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Summary  and Plan of the Thesis  

We study the interaction of charged matter  with an Astrophysical black hole. We 

look into two types of interactions. In one case, the bulk charged fluid is considered to 

fall onto the black hole due to the strong gravitational effect. During the infall of the 

matter nuclear reactions take place among various species contained in the infalling 

fluid. We study this nucleosynthesis thoroughly around stellar mass black holes which 

presumably form through the supernova explosion. We watch the behaviour of the 

bulk matter during its infall onto the black hole without concentrating on the be- 

haviour of individual element. Of course during the infall of the matter, abundance 

of different isotopes are changed. We see that the energy release due to nuclear reac- 

tions sometimes dominates over the viscous energy of the flow; in those cases disk may 

be unstable. In some of the cases enormous neutron is produced around black hole 

and forming neutron torus. We check thoroughly all these phenomena systematically. 

This is the main part of the thesis. 

Apart from this rather macroscopic aspect of the black hole astrophysics, we 

study interaction of individual particles specifically Fermionic particles with a black 

hole. Although we can develop ways to obtain the solution for any half-integral spin 

particles, here we consider the simplest case where the spin of the particle is chosen 

to be only half (e.g., electrons, neutrinos etc.). To find the nature of the interaction, 

we need to solve the Dirac equation in a curved space-time. Although we can choose 

the black hole having any mass, to get the significant interaction we choose only 

those black holes which were presumably produced in the early Universe as a result 

of the perturbation in the homogeneous background density field. These are called 



primordial black hole. They have mass of the order of 101SNm and clearly, they cannot 

be formed by supernova explosion. All the mini black holes with mass M < 101Sgm can 

radiate their energy in a time less than the age of the Universe. Only the primordial 

black holes with mass M > 1015gm could exist today. 

So the thesis is divided into two parts. In the first and the major part, we study 

nucleosynthesis around black holes. In section 1, we present an introduction on 

nucleosynthesis. In w we give an idea of evolution of accretion disk model. In w 

we describe the nucleosynthesis in accretion disk. Finally in w we present some 

implications of nucleosynthesis around black holes. 

The part two is comparatively brief. Here, in section 1, we give an introduction 

about the interaction of spin-half particles with black hole. In w we show some 

solutions of the Dirac equation. Finally in w we draw some concluding remarks. 



P A R T - I  

N U C L E O S Y N T H E S I S  
A R O U N D  B L A C K  H O L E S  



1 I n t r o d u c t i o n  

Here we introduce briefly the subjec t nucleosynthesis and its connection with astro- 

physical system. First of all we will define the term nucleosynthesis then will discuss 

about the origin and evolution of the nuclear elements in the Universe. To describe 

this evolution we plan to discuss about primordial nucleosynthesis, chemical evolution 

of the galaxy and the star in brief way step by step. Finally we give a brief idea about 

nucleosynthesis in accretion disk. 

1.1 W h a t  is Nucleosynthes i s?  

Nucleosynthesis is a way in which a system of one set of nuclei transforms to another 

set in a given thermodynamical condition. Commonly, this refers to the 'Primordial 

Nucleosynthesis' of matter in the early universe. However, nucleosynthesis is present 

in stars, in boundary layers of neutron stars and in accreting matter around compact 

objects like black hole. In short, nucleosynthesis can take place in any hot dense 

medium where entropy is high. 

1.2 Primordial  Nucleosynthes i s  

In the very early universe, particle physics is the most dominant physics. Main 

confrontation between the theoretical ideas about the early Universe and observations 

comes in the epoch since nucleosynthesis started. One of the first predictions which 

comes from the particle physics and cosmology was constraint on the number of light 

(< 10MeV) neutrino flavours, N~ by the Big Bang nucleosynthesis. This limit happens 

to be N~ _< 3. When the cosmological limit was first proposed, the particle physics 

limits on this quantity ran into thousands. Thus the cosmological statement of small 



numbers seemed very risky. Because of particle theory alone did not limit N., a 

cosmological constraint is extremely important. It is therefore of great relief that this 

cosmological prediction was t~nally tested to be correct in the laboratory by collider 

experiments. From the pioneering work of Peebles (1966) and Wagoner, Fowler & 

Hoyle (1967) that the lightest elements like D,3He,4He and 7Li should be synthesized 

during the earliest epochs of the Universe evolution. According to Sciama (during the 

first CERN-ESO meeting held in Geneva in November, 1983) 'Early nucleosynthesis is 

a triumph for the Big-Bang theory' (Audouze 1989). Below, the primordial abundance 

determination of D,3He,4He and 7Li are discussed shortly. 

The quark-hadron transition can produce variation in the ratio n/p in the early 

Universe and that the mixture of such variable n/p ratios can fit D,aHe,4He abun- 

dances (Schramm 1989; Applegate, Hogan ~; Scherrer 1987). Also the large varia- 

tion of n/p seems to inevitably over produce 7Li. After Big-Bang, during the first 

few seconds nuclear abundances are in statistical equilibrium but the corresponding 

abundance of any nucleus above neutron and proton (which are formed by quark- 

hadron phase transition) is very low because of high entropy per baryon. It can be 

mentioned here that in accretion disk the entropy is also very high. When kT falls 

to 0.3 Mev, the equilibrium mass fraction of 4He reaches about 0.15 (for n/p ,,~ 0.2) 

but the equilibrium condition is no longer applicable after this. Nuclear reactions 

become too slow, partly from Coulomb barriers and partly because of low (still near- 

equilibrium) abundances of lighter nuclei D,aHe and 4He. Only when the D/p ra- 

tio (depending on the balance between p - n captures and photo-dissociation) has 

built up to a value of order 10 -5 at kT ~ 0.1 MeV, do nuclear reactions effec- 

tively build up to 4He, which then uses up virtually all the neutrons remaining from 



freeze-out and subsequent decay. After the formation of 4He, traces of lighter ele- 

ments survive because nuclear reactions are frozen out by low density and tempera- 

ture before their destruction is complete and still smaller traces of 7Li and 7Be are 

formed. The series of reactions which take place in primordial nucleosynthesis are 

given as: p(n,v)D, D(D,n)3He, D(D,p)T, 3He(D,p)4He, T(D,n)4He, 3He(~,7)TBe, 

r( ,7)TLi, 7Be(n,p)TLi,  Li(p, )4He, T(% )3He (with  1/2=12.2 Yr.),  Be(7,7) Li 

(by K-capture after recombination). Few of these reactions take place in accretion 

disk also but with different reaction rates because these rates depend on density and 

temperature. The nuclear reactions in accretion disk are described in w 

All deuterium in the Universe are originated from Big-Bang nucleosynthesis be- 

cause thermonuclear reactions in stars only cause net destruction of D and it is 

vastly more abundant than other light nuclei like 6Li or 9Be that  are basically re- 

sult of spalletion reactions (Pagel 1997). The first evidence for primordial deu- 

terium abundance was obtained in the early 1970s from the studies of the solar 

wind, planetary atmospheres and the interstellar medium. These studies give an 

average 3He/4He ,~ 4.1 • 10 -4. With He/H ,,~ 0.1 for the Sun, this is equivalent 

to 3He/H ,,~ 4.1 • 10 -5. Black (1971) and Geiss ~ Reeves (1972) computed proto 

solar 3He abundance present in the wind from the primitive Sun and attributed the 

excess in the present day solar wind to proto-solar deuterium which was burnt to 3/-Ie 

during Solar evolution. The proto-solar deuterium abundance is thus about 2.6 • 10 -5 

which is in fair agreement with observation. Bania et al. (1987) have analysed the 

abundance of 3He with improved determination technique avoiding various sources 

of systematic errors. Although the range of possible interstellar 3He/H abundance is 

somewhat reduced with respect to the one reported by Rood et al. (1984) there are 



still very large variations of the aHe abundance as 1.2 x 10-5 _< 3He/H <_ 1.5 x 10 -4. 

4He has been thoroughly observed in metal poor galaxies (Lequeux et al. 1979; 

Kunth &: Sargent 1983; Pagel et al. 1986). From Kunth (1986) and Shields (1986) 

abundance of 4He = 0.24 + 0.01. Audouze (1989) concluded the abundance of 4He 

to be 0.235 + 0.012. Also by the Voyager measurement of He/H at the surface 

of Uranus, abundance of 4He = 0.262-1- 0.048 (Audouze 1989). It might be noted 

that variable n/p seems to also have high values for 4He. In particular, any realistic 

spectrum of quark-hadron parameters rather than a single, fine-tuned value not only 

over-produces Li but also 4He. 

The abundance determination of 7Li concerning the old population II stars per- 

formed by Spite &: Spite (1982) and Audouze (1989) such as Li/H ,,~ 10 -I~ in such 

stars have been confirmed by two further independent analysis. One was performed 

by Hobbs ~z Duncan (1987) and another was by Rels Molaro &: Beckman (1988). 

As was noted by Audouze (1989), the difference of behaviour of the Li/H and O/H 

abundance ratio with respect to Fe/H for instance constitutes a very important ar- 

gument in favour of a low primordial abundance of ~Li so that 7Li/H is roughly 

2 x I0 -I~ 

1.3 Chemical  Evolut ion of  the Galaxy 

From the discovery of microwave background, it is assumed that  the Universe was 

originated from a hot big-bang (Peebles 1966; Schramm & Wagoner 1977). From 

detailed nucleosynthesis calculation based on hot big-bang model it is shown that no 

heavier element than 9Be could be synthesized primordially with an abundance more 

than 10 -14 by mass fraction. But in today's'Universe there are appreciable amounts 

7 



of elements heavier than helium. Out of these elements 2% of the visible mass are be- 

lieved to have been synthesized in stars or starlike objects. Cosmic gas fragmentation 

into huge gas clouds forming galaxies and further fragmentation of which possibly 

led the formation of stars. Stars evolve on timescales ranging from several millions 

to tens of billions of years, synthesize elements in their central parts and emit the 

processed elements into the interstellar medium at various stages. The interstellar 

medium is thus enriched with heavy elements and the stars formed thereafter are 

born with a higher metalicity. This cycle should go on until all gas in the interstellar 

medium is exhausted. Thus the chemical evolution of galaxies involves understanding 

the spatial distribution and temporal evolution of various elements in the galaxies by 

taking into account the process of star formation, distribution of stars according to 

their masses and chemical compositions and the final yields of various elements and 

any detectable remnants of the parent stars. 

Ideas of modern astrophysics and astrochemistry were originated from Maghnad 

Saha (Saha 1920, 1921). By the middle of the 1950s it became clear that elements 

in the galaxies and stars could not have been synthesized in the hot big-bang. The 

metalicity of the interstellar medium should increase monotonically with time through 

the evolution of stars. So from the measure of metalicity, age can be obtained. Studies 

of stellar structure combined with the spectral colour and luminosity distributions of 

stars yielded the first frequency distribution of stars according to their masses which 

is called the initial mass function. In 1959, Schmidt (1959) suggested an empirical 

expression relating star formation with local density of gas in the interstellar medium. 

Van den Bergh (1962) and Schmidt (1963) found frequency distributions of Sun type 

stars according to their metalicity that did not agree with the calculated one which 



was done from a simple model of chemical evolution. This discrepancy i.e., significant 

underabundance of metal-poor stars is known as G-dwarf problem. 

The first solution of G-dwarf problem was suggested by Truran & Cameron (1971) 

in which they assumed a prompt initial enrichment of models with a non-zero initial 

metalicity (Z0 :fi 0). Larson (1972) suggested the infall model which assumes an 

inflow of metal-free gas from the halo and the rate of inflow proportional to the local 

star formation rate. Lynden-Bell (1975) considered the inflow together with a non- 

zero initial metalicity. Tinsley (1975) and Ostriker & Thuan (1975) proposed collapse 

models where the rate of inflow of gas was assumed to have metalicity proportional to 

the metalicity of disk and to compensate for star formation rate. These models were 

constructed from Larson's (1973) own model of star formation or disk formation. 

The increasing interaction of the chemical evolution of the disk with that of the 

pre-existing halo was revealed in the pioneering measurements of the abundance of 

various heavy elements. These showed widely varying Fe/H relation (Clegg 1977). 

There are no depletion in the O/H ratio with respect to the Fe/H ratio which is 

the case for new stars. Thus, the differential evolution is suggested in the various 

elements with time. At least three phases of the Galactic evolution were identified 

in terms of three different metalicity dependent populations of stars. In the cases of 

thin young disk, the abundance of most elements changes proportional to Fe/H. On 

the other hand, in thick disk cases, significant changes in trends of various elements 

relative to iron are noticed. The a-rich and neutron-rich heavy elements are produced 

essentially independent of initial iron abundance through supernova explosions of the 

short-lived massive stars, which do not contribute a significant amount of iron. The 

bulk of iron is produced by relatively long-lived progenitors of the type Ia supernova 

9 



explosions. The abundances of C, N, Mg, Al, Ca, St, Ba and a few other elements 

again change their abundance ratios beyond Fe/H ratio. 

The change of the observational numbers with time invalidates most of the theo- 

retical analysis based on the previous results of observations. For example G-dwarf 

metalicity distributions which were used before 1989 differ greatly from those given by 

Pagel (Beckman & Pagel 1989). The gas distribution differs by few factors depending 

on whose distribution is used. The assumed variation of yields could be different in 

various models. 

1.4 Chemical  Evolution of the Star 

Star possesses a self-gravitating mechanism in which the temperature is adjusted so 

that the outflow of energy through the star is balanced by nuclear energy generation 

except at catastrophic phases. The temperature required to give this adjustment de- 

pends on the particular nuclear fuel available. Hydrogen requires a lower temperature 

than helium; helium requires a lower temperature than carbon and so on. At iron 

this increasing of temperature sequence stops because the energy generation by the 

fusion process ends here. In initial stage, when hydrogen is present, the temperature 

is adjusted to hydrogen as fuel which is comparatively low. If hydrogen is exhausted 

as stellar evolution proceeds, the temperature rises until helium becomes the prin- 

cipal fuel. When all the helium nuclei are exhausted, the temperature rises further 

until the next nuclear fuel comes into operation and so on. This automatic tempera- 

ture rise is brought about in each case by the conversion of gravitational energy into 

thermal energy. Since the penetration of Coulomb barrier occurs more readily as the 

temperature rises, it can be anticipated that the sequence will be the one in which 

10 



reactions take place between nuclei with greater and greater nuclear charges. As it 

becomes possible to penetrate larger and larger barriers the nuclei will evolve towards 

configuration of greater and greater stability, so that heavier and heavier nuclei will 

be synthesized until iron is reached. Thus there must be a progressive conversion of 

light nuclei into heavier ones as the temperature rises (Burbidge et al. 1957). 

The temperature of star is not constant everywhere. As the central temperature 

is maximum, corresponding nuclear evolution is most advanced there. On the other 

hand on the surface, this evolution is least as temperature is minimum. Thus the 

composition of star can not be expected to. be uniform throughout. A stellar explosion 

does not accordingly lead to the ejection of material of one definite composition but 

instead a whole range of compositions may be expected. Also there are mixing of 

central material outward and outer material inward. Material ejected from one star 

may subsequently become condensed in another star. So the elements of the star are 

evolving by all these series of processes. 

Now we briefly describe several processes through which elements are synthesized. 

Hydrogen burning is responsible for the majority of the energy production in the 

stars. By the CNO cycle and pp-chain helium is synthesized from hydrogen. The 

helium burning process is responsible fQr the synthesis of carbon from helium and by 

further a-particle addition for the production of leO, 2~ With the addition of a- 

particle successively to 2~ the nuclei 24Mg, 2sSi, 32S, 36At, 4~ and may be 44Ca, 

4~i are produced. Under condition of high temperature and density, the isotopes 

of vanadium, chromium, manganese, iron, cobalt and nickel are synthesized. This 

process is called equilibrium process (Hoyle 1946, 1954). Also neutron captures are 

taking place in stars whose time-scale is very long ranging from 100 years to 105 

11 



years. This synthesis is responsible for the production of the majority of the isotopes 

in the range 23 _< A _< 46 excluding those synthesized predominantly by the a- 

process and for a considerable proportion of the isotopes in the range 63 < A _< 209. 

There is another type of neutron capture process which has very short time-scale like 

0.01 - 10sec. This is called the rapid-capture process or, simply, the 'r-process'. In 

this process isotopes in the range 70 _< A < 209 are produced. Through this process 

some light elements like s6S, 46Ca, 48Ca, perhaps 47Ti, 49Ti and 5~ are produced. In 

stars, as in an accretion disk, few proton-capture process or emission of n by 7-ray 

absorption take place. By this process proton rich isotopes are produced but with 

low abundances compared with the nearly normal and neutron-rich isotopes. There is 

another process called 'x-process' which is responsible for the synthesis of deuterium, 

lithium, beryllium and boron, x-process is collectively more than one process but 

characteristic of all of these produced elements is tl~at they are very unstable at the 

temperature of the stellar interior, so that it appears probable that they have been 

produced in regions of low density and temperature. The typical abundances of few 

of the isotopes which are synthesized in a young star (may be Sun) are given as: 

p = 7.425 x 10 -1 , D = 2.948 x 10 -5 , 3 H e  = 2.538 x 10 -5 , 4 H e  = 2.380 x 10 -1 , 

7Li = 1.055 x 10 -s, nB = 5.765 x 10 -9 , leo = 8.779 x 10 -3 , 2 4 M g  = 5.562 x 10 .4 

etc. When we study nucleosynthesis in accretion disk in later Sections, this type of 

abundance of different isotopes are chosen as the initial abundance since matter is 

supplied to the disk from the nearby star or companion stars. 

In w we will describe more about few of the major nuclear processes mentioned 

above. In later Sections we will see that in the disk main reactions are proton- 

capture, rapid-proton capture, sometimes neutron capture processes, dissociation of 
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the elements etc. 

1.5 Description of Major Nuclear Processes  and Reaction 
Rate Equations 

Here we will discuss briefly about different nuclear reactions which may come in 

this thesis in different places. We mainly will concentrate on the discussion of pp 

chains, CNO cycle, proton capture and rp process, c~ process, photo-dissociation 

(Chakrabarti et al. 1987). 

(a) pp chain: 

By this process protons can be converted into helium nuclei via different reactions. 

If only protons are present the reactions proceed through the so-cMled ppI chain 

following the set of reactions as p(p, 7)D, D(p, 7)aHe, 3He(aHe, 2p)4He. After pro- 

duction of 4He, 7Be is produced by 4He(3He, 7)TBe. Depending upon the fate of 7Be, 

two series of reactions may follow and are called the ppII and ppIII chains. They 

are respectively as, 4He(3He,"/)rBe, rBe(e-, v)rLi, rLi(p, oe)4He and 4He(aHe,"/)rBe, 

rBe(p, 7)SB, SB(e-, u)SBe, SBe(3,, a)4He. The pp chain is effective for the temperature 

range as T9 "~ 0.01 - 0.2 (779 is the temperature in unit of 109K). As the hydrogen 

burning time scale by pp chain reactions is of the order 10 is sec so the conversion to 

helium from hydrogen through pp chain reaction is possible not only if the temper- 

ature (Tg) is in between 0.01 and 0.2 but also if the residence time of the system is 

very large. 

(b) CNO cycle: 

If the matter of the system consisted only of hydrogen and helium, then only the 

reactions of pp chain would be responsible for hydrogen depletion, but usually there 

are traces of heavy elements. In the presence of some carbon (which may be produced 
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via triple-alpha reaction, i.e., 4He(~, ~/)SBe(~, ~,)12C), nitrogen and oxygen nuclei, the 

hydrogen to helium conversion is more efficient. This is called as CNO cycle which 

operates as 12C(p, 7)13N(e+,v)laC(p, 7)14N(p, 7)lsO(e+,v)lSN(p,c~)12C. For these re- 

actions the operating temperature can be as low as T9 ,.o 0.02 At low temperature 

the CNO cycle is limited by the proton capture rate of 14N. When T9 > 0.3, the 

proton capture on laN completes with positron decay and the CNO cycle changes 

into a hot CNO cycle (HCNO cycle). The basic reactions of hot CNO cycle are 

l~'2,(p,~/)13N(p,~/)140(e+,r,)14N(p,~/)150(e+,r,)l~N(p,~)12C. The HCNO cycle oper- 

ates in the temperature range as 0.5 ~ T9 ~ 0.3. So the temperature (Tg) range of 

CNO cycle is 0.02 - 0.5. 

When the initial abundance of 159 is considerable (may be same as Sun), it dumps 

14N into CNO cycle in the following Way: 160(p,'7)lTF(e +, y)lTO(p, c~)14N. This pro- 

cess continues until 160 depletion is balanced by the reaction i~ 7)16N. This can 

increase the flow of CNO or HCNO by increasing CNO seeds. When T9 > 0.1, 1~O 

can change in the following way: l~O(p, 3,)lSF(p, c~)159, again producing CNO seeds. 

(c) Rapid proton capture and proton capture process: 

In the case of proton-rich environment, when temperature T9 ~ 0.5, for a given neu- 

tron number nuclei will keep capturing., protons until the positron decay dominates 

proton capture. This process is known as rapid proton capture process or in short 

rp process. In the high temperature region rp process is favoured over CNO cy- 

cle. Also in temperature lower than 0.5 x 109K elements like 159, 15N, 6Li, TLi etc. 

capture proton and hydrogen burning takes place. These are called proton capture re- 

action. By these reactions isotopes convert as: 159(p, o015N(p, o:)12C, 6Li(p3He)4He, 

TLi(p, c@He, ~B(p, 7)34He, l'O(p, c@4N etc. 
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(d) c~ processes: 

The triple c~ reaction is also important for T9 ~> 0.1. It will produce CNO seeds for 

pure hydrogen burning. It also process light elements into heavy elements. In suf- 

ficiently hot environment helium can be significantly processed by the triple cx (3c~) 

reaction. By the burning process of carbon, neon, oxygen etc. free particles like p, n 

and c~s are provided which are useful to mediate further nucleosynthesis. Following 3a 

reaction, helium burning can go into 'alpha process'. In the presence of large quantity 

of helium, the alpha capture reactions produce heavy elements whose atomic weight is 

multiple of 4, i.e., x2C(a, 7)letg(a, 7)2~ 7)24Mg(o~, 7)2ssi(c~, 7)32S(c~, 7)36Ar(~, 7) 

etc. upto 56Ni. Beyond 56Ni, the mean binding energy per nucleon decreases for these 

Z = 2n, A - 4n nuclei. Here Z and A are atomic number and mass number respec- 

tively, n is a positive integer. Alpha elements beyond 4~ are beta (e +) unstable. 

Thus 56Ni finally becomes 56Fe by capturing two electrons. 

(e) Photodissociation: 

When temperature T9 ~> 0.8 few elements like D, 3He start to dissociate to produce 

their daughter elements. By this process elements are hit by photons and break up 

with the absorption of the energy from the system, because total mass in the left 

hand side of the reaction is less than that of the right hand side. This is called 

photo-dissociation of the elements. The corresponding reactions are like, D(7, n)p, 

3He(7,p)D etc. Also at even higher temperature, T9 ~ 5 - 15, the heavier nuclei like 

4He can be dissociated. Photodissociation of ~6Ni may be represented schematically as 

56Ni(7 , c~)134He. The Q-value for this reaction is 87.85MeV. By the photo-dissociation 

of 56Fe to a (Q = 124.4MeV) and that to p and n (Q = 28.3MeV) huge amount of 

the energy can be absorbed from the system. The reactions are 56Fe(3,, 4n)134He and 
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4He(% 2n)2p. 

Now we give the idea about how the nucleosynthesis problem in a system can be 

solved, where different nuclear reactions take place. Due to the interactions among 

different isotopes nuclear energy is released which depends on corresponding reaction 

rate which is dependent on temperature of the system. As an example, for two body 

reaction, total reaction rate per unit volume can be written as (Clayton 1983), 

N1N2~12 
r 1 2 -  (1 + 512) (I.1) 

where, A12 is the reaction rate per pair of particles. N1 and N2 are number density 

of the interacting isotopes as, 

N~- pNAY~ (I.2) 
Ai 

Here, Y/= abundance of i th isotope, Ai= atomic mass number of i th isotope, NA= 

Avogadro Number=6.023 • 1023 and p= density of the matter. 

Now we will briefly talk about the reaction rate equation to have an idea about 

how the abundance of isotopes are changed: 

Here as an example we consider a simplistic nuclear network with only three reactions 

and three isotopes. Although in our final calculation we will use 255 isotopes and 

corresponding set of reactions. 

We choose the isotopes in the network as p, D and 4He. The nuclear reactions 

are considered out of those three isotopes as p(p, 7)D (fusion of protons), D(% n)p 

(deuterium dissociation) and 4He(7, D)D (helium dissociation). The corresponding 

rate equations are 

dYp _ Ap,  +  AdYD (I.3) 
dt 

dYD ADYD + 1 dt - ~H~ He + 2Am, Yp (I.4) 
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dYHe 
d--i-- :~"~}/"~" (I.5) 

Here we consider the corresponding backward reactions rate are negligibly small corn- 

pared to the forward one. From those equations we can write 

which is of the form 

d }/P - G p  1 ~He }/D = 2~pp --)~d 2 ' 

}/He 0 0 --/\He 
(I.G) 

KV=AV. (i.7) 
dt 

Here 3 components of the vector V are Yp, }/D and ]"He (actually Y4He) and A is the 

The solution consists of finding three eigenvectors of A, defined as 3 x 3 matrix. 

(Clayton 1983) 

AV1 = ,hV1, A�89 = ,X2�89 

where, ,~1, ,~2 and )~3 are 3 eigenvalues of A. 

A�89 = ~3�89 (I.8) 

From Eqn. (I.7) it follows that if 

V(t) is expressed as a linear combination of the eigenvectors with exponential time 

dependence as (Clayton 1983) 

V(t) = ae~'tV1 + be~2t�89 + ce~3tV3, (I.9) 

where a, b, c are constant coefficients, then Eqn. (I.7) is exactly satisfied. This is cor- 

rect only if individual nuclear lifetimes are constant. This condition can not be strictly 

met if there is a gradual depletion of p and possibilities of changes in temperature. 

From the elementary theory, it is known that the solution for eigenvalues as in Eqn. 

(I.8) can be obtained only if the eigenvalues themselves are such that  the determinant 

of the matrix (A - hi) vanishes. The secular equation is given as 

- ( G p  + ~) 1 ~ d  0 
2~pp --(~d + ~) ~ = O. (I.10) 2 

o o -(~H~ + ~) 
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Solving this equation we can find out eigenvalue As and eigenvector Vs as 

12 =-AH~, V2 = 

~3 = -(;bp + Aa), 

AI=O,  VI=  
~2 "t-4)~2 

, 2 , k p p  

A2+4A 2 

0 

(I.11a) 

1 2(,~pp - ~ )  

(I.11b) 

1 or if AH~ = 0, V3 = 2/3 . (I.11c) 
V3 = - ~  0 2/3 

The eigenvalue ,~1 = 0 corresponds to the fact that abundances in this ratio do not 

change in time. This is the equilibrium abundance. By putting these solution of Vs 

and As into Eqn. (I.9) we get the exact solution of abundance of different isotopes 

(Clayton 1983). 

In general, if we choose n number of isotopes in the network then corresponding 

matrix A will be of n x n dimension and vectors V will be of n dimensional column 

matrix. Following the same method described above, solving the rate equations, 

abundance of different isotopes can be found for any time. 

1.6 B r i e f  i d e a  a b o u t  N u c l e o s y n t h e s i s  a r o u n d  B l a c k  H o l e  

Before going into the detail discussion of nucleosynthesis in accretion disk let us 

present a brief outline about accretion disk and nucleosynthesis in it. When matter 

falls through the accretion disk towards a black hole, nuclear reactions can occur. 

Naturally, due to these reactions, abundance of several species may change and nuclear 

energy may be released in a large scale. 

What is an accretion disk? Usually when matter  falls, it comes with some angular 
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momentum and falls towards a black hole in a spiral path. As a result, a matter 

distribution is formed around black hole which is called 'Accretion Disk'. The rate of 

falling of the matter is called the 'Accretion rate' which depends mainly on viscosity, 

density and angular momentum of the in-falling matter. Since a black hole could 

not be seen, one can only be sure about  the existence of a black hole by observing 

the different phenomena inside the accretion disk. Nuclear reactions i.e., the nucle- 

osynthesis is one of such phenomena. The interaction within the in-falling matter, 

out of which the accretion disk around the black hole is formed, gives rise to various 

nuclear reactions. From the discussion of w we know in a star significant nuclear 

fusion takes place, mainly due to the presence of hydrogen (proton) as 3p(p, 2e +)4He, 

p(p, e+)D. Sometimes proton capture reactions such as, TLi(p, o~)4He also take place. 

In all the cases total mass of the left hand side is greater than that of right hand 

side, so energy is released (exothermic reaction) by these reactions. In the case of a 

star, the temperature is low and pp-chain and CNO cycle are possible. For compar- 

atively low temperature, the pp-chain is active but in the case of high temperature 

CNO cycle is more prominent in burning protons as we discussed in w Basically, 

through these processes hydrogen (proton) is converted into helium and huge amount 

of nuclear energy is released. The number of carbon, nitrogen and oxygen nuclei in 

the case of CNO cycle remain conserved. These behave as catalysts. Their presence 

just enhance the rate of the reactions i.e., the conversion rate to helium from proton 

i.e., the evolution of nuclear energy. Apart from the hydrogen burning, a few of the 

other reactions are also outlined in the last Section. 

Unlike the stellar case, where the central temperature is of the order of 10T/x " 

and the density is around 10 -1 gm/cc, in the case of black hole accretion disk the 
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temperature is high (of the order of 109K) and even though the density is low (of 

the order of 10 -4 gm/cc for stellar mass black hole accretion disk and much lower for 

black holes located at the galactic centers) enough. Although the density of the disk 

is low compared to that  of star but on their spiral path the matter  is heated up. The 

temperature of the matter  becomes so high that  after the Big-Bang nucleosynthesis 

the most favourable temperature to allow significant nucleosynthesis is attained in 

disks. Also corresponding entropy of the infalling matter  in the disk is very high as 

sometimes of the order 1016 - 101Serg/K. All these motivate us to study the nucle- 

osynthesis in the accretion disk. On their path, the matter  may achieve favourable 

temperature for proton capture and rapid-proton capture (rp-process) reactions. Due 

to these reactions nuclear energy is released in the disk (exothermic reaction). Some- 

times this nuclear energy may dominate over the energy released due to the viscous 

processes inside the disk. As matter  falls, the potential energy is converted to the 

kinetic energy and then to thermal energy i.e., 

Potential Energy -+ Kinetic Energy --+ Thermal Energy. 

Consequently, as matter  comes close towards the black hole, the temperature in- 

creases. In this high temperature region helium, deuterium may start to burn through 

photo-dissociation process. At high accretion rates, a large number of photon is pro- 

duced inside the matter, as a result of Compton cooling, the matter  cools down due 

to transfer of energy from the hot matter to the cold photon. On the other hand, 

for low accretion rate, matter  does not get sufficient photon to cool down by inverse 

Compton effect. So at low accretion rate near black hole, temperature is high and 

the photo-dissociation is more effective than the case of high accretion rate. With 

photo-dissociation, huge amount of energy is absorbed from the disk. Higher the 
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temperature of the disk, higher will be the absorption rate of energy. This process is 

continued till the photo-dissociation is complete. 

In the case of some accretion disks, where viscosity arises mainly due to the 

magnetic coupling and the accretion rate is low; the neutrons, after being produced by 

the dissociation of deuterium nuclei, do not accrete rapidly. They are charge neutral 

and are not coupled by magnetic viscosity. But all the other elements (ion, proton 

etc.) will fall towards the black hole under the influence of magnetic viscosity. Here 

as the radius of the disk decreases neutron abundance in each radius increases and at 

a certain point abundance gets maximum value i.e., the peak attains, then again up 

to black hole horizon abundance decreases monotonically. Although the process was 

started with zero abundance of neutron, at the end, with steady condition, prevailing 

the neutron abundance could be as high as 10% at the peak. Thus a 'Neutron Torus' 

is formed in the disk. Neutrons of this torus interact with freshly accreted matter 

and enhance neutron rich isotopes. 
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2 E v o l u t i o n  o f  A c c r e t i o n  D i s k  M o d e l s  

Before going into details of nucleosynthesis in accretion disk we would like to discuss 

the evolution of the disk models. We describe how the basic equations of the disk 

are improved with improved understanding of the accretion process. Here we choose 

the units of distance, time and velocity to be 2GM/c  2, 2GM/c  3 and c, respectively 

where, G is the gravitational constant, M is the mass of the central object and c is 

the velocity of light. 

2.1 Bondi  F low 

The process by which the matter  is being captured by the gravitational object is called 

accretion. When matter  with angular momentum falls into the central gravitating 

object a disk like structure called accretion disk is formed around the compact object 

as was explained in earlier Section. In 1952, Bondi (1952) studied the spherical 

accretion where matter  falls without any angular momentum. This is known as Bondi 

Flow. Before we understand the spherical accretion solution onto a black hole it is 

easier to discuss the flow on a Newtonian star. 

The steady-state radial momentum equation of motion of this infalling matter is 

given by 
lg dv ~ 1 dp 1 

dr + p~rr + ~-7 = 0, (I.12) 

where, v~ is radial speed, p is the density, P is the isotropic pressure, r is the radial 

coordinate of the infalling matter. 

The equation of continuity can be written as, 

1 d 
(p r = o. 

T 2 d? ~ 
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We are considering adiabatic  flow with equation of s tate  P = K p  "y, where 3  ̀ is chosen 

constant called adiabat ic  index, K is measuring the entropy of the flow. Considering 

all these informations and integrat ing above energy m o m e n t u m  equation we get 

1 2 E -- ~ + na  2 

The mass flux is obtained as 

1 1 
- - = Constant ,  n - (I.14) 

r 3 ' - 1  

/~/= pv% 2 (I.15) 

which is basically baryon number  conservation equation. 

( a 2 ~ -  Eqn. (I.15) becomes Now using p = k~K/ , 

2Q = a2~t~r 2. (I.16) 

Then A~l = .g/7~K ~ is conserved in the flow. Chakrabar t i  (1990b) refers this quant i ty  

as the 'accretion rate '  and later (Chakrabar t i  1996a) 'entropy accretion rate' .  From 

Gqn. (I.14) and (I.15) we get (Chakrabar t i  1990b) 

I 2a  2 

dO ~ r N (I.17) 
dr - a2 v~ - D 

From the sonic point condition we get V~c = ac, rc = 2--~' 

Here, subscript c is referred as critical point, rc is called sonic point since no 

disturbance created within this radius can cross this radius (also known as the sound 

horizon) and escape to a large distance. This is analogous to the  event horizon of a 

black hole since no electromagnetic disturbance can escape outside tha t  horizon. 

The relativistic equations governing the flow around a black hole are very com- 

plicated. However, if one chooses the central black hole to be the Schwarzschild 

type (zero angular momentum)  and uses Paczyfiski-Wiita pseudo-potential  concept 
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(Paczyfiski & Wiita 1980) the form of basic radial momentum equation same as that 

of the Newtonian star, except that the gravitational potential term is replaced by 

1 If one chooses this potential in Newtonian equation, the geometry around a 2(~-1)' 

Schwarzschild black hole is mimicked. The results in exact black hole geometry and 

using this potential become similar with very minor difference. 

The origin of the analytical form of the potential can be understood as follows: 

If we calculate the Keplerian angular momentum in Schwarzschild geometry we get 

(Shapiro & Teukolsky 1983) 
r 3 

k~. = 2 ( r -  1) 2. (I.18) 

However, using the potential mentioned above, one can calculate the centrifugal force 

which balances gravity from: 

A~c(PW ) 1 (I.19) 
r 3 = 2(r - 1) 2 : 

Where ( P W )  indicates Keplerian angular momentum obtained using the potential 

above. We note that  both the angular momentum distributions are identical. 

Using this potential, the energy equation can be written for black hole accretion 

a s  

1 1 
E = ~2 -t- na  2 2(r - 1) - Constant. 

The mass flux equation is same as Eqn. (I.15). Now from Eqn. 

(I.2o) 

(I.2o) and (I.15) we 

get 
i 2 a  2 

d~ 2(~-1)~ ~ N 
d - 7  = _ = 

~9 

For the sonic point condition we get 

1 V / 1 1 (Chakraba r t i  1990b). ~ = a ~ a n d r ~ = l + ~ +  ~ +  

(I.21) 
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This ro is the sonic location. If ac is allowed to infinity, the sonic point stays at the 

horizon, namely at r = 1 as in the case of Schwarzschild geometry. Other properties 

are similar to the Bondi solution in Newtonian geometry. 

2.2 Thin  A c c r e t i o n  Disk  

So far only spherical accretion flows have been discussed. In those cases the infall 

velocity is very high so the density is very low for a given accretion rate. When the 

flow has some angular momentum the inflow velocity becomes smaller and density 

is much higher. In this case the infall time becomes higher and viscosity has time 

to dissipate angular momentum and energy except very close to the black hole. As 

matter loses angular momentum, it sinks deeper into the potential well and radiates 

more efficiently. The actual efficiency depends on viscosity and cooling process inside 

the disk. 

In the case of a binary system, when one of the components is compact, the 

companion is stripped of its matter  due to the tidal effect. The matter  with angular 

momentum falls towards the central body as the angular momentum is removed by 

viscosity. The flow encircling the compact object forms a quasi-spherical structure 

around it, preferably in the orbital plane. This quasi-stationary structure is commonly 

known as accretion disk. Although it contains very little matter  compared to the 

binary components but it is the most important ingredient of an accreting binary 

system from the observational point of view. 

In the case of active galaxies and quasars, matter  may be supplied to the central 

black hole very intermittently and the angular momentum of the supplied matter is 

not necessarily Keplerian. This is because the matter  may be originated from the wind 
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of star clusters. Also the loosing of the angular momentum may be the result of the 

collision with other winds. So the flow is expected to be of low angular momentum, 

quasi-spherical and mostly advective. 

In the case of thin disk the half-thickness of the disk h(r) < <  r. The heat 

generated by the viscous stress is radiated in the vertical direction so that the disk 

becomes cool as k T  < <  G M m p / r  in contrary to the case of a spherical accretion 

where k T  ,,~ GMrnp/r .  This means the disks are non-adiabatic. Here M is the mass 

of the black hole and mp is the mass of the proton, k is the Boltzmann constant. 

