possible combinations lie
on the following isocost with max(K) = 10; max(L) = 20; slope = − 1

2 :

K = 100

10
− 5

10
L .

The isocost represents all the possible combinations of capital and labor that can be em-
ployed, keeping the TC at $100 (Figure 8.3). Two examples are points A and B:
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A = 8 units of K & 4 units of L ,

TC = wL + vK ,

100 = (5)(4) + (10)(8),

B = 6 units of K & 8 units of L ,

100 = (5)(8) + (10)(6).

If we move from A to B, we would have to exchange some units of capital for some units
of labor. The slope of the isocost (− 1

2 ) dictates that two units of capital would have to be
given up in order to gain four units of labor. The slope, being a negative ratio of wage to
capital price, refers to the market rate at which capital is traded for labor. It is also called
the economic rate of substitution (ERS).

If the prices of inputs or their ratio stays the same and the given cost goes down, say to
$80, the isocost1 (isoc1) would shift left to isocost2 (isoc2), in a parallel way, and would
shift right to isocost3 (isoc3), also in a parallel way, in case the cost goes up, say to $120.
However, the isocost would swing to either isocost4 (isoc4) or isocost5 (isoc5), depending
on how the ratio of input prices changes.

8.4 MINIMIZING INPUT COST AND MAXIMIZING OUTPUT

The fundamental managerial objective is to either minimize the cost of inputs for a given
level of output or maximize output for a given TC of inputs. Recall that an isoquant is to
show all the combinations possible of inputs required to produce a certain level of output.
If this level of output is given, a firm can achieve it with the least possible cost. Also, if the
firm wants to adhere to a certain cost, it can maximize the output as much as possible within
that cost limitation. Technically, this goal can be achieved at the point of tangency between
the highest possible isoquant (maximum output) and the lowest possible isocost (minimum
cost). This point is the firm’s equilibrium, which is the counterpart to the equilibrium point
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for consumer choice. Let us imagine a full map of isoquants representing various levels of
output, and also a group of isocosts representing various costs of inputs. Let us focus on
a few of them in the following graph, and assume that a firm wants to produce a level of
output represented by the second isoquant (Iqu2) (Figure 8.4).

Isoc 1
Isoc 2

Isoc 3

Expansion path

Iqu3

Iqu1 Iqu2

K

L

F

D

A
B

C

G

O

E

FIGURE 8.4

Any point on this isoquant would yield the same level of output. So points F, B, and G
are all producing the level of output the firm seeks. However, B has to be preferred over
both F and G for being on a lower isocost. By the same logic, we can conclude that if the
firm seeks a higher level of output such as the one represented by Iqu3, it has to expect to
pay higher cost such as the cost represented by isoc3. If the firm wants to reduce the cost
of isoc2, say to isoc1, it must realize that it cannot keep output at Iqu2 because the highest
output that the cost of isoc1 can afford is Iqu1.

Point B assures the minimum cost to produce the output level of Iqu2, and therefore, it
is the cost-minimizing equilibrium point. The reason for it to be the absolute best is that
if we move either up toward F or down toward G, we can face a higher cost at a higher
isocost. So, this is where the long-run total cost (LTC) would be minimized. Since it is a
point of tangency, it would be where the slope of isoquant equals the slope of the isocost,
and the ERS equals the marginal rate of technical substitution (MRTS):

ERS = w

v
= MRTS = MPL

MPK
,

and by rearranging we obtain

w

MPL
= v

MPK
,

which states that the ratios of input prices to their marginal products must be equal at the
equilibrium state in order to minimize the TC for a certain level of output. In contrast
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to this balance are all the possible cases at any other point along the isoquant Iqu2,
such that

at point F :
w

MPL
<

v

MPK
,

and at point G:
w

MPL
>

v

MPK
.

We can arrive to the equilibrium condition (8.1) by mathematically minimizing the LTC
function, subject to the production function:

min LTC = min(wL + vK ),

s.t. Q = f (L , K ).

By forming the Lagrangian equation, we get

L(L , K , λ) = wL + vK + λ[Q − f (L , K )].

Taking the first-order conditions,

∂L
∂L

= w − λ∗
[

∂ f

∂L

]
= 0, (8.1)

∂L
∂K

= v − λ∗
[

∂ f

∂K

]
= 0, (8.2)

∂L
∂λ

= Q − f (L , K ) = 0. (8.3)

Rearranging (8.1) and (8.2) into (8.4) and (8.5),

w = λ∗
[

∂ f

∂L

]
, (8.4)

v = λ∗
[

∂ f

∂K

]
. (8.5)

Dividing (8.4) by (8.5),

w

v
=

[
∂ f

∂L

]
[

∂ f

∂K

] ,

which is

w

v
= MPL

MPK
= MRTS.
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If we connect the tangency points A, B, and C by a line and we extend it to the origin,
we will obtain what is called the “expansion path,” which is generally a positive sloping
curve. It can either be a straight line, like 0ABC, or a crooked or smooth curve.

8.5 LONG-RUN COSTS

Since the expansion path is a locus of all the points of tangency that stand for the cost-
minimizing combination of inputs, we can use the expansion path to directly derive the
LTC curve. This curve stands for the least possible cost in the long run to produce a certain
level of output, using the optimal combination of inputs.

Figure 8.5 shows that if we transfer the information related to the equilibrium points
on the expansion path ABCDEF from the upper panel to the lower, we can create an LTC
curve that measures TC for various levels of output.
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FIGURE 8.5

Points 1–6 on the curve in the lower panel correspond to the equilibrium points on the
expansion path. For example, point 1 is obtained by recording the level of output (10) from
the first isoquant and the least cost to produce it ($150) from the first isocost. Point 2 is
associated with output size 20 units (second isoquant) at a cost of $200 (second isocost),
and so on for the rest of the points on the lower panel. If we reach these points 1–6, we will
get an LTC.
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Just as we did in the short-run costs, we can obtain other long-run costs from the LTC. The
long-run average cost (LAC) is still derived by dividing the LTC by the size of the output:

LAC = LTC

Q
.

In the lower panel of Figure 8.6, we can derive the LAC by dividing all the TC figures by
their corresponding output size and recording the results on the vertical axis. For example,
point a refers to an output level of 10 and AC of 15

(
150
10

)
. Point b refers to output level of 20

and an AC of 10
(

200
20

)
, and likewise for all other remaining points c, d, e, f. Reaching these

points gives us the LAC. Note that the LAC declines to its lowest point d then picks up.
This manner is associated with changes in the slopes of the cords that run from the origin
to the LTC curve in the upper panel. The slopes continue to decline up to point 4, which
corresponds to point d in the lower panel. Beyond point 4, the slopes bounce back again.
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LAC
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As for the long-run marginal cost (LMC), it is the change in the LTC for each unit of
output. It is also equal to the slope of the LTC:

LMC = ∂LTC

∂ Q
.

It is noteworthy to mention here that the LMC does not represent the cost of the last unit of
production as much as it represents the increase in production cost when there is an extra
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increment in output. As Figure 8.6 shows, the LMC curve descends as long as the LAC
exceeds it. Once they are equal at d, they will both rise, but this time the LMC will exceed
the LAC. The point of their intersection continues to be the lowest point of the LAC.

8.6 SHORT-RUN AND LONG-RUN AVERAGE COSTS:
ECONOMIES OF SCALE

Let us assume that a firm has five plants progressing in scales of operation from the smallest
to the largest. The upper panel of Figure 8.7 shows the short-run average cost (SAC) of each
scale of operation. On the smallest scale, the first plant (SAC1), the firm can produce output
level Q1 at an AC of C1 (point A). On point B, the firm would be indifferent to producing
Q2 at either plant 1 (SAC1) or plant 2 (SAC2) because both require the same AC of C2.
However, if the firm wants to produce Q3, plant 1 could offer its minimum AC of C3 (point
C) but plant 2 can beat the best of plant 1 by offering to produce the same level of output
Q3 at the much lower cost of C4 (point D). Plant 2 can go further to offer even the larger
output of Q4 at the even lower cost of C5 (point E). The larger plant 3 can beat them all and
offer the highest possible output Q5 at the least possible cost of C6. This illustrates that in
the long run and with larger scale plants, the firm would have higher flexibility and better
choices. Considering these five plants all together and in the long run, the firm’s general
LAC curve would look like the solid part of the bottom curves in the upper panel. However,
with more plants in a more extended future, this curve stretches and becomes smoother like

Diseconomies
of scale

Economies
of scale

A

B C

D

D E F
G

H

I

C

B

A

E
C

D

E

Q

Q

C1
C2
C3
C4
C5
C6

Q1Q2Q3 Q4 Q5

Cost

Cost

SAC1

SAC Curves

SAC2
SAC3

SAC4

LMC

LAC

SAC5

FIGURE 8.7



304 COST THEORY

the large curve in the lower panel. This is why the LAC for a large and multifaceted firm is
described as the envelope for the firm’s many SAC curves.

This observation of the decline of average or per unit cost of production with larger
scale production refers to what is known in economics as “economies of scale.” It is due
to the fact that the firm would operate on the declining section of the LAC curve, where
∂LAC/∂ Q < 0. This occurs up to output level Q5. In other words, the firm would face
increasing returns to scale up to Q5. Beyond Q5, the firm would operate on the rising
section of the LAC (∂LAC/∂ Q > 0), and would face decreasing returns to scale. The firm
would, then, face the opposite phase called “diseconomies of scale.” A good question is:
what happens right at point Q5? Well, the answer is that, if the firm does not face either
increasing or decreasing returns to scale, then it must be facing constant returns to scale
where ∂LAC/∂ Q = 0. This very level of output (Q5) is called the “minimum efficient
scale” (MES). The existence of either economies or diseconomies of scale can be detected
by checking the cost elasticity (εc), which measures the percentage change in the LTC due
to a 1% change in output:

εc =
[

∂LTC

∂ Q

] [
Q

LTC

]
,

where εc is just a point elasticity. But for an arc elasticity, the formula would be

εc =
[

LTC2 − LTC1

Q2 − Q1

] [
Q1 + Q2

LTC1 + LTC2

]
,

where

εc< 1 = economies of scale occur;
εc > 1 = diseconomies of scale occur.

One might wonder, what in reality causes the changes of returns to scale. The answer
would typically be that as the firm grows larger and gets more established, its specialization
increases, which would bring higher productivity that may exceed the increase in operating
cost. This may happen along with an increase in sales and more favorable consumer response
and higher demand and ultimately more opportunities for better marketing, higher research
and development, and more expansion. All of these events may result in higher efficiency,
that is, increasing the benefits and reducing the cost. These are the practical reasons for
the increasing returns to scale and the economies of scale. The opposite conditions might
throw the firm in diseconomies of scale, when expansion in operation increases the burden
and liabilities, and results in a loss of coordination and control, especially over curbing the
skyrocketing AC.

Example 8.4
Consider the LTC function that is given by

LTC = 1125Q − 8Q2 + 0.016Q3.

Find the following:

1. The LAC function.
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2. The MES output level.

3. The minimum per unit cost at the MES output level.

Solution:

LAC
&

LMC
LMC LAC

MES output = 250
Q

125

FIGURE 8.8

1. LAC = LTC

Q
,

LAC = 1125Q − 8Q2 + 0.016Q3

Q
,

LAC = 1125 − 8Q + 0.016Q2.

2. The MES occurs at the output level corresponding to the minimum point at the bottom
of the LAC curve. It can be found by taking the first derivative of the LAC function
with respect to Q, setting it to zero and solving for Q:

LAC = 1125 − 8Q + 0.016Q2,

∂LAC

∂ Q
= −8 + 0.032Q = 0,

0.032Q = 8,

Q = 8

0.032
= 250.

This output level can also be found by equating the LAC function with the LMC
function and solving for Q (see Figure 8.8):

LMC = ∂LTC

∂ Q
= 1125 − 16Q + 0.048Q2,

LMC = LAC,

1125 − 16Q + 0.048Q2 = 1125 − 8Q + 0.016Q2,

1125 − 1125 − 16Q + 8Q = 0.048Q2 + 0.016Q2 = 0,
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−8Q = −0.032,

Q = 8

0.032
,

Q = 250.

To prove that this output level can be realized when the AC is at its minimum, the
second derivative of the LAC with respect to Q has to be positive:

∂2LAC

∂ Q2
= 0.032 > 0.

3. LAC = 1125 − 8Q + 0.016Q2,

= 1125 − 8(250) + 0.016(250)2,

= 125.

This can be confirmed by obtaining the TC and dividing it by MES:

LTC = 1125Q − 8Q2 + 0.016Q3,

= 1125(250) − 8(250)2 + 0.016(250)3,

= 31,250.

LTC

MES
= 31,250

250
= 125.

8.7 DERIVATION OF THE COST FUNCTION

On the surface, analyzing “cost” appears to involve only simple arithmetic and, under
certain circumstances, this is correct. This section reviews economic cost concepts and
provides the epistemic framework that underlies statistical analysis of cost. The focus of a
statistical analysis of cost is to learn about scale economies and cost control. Let us consider
this definition of total cost: total cost (TC) is the minimum expenditure associated with a
level of output. Let us use this definition to derive TC for the case where there are only
two inputs. Note that this may mean that the production process involves only two distinct
inputs or that inputs other than these two are fixed inputs, meaning their employment cannot
be readily changed. In the former case, we derive the LTC function. In the latter case, we
derive the STC function. As alternative interpretations, the production process may involve
only a single input that is applied during two stages of a production process or only a single
variable input (other inputs fixed) applied during two stages of a production process. Again,
the former results in the derivation of LTC while the latter results in the derivation of STC.

Let us focus on the case of a single variable input (other inputs fixed) that is used during
two stages of a production process. Call the amount of the input used during the first stage,
x1, and the amount of the input used during the second stage, x2. Call the prices paid per
unit of x during the first and second stages, c1 and c2, respectively. Total factor cost (TFC)
is simply the amount of money spent on the two inputs; namely, TFC(x1, x2) is c1 x1 + c2

x2. To find TC(y) for a level of output, y, we need to find the smallest TFC such that output
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is the amount y. So, we need to solve the following problem:

Minimize c1 x1 + c2 x2,

Subject to f (x1, x2) = y,

where f(x1, x2) is the production function. Assuming that the solution to this problem
involves the use of both inputs, this algebraic statement reveals that finding a point on TC
amounts to solving an equality constrained optimization problem. The Lagrangian method
is a suitable solution method for problems of this type, and, as an added bonus, the value
of the Lagrange multiplier at the solution reveals how TFC increases with an expansion of
output by one unit. Recall that the Lagrangian has the general form:

L(x1, x2, λ) = Objective function − λ(Constraint function − Constraint constant),

where λ is a new variable (known as the Lagrange multiplier) that has been introduced to
help solve the problem.

In this particular case, the Lagrangian is

L(x1, x2, λ) = c1 x1 + c2 x2 − λ[ f (x1, x2) − y].

Also, recall that a saddle point of the Lagrangian is sufficient for a solution to the equality
constrained optimization problem. Assuming that the production function is smooth, a
saddle point is necessarily found as a point where the derivatives of the Lagrangian with
respect to x and the Lagrange multiplier, λ, are simultaneously zero. For the Lagrangian
above (letting MPi denote the marginal product of input i), the saddle point conditions are

c1 − λ MP1 = 0,

c2 − λ MP2 = 0,

y − f (x1, x2) = 0.

Among other things, these conditions require that

MP1

c1
= MP2

c2
.

First, let us take a look at these conditions and see what they might mean in a qualitative
sense. Note what these conditions say about cost minimization. Cost minimization requires
that the ratio of marginal product to marginal factor cost be the same for all inputs. This
amounts to the tangency condition between an isoquant and an isocost line, where

MRS = MP1

MP2
= c1

c2
.

Second, and at a more general level, these conditions from the Lagrangian only seem to take
on practical importance when the constraint in the problem actually binds; that is, when
the same solution would have resulted from an inequality constraint in the problem rather
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than the strict equality constraint. This is the case for which resources are not adequate to
accomplish all one wants to accomplish and allocation of scarce resources must actually
take place to achieve the best (though perhaps not good) outcome available, which leads
to the third point. At a much more general level, note that these conditions associated with
cost minimization seem to be capable of extension to more general management efforts.
Moreover, it is not clear that the extension needs to be quantitative to have an impact on the
quality of management decisions. In cases where resources are actually scarce as indicated
above, the conditions from the Lagrangian suggest to the (perhaps overworked) manager
to balance the ratio of the marginal fruit of effort to the marginal sacrifice of effort for all
efforts. This condition, at the very least, provides a manager with a target. It is a rule of
thumb that may be more or less applicable without quantification or, at least, may provide a
useful mindset from time to time in guiding management decisions. Contrast this condition
to related advice such as “make a list of the ten things you want to accomplish and hope to
accomplish five or six of them.” Or contrast it to the stochastic analog to this latter advice:
“figure out what you want to happen and then take action to maximize the probability that
the preferred event occurs.” This advice for an uncertain environment may be contrasted in
a similar manner to related efficiency conditions derived from the economics of risk and
uncertainty. The critical point here is that economic efficiency, as depicted by the saddle
point of the Lagrangian, requires balanced efforts across all endeavors. This balancing of
efforts seems to run throughout microeconomic theory probably because the nature of the
economizing problems being considered is so similar across different fields.

Now let us consider finding a specific TC. This will be accomplished by dispensing with
interpretation and actually solving the efficiency conditions derived from the Lagrangian
above. Suppose that we know the production function is a Cobb–Douglas type, that is, we
know the values of a, b, and c in

y = a xb
1 xc

2,

and we know the input prices, c1 and c2, as well.
Then the Lagrangian is

L(x1, x2, λ) = c1 x1 + c2 x2 − λ
(
a xb

1 xc
2 − y

)
.

Solving the saddle point conditions,

c1 − ba xb−1
1 xc

2 λ = 0,

c2 − ca xb
1 xc−1

2 λ = 0,

y − a xb
1 xc

2 = 0,

and inserting the solution values for x1 and x2 gives the expression for TC as

TC(y) =
[

(b + c)c2

c

] [(
bc2

cc1

)−b ( y

a

)] 1
b+c

.

Note that this expression gives the minimum possible expenditure on x1 and x2, which
results in y units of output. TC depends on the input prices, c1 and c2, and the technical
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coefficients from the production function, a, b, and c, as well as on the level of output, y.
Note that in the case above, TC has the form

TC(Q) = A yB,

where B = 1/(b + c). You should be able to determine the shape of TC as a function
of returns to scale, which, in the case of the Cobb–Douglas type production function, is
indicated by the value of b + c. In particular, what does TC look like if the production
function exhibits constant returns to scale? (Answer: Constant slope).

Note that 0 ≤ B ≤ 1 suggests economies of scale (i.e., decreasing AC); B = 1 suggests
constant AC; B > 1 suggests diseconomies of scale (i.e., increasing AC). As demonstrated
later, this TC function could also have been derived using a more robust specification of
the epistemic production model such as the CES.

Average cost (AC) is TC(y)/y. Note the form of AC is determined entirely by the form
of TC and is a function of y. VC is TC(y) − FC. Note that the form of VC is identical to
the form of TC and VC is also a function of y. AVC is VC(y)/Q. Its form is similar to that
of AC. AVC is a function of y. AFC is FC/y. AFC has the form of a rectangular hyperbola
regardless of the technology. AFC is a decreasing function of y. The MC is dTC(y)/dy.
It is a function of y and approximates the change in TC due to a one-unit expansion
in output. You should be able to show that MC > AVC implies that AVC is increasing.
Suppose that the production function is y = 100 x1

0.2 x2
0.5. The prices of x1 and x2 are $4 and

$5 per unit, respectively. Fixed cost is $250. You should be able to derive, plot, and interpret
TC, VC, FC, AC, AVC, AFC, and MC. Ignoring FC, a robust epistemic model of cost is
given by

TC(y) = A yB,

A ≥ 0 and B ≥ 0.

This form for TC will follow from the linear, Cobb–Douglas type, Leontief, and more
importantly, the CES production models. Hence, it is robust with respect to uncertainty about
factor substitution and returns to scale. This means there are values of its parameters, A and
B, which enable the data to inform about economies of scale. Hence, the statistical analysis
of cost based on this form will enable the data to inform, without artificial restriction, about
returns to scale. Of course, at all times, remain mindful that statistical analysis is but a single
piece of information to assist decision –making among multiple pieces of information that
may be available to a manager.

We know from the discussion in Chapter 7 that the CES production function can admit
linear, Leontief, and Cobb–Douglas type factor substitution and returns to scale character-
istics depending on the values of its parameters. Hence, it will be reassuring to find that
a cost function derived from CES technology leads to the epistemic model that we have
already arrived at. While somewhat tedious to show, this turns out to be the case. Let us
first consider the problem that needs to be solved to yield a cost function based on CES
technology:

Minimize c1 x1 + c2 x2,

Subject to: a
[
a1xρ

1 + (1 − a1) xρ

2

]ε/ρ = y.
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After simplifying the constraint function, the Lagrangian is

L(x1, x2, λ) = c1 x1 + c2 x2 − λ
[
aρ/ε

(
a1 xρ

1 + (1 − a1) xρ

2

) − yρ/ε
]
.

The conditions based on the Lagrangian are

c1 − aρ/εa1 xρ−1
1 λ ρ = 0,

c2 − aρ/ε(1 − a1) xρ−1
2 λ ρ = 0,

yρ/ε − aρ/ε
[
a1 xρ

1 + (1 − a1)xρ

2

] = 0.

Solving the first equation for x1 gives

x1 = a
ρ

ε

(
y

ρ

ε − a
ρ

ε xρ

2 + a
ρ

ε a1xρ

2

at

) 1
ρ

.

Observing that the first two conditions imply that

x1 =
[

(1 − a1)c1xρ−1
2

a1c2

] 1
ρ−1

,

and the solving for x1 gives

x1

((
(1 − a1)c1xρ−1

2 )/(a1c2)
))1/(ρ−1)

,

or equivalently that

x1 = (1 − a1)
1

ρ−1 a
− 1

ρ−1

1 c
− 1

ρ−1

1 c
− 1

ρ−1

2 x2.

The two expressions for x1 can be simplified by first raising both sides of each expression
to the power ρ and then simplifying the right-hand side of each expression to give

a
ρ

ε

(
y

ρ

ε − a
ρ

ε xρ

2 +a
ρ

ε a1xρ

2

a1

)
(1 − a1)

ρ

ρ−1 a
ρ

ρ−1

1 c
ρ

ρ−1

1 c
ρ

ρ−1

2 xρ

2 .

Solving this equation for x2 gives

x2 =
[
−a

ρ

ε a1 y
ρ

ε

(
1 − 1

a1
− (1 − a1)

ρ

ρ−1 a
ρ

ρ−1

1 c
ρ

ρ−1

1 c
ρ

ρ−1

2

)]− 1
ρ

.

This expression for x2 can be simplified to yield

x2 =
[

a
ρ

ε y
ρ

ε

(
1 − a1 + (1 − a1)

ρ

ρ−1 a
1

ρ−1

1 c
ρ

ρ−1

1 c
ρ

ρ−1

2

)]− 1
ρ

.
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Substituting this expression for x2 into x1 = (1 − a1)
1

ρ−1 a
− 1

ρ−1

1 c
1

ρ−1

1 c
− 1

ρ−1

2 x2 obtained earlier
gives

x1 = (1 − a1)
1

ρ−1 a
− 1

ρ−1

1 c
1

ρ−1

1 c
− 1

ρ−1

2

[
a

ρ

ε y−ρ
ε

(
1 − a1 + (1 − a1)

ρ

ρ−1 a
1

ρ−1

1 c
− ρ

ρ−1

1 c
− ρ

ρ−1

2

)]− 1
ρ−1

.

Substituting the expressions obtained for x1 and x2 into c1 x1 + c2 x2 and simplifying the
outcome gives an expression for TC:

TC (y) = a− 1
ε

[
c2 + (1 − a1)

1
ρ−1 a

1
1−ρ

1 c
ρ

ρ−1

1 c
1

1−ρ

2

] [
1 − a1 + (1 − a1)

ρ

ρ−1 a
1

1−ρ

1 c
ρ

ρ−1

1 c
−ρ

ρ−1

2

]− 1
ρ

y
1
ε ,

or

TC(y) = A yB,

where B = 1/ε.
Note that if B < 1, then ε > 1 (economies of scale; increasing returns to scale); if B =

1, then ε = 1 (no economies of scale; constant returns to scale); if B > 1, then ε < 1
(diseconomies of scale; decreasing returns to scale). In view of the results in this section,
this form of epistemic model can be based on the CES production function and so will be
robust with respect to the underlying technology/factor substitution (linear, Cobb–Douglas
type, Leontief).

8.8 ECONOMIES OF SCOPE: BASIC CONCEPT
AND COST COMPLEMENTARITIES

Economies of scope refer to the cost reduction resulting from producing two or more
products together compared with producing them separately. It can be expressed as

TC(Q1, Q2) < [TC(Q1, 0) + TC(0, Q2)],

and the cost savings (CS) can be expressed as

CS = [TC(Q1) + TC(Q2)] − TC(Q1, Q2)

[TC(Q1) + TC(Q2)]
.

Typical examples are the companies that produce beef and can easily produce leather.
These firms would enjoy favorable economies of scope compared with firms that have
two separate plants. Soft drink companies can easily produce other types of drinks, such
as iced tea or energy drinks. Companies producing butter and cream can market the milk
by-product as skim milk and create a market for it that may prove to be even more lucrative
than the market for the original products. There is no secret to how the cost is reduced
by the collective scope. Companies capitalize on their comparative advantages and exploit
all the experience gained with the original products. They can make an excellent use of
their facilities, equipment, labor, and management skills. Also, they can utilize the same
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distribution and supply networks they dealt with over the years, as well as tap into the same
market base and consumer loyalty that they have developed over a long time.

Example 8.5
Suppose that a company estimates that producing its two products jointly would cost
$7.56 million while currently it costs $5.2 million to produce product 1 and $3.8 million to
produce product 2. How can the economies of scope be expressed?

Solution:

CS = [5.2 + 3.8] − 7.56

[5.2 + 3.8]
= 0.16

TC would be reduced by 16% and that is due to the economies of scope.
Not only the TC of production is involved in measuring the economies of scope but

the MC also plays a role in the existence of the economies of scope through what is
called cost complementarity. When the MC of producing one product (MCQ1) is reduced
by the increase in production of another product (Q2), a cost complementarity is said to
exist. This can be proven when the cross second partial derivative of the joint product cost
is negative:

[
∂MC1(Q1, Q2)

∂ Q2

]
< 0.

Since the MC is the first derivative of the TC, this condition can also be written as

[
∂2TC

∂ Q1∂ Q2

]
< 0,

and for the other product, this condition would be

[
∂MC2(Q1, Q2)

∂ Q1

]
< 0,

or

[
∂2TC

∂ Q2∂ Q1

]
< 0.

So, by this, the MC of Q1 can be reduced if the production of Q2 is increased or the other
way around.

Example 8.6
Consider the following TC function:

TC = 500 − 2Q1 Q2 + Q2
1 + Q2

2

1. Would there be any cost complementarity?

2. If Q1 = 10 and Q2 = 15, would there be any economies of scope?
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Solution:

1. ∂TC

∂ Q1
= −2Q2 + 2Q1,

∂2TC

∂ Q1∂ Q2
= −2 < 0,

Also, ∂TC

∂ Q2
= −2Q1 + 2Q2,

∂2TC

∂ Q2∂ Q1
= −2 < 0.

Yes, the cost complementarity exists.

2. TC(Q1, Q2) < [TC(Q1, 0) + TC(0, Q2)],

TC(Q1, Q2) = 500 − 2(10)(15) + (10)2 + (15)2 = 525,

TC(Q1, 0) = 500 − 2(10)(0) + (10)2 + (0)2 = 600,

TC(0, Q2) = 500 − 2(0)(15) + (0)2 + (15)2 = 725,

525 < (600 + 725),

525 < 1325.

Economies of scope exist.

8.9 ECONOMIES OF SCOPE: SYNERGY AND INPUT INDIVISIBILITY

Economies of scope may result from (1) a synergistic relationship between production
processes and/or (2) input indivisibility. For example, suppose that there are two potential
outputs, y1 and y2, with production functions:

y1 = f (x1, x2, y2),

y2 = g(x1, x2).

Note the interrelatedness of the production of good y1 with good y2 indicated by the
presence of the output level of the second good in the first good’s production function. If y1

is presently being produced, then synergism would be present if making y2 increased the
output of y1. Such synergism could occur if an activity associated with the production of
y2 also served in the production of y1.

The question “What can be added to an existing product line to increase profit?” is a very
common management consideration in both production and retailing. This question can
often be viewed as an inquiry into the existence and identity of economies of scope. Musing
or simple logic and engineering may be useful in identifying synergistic effects in produc-
tion. Analysis of production and factor usages may be helpful in identifying economies of
scope due to input indivisibility. The following discussion provides a detailed description
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of a quantitative procedure that may be used to identify a new product to add in the case
when economies of scope can be pursued owing to the existence of input indivisibility. This
is a common situation, though sometimes synergistic effects are realized as a by-product of
taking on another output, even if the motive for adding the output was input indivisibility.

First of all, what is meant by input indivisibility (sometimes referred to as lumpiness in
factor supply)? This term refers to the fact that many inputs cannot be varied continuously
but rather must usually be purchased in particular, discrete quantities. For example, the 40-h
workweek is fairly common in the United States. Machines come with various discrete ca-
pacities. Additional workspace may come in round numbers, and so on. It is highly likely that
some inputs in a production process will be fully employed at some times and unemployed
(or employed at less than full capacity) at other times. This is likely to occur because the dis-
crete amount of an input that can be acquired will not always correspond in a timely manner
to the precise needs of a production process. Economies of scope may be achieved by fitting
a new product into the “seams” of the production processes of the existing products. Note
that the existence of economies of scope here does not depend on any synergistic relation-
ship between the products. The different production processes can be completely unrelated
except for the fact that there are common types of inputs used in some or all of them.

For example, a restaurant that sells meals and ice-cream desserts may analyze its pro-
duction processes and determine that an ice-cream bar and/or a walk-up window can be
staffed by existing management and other personnel. The new product (“carry-out” ice
cream) can be added to the existing product line with minimal fixed cost and essentially
no additional variable factor cost. The new product may significantly improve the firm’s
profitability owing entirely to economies of scope and input indivisibility. Moreover, addi-
tional synergistic economies of scope may be realized if it turns out that some synergistic
effects occur as a result of adding the new product.

A quantitative procedure to identify economies of scope due to input indivisibility is
described by an abstract example. The fact that this description is an example should
not be taken as a reason to devalue its importance. In an actual situation, successful
identification of economies of scope may be the critical difference for businesses such
as the restaurant mentioned above. An abstract example is used to illustrate the main
elements of the procedure in a comprehensive manner; that is, a manner that avoids the
nonessential complexities of a real situation. The main technique used in the analysis is
from a quantitative-methods course you have probably already taken and leverages the
review of linear programming.

Suppose that the firm in this example produces two products. The first product, y1, uses
two inputs, x1 and x2. The second product, y2, uses the same inputs plus an additional input,
x3. Production takes place over two time periods with finished products available after the
second period. The firm must first determine the amount of each input required for each
period to make a unit of each product. From the firm’s first task, can you identify the type
of production functions that are assumed for the outputs in this very obviously multioutput
example? (Answer: Leontief).

Measurements are undertaken to characterize minimum input requirements for each
product and for each input. Actually, averages of the measured requirements may be used
rather than the minimum observed, though the minimum would be ideal. It is determined
that producing a unit of y1 requires 4 units of x1 and 6 units of x2 during period 1 and
5 units of x1 and 10 units of x2 during period 2 (Figures 8.9 and 8.10). Producing a unit of
y2 requires 20 units of x1, 10 units of x2, and 5 units of x3 during period 1 and 10 units of
x1 and 5 units of x3 during period 2 (Figures 8.11 and 8.12).
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Let xjt denote an amount of input j during period t. In view of the input requirements,
the production function for y1 is

y1 = min(1/4x11, 1/6x21, 1/5x12, 1/10x22),

while the production function for y2 is

y2 = min(1/20x11, 1/10x21, 1/5x31, 1/10x12, 1/5x32).

The firm’s estimates of the demand for its products suggest that it can sell 4 units of y1

and 5 units of y2. Due to input indivisibility, the firm must procure none or 200 units of x1,
none or 200 units of x2, and none or 100 units of x3 for use during the production cycle.
Assume that each of the products is equally profitable with a profit per unit of $50, and
that the firm plans to acquire the maximum amount of input prior to the beginning of the
production cycle. From section 7.6, the form of the multioutput model reflecting product
demand, production, and resource constraints during the production cycle is

Maximize 50 y1 + 50 y2.

Subject to 4 y1 + 20 y2 ≤ 200,

6y1 + 10y2 ≤ 200,

5y2 ≤ 100,

4y1 + 20y2 + 5y1 + 10y2 ≤ 200,

6y1 + 10y2 + 10y1 ≤ 200,

5y2 + 5y2 ≤ 100,

y1 ≤ 4,

y2 ≤ 5,

where y1, y2 ≥ 0.
The firm’s multioutput decision problem can be solved by computer or graphical tech-

niques. The optimal solution is y1 = 4 and y2 = 5, which yields a profit of 450 at the end of
the production cycle. With these levels of output, the firm’s optimal production plan uses
116 units of x1, 74 units of x2, and 25 units of x3 during period 1 and 70 units of x1, 40 units
of x2, and 25 units of x3 during period 2. At the end of the production cycle, the firm will
possess 14 units of x1, 86 units of x2, and 50 units of x3. The firm can achieve economies
of scope due to input indivisibility, by identifying a product or products that can make use
of these unused inputs during the periods of the production cycle. Hence, the firm would
need to evaluate promising new products that involve these inputs with unit requirements
over the periods of the production cycle that fall within these ranges.

8.10 THE LEARNING CURVE

It is common sense to expect that if you do something long enough, it would not only
become easier over time but also take less energy, time, and whatever other inputs it needs.
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To put it formally, it is the experience that gets more intensive, highly flexible, and more
applicable. This has been formalized as the learning curve effect. It refers to the reduction
in inputs and input cost that can be observed as the cumulative size of output increases.
In other words, accumulating learning and experience in the production process leads to
a decline in the average cost of inputs for a given output level at a certain time. This
phenomenon is specifically evident in labor as input and was observed initially during the
1930s in the aircraft industry. The observation was that the number of work hours required
to produce one unit of output kept declining as production increased. However, it is not
exclusively related to labor. It can be applied to many inputs, including the raw material,
which can also be reduced as a longer and better experience is gained. For example, as the
amount of scraps and wastes can be cut down with improvements in the method, design,
and tools. However, not all production inputs can be subject to the learning curve effect.

Mathematically, the relationship between the reduction in input or its cost and the
increased output can be expressed as

C = αQβ, (8.6)

where C is the average cost of input, Q is any output level, α is the average cost of the
first unit of production, and β is a measure of the learning effect. It is a negative value that
makes the learning curve downward sloping (the upper panel of Figure 8.13). The greater
the absolute value of β, the faster the decline in the per-unit cost (C).

Equation (8.6) can be expressed logarithmically as

log C = log α + β log Q.

C (Per-unit cost)

log a

log a

log b

log b

Q (Output level)

β =
log a
log b

FIGURE 8.13
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This form is linear resulting in a learning curve that is a downward-sloping straight line
(lower panel of Figure 8.13). The slope of the line is β, which is typically obtained by

β = log a

log b
.

As a measure of the learning effect, β is a ratio of the logarithms of two factors: the first
is the learning factor a that refers to the rate at which the learning process occurs and the
experience accumulates. Its value is between zero and one (0 ≤ a ≤ 1). As the value of
this factor approaches zero, β would become very large, and the learning effect gets more
significant.

The second factor is the factor of output proportionality that has been standardized as
doubling the production so that β measures how much the average cost would decline every
time the output is doubled. This factor is represented by the denominator (log b) and, in
this case, it would become log 2, which is equal to 0.30103. Table 8.2 shows three selected
values of the learning factor, a, and their effects on the reduction of the cost of the initial
unit of production at $100,000.

TABLE 8.2

Q a = 0.9 a = 0.6 a = 0.3

1 100,000 100,000 100,000
2 90,000 60,000 30,000
4 81,000 36,000 9,000
8 72,900 21,600 2,700

16 65,610 12,960 810
32 59,049 7,776 243
64 53,144 4,666 72.9

128 47,830 2,799 21.87
256 43,047 1,680 6.56
512 38,742 1,008 1.97

β = −0.152 β = −0.737 β = −1.736

We can look up the value of the reduced cost at any of the production size in the Q
column. Each Q is a double of the one before. For example, if the output level doubles
from 16 to 32, the average cost of the first unit of production would be cut to $59,049 if the
learning factor is 0.9, and to $7776 if the learning factor is 0.6, and to $243 if the learning
factor is 0.3, given that the average cost of the initial unit is $100,000.

When a = 0.9,

β = log a

log b

= log 0.9

log 2

= −0.152,

C = αQβ

= (100,000)[32]−0.152

= 59,049.
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When a = 0.6,

β = log 0.6

log 2

= −0.737,

C = (100,000)[32]−0.737

= 7776.

When a = 0.3,

β = log 0.3

log 2

= −1.74,

C = (100,000)[32]−1.736

= 243.

Note that the higher the absolute value of β, the more dramatic the reduction in the average
cost would be.

The learning curve effect has been applied in a wide range of fields in manufacturing and
assembly lines of many industries. It has also been utilized in forecasting the requirements
of equipment, material, and personnel, also in planning production schedules and pricing
the products and services. The following graph (Figure 8.14) shows how the learning curve
can be compared with a current price and how the saving in the LAC can be tracked
down as the production grows from Q1 to Q2 to Q3. For up to production size of Q2, the
average cost is above price, bringing about a disadvantage area of A. At Q2, the cost is
equal to the price, but after Q2, the cost would be cut dramatically allowing a huge area
of gain (B).

Q

P

B

$

Q3Q2Q1

Price

LAC

FIGURE 8.14
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Example 8.7
If the average cost of producing the first piece of equipment in an assembly plant is $3500,
the learning factor is 0.68, and the output proportionality factor is 3. Find the following:

1. The percentage of reduction in the average cost of producing 500 pieces of equipment.

2. The number of work hours required to produce the first piece of equipment given that
the wage rate is $25 per hour of work.

3. The number of work hours required to produce each of the 500 pieces of equipment.

Solution:

1. β = log a

log b
,

= log 0.68

log 3
,

= −0.35,

C = αQβ

= (3500)[500]−0.35

= 395, the reduced cost

3500 − 395

3500
× 100 = 88.7%.

The 500th unit is reduced by 88.7% or the cost of the 500th unit became only 11.3%
of the cost of the first unit:

395

3500
× 100 = 11.3.

2. If the average cost of the first unit is $3500 and the wage rate is $25, then the number
of work hours would be

3500

25
= 140 work hours.

3. Since the cost of 500 units is $395 and the wage rate is $25 per hour, then the number
of work hours required to produce 500 units is

395

25
= 15.8 h.

The last word about the learning curve is to distinguish its effect from the effect of economies
of scale, since both are involved in the cost reduction owing to production increase. Fig-
ure 8.15 shows the difference clearly: the economies of scale effect on the cost reduction is
measured by the vertical distance C2C1 as we move down the curve from point A to point B
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and as production size increases from Q1 to Q2. In the case of the learning curve, the same
cost reduction would be due to shifting the entire curve down from LAC1 to LAC2.

AC2

C1

Q1 Q2
Q

B

LAC1

LAC

LAC2

FIGURE 8.15

8.11 COST–VOLUME–PROFIT ANALYSIS AND
OPERATING LEVERAGE

The major objective of the cost–volume–profit analysis is to identify the smallest output
level necessary to secure a nonnegative level of profit. That specific output level would
first and foremost be able to cover the fixed cost. This analysis is also called break-
even analysis where it is considered an important tool for business performance and
profit planning that utilizes the restructuring of the fundamental relationship between
cost and revenue. This analytical tool offers the manager or business planner a plausible
approximation of the point when profits begin to be collected according to the realization
of the stage during which TC of production has been recovered by revenues from the
production sales.

The cost–volume–profit can be defined as the process determining the level of out-
put that must be produced and sold before any profit can be earned. It can also be the
determination of the amount of revenue that can be collected before earning any profit.
The reliance on finding the revenue instead of the production size can be more prac-
tical and convenient if the firm produces or sells multiproducts. For example, General
Motors can easily determine how many Chevy Malibu cars should be sold before that
plant starts to earn profits, but this method cannot be easily used for Walmart, because
Walmart stores sell tens of thousands of products. It is, therefore, more appropriate to deter-
mine how much sales revenue should be collected before a certain Walmart store starts to
earn profits.

Technically, the break-even analysis is to find the point that refers to both the break-even
quantity of product and the break-even revenue of sales. This point is called the break-even
point, at which profit would be zero and TC would equal the total revenue. Geometrically,
it is the point of intersection between TC and total revenue curves. Once we locate this
point, we would know that all production before that point incurs some loss and any product
produced and sold after that point would yield some profits.
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8.11.1 Break-Even Quantity and Break-Even Revenue

If total cost (C) includes both FC and VC, then

C = FC + VC.

Since VC changes with the size of production, let us consider v the variable cost per unit
of production. If production is Q, then

VC = vQ, and

C = FC + vQ. (8.7)

Also, revenue (R) will depend on how many units of product are sold. If we consider p as
the price per unit of product, then

R = pQ. (8.8)

Profit (Pr), sometimes called operating profit or EBIT (earnings before interests and taxes)
is the difference between total revenue and total cost, then

Pr = R − C, (8.9)

Pr = pQ − (FC + vQ),

Pr = pQ − FC − vQ,

Pr = Q(p − v) − FC,

and since profit is zero at the break-even point,

0 = Q(p − v) − FC,

Q(p − v) = FC,

Q = FC

p − v
.

This Q is the quantity of products at the break-even point, and it is called the break-even
quantity (BEQ):

BEQ = FC

p − v
,

where again, FC is the fixed operating cost, p is the price per unit of product, and v is the
variable operating cost per unit of a product.

Similarly, we can find the revenue at the break-even point; we start with Equation (8.9):

Pr = R − C,

Pr = R − (FC + vQ),

Pr = R − FC − vQ.
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We substitute for the Q value that is obtained from Equation (8.8):

R = pQ,

R

p
= Q,

Pr = R − FC − v

(
R

p

)
.

At the break-even point Pr = 0,

0 = R − FC − v

(
R

p

)
,

FC = R

(
1 − v

p

)
,

R = FC

1 − v

p

.

This is the revenue at the break-even point, and it is called the break-even revenue (BER):

BER = FC

1 − v

p

.

By knowing the BEQ or BER, a firm can

1. determine and control its operations in order to sustain the proper level of output to
cover all operating costs;

2. assess and control its ability and timing to earn profits at different levels of production
and volumes of sale.

Before we apply the break-even technique, we should be able to know the operational
definitions of the variables involved, especially to distinguish between the FC and VC,
which is the first task to perform before solving any BEQ or BER problems.

Fixed Cost Fixed costs are the costs that are not associated with the size of production
or sale of products. They are a function of time, not sales or production, and therefore,
they are incurred whether or not the firm produces anything or sells any product. Typical
examples of FC are rent, lease payments, insurance premiums, regular utilities, executive
and clerical salaries, and debt services. All these are expenses that have to be paid re-
gardless of how much the firm produces or sells. Geometrically, they are represented by a
horizontal line.

Variable Cost Variable costs are any costs that are associated with the size of production
or sale. They fluctuate up and down with the volume of production in a positive relationship.
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Typical examples of VC are production material, production labor and production utilities
such as the cost of electricity and gas consumed by the productive machines and equipment,
merchandise insurance, transportation, and storage. The more the firm produces, the more
the VC it incurs. In this sense, VC would be a product of the size of production (Q) and the
VC per unit of a product (v).

Contribution Margin The CM is the amount of profit earned on each unit sold above
and beyond the break-even quantity, and similarly, it would be the amount of loss the firm
would incur on each unit produced below the break-even point. Technically, it is equal to
the unit price of the product discounted for the unit variable cost. Mathematically, CM
would be

CM = p − v

and that is, in fact, the denominator of the BEQ formula.

Example 8.8
A small home business incurs $3860 FC and $0.75 variable cost per unit. If it sells its
product for $2.75, how many units of the product have to be produced and how much
revenue has to be collected before this business starts earning a profit?

Solution:

BEQ = FC

p − v
,

BEQ = 3860

2.75 − 0.75
,

BEQ = 1930 units,

BER = FC

1 − v

p

,

BER = 3860

1 − 0.75

2.75

,

BER = 5307.50,

Also, BER = BEQ · p,

BER = (1930)(2.75),

BER = 5307.50.

Example 8.9
Table 8.3 shows the cost data as in the records of Modern Books, a company that specializes
in custom book-binding and sells its service for $30 per book. Calculate the break-even
quantity and the break-even revenue.
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TABLE 8.3

Item Frequency Cost ($)

Rent Monthly 2800
Property taxes Semiannually 1665
Insurance Quarterly 1112
Administrative salaries Monthly 6580
Employees benefits Annually 5312
Wages Per book 3.00
Paper Per book 2.15
Cardboard Per book 1.35
Glue, take, thread Per book 0.55
Leather Per book 1.95
Ink and paint Per book 0.95
Shipping and handling service Per book 2.00

Solution:

� The first task is to separate FC and VC on the basis of our understanding of the
concepts:
� Fixed costs are rent, property taxes, insurance administrative salaries, and employee

benefits.
� Variable costs are wages, paper, cardboard, glue, tape, and thread, leather, ink and

paint, and shipping and handling.
� The second task is to unify the frequencies of the cost items. The standard is to convert

every fixed cost item into annual and energy variable cost item per unit.

Fixed costs:

Rent = $2800 × 12 = $33,600,

Property taxes = $1665 × 2 = $3300,

Insurance = $1112 × 4 = $4448,

Admin.salaries = $6580 × 12 = $78,960,

Employee benefits = $5312 × 1 = $5312,

Total = $125,620.

Variable costs:

Wages = $3.00,

Paper = $2.15,

Cardboard = $1.35,

Glue, tape, thread = $.55,

Leather = $1.95,
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Ink and paint = $4.95,

Shipping & handling = $2.00,

Total = $11.95,

BEQ = FC

p − v
,

BEQ = 125,620

30 − 11.95
= 6959 books,

BER = FC

1 − v

p

,

BER = 125,620

1 − 11.95

30

= $208, 786.

Also, BER = BEQ · p,

BER = (6959.56)(30.00) = 208.786.

8.11.2 Cash Break-Even Technique

Sometimes, there are a lot of noncash charges that a company has to deal with as a significant
part of its operating FC. Often, these noncash charges are the depreciation charges, which
have to be deducted from the operating FC in order to prevent the overestimation of the
break-even point. In such a case, the formula to calculate the break-even point would be
adjusted to “cash break-even quantity” (CBEQ), which is equal to

CBEQ = FC − NC

p − v
,

where NC is any noncash charges constituting a sizeable portion of the FC.

Example 8.10
The records of the Riverbent Company indicate a $5700 FC, depreciation charges of $1767,
which is a little more than one-third of the FC. Suppose also that the VC per unit is $2.30
and the product sells for $7.00. What would be the company’s CBEQ and how would it
compare to the regular break-even quantity (BEQ)?

Solution:

CBEQ = FC − NC

p − v
,

CBEQ = 5700 − 1767

7.00 − 2.30
,

CBEQ = 837,

CBER = (CBEQ)(p) = (837)(7.00) = $5859.
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If we calculate the regular BEQ, we would not discount the depreciation out of the FC. In
this case, BEQ would be

BEQ = FC

p − v
,

BEQ = 5700

7.00 − 2.30
,

BEQ = 1213,

BER = (BEQ)(p) = (1213)(7.00) = $8491,

which is a case of overstating the break-even point (Figure 8.16).

$

Q

BEQ = 33 BEQ = 1213

BER:8491

CBER:5859

TC1

TR

BEP2

BEP1

FC – NC = 3933

FC = 5700

TC2

FIGURE 8.16

Excluding the noncash charges reduces the FC and TC, resulting in lowering the break-
even point from BEP1 to BEP2. This would lead to a lower CBEQ, and lower CBER.

8.11.3 The Break-Even Point and Target Profit

If a business owner has a specific objective to achieve a certain profit specified in
advance as a certain amount of money, then that specific profit figure would be called
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a “target profit.” It can be preset by making it part of the FC in order to determine the
size of the BEQ and break-even revenue (BER). The BEQ and BER formulas would then
have to be adjusted by adding that target profit (TP) to their FC in the numerator and the
new BEQtp and BERtp would be

BEQtp = FC + TP

p − v
,

and

BERtp = FC + TP

1 − v

p

.

Example 8.11
Let us assume that the Riverbent Company in the last example decided to collect at least
$6000 profit as a first step. What would the BEQ and the BER be?

Solution:

TP = $6000,

BEQtp = FC + TP

p − v
,

BEQtp = 5700 + 6000

7.00 − 2.30
,

BEQtp = 2490,

BERtp = FC + TP

1 − v

p

,

BERtp = 5700 + 6000

1 − 2.30
7.00

,

BERtp = 17,425,

or BERtp = (2489.36)(7.00),

BERtp = 17,425.

This is an opposite case to the cash break-even (Figure 8.17). Here a TP is added to the FC
pushing the TC up from TC1 to TC2 and as a result, moving up both the BEQ and BER.
The second break-even point would have a different meaning this time. It is no longer the
point at which the profit is equal to zero as was the first point, but it is the point beyond
which profits would move higher than the achieved target.
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8.11.4 An Algebraic Approach to the Break-Even Point

Corenza’s home business produces dolls at a VC of $20 per doll and a FC of $300. If it
sells the doll for $50 apiece, we can write the cost (C) and revenue (R) equations in the
following way:

C = FC + vQ,

C = 300 + 20X,

R = pQ,

R = 50Q.

At the break-even point, cost would equal revenue, then

C = R,

300 + 20Q = 50Q,

300 = 50Q − 20Q,

300 = 30Q,



330 COST THEORY

Q = 300

30
,

Q = 10, this is the BEQ,

R = 50Q,

R = 50(10),

R = 500, this is the BER.

8.11.5 Break-Even Time

Since the break-even point has been expressed in terms of production size and revenue
amount, it can also be expressed in terms of time, especially if a firm knows its production
capacity, which is stable and consistent and can be measured in time units. In the light of the
time value of money, it becomes significant to identify the break-even point in terms of time
(Figure 8.18). Suppose that a firm knows its production rate (e.g., q). If the time required
to produce a certain size of production is t, and if Q refers to the break-even quantity, then
we can write

Q = qt. (8.10)

C&R

Q
BEQ = 10

300

BER = 500

R

R = 50Q

BEP2

Break-even 
point

C = 300+20Q

FC = 300

Pr

VC

FC

C

pr> 0

FIGURE 8.18
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Suppose that the family business in the last example can only produce two dolls a day.
Their break-even time would be 5 days:

Q = qt,

10 = 2t,

t = 10

2
,

t = 5 days.

In reality, products take some time to be sold, which means there is a time lag between
manufacturing a product and selling it, and actually collecting revenue from its sale. So,
let us denote this time lag by tL and go back to the original cost and revenue equations and
substitute for the Q value from Equation (8.10):

C = FC + vQ,

C = FC + vqt, (8.11)

R = pQ,

R = pqt.

We can factor in the time lag in the revenue equation:

R = pq(t − tL ). (8.12)

Now, let us equate C and R Equations (8.11) and (8.12) under the break-even condition and
solve for t as the break-even time:

C = R,

FC + vqt = pq(t − tL ),

FC + vqt = pqt − pqtL ,

FC + pqtL = pqt − vqt,

FC + pqtL = pt(p − v),

t = FC + pqtL

q(p − v)
.
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This t is the break-even time (BET), which is expressed in terms of the FC, unit price of
the product (p), production rate (q), time lag (tL), and variable cost per unit (v):

BET = FC + pqtL

q(p − v)
.

Example 8.12
Suppose Corenza’s family business in the last example decided to produce beach-craft
souvenirs at the rate of four pieces a day at a $28 variable cost per piece. Assume its FC
stays the same at $300. Each souvenir would sell for $60, but it will take 3 days for the
revenue to start coming in. When would this business break even and at what BEQ, and
with what BER?

Solution:

BET = FC + pqtL

q(p − v)
,

= 300 + (60)(4)(3)

4(60 − 28)
,

= 7.97 or 8 days to break even.

R = pq(t − tL ),

= (60)(4)(8 − 3),

BER = $1200.

BEQ = BER

P
,

= 1200

60
,

= 20 dolls.

Example 8.13
Find BET, BER, and BEQ for Goodtract, a tire manufacturing firm that has the following
data (Figure 8.19):

Fixed cost = $80,000,

Variable cost per tire = $20,

Daily production rate = 100 tires,

Selling price per tire = $80,

Time lag for revenue = 20 days.
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Solution:
First, we construct the cost and revenue equations in which a time element is involved:

C = FC + vqt,

C = 80,000 + (20(100)t,

C = 80,000 + 2000 t,

R = pq(t − tL ),

R = (80)(100)(t − 20),

R = 8000 t − 160,000.

At the break-even point, C = R

80,000 + 2000 t = 8000 t − 160,000,

240, 000 = 6000 t,

t = 240,000

6000
.

BET = t = 40 days to break even.
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BER = R = 8000 t − 160,000

= 8000(40) = 160,000

= $160,000.

BEQ = BER

P
,

= 160,000

80
,

= 2000 tires.

8.11.6 The Dual Break-Even Points

As we have seen so far, the revenue and cost functions have been either linear or approxi-
mated as linear, and the graphs of the two functions have been straight lines intersecting one
time at one point, forming a single break-even point. Usually to the left of the break-even
point, the TC line is above the total revenue to indicate the loss area, and to the right of the
point, the TC line runs below the total revenue line indicating the profit area. In other cases,
either both or one of the functions would be nonlinear, a case that might result in having the
two curves intersect each other at more than one point, often at two points resulting in the
creation of two break-even points. The area formed between the two curves up and down,
and between the two break-even points left and right is the area of gain. Profit usually starts
low right after the first break-even point, which is called “the lower break-even point”
and it would increase until it reaches the maximum at some point of production. Then it
starts to decrease until it gets to zero again at the second break-even point, which is called
“the upper break-even point.” After that point, losses would incur again. Let us consider
the following revenue and cost functions:

R = −2Q2 + 86Q,

C = 16Q + 140,

and let us

1. locate the two break-even points;

2. find out at what size of production the profit reaches its maximum;

3. calculate how much the maximum profit (Prm) would be

Pr = R − C,

Pr = −2Q2 + 86Q − 16Q − 140,

Pr = −2Q2 + 70Q − 140.

At the break-even point(s), profit would be zero, so we set the equation to zero:

Pr = −2Q2 + 70Q − 140 = 0,
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and solve for Q as the break-even point. The function is quadratic and Q will have two
values. The function is of the following form:

Y = ax2 + bx + c.

We can solve for Q by following the quadratic formula:

x = −b ± √
b2 − 4ac

2a
.

In the case of our function above, those values are

a = 2, b = 70 and c = −140.

Q = −b ± √
b2 − 4ac

2a
,

Q = −70 ±
√

(70)2 − 4(−2)(−140)

2(−2)
,

Q = −70 ± √
3, 780

−4
,

Q1 = −70 + 61.48

−4
= 2.13, the lower break-even point,

and Q2 = −70 + 61.48

−4
= 32.87, the upper break-even point.

Maximum profit would occur at a production size of Qv that would be obtained as the vertex
of the quadratic function. The vertex point can be found by

Qv = −b

2a
,

Qv = −70

2(−2)
= 17.5.

Substituting for this amount of production in the profit function would give us the maximum
profit (Prm):

Prm = −2Q2
v + 70Qv − 140,

Prm = −2(17.5)2 + 70(17.5) − 140,

Prm = 472.50.
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To prove this value of the function is the maximum, two checks have to be verified:

1. The first derivative of the function has to have a value of zero when the Qv is plugged in
d Pr
d Q = 0. The first derivative of the profit function refers to the marginal profit and the
zero indicates that the tangent at the maximum point is a horizontal line (Figure 8.20):

Prm = −2Q2
v + 70Qv − 140,

dPrm

d Qv
= −4Qv + 70,

= −4(17.5) + 70,

= 0.
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2. Since both points, the maximum point at the top of the down-opened parabola and
the minimum point at the bottom of the up-opened parabola have horizontal line
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tangents, we need a second check to refer to the maximum condition. That is the
second derivative of the profit function that has to have a negative value when the
Qv is plugged in d2 Pr

d Q2 < 0, the negativity refers to the fact that the function is going
down. If it were a minimum, it would go up:

d Pr

d Q
= −4Qv + 70,

d2 Pr

d Q2
= −4.

This condition can simply be expressed as the fact that the coefficient of x2, which is a in
the quadratic function, has to be negative.

8.12 LEVERAGE

The break-even analysis provides the tool to calculate the break-even point after which the
firm would start to collect profits as it produces and sells more products. Then, the crucial
question is to what extent the production and sales would have to increase in order to
achieve a certain level of profits. This is a question of the profit sensitivity to the variability
of the product sales, and that is what the “leverage” is all about. From another perspective,
leverage refers to the relationship between FC and VC. If FC is larger than VC for a firm,
then the firm is said to be highly leveraged. An important implication of being highly
leveraged is that profit variation due to variation in output will be more significant than for
a firm that is not highly leveraged. To understand this, note that high leverage means that
cost (VC plus FC) will not change much if output declines. Revenue will be sensitive to
output; however, cost will not be. If output declines, profit will decline by a relatively large
percentage when compared with a firm that is not highly leveraged and whose costs are
also closely tied to output.