So the thin disk is non-adiabatic. The .vertical velocity is negligible compared to 

the radial and azimuthal velocity. As the accretion rate is assumed to be much lower 

compared to the Eddington rate and pressure is neglected, specific angular momentum 

distribution is Keplerian. The surface density of the disk E at radius r can be written 

aS, 
= [h(r) 

E J-h(~) pdz, 

where, p is the density at the equatorial plane. 

products by the products of averages (Matsumoto et al. 1984), 

s = 2h(r)p.  

For the Keplerian disk, the stress tensor is 

df~ 3 
W~r = fir dr = - -2  rlfl 

(I.22) 

Now, by replacing the integral of 

(I.23) 

(I.24) 

where, Keplerian angular velocity f/2 GM and 7/ is the coefficient of dynamic vis- 
" - -  r 3  

cosity. 

Let fr is the viscous stress exerted in the r direction by the fluid element at r on 

the neighbouring element at r + dr. This viscous stress is related to the stress tensor 
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as fr = -Wrr  and 
3 3 ( G M )  1/2 

f r 1 6 2  ~r /a - -  ~r / -75- (I.25) 

To get the steady-state disk solution we need to solve the four sets of equations given 

below simultaneously (Chakrabarti 1996b). Also the law of viscosity must be specified 

which should transport angular momentum outwards allowing to fall the matter in. 

The governing equations for a steady flow are: 

(a) Rest mass conservation: 

As the flow approaches compact object it is compressed and the density is in- 

creased. We assume baryons are conserved; then integrating the continuity equation 

we get 

1~ = 2rrrEO = Constant. (I.26) 

(b) Angular momentum conservation: 

Because angular momentum distribution is Keplerian, infalling of the matter inside 

indicates the transportation of angular momentum outwards. This requires significant 

viscosity in the disk. The torque applied by the viscous stress is given by 

= fr = ~/I(GM)I/2(r 1/2-  r~/2) (I.2r) 

where, r0 is the inner edge of the disk which is assumed at the marginally stable orbit. 

(c) Equation governing the energy conservation: 

The viscous heat generated as 

Q +  ~.o _ _  

The flux is obtained as 

F(r )=h(r )Q += 

(I.2Sa) 

(1_ ) 4rrr a . (I.28b) 
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The luminosity of the disk is 

L = f  ~ 
0 

1 G M I ~  
2F.21rrdr - (I.28c) 

2 ro 

So the luminosity is exactly half the potential energy of the matter  at the inner edge 

of the disk. This is because of the Keplerian distribution of the matter.  

If there is no loss of energy, the rotational velocity can be obtained at the inner 

edge of the disk as 

1 2 a M  (I.28d) 
OCh" = 2r 

because of the choice of angular momentum distribution. So half of the energy must 

come out of the disk whatever be the physical viscosity. 

(d) Vertical momentum balance: 

As mentioned earlier the component of vertical velocity is negligible compared to 

other components (radial and azimuthal). The vertical momentum balance equation 

in this case becomes: 

(I.29a) 1 d P  G M  z 

p dz  r 2 r 

Letting, AP  ~., P and Az ,-~ h( r ) ,  we get h( r )  ,.~ ~ Thus, 

h ( r )  ,,~ a_2_~ (I.29b) 
r 0r 

where as is adiabatic sound speed. Since we choose h( r )  < <  r (thin disk condition), 

the azimuthal flow is supersonic. In the case of viscous flow the viscous stress can be 

fr = -W~r ,,~ P = total pressure on the matter. 

This is the c~ disk prescription of Shakura & 

written as 

So in general fr = c~P with a < 1. 

Sunyaev (1973). 
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The standard accretion disk model is useful to explain the observations in binary 

systems and active galaxies (Pringle 1981; Shapiro & Teukolsky 1983; Frank et al. 

1992). As in this model the advective term is not accounted correctly the disk is 

terminated at the marginally stable orbit and the inner boundary condition is not 

made to satisfy correctly. 

2.3 Thick Accret ion Disk 

Here, the accretion rate is considered high (/1}/>> MEdd). The pressure is incorpo- 

rated to find the dynamical structure of the disk and determination of the thermo- 

dynamical quantities inside the disk. The presence of radiation pressure makes the 

disk geometrically thick (h(r) ,,~ r). After incorporating the radiation pressure term 

the radial Euler's equation becomes, 

v~ dt~ 1 dP ,~ 2 
dr + + F ( r ) =  0 (I.30) p dr r 3 

where, F(r)  is the gravitational force and )~ is the specific angular momentum. Ig- 

noring the advective term v~ d~ we get (Chakrabarti 1996b) 

( r 3 d P )  (I.31) c< r3F(r)  + - - ~ r  " 
P 

Here, the angular momentum is higher (lower) than that of Keplerian distribution 

if pressure gradient term is positive (negative). The term is significant when aM 
r 

s ~ a s, where a is sound speed. Maraschi et al. (1976) first studied quantitatively p 

the effect of radiation pressure on angular momentum distribution. Paczyfiski and his 

collaborators (Paczyfiski & Bisnovatyi-Kogan 1981; Paczyrlski & Muchotrzeb 1982) 

included the advection and pressure effects in the transonic accretion disks but they 

did not perform any systematic study. Global solutions for thick accretion disk were 
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only possible when advection term was dropped. Some full general relativistic exact 

solution for thick accretion disk are done by Chakrabarti  (1985). 

In the case of thick accretion disk, the force acting on blob of matter  inside it are 

described as: the gravitational force acts radially inwards and the centrifugal force 

acts in a direction normal to the angular momentum vector outwards. The net force 

is acted along the effective gravity. To maintain hydrostatic equilibrium a force of 

equal magnitude due to the pressure gradient must act opposite to this direction. 

2.4 M o d e r n  A c c r e t i o n  Disk  

Observation of Cyg X-1 in the early seventies appears to indicate that  it emits X- 

rays in two states (Agrawal 1972; Tananbaum 1972). Inner optically thin region is 

thought to emit hard X-rays and the outer optically thick flow is thought to emit 

soft X-rays (Thorne & Price 1975). Ichimaru (1977)' showed that the advection is 

important close to the black hole and obtained a new optically thin solution which 

includes heating, cooling and advection. Ichimaru found that depending on outer 

boundary the solution can go over to the optically thick and thin branch. However, 

there was no global solution. In case of inviscid adiabatic flow an example of global 

solution was provided (Fukue 1987) where study of shocks similar to that in solar 

winds and galactic jets was made. 

In the so called 'Slim-Disk' model (Abramowicz 1988) using local solutions insta- 

bilities near the inner edge of the disk are removed with the addition of advective 

term. This was done in optically thick limit. Chakrabarti  (1990a,b) first obtained 

satisfactory global solution of the governing equation in the optically thick or thin 

limit including advection, viscosity, heating and cooling in the limit of isothermality 
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condition. Here single temperature disk models of which are Keplerian far away were 

considered. 

The accretion onto central black holes in binary systems and in active galaxies 

and quasars the angular momentum of the flow need not be Keplerian everywhere. In 

the binary system, matter  could be accreted both through the winds as sub-Keplerian 

flow and through the Keplerian flow. In the case of low mass X-ray binary (LMXB) 

systems where the winds may absent, the sub-Keplerian matter  could still be produced 

from Keplerian flow close to the black hole. In an active galaxy, the same situation 

may prevail although in these cases matter  is accreted solely from the winds of the 

stars, very far away which has very little angular momentum. The sub-Keplerian flow 

whether it originates from Keplerian disk or not will have significant velocity, since 

the centrifugal pressure is not sufficient to overcome gravity. The sub-Keplerian flow 

first accretes quasi-spherically with infall time-scale similar to the free-fall time-scale 

as ti,~f~H ~ r/v~ff ~ r 3/2 until the specific angular momentum of the flow becomes 

comparable to the local Keplerian angular momentum i.e., ,~2(r) ~ ,~-(r). At this 

point, r ~ ~2(r), the flow may be virtually stopped by the centrifugal barrier and a 

standing shock may form. After that flow continues, it attains supersonic speed and 

fails into the black hole. 

Now we will study the transonic flows in a realistic astrophysical system. We 

choose the equation of motion in equatorial plane of the central object but the flow 

is in hydrostatic equilibrium in the transverse direction. We assume a thin, rotating, 

adiabatic accretion or wind flow near a compact object. The matter  flows through 

the disk in a spiral path. Since matter  is assumed to move in equatorial plane in 

vertical equilibrium, the position coordinate is expressed in terms of single cartesian- 
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like coordinate x in place of r to describe the motion of the incoming flow. The basic 

equations of the flows as follows (Chakrabarti 1989): 

(a) The energy conservation equation can be written as 

vq2 ~2 1 (I.32) 
E = --~ + na 2 + 2 x  2 2 ( x - l ) "  

As previous, we use the Paczyfiski-Wiita pseudo-potential concept. 

(b) The mass flux conservation equation (apart from the geometric factor) is given 

by 

M =  pxh(x). (I.33) 

h(x) is half thickness of the disk defined as h(x) = a x l / 2 ( x -  1) exactly same as 

defined earlier but here we use coordinate x in place of r. 

As usual we write the mass conservation equation in terms of ~, x and a as 

JQ = Oaqx3/2(x- 1), q = 2n + I .  (I.34) 

This ./Q((x ff)/K '~) is called entropy accretion rate which may not be constant at the 

shock location due to generation of entropy. 

As in a Bondi flow, doing sonic point analysis, we get 

2 2 2 ( x c -  1)(A~. - A 2) (I.35) 
O~=v'a2c, where ~ , -  and a c =  

~/+ 1 ~,x~(5xc - 3) 

The energy of the flow E with angular momentum A passing through critical point 

x~ is given by, 

A 2 [ (4n + 4 ) ( x ~ -  1).] (n + 1)x~ 1 (I.36) 
E = 2x~ 1 - ~ - ~ - - - ~  -t- ( x ~ -  1) (5x~-  3) - '2(x~-  1)" 

So we can conclude that there can be more than one critical points for particular 

energy and angular momentum. 
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2 is always greater than zero, the angular momentum at From Eqn. (1.35) as ao 

the critical point must be less than the Keplerian value. Although we started with 

three conserved quantities namely E, M and ~, not all of them can be specified 

independently if the flow is transonic. This is because as we have three unknowns 

~(x), a(x) and xc we need three equations to solve them uniquely. Together with the 

two transonic conditions as Eqn. (1.35) we need only one quantity: either energy or 

accretion rate. Thus as in the case of Bondi flow, A;I -- .A4(E, A). In other words, 

the parameters for a stationary transonic solution lie on a hypersurface (Chakrabarti 

1990b): 

Jr(E,  Ad, ~ ) = 0 .  (1.37) 

It can be concluded that, if a compact object is brought in the middle of a cloud 

of certain specific energy, then a stationary transonic solution joining infinity to the 

compact object selects the amount of matter  which'is going to accrete. Thus the 

accretion rate is the eigenvalue of the problem. If matter ,  other than eigenvalue, 

is pushed towards the compact object using external force, then the resulting flow 

will be non-stationary till it reaches another equilibrium configuration if it exists 

corresponding to the new force field. 

2.4.1 Shock Formation and Corresponding Conditions 

At the shock (Chakrabarti 1989), the flow jumps from supersonic to subsonic branch. 

In the case of black hole accretion this is possible if flow passes through two critical 

points one on each side of shock location xs. A shock is characterised by four quanti- 

ties: shock location xs, possible jumps in two independent velocities ~), a and entropy 
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/~" i .e. ,  

X - - - X s  

Aa = a+(x~)--a_(x~) 

= - 

(I.38a) 

(I.38b) 

(I.38c) 

(I.38d) 

The subscript " - "  and "+"  denote quantities before and after the shock respectively. 

At the shock the conserved quantities are (Chakrabarti 1989, 1990b), 

/1}/+ = M_ (I.39a) 

t5+ + p+~ =/5_ + ~_~2_. (I.39b) 

Eqn. (I.39a-b) provides two constraints on these four quantities (Eqn. (I.38a-d)). /5 

and t5 denote averaged pressure and density respectively. 

We can think of three distinct types of shock corresponding to three extreme phys- 

ical situations: Rankine-Hugoniot shock (E+ = E_), isentropic compression waves 

(3~t+ = A~t_) and isothermal shock (a+ = a_) (Chakrabarti 1990b). 

In case of Rankine-Hugoniot shock energy is not radiated through the surface 

of the flow i.e., radiative cooling mechanism is extremely inefficient. The postshock 

temperature is higher. For this type of shock, E+ = E_, T+ > T_ and s+ > s_ 

(3it+ > 34_), where s is the entropy of the flow. 

In case of isentropic compression waves, entropy does not change in the flow but 

some energy is lost at the discontinuity. The amount of entropy generated at the 

shock is comparable to the entropy radiated away. For this type of shock, s+ = s_, 

E+ < E_ and T+ > T_. 
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In the case of isothermal shock radiative cooling is very efficient. Some energy 

and entropy are lost from the surface of the flow at the shock location to keep the 

postshock temperature equal to its preshock value. For this type of shock, T+ = T_, 

E+ < E_ and s+ < s_. 

2.4.2 Outf lows f r o m  the  A c c r e t i o n  Disk  

It is believed that from the center of active galaxies cosmic radio jets are originated. 

Even in so called 'micro-quasars' such as GR.S 1915+105 which are believed to have 

stellar mass black holes (Mirabel & Rodriguez 1994) the outflows are common. Also 

collimated outflows in SS433 are well known now (Margon 1984). Here, our approach 

to discuss the mass outflow rate is same as Chakrabarti (1999) and Das & Chakrabarti 

(1999). Close to the black hole, where infall time-scale x/O(x) is short compared 

to the viscous time-scale (unless a > I) in the region of last few to couple of ten 

Schwarzschild radius angular momentum remains roughly constant. Constant angular 

momentum flow introduces large centrifugal force which forms a dense region around 

a black hole. This centrifugal pressure supported boundary layer of the black hole 

is called CENBOL. As black hole does not has any hard surface, it is the effective 

surface layer of the black hole. Chakrabarti (1999) suggested one simple method to 

compute the outflow rate assuming that the infow and outflow are both conical. We 

are assuming for the sake of argument that our system is made up of the infalling gas, 

the dense boundary layer of the compact object and the outflowing wind. The sub- 

I(eplerian hot and dense quasi-spherical region forms either due to centrifugal barrier 

or due to pair plasma pressure or due to pre-heating effects. The incoming matter 

compressed and heated above (the heating is due to the geometric compression at the 

CENBOL) comes out from the disk at the CENBOL. If the flow is compressed and 
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heated at the centrifugal barrier around a black hole it would also radiate enough to 

keep the flow isothermal. Thus following Chakrabarti (1999) we can give a simple 

expression for ratio of mass outflow rate and mass inflow rate assuming the flow is 

extremely collimated. If R is the compression ratio, | is the solid angle subtended 

by the inflow and 6)o~,t is the solid angle subtended by the outflowing cone one obtains 

mass outflow rate as 

l~o~,t | R [ R2 ] 3/2 
exp R -  1 ' (I.40) 

apart from the geometric factor. The expression is independent of location of the 

sonic point and the size of the shock. This is because Newtonian potential is used 

throughout the calculation. As we choose only low luminosity then outflow rate is 

independent of accretion rate. For high luminous flow, Comptonization will cool down 

the dense region and corresponding mass loss will be negligible. When fully general 

relativistic calculations are made these dependency will appear explicitly. Exact and 

detailed computations using both the transonic inflow and outflow are in Das (1998) 

and Das & Chakrabarti (1999), they computed self-consistently the compression ratio 

R. 

2.5 Basic Propert ies  of the Advect ive  Disk and Motivation 
of Nucleosynthes is  Work 

Angular momentum in accretion disks around black holes must deviate from a Ke- 

plerian distribution, since the presence of ion, radiation or inertial pressure gradient 

forces become as significant as the gravitational and centrifugal forces (Chakrabarti 

1996a,b; and references therein). The inertial pressure close to a black hole is high, 

because, on the horizon, the inflow velocity must be equal to the velocity of light. 
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For causality, the velocity of sound must be less than the velocity of light. In fact, 

c 2 in the extreme equation of state of P = ~-p (where c is the velocity of light and 

P and p are the isotropic pressure and mass density respectively), the sound speed 

is only c/x/3. Thus, the flow must pass through a sonic point and becomes su- 

personic before entering into the horizon. A flow which must pass through a sonic 

point must also be sub-Keplerian (Chakrabarti 1996b and references therein), and 

this causes the deviation. If the accretion rate is low, the flow cools down only by 

inefficient bremsstrahlung and Comptonization processes, unless the magnetic field is 

very high (Shvartsman 1971; Rees 1984; Bi~novatyi-Kogan 1998). This hot flow can 

undergo significant nucleosynthesis depending on the inflow parameters. Earlier, in 

the context of thick accretion disks calculations of changes in composition inside an 

accretion disk were carried out (Chakrabarti et al. 1987; Hogan & Applegate 1987; 

Arai & Hashimoto 1992; Hashimoto et al. 1993), but the disk models used were not 

completely self-consistent, in that neither the radial motion, nor the cooling and heat- 

ing processes were included fully self-consistently. Secondly, only high accretion rates 

were used. As a result, the viscosity parameter required for a significant nuclear burn- 

ing was extremely low (a~i, < 10-4). Here, we do the computation after including the 

radial velocity in the disk and the heating and cooling processes. We largely follow 

the solutions of Chakrabarti (1996a) to obtain the thermodynamic conditions along a 

flow. The results presented here are reported in Mukhopadhyay (1998), Chakrabarti 

& Mukhopadhyay (1999), Mukhopadhyay (1999) and Mukhopadhyay & Chakrabarti 

(2000). 

Close to a black hole horizon, the viscous time-scale is so large compared to the 

infall time-scale that the specific angular momentum ,k of matter remains almost con- 
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stant and sub-Keplerian independent of viscosity (Chakrabarti  1996a,b; Chakrabarti 

1989). Because of this, as matter  accretes, the centrifugal force ~2/x3 increases much 

faster compared to the gravitational force G M / x  2 (where G and M are the gravi- 

tational constant and the mass of the black hole respectively, ,~ and z are the di- 

mensionless angular momentum and the radial distance from the black hole). As a 

result, close to the black hole (at x ,,~ )~2/GM) matter  may even virtually stop to 

form standing shocks (Chakrabarti  1989). Whether Shock is formed or not, as the 

flow slows down, the kinetic energy of matter  is converted into thermal energy in the 

region where the centrifugal force dominates. Hard X-rays and -/-rays are expected 

from here (Chakrabarti  & Titarchuk 1995). In this centrifugal pressure supported hot 

'boundary layer' (CENBOL) of the black hole (Chakrabarti  et al. 1996) we find that 

for low accretion rates, 4He of the infalling matter  is completely photo-dissociated 

and no 7Li could be produced. In this region, about t'en to twelve percent of matter 

is found to be made up of pure neutron for the low accretion hot cases. These neu- 

trons should not accrete very fast because of very low magnetic viscosity associated 

with neutral particles (Rees et al. 1982) while protons are dragged towards the cen- 

tral black hole along with the field lines. Of course, both the neutrons and protons 

would have 'normal'  ionic viscosity, and some slow accretion of protons (including 

those produced after neutron decay) would still be possible. If the ionic viscosity is 

less compared to magnetic viscosity neutron disk and torus may form. In contrast 

to neutron stars, the neutron disks which we find are not dense. Nevertheless, they 

can participate in the formation of neutron rich isotopes and some amount of deu- 

terium. They can be eventually dispersed into the galaxy through jets and outflows, 

which come out from CENBOL (Chakrabarti 1999; Das & Chakrabarti  1999), thereby 
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possibly of influencing the metalicity of the galaxy. 

On the equatorial plane, where the viscosity is the highest, a Keplerian disk devi- 

ates to become sub-Keplerian very close to the black hole (Chakrabarti & Titarchuk 

1995; Wiita 1982). Away from the equatorial plane, viscosity is lower and the flow 

deviates from a Keplerian disk farther out. This is because the angular momentum 

transport is achieved by viscous stresses. Weaker the viscosity, longer is the distance 

through which angular momentum goes to match with a Keplerian disk. When the 

viscosity of the disk is decreased on the whole, the Keplerian disk recedes from the 

black hole forming quiescence states when the objects become very faint in X-rays 

(Ebisawa et al. 1996). Soft photons from the Keplerian disk are intercepted by 

this sub-Keplerian boundary layer (CENBOL) and photons are energized through 

the Compton scattering process. For higher Keplerian rates, electrons and protons 

cool down completely and the black hole is in a soft state (Tanaka & Lewin 1995). 

Here, bulk motion Comptonization produces the power-law tail of slope a ~ 1.5 

(Chakrabarti & Titarchuk 1995; Titarchuk et al. 1997). For lower Keplerian rates, 

the Compton cooling is incomplete and the temperature of the boundary layer remains 

close to the virial value, 

TP"~lmpc2X-~a=5"2• lx~xa) K. (I.41) 

In this case, bremsstrahlung is also important and the black hole is said to be in a 

hard state with energy spectral index a (F~ ,-~ v -s, where v, is the frequency of the 

photon) close to 0.5. In Eqn. (I.41), mp is the mass of the proton, xg = 2GM/c 2 is 

the Schwarzschild radius of the black hole. In this low Keplerian rate, electrons are 

cooler typically by a factor of (mp/rne) 1/2 unless the magnetic field is very high. 

Present high energy observations seem to support the apparently intriguing as- 
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pects of black hole accretion mentioned above. For instance, the constancy of (sep- 

arate) spectral slopes in soft and hard states has been observed by many people 

(gbisawa et al. 1994; Miyamoto et al. 1991; Ramos et al. 1997; Grove et al. 1998; 

Vargas et al. 1997). ASCA observations of Cygnus X-1 seem to indicate that the 

inner edge of the Keplerian component is located at around 15xg (instead of 3xg) 

(Cilfanov et al. 1997). HST FOS observations of the black hole candidate A0620-00 

in quiescent state seem to have very faint Keplerian features (McClintock et al. 1995) 

indicating the Keplerian component to be farther out at low accretion rates. Bulk 

motion Comptonization close to the horizon has been considered to be a possible 

cause of the power-law tail in very soft states (Crary et al. 1996; Ling et al. 1997; 

Cui et al. 1997). However, some alternative modes may not be ruled out to explain 

some of these features. 

This observed and predicted dichotomy of states of black hole spectra motivated us 

to investigate the nuclear reactions thoroughly for both the states. We use 255 nuclear 

elements in the thermo-nuclear network starting from neutron, proton, deuterium etc. 

till r2Ge and the nuclear reaction rates valid for high temperatures. We assume that 

accretion on the galactic black hole is taking place from a disk where matter  is supplied 

from a normal main sequence star. That is, we choose the abundance of the injected 

matter to be that of the sun. In reality initial abundance may be chosen from some 

older stars or G/K type stars. Of course, when the disk temperature is very high, the 

result is nearly independent of the initial composition. 

Following Chakrabarti  (1997) and Chakrabarti (1998c), in Fig. 1.1 we show one 

cartoon picture of accretion and winds in the advective region around a compact 

object. The region is intercepted by photons. 
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Centrifugally and Thermally driven outflows 
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Fig. 1.1. Cartoon diagram of accretion flows, winds in Quasi-spherical sub-Keplerian flow 
around compact object. The centrifugal pressure supported boundary layer CENBOL and 
funnel wall for outflows are shown in the picture. 
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As the hot matter  approaches a black hole, photons originated by the bremsstrahlung 

process, as well as those intercepted from the Keplerian disk, start to photo-dissociate 

deuterium and helium in the advective region if they achieve their required temper- 

ature. There also proton-capture reactions take place. If the initial temperature, 

when matter deviates from Keplerian to sub-Keplerian region is comparatively low 

then dissociation does not take place initially, only proton-capture reactions start. 

As matter approaches towards the black hole its temperature increases and attends 

the favourable temperature to start the dissociation reactions. Mainly dissociation of 

three elements take place. First deuterium starts to burn then with the increase of 

temperature dissociation of 3He starts. At much higher temperature 4He comes into 

the game and starts to burn. There are two challenging issues at this stage which we 

address first: (a) Thermodynamic quantities such as density and temperature inside 

a disk are computed using a thin disk approximation, i.e., the vertical height h(z) at 

a radial distance z very small compared to z (h(z) < <  z), and assuming the flow 

to be instantaneously in vertical equilibrium. However, at a low rate, it is easy to 

show that the disk is optically thin in the vertical direction f0 h(x) padh < 1 (or is the 

Thomson scattering cross-section). However, soft photons from the Keplerian disk 

enter radially and f~" podx > 1, generally. In fact, this latter possibility changes 

the soft photons of a few KeV from a Keplerian disk to energies up to --~ 1MeV by 

repeated Compton scattering (Sunyaev &: Titarchuk 1980; Chakrabarti & Titarchuk 

1995) while keeping the photon number constant. The spectrum of the resultant 

photons emitted to distant observers becomes a power law F~ ,-~ v -~ instead of a 

blackbody, where a ,-- 0.5 for hard state and a ,,~ 1.5 for soft states of a black hole. 

(b) Now that the spectrum is not a blackbody, strictly speaking, the computation of 
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photo-disintegration rate that is standard in the literature (which utilizes a Planckian 

spectrum) cannot be followed. Fortunately, this may not pose a major problem. As 

we shall show in,w the standard photo-disintegration rate yields a lower limit of 

the actual rate that  takes place in the presence of power-law photon spectra. Thus, 

usage of the correct rate obtainable from a power-law spectrum would, if anything, 

strengthen our assertion about the photo-disintegration around a black hole. After 

photo-disintegration by these hard photons, all that are left are protons and neutrons. 

The exact location where the dissociation actually starts may depend on the detailed 

photon spectrum, i.e., optical depth of this boundary layer and the electron tem- 

perature (Mukhopadhyay 1998; Mukhopadhyay 1999; Chakrabarti  &: Mukhopadhyay 

1999; Mukhopadhyay & Chakrabarti 2000). 

2.6 Basic Equat ions  of  the Problem 

We use well understood model of the accretion flow close to the black hole in sub- 

Keplerian region of the disk. To treat with more generalized flow we consider viscous 

flow with angular momentum which may be varied with location. The energy is 

dissipated in the disk due to presence of viscosity and nuclear burning. We solve the 

following equations (Chakrabarti  1996a,b) to obtain the thermodynamic quantities: 

(a) The radial momentum equation: 

v~ dr9 1 d P ,X ~.ep - ,X 2 
~xx q" p-~x q- x 3 -- O. (I.42a) 

This is nothing but Euler's equation. First term is advective term which actually 

gives the information of kinetic energy of the infalling matter.  Second term is arised 

due to pressure acting on the volume element by the matter  itself. Last one is the 
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combination of gravitational and centrifugal force terms. 

(b) The continuity equation: 

= 0,  

here, E = h(x)p is the vertically integrated density. 

parameters are unchanged in the vertical direction. 

(c) The azimuthal momentum equation: 

(I.42b) 

It is assumed that the flow 

od.~(X)dx Exl dx.(X2Wxr = 0, (I.42c) 

Wxr is the azimuthal pressure which is basically viscous stress in this case. 

(d) The entropy equation: 

h(x)  dp 
- = Q~c+Qvis  Q- - Q . ~ g  + - 

= Q+ - g(x ,m)Q + = f ( a , x , m ) Q  +. (I.42d) 

Since the fluid is considered as viscous, energy is being dissipated in the flow. Here, 

Q+ and Q- are the viscous heat gained and lost by the flow where for simplicity Q- is 

chosen proportional to Q+ with proportionality constant g(a, x, rh) -- 1 - f(c~, x, rh), 

where f (a ,x , rh)  is the cooling factor and rh is the mass accretion rate in unit of 

the Eddington rate. Here, we have included the possibility of magnetic heating Q+~9 

(due to stochastic fields; Shvartsman 1971; Shapiro 1973; Bisnovatyi-Kogan 1998) 

and nuclear energy release Q+uc as well (Taam ~ Fryxell 1985) while the cooling 

is provided by bremsstrahlung, Comptonization, endothermic nuclear reactions and 

neutrino emissions. A strong magnetic heating might equalize ion and electron tem- 

peratures (Bisnovatyi-Kogan 1998) but this would not affect our conclusions. On the 
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right hand side, we wrote Q+ collectively proportional to the cooling term for sim- 

plicity (purely on dimensional grounds). We use the standard definitions of F (Cox 

& Giuli 1968), 

F1 -- 13 
F3 = 1-t- ~ 

4 - 3 / 3 '  

( 4 -  3/3)2(3 ̀ - 1) 
P, =/3+ 

+ i2(7 - I)(i - Z) 

and/3(x) is the ratio of gas pressure to total pressure as, 

pk T / #rnp 
9(x) = pkT/~m, + aT4/3 + B(x)2/4~" 

(I.43a) 

(I.43b) 

(I.44) 

Here, a is the Stefan constant, k is the Boltzmann constant, mp is the mass of the 

proton, # is the mean molecular weight. Using the above definitions, Eqn. (I.42d) 

becomes, 

P 1 - /3 dx /3 dx fi ~ - f (a ,x ,rh) t~Ph(x)  = T dx" 

Here, we shall concentrate on solutions with constant /3. We will keep /3 constant 

throughout the particular cases. Actually, we study in detail only the special cases, 

/3 ~ 0 and/3 ~ 1, so we shall liberally u s e  F1 - -  4_ ~__ F 3  and Ft = 7 = F3 respectively. 3 

The condition /3 --~ 0 implies the radiation dominated flow i.e., relativistic flows of 

matter. We note here that unlike self-gravitating stars where/3 = 0 causes instability, 

here this is not a problem. Although close to the black hole flows must be relativistic 

whatever be its initial velocity (i.e.,/3 must be 4) and very far away from the black 

hole flows need not be relativistic (so/3 need not be 4) but here we have considered 

/3 constant throughout the particular cases. Similarly, we shall consider the cases 

for f ( a , z , m )  = constant, though as is clear, f ~ 0 in the Keplerian disk region 

and probably much greater than 0 near the black hole depending on the efficiency 
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of cooling (governed by rh, for instance). We use the Paczyfiski-Wiita potential 

(Paczyfiski & Wiita 1980) to describe the black hole geometry. W~r is the vertically 

integrated viscous stress as mentioned above, h(x) ,,~ axl/2(x - 1) is the half-thickness 

of the disk at radial distance x (both measured in unit of 2GM/c  2) obtained from 

vertical equilibrium assumption (Chakrabarti 1989), where a is the sound speed (a 2 = 

",/P/p), ,~(x) is the specific angular momentum, v~ is the radial velocity, s is the entropy 

density of the flow. The constant a above is the Shakura-Sunyaev (1973) viscosity 

parameter used to express stress tensor in terms of the total pressure II due to radial 

motion (1I = W + Ev ~2, where W and E are the integrated pressure and density 

respectively (Chakrabarti  & Molteni 1995) in the viscous flows. With this choice, 

Wxr keeps the specific angular momentum continuous across of the shock. Here we 

will use Mixed Shear Stress (MISStress) prescription (Chakrabarti  1996a,b). The 

stress tensor can be written in two ways. On the one hand it can be defined as 

Wx~(1) = - a I I .  On the other hand, it can be defined as Wxr = r/x~.da Again the 

expression of heat generation is defined as Q+ = W~r In this expression if we use 

only W,r no information of actual shear is introduced. If only W~r is used, the 

equations become dimcult to solve. So we use in heating expression, the combination 

of both W~r and Wxr So the viscous heat generation can be written as 

Q+ = ~(W + Ev~)~ 

x 3 / 2 ( x  - 1) 
(I.45) 

From the continuity equation (Eqn. (I.42b)), we find the mass accretion rate to be 

given by 

1~ = 2rrph(x)v~x, (I.46) 

here, 27r is the geometric factor. 
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From the azimuthal momentum Eqn. (I.42c), 

,~ -~ i ,~  = c ~ a  2 + M S , (I.47) 

where, M = v~/a is the Mach number of the flow and ~i~ is the specific angular 

momentum at the inner edge of the flow, i.e., at the horizon. 

For a complete run, we supply the basic parameters, namely, the location of the 

sonic point through which the flow must pass just outside the horizon xi~, the specific 

angular momentum at the inner edge of the flow ,~i,~, the polytropic index 3', the ratio 

f of advected heat flux Q+ - Q- to heat generation rate Q+, the viscosity parameter 

a and the accretion rate r~. The derived quantities are: x/~- where the Keplerian 

flow deviates to become sub-Keplerian, the ion temperature Tp, the flow density p, 

the radial velocity v and the azimuthal momentum ,~ of the entire flow from xK 

to the horizon. Temperature of the ions obtained t~rom above equations is further 

corrected using a cooling factor Fco,~p obtained from the results of radiative transfer 

of Chakrabarti & Titarchuk (1995). Electrons cool due to Comptonization, but they 

cause the ion cooling also since ions and electrons are coupled by Coulomb interaction. 

FCo,~p, chosen here to be constant in the advective region, is the ratio of the ion 

temperature computed from radiation-hydrodynamic (Chakrabarti ~ Titarchuk 1995) 

and hydrodynamic (Chakrabarti 1996a).considerations. In this way at each radius 

we can have the information of disk parameters. 
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3 N u c l e o s y n t h e s i s  in Accret ion  Flows 

Here, we mainly study nucleosynthesis in disks where the photo-dissociation may or 

may not be complete and other reactions may be important, and show that depend- 

ing on the accretion parameters, abundances of new isotopes may become abnormal 

around a black hole in accretion flows. Thus, observation of these isotopes may give 

a possible indication of black holes at the galactic center or in a binary system. 

Earlier, Chakrabarti (1986) and Chakrabarti et al. (1987) initiated discussions 

of nucleosynthesis in sub-Keplerian disks around black holes and concluded that for 

very low viscosity (a parameter less than' around 10 -4) and high accretion rates 

(typically, ten times the Eddington rate) there could be significant nucleosynthesis 

in thick disks. Radiation-pressure-supported thick accretion flows are cooler and 

significant nucleosynthesis was not possible unless the residence time of matter inside 

the accretion disk was made sufficiently high by reducing viscosity. The conclusions 

of this work were later verified by Arai & Hashimoto (1992) and Hashimoto et al. 

(1993). 

However, the theory of accretion flows which contains a centrifugal-pressure- 

supported hotter and denser region in the inner part of the accretion disk has been 

developed more recently (Chakrabarti 1990c; Chakrabarti 1996a). The improvement 

in the theoretical understanding can be appreciated by comparing the numerical sim- 

ulation results done in the eighties (Hawley et al. 1984, 1985) and in the nineties 

(Molteni et al. 1994; Molteni et al. 1996; Ryu et al. 1997). Whereas in the eighties 

the matching of theory and numerical simulations was poor, the matching of the re- 

sults obtained recently is close to perfect. It is realized that in a large region of the 

parameter space, especially for lower accretion rates, the deviated flow would be hot 
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and a significant nuclear reaction is possible without taking resort to very low viscos- 

ity. Because of high viscosity residence time of the infalling matter  may short but due 

to very high temperature (,-~ 101~ significant nuclear reactions mainly dissociation 

of elements take place. 

We arrive at a number of the important conclusions: (a) Significant nucleosyn- 

thesis is possible in the accretion flows. Whereas most of the matter  of modified 

composition enters inside the black hole, a fraction may go out through the winds 

and will contaminate the surroundings in due course. The metalicity of the galaxies 

may also be influenced. (b) In some parameter regions, nuclear energy release or 

absorption may be of same order or greater than the energy release or absorption due 

to viscous effect of the disk. Generation or absorption of energy due to exothermic 

and endothermic nuclear reactions could seriously affect the stability of a disk. (c) 

Hot matter is unable to produce Lithium (TLi) or Deuterium (D) since when the flow 

is hot, photo-dissociation (photons partially locally generated and the rest supplied 

by the nearby Keplerian disk (Shakura ~ Sunyaev 1973) when the region is optically 

thin) is enough to dissociate all the elements completely into proton and neutron. 

Even when photo-dissociation is turned off (low opacity cases or when the system 

is fundamentally photon-starved) Li was not found to be produced very much. (d) 

Most significantly, we show that one does not require a very low viscosity for nucle- 

osynthesis in contrary to the conclusions of the earlier works in thick accretion disk 

(Chakrabarti et al. 1987). 

We already have presented in w the basic equations which govern accretion 

flows around a compact object. Since we are interested to study the nucleosynthesis 

around black hole only we will find the solution of the equation for general compact 
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objects by imposing boundary condition for black hole. In w we present a set of 

solutions of these equations which would be used for nucleosynthesis work. First of 

all we compute pure thermodynamic quantities. Then on this background (knowing 

velocity, density, sound speed, viscous energy etc. at each radius) when matter falls 

we compute the energy due to nuclear reactions to check whether it is comparable 

or not with viscous energy in the disk. When nucleosynthesis is insignificant with 

respect to the viscous dissipation, we compute thermodynamic quantities ignoring 

nuclear energy generation/absorption, otherwise we include it. We divide all the disks 

into three categories: ultra-hot, moderately .hot, and cold. We present the results of 

nucleosynthesis for these cases separately. We find that  in ultra-hot cases, the matter 

is completely photo-dissociated. In moderately hot cases, proton-capture processes 

along with dissociation of deuterium and 3He are the major processes. In the cold 

cases, no significant nuclear reactions go on, only the ' proton capture reactions of 

very small order take place. Then we discuss the stability properties of the accretion 

disks in presence of nucleosynthesis and conclude that  only the very inner edge of the 

flow is affected. In those unstable cases, in the inner edge of the disk nuclear energy 

becomes comparable with viscous energy to affect the disk but the outer region is 

still unaffected and the disk is stable. Nucleosynthesis may affect the metallicities of 

the galaxies as well as Li abundance in companions in black hole binaries. 

3.1 Typical Solutions of Accretion Flows 

In our work below, we choose a Schwarzschild black hole i.e., the black hole is non- 

rotating and space-time is spherically symmetric. We also choose the CGS unit when 

we find it convenient to do so. The nucleosynthesis work is done using CGS unit and 
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the energy release rates are in that unit as well. The location where the flow deviates 

from a Keplerian disk will depend on the cooling and heating processes (which depend 

on viscosity). Several solutions of the governing equations (see Eqn. 1.42(a-e)) are 

given in Chakrabarti  (1996a). By and large, we follow this paper to compute ther- 

modynamical parameters along a flow. Due to computational constraints, we include 

energy generation due to nuclear reactions (Qnuc) only when it is necessary (namely, 

when IQ,ucl is comparable to energy generation due to viscous effects as mentioned 

above) and we do not consider energy generation due to magnetic dissipation (due to 

reconnection effects, for instance). In Fig. 1.2, we show a series of solutions which we 

employ to study nucleosynthesis processes. We plot the ratio ,~/,XK (Here, A and AK 

are the specific angular momentum of the disk and the Keplerian angular momentum 

respectively) as a function of the logarithmic radial distance. The coefficient of the 

viscosity parameters are marked on each curve. The other parameters of the solution 

are in TABLE 1.2. These solutions are obtained with constant f = 1 -Q- / Q+ and Q+ 

includes only the viscous heating. In presence of significant nucleosynthesis, the solu- 

tions are obtained by choosing f = 1 - Q-/(Q+ + Qn,c), where Qnuc is the net energy 

generation or absorption due to exothermic and endothermic reactions. The motiva- 

tion for choosing the particular cases are mentioned in the next section. At x = xK, 

the ratio A/AK = 1 and therefore xK represents the transition region where the flow 

deviates from a Keplerian disk. First, note that when other parameters (basically, 

specific angular momentum and the location of the inner sonic point) remain roughly 

the same, XK changes inversely with viscosity parameter an  (Chakrabarti 1996a). 

(The only exception is the curve marked with 0.01. This is because, it is drawn for 

7 = 5/3; all other curves are for 7 = 4/3). From the figure it is clear that as the 
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viscosity parameter decreases, residence time of the matter in the disk increases, size 

of the sub-Keplerian region of the disk increases i.e., sub-Keplerian matter takes more 

time to match with Keplerian region. If one assumes, as Chakrabarti ~ Titarchuk 

(1995) and Chakrabarti (1997) did, that the alpha viscosity parameter decreases with 

vertical height, then it is clear from the general behaviour of Fig. 1.2 that xK would 

go up with height. The disk will then look like a sandwich with higher viscosity 

Keplerian matter flowing along the equatorial plane. As the viscosity changes, the 

sub-Keplerian and Keplerian flows redistribute (Chakrabarti ~ Molteni 1995) and 

the inner edge of the Keplerian component' also recedes or advances. This fact that 

the inner edge of the disk should move in and out when the black hole goes into soft 

or hard state (as observed by, e.g., Gilfanov et al. 1997; Zhang et al. 1997) is thus 

naturally established from this disk solution. 

In Chakrabarti (1990b) and Chakrabarti (1996a), it was pointed out that in a 

large region of the parameter space, especially for intermediate viscosities, centrifugal- 

pressure-supported shocks would be present in the hot, accretion flows. In these cases 

a shock-free solution passing through the outer sonic point was present. However, 

this branch is not selected by the flow and the flow passes through the higher entropy 

solution through shock and the inner sonic point instead. This assertion has been 

repeatedly verified independently by both theoretically (Yang ~ 14afatos 1995; Nobuta 

Hanawa 1994; Lu &: Yuan 1997; Lu et al. 1997) and numerical simulations (with 

independent codes, Chakrabarti ~ Molteni 1993; Sponholz ~ Molteni 1994; Ryu et 

al. 1995; Molteni et al. 1996 and references therein). When the shock forms, the 

temperature of the flow suddenly rises and the flow slows down considerably, raising 

the residence time of matter significantly. This effect of shock-induced nucleosynthesis 
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Fig. 1.2. Variation of A/AK with logarithmic radial distance for a few solutions which are 

employed to s tudy nucleosynthesis. The viscosity parameter  a n  is marked on each curve. 

x = xK where A/AK = 1, represents the location where the flow deviates from a Keplerian 

disk. Note tha t  except for the dashed curve marked 0.01 (which is for 7 - 5/3, and the rest 
are for 7 = 4/3),  xg generally rises with decreasing an .  Thus, high viscosity flows must 

deviate from the Keplerian disk closer to the black hole. 
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is also studied in the next sub-section and, for comparison, the changes in composition 

in the shock-free branch were also computed, although it is understood that the 

shock-free branch is unstable. Our emphasis is not on shocks per se, but on the 

centrifugal-pressure-dominated region where the accreting matter  slows down. When 

the shock does not form, the rise in temperature is more gradual. We generally follow 

the results of Chakrabarti  & Titarchuk (1995) and Chakrabarti (1997) to compute 

the temperature of the Comptonized flow in the sub-Keplerian region which may or 

may not have shocks. Basically we borrow the mean factor Fcompt ~ 1 by which the 

temperature of the flow at a given radius x (< xK) is reduced due to Comptonization 

process from the value dictated by the single-temperature hydrodynamic equations. 

This factor is typically 1/30 ,-~ 0.03 for very low (~ 0.1) mass accretion rate of the 

Keplerian component (which supplies the soft photons for the Comptonization) and 

around 1/100 ,,~ 0.01 or less for higher Keplerian accretion rates. In presence of 

magnetic fields, some dissipation is present due to reconnections. Its expression is 

@n~g -- 3B2 " (Shvartsman 1971; Shapiro 1973). We do not assume this heating - -  i 6--g~--~xo v 

here. 

The list of major nuclear reactions such as pp chain, CNO cycle, proton capture, 

alpha (c~) processes, photo-dissociation etc. which may take place inside a disk are 

given in w Due to the hotter nature of the sub-Keplerian disks, especially when the 

accretion rate is low and Compton cooling is negligible, the major process of hydrogen 

burning is some proton capture process (which operates at T ~> 0.5 x 109K) and mostly 

(p, c~) reactions as opposed to the pp chain (which operates at much lower temperature 

T ,-~ 0.01 - 0.2 x 109K) and CNO cycle (which operates at T ~,, 0.02 - 0.5 x 109K) 

as was pointed out earlier. 
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Typically, accretion onto a stellar-mass black hole takes place from a binary com- 

panion which could be a main sequence star. In a supermassive black hole at a 

galactic center, matter  is presumably supplied by a number of nearby stars. Because 

it is difficult to establish the initial composition of the inflow, we generally take the 

solar abundance as the abundance of the  Keplerian disk. Furthermore, the I{eplerian 

disk being cooler, and the residence time inside it being insignificant compared to the 

hydrogen burning time-scale, we assume that for x >~ xK, the composition of the gas 

remains the same as that  of the companion star, namely, Sun. Thus our computation 

starts only from the time when matter  is. launched from the Keplerian disk. Occa- 

sionally, for comparison, we run the models with an initial abundance same as the 

output of big-bang nucleosynthesis (hereafter referred to as 'big-bang abundance'). 

These cases are particularly relevant for nucleosynthesis around proto-galactic cores 

and the early phase of star formations. We have also tested our code with an initial 

abundance same as the composition of late-type stars since in certain cases they are 

believed to be companions of galactic black hole candidates (Martin et al. 1992, 1994; 

Filippenko et al. 1995; Harlaftis et al. 1996). 

3.1.1 S e l e c t i o n  o f  M o d e l s  

In selecting models for which the nucleosynthesis should be studied, the follow- 

ing considerations were made. According to Chakrabarti ~ Titarchuk (1995) and 

Chakrabarti (1997), there are two essential components of a disk. One is Keplerian 

(of rate rhd) and the other is sub-Keplerian halo (of rate rnh). For rhd ~ 0.1 and 

rhh ~ 1, the black hole remains in hard states. A lower Keplerian accretion rate 

generally implies a lower viscosity and a larger xz~- (XK "-~ 30 -- 1000; see, Chakrabarti 

1996a and Chakrabarti 1997). Lower the Keplerian rate means low rate of matter 
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coming into the disk. As the matter  supply rate is low, energy momentum trans- 

fer rate is low which signifies lower value of viscosity parameters. In this parameter 

range the protons remain hot, typically, Tv ,,o 1 - 10 x 109K or so. This is because 

the efficiency of emission is lower ( f  = 1 - Q - / Q +  ~ 0.1, where, Q+ and Q- are the 

height-integrated heat generation and heat loss rates [ergs cm -2 sec -1] respectively. 

Also, according to Rees (1984), it is argued that if rh/c~ 2 ~ 1 the bremsstrahlung cool- 

ing and inverse-Compton cooling are indeed inefficient. So the estimation of rh/c~ 2 is 

a good indication of the cooling efficiency of the hot flow, because high rh/c~ 2 means 

high rate of supply of matter  as well as photon from Keplerian disk and therefore high 

rate of cooling.). Thus, we study a group of cases (Group A) where the net accretion 

rate rh ,-~ 1.0 and the viscosity parameter c~ ,,~ 0.001 -0 .1 .  The Comptonization factor 

FCornpt "~ 0 .03 ,  i.e., the cooling due to Comptonization reduces the mean tempera- 

ture roughly by a factor of around 30, which is quite reasonable. Here, although the 

density of the gas is low, the temperature is high enough to cause significant nuclear 

reactions in the disk. These belongs to moderately hot case. 

When the net accretion rate is very low (rh ~ 0.01) such as in a quiescence state of 

an X-ray novae, the dearth of soft photon keeps the temperature of the sub-Keplerian 

flow to a very high value and a high Comptonization factor FCompt '-~ 0.1 could be 

used (Group B). Here significant nuclear reaction takes place, even though the density 

of matter is very low. Basically, the entire amount of matter  is photo-dissociated into 

protons and neutrons in 'this case even when opacity is very low. This belongs to ultra 

hot case. It is noted that the number density of photon is much higher than that of 

deuterium, helium etc. so, lower accretion rate (lower rate of transfer of soft photon 

from Keplerian to sub-Keplerian region) does not make any significant influence on 
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dissociation. 

In the event where the inflow consist of both the Keplerian (accretion rate rhd) 

and sub-Keplerian (accretion rate rhh) matter  as the modern theory predicts, there 

would be situations where the net accretion rate is high, say rh = rhe + rhh ~ 1 - 5, 

and yet the gas temperature is very high (T > 109). This happens when viscosity is 

low to convert sub-Keplerian inflow into a Keplerian disk. Here, most of the inflow is 

in the sub-Keplerian component and very little (rhd ,,~ 0.01) matter  is in the Keplerian 

flow. Dearth of soft photon keeps the disk hot, while the density of reactants is still 

high enough to have profuse nuclear reactions. The simple criteria for the cooling 

efficiency as pointed was out in previous page (that rh/c~ 2 > 1 would cool the disk, 

see Rees 1984) will not hold since the radiation source (Keplerian disk) is different 

from the cooling body (sub-Keplerian disk). Although the accretion rate is high 

enough most part of the matter  is not coming from ~he Keplerian region so due to 

the lower Keplerian rate soft photons are not profuse enough to cool down the disk. 

One could envisage yet another set of cases (Group C), where the accretion rate is 

very high (rh ~ 10 - 100), and the soft photons are so profuse that the sub-Keplerian 

region of the disks becomes very cold. In this case, typically, viscosity is very high, 

0.2; zt," becomes low (xK ~ 3 - 10). The efficiency of cooling is very high (Q+ ~ Q- ,  

i.e., f ~ 0) almost same as that in Keplerian disk. The Comptonization factor is 

lOW, Fcompl; ~ 0.01, the black hole is in a soft state. There is no significant nuclear 

reaction in these cases. A small amount of nuclear energy is generated through the 

proton capture reactions which is much lower order of magnitude than viscous energy 

release. So in this case we can safely neglect the nuclear energy release in the disk. In 

the proto-galactic phase when the supply of matter  is very high, while the viscosity 
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may be so low (say, 10 -4) that the entire amount is not accreted, one can have an 

ultra-cold accretion flow with FCompt ~ 10 -3. In this case also not much nuclear 

reaction goes on. 

The above simulations have been carried out with polytropic index 7 = 4/3. In 

reality, the polytropic index could be in between 4/3 and 5/3. If 7 < 1.5 then shocks 

would form as in some of the above cases. However, for 3' > 1.5, standing shocks 

would not form (Chakrabarti 1996a). We have included two illustrative examples of 

shock-free case with 3' = 5/3 which is very hot and we have presented the result in 

Group B. In these cases, the Keplerian component is far away and the intercepted 

soft photons are very few. The disk is very hot so that  almost all the elements are 

photo-dissociated into neutron and proton. Finally the disk consists of neutron and 

proton only. This may be called Neutron Disk. 

3.1.2 Se lec t ion  of t h e  R e a c t i o n  Network  

In selecting the reaction network we kept in mind the fact that  hotter flows may pro- 

duce heavier elements through triple-a and proton and a capture processes. Similarly, 

due to photo-dissociation, significant neutrons may be produced. Thus, we consider 

a sufficient number of isotopes on either side of the stability line. The network thus 

contains neutron, proton, till 7 2 G e  - altogether 255 nuclear species. The network of 

coupled non-linear differential equation is linearized and evolved in time along the 

solution of Chakrabarti (1996a) obtained from a given set of initial parameters of the 

flow. This well proven method is widely used in the literature (see Arnett & Truran 

1969; Woosley et al. 1973). Below in TABLE 1.1 we give the list of all nuclear specis 

we consider here and their abundance. 
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T A B L E  1.1 

n 

0.0 
4H 

0.0 

%i 
0.0 

lime 
0.0 

12 B 

0.0 
1 N  

0.0 

16 0 

8.779 x 10 -3 

19 F 
4.372 x 10 -z 

21Ne 
4.534 x 10 -6 

22Na 

0.0 

23Mg 

P 
7.425 x' lO -1 

3He 
2.538 • 10 -5 

7Be 

0.0 
sB 

0.0 

0.0 
14 N 

9.439 x 10 -4  

17 0 

3.545 x 10 -6 

2o F 

0.0 

22Ne 
1.429 x 10 -4  

23Na 
3.578 x 10 -5 

24Mg 

0.0 5.562 X 10 -4  

28Mg 
0.0 

27Al 
6.257 x 10 -5 

26si 

0.0 
31Si 

23Ai 
0.0 
2~At 

4/-/e 
2.380 x 10 - I  

~e  
0.0 

sBe 

D 

2.948 x 10 -5 

%i 
7.337 x i 0  - I 0  

J 
9Be 

0.0 1.916 

9B 
0.0 
12 C 

3.931 x 10 -3 

3.718 x 10 -6 

18 0 

2.014 • 10 -5 

21F 

0.0 
~3Ne 

• 10 -1~ 

io B 
1.310 x 10 -9 

13 C 
4.755 x I0 -s 

T 

0.0 

7Li 
1.055 x 10 -s 

lobe 

0.0 

n B  

5.765 • 10 -9 

14 C 

0.0 
140 150  

0.0 0.0 

17 F 
0.0 

19Ne 
0.0 

:ONa 

Is F 

0.0 

2ONe 

1.774 x 10 -3 

: W a  
0.0 0.0 0.0 

24Na 2~Mg 
0.0 

26M g 
0.0 

25Mg 

22Mg 
0.0 

27Mg 
7.302 • i0 -S 8.375 x 10 -5 0.0 

25A1 24Ai 
0.0 

:gAl 
0.0 

~OA1 

:6Al 
0.0 
25Si 

0.0 0.0 0.0 0.0 
2sSi 

7.047 • 10 -4  

~sp 

0.0 

29Si 

3.697 x 10 -5 

272i 

0.0 
3~Si 

0.0 0.0 
32p 3~p 

8.801 x 10 - 6  

': 30~ 

0.0 

3~ s 

0.0 0.0 

~gp 

0.0 
34p 33p 

3osi 

2.538 • i0 -5 
3op 

0.0 

29 S 

0.0 0.0 0.0 
33 S 

3.477 x 10 -6 

3~ S 
4.271 • 10 -4  

34 S 

2.014 x 10 -5 
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3~ S 

0.0 
34C1 

0.0 
39Cl 

s6 S 

8.648 x 10 -8 

3~7l 
3.7'93 • 10 -6 

4 ~ t  

37 S 
o.o 

0.0 

S3Ar 

3~CI 
0.0 

~TC1 
i.282 • 10 -6 

34At 

0.0 

0.0 
35At 

0.0 0.0 0.0 0.0 0.0 
37At 

0.0 
42At 

36At ZgAr 
0.0 

3~ 
8.609 x i0 -5 

41Ar 

3SAt 
1.701 x 10 '-5 

4on?. 

6.005 • i0 -I~ 
s ~  

0.0 0.0 0.0 0.0 0.0 
4 ~  39 K 

3.743 • 10 -6 
44 K 

0.0 

2.839 x 10 .7 

4 ~  

0.0 
3~a STCa 

4oi< 

4.804 • I0 -I~ 

4OCa 

6.464 x 10 -5 

4 ~  

4 ~  

0.0 
3~a  

0.0 0.0 0.0 0.0 
41Ca 

0.0 

42Ca 
4.528 x I0 -7 

476a 

43Ca 

9.684 x 10 -8 
48Ca 

1.493 x i0 -7 

, 43Se 
0.0 
42Sc 
0.0 
47Sc 

45Ca 46Ca 

0.0 

4osr 
2.687 x 10 .9 

41SC 

44Ca 

1.533 • 10 .6 
49Ca 

0.0 
465c 

0.0 
44SC .... 

0.0 0.0 0.0 

45Sc 49Sc 

4.152 x 10 -s  

~osc 

4SSc 

0.0 0.0 0.0 0.0 
44Ti 4~i 

0.0 

4~i 

0.0 0.0 0.0 0.0 
4~i 

2.318 x i0 -6 

49Ti 
1.738 • 10 .7 

4V 

47Ti 

4~ V 

2.283 • 10 .7 

4~i 
2.473 x I0 -7 

~lTi 

soTi 

1.706 • 10 -7 

4~ 

0.0 0.0 0.0 0.0 0.0 
5o v 4V ~V 

0.0 1.010 x I0  - ~  4 . 0 9 3  x 10 -7 0.0 0.0 
5oCt 49Cr ~4 V 48Cr 5 ~ r  

0.0 0.0 0.0 7.957 x 10 -7 0.0 
5 ~ r  

4.658 • 10 -7 

5~r 
1.851 x 10 -~ 

5~7r 
0.0 1.589 x I0 -~ 

5~r 

0.0 
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5OMn 5 Mn 5~Mn 53Mn S4Mn 
0.0 0.0 0.0 0.0 0.0 

56Mn SSM n 

1.427 x 10 -5 0.0 

SaFe 54F e 
0.0 7.695 • 10 -5 

59Fe 
0.0 

58Fe 
4.132 x 10 -8 

5rMn 
0.0 

SSMn 
0.0 

55Fe s6F e 
0.0 1.262 x 10 -a  

6OFe 

S~C o 
0.0 

STCo 

61Fe 
0.0 

SSCo S~o 

S=Fe 
0.0 

SrFe 

3.018 x 10 -5 

5~o 
0,0 

S~o 
0.0 0.0 0.0 0.0 3 . 6 2 3 •  -6 

6~o 6OCo 
0.0 0.0 

58Ni sWi 
0.0 5.335 x 10 -5 

6~'o 
0.0 

0.0 
64Ni 

7.844 x 10 - r  

6ocu 

63Co 
0.0 

6ogi 
2.112 x i0 -~ 

65Ni 
0.0 

63Ni 

0.0 
59Cu 

62Ni 

2.995 • 10 -8 

5SCu 6'Cu 

56Ni 

0.0 
61Ni 

9.275 x 10 - r  

66Ni 
0.0 

6~Cu 

0.0 0.0 0.0 
66Cu 

0.0 0.0 

63Cu 
6.122 x 10 - r  

6~Cu 

0.0 

59Zn 68Cu 

0.0 0.0 

6*Zn 

6~u 6rCu 
2.803 x 10 - r  0.0 0.0 

61Zn 62Zn 6OZn 
0.0 

65Zn 
0.0 0.0 

66Zn 6rZn 63Zn 
0.0 1.069 x 10 -6 0.0 6.342 x 10 - r  9.456 x 10 - s  

68Zn 69Zn 70Zn rlZn 62Ga 
0.0 4.343 x 10 - r  

63Ga 6~Ga 
0.0 

66Ga 
1.492 x 10 - s  

6 ~ a  
0.0 

6raa 

0.0 0.0 0.0 0.0 
69Ga 6Saa tOGa 

0.0 
riga r~Ta 

0.0 4.275 • 10 - s  0.0 2.926 x 10 - s  0.0 

6~7e r3Ga 66Ge 64Ge 67Ge 

0.0 0.0 0.0 0.0 0.0 

6Sae 6~e rOae r~e r~e 
0.0 0.0 4.624 • 10 - s  0.0 6.348 • 10 - s  
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The reaction rates were taken from Fowler et al. (1975) including updates by 

Harris et al. (1983). Other relevant references from where rates have been updated 

are: Thielemann (1980); Wallace & Woosley (1981); Wagoner et al. (1967); Fuller 

et al. (1980, 1982). For details of the procedure of adopting reaction rates, see, 

Chakrabarti et al. (1987) and Jin et al. (1989). The solar abundance which was used 

as the initial composition of the inflow was taken from Anders & Ebihara (1982). 

Thielemann (1980) has given a formula to express different nuclear reaction rates 

in terms of an exponential function. It depends on temperature in the unit of 109 

(Tg) and seven constant coefficients (cis) as 

< cry > i =  ri = exp(g~) (I.48) 

1 c~/T9 " a / T ( 1 / a ) c 4 T  O/a) c~T9 ~6T(5/a) c r l o g ( T g ) , i i n d i c a t e s  where, gi = cl + + "-i/• o + + + "i * 9 + 

corresponding reaction about which we are intereste& For different reactions the 

constant coefficients cis will be different. 

3.2 Resu l t s  

In this section, we present a few major results of our simulations using different 

parameter groups as described in w For a complete solution of the sub-Keplerian 

disks (Chakrabarti  1996a) we need to provide (a) the mass of the black hole M, (b) 

the viscosity parameter an,  (c) the cooling efficiency factor f ,  (d) the Comptonization 

factor Fr (e) the net accretion rate of the flow rh, (f) the inner sonic point location 

x~n through which the flow must pass and finally, (g) the specific angular momentum 

hl, at the inner sonic point. 

The following table gives the cases we discuss here. The H-stress viscosity pa- 

rameter an,  the location of the inner sonic point xln and the value of the specific 
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angular momentum at that point Ai~ are free parameters. The net accretion rate rh, 

the Comptonization factor FCompt and the cooling efficiency f are related quantities 

(Chakrabarti & Titarchuk 1995; Chakrabarti 1997). For extremely inefficient cool- 

ing, f ~ 1.0, and for extremely efficient cooling, f = 0 or even negative. The derived 

quantities, such as the value of maximum temperature T~ ~x of the flow (in unit of 

109K), density of matter  (in CGS unit) at T~ n~x, XK, the locations fl'om where the 

Keplerian disk on the equatorial plane becomes sub-Keplerian are also provided in 

the table. In the rightmost column, we present whether the inner edge of the disk 

is stable (S) or unstable (U) in the presence of the nucleosynthesis in accretion flow. 

Three groups are separated as the parameters are clearly from three distinct regimes. 

TABLE 1.2 

.... Model M/M e 7 Xin Ain ~rI rh f FCompt XK T~ nax Pmax S/U 
A.1 10 4/3 2.7945 1.65 0.001 1 0.1 0.03 1655 .7  5.7 6.2• -7 S 
A.2 10 4/3 2.9115 1.6 0.07 1 0.1 0.03 401.0 4.7 4.9• -7 S 
A.3 106 4/3 2.9115 1.6 0.07 1 0.1 0.03 401.0 4.7 4.9x10 -12 U 
B.1 10 4/3 2.8695 1.6 0.05 0.01 0.5 0.1 481.4 16.5 3.9• -9 S 
B.2 10 4/3 2.8695 1.6 0.05 4 0.5 0.1 481.4 16.5 1.6x10 -s U 
B.3 10 5/3 2.4 1.5 0.01 0.001 0.5 0.1 84.4 47 3.3• -l~ S 
B.4 10 5/3 2.35 1.55 0 . 0 1  0.001 0.6 0.1 85.1 37 2.9• -1~ S 
B.5 10 4/3 2.795 1.65 0.2 0.01 0.2 0.1 8.4 13 1.1x10 -s S 
B.6 10 4/3 2.7 1.65 0.2 ,,0.01 0.1 0.1 4.2 11 1.1• -s S 
C.I i0 4/3 2.795 1.65 0.2 iO0 0.0 0.01 4,8 0.8 lilxlO -4 S 
C.2 106 4/3 2.795 1.65 10 -4 100 0.0 0 .001  3657,9 0.2 6.2x10 -i~ S 

The basis of our three groupings are clear from the TABLE 1.2. Very low rh/a~i 

in Group B makes the cooling efficiency to be very small. Thus we choose a relatively 

large f ,,~ 0.1 - 0.5. For the case B.2, we see that rh/a~i > >  1 but still we consider 

it as very hot case and keep in Group B. This is because, though the accretion rate 
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for B.2 case is chosen high but this is due to high rate of halo i.e., rhh is very high 

but rhd is low. As the Keplerian rate is still low the supply of soft photon is very 

low. Thus, in all the cases of Group B the cooling due to Comptonization is very low 

(Fcompt "~ 0.1). Therefore the disks could be ultra-hot. Intermediate rh/a~ in Group 

A means that the efficiency of cooling is intermediate, f ,-~ 0.1 and the Compton 

cooling of the sub-Keplerian region is average: Fcompt "~ 0.03. The sub-Keplerian 

disk in this case is neither too hot nor too cold. Extremely high rh/a~ causes a 

strong cooling in Group C. Thus, we choose f = 0 and a very efficient Compton 

cooling, FCompt "~ 0.01 -0 .001 .  As a result, the disk is also very cold. Now, we 

present our numerical simulation results in these cases. 

3.2.1 Nucleosynthesis  in Moderately Hot Flows 

Case A.I: In this case, the termination of the Keplerian component in the weakly 

viscous flow takes place at x = 1655.7. The soft photons intercepted by the sub- 

Keplerian region reduce the temperature of this region but not by a large factor. The 

net accretion rate rh = 1 is the sum of (very low) Keplerian component and the sub- 

I(eplerian component. Using computations of Chakrabarti ~ Titarchuk (1995) and 

Chakrabarti (1997) for rhd ,-~ 0.1 and rhh ,-~ 0.9, we find that the electron temperature 

T~ is around 60keV, i.e., T9 "- 0.6 (T9 is the temperature in unit of 109K) and the 

ion temperature is around T9 = 2.5. This fixes the Comptonization factor to about 

Fco,~pt = 0.03. This factor is used to reduce the temperature distribution of solutions 

of Chakrabarti (1996a) (which does not explicitly use Comptonization) to temper- 

ature distribution with Comptonization. The ion temperature (in Tg) and density 

(in unit of 10 -I~ gm cm -3 to bring in the same plot) distribution computed in this 

manner are shown in Fig. 1.3a. Figure 1.3b gives the velocity distribution (velocity is 
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measured in unit of 101~ cm sec-1). Note the sudden rise in temperature and slowing 

down of matter close to the centrifugal barrier at x --~ 30. Figure 1.3c shows the 

changes in composition as matter  is accreted onto the black hole. Only those species 

with abundance Y/~  10 .4 have been shown for clarity. Also, compositions closer to 

the black hole are shown, as variations farther out are negligible. Most of the burning 

of species takes place below x = 10. A significant amount of the neutron (with a final 

abundance of Y,~ ,,~ 10 -a) is produced by the photo-dissociation process. Note that 

closer to the black hole, 12C', 160, 24Mg and 2sSi are all destroyed completely, even 

though at around x = 5 or so, the abundance of some of  them went up first before 

going down. Among the new species which are formed closer to the black hole are 

3osi ' 4~i,  50Cr" The final abundance of 2~ is significantly higher than the initial 

value. This was not dissociated as the residence time in hotter region was insufficient. 

Thus a significant metalicity could be supplied by win(is from the centrifugal barrier. 

Figure 1.3d shows the energy release and absorption due to exothermic and en- 

dothermic nuclear reactions (Qnuc) that are taking place inside the disk (solid). Su- 

perposed on it are the energy generation rate Q+ (long dashed curve) due to viscous 

process and the energy loss rate Q- in the sub-Keplerian flows. For comparison, 

we also plot the hypothetical energy generation and loss rates (short dashed curves 

marked as Qg+.ep and QKep respectively) if the disk had purely Keplerian angular mo- 

mentum distribution even in the sub-Keplerian regime. All these quantities are in 

unit of 3 x 106 and they represent height-integrated energy release rate (ergs cm -2 

sec-1). Note that these Qs are in logarithmic scale (if Q < 0, -log(lQI) is plotted). 

As matter leaves the Keplerian flow, the proton capture (p,a) processes (such as 

lSO(p, a)lhN, lSN(p, a)I2C, 6Li(p, c~)aHe, 7Li(p, c~)4He, ~B(p, 7)3c~, t70(p, a)~4N, etc.) 
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Fig. 1.3. Variation of (a) ion temperature (T9) and density (P-lo), (b) radial velocity 
vl0, (c) matter abundance ~ in logarithmic scale and (d) various forms of height-integrated 
specific energy release and absorption rates (in ergs cm -2 sec -1) when the model parameters 
are M = 10M| rh = 1.0, an -- 0.001 as functions of logarithmic radial distance (x in unit 
of Schwarzschild radius). Q is in logarithmic scale. See text and TABLE 1.2 for other 
parameters of Case A.1 which is considered here. The centrifugal barrier slows down and 
heats up matter where a significant change in abundance takes place (AY~ ~ 10-3). 
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burn hydrogen and release energy to the disk (since the temperature of the disk is 

very high, pp chains or CNO cycles are not the dominant processes for the energy re- 

lease as described in w and ~1.6). At around x = 40, the deuterium starts burning 

(D(y, n)p) and the endothermic reaction causes the nuclear energy release to become 

'negative', i.e., a huge amount of energy is absorbed from the disk. At the completion 

of the deuterium burning (at around x -- 20) the energy release tends to go back 

to the positive value to the level dictated by the original proton capture processes. 

Excessive temperature at around x = 5 breaks 3He down into deuterium (3He('7, p)D, 

D(7, n)p). Another major endothermic reaction which is dominant in this region is 

170(7 ,n)160. These reactions absorb a significant amount of energy from the flow. 

Note that in few regions the nuclear energy release or absorption is of the same or- 

der as the energy release due to viscous process. This energy was incorporated in 

computing thermodynamic quantities following these" steps: 

(a) Compute thermodynamic quantities without nuclear energy 

(b) Run nucleosynthesis code and compute Qnuc 

(c) Fit Qn,r using piecewise analytical functions and include this into the definition 

of f ,  

f = 1 Q-  (I.49) 
Q+ + Q,ur 

(d) Do sonic point analysis once more using this extra heating/cooling term and com- 

pute thermodynamic quantities. 

(e) Repeat from step (b) till the results converge. In this present case, there is vir- 

tually no difference in the solutions and the solution appears to be completely stable 

under nucleosynthesis. 
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Case A.2: Here we choose the same net accretion rate, but with a larger viscosity. 

As a result, the Keplerian component moves closer. The Comptonization is still not 

very effective, and the flow is moderately hot as above with FCompt = 0.03. The 

flow deviates from a very hot (sufficient to cause the flow to pass through the outer 

sonic point) Keplerian disk at z•- = 401.0, then after passing through an outer sonic 

point at z = 50 and through a shock at xs = 15, the flow enters into the black 

hole through the inner sonic point at z = 2.9115. We show the results both for the 

shock-free branch (i.e., the one which passes through only the outer sonic point before 

plunging into the black hole, dotted curves) and the shocked branch of the solution 

(solid curves). Figure 1.4a shows the comparison of the temperatures and densities 

(scaled in the same way as in Fig. 1.3a). The temperature and density jump sharply 

at the shock. Figure 1.4b shows the comparison of the radial velocities. The velocity 

sharply drops at the shock. Both of these effects hasten the nuclear burning in the 

case which includes the shock. Figure 1.4c shows the comparison of the abundances of 

only those species whose abundances reached a value of at least 10 -4. The difference 

between the shocked and the shock-free cases is that in the shock case similar burning 

takes place farther away from the black hole because of much higher temperature in 

the post-shock region. 

The nature of the (height integrated) nuclear energy release is very similar to Case 

A.1 as the major reactions which take place inside the disk are basically same, except 

that the exact locations where any particular reaction takes place are different since 

they are temperature sensitive. In Fig. 1.4d, we show all the energy release/absorption 

components for the shocked flow (solid curve). For comparison, we include the nu- 

clear energy curve of the shock-free branch (very long dashed curve). Note that in the 
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Fig. 1.4.: Variation of (a) ion tempera ture  (Tg) and density (P-10), (b) radial velocity vl0, 
(c) matter  abundance 2) in logarithmic scale and (d) various forms of specific energy release 

and absorption rates when the model parameters  are M = 10M| rh = 1.0, ~ = 0.07 as 

functions of logarithmic radial distance (x in unit of Schwarzschild radius). See text and 

TABLE 1.2 for other  parameters  of Case A.2 which is considered here. Solutions in the 

stable branch with shock are solid curves and those without  the shock are dotted in (a- 

c). Curves in (d) are described in the text.  At the shock, t empera ture  and density rise 

significantly and cause a significant change in abundance even far ther  out. Shock-induced 
winds may cause substantial  contamination of the galactic composition when parameters 

are chosen from these regions. 
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post-shock region, hotter and denser flow of the shocked-branch causes a particular 

nuclear reaction to take place farther away from a black hole when compared with the 

behaviour in the shock-free branch as is also reflected in the composition variation in 

Fig. 1.4c. The viscous energy generation (Q+) and the loss of energy (Q-)  from the 

disk (long dashed) are shown. As before, these quantities, if the inner part had Keple- 

rian distribution, are also plotted (short dashed). When big-bang abundance is chosen 

to be the initial abundance, the net composition does not change very much, but the 

dominating reactions themselves are somewhat different because the initial composi- 

tions are different. The dot-dashed curve shows the nuclear energy release/absorption 

in the shocked flow when big-bang abundance is chosen. All these quantities are, as 

before, in unit of 3 x 106 and they represent height integrated energy release rate (ergs 

cm -2 sec-1). For instance, in place of proton capture reactions for computations with 

solar abundance, the fusion of deuterium into 4He pl@s a dominant role via the fol- 

lowing reactions: D(D,n)3He, D(p, 7)aHe, D(D,p)T, aHe(D,p)4He. This is because 

no heavy elements were present to begin with and proton capture processes involving 

heavy elements such as were prevalent in the solar abundance case cannot take place 

here. Endothermic reactions at around x ,-~ 20 - 40 are dominated by deuterium 

dissociation as before. However, after the complete destruction of deuterium, the 

exothermic reaction is momentarily dominated by neutron capture processes (due to 

the same neutrons which are produced earlier via D(',/, n)p) such as 3He(n, p)T which 

produces the spike at around x = 14.5. Following this, 3He and T are destroyed as 

in the solar abundance case (i.e., aHe(7,p)D, D(',/,n)p, T(',/,n)D) and reaches the 

minimum in the energy release curve at around x = 6. The tendency of going back to 

the exothermic region is stopped due to the photo-dissociation of 4He via 4He('~, p)T 
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and 4He('~,n)3He. At the end of the big-bang abundance calculation, a significant 

amount of neutron is produced. The disk was found to be perfectly stable under 

nuclear reactions. 

Case A.3: This case is exactly same as A.2 except that  the mass of the black hole 

is chosen to be 106M| The temperature and velocity variations are similar to the 

above case. Because the accretion rate (in non-dimensional units) is the same, the 

density (which goes as rh/r2v) is lower by a factor of 10 -5. Tenuous plasma should 

change its composition significantly only at higher temperatures than in the previous 

case. However, the increase in residence time by a factor of around 105 causes the 

nuclear burning to take place farther out even at a lower temperature. This is exactly 

what is seen. Figure 1.5a shows the comparison (without including nuclear energy) 

of the composition of matter  when the flow has a shock (solid curves) and when the 

flow is shock-free (short dashed curve). We recall that the shock-free flow is in reality 

not stable. It is kept only for comparison purposes. Note that unlike earlier cases, a 

longer residence time also causes to burn all the 2~ that  was generated from 10. 

In Fig. 1.5b, we show a comparison of various height-integrated energy release and 

absorption curves as in Fig. 1.4d (in ergs cm -2 sec-1). The nuclear energy remains 

negligibly small till around :c = 100. After that the endothermic reactions dominate. 

This is due to the dissociation of D, aHe and 7Li and also of 1~C, l~ 2~ etc., all of 

which produce 4He. The solid curve is for the branch with a shock and the very long 

dashed curve is for the shock-free branch. A small amount of neutron is produced 

(Y,~ ~ 10 -3) primarily due to the dissociation of D. These considerations are valid 

for solar abundance as the initial composition. In the case of big-bang abundance 

(dash-dotted curve), similar reactions take place but no elements heavier than 7L{ 
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Fig. 1.5.: Variation of (a) mat te r  abundance 1~ in logarithmic scale, (b) various forms of 

height-integrated specific energy release and absorption rates and (c) velocity (in unit of 
101~ s -1) when the model parameters  are M = 106M| rh = 1.0, aN = 0.07 as functions 

of logarithmic radial distance (x in unit of Schwarzschild radius). See text  and TABL[:; 1.2 

for other parameters  of Case A.3. In (a) solutions in the stable branch with shock are solid 

curves and those without  the shock are short  dashed. Curves in (b) are described in the 

text. Basic conclusions are as in the previous case. In (c), dot-dashed curve and dashed 

curve are drawn when nuclear energy is taken into account. 
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are involved. The three successive dips are due to dissociation of D, 3He and 4He 

respectively. 

Below x = 10, IQnucl is larger compared to Q+ by 3-4 orders of magnitude. This is 

because of the superposition of a large number of photo-dissociation effects. We ex- 

pect that in this case the disk would be unstable. This is exactly what we see. In Fig. 

I.Sc, we show the effects of nuclear reactions more clearly. The dotted curve and the 

solid curve are, as in Fig. 1.4b, the variation of velocity for the solution without and 

with shock, respectively. The dot-dashed curve represents velocity variation without 

shock when nuclear reaction is included. The dashed curve is the corresponding so- 

lution when nucleosynthesis of the shocked branch is included. Both branches are 

unstable since the steady flow is subsonic at the inner edge. In these cases, the flow 

is expected to pass through the inner sonic point in a time-dependent manner and 

some sort of quasi-periodic oscillations cannot be rulea out. 