Profit elasticity is a measure of profit variability with respect to output and can illustrate
the profit variability that is associated with leverage. Profit elasticity is interpreted as the
percent change in profit due to a 1% change in output. An applicable formula for profit
elasticity is

[
%� Pr

%�Q

] [
Q

Pr

]
.

This can be reduced to

Q(P − v)

Q(P − v) − FC
.

Later, this will be called the degree of operating leverage (DOL), in which a relatively
large value for FC implies a relatively large value for profit elasticity, which suggests a
larger vulnerability to output reductions.
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8.12.1 Operating Leverage

Operating leverage is one of three kinds of leverage. The other two are the financial
leverage, and total leverage. We focus on operating leverage here for it is more relevant to
sales and profits of the business. It refers to the responsiveness of the change in profits due
to the change in sales. Specifically, it is the potential use of fixed operating costs to magnify
the effects of changes in sales on operating income or earnings before interests and taxes
(EBIT). The fixed operating cost includes those items at the top of the balance sheet such
as leases, executive salaries, property taxes, and alike.

The DOL measures that responsiveness of profit as a percentage change in operating
income (OY) relative to the percentage change in sales (S):

DOL = %�OY

%�S
,

DOL =
OY2 − OY1

OY1
× 100

S2 − S1

S1
× 100

,

DOL =

[
(OY2 − OY1)

OY1

]
[

S2 − S1

S1

] .

Example 8.14
If the operating income of a small business increased from $884 to $1680 as it expanded
the sales of its product from $4200 to $5880, what would be the DOL (Table 8.4)?

TABLE 8.4

S OY

S1 4200 884 OY1

S2 5880 1680 OY2

Solution:

DOL =

[
(OY2 − OY1)

OY1

]
[

(S2 − S1)

S1

] ,

=

[
(1680 − 884

884

]
[

(5880 − 4200)

4200

] ,

DOL = 0.90

0.40
= 2.25.
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This means that for every 1% change in sales, there would be a 2.25% change in operating
income (profit or EBIT). In other words, as sales increased by 40%, profits rose by 90%
as it is shown in the denominator and nominator of the DOL, respectively. It is also shown
in Figure 8.21. The move from Q1 to Q2 on the units of sale (or R1 to R2 on the dollars of
revenue) would result in the move from Pr1 to Pr2. This effect would hold the same in the
other direction, meaning that a reduction in sales (units of product or dollars of revenue)
by 40% would result in a drop in the profit by 90%. We can calculate a move in sales on
the opposite direction from Q1 to Q0 or in revenue from R1 to R0, which is about 40%
less (420 to 252 units or $4200 to $2520) and see the profit drop 90% from Pr1 = 884 to
Pr0 = 88.4:

DOL =

[
884 − 88.4

884

]
[

4200 − 2520

4200

] ,

DOL = 0.90

0.4
= 2.25.
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So, the DOL can actually be considered a multiplier of the effect that a change in sales
would have on profit. In other words, DOL is a concept of elasticity. It is the elasticity of
profit with respect to sales. In such a sense, we can express it as the partial change in profit
(π ) relative to the partial change in output (Q):

DOL =
∂π

π
∂ Q

Q

.

This DOL can be obtained at any level of output. If FC is constant, the change in profit
(∂π ) would be

∂π = ∂ Q(p − v). (8.13)

Also profit π is

π = R − C,

π = PQ − (FC + vQ),

π = PQ − FC − vQ,

π = Q(P − v) − FC. (8.14)

Substituting (8.13) and (8.14) in the DOL equation above,

DOL = ∂ Q(P − v)

Q(P − v) − FC
· Q

∂ Q
.

Cancelling out ∂ Q, we get

DOL = Q(P − v)

Q(P − v) − FC
,

which is the DOL at any level of output, also called “profit elasticity.”

Example 8.15
Find and interpret the DOL for a firm that has the following data:

FC = $2500,

Variable cost per unit = $5,

Unit price = $10,

Units of product sold = 1000.
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Solution:

DOL = Q(P − v)

Q(P − v) − FC
,

DOL = 1000(10 − 5)

1000(10 − 5) − 2500
,

DOL = 2.

The DOL of 2 means that for every 1% change in sales, operating income would change
by 2%.

8.12.2 Operating Leverage, Fixed Cost, and Business Risk

A major observation can be made on the above DOL formula. This observation is related
to the fixed operating cost and its effect on DOL. Mathematically, since the term Q(p − v)
is present in both the numerator and the denominator, the role of FC becomes crucial. Any
increase in FC would make the denominator smaller and the DOL larger, and any decrease
in FC would make the denominator larger and the DOL smaller. We can then conclude
that the higher the firm’s fixed operating cost, relative to its variable cost, the greater the
degree of operating leverage and ultimately higher the profit. Let us try this by observing
the change in DOL if the FC in the last example increases from 2500 to 4000:

DOL = 1000(10 − 5)

1000(10 − 5) − 4000
,

DOL = 5.

A DOL of 5 means that the profit would increase by 5% instead of 2% when the sales
increase by 1%. Table 8.5 shows how the DOL and the profit(Pr) would change, as the FC
increases, notably across three firms selling the same product for the same price. However,
as we have seen before, operating leverage works in the opposite direction too. This means
that if we take the figures of the previous example, a decrease in sale by 1% would be
more damaging by lowering profits by 5%. So, the increase in the FC would really make
the situation more sensitive in both ways, which can translate into presenting a source of
business risk. Such a potential risk can come from two sides:

1. In the case of seeking more profits through the increase in the FC, the firm would
take the risk of not being able to cover all of the high cost and additional risk of not
being able to maintain the increase in sales.

2. In the case of a slight drop in the sales, the firm would take a risk of facing its profit
dropping significantly. It may drop to the point to threaten any reasonable recovery.

So, the ever-increasing temptation to benefit from new technology, modernize production
and replace labor-intensive by capital-intensive technology would most likely increase
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TABLE 8.5

Q R FV + vQ Pr Apr DOL = Q(p − v)

Q(P − v − FC)

F
i
r
m

1

B-even

→

1,000
1,500
2,000
2,500
3,000
3,500
4,000

3,000
3,500
6,000
7,500
9,000

10,500
12,000

3,000
4,000
5,000
6,000
7,000
8,000
9,000

0
500

1,000
1,500
2,000
2,500
3,000

0
500
500
500
500
500
500

FC = $1000;
VC = $2.00; P = $3.00

DOL = 3500(3 − 2)

3500(3 − 2) − 1000

DOL = 1.4

F
i
r
m

2

B-even

→

1,000
1,800
2,500
3,000
3,500
4,000
4,500

3,000
5,400
7,500
9,000

10,500
12,000
13,500

4,000
5,400
6,625
7,500
8,375
9,250

10,125

−1,000
0

875
1,500
2,125
2,750

3,375

/
−1,000

625
625
625
625
625

FC = $2250;
VC = $1.75; P = $3.00

DOL = 3500(3 − 1.75)

3500(3 − 1.75) − 2250

DOL = 2.06

F
i
r
m
3

B-even

→

1,000
2,143
2,500
3,000
3,500
4,000
4,500

3,000
6,429
7,500
9,000

10,500
12,000
13,500

5,000
6,429
6,875
7,500
8,125
8,750
9,375

−2,000
0

625
1,500
2,375
3,250
4,125

/
−2,000

625
875
875
875
875

FC = $3750;
VC = $1.25; P = $3.00

DOL = 3500(3 − 1.25)

3500(3 − 1.25) − 3700

DOL = 2.58

efficiency but require incurring a lot more FC, which, if done, has to be with much more
caution and consideration by financial managers who have to carefully and rationally weigh
the benefits of increasing the profits with all of the risks associated with them.

Table 8.5 shows three firms selling the same product at the same price but facing three
different cost functions. It confirms that the higher their FC, the higher their DOL, and
ultimately the higher the profits (see Figure 8.22).

SUMMARY

� It is obvious for a chapter on cost theory to start with the various concepts of costs. The first
section of the chapter described many common concepts that we would frequently read in
business and economic literature. They included explicit and implicit costs, opportunity
or foregone cost, historical and current costs, replacement cost, incremental cost, total
and marginal and average costs, sunk cost, fixed and variable costs, and short-run and
long-run costs.

� In the short-run production, cost of production would be at its minimum possible for a
certain level of output under particular operating conditions. The major player is the total
cost, which includes both fixed and variable costs. The shape of the variable cost curve
is determined by the law of diminishing returns. The total cost curve imitates the shape
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of the variable cost curve, but both curves are separated by a vertical distance equal to
the fixed cost. Marginal cost is the change in total cost, and the average cost is the total
cost per unit of production. The average variable cost is the variable cost per unit of
production. Marginal cost, average cost, and average variable cost all take a U-shape.
Average fixed cost is a descending curve. Marginal cost crosses both average cost and
average variable cost at their minimum points.

� Employing the combination of isoquant and isocost to reach the optimal choice for
production produces the expansion path, which, in turn, becomes the basis for the long-
run cost analysis. It offers firms the capability to build several plants for several scales of
operations to produce various levels of output at the minimum cost possible. The basic
relationships remain the same, as the long-run marginal cost represents the change in the
long-run total cost (LTC), and the long-run average cost (LAC) is the per unit total cost
over the long run or the LTC divided by the output size. The LAC curve takes a wide
U-shape to envelope all short-run average cost curves. Still, at the minimum point of this
wide LAC, the long-run marginal cost makes the intersection. Economies of scale refer
to the decline of average cost as the scale of production rises. However, the opposite case
of diseconomies of scale occurs at the rising section of the LAC when the firm faces
decreasing returns to scale.

� Different from economies of scale, economies of scope refer to the cost reduction that
results from producing two or more products together compared with producing them
separately. Cost complementarity refers to the situation where the marginal cost of



344 COST THEORY

producing one product is being reduced by the increase in production of another product.
Generally, economies of scope may result from either some synergistic relationship in
the production process or from the state of input indivisibility.

� The notion of economies of scope is closely associated with the idea of learning curve.
This curve is convex to the origin and has a negative slope to confirm that the average
cost declines as the size of production increases. There have been many uses of the
learning curve in the field of marginal economics such as forecasting the requirements
of production, scheduling operations, and pricing both inputs and output.

� Cost–volume–profit analysis was covered for its managerial significance in identifying
the minimum output level necessary to secure a nonnegative level of profit. It can also be
applied to secure a certain desired level of profit, if that is the target. Break-even quantity
and revenue and break-even time were calculated and several examples were given. We
also covered an algebraic treatment to find the break-even point and the case of dual
break-even points. Leverage was detailed in its operating and financial types and three
degrees of leverage were calculated.

KEY TERMS

explicit cost
opportunity (foregone) cost
current cost
incremental cost
average cost
average fixed cost
sunk cost
long-run cost
variable cost
expansion path
long-run average cost (LAC)
economies of scale
minimum efficient scale

(MES)
cost complementarity
learning curve
break-even analysis

financial leverage
break-even quantity (BEQ)
EBIT (operating profit)
cash break-even
target profit
upper break-even point
implicit cost
historical cost
replacement cost
marginal cost
average variable cost
total cost
short-run cost
fixed cost
economic rate of

substitution (ERS)
long-run total cost (LTC)

long-run marginal cost
(LMC)

diseconomies of scale
economies of scope
input indivisibility
cost-volume-profit analysis
operating leverage
total leverage
break-even revenue (BER)
contribution margin (CM)
break-even time
lower break-even point
degree of operating leverage

LIST OF FORMULAS

� Total cost:

TC = FC + VC.

� Average cost:

AC = TC

Q
= AFC + AVC.
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� Average fixed cost:

AFC = FC

Q
.

� Average variable cost:

AVC = VC

Q
.

Also, for labor:

AVC = w

APL
.

� Marginal cost:

MC = �TC

�Q
= ∂TC

∂ Q
.

Also, for labor:

MC = w

MPL
.

� Economic rate of substitution:

ERS = w

v
= MRTS = MPL

MPK
.

� Equilibrium condition:

w

MPL
= v

MPK
.

� Long-run average cost:

LAC = LTC

Q
.

� Long-run marginal cost:

LMC = ∂LTC

∂ Q
.

� Cost elasticity:

εc =
[
∂LTC

∂ Q

] [
Q

LTC

]
.
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� Arc cost elasticity:

εcare =
[

LTC2 − LTC1

Q2 − Q1

] [
Q1 + Q2

LTC1 + LTC2

]
.

� Cost function based on Cobb–Douglas type technology:

TC(y) =
[

(b + c)c2

c

(
bc2

cc1

)−b ( y

a

)] 1
b+c

.

� Cost function based on CES technology:

TC(y) = a− 1
ε

[
c2 + (1 − a1)

1
ρ−1 a

1
1−ρ

1 c
ρ

ρ−1

] [
1 − a1 + (1 − a1)

ρ

1−ρ a
1

1−ρ

1 c
−ρ

ρ−2

2

]− 1
ρ

Y
1
ε .

� Learning curve effects:

C = αQβ,

log C = log α + β log Q,

β = log a

log b
.

� Break-even quantity:

BEQ = FC

p − v
.

� Break-even revenue:

BER = FC

1 − v

p

,

BER = BEQ · P.

� Cash break-even quantity:

CBEQ = FC − NC

p − v
.

� Break-even quantity with target profit:

BEQtp = FC + TP

p − v
.
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� Break-even revenue with target profit:

BERtp = FC + TP

1 − v
p

.

� Break-even time:

BET = FC + pqtL

q(p − v)
.

� Quadratic formula:

x = −b ± √
b2 − 4ac

2a
.

� Degree of operating leverage:

DOL =

[
0y2 − 0y1

0y1

]
[

s2 − s1

s1

] .

EXERCISES

1. List as many cost concepts as you recall and explain each one and the purpose and
justification for it.

2. What would distinguish the short-run cost from the long-run cost? Compare their major
concepts.

3. What would determine the shape of the average cost curve in both the short-run and
long-run? List the similarities and differences and draw both curves.

4. Explain and compare the following concepts:
� Economies of scale
� Diseconomies of scale
� Economies of scope
� The learning curve

5. Explain the concept of break-even point in at least four types of that point. Compare
and give the formula for each one.

6. The following table shows the units of labor used to produce a certain product, the
fixed cost, and the variable cost in the first three columns. Fill in the rest of the columns
after calculating all the required values.
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L FC VC TC AC AFC AVC MC

0 40 0
1 40 16
2 40 32
3 40 48
4 40 64
5 40 80
6 40 96
7 40 112
8 40 128
9 40 144

10 40 160

7. Draw all the seven cost curves based on the calculations you made in the previous
table.

8. If the long-run total cost function of a product is expressed as

LTC − 10,000Q − 25Q2 + 0.025Q3,

(a) find the long-run average function;

(b) find the long-run marginal function;

(c) find the minimum efficient scale (MES);

(d) check if MES is really at its minimum.

9. The following table shows the cost data for a product that would be sold at $15.00.

Cost $ Item Frequency

2500 Rent Monthly
5600 Salaries Monthly
2000 Employee benefits Annually
1700 Insurance Quarterly
3250 Property taxes Annually
2.25 Material 1 Per unit
6.00 Material 2 Per unit
4.75 Shipping Per unit
15.00 Labor Per unit

(a) Find the break-even quantity and the break-even revenue.

(b) What would be the break-even quantity and revenue if the firm wants to secure
5000 in profit?

10. If the company above produces and sells 6000 units, what would be the degree of
operating leverage (DOL) and what would it mean for the company?
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PRODUCTION AND COST:
ESTIMATION AND FORECASTING

The statistical methods reviewed in Chapter 2 can be applied when data are available
to estimate the epistemic models of production and cost that have been discussed in
Chapters 7 and 8. This chapter focuses on estimating the constant elasticity of substitution
(CES) production model and the form of cost function that is derived from it. The primary
objective of these estimations is to reveal statistical evidence related to factor substitution,
returns to scale, and economies of scale when data permit. Additionally, this chapter brings
a relatively robust approach to dealing with aleatory uncertainty in terms of both modeling
and estimation. Of course, at all times, it is important to remain mindful that statistical
analysis is but a single piece of information to assist decision making among multiple
pieces of information that may be available to a manager.

In the second part of this chapter, we introduce the use of computer simulation for the
purpose of forecasting decision-driven production and cost at the firm’s level. The outcome
of alternative input and output decisions is described using graphical tools developed from
the simulation, which can help shed light on the implications of different decisions. It
should be noted that the time series forecasting techniques presented in Chapter 6 are
also valid approaches to forecasting that may be applied to production and cost; however,
these techniques are not discussed further or applied in this chapter. The reason is that the
extension of the techniques in Chapter 6 to production and cost time series data is relatively
straightforward and can be left to the reader. However, time series forecasting techniques
are perhaps less easily adapted to forecasting decision-driven outcomes than is computer
simulation, which seems to have an advantage of accommodating a future that is influenced
by today’s choices. In addition, we will revisit simulation briefly in Chapter 12 when we
consider analysis of risky alternative decisions.
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9.1 ESTIMATION OF THE PRODUCTION FUNCTION

Recall that the CES production function with output y and inputs x1 and x2 has the form

y = a
[
a1 xρ

1 + (1 − a1)xρ

2

]ε/ρ
,

where xi > 0; a > 0; 0 ≤ a1 ≤ 1; ρ ≤ 1; ε ≥ 0.
As demonstrated in Chapter 7, the CES takes on the linear, the Cobb–Douglas type,

and the Leontief forms as special cases; hence, the CES model is relatively robust with
respect to uncertainty about factor substitution and returns to scale. This means that there
are values of its parameters (a, a1, ρ, ε) that enable this form to be linear, Cobb–Douglas
type, or Leontief. Hence, statistical analysis of production based on this form enables the
data to inform, without undue artificial restriction, about both factor substitution and returns
to scale.

The use of sample data to make inferences about uncertain circumstances is an important
component of managerial decision making today. Marketing (demand) and production
decisions are no exceptions to this. This practice may become more sophisticated and
important in the future. Data related to production of goods and services are available for
analysis. For example, Table 9.1 shows a sample of data. The specific issue pursued in this
section is how best we can analyze the data to learn about factor substitution and returns to
scale that were reviewed conceptually in Chapter 7.

TABLE 9.1 Data Sample for Production Analysis

Observation (i)→ 1 2 3 4 5 6 7 8 9 10 11 12
↓Variable

yi 10 15 17 26 12 11 20 9 19 23 14 21
x1i 2 3 3 5 2 3 4 1 3 4 3 5
x2i 1 3 6 9 8 1 5 1 7 8 2 5

Due to its robustness with respect to factor substitution and returns to scale, we choose
the CES production function as our epistemic model. Note that we have not said or done
anything about aleatory uncertainty or robustness to it yet; however, we will focus on
this shortly. Estimation of the CES model can be based on the method of maximum
likelihood estimation/estimate (MLE) detailed in Chapter 2 once a stochastic structure has
been specified to the epistemic model. The process, as indicated in Chapter 2, is to form the
likelihood function (joint probability of the observations) and then choose as the estimate
of the parameters the value that makes the observations most likely.

We begin with a very simple statistical model comprising an additive, normally dis-
tributed disturbance denoted by u. Specifically, we begin with the following statistical
model:

y = a
[
a1 xρ

1 + (1 − a1)xρ

2

]ε/ρ + u,

where it is assumed that u ∼ N(0, σ ) .
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Note that

E[u] = a
[
a1 xρ

1 + (1 − a1)xρ

2

]ε/ρ
and SD[u] = σ.

The parameters to be estimated are a, α1, ρ, ε, and σ .
The probability density function (pdf) associated with each yi is

fyi (yi ) =
[

1√
2πσ 2

]
exp

[
1

2σ 2
(yi − a)

[
a1xρ

1 + (1 − a1)xρ

2

] ε
ρ

]2

.

Assuming independent sampling, the likelihood of the sample data y1, y2, . . . , y12 is

L =
∏

fyi(yi ).

The MLEs of a, a1, ρ, ε, and σ are the values of a, α1, ρ, ε, and σ that solve

Maximize L =
∏

fyi(yi ).

We know that a ≥ 0, 0 ≤ a1 ≤ 1, ρ ≤ 1, ε ≥ 0, and σ ≥ 0. Nearly always, it is best to
maximize ln L = ∑

ln fyi(yi) rather than
∏

fyi(yi).
Maximization of ln L by computer reveals the MLEs of the parameters a, a1, ρ, ε, and

σ . The estimates are a = 7.35, a1 = 0.66, ρ = −1.38, ε = 0.69, and σ = 1.11. Some factor
substitution is indicated since ρ is negative but not all that far from 0. Decreasing returns
to scale are suggested by the value of ε below 1.

The stochastic specification that we have used is not robust. By simply adding u, our
specification requires that the standard deviation of output be a constant, σ , regardless of
the level of input use. Although this might be true, the variability of output may change
with the level of input use. A more robust stochastic specification would permit the data to
inform about variability of output rather than imposing a rigid condition.

Instead of the production model,

y = a
[
a1 xρ

1 + (1 − a1)xρ

2

]ε/ρ + u,

where it is assumed that u ∼ N(0, σ ),we can use this stochastic specification:

y = a
[
a1 xρ

1 + (1 − a1)xρ

2

]ε/ρ + β xβ1
1 xβ2

2 ε,

where it is assumed that ε ∼ N(0, 1).
Now, it is the case that

E[y] = a
[
a1 xρ

1 + (1 − a1)xρ

2

]ε/ρ
and SD[y] = βxβ1

1 xβ2
2 .

Both the mean and standard deviation of y can now vary with input use. Note that the impact
of the inputs on SD[y] depends on the parameter, β i. If β i = 0 for all i, then the simple
stochastic specification we have used previously will apply since output variability will be
constant regardless of input use. If β i < 0, then output variability will decrease with use of
input xi. If β i > 0, then output variability will increase with use of input xi. This stochastic
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specification is relatively robust with respect to aleatory uncertainty because it allows the
data to inform about the relationship between input use and output variability rather than
requiring that output variability be constant regardless of the level of input. The MLE of
the parameters β i suggests the degree of production control that can be exerted if input
use is ramped up. Hence, this model is relatively robust with respect to both epistemic and
aleatory uncertainties.

The pdf associated with each yi is

⎡
⎢⎣fyi (yi ) =

⎡
⎢⎣ 1

√
2π

(
βxβ2

1 βxβ2
2

)2

⎤
⎥⎦ exp

⎡
⎢⎣ 1

2
(
βxβ1

1 βxβ2
2

)2

⎤
⎥⎦ (yi − a)

[
ai x

ρ

1 + (1 − a1)xρ

2

]ε
ρ

⎤
⎥⎦

2

.

Assuming independent sampling, the likelihood of the sample data y1, y2, . . . , y12 is

L =
∏

fyi(yi ).

The MLEs of a, a1, ρ, ε, β, β1, and β2 are the values of these parameters that solve

Maximize L =
∏

fyi(yi ).

We know that a ≥ 0, 0 ≤ a1 ≤ 1, ρ ≤ 1, ε ≥ 0, and β ≥ 0. Again, nearly always, it is best
to maximize the log-likelihood, that is, to solve

Maximize ln L =
∑

ln fyi(yi ).

The MLEs of the parameters are a = 4.28, a1 = 0.78, ρ = 0.94, ε = 1.03, β = 3.63,
β1 = −0.61, and β2 = −0.16. From Table 7.1, factor substitution is indicated since ρ is
near 1. Constant returns to scale are suggested by the value of ε near 1. Both inputs serve
to reduce the variability of output, that is, increase control of the production process since
both β1 and β2 are negative.

9.2 ESTIMATION OF THE COST FUNCTION

It almost goes without saying that most important management decisions are made without
knowing for sure what the outcome will be. There seems to be no way to completely avoid
sources of uncertainty, and so, most managers try their best to cope with them instead.
Understandably, decisions that seem likely to work out are popular. Managerial economics
helps by integrating the conceptual framework, analytical models, and quantitative methods
for identifying these decisions. In short, managerial economics brings economic models a
step closer to the real world by recognizing and incorporating uncertainty (uncontrolled el-
ements) into them. As already emphasized, the model and the estimation method illustrated
in this chapter are applicable to analysis of cost.

With regard to recognizing and incorporating uncertainty in analytical models, attention
must be paid to stochastic specification (i.e., how the error term and decision variables
interact) in a statistical model of cost. Without a robust stochastic specification, measure-
ments and decisions based on economic models may be misleading—almost surely will
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be misleading if the purpose of the effort is to measure and understand the magnitude
of the risk associated with a decision. For example, if the usual additive error (say u) is
used in a statistical model (say y = f(x) + u), then the decision (independent) variable
can only affect the mean of the outcome (it can have no effect on the standard deviation
of the outcome). If a multiplicative error term is used (say y = f(x)eu), then the decision
(independent) variable’s effect on the variability of the outcome can only be the same as
its effect on the mean of the outcome. Neither of these possibilities seems very attractive.
The following describes a relatively robust alternative and illustrates its estimation.

Cost analysis for the purpose of estimating economies of scale involves the following
specific problem. We have some data related to the cost of production of a good or service
(see Table 9.2).

TABLE 9.2 Cost and Output Data

Month Cost Output

January 5.46 25
February 5.64 27
March 6.30 35
April 5.90 30
May 5.46 25
June 5.81 29
July 5.08 21
August 6.14 33
September 5.64 27
October 6.22 34
November 4.99 20
December 5.98 31

How best can we analyze the data to learn about economies of scale and cost control?
Due to its robustness, we choose TC(Q) = A yB as our epistemic model. (Note that we have
not said or done anything about aleatory uncertainty or robustness to it yet; we will do that
subsequently to estimate cost control.) We will allow the data to inform about economies
of scale through estimation of this relatively robust epistemic model. The relatively robust
stochastic specification developed subsequently will deal with aleatory uncertainty and
enable the data to inform about cost control. Estimation of the model can be based on the
method of MLE. As we continue, we will apply MLE to estimate the TC model.

To do MLE, recall the problem. Suppose that you have a sample of independent ob-
servations on a random variable and you believe that the observations occur with relative
frequencies given by a pdf that has unknown parameters. In other words, you have some
data and you assume that those were drawn from a pdf with a known form, such as the
normal, bell-shaped curve, but with an unknown parameter. The MLE approach is to form
the likelihood function (joint probability of the observations) and then choose as the esti-
mates of the parameters the values that make the observations most likely. We will apply
this procedure to cost analysis by first considering estimation of the robust epistemic model
using a simple model of aleatory uncertainty:

TC = A yB + u,

where it is assumed that u ∼ N(0, σ ).
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Note that

E[TC] = A yB and SD[TC] = σ.

The parameters to be estimated are A, B, and σ . The pdf associated with TCi is given by

fTCi (TCi ) =
[

1√
2πσ 2

]
exp

[
1

2σ 2

(
TCi − A yB

i

)2
]

.

Assuming independent sampling and the likelihood of the sample data, TC1, TC2, . . . ,
TC12, the MLEs of A, B, and σ are the values of A, B, and σ that solve

Maximize ln L =
∑

ln fTCi (TCi ).

We know that A ≥ 0, B ≥ 0, and σ ≥ 0. We maximize ln L to find the MLEs of the
parameters A, B, and σ and find A = 1.41812, B = 0.419102, and σ = 0.00541058.

In this case, the MLE of B (<1) suggests the existence of scale economies.
The stochastic specification that we have used is not robust. By simply adding u, our

specification requires that the standard deviation of TC be a constant, σ , regardless of the
level of output. Although this might be true, the variability of cost or, equivalently, our
ability to manage and control cost, may change with the level of output. A relatively robust
stochastic specification should permit the data to inform about variability of TC rather than
imposing a rigid condition.

An alternative stochastic specification can provide a relatively robust approach to
aleatory uncertainty:

TC = A yB + C yDε,

where it is assumed that ε ∼ N(0, 1).
With this specification, we have

E[TC] = A yB and SD[TC] = C yD.

Both the mean and the standard deviation of TC can now vary with y. Note that the
impact of y on SD[TC] depends on parameter D. If D = 0, then the simpler stochastic
specification that we have already used will apply since cost variability will be constant
regardless of output. If D < 0, then cost variability will decrease with output. If D > 0, then
cost variability will increase with output. The stochastic specification above is relatively
robust with respect to aleatory uncertainty because it allows the data to inform about the
relationship between output and cost variability rather than requiring that cost variability be
constant regardless of the level of output. The MLE of parameter D suggests the degree of
cost control that can be exerted if production is ramped up. Hence, this model is relatively
robust with respect to both epistemic and aleatory uncertainties.

The pdf associated with TCi is

fTCi (TCi ) =
[

1√
2π

(
CyD

i

)2

]
exp

[
1

2
(
Cy D

i

)2

(
TCi − Ay B

i

)2

]
.
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Assuming independent sampling and the likelihood of the sample data TC1, TC2, . . . ,
TC12, the MLEs of A, B, C, and D are the values that solve

Maximize ln L =
∑

ln fTCi(TCi ).

We know that A ≥ 0, B ≥ 0, and C ≥ 0. We maximize ln L to find the MLEs of parameters
A, B, C, and D and find A = 1.38769, B = 0.425441, C = 12938.5, and D = −4.55413.

The MLE of B (<1) again suggests the existence of scale economies. The MLE of D
(<0) suggests that cost variability is decreasing with output, suggesting that cost control can
be exerted as output expands. Note that the analytical model used for estimation is based
on robustness considerations with respect to both epistemic and aleatory uncertainties.

9.3 FORECASTING OUTPUT

We consider characterizing future output by basing the forecast on the relatively robust
production model we estimated via the method of MLE explained above. Our goal is to use
the estimated production function to gain a sense of the frequency distribution of output
corresponding to different input combinations. Recall that production data were used to
estimate a production function that was relatively robust with respect to both epistemic and
aleatory uncertainties. The CES production function with output y and inputs x1 and x2 has
the following epistemic model:

y = a
[
a1 xρ

1 + (1 − α1)xρ

2

]ε/ρ
,

where x1, x2 > 0; a > 0; 0 ≤ a1 ≤ 1; ρ ≤ 1; ε ≥ 0.
Also recall that this CES takes on the linear, Cobb–Douglas type, and Leontief forms

as special cases; hence, the CES model may be regarded as a relatively robust epistemic
model with respect to the shape of the isoquants it can accommodate and the returns to
scale that it can exhibit. In addition to this relatively robust epistemic model of production,
we also employed a relatively robust model of aleatory uncertainty which permitted, but
did not require, the employment of inputs to impact the standard deviation of output:

y = a
[
(a1 xρ

1 + (1 − a1)xρ

2

]ε/ρ + βxβ1
1 xβ2

2 ε,

where β > 0 and ε ∼ N(0, 1).
The pdf of output conditional on input use is

fyi (yi ) =

⎡
⎢⎣ 1

√
2π

(
βxβ1

1 xβ2
2

)2

⎤
⎥⎦ exp

⎡
⎢⎣ −1

2
(
βxβ1

1 xβ2
2

)2

(
yi − a

[
a1xρ

1 + (1 − a1) x2
] ε

ρ

)2

⎤
⎥⎦ .

MLEs of the parameters were found to be a = 4.28, a1 = 0.78, ρ = 0.94, ε = 1.03, β =
3.63, β1 = −0.61, and β2 = −0.16. Using these parameter estimates in conjunction with
the form of the pdf provides a specific pdf from which random numbers can be generated
to simulate output. The histogram of output conditional on input use x1 = 10 and x2 = 10
based on 1000 simulated outputs is shown in Figure 9.1. Note that the vertical scale of the
histogram is probability. The histogram of output using the same 1000 random elements
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is shown in Figures 9.2, 9.3, 9.4, and 9.5 for x1 = 20, x1 = 30, and x1 = 40 in conjunction with
x2 = 10, respectively. The figures highlight the role of x1 as a productive input in moving
the distribution of output that will be experienced to the right and reducing the dispersion
associated with the distribution as well. The figures provide an idea of the range of outputs
that are likely as employment of the factor is increased.

Findings of a similar nature are shown diagrammatically in Figures 9.1, 9.6, 9.7, and
9.8, respectively, where input x1 is held at 10 units and input x2 is increased by 10 units
increments. Note that increasing x2 also moves the anticipated output distribution to the
right and reduces its dispersion; however, the effects are not nearly as pronounced as those
that will be associated with the other factor.
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9.4 FORECASTING COST

We can simulate histograms for the cost of production conditional on the output level using
the relatively robust epistemic and aleatory models that were estimated from cost data as
we have seen earlier. Probability will again be the vertical scale of the histograms. It is
presumed that relative factor prices will remain the same for the relevant forecast period.
Of course, if that is not the case, then the time series methods described in Chapter 6
can be used to forecast factor prices that appear in the cost function developed here
and can then be updated with the price forecasts prior to engaging in the simulations
reported here.

Our goal is to use the estimated cost function to gain a sense of the probability of costs
corresponding to different levels of output. Recall that cost data were used to estimate a cost
function that was relatively robust with respect to both epistemic and aleatory uncertainties.
The cost function was derived from the CES production function with output y, which led
to the following epistemic model:

TC = A yB,

where A > 0.
Also recall that this form, based on the CES production model, is relatively unrestrictive

with respect to the substitution of inputs in production and returns to scale. In addition to
this relatively robust epistemic model of cost, we also employed a relatively robust model
of aleatory uncertainty that permitted alternative scenarios regarding cost control as output
increases:

TC = A yB + C yD ε,

where C > 0 and ε ∼ N(0, 1).
The pdf of cost conditional on level of output is

fTCi (TCi ) =
[

1√
2π

(
CyD

i

)2

]
exp

[
−1

2
(
CyD

i

)2

(
TCi − AyB

i

)2

]
.

MLEs of the parameters were found to be A = 1.38769, B = 0.425441, C = 12938.5, and
D = −4.55413. Using these parameter estimates in conjunction with the form of the pdf
provides a specific pdf from which random numbers can be generated to simulate cost of
production. For example, the histogram of cost conditional on an output of 50 based on
1000 simulated outputs is shown in Figure 9.8. The histogram of cost using the same 1000
random elements is shown in Figures 9.9 and 9.10 for output of 100 and 500, respectively.
The figures highlight the role of the output level in moving and shaping the distribution of
production cost that will be experienced. The figures provide an idea of the range of costs
that are likely as output is raised.
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9.5 MEETING OBLIGATIONS THROUGH DECISIONS WITH
PROBABILISTIC RESULTS

This section focuses on the choice of inputs and output when the outcome of the decision is
uncertain. A more general consideration of managerial choice under uncertainty is pursued
in Chapter 12. For now, the conditional distributions of output and cost shown in this chapter
can provide guidance for decisions when, for example, contractual requirements mandate
that a particular level of output be delivered or that cost overruns be avoided.

Consider again Figure 9.3 in which the first input takes on the value x1 = 30, whereas
the second input is employed at x2 = 10. Suppose that a contractual arrangement mandates
that 120 units of output be delivered. In this case, the probability that at least 120 units
of output will result from production with this combination of factors is approximately
1 − (0.01 + 0.015 + 0.03 + 0.05 + 0.08) = 1 − 0.185 = 0.815; that is, 1 minus the sum
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of the probabilities as measured by the height of each of the first five bars of the histogram
in Figure 9.3. This arithmetic is determined by noting that the probability of output being
at least 120 units when x1 = 30 and x2 = 10 is the probability that output exceeds 120.
The latter is found by subtracting the probability that output is less than 120 from 1. Note
that the contractual obligation can be met with probability .815 when x1 = 30 and x2 = 10.
Other input combinations can make the chance of meeting the obligation much higher. For
example, if x1 is raised to 40 while x2 remains at 10, the chance that the obligation will not
be met is negligible.

Histograms developed through simulation of cost can be used to identify the probability
of a cost overrun. Suppose that $7.3295 has been budgeted for production. The probability
of exceeding the budget is the height of the left-most bar in the histogram and is only .01
when output is 50 units. Other scenarios to help with decisions under uncertainty can also
be investigated via simulation of histograms for output and cost.

SUMMARY

� This chapter focused on the use of the method of maximum likelihood to estimate
the unknown parameters in production and cost functions. Relatively robust epistemic
models of production and cost were estimated drawing on the functional forms reviewed
in Chapters 7 and 8. Attention was paid to specifying relatively robust models of aleatory
uncertainty, and estimation of these specifications by the method of maximum likelihood
was also pursued. Interpretation of MLE of parameters in both the relatively robust
epistemic model and the aleatory model was given for both production and cost.

� Estimated production and cost functions that are relatively robust with respect to epis-
temic and aleatory uncertainties can be used to simulate output and cost of production.
Creation of histograms of output and cost with the vertical component equal to prob-
ability enables a convenient and an easily interpreted range of likely output and costs
to be identified and associated with input and output choices, respectively. Such his-
tograms facilitate simple analysis of a number of management decisions. For example,
the histograms permit analysis of the probability that a particular combination of inputs
will enable a contractual obligation to supply an amount of a product to be evaluated.
Similarly, the probability of a cost overrun can be very conveniently determined. The last
section of Chapter 13 focuses deeply on management decision making under uncertainty.

KEY TERMS

estimation forecasting cost maximum likelihood
stochastic specification epistemic model robust model
computer simulation forecasting output simulated histogram

LIST OF FORMULAS

� The CES epistemic model of production:

y = a
[
a1 xρ

1 + (1 − a1)x2ρ
]ε/ρ

,

where xi > 0; a > 0; 0 ≤ a1 ≤ 1; ρ ≤ 1; ε ≥ 0.
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� The statistical model of CES technology:

y = a
[
a1 xρ

1 + (1 − a1)xρ

2

]ε/ρ + u,

where it is assumed that u ∼ N(0, σ ).
� Mean and standard deviation of CES technology:

E[u] = a
[
a1 xρ

1 + (1 − a1)xρ

2

]ε/ρ
and SD[u] = σ.

� The pdf of the CES epistemic model:

fyi (yi ) =
[

1√
2πσ 2

]
exp

[
1

2σ 2
(yi − a)

[
a1xρ

1 + (1 − a1)xρ

2

] ε
2

]2

.

� The relatively robust statistical model of CES technology:

y = a
[
a1 xρ

1 + (1 − a1)xρ

2

]ε/ρ + β xβ1
1 xβ2

2 ε,

where it is assumed that ε ∼ N(0, 1).
� Mean and standard deviation of the relatively robust model of CES technology:

E[y] = a
[
a1 xρ

1 + (1 − a1)xρ

2

]ε/ρ
and SD[y] = βxβ1

1 xβ2
2 .

� The pdf of the relatively robust statistical model of CES technology:

fyi (yi ) =

⎡
⎢⎣ 1

√
2π

(
βxβ2

1 βxβ2
2

)2

⎤
⎥⎦ exp

⎡
⎢⎣ 1

2
(
βxβ1

1 βxβ2
2

)2 (yi − a)
[
ai x

ρ

1 + (1 − a1)xρ

2

]ε
ρ

⎤
⎥⎦

2

.

� Maximum likelihood estimation for production analysis:

Maximize ln L =
∑

ln fyi(yi ).

� The statistical model of cost:

TC = A yB + u,

where it is assumed that u ∼ N(0, σ ).
� Mean and standard deviation of cost:

E[TC] = A yB and SD[TC] = σ.
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� The pdf of the cost function:

fTCi (TCi ) =
[

1√
2πσ 2

]
exp

[
1

2σ 2

(
TCi − A yB

i

)2
]

.

� The relatively robust model of cost:

TC = A yB + C yDε,

where it is assumed that ε ∼ N(0, 1).
� Mean and standard deviation of the relatively robust model of cost:

TC = A yB + C yDε,

where it is assumed that ε ∼ N(0, 1).
� The pdf of the relatively robust statistical model of cost:

fTCi (TCi ) =
[

1√
2π

(
Cy D

i

)2

]
exp

[
1

2
(
Cy D

i

)2

(
TCi − Ay B

i

)2

]
.

� Maximum likelihood estimation for cost analysis:

Maximize ln L =
∑

ln fTCi(TCi ).

� The CES epistemic model of production:

y = a
[(

a1 xρ

1 + (1 − α1
)

xρ

2

]ε/ρ
,

where x1, x2 > 0; a > 0; 0 ≤ a1 ≤ 1; ρ ≤ 1; ε ≥ 0.
� The relatively robust model of production under epistemic and aleatory uncertainties:

y = a
[
(a1 xρ

1 + (1 − a1)xρ

2

]ε/ρ + βxβ1
1 xβ2

2 ε,

where β > 0 and ε ∼ N(0, 1).
� The pdf of output with a particular input combination:

fyi (yi ) =

⎡
⎢⎣ 1

√
2π

(
βxβ1

1 xβ2
2

)2

⎤
⎥⎦ exp

⎡
⎢⎣ −1

2
(
βxβ1

1 xβ2
2

)2

(
yi − a

[
a1xρ

1 + (1 − a1) xρ

2

] ε
ρ

)2

⎤
⎥⎦ .

EXERCISES

1. What is the estimation process? What is the rationale behind it and how would it be
different in estimating the cost in estimating the output?
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2. What is the epistemic model and how appropriate is it for a CES production function
to represent such a model in a matter of the empirical estimation?

3. Why would forecasting cost and output be important and how would it serve managers
in their decision making?

4. Are there any noticeable differences between the methods of forecasting consumer
demand and forecasting a firm’s cost or output?

5. Are there any differences between estimating and forecasting the short-run variables
and the long-run variables? What would be the difficulties associated with any or both?

6. Assume that the pdf of total cost (million dollars) for a particular output level has
been estimated and is depicted by the histogram shown immediately below. Using the
histogram, estimate the probability that the total cost experienced in a future production
run for this same level of output lies within the range $7.3298 m–$7.3302 m.

Probability

0.15

0.10

0.05

7.3295 7.3300 7.3305
Cost

7. Find the mean and standard deviation of total cost, TC, when TC = A QB + FC + C
QD ε, where it is assumed that ε ∼ N(0, 1).

8. Assume that independent sampling has provided data on total cost, TC1, TC2, . . . ,
TCn, and corresponding observations on output, q1, q2, . . . , qn. Find the pdf of the
random variable, TCi, and log-likelihood function associated with the sample given
the following statistical model of total cost:

TC = AQB + FC + CQDε with ε ∼ N (0, 1).

9. Find the mean and standard deviation of output, Q, as a function of inputs, X1 and X2,
when Q = f(X1, X2) = a (a1 x1

ρ + (1 − a1) x2
ρ)ε /ρ + u, where it is assumed that

u ∼ N(0, σ ).

10. Find the pdf of output, Q, in Exercise 9.
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MARKET STRUCTURE AND
BUSINESS ORGANIZATION

In the previous units, we dealt with managerial decisions made at consumer and firm levels.
In this unit, we shall put together what we have learned into a model of price and output
determination at the market level. For profit-maximizing firms, the nature and direction
of the managerial decisions to determine output and prices are significantly influenced
and guided by the market structure and organization. A market refers to any interaction
between those who produce or sell and those who consume or buy. It includes the potential
sellers and buyers of resources and products. Market structure is the economic atmosphere
in which sellers and buyers behave and operate, especially in consideration of competition
and organization. There are generally four criteria by which market structure is categorized.
They are as follows:

1. Type of product: Whether the product is (a) homogeneous or identical for all pro-
ducers, which would lead to the prevalence of a single price across all firms, or (b)
differentiated, where producers compete to make different products, which would
justify the imposition of different prices.

2. Scope of supply and demand for the product: It can be translated to how large the
size and influence of the firms producing and selling the product, and how wide the
circle of consumers buying the product.

3. Mobility of inputs into the product: It defines how flexible the firm is in the matter of
getting in and out of the business market or its own industry.

4. Player’s information status: It refers to how informed the economic agents are about
the market on both sides, producers and consumers, and how familiar they are on
production cost, input supplies, competition, product prices, rules and regulations,
and similar vital information about the market.

Managerial Economics: A Mathematical Approach, First Edition. M. J. Alhabeeb and L. Joe Moffitt.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.
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On the basis of these criteria, market structure is classified into four types: perfect
competition, monopoly, monopolistic competition, and oligopoly.

10.1 PERFECT COMPETITION

10.1.1 Characteristics of Perfect Competition

A perfectly competitive market is distinguished by the following characteristics:

1. A large number of economic players of producers and consumers. They are small
enough to influence the price of product. The price is considered “given” and they
are all considered “price takers.”

2. The product is homogeneous across all the producing firms so that consumers would
be indifferent to products of all firms.

3. The resources are perfectly mobile, implying that no input of production is monop-
olized by its supplier and all firms are free to enter and exit their industry with ease
and at no extra cost.

4. Economic players are assumed to have perfect knowledge of prices and costs, and
market conditions.

5. Economic players incur no extra cost for market transactions or exchanges.

Although these economic conditions are more of theoretical assumptions than reality,
they play an important role in providing the knowledge to comprehend reality, predict
changes, and be able to exert positive influence and improve it. All the five conditions
stated above would lead to the establishment of one price and justify what is called the
“law of a single price” of a competitive market. This price for a competitive firm would
be equal to its marginal revenue (MR) and its demand (D). Since no firm alone can affect
the price and all firms would just follow one price, the demand curve for a competitive
firm would be just a horizontal line while the demand curve for the industry or all markets
would remain as downward sloping. Both demand and supply for the market would be the
horizontal summation of individual demand and supply.

The graph in Figure 10.1 shows the demand curve for a competitive firm as a horizontal
line, set at one-price level and equal to the marginal revenue, while the demand curve for
the entire industry or market remains a typical down sloping curve. In the figure, p is market
price and Q is quantity of the good.

p* p*

p
p

p = MR = D

S

D

Q
Q

FIGURE 10.1
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The following example shows that the market supply curve is the horizontal summation
of the individual supply curves of the competitive firms in that industry.

Example 10.1
If the following three functions represent the supply of three competitive firms, then the
industry supply curve can be obtained by adding all three functions (Figure 10.2):

Firm 1: Qs
1 = −14 + 2p.

Firm 2: Qs
2 = −4 + p.

Firm 3: Qs
3 = −6 + 3p.

Industry: Qs = −24 + 6p.

12

7

000

4

10

2

24 24 240
Q

4

8

24

FIGURE 10.2

10.1.2 Profit Maximization for Competitive Firms

Let us begin with the universal notion of profit maximization for any business regardless
of the type of market structure. Making as much profit as possible is the basic objective for
business survival and improvement. Let us take a look at the following graph (Figure 10.3)
while realizing that profit (Pr) is defined by the difference between total revenue (TR) and
total cost (TC):

Pr = TR − TC.

Pr

Pr

2Pr
2Q

Q1 Q2 Q3

Q
0

m

m

m

> 0

2Pr
2Q

= 0

2Pr
2Q

< 0

FIGURE 10.3
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Up to the output level Q1 and beyond the output level Q3, the firm would incur losses,
but between Q1 and Q3, the firm would make a profit. The profit earned is not consistent
throughout between Q1 and Q3. It would go through two distinct phases: first when it would
increase at an increasing rate between Q1 and Q2, and the second when it would increase at
a decreasing rate between Q2 and Q3. These phases are expressed by looking at the change
in profit as the output level changes from Q1 to Q3, namely, the derivative of profit with
respect to output:

Pr = TR − TC,

∂Pr

∂Q
= ∂TR

∂Q
− ∂TC

∂Q
.

Since ∂TR
∂Q and ∂TC

∂Q are the marginal revenue and the marginal cost (MC), respectively,

∂Pr

∂Q
= MR − MC.

This change in profit would be positive between Q1 and Q2 for the marginal revenue and
exceeds the marginal cost, and it would be negative between Q2 and Q3 since the marginal
cost would increase above the marginal revenue. In the stage between these phases, the
change in profit would neither be positive nor negative. It would be equal to zero. This is
where the profit is maximized at Pm

r when the output level is optimum at Q2:

∂Pr

∂Q
= 0 = MR − MC,

MR = MC,

and this is where the golden rule of the equimarginal principle came from. It states that
the output would be optimal and the profit would reach its maximum when the marginal
revenue is equal to the marginal cost.

To prove that point (m) on the profit curve represents the maximum profit point, we
check the second derivative of the profit. If it is found to be negative, point (m) would be
the maximum, because then it means that the slope of the marginal revenue curve is less
than the slope of the marginal cost curve:

∂2 Pr

∂Q2
= ∂2TR

∂Q2
− ∂2TC

∂Q2
,

∂2 Pr

∂Q2
= ∂MR

∂Q
− ∂MC

∂Q
< 0.

Specifically, for a competitive firm, profit maximization in the short run occurs when the
market price of a product is equal to the marginal cost of producing it. This is simply because
the competitive firm’s demand curve is a horizontal line determined at the price level and
it is equal to the marginal revenue. We can observe this on the lower panel of Figure 10.4
at point E, corresponding to output level Q2. This point is the point of equilibrium for
the competitive firm where profit is maximized at point C in the upper panel. Maximum
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profit Prm is represented by the longest vertical distance between TR and TC curves (line
AB), which is exactly equal to line CD. The shaded area between points F and G is the
cumulative profit earned when producing output level Q1 through Q3. In the lower panel,
we can see the total profit earned by producing the optimum level of output Q2.

R, C

Price
per
unit

F

A

G

Q1

Q 1 Q 2 Q 3

Q

Q2 Q3

Q

TC

TR

MC

AC

Slope = MC

Slope = MR

P = MR

APr = AR–AC

B

C

D

P*

H

E

I

Pr
m

Pr
m

Pr
m

FIGURE 10.4

Total profit is represented by the shaded rectangular area where the length is Q2 and the
height is the average profit (APr), which is the difference between the product’s average
revenue (AR) and the product’s average cost (AC):

APr = AR − AC,

where the average revenue is essentially the product’s market price:

APr = P − AC.

This is because

APr = Pr

Q
= TR

Q
− TC

Q
.
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Because

TR = PQ and
TC

Q
= AC,

APr = PQ

Q
− TC

Q

= P − AC.

Example 10.2
A competitive firm has the following cost function:

TC = 20 + 4Q + 0.003Q2.

Given that the market price for the firm’s product is $16.00, find the following:

1. The equilibrium output level that would maximize its profit.

2. How much would be the maximum profit?

Solution:
The firm would maximize its profit when its marginal cost is equal to its marginal revenue.
Being a competitive firm dictates that its marginal revenue is equal to its product market
price ($16.00), we shall find its marginal cost:

MC = ∂TC

∂Q
= 4 + 0.006Q,

MC = MR,

4 + 0.006Q = 16 − 4,

0.006Q = 12,

Q = 12

0.006
= 2000, the equilibrium output level,

Pr = TR − TC

= PQ − [20 + 4Q + 0.003Q2]

= (16)(2000) − 20 − 4(2000) − 0.003(2000)2

= 11,980.

Example 10.3
An industry is consisted of 5000 perfectly competitive firms with market demand and
supply function described by

Qd = 35,000 − 20P,

Qs = 5000 + 10P.

1. What would be the profit-maximizing output level for the industry and what would
be the uniform market price for the product?
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2. What would be the market share of output for each firm?

3. What would be the marginal cost for each firm?

Solution:

Qd = Qs,

35,000 − 20P = 5000 + 10P,

30P = 30,000,

P = 1000.

Substituting the market price ($1000) in either the demand or supply equation would yield
the equilibrium quantity of the industry:

Qd = 35,000 − 20(1000) = 15,000,

Qs = 5000 + 10(1000) = 15,000.

Since the industry contains 5000 competitive firms, each firm would produce

15,000

5000
= 3000 units.

Since the profit-maximizing condition is achieved when

P = MR = MC,

the marginal cost should be the same as the price. That is $1000.

10.1.3 The Decision to Shut Down

At the equilibrium price P∗, as shown in Figure 10.4, the firm was producing output level
Q2 and earning a total profit equal to the area P∗EIH. If the market price falls to a level that
would not cover the average cost such as P1 in the following graph (Figure 10.5), which is
below the bottom of the average cost curve (AC), then the equilibrium point would shift to
E1 and the company would suffer a loss equal to the area ABE1P1, and the output would be
reduced to Q1. The company would continue to operate and try to minimize its loss as much
as possible. However, if the product market price continued to fall further to a level equal
to or below the company’s average variable cost (AVC) such as P, the firm would rather
shut down at this point because the revenue can no longer cover the fixed cost (FC). So,
the decision to shut down is tied to the fact that the revenue falls below the firm’s short-run
variable cost:

TR < VC,

PQ < VC.
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Q1 Q2 Q3

MC AC

AVC

P1 = MR1

P = MR

P* = MR*P*

P

E1

P1

E

E

BA

FIGURE 10.5

Dividing by Q,

PQ

Q
<

VC

Q
,

P < AVC.

Given that VC
Q is the average variable cost, hence the shut-down rule, which states that a

competitive firm would shut down its production when the product market price becomes
equal to the average variable cost of the product:

P = AVC.

Output level Q becomes the last output the company produces at the shut-down point.

Example 10.4
Consider a competitive firm with a fixed cost of $800 and a variable cost function of

VC = 75Q − 12Q2 + 2Q3.

1. When would this firm prefer to shut down?

2. Draw a graph to show the price and quantity of the shut-down decision.

Solution:
The firm would shut down when the price of its product falls to a point where the price is
equal to its average variable cost (i.e., P = AVC). So, we have to find the average variable
cost (Figure 10.6):

AVC = VC

Q
= 75Q − 12Q2 + 2Q3

Q
,

AVC = 75 − 12Q + 2Q2.
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Cost

57

MC

3

AVC

P = MR

Q

FIGURE 10.6

Taking the first derivative of the AVC, setting it to zero, and solving for Q would give us
the output level at which the firm would shut down:

∂AVC

∂Q
= −12 + 4Q = 0,

4Q = 12,

Q = 3.

To find the price, we know that a competitive firm has a price equal to its marginal revenue
which is equal to marginal cost. Marginal cost is the first derivative of the total cost,
which is

TC = FC + VC,

TC = 800 + 75Q − 12Q2 + 2Q3,

MC = ∂TC

∂Q
= 75 − 24Q + 6Q2.

This is the marginal cost that would be equal to the price

P = MC = 75 − 24Q + 6Q2

= 75 − 4(3) + 6(3)2

= 57.

So, the firm would prefer to shut down once the price falls to $57 or below.
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Example 10.5
Suppose that a competitive firm’s total cost function is

TC = 250 + 5Q + 0.025Q2.

If the product market price is $15, find the following:

1. What would be the firm’s maximum profit, and at which size of production?

2. What would be the level of output at which the firm would break even? Plot it on a
graph.

Solution:

1. Let us take the first derivative of the profit function, set it to zero, and solve it for Q:

Pr = TR − TC

= PQ − (250 + 5Q + 0.025Q2)

= 15Q − 250 − 5Q − 0.025Q2

= 10Q − 250 − 0.025Q2.

∂Pr

∂Q
= 10 − 0.05Q = 0,

10 = 0.05Q,

Q = 200,

Pr = 10Q − 250 − 0.025Q2

= 10(200) − 250 − 0.025(200)2

= 750.

To prove that this is the maximum profit, the second derivative has to be negative:

∂2 Pr

∂Q2
= −0.05 < 0.

2. The break-even level of output occurs when the total cost is equal to the total revenue:

TC = TR,

250 + 5Q + 0.025Q2 = 15Q,

0.025Q2 − 10Q + 250 = 0.

We use the quadratic formula to solve for Q where

a = 0.025,

b = −10,
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c = 250,

Q = −b ±
√

(b2 − 4ac)

2a

=
−(−10) ±

√[
(−10)2 − 4(0.025)(250)

]
2(0.025)

= 10 ± 8.66

0.05
Q = 373

or

Q = 27.

When Q has two values, it means that the firm’s break even is at two different levels
of output, as shown in Figure 10.7.

C & R

270 200 373
Q

TC

TR

750

FIGURE 10.7

10.1.4 The Competitive Firm in the Long Run

The long run is characterized by the variability of all inputs, their cost, and the wide-ranging
possibilities for any firm to set its scale of operations. As stated before, a competitive firm
enjoys full freedom of entering and exiting the industry market at any time. These two
prerequisites, among others, imply that if the competitive firm succeeds to earn a decent
profit in the short run, as we have seen before, many other firms in the industry would be
willing and able to employ their resources in order to earn the same amount of profit. In
the long run, more and more firms would decide to enter the market. This would increase
the market supply and shift its curve to the right, as seen in Figure 10.8, causing the market
price to drop from P1 to P2. The right panel of the figure shows, the competitive firm
making a profit equal to area A (abc E1) in the short run when the market price is P1. Now
that the price drops to P2, the competitive firm would have a new lower point of equilibrium
E2 resulting in reducing the profit to area B (def E2).
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As more and more competitive firms enter the market pursuing good profits, the market
supply curve would shift further to the right causing further drop in the price and reducing
the profits even further. In the long run, this cycle would continue and its effects widen
until all the possible profits are squeezed out. It is theoretically safe to see that in the
long run competitive firms would not be able to make any profit. This happens when the
market price drops to the level of break even, when total revenue would equal total cost.
There will be no incentive for any firm to enter the market at and after that point. The
long-run equilibrium for the entire competitive industry is defined where all competitive
firms produce at the lowest point on their long-run average cost (LAC). Figure 10.9 shows

C & R

P

Qe

E

SMC SAC

LMC

LAC

P = MR

Q
0

FIGURE 10.9
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that the long-run equilibrium point E exists not only when long-run marginal cost is equal
to the long-run marginal revenue (LMR) or price (P), but also when the point at which the
short-run average cost (SAC) and the long-run average cost are tangential to each other.

The long-run competitive equilibrium may be considered more theoretical than real, but
it remains a useful analytical tool for managers and economists to examine the effects of
market changes.