3.2.2 Nuc leosynthes i s  in Hot  Flows 

Case B.I: This case is chosen with such a set of parameters that a standing shock 

forms at zs = 13.9. A very low accretion rate is chosen so that  the Compton cooling 

is negligible and the flow remains very hot (Comptonization factor fComp t ~- 0 . [ ) .  

We show the results both for the shock-free branch (short dashed) and the shocked 

branch (solid) of the solution. Figure 1.6a Shows the comparison of the temperatures 

and densities (in unit of 10 .2o gm cm -3 to bring in the same plot). Figure 1.6b shows 

the comparison of the radial velocities. This behaviour is similar to that shown in 

Case A.2. Because the temperature is suitable for photo-dissociation, we chose a very 

small set of species in the network (only 21 species up to l i b  are chosen). Figure 1.6c 

shows the comparison of the abundances of proton (p), 4He and neutron (n). In the 
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absence of the shock, the breaking up of 4He into n and p takes place much closer 

to the black hole, while the shock hastens it due to higher temperature and density. 

Although initially the flow starts with Yp = 0.7425 and Y~H~ = 0.2380, at the end of 

the simulation, only proton (Yp ,--, 0.8786) and neutron (Yn "~ 0.1214) remain and the 

'rest of the species become insignificant. 

Figure 1.6d shows the comparison of the height-integrated nuclear energy release 

and absorption (units are as Fig. 1.3d). As the flow leaves the Keplerian disk at 

xK = 481.4, the deuterium and 9Be are burnt instantaneously at the cost of some 

energy from the disk. At the end of deuterium burning at around x = 200, the rp and 

proton capture processes (mainly via liB(p, q,)34He which releases significant energy) 

and neutron capture (aHe(n,p)T) take place, but further in, aHe (via aHe(7, p)D) first 

and 4He (mainly via 4He(3,, n)aHe and 4He(',/, p)T, T(% n)D) subsequently, are rapidly 

dissociated. As soon as the entire helium is burnt out, the energy release/absorption 

becomes negligible. This is because there is nothing left other than free protons 

and neutrons and hence no more reactions take place and no energy is released or 

absorbed. The solid curve is for the branch with a shock and the very long dashed 

curve is for the shock-free branch. Inclusion of an opacity factor (which reduces 

photo-dissociation) shifts the burning towards the black hole. The disk is found to 

be completely stable even in presence of nucleosynthesis. 

Case B.2: As discussed in w in extreme hard states, a black hole may accrete 

very little matter  in the Keplerian component and very large amount of matter in the 

sub-Keplerian component. To simulate this we used B.1 parameters, but rh = 4. The 

resulting solution is found to be unstable when shocks are present. In Fig. 1.6b, we 

superimposed velocity variation without nuclear energy (same as with nuclear energy 
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as far as Case B.1 is concerned) and with nuclear energy. The dash-dot ted curve next 

to the un-shocked branch and dashed curve next to the shocked branch show the 

resulting deviation. While the branch without  shock still remains stable, the other 

branch is dist inctly unstable as the steady-state solution is sub-sonic at the inner 

edge. The only solution available must be non-steady with oscillations near the sonic 

point. 

Case B.$: In this case, accretion rate is chosen to be even smaller (~5~, = 0.00t) 

and the polytropic index is chosen to be 5/3. The m a x i m u m  tempera ture  reaches 

T~ ax = 47. After leaving the  Keplerian flow, the  t empera tu re  and velocity of the 

flow monotonical ly increase. Because of excessive tempera ture ,  D and aHe are photo- 

dissociated immedia te ly  after the flow leaves the Keplerian disk at a:x~ = 84.4. At 

around x = 30, all 4He is photo-dissociated exactly as in Case B.1. Subsequently, 

the flow contains only protons and neutrons and there is no more energy release from 

the nuclear reactions. This behaviour is clearly seen in Fig. 1.7. The notations are 

the same as in the  previous run. This ultra-hot case is found to be s tab les ince  the 

energy release took place far away from the black hole where the  mat te r  was moving 

slowly and therefore the  rate (Q,uc) was not high compared to that  due to viscous 

dissipation (units are as Fig. 1.3d). 

Case B.~4: This is another  case where the  accretion rate is chosen small as 0.001 and 

polytropic index is chosen as 5/3 as in previous case. Apart  from these, because of 

small viscosity (0.01), the disk is so hot that  the sub-Keplerian flow deviates from a 

Keplerian disk farther away at , = 85.1. Similar to case B.a, here 4He dissociates 

completely at a distance of around a: = 25 where the density and tempera ture  are 

p = 2.29 x 10 -11 gm cm -a and T = 6.3 x 109 K. As the nuclear energy curve is similar 
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Fig. 1.6. Variation of (a) ion t empera tu re  (T9) and density (P-20), (b) radial velocity 
vl0, (c) ma t t e r  abundance  Y/in logari thmic scale and (d) various forms of height-integrated 
specific energy release and absorpt ion rates when the model  parameters  are M = 10M e,  
rh = 0.01, a n  = 0.05 as functions of logari thmic radial distance (x in unit  of Schwarzschild 
radius). See text  and TABLE 1.2 for other  parameters  of Case B.1 which is considered here. 
Solutions in the stable branch with shock are solid curves and those wi thout  the shock are 
short dashed in (a-c). Curves in (d) are described in the text.  The  ul tra-hot  t empera ture  
of the flow photo-dissociates 4He into protons  and neutrons.  The  shocked branch (which is 
stable) causes such dissociation farther out  from the black hole than  the unstable shock-free 
branch. In (b), dot -dashed curve and dashed curve are drawn when nuclear energy is taken 
into account and rh = 4 is chosen (Case B.2). 
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(T~ nax = 44) as functions of logarithmic radial distance (x in unit of Schwarzschild radius)~ 

The entire initial abundance is photo-dissociated at x ~ 30. The viscous energy generation 

curve (Q+) and absorption curve (Q- )  [both long dashed] are presented for comparison. 
+ 

QKep (dotted) curves are the specific energy generation and absorption rates provided the 
inner disks were Keplerian. Qs are in unit of ergs cm -2 sec -1 . See TABLE 1.2 for parameters 

of Case B.3. 
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to the case B.3, Fig. 1.7 (except the locations where different burnings take place), we 

do not show it again. Maximum temperature attained in this case is T max = 37 • 10  9 

K. Both the neutron and proton are enhanced for x ~ 25. This disk is consisting a 

large amount of neutron although initially we started with zero abundance of it. 

Case B.5: In this case, the net accretion rate is low (rh = 0.01) but viscosity is 

high and the efficiency of emission is intermediate ( f  = 0.2). That  means that the 

temperature of the flow is high (FCompt = 0.1, maximum temperature T~ ''~• = t3). 

Matter deviates from a Keplerian disk at around zi,- = 8.4. Assuming that the high 

viscosity is due to stochastic magnetic fie!d, protons would be drifted towards the 

black hole due to magnetic viscosity, but the neutrons will not be drifted (Rees et al. 

1982). They will generally circle around the black hole till they decay. This principle 

has been used to do the simulation in this case. The modified composition in one 

sweep is allowed to interact with freshly accreting n~atter with the understanding 

that the accumulated neutrons do not drift radially. After few iterations or sweeps 

the steady distribution of the composition is achieved. Figure I.Sa shows the neutron 

distribution in the sub-Keplerian region. The formation of a 'neutron torus' is very 

apparent in this result. In fact, the formation of a neutron disk is very generic in 

all the hot accretion flows as also seen in Cases B.1-B.3 (details are given in later 

w The nuclear reactions leading to the neutron torus formation are exactly same 

as previous cases and are not described here. However, we wish to present the energy 

release curve in Fig. I.Sb, only to impress the fact that  the degree of absorption 

of nuclear energy from a given annulus of the disk is generally correlated with the 

amount of neutrons deposited in that annulus. This is because no significant reactions 

other than photo-dissociation are taking place in the disk. 
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Fig. 1.8. Formation of a neutron  torus in a hot inflow. (a) Neutron abundance (b) Various 
height-integrated specific energy release and absorption rates as a function of the logarithmic 
radial distance (x in unit of Schwarzschild radius, units same as in F ig .  1.3d). Note the 
correlation of the neutron abundance with the degree of nuclear energy absorption. This is 
due to the endothermic nature of the photo-dissociation. See, TABLE 1.2 for parameters of 
Case B.4. 
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Case B.6: This is another case where the viscosity is due to the stochastic magnetic 

lines. We choose again a very high viscosity (c~ = 0.2) in the sub-Keplerian regime. 

The cooling is chosen marginally inefficient. It is not as inefficient as other ultra-hot 

cases but still is not as efficient as in a Keplerian disk: Q- ,,~ 0.9Q + which is same as 

that in intermediate hot cases (Cases A). Although in this case residence time is small 

but as the cooling time-scale is larger than the infall time-scale the disk is hot enough 

to make it one of the ultra-hot case. The specific angular momentum at the inner 

edge is, Ain = 1.65 (in unit of 2GM/c). The flow deviates from a Keplerian disk at 4.2 

Schwarzschild radii. It is to be noted that Q-  includes all possible types of cooling, 

such as bremsstrahlung, Comptonization as well as cooling due to neutrino emissions. 

We assume that  the flow is magnetized so that only ions have larger viscosity. Here 

also the neutron torus is formed in the disk. As the features are same as the case B.5 

we do not show the figures. 

3.2.3 Nueleosynthesls  in Cooler Flows 

Case C.1: Here we choose a high-viscosity flow with a very high accretion rate. Matter 

deviates from the Keplerian disk very close to the black hole, ZK = 4.8. The flow 

in the centrifugal barrier is cooler (maximum temperature T~ n~x = 0.8). Figure 1.9a 

shows the variation of the temperature and density (in unit of 10 .5 gm cm -3 to bring 

in the same plot) of the flow. Figure 1.9b shows the velocity variation. Clearly, high 

viscosity removes the centrifugal barrier completely and matter  falls in almost freely. 

Due to very short residence time, no significant change in the composition takes place. 

Only a small amount of proton capture (mainly due to liB(p, 3,)34He, 160(p, c~)13N, 

15N(p,c~)l~C, ISO(p,c~)~N, ~gF(p,c~)~eO) takes place. A small amount of deuterium 

dissociation also takes place, but it does not change the energetics significantly. Figure 
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1.9c shows the height-integrated energy release curves (units are same as in Case A.I). 

Since the contribution due to nuclear reactions (Qnur is very much smaller than the 

viscous energy release, the flow is not found to be unstable in this case. 

Case C.2: This is a test case for the proto-galactic accretion flow. In the early phase of 

galaxy formation, the supply of matter  is high, and the temperature of the flow is very 

low. The v.iscosity may or may not be very high, but we choose very low (presumably, 

radiative) viscosity (a = 10-4). The motivation is to use similar parameters as were 

used by Jin et al. (1989) while studying the nucleosynthesis in thick accretion disks. 

The central mass M = 10~M| the maximum temperature is, T~ ~x ~ 0.2 and the 

Comptonization factor Fcompt = 0.001. The temperature variation is similar to Fig. 

1.3a when scaled down by a factor of 30 (basically by the ratio of the Fco,,pt values). 

The velocity variation is similar to Fig. 1.3b and is not repeated here. Due to the 

low temperature, there is no significant change in the nuclear abundance. Note that 

since thick accretion disks are rotation dominated, the residence time was very long 

in the simulation of Chakrabarti et al. (1987) and there was significant change in 

composition even at lower temperatures. But in this case the flow radial velocity is 

very high and the residence time is shorter. The nuclear energy release is negligible 

throughout and is not shown. 

3.3 F o r m a t i o n  o f  N e u t r o n  Di sk  and N e u t r o n  Torus  

To produce neutron disk and torus we start with a relativistic flow (polytropic index 

~' = 4/3) with the low accretion rate. We use the mass of the central black hole to 

be M = 10M o throughout. We choose a very high viscosity and the corresponding 

c~ parameter (Shakura & Sunyaev 1973) is 0.2 in the sub-Keplerian regime. Due 
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Fig. 1.9. Variation of (a) ion temperature (Tg) and density (P-5) (b) radial velocity vl0, 
and (c) various forms of specific energy release and absorption rates (units same as in Fig. 
1.3d) when the model parameters are M = 100M| m = 10, a~ = 0.2 as functions of 
logarithmic radial distance (x in unit of Schwarzschild radius). See text and TABLE 1.2 
for other parameters of case C.1, considered here. Not much nucleosynthesis takes place in 
this case. 
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to poor supply of the soft photons from Keplerian disk, the Comptonization in the 

boundary layer is not complete; we assume a standard value of Comptonization fac- 

tor (Chakrabarti & Titarchuk 1995) in this regime: Fco,~p ~ 0.1, i.e., ions (in the 

radiation-hydrodynamic solution) are one-tenth as hot as obtained from the hydro- 

dynamic solutions. (For high accretion rate, rh ~> 0.3, Fcomp '~ 0.001 and ions and 

electrons both cool to a few KeV (,-~ 107K)). In the parameter regions for all cases of 

Case B as mentioned in w either neutron disk or torus may form. Here we will 

discuss these formations in detail. For the case B.5 the typical density and tempera- 

ture near the marginally stable orbit at x = 3 are 8.5 • 10 -s gm cm -3 and 7.5 • 109t( 

respectively where the thermonuclear depletion rates N~ < ~rv > for the D(~',p)n, 

4He('y, D)D and 4He(a,p)TLi reactions are given by 1.6 • 1014 gm -1 s -a, 4 • 10 -3 

gm -1 s -1 and 1.9 x 10 -12 gm -1 s -1 respectively. Here, N~ is the number density 

of the reactant elements (say for ith isotope) given as Eqn. (I.2), a is the reaction 

cross-section, v is the Maxwellian average velocity of the reactants and < ~rv > is the 

reaction rate. At these rates, the time-scale of these reactions are given by, 4 • 105sec, 

5 x 1011sec and 4 • 102~ respectively indicating that  the deuterium burning is the 

fastest of the reactions. In fact, it would take about a second to burn initial deuterium 

with YD = 10 -~. The rLi does not form at all because the 4He dissociates to D much 

faster. 

The above depletion rates have been computed assuming Planckian photon dis- 

tribution corresponding to ion temperature Tp. The wavelength APta~ck at which the 

brightness is highest at T = Tp .is shown in Fig. 1.10 in the dashed curve (in unit 

of 10 -11 cm). Also shown is the average wavelength of the photon ACo,~p,o~ (solid 

curve) obtained from the spectrum F~ ~ u -~. The average has been performed over 
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the region 2 to 50KeV of the photon energy in which the hard component is usually 

observed, 
l Jmax f~m,. F~du 
f},m,, dv 

(I.5o) 

The average where, Umin and r , , ~  are computed from 2 and 50KeV respectively. 

becomes a function of the energy spectral index a (F~ o(u-~) ,  which in turn depends 

on the ion and electron temperatures of the medium. We follow Chakrabarti & 

Titarchuk (1995) to compute these relations. We note that ,~Co,~pton is lower compared 

to IPt,,~ck for all ion temperatures we are interested in. Thus, the disintegration rates 

and other reaction rates with Planckian distribution that  we employed in all of our 

computations are clearly a lower limit. Our assertion of the formation of a neutron 

disk and torus and other elements should be strengthened when Comptonization is 

included. 

Figure 1.11a shows the result of the numerical simulation for the disk model men- 

tioned above. Logarithmic abundance of neutron Y, is plotted against the logarithmic 

distance from the black hole. First simulation produced the dash-dotted curve for tile 

neutron distribution, forming a miniature neutron torus. As fresh matter  is added to 

the existing neutron disk, neutron abundance is increased as neutrons do not fall in 

rapidly. Thus the simulation is repeated several times in order to achieve a converging 

steady pattern of the neutron disk as was described in w Although fresh neu- 

trons are deposited, the stability of the distribution is achieved through neutron decay 

and neutron capture reactions. Results after every ten iterations are plotted. The 

equilibrium neutron torus remains around the black hole indefinitely,. The neutron 

abundance is clearly very significant (more than ten per cent!). 

There are another two cases (B.3 & B.4) to have large neutron abundance where 
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the accretion rate is smaller (rh = 0.001), the viscosity is so small (a = 0.01) and 

the disk is so hot that  the sub-Keplerian flow deviates from a Keplerian disk farther 

away. The polytropic index is that  of a mono-atomic (ionized) hot gas, ~' = 5/3. The 

Compton cooling factor is as above since it is independent of the accretion rates as 

long as the rate is low (Sunyaev & Titarchuk 1980; Chakrabarti & Titarchuk 1995). 

The cooling is assumed to be very inefficient because of lower density. 

In Fig. 1.11b, we show the logarithmic abundances of proton (p), helium (4He) 

and neutron (n) as functions of the logarithmic distance from the black hole. From 

the figure existence of a neutron disk (disk consisting of neutron mainly) is very 

apparent. The neutron disk also remains stable despite of neutron decay, since new 

matter moves in to maintain equilibrium. 

3.4 Nucleosynthesis Induced Instability? 

Chakrabarti et al. (1987), while studying nucleosynthesis in cooler, mainly rotating 

disks, suggested that  as long as the nuclear energy release is smaller than the gravi- 

tational energy release, the disk would be stable. Here, we find that  this suggestion 

is valid in presence of the advective term also. Indeed, even when momentarily the 

nuclear energy release or absorption is as high as the gravitational energy release 

(through viscous dissipation), the disk may be stable. For instance, in Case A.1 (Fig. 

1.3d) at around x = 4 these rates are similar. Yet the velocity, temperature and 

density distributions (Fig. 1.3a-b) remain unchanged. In Case A.3, Qnuc is several 

magnitudes greater than viscous energy release Q+ and the thermodynamic quantities 

are indeed disturbed to the extent that the flow with same injected quantities (with 

the same density, velocity and their gradients) at the outer edge does not become 
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supersonic at the inner edge. In these cases, the flow must be unsteady in an effort 

to search for the 'right' sonic point to enter into the black hole. On the other hand, 

ultra-hot cases like B.2 show deviation in non-shocked solution while the shocked 

solution is unstable. 

The general behaviour suggests that the present model of accretion disks is more 

stable under nuclear reactions compared to the earlier, predominantly rotating model. 

Here, the radial velocity (v) spreads energy release or absorption radially to a distance 

vrD(p, T) = vND/IVD cm, where, ND is the number density of, say, Deuterium and 

ND is its depletion rate. For a free fall, v ~ x. -1/2, while for most nuclear reactions, 

rD(p, T) ,,, x n, with n > >  1 (since reaction rates are strongly dependent on density 

and temperature). Thus, Qnuc for the destruction of a given element spreads out 

farther away from the black hole, but steepens closer to it. Large dQ~o/dx causes 

instability since the derivatives such as dv/dx at the inner regions (including the sonic 

point) become imaginary. 
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4 Impl icat ions  of the Nuc leosynthes i s  in the Ac- 
cret ion Disk 

So far, we explored the possibility of nuclear reactions in inner regions of the accre- 

tion flows. Because of high radial motion and ion pressure, matter deviates from a 

Keplerian disk close to the black hole. The temperature in this region is controlled 

by the efficiencies of bremsstrahlung and Comptonization processes (Chakrabarti & 

Titarchuk 1995; Chakrabarti 1997) and possible heating by magnetic fields (Shapiro 

1973): for a higher Keplerian rate and higher viscosity, the inner edge of the Keple- 

rian component comes closer to the black hole and the sub-Keplerian region becomes 

comer (Chakrabarti & Titarchuk 1995). The nucleosynthesis in this soft state o[ the 

black hole is quite negligible. However, as the viscosity is decreased to around 0.05 or 

less, the inner edge of the Keplerian component moves away and the Compton cool- 

ing becomes less efficient due to the paucity of the soft photons. The sub-Keplerian 

region, though cooler by a factor of about Fcompt = 0.01 to 0.03 from that of the 

value obtained through purely hydrodynamical calculations of Chakrabarti (1996a), 

is still high enough to cause significant nuclear reactions to modify compositions. 

The composition changes very close to the black hole, especially in the centrifugal- 

pressure-supported denser region, where matter is hotter and slower. 

The degree of change in compositions which takes place in the Group A and 

B calculations, is very interesting and its importance must not be underestimated. 

Since the centrifugM-pressure-supported region can be treated as an effective surface 

of the black hole which may generate winds and outflows in the same way as the 

stellar surface (Chakrabarti 1998a,b,c; Das & Chakrabarti 1999), one could envisage 

that the winds produced in this region would carry away a modified composition and 
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contaminate the atmosphere of the surroun(ting stars and the galaxy in general. 

One could estimate the contamination of the galactic metalicity due to nuclear 

reactions. For instance, in Case A.1, 12C, leO, 2~ 3~ 44Ca and 5~5'r are found to 

be over-abundant in some regions of the disk. Assume that,  on an average, all the N 

stellar black holes are of equal mass M and have a non-dimensional accretion rate of 

around rh ,-~ 1 (rh = 3;/'//t;/~.dd). Let AY/ (few times 10 -a) be the typical change in 

composition of this matter  during the run and let f~ be the fraction of the incoming 

flow that  goes out as winds and outflows (could be from ten percent to more than a 

hundred percent when disk evacuation occurs,, see Das & Chakrabarti, 1999), then in 

the lifetime of a galaxy (say, 101~ the total 'change' in abundance of a particular 

species deposited in the surroundings by all the stellar black holes is given by: 

< AY/>sm~n="~ 1 0 - 7 ( 1 ) ( 1 @ ) ( ~ ) ( 0 @ 1 ) ( 1 0 - ~ o ) ( 1 _ _ ~ y r ) ( l O 1 1 M  |  Mg~. )-1. (I.51) 

The subscript 'small' is used here to represent the contribution from small black holes. 

We also assume a conservative estimation that there are 106 such stellar black holes 

in a galaxy, the mass of the host galaxy is around 1011Mo and the lifetime of the 

galaxy during which such reactions are going on is about 101~ We also assume 

that AY/--, 10 .3 and a fraction of ten percent of matter  is blown off as winds. The 

resulting < AY/>,-~ 10 .7 may not be very significant if one considers averaging over 

the whole galaxy. However, for a lighter galaxy < AY/ > could be much higher. For 

example, for Mgal = 109Mo, < AY; >,-~ 10 -5. This would significantly change the 

average abundances of a~ 44Ca and 52Cr. On the other hand, if one concentrates 

on the region of the outflows only, the change in abundance is the same as in the 

disk, and should be detectable (e.g., through line emissions). One such observation 

of stronger iron-line emission was reported for SS433 (Lamb et al. 1983; see also 
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Arnould & Takahashi 1999, for a recent discussion on galactic contaminations). 

When we consider a case like A.3, we find that 12C, leO, 2~ and 2ssi are increased 

by about 10 -3 in some regions. In this case, the average change of abundance due to 

accretion onto the massive black hole situated at the galactic centre would be, 

10 s rh AY/ f~ M alTg Mgal )-1. (I.52) 
< AY// >big -~ few x - (T)(1--0-75)(b-7-i-)(106M ~ )(~-~--TdYr)(IOllM| 

Here, we have put 'big' as the subscript to indicate the contribution from the massive 

black hole. Even for a lighter galaxy, e.g., of mass Mg~l = 109M| AY/=  10 -6 which 

may not be significant. If one considers only the regions of outflows, contamination 

may not be negligible. 

A few related questions have been asked lately: Can lithium be produced in black 

hole accretion? We believe not. The spalletion reactions (Jin 1990; Yi & Narayan 

1997) may produce such elements assuming that a helium,beam hits a helium target in 

a disk. Using a full network, rather than only He-He reaction, we find that the hotter 

disks where spalletion would have been important also photo-dissociate (particularly 

due to the presence of photons from the Keplerian disk) helium to deuterium and then 

to proton and neutron before any significant lithium could be produced. Even when 

photo-dissociation is very low (when the Keplerian disk is far away, for instance), or 

when late-type stellar composition is taken as the initial composition, we find that 

the 7Li production is insignificant, particularly if one considers more massive black 

holes (M ,-, 10 s M| 

Recently, it has been reported by several authors (Martin et al. 1992; 1994; 

Fillipenko et al. 1995; Harlaftis et al. 1996) that a high abundance of Li is observed in 

late type stars which are also companions of black hole and neutron star candidates. 

This is indeed surprising since the theory of stellar evolution predicts that these 
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stars should have at least a factor of ten lower Li abundance. These workers have 

suggested that this excess Li could be produced in the hot accretion disks. However, 

in Mukhopadhyay (1998, 1999), Chakrabarti & Mukhopadhyay (1999) as well as in 

our Cases A and B computations we showed that  Li is not likely to be produced in 

accretion disks. Indeed, we ran several cases with a mass fraction of He as high as 

0.5 to 0.98, but we are still unable to produce Li with a mass fraction more than 

10 -l~ Recent work of Guessoum & Kazanas (1999) agrees with our conclusion that 

profuse neutrons would be produced in the disk. They farther suggested that these 

energetic neutrons can produce adequate Li through spalletion reactions with the C, 

N, and O that  is present in the atmosphere of these stars. For instance, in Cases B.I 

and B.3 we see that  neutrons could have an abundance ,-~ 0.1 in the disk. Since the 

production rate is similar to what Guessoum & Kazanas (1999) found, Li should also 

be produced on stellar surface at a similar rate. 

What  would be the neutrino flux on earth if nucleosynthesis does take place? The 

energy release by neutrinos (the pair neutrino process, the photoneutrino process and 

the plasma neutrino process) can be calculated using the prescription of Beaudet et 

al. (1967), (see also Itoh et M. 1996) provided the pairs are in equilibrium with the 

radiation field. However~ in the case of accretion disks, the situation is significantly 

different from that  inside a star (where matter is in static equilibrium). Because of 

rapid infM1, matter  density is much lower and the infall time-scale could be much 

shorter compared to the time-scale of various neutrino processes, especially the pair 

and photo-neutrino processes. As a result, the pair density need not attain equilib- 

rium. One important thing in this context is the opacity (rp~ir) of the pair process. 

Following treatments of Colpi et al. (1984) we find that "rp~ir < 1 for all our cases, and 
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therefore pair process is expected to be negligible (for Case B.2, Tpm r is the highest 

[0.9]). Park (1990a,b), while studying pair creation processes in spherical accretion, 

shows that  even in the most favourable condition, the ratio of positron (n+) and ion 

(n,) is no more than 0.05. A simple analysis suggests that neutrino production rate 

is many orders of magnitude smaller compared to what the equilibrium solutions of 

Beaudet et al. (1967) and Itoh et al. (1996) would predict. Thus, we can safely 

ignore the neutrino luminosity. 

When the nuclear energy release or absorption is comparable to the gravitational 

energy release through viscous processes, we fi.nd that the disk is still stable. Stability 

seems to depend on how steeply the energy is released or absorbed in the disk. This in 

turn depends on 7Dr, the distance traversed inside the disk by the element contribut- 

ing the highest change of energy before depleting significantly. Thus, an ultra-hot 

case (Group B) can be stable even though a hot (Group A) case can be unstable as 

we explicitly showed by including nuclear energy release. In these 'unstable' cases, we 

find that  the steady flow does not satisfy the inner boundary condition and becomes 

subsonic close to the horizon. This implies that  in these cases the flow must become 

non-steady, constantly searching for the supersonic branch to enter into the black 

hole. This can induce oscillations as have been found elsewhere (Ryu et al. 1997). 

In such cases, one is required to do time dependent simulations (e.g., Molteni eta] .  

1994, 1996) including nuclear reactions. 
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1 I n t r o d u c t i o n  

Here we study the interaction of particles having half-integral spin (which may or 

may not have charge) with a black hole. We are familiar with Dirac equation in 

fiat space by which we can investigate the behaviour of half-integral spin particle. 

With the introduction of general relativistic effects, the form of the Dirac equation is 

modified. For different background geometry like Kerr, Schwarzschild etc., the form 

of the Dirac equation and the corresponding solution will be expected to be different. 

In 1972, Teukolsky wrote down the Dirac equation in Kerr geometry (Teukolsky 

1972). Chandrasekhar (1976) separated it into radial and angular parts in 1976. 

Later Chakrabarti (1984) solved the angular equation. In 1999, Mukhopadhyay ~ 

Chakrabarti (1999) have solved the radial Dirac equation in Schwarzschild geometry in 

a spatially complete manner. Here we will discuss these ,developments systematically 

and present some solutions. These work also can be done for charged black holes 

(Page 1976; Mukhopadhyay 2000). 

After writing the Dirac equation in curved space-time particularly in Kerr ge- 

ometry using Newman-Penrose formalism (Chandrasekhar 1983) it was modified 

and generalised. From the same equation of Teukolsky (1972), Dirac equation for 

Schwarzschild metric (Weinberg 1972), where the central black hole is static can be 

studied just by putting the angular momentum parameter a of the black hole to zero. 

Following the separation of Dirac equation by Chandrasekhar (1976) solution of angu- 

lar part was done by Chakrabarti (1984). Mukhopadhyay (1999), Mukhopadhyay & 

Chakrabarti (1999, 2000), Mukhopadhyay (2000) and Chakrabarti & Mukhopadhyay 

(2000) have solved radial part of the Dirac equation. Also Jin (1998) has studied the 

scattering phenomena of spin-half particle from Schwarzschild black hole. Following 

i17 



those approaches here we shall introduce the spatially complete solution of radial 

Dirac equation. Combined with the solution of the angular equation mentioned be- 

fore, complete solution of Dirac equation can be obtained. Far away from the black 

hole the modified Dirac equation for Kerr and Schwarzschild geometry (Weinberg 

1972; Chandrasekhar 1983) and the interaction of particles with space-time reduce 

into that of the fiat space. 

One of the most important solutions of Einstein's equation is that of the spacetime 

around and inside an isolated black hole. The spacetime at a large distance is fiat 

and Minkowskian where usual quantum mechanics is applicable, while the spacetime 

closer to the singularity is so curved that no satisfactory quantum field theory could 

be developed as yet. An intermediate situation arises when a weak perturbation (due 

to, say, gravitational, electromagnetic or Dirac waves) originating from infinity im- 

pinges on a black hole, interacting with it. The resulting wave is partially transmitted 

into the black hole through the horizon and partially scatters off to infinity. In the 

linearized ('test field') approximation this problem has been attacked in the past by 

several authors (Teukolsky 1972, 1973; Chandrasekhar 1976, 1983). The master equa- 

tions of Teukolsky (1972) which govern these linear perturbations for integral spin 

(e.g., gravitational and electromagnetic) fields were solved numerically by Press & 

Teukolsky (1973) and Teukolsky & Press (1974). Particularly interesting is the fact 

that whereas gravitational and electromagnetic radiations were found to be amplified 

in some range of incoming frequencies, Chandrasekhar (1983) predicted that no such 

amplifications should take place for Dirac waves because of the very nature of the 

potential experienced by the incoming fields. However, these later conclusions were 

drawn by Chandrasekhar using asymptotic solutions. Mukhopadhyay & Chakrabarti 
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(2000) and Chakrabarti & Mukhopadhyay (2000) have revisited this important prob- 

lem not in asymptotic way but in a spatially complete manner to study the nature of 

the radial wave functions as a function of the Kerr parameter, rest mass and frequency 

of incoming particle. 

Here we will first indicate how Dirac equation in curved space-time can be written 

using Newman-Penrose formalism (Chandrasekhar 1983). Newman-Penrose formal- 

ism is one of the tetrad formalisms where null basis are chosen instead of orthonormal 

basis. To fulfill the understanding of Dirac equation in this formalism we also need 

to know the 'Spinor Analysis' (Chandrasekhar 1983). 

1.1 Spinor Analysis 

In Minkowski space we consider a point x i (i = 0, 1,2, 3) on a null ray whose norm is 

defined as 

(xo)2 _ ( x l ) 2  _ ( p ) ~  _ ( x 3 ) 2  = 0.  ( I I . 1 )  

Now, we consider two complex numbers ~o and ~1, and, their  complex conjugate 

numbers ~o' and ~1' in terms of which each point can be written as, 

1 0,--o' ~1~1') (II.2a) ~o= v~(~ ~ + 

51 = ~ 2 ( ~ o ~ ,  + r  (II.2b) 

~ _ _ ~__(~oz~, _ ~ o , )  - v ~ , ~  ~ (II.2c) 

~3 = 1 (~o~O' r  (II.2d) 
Vz 

Conversely, we can write, 

ffo~o, = ~2(xo + x3) (II.3a) 
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Let, 

:~(x + ~x ~) 

~I~1 '  I 0 = v~(~  - x~). 

~A A B 

(II.3b) 

(II.3c) 

(II.3d) 

II.4a) 

A ~ FB' SA' = 6 B ' ~  (II.4b) 

where, (A, B, A', B ~ = 0, 1), are the linear transformations in complex two-dimensional 

spaces. The transformation of x ~ is defined as, 

x .  = f l }x: .  (II.5) 

Now, using Eqns. (II.2) and (II.3) we can write, 

o 1 o o - o , ; o ,  - o , - 1  ,~ 1 1 o 1. , .1 \ . . . -117o , 1 , - 1 ' -  
- )(~o,~ + ~1,~ ) + + + ~1,~ ) X.  ~r~(O/0~  -~ OL0~ 1 ~ ( O ~ 0 ~  O~1~ )(O~0, ~ 

1 ,  0 _ 0  ~ 1 - 1 '  0 1. 0 - 0 '  - 1 '  
--- ~(OL00/0, + O~00~0,)(X -~- X 3) -~- ~(O/10~ 1, + O/~O/1,)(X 0 --  X 3) 

1 . 0_01 1-11 1 1 . 0-01 1-11 1 +~(~o~1 ,  + ~o~ l , ) ( z  + ix 2) + ~C~1~o, + ~ l~o , ) (x  - i x 2 )  �9 (iI.6) 

1 2 and 3 with a 's  and x's. Similarly, we can write down the relations~ between x.,  x. x. 

Therefore, keeping in mind Eqn. (II.5) we can write, 

Zo + flo o-o, ^ 1:1, 
---- O~00~0, -~- t~0c~0, , 

Zo Zo o-o, 1-1, 
_ _  - -  O~10/11 1 t- O~lOLll , 

- -  = 0~0(21, Jr- ,..tOt~lp , 

~ o + i ~ o  o-o, 1-1, 
----- O/10/0, --~ ~IOL0 , . 
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Now, imposing the condition tha t  the t ransformat ion Eqn. (II.5) is Lorentzian we 

can write, 

( zo )~  _ ( zo )~  _ ( zo )~  _ ( zo )~  = 1. 

So, 
C~0=01 ~1  ~. 1' ~0,~,0 '  - 1 = 1 '  

0r , -~- ~ 0 ~ 0  , , ~ 0 ~ 1  , -~" ~0r , 
,~0,~0' _1=1' ,,0~,0' _1=1' = 1. (II.7) 
~ 1 ~ 0  , -~- (9~1~0 , ~ 1 ~ 1  , "~ CZlO~ll 

This gives, 

I II -~176 
~o ~o ~o, ~ ,  

-1' -1' -= A/~ = 1. (II.8) 

Now we consider A = /~ = 1, so individually, each t ransformat ion of ~ is Lorentzian. 

So we can conclude if the t ransformat ion Eqn. (II.5) is Lorentzian, the necessary 

condition is, the t ransformat ion Eqn. (II.4) is also Lorentzian. 

Now we define spinors ~A A' -A' B' , riA' of rank one as ~A = o~A~B and 77, = a s , ?  ] , 

( A , A ' , B , B ' =  0), where o [I = I ; 1. Since ~.~4 and ~A are two spinors of 

same class, 

{0 ~l = ~ori1 _ ~lrio (II.9) r/0 ri1 

which is invariant  under unimodular  t ransformation,  i.e., 

eAB~Ari B ~ invariant (II.10) 

where, CAB is Levi-Civita  symbol. Here as in the case of tensor analysis r and CA'B' 

are used to lower the spinor indices as, ~A = ~OeCA. 

Now, using above information the representat ion of position vector x i can be 

wri t ten as 

~o~o' ~o~1' I 1 I x O + x  a x l + i x  2 (II.11) 
x i  ~ ~ ,~o,  ~1~1, = ~ x l  _ ix~  xo _ x3 

121 



General ly any vector X i can be wri t ten in terms of spinor of rank two as, 

~oo' ~o1' I 1 X ~ + X 3 X 1 + i X  2 x A  B, 
x i  ~ ~10' ~11' : , ~  X 1 _ i X  2 X 0 _ X 3 "- �9 

So a 4-vector is associated with a hermit ian  mat r ix  such tha t ,  

( x ~  - ( x ' 7  - ( x ~ )  ~ - ( x ~ )  ~ = ( x  ~ + x ~ ) ( x  ~ - x ~) - ( x  I + / x ~ ) ( x  I - ~ x  ~) 

O01 ~, t-I11 r r  r162 = 2(~oo'(11'  _ ~01 '~0 ' )  = (~ ~oo, + ~ , , ~  + ~,o,~ + ~ ~o,, ;  = XAB,X AB' 

From the definition of norm, we can write it in two different representations:  

g i j X i X  j = s 1 6 3  CD'.  

Therefore, we can t ransform X i ~ X As'  as (Chandrasekhar  1983), 

X i .-- 6 r~BIX  AB'  

x A B  ' ._ (7AB' x i  

(II.12) 

where, a AB' and a~s ,  are nothing but  Pauli matr ices  and their  conjugate matrices 

with a factor 1 

A curved space-t ime is locally Minkowskian. At each point of space-time an 

or thonormal  Dyad basis can be set up as ((A) and ((A',) ( a , a '  = 0,1 and A , A ' =  0,1) 

for spinors. 

We define, ((A) = o A and (~) = l a. The condition of or thonormal i ty  is 

CABoAI B "- o~ - oll ~ = os l  s = --oAIA = 1. 

Also it is clear tha t ,  t(~)(b)rA p S  __ cAB ~(~)~(b) . Then  the null vectors are defined as 

I i ++ oA5 s ' ,  m i ++ oar s ' ,  rh i ++ IA6 B' ,  n i +4 IA[ B'.  