Example 10.6
Consider an industry that consists of 500 competitive firms. The uniform total cost function
in the industry is

TC = Q3 − 8Q2 + 20Q

and the market demand function is

Qd = 2016 − 4P.

1. What would be the long-run equilibrium output for each competitive firm and at what
market price would it occur?

2. Confirm the break-even point, if it occurs.

Solution:
The long-run equilibrium for the competitive term occurs at the lowest point of its average
cost function. Therefore, we have to obtain the average cost function and take the first
derivative of it, set it to zero, and solve for Q. We would also make sure it is the lowest
point by checking the minimum condition:

TC = Q3 − 8Q2 + 20Q,

AC = TC

Q
= Q2 − 8Q + 20,

∂AC

∂Q
= 2Q − 8,

∂2AC

∂Q2
= 2 > 0 (minimum),

2Q − 8 = 0,

2Q = 8,

Q = 4.

Each competitive firm would produce 4 units, which is its equilibrium output level. Now,
we obtain the value of the average cost:

AC = Q2 − 8Q + 20

= (4)2 − 8(4) + 20 = $4.
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Since the average cost would be equal to the price in the long run (P = AC = MC), these
firms would produce 4 units and sell them at $4 each. The total revenue would be

TR = PQ

= (4)(4) = 16,

and the total cost would be

TC = Q3 − 8Q2 + 20Q

= (4)3 − 8(4)2 + 20(4)

= 16.

Therefore, at the output level of 4 units, each of the 500 firms would break even, since the
total revenue is equal to the total cost. It is the zero-profit point:

Pr = TR − TC

= 16 − 16 = 0.

Since the market demand function is

Qd = 2016 − 4Q

= 2016 − 4(4) = 2000.

The total industry would produce 2000 units distributed among 500 firms, making the
market share of production 4 units for each competitive firm (Figure 10.10):
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500
= 2000
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= 4 units.
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FIGURE 10.10
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10.2 MONOPOLY

At the opposite extreme of perfect competition is the imperfect competition of the market
structure. At the very end of the spectrum of the imperfect competition is monopoly. It
is a market organization that is reverse in terms of perfect competition. Characteristics of
monopoly include the following:

1. A single producer who dominates the production of a unique product, which has no
close substitute.

2. The characteristic mentioned above leads to the natural result that the monopolistic
firm representing the entire industry single handedly has total control on the market.
Although its market power is not unlimited, it is extremely significant.

3. Based on points 1 and 2 above, the entry of new firms into the industry is totally
blocked, implying that a monopolistic firm can enjoy earning profits in the long run,
unlike its counterparts in the fully competitive industry.

4. Information for the economic agents on production, cost, price, and quality is not
perfect as it is assumed in the perfect competition scenario.

There are several plausible reasons for monopoly to exist. Here are the most important
of them:

1. A monopolistic firm may have total control over a natural resource that may be the
only source of supply of its raw material requirements. This is the case for firms that
own gold mines, petrol fields, and so on.

2. A monopolistic firm may own a certain patent or exclusively hold a copyright to its
sources and products. In the United States, a patent can be exclusively held by law for
17 years, as a reward for inventors and incentive for them to progress with protection.

3. A monopolistic firm may obtain a legal right to be the sole producer for a certain
commodity. Federal government usually grants such rights for certain advantages of
a particular producer. This could be the case of companies that provide electric power
or public transportation or water. Another example is a post office, which holds an
exclusive right to provide postal services. These are called regulated monopolies for
the right of the government to exercise some control in order to protect the public
from the unlimited market power that may be exercised by those monopolies, if left
unchecked.

10.2.1 Monopoly’s Equilibrium in the Short Run

Like any other type of firm, a monopoly would reach its equilibrium level of output that
maximizes its profits when its marginal revenue is equal to its marginal cost. But because
in a monopoly, the average revenue curve is the product’s market demand curve, we need to
first set the relationship between the market demand curve and the firm’s marginal revenue
curve before obtaining the equilibrium point.

Let us show that a marginal revenue curve is

1. down sloping just like the demand curve;

2. lower than the demand curve, as shown in Figure 10.11.
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Marginal revenue is defined as the change in total revenue with respect to output change:

MR = ∂TR

∂Q

= ∂PQ

∂Q

= P
∂Q

∂P
+ Q

∂P

∂Q

= P + ∂P

∂Q
Q,

where ∂P
∂Q is the slope, and since the change in price with respect to quantity is related to a

down sloping demand curve, it must be negative:

MR = P − ∂P

∂Q
Q.

This would mean that the marginal revenue is less than the price for any given positive level
of output Q.

For any linear demand curve, the marginal revenue curve would be linear too, but with a
slope that is twice as the slope for the demand curve. This would make the marginal revenue
curve steeper than the demand curve (located closer to the origin) and have an x-intercept
equal to half of the x-intercept of the demand curve.



MONOPOLY 383

Let us take an inverse linear demand function, such as

P = a − bQ.

Given that total revenue is

TR = PQ

= (a − bQ)Q

= aQ − bQ2,

and the marginal revenue is

MR = ∂TR

∂Q

= a − 2bQ,

where −2b is the slope of the marginal revenue curve, which is twice as the slope of the
demand curve (−b).

Now that we established both the demand curve and the marginal revenue curve, let
us take a look at the graph in Figure 10.12 to see how monopoly determines equilibrium
output level and maximizes profit.
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FIGURE 10.12

A monopolistic firm would produce its optimum level of output Qe, where its marginal
revenue is equal to its marginal cost at point e. This level of output would be sold at price
Pe, as determined by the market demand curve D at point A. The price Pe is determined
indirectly by the firm because of the firm’s influence on the quantity, given the state of the
market demand. This is why a monopoly is considered price maker, not a price taker,
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unlike the case with perfect competition. Selling Qe at a price Pe would mean that the firm’s
total revenue would be the area QeAPe0, but the cost incurred is equal to the area QeBC0,
which means that the maximum profit that can be obtained would be the shaded area of
BAPeC. The firm can still earn some profit as long as the market price would not fall below
C where it would be less than the average cost. Also, the profit would still be earned as long
as the average cost would not go higher than Pe. If it does for any reason, the firm would
suffer a loss as shown in Figure 10.13.
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FIGURE 10.13

The equilibrium level of output is Qe and the price is Pe, making the total revenue equal
to the area QeAPe0. However, since the average cost would exceed the price level Pe, the
firm’s total cost would be equal to the average cost, that is, QeB times the quantity Qe:

AC = (Qe B) (Qe) = Area Qe BC0,

which is larger than the total revenue, that is, QeAPe0, and the difference would be a loss
represented by the shaded area of ABCPe:

Area Qe BC0 − Area Qe APe0 = Area ABCPe.

Example 10.7
A monopoly has the following total cost function:

TC = 80 − 8Q + Q2.

Find its equilibrium output and price and calculate its maximum profits, given that the
market demand function is

Q = 32 − 1

3
P.
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First we have to find the total revenue function, for which we need the price. We get the
price function by taking the inverse demand function:

Q = 32 − 1
3 P.

P = 96 − 3Q,

TR = PQ,

TR = [96 − 3Q]Q,

TR = 96Q − 3Q2,

Pr = TR − TC,

Pr = 96Q − 3Q3 − 80 + 8Q − Q2,

Pr = 104Q − 4Q2 − 80,

∂Pr

∂Q
= 104 − 8Q = 0,

8Q = 104,

Q = 104
8 = 13.

This is the equilibrium quantity at which the profit is maximized. The second derivative is
negative to confirm the maximum profit:

∂2 Pr

∂Q2
= −8 < 0.

This equilibrium quantity is sold at market price, which is

P = 96 − 3Q

= 96 − 3(13)

= 57.

The maximum profit earned would be

Pr = 104Q − 4Q2 − 80

= 104(13) − 4(13)2 − 80 = 596.

10.2.2 Monopoly’s Equilibrium in the Long Run

In the long run, a monopolist will earn profit, as entry to the industry remains exclusive. The
equilibrium point occurs when the firm marginal revenue is equal to its long run marginal
cost. That would be at point E in Figure 10.14. This point would determine the optimum
level of output at Qe. This output can be sold at price Pe according to what is determined
by the market demand curve at point A. Total revenue for the firm would be 0Qe times 0Pe.
That is the entire area of 0QeAPe. The best scale of plant would be established in the long
run when the short-run average cost curve (SAC) curve touches the long-run average cost
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(LAC curve at the optimum level of input. That is at point B. It should be noted here that
while the marginal cost curves both in the short run (SMC) and in the long run (LMC)
still cross the related average cost curves at their lowest point, it is not necessary this time
that the SAC curve touches the LAC curve at their lowest points. Figure 10.14 shows that
point B is not the lowest of the two curves. However, this tangency must still occur at the
equilibrium level of output Qe. In the long run, the firm would incur cost equal to the area
QeBC0, which would leave a pure profit equal to the shaded area of BAPeC.
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FIGURE 10.14

Example 10.8
Consider a monopoly with a cost function of

TC = 120 + 6Q + Q2

270
.

1. Find the equilibrium quantity and price.

2. Calculate the firm’s maximum profit in the long run.

Solution:
If the market demand is expressed by

Qd = 4500 − 90P.

First, let us express the demand function in terms of the price:

Qd = 4500 − 90P,

90P = 4500 − Q,

P = 50 − Q

90
.
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Second, we obtain the firm’s total revenue function as P · Q:

TR = PQ,

TR =
[

50 − Q

90

]
Q,

TR = 50Q − Q2

90
.

Third, we obtain the marginal revenue function as the first derivative of the total revenue
function:

MR = ∂TR

∂Q
= 50 − Q

45
.

Similarly, the marginal cost function is the first derivative of the total cost function:

MC = ∂TR

∂Q
= 6 + Q

135
.

The equilibrium occurs when MR = MC:

50 − Q

45
= 6 + Q

135
,

50 − Q

45
− 6 − Q

135
= 0,

44 = 4Q

135
,

4Q = 5940,

Q = 1485 the optimum level of output.

We substitute Q into the demand function to obtain the price:

P = 50 − Q

90
,

P = 50 − 1485

90

= 33.50, the equilibrium price.

Now, we can calculate the firm’s profit:

Pr = TR − TC

= PQ −
[

120 + 6Q + Q2

270

]

= (33.50)(1485) − 120 − 6(1485) − (1485)2

270

= 32,550.
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10.2.3 Monopoly Power and the Lerner Index

We stated earlier that a monopoly is a price maker, unlike a firm in perfect competition,
which is considered a price taker. Monopolies set their prices on the basis of a down sloping
market demand curve. It is, therefore, a matter of the monopoly’s ability to set its product
price above its marginal cost so that it can make the highest possible profit. It is this ability
for a monopoly to have what is called market power. The Lerner index is a measure of
monopoly power for it shows the effect of price elasticity of demand on monopoly price,
relative to the product marginal cost. It is named after Abba Lerner and defined as the
ratio of the difference between price and marginal cost relative to the price. It can also be
considered the negative inverse of the price elasticity of demand. Let us derive the Lerner
index, starting with the first derivative of the profit:

Pr = TR − TC,

∂Pr

∂Q
= ∂TR

∂Q
− ∂TC

∂Q

= ∂[PQ]

∂Q
− MC

= P
∂Q

∂P
+ P

∂P

∂Q
− MC

= P + Q
∂P

∂Q
− MC.

Setting ∂Pr
∂Q to zero and rearranging, we get

P − MC + Q
∂P

∂Q
= 0,

P − MC = −Q
∂P

∂Q
.

Dividing both sides by P, we get

P − MC

P
= − Q

P

∂P

∂Q
. (10.1)

Recall that the price elasticity of demand is

ε = ∂Q

∂P
× P

Q
,

and if we reverse it, it would be

1

ε
= ∂P

∂Q
× Q

P
,
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which is the right-hand side of Equation (10.1). So, the difference between price and
marginal cost would be equal to negative inverse of the price elasticity of demand:

P − MC

P
= −1

ε
,

which is the Lerner index or as sometimes called the “price markup.” Given that the
marginal cost has a positive value, the Lerner index would mean that the elasticity value
ranges are

−1 ≤ ε ≤ −∞,

so that a monopoly would only produce on the upper elastic portion of the demand curve
as it was seen in Figure 10.11. The price elasticity of demand would indicate whether the
marginal revenue would be positive or negative:

MR > 0 if ε < −1 (elastic),

MR < 0 if ε > −1 (inelastic),

MR = 0 if ε = −1 (unit elasticity).

The Lerner index takes a value between 0 and 1, but greater the index, greater the difference
between price and marginal cost in favor of the price, which would mean a greater monopoly
power. This is naturally confirmed in the case of the perfect competition where the difference
between price and marginal cost is zero (P = MR = MC), which explains that in a perfect
competition there is no monopoly power at all.

10.3 MONOPOLISTIC COMPETITION

This is the third type of market structure, which is a combination of perfect competition and
monopoly. The major characteristics of monopolistic competition firms can be identified
as follows:

1. A large number of producers or sellers, each of whom produces a small portion of the
industry’s output, and have no significant influence to affect the market in general.

2. A large number of consumers or buyers, each of whom buys a small portion of the
market output.

3. A heterogeneous and differentiated product. Firms in such an industry would strive to
offer close substitutes but not identical products. They compete and spend resources
on development and advertisement to reinforce the differences of their products and
distinguish them from each other in order to secure a higher market share. Typical
examples of the monopolistic competition products are soft drink, pizza, fast food,
gas, and gas station services.

4. Free and easy entry to and exit from the industry.

5. Perfect information for all economic agents.
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6. While the demand curve is perfectly elastic (horizontal line) in perfect competition,
it is less elastic in the monopolistic competition, but more elastic (flatter) than the
demand curve of a monopoly.

10.3.1 Monopolistic Competition Equilibrium in the Short Run

Since the major product for a monopolistically competitive firm is a heterogeneous product
with distinguished characteristics among many close substitutes, the demand curve is highly
elastic and negatively sloped and linear. This would make the marginal revenue linear and
negatively sloped. It is still below the demand curve just like in the case of monopoly. It also
pivots from the same point on y-axis and the slope of demand curve is half of the marginal
revenue slope. Looking at Figure 10.15, we can observe that a monopolistic competition
like any other market organization would have its equilibrium output at the point where the
marginal revenue is equal to the marginal cost. That is at point E, where the optimum output
would be determined as Qe. This optimum level of output would be sold in the market at
a price determined by the market demand curve. That is Pe, shown by a horizontal line
from point A on the elastic section of the demand curve. Total revenue would be obtained
by multiplying Qe by Pe, which is the entire area of QeAPe0. This firm, like any other,
seeks profit and for that it would not sell its product unless market price is higher than its
average cost. It can be seen how Pe is higher than P that is equal to point B on the average
cost curve. This margin of the price above the average cost is the profit per unit. The total
maximum profit would be obtained by multiplying this margin (BA) by the entire output
sold, which would be represented by PB that corresponds to 0Qe. The result is that the
firm’s profit is maximized as the shaded area BAPeP. It is the same area obtained as the
difference between total revenue (QeAPe0) and total cost (QeBP0).
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FIGURE 10.15

Similar to other market structures, this monopolistic firm can incur a loss if its average
cost rises above market price (AC curve above D curve), and it can minimize the loss if the
price falls close to the average variable cost. However, it would be preferable to shut down
if the price falls to the same level as the AVC or below it.
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10.3.2 Monopolistic Competition Equilibrium in the Long Run

We saw that a monopolistically competitive firm would strive to make its own product
differentiated from the products of similar firms in the industry in order to secure a market
share that would bring some profits. However, the free and easy entry to the industry
coupled with the evidence of earning good profits would encourage more firms to get into
the industry and produce closer and better substitutes. In the long run, the rush of more
firms into the industry would eventually squeeze the profits for everybody and increase the
price elasticity of demand, as the demand curve would shift to the left and become price
elastic (flatter).

If the demand curve of individual firms continues to shift left and becomes flatter as the
market share shrinks and more close substitute products flood the market, it may finally
touch the LAC curve , but in the down sloping portion instead of the lowest point B. This
is where the average cost would be equal to the price and the firm breaks even. This point
A corresponds to the point of equilibrium E where both the LMC and SMCs are equal to
marginal revenue (Figure 10.16):

MR = LMC = SMC.
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FIGURE 10.16

This is where the optimal level of output is determined at Qe, and the equilibrium price
becomes Pe based on point A on the demand curve. Since the firm faces equal revenue and
cost, it will not be able to make any profit. Area QeAPe0 represents both total revenue and
total cost. Recording zero profit in the long run is associated with the fact that the fall of
demand allowed the price to fall to the level of average cost. This can be expressed by

P = AC,

P − AC = 0.

Multiplying by Q, PQ − ACQ = 0(Q).
PQ is total revenue, and ACQ is total cost:

TR − TC = 0,
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and the difference between the total revenue and total cost is profit:

Pr = 0.

Example 10.9
A monopolistically competitive firm has a total cost function and demand function, respec-
tively, as

TC = 200 − 10Q + 2Q2,

P = 120 − 2Q.

1. What are the equilibrium quantity and price?

2. How much profit would the firm make?

3. If the demand function changes over time to: Q = 70
6 − 1

6 P, would the firm still earn
profit?

4. What can be said about short run and long run?

Solution:
First, we should express the demand function in terms of price in order to obtain the total
revenue function:

P = 120 − 2Q,

TR = Q P

= Q(120 − 2Q)

= 120P − 2Q2,

Pr = TR − TC,

Pr = 120Q − 2Q2 − 200 + 10Q − 2Q2,

Pr = 130Q − 4Q2 − 200,

∂Pr

∂Q
= 130 − 8Q = 0,

130 = 8Q.

1. Q = 130
8 = 16.25 equilibrium output.

P = 120 − 2Q

= 120 − 2(16.25) = $87.5 equilibrium price.

2. Pr = 130Q − 4Q2 − 200

= 130(16.25) − 4(16.25)2 − 200

= $856.25.
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3. New demand function is P = 70 − 6Q:

TR = Q P = Q(70 − 6Q)

= 70Q − 6Q2,

Pr = TR − TC,

Pr = 70Q − 6Q2 − 200 + 10Q − 2Q2,

Pr = 80Q − 8Q2 − 200,

∂Pr

∂Q
= 80 − 16Q = 0,

16Q = 80,

Q = 80
16 = 5,

Pr = 80Q − 8Q2 − 200

= 80(5) − 8(5)2 − 200

= 0.

4. Since the firm earned a profit of $856.25 as shown in step 2 above, it was a short-run
operation and since it earned zero profit later, it was a long-run operation when the
demand function was P = 70 − 6Q.

10.4 OLIGOPOLY

Oligopoly is the fourth type of market structure, which is characterized by two or more large
firms that dominate a particular industry in the market. They would produce homogeneous
or slightly distinctive products such as the case of aluminum and electrical products where
the structure is called pure oligopoly. They can also produce differentiated products such
as automobiles or computers where the structure is called differentiated oligopoly.

Entry to the industry is possible but usually hard to achieve for it requires significant
capital investment, highly specialized input and products, and possibly exclusive patent.
Oligopoly is also characterized by a high degree of interdependence among the firms in
the industry. This means that any action by any individual firm in the industry would
directly affect the rest of the firms, although they individually set their own production
and price strategies, and make profits in the short and long terms. Oligopoly market is
also characterized by imperfect information among the economic players in the market.
Consumers usually do not have full information on costs, price, product quality, resources,
and production strategies.

Oligopolistic firms can sometimes enter into formal mutual agreements to fix production
targets and prices, and share profits. If they can operate under such overt collaboration, they
would form what is known as a cartel or trust. However, sometimes a covert agreement
between these firms can take place. In this case, they would form what is called a collusion.
It is illegal to form and operate any of the oligopolistic collaborations in the United States,
although it is legal in other countries. These collaborations were prohibited by the Sherman
Antitrust Act (SAA) of 1890, and later by the Federal Trade Commission Act of 1914,
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exclusively to keep competition alive and well in the economic activities of the nation. As
a result of prohibiting cartels and collusions in the United States, oligopolistic firms tried
to merge together and the law still restricts the ability of firms to form mergers. The reason
is to protect competition and prevent the industries from becoming pure monopolies. In
some cases, mergers bring higher efficiency because of appropriate scale of operations,
integration of technologies, and complementary research and development efforts. In order
for mergers to take place, the proposing firms have to win the higher court decision against
the challenges of the Federal Trade Commission.

10.4.1 The Concentration Ratio and the Herfindahl Index

The concentration ratio refers to the extent to which specific oligopolistic firms have been
dominating the industry. It is measured by the volume of sales or revenue for a specific firm
or firms as compared with the whole industry. One measure is to gauge the sales of the 4,
8, 12, 20, or 50 largest firms in the industry. It is based on the percentage of market share
of a specific company (i) in a particular cluster (n):

CRn =
∑n

i=1 si

sn
× 100,

where n can be any of those clusters of 4, 8, 12, 20, or 50 companies.
The highest ratio of concentration is 100 for the first four firms, which means that the

whole market is shared by only four firms. The top four oligopolistic companies in the
United States have a typical concentration ratio (CR4) ranging between 20% and 80%.
Another method to measure the concentration ratio is the one developed by Herfindahl and
Hirschmann, which is called the Herfindahl index (HI) or the Herfindahl–Hirschmann
index (HHI). It is the sum of the squared market shares for all oligopolistic companies that
compete in a particular industry:

HHI =
n∑

i=1

s2
i ,

where si is the ith company’s market share expressed in percentage points:

HHI =
n∑

i=1

[
msi

msn
× 100

]2

,

where msi is the market share (sales) for company i, and msn is the total sales for the
whole industry. For example, if there are only three companies, A, B, and C, dominating
the industry so that their sales are as follows:

A: 50% of sales

B: 30% of sales

C: 20% of sales

Then the HHI for this industry would be

HHI = (50)2 + (30)2 + (20)2 = 3800.
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The HHI has been gaining increasing popularity since the 1980s and has been utilized by
the US Justice Department for evaluating mergers.

10.4.2 Models of Oligopoly

Unlike competitive and monopolistic markets, oligopolistic markets operate depending
on either setting the output level or setting the product price. The following are the most
common models of oligopoly divided into two groups: the output-setting group that includes
the Cournot and Stackelberg models, and the price-setting group that includes the Bertrand
and Sweezy models.

Cournot Model Named after the French economist Augustin Cournot, this model of
oligopoly dates back to 1838. It illustrates the interdependence in the way a duopoly oper-
ates. In addition to the general assumption that the production by the two firms of the duopoly
would be equal to the production by the entire industry, Cournot assumed that the firms were
producing a homogeneous product where each decides its own level of output assuming
that the other firm would not change its output accordingly. This is to say that the model
assumed that the conjectural variation between the two firms in the industry was zero:

d Q1

d Q2
= d Q2

d Q1
= 0.

The original Cournot model was about two companies producing spring water at no cost.
Figure 10.17 shows that the first firm started as a sole producer in the market. Its demand
curve is linear and represented by D1 where Qm is the market demand on spring water.
The marginal revenue is represented by MR1 and since the marginal cost is zero, the
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equilibrium point is at the intersection of MR1 with the horizontal axis. This is where the
first firm produces Q1 and sells it at P1 based on point A on the demand curve D1.

As for the second firm, it gets into the market believing that the first firm would not
change its production of Q1. So the demand curve for the second firm (D2) starts from Q1

and extends parallel to D1. The marginal revenue for this firm (MR2) will also equate its
marginal cost of zero at Q2. The equilibrium level of output (Q2) for the second firm would be
sold at P2 based on point B on D2. Now, the first firm would, in turn, assume that the second
firm would continue to produce Q2 and sell it for P2 with no change. Firm 1 would react to
the amount that the second firm produced by starting at Q′

1on a new demand curve D′
1that is

now shifted to the left. The whole process would be repeated when a new equilibrium point
(Q3) is established where the new marginal revenue curve MR′

1crosses the horizontal axis.
This new output level for the first firm in the second round would be sold at a price P3, which
is determined by the midpoint C on the demand curve D′

1. The second firm would react
and behave just like it did before. Over time, and through the action and reaction between
the two firms, each firm will eventually end up taking its share of production that would be
equal to one-third of the whole market demand Qm. Both would produce two-thirds Qm.

Cournot equilibrium can be illustrated better if we consider the following example:
suppose that the following linear demand function is for a duopoly producing a certain
product at a marginal cost of $50:

P = 400 − Q,

where Q is the market output level, that is the sum of the two companies’ output
(Figure 10.18):

Q = Q1 + Q2.
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Since the equilibrium is determined at the equality between the marginal revenue and
marginal cost, we need to derive the marginal revenue and equate it to the marginal cost as
MC = 25, and solve for Q. Let us start with the total revenue for firm 1:

TR1 = Q1 P

= Q1[400 − (Q1 + Q2)]

= 400Q1 − Q2
1 − Q1 Q2,

MR1 = ∂TR1

∂Q1
= 400 − 2Q1 − Q2,

MR1 = MC1,

400 − 2Q1 − Q2 = 50,

2Q1 = 350 − Q2,

Q1 = 175 − Q2

2
, (10.2)

TR2 = Q2 P

= Q2[400 − (Q1 + Q2)]

= 400Q2 − Q2
2 − Q2 Q1,

MR2 = ∂TR2

∂Q2
= 400 − 2Q2 − Q1,

MR2 = MC2,

400 − 2Q2 − Q1 = 50,

2Q2 = 350 − Q1,

Q2 = 175 − Q1

2
. (10.3)

We can solve Equations (10.1) and (10.2) simultaneously:

Q1 = 175 − 0.5Q2,

Q2 = 175 − 0.5Q1,

Q1 = 175 − 0.5(175 − 0.5Q1),

Q1 = 175 − 87.5 + 0.25Q1,

0.75Q1 = 87.5,

Q1 = 87.5

0.75
= 116.67,

Q2 = 175 − 0.5(116.67) = 116.67,

Q = Q1 + Q2,

Q = 116.67 + 116.67 = 233.33, (10.4)
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P = 40 − Q,

P = 400 − 233.33 = 166.67, market price.

Since both firms produce an equal output of 116.67 units and face the same market price
of $166.67, their total revenue would be

(116.67)(166.67) = 19,445.39.

Given that there is no fixed cost, and the marginal cost is $50, which is equal to the average
cost, the total cost for each firm would be

(50)(116.67) = 5833.50,

which makes the profit for each firm equal to

Pr = 19,445.39 − 5833.50 = 13,611.89.

Example 10.10
What would be the equilibrium output and price if the above case is a monopoly?

Solution:
Under monopoly there would be one output (Q) and the total revenue would be

TR = PQ

= (400 − Q)Q

= 400Q − Q2,

MR = ∂TR

∂Q
= 400 − 2Q,

MC = 50,

MR = MC,

400 − 2Q = 50,

350 = 2Q,

175 = Q.

The equilibrium price would be

P = 400 − Q

= 400 − 175 = 225,

TR = (225)(175) = 39,375,

TC = (50)(175) = 8750,

Pr = 39,375 − 8750 = 30,625.
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This shows that the size of market production under duopoly (233.33) turned out to be
larger than the market production under monopoly (175), but the monopoly price is higher
than the price under duopoly. Finally, the monopoly would earn more profit (30,625) than
the duopoly (27,233.78).

Stackelberg Model The Stackelberg model of oligopoly is about the strategic interaction
among oligopolistic companies in terms of their production and price decisions. It is an
extension of the Cournot model developed and named after the German economist and
mathematician Heinrich Von Stackelberg in 1934. We can recognize three essential points
that show how the Stackelberg model is different from the Cournot model:

(a) Decision making of the parties is sequential instead of simultaneous.

(b) Parties are interdependent instead of independent.

(c) Parties are classified into leader and follower(s) where the dominant leader company
takes the advantage of the first move. It would operate based on the likely reaction
of the other competitive company, while the company, being the follower, would
behave just like it did in the Cournot model. Generally speaking, the Stackelberg
leader company would depend on a stimulus or signal from the Stackelberg follower
in drawing its strategy of production, price, and profit maximization.

Let us reconsider the Cournot model and adjust it on the basis of the Stackelberg
modification. Let us assume that the first firm is going to be the Stackelberg leader and
the second firm is the Stackelberg follower. Assume further that firm 1 would be able
to correctly anticipate the output reaction of firm 2 (Q2 = 175 − 1

2 Q1) and take it into
consideration when deciding the profit-maximizing level of output.

So, the total revenue function of firm 1 would be

TR1 = Q1 P

= Q1[400 − (Q1 + Q2)]

= 400Q1 − Q2
1 − Q1 Q2

= 400Q1 − Q2
1 − Q1(175 − 0.5Q1)

= 400Q1 − Q2
1 − 175Q1 + 0.5Q2

1

= 225Q1 − 0.5Q2
1,

the marginal revenue for firm 1 would be

MR1 = ∂TR1

∂Q1
= 225 − Q1,

and the equilibrium condition, given that the marginal cost is 50, would be

MR1 = MC1,

225 − Q1 = 50,

Q1 = 175. (10.5)
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So, that would be the output level of the first firm. The output level of the second firm
would be

Q2 = 175 − 1/2Q1,

Q2 = 175 − 1/2(175),

Q2 = 87.5, (10.6)

and the industry output (Q) would be

Q = Q1 + Q2,

Q = 175 + 87.5 = 262.6, (10.7)

which is the market equilibrium quantity that would be sold at the price of

P = 400 − Q,

P = 400 − 262.5 = 137.50. (10.8)

We can conclude that the Stackelberg equilibrium brought a market output level (262.5)
higher than the Cournot (233.33), but under the Stackelberg strategy market price ($137.50)
was lower than it was under Cournot ($166.67).

Example 10.11
Consider a duopoly facing a demand function P = 500 − 5Q and an identical cost function
TC1 = 10Q1 and TC2 = 10Q2:

(a) Find the Cournot equilibrium.

(b) Find the Stackelberg equilibrium if firm 1 follows firm 2.

(c) Compare the equilibrium quantities and prices as well as profits between the two
models.

Solution:

(a) We start by forming the total revenue function for firm 1:

TR1 = Q1 P,

TR1 = Q1[500 − 5Q].

Since Q is the output for the entire industry and consists of the outputs of both firms
Q1 and Q2:

TR1 = Q1[500 − 5(Q1 + Q2)],

TR1 = 500Q1 − 5Q2
1 − 5Q1 Q2.
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Now we can form the profit function (Pr1), set its first derivative to zero, and solve
for Q1:

Pr1 = TR1 − TC1,

Pr1 = 500Q1 − 5Q2
1 − 5Q1 Q2 − 10Q1,

Pr1 = 100Q1 − Q2
1 − Q1 Q2 − 2Q1,

Pr1 = 98Q1 − Q2
1 − Q1 Q2,

∂ Pr1

∂Q1
= 98 − 2Q1 − Q2 = 0,

2Q1 = 98 − Q2,

Q1 = 49 − 1
2 Q2. (10.9)

Similarly, Q2 would be equal to a similar value

Q2 = 49 − 1
2 Q1. (10.10)

Solving (10.9) and (10.10) simultaneously, we obtain the value of Q1:

Q1 = 49 − 0.5(49 − 0.5Q1),

Q1 = 49 − 24.5 − 0.25Q1,

Q1 − 0.25Q1 = 24.5,

0.75Q1 = 24.5,

Q1 = 32.67,

Q2 = 49 − 0.5(32.67) = 32.67.

Industry output:

Q = Q1 + Q2,

Q = 32.67 + 32.67 = 65.33.

Market price:

P = 500 − 5Q

= 500 − 5(65.33) = $173.33,

Pr1 = 500Q1 − 5Q2
1 − 5Q1 Q2 − 10Q1,

Pr1 = 500(32.67) − 5(32.67)2 − 5(32.67)(32.67) − 10(32.67),

Pr1 = 5335.

Pr2, the profit for the second firm, would be exactly the same as the profit for the
first firm:
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(b) Since firm 2 is the Stackelberg leader, we form its profit function and factor in the
reaction function of the follower Q1 = 49 − 0.5Q2:

Pr2 = 500Q2 − 5Q2
2 − 5Q2 Q1 − 10Q2,

Pr2 = 500Q2 − 5Q2
2 − 5Q2(49 − 0.5Q2) − 10Q2,

Pr2 = 500Q2 − 5Q2
2 − 245Q2 + 2.5Q2

2 − 10Q2,

Pr2 = 245Q2 − 2.5Q2
2,

∂ Pr2

∂Q2
= 245 − 5Q2 = 0,

5Q2 = 245,

Q2 = 49, (10.11)

Q1 = 49 − 0.5(49) = 24.5, (10.12)

Q = Q1 + Q2,

Q = 49 + 24.5 = 73.5, (10.13)

P = 500 − 5Q,

P = 500 − 5(73.5) = $132.5, (10.14)

Pr1 = 500Q1 − 5Q2
1 − 5Q1 Q2 − 10Q1,

Pr1 = 500(24.5) − 5(24.5)2 − 5(24.5)(49) − 10(24.5),

Pr1 = 3001.25,

Pr2 = 500Q2 − 5Q2
2 − 5Q2 Q1 − 10Q2,

Pr2 = 500(49) − 5(49)2 − 5(49)(24.5) − 10(49),

Pr2 = 6002.5.

(c) By comparison, this example shows that Stackelberg’s market output (73.5) is higher
than Cournot’s market output (65.33), but market price under the Stackelberg model
(132.50) is lower than market price under the Cournot model ($173.33). Also, while
the two firms under the Cournot model earn an identical profit of $5335, the two
firms under the Stackelberg model earned different profits. The leading firm (firm 2)
earned more ($6002.50) than the following firm 1, which earned a total of $3001.25.
Market profit (the combined profit of the duopoly) was higher under the Cournot
model ($10,670) than the market profit under the Stackelberg model ($9003.75).
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Bertrand Model This model was developed and named after the French economist and
mathematician Joseph Louis Bertrand in 1883. It is one of the price-setting models of
oligopoly as opposed to the output-setting models such as Cournot and Stackelberg models.
Bertrand posited that oligopolistic firms make their production decisions independently and
simultaneously. Each firm sets its own price and assumes that the prices of rival firms remain
unchanged. The market would set the quantity based on consumer demand, and the given
prices. Bertrand further assumed that if firms have identical marginal costs and if they
produce homogeneous or identical products, any slight cut in the price of any firm may
very well lead to a price war. Consumers may significantly shift to the firm that offers a
lower price and indirectly forces the rivals to cut their prices to get their customers back.
The first firm to cut price may continue price-cutting to maintain the increased demand
for its product. The cycle of price-cutting may not stop until prices offered by all firms go
down to the level of marginal cost, squeezing profits to zero.

In order to illustrate how an oligopolistic firm relates to rivals when it comes to its
profit-maximizing price level, we consider two firms producing differentiated products and
having the following demand equations:

Q1 = 20 − 0.4P1 + 0.2P2

and

Q2 = 20 − 0.4P2 + 0.2P1,

where P1 and P2 are the price levels set by the two firms to maximize profits. Let us further
assume, for simplicity, that both firms produce at no cost:

TR1 = P1 Q1,

TR1 = P1[20 − 0.4P1 + 0.2P2],

TR1 = 20P1 − 0.4P2
1 + 0.2P1 P2.

Since TC is zero, profit would be equal to TR:

Pr1 = TR1 − TC1,

Pr1 = 20P1 − 0.4P2
1 + 0.2P1 P2.

Since the Bertrand model specifies the firm’s price as the determinant of the profit-
maximizing strategy, we take the first derivative to Pr1 with respect to price:

∂ Pr1

∂P1
= 20 − 0.8P1 + 0.2P2 = 0,

20 + 0.2P2 = 0.8P1,

P1 = 25 + 0.25P2. (10.15)
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Similarly, we can obtain P2 of the other firm as

P2 = 25 + 0.25P1, (10.16)

and we obtain P1 value by solving Equations (10.15) and (10.16) simultaneously:

P1 = 25 + 0.25(25 + 0.25P1),

P1 = 25 + 6.25 + 0.0625P1,

P1 = 0.0625P1 = 31.25,

0.9375P1 = 31.25,

P1 = 31.25

93.75
,

P1 = 33.34,

P2 = 25 + 0.25(33.34),

P2 = 33.34,

Q1 = 20 − 0.4(33.34) + 0.2(33.34),

Q1 = 13.33,

Q2 = 20 − 0.4(33.34) + 0.2(33.34),

Q2 = 13.33.

The market output (Q) would be

Q = Q1 + Q2

= 13.33 + 13.33 = 26.66.

Assuming that the output is measured by thousands of units, market production would be
26,664 units shared equally by the two firms that produce 13,332 units each. When sold at
the market price of $33.34, this level of output would generate a profit of

Pr1 = 20P1 − 0.4P2
1 + 0.2P1 P2

= 20(33.34) − 0.4(33.34)2 + 0.2(33.34)(33.34)

= 2445.

Also,

Pr2 = 20P2 − 0.4P2
2 + 0.2P2 P1

= 20(33.34) − 0.4(33.34)2 + 0.2(33.34)(33.34)

= 2445.

Each of the firms would earn $2,445,000 and the market profit would be $4,890,000.
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Figure 10.19 shows how the Bertrand equilibrium point is obtained as the intersection
point between the price reaction curves of both firms.

P1

P1 = 33.34

P2 = 33.34

Bertrand equilibrium$25

$25

E

P2

P1 = 25 + 1/4 P2

P2 = 25 + 1/4 P2

FIGURE 10.19

Example 10.12
Consider a duopoly producing a homogeneous product and facing identical demand and
cost functions:

Q1 = 400 − 4P1 + 2P2,

TC1 = 32Q1,

Q2 = 400 − 4P2 + 2P1,

TC2 = 32Q2.

Find the Bertrand equilibrium price, output, and profit for each firm.

Solution:

TR1 = P1 Q1,

TR1 = P1[400 − 4P1 + 2P2],

TR1 = 400P1 − 4P2
1 + 2P1 P2,

TC1 = 32Q1,

TC1 = 32[400 − 4P1 + 2P2],

TC1 = 12,800 − 128P1 + 64P2.
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Similarly, we can obtain TR2 and TC2 as

TR2 = 400P2 − 4P2
2 + 2P2 P1,

TC2 = 12,800 − 128P2 + 64P1.

The profit function for both firms would be

Pr1 = TR1 − TC1,

Pr1 = 400P1 − 4P2
1 + 2P1 P2 − 12,800 + 128P1 − 64P2,

Pr1 = 528P1 − 4P2
1 + 2P1 P2 − 12,800 − 64P2,

Pr2 = TR2 − TC2,

Pr2 = 400P2 − 4P2
2 + 2P2 P1 − 12,800 + 128P2 + 64P1,

Pr2 = 528P2 − 4P2
2 + 2P2 P1 − 12,800 − 64P1,

∂ Pr1

∂P1
= 528 − 8P1 + 2P2 = 0,

∂ Pr2

∂P2
= 528 − 8P2 + 2P1 = 0,

528 + 2P2 = 8P1,

P1 = 66 + 0.25P2, (10.17)

528 + 2P1 = 8P2,

P2 = 66 + 0.25P1. (10.18)

Solving Equations (10.17) and (10.18) simultaneously, we get

P1 = 66 + 0.25(66 + 0.25P1),

P1 = 66 + 16.5 + 0.0625P1,

P1 − 0.0625P1 = 82.5,

P1 = 88,

P2 = 66 + 0.25(88) = 88,

Q1 = 400 − 4P1 + 2P2,

Q1 = 400 − 4(88) + 2(88),

Q1 = 224,

Q2 = 400 − 4P2 + 2P1,

Q2 = 400 − 4(88) + 2(88),

Q2 = 224,

Pr1 = 528P1 − 4P2
1 + 2P1 P2 − 12,800 − 64P2
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= 528(88) − 4(88)2 + 2(88)(88) − 12,800 − 64(88)

= 12,544,

Pr2 = 528P2 − 4P2
2 + 2P2 P1 − 12,800 − 64P1

= 528(88) − 4(88)2 + 2(88)(88) − 12,800 − 64(88)

= 12,544.

Sweezy Model This model of oligopoly behavior was developed by, and named after,
Harvard University professor of economics Paul Sweezy in 1939. The purpose was to
explain price rigidity in the oligopoly market, where it was observed that prices stayed
unchanged for a relatively long time. Sweezy posited that oligopolistic firms get into a race
with each other only when a price decrease is initiated by one firm, but would not engage in
a similar race when a price increase is initiated. The interpretation is rather simple. When
one firm cuts its price, demand shifts significantly towards the product of that firm, causing
the other firms to lose their market share. This is enough to make other firms follow the
price cut to maintain their customer base. On the other hand, when one firm increases its
price, customers shift away from it and there will be no incentive for other firms to follow.
However, the decrease in price would not result in a significant increase in demand for
the firm that initiates the price cut, simply because other firms quickly match the cut and
mitigate the effect. However, in the case of price increase, almost all customers would
shift away making the decrease in demand seem very significant for the firm that initiated
the increase. This firm would alone carry the burden of the consequences. Because of the
little positive effect of the decrease in price, and the large negative effect of the increase
in price, oligopolistic firms tend to prefer to keep the prevailing price that results in
price rigidity over a relatively long time. Technically, and as is shown in Figure 10.20,
this case would be translated into having a kinked demand curve such as ABC where the
demand is highly elastic for price increase along the segment AB (above the kink point B,
and highly inelastic for price decrease along the segment BC (below B). This is why the
Sweezy model is sometimes called the “Kinked Demand Model.”

Following the kinked demand curve, the marginal revenue curve (ADEFG) is not a
straight line. Reflecting Sweezy’s notion that oligopolistic firms would match any price
cut but not price increase, the marginal revenue curve would include three segments: (1)
AD, which corresponds to AB segment of the demand curve; (2) FG, which corresponds to
BC segment of the demand curve; and (3) the dashed segment of DEF, which represents a
region of discontinuity. It is here in this region that Sweezy’s equilibrium would occur when
the firm’s marginal cost is equal to its marginal revenue. In Figure 10.20, MC intersects MR
at E but it can actually intersect at any point along the discontinuity region and the vertical
segment of the marginal revenue. The striped area shows the range in which equilibrium
can occur, between MC′and MC′′. If the equilibrium point E occurs anywhere on DF, there
would be no change in the equilibrium quantity and no significant change in the price.
Therefore, point E would determine the equilibrium output Q1 that would be sold at the
prevailing price (P1). It is this price that would stay unchanged and rigid for a relatively
long period. Only in two cases, the market price (P1) may change: (1) when the marginal
cost MC′′drops below point F, the firm would produce more and bring the price below P1,
or (2) when the marginal cost (MC′) rises above point D, the firm would cut the output
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and be forced to fix the price above (P1). Since the price stays rigid, the oligopolistic firms
would have to find other nonprice ways of competition in order to carve out a good market
share. This is why they practically compete on the product quality, services, advertising
and other ways to gain consumer loyalty. The oligopolistic firms can gain profits as long as
their average cost remains below the price. In Figure 10.20, the average cost is determined
when the AC curve crosses the vertical BQ1 at point D. Since AC is below P1, the firm
would make a profit equal to the shaded area (HBP1AC), which is the difference between
the total revenue (QBP10) and the total cost (Q1HAC0).

Example 10.13
Consider the following kinked demand function for a product produced by an oligopolistic
firm:

Q1 = 600 − 6P,

Q2 = 180 − 1.2P.

Given that the firm faces a constant marginal cost of $60.00,

(a) find Sweezy’s prevailing price, the firm’s output, and how much profit it would
make;

(b) find the range of discontinuity in the marginal revenue or the values that marginal
cost can take without affecting Sweezy’s equilibrium.
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Solution:
To get a prevailing price, we equate the two demand functions and solve P:

(a) 600 − 6P = 180 − 1.2P,

4.8P = 420,

P = $87.50.

The quantity can be obtained from either of the demand functions:

Q1 = 600 − 6P

= 600 − 6(87.50) = 75 units,

Q2 = 180 − 1.2(87.50) = 75 units.

To get the profit (Pr), we need to calculate both the total revenue and total cost:

TR = P · Q

= (87.50)(75) = $6562.50.

Since marginal cost is constant at $60.00, it would be equal to the average cost. Total
cost is the average cost times the quantity of output (Q):

TC = AC · Q,

TC = (60)(75) = $4500,

Pr = TR − TC

= 6562.50 − 4500 = $22,062.50.

(b) Evaluating the marginal revenue of the two demand functions would give us the
upper and lower values of the marginal cost, indicating the range in which the
marginal cost curve can fluctuate without significantly changing output and price.
However, first we have to express the demand functions in terms of price (P):

Q1 = 600 − 6P,

6P = 600 − Q,

P = 100 − 1
6 Q,

TR1 = Q · P,

TR1 = Q
[
100 − 1

6 Q
]
,

TR1 = 100Q − 1
6 Q2,

MR1 = ∂TR1

∂Q
= 100 − 1

3
Q, (10.19)
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Q2 = 180 − 1.2P,

1.2P = 180 − Q,

P = 150 − 5
6 Q,

TR2 = Q · P,

TR2 = Q
[
150 − 5

6 Q
]
,

TR2 = 150Q − 5
6 Q2,

MR2 = ∂TR2

∂Q
= 150 − 5

3
Q. (10.20)

By evaluating Equations (10.19) and (10.20), we get

MR1 = 100 − 1
3 Q

= 100 − 1
3 (75) = 75,

MR2 = 150 − 5
3 Q,

= 150 − 5
3 (75) = 25.

So, the range of the marginal cost is between $25 and $75 and the current marginal
cost is $60 which is somewhere within this range.

SUMMARY

� This is the first chapter in the fourth unit on managerial decisions at the market level. It ad-
dresses market structure at the economic atmosphere in which producers and consumers
behave, interact, and act to serve their own interests in consideration of free competition
and business organization. The categorization of market structure is determined using
four criteria: (1) type of product, whether it is homogeneous or differentiated; (2) scope
of supply and demand for the product; (3) mobility of inputs; and (4) the information
status for producers and consumers. Based on these criteria, market structure is classi-
fied into four common markets: (1) perfect competition, (2) monopoly, (3) monopolistic
competition, and (4) oligopoly.

� Perfect competition is characterized by a perfectly elastic demand where the demand
curve becomes a horizontal line at the price level. Price is determined by the market and
the short-run equilibrium is determined where P = MR = MC as long as the price is
above the average variable cost. The short-run supply curve for a perfectly competitive
firm is the segment of the marginal cost curve above the point of intersection with the
average variable cost curve. In the long run, many competitive firms enter the industry
as they are completely free to do so, which may eventually squeeze out all the possible
profit to be made by any firm. In case some firms incur losses, it would eventually make
them leave the industry, and the rest would just manage to break even.

� In a monopoly, one firm in the entire industry dominates the production of a product for
which there is usually no close substitute. The demand curve for this product is a normal
downward curve with a negative slope. Equilibrium is achieved by the equimarginal
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principle where MR = MC as long as the market price for the product is higher than the
average variable cost. Unlike perfectly competitive firms, a monopoly would earn profit
in the long run because it has a hold over the industry and would not allow any entrants
into the market.

� In a market of monopolistic competition, the product is differentiated and has many close
substitutes. Many firms can enter the industry with no difficulties. The demand for the
product is highly elastic and the equimarginal principle is still the name of the game for
the best level of output in the short run. In the long run, more and more firms will enter
the industry and compete for profits. Eventually, the demand curve for each of these firms
would shift left as its market share gets smaller and smaller and they ultimately break
even.

� Oligopoly is the market where the product is either homogeneous or differentiated, but
there are a few producers in the industry and the entry is possible but usually very difficult
for its strict requirements to be satisfied. The extent of domination and concentration
of these few firms in the industry has been indexed by the concentration ratio and the
Herfindahl–Hirschmann index. Four different models of oligopoly were explained and
numerical examples and graphs were provided. The Cournot model assumes that in a
duopoly each firm would not change the level of output regardless of what the other
one is doing. Each firm would eventually end up producing one-third of the market
demand. The Stackelberg model assumes that the oligopolistic firms are interdependent
when it comes to the production decisions and that they act as leaders and followers. The
Bertrand model is concerned about price decisions among the oligopolistic firms, instead
of output size decisions. It assumes that the firms decide on their output independently
and simultaneously and that they set their own prices assuming that the other firms in
the industry would not change their prices. The last model of oligopoly is the Sweezy
model. It explains price rigidity in the oligopolistic market where it has been observed
that prices stay unchanged for a relatively long time. The model assumes that firms in
the oligopolistic industry compete with each other only when one of them initiates a
reduction in price. They compete to reduce their own prices in order to secure their
market share. However, such a competition would be pursued when a price increase is
initiated.

KEY TERMS

market market structure homogeneous product
differential product perfect competition price taker
shut-down decision monopoly price maker
Lerner index monopolistic competition oligopoly
Duopoly Herfindahl index concentration ratio
Cournot model Stackelberg model Bertrand model
Sweezy model natural monopoly monopoly power

LIST OF FORMULAS

� Lerner index:

LI = P − MC

P
= −1

ε
.
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� Concentration ratio:

CRn =

n∑
i=1

si

sn
× 100.

� Herfindahl–Hirschmann index:

HHI =
n∑

i=1

[
msi

msn
× 100

]2

.

EXERCISES

1. Construct a table to compare the major characteristics of all four types of market
structures: perfect competition, monopoly, monopolistic competition, and oligopoly.

2. Explain the circumstances under which a competitive firm would rather shut down.
Support your explanation with a graph.

3. Compare the four types of markets–perfect competition, monopoly, monopolistic com-
petition, and oligopoly—in relation to their profit-earning status in the long run.

4.
(a) What is the Lerner index? What is it meant for and how significant is it to understand

the business market?

(b) What is the Hefindahl index? What is it meant for and how significant is it to
understand the business market?

5. Make a table to compare the major assumptions and ideas of the four models of
oligopoly: Cournot, Stackelberg, Bertrand, and Sweezy.

6. A competitive firm sells its product for $50.00. If it has the following cost function,
what would be its equilibrium output and how much profit can it make?

TC = 5000 + 10Q + 0.05Q2.

7. The following are the demand and supply functions for a product produced by an
industry of perfect competition that includes 100 firms:

Qd = 6600 − 12P,

Qs = 1600 + 13P1.

(a) What would be the market price for the product and the equilibrium output for the
industry?

(b) Calculate the marginal cost for each firm in the industry.

(c) What would be the market share for each firm in the industry?
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8. A competitive firm has the following total cost (TC) function:

TC = 2400 + 225Q − 36Q2 + 6Q3.

Calculate at what point will this firm make a decision to shut down?

9. If a monopolistic firm has the following variable cost function:

VC = 300 + 15Q + Q2

108
.

(a) What would be its optimum output level if the fixed cost is ______.

(b) What would be its maximum profit?

10. If there is a duopoly with a demand function for their product such as

Q = 100 − P

15
,

and a cost function such as TC = 30Q, calculate both the Cournot and the Stackelberg
equilibriums and find out how much profits the firms can make according to each
model.
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PRICING DECISIONS AND PRACTICES

11.1 BASICS OF PRICE SETTING

There are some simple and straightforward rules for businesses to set their product prices in
order to achieve their major goal of profit maximization. In a perfectly competitive market,
all businesses are price takers, economic information is open and free, and the demand
curve is a horizontal line reflecting the total revenue. This implies that the demand is set
initially at the price level and that the price (P) is the same as the marginal revenue (MR):
P = MR. Going by the equimarginal rule to reach the equilibrium that assures the maximum
profit, this relation leads to the fact that price is to be equal to the marginal revenue, and
marginal cost (MC) as well:

P = MR = MC.

In other imperfectly competitive markets such as monopoly, monopolistic competition,
and oligopoly, price is a function of quantity of product, and demand is characterized by
a down-sloping curve as opposed to the horizontal line under perfect competition. The
marginal revenue and marginal cost still have to be equal as a condition for the equilibrium
level of price and output for the maximization of profit. However, their relationship to price
would not remain a simple equality as it is in the perfect competition. We can follow this
relation in the following way:

P = f (Q),

P · Q = TR,
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MR = ∂TR

∂ Q
= ∂[P · Q]

∂ Q
,

MR = P + Q

[
∂ P

∂ Q

]
.

Multiplying the right-hand side of 1 = P/P, we get

MR = P

[
P

P

]
+

[
P

P

] [
Q∂ P

∂ P

]
,

MR = P + P

[
Q

P
· ∂ P

∂ Q

]
.

Recalling that the term within the brackets is the inverse of the price elasticity of demand
(ε = ∂Q/∂P × P/Q), we can rewrite the MR equation as

MR = P + P

[
1

ε

]

or

MR = P

[
1 + 1

ε

]
.

Equating marginal revenue to marginal cost for equilibrium yields

MC = P

[
1 + 1

ε

]
,

which means that, for a firm to maximize its profit, it must set the price of its product equal
to its marginal cost divided by (1 + 1/ε), where ε is the point elasticity of demand for that
product:

P = MC

1 + 1

ε

.

Firms can set up their market price by considering a markup over either marginal cost
or purchase price. Both ways of marking up aim at maximizing profit, which is the ultimate
objective.

11.2 THE MARKUP RULE

When a firm can estimate the price elasticity of demand for its product, it can simply
calculate a markup percentage over its marginal cost. This is called the optimal markup
on cost and is determined as explained below.
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If we calculate the profit margin, which is the difference between price and marginal
cost (P – MC) and express it in relation to the marginal cost itself, we obtain what is called
the markup on cost (MupC):

MupC = P − MC

MC
,

P − MC = (MupC)(MC),

P = (MupC)(MC) + MC,

P = MC[MupC + 1]. (11.1)

Recall that price can be expressed in terms of marginal cost and ε (P = MC/(1 + 1/ε)):

MC

1 + 1

ε

= MC[MupC + 1].

Dividing by MC, we get

MC

1 + 1

ε

− 1 = MupC,

MupC = − 1

ε + 1
, (11.2)

which is the optimal markup on cost.
Note that the firm’s marginal cost is assumed to be constant at the standard level of

output (70–80% of capacity). It implies that the marginal cost is equal to what is called the
fully allocated average cost (FAAC):

FAAC = AVC + AOC,

where the FAAC is the summation of the firm’s estimated average variable cost (AVC) and
the average overhead cost (AOC). In reality, firms do not have accurate information on the
marginal cost when they have to price their product. So, practically, they find the easiest
way to set the profit-maximizing price. They can estimate the variable and fixed costs per
unit and combine them to represent the FAAC. They can then replace MC in Equation
(11.1) with

P = FAAC[MupC + 1]. (11.3)

Example 11.1
The total variable cost (TVC) for a product is estimated at $3000 and the total overhead
cost is $1500. Given that the firm’s standard output is 300 units, what would be the price
of the product if the firm follows the 32% markup policy?
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Solution:

AVC = TVC

Q
= 3000

300
= 10,

AOC = TOC

Q
= 1500

300
= 5,

FAAC = AVC + AOC

= 10 + 5 = 15,

P = FAAC [MupC + 1]

= 15[0.32 + 1] = $19.80.

So, the product that costs $15 would be priced at $19.80. This is a markup of 32% as it
is confirmed by dividing the profit margin by the cost:

P − FAAC

FAAC
= 19.80 − 15

15
= 0.32.

However, the markup can also be based on price instead of marginal cost. In this case,
the profit margin (P – MC) would be expressed based on how it is related to the price so
that the markup would be considered the markup on price (MupP):

MupP = P − MC

P
.

As for expressing the markup in terms of price elasticity of demand, let us recall the
marginal cost formula in terms of price and elasticity:

MC = P

[
1 + 1

ε

]

= P + P

ε
.

− P

ε
= P − MC.

Dividing by P, we get

P − MC

P
= −1

ε
,

MupP = −1

ε
,

(11.4)

which is called the optimal markup on price. It should be noted that both markup on cost
and markup on price have negative relationships with the elasticity of demand. The higher
the elasticity, the lower the markup percentage; and the lower the elasticity, the higher the
markup percentage.
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Example 11.2
Suppose that a firm has estimated the FAAC of its product as $65, how much would the
market price be if the firm depends on its estimated elasticity of –3.59 of a similar product?

Solution:
We use the markup-on-cost formula:

MupC = − 1

ε + 1

= − 1

−3.59 + 1
= 38.6%,

P = FAAC[MupC + 1]

= 65[0.386 + 1] = $90.

11.3 MULTIPRODUCT PRICING STRATEGIES

Most firms do not produce only a single product. They usually produce multiple products
that would naturally be related as either substitutes, in the case of producing different models
of the same products, or complements, in the case of producing the necessary accessories of
the main produce. Let us take, for example, the production of personal computers nowadays.
We all know that computers are produced in many models, styles, and sizes. They can also
be produced separately, for example, the screens, keyboards, modems, speakers, extra hard
drives, and more components that serve as complements to the main unit. There are also
other important complements such as the software and the technical service. This requires
the producing company to pay special attention to its pricing strategies for all these units,
simply because their demand is inextricably interrelated. For example, if the firm decides
to reduce the price of computer model A, then the demand will increase not only for model
A but also for all other parts related to this model. In addition, consumers are expected
to shift away from the similar model C produced by the same company. The decrease
in demand for model C may cause some loss, and the increase in demand for model A
may cause increase in the prices of inputs to model A. This is why all actions have to be
coordinated to ensure a healthy balance that would eventually culminate in a positive net
profit for the firm. This would imply that in the first-order condition for profit maximization,
the total revenue for each product appears along with the total revenue for the other
produce:

∂ Pr

∂ Q A
= ∂TRA

∂ Q A
+ ∂TRC

∂ Q A
− ∂TCA

∂ Q A
= 0,

∂ Pr

∂ QC
= ∂TRC

∂ QC
+ ∂TRA

∂ QC
− ∂TCC

∂ QC
= 0,

or

MRA = ∂TRA

∂ Q A
+ ∂TCC

∂ Q A
= MCA, (11.5)

MRC = ∂TRC

∂ QC
+ ∂TRA

∂ QC
= MCC . (11.6)



JOINT PRODUCTS WITH INDEPENDENT DEMANDS 419

This means that the profit-maximizing production requires the firm to have its marginal
cost equal to not only the change in total revenue of one product but also the change
combined with the change in total revenue of the other product. The type of relationship
between the two products is determined by the sign of the second term of the combined
units in Equations (11.5) and (11.6), namely, if ∂TRC/∂QA or ∂TRA/∂QC is positive, the two
products are complements, and if the signs are negative, the two products are substitutes.
This is because these terms stand for

� the impact on product C’s revenue caused by selling an additional unit of product A,
in the case of ∂TRC/∂QA;

� the impact on product A’s revenue caused by selling an additional unit of product C,
in the case of ∂TRA/∂QC.

11.4 JOINT PRODUCTS WITH INDEPENDENT DEMANDS

11.4.1 Product Set of Fixed Proportions

Often firms produce products that are related to each other and share the same set of inputs.
In many cases, these products are defined as the pair of a main product and a by-product.
Although each has its own demand in the market, they share the same cost function. The
classic example of that is the production of beef and hide, where each cow has one carcass
and one skin. This is the case of joint products with fixed proportions. As shown in Figure
11.1, products like beef and hide have their independent demand curves, such as D1 and

P1
A

B
C

D

D1

D2

P3

P2
P4

Q1

Q1

MRt
MC1

MC2
MR1

MR2

Q2

Q2

Q

Q

Q3

Q3

e2

m

e

P

FIGURE 11.1
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D2, respectively, in the upper panel. Since these products are produced in sets of two with
fixed proportions, they have their marginal revenue curves MR1 and MR2 in the lower panel
where combined marginal revenues of the two products form the total marginal revenue
(MRt) as the vertical summation of the two. Note that MRt merges with MR1 at point m
because MR2 has reached zero in Q2 and would be negative beyond that. The optimal output
and price are determined when the joint marginal cost (MC1) crosses the MRt at point e.
The equilibrium output level of the packages of beef and hide is determined at Q1, which
would lead to the prices of the two products as determined by point A on the beef demand
curve D1 and point B on the hide demand curve D2 in the upper panel. This optimal output
level would be sold at P1 for beef and P2 for hide (Figure 11.1).

Note that the MRt would equal the beef marginal revenue (MR1) to the right of point m
because the hide marginal revenue MR2 becomes irrelevant beyond Q2. So, if the marginal
cost curve crosses the MRt curve beyond point m, like in the case of MC2, the equilibrium
point would be e2 and the optimal output level would be Q3 leading to selling the beef at P3

as determined from point D on D1. However, since the marginal revenue for hide is negative
at this stage, the firm would have no choice but to offer only Q2 of hide at P4 as determined
from point C on D2, and would have to destroy the excess amount of hide, which is equal
to (Q3 – Q2).

Example 11.3
Two products, x and y, are produced jointly. Find the profit-maximizing price of each and
the total profit if their demand functions and the cost function are

Qx = 60 − 3Px ,

Qy = 100 − 4Py,

TC = 250 + 8Q + 0.25Q2.

Solution:
First, we express the demand functions in terms of prices and obtain the total and marginal
revenue for each:

Px = 20 − 1

3
Qx ,

Py = 25 − 1

4
Qy,

TRx = Qx

[
20 − 1

3
Qx

]
,

TRx = 20Qx − 1

3
Q2

x ,

MRx = ∂TRx

∂ Qx
= 20 − 2

3
Qx ,
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TRy = Qy

[
25 − 1

4
Qy

]
,

TRy = 25Qy − 1
4 Q2

y,

MRy = ∂TRy

∂ Qy
= 25 − 1

2
Qy,

MRt = MRx z = MRy,

MRt = 20 − 2
3 Qx + 25 − 1

2 Qy,

MRt = 45 − 7
6 Q,

MC = ∂TC

∂ Q
= 8 + 1

2 Q,

MRt = MC,

45 − 7
6 Q = 8 + 1

2 Q,

37 = 9
6 Q,

24.67 = Q, the equilibrium output of the two-product package,

Px = 20 − 1
3 (24.67) = 11.78, m price of product x,

Py = 25 − 1
4 (24.67) = 18.83, price of product y,

TRt = TRx + TRy,

TRt = 20Qx − 1
3 Q2

x + 25Qy − 1
4 Q2

y,

TRt = Px Qx + Py Qy

= (11.78)(24.67) + (18.83)(24.67) = 755,

TC = 250 + 8(24.67) + 25(24.67)2 = 599,

Pr = TRt − TC

= 755 − 599 = 156.

11.4.2 Product Set of Variable Proportions

This is a more common case than the joint products with fixed proportions. The majority of
firms produce products that share the same sources of inputs and they are most likely to be
substitutes than complements. This leads to the variability in proportions for they compete
to employ the largest share of the firm’s available resources. A tradeoff must occur where
producing more of product x would necessitate producing less of product y. This tradeoff
is reflected in the firm’s concave isocosts such as ISCOS1, ISCOS2, and ISCOS3 in Figure
11.2. Each of these isocosts would represent a level of total cost, which stays fixed at any
point on the curve.
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As for the total revenue from the two products, x and y, the isorevenue lines such as
ISREV1, ISREV2, and ISREV3 represent the revenues that stay fixed along the lines. A
firm would optimize at points A, B, and C when it can produce the optimal combination of
outputs of the two products, reaping the highest possible revenue from both at the lowest
possible cost. For example, at a given cost of TC2, the firm would produce Qx2 and Qy2 and
collect a total revenue of TR2. The equilibrium point would be the point of tangency (B)
between ISCOS2 and ISREV2.

Example 11.4
A company produces two joint products using the same production facility. Find the
equilibrium quantities and prices of both products if the demand functions and total cost
functions are expressed as

Px = 500 − 25Qx ,

Py = 100 − 10Qy,

TC = Q2
x + Qx Qy + 2Q2

y + 5,

TRx = Qx [500 − 25Qx ],

TRx = 500Qx − 25Q2
x ,

TRy = Qy[100 − 10Qy],

TRy = 100Qy − 10Q2
y,

Pr = TRx + TRy − TC,

Pr = 500Qx − 25Q2
x + 100Qy − 10Q2

y − Q2
x − Qx Qy − 2Q2

y − 5,

Pr = 500Qx − 26Q2
x + 100Qy − 12Q2

y − Qx Qy,
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∂Pr

∂ Qx
= 500 − 52Qx − Qy = 0,

∂Pr

∂ Qy
= 100 − 24Qy − Qx = 0.

Solution:
Solving the first-order condition (FOC) simultaneously, we get

500 = 52Qx + Qy, (11.7)

100 = 24Qy + Qx . (11.8)

From (11.8),

Qx = 100 − 24Qy .

Substitute in (11.7):

Qy = 500 − 52(100 − 24Qy),

Qy = 500 − 5200 + 1248Qy,

1247Qy = 4700,

Qy = 3.77,

Qx = 100 − 24(3.77) = 9.52,

Px = 500 − 25(9.52) = 262,

Py = 100 − 10(3.77) = 62.30,

Pr = 500(9.52) − 26(9.52)2 + 100(3.77) − 12(3.77)2 − (9.52)(3.77) − 5

= 165.55.

11.5 TRANSFER PRICING

The expansion of the industry and the rise of giant multidivision firms that structured its
operations on the vertical production basis created a considerable conflict in the pricing
system among the subsidiaries and the parent company. If we take, for example, the auto
industry, we would find that any auto maker has many divisions and subdivisions not only
to produce lines of products but also to produce components of the final product that
would be transferred to other plants for assembly. The industrial system where the output
of one plant becomes an input in another plant until the final product is assembled is called
the vertical integration system. If each plant and each division operates under the profit-
maximizing principle, the final product and the parent company may not end up having
an optimal output and price and may not be collecting any profit for the real potential
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of increasing the cost toward the end in a way that cannot be exceeded by the revenues
from the final product. Transfer pricing refers to the way of pricing the intermediate
products that would be moved to other plants as inputs and would ultimately lead to the
final product. The optimal transfer pricing would face one of the three possibilities: (1)
when the intermediate product cannot be sold in another external market; (2) when it can
be sold in a competitive market; and (3) when it can be sold in a noncompetitive market.
Figure 11.3 shows that MC is the vertical summation of two marginal costs: MCi, which is
the marginal cost of the intermediate product, and MCf, which is the marginal cost of the
final product. It is the intersection between this collective MC and the marginal revenue of
the final product MRf at e, which would determine the profit-maximizing output level Qe.
This level of production is sold by Pe as it is determined by point A on the market demand
for the final product (Df). Consistent with output level Qe, point B is the equilibrium point
for the intermediate product that sets the price of the intermediate product as input at Pt,
allowing a room as wide as (Pe – Pt) for the final product to reap the revenue that maximizes
the profits. The conclusion is that point B would set the rule that in the case of no external
market for the intermediate product, the marginal cost of that intermediate product (MCi)
would become the optimal transfer price (Pt). However, we can contemplate the output
level of the intermediate product that is determined at B. If it is more than Qe, the final
product plant will take what it needs and let the rest be sold to other plants in an external
market. If, on the other hand, the output of the intermediate product turns out less than
Qe, the final product plant will seek the shortage in an external market. The possibility of
involving an external market for the intermediate product can be of two kinds: a perfectly
competitive market and an imperfectly competitive market.

Q

P

Di = MRi = Pi
MRf

Pt

Pe
A

MC

MCi

MCf

Qe

Df

e

R

FIGURE 11.3

11.5.1 The Intermediate Product in a Perfectly Competitive Market

Figure 11.4 shows the case in which an excess output of the intermediate product is sold in
the external market after the final product firm absorbed the amount it needs.
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It is shown in this figure that the intermediate product firm faces lower marginal cost
(MCi) than it faced before, which was the reason to increase output from Qe to Qi. Since
the final product firm still needs only Qe, the difference (Qi – Qe) would be sold at the
competitive market where the price (Pt) is determined by the horizontal demand curve
Di which is equal to the marginal revenue (MRi) and marginal cost (MCi). Considering
its need of the intermediate product (Qe), the final product firm would still sell its final
product output, which is equal to Qe at the same price Pe, which is determined by the
market demand curve Df, according to point A. The equilibrium point (e) that determined
Qe remains unchanged.

Example 11.5
Consider a vertical integration firm with the following demand function and total cost
function:

Q = 100,000 − 2000P,

TC = 156,250 + 12.5Q + 0.00075Q2.

1. Find the equilibrium output, price, and profit.

2. Assuming that there is no external market for the intermediate product, find the
transfer price of the intermediate product if the total cost functions of the intermediate
and final products were given by

TCi = 125,000 + 10Q + 0.0005Q2,

TC f = 31,250 + 2.5Q + 0.00025Q2.

3. Suppose that there is a perfectly competitive market for a very close substitute to the
intermediate product, and suppose further that venders can provide the final product
plant with unlimited supply of that product substitute at a competitive price of $17.50.
What would happen to the transfer price and the company’s profits?
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4. Suppose that the intermediate product company found an unlimited demand of its
product abroad and that it can sell for $40.00 per unit. What would be the effects on
the final product company in terms of its optimal output, price, and profits?

Solution:

1. First, we express the demand function in terms of price:

Q = 100,000 − 2000P,

2000P = 100,000 − Q,

P = 50 − 0.0005Q,

TR = Q · P,

TR = Q[50 − 0.0005Q],

TR = 50Q − 0.0005Q2,

MR = ∂TR

∂ Q
= 50 − 0.001Q,

TC = 156,250 + 12.5Q + 0.00075Q2.

MC = ∂TC

∂ Q
= 12.5 − 0.0015Q,

MR = MC,

50 − 0.001Q = 12.5 + 0.0015Q,

0.0025Q = 37.5,

Q = 37.5

0.0025
= 15,000 equilibrium output,

P = 50 − 0.0005(15,000) = $42.50 equilibrium price,

Pr = TR − TC

= 50Q − 0.0005Q2 − 156,250 − 12.5Q − 0.00075Q2

= 37.5Q − 0.00125Q2 − 156,250

= 37.5(15,000) − 0.00125(15,000)2 − 156,250

= 125,000.

2. The marginal cost MC is the vertical summation of the marginal cost of the interme-
diate product (MCi) and the marginal cost of the final product (MCf):

MCi = ∂TCi

∂ Q
= 10 + 0.001Q,

MC f = ∂TC f

∂ Q
= 2.5 + 0.0005Q,



TRANSFER PRICING 427

MR = MC = MCi + MC f ,

50 − 0.001Q = 10 + 0.001Q + 2.5 + 0.0005Q,

37.5 = 0.0025Q,

Q = 15,000.

This means that the optimal level of output remains the same. The transfer price
(Pt) under the assumption of no external market would be equal to the marginal cost
(MCi) at the optimal level of output:

Pt = MCi

= 10 + 0.001Q

= 10 + 0.001(15,000) = $25.

3. The transfer price in this case will no longer be $25. It will be the market price of
$17.50. In this case, we can find the profit-maximizing output for the final product
company:

MR = MC f + Pt ,

50 − 0.001Q = 2.5 + 0.0005Q + 17.50,

30 = 0.0015Q,

Q = 20,000.

However, the intermediate product plant can only offer a certain amount of the
product at this market price:

MCi = Pt ,

10 + 0.001Q = 17.50,

0.001Q = 7.50,

Q = 7500.

Here, the final product company can take 7500 units from the intermediate product
plant and buy the rest (20,000 – 7500 = 12,500) from other venders. The price of the
final product will be

P = 50 − 0.0005Q

= 50 − 0.0005(20,000)

= 40.

The total cost to the final product company will be

TC = TCi + TC f + TCm,
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where TCm is the cost of supply from the external market, which is equal to PtQm:

TCi = 125,000 + 10Q + 0.0005Q2

= 125,000 + 10(7500) + 0.0005(7500)2

= 228,125,

TC f = 31,250 + 2.5Q + 0.00025Q2

= 31,250 + 2.5(20,000) + 0.00025(20,000)2

= 181,250,

TCm = Pt Qm

= (17.50)(12,500) = 218,750,

TC = 228,125 + 181,250 + 218,750 = 628,125,

TR = 50Q − 0.0005Q2

= 50(20,000) − 0.0005(20,000)2 = 800,000,

Pr = TR − TC

= 800,000 − 628,125 = 171,875.

The impact of the existence of the competitive external market is positively felt
for both—the company, which earned $46,875 more profits (171,875 – 125,000) or
37.5% more profits, and the general consumers who enjoyed a lower price of the final
product ($40 instead of $42.50).

4. The output for the final product company would be obtained based on the new price
for the intermediate product:

MR = MC f + Pt ,

50 − 0.001Q = 2.5 + 0.0005Q + 40,

75 = 0.0015Q,

Q = 5000 units,

P = 50 − 0.005Q,

P = 50 − 0.0005(5000) = $47.50.

The intermediate product company will be able to produce

MCi = Pt,

10 + 0.001Q = 40,

0.001Q = 30,

Q = 30,000 units.
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So, an output of 30,000 units will be split between 5000 units for the domestic
need to the final product plant and 25,000 units to be sold abroad.

The profit for the final product company will be determined by the difference
between its combined revenue and combined cost:

Pr = TR − TC,

TR = Local TR + Abroad TR,

Local TR = 50Q − 0.005Q2

= 50(5000) − 0.0005(5000)2

= 237,500,

Abroad TR = P · Q

= (40)(25,000)

= 1,000,000,

TC = TCi + TC f ,

TCi = 125,000 + 10Q + 0.0005Q2

= 125,000 + 10(30,000) + 0.0005(30,000)2 = 875,000,

TC f = 31,250 + 2.5Q + 0.00025Q2

= 31,250 + 2.5(5,000) + 0.00025(5,000)2 = 50,000,

Pr = TR − TC

= (237,500 + 1,000,000) − (875,000 + 50,000)

= 312,500.

11.5.2 The Intermediate Product in an Imperfectly Competitive Market

The second possibility is that the intermediate product would be sold at an imperfectly com-
petitive market after satisfying the need of the final product plant. Figure 11.5 shows both
the negatively sloped demand and marginal revenue curves Di and MRi of the intermediate
product in such a market. The effective marginal revenue (EMR) is the horizontal sum of
the marginal revenue of the intermediate production in both the final product plant and the
external market. It is this marginal revenue (EMR) that has to be equal to the marginal cost
(MC) in order for the company to maximize its profit at e, producing an optimal level of
output Qe. This total optimal output would include the amount needed for the final product
plant (Qf) and the amount that would be sold in the external market (Qm). Qf would be sold
at the transfer price Pt as determined by point A on MRf, and Qm would be sold at price Pm

as determined by point B on Di. The transfer price Pt would be equal to the marginal cost
of producing the intermediate product (Pt = MCi).
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11.6 PRICING STRATEGIES AND PRACTICES

In addition to what has been addressed about the main concepts and practices of pricing,
such as the markup and transfer prices, there are many other concepts and practices adopted
by many firms, which are as follows:

� Peak and off-peak pricing: This refers to the pricing policies that impose different
seasonal or intertemporal prices of products and services that are based on time-related
cost differences such as air fares, lodging, and electricity, which have different prices
in peak time and in off-peak time. It signifies charging higher prices when the demand
of the product or services is high and the production capacity is near-fully or fully
used, and charging lower prices when the demand goes down and production capacity
has a breather. This is the case of traveling around holidays and electricity prices in
core seasons of hot and cold weather.

� Tying and bundling pricing: This method of pricing is related to the business practice
of requiring consumers to buy a product or service as an attachment to another product
or service, in other words, pushing a consumer to buy two products instead of one.
Examples are the case of buying specific batteries with a device, bags with vacuum
machines, software with computers, and alike. Sometimes businesses justify that for
abiding by the technical specifications or insuring proper function and better perfor-
mance of what they sell. However, in a free market system these practices are illegal
if they are done purely for profits for they seriously impede consumer’s free choice.
Bundling is slightly different from tying as pricing practice. The difference is that
in bundling, two or more products or services are packaged together, which requires
one price instead of separate prices for separate products. The classic example for
commodity bundling is a full vacation package that includes transportation, lodging,
food, and entertainment, all lumped in one price for all.

� Two-part tariff pricing: This is where consumers pay two different prices for the same
product or service. Businesses make an artificial breakup in the sold commodity to
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justify charging two prices. An example of that is the fitness club that requires you
to pay a membership fee first just to get into the facility and then pay separately for
any activity you choose. A better example is the amusement park that would require
you to pay for a ticket first and then pay separately for any ride or activity you choose
inside the park. A cell phone service could also be broken into fees to have the service,
or maybe to have limited allowances, and separate fees beyond that for any calling or
texting or Internet service you use.

� Skimming pricing: This pricing practice refers to charging an initial high price for a
product or service for a while, after which the price tapers down gradually. It often
occurs when a product or service is introduced for the first time, or their demand
is unstable or cannot be estimated. Another reason for firms to practice this pricing
policy is when their production capacity is limited. If any or all of these reasons loses
its justification, prices would be lowered. That happens when other competitors enter
the industry and offer more substitutes to the product, when the firm’s capacity is
expanded and improved, and when the demand for the product picks up and becomes
predictable. All of these reasons would push for lowering the initial high price.

� Prestige pricing: This refers to consumer-induced significantly high price for a product
or service mainly because its brand or other nonquality aspects. It is to answer to some
consumer’s snob appeal more than any other rational reason. This is when wealthy
consumers would love to pay $100,000 for a car for which they can easily find a better
substitute for one-third of the price, or when they pay 20 times more to stay in a hotel
for which a better substitute can be found for one-fifth of the charge. Prestige price
is a very high price in a very special market for very specific consumers who derive
their satisfaction not from the quality characteristics of the product but from being
unique in buying it such as in the case of buying historical antiques or jewelry items.

� Competitor’s matching pricing: This is a policy that allows a firm to claim that it
would match any price by any competitor that is lower than its own, already low,
price. It is a smart and proven to be a successful strategy to attract consumers and
give them the confidence to trust the claim. Experience has shown that on most parts,
the vast majority of consumers would not take the time to investigate and search for a
lower price, although a small negligible percentage of consumers do and win a lower
price. This strategy also discourages competitors from going below the advertised
price of that firm announcing the match, which helps eliminate the possibilities of
undercutting an already low price.

� Higher value pricing: This strategy seeks to spread a good intention and better
consumer serving in order to gain consumer trust and loyalty and carve out larger
market share. It is still within the free and fair competition. Some products are
redesigned, repackaged, and improved over the usual version, but all those positive
results do not come with any higher price for consumers. Previous prices may stay for
much improved product or they can go even lower. A classic example of that is the
fast-food restaurants race over the value meals that would really offer a much higher
value to consumers as compared to the price paid.

� Target pricing: This is also called price lining. It refers to setting a price target first
and then having the product that would be priced. It is reversing the usual order where
normally the product would determine the price, not the other way around. The best
example is the traditional strategy of the automakers to classify their cars to fit the
socioeconomic classes of consumers. There is the high class, the middle class, and
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the lower class. A certain price may be set first before a certain line of Chrysler, for
example, is tailored to fit into that price.

� Penetration and dumping pricing: This refers to charging a product or service price
that is noticeably below the normal prevailing market price of that product or service.
It particularly happens when a new corner is just entering an industry and seeking
to an immediate foothold. Some severe cases of this strategy is known as predatory
dumping where a foreign firm lowers its prices way below the domestic industry in
an attempt to beat the existing firms by pulling in most of the market share.

� Psychological pricing: This is the most common method of marketing. It is to play
on the psychology of consumers by creating the illusion that a product price is being
significantly lower while in reality it might not. Sometimes even the knowledgeable
consumers are lured by some of these practices. The most common and old practice
is to use the 99 cent or the fraction of a cent such as the $9.99 instead of $10, or in
the case of gas prices, writing the fractions of a cent as in 3.599/10. Some forms of
buy-one-get-one-free offers may be included in this ploy too, when the original price
is marked up before applying the sale. Suppose that the normal price of a medium
pizza is $12.00. It would be nominally raised to $16.00 and then the buy one get one
free sale is applied. The consumer gets two pizzas for $16.00 or $8.00 per pizza. The
actual sale would be 33% off instead of what the consumer is led to believe as 50%
off. This strategy would also include other illusive pricing methods such as 10 items
for $10.00 instead of $1 each.

� Core charge pricing: This also is one of the common ways of illusive marketing. It
is getting a lot of popularity in the online sale for it fits better in the way the price is
told to the consumers. It is basically focusing on the core charge or the main product
price and playing down the other extra charges that may raise the total price to more
than double. Again, even the knowledgeable consumers may fall into this. Consider a
dozen of roses advertised for $19.99. That is what any consumer is attracted to. After
going through many steps to complete the order, the consumer will realize that there
is $14.99 for standard delivery, $9.99 for guaranteed Valentine Day delivery, $7.99 for
handling and care, $9.99 for vase, and $4.95 taxes. The total would come to $67.90.
That is a far cry from the $19.99 that attracted the consumer in the first place. Firms
understand that consumers have the full choice to approve the final order or not. Still,
they can depend only on the percentage of consumers who do finalize the transaction
even after realizing it is too much. This percentage is significant and can make the
selling firm maximize its profits easily.

� Leadership pricing: This is a case specific to oligopoly. As we have seen before, there
is usually one dominant oligopolistic firm that has the ability and power to set the
product price in the market. Other firms in the industry would follow.

� Limit pricing: This is also common in the oligopoly market but can be in other market
structures as well. It is the case of setting a limit price for the existing firms in the
industry that would still let them make profits but seriously discourage other firms to
enter the market, for it would not be economical for the newcomers. Figure 11.6 shows
the demand curve and the marginal revenue curve for each firm in the industry that are
assumed to share the market in equal proportions. LRAC is the industry’s long-run
average cost curve, SRAC and SRMC are the short-run average cost and short-run
marginal cost, respectively, for the existing firms, which maximize their profit at e,
yielding an optimal output Qe and optimal market price Pe. The existing firms in the
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industry would eventually realize that they could lower Pe to PL and can still earn
positive profits as long as PL is still above their SRAC and the associated output level
QL can still be produced at the average cost that is below the new price. This price
is the limit price that would serve as a deterrent for any potential newcomers, which
may have a SRAC, such as SRACn, that is above the PL level.
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FIGURE 11.6

11.7 PRICE DISCRIMINATION

Price discrimination refers to charging different prices for a product or service from different
customers, different markets, different quantities, and different time. The price difference
has to be noncost based. The major objective of this practice is to take the opportunities to
increase revenue and ultimately maximize profits. Technically, it is a managerial decision to
efficiently capture the highest of the consumer surplus by extracting the maximum amount
each customer is willing to pay. Typical examples of price discrimination practice that we
commonly encounter are as follows: the phone services that charge different rates based
on the time of the day or week and also charge higher rates from businesses than from
individuals; the quantity discounts that are offered to buyers of large amounts; the medical
and legal services that are offered on the basis of customer’s income scale; restaurants,
transportation, and entertainment services that are offered favorably to elderly and chil-
dren; power services that are sold at lower rates to local businesses; hotels and resorts with
lower rates for conventions and conferences; and so on. The practice of price discrimination
requires that the producing firm be imperfectly competitive, for it has to have a control
over the price. Also, the basis of differences such as time, quantity, customer, and market
must be separable and the market must be segmentable. The other important requirement
is that the price elasticity of demand be different according to all these bases of differ-
ences, such as being different for different quantities of product, different customers, and
different time.
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There are three types of price discrimination: the perfect or first degree, the second
degree, and the third degree.

11.7.1 First-Degree Price Discrimination

This type is based on the assumption that if a producer (a monopolist) can sell each unit
of a product separately and charge the price that a consumer is willing to pay for it, the
producer can capture all of the consumer surplus, and the revenue would be the highest and
profit would be the absolute maximum, given a certain average cost of the product.

Let us look at Figure 11.7 and recall that if the equilibrium price is Pe, there would have
been some consumers who were willing to pay higher prices such as P4, P5 but for lower
quantities, and there were some willing to pay lower prices (P2, P1) for more quantities.
The notion of the consumer surplus focuses on the value of benefits that a consumer would
receive in excess of what he pays for and can be seen as equal to the triangle (A e Pe)
because what the consumer was willing to pay was equal to the entire area of (A e Qe 0) to
get a quantity equal to Qe, but he ended up paying what was equal to the area (Pe e Qe 0).

D-Curve

Q0
Q1

P1

P2

Pe

P4

P5

P6
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P

e

Q2 Qe Q4 Q5 Q6

FIGURE 11.7

According to the first degree of price discrimination, a monopolist can take back all of
the consumer surplus if he is able to sell each unit of the product separately and change the
prices that specific consumers are willing to pay. This type of price discrimination is rare
to find in the practical world, but its analysis is still important for it illustrates the essence
of price differentials.

Technically, the would-be-obtained consumer surplus (CS) can be explained by

CS =
n∑

i=1

(Pi�Qi ) = Pn Qn,
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where Pn is the market price and Qn is the quantity demanded by consumer i. Pi and Qi are
the price and quantity, respectively, in the following individual demand function, which is
assumed to be linear:

Pi = α + βQi .

Substituting for the function, we get

CS =
n∑

i=1

[(α + βQi )�Qi ] − Pn Qn.

Consumer surplus such as the triangle A e Pe in Figure 11.7 can be better estimated as
Qi, which becomes smaller and smaller. Considering the linear demand function and as �Q
approaches zero, consumer surplus (CS) would be calculated as

CS = 1
2 [α − Pn]Qn.

Example 11.6
If a demand function is expressed as

Pi = 60 − 6Qi ,

find the consumer surplus if market price (Pn) is $18.00 and the change in quantity (�Q)
is 1 as it approaches zero,

CS =
n∑

i=1

(Pi�Qi ) − Pn Qn.

Solution:
Given that �Q = 1, Pn = 18, and Qn is Qi and can be obtained from the demand function:

Qi = 60

6
− 18

6
,

Qi = 10 − 3 = 7,

CS =
n∑

i=1

[60 − 6Qi ](1) − (18)(7),

CS =
7∑

i=1

[(60 − 6(1)) + (60 − 6(2)) + (60 − 6(3)) + (60 − 6(4) + (60 − 6(5))

+(60 − 6(6) + (60 − 6(7))] − 126

= [54 + 48 + 42 + 36 + 30 + 24 + 18] − 126

= 126,
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and for �Q approaching

CS = 1
2 [α − Pn]Qn

= 1
2 [60 − 18]7

= [30 − 9]7 = 147.

This means that the more accurate value of consumer surplus is 147 since the change
in Q was close to zero, and 126 is an approximate value for the consumer surplus as the
change in Q was assumed as equal to 1.

11.7.2 Second-Degree Price Discrimination

This type is relatively more common than the first-degree price discrimination. It is about
setting prices on the basis of the quantity purchased. Differential prices are charged by
blocks, such as charging the highest price per unit for the block at the top of the demand
curve, and progressively lowering the price for the blocks after the first one and toward the
bottom of the demand curve. According to this pricing practice, the producer would only
extract part of the consumer surplus, but still it is a practice aiming at maximizing revenues
and profits. Power, gas, and water companies are known to practice this second-degree
price discrimination by offering a higher block rate for certain size of consumption, but
it gets lower per unit as the size of consumption increases. This practice is still generally
limited, although it is more common than the first-degree price discrimination. It requires
that the firms know details about the demand curves of their consumers. Also, it requires
that the product consumption can be metered such as in the case of public utilities.

The second-degree price discrimination is also expressed in the block pricing of fixed
quantities such as the six-pack soft drink or beer cans or eight- or sixteen-bun package and
alike. This practice works easily for the producer as a profit maximizer. Let us take, for
example, the six-pack soda cans. Suppose that the demand function is

P = 0.9 − 0.0375Q,

and the marginal cost per can is fixed at 30 cents (see Figure 11.8). The retailer’s block
price (BP) would be to add the consumer surplus to the total revenue of the six cans:

TR = P · Q

= (0.3)(6) = 1.80,

CS = 1
2 [α − Pr ]Qn

= 1
2 [0.9 − 0.3]6

= 1.80,

BP = TR + CS

= 1.80 + 1.80 = 3.60.
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Given that the total cost is

TC = MC · Q

= (0.30)(6) = 1.80,

the retailer would make the following profit:

Pr = BP − TC

= 3.60 − 1.80 = 1.80.

11.7.3 Third-Degree Price Discrimination

This type of price discrimination occurs when an imperfectly competitive firm distinctively
segments the market into different segments and charges them different prices for the same
product. Classic examples of this price discrimination are the seemingly goodwill-driven
and community-spirited discounts that are offered to seniors, kids, students, veterans, or any
other market segment that is distinguished by a certain characteristic such as age, profession,
marital status, and alike. This can also be clear in the market segments distinguished by
time of consumption, especially in the case of movie tickets or vacation packages. It is
assumed that charging different prices for different markets is practiced until the marginal
revenue in each market equals the marginal cost of producing the product. This is to say
that the profit-maximizing condition would be

MC = MR1 = MR2 = · · · = MRn,

where n refers to the number of markets for different segments. For this type of discrimi-
nation to be valid, it is required that the firm be able to control prices; it cannot be a price
taker. It also has the following requirements:

1. The firm is able to know and identify demand functions for all the market segments
subject to this type of discrimination.
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2. Those segments have a different price elasticity of demand, which forms the basis
of variation in the price such that the segment exhibiting a higher price elasticity of
demand is charged a lower price, and the segment exhibiting a lower price elasticity
of demand is charged a higher price. This provides an explanation for granting a
lower electricity rates to the business sector and a higher rate to the residential sector;
lower hotel rates for members of a big convention than for ordinary customers; and
so on.

3. The consumers in each market segment are distinguished on the basis of certain
characteristics such as age, profession, marital status, etc.

4. There is no potential trade among the segments in the market so that the group
enjoying a lower price cannot sell products to those paying a higher price; if this
happens, the whole purpose of price discrimination would be defeated.

Technically, we can see how different price elasticities of demand lead to justifying
prices in inverse relationships to the elasticities.

Assuming that there are two market segments, the firm output (Q) would be distributed
to both segments (Q1) and (Q2):

Q = Q1 + Q2,

and the total and marginal revenues for the firm would be

TR = P · Q,

MR = dTR

dQ
,

MR = dPQ

dQ
,

MR = P + Q

[
dP

dQ

]
.

Factoring P out, we get

MR = P

[
1 + Q

P

(
dP

dQ

)]
.

Given that the price elasticity of demand is defined as

ε = dP

dP
· P

Q
,

the term inside the bracket would be the reverse of elasticity:

MR = P

[
1 + 1

ε

]
.
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Since we have assumed that there are two market segments with their own marginal
revenues MR1 and MR2, their own prices P1 and P2, and their own elasticities ε1 and ε2,
and that we equate the marginal revenues, we obtain

MR1 = MR2,

P1

[
1 + 1

ε1

]
= P2

[
1 + 1

ε2

]
,

P1

P2
=

[
1 + 1

ε2

]
[

1 + 1

ε1

] .

(11.9)

This means that if P1 > P2, then 1 + 1/ε1, and therefore ε1 has to be smaller than 1 +
1/ε2, and therefore smaller than ε2. Also, if P1 < P2, then 1 + 1/ε1, and therefore ε1 has
to be larger than 1 + 1/ε2, and therefore larger than ε2. To put it simply, prices and price
elasticities of demand have the opposite relationship. This is why higher prices are charged
on the product whose price elasticity of demand is low, and lower prices are charged on
the product whose price elasticity of demand is high. To confirm, let us give any random
numerical values to elasticities and see if they result in the inverse relationship to prices.
Let us suppose that product x has a price elasticity of demand equal to –2 and product y
has a price elasticity of demand equal to –4. Substituting these values into Equation (11.9),
we get

Px

Py
=

[
1 + 1

εy

]
[

1 + 1

εx

] ,

Px

Py
=

[
1 + 1

−4

]
[

1 + 1

−2

] ,

Px

Py
=

3
4
1
2

,

1
2 Px = 3

4 Py,

Px =
3
4
1
2

Py,

Px = 1.5Py.

So, Px > Py while εx < εy or |2| < |4|. We can also illustrate that graphically as it
is shown in Figure 11.9. There are three graphs, one each for markets 1 and 2 and the
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third one is for the total market. Both the demand curve and the marginal revenue curve
show through their slopes that market 1 is more price inelastic (less elastic) with steeper
D1 and MR1. Market 2 is less price inelastic (more elastic) and therefore has flatter D2

and MR2.
The whole market in the far-right third panel shows the market demand D and mar-

ket marginal revenue MR as horizontal summations of the demand curve and marginal
revenue in both markets. As we have seen algebraically that when the marginal revenue
equals the marginal cost, we get the equilibrium quantities and prices. In the first mar-
ket, the equilibrium output turned out to be 10 and the equilibrium price was $8.00 as
it was determined from points A on D1. Also, in the second market, the equality be-
tween MR2 and MC produced the optimal output level 5, which is sold at $5.00 per
unit as it was determined by points B on D2. The marginal cost remained fixed at $4.00
in all markets. As for the whole market, point e is the equality point between market
marginal revenue and marginal cost. The optimal market output is 15, which is the combi-
nation of outputs in both markets. Market price would be determined from point C on D3

as $6.00.
It is also confirmed graphically that the less price elastic market 1 charges the higher

price, $8.00, and the more price elastic market 2 charges the lower price, $5.00. Once again,
the highest profit is achieved through the two price-discriminated markets rather than one
unfixed market.

Example 11.7
The following are two demand functions and a total cost function for a product sold
in two different market segments. If the marginal cost remains fixed at $4.00 through-
out the markets, will the third-degree price discrimination yield higher or lower profit
levels?

Q1 = 30 − 5
2 P1,

Q2 = 30 − 5P2,

TC = 22.50 + 2(Q1 + Q2).
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Solution:
Before we write the total revenue functions in both markets, we need to express the demand
functions in terms of the prices:

P1 = 12 − 2
5 Q1,

P2 = 6 − 1
5 Q2,

TR1 = Q1 P1,

TR1 = Q1
[
12 − 2

5 Q1
]
,

TR1 = 12Q1 − 2
5 Q2

1,

MR1 = ∂TR1

∂ Q1
= 12 − 4

5
Q1,

TR2 = Q2 P2,

TR2 = Q2
[
6 − 1

5 Q2
]
,

TR2 = 6Q2 − 1
5 Q2

2,

MR2 = ∂TR2

∂ Q2
= 6 − 2

5
Q2.

The profit-maximizing conditions in both markets are achieved by equating both rev-
enues to the same marginal cost of the product:

MR1 = MC,

12 − 4
5 Q1 = 4,

8 = 4
5 Q1,

Q1 = 10,

P1 = 12 − 2
5 Q1,

P1 = 12 − 2
5 (10) = 8,

MR2 = MC,

6 − 2
5 Q2 = 4,

2 = 2
5 Q2,

Q2 = 5,
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P2 = 6 − 1
5 Q2,

P2 = 6 − 1
5 (5) = 5,

TR1 = 12Q1 − 2
5 Q2

1,

TR1 = 12(10) − 2
5 (10)2,

TR1 = 80,

TR2 = 6Q2 − 1
5 Q2

2,

TR2 = 6(5) − 1
5 (5)2,

TR2 = 25,

TR = TR1 + TR2,

TR = 80 + 25 = 105,

TC = 22.50 + 2(Q1 + Q2)

= 22.50 + 2(10 + 5) = 52.50,

Pr = TR − TC,

Pr = 105 − 52.50 = 52.50.

So, the profit under the price discrimination practice is $52.50. What would it be if this
practice is not followed, that is, if there is only one market?

Q = Q1 + Q2,

Q = 30 − 5
2 P1 + 30 − 5P2.

Since there would be only one price, we substitute both P1 and P2 with P:

Q = 60 − 15
2 P,

P = 8 − 2
15 Q,

TR = Q · P,

TR = Q
[
8 − 2

15 Q
]
,

TR = 8Q − 2
15 Q2,
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MR = ∂TR

∂ Q
= 8 − 4

15
Q,

MR = MC,

8 − 4
15 Q = 4,

4
15 Q = 4,

Q = 15,

P = 8 − 2
15 Q,

P = 8 − 2
15 (15) = 6,

TR = 8(15) − 2
15 (15)2,

TR = 90,

TC = 22.50 + 2(Q1 + Q2)

= 22.50 + 2Q

= 22.50 + 2(15) = 52.50,

Pr = TR − TC,

Pr = 90 − 52.50 = 37.50.

The profit in the absence of price discrimination ($37.50) is less than when the practice
is applied ($52.50).

Example 11.8
A firm is selling its product in two separate markets as a third-degree price discrimination
practice. The demand functions and the total cost function are

Q1 = 120 − 2.4P1,

Q2 = 180 − 6P2,

TC = 40 + 10Q.

1. Find the firm’s profit-maximizing output and price, and calculate the total profits
under the third-degree price discrimination.

2. Show that the higher price is charged in the lower price elasticity market and the
lower price is charged in the higher price elasticity market.
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Solution:

1. First we express the demand functions in terms of price, so we can calculate the total
revenues:

P1 = 50 − 0.4167Q1,

TR1 = Q1 P1,

TR1 = Q1[50 − 0.4167Q1],

TR1 = 50Q1 − 0.4167Q2
1,

P2 = 30 − 0.167Q2,

TR2 = Q2 P2,

TR2 = Q2[30 − 0.167Q2],

TR2 = 30Q2 − 0.167Q2
2,

TR = TR1 + TR2,

TR2 = 50Q1 − 0.4167Q2
1 + 30Q2 − 0.167Q2

2,

TC = 40 + 10Q,

TC = 40 + 10(Q1 + Q2),

TC = 40 + 10Q1 + 10Q2,

Pr = TR − TC,

Pr = 50Q1 − 0.4167Q2
1 + 30Q2 − 0.167Q2

2 − 40 − 10Q1 − 10Q2,

∂Pr

∂ Q1
= 50 − 0.8334Q1 − 10 = 0,

40 = 0.8334Q1,

Q1 = 48,

P1 = 50 − 0.4167Q,

P1 = 50 − 0.4167(48) = $30,

∂Pr

∂ Q2
= 30 − 0.334Q2 − 10 = 0,

0.334Q2 = 20,

Q2 = 60,

P2 = 30 − 0.167Q2,

P2 = 30 − 0.167(60) = $20,

Pr = 50(48) − 0.4167(48)2 + 30(60) − 0.167(60)2 − 40 − 10(48) − 10(60),

Pr = 1519.
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2. Q1 = 120 − 2.4P1,

dQ1

dP1
= −2.4,

ε1 =
[

dQ1

dP1

] [
P1

Q1

]

= (−2.4)

[
30

48

]
= −1.5,

Q2 = 180 − 6P2,

dQ2

dP2
= −6,

ε2 =
[

dQ2

dP2

] [
P2

Q2

]

= −6

[
20

60

]
= −2.

In absolute value, ε2 > ε1, or market 2 has more price elasticity of demand than market
1. Also, market 2 has a lower price, $20.00, than that in market 1, $30.00. This verifies that
a higher price is charged in the market with lower price elasticity of demand, and a lower
price is charged in the market with higher price elasticity of demand.

SUMMARY

� This is the second chapter in the unit on decisions at the market level for an obvious
reason that prices and pricing practices and policies stand as one of the central strategies
for managers. The chapter starts with the fundamentals of price setting in the business
world and makes the distinction between the perfect competitive firms, which are price
takers, and the other types of market structures, which set the price of their products
based on the market forces of supply and demand, mostly following a down-sloping
demand curve and going by the equimarginal principle to maximize their profits. The
discussion moves, then, to the markup rule, which adds a certain percentage over the
marginal cost of the product and considers the elasticity of demand for that product.

� Joint products with independent demand in the market require a firm policy that would
consider the interdependence among the products based on their complementarity and
substitutability. Applying the equimarginal principle, the optimal output size for the
joint product firm is achieved at the point where the total marginal revenue for the firm
equals the marginal cost of the joint products. Prices of the joint products are determined
according to their demand curves.

� Some firms produce not only their primary and final product but also some intermediate
products that may become components into other products for other plants or firms.
Transfer pricing refers to the way of pricing the intermediate products in the case of
three possibilities: (1) when the intermediate product cannot be sold in another external
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market; (2) when it can be sold in a competitive market; and (3) when it can be sold in
noncompetitive markets. In the first case, the transfer price of the intermediate product
would be equal to the marginal cost of production. In the second case, the transfer price
would be determined as an external competitive price. In the third case, the transfer price
of the intermediate product would be determined by the external demand curve.

� There are many other concepts and practices of pricing that are common in the market
and followed by many companies for different products under different conditions.
These include the tying and bundling prices, peak and off-peak pricing, two-point tariff
pricing, skimming pricing, prestige pricing, competitor’s matching pricing, higher value
pricing, target pricing penetration and dumping pricing, psychological pricing, core
charge pricing, leadership pricing, limit pricing, and so on.

� When firms set the prices of their products not based on cost of production and not in
the usual way of markup, the prices become the core of an area of pricing policy called
price discrimination. It refers to charging prices based on one or more of the following
aspects: quantity sold, time of purchase, marketing product, special event, or special
group of consumers that could be defined by age, occupation, or some kind of association.
Price discrimination requires some conditions under which it can be effectively applied.
These conditions include the following: the firm has to be a monopoly or has some
monopoly power; the market has to be suitable for segmentation; the product has to
have different price elasticity of demand in different markets. There are three degrees
of price discrimination. The first degree is defined by selling the product in separate
units where the price can be the highest for each unit sold. The second degree of price
discrimination is defined by setting a specific price for a specific quantity of product and
each additional quantity sold has a lower price. The third degree of price discrimination
refers to distinguishing between markets where the same product is sold for a different
price in each of these markets. The different prices would continue to be valid in each
market until the marginal revenue of the last unit sold in a market equals the marginal
cost of the product for that market.

KEY TERMS

markup joint product transfer pricing
intermediate product final product tying
bundling off-peak pricing two-part tariff
skimming competitor’s matching prestige pricing
higher value pricing penetration and dumping target pricing
psychological pricing core charge pricing leadership pricing
first-degree price discrimination price discrimination limit pricing
second-degree price discrimination third-degree price discrimination

LIST OF FORMULAS

� Profit-maximizing price:

P = MC

1 + 1

ε

,

P = FAAC[MupC + 1].
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� Markup on cost:

MupC = P − MC

MC
,

MupC = 1

ε + 1
.

� Markup price:

MupP = −1

ε
.

� Consumer surplus:

Approximate value: CS =
n∑

i=1

(Pi�Qi ) − Pn Qn.

Accurate value: CS = 1
2 [α + Pn]Qn.

� Block price:

BP = TR + CS.

EXERCISES

1. What is the markup? How is it determined and what is the difference between markup
on cost and markup on price, and how the price elasticity of demand is relevant?

2. What is the major strategy for firms on multiproduct pricing? How would a firm
producing many products ensure its ultimate goal of maximizing profits?

3. List and explain, as many as you remember, the common pricing practices in the market
and recall if you have recently dealt with any of them.

4. Explain the pricing strategy for firms producing joint products and give examples of
both the case of fixed proportions and the case of variable proportions.

5. Explain and compare with examples the three degrees of price discrimination.

6. Consider the following information for the production of cookies, produced and pack-
aged in boxes by a small firm:

Total overhead cost: $ 1400,

Total variable cost: $ 5600,

Production size: 1000 units,

Price elasticity of demand: − 2.57.
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What would be the markup percentage and how much would each box of cookies
be sold for?

7. The following are the demand functions for two products, A and B, which are jointly
produced:

PA = 20 − Q A

5
,

PB = 24 − 2QB

5
.

Given that the firm’s costs are as follows:

Variable cost: VC = 15Q

2
+ 0.025Q2,

Fixed cost: FC = 250.

(a) Find the profit-maximizing price for each product.

(b) Calculate the firm’s maximum profit from the two products.

8. A firm has two divisions, one to produce a major component (intermediate product)
and the other to assemble and sell the final product. Suppose that the immediate product
cannot be sold in any other market. What would be the equilibrium price and output
for the final product and what would be the transfer price for the intermediate product
given that the demand function and the marginal revenue function for the final product
are as follows?

Pf = 32 − 0.20 Q f ,

MR f = 32 − 0.40 Q f .

The marginal cost functions of the two products are

MC f = 2 + 0.20 Q f ,

MCi = 6 + 0.20 Qi .

9. Draw a graph for the previous question in which you show

(a) the equilibrium quantity and price for the final product;

(b) the transfer price and the output level for the intermediate product.

10. Consider a product, the market price of which is $5, and the individual consumer’s
demand function is

Q = 10 − 1
8 P.

Calculate (1) the approximate value of the consumer surplus and (2) the accurate
value of consumer surplus.
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12
CAPITAL BUDGETING AND
INVESTMENT PROJECT EVALUATION

12.1 WHAT IS CAPITAL BUDGETING?

Most of the topics discussed in the previous chapters were related to managerial decisions
on current operational matters leading to short-term profit maximization. In this chapter,
we shall discuss capital budgeting that focusses on long-term and strategic plans to sustain
a stable and more productive future for the firm. The long-term outlook involves decision
making to replace, improve, and expand the firm’s major existing resource base compared
to only seeking the efficiency of that resource base. The emphasis would primarily be
placed on assessing the firm’s investment opportunities in order to choose the most viable
opportunity. Given that alternative, investment opportunities differ in many aspects, for
example in the level of risk associated with them and their capacities to yield returns, the
senior management can employ objective, quantitative, and credible methods to evaluate
the proposed alternatives and select the best, most feasible in terms of gaining higher
profitability, and lower risk option.

Capital expenditure is an outlay of funds that the firm would rely on to generate returns
enough to cover and exceed the initial investment. Therefore, capital budgeting is the
process of reviewing, assessing, and selecting the business projects that promise the best
possible rewards in the medium and long runs. In other words, it is the long-term planning
and evaluating capital allocations that are expected to generate cash inflows over a period
of time. Figure 12.1 illustrates the major elements of the process of capital budgeting on a
timeline.

This is the typical dual cash flow scenario. The first of these flows is the cash outflow,
which consists mainly of the initial capital fund allocated for an investment project in the
current time, as well as the capital expenditures made throughout the productive life of the
assets. The second flow is the cash inflow that includes the annual returns of the project
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Inflow 1

Inflow 2

Inflow 3

Inflow 4

Inflow 5

PV of
all inflow

Current
time

1st year 2nd 3rd 4th 5th year

Future
time

Cash
outflow

≥

FIGURE 12.1

during its first 5 years. While the cash outflow is normally measured at its current value,
the value of cash inflows have to be brought back from their maturity time to the current
time. They are discounted at the firm’s cost of capital rate and added up to form the present
value of all returns that has to be either equal or larger than the cash outflow.

Typical examples of capital outlay for a firm’s investment projects are funds to finance
the purchase of land, buildings, equipment, to expand business, to enhance the working
capital for inventories and accounts receivable, to finance research and development, and
to pay for promotion and advertisement. Generally, capital budgeting is often associated
with the following investment projects:

1. Expansion: It includes investment projects involving development and production of
either a new product or a new line of product or venturing into a new market. It also
includes the extension of service outlets and the distribution and storage facilities.

2. Replacement: It includes projects involving replacement of worn-out and damaged
machines and equipment as well as renewing structures and technology for efficient
production and services.

3. Cost reduction: It includes all projects aiming at reducing the cost of production
through lower labor cost, raw material, energy, and by employing latest technology to
increase production. Projects aimed at moving production to less expensive locations
and training personnel could lower the total cost of production.

4. Conforming: It includes projects that must comply with federal or state regulations
and standards on issues, for example health, safety, pollution, reservation, and so on.
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12.2 BASIC MODEL OF CAPITAL BUDGETING

The theoretical framework underlying capital budgeting is based on the equimarginal
principle. It states that a firm would continue to engage in an activity until its marginal cost
(MC) is equal to its marginal benefit. As for the firm’s decisions on investment projects, this
principle is applied in such a way that capital would be allocated for investment projects
to the point where marginal return on investment as represented by incremental cash flows
would be equal to the marginal cost as represented by the added expenditures of new
investment capital. Applying this principle would assure maximum return for the firm.
The graph in Figure 12.2 shows an example of what firm X has to decide regarding the
worthiness of eight proposed investment options, projects I through VIII, which require a
total distribution of $25 million on different capital funds of the project that yield different
rates of returns (Table 12.1).

Rate of return (%)

Investments
funds (mil.)

DC

A

15

13

11

9
8

6
5

4

3 2

5

5

3

Project
I

Project
II

Project
III

Project
IV

Project
V

Project
VI

Project
VII

Project
VIII

3 3 34 2

8 12 14 19 22 25

MCC

1
37
1
26

FIGURE 12.2

TABLE 12.1

Project I $3 million, with 15% return
Project II $2 million, with 13% return
Project III $3 million, with 11% return
Project IV $4 million, with 9% return
Project V $2 million, with 8% return
Project VI $5 million, with 6% return
Project VII $3 million, with 5% return
Project VIII $3 million, with 4% return
Total capital demanded: $25 million.
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The curve DC is the firm’s demand for capital and the curve MCC is the firm’s marginal
cost of capital. The intersection between the two curves at point A would determine that at
maximum the firm could only allocate capitals for the first five projects, I through V, at a
total of $14 million. The firm’s initial cost of capital rate is 6% that would continue to rise
after allocating the first $3 million. Therefore, the first project costs 6% and yields a 15%
rate of return ; the second project costs about 6 1

4 % and yields 13%; the third project costs
6 1

2 % and returns 11%; the fourth project costs 7 1
3 % and returns 9%; and the fifth costs 8%

and barely returns the same rate. All the remaining projects, VI, VII, and VIII, would cost
more than the firm’s cost of capital and all of their returns are below the MCC, and this is
the reason for rejecting them. Project VI returns 6% but it costs 10 1

2 %, Project VII returns
5% but it costs 12 1

2 %; and project VIII returns 4% but it costs 15%. The optimal capital
allocation for the firm is $14 million.

12.3 SELECTION PROCESS AND PROJECT EVALUATION

Capital budgeting involves a standard, logical, and consistent decision-making process that
may consist of the following steps:

1. Exploring a pool of proposed investment projects and generating a list of the most
qualified proposals to form the alternative projects under consideration. By focusing
on the initially strong and promising projects, this step would also be a screening the
projects step to eliminate all unfeasible or unworthy proposals.

2. Estimating the project cash flow, which is a stream of returns that would occur
in a future time. It should, therefore, be considered with the appropriate level of
uncertainty, risk, and bias. A major bias is the natural tendency to be over-optimistic
which may lead to underestimation of costs and overestimation of benefits with a
desire to adopt a specific project. It is essential to rely on professionals without bias
who use objective measures to minimize any over- or underestimation. This step
usually emphasizes three important criteria:

(a) Cash flow measurement should be done on an incremental basis. It means that
a project’s cash flow takes a marginal sense as the difference between the firm’s
cash flow before and after the initiation of that project.

(b) Cash flow estimation should be considered on after tax basis using the firm’s
marginal tax rate and should include the effect of depreciation and all other
noncash expenses that would be considered for income tax purposes

(c) Cash flow estimation should include all indirect effects of the project throughout
its lifetime, for example, the possible interference and overlap with other products,
services, or functions of the firm.

3. Determining the firm’s cost of capital that would serve as the discount rate for
converting the value of cash flow from the future to the present time. It is equivalent
to the required rate of return by the firm’s investors.

4. Evaluating the alternative investment projects in order to choose and accept the best
alternative project that would yield the maximum value for the firm. The fundamental
criterion for establishing the measure of desirability and preference for a specific
project is the comparison of the present value of the expected cash inflows with the
initial cash outflow. The project that wins the allocation of capital has to have the
present value of its expected returns higher than the initial capital outlay.
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There are two groups of methods to evaluate the worthiness and desirability of any invest-
ment project under consideration.

12.4 METHODS OF EVALUATION FOR PROPOSED
INVESTMENT PROJECTS

As decision-making tools for the firm’s capital budgeting, there are two groups of methods
of evaluation. The first group, which is the most common, is called the value-adjusted
method for its utilization of the time value of money in establishing reliable criteria of
project worthiness. This group includes the net present value (NPV), the internal rate
of return (IRR), and the profitability index (PI). The second group is called the value-
unadjusted method because it does not use any time value of money adjustment. This group
is represented by the payback technique.

12.4.1 Net Present Value

An investment project’s net present value is the present value of all future returns or cash
inflows minus the initial capital invested in the project. The stream of future cash inflows
must be discounted back to the current time using the firm’s cost of capital as the discount
rate. This rate is determined by the firm based on its assessment of the risk involved in each
investment project. High-risk projects are assigned higher discount rate; low risk projects
are assigned lower discount rates. NPV is probably the most common technique used to
assess how worthy a project is and whether it would be accepted or not. If the present
value of all future returns (the cash inflows) is larger than the initial cost of the project
(the cash outflows), the NPV would be positive and the project is acceptable. Otherwise, if
the present value of the cash inflows is smaller than the cash outflows, the NPV would be
negative and the project cannot be accepted.

Let us recall that the current or discounted value (CV) of any future return (FV) can be
obtained by

CV = FV

(1 + r )n
,

where r is the interest rate used for discounting or bringing the value of return from future
back to the present and n is the number of time terms, for example years. If we refer to an
annual cash inflow of a project by CF, and to the project cash outflow by I, then the NPV
would be the difference between the discounted streams of both flows throughout the life
of the project (t):

NPV =
t∑

i=1

[
CFi

(1 + r )n

]
−

t∑
i=1

[
Ii

(1 + r )n

]
.

If the project takes into account only the initial capital outlay, then it would already be in
its current value, I0, and does not need to be discounted:

NPV =
t∑

i=1

[
CFi

(1 + r )n

]
− I0.
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The criteria for project acceptability is for the NPV to be nonnegative:

NPV ≥ 0.

Example 12.1
A proposal to expand a fast food restaurant calls for the investment of an initial capital
of $42,000 and promises to deliver a return of at least $14,000 per year during the next
5 years. Would the franchise company approve such an expansion project if its cost of
capital is 11 1

2 %?

Solution:

NPV =
t∑

i=1

[
CFi

(1 + r )n

]
− I0

= CF1

(1 + r )1
+ CF2

(1 + r )2
+ CF3

(1 + r )3
+ CF4

(1 + r )5
− I0

= 14,000

(1 + 0.115)1
+ 14,000

(1 + 0.115)2
+ 14,000

(1 + 0.115)3
+ 14,000

(1 + 0.115)4

14,000

(1 + 0.115)5

− 42,000

= 12,556.05 + 11,261.03 + 10,099.58 + 9057.92 + 8123.69 − 42,000

= 51,098.27 − 42,000

= 9098.27.

Since the NPV is positive, the expansion project would be accepted (see Figure 12.3).

14,000 14,000

1st year

Initial investment

Present time

12,556.05

+  11,261.03

+    9057.92

+    8123.69

9098.27

−       42,000

+  10,099.58

2nd 3rd 4th 5th

14,000 14,000 14,000

FIGURE 12.3

Example 12.2
The development committee in a construction company is studying two investment pro-
posals whose cash inflows for the next 4 years are as projected in Table 12.2. Both projects
require a capital allocation of $200,000 given that the cost of capital for the first project is
8% and for the second is 7 1

2 %. Which of the two proposals would get an approval?
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Solution:

TABLE 12.2

Project I Project II

Year
Cash Inflows ($)

r = 8% Cash Outflows ($)
Cash Inflows ($)

r = 7.5% Cash Outflow ($)

1 35,000 200,000 40,000 200,000
2 40,000 40,000
3 50,000 95,000
4 120,000 100,000

Project I

NPV =
4∑

i=1

[
CFi

(1 + r )n

]
− I0

= 35,000

(1 + 0.08)1
+ 40,000

(1 + 0.08)2
+ 50,000

(1 + 0.08)3
+ 120,000

(1 + 0.08)4
− 200,000

= 32,407.40 + 34,293.55 + 39,691.61 + 88,203.58 − 200,000

= 194,596 − 200,000

= −5404.26.