Here, vectors obey relations of null tetrads such as, 

lini = 1, mlrhi = --1 and all other products give zero. 
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In this way using dyad basis we can set up four null vectors which are basis of 

Newman-Penrose formalism. Using Eqn. (II.14) we can write the basis explicitly as 

i i i ~'A "~B' = O . ~ B , o A 6 B  ' (II.15a) 
= O ' A B , ~ ( 0 )  (~(0,)  

m i i .~A ~B' " - = O'AB,~(o)~O, ) = O"AB,oAI B',  (II.15b) 

~ i  _~ ~.A 7B' = O.iAB,IA6B' (II.15C) 
----- O-AB, ~(I) {~(0, ) 

n i i .~A ;B' ' - = CTAB,~(O~,(V)= O"AB,IAI s ' .  (II.15d) 

Thus, in Newman-Penrose formalism the Pauli matrices change their forms as (Chan- 

drasekhar 1983), 
1 I i 

(TAB, 1 n i  

= -~ - - m i  

m i 

n i 

--rhi 
Ii 

Therefore in this basis, the directional derivatives can be written as, 

D = l~Oi, A___ = niOi,  5 = miOi  and 5* = rhi0i. 

Thus, the spinor equivalents of Newman-Penrose formalism are 

000, = D,  (~11' "-- A ,  (~01' : 5 ,  (~10' "-- 5".  

Due to the reason, as explained earlier Vi ~ V A B , ,  so we can write, 

(II.16a) 

(II.16b) 

V i Z  j .-~ Z j ;  i 4-+ V A B , X c  D, = X C D , ; A B ,  , 

therefore, 

XCD';AB'  = r (II.17) 

For covariant derivatives spin coefficients F are introduced. In the Newman-Penrose 

formalism these different coefficients are assigned in terms of special symbols which 

are given in TABLE II.1 below (Chandrasekhar 1983): 
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TABLE II.1 

F(a)(b)(c)(d,) 

(a)(b) O0 O1 or 10 11 
(c)(d') 

Off ~ e 7r 

10' p a A 
01' ~r /3 
11' r 7 u 

1.2 Dirac Equation and its Separation 

Before going into discussion, we should ment ion about the unit  of the system�9 Here 

'we have chosen throughout  h = c = G = 1, where h = Plank constant,  c = speed of 

light and G -- gravi tat ional  constant.  

The  Dirac equat ion in flat space using Newman-Penrose formalism can be writ ten 

as~ 

W~B,OiP A + i#,OB, = 0 ( I I .18a)  

0 .i ~ . 0  A AS' ,'~ + i# ,PB ,  = 0. (II.18b) 

Here, pA  and r A' are the pair of spinors. # , / v ~  is the mass of the particles and ~r~B, 

is nothing but  Pauli matr ix,  because l /v/ '2  factors are canceled in the equation. 

In curved space t ime Dirac equation reduces to 

�9 - C  I cr~s,P;A + *#,Q co,B, = 0, (II.19a) 

i A �9 - C  I 
O'AB,Q;~ + z # , P  co,s, = 0, (II.19b) 

where, Cr~B, is same as defined in Eqn. (II.16a). 

Now, consider B '  = 0, then Eqn. (II.19a) reduces to 

i 0 i 1 �9 - 1  t 
Croo, P;,; + %o,P;,; - z # . Q  = o 
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or, 

Therefore, 

(Ooo, P ~ + ['~00,P b) + (O,o,P' + ['~10,P b) " - "  - z# ,Q = o. 

(D + Flooo, - Foolo,)P ~ + (5" + ['11oo' - ['ollo')P 1 - i l l ,@'  = 0. (II.20) 

Similarly, choosing B' = 1, we can get another similar type of equation and then we 

can get corresponding conjugate equation of both by interchanging P and Q. Now 

choosing, 

F1 = po, F2 = p1, G1 = @' ,  G2 = _Oo' 

and replacing various spin coefficients by their named symbols given in TABLE II.1 

we get the the Dirac equation in Newman-Penrose formalism in its reduced form as 

(Chandrasekhar 1983; Mukhopadhyay 1999), 

(D + e - p)F~ + (6" + rr - o~)F2 = i#,G~, (II.21a) 

( 4  + ~ -  .y)& + (6 + 9 -  ,-)F, = i~.a~, 

(D + e* - p*)a2 - (6 + ~r* - o ~ * ) G 1  "- i~.F2, 

( 4  + ~" - ~ " ) a ,  - (5* + 9 "  - , - * )a~ = i t . F , .  

(II.21b) 

(II.21c) 

(II.21d) 

1 .2 .1  B a s i s  V e c t o r s  o f  N e w m a n - P e n r o s e  f o r m a l i s m  in  t e r m s  o f  K e r r  G e -  
o m e t r y  

The contravariant form of Kerr metric is given as (Chandrasekhar 1983), 

E2/p2A 0 0 2 a M r / p 2 A  ) 
�9 . 0 - A / p  2 0 0 (II.22) 

g'J = 0 0 - 1 / p  2 0 
2 a M r / p 2 A  0 0 - ( A  - a2sin20)/p2Asin20 
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where, a is specific angular momentum of the black hole, M is the mass of the black 

hole, p2 = r 2 + a2cos20 (should not be confused with the spin coefficient F(o)(0)(1)(o,) = 

p ) ,  p 2  = ( r 2  q_ a 2 ) 2  _ a 2 / k , s i n 2 • ,  /k --- r 2 q- a 2 - -  2Mr.  

dt _ (r2+= =) E, ~ = In Kerr geometry, the tangent vectors of null geodesics are: ~ - /, 

+E ,  ~de __ 0, dCd~ ---- gE ,  = where r is the proper time (not to be confused with spin 

coefficient F(o)(o)(1)(1,) = r). Here E is energy of the particle (Chandrasekhar 1983). 

Now, the basis of Newman-Penrose formalism can be written in Kerr geometry as 

(in tetrad form) (Chandrasekhar 1983) 

= 0 ,  - - a  ]/~ sin2 0/ ,  (II.23a) 

1 
ni = (A ,p~ ,O , -aAs in20) ,  (II.23b) 

2p 2 

ts~[iasinO, O, _p2, _ i ( r  2 + a2)sinO], (II.23c) m i  

~ ( r  2 + a2, A, 0, a), (II.23d) l i =  

n i  1 = 2p2(r ~ + a2, - A ,  O, a), (II.23e) 

1 
m' - tSv/~(iasinO, O, 1, icosecO), (II.23f) 

~ and rh i are nothing but complex conjugates of mi and m i respectively and fi = 

r + iacosO. 

1.2.2 S e p a r a t i o n  of D i rac  E q u a t i o n  into R a d i a l  and  A n g u l a r  par t s  

It is clear that the basis vectors basically become derivative operators when these 

are applied as tangent vectors to the function e i(zt+mr Here, a is the frequency of 

the particle (not to be confused with spin coefficient F(0)(0)(o)0') = or) and m is the 

azimuthal quantum number (Chakrabarti 1983). 
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Therefore, we can write, 

/' D= / : )0 ,  g = A =  a t 1 t r ~  ( ~ * - -  1 
= - -  - ~ / 9 o ,  r~  = ~ = T,7~Z;o,  = - ~ . - - ~ Z ; o ,  

where, 

i K  - M (II.24a) D,  = 0 r +  -~- + 2 n r ~ ,  

7?~ = O~ - i K  + 2 n r -  M A A ' (II.24b) 

s = Oo + Q + ncotO (II.25a) 

/2~ = 00 - Q + ncotO. (II.25b) 

K = (r 2 + a2)a  + a m ,  Q = aasin0 + mcosec0 (Chandrasekhar 1983; Chakrabarti & 

Mukhopadhyay 2000). 

The spin coefficients can be written as a combination of basis vectors in Newman- 

Penrose formalism which are now expressed in terms of elements of different compo- 

nents of Kerr metric. So we are combining those different components of basis vectors 

in a suitable manner and get the spin coefficients as, 

a; = r - -  )~ - -  b' - -  ~ - -  0 ,  (II.26a) 

and = 3 = =  ,co,0 io,  o 

iasinO A r - M  f l , .  (II.26b) r - p~,/~, # = -2--3-~, 7 = # + -G-~-p~, c~ = lr - 

Using the above definitions and results and choosing fl  = fs*F1, g2 =/5G2, f2 = F2, 

gl = G1 the Dirac equation is reduced to 

T)ofl  + 2-112s = ( i # , r  + a# ,cosO)g l ,  (II.27a) 

-1/2 r ( i # . r  a# , cosO) f2 ,  7?og2 - 2 s = - 

(II.27b) 

(II.27c) 
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ADI/2gl + 21/2s = - 2 ( i # , r -  a#.cosO)fl. (II.27d) 

Now we will separate the Dirac equation into radial and angular parts by choosing, 

fl(r,O) = R-,/2(r)S-1/2(O), f2(r,O)= R1/2(r)S1/2(O), 

gl( r ,  0 ) - -  R1/2(r)S_I/2(0) ,  g2(r, 0 ) =  R_1/2(r)S1/2(O). 
Replacing these f~ and g4 (i = 1,2) into Eqn. (II.27) and using separation constant 

A we get (Chandrasekhar 1976), 

/:�89 = -(A - amp cos 0)S_�89 

c[s_, = +  m cosO)S+  
2 2 

! . 1 

A~T)0R_I_ : (A + ~mpr)/k~R+�89 2 

1 t 1 
A~TPoA~R+�89 = (A - impr)R_�89 

(II.28a) 

(n.2Sb) 

(U.29a) 

(II.29b) 

where, mp is the mass of the particle which is nothing but 21/2#,. Also, 21/2R_1/2 is 

redefined as R-I~2. 

Eqns. (II.28) and (II.29) are the angular and radial Dirac equation respectively 

in coupled form with the separation constant A (Chandrasekhar 1983). 
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2 S o l u t i o n  

2.1 Solution of Angular Dirac Equation 

Decoupling Eqn. (II.28) we obtain the eigenvalue equation for spin-�89 particles as 

amp sin 0 -t ] 
- -  a r / ) , p  c o s  2 s189163 + A ~arn--~cosOs189 + (A2 2 2 0) S_~ = 0. (II.30) 

Similarly, one can obtain decoupled equation for spin+} particles. Here, the separa- 

tion constant A is considered to be the eigenvalue of the equation. The exact solutions 

of this equation for A and S_! are possible in terms of orbital angular momentum 
2 

quantum number l and the spin of the pargicle s when the parameter pl = 2a = 1. 
17 

When the angular momentum of the black hole is zero i.e., Schwarzschild case, the 

equation is reduced to such a form that its solution is nothing but standard spherical 

harmonics such as (Newman & Penrose 1966; Goldberg et al. 1967), 

S_1/2(0)e imr =_�89 ]~m(0, r (II.31) 

The eigenvalue i.e., the separation constant can be solved as, 

A 2 = (l + 1/2) 2. (II.32) 

Similarly, for spin+} particle one can solve S+1/2 as 

s+,12(o)r Yz (0, r (II.33) 

with same eigenvalue A. 

For any non-integral Is[, solutions are (Newman & Penrose 1966; Goldberg et al. 

1967) 

S*8(O)e i~r =+s Yzm(0, 4), (II.34) 
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A 2 = (l + I s l ) ( / -  Is[ + 1). (II.35) 

In the case of Kerr geometry, when a 7 ~ 0 the equation can be solved by perturbat ive 

procedure (Chakrabar t i  1984) with per turbat ive  parameter  aa. The solution for 

p~ = m p / a  = 1 and s = 4-�89 is (Chakrabart i  1984) 

where, 

and 

1 [ y2 ] (II.36) 
A 2 = ( / +  )2 + a a ( p +  2m) + a2(r2 1 -  2(l + l) + a~r x , 

a o y  
�89 = �89 + 2 ( / +  1) + acrx �89 (II.37a) 

_!&,~ = _~_Ytm - acry _ ~_Yt+lm (II.37b) 
2 ~ 2 ( / + l ) + a a x  2 

p =  F(l , l ) ;  x = F(l  + l , l  + l); y = F ( l , l + l )  (II.38) 

F(ll,12) = [(2/2 + 1)/(2/1 + 1)]�89 < 121mOlllrh > [</21 01/1 ~ > 

1 1 
< 121 - >] .  ( I I .39)  

with < .... I.. > are the usual Clebsh-Gordon coefficients. 

If p l r  1 then exact solution is not possible. In those cases the analytical  expres- 

sion of eigenvalue and angular wave-function are found as infinite series and not in a 

compact  form as the case of Pl = 1 . 

From the general convergence of series expansions one can t runcate  the infinite 

1 1 and series upto certain order for part icular  values of l, s and m. For l = 7, s = - 3  

1 m = - 7 ,  up to third order in aa,  one obtains (Chakrabar t i  1984), 

, S ,  

A 2 = (l + ~)2 + a o f l ( l , m )  + (ao)2f2( l ,m)  + (ao')3f3(1, m),  (II.40) 

= - s i n O -  s i n - ~ -  
2 2 
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+52-(acr)2(1-p~) [sin ~0 os~n~" 20~cos 30~+"  . 0 40] 
2 - -  

asm-~cos ~] (II.41) 

Here, f l ,  f2, f3 are functions of l. and m. The accuracy of eigenvalue and eigenfunction 

decreases as aa --+ 1. 

2.2 Solution of Radial Dirac Equation 

In the radial equation,  independent  variable r is extended from 0 to oo. For mathe- 

matical  simplicity we change the independent  variable r to r .  as 

r .  = r + _ ~_ log 1 - - 1 (II.42) r+ _ r+ - ~ log 

(for r > %) ,  here in new r .  co-ordinate system horizon r+ is shifted to - o o  unless 

a <_ 2~+  (Chandrasekhar  1983), so the region is extended from - c o  to co. We 
1 

also choose R_~_I = P_7,, A~R+�89 = P+�89 Then we are defining 

(~ + imp,') = exp(~iO),/(~2 + ,~r ~) 

and 

P+�89162189 

P_~--r189 exp[+li t a n - l ( - ~ ) ] .  

Finally choosing, 

z• = r189 i r189 

and combining the differential Eqns. (II.29a-b) we get (Chandrasekhar  1983; Mukhopad- 

hyay & Chakrabar t i  2000), 

- W Z+ = iGZ_, (II.43a) 

131 



and 

where, 

and 

W = 

( d  + W)  Z_ -icrZ+, (II.43b) 

= r ,  +~-~--~tan-l(m---~-~) 

m2r2)a/2 A�89 = + ..-~- , 

where, w 2 - K ~ o  
o" 

Now decoupling Eqns. (II .43a-b) we get, 

(II.44) 

= V~Z• (II.45) 

where, 
dW 

V~: = W2 :t= ~ 
dG 

and § is extended from - o o  (horizon) to +o~. 

(n.4o) 

The Eqn. (11.45) is nothing but one dimensional SchrSdinger equation (Davy- 

dov 1976) with potentials proportional to V+ and the energy of the particle pro- 

portional to a 2 (since the system is dimensionless) in Cartesian co-ordinate system. 

Now we will describe about corresponding solution (Mukhopadhyay & Chakrabarti 

1998; Mukhopadhyay & Chakrabarti  1999; Mukhopadhyay 1999; Mukhopadhyay 

2000; Mukhopadhyay & Chakrabarti  2000; Chakrabarti  & Mukhopadhyay 2000). 

Like transformation from r to r ,  as is described previously, by transformation 

of the variable from r to #, the horizon is shifted from r = r+ to ~, = - o c  unless 

cr <_ ~ = -am/2Mr+ (Eqn. II.42). If a E G,, super-radiation is expected for 

particles with integral spins but not for those with half-integral spin (Chandrasekhar 

1983). Thus, we concentrate on the region where, cr > (rs. 
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The choice of parameters is generally made in such a way that  there is a signif- 

icant interaction between the particle and the black hole, i.e., when the Compton 

wavelength of the incoming wave is of the same order as the outer horizon of the Kerr 

black hole. Similarly, the frequency of the incoming particle (or wave) should be of 

the same order as inverse of light crossing time of the radius of the black hole. These 

yield (Mukhopadhyay & Chakrabarti 1999), 

m,  ,-0 a ,-, [M + v~M 2 - a2)] -1. (II.47) 

Thus, we need to deal with quantum (primordial) black holes to get 'interesting' 

results. The physical mass of those black holes of the order of 1018gm, obviously, 

which do not form through supernova explosions. These black holes might be formed 

in early Universe as a result of the perturbation in the homogeneous background 

density field (Shapiro & Teukolsky 1983). 

Now, total parameter region is divided into two parts in terms of rap and ~r. As 

2 (unit is dimensionless), if we choose a < rap, far away from the black hole Ve ~ rnp 

then particle can not enter into the potential field (Mukhopadhyay & Chakrabarti 

1999). So the parameter space is divided into two parts accordingly. Then for the 

region a _> rap, it is divided into two sub-regions whether the peak of the potential 

barrier (Vm) is greater than a 2 or not (Mui~hopadhyay & Chakrabarti 1999). In the 

region where Vm > ~2 if (7 ~_ crs then potential barrier diverges at a point defined as 

r 2 = a s + ~ (Chandrasekhar 1983). This diverging potential is important for super- 

radiation for integral spin particle but for spin-half particle super-radiation is absent 

(Chandrasekhar 1983). So there are two cases of interest: (1) the waves do not 'hit '  

the potential barrier and (2) the waves do hit the potential barrier. First, we replace 

the potential barrier by a large number of steps. Then we treat it as the step-barrier 
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problem in quantum mechanics (Mathews & Walker 1970; Davydov 1976). Figure 

II.1 shows one such example of the potential barrier V+ (Eqn. II.46) which is drawn 

for a = 0.5, r% = 0.8 and a = 0.8. In reality we use tens of thousands of steps with 

suitable variable widths so that the steps become indistinguishable from the actual 

function. The solution of Eqn. (II.45) at nth step can be written as (Davydov 1976; 

Chakrabarti  & Mukhopadhyay 2000), 

Z+,n = A,~exp[iknf.,,~] + Bnexp[-ik,~f.,n] (II.48) 

when energy of the wave is greater than the height of the potential barrier. The 

standard junction condition is given as (Davydov 1976), 

Z + , n  -'- Z+,n+l and dZ+ dZ+ I,~+1. (II.49) -t" = d --Y 

The reflection and transmission coefficients at n th  junction are given by (Chakrabarti 

& Mukhopadhyay 2000): 

R,~ An+l(kn+l - kn) + B,~+~(k,~+~ + kn). 
= An+,(kn+, + k,~) + Bn+~(kn+, - kn)'  T~ = 1 - Rn. (II.50) 

At each of the n steps these conditions were used to connect solutions at successive 

steps. Here, k is the wave number (k - X/or 2 - V• of the wave and k~ is its value at 

nth step. We use the 'no-reflection' inner boundary condition: R ~ 0 at f .  ~ -oo.  

For the cases where waves hit on the potential barrier, inside the barrier (where 

cr 2 < V+) we use the wave function of the form (Chakrabarti & Mukhopadhyay 2000) 

Z+,n = A,~exp[-anf.,n] + B,~ezp[o~,~§ (II.51) 

where, an = x/V• - a 2, as in usual quantum mechanics. 
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Fig .  I I .1  : Behaviour of V+ (smooth dotted curve) for a = 0.5, m p =  0.8, a = 0.8. This 
is approximated as a collection of steps. In reality tens of thousand steps were used with 
varying step size which mimic the potential with arbitrary accuracy. 
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F ig .  I I .2a :  Ampli tude of Re(Z+)  of waves with varying mass as functions of P.. mp = 0.78 

(solid), m p =  0.79 (dotted) and mp = 0.80 (long-dashed) are used. Other  parameters  are 

a = 0.5 and a = 0.8. 
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Fig .  I I .2b :  Reflection (R) and transmission (T) coefficients of waves with varying mass 
as functions of ~,. m p  = 0.78 (solid), mp = 0.79 (dotted) and m p  = 0.80 (long-dashed) are 

used. Other  parameters  are a = 0.5 and a = 0.8. Inset shows R in logarithmic scale which 

falls off exponentially just  outside the horizon. 
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2.3 Examples  of  Solutions 

Figure II.2a shows three solutions (amplitudes of Re(Z+)) for parameters: a - 0.5, 

cr = 0.8 and mp = 0.78, 0.79, and 0.80 respectively in solid, dotted and long-dashed 

curves. The energy a2 is always higher compared to the height of the potential barrier 

(Fig. II.1) and therefore the particles do not 'hit '  the barrier, k goes up and therefore 

the wavelength goes down monotonically as the wave approaches a black hole. It is 

to be noted that  though ours is apparently a 'crude' method, it has flexibility and is 

capable of presenting insight into the problem, suppressing any other method such as 

ODE solver packages. This is because one can choose (a) variable steps depending 

on steepness of the potential to ensure uniform accuracy, and at the same time (b) 

virtually infinite number of steps to follow the potential as closely as possible. In 

Fig. II.2b, we present the instantaneous values of the reflection R and transmission 

T coefficients (i.e., R,~ and Tn of Eqn. II.50) for the same three cases. As the particle 

mass is decreased, k goes up and corresponding R goes down consistent with the 

limit that  as k --~ c~, there would be no reflection at all as in a quantum mechanical 

problem. For instance, in the inset, we show R in logarithmic scale very close to the 

horizon. All the three curves merge, indicating that the solutions are independent 

of the mass of the particle and a closer inspection shows that  here, the slope of the 

curve depends only on or. The exponential dependence of R,, close to the horizon 

2 (Eqn. II.46), thus, as rnp goes down, the becomes obvious. Asymptotically, Ve = mp 

wavelength goes down. 

Figures II.3(a-b) compare a few solutions where the incoming particles 'hit '  the 

potential barrier. We choose, a = 0.95, a = 0.168 and mass of the particle m p =  

0.16, 0.164, 0.168 respectively in solid, dotted and long-dashed curves. Inside the 
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Fig.  I I .3a:  Reflect ion (R) coefficient of waves wi th  varying mass  as funct ions  of ~,. 
m p =  0.16 (solid), m s -- 0.164 (dot ted)  and m p =  0.168 ( long-dashed)  are used. 
Other  p a r a m e t e r s  are a = 0.95 and a = 0.168. 
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Fig, II .3b: Ampl i tude  of Re(Z+) of waves with varying mass as functions of ~,. 
m p =  0.16 (solid), mp = 0.164 (dotted) and rnp = 0.168 (long-dashed) are used. 
Nature of potent ial  with rnp = 0.168 is drawn shifting vertically by 2.05 unit for 
clarity. Other  parameters  are a = 0.95 and e = 0.168. 
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Fig .  II .4a:  Contours of constant amplitude are plotted in the meridional plane around a 
black hole. Radial direction on equatorial plane is along X axis and the vertical direction 

is along Y. Both radial and theta solutions have been combined. Parameters are a = 0.5, 
mp -- 0.8 and a - 0.8. 
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Fig .  I I . 4b :  Three dimensional view of R_I/2S_I/2 are plotted in the meridional plane 

around a black hole. Both radial and the ta  solutions have been combined. Parameters  are 

a = 0.5, m p =  0.8 and a = 0.8. 
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barrier, the wave decays before coming back to a sinusoidal behaviour, before entering 

into a black hole. In Fig. II.3b, we plotted the potential (shifted by 2.05 along vertical 

axis for clarity). Here too, the reflection coefficient goes down as k goes up consistent 

with the classical result that as the barrier height goes up more and more, reflection is 

taking place strongly. Note however, tha t  the reflection is close to a hundred percent. 

Tunneling causes only a few percent to be lost into the black hole. 

Figures II.4(a-b) show the nature of the complete wave function when both the 

radial and the angular solutions (Chakrabarti 1984) are included. Figure II.4a shows 

contours of constant amplitude of the w a v e  tR_I/2S_I/2) in the meridional plane - X 

is along radial direction in the equatorial plane and Y is along the vertical direction. 

The parameters are a = 0.5, rnp = 0.8 and a = 0.8. Some levels are marked. Two 

successive contours have amplitude difference of 0.1. In Fig. II.4b a three-dimensional 

nature of the complete solution is given. Both of these figures clearly show how the 

wavelength varies with distance. Amplitude of the spherical wave coming from a large 

distance also gets weaker along the vertical axis and the wave is forced to fall generally 

along the equatorial plane, possibly due to the dragging of the inertial frame. 
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3 C o n c l u s i o n s  

Here we write the Dirac equation in curved space-time and particularly in Kerr geom- 

etry. From this, the behaviour of non-integral spin particles (more clearly spin-half 

particle) can be studied in curved space-time. From the form of the equation and its 

solution it is clear that in curved space the particles behave differently from that in a 

flat space-time. The Newman-Penrose formalism is used to write the equation where 

the basis system is null. Dirac equation is separated into angular and radial parts. 

Similar separation can be possible on the background of Dyon black hole (Semiz 

1992). The solution of angular part of the D]rac equation is first reviewed. The exact 

solution is possible for 2_e = 1, otherwise the solution is approximate (Chakrabarti 
O" 

1984). Unlike in the case of a Kerr black hole, the solution of the angular equation 

around a Schwarzschild black hole is independent of the azimuthal or meridional an- 

gles (Chakrabarti 1984; Press & Teukolsky 1973; Teukolsky & Press 1974). This is 

expected because of symmetry of the space-time. 

Finally we study the scattering of massive, spin-half particles from a Kerr black 

hole, particularly the nature of the radial wave functions and the reflection and trans- 

mission coefficients. The radial Dirac equation is solved using the method described 

above. The space dependent transmission and reflection coefficients are calculated. 

Spatial dependency of the transmission and reflection coefficients are very clear from 

the behaviour of the potential which is space-dependent. As the particle is moving in 

the potential field, the potential is changing. As a result transmission and reflection of 

the particle are changing. The reflection and transmission coefficients were found to 

distinguish strongly the solutions of different rest masses and different energies. The 

solution might be of immense use in the study of the spectrum of particles emitted 
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from a black hole horizon (Hawking radiation). We showed few illustrative cases as 

examples. The physical region was classified into two parts, depending on whether 

the particle 'hits '  the potential barrier or not. Again, the region, where particle hits 

on the barrier, is divided into two parts', one is super-radiant region and other is 

non-super-radiant region. We chose one illustrative example in each of the regions. 

We emphasize that  the most 'interesting' region to study would be close to mp ,,~ ~r. 

Our method of obtaining solutions should be valid for any black hole geometry which 

is asymptotically flat so that radial waves could be used at a large distance. 

In the literature, reflection and transmission coefficients are defined at a single 

point. These definitions are meaningful only if the potential varies in a small region 

while studies are made from a large distance of it. In the present case, the potential 

changes over a large distance and we are studying in these regions as well. Although 

we used the words 'reflection' and 'transmission' coefficients, in this thesis very loosely, 

our definitions are very rigorous and well defined. These quantities are simply the 

instantaneous values and in our belief more physical. The problem at hand is very 

similar to the problem of reflection and transmission of acoustic waves from a strucked 

string of non-constant density where reflection and transmission occurs at each point. 

It is noted that  all the cases where potentials diverge at a certain r arise for ~r < ~r, 

with the negative values of azimuthal quantum number (here, m = - 1 / 2 )  and the 

positive Kerr parameter, a. For positive values of m and positive values of a, potential 

does not diverge at any point for all values of a. If we change the spin orientation 

of the black hole (negative values of a) and take positive m again divergence of the 

potential will arise. Thus, it seems that the cases with opposite sign of a and m are 

physically more interesting. 
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It is seen that  for different physical parameters the solutions are different. The 

waves scattered off are distinctly different i n  different parameter regions. In a way, 

therefore, black holes can act as a mass spectrograph! Another interesting application 

of our method would be to study the interactions of Hawking radiations in regions 

just outside the horizon. 
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S. N. Bose b;atimzal ('e~t~'e l:',r 13asic Sciences JI) 13lock, Sr 
Lake, Sector'-Ill, (.,'alc,tta- 700091, h;dia 

1. I n t r o d u c t i o n  

M a n y  of  the observat io l la l  (~vi(h,n('(,s for I)lat'k holt, r(,ly o,i th(, ra('t tha t  
l;ht2 ]n ( :O l l l i l l g  /.~;l.s has l.h(, l)()l,(, l l l . i l i l  I() I ) ( ,c(mm as h()l, ;~s i ts  v i l ' i ; l l  l .( , l l l l )(,r- 
;I,|,111'(~ ' t ' v l , ' i , d  " "  101:1 "iX" (l{l"l'.'q, I!),'R.]). 'l'hi.'.g tl{~w is tl,'-:,ll;llly {'c J( )lc,{l t'l()Vv'll 
I, h r o u g h  br(rlnSsl, ra .hl l l l tg  a n d  ( ' ( ) in l ) t{miz; l l}(m (,Ih,( 'ls a n(I llar{l ;in(I so ! l  
s ta tes  a,re produc(,d (h;p(,ll(ling oIi l.h(, (l(,gr(,o I)y which this ('()()lill~ I.a.k(,s 
l)la,ce (Cha,kra,l)~u'l,i & Ti tar( 'huk,  1!J95). Th(, g;(,u(,rally sul)-I':.(,l)leri;~u, ad- 
vect, ive Ilow a,fl,er (levialil~g from a K('l)lmian disk, (,Sl)(,('i.ally ill l ll(' hard 
sta,tes, remains  sullicienl, ly 11ot. t.o cause a sig~l~ilicanl, alnounl, or i~u(,h,a.i, r(,- 
a,ctions a,routld a. black hole betbre plut~g, ing in it. The enet'gy gVlWt'a{ed 
coul4 be high enough t..o destabilize lhe Ilow and the moditied ('ol~lposition 
may  be disl)ersed through winds Io chang,(, l lw mel.alicily of I h(, ga.la.xy 
(Cha,kra.I)a,rti, .iiu & Ar~ml,l:, 19S7 {('.I:\]; .liu, Arne l t  &" ( 'h;~krahart i ,  l.q,'g~; 
('.ha.kra.I)a, rl,i, l,()~,'q; Mt~kh~q)a(lhyay s ('h;~kr;~l~;~rt.i, I!)!)R). I'~;,rli~,r ,.v,,rks 
ha.v(,. I)(.,e.l~ (l(.m(~ in ('()()l('t I, hi(k a('('r(,li~,n (lisl,:s (rely. I.~eh)v,,, w(, l)r(,s{q~l, a. 
few exa,mples of nuclea,r react ions in a(Iv(,clive tlows a.ml discuss I.h(, i~}pli- 
cat ions.  Resul ts  of more d(,tailed s tudy ('ould l)e seen iu ~lukhol)adhya.y &'. 
Cha,kra,ba,rti (1998)[MCg,~}. 

2. P h y s i c a l  S y s t e m s  U n d e r  C o n s i d e r a t i o n s  

Bla,ck hole a,ccrcl,ion is by (l(~l ini l io, '  ;~,lvfwtiv(,. i.(,., nDatler i l lusl l iar(, rr, r/irt/ 
i t lOt iOl l }  a,lld tra.11SOlliC, i .e.,  I l l a l l .e r  11111,%1 l)(, Slll)(w.SOlli(" (( ' .ha. l~r; l l )ar l , i  19.9(i 
[C9G] a.nd rc.]['el'(Hl('(.'.'g {,h(H'('ill). ' r lw  sul)(, lSm,ir ll~)w must  I~(, sul)-K('t)lvria.u 
a,nd Lllel'e|'(..)re devia,te ['l'(.)lll the l(eplel'b~n disk away I'ronl l, he black hol(.'. Tile 
s tudy  of viscous, tra,nsonic llows was iililialed 1) 3, l:'a,czyfiski ,~: t'~isno','atyi- 
l',:oga,n (1981).  
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I l y  il.li(I lil.i'14(', w(, I'()ll()w ( ' ! ) ( j  I'())' th ( , i ' i i l ( i ( lyn ; l l i i i ( '~ l l  i);l l*;l l l i(, i(,).~ ;i.l()nt4 ;i. 
I low ~.l~d ( ' .h~kr~ l )~ r l . i  ,t" ' l ' i l~ r ( 'h~)k  (1!)!),~) I ( " i ' ! ) r )  1 ~))(1 ( 'h~ l<~~ l )~ r i i  (I!)(.)T~) 
[( ',!)Til.] I , ( ) ( ' l ) l i i l> l l l ( '  ih( ,  l ( ' l i i l ) ( ' i ' ; l l l l l ' ( ,  ()1" Ih( '  (~ Ih iw i l i  I.h(' ;I.(Ivi'('- 
Live I'(>~iOli wh i ( ' h  I l l ; IV ()1' i l l ; IV li()l i i ; Iv( '  .~ll()ck.~. A i ' i ' i ) r ( l in l4  I.()1 li(,.~(, .~()luli())i.~. 
it Iji l l.(:k hol( ,  ) l( '( ' l ' ( , l i () l i  I l l l iV I){, lh( ) i l l4h l  I ( ) I ) ( ,  ,~il i l i l ; l l '  I~)~l ,~:i l i ( Iwi( 'h wli(),~(, 
8 i l l ) - I {Ol) ] ( , r i l l . I i  I l ow l ' i l l ( ,  (#}l/ l) i l l lh( ,  ~l)l'{,;i.(l' i ) ; l l l ,  i)i'()~i'(,.~,~ivi,l.v il l( ' l(,i l.~(,s ; l l l( I  
LII~L (il l, d) i l l  t he  <ln(,al," I ) i l l ' t  l)l'o~l'0,~,~iv(,ly do{'roll.,~('.~ ils f low lllOVO,~ i l l  1.()- 
w~re ls  t.l le bl~l.ck ho le .  l~ in l l l l v  i l l  ;)' -- ;rlq , l ho  (,(l l i ; i. lx)l ' i ; l l  [ low ;i.l.~() d(,vi i~i(,s 
f r o m  is I~( ,p ler i ; l l l  di.~k i l l l ( I  I'()i ;)" 
A l i iO l i l~  I.h+, in;i  j()i' i ' ( ) i l ( ' l iolts wl i i ( ' l i  
th~l.l,, d l l ( ,  1,o ho l l ( , l '  l l~l l l l l ' ( ,  {)1" Ih( '  
ei'el, iOli i'il, l.o is low ; l i ld  ( ' ( ) l i l l ) l ( ) i i  
o [  h ,ydro~e l i  bUl ' l l i i l f4 is lh(> i';ll>i(I 

�9 ) ' l~  i l l ( '  ( ' l l l i l ( '  f low i,~ .~l i l )- I{( ' l ) l ( ' Ig~l i l .  
; i l (  ) l l l k i i i l4  i)l;Iv( , iii,~i(l(, l li+' (1i.~1<, ~w, 11()1.(, 
;l(] \+'('l i \ ( '  (1i,~1<.~, ( '.~l)( 'vi; i l lv wh( ' i i  l l i(' ;ll'- 
('(.)()lilil4 i,~ li('141ilAil)l(', Ih( ,  ili;i,i<)i t)1()('('.~.~ 
I) i*() lol i  C~ll)lUl'(, I)1'()('(',~.~ ( w h i c h  Ol)Ol'ill.(,.~ 

a.t "I ' >  .~ • I()81~) ns  Ol ) l )osod  t o  th( ,  I)I , ('h~fin ( ' ,vhi( 'h ()l)<,)'~It(,,g ~t. m u c h  
l o w e r  temper~-~.t.u) 'e 'I' ,-,,-, 0 .01  - 0 .2  • I0~)I'~) ~i)ir ( ' .N(,) ( w h i c h  Ol)Oi'~li.('.'< ~it. 

T ,-., 0 .02,  - 0.~:) x I(,)~)I'~). ' l 'ho l))io.'s(')It l)~l>Or l>(g)i~ Oxl)h)) '~t()) 'y ])i )i~t.)Ir~', 
w e  d o  )lot, iilcl~)d(, i)))('h,;li' h( ,~ti) i~ ~i))(l ('o()Ii))~ i)i (h,t.(,)')))iiii)iK l,h(, st.i~,('t.~)i'(, 
;i.ii<l nt,;I.l)i l i l.y ,)l' l.h(' ; iv(') '() l i())i I I()w. \V(, ( h ) ) i ( ) l  ;i,~.~illil(, h(,)'(, l i , , i l l , i l l l~ (i l l(, l.() 
i l i i i .~lio.l, ic (li.~,~il);lti+)ii (.~(,(,, ~ l l l l l ) i i ' ! ) ,  If)7:} ~lli(I II i .~n()v~i.l.yi-K()l~;l l i , lf)fJ,x). 

I"()l" S i l i i l ) l i i ' i l .v ,  w(, l ; ik( ,  lh( ,  .~()l;il l l l ) l l l l i l ; i l l l ' ( ,  ;i.~ l.h~, ; i i ) l l l l+ l ; l l l l ' ( ,  ill" lh+, 
I{(:l)l(~l' i; i. i i (l i,~k. I " l i i ' lh( , i ' i i l<)r( , ,  I {( , l ' ) l ( , i i l in <li.~k I)(' i i l l~ ( '()() l( ' i ,  l i<)( '<)i l l l ) t) ,~i l i ()n 
(:h<~.li~(; i,~ ;I,~.~lllil(,(I i l i.~id(, i i .  l i i  ()lh+,i' W~)l'dS. ()ii i '  ( ' ( ) l i i l ) i i l l l l i ( ) l i  ,~l;li'l.~ ( )n lv  
t'l 'Olll Lhe I.i111o ~' l i ( ' i i  I l i l i l l o l "  i,~ l l l l !nct i ( , ( I  t i 'o i i l  l.li(, l~( , l ) l ( , l i l l i l  (ti,~k {:)' = :)'#~-). 
Mo,~I,  o f  l,li+' (';I.~('.~ W('l'(, l '( ' l)( ';l l(,(l  w i i  h i l l i l i ; l l  ; l l ) l l l l l i l l l l { ' ( '  ,~ ; i l l i ( '  ;1~ lh+, ()ul.l)l i l ,  
or  I)!~-l); i . i i  ~ I)iil.l(,(J.~,Vlil ll(,.~i.~ (h i , i (g l t l  (,i i.(,t(,ll.+,d 1,O ~i.~ <l)il4-1)il I)14 ;ll>il l ld ; l i i ( ' ( , ' ) .  

Aceol 'd inp~ Lo ("1'!).~, ;tll<l ( '.()7;I, I'()I' l w o  (~.()il i l)()l i( ' l l l i l ( ' ( ' l ( ' l io l l  tlo~v.~, I'()i' 
)i17 ~ 0.1 il.li(I )i~1, ~ I lh( '  I)l;l('l~ h<)l(' I'{'ili;lill.~ i l l  h;l i '(I .~l;ll(',~. I,()w('i" l';ll(' 
i l l  l (o l ) l ( ' r i l l . l l  <1i,~1~,~ ~ . j r ; I r l ' r l l l ! j  i i l l l ) l i( ' .~ ii I()\\'('l* \'i,~(*t).~it\' itll<l il li~i'~('l" :l'/q 
('l~ K ~ 3 0 -  ] 0 ( )0 ;  ,~('O, ('!)(J ;ll i(I  ( ' ! lT i l ) .  11i llii.~ l ) ; l i ' ; l l l i ( ' l ( ' l  ' l ';ll i~(' l i i ( '  I)i'O - 
Lon,~ i 'elii~l.in h o l ,  lyp ic l l l l .v ,  7), - I - 10 • 11) <') dol41'0e,~ ()i" ,~o. ' l 'h is  is 1)0- 
c~use Lhe e f l l c iencv  o f  t, l i l isSiOli is h)w(, i  ( [  -- 1 - ( 7 - / ( 7  + ~ 0.1, whel '0,  
Q +  <%nd (~)- ai 'o t he  ll(,;~l t4(,ilel.i~ii<)ll [(I,,,, i.o vi,~coi,.~ l)l.oc(,.~,~,,s] ;)rid ll(,;t.t 
loss i'~l.to,~ r( ,s l)eel . iv( , Iv.  AI.~) ,~('(,, I1(,('.~ [I!)<~.1 t, wh(.,l'(, it. i.~ ili'14~led l, hl/.l, ,i)1<? 
iS ;I. ~()()(I i l i ( l i l ' i l l . i ( ) i i  ()[' l.h(, i '()()l i l i lA ( , l l i ( ' i l ,nvy ()l' I.h(, h()l. I I ( )w.) .  \~'(, h;i.w, 
,~l, i l l l i i , i I  i / I i i ! - l~l ,  ri,p, i i in  i)l' I ) i i l i i l i i l , l l , l  .<~l)illl, i i i  ill,l.:iii:< w i i l , l l ,  I t . l ) l l l l l  ;~, <l ~, I) 
0.(i(i i  E .)h. ~< l i)0, ().l)l E #'7.,,,,'~7,~. () .f) .~.. I /:)  ~. ~ s r)/:l ~,r,, ,.h().~,,,,. II,,r,,, 
I ')s<,,,),;> t i,~ l, l i( '  r ; ic lx i r  I)y w h i v h  l.h(, i)l'()l.()n IxUil l)(, i ' ; l l . i l r( ' . i .~ i'(,(luc(,<l du+, Ix) 

itllt, i~l,l comllt, loti,~ ;11'(' ill ~I('!),~. ,Si11~'~' ,~h~)('k,~ ~'~in loi'lJ) i)l 

fo r  ~ la, r~e [ 'e~iol l  o1" P ; u ' ~ m e t e r  splice, (( '~){i ~lll(I .'el'ouoll<(,s 
a. case wiLh a. s t~ l i l d in~  shock  i l l  th is  P;~Por. 

I l l  select, i n~  the  re~lct, io l i  l l eLwork  ',vo kep t  in m ind  t ho 

~l~lv~'~'t,]v(' <li~k,~ 
tho l 'o in)  v,'e use 

f',~ct, t.h~l.t, hot.lx, r 
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I l ows  l i lay  I ) ro( lu( ' (  , hea.vh,r  el( , lnmll .~ lh l ' ( ) l l~ l !  Iril>h,..<~ a w l  la l ) i ( I  i l l t i l t>l(  i ln(I 
()' I ' i l . I ) l . i l l 'p llr(l( '(, . '4;~(,;;.l"iil ' l  h ( , r i i i l l r l ,  i l l l l ,  I l l  l l l i l l l l l  i l i : . ' . . l l l i l l l i l l l l  ' . ; i l , , l l i l i l ' ; l i i l  I l l , I I  
I,l'~tliS I l i l i y  Il l ~ I m . l u ( ' l . I  l i l i l l  lh l , r l ,  i.~ it, I.).~.~il>il i ly ()1 I ) l ( l~ l l l ( ' l i ( ) l i  4)1 i l l ,J i l l ( i l l  
r ich isoto l )es.  T h u s .  w(, c(m.~hl(,r s i l f t h ien l  i i l i i l i im r  ()l i,~(~I(~I)('.~ ()It ('it tl( 'r .~hl~, 
o[" 1,he sta.I) i l i l ,y l i l t( ' .  ' l 'h( '  u(,Iw()rl~ lhus  C()l i lai i lS I)l(H:(lus, i l (Ul l i ( l l lS, t i l l  ~ f / (  

a.ll,og(;l, hel" 25.5 ii l l( ' l( 'a.r Sl)('ch's. ' l 'h( '  Sla l i ( lar( ]  l '(,acli()l i  i'a.l.(,s w(,r(, I.a.k(,il 
{MC.<)s]. 

3 .  R e s u l t s  

W e  p r e s e n t  n o w  w i t h  a l.vl)ic'al ('an(, whic 'h ('oNl.ain(,(I a .~llocl< wax'(, in I.hr 
a , d v e c t i v e  r e g i o n .  W e  use  t.h~, n lasx  u[' th(,  tda( 'k  hoh ,  z~I/stl,., --- I0, I I-st.r(,.~s 
v i s c o s i t y  i )a . ra .uieler  <'ill = 0 . 1 , ) 7 ,  Ill( '  h>t 'at ioll  o f  i.h(, illtl('r s()lti(' i)(~iul ;ri ,  = 
2 . 9 1 1 5  a, nd  t h e  v a l u e  o f  t h e  Sl)(,('ifir a t lg jular  in()ln(,i l t lJnl a t  1,hat I ,) inl .  ~,,, = 
1.6,  t h e  p o l y t r o l ) i c  i t i dex  G'* = .I/ :!  as  rre(, l ) a ra lue l ( , r s .  ' l 'ho  ::(,1 ac( ' r t ' l i ()n 
l','ti, e 7}~. --" l ,  wh i ( ' h  is Ill(' Sllnl of  (v( ' rv  h)w) l,~(,l)](,rian ( '()l l l l)(melll  a n d  1.11(, 
sub-I'~('l~h'ria.ll  co ln l ) (mml l . ,  l ~ , s u l l s  ()1 ( " l f ) 5  ;1rid ('.f)Ta l()l ~b,/ ,-., 0.1 an~l 
?hh "-" 0 .9 ,  fix /'~"~,-u,f = ( ) .03 ,  :r/~. = -1()1. *l']iis Ia( ' lor  is list*(1 it) c(~llv(,ri. 
t h e  l,(;iUl)era, l, ur(, d i s t . l i b u t h m  (if s ( ) l l t lhn ls  ( i f (  'f)(i ( w h i c h  (1()(','-+ ll()i (,xl)li<'itlv 
us('s ( ' , ( ) l l ipt . ()nizalh) la) 1() t (g l l l ) ( ' l ; i t l l r (  ,, ( l i , ' - ; l r i l ) l l i i ( ) l l  w/l l l  ( ' ( ) l l l l ) i ( )n iz~) lh)N. 
'1'1~(' I)r()t ,(m t,(,l l l l)(, l 'al ur(, aN(I v ( , l ( , ( i l v  , l isl  r i l , l l t i ( , l l  ( ( ) l l l l ) l l t ( , ( I  il) I lli~ ,ll;l1111(,r 
a, re showu  il l  I"ig.~. l ( a - b ) .  (v(, l ()( ' i iv is nl('a,~llr(,d ill u l l i l s  ~)1' I() TM ( In  s ( ' c - I ) .  

In F ig .  I t ,  we show i l l ( '  ct)nll)O.<~il.ion ('t lan~(, oh)s(, io  the I)l;~(k lit)It, bo th  
f o r  the  shock-I'r(,(~ })ral l ( 'h ( ( l o l l ed  (.'lll'V('S) i l l l(t I l l ( '  ,sho('l~e(I I)l'ii.ll('h (){" l,h(' 
soh l t i on .  (so l id  cu rves ) .  O n l y  i ) roni ln( ,n l .  ( , le inmi ls  ill'(' I) loi. i( 'd. The  di f fer-  
el lee bel~we0n l, he sho('l~(,d all(1 I l l(, .~ll~)cl~-Irt,(, ('a.~(r is l .h; l l  i l l I.h(, .~ll()('k case 
l, he si lni la, r I ) l l l ' l i i l l l~  I.ak('~ place Ia l ' lh( , r  awav I'l'()lll I l l ( '  l>l;Ick ll~)h' I ) ( ' ( ' i l . l lS( '  
or  n l l l ch  h i g h e r  {Ol l l ] )ora l . l l l ' ( ,  lit 1.hi> l ) ( )s l -s l l ( i ( 'k  r ( 'g ion.  A Slgl i i l i ( 'a l l l ,  il, l i lOIIIII, 
of  t h e  l l~ l l t rO l i  (wit .h a f inal a l ) l l l ldal l ( ' ( ,  ()l" 't'~, "~ I l l  - : l )  is I)r(i(luc(,(I ( l i l t '  
t o  i )ho to -d issoc ia . t ion  process. N o l o  l l i a l  ('h),~er 1.0 l.he l) la('k holl,, I k - ,  i ~ ) ,  
24~/] G a, il(I 78~,7 a, re a.I1 tl(,si, roy( ,d ( 'oil l l )]( , l~,]v. (,v(,ii 1.ll()llt4h ;ll. ; t r ( iu i ld  r - -  3 ()1 
so, the  ~lbll l lda, nce o f  sot(to o [  t.henl W('III u I) I i rs l  I)(,['cire gOill~ (t()Wli. Al l lOl l~  
the new species w l l i ch  ill'(? forlll(.,(I c loser I t ) I l l ( ,  I)lacl~ hoh' art, :llNi, "l~l'/, 
.s(~,~,. Nol,e l, ha, l, l, hc f i l ia l  ab l l l l ( la l l ( ( ,  ()t' '~lll\'r iS signi l ic; l . l l l . ly hil4h('l' t,l iall 1.h(, 
i l l i l , i l l . I vll. l l l( '. ' l ' hus  a si l4ni l i ( 'a l i l  li ( ,  I I i ( ' i ly  ( '()l ihl I)(, Slil)l)lh,(I ILv win(I.s [ l ( ) l i i  
I, he c(;nl, ril 'ugjal I )arr i ( , r .  In Fl i t .  Id .  w(, .~li.()w all f l i t, (, l i(,r~v r(,l(,a.~i,/al)s()rl)l.hiu 
(:oili l)Oli(~lil,s For i,h(, sh(J('k(,(1 f low. "l'hi, vl.~('()li,~ (ui(' i l~y IA('n('rnli()l i (C~) -t) anti 
l, he loss (iF Oli(,rgly ( ( 7 - )  I'r()lii I l l(, di.~k (.~h(irl (la.~li(,(I) ;ir(* .~lil)Wil. 'l'll('.~(' ( i l l ; l i t  - 
1.il.h,s, haxl I.li(, a(Iv(,(' l. iv(, r(,giin(, hn(I I{01Jl(,!'ian (1i.~1 r i l i u l i ( i n ,  i l l i ,  al.~()I>h>il.(,(I 
(dot l ,e t l ) .  Solh l  ('tll 'VO ro l ) r ( ,s( ,n ls  lh( ,  i i i l ( ' l ( ,ar  ( , l i ( , r~y r('h'a.~('/;ll).~<>rl)i.h)ll f()r 
the  shocked I low a.lld Lhe IOIIg da.~li(,d ('ill'V(, is l .hal  for l.h(, shi)(' l~-fi(,e [ low. 
D o t - d a s h e d  CUl'Ve. rel)rOSOlitS I.he (lilt ' It>ill (,li(,l't~.v reh,; i ,~e/a. I )s()r l ) lh) l i  Ira' big- 
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F i g .  1 : Variat.iotl of (a) I)roton te l , l i tera ture  ('lb). (1~) ,';ulial ','elocit.y ~'lu, (c) 
m a t t e r  al~tlndance ) ,  in Iogar i lh tu ic  so;de aml (d) v+lrious I't)rms (.,1' Sl)e('ilic +,u(,rgy 
release ~md absorpt.i<)n rates  as futu'ti(m.~ of Io~;;irit.l(mic r:ldi+d tlist.+ltlce (:~: in unil.s 
of ,+"J<'hw+u'zs<'hild ra+lius). See If'x! l't)l' l>;ir;llll<,It+,l'S. St~llll.iol|S if! the .st.~ibl<, l~r+u,ch 
wil, ll shocks  are solid curves  and those wilhotll, t.he sho<'k +;r<, <tot.fed iu (+t-<'). 
(~ltrvos +it ((l) ,+tl'<' dt,scril~t,d in lhe  lt,• AI. t he  sht>ck l.<,llll)+,r;ittll'+, ;itt<l dt,tl.sit.y rise 

induced  wi~,Is t~+~y <';~is,, sul~sl:'iUti;tl <'<Jlll;llllill;lli+>ll (~I" lilt' ~:il;u't.+<' <'~i:l~<~+il.i~, 
when  pa.rttlt~et, ers art, ch<)+s<,n l'rOtlt t h<'se r<,~i<)l~S. 

b a n g  P+bunda.nce.  As  tna t t . e r  l eaves  t h e  l'(t 'l)leri;ul lit ,w, t he  ra.I)id l)t'ot.ou 
c a p t u r e  ( r p - )  p r o c e s s e s  ( such  as,  1~ + 1sO ___>1.~ A" +1 l i t .  e tc . )  I)uru hydr~g, en 

a, nd  r e l e~ses  e n e r g y  t.o l.he d i sk .  A t  a r o u n d  :t: = .15, !)  --> ,, + p di.,;so- 
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('bi.Les / )  a.lld Lhe ( , i i ( ] ( ) lhol* l l l ]c  r o a c l i ( m  causos  l ho l lm ' lo ; i r  on( , r~y rol(,;iso 

( l i sk .  At, a.r, mn( l  ;r I.I t hp  ,,ll(,r~,3"r(,l(,,l:~(, i~ ;l~,~;,itl , l (n l l i l l ; l l ( . , I  I)x" 111,, ( , l i~  
il,a.I ri,,-I)I'()('(,ss(,s. I" ,x, ' ( ,~iv(,  l ( ' t n l ) ( ' r n t , l r , '  nl ;~r(), lml .r 19..(i I)r(,ak~ :VI, 
down inl.() (h.ul,(.r i l t l l l  ' l 'his t)'l)(, ()lT(,a(,'li()ns . I )~( , I l ) ; I  .d~.~,)ili(';ll,t a,ll(,~,nl, ,)1' 
energy from the  (low. \Vhell bi~-Imn~ a lmmlan. ( ,  is cho~(,n i.(~ l)(, th(, ini- 
tial abundance ,  the  net  colnposith)i~ (loos not cha, nge v,.,ry I,luch, l)ut the 
d o m i n a t i n g  react ions  themselves  are s()inewhat dilf(,rent l)(,causo t.h(, initial 
compos i t i ons  are dill'ereLIt. For instance,  in place of ral)id litel.tin (:apt.tire 
react ions  as above,  the  fusion of deu te r ium into 'tilt' plays ( lontinant  role 
via D + D __+3 I t  e + n,  I )  + p --~:~ II e, I)  + I)  --+ p + ~I', :~'II ,:, + l )  -+ p +,i  II e. 

TMs is because  tie heavy elenlents  w e r e  l)reselt t ,  tO I)egin with. I';n(lothernlic 
rea, c t ions  aL a round  a: = 20 - , 10  are tlotninat.ed by (lettt,eriunl (lisst)ciat,ion as 
before ,  t l oweve r ,  a f te r  tit(, (;Otlll)l(',10 (lest rll('l.iOll (.)[ dc'ut.el:illtll, t.h(' e x o l ,  h( ,r-  
mic react ion is inotllent.a.rilv dOtllilta.l.e(] l)v It(,Ili.l'OlI ('al)t.ur(, I)r()c('sses (due 
to tile same  Iteul, rOllS wIti(-'h ;:it'(, [)l'()(]tt(*(,(] (q.ll'lit'r Via I) ~ , + p) sltch as 
7;,-F ~ l i e  --> V + "I' which l . ~ d u c o s  t.ll(' Sl,ilu' at  aroun~l :l: - I,I.5. l"ollov,,in,g 
this, al l r  a.nd 'I' aze dt,stroyed as in st)far a l )undanc ,  can. a,ml rea,ches t, he 
n l in iulum ill the  energy  I'e.h..;l.s~, curve a.t a round :r = (i. 'l 'ho l.end.n('v, of ~o- 
itlg, I)a.ck 1,o Lh(, (,xot.h(,rmic r(,g, ion is st(,pl)(,(I duo t,(, t.ho ph,)t.()-~liss(,ci;~.t.h)n 
of  "tllr via. ' l i l t ' - ~  p + 'l' anti "tilt' :-~ n - t  ..:~ l i t ' .  At. l.h(' ('nil ()1' t.lt(' I)i~-I)a.n~ 
abunda, nce c,~lcttbLLion, a significant, ant()ttnL of neul.rons a.r(' l ) roduced. It, 
is in te res t ing  i,o hole  Lhal, i, he radial th,l)(,nd('n('(' as well as the n~a~nit, ude 
of" tile energy  release due to vp-proc(,ss and tha.t, due t,o viscous diSSil)a.tion 
(Q+)  are ve W similar  (sa.ve t, he region where (uidoi, hernlic react,ions donli- 
ha le) .  This  sugges ts  tha.t even with Iltt('h,;it' I'ea:cLiolts, a.L least, SOtlte part, of 
the  advec t ive  disk nlay be perfect, ly stable.  

We now present  a.itoLher in teres t ing case where lov,'er a.t;(:ret, ion ra.te 
(~,iz = 0.01) buL higher  viscosity (0.2) were used and the eiticiency of enlis- 
sion is i n t e r , ned ia t e  ( f  = 0.2). T h a t  means  t h a t t h e  tempera, l,ure of the 
flow is high (FCom~,, = 0 .1 ,  maximum temperat .ure 7)~ '~~ = 13).  :rl,- = 8.,1 
in this  case, if the  high viscosity is due  ',o s tochast ic  magnet ic  l idd,  pro tons  
wou ld  be dr i f ted towards  the black hole due to nlagnel.ic viscosil.y, but. l,ho 
neu t rons  will not. lie drift,ed ( l lees o ta l . ,  I$),R2) till 1:h(,y th,cay. 'l 'his prin('ipl(, 
ha,s I)et;n used t,o do t, ho sitnulati(m' in' this cast,. 'l'h(, Imi(lili(,<l c(mtp()sit,i(m 
ill one. swee t) is a.llowed to inl,er;~cl, wit h Ir( 'shly accroi.ing In;~l,l,('r wil,h t.ho 
tlltd('!rM,a.lt(litt~ t,lt;I.t, l,h(' ; | .c(' lttttl l lal( ,(I  Ii('ttlr(,ll,'-:, (It) tl()l, dril'l, t';t(li;dly. All.or 
few iLel'~LLions or sweeps  Lhe s tea( ly  tlislribt~l.i(.)n of t.he conll)(,sit.i()t~ tna.y I)(, 
achieved.  F igure  2 shoves tile neut ron distr i l)utions in itera.t.ion l~untbers l, 
7, 14 & 21 respect ively (from bo t tom to top curves) ill Lhe advect ive re- 
gion. T h e  fo rmat ion  of a ' neu t ron  torus" ( l iogan &- ,A pl)legal,e, 1.987) is very 
appa, rent  in this result  and generally in all the hot advecl, ive tlows, l_)eta.ils 
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in a, ve ry  ho t  a<:lw,cl.ive d isk .  l"r+>l~l IJ<)ll+>~ Io t+o I) +'urw,s I, 7, 14 and 21 i l.+,ration 

resu l ts  ~.r<, shown .  A n<'ul.ron I.<>rus w i l h  a s i~ni l i< 'anl  al~un+lan<'<, i.s for~ned in l.his 

+t',; t , '4< ~ .  

are in Cha, kraba.rti ~ iX, lokholmdhyay (1998). 

4.  D i s c u s s i o n s  a n d  C o n c l u s i o n s  

In this paper,  we Ii~tve explored the possibiliLv of nuclear rea.cl, ions in ad- 
vective accretion [lows around black holes. All.hough this reKion is not fully 
8el['-consistently computed yet, part.icula.rly near 1,he regiou where the a.d- 
vective disk joins with a s tandard  Neplerian disk, we ha.re used the best 
model tha t  is available in l, he literature so far (('.96). 'l'eml)era.l.ure in this re- 
gion is controlled by the eiliciencies of I)rcm~sstrahlung a,nd (',Oml>toniza,t.ion 
processes (CT96, C97a) and possible heating and cooling due to magnetic 
fields (Shapiro, 1973; l~isnovatyi-Nogan, 199~). F'or a highor h:eplerian ras  
alnd higher vi,s(()sit..y, the inner (,(l~r, ()f l,h(' I '~( ' l)h'rian c()tnl>()llt'nl, r't)lll('.'-; 
cl(J.s<,~r I,() l,h(, I)laf'l~ I~c)l<, anti t!w a(Iv(,('l.iv(' r(,~,i<m I)<,<<)11~(,s c()<Jh,r ((I'1'!.15). 
llowever, a,s [he viscosity in decreased, the inner (,<l~t, o1' tlw Neph,riau com- 
l)Otmnt me>yes away and the ('mtil)tt>n cording bt,c<ml+,,~ l+,s,+-; +,llici<,nl.. 

The composition changes especially in the cent.tilttga.l pressure sup- 
ported denser regiOll, where I l l a l l e r  in h o t t e r  alld s lowly Illovillg. Bill('.e 
centrifuga.I pressu re supported region ca n be t tea ted as a It ellect.ive su r[ace 
of the black hole which may generate winds and ~mtllows in lhe same ~vay 
as the stella.r surl'ace, one could envisa~o tha t  the winds pr+~duced in I, his 
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re~ion woul<l ca r r y  av,,av ul<-Iifi<'(I rcm~p<~sil.i~m (('.h;d~,r;~tmrti, l!)!)71): i)a~ 
~%, (.',ha.kralm.rt.i 1.99~: I)as, i99x) .  Ill \'<,rv h<d <Iisk~, ;i ~ i~J, i l i rant ;~n,, l , l f .  ()I 
In'(, ,mut,,'~im-; at'(, I m . l u , ' , , I  v,'ilh'h, whih, ,'<~T111,,~ ,,,it t l l r~, , , ,h \vit,,l:--: w,~ay ,~, 

<:leuteriums a, l)r(wos.'-+ (~r'igiu;tllv suK~<,+++.l<,<l l G l{;~,,~;~l,t'+~i ,K' 'l,t+,(,s (19S5)i t ,  
the  context,  of hm l,ori at(rated Idark h+d<,s. +% f<,v,, r<,lal,<'(l (lU<'sthms hay<, 
bee,; asked la.t.ely" (!a.u lit,ldum in tlm uni'v(,r.,-:.r, hi, pr~.lu~:~,d +n l)la('k hole 
ac(:rot+Oll (,Jell |990+ ~"+ ~: Na t ' ay ; l l t  199T)'. P \V(, l. ,lh,ve t.h;t,l this is trot, po.'-:,s]- 
ble. T h e  spa, lla, t,ion reactiptls  t|l;ly Im++lure stt('h (,lem(',tt,s ',vh(,tt oulv ll~'-lle 
l'ea.ctiOllS a,t'e cot ls idel ' ( ,d ,  l~ul when lht, htll l l( ' l \ \ 'ork +s IISf't~ W(' litld tit;If. 
the  ho t t e r  disks where Sl)allatio~t would hay<, I)e<,tt itnl)ot'laltl als() l)holo- 
d issoc ia te  hel iums to del~teriutus and then to i)rotons and ttOtll.t'()tlS before 
any signiilcm~t l i thi t tms could 1)r I)r(')dm't'd. Another  quest+ion is: ('.mild the  
meta l i c i ty  of tile ga laxy  be explained,  al least, pa.r.l.ially, hv nuclea+r reac- 
t ions? We believe tha.t this  is qui te  possible, l )etai ls  are in NIfLg,~. 

An in te res t ing  imssibil i tv ()l" l'()rn~ali(m (d' lh(, It(,ttf,r()n f~)ltlS was also 
+.liscuss(:d by llog:.vn S.'. Al)pl,:'~;'~l<' (19XT): ('.an :.~ n<,utt~rn i,,rrlts I:,+. flrr,'~.(l 

around a. I)lack hoh,'t \V(, Iit~(I t,h;tl, in t,h<, cas(. of hot, iulh)v,,'s, st~('I~ Iot~tlal,ioi~ 

of neut, ron tort is a very <:lisI.incl i)ossil)ility (( 'h:-tI.:t'+dm,ri,i ,&.: P,,,lukI~(q>;tdhyay, 
199s). I'r~,,'+..m'~, Of ;+ u~.ul.r~m I,+r.s' ;~r, mn~I a I>l;.'k l.d~, ,.v,.lhl h<'II, f,h,'. 
l'()rttl;l.l.i(Ht ~)I' IiPtII.I',)fl ri<'Ii ~l><,<'b',s a.,g \v,,II, :~ i,r<.,',:~,,.-:, hil.h~,rl.~ all riI,~tt,~,~I l.~ 

the su i)ernovae (,x plosiotls ot~ly. 

T h e  a.dvective disks ;is we kn()w ludav do not, perrerf.ly n~at,ch with a 
Kepler ian  disk. 'l.'he shear ,  i.e., dt~/i/:r is a lways very stna.II it+ tim adver 
f low compa.red to tha t  of  a, Kel)leriat~ disk neat], l i t( '  ottt,er I+ottndary o1' the 
advec t i ve  region.  We I)elieve +,hal such I)(,havior is t~l~l)hysical au(I had l lw  
v iscos i ty  o~ I )a rameter  or the co()li~tp; t 'uucti(m wt ,  r( ,  +~11()',\<,(I 1~> I,t, rhaug~'d 
cont, inuously,  st+oh deviat, ion "+voul(l not have orcurred.  ' rh, ts  s(),t~<, i~ul,rove- 
l l lel l tS of  t i le d isk model  at, t.he tt 'al tSit i tm region is tleetletl, bt I,.si re tt~ajt)r 
rea, c t ions  a.re closer to t i le black hot(,, \re l)c.lievo { ,hal  such lt t()dit ical, ious 
of  the model  wouM uol; chat lge our  cott,"lusiotts. The  .eut, riI~o lut~ i .os i t ,  v is 
genera, l ly very large cotul)a, red to the l )holot t  lun~i t losi ly iu cas<, o1 hot. disk 
(Mukhol)adhy+'~.y &: C h; '~krabart i  lg!)R). In the t i rst  ( 'ase l.hat \\'(, ( l isc,ss(,d 
al)ove, tmul, r inos l ,yl>iral ly car t \ '  aI~ <'~l+'II~)' <ff ;tt()~u<l II) :m <'rlAs s<'< ' - I  ~l~l - t  
Ass.~t t i ,p ;  l,ha,1, ;i ly l ) i< 'al  n+'ulrit~<~ i~, (d  <'t~('r/4y "--, I r~l<,V, ;,~(I alq>r<,<iald<, 
n(+'ul, rillOS a.r(" (,lllill.(',(l ()l i ly Ir()tn a r<',u,i()~ ~d a ,~.~,li;-~l +,xl,,lll <)1 l l~, ()r(l<,r <)1" a 
H,'l~wa, rz.s('hil{I l';l<lillS ,..viii,r<, l ll+, {ti.'-.l< i~ ;~h<(, at<)llll<l ;~ ,%'l,v,';~rz~,<l~il,l ,:~,li~l~ 
t, hi(:k a,n(I I,h(' (l~.,tlsilv is a ruuud I() -~ IA~ ~('('--~. lu I)r~'s('~(< ' ()r I~()1 a<lv(,(,li\,<, 
disks, the t t l tmber  of  nt, ul ritl()s lha l  sht)~hl h<, (l<,l(,('l(,<l i)<,l ̀  S(l~ar(' ('tl~ ar<'a 
on the s u r f a ( ' e  or ( ,ar lh v,ouM 1., al l(,;~,~t a I<,',v I . ' r  s~,<'<~u,I l)r(~\i<h,<l lh(, 
source is a, I O A I , . ,  bla('k hol<, al a (lislan<'<, <)1 I ( )k l . ' .  ( ) ,  Ih<, ()lh~,r h+t.+l, 
neut, r ino luntin(..)sil.y Ir()tlt a (*(.)()1 ;ulv~,('li ' ,+, disk is h)w [at<)~t~(I I() tr' (',g;~ 
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nr162 " - I  Rm - I )  an~l  nr ;~l~l)t'r , H u l ~ l ~ , r  ~d' I ~ , u l . r iH~  ;~l'~' ~'xl~'cl.~'~l. ' l ' h u n ,  

ha.rd sl,a.l,es. 

ve ry  s i g n i l i c a n t ,  wo n o l o  111~I 1.110 IlUCloar e t lorgy i'o1~,~.,-;0 duo  t.o ~,xol, h(,l'~11ic 
rea, c t i o n s  or  a b s o r p t i o u  ~)l' ~'twrRy du~, 1o ou~lol.h(,rmic re~wl.iott~ is of law 
s~,nle o r d e r  +~rs acl  ual t';tdi;tliot~ fl'orn l+lt(, d i sk .  l.lulilw the  g rav i l a l , iona l  (,~(,tgy 
re lease  clue t,o v i s c o u s  p roces se s ,  nuc l ea r  e l te rgy  re lease  sl, rol tgly d e p e H d s  oft 
telllper~U, ures .  t i1u,', (he  addil ,  iOtl~d OlWl'Ry SOUl'CO or  s ink m a y  desl,~d)ilize 
l, he [low. T h i s  asp(?ct  h~ts not. bo<,l~ sl ,udied in l.his work  yol,. A rea.lizl, ic wa.y 
Lo d o  l, his is I,o i n c l u d e  t.he nuc l ea r  ~,netgy also in l, ime  del)<,t~denl, sl, ud ies  
o f  t h e  bla.ck h o l e  accrel , ion (e.g. ,  lklolLeni, I , anz~ la lne  <% (rh+tl~t~d)~H't,i, 1.9.9,1; 
M o l t e n i ,  l [ yu  & C h a k r a b t t r t i ,  1997).  Such  w o r k s  +t.t'e in l)t'og;resm a.ltd t.he 
r e s u l t s  w o u l d  be r e p o r t e d  e l s e w h e r e .  
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The complete solution of dirae equation in kerr geometry 
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Abstract. In 1976 Chandrasekhar separated the Dirac equation in Kerr geometry in radial and angular parts. 
Chakrabarti in 1984 solved the angular equation and found the corresponding eigenvalues for different Kerr 
parameters. Chandrasekhar solved the radial equation asymptotically and the reflection and transmission 
coefficients were calculated by him for few Kerr parameters. In the present paper, we solve the complete 
radial equation and calculate analytical expressions of radial wave functions for a set of Kerr and wave 
parameters. From the solution we get the reflection and transmission coefficients, which are now space 
dependent. 

1. Introduction 

One of the most important solutions of Einstein's equation is that of the spacetime around and 
inside an isolated black hole. The spacetime at a large distance is flat and Minkowskian where 
usual quantum mechanics is applicable, while the spacetime closer to the singularity is so curved 
that no satisfactory quantum field theory could be developed as yet. An intermediate situation 
arises when a weak perturbation (due to, say, gravitational, electromagnetic or Dirac waves) 
originating from infinity impinges on a black hole, interacting with it. The resulting wave is 
partially transmitted into the black hole through the horizon and partially scatters olf from it to 
infinity. In the linearized ('test field') approximation this problem has been attacked in the past by 
several authors [1-4]. The master equations of Teukoisky [2] which govern these linear 
perturbations for integral spin (e.g., gravitational and electromagnetic) fields were solved 
numerically by Press and Teukolsky 15] and Teukolsky and Press [61. Chandrasekhar [3-4] 
separated the Dirac equation in Kerr geometry into radial ,and angular parts. Subsequently, 
Chakrabartt [7] solved the angular part of the Dirac equation in Kerr geometry and gave the 
elgenvalues of the equation. Chandrasekhar [4] calculated the asymptotic behavior of the radial 
part of the Dirac equation for massless particles (neutrino) and indicated how the form would be 
modified for when the Dirac particles are massive. In the present paper, we present a complete 
solution of the Dirae equation. 

2. Basle equations of the problem 

The radial parts of the Dirac equation are Banibrata 
I t 

OoR_,_ - -  + R• 
: 2 (1) 

I I 

zX Oo  R 
+~ 2 (2) 

where Dn=~r+iK+2n ( r - M )  A = r 2 + a l - 2 M r ,  K=(r2+a2~+am 
A ~ ' 

where, a = Kerr parameter, n = integer, cr = frequency of incident wave of the particle, M = mass 
of the black hole, m = azimuthal quantum number, mp= mass of the particle, A = eigenvalue of the 
Dirac equation which was calculated in [7], R+,a{R.,n) = radial wave function with spin up 
(down). 

The radial equation here is in coupled form. We can decoUple it and express the equation 
either in terms of spin up or spin down wave function. However it is more convenient to follow 
Chandrasekhar's [4] approach by which he changed the basis and independent wwiable r and 



252 lkmibrata Mukhopadhyay and Sandip K. Chakrabarti 

transformed the coupled equation into two independent one dimensional wave equations since 
they are easier to solve. 

We first define 

1 r. =r+ r§ r+-r_ i,r_ 
d A d 

where r)r§ and 
dr, co 2 dr 

and choose 
I 

z~R, = ~ , _ . R _ , _  = e , _  
2 2 2 2 

- - - - , O J  2 --r  2 + r 2 -=-a 2 +(amlo'), 

3 In terms of r*, the operators take the form: D O = "-A-[d~-r. + io" and D~ = 

We choose 0 = tan -t (mpr/A) vdfich yields 

l i t  I+ r 
cosO-- 3. . s in0- -  and(& +impr)=exp(+iO~(k ~ +m~r 2) ?(v +,,,:r,? 
Following exactly Chandrasekhar's [4] approach we write 

p[ I t JJ [ ' -'l '''pr'~l -t(mpr)] ='1' exp +-~i tan P ,  = ' F + ! e x  - l tan ~ and P ,  , 

2r ~ W 2 2<7 3.2 +mnr 

With these definitions, the differential equations (1 and 2) are re-written as 

I 2 2~, "~/2 
A2/~. 2 + m p r ] 

W - - ; 2 ( A 2 + m ~ r 2 ) + A m  Al2Cr 

(3a) 

(3b) 

whereZ• = ~  t :l:q~ i and 
2 2 

From these equations, we readily obtain the pair of independent one-dimcusional wave-equations, 

i = V•177 (4) 

where 

V• =W 2 +_dW 
dh 

I 

A2(3.:Z+"l~r2) 3t2 [ 1(22 2 2~r~t2+((r-M~A2+m~r2)+3m~rA)l 

3 

A~(A2 2 2~, va 
, m p r  ] [2r(X'+m~r2)+2m2p03 2 +~,,,.(r-M),o] :1: r 
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3. T h e  m e t h o d  to solve the equa t i on  

From eq. (4) it Is clear that it is not analytically solvable unless very special case is chosen 
because of the non-trivlal form of Vt. But for a particul,'u" set of parameters (such as specific 
angular momentum of the Kerr black hole, particle mass, particle energy) we observe that the 
nature of  the potential is well behaved although the mathematical expression of the potential is 
complicated. So if expression of potential is fitted with a function with the presence of which the 
differential equation can be solved analytically then equation can be solved by replacing that 
expression of analytic function in place of potential expression in the differential equation. Using 
this procedure the differential wave equation is solved here by WKB approximation method. 
Solving the equation we get the reflection and transmission coefficient (which was calculated by 
Chandrasekhar [4] asymptotically). Also we impose space dependence on the coefficients so at 
each point from infinity to black hole horizon we find how reflection and transtnission coefficient 
change. Here is one important point to note, that is the transformation of spatial co-ordinate r to r* 
(and ~*)  ts taken not only for mathematical simplicity but there is also physical significance. In 
case of initial equation which was a function of r, the black hole horizon is at r§ By decoupling 
the equation we obtain also two independent wave equations. Here we see the coefficients of the 
first order derivative term and linear term are not well behaved with respect to r (they are 
diverging functions). But by transforming those in terms of r* (and ~*) we get well behaved 
functions and horizon also is shifted to _oo. 

4. So lu t ion  

We present here the solution of eq. (4) for a few sets of paratneters. The choice of parameters is 
generally made in such a way that there is significant interaction between the particle and the 
black hole, the Compton wavelength of the incoming wave should be of same order as Kerr 
radius. So, 

mpC 

Here we are choosing G = h = e = l, so 

Again for the ease of Kerr geometry, frequency of the incoming particle (or wave) will be of the 
same order as Inverse of thne. So, 

c 3 
- ~  

Using suitable units as before, we can write, 

C a s e  I 

The parameters chosen here are given below, 
Kerr parameter, a = 0.5 
Mass of the black hole, M = 1 
Mass of the particle, mp= 0.7999 
Orbital quantum number, l = !/2 
Azimuthal quantum number, -! = - i / 2  

Frequency of the incoming wave, o'-- 0.8 
The derived parameters are, 

Corresponding black hole horizon, r, = M + 4(M 2 _ a 2 ) ~ 1.86603 
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Correspol~ding o', = I 
Correspondi,lg (y, = 0.066987 
Corresponding parameter o~ = -0.0625 
Corresponding eigenvntue/!. = 0.918573 171. 

Here it is clear that o" is in between o'~ and or, and ~ < 0, r§ > la I so this is strictly non super- 
radiant, i.e., ~ ~; o', [41. 