Project II

NPV = 40,000

(1 + 0.075)1
+ 40,000

(1 + 0.075)2
+ 95,000

(1 + 0.075)3
+ 100,000

(1 + 0.075)4
− 200,000

= 37,209.30 + 34,613.30 + 76,471.25 + 74,880.05 − 200,000

= 223,173.90 − 200,000

= 23,173.90.

Project I has a negative NPV and project II has a positive NPV. The committee would
accept the second project and reject the first (Figure 12.4).

The cash inflow in the NPV formula could be replaced by the firm’s profit for any period
(πi ),and adjusted for depreciation and taxes:

Since πi = TRi − TCi ,

NPV =
t∑

i=1

{
[TRi − TCi ](1 − T ) + Di

(1 + r )n

}
− I0,

where TRi and TCi are the firm’s total revenue and total cost for the ith period; T is the
firm’s marginal tax rate; Di is the firm’s capital depreciation; and I0 is the initial investment
capital allocated for the project.
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+  39,691.21
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1

1

2

2

3

3

4

4
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50,000

Project I
r = 8%

120,000
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FIGURE 12.4

Example 12.3
A firm received a proposal for an investment project showing estimated projections of the
gross profit based on the total cost, total revenue, and depreciation allowances for the first
5 years as shown in Table 12.3. How would the firm decide on accepting or rejecting the
request for an initial capital of $650,000, given that the cost of capital is 8 1

4 % and the firm’s
marginal income tax is 32%?

Solution:

TABLE 12.3

1 2 3 4 5 6 7

Year TRi ($) TCi ($) πi (3 − 2)
(1 −T) =
1 −0.32 Di ($)

π i (1 − t) + Di

(4 × 5 + 6) ($)

1 600,000 460,000 140,000 0.68 29,400 124,600
2 660,000 475,000 185,000 0.68 31,500 157,300
3 625,000 420,000 205,000 0.68 33,000 172,400
4 620,000 400,000 220,000 0.68 34,100 183,700
5 668,000 418,000 250,000 0.68 35,000 205,000

NPV = 124,600

(1 + 0.0825)1
+ 157,300

(1 + 0.0825)2
+ 172,400

(1 + 0.0825)3

+ 183,700

(1 + 0.0825)4
+ 205,000

(1 + 0.0825)5
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= 115,103.93 + 134,237.21 + 135,910.67 + 133,781.95 + 137,915.90 − 650,000

= 656,949.66 − 650,000

= 6949.66.

The proposal would be approved for yielding a nonnegative NPV (Figure 12.5).

124,600 157,300

1st year

Initial capital

NPV

Present time

115,103.93

+ 134,237.21

+ 133,781.95

+ 137,915.90

− 650,000.00

656,949.66

6949.66

+ 135,910.67

2nd 3rd 4th 5th year

172,400 183,700 205,000

FIGURE 12.5

12.4.2 Internal Rate of Return

Another method used to determine the acceptability of a proposed investment is to compare
the internal rate of return with the firm’s cost of capital. The criterion for the project to be
accepted is that it must yield an internal rate of return larger than or at least equal to the
firm’s cost of capital:

IRR ≥ r,

The IRR is sometimes called “the profit rate” or “the marginal efficiency of investment.” It
is defined as the rate that equates the present value of cash inflows and the cash outflows.
In the NPV formula, such a rate that makes the two cash flows equal must make the NPV
equal to zero. This would mean that the project is not capable of delivering an earning rate
higher than the cost of capital.

Using the NPV formula, we can now replace the firm’s cost of capital (r) with the IRR
and set the NPV to zero:

NPV =
n∑

i=1

[
CFi

(1 + IRR)n

]
− I0 = 0.

To find the right IRR that makes the NPV equal to zero, we have to solve the above
equation. IRR can be found by many ways, for example using the table values, trial and
error, interpolation, and so on. Computers and sophisticated business calculators can easily



460 CAPITAL BUDGETING AND INVESTMENT PROJECT EVALUATION

find IRR. However, an equation is developed to get the estimate IRR. Once we get such
an estimate, we can keep iterating until we get the exact rate that makes the value of NPV
zero:

IRR �

⎡
⎢⎢⎢⎢⎣

n∑
i=1

CFi − I0

� i CFi

⎤
⎥⎥⎥⎥⎦ ,

where CF is cash inflow for the period I, and i is the number of any year of the discounted
term:

i = 1, 2, 3, . . . , n,

and I0 is the initial investment.

Example 12.4
A firm is studying an investment proposal that requires $15,000 as initial capital. The
projections for cash inflows during the first 5 years are shown in Table 12.4.

TABLE 12.4

1 2 3

Cash Inflows
i CFi i CFi (1 × 2)

1
2
3
4
5

3,600
4,200
5,500
6,300
7,500

3,600
8,400

16,500
25,200
37,500

27,100
5∑

i=1

CFi

91,200
5∑

i=1

i CFi

IRR �

⎡
⎢⎢⎢⎢⎢⎣

5∑
i=1

CFi − I0

� i CFi

⎤
⎥⎥⎥⎥⎥⎦

,

IRR �
[

27,100 − 15,000

91,200

]
,

IRR � 13.3%.
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But, this is only a rough estimate. However, we can reach the exact rate after some trial
and error attempts, by calculating NPV until it reaches zero. That would be possible when
the present values of all cash inflows are exactly equal to the initial investment, in this case
$15,000.

The first step is to calculate the present value of cash inflows at the discount rate of 13.3%
to see how close it would bring the present value to the initial investment of $15,000:

PV = 3600

(1 + 0.133)1
+ 4200

(1 + 0.133)2
+ 5500

(1 + 0.133)3
+ 6300

(1 + 0.133)4
+ 7500

(1 + 0.133)5

= 3177 + 3272 + 3782 + 3823 + 4017

= 18,071.

Therefore, a rate of 13.3 produces a present value of the cash inflows larger than the initial
investment of $15,000. Since the rate of discount has an inverse relationship with the present
value, we have to increase the rate in the next try to reduce the present value hoping to let
it reach $15,000.

At a rate of 18%, the present value of cash inflows would be

PV = 3600

(1 + 0.18)1
+ 4200

(1 + 0.18)2
+ 5500

(1 + 0.18)3
+ 6300

(1 + 0.18)4
+ 7500

(1 + 0.18)5

= 3051 + 3016 + 3347 + 3249 + 3278

= 15,942.

Therefore, we are getting much closer to the $15,000. We need to raise the rate to bring
the present value to exactly $15,000. We can also use the PVIFr,n table value (vn) to ease
the tedious calculations. Table A.7 in the appendix shows the discount factor of a dollar for
many combinations of r and n:

PVIF = vn = 1

(1 + r )n
.

For example, to get the discounted cash inflow in the third year , we can either divide 5500
by (1 + 0.18)3 or get the discount factor from Table A.7 for r = 18% and n = 3, and
multiply it by 5500:

PV = FV[PVIFr,n]

= 5500[PVIF0.18,3]

= 5500[0.6086]

= 3347.
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Other few tries to get the exact rate revealed that

� at 20%, PV = 15,151;
� and at exactly 20.4%, PV = 15,000.

Here, 15,000 is the IRR that brings about the equality between the present value of cash
inflows and the initial investment, making the NPV equal to zero (Figure 12.6):

NPV =
[

3600

(1 + 0.204)1
+ 4200

(1 + 0.204)2
+ 5500

(1 + 0.204)3
+ 6300

(1 + 0.204)4
+ 7500

(1 + 0.204)5

]

− 15,000

= [2990 + 2897 + 3151 + 2998 + 2964] − 15,000

= 15,000 − 15,000 = 0.

3600 4200

1st year

PV (CF1)

I0

NVP

Present time

2990

+   2897

+   2998

+   2964

15,000

− 15,000

00,000

+   3151

2nd 3rd 4th 5th year

5500

IRR = 20.4%

6300 7500

FIGURE 12.6

12.4.3 NPV versus IRR for Mutually Exclusive Projects

The criterion for accepting or rejecting an investment project can either be based on the
highest NPV or the highest IRR. It would make no difference to the firm, whichever the
measure followed, simply because they reflect each other consistently. Having a positive
value for the NPV means having an IRR that exceeds the firm’s cost of capital, and having
a negative value of the NPV refers to having an IRR lower than the firm’s cost of capital
(Table 12.5):

If IRR > MCC → NPV > 0;

IRR < MCC → NPV < 0.
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TABLE 12.5

Year Project I Project II

0
1
2
3
4
5

250,000
−25,000

0
125,000
125,000
350,000

250,000
87,500
87,500
87,500
87,500
87,500

Initial Capital ($)⎫⎪⎪⎬
⎪⎪⎭

Cash Inflows ($)

NPV ($) 131,653 85,973 Discount Rate
9 1

2 %
IRR 20.2% 22.1%

Therefore, either measure would be fine if followed, but that is especially true if the firm
is assessing only a single independent project. But if the firm wants to assess two or
more projects that are mutually exclusive, then the measures of NPV and IRR may not
mean the same(!) Mutually exclusive projects are those projects that compete to earn the
decision of approval. In other words, the firm can only choose one project among the
alternatives. Let us calculate both the NPV and IRR for the two projects whose 5-year
cash inflows are shown in the last table, given that both are vying with each other for
the $250,000 initial capital that is to be invested at least at the firm’s 9 1

2 % cost of capital
(Figure 12.7):

NPCV =
n∑

i=1

[
CFi

(1 + r )n

]
− I0,

NPVI =
[ −25,000

(1 + 0.095)1
+ 0

(1 + 0.095)2
+ 125,000

(1 + 0.095)3
+ 125,000

(1 + 0.095)4
+ 350,000

(1 + 0.095)5

]

− 250,000,

NPVI = [−22,831 + 0 + 95,207 + 86,947 + 222,330] − 250,000,

NPVI = 131,653,

IRRI = 20.2% (obtained using a calculator),

NPVII =
[

87,500

(1 + 0.095)1
+ 87,500

(1 + 0.095)2
+ 87,500

(1 + 0.095)3
+ 87,500

(1 + 0.095)4
+ 87,500

(1 + 0.095)5

]

− 250,000,

NPVII = [79,908 + 72,976 + 66,645 + 60,862 + 55,582] = −250,000,

NPVII = 85,973,

IRRII = 22.1% (obtained using a calculator).
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87,500 87,500 87,500 87,500 87,500
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Present time

55,582
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381,653

+    60,862

+    86,947
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335,973

85,973

–  250,000

–    22,831

–  250,000
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+    66,645

2nd 3rd 4th 5th year

FIGURE 12.7

The calculation shows that the NPV and the IRR are inconsistent across the two projects.
While project I has a higher NPV (NPVI = 131,653 compared with NPVII = 85,973),
project II has a higher IRR (IRRII = 22.1 compared with IRRI = 20.2).

Therefore, the firm has to decide which would be the better project. Theoretically, it
would be better for the firm to decide project acceptability on the basis of the higher NPV
rather than the higher IRR. One of the justifications for that is the assumption that the
earned cash inflows are to be reinvested at a reasonable cost of capital rate, and there would
be no guarantee of reinvestment of the cash inflows earned by the other project at a higher
rate of return. However, practically most financial managers in the business market tend
to favor decisions based on the higher IRR. One interpretation for such a tendency is the
common reliance on relative change than on absolute change, which makes the “rates”
more preferable than the actual dollar as in the case of the NPV.

The relative measures can still remain reliable for comparison, especially when the firm
faces many investment proposals but it cannot afford to fund all proposals except the most
profitable one due to budgetary constraints. Let us consider a firm’s six investment project
proposals requiring different capitals and promising different NPVs as shown in Table 12.6.
Suppose that the firm can only allocate a maximum of $800,000 and one of the proposals
is asking for an initial capital of $800,000 and the rest of the proposals are asking for funds
ranging from $150,000 to $400,000. In this case, it is better not to consider the absolute
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amounts of the NPV but to find the yield or the NPV per dollar by dividing the NPV by the
amount invested or the initial capital allocated.

TABLE 12.6

Projects I0 ($) NPV ($) NPV/I0

I 800,000 2,560,000 3.2%
II 290,000 725,000 2.5%
III 250,000 850,000 3.4% ←
IV 350,000 770,000 2.2% 3.6125
V 400,000 1,440,000 3.6% ←
VI 150,000 600,000 4.0% ←
Firm’s total funding capacity: $800,000

The firm can invest in project I only by investing all it has and getting a return of $3.2
per dollar invested, but a combination of more than one project not only reduces the risk
that arises by concentration but also increases the return. Therefore, the available capital
of $800,000 can be shared by projects III, V, and VI generating a total of $2,890,000
(850,000 + 1,440,000 + 600,000) NPV, which would be translated into a 3.6125%
earning per dollar invested ( 2,890,000

800,000 ). It is higher than the 3.2% from the first project that
required the entire investment budget. Projects I, II, and IV would be dismissed.

12.4.4 NPV Profile, Crossover Rate, and the Ranking Reversal

A NPV profile is the relationship between a project’s NPV and several alternative costs
of capital rates. It is expressed in Table 12.7 and Figure 12.8 for projects I and II. The
table and figure show how the NPV changes in response to changes in the firm’s cost of
capital rate.

TABLE 12.7

Net Present Value ($)

Cost of Capital (%) I II

0 20,000 25,000
2.5 15,972 20,656
4 12,270 15,662
6 10,527 12,498
7.5 9,057 10,775
8 8,765 8,765
10 5,695 4,307
11.5 2,772 240
13 60 −3,480
15 −2,462 −6,887
IRR 13.3% 11.7%
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FIGURE 12.8

Looking at Table 12.7 and Figure 12.8, we can make the following observations:

1. Since the relationship between the NPV and the discount rate is negative, both curves,
NPVI and NPVII, are sloping downwards from their initial values of $20,000 and
$25,000 at zero rate, to negative values at the highest rate. It means that, as the firm’s
cost of capital increases, its NPV decreases.

2. The curve for project II is steeper than the curve for project I. This reflects that project
II is more sensitive to the change in cost of capital rate than project I:

∂NPVII

∂r
>

∂NPVI

∂r
.

We can observe, for example, that as the cost of capital rate goes up by 92% (from 6%
to 11.5%), the NPV for project II goes down by 98% while the NPV for project I declines
by 74%:

11.5 − 6

6
= 92%,

10,527 − 2772

10,527
= 74%,

12,498 − 240

12,498
= 98%.
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The difference in the project sensitivity to changes in the cost of capital is due to the differ-
ences in the magnitude as well as the timing of the cash inflows. Because the discounting
process is just the reverse of the compounding process, the present value of cash inflows in
its later years would decrease at a higher rate than those inflows in its earlier years. This is
the reason for the curves to intersect at the crossover point:

1. When the NPVs of the two projects are equal, their curves intersect at the crossover
point. The cost of capital rate corresponding to that point is called the crossover rate.
Therefore, the crossover rate is defined as the rate at which the NPVs of two projects
become equal to each other and where their curves intersect.

2. The crossover rate serves as the turning point where the reversal of project ranking
occurs. For any cost of capital below the crossover rate, project II would be preferred
for its higher NPV. For any cost of capital above the crossover rate, project I would
be preferred for its higher NPV.

3. The NPVs of both projects would decline to zero when they cross the x-axis at their
firm’s IRR. The graph shows that the IRR for project I is 13.3%, and for project II is
11.7%, and those where the two curves cross the x-axis, respectively.

12.5 PROFITABILITY INDEX AND CAPITAL RATIONING

We have briefly discussed the relative measure of NPV and the NPV per dollar invested.
NPV, a relative measure can be considered as one of the criteria for project acceptability. It
is the PI that is a ratio of the present value for cash inflows and outflows:

PI =

t∑
i=1

[
CFi

(1 + r )n

]

t∑
i=1

[
Ii

(1 + r )n

] .

It can also be expressed as a ratio between the present value of cash inflows and the initial
investment:

PI = PV(CFi )

I0
PI ≥ 1.

The criterion for project acceptability is the value of PI, whether the value is equal to or
larger than 1, since a value equal to 1 would indicate the equality between the cost and
benefit.

In two of the projects mentioned previously, the NPV for one was $770,000, and the
other was $600,000, but because the investment capital required for both were $350,000
and $150,000 respectively, their values for the firm would differ dramatically. Calculating
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the PI for both would reveal the difference. However, we need to restore the present value
for cash flows by combining the NPV and the initial investment for both:

PV = NPV + I0,

PV1 = 770,000 + 350,000 = 1,120,000,

PV2 = 600,000 + 150,000 = 750,000,

PI1 = PV1(CFi )

I0

= 1,120,000

350,000

= 3.2,

PI2 = 750,000

150,000

= 5.

The conclusion is that while the NPV of the first project ($700,000) is 28% more than the
NPV of the second project ($600,000), the PI of the second project (5) is 56% more than the
PI of the first project (3.2). This would illustrate the benefits of the PI as a tool, especially
when judgment by the NPV alone would not be conclusive. The relative measure of the NPV
may rise again when the firm has some constraints on its capacity of investment. Usually,
there is a certain limit to a firm’s capacity for financing all its available feasible projects.
The senior management of firms may fix a limit and determine the maximum capacity of
capital investment, and decide whether project financing should be done by borrowing from
banks and financial institutions or from the public in terms of corporate bonds and equity
shares. Declaring and recognizing the limit on investment may mean recognizing some sort
of capital scarcity which should most likely lead to seeking allocation efficiency and that
is what is called capital rationing. Capital rationing is defined as the process of allocating
scarce financial capital as efficiently as the firm’s conditions and circumstances permit. It is
obvious that capital rationing would be exercised when the total funds requested to finance
all eligible projects exceeds the firm’s affordability as set by the maximum level of funding.
Capital rationing involves contemplating every possible combination of projects that can
be funded, and choosing the best combination of projects where

1. their total required capital would not exceed the firm’s maximum level of funding;

2. their total NPV per dollar is the largest among the alternative combinations.

Tables 12.8 and 12.9 show how capital rationing is done. Table 12.8 shows five competing
projects all of which were considered worthy, but the firm cannot fund all because the
required total capital is $300,000 and the firm’s maximum level of funding is $200,000.
Table 12.9 lists the possible combinations of projects with their combined capital and
combined NPV. It also lists the remaining funds out of the available $200,000 (Column 4)
and their compounded future values (Column 5). Column 6 shows the sum of NPV and
the accumulated future value, and finally Column 7 shows the adjusted NPV per dollar
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of funded capital. This is the column that shows which combination of projects is the
best based on the highest adjusted NPV per dollar, and that is the combination containing
projects (1, 4, and 5) which shows 79% NPV for each dollar of initial investment.

TABLE 12.8

Project Initial Capital ($) NPV ($)

1 100,000 60,000
2 75,000 40,000
3 50,000 35,000
4 45,000 30,000
5 30,000 15,000

300,000 180,000

TABLE 12.9

1 2 3 4 5 6 7

Project
Combination

Combined
Capital

Combined
NPV

Remaining
Fund (RM)
200 − (2)

Value of Invested
Remaining Funds

RM(1 + r)n
Final NPV

(3 + 5)

NPV Per $
Invested
(6 ÷ 2)

1, 2 175 100 25 33.45 133 0.75
1, 3, 5 195 125 5 6.70 132 0.68
1, 3, 5 180 110 20 26.76 137 0.76
1, 4, 5 175 105 25 33.45 138 0.79
2, 3, 4, 5 200 120 0 0 120 0.60

12.6 PAYBACK METHOD

Among the most common methods that were used to evaluate investment projects, especially
during the precomputer age, was the payback method. It may still be in use in some
business houses for its simplicity and straightforwardness. Payback period (PB) refers
to the expected number of operational years during which the initial investment can be
recovered. In particular, as a criterion for project selection, the shorter the PB the better
the better the project. The short recovery time would be a crude measure of liquidity of the
project. It can also be an indication of less potential risk. The fewer the number of years in
which the initial capital can be fully recovered, the more the project can cut off the potential
risk that may lie ahead.

The PB can be obtained by the following two techniques:

1. For projects yielding an equal amount of cash inflow during the project life time, PB
is obtained by dividing the initial investment or the proposed capital (I) by the annual
cash flow (CIF):

PB = I

CIF
.
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2. For projects yielding variable cash inflows throughout the years of the project oper-
ation. The PB can be obtained by

PB = ( f − 1) +

⎡
⎢⎢⎢⎢⎢⎣

I −
f −1∑
t=1

CIFt

CIF f

⎤
⎥⎥⎥⎥⎥⎦

,

where

f = year in which the initial investment can be fully recovered;

f − 1 = year before the year of full recovery of the initial investment;

I = initial investment or the capital proposed for allocation;

CIFt = cash inflow during the period t up to the year before the year of full recovery
of initial investment;

CIFf = the cash inflow in the year of full recovery of the initial investment.

Let us calculate the PB for the following two proposed projects:
Sunshine Company is considering the following two projects for capital allocation.

Project X is asking for $64,000 and project Y is asking for $68,000. Calculate the PB for
both projects (Table 12.10).

TABLE 12.10

Project X ($64,000) Project Y ($68,000)

Year
Expected Profits
(After Taxes) ($) Cash Inflows ($)

Expected Profits
(After Taxes) ($) Cash Inflows ($)

1 9,500 16,000 21,500 40,800
2 10,200 16,000 9,000 12,200
3 10,200 16,000 5,500 10,000
4 8,000 16,000 4,500 10,000
5 7,100 16,000 4,000 8,000

9,000 16,000 8,900 16,000

For project X,

PB = I

CIF

= 64,000

16,000

= 4 years.
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For project Y,

PB = ( f − 1) +

⎡
⎢⎢⎢⎢⎢⎣

I −
f −1∑
t=1

CIF f

CIF f

⎤
⎥⎥⎥⎥⎥⎦

= 3 +
[

68,000 − (40,800 + 12,200 + 10,000)

10,000

]

= 3.5 years,

where

f = the fourth year since the $68,000 would be within the accumulated cash in-
flows by the end of the fourth year, that is ($40,800 + $12,200 + $10,000 +
$10,000 = $73,000);

f − 1 = the third year (the year before the fourth);

CIFf = the annual cash inflow ($10,000) in the fourth year as the year in which the
initial investment would be fully recovered.

In addition to the major shortcoming of the payback method wherein the time value of
money change is ignored, it has also been criticized for ignoring the dynamics of the cash
inflows obtained during the years after the year of full recovery.

12.7 COST OF CAPITAL

Firms usually raise investment capital using either internal or external sources. The only
internal source is the allocation of a growth fund out of the firm’s own past profits. However,
there are many external sources, for example borrowing money either from the public in
terms of issuing corporate bonds or from commercial banks in terms of short- and long-term
business loans. Another major external source of capital is equity finance wherein business
is shared with investors by issuing common and preferred stocks. Generally speaking, firms
usually fund their investment projects through a certain combination of debt and equity.
Capital budgeting involves the business decisions on whether investment projects should
be funded and whether they are worthwhile. It is, therefore, crucial for the management to
assess the cost of its funded projects, and this is where the firm’s cost of capital comes in
the picture.

Cost of capital is defined as the rate of return which

1. the firm must earn on its investment in order to maintain a proper market value for
its stock;

2. the investors require in order to make their capital attractive and be able to lead their
funds to new investment opportunities.
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Since the most common financing sources of capital for the majority of firms are debt and
equity financing, we focus on the estimation of the cost of capital in these sources.

12.7.1 Cost of Debt Capital

Cost of debt capital is represented by the rate of return that the lending investors would
require when they supply their funds to the firm for a new investment project. As for the
borrowing firm, it would be the minimum rate possible that must be earned on the capital
borrowed. Since the interests on debt finance are tax deductible, this rate on debt capital is
measured on after tax basis. If (kb

d ) is the nominal interest rate (before taxes) that is paid on
debt capital, and (T) is the marginal tax rate that the firm usually pays, then the after tax
rate of debt capital (ka

d ) is

ka
d = kb

d (1 − T ).

Suppose that a firm borrows a certain fund at 9 3
4 % interest, but it pays 39% marginal tax

rate on its earnings, the after tax rate on its debt capital would be

ka
d = 0.0975(1 − 0.39),

ka
d = 5.95%.

This calculated rate of interest would be applied only on the additional capital borrowed by
the firm. This would give the term “cost of capital” the meaning that it is actually measured
in terms of the “marginal” cost of capital. If the firm borrows money from the public in
terms of issuing corporate bonds, then its before tax cost of capital (kb

db) in such a long-term
debt would be calculated by

kb
db =

I +
[

M − NP

n

]
[

NP + M

2

] ,

where I is the annual interest, M is the face value of bond, NP is the net proceeds (face
value adjusted to flotation cost), and n is the number of years to redemption.

Suppose a firm is issuing its 20-year corporate bond of $1000 at a coupon rate of 9 3
4 %.

The bond is sold at 3 1
2 % discount and the firm pays a flotation cost of 1 1

2 % per bond. The
cost of capital for this bond can be calculated as

I = M(cr) cr: coupon rate

= (1000)(0.0975) = 97.50.
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Bond price at discount (Bd ) = 1000(1 − 0.035) = 965,

NP = Bd (1 − 0.015) = 950.52,

kb
db =

I +
[

M − NP

n

]
[

NP + M

2

]

=
97.50 +

[
1000 − 950.52

20

]
[

950.52 + 1000

2

]

= 10.2%.

12.7.2 Cost of Equity Capital

Cost of equity capital is represented by the rate of return that the stockholders require when
they share the firm’s ownership, by buying its stocks. As for the firm issuing the stocks, it
would be the cost of building the firm’s equity and elevating its performance to achieve the
maximum equity possible. Since dividends paid to stockholders is not tax deductible and it
is not going to reduce the firm’s taxable income in any form, this rate of return is measured
on a before tax basis. The rate of return on equity capital (ke) incorporates two elements
into its estimation:

1. The opportunity cost to investors of forgoing current consumption when diverting
some of their income to buy stocks. This element is represented by the interest rate
on short-term US treasury bills. It is a risk-free rate of return on investment (Rf).

2. The cost of risk that investors take when they choose to invest in stocks as opposed
to investing in other safer investment opportunities. This element is represented by
the risk premium (Rp).

Therefore, the rate of return on equity capital (ke) can be

ke = R f + Rp.

There are two common methods to estimate ke. The capital asset pricing model (CAPM)
and the dividend evaluation methods. The risk premium (Rp) for any stock in the market
can be estimated using the financial index beta (β), and the risk-free interest rate.

The CAPM Estimation The CAPM can estimate the value of risk premium (Rp) for any
stock in the market using the financial index beta (β) that compares the risk associated with
any stock to the overall risk of securities in the market. Therefore, the cost of equity capital
(ke) can be estimated as

ke = R f + Rp,

ke = R f + βi [km − R f ],
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where the risk premium (Rp) is obtained by multiplying the financial index β by the market
risk premium, which is the difference between the market expected rate of return (km) and
the risk-free rate (Rf). The risk premium and the CAPM will be explained in detail in the
next chapter. For example, consider a stock that is riskier than the average stock with a beta
of 1.3, an expected market return of 8 1

2 %, and a risk-free rate of 5%. The rate of return on
equity capital for this particular stock would be

ke = R f + βi [km − R f ]

= 0.05 + 1.3[0.085 − 0.05]

= 9.5%.

Now consider a stock safer than the average stock in the market with beta equal to 0.4, and
if we assume that the risk-free rate and the expected market rate stay the same, then the
rate of return on equity capital would be

ke = 0.05 + 0.45[0.085 − 0.05]

= 6.6%,

which makes perfect sense that the riskier stock would cost more than the safer stock.

The Dividend Valuation Estimation Since the firm issues and sells common stocks and
pays dividends to the stockholders, we can assume that the value of a common stock share
(V0) is the present value of all dividends (Dt) paid in the future for period t, discounted at
the firm’s cost of equity capital (ke):

V0 =
∞∑

t=1

[
Dt

(1 + ke)t

]

= D1

(1 + ke)1
+ D2

(1 + ke)2
+ · · · + Dt

(1 + ke)t

under the assumption that those dividends will continue to be paid for an indefinite period
of time, V0 can be viewed as a perpetuity, and can therefore be expressed by

V0 = D

ke
,

where the dividend D remains constant throughout the future. But if the dividend increases
by a certain annual rate of growth, for example (g), then

V0 = D

ke − g
.
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V0 is the value of a common stock share and D is the dividend paid to stockholders. We can
logically replace V0 by the market price per share (MPS) and D by the dividend per share
(DPS):

MPS = DPS

ke − g
,

and therefore, we can express this equation in terms of ke:

MPS · ke −MPS · g = DPS,

MPS · ke = DPS + MPS · g,

ke = DPS

MPS
+ g,

and if we want to use the net market price of a share, we can factor in the percentage of the
flotation cost (F) so that the net price per share becomes MPS(1 − F) and, therefore, the
cost of equity capital (ke) becomes

ke = DPS

MPS(1 − F)
+ g,

since the ratio of DPS to the MPS is the dividend yield (DY), the cost of equity capital (ke)
would be equal to the DY plus the dividend growth rate (g):

ke = DY + g,

which is the rate of return used to calculate equity cost while new stock is to be sold or
even while using the firm’s own retained earnings.

Suppose that the dividend per share for a firm is $16 and this particular stock sells at
$104 in the market and is expected to increase by 4% every year. The cost of equity capital
in this firm can be estimated after obtaining the DY as

DY = 16
104 = 16.6%,

ke = 0.166 + 0.04,

ke = 20.6%.

It is important here to say that (g) represents a constant annual rate of growth in the dividend
per share. In reality, growth fluctuates over the years and also within the same year. The
following formula presents an example of the value of share (V0) for which the growth
varies between nonconstant and constant periods. It is from such specific formulas that a
more realistic cost of equity capital can be obtained:

V0 =
n∑

t=1

[
DPSt

(1 + ke)t

]
+

(
DPSn+1

ke − g

)[
1

(1 + ke)

]n

,
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where

DPSt = dividend per share for a period t in which the growth rate is constant;

DPSn + 1 = the first dividend per share obtained for a period in which the growth rate
is variable;

ke = cost of equity capital;

g = constant rate of growth in DPS.

12.7.3 The Weighted Marginal Cost of Capital

Firms use different types of capital to finance their new investment projects. Since each
type has its own cost of capital and may pose a different level of risk to the firm, most
firms try to maintain an optimal capital structure where they adopt a certain combination of
debt and equity capital that would minimize the firm’s overall cost of capital and maximize
the market stock price. In this case, the MCC becomes a composite rate weighted by the
proportion of each type of capital in the firm’s capital structure. Let us assume that a firm is
using four types of capital, where each has its own proportion (weight) in the firm’s capital
structure (w1 through w4) and each has its own cost of capital rate (k1 through k4). The
MCC for the firm would be a composite measure represented by the weighted average cost
of capital (kw):

kw = wlk1 + w2k2 + w3k3 + w4k4,

kw =
n∑

i=1

wi ki .

Suppose that a firm’s capital structure is made up of the following components:

1. Common stock—52%

2. Preferred stock—11%

3. Long-term debt—37%

and if the cost of capital for common stock is 13.5%, for preferred stock is 9.25%, and for
debt is 7 3

4 %, then the weighted average cost of capital for the firm is 10.9% as calculated
according to Table 12.11 of the firm’s capital structure:

TABLE 12.11

Type of Capital Proportion (wi) Cost of Capital (ki) wiki

Common stock 52% 13.5% 0.0702
Preferred stock 11% 9.25% 0.010175
Long-term debt 37% 7.75% 0.028675

100%
∑

wiki = 0.10905

Weighted average cost of capital can also be calculated for the industry. Table 12.12 and
Figure 12.9 show five firms with their capital structures of debt and equity capitals and
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their own individual weighted average costs of capital which together form the industry’s
weighted average cost of capital.

TABLE 12.12

Firm

Debt
Capital

(wd)

Cost of Debt
Capital (kd)

Equity
Capital

(we)

Cost of
Equity

Capital (ke)

Firm’s Weighted
Cost of Capital

(kw)

Weight of
Firm in

Industry (vi) kw vi

1 5% 4% 95% 7% 6.85% 33% 2.3%
2 25% 4.25% 75% 7.5% 6.7% 25% 1.7%
3 50% 4.5% 50% 8.75% 6.6% 18% 1.2%
4 75% 4.75% 25% 10.75% 6.25% 15% 0.9%
5 90% 5.5% 10% 13% 6.25% 9% 0.5%
Industry’s weighted average cost of capital = 6.6%
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Generally, if any firm tries to fund new investment projects beyond its affordable limit,
the MCC would start to increase right at that point. As we have seen before and as the graph
in Figure 12.10 shows, the MCC curve would turn out to be a positively sloped curve at
and beyond the point of maximum affordability of funding (the fifth project as shown in
Figure 12.10).

Weighted average cost of capital

MCC

Afforded project

87654321
Unafforded

projects

Capital
money

FIGURE 12.10

12.7.4 Capitalization and Capitalized Cost

In relation to capital budgeting, capitalized cost calculations are often used within the firm’s
decision-making process, especially on selecting the most economic alternative of assets
and their uses.

Capitalization of a fund (asset or liability) refers to the present value or cash equivalent
of its unlimited number of periodic payments. For example, if a certain fund is invested
now at a certain interest rate, we can assume that we would continue to collect periodic
interests on that fund forever. Therefore, if we reverse this logic, we can realize that the
current fund is, in fact, the present value for all of its periodic payments that are held in
perpetuity. Capitalization is used to evaluate the cash equivalent of assets and liabilities that
have periodic payments.

From a successful business management perspective, a firm should not only allocate
funds to buy capital assets, but also allocate additional funds to maintain them through-
out their useful lives, and allocate investment to replace them after they give their due
services. Therefore, the capitalized cost of an asset is the sum of its original cost, the
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present value of unlimited maintenance cost, and the present value of unlimited number of
replacements:

K = C + C − S

(1 + r )n − 1
+ M

r
,

where

K = capitalized cost of an asset;

C = original cost of the asset;

S = scrap value of the asset after its useful life;

M = annual maintenance cost of the asset.

Let us suppose that a construction company is contemplating the purchase of heavy equip-
ment. The decision maker narrowed down the alternatives to two of the best machines
(Table 12.13).

TABLE 12.13

Machine I Machine II

Initial cost ($) 35,000 39,000
Useful life (years) 10 15
Annual maintenance ($) 3,000 2,500
Scrap value ($) 5,000 4,000

Which of the two machines should be purchased if the interest rate is 9 1
2 %?

We calculate the capitalized cost for both machines individually and then choose the
least costly as the better alternative:

K1 = C1 + C1 − S1

(1 + r )n − 1
+ M1

r

= $35,000 + $35,000 = $5000

(1 + 0.095)10 − 1
+ $3000

0.095

= $86,873.52,

K2 = C2 + C2 − S2

(1 + r )n − 1
+ M2

r

= $39,000 + $39,000 = $4000

(1 + 0.095)15 − 1
+ $2500

0.095

= $77,379.25.

Machine II should be purchased for having lesser capitalized cost.

Example 12.5
A town board was asked to estimate an endowment to build a children’s playground. If the
construction costs $50,000 and needs to be replaced every 10 years at an estimated cost of
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$40,000, and the maintenance cost is $15,000, how much would the endowment be when
the interest rate is 12%?

Solution:
The endowment total would be considered a capitalized cost and the replacement cost
would be the (C − S):

K = $50,000 + $40,000

(1 + 0.12)10 − 1
+ $1500

0.12

K = $193,994.72.

The board will ask the donor to allocate $194,000.

Another purpose of capitalized cost is to figure out the extent of improvement that can be
made on asset performance or equipment productivity. Let us assume that we have a printing
machine, the original cost of which was $65,000 and its scrap value is estimated at $5000
after 12 years. The productivity of the machine is 20,000 books a year and its maintenance
cost is $3000. The firm’s engineer figured that installing an additional part could raise
the machine’s productivity to 30,000 books a year without affecting its maintenance or its
useful age. How much can the firm spend economically to achieve the boost in productivity
if the investment rate is 8%?

Here, we can set an equation of ratios—the ratios of the capitalized costs of the machine
to its productivity before and after the technological improvement. If Kb and Ka are the
capitalized costs of the machine before and after the technological improvement, and Pb and
Pa are the productivities of the machine before and after the technological improvement,
then

Kb

Pb
= Ka

Pa
.

We set up the capitalized costs where the question (how much can we spend?) would
be an addition (x) to the original cost in the calculation of the capitalized cost after the
technological improvement. Then we would algebraically solve for x:

Kb = Cb + Cb − Sb

(1 + r )n − 1
+ Mb

r
,

Kb = $65,000 + $65,000 − $5000

(1 + 0.08)12 − 1
+ $3000

0.08
,

Kb = $142,021,

Ka = Ca + Ca − Sa

(1 + r )n − 1
+ Ma

r
.

Since Ca = Cb + x, where x is what should be spent on the technological improvement of
the machine

and Sa = Sb

Ma = Mb, where there would be no change in the life of the machine and its residual
value.
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Then

Ka = (Cb + x) + Cb + x − Sb

(1 + r )n − 1
+ Mb

r
,

Ka = ($65,000 + x) + $65,000 + x − $5000

(1 + 0.08)12 − 1
+ $3000

0.08
,

Ka = $227,271 + 3x

1.5
,

Kb

Pb
= Ka

Pa
,

$142,021

20,000
=

$227,271 + 3x

1.5
30,000,

x = $30,758.

The firm can spend $30,758 to improve the machine and raise its productivity to 30,000
books a year.

12.7.5 Last Words on the Cost of Capital

� Throughout the discussion on the cost of capital, it was assumed that only the flotation
cost would tell the difference between the new common stock and the retained earnings
when it comes to the cost of capital for both. In reality, there could be other reasons for
the difference. Among those reasons is the plausible investor’s preference for capital
gain (as represented by g) over the DY, that is,

(
DPS
MPS

)
. This preference can most likely

be due to the fact that capital gains are taxed at a lower tax rate than the dividend
income when it comes to the personal income tax for investors.

� In our explanation, the typical cost of capital did not include neither the firm’s de-
preciation as a source of capital, which may be significant for some firms nor the
firm’s deferred taxes, which sometimes form a source of capital, and can, in reality,
be collectively considered a source equal to an interest-free loan from the internal
revenue service (IRS).

� The discussion focused on the publicly owned corporations but the same principles of
the cost of capital should apply to private, nonpublicly owned trading firms, as well
as to small businesses.

� Just like with many theoretical concepts, cost of capital calculations may prove to be
difficult to be used in practice, especially for estimating the risk premium for different
securities, as well as for correctly assessing risks and growth rates.

SUMMARY

� This is the first chapter in the last unit that addresses the managerial decisions in the
long run. It discusses capital budgeting, which focuses on the strategic planning of
all capital expenditures that are made to sustain a stable and more productive future
for the firm. Specifically, capital budgeting is concerned about making decisions to
replace, improve, and expand the firm’s major existing resource base compared with
only extracting performance out of the resources. The emphasis would primarily be
placed on assessing the firm’s investment opportunities in order to choose the most
viable option.



482 CAPITAL BUDGETING AND INVESTMENT PROJECT EVALUATION

� The underlying theoretical framework for capital budgeting is based on the economic
equimarginal principle, which states that a firm would pursue and continue to engage
in an activity until the marginal cost is equal to its marginal benefit. As for the firm’s
decisions on investment projects, the principle is applied in a way that capital would
continue to be allocated for investment purposes to the point where marginal return on
investment, as represented by the incremental cash flows, would equal the marginal cost
as represented by the added expenditures and the new investment capitals.

� There are two groups of methods of evaluation for the capital budgeting projects. The first
group, which is commonly employed, consists of value-adjusted methods because they
use time value of money to establish reliable criteria for project worthiness. This group
includes the net present value (NPV), the internal rate of return (IRR), and the profitability
index (PI). The second group includes the value-unadjusted methods because they do
not use any time value of money adjustment. This group includes the PB technique. The
NPV refers to the estimated stream of net cash flows from a project as it is discounted
to the current value at the firm’s cost of capital. The criterion is that the NPV has to be
positive in order to undertake a proposed investment project. As for the IRR, it refers to
the rate of discount at which the present value of the project’s future cash flows would
be equal to the initial capital invested in the project. The IRR has to be higher than the
firm’s cost of capital in order that the firm to approve the allocation of any investment
capital. The PI refers to the ratio of the present value of the future cash flows of a project
to the initial investment in the project. It is a useful measure to make a comparison of the
proposed projects. The firm would naturally prefer the project with the highest PI. As for
the payback method, the period of payback refers to the expected number of operational
years during which the initial investment can be recovered. The shorter the period, the
higher the preference for the project.

� The firm’s cost of capital is the rate of return required to be earned in order to maintain
a proper market value for the firm’s stocks and it is also the rate required by investors
in order that their capital be attractive and rewarding. Firms use either internal sources
of capital, for example, the portion of their own profits that are dedicated for growth,
or external sources, for example, borrowing or issuing common and preferred stocks
for sharing the business equity. Cost of debt capital is the rate of return required by
lenders if they supply funds for investment. Cost of equity capital is the rate of return that
stockholders require when they share the firm’s ownership by buying stocks. This rate is
formed by the risk-free rate on short-term treasury bills and the risk premium. The capital
asset pricing model (CAPM) is used to estimate the value of risk premium for any stock
in the market using the financial index beta, which compares the risk associated with any
stock to the overall risk of securities in the market. Since most firms use different types
of funding capital, each with its own cost of capital, the weighted marginal cost of capital
can serve as a composite rate weighted by the proportions of each type of capital used.

� Capitalization of a fund refers to the present value or cash equivalent of its unlimited
number of periodic payments. It is used to evaluate the cash equivalent of assets and
liabilities that have periodic payments. The capitalized cost of an asset is the sum of
its original cost, the present value of unlimited maintenance cost, and the present value
of unlimited number of replacements. For example, in buying equipment, a firm would
choose the one with least capitalized cost. Another purpose of capitalized cost is to figure
out the extent of improvement that can be made on an asset’s performance or equipment’s
productivity.
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KEY TERMS

capital budgeting
net present value

(NPV)
profitability index (PI)
payback
cost of debt capital
risk premium

financial beta

dividend valuation
capitalization
composite cost of capital
project evaluation
internal rate of return (IRR)
capital rationing
cost of capital

cost of equity capital
risk-free rate of return
capital asset pricing

model (CAPM)
weighted marginal

cost of capital
capitalized cost

LIST OF FORMULAS

� Net present value:

NPV =
t∑

i=1

[
CFi

(1 + r )n

]
− I0.

� NPV in terms of profit and adjusted for depreciation and taxes:

NPV =
t∑

i=1

{
[TRi − TCi ](1 − T ) + Di

(1 + r )n

}
− I0.

� Internal rate of return:

IRR =

⎡
⎢⎢⎢⎢⎣

n∑
i=1

CFi − I0

∑
i

CFi

⎤
⎥⎥⎥⎥⎦ .

� Profitability index:

PI =

t∑
i=1

[
CFi

(1 + r )n

]

t∑
i=1

[
Ii

(1 + r )n

]

PI = PV(CFi )

I0
.



484 CAPITAL BUDGETING AND INVESTMENT PROJECT EVALUATION

� Payback:

PB = I

CIF
,

PB = ( f − 1) +

⎡
⎢⎢⎢⎢⎢⎣

I −
F−1∑
t=1

CIF

CIF

⎤
⎥⎥⎥⎥⎥⎦

.

� Before Tax cost of capital for corporate bonds:

K b
db =

I +
[

M − NP

n

]
[

NP + M

2

] .

� Cost of equity capital:

ke = R f + Rp.

(a) With dividend growth:

ke = DPS

MPS(1 − F)
+ g.

(b) In terms of dividend yield:

ke = DY + g.

� Risk premium:

RP = βi [Km − R f ].

� Value of common stock share:

V0 =
∞∑

t=1

[
Dt

(1 + ke)t

]
.

� Value of common stock share in terms of dividend per share:

V0 =
n∑

t=1

[
DPSt

(1 + ke)t

]
+

(
DPSn+1

ke − g

) [
1

(1 + ke)

]n

.
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� Weighted marginal cost of capital:

kw =
n∑

i=1

wi ki .

� Capitalized costs:

K = C + C − S

(1 + r )n − 1
+ M

r
.

EXERCISES

1. Explain the purpose and basic principle of capital budgeting and how it works to serve
the business?

2. List, explain, and compare the capital budgeting technical tools by which the proposed
investment projects are usually evaluated for acceptance and allocation.

3. What is capital rationing? When should a firm ration its capital and what are the criteria
and the process for such rationing?

4. List and explain the ways by which firms usually finance their investment projects. Ex-
plain the rate of returns required by each method of financing. What are the implications
of multiple ways of financing for a firm, each with its own rate of return?

5. What is CAPM? What is its importance and how does it work?

6. The following table shows information on two proposed projects. Which project is
most likely to win a funding approval?

Project A—Initial Investment:
20,000

Project B—Initial Investment:
20,000

Year Cash Outflow Cash Outflow

1 4,000 8,000
2 16,000 8,000
3 2,000 8,000
4 2,000 8,000

7. Calculate the approximate IRR for a proposed project wherein its presenters are asking
for an initial capital of:

Period Cash Flow Initial Investment

1 20,000 100,000
2 40,000
3 60,000
4 40,000
5 10,000
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8. Use the information given in the table below to (a) calculate the NPV and the PI for
all three proposed projects and (b) determine the best funding decision for the firm
considering these proposals.

Project Present Value of Net Cash Flow Initial Investment

A 7,800,000 6,000,000
B 4,200,000 3,000,000
C 4,200,000 3,000,000

9. A 20-year corporate bond of $2000 is issued at 8 1
2 % coupon rate and is sold at 2 3

4 %
discount with a flotation cost of 1 3

4 %. What would be the cost of capital?

10. If the price of a certain stock is $56.00 with a potential annual growth rate of 5 3
4 %,

what would be the cost of equity capital if the DPS in this firm is $9.80?



13
RISK ANALYSIS AND MANAGERIAL
DECISIONS UNDER UNCERTAINTY

13.1 RISK AND UNCERTAINTY

It is fortunate that some managerial decisions are made under a good degree of cer-
tainty. However, a considerable number of other decisions are still to be made under the
conditions of risk and uncertainty. Certainty in this context refers to the condition of
having one possible outcome that is known and confirmed to the decision maker. Con-
trary to that, whenever there is a possibility of having more than one outcome, the con-
dition is considered either risky or uncertain. This leads us to the distinction between
risk and uncertainty, the two terms that may be used interchangeably but have a thin,
though crucial, line between them, especially in the context of financial and economic
considerations.

Risk refers to the condition in which there are multiple possible outcomes and the
probability of each alternative outcome either is known or can be estimated. Uncertainty
shares the first element with risk—the existence of multiple possible outcomes—but differs
in the second element, so that the probability of each outcome either is unknown or cannot
be estimated.

Managerial decisions often follow a certain scheme when it comes to facing conditions
of risk or uncertainty. The scheme includes the following steps:

� Predicting a set of possible future conditions that would affect any possible managerial
decision. These are often called the states of nature.

� Estimating the expected payoff for each possible decision and each possible state of
nature.

Organizing these elements for each managerial decision would form a payoff matrix.

Managerial Economics: A Mathematical Approach, First Edition. M. J. Alhabeeb and L. Joe Moffitt.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.
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Suppose that a manager has to choose among three possible decisions: opening a new
branch for the company, expanding and updating the existing branch, or just keeping the
current branch with no change. Also suppose that the company sees the possibility of the
economy descending into a recession during the next period. If the company can estimate
the alternative outcomes in terms of the amount of total profits that can be earned in each
of the possibilities, a payoff matrix can be constructed like Table 13.1.

TABLE 13.1

Decision/State of Nature Recession No Recession

Opening a new branch $290,000 $350,000
Expanding the current branch $480,000 $400,000
Keeping the current branch as it is $300,000 $320,000

Comparing the option of no change with that of building a new branch reveals that doing
nothing would do slightly better in a recession and slightly worse in no recession. However,
the picture is significantly different when considering an expansion and renovation project.
It would do much better than keeping the current state of the company in both economic
conditions. However, comparing the expansion and renovation to establishing a new branch
seems much better in recession and slightly better in no recession. This concludes and
confirms that going with the expansion and renovation project is the winning decision no
matter where the economy is heading.

13.2 SOURCES OF RISK

Many possible sources can introduce certain conditions of risk to the managerial decision-
making process. Most of these sources are external to the firm. We can group the most
common sources into four categories.

13.2.1 Economic Sources

This category includes a variety of sources that are related to the economic environment of
a country. The fluctuations in the financial market pose a credible risk to the value of assets
in the current and future periods. Such a risk is known as “market risk.” Major economic
factors such as inflation and interest rate pose yet another significant impact on prices and
the value of lending and borrowing and their impact on earnings. Changes in the credit
obligation and in the state of liquidity can also introduce credit risk and liquidity risk, in
addition to the currency risk that can stem from changes in the exchange rate between the
domestic and foreign currencies. Also, the state of competition in the same industry or
region poses another type of economic risk.

13.2.2 Political Sources

This type of risk is related to the government policies, domestically and internationally,
that may introduce certain risks to an industry in particular or to the economy as a whole.
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One specific risk is the change in tax policies. Another possible risk is the “expropriation
risk,” where a government abroad may seize the property, restrict the rights, or remove the
privileges of the hosted firm. Terrorism nowadays constitutes a significant political risk on
business activities of all firms, domestically and globally.

13.2.3 Social Sources

These sources include the type of risks related to cultural or religious reasons or to certain
social norms or trends that affect consumer preferences and demand. For example, certain
food or clothing items or weather-related products may not have any chance to be marketed
in certain countries, which is a big reason to determine the orientation of business dealing
with such products.

Even domestically, consumer taste and preferences are subject to change, and any
business that cannot respond and keep up with those changes would face the risk of losing
its market share.

13.2.4 International Sources

A variety of risks can arise from within a certain firm or from the entire industry for
commercially competitive reasons or for power conflicts and political struggles among the
leadership personnel. They can also be related to the firm’s inability to cope with the rising
cost of production, declining demand of its products, or its failure to keep up with the
technological advances in its own industry.

13.3 MEASUREMENT OF RISK

As it involves calculable multiple outcomes, risk can be defined in terms of the variabil-
ity of those outcomes and to what extent they are dispersed. The relationship between
risk and variability and dispersion of outcomes is direct. Large variability and wide dis-
persion means higher risk, whereas small variability and tight distribution of outcomes
indicate lower risk. For example, if an investment earns a 5% fixed and guaranteed rate
of return in one opportunity and may earn anywhere between 10% and 30% on another
opportunity, we can easily realize that it would be considered risk-free in the first oppor-
tunity and highly risky in the second opportunity. Such a realization of the higher risk
is definitely based on the wide range of possibilities of the earned return in the second
opportunity. Ironically, in considering this example, we can also vividly see that the only
possibility of earning a very high return such as 30% is available only with the risky pack-
age, hence the other direct relationship between risk and return. Seeking higher returns
means the willingness to deal with higher risk and seeking security means accepting a
modest return.

Therefore, risk can be measured by the classic statistical measurement of dispersion;
that is, variance or standard deviation. We can classify this measure as an absolute and a
relative measure of risk.
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13.3.1 The Absolute Measure

The objective here is to see how the actual outcome deviates from the expected value.
Suppose that we are considering how risky some assets are on the basis of their returns. The
most simple idea that may come to mind first is to contemplate the range of those returns
as a hint to the dispersion of returns. If, for simplicity, we take assets X and Y with three
returns for each, as in Table 13.2, we can see that the difference between the highest and
lowest returns for each would refer to more dispersion for asset Y (range: 15 – 5 = 10),
than for asset X (range: 11 – 9 = 2). This may indicate that asset Y is riskier than asset X
for having higher variability of returns.

TABLE 13.2

Return X Y

k1 9 5
k2 11 10
k3 11 15

Range: k3 – k1 2 10

This variability notion can be better represented by the probability distribution of returns.
The tighter the probability distribution, the more likely it is to have the actual return close
to the expected value, and therefore, the lower the risk for that asset. On the other hand,
the wider the probability distribution, the higher the variability of returns, and the higher
the risk.

Variance (σ 2) provides a measure of variability or dispersion, for it is the weighted
average of the squared deviations from the mean:

σ 2 =
n∑

i=1

[x − x̄]2 P(x).

The mean x̄ here is the expected value of outcomes, which is calculated as the summation
of the actual outcomes xi multiplied by the probabilities in which the actual outcomes may
occur (Pxi):

x̄ = Expected value =
n∑

i=1

xi P(xi ).

Risk as expressed by variability or dispersion of outcomes can also be measured by the
standard deviation (σ ), as it is the square root of variance (σ 2):

σ =
√√√√ n∑

i=1

[x − x̄]2 P(xi ).
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Let us calculate the standard deviations of assets X and Y in Table 13.3, given that the
probabilities of their returns are 25%, 50%, and 25%, respectively, for their three returns.

�x = √
0.5 = 0.71.

�y = √
12.5 = 3.5.

TABLE 13.3

Asset X xi P(xi) xi P(xi) xi − x̄ [xi − x̄]2 [xi − x̄]P(xi)

9 0.25 2.25 −1 1 0.25
10 0.50 5.00 0 0 0
11 0.25 2.75 1 1 0.25

Asset Y x̄ = �xi P(xi ) = 10 σ 2 = �[xi − x̄]2 P(xi ) = 0.5
5 0.25 1.25 −5 25 6.25

10 0.50 5 0 0 0
15 0.25 3.75 5 25 6.25
x̄ = �xi P(xi ) = 10 σ 2 = �[xi − x̄]2 P(xi ) = 12.5

The standard deviation of 0.71 means that the returns on asset X are much closer to
their own expected value than the returns on asset Y, which has a standard deviation of 3.5,
indicating how wide the dispersion of returns is, as shown in Figure 13.1.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Probability density

Asset X

Asset Y

FIGURE 13.1

In the long run, asset risk would be an increasing function of time. The variability of
returns gets wider and the risk gets greater as time goes by. Practically, this would be
translated as that the longer the life of an investment asset, the higher the risk involved.
Figure 13.2 shows how the dispersion of returns gets wider over 20 years.
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FIGURE 13.2

Example 13.1
Suppose that two investment project proposals were submitted to a firm for funding. The
proposals came with their own estimations of the profits (in hundreds of thousands of
dollars) that the two projects expect to earn in the next 5 years. How would the managers
make their choice?

Solution:
First, we have to calculate the mean profit (expected value) for each project for 5 years, and
second, we have to calculate the project’s variances and standard deviations individually,
as we arrange data in Tables 13.4 and 13.5.
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TABLE 13.4

Project I

Years
Predicted
Profits xi Probability P(xi) xiP(xi) [xi − x̄] [xi − x̄]2 [xi − x̄]2 P(xi)

1 4375 0.10 437.5 −625 390,625 39,062.5
2 4450 0.25 1112.5 −550 302,500 75,625
3 4850 0.30 1455 −150 22,500 6,750
4 5300 0.25 1325 300 90,000 22,500
5 6700 0.10 670 1700 2,890,000 289,000

x̄ =
5∑

i=1

xi P(xi ) = 5000 σ 2 =
5∑

i=1

[xi − x̄]2 P(xi ) = 432,937

σ = √
432,937 = 658

TABLE 13.5

Project II

Years
Predicted
Profits xi Probability P(xi) xiP(xi) [xi − x̄] [xi − x̄]2 [xi − x̄]2 P(xi)

1 2000 0.10 200 −3000 9,000,000 900,000
2 3500 0.25 875 −1500 2,250,000 562,500
3 5000 0.30 1500 0 0 0
4 6500 0.25 1625 1500 2,250,000 562,500
5 8000 0.10 800 3000 9,000,000 900,000

x̄ =
5∑

i=1

xi P(xi ) = 5000 σ 2 =
5∑

i=1

[xi − x̄]2 P(xi ) = 2,925,000

σ = √
2,925,000 = 1710

Since the two projects yield the same expected value, the next crucial criterion would
be which of them is safer or riskier than the other. The answer would be clear with the
calculation of variance (σ 2) and standard deviation (σ ). The calculated results show that
project I had a smaller standard deviation (658) than project II (1710). Project I would
win for being less risky than project II. It is clear in Figure 13.3 how data of project II are
dispersed over horizontally, forming a widely spread curve, whereas they are much tighter
in project I, showing how the outcomes are generally close to the expected value or mean.

As for the significance of standard deviation in expressing the dispersion of outcomes,
and therefore reflecting the risk level, it means the following, under the assumption that the
distribution is normal.

There is a 68.26% chance that the actual outcome is within one standard deviation from
the expected value. Based on the symmetry of the normal distribution, this chance is divided
equally between a negative 34.13% and a positive 34.13%. So, if the standard deviation is
1710, for example, there would be a 34.13% chance that the actual value is 5000 + 1710,
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and a 34.13% chance that it is 5000 – 1710. So the general range would be from 3290 to
6710. The chance would increase to 95.44% within two standard deviations (2 × 1710),
which is also split equally on both sides of the mean. In this case, the chance would be
47.7% that the range of the actual outcome would be between 1580 (i.e., 5000 – (2 ×
1710)) and 8420 (i.e., 5000 + (2 × 1710)).

It is clear that if we deal with a smaller standard deviation such as 658, the ranges of
the actual outcome would be closer to the expected value, rendering more security and
less risk.

This interpretation is, of course, not limited to the discrete one, two, and three standard
deviations from the mean. It would apply to any range in between. Therefore, we can find
the probability of a specific outcome (xi) such as 5500, for example. We can calculate how
much of a standard deviation from the mean (x̄) this value would reveal by calculating the
value of Z and looking up the statistical table of the normal distribution (Table A.8):

Z = xi − x̄

σ
,

Z = 5500 − 5000

658
= 0.76.

This means that if we have an actual outcome of 5500, it would fall within a little more
than three quarters of a standard deviation from the expected value. Looking at the table
between 0.7 and 0.8 vertically (z-value) and under 2% horizontally, we can see that the area
under the curve would be between 0.26 and 0.29.
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13.3.2 The Relative Measure

The last example on the choice of two projects, as to which one of them was risky, depended
on the comparison of their standard deviation as an absolute measure of risk. It was mainly
because the two projects had the same expected value. However, when we have projects
within different expected values, then the comparison of their standard deviations has to
be first and foremost relative to their expected value. This is why we need to calculate the
coefficient of variation (V), which better measures the outcome dispersion as it is related
to each of the expected values individually:

V = σ

x̄
.

In this sense, the measure of risk would be translated into a measure of standard deviation
per unit of the expected value. The relationship between the coefficient of variation and
risk is still as positive. The lower the value of the coefficient, the lower the risk, whereas
the higher the value, the riskier the outcome.

In our absolute measure in the last example, project II (σ = 1710) was riskier than
project I (σ = 658), while both would yield the same expected value (x̄ = 5000). Suppose
now that project II has an expected value of $6000. It would still be riskier than project I if
we compare their coefficient of variation (V):

VI = σI

x̄I
= 658

5000
= 0.13,

VII = σII

x̄II
= 1710

6000
= 0.28,

where project II reveals a higher coefficient of variation reflecting a higher risk.

13.4 RISK AVERSION

Risk aversion refers to people’s general tendency to avoid, or at least minimize, risk and
uncertainty in various decisions they make. There are three major attitudes that different
decision makers exhibit toward risk. These attitudes reflect who these decision makers are:

� Risk averter: Given the choice between risk and no risk, a risk averter would choose
the no-risk position. Among situations that all bear certain levels of risk, a risk averter
would choose the lowest possible level of risk.

� Risk-taker: Risk-takers are those who prefer to venture and get involved in risky
situations and in conditions that require a higher level of speculation in pursuit of the
highest possible payoff.

� Risk neutral: A risk neutral is one who is indifferent to risk. A person who focuses
on expected returns much more than to pay any attention to the way those returns are
dispersed.

Although it has been very well established in the business world that the highest return
is usually associated with the highest risk, most people, and specifically managers, are



496 RISK ANALYSIS AND MANAGERIAL DECISIONS UNDER UNCERTAINTY

naturally risk averters, in particular when larger potential losses are involved. It has been
observed that even risk neutrals would turn into risk averters when large amounts of money
are at stake.

Suppose that a group of people in a club decide to play a coin gamble. Since many want
to play, the following rules are put forward.

If it is heads, the player wins $200. If it is tails, the player loses $100. Because there is a
competition to play, $10 is offered to the player who gives up his turn, basically pledges not
to play. According to the definition of people’s attitudes toward risk, a risk averter would
have no problem leaving the game and take the sure $10 for doing nothing. For him, it
would be pure and sure gain, although it is at the expense of foregoing a possibility of
gaining $200. He would focus more on the equal possibility of losing $100, and therefore
the $10 seems the best way to go. For a risk neutral, the focus would be on the weighted
average that would come out of this game. He would make his decision based on the fact
that in reality there would be an average gain since the amount of gain is higher than the
amount of loss while both stand the same possibility. In this case, the risk neutral would
calculate the expected value as follows:

x1(p1) + x2(p2) = x̄,

(200)(0.5) + (−100)(0.5) = 50.

A risk-taker would be the most enthusiastic to play, focusing on the highest win; he may
not hesitate to play again in pursuit of $200.

13.5 RISK ATTITUDES AND UTILITY OF MONEY

The three types of attitudes taken by decision makers toward risk can be explained by the
utility they derive from the money earned. Each attitude can be represented more accurately
by the change in their total utility or what we call the marginal utility. This marginal utility
is generally decreasing for the risk averter and increasing for the risk-taker and constant
for the risk neutral. Tables 13.6, 13.7, and 13.8 contain data on five possible payoffs and
both total utility and marginal utility derived from them, as it is subjectively determined by
the three types of decision makers. Figure 13.4 uses these data and shows us a decreasing
marginal utility (DMU) curve for the risk averter, an increasing marginal utility (IMU) curve
for the risk-taker, and an upward straight line—constant marginal utility (CMU)—for the
risk neutral.

TABLE 13.6

Decreasing

Payoff Utility Rate of Utility

−25,000 −6
0 0 6

25,000 4 4
50,000 6 2
75,000 7.5 1.5

100,000 8.25 0.75
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TABLE 13.7

Increasing

Payoff Utility Rate of Utility

−25,000 −1.75
0 0 1.75

25,000 2 2
50,000 5 3
75,000 8.5 3.5

100,000 13.25 4.75

TABLE 13.8

Constant

Payoff Utility Rate of Utility

−25,000 −5
0 0 5

25,000 5 5
50,000 10 5
75,000 15 5

100,000 20 5

100,00075,00050,00025,000–25,000

Payoff (F )

A
DMU

IMU

CMUC

TU
(Utils)

20

18
17
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FIGURE 13.4
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We can visually observe how three managers represented by their marginal utility curves
A, B, and C perceive their money and assess its utility. For example, if we take a payoff
of $50,000, it would provide a total utility (TU) of 6 utils for the risk averter represented
by the diminishing marginal utility concave curve (A), provides 5 utils for the risk-taker
represented by the increasing marginal utility convex curve (B), and provides 10 utils for the
risk neutral represented by the constant marginal utility, straight line (C). We can observe
further differences among these three managers based on their attitudes toward winning
and losing money. If we consider an event that would increase the payoff from $50,000 to
$75,000!, how would these managers respond? The risk averter’s total utility would increase
from 6 to 7.5 gaining 1.5 utils, the risk-taker’s utility would increase from 5 to 8.5 gaining
3.5 utils, and the risk neutral’s utility would increase from 10 to 15 gaining 5 utils, gaining
5 utils. The risk averter ultimately gained the least among the three from the same amount
of money. Such a gain would get even less when we move them further in the payoff from
$75,000 to $100,000. The risk averter would gain only 0.75 utils compared with 4.75 utils
for the risk-taker and 5 utils for the risk neutral. This theoretical approximation means that
only the risk neutral would respond proportionally to the change in the monetary payoff. He
would take it dollar for dollar—or, a dollar gained would equal a dollar lost for him. It is an
attitude of indifference toward risk. Table 13.9 shows that where the percentage change in the
last column is identical in both cases with the percentage change in the payoff amounts in the
second column. It also shows that the risk averter’s utility responds less than proportionally
compared with the change in the payoff where the third column shows 0.25 and 0.10 are
less than their corresponding changes in the payoff amount, 0.50 and 0.30 respectively in
the second column. As for the risk-taker’s utility, it responds more than proportionally to
the monetary change in the payoff amount. Note the percentage changes in the sixth column
(0.70 and 0.56) and compare them with their corresponding changes of the payoff amounts in
the second column (0.50 and 0.30), respectively. All the percentage changes were obtained
by dividing the difference between the later and earlier amounts by the earlier amount:

%�x = x2 − x1

x1
.

TABLE 13.9

1 2 3 4 5 6 7 8

Payoff
% � in
Payoff

Risk
Averter’s

Utility % �

Risk-
Taker’s
Utility % �

Risk
Neutral
Utility % �

$50,000 6 5 10
$75,000 0.50 7.5 0.25 8.5 0.70 15 0.50

$100,000 0.30 8.25 0.10 13.25 0.56 20 0.30

13.6 EXPECTED UTILITY OF MONEY VERSUS
EXPECTED MONETARY RETURN

Let us consider a fair game; according to statisticians, a fair game is one in which the
expected value of the payoff is equal to zero. Let us consider the classic example of a
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firm’s manager deciding on whether to invest in oil drilling in a certain area or not. He is
considering the following possibilities if he decides to drill:

1. If no oil turns up, he would lose all the cost ($25,000). This outcome has 80%
probability.

2. If there is oil, the payoff would be $100,000, but this case has only 20% probability.

The expected value of drilling would be

(100,000)(0.20) + (−25,000)(0.80) = 0,

and of course, if he decides not to drill, the expected value would already be zero. So,
under this fair game, it would not matter what decision the manager takes. Both to drill
and not to drill would eventually lead to a zero outcome. In this scenario, a decision based
on the expected monetary value of the payoff would not help. What would help here is to
make a decision based on the utility of money. Here, we would see three different assess-
ments corresponding to three different managers and their attitudes about risk as we have
seen earlier.

Using the previous table of utility, we can calculate the expected value of money utility
for the three managers:

1. For the risk averter:

Expected value of utility = (Ut1)(P1) + (Ut2)(P2)

= (8.25)(0.20) + (−6)(0.80)

= −3.15.

2. For the risk-taker:

Expected value of utility = (13.25)(0.20) + (−1.75)(0.80)

= 1.25.

3. For the risk neutral:

Expected value of utility = (20)(0.20) + (−5)(0.80)

= 0.

Therefore, it is expected that the risk averter would decide not to drill because of the
negative expected utility (–3.15) compared with the expected utility of zero in the case of no
drilling. On the contrary, the risk-taker would decide to drill based on his positive expected
utility of (1.25). The risk neutral would end up with no expected utility and, therefore, it is
as good as no drilling.
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Example 13.2
Suppose that a manager’s utility of money has the following function:

U = 400 m0.25,

where U is the utility of money as a function of the initial amount of money (m). It is an
increasing function of money since the first derivative is positive:

dU

dm
= (0.25)(400) m−0.75

= 100 m−0.75 > 0,

which is positive for any amount of money larger than zero. The second derivative of the
function would determine the type of function for the marginal utility:

� For constant marginal utility,

d2U

dm2 = 0,

which indicates the risk neutral attitude.
� For the decreasing marginal utility,

d2U

dm2 < 0,

which refers to risk aversion.
� For the increasing marginal utility,

d2U

dm2 > 0,

which indicates the risk-taking attitude.

The second derivative for our function would be

d2U

dm2 = ( − 0.75)(100)(m)−10.75,

and if m = 1000, then

d2U

dm2 = (−0.75)(100)(1000)−10.75

= −4.22,

which confirms that the marginal utility function is decreasing. The person of this function
is a risk averter.
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Now, let us consider the impact of winning $500 as well as losing $500 on an initial
amount of money of $1000 (m = 1000):

U1 = 400 m00.25

= 400(1000)0.25

= 2249.36.

If the person wins $500, m would be 1500:

U2 = 400(1500)0.25

= 2489.33.

If the person loses $500, m would be 500:

U3 = 400(500)0.25

= 1891.48,

�U1−2 = U2 − U1

= 2489.33 − 2249.36

= 239.97,

�U1−3 = U3 − U1

= 1891.48 − 2249.36

= −357.88.

Given that this is a coin-flipping game, the expected value of utility would be
obtained by

E(U ) = ��UPi

= �U1(P1) + U2(P2)

= (239.97)(0.5) + (−357.88)(0.5)

= −58.95.

Since the expected value of utility turns out to be negative, the decision would be not to
get into this gamble.

13.7 RISK DISCOUNT AND CERTAINTY EQUIVALENT

Let us recall the case (in the previous example) of receiving $10 only to leave the game.
The person who receives this compensation for giving up the gamble is certainly a risk
averter. This amount is called certainty equivalent (CE). It is defined as the compensation
that renders the player indifferent to a risky gamble. In that example, the expected value of
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the game was 50 as the risk neutral player has considered it. The person who accepted a
significantly lesser outcome ($10) is for sure a player with a definite risk-aversion attitude.
This would further define the risk averter as one whose certainty-equivalent limit is less
than the expected value of a certain risk. The difference between the expected value E(v)
and the certainty equivalent is called the risk discount (RD):

RD = E(v) − CE.

Risk discount shows the extent to which the expected value for a given risk is reduced
in order to avoid such a risky prospect. In our previous example, risk discount was $40:

RD = E(v) − CE

= 50 − 10

= 40.

Figure 13.5 shows the certainty equivalent and risk discount as we recall the shapes of the
curves for the risk averter (the DMU curve), and for the risk neutral (the CMU curve).

Utility

CMU

DMU

Monetary payoff

CBA
E(u)

E(V)
CE

RD

P1 P2

(P2 - P1)

FIGURE 13.5

Point A represents the expected utility of the game; the level that would generate two
points, B and C, on the risk-averter and risk neutral curves, respectively. From those points,
we can drop verticals to see the amounts of payoff for both players. For the risk averter,
point P1 would represent the certainty equivalent, and for the risk neutral, point P2 would
represent the expected value. The difference (P2 – P1) would be the risk discount.
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13.8 RISK IMPACT ON THE VALUATION MODEL

When a firm wants to evaluate the worthiness of an investment project, the risk factor
should be considered as it affects the actual net present value (NPV) of the project. There
are two common ways to adjust the valuation model for risk:

13.8.1 Risk Premium Adjustment

Risk premium is defined as the difference between the expected rate of return on a risky
investment and the risk-free rate. Let us consider three managers or investors with three
different attitudes about risk, as represented by the three curves in Figure 13.6, where risk
is on the x-axis as it is measured by the standard deviation (σ ), and the rate of return is on
the vertical axis.

e

c

Risk (a)

RR1

RR2

RR3

g

f

% rate of return
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5
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d

b
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a
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Rp = 12
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Let us think of these curves in a way similar to the indifference curves. They depict the
tradeoff between risk and return from three different attitudes toward risk. The first, RR,
represents the least risk averse among the three. The top, RR3, represents the most risk
averse, and RR2 stands in between. Point a is on all curves and it shows a 5% risk-free rate
(risk = 0). RR1 shows a manager who is indifferent between accepting a 5% rate with no
risk and taking a 1.5 σ risk to get a 7.5% return. In other words, for the added risk (from 0 to
1.5σ ), his risk premium becomes 2.5% (7.5% – 5%). For the more risk-averse manager on
RR3, the move to accept the additional risk of 1.5σ would not be satisfactory unless there
is a higher-risk premium of 11% so that the required rate of return becomes 16%. Not only
that, but if the next opportunity happens to come with an additional risk of 0.5σ (such as
moving from 1.5σ to 2σ ), the risk-averse manager on RR3 would want his return to be as
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high as 25% where his risk premium goes to 20% (25% – 5%). The same level of risk (2σ )
would make the manager of RR1 happy to accept only 10% return making his risk premium
5% this time (10% – 5%). As for the moderate manager on RR2, he would accept moderate
levels of risk for reasonable rates of return. He would be indifferent between risk-free rate
of 5% and 10% rate with 1.5σ risk and 17% rate with 2σ risk. His risk premium would be
7% (12% – 5%) at point d, and 12% (17% – 5%) at point e. Table 13.10 shows a comparison
between the three positions on risk and return, and risk premium.

TABLE 13.10 Risk Attitudes for Three Different Managers

Risk Attitude Point Rate of Return (%) Risk Level (σ ) Risk Premium (%)

RR1 a 5 0
Least risk averse a 7.5 1.5 2.5

c 10 2 5

RR2 a 5 0
Moderately risk averse d 12 1.5 7

e 17 2 12

RR3 a 5 0
Most risk averse p 16 1.5 11

g 25 2 20

The different attitudes by managers toward risk would produce various risk premiums
and that would be reflected on the valuation model of a firm as the risk-adjusted rate (k)
would replace the risk-free rate (r) that is normally used in the evaluation model:

V =
n∑

t=1

πi

(1 + r )t
,

where V is the value of the asset, πi is the expected profit per year, r is the risk-free rate
of return so that the value is equal to the present value of the future returns or cash flow.
When the firm faces the prospect of a risky project, the valuation would be adjusted to the
expected risk by incorporating the firm’s risk premium (Rp). In this case, the NPV of the
project would be

NPV =
n∑

t=1

πi

(1 + k)t
− C0,

where k is the risk-adjusted rate of return, which is equal to the risk-free rate (r) used
previously, plus the firm’s risk premium Rp,

k = r + Rp,
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and C0 is the initial cost of the project. The criteria would remain as that an investment is
worthwhile when the NPV is either equal or larger than zero:

NPV ≥ 0.

Example 13.3
A managerial team has to decide on capital allocation for two proposed investment projects,
each of which will yield profits for the next 5 years as shown in Table 13.11. They require
initial investments of $420,000 and $500,000, respectively. Although the firm’s cost of
capital is 6%, further investigation revealed certain risk elements associated with both
projects. The team found it necessary to adjust for risk by assigning risk premiums of 21/2%
and 31/2% to both projects, respectively. On what criterion would the team decide granting
a capital allocation approval?

TABLE 13.11

Time Project A Cash Inflows Project B Cash Inflows

Year 1 126,000 280,000
2 126,000 108,000
3 112,000 90,000
4 98,000 80,000
5 84,000 70,000
Initial Investment 420,000 500,000
r 6% 6%
Rp 21/2% 31/2%

Solution:
First, we calculate the NPV of the cash inflows for both projects for the time of their
yields using the firm’s interest rate (r = 6%). Then, we calculate the same NPVs using the
risk-adjusted rate (k):

k = r + Rp

= 0.06 + 0.025 = 0.085 for project A

= 0.06 + 0.035 = 0.095 for project B,

NPVA =
5∑

t=1

πi

(1 + r )t
− C0

= π1

(1 + r )1
+ π2

(1 + r )2
+ π3

(1 + r )3
+ π4

(1 + r )4
+ π5

(1 + r )5
− C0

= 126,000

(1 + 0.06)1
+ 126,000

(1 + 0.06)2
+ 112,000

(1 + 0.06)3
+ 98,000

(1 + 0.06)4
+ 84,000

(1 + 0.06)5

− (420,000)

= 118,868 + 112,140 + 94,037 + 77,625 + 62,767 − 420,000

= 465,440 − 420,000

= 45,440,
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NPVB = 280,000

(1 + 0.06)1
+ 108,000

(1 + 0.06)2
+ 90,000

(1 + 0.06)3
+ 80,000

(1 + 0.06)4
+ 70,000

(1 + 0.06)5

−(500,000)

= 264,151 + 96,120 + 75,565 + 63,367 + 52,308 − 500,000

= 551,511 − 500,000

= 51,511,

NPVadj
A = 126,000

(1 + 0.085)1
+ 126,000

(1 + 0.085)2
+ 112,000

(1 + 0.085)3
+ 98,000

(1 + 0.085)4
+ 84,000

(1 + 0.085)5

− (420,000)

= 116,129 + 107,031 + 87,685 + 70,714 + 55,864 − 420,000

= 17,423,

NPVadj
B = 280,000

(1 + 0.095)1
+ 108,000

(1 + 0.095)2
+ 90,000

(1 + 0.095)3
+ 80,000

(1 + 0.095)4
+ 70,000

(1 + 0.095)5

− (500,000)

= 255,707 + 90,073 + 68,549 + 55,646 + 44,466 − (500,000)

= 514,440 − 500,000

= 14,440.

At the normal interest rate of 6%, project B would win the approval of the managerial
team since its NPV ($51,511) is larger than that of project A ($45,440). However, after
considering the expected risk involved in both projects, the team would give its approval to
project A because to its larger adjusted NPV ($17,423) than that of project B ($14,440).

13.8.2 Certainty-Equivalent Adjustment

As it was explained before, certainty equivalent is the sure sum that is equal to the expected
value of the risky project E(v). The equivalency is in the utilities of both to the manager
or investor, not necessarily in their monetary value. Let us assume that there is a proposal
that requires the company to invest $30,000 in a project. The probability of its success and
failure is 50/50 between earning $100,000 and zero, respectively. The expected value for
such a project would be

E(v) = 100,000(0.5) + 0(0.50) = 50,000.

If the company approves the funding for such a project, it would mean that it is trading
off the certainty of $30,000 for a risky expected return of $50,000. It, in fact, means that
a sure or risk-free capital of $30,000 yields the same utility of a risky $50,000; hence, the
term certainty equivalent to the amount of $30,000 that would make the decision maker
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indifferent between the two prospects. The certainty-equivalent coefficient, α, is the ratio
between the certainty equivalent, CE, and its expected risky return, E(v):

α = CE

E(v)
.

The certainty equivalent is subjectively determined by the decision maker, and therefore,
it would be a product of how risk averse or risk-taker that decision maker is. Figure 13.7
shows that three different attitudes toward risk would produce three certainty-equivalent
amounts for the same expected value of $1000 for a specific risky project: the most risk-
averse manager on RR3 would assign $870, the least risk-averse one would assign $220,
and the moderate manager among the three would assign $460. These cases would produce
three different certainty-equivalent coefficients:

α3 = 870

1,000
= 0.87,

α2 = 460

1,000
= 0.46,

α1 = 220

1,000
= 0.22.

Expected return

1a

A B C

Risk (a)
2a1.5a

CE
1

= 870

E(V )= 1000

CE
2
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CE
3

= 220

RR3 RR2

RR1

FIGURE 13.7

The risk-averse manager would value the sure and risk-free money more; that is why
his alpha is highest. An alpha of 0.87 means that each dollar of the certain money would
be worth 87¢, compared with the 22¢ for the risk-taker. This is one reason why the risk-
taker dares to take a high risk. Alternatively, each dollar of the expected risky return is
valued less ($1.15) for the risk averse than for the risk-taker, who values his expected
dollar at $4.55.
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Generally speaking, the criteria for alpha are as follows:

� When α = 0, it is an indication that the probability of getting the expected return does
not exist, and therefore, the project is too risky to be pursued.

� When α = 1, it refers to the equality between the certainty equivalent and the expected
value of return of the risky project. When the manager or investor gets his return equal
to what he assigns as a certainty equivalent, the project is considered risk free.

� When 0 < α < 1, it is an indication that there is some level of risk. The project is
riskier as α is closer to zero, and less risky if it is closer to 1. It would depend on how
smaller the certainty equivalent is than the expected value of the risky return (E(v)).

The valuation model would be adjusted for risk by introducing α to the numerator of the
formula as a multiplier to the expected return or profit or cash flow, while the denominator
of the formula would keep the risk-free rate (r):

NPV =
n∑

t=1

απi

(1 + r )t
− C0.

Let us assume that the manager assigned certainty-equivalent sums to each and every
annual return of 5 years in both projects of the last example. Table 13.12 shows α values,
as they are calculated by dividing the assigned certainty equivalent by the corresponding
expected return.

TABLE 13.12

A B

Time
Expected

Return
Certainty

Equivalent α

Expected
Return

Certainty
Equivalent α

Year 1 126,000 123,000 0.98 280,000 240,000 0.86
2 126,000 123,000 0.98 108,000 100,000 0.93
3 112,000 106,000 0.95 90,000 86,000 0.95
4 98,000 95,000 0.97 80,000 76,000 0.95
5 84,000 82,000 0.98 70,000 68,000 0.97
Initial Investment 420,000 500,000
r 6% 6%

Applying those calculated alphas, we get

NPVA =
n∑

t=1

απi

(1 + r )t
− C0

= (0.98)(126,000)

(1 + 0.06)1
+ (0.98)(126,000)

(1 + 0.06)2
+ (0.95)(112,000)

(1 + 0.06)3
+ (0.97)(98,000)

(1 + 0.06)4

+ (0.98)(84,000)

(1 + 0.06)5
− 420,000
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= (116,490 + 109,897 + 89,335 + 75,296 + 61,514) − 420,000

= 452,532 − 420,000

= 32,532,

NPVB = (0.86)(280,000)

(1 + 0.06)1
+ (0.93)(108,000)

(1 + 0.06)2
+ (0.95)(90,000)

(1 + 0.06)3
+ (0.95)(80,000)

(1 + 0.06)4

+ (0.97)(70,000)

(1 + 0.06)5
− 500,000

= (227,170 + 89,391 + 71,787 + 60,199 + 50,739) − 500,000

= 499,286 − 500,000

= −714.

Considering the expected risk for both projects in terms of estimating the certainty equiv-
alent and calculating α for each return in every year reveals that project A is more worth-
while, yielding a positive value of $32,532, while project B goes into a negative net value.

13.9 DIVERSIFIABLE VERSUS NONDIVERSIFIABLE RISK

Diversifiable or unsystematic risk is the risk specific to an individual firm as it is related
to its internal conditions and circumstances such as lawsuits against the firm, marketing or
accounting problems, product defects, workers’ strikes, problematic contracts, and so on.
It is, therefore, the risk associated with a particular asset or project or the risk of an entire
financial portfolio. This type of risk can be reduced or even eliminated by the classical
remedy of the diversification of assets within the portfolios so that the no-risky or less-risky
assets mitigate the risky ones.

The nondiversifiable or systematic risk is the general and market-related risk that
affects all firms and all projects and assets, simultaneously and with no discrimination. It is
associated with the state of the economy and structure of markets as well as with national
and regional big events such as wars, political unrest, natural disasters, and severe weather.
However, the most striking impact of such external factors relates to economic conditions
such as recession, inflation, unemployment, and unusual interest rate fluctuations. Unlike
the unsystematic risk, systematic risk cannot be reduced or eliminated by diversification of
assets. In fact, there is no other way to minimize it or remove its impact. However, it can
be assessed by monitoring how a particular asset tends to respond to the market state and
its changes. This will be addressed by the capital asset pricing model (CAPM), where
the systematic risk is measured by beta (β). However, before that we should address the
unsystematic risk at the portfolio level and how it can be reduced by diversification of assets
within a specific portfolio.

Figure 13.8 shows how portfolio risk tends to decline as the financial portfolio includes
more and more individual assets and securities. Its curve would asymptotically approach
the line of the systematic nondiversifiable risk. The relationship between diversifiable and
nondiversifiable risks is shown at any size of assets and securities in the portfolio such as a
or d. Note that the nondiversifiable risk level stays constant at σ m, while the diversifiable
risk level gets smaller as the number of assets and securities increases in the portfolio.



510 RISK ANALYSIS AND MANAGERIAL DECISIONS UNDER UNCERTAINTY

Portfolio 
risk 

Number of securities 
in a portfolio 

σm 

a b i c j f g h d e 

dr 

dr 

n-dr n-dr 
tr 

tr 

dr     :  Diversifiable risk 
n-dr :  Nondiversifiable risk 
tr      :  Total risk 

FIGURE 13.8

13.10 PORTFOLIO RISK

Since a financial portfolio contains many individual assets and securities, one may think
that the total risk of the portfolio would be collective and can be measured as an additive
value or as a weighted average, but that is not the case. Portfolio risk would be less as
the portfolio includes more and different individual assets. Two factors play major roles in
determining the risk level in a portfolio:

1. How diversified are the assets? Risk has a negative relationship with diversification.
The higher the diversification, the lower the risk level.

2. How correlated are the assets? Risk has a positive relationship with correlation of
assets. The higher the correlation, the higher the risk level.

However, more crucial is the degree and direction of correlation. Diversification of
assets cannot reduce the risk level unless the assets are either negatively correlated or
at least positively correlated, but to a much lower degree. If they are strongly positively
correlated, risk cannot be eliminated or reduced by merely diversifying the portfolio. Let
us take a look at two pairs of assets, X and Y on the one hand, while Z and W on the other.
Table 13.13 shows the returns of asset X and asset Y where the variance of the two sets of
return are individually calculated at the seventh and twelfth columns as

σ 2
X =

5∑
i=1

(
k X

i − k X
e

)2
Pri = 0.046



TABLE 13.13

Asset X Asset Y

1 2 3 4 5 6 7 8 9 10 11 12 13

Pri k X
i k X

e k X
i –k X

e (k X
i –k X

e )2 (kX
i –k X

e )2 kY
i kY

e (kY
i –kY

e ) (kY
i –kY

e )2 (kY
i –kY

e )2Pri

(k X
i –k X

e )
(kY

i –kY
e )Pri

k1 0.20 −0.12 0.155 −0.275 0.0756 0.015 −0.15 0.174 −0.324 0.105 0.021 0.0178
k2 0.15 0.405 0.155 0.25 0.0625 0.0094 0.50 0.174 0.326 0.1063 0.016 0.0122
k3 0.25 −0.07 0.155 −0.225 0.0506 0.0126 −0.08 0.174 −0.254 0.0645 0.016 0.0143
k4 0.18 0.38 0.155 0.225 0.0506 0.0091 0.45 0.174 0.276 0.0762 0.014 0.0112
k5 0.22 0.18 0.155 0.025 0.000625 0.00014 0.15 0.174 −0.024 0.00058 0.00013 −0.00013

0.046 0.067 0.0554
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and

σ 2
Y =

5∑
i=1

(
kY

i − kY
e

)2
Pri = 0.067.

The standard deviations of the two sets of return have been calculated as

σX =
√√√√ 5∑

i=1

(
k X

i − k X
e

)2
Pri ,

σX = √
0.046 = 0.214,

σY =
√√√√ 5∑

i=1

(
kY

i − kY
e

)2
Pri ,

σY = √
0.067 = 0.259.

The covariance between the two sets of return cov(X, Y) is also calculated at the thirteenth
column as

cov(X, Y ) =
5∑

i=1

(
k X

i − k X
e

) (
kY

i − kY
e

)
Pri ,

cov(X, Y ) = 0.0554,

and finally, the correlation coefficient (COR) between the two sets of return is calc-
ulated as

CORX,Y = cov(X, Y )

σXσY
,

CORX,Y = 0.0554

(0.214)(0.259)
,

CORX,Y = 990.9%.

A correlation coefficient, which is large enough to be close to a ( +100) would be considered
a solid indication of a perfectly positively correlated assets. It means that they exhibit a
similar dynamics that makes them move together, up and down, in tandem. This kind of
matching pattern would not benefit from diversification in risk reduction. The upper panel
of Figure 13.9 shows such a synchronized movement of the returns of those assets.
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The second set of assets, Z and W, is presented in Table 13.14 and the same parameters
are calculated in the same manner as they were calculated in Table 13.13.

The variances of the assets are in Columns 7 and 12:

σ 2
Z =

5∑
i=1

(
k Z

i − k Z
e

)2
Pri ,

σ 2
Z = 0.0339,

σ 2
W =

5∑
i=1

(
kW

i − kW
e

)2
Pri ,

σ 2
W = 0.0129.



TABLE 13.14

Asset Z Asset W

1 2 3 4 5 6 7 8 9 10 11 12 13

Pri kZ
i kZ

e k Z
i –k Z

e (k Z
i –k Z

e )2 (kZ
i –k Z

e )2Pri kW
i kW

e (kW
i –kW

e ) (kW
i –kW

e )2 (kW
i –kW

e )2Pri (k Z
i –k Z

e )(kW
i –kW

e )Pri

k1 0.20 0.40 0.20 0.20 0.04 0.008 0.08 0.138 −0.058 0.0034 0.00068 −0.00232
k2 0.15 0.10 0.20 −0.10 0.01 0.0015 0.35 0.138 0.212 0.045 0.00675 −0.00318
k3 0.25 0.38 0.20 0.18 0.0324 0.0081 −0.05 0.138 −0.188 0.0077 0.001925 −0.00846
k4 0.18 −0.10 0.20 0.30 0.09 0.0162 0.25 0.138 0.112 0.0125 0.00225 −0.00605
k5 0.22 0.22 0.20 0.02 0.0004 0.000088 0.06 0.138 −0.078 0.0061 0.001342 −0.000343

0.0339 0.0129 −0.020353
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The standard deviations are

σZ = √
0.0339 = 0.1841.

σW = √
0.0129 = 0.1136.

The covariance is calculated in Column 13 as

cov(Z , W ) =
5∑

i=1

(
k Z

i − k Z
e

) (
kW

i − kW
e

)2
Pri ,

cov(Z , W ) = −0.020353.

The correlation coefficient (COR) is

CORZ ,W = cov(Z , W )

σXσW
,

CORZ ,W = −0.020353

(0.1841)(0.1136)
= −97.3%.

A correlation coefficient of –97.3% shows the opposite case of X and Y combination. It
indicates that assets Z and W are almost perfectly negatively correlated, which means that
the return changes of these assets go up and down, opposite to each other. This is the ideal
case to offer the opportunity for these assets to cancel each other out. If one is down, the
other is up to compensate for it. That is the beauty of diversification. The combination of
such assets in a portfolio gives the opportunity to have an optimal impact of diversifying
the risk away. The lower panel of Figure 13.10 shows how the return patterns act opposite
to each other in a consistently contracting manner.

Combining assets into portfolios most likely reduces the risk even for those assets that
are positively correlated. In Table 13.15, we combined asset X and asset Y and obtained an
average vector of returns for the combination XY. Also, we combined asset Z and W and
obtained an average vector of returns for the combination ZW (Table 13.16). The standard
deviation test shows that the combination helps reduce risk even for combining X and Y,
which are perfectly positively correlated as we have seen. The standard deviation of the
combined set XY (σ XY = –195) is still less than either of the asset taken individually, where
σX = 0.214, and sY = 0.259. This means that the combined assets are not as risky as either
of them individually. This standard deviation test showed much better results when we
combined the negatively correlated assets Z and W. The standard deviation of the combined
set ZW is (σ ZW = 0.056), which is much less than either of the assets’ standard deviation,
where σ Z = 0.1841 and σ W = 0.1136. It is further proof that combining assets into portfolios
increases diversification and reduces risk. However, the extent of risk reduction depends
primarily on the degree and sign of the correlation between the assets. In reality, most of
the assets are positively correlated. Studies show that, on average, randomly selected assets
show a correlation coefficient of around 0.60. The lower the positive correlation, the better
the results of the combination.
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TABLE 13.15 Combined Assets XY with Average Returns

Return Pri k XY
i k XY

e (k XY
i − k XY

e ) (k XY
i − k XY

e )2 (kXY
i − kXY

e )2Pri

k1 0.20 −0.135 0.164 0.029 0.00084 0.00017
k2 0.15 0.452 0.164 0.288 0.083 0.0124
k3 0.25 −0.075 0.164 −0.239 0.057 0.0142
k4 0.18 0.415 0.164 0.251 0.063 0.0113
k5 0.22 0.165 0.164 0.001 0.000001 0.00000022

5∑
i=1

(
k XY

i − k XY
e

)2
Pri 0.038



PORTFOLIO RISK 517

TABLE 13.16 Combined Assets ZW with Average Returns

Return Pri k Z W
i k Z W

e (kZ W
i − kZ W

e ) (kZ W
i − k Z W

e )2 (kZ W
i − k Z W

e )2Pri

k1 0.20 0.24 0.169 0.071 0.00504 0.001
k2 0.15 0.225 0.169 0.056 0.00314 0.00047
k3 0.25 0.165 0.169 −0.004 0.000016 0.000004
k4 0.18 0.075 0.169 −0.094 0.00884 0.00159
k5 0.22 0.14 0.169 −0.029 0.00084 0.00018

5∑
i=1

(
k Z W

i − k Z W
e

)2
Pri 0.0032

In yet another abstract presentation, Figure 13.11 shows three possible ways to combine
two assets in a portfolio, two extreme combinations and one common combination. The
assets are A with an expected return of kA and kB and risk level of σ A, and B with an
expected higher return of kB and higher risk level σB:

� The first extreme case of combination occurs at any point along the straight line AB
if assets A and B are perfectly positively correlated. This combination cannot benefit
much from diversification.

� The second extreme case of combination occurs at any point along BCA where a zero
risk can be achieved with a rate of return equal to kC when the allocation of the two

k (return)

σ
(risk level)

kB

kA

A

B

C kC

D

σA σB

FIGURE 13.11
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assets can be achieved in inverse proportion to their risk levels. This combination is
the showcase for the benefit of diversification.

� The third case of combination occurs at any point along the curve BA. It is the most
likely case to occur because assets are often neither negatively nor positively perfectly
correlated. The correlation would often be in a moderate level and the combination of
assets can enjoy a wide range of returns from kA to kB for a wide range of risk level
from σ A to σ B. The curve would include all the possible combinations that are better
alternatives to any point along the straight line AB but lower alternatives to most of
the points along BCA, which would offer higher rates of return for the same level of
risk, especially along the segment BD.

13.11 RISK OF TWO-ASSET PORTFOLIO

Among the major issues addressed by Markowitz (1952) in his pioneering study are portfolio
diversification of assets and the positive outcome on portfolio’s return and risk through the
compensatory effect of the assets that move in different directions.

Figure 13.12 shows what happens if an investor decides to invest in two different choices
of stocks: Stock I with an expected return of 8% and a low risk (represented by the standard
deviation of return) of 15% and Stock II, which offers a higher return of 12% but at a higher
risk of 22%.

k 
(expected return)

       σ
(risk level)  

12% 

8% 

9.8% 
SP 

15% 22% 

SI 

SII 

15.1% 

FIGURE 13.12
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The logical expectation is to calculate the combined return and risk for the mix if
we know how much investment the investor is willing to dedicate to each of the stocks.
Let us assume that this investor, or this portfolio manager, is willing to dedicate 55% of
investment to Stock I and 45% to Stock II. The portfolio rate of return would be calculated
as the weighted average of two returns:

kp = w1k1 + w2k2,

kp = (0.55)(0.08) + (0.45)(0.12),

k p = 9.8%.

As for the portfolio risk, it would be determined by the standard deviation of the
combined assets, given a correlation between the two assets of 0.38:

σI,II =
√

σ 2
I w2

I + σ 2
IIw

2
II + 2CORI,II(wIσI)(wIIσII),

σI,II =
√

(0.15)2(0.55)2 + (0.22)2(0.45)2 + 2(0.38)(0.55)(0.15)(0.45)(0.22),

σI,II = √
0.0228 = 15.1%.

So the risk level of the combined stocks in an asset is less than the weighted average
risk of the two individual assets:

(0.55)(0.15) + (0.45)(0.22) = 18.2%.

Therefore, a combination of assets at Sp would yield a 9.8% rate of return at a reasonable
level of risk at 15.1%. If we move from this hypothetical example of only two assets in a
portfolio to the reality of the investment in the market, we would find that there is a large
number of assets forming a large number of combinations and producing a large number
of portfolios. The broken-egg-shaped area in Figure 13.13 represents all the combinations
of assets that are attainable to all investors with their different objectives and different risk
and return preferences.

The following are some major observations regarding Figure 13.13:

� The shaded broken-egg-shaped area is a locus of portfolios with all possible combi-
nations of assets representing a wide range of investor’s preferences regarding risk
and return.

� The solid-line curve represents the diversified portfolios with the highest returns for
any given risk level between the lowest level of risk (CR) and the highest level of risk
(DR). Markowitz called this curve the “efficient portfolio curve.” It is also called the
“frontier of risky portfolios.”

� Point D is the portfolio that yields the highest return (kD) but bears the DR.
� Point C is the portfolio that yields the lowest return (kC) but enjoys the CR.
� Segment DB contains a collection of portfolios that enjoy a tradeoff between risk

and return in favor of the risk side. For example, moving from D to B means getting
a slightly less return than kD but for more reduction in the risk level, from DR to
BR. Similarly, moving from B to D means gaining a slightly more return than kB but
carrying more risk from BR to DR.
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� Segment AC contains a collection of portfolios that enjoy a tradeoff between risk and
return in favor of the return. For example, moving from A to C means accepting more
reduction in return, from kA to kC for less reduction in risk, from AR to CR. Similarly,
moving from C to A means getting a much higher return for accepting a little more
risk, from CR to AR.

� Segment AB contains all the portfolios that exhibit an almost equal tradeoff between
risk and return. In other words, gaining or losing a certain amount of return comes
with gaining or losing a compatible amount of risk.

� Inside the shape, we can observe that moving toward the northeast means getting
portfolios with higher return and higher risk. On the contrary, moving toward the
southwest means getting portfolios with lower return and lower risk.

� Portfolio F is preferred to portfolio G because it yields more return for the same
amount of risk.

� Portfolio E is preferred to portfolio G because it enjoys a much lower level of risk for
the same rate of return.

13.12 LENDING AND BORROWING AT THE RISK-FREE RATE OF RETURN

Let us assume that an investor wants to split his initial investment between asset A on the
efficient portfolio curve and treasury bills that offer a risk-free rate of return equal to 5%.
Suppose that A yields 12% at a risk level of 15% (Figure 13.14). The investor would like
to have 60% of his money invested in asset A and 40% invested in the treasury bills.
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The investor in this case is lending 40% of his money to the treasury bills. His rate of
return would be

(0.40)(0.05) + (0.60)(0.12) = 9.2%,

and his level of risk would be

(0.40)(0) + (0.60)(0.15) = 9%.

He would be at point B. This means that he could be at any point along the line A Rf

depending on the proportions of his investment between asset A and the treasury bills.
Now, let us assume that he borrows at the risk free rate of 5% an amount of money equal

to his own money and invest the total of his own and the borrowed money in asset A alone.
His return would be

(2)(0.12) − (0.05) = 19%,

and his risk would be

(2)(0.15) + (0.05)(0) = 30%.
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He would be at point C, which means that he could be at any point along CA depending on
how much he borrows and how much risk he tolerates.

13.13 MEASURING THE SYSTEMATIC RISK BY BETA (β)

Beta (β) is a mathematical tool to measure the systematic undiversifiable market risk. It
is, in this sense, an index of the extent to which a security return moves in response to the
changes in the overall market. This makes it a measure of the securities volatility in relation
to an average security represented by the state of the market. Market return is an aggregate
measure of the return of all traded securities in the market at a specific time. The beta value
can be positive or negative. Generally, it ranges between –2.5 and 2.5. The value of 1.00
denotes the full impact of market risk. Any individual security with a beta of 1.00 indicates
that the return pattern of that security moves up and down perfectly with the market return.
The value of zero refers to total independence from the market impact. A value of more than
1.00, such as 2.00, reveals that the security is twice as volatile as the average security in the
market. A negative value says that the asset return pattern moves in the opposite direction to
the market. Table 13.17 shows beta coefficients of selected American companies estimated
at some point in time. The estimation changes for the same company from time to time.

TABLE 13.17 Beta Estimates for
Selected American Companies

Company Beta

AOL 2.46
Dell 2.23
Microsoft 1.82
Texas Instrument 1.75
Intel 1.70
GE 1.16
GM 1.10
Colgate-Palmolive 1.03
Family Dollar Store 0.99
K-Mart 0.98
ATT 0.98
McGraw Hill 0.81
Gillette 0.76
NY Times 0.71
JC Penny 0.52
Johnson & Johnson 0.49
Campbell 0.41
Exxon 0.36

Mathematically, beta is obtained by dividing the covariance between the individual
security return (ki) and the market return (km) by the variance of market return (km):

β = COV(ki , km)

Var(km)
.
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In this sense, beta is a concept of correlation to assess how one security return is correlated
with the rest in the market. From another perspective, beta measures the percentage change
in one security return as it responds to the changes in the external market return. Therefore,
it can be interpreted as the financial elasticity of the change in a given asset relative to market
change. Accordingly, beta becomes the slope of the regression line between the changes
in market return and the corresponding response of the asset return. In Figure 13.15, the
changes in market return are tracked down on the horizontal axis and the responses to them
by a given security are tracked down on the vertical axis. The result is the regression line
y = α + βx + e, where β denotes the slope, and is calculated by dividing the change in
the vertical axis over the change in the horizontal axis:

β = �y

�x
.
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If we track downthe change in the market rate when it increases from 7.3 to 9.3, the
linear equation line of y = –8 + l.5x would allow the return of the asset ki to increase from
3 to 6. Therefore, we can obtain the slope of the line:

Slope = �y

�x
= 6 − 3

9.3 − 7.3
= 3

2
= 1.5,

which is the value of β in the equation of the line. It signifies that the asset rate of return
follows the market return more robustly. Its volatility is one and a half times that of the
market return. For example, if the market rate increases by 5%, the asset’s rate would
increase by 7.5%.
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TABLE 13.18 Rates of Return for x-Corporation and the Market for 10 Periods

x-Corporation Market

Period kx
i kx

e

(
kx

i kx
e

)
km

i km
e

(
km

i km
e

) (
km

i km
e

)2 (
kx

i kx
e

) (
km

i km
e

)
1 −0.06 0.105 −0.165 0.027 0.082 −0.055 0.003 0.0091
2 0.27 0.105 0.165 0.095 0.082 0.013 0.00017 0.0021
3 0.065 0.105 −0.04 0.038 0.082 −0.044 0.0019 0.0018
4 0.13 0.105 0.025 0.055 0.082 −0.027 0.00073 −0.00067
5 0.055 0.105 −0.05 −0.017 0.082 −0.099 0.0098 0.0049
6 0.28 0.105 0.175 0.176 0.082 0.094 0.0088 0.0164
7 −0.045 0.105 −0.15 0.119 0.082 0.037 0.0014 −0.0055
8 0.03 0.105 −0.075 0.128 0.082 0.046 0.0021 −0.0034
9 0.35 0.105 0.245 0.156 0.082 0.074 0.0055 0.0181

10 −0.025 0.105 −0.13 0.044 0.082 −0.038 0.0014 0.0049

0.0348 0.04773

We can also calculate the beta value by the formula. For example, we can calculate beta
for x-corporation given 10 periodic rates of return (km

i )and market rates for the same period
(km

i ). In Table 13.18, we calculate the expected return of both as the averages (kx
e ) and (km

e ),
and we proceed to calculate the covariance between the two sets of rates and the variance
of the market. Beta would be calculated by dividing the covariance by the market variance:

cov(x, m) =

10∑
i=1

(
kx

i − kx
e

) (
km

i − km
e

)

N
,

cov(x, m) = 0.04773

10
= 0.0048,

var(m) =

10∑
i=1

(
km

i − km
e

)2

N
,

var(m) = 0.0348

10
= 0.0035,

βx = cov(x, m)

var(m)
,

βx = 0.0048

0.0035
= 1.37,

βp =
n∑

i=1

βiwi .

Note that βx is the beta of asset x. A portfolio beta would be the weighted average of
betas for all individual assets within the portfolio, where βp is the portfolio beta, β i is the
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beta for any individual asset within the portfolio, wi is the proportion of asset i out of the
entire portfolio that contains n-assets.

13.14 THE CAPM MODEL

The Capital Asset Pricing Model (CAPM) is a technical tool for analyzing the relationship
between the financial asset’s expected return and the nondiversifiable market. We can write
the central equation of the CAPM where beta is an essential factor to calculate the required
rate of return on any asset (ki), given the asset beta (β i), the market’s required rate of return
(km), and the riskless rate of return, which is traditionally the rate of return on the US
Treasury bond (Rf):

ki = R f + βi [km − R f ].

This model means that the required rate of return for any asset would be obtained by
adding the risk-free rate of return to the market risk premium (MRP), given that

1. it is the difference between the market required rate of return and the risk-free rate of
return, [km – Rf]; and

2. it is adjusted to that asset’s index of risk by being multiplied by beta:

βi [km − Rf ].
Example 13.4
What would be the required rate of return for y-corporation that has a beta of 1.85, given
that the return on the market portfolio of assets is 12% and the risk-free rate is 6.5%?

Solution:

ki = Rf + βi [km − Rf ]

= 0.065 + 1.85[0.12 − 0.065]

= 16.67%.

So, the MRP is 5.5% (0.12 − 0.065), and it went to a little more than 10% when it was
adjusted to the asset’s index of risk, a beta of 1.85. When the result of the adjustment was
added to the risk-free rate of 6.5%, we got the corp-required rate of 16.67%.

Algebraically, we can obtain any of β i, Rf, and km if the other variables in the equation
are available.

� Finding beta (β i):

ki = Rf + βi [km − Rf ],

ki − Rf = βi [km − Rf ],

βi = ki − R f

km − R f
,

βi = 0.1667 − 0.065

0.12 − 0.065
= 1.85.
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� Finding the free-risk of return (Rf):

ki = Rf + βi [km − Rf ],

ki = Rf − βi Rf + βi km,

ki − βi km = Rf (1 − βi ),

R f = ki − βi km

1 − βi
,

R f = 0.1667 − (1.85)(0.12)

1 − 1.85
,

R f = −0.0553

−0.85
= 0.065.

� Finding the market rate of return (km):

ki = Rf + βi [km − Rf ],

ki = Rf + βi km − βi Rf ,

ki + Rf (βi − 1) = βi km,

km = ki + R f (βi − 1)

βi
,

km = 0.1667 + 0.065(1.85 − 1)

1.85
,

km = 0.12.

13.15 THE SECURITY MARKET LINE (SML)

When we graph the CAPM equation, we get a straight line with a positive slope equal to
beta (1.85). This line is called the security market line (SML). From the last example, we
have all the points we need to draw the SML for this example. As shown in Figure 13.16,
the level of risk, as measured by beta, is on the horizontal axis, and the required rates of
return are on the vertical axis. The risk-free rate of 6.5% is associated with zero beta, the
market rate of 12% is associated with beta value of 1.00, and the return ki of 16.67% is
associated with a beta of 1.85. The vertical line BD represents the MRP, which is obtained
as (BE – DE) standing for [km – Rf] in the equation. All assets that have betas higher than
1.00 would have a risk premium higher than the MRP. Our beta is 1.85, which makes the
risk premium much higher than the MRP, as depicted by the vertical line CE, which is
(CF – EF) = 16.67 – 6.5 = 10.17. Similarly, all assets that have betas less than 1.00 will
have risk premiums less than the MRP, e.g., firm S with a beta of 0.5. The risk premium
for this firm would be represented by the line GH, which is (GI – HI), and it is lower
than the MRP.



THE SECURITY MARKET LINE (SML) 527

Return (%) 

Risk (β) 

0.5 1.00 1.85 2 

 ki = 16.67

km = 12

Rf = 6.5
A H 

D E 

I 

G 

F 

B 

E 

C 

Risk 
premium 
for firm-S 

Market risk 
premium     
km�Rf

12�6.5 = 5.5% 

Risk premium 
for y-Corp 
10.17% 

6.5% 6.5% 6.5% 

12% 

16.67% 

SML 

FIGURE 13.16

The slope of the SML stands for the degree of risk aversion. A steeper SML would
reflect a higher degree of risk aversion, and a flatter SML would reflect a lower degree of
risk aversion in the economy. Also, the steeper the SML, the higher the risk premium and
the higher the required rate of return on the risky assets with higher betas.

13.15.1 SML Shift by Inflation

The risk-free rate of return (Rf) is considered the price of money to a riskless borrower.
Therefore, it is affected by inflation like any other price. In fact, it includes a built-in
component designed to absorb the impact of inflation. This component is called the inflation
premium (IP), which is to protect the investor’s purchasing power from declining as the
prices rise. The second component is the real core (k0) that is inflation free:

R f = k0 + IP.

Let us assume that the risk-free rate of the last example, which is 6.5%, is in fact a
combination of the real rate k0, which is 2.5%, and the IP, which is 4%.

Since the SML originates from the Rf point, any increase in inflation would lead to an
increase in the IP component and in the Rf, and it would cause the point of SML origin



528 RISK ANALYSIS AND MANAGERIAL DECISIONS UNDER UNCERTAINTY

to go up, shifting the entire line up. Figure 13.17 shows how the SML shifts to a higher
position (SML2) originating from the 8% rate if the inflation rises by 1.5 points from 4%
to 5.5%,

Return  

Beta
1.00  

8

6 .5 

k0  

SML 1 

SML 2 

2.5

10

SML 3 

IP1=4 

IP2 =5.5  

IP3 =7.5  
 

ΔIP2 = 2

ΔIP1 = 1.5

FIGURE 13.17

R1
f = k0 + IP1

= 2.5 + 4 = 6.5,

R2
f = k0 + IP2

= 2.5 + 5.5 = 8.00,

and if inflation continues to rise to, say, 7.5, the SML shifts again to SML3 originating from

Rf = 10,

R3
f = k0 + IP3

= 2.5 + 7.5 = 10.0.

13.15.2 SML Swing by Risk Aversion

The slope of the SML represents how much risk aversion investors usually exhibit. There-
fore, the line would swing up and down to reflect the change in investors’ risk aversion.
The slope would be equal to zero and the SML would be horizontal at the risk-free level
of return (Rf). There would be no risk premium to the point that even risky assets would
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sell at the risk-free level of return. As the risk aversion starts to rise and the risk premium
starts to grow, the SML would pivot at the Rf point and its other end starts to rise according
to how much risk premium there is. From that point, the line would continue to swing up.
Figure 13.18 shows that when risk aversion rises, the MRP would rise, in this example,
from 4% to 9% (vertical FG to EG), and consequently the market required rate (km) would
jump from 10% to 15% (vertical FK to EK), and our risky asset return (ki) of the 1.75 beta
would be up from 13% to 21.75%. This asset risk premium (ARP) would shoot from 7%
to 15.75% (vertical CB to DB):
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FIGURE 13.18

k1
i = R f + βi

[
k1

m − R f
]

= 0.06 + 1.75 [0.10 − 0.06]

= 0.06 + 0.07

= 0.13,
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where

k2
i = R f + βi

[
k2

m − R f
]

= 0.06 + 1.75 [0.15 − 0.06]

= 0.06 + 0.1575

= 0.2175,

where 1.75 [0.10 – 0.06] = 7% and 1.75 [0.15 – 0.06] = 15.75% are the risky ARPs during
the change. This change would result in an increase in the slope of the line, and making
it steeper. SML1 would swing up to SML2. It is clear that the impact of the change on
the risk aversion level would be more pronounced on assets that are riskier with a higher
beta compared with less risky assets that have betas less than 1.00. This is shown on the
increase in the required rate of return between the two types of assets for the risky asset
with 1.75 beta, the required rate of return increased by 8.75% (from 13% to 21.75%), while
the required rate of return for the asset of 0.5 beta rose by 2.5% (from 8% to 10.5%). This
means that such a risky asset of 1.75 beta faced an increase in the required return three
and a half times more than what the less risky asset of 0.5 beta faced as an increase in its
required return.

It is important to emphasize that the SML slope is not equal to beta as may be guessed
by looking at the equation of the model:

ki = R f + βi [km − R f ].

Beta, as we have seen before, is equal to the slope of the regression line that describes the
response of the return of a certain asset to the change in the market return. Let us consider
the difference among three assets as they respond to a certain change in the market return.
Let us assume that the market return at some point is 8% and it goes up to 12%, which is an
increase of 50%. Let us also assume that our three assets X, Y, and Z, all have 8% rates and
they respond to such a change in the market return in the following manner (Figure 13.19):

Asset X: Return increases by the same percentage as the market, that is, 50%. Its return
of 8% goes up to 12%.

Asset Y: Return increases by 100%. It goes up from 8% to 16%.

Asset Z: Return increases by 25%. It goes up from 8% to 10%.

� Asset X would have a 45o line going through the original point. Its slope is equal to 1
because the change in the asset return is the same as the change in the market return:

slopeX = Rise

Run
= �Asset return

�Market return

= 12 − 8

12 − 8
= 1 = Beta.
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The line equation would be

y = a + bx,

y = 0 + (1)(x),

y = x .

� Asset Y would have a line with a slope of 2, an x-intercept at 4, and y-intercept at –8:

SlopeY = 16 − 8

12 − 8
= 8

4
= 2.

The line equation would be

y = 8 + 2x .

� Asset Z would have a line with a slope of 0.5, and a y-intercept of 4, and x-intercept
of −8:

SlopeZ = 10 − 8

12 − 8
= 2

4
= 1

2
.

The line equation would be

y = 4 + 0.5x .
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Since all of these three equations are linear equations of regression lines, beta can be
directly read off the equation as it corresponds to b-value in the standard format of the
linear equation:

y = a + bx.

13.16 MANAGERIAL DECISION TREE

A decision tree is a graphical representation of the possible paths of alternative decisions
and subsequent decisions according to their potential probabilities and values and under
possible conditions. Figure 13.20 illustrates a decision tree for a firm that is facing the
choice between launching a new product and just improving an existing product. This
specific tree considers only one perspective to come up with the final value of the expected
profit. Many other perspectives could be incorporated in such a tree or even creating a series
of trees to illustrate different determinants of the decision such as the cost of alternative
locations, markets, availability of material, labor, technology, and many other perspectives
that may serve as keys in decision making. In this illustration, we have shown only two
strategies: (A) launching a new product or (B) improving on an existing product. Each of
these strategies is discussed from the possible position of the competitive firms and whether
they respond by lowering or increasing the price of their competitive products. So we have
the possibilities of A1 and A2 as well as B1 and B2. Each of these four possibilities has its
own expected probability: 0.50, 0.50, 0.60, and 0.40, respectively. Each of these possible
positions by competitors may be taken in a specific state of the economy. There are three

FIGURE 13.20
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possibilities for that: An expansion, a recession, and a normal state of the economy in which
conditions would experience no significant change. The probabilities of these three states of
the economy are 0.25 for expansion, 0.20 for recession, and 0.55 for the continuation of the
normal state. Applying these three possibilities on each of the four competitor’s position
would produce 12 probabilities, one for each state for each position. Each one of these
probabilities is a product of the position probability and the state probability. For example,
the chance of competitors deciding to lower the price of their product as a response to this
firm introducing a new product would be 12.5% if the economy is in expansion, 27.5% if
the economy is in normal state, and 10% if the economy is in recession. Incidentally, the
chances for the competitors to respond by lowering the price of their own product are the
same—12.5%, 27.5%, and 10%—so that these two sets of probabilities add up to 100% for
each strategy. Note that the chances for B1 and B2 are not the same as it is for A1 and A2, but
they still add up to 100. The final column of the expected profit is obtained by multiplying
each probability by the corresponding NPV of profit in Column 6. The final six expected
profit values for each strategy are added up to form the final total expected value of profit
under each of the two strategies. Here, in this state, the final figures are compared for the final
decision toward the strategy that yields the highest expected value of profit. It is strategy A
here, which is to go ahead with the plan for producing a new product and introducing it in
the market as an alternative to spend resources on trying to improve the old product.