From eq. (4) we observe there are two wave equations of corresponding potentials V. and 
V.. The nature of potentials are'shown in Fig. la. It is clear from the Fig. la that potential V§ (solid 
curve) is well behaved. It is monotonically decreasing as the particle approaches the black hole, 
and the total energy chosen in this case (a  2) is always higher compared to V~. Here we 
concentrate to study the equation with potential V.. The expression of the potential is fitted with 
a few piecewise continuous analytic functions which are of the form 
V f = a~ +b~ exp(-Fo/c~ ) 

The index j  refers to different choices of the constants a', b', c' in different ranges of F * .  
Now we re-wrlte equation (4) as 

d2Z+ 
d~2 ~-(o " 2 - V * ) z .  =0  (5) 

~et ,,(~.)= 4 ( ~  - v .  ),,(~.); J k(~.),~. + constant, so 

k~ =a l+b!exl  (6) 

a n d . ,  = I k : .  + c o , , , t a n ,  
I',/"J - k,(~')l 

Here, k is the wave number of the incoming wave and u as the Eiconal. 
The solution of the equation (5) is, 

A§ . A_  . 
Z.  = -~ -exp ( , u )+  - ~  exp(-  ,u) (8) 

I dk 
In this case all along o "2 > V§ and also ~- dF---; << k ,  so WKB approximation is valid in the whole 

region. The equation (8) is the second order approximate solution. In Fig. Ib we show the nature 
of I,'. (solid curve), k (dashed curve) and E (= 0"2 ) (short-dashed curve). In Fig. tc the nature of the 
Eiconal u is shown. In the solution (eq. 8) first term represents the term corresponding incident 
wave and second term corresponds to the reflected wave. Now we wi l l  introduce space 
dependence on A,, and A. to get more accurate solution. 
We write, 

BY. "= exp(iu )/ fl'k (9a) 

and W_=exp(-iu)/~'k (9b) 

and :(~.)= :(~.) 
Defining 

f 16~, f ] 

we can write 
w;+lf+x]w, =o (,o) 
where, the single prime and double prime indicate single and double derivatives with respect to 

* respectively. The original Z. equation takes tile form 
z :  + :z+ =o ( t l )  
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Now considering g i  to be the osculating imrameter and foil.wing the appl.ach of Mathews and 
Walker [91 we get, 

& = •  Z.+W; - 
' ' W  w,w'_ - w ~  _ (12) 

Differentiating eq. (12) and using eq. (10) and eq. (l l) we can eliminate Z[  and W , ,  and obtain 

 x[A+ (l a) 
d~. 2 k 

dA_ i X[a +A,e .2"] 
. _  - (ISb  

Now multiplying ( l I a )  by e ̀ su and ( l ib )  by e "l" and then adding, we get 

e,l. dA, +e_l. d.A_ =0  (14) 
d~o d~. 

Now for simplicity we are considering At to be real, so in eq. (14) separating real and imaginary 
parts we get ,  

dA, +dA_ 0 
d~. d~, (15a) 

and dA, dA.. = 0  
dF, d~. (15b) 

Using either of the above equations we can find out analytical expression of A, and A.. We choose 
eq. (15b) from where we obtain, 
A+ = A_ + c  (16) 

This is a relation between A, and A. up to this order of approximation. Here, c is an arbitrary 
integral constant which can be calculated by boundary condition. 
Also another necessary condition 

is imposed here since sum of the rel]ection and the transmission coefficient must be unity with 
respect to the transmission of the very previous point. 

To determine c we need the value of coefficient Ai at least at one point, so we will 
calculate the asymptotic values. For this we consider a square potential barrier of same area under 
the curve as our given potential of tile problem and of constant height as height at infinity of our 
potential. With respect to this barrier if we find tile value of the coefficients, which will be the 
asymptotic values of the reflection and transmission coefficients for the original potential of our 
problem. By remembering the value of k at infinity and if T and R are the asymptotic values of 
transmission and reflection coefficients respectively then value of constant c can be calculated as 

c = l k ~ - . ~ - R "  L = -0.032629 = -c '  

So now we can write 

A+ = A_ - c '  (18) 

and 

A+ -~ ~ ~ C t 
(19) 

This gives, 

A~ = c + ~ (20) 
2 2 

But the solution with these coefficients has some disadvantage that it does not satisfy inner 
boundary condition' at the horizon, i.e., unit transmission and zero rellection coefficients. For this, 
functions A+ must be shifted by introducing two different constants. So expressions of A, and A. 
change to 

c ~ 2 k - c  2 (2In) 
A+ =c  I +-~+-  2 
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C ~ --C 2 
A_ = { : 2 - ~ + - - 2  (21b) 

Now to mainlaln tlm sum o l  flu: tc l lcct ion and t,ansmissitm cocl l ic icnls I{} unity, we must have 

A~ + a ] - -  g + + c , -  +{c, + c ~ ) , F ~ - c  ~ + z 

It is advisable to choose the modified coefficients of the wave function as follows: 
A+ 

ar = q r ~ s  {23a) 

A_ 
a_ . f ~  (23b) 

so that 
al  + a! = k (24} 

and the reflection and transmission coefficients are a 2_ I k and a2+ I k respectively which are 

explicitly written as: 

ct 2k - c  2 
T =  + (25a) 

ct + 2  + 4tl 

cz c 2k - c  2 
- (25b) 

R -- c2 "2+ + 4 h  

It is clear that difference between a,  and a. are not constant now and de+ /d~. is not same as 

de_ I d~o. Also it can be easily checked by putting back this fourth order corrected solution into 

original differential equation that solution is still satisfying the equation up to lzonsideration 

1 dk 
- - ~  < <  1 .  
k dF. 

In Fig. ld, variation of reflection and transmission coefficients are shown. It is szen that 
as matter comes close towards the black hole, the battier height goes down. As a result, 
penetration probability increases resulting in the rise of the transmission coefficient. 

Similarly, one can also solve the wave equation with potential V. 
".he radial wave functions R, ln and R.in which are of spin up and spin down particles 

respectively of the original Dirac equation are given below, 

t ') c~176 a ' * c ~ 1 7 6  R RIzAi = a+ 
- 24s  * 241= {26a) 

I n { ' )  sin(u-O)-a-sin(u+'O)a2sin(u'-O)-a'-siu(u'+O)r~ai a ,  
- 24~- 2q r~  (26b} 

=.+ cos(.+o)+,,_cos{.-0) ~, cos{,, +o) ,._ cos{.'-0) 
R R_~ 2,A {26~> 

I R~r~) a+sin(u+O}-a-sin(u-O) a ' + s i n ( u ' + O ) - a : s i ' ' ( ' ' ' - O ) =  2 ~ -  2~k; (26d) 

i t where a+/.fk'7 and a_/-qcU are the transmitted and reflected amplitudes respectively for the 

wave of corresponding potential V.. 
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C a s e  11 

The parameters chosen here are given below, 
Kerr parameter,  a = 0.95 
Mass of  the black hole, M = 1 
Mass of  the particle, mp= O. 1684208 
Orbital quantum number,  ! = 1/2 
Azimuthal quantum number, rh = -1/2 
Frequency of  the incoming wave, or= 0.210526 

The derived oarameters are, 

Corresponding black hole horizon, r+ = M + 4(M 2 _ a z ) ___ 1.31225 

Corresponding o'c = 0.526316 
Corresponding or, = 0. ! 80987 
Corresponding parameter  ~ =- ! .353754  
Corresponding eigenvalue A = 0.930115 171. 
It is clear that the values of  o' ,  or,. and or, indicate the region is non super-radiant, i.e.. cr _<. 

a,  [4]. As before, the form of  the potentials are complicated and Use analytical soluti~m is n(~t 
possible. We employ the method as in the previous Section. We use the equation containing V, 
(eq. 4). In Fig. 2a, we show the nature of V. and V.. Unlike the case in the previous Section, here 
o z is no longer greater than V~ at all radii. As a result, k 2 may atlain negative values in some 
region. The potential and therefore the corresponding k is fitted with a few piecewise smooth 
functions such as 

kt 2 =(tr z -V)=a,  + b , ~ , - c t e  (27b) 

Similar forms are used even when V > o 2. The corresponding us obtained by integrating these ks 
yield the following forms: 

u ,  = - 2 c l k ,  - c j  a ~ / I o g 1 5  - ~ (28a) ]k) +~f~-j +constant 

; ._  bl 

t 2 2cl + constant (28b) 

In Fig. 2b, nature of  V. (solid curve), parameter k (dashed curve) and energy E (short-dashed 
curve) are shown. In Fig. 2c, parameter u is shown. Here, WKB approximation can still be applied 

1 dk 
but it is not valid in the whole range of ;. s i n c e - - ~  << k is not satisfied in the range ; . ; - 4  to -I 

k d;. 
and 1 to 7. In those two ranges, we have to employ a different method. There the the solutions will 
be linear combination of  Airy functions [8] because the potential is a linear function of ;. in 

those intervals. At the junctions one has to match the solutions including Airy functions with the 
solution obtained by WKB method. 

In the region where the WKB approximation valid, reflection and transmission 
coefficients and the wave function can be calculated easily by following the method described in 
Case I. In other regions, the equation reduces to 

d2Z+ 
~ - x Z +  = 0  

where x = fltt:3 (~. _ p) i s  chosen positive and p is the critical point where the total energy and 

potential energy are matching. 
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For the region x > 0 the solution of eq. (29) will be 

'[ i 1 z.(~)--~ c,l ,(~)+c~l ,(~ 
§ -- 

3 3 

where ~ =2x~12.  
3 

0.6 

0.4 

0.2 

0 

'1'"'1'"'1"''1" 
F (~r- 

~.z y' V_ 
.J 
,'I, ,, ,I,,, ,I ,,, ,I, 
0 I00 ;~00 ~00 s 

O.B 

0,4 

0.2 

0 

'1 ''''I''''I''''I''IB {b) t 

t 

111 I I I I I I  I I !  I t !  I , I1 

0 l r _ , O  ;_>DO 800 

4"~ !' ~ ! '  " '1 ' ~  '! '~ '~"I 

-IZO , I , , , , I , , , , I , , , , I ,  
0 100 ~00 800 

I 

O,B 

0,~ 

0.4 

0.~, 

0 
J 

, , - - 7 - - 1  , , , I , , 

0 ~00 
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curve) and reflection (R, dashed curve) coefficients as functions of h .  
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For the case x < 0 the corresponding solution will be '[ ,] z§ O,J§ (~)+ O2J_,_(~, 
where Jr+ and I+ are the Bessel functions and the modified 
respectively. 

In terms of Airy functions the solutions can be written as 

3 -ct)ai(x)+~--~--32 C,)Bi(x) for x)0 z§ = ~ (c~ Cc~ + 

Bessel functions of order 1/3 
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3 z. = i ( ~  + o , ) A i ( x ) +  - for 

By matching boundary conditions it is easy to show that the solution corresponding x > 0 
and that corresponding x < 0 are continuous when Ct = - Dt and C~ = D2. Following this process at 
all the junctions, we get the solution from 7 to 1 (in h co-ordinate) around the critical point h = 

4.45475 as 
Z+ -- 75.682216Ai(x)-41.393114Bi(x) 
Similarly the solution from -] to -4 i.e. around the critical point h = -2.8053 can be calculated as 

Z+ = -19.43945Ai(x)+ 17.69174Bi(x) 
It is to be noted that in the region h = l  to -1, even though the potential energy dominates over the 

total energy, WKB approximation method is still valid. Here the solution will take the form 

e~r, ( -  u )/  "A" and e ~ r , ( + , , ) / ~ .  
Asymptot ic  values of  the reflection and the transmission coefficients are obtained by 

suitably modeling the exact potential in terms of the square-well potential. This yields the integral 
constant c as -0.355337. Using this, and eqs. 25(a-b), reflection and transmission coefficients are 
calculated, behaviors of  which are shown in Fig. 2d. The constants cl and c2 of eqs. 25(a-b) were 
calculated as before. Note the decaying nature of the reflection coellicient inside the potential 
barrier. 

C a s e  111 

The  parameters  chosen here are given below, 
Kerr parameter,  a = 0.95 
Mass of  the black hole, M = 1 
Mass of  the particle, nip = 0.10526315799 
Orbital quantum number,  ! = !/2 
Azimuthal quantum number, m = -!/2 
Frequency of  the hlcomhlg wave, (7 = 0.105263158 

The derived parameters are, 

Corresponding black hole horizon, r+ = M + ~(M 2 _ a  i )___ 1.31225 

Corresponding or, = 0.526316 
Corresponding or., = 0.180987 
Corresponding parameter o~ = -3.609999 
Corresponding eigenvalue/1. = 0.96970998 17}. 

It is clear that according to the definition of super-radiance and the choices of the parameters or,, 
or, and at a as above, this case should have belonged to tile realm of super-radiance. However,  
unlike previous two cases, the relation between r and h is not single valued in this region. Here, at 

both r = r ,  and r = 0% the value of h = oo. With the decrement of r, h is decreased initially up to 

a certain point r "-- Jo~ I. Subsequently. h starts to rise and at the black hole horizon it diverges. 

The  behavior  of  potentials V, and V. are shown in Fig. 3a. It is clear that at r = let I the 
potential diverges and potential's nature is changed from repulsive to attractive. Here we will treat 
the equation of  corresponding potential V.. ltere, we have divided our calculation into two parts, 
one for repulsive potential where particle is coming from infinity and most of them are reflecting 
back from the infinitely high barrier and another one for attractive potential where particle from 
the attractive potential field Is coming outside (i.e. actually going to horizon but due to 
multivaluedness of  the radial co-ordinate h ,  with respect to r, the horizon is transformed to 

infinity). Here for the ease of  positive potential the potential is going sharply to infinity at the 
singular point so the wave with total energy o 2 is hitting on the wall of the barrier. I lere, as before 
the complicated form of  the potential is fitted into n simple form by adjusting the parameters aj, bj. 
c 1. The attractive part of  V. is lifted as well. 
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As in the previous cases, we have computed k and u piecewise. In Fig. 3b nature of V., k 
and E are shown. In Fig. 3c variation of u ig shown. Here the WKB approximation method is valid 

l d k  
up to h equals to 40 (from infinity) since - - - -  << I is not satisfied below this. The reflection and 

k dr 
transmission coefficients and the wave function of the particle are calculated as in the previous 
case. Since the matter which tunnel through the infinitely high barrier ti~ce infinilely strong 
attractive field, the possibility of extraction of energy would be zero. In Fig. 3(I the wuialitms o[ 
transmission and reflection coelTicients ~re shown. 
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The net transtnission of the wave Ihrotlgh the horizon is non-ncg:ttive all alon~, and 
therefore super-rndiati~m is allsetlt, alth~tlgl'l cr is less th:ul ~r,. The i|()n-t'xi~tt.'t|t't" (~f Sttl)C!-0~ltli:lti~m 
is due to (r-lo~ I) "'~ variation of the potential near the singular point. Because of existence of 
attractive field the extraction of energy is very very difficult, so the net transmission of the wave 
through horizon from 0, is always positive. 

Conclusion 

In this paper, we analytically study scatterlngs of spin-half particles from a Kerr black hole. 
particularly the nature of the radial wave functions and the reflection and transmission 
coefficients. We chose a few illustrative cases. 

Though we start with the WKB approximation method, we improvise on it so as to obtain 
spatial dependence of the coefficients of the wave function. This way we ensure that the analytical 
solution is closer to the exact solution. 
We verify Chandrasekhar's 141 conjecture based on asyml~totic solution Ihat for spln-l/2 particle 
the phenomenon of super-radiance is absent. We believe that this is due to the very way the 

potential develops a singularity a i r  = Icx 1). Here V_ (~,)o< (r-I~l)  , which resutts in a .  att , ctive 

potential in some region very close tO the black hole. In contrast, the V_ (;~.)o< (r-t~l)-' when 

electromagnetic and gravitational waves are scattered off the black hole 14} which does not create 
an attractive part in the potential and possibly exhibit the phenomenon of super-radiance. 
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Abstract. We study nucleosynthesis in low accretion rate hot 
advective flows around black holes. We find that matter is gener- 
ally photo, dissociated into protons and neutrons inside the disk. 
These neutrons stay around black holes for longer time because 
they are not coupled to magnetic fields while the protons ac- 
crete into the hole. We find the nature of  the resulting neutron 
disks and estimate the rate at which these disks contaminate the 
surroundings. 

Key words: stars: neutron - nucleosynthesis - black hole 
physics - accretion, accretion disks 

1. Introduction 

Angular momentum in accretion disks around black holes must 
deviate from a Keplerian distribution, since the presence of ion, 
radiation or inertial pressure gradient forces become as signifi- 
cant as the gravitational and centrifugal forces (see Chakrabarti 
1996a: Chakrabarti 1996b and references therein). The inertial 
pressure close to a black hole is high, because, on the horizon. 
the inflow velocity must be equal to the velocity of light. For 
causality, the velocity of  sound must be less than the velocity 

of light. In fact, in the extreme equation of  state of 19 = ~ p  
(where c is the velocity of light and P and p are the isotropic 
pressure and mass density respectively), the sound speed is only 
c/v~. Thus. the flow must pass through a sonic point and be- 
come supersonic before entering into the horizon. A flow which 
must pass through a sonic point must also be sub-Keplerian 
(Chakrabarti 1996b and references therein), and this causes the 
deviation. If the accretion rate is low. the flow cools down only 
by inefficient bremsstrahlung and Comptonization processes, 
unless the magnetic field is very high (Shvartsman 1971; Rees 
1984" Bisnovatyi-Kogan 1998). This hot flow can undergo sig- 
nificant nucleosynthesis depending on the inflow parameters. 
Earlier, in the context of thick accretion disks calculations of 
changes in composition inside an accretion disk were carried 
out (Chakrabarti et al. 1987; Hogan & Applegate 1987; Arai 
& Hashimoto 1992; Hashimoto et al. 1993), but the disk mod- 
els used were not completely self-consistent, in that neither the 
radial motion, nor the cooling and heating processes were in- 
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cluded fully self-consistently. Second, only high accretion rates 
were used. As a result, the viscosity parameter required for a 
significant nuclear burning was extremely low (o,.,,, < 10-4). 
In the present paper, we do the computation after including the 
radial velocity in the disk and the heating and cooling processes. 
We largely follow the solutions of Chakrabarti (1996b) to obtain 
the thermodynamic conditions along a flow. 

Close to a black hole horizon, the viscous time scale is 
so large compared to the infall time scale that the specific 
angular momentum ~ of matter remains almost constant and 
sub-Keplerian independent of viscosity (Chakrabarti 1996a,b: 
Chakrabarti 1989). Because of this. as matter accretes, the cen- 
trifugal force ,~2/z'3 increases much faster compared to the grav- 
itational force G M / z  2 (where G and i'll are the gravitational 
constant and the mass of  the black hole respectively, ,\ and .r 
are the dimensionless angular momentum and the radial dis- 
tance from the black hole). As a result, close to the black hole 
(at .r ,--, X z / G M )  matter may even virtually stop to form stand- 
ing shocks (Chakrabarti 1989). Shock or no-shock, as the flow 
slows down, the kinetic energy of matter is converted into ther- 
mal energy in the region where the centrifugal force dominates. 
Hard X-rays and 7-rays are expected from here (Chakrabarti 
& Titarchuk. 1995). In this centrifugal pressure supported hot 
'boundary layer" (CENBOL) of the black hole (Chakrabarti et 
al. 1996) we find that for low accretion rates, ,t f l e  of the i nfalling 
matter is completely photo-dissociated and no r Li could be pro- 
duced. In this region, about ten to twelve percent of matter is 
lound to be made up of pure neutrons. These neutrons should not 
accrete very last because of very low magnetic viscosity associ- 
ated with neutral particles (Rees ct al. 19b12) while protons arc 
dragged towards the central black hole along with the field lines. 
Of course, both the neutrons and protons would have "normal" 
ionic viscosity, and some slow accretion of protons lincluding 
those produced alter neutron decay) would still be possible. In 
contrast to neutron stars, the neutron di,~ks which we find are 
not dense. Nevertheless, they can participate in the formation 
of neutron rich isotopes and some amount of deuterium. They 
can be eventually dispersed into the galaxy through jets and out- 
flows, which come out of CENBOL (Chakrabarti 1998: Das & 
Chakrabarti 1998)thereby possibly intluencing the metallicity 
of the galaxy. 

On the equatorial plane, where the viscosity is the highest, 
a Keplerian disk deviates to become sub-Keplerian t'erv ~'/o.~' 
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to the black hole (Chakrabani & Titarchuk 1995; Wiita 1982). 
Away from the equatorial plane, viscosity is lower and the ttow 
deviates from a Keplerian disk farther otlt. This is because the 
angular momentum transport is achieved by viscous stresses. 
Weaker the viscosity, longer is the distance through which an- 
gular momentum goes to match with a Keplerian disk. When 
the viscosity of  the disk is decreased on the whole, the Keple- 
rian disk recedes from the black l~ole forming, quiescence states 
when the objects become very faint in X-rays (Ebisawa et al. 
1996). Soft photons from the Keplerian disk are intercepted by 
this sub-Keplerian boundary layer (CENBOL) and photons are 
energized through Compton scattering process. For higher Kep- 
lerian rates, electrons and protons r down completely and the 
black hole is in a soft  state (Tanaka & Lewin 1995). Here. bulk 
motion Comptonization produces the power-law tail of slope 
a ,-, 1.5 (Chakrabarti & Titarchuk 1995; Titarchuk et al. 1997). 
For lower Keplerian rates, the Compton cooling is incomplete 
and the temperature of the boundary layer remains close to the 
virial value, 

Tp -~ ~ . m p c  2 = 5.2 x l0 tl ~ (1) 

In this case, bremsstrahlung is also important and the black 
hole is said to be in a hard state with energy spectral index t~ 
(F~ ,,, u - " ,  where u is the frequency of the photon) close to 
0.5. In Eq. (I), m., is the mass of the proton, .r~l = 2 G M / c  'z is 
the Schwarzschild radius of the black hole, and c is the velocity 
of light. (In future, we measure the distances and velocities in 
units OfZq and c.) In this low Keplerian rate, electrons are cooler 
typically by a factor of (ml,/m,.) 1/2 unless the magnetic field is 
very high. Present high energy observations seem to support the 
apparently intriguing aspects of black hole accretion mentioned 
above. For instance, the constancy of (separate) spectral slopes 
in soft and hard states has been observed by many (Ebisawa et 
el. [ 994: Miyamoto et a[. 1991 : Ramps et al. 1997; Grove et el. 
1998: Vargas et al. 1997). ASCA observations of Cygnus X-I 
seem to indicate that the inner edge of the Keplerian compo- 
nent is located at around l.SR~p (instead of  3R u) (Gilfanov et 
el. 1997). HST FOS observations of the black hole candidate 
A0620-00 in quiescent state seems to have very faint Keple- 
rian features (McClintock et al. 1~95.) fndicating the Kepterian 
component to be farther out at low accreiion rates. Bulk motion 
Comptonization close to tile horizon has been considered to be 
a possible cause of the power-law tail in very soft states ~Crary 
et el. 1996: Ling et al. 1997; Cut et ai. 1997). However. some 
alternative modes may not be ruled out to explain some of these 
features. 

This observed and predicted dichotomy of states of black 
hole spectra motivated us to investigate the nuclear reactions 
thoroughly for both the states, but we report here the results 
obtained in the more important case, namely, when the flow is 
hotter, i.e., for hard states. We use 255 nuclear elements in the 
thermo-nuclear network starting from protons, neutrons, deu- 
terium etc. till 72Ge and the nuclear reaction rates valid for 
high temperatures. We assume that accretion on the galactic 
black hole is taking place from a disk where matter is supplied 

from a normal main sequence star. That is, we choose the abun- 
dance of the injected matter to be that of the sun. Because of 
very high temperature, the result is nearly independent of the 
initial composition,'as long as reasonable choices are made. 
When accretion rates are higher, the advective region becomes 
cooler and very little nucleosynthesis takes place, the results are 
presented elsewhere (Mukhopadhyay 1998; Mukhopadhyay & 
Chakrabarti 1998). 

As hot matter approaches a black hole, photons originated 
by the bremsstrahlung process, as well as those intercepted from 
the Keplerian disk, start to photo-dissociate deuterium and he- 
lium in the advective region. There are two challenging issues 
at this stage which we address first: (a) Thermodynamic quanti- 
ties such as density and temperature inside a disk are computed 
using a thin disk approximation, i.e., the vertical height h(x) at 
a radial distance x very small compared to z (h (x) < <  x), and 
assuming the flow to be instantaneously in vertical equilibrium. 
However, at a low rate, it is easy to show that the disk is optically 

thin in the vertical direction --fo (x) pcrdh < 1 (o" is the Thom- 
son scattering cross-section). However, soft photons from the 

, 3 : ,  
Keplerian disk enter radially and Jl �9 pcsd:t" > 1. generally. In 
fact, this latter possibility changes the soft photons of a few k e V 
from a Keplerian disk to energies up to ~ 1MeV by repeatod 
Compton scattering (Sunyaev & Titarchuk 1980: Chakrabani 
& Titarchuk 1995) while keeping the photon number strictly 
constant. The spectrum of the resultant photons emitted to dis- 
tant observers becomes a power law F,~ ,~ u - "  instead of a 
blackbody, where c~ ,.,, 0.5 for hard state and r~ ~ 1.5 for soft 
states of a'black hole. (b) Now that the spectrum is not a black- 
body, strictly speaking, the computation of photo-disintegration 
rate that is standard in the literature (which utilizes a Planck- 
ian spectrum) cannot be followed. Fortunately. this may not 
pose a major problem. As we shall show. the standard photo- 
disintegration rate yields a lower limit of the actual rate that 
takes place in the presence of power-law photon spectra. Thus. 
usage of the correct rate obtainable from a power-law spectrum 
would, if anything, strengthen our assertion about the photo- 
disintegration around a black hole. After photo-disintegration 
by these hard photons, all that are left are protons and neutrons. 
The exact location where the dissociation actually starts may 
depend on the detailed photon spectrum, i.e.. optical depth of 
this boundary layer and the electron temperature. 

The phm 0fthe present paper is tilt: following: in ,he next see 
tion, we present briefly the hydrodynamical model using which 
the thermodynamic quantities such as the density and temper- 
ature inside the inner accretion disk are computed. We also 
present the model parameters we employ. In Sect. 3. we present 
results of nucleosynthesis inside a disk. Finally. in Sect. 4. we 
present out concluding remarks. 

2. Model determining the thermodynamic conditions 

We chose the units of distance, time and mass to be 2GM/c"- .  
2 G M / c  :~ and M where, G is the gravitational constant. :'~l is 
the mass of the black hole, and r is the velocity of light. To keep 
the problem tractable without sacrificing the salient features, 
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we use a well understood model of the accretion th)w close to 
the black hole. We solve the following equations (Chakrabarfi 
1996azb) to obtain the thermodynamic quantities: 

(a) The radial momentum equation: 

2 A2 ~)dO 1 dP Atr - 
=0, (2a) 

(b) The continuity equation: 

d ( zxd )  = O, (2b) 

(c) The azimuthal momentum equation: 

od),(x) 1 d 
dz  Ex (x2W=~) = 0, ~2c) 

(d) The entropy equation: 

+ + + = Q , n a g + Q , , u e + Q v i , - Q -  

= Q+ - g(x,  6,,.)Q + = f(,,~, x , , h ) O  +. t2d) 

Here. Q -  and Q -  are the heat gained an d lost by the flov,, and 
rh is the mass accretion rate in units of the Eddington rate. Here. 
we have included the possibility of magnetic heating QT,,,,, 
(due to stochastic fields; Shvartsman 1971; Shapiro. 1973: 

. Q n u r  a s  Bisnovatvi-Kogan, 19981 and nuclear energy release + 
well (cf. Taam & Fryxall 19851 while the cooling is provided 
by bremsstrahlung, Comptonizatiom and endothermic reactions 
and neutrino emissions. A strong magnetic heating might equal- 
ize ion and electron temperatures (e.g. Bisnovatyi-Kogan 1998) 
but this would not affect our conclusions. On the right hand side. 
we wrote Q+ collectively proportional to the cooling term for 
simplicity (purely on dimensional grounds). We use the standard 
definitions of F (Cox & Giuli [968), 

r't - B  
F3 = I+4_3------ ~, 

(4  - -  3 ~ ) ~ ( ~  - -  1)  
Ft = .1 + 

3 +  1 2 ( 3 , -  1)(1 -13 )  

and .}(.r) is the rat io o f  gas pressure to total pressure. 

pkT/Izm.p 
d(z)  = p],'T/Izmp + aT4~3 + B(x)2/4~ 

Here./} is the Stefan constant, k is the Boltzman constant, n b, is 
the mass of the proton, I~ is the mean molecular weight. Using 
the above definitions, Eq. (2d) becomes, 

4 - 3 . 3 . 1 ( t T  l d B  F t - l d p l = f ( t ~ . x ,  rh)Q+. (2e) 
r t  - 3 l ~  dx 13 dx p d x '  

In this paper, we shall concentrate on solutions with constant 3. 
Actually. we study in detail only the special cases. ,3 = 0 and 
/3 = I. so we shah liberally use ['t = "7 = F:~. We note here 
that unlike self-gravitating stars where 3 = ()causes instability. 
here this is not a problem. Similarly. we shall consider the case 

for f ( ~ ,  x, 6 0 = constant, though as is clear, f -- o in the Ke- 
plerian disk region and probably much greater than tl near the 
black hole depending on the efficiency of cooling, governed by 
,h. for instance). We use the Paczyfiski-Wiita ( 19801 potential 
to describe the black hole geometry. Thus. AK,-. the Keple- 

2 = .I,3 )2 rian angular momentum is given by, At,-,,~, 2(.t' - I . 

exactly same as in general relaiivity. 1I~,  is the ~ertically in- 
tegrated viscous stress, h(x)  is the half-thickness of the disk at 
radial distance x (both measured in units of 2GM c"- ) obtained 
from vertical equilibrium assumption (Chakrabarti 19891 A(,r) 
is the specific angular momentum, 0 is the radial velocity..,~ 
is the entropy density of the flow. The constant ,-~ above is the 
Shakura-Sunyaev (19731 viscosity parameter modified to in- 
clude the pressure due to radial motion (H = It" - V0'-'. where 
11" and E are the integrated pressure and density respectively: 
see Chakrabarti & Molteni (19951 in the viscous stress. With this 
choice, W~,, keeps the specific angular momentum continuous 
across of the shock. 

For a complete run, we supply the basic parameters, namely. 
the location of the sonic point through which flow must pass just 
outside the horizon X,,,a, the specilic angular momentum at the 
inner edge of the ttow Ai,,, the polytrolfiC index ". the ratio f 
of advected heat flux Q+ - Q_ to heat generation rate (~)'. 
the viscosity parameter r~.i.~ and the accretion rate ,b. The de- 
rived quantities are: xt,- where the Keplerian Ito~ deviates to 
become sub-Keplerian, the ion temperature "FT,. the tlov, den- 
sit.',' p, the radial velocity v,. and the azimuthal ~etocitv , \ / .r  
of the entire flow from xo, to the horizon. Temperature of the 
ions obtained from above equations is further corrected using 
a cooling factor Fc,,,,,, obtained from the results of radiative 
transfer of Chakrabarti & Titarchuk (1995). Electrons cool due 
to Comptonization, but they cause the ion cooling also since 
ions and electrons are coupled by Couh)mb interaction. Fc',,,,,p. 
chosen here to be constant in the advective region, is the ratio of 
the ion temperature computed [Tom hydrodynamic c Chakrabani 
1996b) and radiation-hydrodynamic (Chakrabani & Titarchuk 
1995) considerations. 

3 .  R e s u l t s  o f  nucleosynthesis calculat ions 

In the first example, we start with a relativistic flm~ r polytropic 
index 3' = ,1/3) with the accretion rate .~'/ = I),()l .'(1~ t,t, where. 
,~ll.;dd is the Eddington accretion rate. We use the mass of ttle 
central black ho!e to be M = lOMb.;, throughout. We choose a 
very high viscosity and the corresponding r~ parameter t Shakura 
& Sunyaev 19731 is 0.2 in the sub-Keplerian reginle. The cot)l- 
ing is not as efficient as in a Keplerian disk: Q -  -- 0.9(,)-, 
where. Q+ and Q -  are the heat generation and heat loss rates 
respectively. The specific angular momentum at the inner edge 
is Ai,, = 1.65 (in units of 2GM/e) .  The flow deviates from a Ke- 
plerian disk at 4.15 Schwarzschild radii. It is to be noted that Q -  
includes all possible types of cooling, such as bremsstrahlung. 
Comptonization as well as cooling due to neutrino emissions. 
We assume that the flow is magnetized so that on]~ ions have 
larger viscosity. Due to poor supply ()f the ,~oll ph,,tons from 
Keplerian disks, the Comptonization in the boundar.~ laver is 
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Fig. 1. Comparison of wavelength Apt ...... k at peak blackbody intensity 
(dotted) with the mean (taken between 2 and 50 keV) wavelength of 
the Comptonized power law spectrum (solid) of the emitted X-rays. 
Wavelengths are measured in units of 10- ~ cm. 

not complete: we assume a standard -value (Chakrabarti. & 

Titarchuk 1995) in this regime: FCo,,,p ~ 0.1, i.e.. ions (in 

te radiation-hydrodynamic solution) are one-tenth as hot as ob- 
tained from the hydrodynamic solutions. [For high accretion 
rate. 1il > l).3, Fcoml, "~ O.Olll and ions and electrons both cool 
to a few KeV (-,~ 107 ~ The typical density and temperature 

near the marginally stable orbit are Px=:t '~ 8.5 • 10 -8  g m c m -  :~ 
and 7.5 x 10 'a ~  respectively where the thermonuclear deple- 
tion rates N A < o'v > for the D --~ p + n. ,t l i e  .-4 D + D 
and 4 H e  +4 H e  =r L i  + p reactions are given by 1.6 x I0 l't 
gm - t  s - t ,  4 x 10 -3  gm - t  s - t  and 1.9 x 10 - t 2  gm - t  s - t  re- 

spectively. Here. N A  is the element abundance on the left. cr 
is the reaction cross-section, t, is the Maxwellian average ve- 
locity of  the reactants. At these rates, the time scales of these 
reactions are given by, 4 x 10 s s, 5 x 10 It s and 4 x 1O -'~ s re- 

spectively indicating that the deuterium burning is the fastest 

of  the reactions. In fact, it would take about a second to burn 
initial deuterium with YD = 10-'~. The 7Li does not form at all 

because the 4 H e  dissociates to D much faster. 
The above depletion rates have been computed assuming 

Planckian photon distribution corresponding to ion temperature 
Tp. The wavelength Apt~n,:k at which the brightness is highest 
at T = T/, is shown in Fig. I in the dashed curve (in units of 
I 0 -  z z cm). Also shown is the at,erage wavelength of  the photon 
Ac,,,,,r, to,, (solid curve) obtained from the spectrum I , ,  - - - / . ' -" .  
The average has been performed over the region 2 to 50 keV 
of the photon energy in which the hard component is usually 

observed 

f, ....... F, ,dv -, ,  (3) CZ," = ' * ' " " ' " '  .... 
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Fig. 2. Formation of a steady neutron torus in a hot inflo~v. Intermediate 
iteration results (from bottom to top: Ist. I Ith. 21st. 31st and 41st 
iterations respectively) of the logarithmic neutron abundance ~',, in 
the flow as a function of the logarithmic radial distance (.r in units of 
Schwarzschild radius) are shown. 

I 
where, u , , , ,  and u,,,,~.,, are computed from 2 and 50 keV respec- 
tively. The average becomes a function of the energy spectral 
index ~ (F~ oc v - " ) ,  which in turn depends on the ion and 

electron temperatures of the medium. We follow Chakrabarti 

& Titarchuk (1995) to compute these relations�9 We note that 

Aco,,mo,, is lower compared to Am ...... k for all ion tempera- 
tures we are interested in. Thus. the disintegration rate with 
Planckian distribution that we enlployed in this paper is clearlv 
a lower limit. Our assertion of the formation of a neutron disk 
should be strengthened when Comptonization is included. 

Fig. 2 shows the result of the numerical simulation for file 
disk model  mentioned above. Logarithmic abundance of  neu- 
tron Y,, is plotted against the logarithmic distance from the black 
hole. First simulation produced the dash-dotted curve for the 
neutron distribution, forming a miniature neutron torus. As fresh 
matter is added to the existing neutron disk. neutron abundance 
is increased as neutrons do not MI in rapidly. Thus the simuht- 
tion is repeated several times in order to achieve a converging 
steady pattern of  the neutron disk. Although fresh neumms are 
deposited, the stability of the distribution is achieved through 
neutron decay and neutron capture reactions. Results after every 

ten iterations are plotted. The equilibrium neutron torus remains 
around the black hole indefinitely, The neutron abundance is 

clearly very significant (more than live per cent!L 
We study yet another case where the accretion rate is smaller 

(rh = 0 .00 l )  and the viscosity is so small (</ = {).I)l) and the 
disk so hot that the sub-Kepleri:m Ilow deviates from a Kep- 
lerian disk farther away at .r := ~:",. I. The pol.xm~pic index is 
that of a mono-atomic (ionized) hot ,,as -~. = 5,. 3. File Comp- 
ton cooling factor is as above since it is independent of the 
accretion rates as hmg as the rate is low (Sunyacv & Tita~chuk 
1980: Chakrabarti & Titarchuk 1995L Tile cooling is assumed 

to be very inefficient because of lower density: Q -  ~ I}.IQ 
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Fig.3. Variation of matter abundance Yi in logarithmic scale in a hot 
flow around a galactic black hole. Entire -t He is photodissociated.at 
around .r "= 30x# and the steady neutron disk is produced Ibr .r < 311 
which is not accreted. 
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The specific angular  m o m e n t u m  at the inner edge of the disk 
is ,\,,, = 1.55. in Fig. 3, we show the logarithmic abundances 
of proton t pL helium (4 H e )  and neutron (n) as functions of  the 
logarithmic distance from the black hole. Note that SH, dis- 
sociates complete ly  at a distance of  around x = 311 where the 
density and temperatures are p = 2.29 x 10 - t t  g m c m  -:~ and 
T = 6.3 :,~ l(f  ~ "K.  M a x i m u m  temperature attained in this case 
is T,,,,,~. = 3.7 x 1(1 j~ "K. Both the neutrons and protons are 
enhanced for .v < 30, the boundary layer of the black hole. 

This neutron disk also remains stable despite neutron decay. 
since new matter moves  in to maintain equilibrium. The 7Li 

abundance is insignificant. 