13.17 MATHEMATICAL SIMULATION AND SENSITIVITY ANALYSIS

Similar to the iconic models in the physical world of design and engineering, which are
made to reduce the potential risks, explore flaws and enhance the positive features, as well
as estimate costs, mathematical simulation models are designed to mimic the realities of
the business world and deal with their changes. They present yet another technique that
assists the decision maker in exploring all the possibilities surrounding the problem at hand
when it comes to dealing with risky and uncertain conditions. The essential features of
the real world can be translated into a multivariable model complete with estimations of
the probability distributions of the key variables. The model can be tested repeatedly with
random values given to the variables in each test until a probability distribution and risk for
the general model are estimated so that these can be used to calculate the expected outcome
for any given variables.

Suppose that we want to estimate the NPV of a project and explore the risk involved.
We can simulate the profit model and randomize the values of its variables many times,
and calculate the probability distribution and the standard deviation so that they become
the template for estimating the NPV in any risky circumstances. We can start with a
mathematical formula to represent the profit as a net cash flow for the t-period (πt ) :

πt = [R − C − D](1 − x) + D.

Here

R is the total revenue, which is equal to the amount of product sold (s) times the product
unit price (p):

R = s(p).
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C is the total cost, which is equal to the amount of product sold (s) times the unit cost,
including production cost (c1) and selling cost (c2):

C = s(c1 + c2).

D is the annual depreciation, which is equal to the original depreciable cost and initial
capital outlay divided by the lifetime of the physical capital asset:

D = d

L
.

x is the marginal tax rate, where the profit is adjusted accordingly by (1 – x):

πt −
[

s(p) − s(c1 + c2) − d

L

]
(1 − x) + d

L
.

Now, let us give these variables their numerical values:

� Product sold (s) = 5000 units.
� Product unit price (p) = $15.
� Production cost per unit (c1) = $2.50.
� Selling cost per unit (c2) = $0.50.
� Original equipment depreciation (d) = $18,000.
� Equipment lifetime (L) = 10 years.
� Marginal tax rate (x) = 36%.

Profit πt would be

πt =
[

5000(15) − 5000(2.50 + 0.50) − 8000

10

]
(1 − 0.36) + 8000

10
,

πt = 38,688.

The $38,688 is the profit earned for the period t. If we assume that it will be earned in
every year of the project life for the next 4 years (n = 4), then the NPV for the cash flow
during the entire period of n would be

NPVn =
n∑

t=1

πt

(1 + k)t
− C0.

If the risk-free rate of interest (r) is 5% and the firm’s risk premium (Rp) is 7%,
then k would be

k = r + Rp

= 0.05 + 0.07 = 0.12.
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If the initial cost of the project (C0) is $50,000, then

NPV4 =
[

π1

(1 + k)1
+ π2

(1 + k)2
+ π3

(1 + k)3
+ π4

(1 + k)4

]
− C0

=
[

38,688

(1 + 0.12)1
+ 38,688

(1 + 0.12)2
+ 38,688

(1 + 0.12)3
+ 38,688

(1 + 0.12)4

]
− 50,000

= [34,543 + 30,841 + 27,537 + 24,587] − 50,000

= 117,508 − 50,000

= 67,508.

This is one estimate of the NPV of a project. If this type of estimation is repeated hundreds
of times using different values of the variables taken from their probability distribution, we
can eventually form the probability distribution of the general NPV of the project, and we
can estimate its mean, as well as its standard deviation, as the level of risk. Suppose that
repeated simulation ends up with an expected NPV of $65,000 and a standard deviation of
24,000, we can calculate the x-value and obtain the table value that refers to the probability
of having a negative NPV (Figure 13.21):

Z = x − x̄

σ

= 0 − 65,000

24,000

= −2.7.

x̄ = 65000

–2.7
.7a 2a 1a

a = 24,800

Probability

NPV

FIGURE 13.21

Looking this value up in the z-table reveals the value of 0.0035 in the zero column. It
means that the zero value is 2.7 standard deviations below the mean and that the probability
of the NPV being negative (less than zero) is 35%.

In addition to the full-fledged process of mathematical simulation, there are other related
techniques to deal with risk, but to a lesser extent. Sensitivity analysis utilizes the same
set of variables and their mathematical model, but it stops short of obtaining complete
probability distribution of the whole set. It focuses on randomizing the value of one key
variable in the model in order to test the impact of the single change on the rest and
establish how sensitive the model is in its response. For example, a sensitivity analysis can
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be performed on the NPV model by changing the unit price of the product frequently and
tracking down the impact of such change on the outcome. Another similar technique is the
scenario analysis, which differs from the sensitivity analysis only by extending the random
change into more than one variable to see the impact of changing a number of variables
simultaneously. While sensitivity and scenario analyses are limited, they are more practical
and more commonly used. Full simulation is comprehensive and powerful, but it is more
expensive and time consuming, even in this computer age. For most managers, it can, be
reserved for only the major cases.

13.18 ADVANCED CHOICE UNDER RISK, AMBIGUITY,
AND UNCERTAINTY

This section focuses on management decisions that are characterized as a choice among a
finite number of alternatives using advance choice techniques. It is often possible to quantify
economic outcomes used in areas such as policy and cost–benefit analysis conditional on
uncontrolled events. Uncontrolled events can include the value of unknown parameters
in a response function, the effectiveness of a new technology, weather events, and so on.
This section illustrates the decision criteria that are available, always assuming that, at the
least, conditional economic outcomes can be determined. The notions of “rv” and “pdf”
reviewed in Chapter 2 are used in this section along with some additional background on
the cumulative distribution function (cdf).

The notion of the cdf is defined as the area under the pdf of an rv to the left of a particular
value of the rv. Hence, it is the probability that an rv is less than or equal to that value. The
cdf F(x) of a random variable X is the probability that X has a value that is less than or equal
to x; that is,

F(x) = Pr[X ≤ x].

Example

If the pdf of X is f (x) = 1√
2πσ 2

exp

[
− 1

2σ 2
(x − μ)2

]
, then the cdf of X will be

F(x) =
∫ x

∞

1√
2σ 2

exp

[
− 1

2σ 2
(1 − μ)2

]
dt.

13.18.1 Stochastic Dominance

Stochastic dominance has been developed to identify conditions under which one risky
alternative is preferred to another. The approach of stochastic dominance is to identify the
preferred alternative while making the weakest possible assumptions. Generally, stochastic
dominance assumes that an individual is an expected utility maximizer and then adds
further assumptions relative to preference. In other words, stochastic dominance relies on
the appropriateness of expected utility maximization and the underlying assumptions on
preference. It should be mentioned that some experimental decision problems from the
1950s and 1960s, such as the Allais paradox and the Ellsberg paradox, have suggested
that decision makers do not follow expected utility maximization. On the other hand, some
econometric tests with real-world data have tended to support expected utility maximization.
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Assumptions

1. Expected utility maximization.

2. Two, mutually exclusive, alternatives are to be compared.

3. Analysis is based on true (population) probability distributions.

Expected Utility Suppose the two alternative decisions yield alternative probability den-
sity functions for benefit, x; namely, f(x) and g(x).

Expected utilities, E[U(x)], corresponding to the different decisions are
∫ ∞

−∞
U (x) f (x)dx and

∫ ∞

−∞
U (x)g(x)dx.

The difference in these expected utilities is
∫ ∞

−∞
U (x) f (x)dx −

∫ ∞

−∞
U (x)g(x)dx,

∫ ∞

−∞
U (x)( f (x) − g(x))dx.

Note that the difference is positive when f(x) yields higher expected utility than g(x)
and negative otherwise. If positive, f(x) is a preferred gamble to g(x), otherwise g(x) is a
preferred gamble to f(x).

First-Degree Stochastic Dominance Consider∫ ∞

−∞
U (x)( f (x) − g(x))dx.

Using integration by parts, let u = U(x) and v = F(x) – G(x). Note that du = U’(x) dx
and dv = (f(x) – g(x)) dx. So,∫ ∞

−∞
U (x)[ f (x) − g(x)]dx = U (x)[F(x) − G(x)]

∣∣∞−∞ − ∣∣∞−∞ U ′(x)[F(x) − G(x)]dx

= U (∞)[F(∞) − G(∞)] − U (−∞)[F(−∞) − G(−∞)]

−
∫ ∞

−∞
U ′(x)[F(x) − G(x)]dx

= U (∞)(1 − 1) − U (−∞)(0 − 0) −
∫ ∞

−∞
U ′(x)[F(x)

− G(x)]dx

=
∫ ∞

−∞
U ′(x)[G(x) − F(x)]dx.

Observe that this term is nonnegative if U′(x) > 0 and G(x) > F(x).
Probability density function f dominates probability density function g by first-degree

stochastic dominance (FSD) when U′(x) > 0 if and only if the cdf associated with f is less
than or equal to the cdf associated with g (i.e., F(x) ≤ G(x) for all (x) and strict inequality
holds for at least one x.
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Interpretation of FSD Conditions Two implications of FSD are that the mean of f is
greater than the mean of g and that for every level of probability at least as much money
is made under f as under g. This is what can be concluded from characterizing the choice
between two alternatives for every expected utility maximizer that prefers more to less.

Second-Degree Stochastic Dominance Consider
∫ ∞

−∞
U ′(x)[G(x) − F(x)]dx.

Note that if this expression is positive, then f is preferred to g since the expected utility
under f is greater than the expected utility under g.

Using integration by parts, let u = U′(x) and let dv = [G(x) − F(x)] dx. Note that du =
U′′(x) and v = ∫ ∞

−∞ [G(t) − F(t)]dt. So,

∫ ∞

−∞
U (x)[G(x) − F(x)]dx = U ′(x)

∫ x

−∞
[G(t) − F(t)]dt

∣∣∞−∞ −
∫ ∞

−∞
U (x)

∫ x

−∞
[G(t)

− F(t)]dt dx
∣∣∞−∞ .

Focus on the first term:

U ′(x)
∫ x

−∞
[G(t) − F(t)]dt

∣∣∞−∞ = U (∞)
∫ x

−∞
[G(t) − F(t)]dt − U (∞)

∫ ∞

−∞
[G(t)

−F(t)]dt.

Assume that U′(x) > 0 and that
∫ x
−∞ [G(t) − F(t)]dt ≥ 0 with strict inequality for some

x (the first assumption is from FSD; the second assumption is new and is used in signing
the second term as well). This makes

∫ ∞
−∞ [G(t) − F(t)]dt ≥ 0 and, of course always,∫ −∞

−∞ [G(t) − F(t)]dt = 0. This makes the first term positive.
Focus on the second term:

∫ ∞

−∞
U ′(x)

∫ x

−∞
[G(t) − F(t)]dt dx

∣∣∞−∞ .

In order to guarantee that f is preferred to g, the sign of this whole term must be
negative (since the whole term is subtracted). Second-degree stochastic dominance (SSD)
assumes that the second derivative of the utility function with respect to x is negative
everywhere (assume U′′ (x) < 0). With this assumption, if

∫ x
−∞ [G(t) − F(t)]dt ≥ 0 with

strict inequality for at least one x (this was already assumed in signing the first term) then
this makes

∫ ∞
−∞ [G(t) − F(t)]dt ≥ 0 and, of course always,

∫ −∞
−∞ [G(t) − F(t)]dt = 0.

These assumptions make the second term negative. The minus sign in front of the second
term makes it positive.

Under the assumptions of positive marginal utility (U′(x) > 0) and DMU (U′′ (x) < 0), f
dominates g by SSD if and only if

∫ x
−∞ [G(t) − F(t)]dt ≥ 0 for all x with strict inequality

for at least one x.

Interpretation of FSD Conditions Though the derivation is not given here, an interpre-
tation of SSD is not difficult. The area under the cdf of X, i.e, F, up to x is the expected
“shortfall” of X relative to x (here “shortfall” refers to the difference between a target return
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(or goal), x, and the outcome). f dominates g according to SSD if and only if the expected
shortfall under g relative to target return x is greater than or equal to the expected shortfall
under f relative to target return x for all possible target returns with “greater than” holding
for at least one target return. This interpretation suggests that a risk-averse decision maker
ranks gambles by how well the gamble is expected to meet a goal (in fact, any goal).

Applications of SSD Conditions Recall that stochastic dominance analysis uses condi-
tions on the cdfs associated with different decisions to derive the set of decisions that can be
ruled out as inefficient relative to other decisions in terms of expected utility. The conditions
provided by SSD, which is the workhorse among stochastic dominance criteria, are that
decision Ai is superior to decision Ak if and only if

∫ x
−∞ [FAk (t) − FAi (t)]dt ≥ 0 for all x

with strict inequality for at least one x where FAi the cdf associated with decision Ai. The
left pane of Table 13.19 depicts a policy decision featuring decisions (Ai), events (Ej), event
probabilities (Pj), and outcomes conditional on each decision and event (V(Ai, Ej)), where
the latter are shown in the body of the table. Figure 13.21 shows the cdfs FA3 and FA2 in
the left pane and FA1 and FA2 in the right pane. Visual inspection of the figures confirms
that the stochastic dominance condition is satisfied by policy decision, A2, which is unique
(in this case) in maximizing expected utility.

13.18.2 Choice under Ambiguity

If the likelihood of uncontrolled events can be determined up to a convex set (e.g., ranges of
probability values are known), then there is said to be ambiguity about the risks associated
with decision; that is, decision making under ambiguity. This case represents a middle
ground between the risk and uncertainty environments. For such cases, an emerging deci-
sion criterion known as maxmin expected utility (Gilboa and Schmeidler, 1989) suggests
maximizing the minimum expected utility over the convex set; that is, with linear utility,
decision Ai is superior to decision Ak. Suppose

min
(P∈S)

E[V (Ai , E j )] > min
(P∈S)

E[V (Ak, E j )],

where P is a vector of probabilities associated with uncontrolled events and S is a convex
set. The right pane of Table 13.19 shows the decision problem under ambiguity. The
maxmin expected utility optimal decision is given by Maximize

Ai

(Min
(P) � j 9V (Ai , E j )p j ); subject

to � j p j = 1, p j =∈ [a j , b j ] ∀ j. The maxmin expected utility criterion generalizes both
expected utility maximization and the maximin criterion in the sense that both criteria are
special cases of maxmin expected utility. To see this, observe that the maxmin expected
utility optimal decision corresponds to expected utility maximization when S consists of a
single point and corresponds to the maximin criterion when S does not restrict the ranges
of possible probabilities (S is a unit n-simplex). Application of maxmin expected utility to
the right pane of Table 13.19 shows A2 to be the optimal choice.

13.18.3 Choice under Uncertainty

We begin this section with some interesting observations made by economists:

I am still puzzled at the insistence of many writers on treating the uncertainty of result in
choice as if it were a gamble on a known mathematical chance.

Frank Knight, 19331

1Knight’s 1921 book made perhaps the earliest distinction between risk and uncertainty; uncertainty
is sometimes referred to as Knightian uncertainty.
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TABLE 13.19

Event
Probability
Policy

E1
0.2

E2
0.5

E3
0.3

Event
Probability

Policy
E1 [0.15,

25]
E2 [0.4,

0.6]
E3 [0.25,

0.35]

Event
Probability

Policy E1? E2? E3?

A1 0.8 0.9 1.0 A1 0.8 0.9 1.0 A1 0.8 0.9 1.0
A2 0.8 1.1 1.3 A2 0.8 1.1 1.3 A2 0.8 1.1 1.3
A3 0.8 0.95 1.4 A2 0.8 0.95 1.4 A3 0.8 0.95 1.4

[E]conomists have tinkered endlessly with the risk model, yet they appear to have largely
ignored problems dominated by uncertainty. This is especially troubling to the extent that
uncertainty is rapidly growing and perhaps dominant in the dynamic global economy.

C.R. Taylor, 2003

Predicting or determining the likelihood of uncontrolled events is often difficult and can
involve significant time and expense. In the cases where the latter are prohibitive, often
referred to as decision making under uncertainty, there are several approaches. Traditional
decision criteria, including the maximin, maximax, Laplace, and Hurwicz criteria (Render
et al., 2009), may be possible. While none of these criteria require knowledge of uncon-
trolled event probabilities for application, the first two represent polar extremes in terms of
optimism and pessimism, while the latter two require information similar to probabilities
in order to be applied.

The Laplace criterion has come under criticism in the philosophy literature owing to
what has come to be known as the paradox of the envelopes. The decision problem, followed
by three decision tables that apply the Laplace criterion to the problem and achieve three
different optimal solutions, is given below (Tables 13.20, 13.21, and 13.22).

TABLE 13.20 Envelopes Sealed

Event → E1 E2 Expected Payoff
Probability → 1

2
1
2 ← By Laplace

Act↓ Payoff↓ Payoff↓ Optimal act: indifferent
Keep x 2x 3

2 x
Switch 2x x 3

2 x

TABLE 13.21 Open Yours: Find $x

Event → E1 E2 Expected Payoff
Probability→ 1

2
1
2 ←By Laplace

Act↓ Payoff↓ Payoff↓ Optimal act: switch
Keep x x x
Switch 2x 3

2
5
4 x

TABLE 13.22 Open Other: Find $x

Event → E1 E2 Expected Payoff
Probability→ 1

2
1
2 ←By Laplace

Act↓ Payoff↓ Payoff↓ Optimal act: eep
Keep 2x x

2
5
4 x

Switch x x x
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Situation: Two sealed envelopes (yours and theirs). One contains twice the money of the
other. You can keep yours or switch. What should you do?

Putting aside the questions raised by the paradox of the envelopes, each of the criteria
for decision making under uncertainty can be interpreted in the context of Table 13.19. The
maximin optimal decision is found as the solution to Maximize

Ai

Min
E j

V (Ai , E j ); the maximax

optimal decision is found as the solution to Maximize
Ai

MaxE j V (Ai , E j );the Laplace optimal

decision is found as the solution to Maximize
Ai

� j V(Ai , E j ); the Hurwicz optimal decision

(given a value for w ∈ [0, 1]) is found as the solution to Maximize
Ai

( w Max
E j

V(Ai, Ej0 + (1 − w)
MinE j V (Ai , E j )0. It is easily verified that application of these criteria to the information
in the center pane of Table 13.19 gives the following optimal decisions: (maximin, A1, A2,
A3) (maximax, A3); (Laplace, A3), (Hurwicz (w = 0.7), A3).

SUMMARY

� The majority of managerial decisions are taken under the conditions of risk and uncer-
tainty. Risk is defined as the condition in which there are multiple possible outcomes
and the probability of each alternative outcome either is known or can be estimated.
Uncertainty, on the other hand, refers to the same possibilities of multiple outcomes,
but the probability of each outcome is unknown or cannot be estimated. There are many
sources of risk including economic sources such as fluctuation in the major economic de-
terminants (e.g., inflation, interest rate, employment, and the like). The political sources
of risk include tax policies, foreign trade policies, terrorism, etc. Social sources include
all the factors related to cultures, religions, etc.

� Risk can be measured absolutely or relatively. The absolute measure of risk is represented
by the standard deviation, which is a statistical tool to measure the dispersion of possible
outcomes from the expected value of that outcome. The relative measure of risk is
represented by another tool called the coefficient of variation, which is obtained by
dividing the standard deviation by the expected value of outcome.

� People, business managers in particular, tend to deal with risk in three different ways:
either to be a risk-taker, risk averter, or risk neutral. Most business managers are consid-
ered risk averters. Managerial decisions that are based on risk aversion strategies seek
to maximize the expected utility rather than to maximize the mere monetary return. The
expected utility is equal to the summation of all possible outcomes multiplied by their
probabilities of occurrence.

� Risk is considered in the firm’s evaluation of its investment. There are two ways to
factor in risk in this evaluation process: the risk premium adjustment and the certainty-
equivalent adjustment. In the first adjustment, a certain risk premium is added to the
risk-free rate of return when finding the present value of the cash flow of investment.
In the second adjustment, the net cash flow is multiplied by the certainty-equivalent
coefficient, which is obtained as the ratio of the equivalent certain sum to the expected
risky sum or net return from the investment.

� Risk is categorized into diversifiable and nondiversifiable risk depending on the extent to
which risk can be minimized or not when assessing its impact on managerial decisions.
Diversifiable or unsystematic risk is the risk specific to an individual firm as related to
its internal conditions and circumstances such as lawsuits against the firm, marketing or
accounting problems, product defects, workers’ strikes, and problematic contracts. The
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nondiversifiable or systematic risk is the general and market-related risk that affects all
firms and all projects and assets, simultaneously and with no discrimination.

� A portfolio risk is not collective. It would be less if the portfolio includes more and
different individual assets. Its magnitude depends on two factors: diversification of the
assets and their correlation. The higher the diversification of the assets in a portfolio,
the lesser the risk, and the lesser the correlation among the different assets in a portfolio,
the lesser the risk. As for the nondiversifiable or systematic risk, it can be approximated
in the market by a mathematical tool called beta. It is a measure of securities’ volatility
in relation to an average security represented by the state of the market. It is, in this
sense, an index of the extent to which a security return moves in response to the changes
in the overall market. CAPM, discussed in Chapter 12, is a technical tool to analyze the
relationship between the financial asset’s expected return and the nondiversifiable risk in
the market.

� Another way to address risk is to put into order the subsequent events and decisions
visually on a decision tree. It is a graphical representation of the possible paths of alter-
native decisions and subsequent decisions according to their potential probabilities and
values and under possible conditions. Mathematical simulation models are yet another
way to mimic the realities of the business and deal with their changes. In this sense, the
essential features of the real world can be translated into a multivariable model com-
plete with estimations of the probability distributions of the key variables. Such models
can be tested repeatedly with random values given to the variables in each test until a
probability distribution and risk for the general model are estimated so that these can
be used to calculate the expected outcome for any given variable. The last section of
the chapter deals with advanced decision making under risk, ambiguity, and uncertainty.
It focuses on management decisions that are characterized as a choice among the finite
number of alternatives using advanced choice techniques. It is often possible to quantify
economic outcomes used in areas such as policy and cost-benefit analysis, conditional
on uncontrolled events that can include the value of unknown parameters in a response
function. The section illustrates the decision criteria that are available, always assuming
that, at the least, conditional economic outcomes can be determined.

KEY TERMS

risk
absolute measure of risk
coefficient of variation
risk averter
risk neutral
expected monetary

return
certainty equivalent
diversifiable risk
portfolio risk
Markowitz model
systematic risk

financial beta
security market line (SML)
mathematical simulation
cumulative distribution

function
choice under ambiguity
uncertainty
relative measure of risk
risk aversion
risk-taker
expected utility of money
risk discount

risk premium
nondiversifiable risk
efficient portfolio curve
risk-free rate of return
unsystematic risk
CAPM
decision tree
sensitivity analysis
stochastic dominance
choice under uncertainty
expected payoff
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LIST OF FORMULAS

� Standard deviation:

σ =
√√√√ n∑

i=1

[x − x̄]2 P(xi ).

� Expected value (mean):

x̄ =
n∑

i=1

xi P(xi ).

� Coefficient of variation:

v = σ

x̄
.

� Risk discount:

RD = E(v) − CE.

� Certainty-equivalent coefficient:

α = CE

E(v)
.

� Risk-adjusted net present value:

NPV =
n∑

t=1

[
απi

(1 + r )t

]
− C0.

� Portfolio risk:

σ =
√√√√ n∑

i=1

(ki − ke)nPri ,

cov (X, Y ) =
n∑

i=1

(
k X

i − k X
e

)n (
kY

i − kY
e

)n
Pri ,

corX,Y = cov(X, Y )

σXσY
.

� Standard deviation of combined assets:

σI,II =
√

σ 2
i w2

i + σ 2
IIw

2
II + 2CORI,II(wiσi)(wIIσII).

� Beta:

β = cov(ki , km)

var(km)
.
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� CAPM:

ki = Rf + βi[km − Rf ],

βi = ki − R f

km − R f
,

Rf = ki − βi km

1 − βi
,

km = ki + R f (βi − 1)

βi
.

� Inflation adjusted risk-free rate of return:

Rf = k0 + IP.

� Simulated profit:

π =
[

s(p) − s(c1 + c2) − d

L

]
(1 − x) + d

L
.

EXERCISES

1. What is risk and what is uncertainty? How would each and both affect the managerial
decision making and what are the sources of risk?

2. How is risk measured? Explain the ways of measurement, the technical tools used, and
how they work.

3. How do people generally deal with risk? What are the types of attitudes toward risk?
What attitude do business managers usually exhibit toward business risk? Explain
risk aversion, risk and utility of money, expected utility of money, expected monetary
return, risk discount, and certainty equivalent.

4. Compare the diversifiable and nondiversifiable risks. How would each of them be
measured? What is portfolio risk, CAPM, and market beta?

5. What is the managerial decision tree? Can you come up with your own example to
illustrate how the decision tree works? Explain how mathematical simulation works to
serve business decisions.

6. The following are data on predicted profits and their probabilities for two projects,
A and B:

Project Predicted Profits Probability

10,000 60%
A 15,000 40%

7,500 40%
B 12,500 30%

17,500 30%
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Find out which project is riskier. Use both the absolute and relative measures of
assessment.

7. The following table shows the money utility and the outcome probabilities of a risky
project for three types of managers according to their risk attitudes.

Utility

Outcome Probability Manager 1 Manager 2 Manager 3

300,000 0.25 12.25 30.50 3.44
20,000 0.75 −3.5 1.2 −5.7

Which manager is most likely to undertake the project?

8. Consider the following function as a manager’s utility of money function:

U = 370 m0.40,

where m is the initial capital required. Based on the expected value of utility, what
would most likely be the manager’s decision as to either undertake or pass on this
project given that the initial capital is $20,000 and it could either earn or lose $10.000?

9. Consider the following two investment projects I and II.

Project Required Capital Cash Flow 1 Cash Flow 2 Cash Flow 3

I 50,000 19,000 35,000 20,000
II 40,000 16,000 35,000 30,000

Based on the net present value, which project is most likely to be approved given a
risk-free discount rate of 7.5%? Also, would the choice of project remain the same if
the risk premium for project I is 2.5% and for project II, 5.5%?

10. If the market return on a certain asset is 9.75% and the risk-free rate is 5.25%, what
would be the required rate of return for the firm handling this asset if its beta is 1.66?



14
MANAGEMENT CONSULTANTS
AND INFORMATION

Management consulting has expanded dramatically during the past 25 years with estimated
growth rates exceeding 20% in many of those years. The consulting industry has grown
to include a number of large firms with instantly recognizable names that serve a wide
range of public- and private-sector clients and many highly specialized firms that serve the
specific needs of very specific types of clients. The growth in the industry is, of course,
a reflection of the growth in the demand for consultant services by private, public, and
nonprofit firm managers. In fact, managers of both large- and medium-sized firms have
increasingly come to rely on consultants for objective guidance and expertise. This brief
chapter focuses on measuring information that may be gained from the employment of a
management consultant, the notion of perfect information, and the willingness of a firm’s
management to pay to engage the services of a management consultant. The latter may be
especially useful as a practical and timely tool for gauging the appropriateness of engaging
a management consultant for a specific management problem.

14.1 MEASURING INFORMATION AND ITS IMPACT ON UNCERTAINTY

Managers seek the counsel of management consultants for many reasons. Often, consultants
may provide expertise that would otherwise be absent from the organization. Other times,
managers may need guidance from outside the organization to help resolve the problems
that the organization is faced with. Managers may want to ensure that the advice received is
objective and that it will ultimately resolve the problem(s). Consultants may also be needed
to supplement the existing resources in a firm; that is, consultants may be employed to
carry out tasks that managers could do for themselves but for which they simply do not
have sufficient time.

Managerial Economics: A Mathematical Approach, First Edition. M. J. Alhabeeb and L. Joe Moffitt.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.
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Very often, contracting with a management consultant signifies, at its core, contracting
for information. This raises the questions of how the information can be measured and
valued, and what its impact can be. The answer to the first question is that information
can be measured in bits, where a bit is counted as a correct answer to a question that
can be answered as “yes” or “no.” With this measure in mind, the information needed to
answer a more complex management question can be described as the expected minimum
number of “yes/no” type questions needed to determine the answer to the complex ques-
tion with certainty. Eliminating uncertainty through information often results in improved
decision making.

An abstract example can help understand the meaning of measurement of information
more clearly. Suppose a number selector chooses a number from among the natural numbers
less than or equal to 5, that is, a number has been chosen from among the set {1, 2, 3,
4, 5}, but the number chosen is kept secret. What is the minimum number of queries to
the number selector, answerable by either a “yes” or a “no,” that is required to determine
the number that was chosen? The sequence of questions “Is the number 1? Is the number
2?” and so on will identify the number in no more than 4 questions. Hence, the amount
of information needed to know the number selected is certainly no more than 4 bits. The
actual number of questions needed to identify the number using this questioning scheme
will, of course, depend on the number chosen. For example, if the number chosen were
1, then the first question asked in the sequence would find this out. If the number chosen
were 2, then the number would be identified by the second question in the sequence, and
so on. The probability that one question will be needed to identify the number is 1/5,
which is the probability that the number is 1. The probability that two questions will be
needed to identify the number is also 1/5, which is the probability that the number is 2. The
probability that three questions will be needed to identify the number is also 1/5, which
is the probability that the number is 3. The probability that four questions will be needed
to identify the number is 2/5, which is the probability that the number is either 4 or 5. So
again, if the probability that a number is chosen is the same for each of the five numbers
(i.e., 1/5), then the expected number of questions needed to identify the number through
the use of this sequence of questions is

1 × (
1
5

) + 2 × (
1
5

) + 3 × (
1
5

) + 4 × (
2
5

) = 14
5 .

So the sequence of questions will reveal the true number with an expected sequence of
questions just less than 3 in number. Of course, it is not hard to imagine other questioning
schemes that could determine an expected number of bits of information needed to eliminate
uncertainty, aside from this sequence of questions that inquires about each possible number
seriatim.

With the knowledge that information can be measured in bits, it is not hard to imagine how
uncertainty can be lessened with bits of information less in number than the bits expected
to be needed in order to eliminate uncertainty entirely. Continuing with the example of
identifying a number that has been selected from the set {1, 2, 3, 4, 5}, suppose that only
one question can be asked and the question is “Is the number 1?” How can the impact of the
answer to this one question, that is, this single bit of information, be measured? One way
to measure the information is to compare the information needed to eliminate the residual
uncertainty after the question is answered with the original number of bits of information
needed to eliminate uncertainty. If the answer to the question is that the number is 1,
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then no additional information is needed since the uncertainty has been eliminated. There
is a 1/5 probability that this will occur. If the answer to the question is that the number is
not 1, then it is either 2, 3, 4, or 5 with each being equally likely. The probability of this
occurrence is 4/5. Using the form of the calculation for the expected number of questions
needed to eliminate uncertainty previously employed gives

0 × (
1
5

) + (
1 × (

1
4

) + 2 × (
1
4

) + 3 × (
1
2

)) (
4
5

) = 9
5

as the expected number of questions needed to eliminate uncertainty following acquisition
of an answer to the question of whether or not the number chosen is 1 given the questioning
scheme, which was based on a sequence of simple queries.

The measurement of information in terms of bits and the notion that a sufficient number
of bits of information can help eliminate uncertainty or at least lessen it, to the benefit of
decision making, provide a foundation for a quantitative approach to determining a firm’s
willingness to pay for a management consultant’s services. If economic considerations were
introduced to the example of determining the value of a number drawn from the set {1, 2,
3, 4, 5}, the marginal benefit of a bit of information could be compared with the cost of
acquiring the bit (the cost of getting a question in the sequence answered) to determine the
optimal amount of information. Conceptually, a comparison of a similar nature can guide
the decision to engage the services of a management consultant.

14.2 PERFECT MANAGEMENT INFORMATION

From a firm’s perspective, a management decision may often be regarded as a choice
among a finite number of alternatives with uncertain outcomes. The uncertainty inherent in
many decisions may spur the desire on the part of a firm’s managers to acquire additional
information such as may be obtained through engagement of a management consultant.
Such management decisions are frequently represented analytically by a decision table
similar to the decision tables utilized earlier. Table 14.1 serves as an example of a de-
cision table associated with a management decision depicting three possible choices and
two equally probable outcomes per choice. Perfect information related to the manage-
ment decision depicted in the table would provide sufficient information to eliminate the
uncertainty surrounding the decision and reveal which of the two columns of the table
are applicable for a choice. If a management consultant provided such advice, the firm
could then focus on the much simpler problem of making a choice among alternatives with
certain outcomes.

TABLE 14.1 Management Decisions with Two Equally Likely Outcomes

Choice↓ Outcome→ Probability = 1/2 Probability = 1/2

Choice 1 80,000 −20,000
Choice 2 30,000 20,000
Choice 3 23,000 23,000
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14.3 VALUING PERFECT MANAGEMENT INFORMATION

A manager’s maximum willingness to pay for information provides an upper bound on
the amount a firm might pay to engage a management consultant. Maximum willingness
to pay is evaluated using the concept of expected value of perfect information (EVPI).
The EVPI is found by subtracting the best expected outcome a firm can achieve without a
management consultant from the best expected outcome a firm can achieve with sufficient
expert advice to eliminate the uncertainty that surrounds the decision:

EVPI = Best expected outcome with uncertainty eliminated

−Best expected outcome without a consultant.

An important advantage of using EVPI to evaluate the willingness to pay to engage a
management consultant is its simplicity. EVPI is evaluated using the management decision
problem depicted in Table 14.1. If the firm does not engage a management consultant,
then following the discussion in Chapter 12, the firm will evaluate the best choice under
uncertainty and implement it. In this case, the evaluations are

Choice 1:
(

1
2

) × 80,000 + (
1
2

) × (−20,000) = 30,000,

Choice 2:
(

1
2

) × 30,000 + (
1
2

) × 20,000 = 25,000,

Choice 3:
(

1
2

) × 23,000 + (
1
2

) × 23,000 = 23,000.

The firm’s best choice and best expected outcome are Choice 1 and 30,000, respectively.
With information sufficient to eliminate the uncertainty that the firm faces with respect to
this management decision, the firm can make Choice 1 when the first column of outcomes
is relevant, achieving outcome 80,000, and Choice 3 when the second column of outcomes
applies based on the advice received, achieving outcome 23,000. Thus,

(
1
2

) × 80,000 + (
1
2

) × 23,000 = 51,500.

EVPI is then given by

51,500 − 30,000 = 21,500.

The maximum amount that the firm will be willing to pay a management consultant is
21,500. For the decision problem depicted in Table 14.1, the firm would need to compare
the management consultant’s rate and time required with this amount. Clearly, the firm may
benefit from engaging a management consultant; however, the cost of the contract must
never exceed the firm’s EVPI in order for a possible benefit to be realized.

14.4 VALUING LESS-THAN-PERFECT MANAGEMENT INFORMATION

While the expected value of perfect advice from a management consultant on a management
issue is very useful in providing an upper bound on how much it might make sense to pay a
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consultant, the more common case that firm managers face concerns the possible acquisition
of less-than-perfect information. The situation is conceptually similar to that described
in Section 14.3 where some bits of information could be obtained about a number selected
from the set {1, 2, 3, 4, 5}; however, some uncertainty, albeit reduced uncertainty, remained
after the information was acquired. In deciding whether to engage a management consultant,
a manager needs to determine the expected value of the information that the consultant can
provide and compare this amount with the cost of the consulting contract. This evaluation
can (perhaps) best be described within the context of a decision problem, though highly
simplified, that a manager might face, and this is the course we pursue.

We suppose that a manager is considering an addition to available production capacity in
anticipation that additional output of the firm’s primary product line can be marketed. The
firm can add 100,000 square feet of production area or it can add only 50,000 square feet.
The expansion to 100,000 square feet would be very desirable if the additional amount of
product could be sold but disastrous for the firm if the hoped-for demand fails to materialize.
An expansion of production area by 50,000 square feet incurs similar uncertainty about the
firm’s ability to market the product but incurs lessened risk and reward if the market turns
out to be firmer or softer, respectively, than expected. The firm can, of course, choose not
to undertake an expansion of production capacity at all. As is apparent from the discussion
so far, the main source of uncertainty the manager faces is the ability of the firm to market
the expanded output that would follow from additional capacity. Table 14.2 shows the
basic information that is available for making a decision about the possible expansion of
production capacity. The values in the table show the change in the firm’s profit that would
follow from the expansion possibilities and product demand realizations. Note that the firm
can expect to earn a dollar per square foot in the cases where demand is high, but will
lose 80 cents per square foot in case demand turns out to be low. In case the additional
capacity expansion is not undertaken, there will be no impact on the firm. As indicated in
the table, the two demand scenarios, high and low, are regarded as equally likely. Without
engaging a management consultant, the firm will choose to maximize expected profit, by
going forward with the larger expansion project, which will add $100,000 to the expected
profit, but risks an $80,000 loss.

TABLE 14.2 Changes in Profit due to Capacity Expansion with Uncertain Demand

Choice↓ Outcome→ Pr[HD] = 1/2 Pr[LD] = 1/2

100,000 sq. ft. addition 100,000 −80,000
50,000 sq. ft. addition 50,000 −40,000
No addition 0 0

The firm’s manager contacts a management consultant about acquiring better information
on what the demand for its expanded output might be. It is determined that the consultant can
provide a marketing study for $10,000 that will forecast a “high” or “low” future demand.
The consultant’s forecast will enable the probability of the demand levels to be revised
depending critically on the consultant’s reliability in demand forecasting as indicated by
past work. In other words, the management consultant will provide a forecast of future
demand that will fall into the category of either “high demand” or “low demand,” but the
firm’s manager must require that the consultant also provide some information on past
performance in order to make rational use of the consultant’s prediction.
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To see that this is indeed the case, recall the formula for the probability of an event A
conditional on the occurrence of an event B from previous courses that you have taken:

Pr[A|B] = Pr[A and B]

Pr[B]
,

where A and B are random events. Recall that the formula describes the conditional proba-
bility of an event A conditional on the occurrence of an event B as the joint probability of
events A and B divided by the marginal probability of event B. It is a short step from the
conditional probability formula to Bayes formula, that enables the probability of an event
to be revised based on acquisition of information from a management consultant. Bayes
formula is as follows:

Pr[A | B] = Pr[A and B]

Pr[B]
= Pr[B | A] Pr[A]

Pr[B | A] Pr[A] + Pr[B | ¬A]]Pr]¬A]
,

where ¬ A is read as “not A” and means that the event A does not occur. Bayes formula de-
scribes the joint probability of events A and B in terms of reliabilities and prior probabilities.
The numerator in Bayes formula (Pr[B | A] Pr[A]) is the product of the reliability or relative
frequency with which the occurrence of event B will mirror the occurrence of event A (Pr[B
| A]) and the prior probability that event A will occur (Pr[A]). The denominator in Bayes
formula describes the marginal probability of event B in a similar manner. The denominator
evaluates the probability of event B as the relative frequency with which the occurrence of
event B will mirror the occurrence of event A (Pr[B | A]) times the prior probability that
event A will occur (Pr[A]) plus the relative frequency with which the occurrence of event
B will mirror the occurrence of any event other than event A (Pr[B | ¬ A]) times the prior
probability that event A will not occur (Pr[¬ A]).

Using Bayes formula, a manager can make rational use of the consultant’s forecast
provided that some essential information on the consultant’s forecasting performance is
also available. To see how this can be accomplished, we first introduce some notation
related to Table 14.2 and the forecast provided by the management consultant. Let HD =
high demand and LD = low demand. From the data shown in the table, we can see that
the prior probabilities are Pr[HD] = 0.5 and Pr[LD] = 0.5. Let the 100,000 square foot
addition be denoted by LA (for large addition), the 50,000 square foot addition be denoted
by SA (for small addition), and let “no addition” choice be denoted by NA. We denote
a consultant’s forecast of high demand by CHD and a forecast of low demand by CLD.
With this notation, we can describe the expected changes in profit shown in Table 14.2 as
follows:

Expected change in profit | LA; HD = $100,000,

Expected change in profit | LA; LD = −$80,000,

Expected change in profit | SA; HD = $50,000,

Expected change in profit | SA; LD = −$40,000,

Expected change in profit | NA; HD = $0,

Expected change in profit | NA; LD = $0.
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As already mentioned, if a consultant is engaged, the cost is $10,000 and the demand
forecast that will be received from the consultant is denoted by CHD and CLD for forecasts
of high demand and low demand, respectively. However, in order to make rational use of
the consultant’s forecast, it is essential that the reliability of the consultant in past demand
forecasting be obtained by the firm manager. The key information that must be obtained
from the consultant is the relative frequencies with which similar forecasts have correctly
reflected the true state of the market in the past; namely, Pr[CHD | HD] and Pr[CLD |
HD] are needed from the consultant or from other information sources, for example, the
consultant’s past clients.

Let us suppose that this information has been obtained by the firm’s manager and is
as follows:

Pr [CHD | HD] = 0.8,

and

Pr [CLD | LD] = 0.7.

As can be seen from the probabilities, the consultant’s forecasts have correctly predicted
a high demand state of the market in 80% of past forecasting efforts. The consultant has
been somewhat less reliable in forecasting a low demand state of the market with accurate
forecasts in only 70% of past cases. Of course, a consultant could be equally good at
forecasting a strong and weak product demand, but we do not require it in this example
problem. The reliabilities enable other probabilities to be evaluated since the probabilities
of different events conditional on a given event must add up to 1. Hence,

Pr [CLD | HD] = 1 − Pr[CHD | HD] = 1 − 0.8 = 0.2,

and

Pr [CHD | LD] = 1 − Pr [CLD | LD] = 1 − 0.7 = 0.3.

Now we can apply Bayes formula to revise prior probabilities. Bayes formula for arbitrary
events A and B is

Pr [A|B] = Pr[A and B]

Pr[B]
= Pr[B |A] Pr[A]

Pr[B |A ] Pr[A] + Pr[ B| ¬A] ] Pr] ¬A]
.

To obtain a revised prior probability, known as a posterior probability (Chapter 12), we
need to substitute into the formula only the relevant events related to this problem. The
posterior probability of a high demand (HD), given that the consultant predicts a high
demand (CHD), is found by letting event A be HD and event B be CHD in the formula,
namely,

Pr[HD | CHD] = Pr[CHD | HD] Pr[HD]

Pr[CHD | HD] Pr[HD] + Pr[CHD | LD] Pr[ | LD]

= 0.8 × 0.5

0.8 × 0.5 + 0.3 × .05

= 0.73.
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Similarly,

Pr[LD | CLD] = Pr[CLD | LD] Pr[LD]

Pr[CLD | LD] Pr[LD] + Pr[CLD | HD] Pr[HD]

= 0.7 × 0.5

0.7 × 0.5 + 0.2 × 0.5

= 0.78.

Also note that event probabilities conditioned on the same event must add up to 1:

Pr[LD | CHD] = 1 − Pr[HD | CHD]

= 1 − 0.73

= 0.27

and

Pr[HD | CLD] = 1 − Pr [LD | CLD]

= 1 − 0.78

= 0.22.

We are now in a position to evaluate the expected profit change conditional on differ-
ent expansion choices (LA, SA, and NA) and different forecasts from the consultant
(HD and LD). We begin by considering the expected change in profit, depending on
the choice of capacity expansion, when the consultant forecasts a high demand. Bear in
mind that the following evaluations take into account the $10,000 charge for the consul-
tant’s advice:

Expected change in profit | LA; CHD = 0.73 × (100,000 − 10,000)

+ 0.27 × (−80,000 − 10,000)

= $41,400,

Expected change in profit | SA; CHD = 0.73 × (50,000 − 10,000) + 0.27

×(−40,000 − 10,000)

= $15,700,

Expected change in profit | NA; CHD = 0 − 10,000 = −$10,000

= − $10,000.

Note that in the case when a consultant’s advice is contracted for and the consultant predicts
a high demand, the expected profit-maximizing choice about expanding production capacity
is to choose the 100,000 square foot expansion, which yields an expected profit change of
$41,400 (compare to $15,700 with the 50,000 square foot expansion and –$10,000 for no
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change in capacity). Now we do a similar evaluation for the case when the consultant is
engaged and forecasts a low demand:

Expected change in profit | LA; CLD = 0.22 × (100,000 − 10,000) + 0.78

×(−80,000 − 10,000)

= −$50,400,

Expected change in profit | SA; CLD = 0.22 × (50,000 − 10,000) + 0.78

×(−40,000 − 10,000)

= −$30,200,

Expected change in profit | NA; CLD = 0 − 10000

= −$10,000.

Note that with the low demand forecast, the best choice is not to expand production that
leads to an expected profit change of –$10,000 (the consultant’s charge) but avoids the
larger losses associated with the 100,000 square foot expansion (–$50,400) and the 50,000
square foot expansion (–$30,200).

Observe that the unconditional probability that the consultant predicts a high demand,
Pr[CHD], is given by

Pr [CHD] = Pr [CHD | HD] Pr[HD] + Pr [CHD | LD] Pr[LD]

= 0.8 × 0.5 + 0.3 × 0.5

= 0.55.

The unconditional probability that the consultant predicts a low demand, Pr[LD], is
given by

Pr [CLD] = Pr[CLD | LD] Pr [LD] + Pr [CLD | HD] Pr [HD]

= 0.7 × 0.5 + 0.2 × 0.5

= 0.45.

As we have already seen, if the firm selects capacity expansion to maximize the expected
change in profit for each possible forecast by the consultant, it will choose the 100,000
square foot addition when the forecast is for a high demand yielding an expected change
in profit of $41,400 and no addition when the consultant’s forecast is for a low demand,
yielding an expected change in profit of –$10,000. Combining these decisions with the
probability of the consultant’s predictions gives an expected change in profit when a
consultant is engaged of

Expected change in profit | Consultant = 0.55 × (41,400) + 0.45 × (−10,000)

= $18, 270.

So engaging a management consultant with the reliability assumed in this problem will
lead to an expected increase in profit of $18,270, assuming that the optimal decision about
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FIGURE 14.1 Decision tree analysis of capacity addition and management consultant engagement.

adding production capacity is made following consultation. This value can be compared
with the expected change in profit that will occur if the decision about adding production
capacity is made on the basis of the information in Table 14.2, that is, without engaging
a management consultant. Comparisons of the different expansion choices (LA, SA, and
NA) are made on the basis of the following evaluations. Note that there are no consultant
charges since decisions are made without the consultant’s advice:

Expected change in profit | No consultant; LA = 0.5 × (100,000) + 0.5 × (−80,000)

= $10,000,

Expected change in profit | No consultant; SA = 0.5 × (50,000) + 0.5 × (−40,000)

= $5,000,

Expected change in profit | No consultant; NA = $0.
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Note that without a management consultant’s advice, the best choice is to expand
production by choosing the 100,000 square foot addition, which leads to an expected profit
change of $10,000. This expected profit change can be compared with the expected increase
of $5,000 from the 50,000 square foot addition and, of course, no expected change in profit
if no capacity is added.

Comparing the expected change in profit with a management consultant ($18,270) to
the expected change in profit without a management consultant ($10,000) identifies the
following optimal strategy for the firm’s manager.

Optimal strategy: Hire the management consultant—if the consultant indicates a high
demand, choose the 100,000 square foot addition; if the consultant indicates a low demand,
choose “no addition.”

All of the evaluations underlying identification of the optimal strategy in this problem
can also be depicted with the aid of a decision tree. Figure 14.1 shows how the optimal
strategy can be derived using the decision tree technique. Note that, as in the Chapter 12
examples, the strategy can be identified from the tree’s branches that are not pruned with
two short parallel lines as shown in the figure.

It cannot be overemphasized that the decision to engage a management consultant
depends critically on a proper vetting of the consultant’s record. In the example problem
considered here, the consultant’s experience and performance in demand forecasting were
critical to rational use of the consultant’s forecast through implementation of Bayes formula.
Failing to properly vet a management consultant’s record and incorporate that record into
the decision process does not constitute rational engagement of a management consultant
and can have disastrous consequences both in terms of the charges paid to the consultant
and the decisions that follow.

SUMMARY

The management consulting industry has grown dramatically during recent decades as
more medium- and large-sized firms have turned to consultants for counsel. Managers may
be motivated to engage management consultants as a source of objective advice, special
expertise, and/or to undertake specific projects for which the firms simply do not have
sufficient time. Information theory has provided a measure of information corresponding
to a “yes/no” type question, which is known as a bit. The information needed to adequately
address complex questions can often be described as a sequence of bits of information.
The concept of perfect information is associated with the expected number of bits of
information sufficient in number to eliminate uncertainty about a particular question. Bits
of information that are insufficient in number to eliminate uncertainty can nevertheless be
informative and valuable and typify the character of information obtained from management
consultants. In terms of a firm’s management decision problem depicted as a decision table
with a finite number of choices with uncertain outcomes, the firm’s maximum willingness
to pay to engage a management consultant is measured by the expected value of perfect
information (EVPI). The EVPI may be especially useful as a practical and timely tool
for analyzing the economic desirability of engaging a management consultant at all for a
particular problem that the firm is concerned about. However, the more typical case involves
engagement of a management consultant in order to reduce rather than eliminate uncertainty
in decision making. Under these circumstances, rational use of a management consultant
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usually entails use of conditional probabilities through application of Bayes formula in
evaluating the expected return to a management consultant’s advice. The return to engaging
a management consultant depends critically on the consultant’s reliability as (perhaps) best
measured by past performance. Hence, proper vetting of a management consultant is
the key to rational use of the information provided by the consultant as well as the key to
determining when it is best to engage a consultant and how best to apply the information that
is acquired.

KEY TERMS

management consulting
information

less-than-perfect
information

expected value of perfect
information (EVPI)

measurement perfect information Bayes formula

LIST OF FORMULAS

� Expected value of perfect information (EVPI):

EVPI = Best expected outcome with uncertainty eliminated

−Best expected outcome without a consultant.

� Prior probabilities:

Pr [HD],

Pr [LD].

� Conditional probability:

Pr[A | B] = Pr[A and B]

Pr[B]
.

� Bayes formula:

Pr [A | B] = Pr[A and B]

Pr[B]
= Pr[B |A] Pr[A]

Pr[B |A ] Pr[A] + Pr[ B| ¬A] ] Pr] ¬A]
.

� Reliabilities:

Pr [CHD | HD],

Pr [CLD | LD].
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� Posterior probabilities based on Bayes formula:

Pr[HD | CHD] = Pr[CHD | HD] Pr[HD]

Pr[CHD | HD] Pr[HD] + Pr[CHD | LD] Pr[LD]
,

Pr[LD | CLD] = Pr[CLD | LD] Pr[LD]

Pr[CLD | LD] Pr[LD] + Pr[CLD | HD] Pr[HD]
.

EXERCISES

1. Give reasons why a firm’s management might seek the advice of a consultant.

2. Discuss how information can be measured as “bits.”

3. Give an interpretation of the expected value of perfect information.

4. Explain what is meant by the prior and posterior probabilities of an event.

5. Using the concept of probability, explain what is meant by the reliability of a manage-
ment consultant’s advice about an uncertain event.

6. Suppose a coin has been flipped but you do not know the outcome (either heads or
tails). How many bits of information are needed to eliminate the uncertainty about the
outcome of this random event?

7. Evaluate the expected value of perfect information that might be obtained from a
management consultant for the decision problem depicted in the table given below.

Event ⇒ E1 E2 E3

Probability ⇒ 0.2 0.4 0.4
Act ⇓
A1 160 150 350
A2 100 400 200
A3 75 50 500

8. Suppose you know the following probabilities that describe the reliability of a macroe-
conomic forecasting firm’s past performance:

The probability of a positive forecast given a good macroeconomy is 0.60.

The probability of a negative forecast given a good macroeconomy is 0.40.

The probability of a positive forecast given a bad macroeconomy is 0.25.

The probability of a negative forecast given a bad macroeconomy is 0.75.

Suppose your prior probability of a good macroeconomy is 0.10. Find the probability
of a good macroeconomy given that the forecast is for a good macroeconomy and the
probability of a bad macroeconomy given that the forecast is for a bad macroeconomy.
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9. Using the information in the last question, find the probability of a good macroeconomy
given a negative forecast and the probability of a bad macroeconomy given a positive
forecast.

10. Suppose that the probability of every uncertain event is the same so that uncertainty
about what event will occur is in a real sense maximized. Use the information in
exercise 7 to see if the expected value of perfect information necessarily increases with
this uncertainty.
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TABLE A.1 The Greek Alphabet

Greek

Name Capital Lowercase English

Alpha A α A
Beta B β B
Gamma � γ G
Delta � δ D
Epsilon E ε E
Zeta Z ζ Z
Eta E η E
Theta � θ Th
Iota I ι I
Kappa K κ K
Lambda � λ L
Mu M μ M
Nu N ν N
Xi � ξ X
Omicron O o O
Pi � π P
Rho ρ ρ R
Sigma � σ S
Tau T τ T
Upsilon υ υ U
Phi � ϕ Ph
Chi X χ Ch
Psi � ψ Ps
Omega  ω ō
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TABLE A.2 One- and Two-Tail t-Distribution

Two-Tail Probability: 0.20 0.10 0.95 0.02 0.01
One-Tail Probability: 0.10 0.05 0.025 0.01 0.005

df df
1 3.078 6.314 12.706 31.821 63.657 1
2 1.886 2.920 4.303 6.965 9.925 2
3 1.638 3.353 3.182 4.541 5.841 3
4 1.533 2.132 2.776 3.747 4.604 4
5 1.476 2.015 2.571 3.365 4.032 5
6 1.440 1.943 2.447 3.143 3.707 6
7 1.415 1.895 2.365 2.998 3.499 7
8 1.397 1.860 2.306 2.896 3.355 8
9 1.383 1.833 2.262 2.821 3.250 9

10 1.372 1.812 2.228 2.764 3.169 10
11 1.363 1.796 2.201 2.718 3.106 11
12 1.356 1.782 2.179 2.681 3.055 12
13 1.350 1.771 2.160 2.650 3.012 13
14 1.345 1.761 2.145 2.624 2.977 14
15 1.341 1.753 2.131 2.602 2.947 15
16 1.337 1.746 2.120 2.583 2.921 16
17 1.333 1.740 2.110 2.567 2.898 17
18 1.330 1.734 2.101 2.552 2.878 18
19 1.328 1.729 2.093 2.539 2.861 19
20 1.325 1.725 2.086 2.528 2.845 20
21 1.323 1.721 2.080 2.518 2.831 21
22 1.321 1.717 2.074 2.508 2.819 22
23 1.319 1.714 2.069 2.500 2.807 23
24 1.318 1.711 2.064 2.492 2.797 24
25 1.316 1.708 2.060 2.485 2.787 25
26 1.315 1.706 2.056 2.479 2.779 26
27 1.314 1.703 2.052 2.473 2.771 27
28 1.313 1.701 2.048 2.467 2.763 28
29 1.311 1.699 2.045 2.462 2.756 29
30 1.310 1.697 2.042 2.457 2.750 30
32 1.309 1.694 2.037 2.449 2.738 32
35 1.306 1.690 2.030 2.438 2.725 35
40 1.303 1.684 2.021 2.423 2.704 40
45 1.301 1.679 2.014 2.412 2.690 45
50 1.299 1.676 2.009 2.403 2.678 50
60 1.296 1.671 2.000 2.390 2.660 60
75 1.293 1.665 1.992 2.377 2.643 75

100 1.290 1.660 1.984 2.364 2.626 100
120 1.289 1.658 1.980 2.358 2.617 120
140 1.288 1.656 1.977 2.353 2.611 140
180 1.286 1.653 1.973 2.347 2.603 180
250 1.285 1.651 1.969 2.341 2.596 250
400 1.284 1.649 1.966 2.336 2.588 400

1000 1.282 1.646 1.962 2.330 2.581 1000
∞ 1.282 1.645 1.960 2.326 2.576 ∞
Confidence levels: 80% 90% 95% 98% 99%



TABLE A.3 F-Statistics with 5% Significance

Degrees of Freedom for Numerator (k − 1)

1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120

1 161 200 216 225 230 234 237 239 241 242 244 246 248 249 250 251 252 253
2 18.5 19.0 19.2 19.2 19.3 19.3 19.4 19.4 19.4 19.4 19.4 19.4 19.5 19.5 19.5 19.5 19.5 19.5
3 10.1 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.74 8.70 8.66 8.64 8.62 8.59 8.57 8.55
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.91 5.86 5.80 5.77 5.57 5.72 5.69 5.66
5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.68 4.62 4.56 4.53 4.50 4.46 4.43 4.40
6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 4.00 3.94 3.87 3.84 3.81 3.77 3.74 3.70
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.57 3.51 3.44 3.41 3.38 3.34 3.30 3.27
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.28 3.22 3.15 3.12 3.08 3.04 3.01 2.97
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 3.07 3.01 2.94 2.90 2.86 2.83 2.79 2.75

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.91 2.85 2.77 2.74 2.70 2.66 2.62 2.58
11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85 2.79 2.72 2.65 2.61 2.57 2.53 2.49 2.45
12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75 2.69 2.62 2.54 2.51 2.47 2.43 2.38 2.34
13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67 2.60 2.53 2.46 2.42 2.38 2.34 2.30 2.25
14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60 2.53 2.46 2.39 2.35 2.31 2.27 2.22 2.18
15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54 2.48 2.40 2.33 2.29 2.25 2.20 2.16 2.11
16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.42 2.35 2.28 2.24 2.19 2.15 2.11 2.06
17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.48 2.45 2.38 2.31 2.23 2.19 2.15 2.10 2.06 2.01
18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41 2.34 2.27 2.19 2.15 2.11 2.06 2.02 1.97
19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.39 2.31 2.23 2.16 2.11 2.07 2.03 1.98 1.93
20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 2.28 2.20 2.12 2.08 2.04 1.99 1.95 1.90
21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 2.32 2.25 2.18 2.10 2.05 2.01 1.96 1.92 1.87
22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30 2.23 2.15 2.07 2.03 1.98 1.94 1.89 1.84
23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32 2.27 2.20 2.13 2.05 2.01 1.96 1.91 1.86 1.81
24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25 2.18 2.11 2.03 1.98 1.94 1.89 1.84 1.79
25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 2.24 2.16 2.09 2.01 1.96 1.92 1.87 1.82 1.77
26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22 2.15 2.07 1.99 1.95 1.90 1.85 1.80 1.75
27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25 2.20 2.13 2.06 1.97 1.93 1.88 1.84 1.79 1.73
28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24 2.19 2.12 2.04 1.96 1.91 1.87 1.82 1.77 1.71
29 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.22 2.18 2.10 2.03 1.94 1.90 1.85 1.81 1.75 1.70
30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16 2.09 2.01 1.93 1.89 1.84 1.79 1.74 1.68
40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08 2.00 1.92 1.84 1.79 1.74 1.69 1.64 1.58
60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99 1.92 1.84 1.75 1.70 1.65 1.59 1.53 1.47

120 3.92 3.07 2.68 2.45 2.29 2.18 2.09 2.02 1.96 1.91 1.83 1.75 1.66 1.61 1.55 1.50 1.43 1.35

Source: Merrington and Thompson (1943).
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TABLE A.4 F-Statistics with 1% Significance

Degrees of Freedom for Numerator (k − 1)

1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120

1 4.052 5.000 5.403 5.625 5.746 5.859 5.928 5.982 6.023 6.056 6.106 6.157 6.209 6.235 6.261 6.287 6.313 6.339
2 98.5 99.0 99.2 99.2 99.3 99.3 99.4 99.4 99.4 99.4 99.4 99.4 99.4 99.5 99.5 99.5 99.5 99.5
3 34.1 30.8 29.5 28.7 28.2 27.9 27.7 27.5 27.3 27.2 27.1 26.9 26.7 26.6 26.5 26.4 26.3 26.2
4 21.2 18.0 16.7 16.0 15.5 15.2 15.0 14.8 14.7 14.5 14.4 14.2 14.0 13.9 13.8 13.7 13.7 13.6
5 16.3 13.3 12.1 11.4 11.0 10.7 10.5 10.3 10.2 10.1 9.89 9.72 9.55 9.47 9.38 9.29 9.20 9.11
6 13.7 10.9 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87 7.72 7.56 7.40 7.31 7.23 7.14 7.06 6.97
7 12.2 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 6.62 6.47 6.31 6.16 6.07 5.99 5.91 5.82 5.74
8 11.3 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91 5.81 5.67 5.52 5.36 5.28 5.29 5.12 5.03 4.95
9 10.6 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35 5.26 5.11 4.96 4.81 4.73 4.65 4.57 4.48 4.40

10 10.0 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94 4.85 4.71 4.56 4.41 4.33 4.25 4.17 4.08 4.00
11 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63 4.54 4.40 4.25 4.10 4.02 3.94 3.86 3.78 3.69
12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39 4.30 4.16 4.01 3.86 3.78 3.70 3.62 3.54 3.45
13 9.07 6.70 5.74 5.21 4.97 4.62 4.44 4.30 4.19 4.10 3.96 3.82 3.66 3.59 3.51 3.43 3.34 3.25
14 8.86 6.51 5.56 5.04 4.70 4.46 4.28 4.14 4.03 3.94 3.80 3.66 3.51 4.43 3.35cv 3.27 3.18 3.09
15 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89 3.80 3.67 3.52 3.37 3.29 3.21 3.13 3.05 2.96
16 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78 3.69 3.55 3.41 3.26 3.18 3.10 3.02 2.93 2.84
17 8.40 6.11 5.19 4.67 4.34 4.10 3.93 3.79 3.68 3.59 3.46 3.31 3.16 3.08 3.00 2.92 2.83 2.75
18 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60 3.51 3.37 3.23 3.08 3.00 2.92 2.84 2.75 2.66
19 8.19 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52 3.43 3.30 3.15 3.00 2.92 2.84 2.76 2.67 2.58
20 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46 3.37 3.23 3.09 2.94 2.86 2.78 2.68 2.61 2.52
21 8.02 5.78 4.87 4.37 4.04 3.81 3.64 3.51 3.40 3.31 3.17 3.03 2.88 2.80 2.72 2.64 2.55 2.46
22 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35 3.26 3.12 2.98 2.83 2.75 2.67 2.58 2.50 2.40
23 7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 3.30 3.21 3.07 2.93 2.78 2.70 2.62 2.54 2.45 2.35
24 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26 3.17 3.03 2.89 2.74 2.66 2.58 2.49 2.40 2.31
25 7.77 5.57 4.68 4.18 3.86 3.63 3.46 3.32 3.22 3.13 2.99 2.85 2.70 2.62 2.53 2.45 2.36 2.27
26 7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.18 3.09 2.96 2.81 2.66 2.58 2.50 2.42 2.33 2.23
27 7.68 5.49 4.60 4.11 3.78 3.56 3.39 3.26 3.15 3.06 2.93 2.78 2.63 2.55 2.47 2.38 2.29 2.20
28 7.64 5.45 4.57 4.07 3.75 3.53 3.36 3.23 3.12 3.03 2.90 2.75 2.60 2.52 2.44 2.35 2.26 2.17
29 7.60 5.42 4.54 4.04 3.73 3.50 3.33 3.20 3.09 3.00 2.87 2.73 2.57 2.49 2.14 2.33 2.23 2.14
30 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07 2.98 2.84 2.70 2.55 2.47 2.30 2.39 2.21 2.11
40 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89 2.80 2.66 2.52 2.37 2.29 2.20 2.11 2.02 1.92
60 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 2.63 2.50 2.35 2.20 2.12 2.03 1.94 1.84 1.73

120 6.85 4.79 3.95 3.48 3.17 2.96 2.79 2.66 2.56 2.47 2.34 2.19 2.03 1.94 1.86 1.76 1.66 1.53
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TABLE A.5 Critical Values of the Durbin–Watson Test Statistic for 0.05 Significance

k = 1 k = 2 k = 3 k = 4 k = 5

n dL dU dL dU dL dU dL dU dL dU

15 1.08 1.36 0.95 1.54 0.82 1.75 0.69 1.97 0.56 2.21
16 1.10 1.37 0.98 1.54 0.86 1.73 0.74 1.93 0.62 2.15
17 1.13 1.38 1.02 1.54 0.90 1.71 0.78 1.90 0.67 2.10
18 1.16 1.39 1.05 1.53 0.93 1.69 0.82 1.87 0.71 2.06
19 1.18 1.40 1.08 1.53 0.97 1.68 0.86 1.85 0.75 2.02
20 1.20 1.41 1.10 1.54 1.00 1.68 0.90 1.83 0.79 1.99
21 1.22 1.42 1.13 1.54 1.03 1.67 0.93 1.81 0.83 1.96
22 1.24 1.43 1.15 1.54 1.05 1.66 0.96 1.80 0.86 1.94
23 1.26 1.44 1.17 1.54 1.08 1.66 0.99 1.79 0.90 1.92
24 1.27 1.45 1.19 1.55 1.10 1.66 1.01 1.78 0.93 1.90
25 1.29 1.45 1.21 1.55 1.12 1.66 1.04 1.77 0.95 1.89
26 1.30 1.46 1.22 1.55 1.14 1.65 1.06 1.76 0.98 1.88
27 1.32 1.47 1.24 1.56 1.16 1.65 1.08 1.76 1.01 1.86
28 1.33 1.48 1.26 1.56 1.18 1.65 1.10 1.75 1.03 1.85
29 1.34 1.48 1.27 1.56 1.20 1.65 1.12 1.74 1.05 1.84
30 1.35 1.49 1.28 1.57 1.21 1.65 1.14 1.74 1.07 1.83
31 1.36 1.50 1.30 1.57 1.23 1.65 1.16 1.74 1.09 1.83
32 1.37 1.50 1.31 1.57 1.24 1.65 1.18 1.73 1.11 1.82
33 1.38 1.51 1.32 1.58 1.26 1.65 1.19 1.73 1.13 1.81
34 1.39 1.51 1.33 1.58 1.27 1.65 1.21 1.73 1.15 1.81
35 1.40 1.52 1.34 1.58 1.28 1.65 1.22 1.73 1.16 1.80
36 1.41 1.52 1.35 1.59 1.29 1.65 1.24 1.73 1.18 1.80
37 1.42 1.53 1.36 1.59 1.31 1.66 1.25 1.72 1.19 1.80
38 1.43 1.54 1.37 1.59 1.32 1.66 1.26 1.72 1.21 1.79
39 1.43 1.54 1.38 1.60 1.33 1.66 1.27 1.72 1.22 1.79
40 1.44 1.54 1.39 1.60 1.34 1.66 1.29 1.72 1.23 1.79
45 1.48 1.57 1.43 1.62 1.38 1.67 1.34 1.72 1.29 1.78
50 1.50 1.59 1.46 1.63 1.42 1.67 1.38 1.72 1.34 1.77
55 1.53 1.60 1.49 1.64 1.45 1.68 1.41 1.72 1.38 1.77
60 1.55 1.62 1.51 1.65 1.48 1.69 1.44 1.73 1.41 1.77
65 1.57 1.63 1.54 1.66 1.50 1.70 1.47 1.73 1.44 1.77
70 1.58 1.64 1.55 1.67 1.52 1.70 1.49 1.74 1.46 1.77
75 1.60 1.65 1.57 1.68 1.54 1.71 1.51 1.74 1.49 1.77
80 1.61 1.66 1.59 1.69 1.56 1.72 1.53 1.74 1.51 1.77
85 1.62 1.67 1.60 1.70 1.57 1.72 1.55 1.75 1.52 1.77
90 1.63 1.68 1.61 1.70 1.59 1.73 1.57 1.75 1.54 1.78
95 1.64 1.69 1.62 1.71 1.60 1.73 1.58 1.75 1.56 1.78

100 1.65 1.69 1.63 1.72 1.61 1.74 1.59 1.76 1.57 1.78
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TABLE A.6 Critical Values of the Durbin—Watson Test Statistic for 0.01 Significance

k = 1 k = 2 k = 3 k = 4 k = 5

n dL dU dL dU dL dU dL dU dL dU

15 0.81 1.07 0.70 1.25 0.59 1.46 0.49 1.70 0.39 1.96
16 0.84 1.09 0.74 1.25 0.63 1.44 0.53 1.66 0.44 1.90
17 0.87 1.10 0.77 1.25 0.67 1.43 0.57 1.63 0.48 1.85
18 0.90 1.12 0.80 1.26 0.71 1.42 0.61 1.60 0.52 1.80
19 0.93 1.13 0.83 1.26 0.74 1.41 0.65 1.58 0.56 1.77
20 0.95 1.15 0.86 1.27 0.77 1.41 0.68 1.57 0.60 1.74
21 0.97 1.16 0.89 1.27 0.80 1.41 0.72 1.55 0.63 1.71
22 1.00 1.17 0.91 1.28 0.83 1.40 0.75 1.54 0.66 1.69
23 1.02 1.19 0.94 1.29 0.86 1.40 0.77 1.53 0.70 1.67
24 1.05 1.20 0.96 1.30 0.88 1.41 0.80 1.53 0.72 1.66
25 1.05 1.21 0.98 1.30 0.90 1.41 0.83 1.52 0.75 1.65
26 1.07 1.22 1.00 1.31 0.93 1.41 0.85 1.52 0.78 1.64
27 1.09 1.23 1.02 1.32 0.95 1.41 0.88 1.51 0.81 1.63
28 1.10 1.24 1.04 1.32 0.97 1.41 0.90 1.51 0.83 1.62
29 1.12 1.25 1.05 1.33 0.99 1.42 0.92 1.51 0.85 1.61
30 1.13 1.26 1.07 1.34 1.01 1.42 0.94 1.51 0.88 1.61
31 1.15 1.27 1.08 1.34 1.02 1.42 0.96 1.51 0.90 1.60
32 1.16 1.28 1.10 1.35 1.04 1.43 0.98 1.51 0.92 1.60
33 1.17 1.29 1.11 1.36 1.05 1.43 1.00 1.51 0.94 1.59
34 1.18 1.30 1.13 1.36 1.07 1.43 1.01 1.51 0.95 1.59
35 1.19 1.31 1.14 1.37 1.08 1.44 1.03 1.51 0.97 1.59
36 1.21 1.32 1.15 1.38 1.10 1.44 1.04 1.51 0.99 1.59
37 1.22 1.32 1.16 1.38 1.11 1.45 1.06 1.51 1.00 1.59
38 1.23 1.33 1.18 1.39 1.12 1.45 1.07 1.52 1.02 1.58
39 1.24 1.34 1.19 1.39 1.14 1.45 1.09 1.52 1.03 1.58
40 1.25 1.34 1.20 1.40 1.15 1.46 1.10 1.52 1.05 1.58
45 1.29 1.38 1.24 1.42 1.20 1.48 1.16 1.53 1.11 1.58
50 1.32 1.40 1.28 1.45 1.24 1.49 1.20 1.54 1.16 1.59
55 1.36 1.43 1.32 1.47 1.28 1.51 1.25 1.55 1.21 1.59
60 1.38 1.45 1.35 1.48 1.32 1.52 1.28 1.56 1.25 1.60
65 1.41 1.47 1.38 1.50 1.35 1.53 1.31 1.57 1.28 1.61
70 1.43 1.49 1.40 1.52 1.37 1.55 1.34 1.58 1.31 1.61
75 1.45 1.50 1.42 1.53 1.39 1.56 1.37 1.59 1.34 1.62
80 1.47 1.52 1.44 1.54 1.42 1.57 1.39 1.60 1.36 1.62
85 1.48 1.53 1.46 1.55 1.43 1.58 1.41 1.60 1.39 1.63
90 1.50 1.54 1.17 1.56 1.45 1.59 1.43 1.61 1.41 1.64
95 1.51 1.55 1.49 1.57 1.47 1.60 1.45 1.62 1.42 1.64

100 1.52 1.56 1.50 1.58 1.48 1.60 1.46 1.63 1.44 1.65

Source: Durbin and Watson (1951).



TABLE A.7 Value of the Discount Factor for $1.00 under Many Discount Rates and Periods (PVIFr,n) or (V n) Value = 1
(1+r)17

Period 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 12% 14% 15% 16% 18% 20% 24% 28% 32% 36%
1 0.9901 0.9804 0.9709 0.9615 0.9524 0.9434 0.9346 0.9259 0.9174 0.9091 0.8929 0.8772 0.8696 0.8621 0.8475 0.8333 0.8065 0.7813 0.7576 0.7353
2 0.9803 0.9612 0.9426 0.9246 0.9070 0.8900 0.8734 0.8573 0.8417 0.8264 0.7972 0.7695 0.7561 0.7432 0.7182 0.6944 0.6504 0.6104 0.5739 0.5407
3 0.9706 0.9423 0.9151 0.8890 0.8638 0.8396 0.8163 0.7938 0.7722 0.7513 0.7118 0.6750 0.6575 0.6407 0.6086 0.5787 0.5245 0.4768 0.4348 0.3975
4 0.9610 0.9238 0.8885 0.8548 0.8227 0.7921 0.7629 0.7350 0.7084 0.6830 0.6355 0.5921 0.5718 0.5523 0.5158 0.4823 0.4230 0.3725 0.3294 0.2923
5 0.9515 0.9057 0.8626 0.8219 0.7835 0.7473 0.7130 0.6806 0.6499 0.6209 0.5674 0.5194 0.4972 0.4761 0.4371 0.4019 0.3411 0.2910 0.2495 0.2149
6 0.9420 0.8880 0.8375 0.7903 0.7462 0.7050 0.6663 0.6302 0.5963 0.5645 0.5066 0.4556 0.4323 0.4104 0.3704 0.3349 0.2751 0.2274 0.1890 0.1580
7 0.9327 0.8706 0.8131 0.7599 0.7107 0.6651 0.6227 0.5835 0.5470 0.5132 0.4523 0.3996 0.3759 0.3538 0.3139 0.2791 0.2218 0.1776 0.1432 0.1162
8 0.9235 0.8535 0.7894 0.7307 0.6768 0.6274 0.5820 0.5403 0.5019 0.4665 0.4039 0.3506 0.3269 0.3050 0.2660 0.2326 0.1789 0.1388 0.1085 0.0854
9 0.9143 0.8368 0.7664 0.7026 0.6446 0.5919 0.5439 0.5002 0.4604 0.4241 0.3606 0.3075 0.2843 0.2630 0.2255 0.1938 0.1443 0.1084 0.0822 0.0628

10 0.9053 0.8203 0.7441 0.6756 0.6139 0.5584 0.5083 0.4632 0.4224 0.3855 0.3220 0.2697 0.2472 0.2267 0.1911 0.1615 0.1164 0.0847 0.0623 0.0462
11 0.8963 0.8043 0.7224 0.6496 0.5847 0.5268 0.4751 0.4289 0.3875 0.3505 0.2875 0.2366 0.2149 0.1954 0.1619 0.1346 0.0938 0.0662 0.0472 0.0340
12 0.8874 0.7885 0.7014 0.6246 0.5568 0.4970 0.4440 0.3971 0.3555 0.3186 0.2567 0.2076 0.1869 0.1685 0.1372 0.1122 0.0757 0.0517 0.0357 0.0250
13 0.8787 0.7730 0.6810 0.6006 0.5303 0.4688 0.4150 0.3677 0.3262 0.2897 0.2292 0.1821 0.1625 0.1452 0.1163 0.0935 0.0610 0.0404 0.0271 0.0184
14 0.8700 0.7579 0.6611 0.5775 0.5051 0.4423 0.3878 0.3405 0.2992 0.2633 0.2046 0.1597 0.1413 0.1252 0.0985 0.0779 0.0492 0.0316 0.0205 0.0135
15 0.8613 0.7430 0.6419 0.5553 0.4810 0.4173 0.3624 0.3152 0.2745 0.2394 0.1827 0.1401 0.1229 0.1079 0.0835 0.0649 0.0397 0.0247 0.0155 0.0099
16 0.8528 0.7284 0.6232 0.5339 0.4581 0.3936 0.3387 0.2919 0.2519 0.2176 0.1631 0.1229 0.1069 0.0930 0.0708 0.0541 0.0320 0.0193 0.0118 0.0073
17 0.8444 0.7142 0.6050 0.5134 0.4363 0.3714 0.3166 0.2703 0.2311 0.1978 0.1456 0.1078 0.0929 0.0802 0.0600 0.0451 0.0258 0.0150 0.0089 0.0054
18 0.8360 0.7002 0.5874 0.4936 0.4155 0.3503 0.2959 0.2505 0.2120 0.1799 0.1300 0.0946 0.0808 0.0691 0.0508 0.0376 0.0208 0.0118 0.0068 0.0039
19 0.8277 0.6864 0.5703 0.4746 0.3957 0.3305 0.2765 0.2317 0.1945 0.1635 0.1161 0.0829 0.0703 0.0596 0.0431 0.0313 0.0168 0.0092 0.0051 0.0029
20 0.8195 0.6730 0.5537 0.4564 0.3769 0.3118 0.2584 0.2145 0.1784 0.1486 0.1037 0.0728 0.0611 0.0514 0.0365 0.0261 0.0135 0.0072 0.0039 0.0021
21 0.8114 0.6598 0.5375 0.4388 0.3589 0.2942 0.2415 0.1987 0.1637 0.1351 0.0926 0.0638 0.0531 0.0443 0.0309 0.0217 0.0109 0.0056 0.0029 0.0016
22 0.8034 0.6468 0.5219 0.4220 0.3418 0.2775 0.2257 0.1839 0.1502 0.1228 0.0826 0.0560 0.0462 0.0382 0.0262 0.0181 0.0088 0.0044 0.0022 0.0012
23 0.7954 0.6342 0.5067 0.4057 0.3256 0.2618 0.2109 0.1703 0.1378 0.1117 0.0738 0.0491 0.0402 0.0329 0.0222 0.0151 0.0071 0.0034 0.0017 0.0008
24 0.7876 0.6217 0.4919 0.3901 0.3101 0.2470 0.1971 0.1577 0.1264 0.1015 0.0659 0.0431 0.0349 0.0284 0.0188 0.0126 0.0057 0.0027 0.0013 0.0006
25 0.7798 0.6095 0.4776 0.3751 0.2953 0.2330 0.1842 0.1460 0.1160 0.0923 0.0588 0.0378 0.0304 0.0245 0.0160 0.0105 0.0046 0.0021 0.0010 0.0005
26 0.7720 0.5976 0.4637 0.3607 0.2812 0.2198 0.1722 0.1352 0.1064 0.0839 0.0525 0.0331 0.0264 0.0211 0.0135 0.0087 0.0037 0.0016 0.0007 0.0003
27 0.7644 0.5859 0.4502 0.3468 0.2678 0.2074 0.1609 0.1252 0.0976 0.0763 0.0469 0.0291 0.0230 0.0182 0.0115 0.0073 0.0030 0.0013 0.0006 0.0002
28 0.7568 0.5744 0.4371 0.3335 0.2551 0.1956 0.1504 0.1159 0.0895 0.0693 0.0419 0.0255 0.0200 0.0157 0.0097 0.0061 0.0024 0.0010 0.0004 0.0002
29 0.7493 0.5631 0.4243 0.3207 0.2429 0.1846 0.1406 0.1073 0.0822 0.0630 0.0374 0.0224 0.0174 0.0135 0.0082 0.0051 0.0020 0.0008 0.0003 0.0001
30 0.7419 0.5521 0.4120 0.3083 0.2314 0.1741 0.1314 0.0994 0.0754 0.0573 0.0334 0.0196 0.0151 0.0116 0.0070 0.0042 0.0016 0.0006 0.0002 0.0001
35 0.7059 0.5000 0.3554 0.2534 0.1813 0.1301 0.0937 0.0676 0.0490 0.0356 0.0189 0.0102 0.0075 0.0055 0.0030 0.0017 0.0005 0.0002 0.0001 ∗
40 0.6717 0.4529 0.3066 0.2083 0.1420 0.0972 0.0668 0.0460 0.0318 0.0221 0.0107 0.0053 0.0037 0.0026 0.0013 0.0007 0.0002 0.0001 ∗ ∗
45 0.6391 0.4102 0.2644 0.1712 0.1113 0.0727 0.0476 0.0313 0.0207 0.0137 0.0061 0.0027 0.0019 0.0013 0.0006 0.0003 0.0001 ∗ ∗ ∗
50 0.6080 0.3715 0.2281 0.1407 0.0872 0.0543 0.0339 0.0213 0.0134 0.0085 0.0035 0.0014 0.0009 0.0006 0.0003 0.0001 ∗ ∗ ∗ ∗
55 0.5785 0.3365 0.1968 0.1157 0.0683 0.0406 0.0242 0.0145 0.0087 0.0053 0.0020 0.0007 0.0005 0.0003 0.0001 ∗ ∗ ∗ ∗ ∗
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TABLE A.8 Values of the Standard Normal Distribution Function

Z 0 1 2 3 4 5 6 7 8 9

−3. 0.0013 0.0010 0.0007 0.0005 0.0003 0.0002 0.0002 0.0001 0.0001 0.0000
−2.9 0.0019 0.0018 0.0017 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014
−2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019
−2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026
−2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036
−2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048
−2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064
−2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084
−2.2 0.0139 0.0136 0.0132 0.0129 0.0126 0.0122 0.0119 0.0116 0.0113 0.0110
−2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143
−2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183
−1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0238 0.0233
−1.8 0.0359 0.0352 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0300 0.0294
−1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367
−1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455
−1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0570 0.0559
−1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0722 0.0708 0.0694 0.0681
−1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823
−1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985
−1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170
−1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379
−0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611
−0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867
−0.7 0.2420 0.2389 0.2358 0.2327 0.2297 0.2266 0.2236 0.2206 0.2177 0.2148
−0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451
−0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776
−0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121
−0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483
−0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859
−0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247
−0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641

(Continued)



568 APPENDIX

TABLE A.8 (Continued)

Z 0 1 2 3 4 5 6 7 8 9

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7703 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8977 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9278 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9430 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9648 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9700 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9762 0.9767
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9874 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3. 0.9987 0.9990 0.9993 0.9995 0.9997 0.9998 0.9998 0.9999 0.9999 1.000

Source: Statistical Analysis: With Business and Economic Applications, 1969 by Holt, Rinehard and Winston, Inc.
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INDEX

Absolute measure of risk, 490–94
Accounting profit, 9
Actual-to-forecast (A/F) ratio method, 210, 211
Adjusted R2, 181, 182, 197
Adjustment equation, 188, 189, 198
AFC. See Average fixed cost (AFC)
Affordability. See Consumer’s affordability
Affordability zone, 58
Aggregate consumption (AC), 229
Analysis of variance (ANOVA), 182
Arc cost elasticity, 346
Arc cross-price elasticity, 101
Arc elasticity, 88
Arc income elasticity, 100
Arc price elasticity, 100
Autocorrelation, 184, 185
AVC. See Average variable cost (AVC)
Average absolute error (AAE), 234
Average cost (AC), 289, 344, 371
Average fixed cost (AFC), 289, 345
Average overhead cost (AOC), 416
Average product (AP), 247
Average product of labor, 284
Average profit (APr), 371
Average revenue (AR), 371
Average variable cost (AVC), 289, 345, 373–5,

416

Bandwagon effect, 122–4
Barometric forecasting, 224–6
Bayes formula, 551, 557
Bentham, Jeremy, 71
BER. See Break-even revenue (BER)
Bertrand, Joseph Louis, 403
Bertrand model, of oligopoly, 403–7
BET. See Break-even time (BET)
Beta (β), for measuring systematic risk, 522–5,

543
Bits, measurement of information in, 547, 548
Block price (BP), 436, 447
Boulding, Kenneth, 13
Boundary optimum, 69
BP. See Block price (BP)
Break-even analysis, 321

algebraic approach to break-even point,
329, 330

break-even point and target profit, 327–9
break-even quantity and break-even

revenue, 322–6
break-even time, 330–34
cash break-even technique, 326, 327
dual break-even points, 334–7

Break-even point, 321, 329, 330, 334–7
lower, 334
upper, 334
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Break-even quantity (BEQ), 322, 346
Break-even quantity with target profit, formula,

346
Break-even revenue (BER), 323, 328, 346
Break-even revenue with target profit, formula,

347
Break-even time (BET), 330–34, 347
Budgeting. See Capital budgeting
Budget line, 58–60

kink of, 64–6
shift of, 60–62
slope of, 60
swing of, 63, 64

Budget line for x and y, formula, 100
Bundling, 430
Business cycle indicators, 225
Business profit, and economic profit, 9

Calculus, formulas, 40, 41
Capital asset pricing model (CAPM), 473, 474,

509, 525, 526, 544
Capital budgeting, 451, 452

basic model of, 453, 454
cost of capital, 471–81
and equimarginal principle, 453
investment projects and

conforming, 452
cost reduction, 452
expansion, 452
replacement, 452

methods to evaluate investment project, 455
internal rate of return, 455, 459–62
net present value, 455–8
payback technique, 455, 469–71
profitability index, 455, 467–9
value-adjusted method, 455
value-unadjusted method, 455

steps in, 454
Capital expenditure, 451
Capitalization of fund, 478
Capitalized cost of asset, 478, 479
Capitalized costs, formula, 485
Capital outlay for firm’s investment projects,

examples of, 452
Capital rationing, 468
CAPM. See Capital asset pricing model

(CAPM)
Cardinalism, 71
Cartel, 393
Cash break-even quantity (CBEQ), 326, 327,

346

Cash inflow, capital budgeting, 451, 452
Cash outflow, capital budgeting, 451, 452
CBEQ. See Cash break-even quantity (CBEQ)
CE. See Certainty equivalent (CE)
Certainty, 487
Certainty equivalent (CE), 501, 506–9
Certainty-equivalent coefficient, 507, 508, 543
CES epistemic model of production, formula,

361, 363
Choice under ambiguity, 539
Choice under uncertainty, 539–541
CMU. See Constant marginal utility (CMU)
Cobb–Douglas production function, elasticity

of, 270, 271
Cobb–Douglas utility function, 54, 100
Coefficient of determination, 170, 171, 181,

197
Coefficient of variation (V), 495, 543
Coincident indicators, 224, 225
Collusion, 393
Comparative statics analysis, 16
Compensated demand curve, 144

derivation of, 147–9
Compensated law of demand, 97
Competition

monopolistic, 389–93
perfect, 368–80. See also Perfect

competition
Competitor’s matching pricing, 431
Complements, 94
Composite index, 226
Computer simulation, 349
Concentration ratio, 394, 412
Conditional probability, 557
Conjectural variation, 395
Constant elasticity of substitution (CES)

production function, 274, 350, 355
elasticity of substitution for, 274, 284
graphical representation of, 275–7

Constant marginal utility (CMU), 496, 497
Constant returns to scale, 267, 268
Constraint constant, 23
Constraint function, 23
Consultant. See Management consultant
Consumer choice, 47

affordability and, 58–68. See also
Consumer’s affordability)

income and substitution effects, 95, 96
optimal choice, 68–81

change in income and, 81–8
change in prices and, 88–95
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preferences and, 47–58. See also Consumer
preferences

Slutsky equation, 96–8
Consumer confidence index, 233
Consumer equilibrium, 69, 100
Consumer preferences, 47–58, 149. See also

Revealed preferences
indifference curve, 50–52
marginal rate of substitution, 52–5
nontypical indifference curves, 55–8
properties, 47

completeness, 47, 48
convexity, 48–50
nonsatiation, 48
transitivity, 48

Consumer’s affordability, 58
budget line, 58–60
kink of budget line, 64–6
shift of budget line, 60–62
slope of budget line, 60
swing of budget line, 63, 64
three-dimensional budget, 66–8

Consumer surplus (CS), 434, 435, 447
Consumer utility, 71–6

law of diminishing marginal utility, 72, 73
marginal utility, 72, 73
measurability of

cardinalism, 71
ordinalism, 71

point of saturation, 74
total utility, 72, 73
utility maximization, 76–81

Consumption function, 34, 35
Contribution margin (CM), 324
COR. See Correlation coefficient (COR)
Core charge pricing, 432
Corner solution, 69, 70
Corporate bonds, before tax cost of capital for,

472, 484
Correlation coefficient (COR), 171, 197, 234,

512, 515
Cost, 287

current, 286
explicit, 287
fixed, 286
foregone, 287
historical, 286
implicit, 287
incremental, 286
long-run, 289
marginal, 286

opportunity, 287
replacement, 286
short-run, 286–9
sunk, 286
variable, 286

Cost complementarity, 312, 313
Cost elasticity, 345
Cost function

derivation of, 306–11
estimation of, 352–5

Cost function based on CES technology,
formula, 346

Cost function based on Cobb–Douglas type
technology, formula, 346

Cost of capital, 452, 471–81
capitalization and capitalized cost,

478–81
cost of debt capital, 472, 473
cost of equity capital, 473–6

CAPM estimation, 473, 474
dividend valuation estimation, 474–6

weighted marginal, 476–8
Cost of equity capital, formula, 484
Cost savings (CS), 311
Cost–volume–profit

Analysis. See Break-even analysis
definition of, 321

Cournot, Augustin, 395
Cournot model, of oligopoly, 395–9
Cross-marginal revenue (CMR), 153
Crossover rate, 467
Cross-price elasticity, formula, 101
Cross price elasticity of demand, 93, 94
CS. See Consumer surplus (CS)
Cumulative distribution function (cdf),

536
Current cost, 288

Decision making, scientific approach to, 5
Decision tree, 532, 533
Decision variables, 23
Decomposition process, 207
Decreasing marginal utility (DMU) curve, 496,

497
Decreasing returns to scale, 267, 268
Definitional/identity equations, 229
Degree of freedom (DF), 168, 197
Degree of operating leverage (DOL), 337–41

fixed operating cost and, 341–3
formula, 347

Delphi method, 233
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Demand, 103
table, 111
vs. quantity demanded, 103, 112

changes in, 129–31
Demand and supply, economist’s graph of, 15
Demand curve, 91, 104, 105, 112–14
Demand estimation, 160

advanced, 188–95. See also Partial
adjustment demand (PAD) model

fitting by computerized regression, 172–4
market experimentation, 160–63
by multiple regression method, 174–86
nonregression methods, 186–8

market experimentation, 186, 187
micromarketing, 187
observational studies, 187
virtual shopping, 188

quality of fitting, 170–72
regression analysis, 163–8
reliability of, 168–70

Demand forecasting, 200. See also Forecasting
Demand function, 103, 104, 163

homogeneity of, 109, 110
inverse, 111
linearity of, 163–8
numeraire of, 110
from utility maximization, 105–9

Demand law, 105, 112, 163
Demand shift, 15, 16
Derivative of exponential function, 21
Derivative of function, 19

partial, 22
rules for finding, 19–21

Derivative of natural logarithm function, 21
Descriptive approach, 8
Desired demand, 188

formula, 198
Differential calculus, 19–22
Differentiated oligopoly, 393
Diffusion index, 226
Direct-requirement table, 231
Discount factor, value of, 461, 566
Discount rate, 455
Diseconomies of scale, 304
Diversifiable risk, 509
Dividend per share (DPS), 475, 476
Dividend valuation estimation, 474–6
DOL. See Degree of operating leverage (DOL)
Dummy variables method, 212, 213
Duopoly, 395
Durbin–Watson statistical test, 184, 185, 198,

564, 565

EBIT (earnings before interests and taxes), 322
Econometric equation, formula, 237
Econometric models, 5, 226, 227

multiple-equation, 229–31
single-equation, 227–9

Economic incidence of taxes, 134
Economic indicators, 224, 225
Economic models, 6

use of functional relationships in, 14–16
Economic profit, 9
Economic rate of substitution (ERS), 298, 299,

345
Economic risk, 488
Economics, 3, 8
Economic scarcity, 3
Economies of scale, 304
Economies of scope, 311–13

cost complementarity, 312
input indivisibility and, 313–16
synergistic relationship and, 313

Effective marginal revenue (EMR), 429
Efficient portfolio curve, 519
Elasticity of substitution, 269, 270

Cobb–Douglas production function and,
270, 271

formula, 284
Leontief production function and, 271, 272
Leontief technology and linear

programming, 272, 273
linear production function and, 273

Engel, Ernest, 83
Engel curve, 83

for homothetic preference, 85
nominal income, 83, 84
for quasi-linear preference, 85–7
real income, 84, 85

Entrepreneur, 9
Entrepreneurship, 9, 10
Epistemic model, 349
Equality constrained optimization, 22–30, 41,

42
Equilibration process, 29, 30
Equilibrium condition, 345
Equilibrium point, 110, 113. See also Market

equilibrium
Equilibrium price, 113, 115. See also Market

equilibrium
Equilibrium quantity, 113, 115. See also

Market equilibrium
Equimarginal principle, 277, 278, 370
Equity finance, 471
Error term (e), 165, 171, 196
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ERS. See Economic rate of substitution (ERS)
Estimated α, formula, 197
Estimated β, formula, 197
Estimated demand function, formula, 197
Estimated value of Y, formula, 196
Estimating equation, 189, 198
Estimation, 349

of cost function, 352–5
of production function, 350–52

EVPI. See Expected value of perfect
information (EVPI)

Expansion path, 301
Expectation rules, 34
Expectations index, 233
Expected payoff, 487
Expected value (mean), formula, 543
Expected value of perfect information (EVPI),

549, 557
Expenditure function, 145–7
Explicit cost, 287
Explicit total cost (ETC), 9
Exponential function, formula, 237
Exponential smoothing model, 219–23
Exponents, 16

definition of, 16
formulas, 40
fractional, 17
negative, 16
properties of, 17

Expropriation risk, 489

Factor substitution, 249
Fallacy of causation and correlation, 5, 6
Fallacy of composition, 5
Fallacy of division, 5
FC. See Fixed costs (FC)
Federal Trade Commission Act of 1914, 393
Final product, 423
Firm’s equilibrium, 298, 299
First-degree price discrimination, 434–6
First-degree stochastic dominance (FSD), 537,

538
First-order condition (FOC), 77
Fixed costs (FC), 288, 289, 323
Fixed-proportion production function, 271, 272
Flat spot of Lagrangian, 23, 24
Forecasting, 200

accuracy and reliability, 234, 235
barometric, 224–6
definition, 200
econometric models, 226–31
input–output matrix and, 231–3

judgmental models, 233, 234
justification of, 200
macro-forecasting, 201
for managerial purposes, 200
micro-forecasting, 201
models, 201

qualitative, 202
quantitative, 201

smoothing techniques, 214–23
time series method of, 202, 203

seasonal variation, adjusting for, 207–13
symbolic to numeric fitting, 203–6

Forecasting cost, 359, 360
Forecasting output, 355–8
Foregone cost, 287
Fractional exponents, 17
F-ratio, 182
“Frontier of risky portfolios,” 519
F-statistics, 182, 198, 562, 563
Fully allocated average cost (FAAC), 416
Functions, mathematical, 14–16

Generalized least squares (GLS) method, 185
Giffen, Robert, 90
Giffen commodity, 90
Goodness of fit, 181, 182
Government policies, and market equilibrium,

138
Greek alphabet, 560
Gross capital investment, 229
Gross national product (GNP), 229

Herfindahl–Hirschmann index (HHI). See
Herfindahl index (HI)

Herfindahl index (HI), 394, 412
Heteroscedasticity, 185, 186
HI. See Herfindahl index (HI)
Hicksian demand curve. See Compensated

demand curve
Hicksian substitution, 95, 96
Hicks, John, 145
Hicks, J.R., 95
Higher order derivatives, 21
Higher value pricing, 431
Historical cost, 288
Homogeneous of degree zero, 109
Homogeneous product, 395
Homothetic preference, 85
Horizontal intercept, formula, 100

IC. See Indifference curve (IC)
Implicit cost, 287
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Implicit total cost (ITC), 9
Income change, 86
Income–consumption curve (I–CC), 83

for homothetic preference, 85
for quasi-linear preference, 85–7

Income consumption line, 106
Income effect, 95, 96
Income elasticity, 86
Income elasticity of demand, 86–8, 100
Increasing marginal utility (IMU) curve, 496,

497
Increasing returns to scale, 267, 268
Incremental cost, 288
Independent variables, 171
Indifference curve (IC), 49–52, 261, 262

properties of, 50, 51
shape of, 50, 51

Indifference map, 50
Indifference space, 50
Indirect function, 27
Inequality constrained optimization, 30
Inferior commodity, 83
Inflation adjusted risk-free rate of return,

formula, 544
Inflation premium (IP), 527
Information. See also Management consultant

less-than-perfect, 550
measurement of, 547
perfect, 548

Innovation, 279, 280
Input–output matrix, 231–3

direct-requirement table, 231
output-distribution table, 231
shortcomings, 231, 233
total-requirement table, 231

Institute of Business Forecasting, 202
Intercepts, budget line, 58
Interdependent demand, 152–5
Interior solution, 69, 70
Intermediate product, 424

in imperfectly competitive market, 429–33
in perfectly competitive market, 424–9

Internal rate of return (IRR), 455, 459–62, 483
Internal revenue service (IRS), 481
International risk, 489
Invention, 279
Inverse demand function, 111
IRR. See Internal rate of return (IRR)
Isocost, 297, 298
Isoquant, 249, 261–3

for Cobb–Douglas type production
function, 249

for Leontief production function, 250

for linear production function, 249
in three-dimensional graph, 262

Judgmental models, 233, 234
opinions and polls, 233
surveys and market research, 233, 234

Kink, 64–6
Kinked Demand Model, 407. See also Sweezy

model, of oligopoly

LAC. See Long-run average cost (LAC)
Lagging indicators, 224, 225
Lagrange, Joseph Louis, 77
Lagrange multiplier, 23
Lagrangian function, 77
Lagrangian method, 23
Laplace criterion, 540
Law of diminishing marginal returns, 260
Law of diminishing marginal utility, 72, 73
Leadership, 10
Leadership pricing, 432
Leading economic indicators (LEIs), 224–6
Lead time, 225
Learning curve, 316–21, 346
Legal incidence of taxes, 134
LEIs. See Leading economic indicators (LEIs)
Leontief, Wassily, 231
Leontief inverse matrix, 231
Leontief production function, 247, 250

elasticity of, 271, 272
Lerner, Abba, 388
Lerner index, 388–91, 411
Leverage, 337. See also Degree of operating

leverage (DOL)
financial, 338
operating, 338–41
total, 338

Likelihood (L), 31, 36
Limit of function, 19
Limit pricing, 432, 433
Linear function, formula, 236
Linear production function, elasticity of, 273
Linear programming formulation, 272, 273
Linear programming models, 30, 42
LMC. See Long-run marginal cost (LMC)
Logarithmic function, formula, 237
Logarithms, 18
Long-run average cost (LAC), 302–6, 345
Long-run competitive equilibrium, 378, 379
Long-run costs, 289, 301–3
Long-run marginal cost (LMC), 302, 303, 345
Long-run period, 244
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Long-run total cost (LTC), 299
Lower break-even point, 334
LTC curve, 301

Macroeconomics, 3
Macro-forecasting, 201. See also Forecasting
MAD. See Mean absolute deviation (MAD)
Management, 10
Management consultant

Bayes formula, implementation of, 551–6
demand for, growth in, 546
economic desirability of engaging, 549
expected value of perfect advice from, 549
measuring information and impact on

uncertainty, 546–8
and notion of perfect information, 548
proper vetting of, 556

Managerial economics, 243
and microeconomics, 4, 5, 243
positive approach in, 8
quantitative approach to, 7, 8

Marginal benefit (MB), 278
Marginal cost (MC), 26, 278, 288, 289, 345,

375, 414
Marginal efficiency of investment, 459. See

also Internal rate of return (IRR)
Marginal product (MP), 247
Marginal product of capital, formula, 283
Marginal product of labor, formula, 283
Marginal rate of substitution (MRS), 49, 52–5,

99
Marginal rate of technical substitution

(MRTS), 243, 263–5, 269, 284, 299
Marginal rate of transformation (MRT), 60,

100
Marginal revenue (MR), 26, 382, 414
Marginal utility (MU), 53, 69, 72, 73
Marginal utility of x, formula, 99
Marginal value (MV), 52, 99
Market, 367
Market demand, 120, 122

bandwagon effect on, 122–4
individual demand and, 120–22
and network externalities, 122–5
snob effect on, 124, 125

Market demand curve, 121, 122
Market demand function, 120, 121

effect of negative externalities on, 127–9
effect of positive externalities on, 126–9
without effect of externality, 126

Market disequilibrium, 138–44
price ceiling, 139–41
price floor, 142–4

Market equilibrium, 114–20
changes in, 131, 132

sales and excise taxes case, 134–8
Thanksgiving turkey case, 132, 133

changes in entire demand or supply, 130,
131

quantities demanded or supplied, 129–31
Market experimentation, 160–63, 186, 187
Market participants, 6
Market period, 243
Market price per share (MPS), 475
Market prices, and market equilibrium, 138
Market research, 234
Market return, 522
Market risk, 489
Market shortage, 113
Market structure, 367

categorization of
criteria for, 367
monopolistic competition, 389–93
monopoly, 381–9
oligopoly, 393–410
perfect competition, 368–80

Market surplus, 114
Markowitz study, on portfolio selection, 518,

519
Markup on cost (MupC), 416, 447
Markup price, formula, 447
Marshall, Alfred, 144
Marshallian demand curve, 144
Mathematical simulation models, 533–5
Maximization, 22
Maximum likelihood estimation (MLE), 31,

34, 36, 37, 42, 189, 350
Maximum likelihood estimation for cost

analysis, formula, 363
Maximum likelihood estimation for production

analysis, formula, 362
MC. See Marginal cost (MC)
Mean absolute deviation (MAD), 223, 234, 237
Mean and standard deviation of CES

technology, formula, 362
Mean and standard deviation of cost, formula,

362
Mean and standard deviation of relatively

robust model of cost, formula, 363
Mergers, 394
Methodological fallacies, 5, 6
Microeconomics, 3, 4, 243
Micro-forecasting, 201. See also Forecasting
Micromarketing, 187
Minimization, 22
Minimum efficient scale (MES), 304
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MLE. See Maximum likelihood estimation
(MLE)

Money illusion, 109
Monopolistic competition, 389

characteristics of, 389, 390
equilibrium in long run, 391–3
equilibrium in short run, 390
products in, 389

Monopolistic firm, 381
Monopoly, 381

characteristics of, 381
equilibrium in long run, 385–7
equilibrium in short run, 381–5
and Lerner index, 388–91
reasons for, 381

MR. See Marginal revenue (MR)
MRS. See Marginal rate of substitution (MRS)
MRTS. See Marginal rate of technical

substitution (MRTS)
MU. See Marginal utility (MU)
Multicollinearity, 183, 184
Multiple-equation model, 229–31
Multiple regression method, 174–9

economic regression equation, 176–9
estimated demand equation, 175
explanatory power of model, 182
goodness of fit, 181, 182
and problems, 183

autocorrelation, 184, 185
heteroscedasticity, 185, 186
multicollinearity, 183, 184

results and interpretation, 179–81
Mutually exclusive projects, 463
MV. See Marginal value (MV)

Natural logarithm (ln), 18
Negative exponents, 16
Net present value (NPV), 455–8, 483, 503–5

vs. internal rate of return, 462–5
Network externalities, 122–5
Non-Giffen commodity, 90
Nonlinear least squares (NLS) estimation, 37,

38
Nontypical indifference curves, 55

concave curve, 58
L-shaped, 56
straight downward line, 56
straight upward sloping line, 57
vertical/horizontal line, 57

Normal commodity, 82
Normal probability density function, 32
Normative analysis, 8

NPV. See Net present value (NPV)
NPV profile, 465–7
Number e, 18
Numeraire price, 110

Objective function, 23
Observational studies, 187
Oligopolistic collaborations, 393
Oligopoly, 393, 394

characteristics of, 393
concentration ratio, 394
differentiated, 393
Herfindahl index, 394, 395
models of, 395

Bertrand model, 403–7
Cournot model, 395–9
Stackelberg model, 399–402
Sweezy model, 407–10

pure, 393
Operating profit, 322
Opinions and polls, 233
Opportunity cost, 3, 287
Opportunity set, 58
Optimal choice, consumer’s, 68–81

corner solution, 69–70
effects on

change in income and, 81–8
change in prices and, 88–95

interior solution, 69, 70
utility and measurability, 71–6
utility maximization, 76–81

Optimal markup, 415
on cost, 415, 416
on price, 417

Ordinalism, 71
Ordinary least squares (OLS) estimation, 37,

38, 165
Output-distribution table, 231

Paradigm in economics, 6
Parameters, 166
Partial adjustment demand (PAD) model,

188–95
constant elasticity form, 191
linear, 188–91
specification of, 188, 189

adjustment equation, 188, 189
desired demand, 188
estimating equation, 189

US gasoline demand estimation with,
191–5

Partial derivative of function, 22
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Payback, formula, 484
Payback period (PB), 469, 470
Payback technique, 455, 469–71
pdf. See Probability density function (pdf)
pdf of CES epistemic model, formula, 362
pdf of cost function, formula, 363
pdf of output with particular input

combination, formula, 363
pdf of the relatively robust statistical model of

cost, formula, 363
Peak and off-peak pricing, 430
Penetration and dumping pricing, 432
Perfect competition, 368–80

characteristics of, 368
competitive firm in long run, 377–80
decision to shut down, 373–7
demand curve for competitive firm, 368
demand curve for industry, 368
economic players, 368
law of single price of competitive market,

368
market supply curve, 369
product, 368
profit maximization for competitive firm,

369–73
resources, 368

Perfect information, 546
Perfect-substitute production function, 273
PI. See Profitability index (PI)
Point of saturation, 74
Point of tangency, 69
Political risk, 488, 489
Portfolio risk, 509–18, 543
Positive analysis, 8
Posterior probabilities, based on Bayes

formula, 552, 558
Predatory dumping, 432
Prescriptive approach, 8
Present situation index, 233
Prestige pricing, 431
Price ceiling, 139–41
Price–consumption curve (P–CC), 90, 91
Price discrimination, 433

examples of, 433
first-degree, 434–6
objective of, 433
second-degree, 436, 437
third-degree, 437–45

Price elasticity of demand, 91–3, 100
Price floor, 142–4
Price lining, 431, 432
Price maker, 383

Price setting, 414
in imperfectly competitive market, 414,

415
joint products with independent demands

product set of fixed proportions, 419–21
product set of variable proportions,

421–3
markup rule, 415–18
multiproduct pricing strategies, 418, 419
in perfectly competitive market, 414
strategies and practices, 430

competitor’s matching pricing, 431
core charge pricing, 432
higher value pricing, 431
leadership pricing, 432
limit pricing, 432, 433
peak and off-peak pricing, 430
penetration and dumping pricing, 432
prestige pricing, 431
psychological pricing, 432
skimming pricing, 431
target pricing, 431, 432
two-part tariff pricing, 430, 431
tying and bundling pricing, 430

transfer pricing, 423–30
Price taker, 383
Prior probabilities, 557
Probability (Pr), 31, 42
Probability density function (pdf), 31, 32, 351
Production curves, dynamic relations, 252–60
Production elasticity of labor, 254, 255, 284
Production function, 244–6

elasticity of substitution in, 269–77
estimation of, 350–52
graphical representation of, 246–50
long-run, two variable input function, 261–3
short-run, one variable input function,

250–52, 283
technological progress and, 280, 281

Production theory, 243
economically efficient region of production,

266
elasticity of substitution, 269–77
innovation, 279, 280
invention, 279
law of diminishing returns, 260
long-run, two variable input function, 261–3
marginal rate of technical substitution,

263–5
optimal employment of input, 277, 278
production curves, 252–60
production function, 244–50
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Production theory (Continued )
returns to scale, 267, 268
short-run, one variable input function,

250–52
technological progress, 278–81
variability of inputs throughout time, 243,

244
Profit (Pr), 8, 9, 322, 369

accounting vs. economics, 9
Profitability index (PI), 455, 467–9, 483
Profit elasticity, 337
Profit maximization

for competitive firm, 369–73
price setting for, 414, 415

Profit-maximizing price, formula, 446
Profit rate, 459. See also Internal rate of return

(IRR)
Psychological pricing, 432
Pure oligopoly, 393

Quadratic formula, formula, 347
Quadratic function, formula, 236
Qualitative forecasting models, 202. See also

Forecasting
Quantitative models, forecasting. See also

Forecasting
nonstructural models, 201
structural models, 201

Quantity demanded, 103
Quantity supplied, 104
Quasi-linear preference, 85, 86

Random variable (rv), 31, 34
Ranking reversal, 467
RD. See Risk discount (RD)
Real income, 84, 85, 110
Reduced form for current AC, 230, 237
Regression analysis, 165–8
Regression line, 165
Regulated monopolies, 381
Relative income, 110
Relatively robust model of cost, formula,

363
Relatively robust model of production under

epistemic and aleatory uncertainties,
formula, 363

Relatively robust statistical model of CES
technology, formula, 362

Relative measure of risk, 495
Relative price, 110
Reliabilities, 557
Replacement cost, 288

Returns to scale, 243, 267, 268
constant, 267
decreasing, 267
increasing, 267

Revealed preferences, 149–52
strong axioms of, 151
weak axioms of, 151

Ridge regression, 184
Risk, 487

attitudes and utility of money, 496–8
aversion, 495, 496
decision tree, 532, 533
diversifiable vs. nondiversifiable, 509, 510
expected utility of money vs. expected

monetary return, 498–501
impact on valuation model, 503–9

certainty-equivalent adjustment, 506–9
risk premium adjustment, 503–6

mathematical simulation process, 533–5
measurement of, 489

absolute, 490–94
relative, 495

portfolio, 509–18
sensitivity analysis, 535, 536
sources of, 488

economic, 488
international, 489
political, 488, 489
social, 489

stochastic dominance, 536–9
of two-asset portfolio, 518–20
and uncertainty, 487, 488

Risk-adjusted net present value, formula, 543
Risk averter, 495

expected value of money utility for, 499
Risk discount (RD), 501, 502, 543
Risk-free rate of return, 473, 504, 527

lending and borrowing at, 520–22
Risk neutral, 495

expected value of money utility for, 499
Risk premium, 473, 484, 503, 504
Risk-takers, 495

expected value of money utility for, 499
RMSE. See Root-mean-square error (RMSE)
Robust model of aleatory uncertainty, 355
Root-mean-square error (RMSE), 217, 218,

221, 234, 237

SAC. See Short-run average cost (SAC)
Saddle point of Lagrangian, 24, 25
Sample mean forecast error (SMFE), 234
Sample moving average, formula, 237
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Samuelson, Paul, 149
Say, Jean-Baptiste, 9
Scatter diagram, 164
Scenario analysis, 536
Scientific approach, to decision making, 5
Scientific process, 7, 8
Seasonally adjusted forecast, formula, 237
Second-degree price discrimination, 436, 437
Second-degree stochastic dominance (SSD),

538, 539
Security market line (SML), 526–32

shift by inflation, 527, 528
slope of, 527
swing by risk aversion, 528–32

Sensitivity analysis, 535, 536
Shephard lemma, 145

and expenditure function, 145–7
Sherman Antitrust Act (SAA) of 1890, 393
Shift, of budget line, 60–62
Shortage, 113
Short-run average cost (SAC), 303–6
Short-run cost, 288–96
Short-run cost curves, 290–96
Short-run period, 243, 244
Short-run total cost (STC), 289
Shut-down rule, 374
Simple average of errors method, 208–10
Simple moving average method, 214–18
Simulated histogram, 359–61
Simulated profit, formula, 544
Single-equation model, 227–9
Skimming pricing, 431
Slope, of budget line, 60
Slutsky, Eugene, 97
Slutsky equation, 96–8, 101
SML. See Security market line (SML)
Smoothed forecasts, 214, 237

exponential smoothing model, 219–23
simple moving average method, 214–18
weighted moving average method, 218, 219

Snob effect, 124, 125
Social risk, 489
SSE. See Sum of squared errors (SSE)
Stackelberg, Heinrich Von, 399
Stackelberg model, of oligopoly, 399–402
Standard deviation, 168, 197, 490, 543
Standard deviation of combined assets,

formula, 543
Standard normal distribution function, values

of, 567, 568
Statistical model of CES technology, formula,

362

Statistical model of cost, formula, 362
Stochastic dominance, 536–9

first-degree, 537, 538
second-degree, 538, 539

Stochastic specification, 351, 352
Store scanners, 187
Structural/behavioral equations, 229
Substitutes, 93, 94
Substitution effect, 95, 96
Sum of squared errors (SSE), 181, 196
Sum of squared total (SST), 181
Sunk cost, 288
Supply, 104

curve, 104, 105, 112–14
function, 104
law, 105, 112
table, 111
vs. quantity supplied, 104, 112

changes in, 129–31
Surplus, 113
Survey of Consumer Confidence, 233
Surveys

of business executives, 233
of consumer’s expenditures, 233
in forecasting, 233, 234
of inventory changes and sales expectations,

233
Sweezy, Paul, 407
Sweezy model, of oligopoly, 407–10
Swing, of budget line, 63, 64
Systematic risk, 509

Target pricing, 431, 432
Target profit (TP), 327, 328
TC. See Total cost (TC)
t-distribution, critical value of, 561
Technological efficiency, 244
Technological progress, 278, 279

growth in, 281, 284
and production function, 280, 281

TFC. See Total factor cost (TFC)
Third-degree price discrimination, 437–45
Three-dimensional budget, 66–8
Time series method, of forecasting, 202, 203

adjusting for seasonality in, 207–13
dummy variables method, 212, 213
A/F ratio method, 210, 211
simple average of errors method, 208–10

symbolic to numeric fitting, 203–6
variations in, 202

cyclical fluctuations, 203
random changes, 203
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Time series method, of forecasting (Continued )
seasonal variations, 202
secular trend, 202

Total cost (TC), 9, 289, 306–11, 344
Total factor cost (TFC), 297, 306
Total product (TP), 26, 246
Total-requirement table, 231
Total revenue (TR), 9
Total utility (TU), 72, 73
Total variable cost (TVC), 291
TP. See Target profit (TP)
Traders, conflict in interests of, 114. See also

Market equilibrium
Transfer pricing, 423–30. See also Intermediate

product
t-ratio test, 168–70
Trust, 393
t-statistic, formula, 197
t-statistic test, 168–70
TU. See Total utility (TU)
Two-part tariff pricing, 430, 431
Tying and bundling pricing, 430

Uncertainty, 487
Unsystematic risk, 509

Upper break-even point, 334
US Bureau of Economic Analysis, 226
Util, 71
Utility maximization, 70, 76–81

demand function from, derivation of,
105–9

Value function, 27
Value of common stock share, formula, 484
Variable costs (VC), 288, 289, 323, 324
Variance, 490
Variance inflation factor (VIF), 183
Variance inflation factor, formula, 198
VC. See Variable costs (VC)
Vertical integration system, 423
Vertical intercept, formula, 100
Virtual shopping, 188
Visual fitting, 165

Weighted marginal cost of capital, 476–8,
485

Weighted moving average method, 218, 219,
237

Zone of unaffordability, 58
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