4 .  C o n c l u d i n g  r e m a r k s  

In this paper, we have shown that hot I lows may produce neutron 
disks around black holes, where neutron abundance is sionifi- 
cant. However. unlike neutron stars, the formation of  which is 
accompanied by the production ol 'neutron rich isotopes, neutron 
disks do not produce significant neutron rich elements. Some 
fragile elements,  such as deuterium, could be produced in the 
cooler outflows as follows: 

Neutrons and protons may be released in space through 
winds which are produced in the centrifugal barrier. These winds 
are common in black hole sources  and earlier they have been 
attributed to the dispersal o f  magnetic lields to the galactic 
medium t Dal.v & Loeb 1990: Chakrabarti  et al. 1994). Recently. 
Chakrabarti (19981 and Das & Chakrabarti  (1998), throngh a 
first ever self-consistent calculat ion o f  outflows out of accre- 
tion. found that significant winds can be produced and for low 
enough accretion rates, disks may even be almost evacuated 
causing the formation o f  quiescence  and inactive states such as 
what is observed in V404 Cyg and our Galactic centre. If the 

temperature of  the wind falls off as I / = and dcnsit.~ as : -:)"'-' (as 
is expected from an outtlow of insignificant rotation), the deu- 
terlum synthesis rate n + p ~ D,  increases much faster very 
rapidly than the reverse (D  ~ n + p) process. For instance. 
with density and temperature mentioned as in the earlier sec- 
tion, at z = 30x~, the forward rate (NA < c:t, >)  is 0.12 x I(/-~ 
while the reverse rate is much higher: 6.7 • 1013, This results 
in the dissociation of  deuteriu.n. However, at : = ".]O().e~, the 
above rates are il.8 x 10 - s  and 9.6 • 10 -6  respectively and 
at z = 3000x 0, the above rates are 1.3 x 10 -8 and -,, 10 - l ~  
respectively. Thus a significant deuterium could be produced 
farther out, say, starting from a distance of' ,--, 10a.r:;. Ramadu- 
rai & Rees (1985) suggested deuterium formation on the surface 
of ion tori. As we establish here, this process may be feasible, 
only if these tori are vertically vet3' thick: z(:e) -,, 103.e~/. In 

any case, deuterium would be expected to form in winds and 
disperse. 

In a typical case o f  a disk with an accretion rate of 3'I 
3'/E,td, the temperature is lower, but the density is higher. In 
that case, the photo-dissociation of t H v  is insignificant and 
typically the change in abundances of  some of the elements. 
such as l(~O, '2~ etc. could be around A)"  ~ I0 -:~ not as 
high as that of  the neutron as in above cases where .&~,, .--. 0,1. 
One could est imate the contamination of the galactic metaticity 
due to nuclear reactions as we do for realistic models. Assume 
that. on an average, all the N stellar black holes of equal mass 
.1I have a ,non-dimensional  accretion rate of around ~i~ ~ t 
(~}1 = l'([/~'It.:,td). Let A l l  be the typical change in composition 
of this matter during the run and let f,,. be the fraction of' the 
incoming flow that goes out as winds and outftow,~, then in 
the lifetime of a galaxy (say, l(}l~ the total 'change" in 
abundance o f  a particular species deposited to the surroundings 

by all the stellar black holes is given by: 

(,: 
(._.x~;) ~ i0 -~) - ~ \ 1 0 - : ~ /  \ 0 . 1 /  ~ 

We here assume a conservative estimate that there arc i(I 's such 
stellar bhtck holes (there number varies from Ill" Ixan den 
Heuxel 1992, 19981 to several tht)usands (Romani. 1998) de- 
pending on assumptions made) and the muss of'the host galaxy 
is around 101:~/11,. and the lifetime of  the galaxy during which 
such reactions are going on is about llJt~)Yrs. We believe that 
< .A~'i >,--' 10 -'~ is quite reasonable for a typical case when 
...X~] '--, 11) - a  and a fraction of  ten percent of matter is blown 
off as winds. When AYi ~ 0.1 or the outllow rate b, higher 
(particularly in presence of  strong centrifugal barrier) the con- 
tamination would be even higher. 

It is to be noted that our assertion of formation of neutron 
disks around a black hole for very low accretion r:ttc .Q 
I).11(11-1).0 I~'t'[E,I, I iS different from that of  the earlier testtlts. 
(Hogan & Applegate 19871 where J l  ~ lt).~lt.:,t,t ~a,~ believed 
to he the more favourable accretion rate. This is because in la~,t 
decades the emphasis was on supcr-Etldington thick accrcti~m 
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tori. More recent computations suggest that advective regions 
are not as hot when the rates are very high. Another assertion of 
our work is that r Li should not be produced it~ accretion disks 
at all. This is not in line with earlier suggestions (Jin ! 990) also. 
That is because unlike earlier case where the spallation reaction 
4 He +4 He was dealt with in isolation, we study this in relation to 
other reactions prevalent in the disk. We find that 4He could be 
dissociated much before it can contribute to spallation. However, 
our work supports Ramadurai & Rees' (1985) conjecture that 
deuterium may be produced in the outer regions of the disk 
provided the disk is at least as thick as 10~zg. 

In the process of performing the simulation we were faced 
with a challenge which was never addressed earlier in the litera- 
ture. The problem arises because the inflow under consideration 
is optically thin vertically, but optically thick horizontally. As 
a result, photons emitted form a power-law spectrum. Question 
naturally' arises, whether these power-law photons are capable 
of photo-disintegration. We find that the answer is yes and that 
the calculation of usual photo-disintegration gives a lower limit 
of the changes in the composition. In the extreme conditions 
close to the black hole, such processes are sufliciently effective 
to produce neutron disks around black holes. 
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Abstrnet.  Separation (ff the Dir=tc cqualion in the spacctimc ar,~md a Kerr black h~le into r:ldial 
and angtPlar co<~rtlin~tte,~ "~,r d~me by ('harldr~,~ckh:~r in 1976. In the prt'sent ixq~cr, ~c  s~Ivc the 
radial equations in a Schv,arz,~child 12etllVlClv)' Scmi-;tn:,lylically using Ihe WKB al~l~l~xivvmliow 
method. Am~mg other Ihings, we present an amtlytical cxprcssi~m ~d Ihe inslanlancous rcllccti~m 
and lransmissi~m c~cllicicnts al~d the radial '*ave luncti~,n,~ ~t the l.)irac particles. The c~mq~lctc 
l~hysical parameter sp:~cc was dividcd it~l~ t ~  l~:~M'~ dcpc~ding ~m the height ~f the I~tcmial well 
and energy of the inc~ming waves. Wc shrew ll(e get~ct:d s~ltlti~m h~r these tw~ regimes. Wc also 
solve the equations using a quantum mechanical uppr~ach in ~ hicb Ihc lv~lcnlial is al~p~ximatcd 
by a series of steps al~d ,,re have It)tmd thal these tv.t~ s(~lulions agrct'. We toilet,ale stflulions of 
different initial parameters and show ho~ the prtq~crties ~f thc scattered ~va~c depend on Ihcse 
parameters. 

PACS numbers: 0420. 047t). 047t)I). 953~)S 

1. In tro duc t ion  

The spacetime around an isolated black hole is fiat and Minkowskian al.a large distance where 
usual quantum mechanics is applicable, while the spacetime closet to the singularity is curved 
and no satisfactory quantum field theory has been devclc~ped :is yet. However, occasionally, 
it is useful to look into an intermediate situation: when a weak perturbation (duc to, say, 
gravitational, electromagnetic or Dirac waves) originating f r~ml inlinity scatters fr()n111 hlack 
hole. The resulting wave is partially transmitted into lhc hlack h(~lc Ihr~)ugh the h~riz~m and 
partially scatters off  from it to inlinity. In the line~lrizcd ( 'lcsl licld') approxinu|lion this problem 
has been attacked in the past by several attlhors 11-41. These methods are mostly numerical 
and most of tile solutions obtained so far are for IXtrllclcs t~f" integral spin only. (?handrasckh:lr 
[3-4] separated the Dirac equation ill Kerr geometry into radial and angular parts. These works 
were extended to other spacetimes, such as in Kerr-Nexvman geometry 15 I, and around dyon 
black holes [6]. Subsequently, Chakrabarti 171 solved the angular part o1 the Dirac cquation in 
Kerr geometry and gave the eigenvalues of the equation. These and the presetlt works mostly 
concern scattering off tiny black holes and thus changing lhe inconling soluti~m appreciably 
into an outgoing solution. Scatterhlg elTects from htrgcr black holes could be studied by phase 
shift analysis and this has also been done recently 18 }. 

In the present paper, we attack a simpler problem to get ~t 'tecl" for the contplelc s~lution 
when the black hole is t~on-rotating. Ill the uexl scclR~tl. ~c presctlt d~e b~sic ctlu~lti~ns. Ill 
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section 3, we classify the parameter space in terms of the physical and Unl~hysical regions 
a11tl I)l'CXClll the method we adopt to solve the Ctllltltions. In section .|. wc I~l+t'st'111 ;i t:nnq~lclc 
solution. In section 5, we present st)lulitms using a classical method in which the I~t~tcnlial is 
approximated by a series of SlOpS alld thetl ctHnp:.uc the stdutitms of these Iv.'t~ lt|clht~ds, h'~ 
scclion 6, we also COlt|l)ale sohltions of variotlS ilaltllllt, lcrs and show how a S,.'hwarzschild 
black hole distinguishes incoming ixuticlcs of various masses. Finally, in section 7. wc draw 
our conclusions. 

2. Basic equations of the problem 

Following Chandrasekhar [41, tile radial part of tile l.)ir~,lc eqtu|tiot] is easily reduced into a 
Schr6dinger like equation. However. bccause the spin-spin coupling term is absent in the 
Schwarzschild geometry, the radial equation is much simpler to deal with. The cigcnvalue 
of the angular equation for spin 4-! is trivially obtained as (l + ~)'- 17, 9-101 where I is tile 

I orbital quantum number. In what follows, we choose I = ~ throughout for concreteness. This 
eigenvalue turns out to be the separation constant L of the original Dirac equation 141. Here 
we solve the equation for one possible value of separation constant ,k (for I = ~. ~ is unity). 
In future we phln to exph>re tile nature ol tile solutions for other orlfital quantum numbers. 

Presently, we need to solve only the I'ollowing coupled radial cquatitms 141: 

where 

A~'I '~oR ~ == (I + i m v r ) A '  :' R , , .  (I) 

v;l a .  t + +  , = - , . 

iK ( r -  M) 
7:), = Or + - -  + 2 1 1 - -  

A A 

A = r 2 - 2 M , ' ,  

K - r2o ". 

Here n is an integer, a is the frequency of the incoming Dirac wave, M is the mass of tile 
black hole, m is the azimuthal quantum number, mp is the rest mass of the Dirac particle (p 

indicates particle), R+~ (R_~) is the radial wave function ror spin up (down) particles. D~ 
is the complex conjugitte ol~erator. It should be noted that dimensionless units arc chosen, 
so Ihat (; = II = +' =-: I. Thu radial cqtmlion hc~:c is iu c~mpIctl Iownl. Wc can dt'c~uq~lc il 
and express tile equathm either in terms of a spin u I) or spin down wavelttnction. I Iowcvcr, it 
is more convenient to follow Chandrasckhar's 141 approach by which ttle basis was changed 
along with the independent variable r. That way. the coupled equation was reduced into two 
independent one-dimensional wave equations since they are easier tt~solve. 

We lirst deline 

r, = r + 2Mlog It" - 2MI,  

where r > r+(= 2M),  

d A d  

dr ,  r" d r '  

andchoose A~R+t+ = P+-t. R_, = P ,. 

(3) 

t4) 



and 

and 

and 

Sohttion o f l ) i rac  eqttation it)Schu'arz.schihl geometry 

Ill I,drlllS ()f r,,, the ()pctalols  take Ihc Iolll): 

'D()= .~ di l  +i,) 
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) v,'; = S '  ~ -  i~, . 

We choose  0 = tan - t  I, mvr)  which yields, 

I 
cos 0 -- sin 0 - , / ( !  + ,,,~,.2) ' 

lt)pr 

x / ( l +  m~r-') 

Following 

(1 4- iml>r) = exp(+iO)~/ ( !  + mep,-2). 

exactly Chandrasekhar 's  [41 approach we write 

<,, = ~ . ! e x p [ - � 8 9  (5) 

and 

i , , ,  = ~, ;~xp [+�89 (6) 

Fina l ly ,  a choice o l ~ .  = r .  + ~ t a n - W ( m p r )  y ie lds d &  = I + ,.-z. ~ )+,,,V.----,-~. d r . .  

Wi th  these de l in i t ions ,  the d i f ferent ia l  equat ions ( I ) and (2) are re-wriHen a~ 

( ~  - W) Z+ = icrZ_ (7a) 

+ W Z_ = icsZ. ,  (Tb) 

where  Z+ = 0+�89 4- ~_~ and 

~.~/~ 
Zx!(,I + m~,")- - 

W = (8) 
r2(I + m~, "2) + . ,pA/2r r  " 

One important point to note: the tl'allSfOl'llt~2[iO)l o|spatial coordi)mte r It) r.  (a))d ~, ) is taken not 
only for mathematical  simplicity but also for a physical signilicance. When r is chosen as the 
radial coordinate,  the decoupled  equations for independent waves show diverging behaviour. 
However ,  by transforming those in terms of  r, (,and J:,) we obtain well behaved functions. The 
horizon is shifted from r = r+ to J:. = - ~ o .  

From the above set of  equations, we readily obtain a pair of  independent (me-dimensional 
wave equations,  

,) +or- Z.+ = V:~Z~. (9) 

where 

Ve = W 2 4- dW_ (10) 
d/:, 

[ "'"" ( )] 
tr'(l +,,,~,-~)+,,,oA/>,l'- A!r + , , ? - - )  - • ( , ' -  M)(I  + , , , ~ , : )  + 3,,,'?.A 

. ~ ~ , ~ i  ~ AI(I  + m~;,"l " 
12,(I +,,,~r2) + 2, ,~,"  +,,,,.(, - M)I , , I .  ( ~ )  

T jr2( 1 + m~,r2 ) + m1,A/2o l, 
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3. P a r a m e t e r  Sl)ace nnd tttethod to solve etlttntions 

We obtail~ soltltions by enq~lt)ying Iht' \Vcnt,,cl Kr;.ttl)c'rs Ih'illt)uin (WKI~) 111.121 incth<)d 
and then ill)positlg strict I~(~ttlltl:H'y Ct)lttlitiotp.; (~t~ the h()rizt~, s~) Ih:tt tht~ It'llt'cti~)~ c(~ctiicic~t 
is zero and the trunsnHssion c{}eflicicnt is trinity at the horiz{}n. Alter cslal}lislfing the gencrul 
solution, we present here the solution of equation (9} for two sets of parameters as illustrative 
e x a m p l e s .  

It is advisable to choose the parameters in such a way that there is a signilicant interaction 
between the particle and the black hole. 'This is possible when the Compt{}tl wavelength of the 
incoming wave is of the same order as the Schwatzschild radius of the black hole, i.e.. 

2G M /r 

C 2 mpC" 

Here  w e  are c h o o s i n g  G = tr = c = ! ,  so  

I 
mr' "~ 2M" 

Again, in tile case of' Schwarzschild get)alofty, the frcquctlcy (ff the incowlfillg imrticlc (or wave) 
will be of tile satlle ov'der us the ivlvcv'se ~1' tittle. ,'qo, 

( '  . I  

. . . .  ~ ( ' f .  

2 G M  

Using the units as before, one can write, 

mp "- o "-- (2M) -t  (12) 

In principle one can choose any values of cr and tllp for a particular bhtck hole and the 
c o r r e s p o n d i n g  solution is possible, but we shall concentrate upon the region of parameter 
space where the solution is expected to be interesting as pointed out above, namely the region 
close to m p =  or. Ill ligtu'e l(a). we draw this line. The purameter space is spanned by the 
frequency or and the rest mass of the incoming particle rap. It is clear" that 50% of the total 
paraineter space where or < mp is unphysical, and one need not study this region, q'he rest of 
the parameter space (or > rap) is divided into txvo regions: l" E > V,,, lind II: E < V,,,. where 
V,,, is t h e  tllltXitllt1111 e l ' t h e  pt)tet)t i~d,  lit IU[2i()tl I, flit '  w; lvu  is h~r'rdly shll ts t) i( l : t l  I'Jr the  w;.tvt: 
i1tll|11")er k is re: i t  I ( ) r  the  r  IHII~2L.' ()f' f ' , .  It~ t~.'~:it~tt II t~tl tiiL' () lht. ' l  h: l l | ( l ,  tht.' x',,';tve iN tlt..'c:tyilag 
whela E < V, i.e. whurr the wavt., 'hits'  thc, l~t)tc.i1tiul burricr, nwtd it) the 1r of  the rcgitm, 
tile wave is prop~tgating. We shall show solutions in these two regions separ~ttely. In region i 
whatever the physical p~lrillllCtcrs, the UilCI'~y [)l' the pmticle is Itlw~,lys grc~ttcr than the potential 
energy and the WKB approximation is generally valid in tile whole runge (i.e. ~ ~it. d-iE. << I ) . ln  
region 11, the energy of the particle is al~vuvs less than tile nmximutn height of the potential 
barrier. Thus, at two points (where k = ()) Ihe total energy matches the potential energy and 
in the vicinity of these two points the WKB approxinmtion nlcthod is not valid. These have to 
be dealt with separately. 111 figure I(b). we show contours of constant u,,,,~,~ = m a x ( ~  ~ ) tor a 
given set (or, rap) of purameters. The labels show the uctual values of lv,,,;,~. Clearly, except for 
parameters very ('lose to tile bottlltl:try of rcgitms ! ;.uld II, the \\:KB al~proxitnatiota is safely 
valid for any value of/:~.. One has to employ a dillcrest n)cthod (such us usillg Airy Funcliot~s, 
see below) to lind solutions in this region. 
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Figure  1. (a) Classification of  the parameter space in terms of tile energy and rest mass of  Ihe 
particles. The physical  region e > m r is Iurther classilied in terms of whether the particle actually 

'h i ts '  the barrier or not. (b) Contours ()f constant u'ma~= max( ~ us: d-~) are shown to indicate thai 
generally tv << I and therefore the WKB approximatioi |  is valid in most of the physical region. 

Labels indicate the values of  w. 
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4 .  The  comple te  soht thm 

4. I. Solutions o f  region 1 

In this region, for any set of paraluctcts, Ihc e ,crgy of the particle is always greater than the 
corresponding potential energy. We lirst re-write equation (9) as 

d 2 Z +  
d;'--'~-- + (a2 - V§ Z.  = O. (,13) 

This is simply the SchrOdinger equation corresponding to the total energy of the wave cr 2. This 
can be solved by the regular WKB method II 1,12]. Let 

k(,~,) = ~/(cr 2 -  V§ (14) 

= f k(;'.)dl^, + constant. ( 15) 

Here, k is the wave number of the incoming wave and u is the eikmud. The solution of 
equation (13) is, 

A, A 
z .  = 7 .exp(i,  + 7 cxvl-i,,). 

with 

A~ + A 2_ = k. (17)  

In this case all alongcr 2 > V+andalso  ~~ << k. so tile WKB approximation is generally 

valid in the whole region. The quantity ~ dk falls off rapidly with distance. Thus, WKB is 
strictly valid at long distance only. 

It is clear that a standard WKB solution where A. and A_ are kept constant throughout 
should not be accurate, since the physical inner botmdar); condition on the horizon must be that 
the reflected component  is negligible there. Thus the WKB approximation requires a slight 
modilication in which the spatial dependence of A~: is allowed. On the other hand, at a large 
distance, where WKB is strictly valid. A+ and A_ should tend to be constant, and hence their 
difference is also a constant: 

A §  = c .  (18) 

Here, c is determined from the WKB solution at a large distance. This along with (17) gives 

c v/ i2klr)  - r"l 
A l ( r )  . . . .  + . . . . . . . . . . . . . . . . . . . . . . .  . (19)  

2 2 
This spatial variation, strictly valid at large distances only, should not be cxtendcd to the horizon 
without correcting for the inner boundary condition. These values are to be shilted by, say, 
A+l, respectively, so that on the horizon one obtains physical R and T. We lirst correct the 
reflection coefficient on the horizon as follows: Let A-h be the value of A_ on the horizon 
(`see equation (, 19)), 

c vq2ktr )- c2l 
A-h = + -  + 

2 2 
It is appropriate to use `4_ = A_ - A--I,, rathcr Ihan A_, since .4.. vanishes t i t  I" = 1"+. 

Incorporating these conditions, the solutitm (I 6 )  beconles. 

.4.  `4,, 
Z+ - -  ~/qeXp(iu) + ~ q c x p ( - i u )  (2/I) 
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wit i l  (he u.sual norlnalization contliti~m 

A ~  .,4 2 + _ ---- q ,  ( 2 1 )  

where ,A+ = A 4.- A ~.1,. I lere, q is hi hi.' du'turnlhlcd st'll-clin.~islclilly by etliiatilll2 llic ~lsyilllillitic 
beilaviour of this retleclion coolticionl wi i l i  lllal el)rained using the WKB nlolhod. This q in 
t u r n  is used to compute ,,4+ = A+ - A+h, and therefore tile transnlission coefficient T from 
equation (21). In tills way, normalization of R + T = I is assured. 

I ~ <( q are lound to The normalization factor q --+ k as ~, --~ oo and tile condition ,'7 d;-. 

be satisfied whenever ~ dk <<'k. This is the essence of our inodilication of the WKB. In a 
true WKB, A-,- are constants and the normalization is with respect to an (almost) constant k. 
However, we are using it as if WKB is instalmmeously valid everywhere. Our method may 
therefore be called the 'instantalaeous" WKB approximation or IWKB for short. Using the 
new notation, the instantaneous values (i.e. local values) of tile rellection and transmission 
coefficients are given by (see equation (20)), 

A-'_ 
R = (22a) 

q 

T = __A~ (22b) 
q 

l)otcrlninalion of A +h is done by ensuring/7 tlbl:thled Ironl cqualion (72a) is Ihe name as thal 
obtained by the aelual WKI# nielhod al hlllnilv. 

To be concrete, we choose Olle set of pi.lrallicters froul region !. (A large Iltllllber o[ solutions 
is compared in section 6 below.) ttere, the total eilel~,y el  tile i i lcoiuing particle is greater than 
the potenthll barrier heigilt for all valtics of r,.  We use lllass of llle black hole, M = i" lllass o[ 

I the particle, m o = 0.8, orbital qualltUli'l llUlllber,/T = i,I ~izilnutlla] tlUal~ltllnl llunlber, m = --5,. 
frequency of the inconling wave, cr = 0.8. 

From equation (9) we observe that there are two wave equations for tile two potentials V+ 
and V_. The nature of the potentials is shown ill figure 2. It is clear that potentials V• are well 
behaved. They are naonotonically decreasing as the particle approaches the black hole, and the 
total energy chosen in this case los") is alvcays higher coinpared to I%. l:or concreteness, we 
solve using potential V+. A sinlilar procedure can be adopted using potential V_ to compute 
Z_ and its form would be 

' - ' A '  - A ' _  h Z_ = A+ A+h exp(iil')  - e x p ( - i . ' ) .  (20') 
Jq' ,iq' 

Nolo Ihc oCCtlrrcIICC (IJ" Ihe neglil ivc Sigll itl [rtinl (it Ihe rcl lcclcd wave. This is t(i salisly ihe 
asyniplotic I)i'oporly i l l  Ihe wavcluncli l lns which iilUSl clm.~elVe Ihe Wrr ~iilce tile 
cooll icieil ls shiluld ilOl chiinge sign belween inl ini ly and Ihe horizon (~lS Ihlil would [llllOtllll 
to having zero aniplitude, i.e. unphysical, absence of either the Iorward or Ihe backward 
component) the sanle sign convention is followed throughout the space. Local values of the 
reflection and transmission r could also be calculated in the same itlanner. In the 
solution (equations (20) and (20')), tile lirst ternl represents the incident wave and tile second 
term represents the reflected wave. 

In figure 3 we show the nature of V+ (solid curve), k (dashed curve) and E ( =  cr 2) (short- 
dashed curve). Tile difference between E and V+ iliad therefore k increases as tile particle 
approaches tile bl:lck hole. 

In ligure 4, variation of 'local' iellcction mid llansndssion cocl-licients is shown. It is 
observed that as matter conies close to the I~lack hole. the barrier height goes down. As a result 
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Figure 2. Behaviour of potentials 1C (stflid curve) and V_ (dashed curve), as a f'unction of/~,. The 
parameters are chosen from region I of ligure I. 
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FIRure 3. Behavlour of V+ (solid curve)./~ (dashed curve) and total energy E (shor~-dashcd curve) 
as functions of ~,. 

the penetration probability increases, resulting in the rise of the transmission coeflicients. At 
the same t ime the rellection coefticient tends lo zero. It should be noted that, strictly speaking, 

the terms 'reflection'  and 'trat~smission' coeflicients are traditionally defined with respect to 
the asymptot ic  values. The spatial dependences that we show are to be interpreted as the 
instantaneous values. This is consistent with the spirit of the IWKB apl~roxinuttion that we 

are using. 
The  belaaviour of  the solutions with V_ is not very different f rom that shown in ligures 3 

and 4 except  in a region very close to the black hole horizon where V§ and V_ differ slightly 

(see ligure 2). 
Using tile solutions of equations with potential V+ and V_.. the radial wavcttmctions R,~ 

and R__t, for spin up and spin down particles rc~pcclively, t~f the ~rigimd 13ir~lc equation are 
2 
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Figure 4. Behaviour of local transmission (T. solid curve) and reflection (R, dashed curve) 
coefficients as functions of ~.. Close to the horizon, transmission is a hundred per cent and 
reflection is almost zero, 

given below, 

t ! t t .+cos( .  - O ) - a  cos(zr +0)  
+ (23a) =,/P 

Im 
a',sin(u' - O) + a'_sin(u' + O) 

+ (23b) 2,/P 

) a+cos(u +0)  + a_cos( ,  - 0) 
Re R_~ = 2 

a'+cos(. '  + 0) - # _ c o s ( . '  - 0) 
(23c) 

) a+sin(u + 0) - a_sinCu - 0) a'+sin(.' + 0) + a'_sin(u' - 0) 
Im R_�89 = 2.,/k - 2 v ' ~  (23d) 

Here, a§ = ( A ~ . -  A ~ h ) / v ~ q / k ) a n d a  = (A - A h ) / ~ / ~ q / k ) ,  llcre, we have brought 
back k and k' so thai these may resemble the origimd soltvtiovt (ccimtlion ( 16D using the WKl j  

,,: ,'. 
approximation. - ~  and - ~  are the transmitted and rellected amplitudes respectivcly for the 
wave of cot-respondittg poteutial V_. 

t particles Figure 5 shows the resulting wavefunctions for both the spin +�89 and spin - ~  
respectively. The eikonals used in plotting these functions (see equation (23a-d)) have been 
calculated by approximating V~: in terms of polynomials (this was done since V+ as presented 
in equation (10) is not directly integrable) and using the delinition u(~,) = f , f i a  2 - V+)d~,. 
Note that the amplitude as well as the wavelength remain constant in regions where k is 
also constant. As discussed before, the wavefunctions are almost sinusoidal close to the 
horizon and at a very large distance (albeit with different frequencies). Since the net current 
(IP+�89 - IP_~ 12) is conserved, the probability of spin +~ is complimentary to the probability 

of spin - t particles respectively. 
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Figure 5. Behaviour of (a) Re(Ri/,_AI/2). (b) Im(Ri/2AIP'), (c) Re(R_ I/2). (d) Ira(R-i/2) as 
functions o1" i:.. Note the complimentary ,ature of the wavelunctions of lhc spin + ~ a,d spin - 
particles. This is because the currenl is conserved. 

4.2. Solutions of region I1 

Here we study the second region where for any set of physical parameters tile total energy 
of  the incoming particle is less than the maximum height of the polcntial harrier. Thus, the 
WKB approximation is not valid in the whole range of ~,. It] such rcgions, the solutions will 
be a linear combination of Airy functions because the potential is approximately linear in/~. 
in those intervals. At the junctions one has to match the solutio,s with Airy functions along 
with the solution obtained by the WKB method. In the region where the WKB approximation 
is valid, local values of reflection and transmission coerlicients and the wavel-unctions can 
be calculated easily by following the same method described in case I. In other regions, the 
e q u a t i o n  reduces to 

d 2 Z +  
xZ§ = O. (24,~ 

d;, 2 
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where .r ----- fl~ (:/:, p), 11 is t'h(),~cn t()I)0 I~()'dtivt ' aml p is Iht' crilical I)(,inl where the t(flal 
energy mid i)(flenlial t'iWijly tilt., cqtml, 

I 

Let Z+(x) = .r. ~ Y(x) and considering region .~ > 0 the equation (24) rctluccs It) 

.2d21" + . r ~  (.v3 I )  .~ ~ . - + ~  ) '(.v)=O. (25) 

By making yet another transformation, 

2 r ~ (26) 

we obtain, 

- + r( 7 = o. (277 

This is the modified Bessel equation. The solution of this equation is l+, (~) and I ~(~). 
Hence. the solution of equation (27) will be 

I 

Z+(x) = x-~lCt/+~(~) + C2/_ ~(~)1. (28) 

When x < 0 the corresponding t:tlUallhm is 

, 2d2Y  dY (~2 l )  
rl )=o, (29} 

which is tile Bessel equation. The corlt25;pot'~dil'lg sohtlion is 

Z+(x7 = I .~l ! l l ) lJ+i($) +/)2./_.~(~)l, (30) 
t where J+ and I+ are the Bessel functions and the modilied Bessel functions of order .~ 

respectively. 
The Airy functions are delined as 

Ai(x)  = tr~tt_~(~)~. - t+~(~)], x > 0, (31) 

Ai(x) = ~ l x l ' l J _ ~ ( ~ ) +  Y+}(~)]. x < 0, (32) 

! 
B i ( x ) =  ~ r ~ [ l  ~(~)+I+](~) ] ,  x > 0 ,  (33) 

,/3" 
! 

Bi(x)  = -~3lxl}[J_~(/~) - J+~(~)J. x < O. (34) 

In terms of Airy functions, the soltttlons (28) :rod (30) cat'm be written its 

Z+ = 2 (Cz - Ct)Ai(.r) + (C'2 + Ct )Bi (x )  for x > O, (35) 

Z+ = ~( 2 + Dw)AiLr) + (D,~ - Dt)Bi(.r) forx  < 0 .  (36) 

By matching boundary conditions i! is easy to show that the solulion corresponding to .r > 0 
and that corresponding to x < 0 are continuous when Ct = - D r  and C2 = D2. 

To have an explicit solution, we choose the following set of parameters: M = I, m p =  0. I, 

l = � 8 9  m = - � 8 9  
In figure 6, we show the nature of IC and V_. ltowever, while solving, we use the equation 

containing V§ (equation (97). Unlike the case in the previous section, cr "~ is no Iongcr greater 
than V+ at all radii. As a result, k'- may attain negative values in some region. In figure 7. the 
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Figure 6. Behaviour of V, (solid curve) and V_ (dashed curve), as Iunctions of i:,. The parameters 
are chosen from region 11 of figure I(a)  and (b). 
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FlRure 7. As ligure 3. See text Ibr the ch,~ice t~f lxlrumeters. 

nature of  V+ (sol id curve), pmameter k {dashed curve) and energy E (short-dashed curve) are 
shown. []ere, the W K B  al~Prt)ximation cat) be applied in regions other than ~, ~ - 6  to - 1  
and 4 to 8 where  k is close to zero and tile condition ~. tJk 3~ << k is not satisfied. In the region 

F. "-, 8 to 4 around the turning point F, "--. 5.6088 the solution turns out as It 31 

Z+ = 1.858 386Ai(x) + 0.600610914Bi(x). (37) 

Similarly,  the solution from - ]  to - 6 ,  i.e. around the turning point F, -- - 3 . 0 6 7 5 ,  can 
be  calculated as I. 13] 

Z ,  = 1.978 145Ai(x)  + 0.716 8 8 0 7 Bi (x ) .  (38) 

It should be noted that in the region/: ,  "--, 4 to - 1. even though the potential energy dominates 

over  the total energy, the WKB approximation method is still valid. Here tile sohttion will take 



Solution of I)irac equation in A'(hwarzscllihl geometl T 3177 

the I'orm ~ and ~ Asymptotic values ofthe iilslat~lancous rcllecticm mid trausur ,/k ,/~ �9 
coeflicienls (which me Iratlilil~naJly kn(~wn as the 'rcllccli(m' ;m(I 'll;mslnis~;i(m' c(~cIlicienls 
respectively} arc t,)l)laiilcd ll(llll |he WKB alq~roximalion. '1 his yichls Ihc integral coil,.If|ill ( '  ;IS 
in case l. From equation (22a.b) local reflection and Iransnfissicm coclficicnts :ire calculated, 
the behaviour of which is shown in figure 8. 'lhe c(~llslllllls A h and A,h are calculalcd Iis 
before. Note the decaying nature of the reflection coellicicnt inside the potential barrier. 

0.2 

0 

- 1 0 0  0 100 200 300 

Figure 8. As figure 4. See text for the choice of paramelers. 

5. Solution of  the equat ions  by step-potential  method 

In the above sections we presented our semi-analytical solutions by the WKB method with an 
appropriate boundary condition at the horizon. A numerical approach would be to replace the 
potential V(i:.) by a collection of step functions as shown in figure 9(r I lcrc. the solid steps 
approximate the dashed potential for m p =  0.8 and cr = 0.8. The standard junction conditions 

are of the type 

Z+.,, = Z+.,,+t (39a) 

where 

and 

where 

Z+., = A,,cxpl ik,,~,.,, I + B,,cxpl - ik , , ; , . ,  I 

dZ+ dZ+ 
I,, = -=7-~ 1,,+1 (39b) 

d/:. o r .  

dZ+ 
d~, 1, - ik, A,,exp(ik,,~,.,, ) - ik,, B,,exp(-ik,,~..,, ) 

at each of  the n steps were used to connect solutions at successive steps. As before, we use 
t h e  inner boundary condition R --'- 0 at ; .  ~ - o o .  111 reality, we used as many as 12000 
steps to accurately follow the shape of the potential. Smaller slep sizes were used whenever k 
varied faster. Figure 9(b) sht)ws the conq~arison of' the instantaneous reflection coeliicients in 
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both methods. The solid curve is lrotu the W KB method of the previous section m~d the dotted 
curve is from the StCl~-I~olcntial method ,,ts descrihcd here. The ~grecmcnl is clc~uly cxccllcut. 
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F i g u r e  9. ( a )  Steps (solid) ~q~proxim~tfing ~1 potcnti~d (dotted) thus reducing the problem to tllzlt of 
quan tum mcch~mics. '1he parmnclc ;s  : , e  mr, = !).8 :rod n = 0.R. (1~) ('(mll~:Uison ol v:lri 'llhm o( 
ins tantaneous  rellcction cocflicicn! R ~ i lh  the r~ltlizd coordim~lc ~. using m~dylical WKB mcfl~od 
( s o l i d )  alid numerical  slcp-potcnli~d method (dolled). "]he parameters  ~,c mp --= 0 . 8  ~.tll(I cr = 0 . 8 .  

6. Bl~ck hole: a muss spectroRr~qfll? 

In order to show tirol tl)e hhlck hole .'~c:ltters incoming w:lves of difl'erenl re,~t m:l,'~,'~es (mr,) mid of 
different energies (~~) quite differently, we show :! collection of solutions in ligures I 0(a)-(d).  
In figure 10(a), we show reflection and transmission coeflicients for w:lves wifl) parameters 
o" = 0.8 (,solid), 0.85 (dotted) and 0.90 (dashed) respectively wifl l  the same m r - 0.8. As the 
energy of the particle rises compar~lble to lhe height of the potential (which is solely dependent 
o n  m r, at a large distance), the reflection coefficient goes down and the trm~smission coefticient 
goes up. In figure 10(b), the real parts of the xv~e Z, ,  corresponding to these three cases ~ue 
shown. At ~, = 0. the w~lve pattern is indcl~elltlent olcr as the phase I~lctor is trivi~tlly the szmlc 
in all cases. The disperszd of the xv~tve with frequency is cle:u. Waves with sm~fller energy 
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a n d  longer  wavelength  are scattered with higher ampli tude or Re(Z+) as the fraction o1 the 

rel leclcd wave goes  up when the energy is reduced. This  I~chavi()ur is valid until R .c 0.5 since 
the ttit)l)lilttde t)f I,tc(Z, ).--- ( I .+ ~ / . j . ~ ) l / :  l:()r R -. 1).5, Ihe anq)liludc ()1 RcIZ+ ) gt)cs d()wn 
with energy. In ligurcs I()(c). (d), st)ltitit)ns arc sh()wn vttryin# the rcsl mass t)r the pttrticlcs 
whi le keeping <7 fixed tit 0.8. The solid, dotted and dashed curves arc for mp = (.).8, 0.76, 0.72 
respectively. The most interesting aspect is that close to the black hole P+ ~ (), the reflection 
a n d  transmission coeHicients as well as the nattire o[ the wave are quite itldcpcndent of the 
rest mass. This is understandable, as just outside the lx+rizcm the potenthit is h+scnsitive to rap. 
However, farther out, the amplitude of Re(Z+) goes tip as before when ntp is raised, as a larger 
fraction of the wave is rellected fron~ the potential (ligure 10(~')). 

This  interest ing behaviour  for the litst t ime shows that one could scatter t; mixed wave 

off  a b lack  hole and each of  the consti tuent  waves  would behave differently as in a prism or a 
mass  spec t rograph .  
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F i g u r e  I0. ( ' ompar i son  of  h n  rcllcction and Iranmuis~iun cocllicicm~ and (I,) lilt rcal ampli tude 
of  the wavcf tmclhm Z+ for m p =  O.R and cr -- {).gO (solid1, I).RS (d , t l cd)  aml 0.90 (dashed] 
o'espectively. IcL (d) Similar  tltUantitics for m I, -- ().80: (,~olid) 0.76 (th)llcd) and (9.72 (dashed) 
respectively keeping a = 0.8 fixed. | h e  hLuhcr rellcctit)n COml',tu'lcnt cnh:mccs the wave amplitude.  
Ihus dHterent ia t ing the blooming waves very clearly. 
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7. Concluding  r emarks  

In this paper, we have analytically studied Ihc scalic,in~ ~1' sIfts-half Particles I r~ml a 
Scllwarzschild black hole. In l~.qrlicul;Ir, wc haw plcst'l|lctl lilt.' Ilalulc of Ihc radial 
wavefunctions and the relleciion and transmission coefficients. Our main motivation was 
to give an analytical expression of the solution which could be useful for [urther study of 
interactions among Hawking radiations, for instance. We verilied that these analytical solutions 
were indeed correct by explicitly solving the same set of cqualitms numerically using ihc step- 
potential approach as described in section 5. We classilied the entire parameter space in terms 
of  the physical and unphysichl regions and the physical region was further classitied into two 
regions, depending on whether the particle 'hits' the potential barrier or m)l. We cllose one 
illustrative example in each of the regions. We emphasize that the most 'interesting' reg)on 
to study would be close to mp -~ or. However, we pointed.out (ligure l(h)) thai for m I, <~ 0.3, 
WKB solutions cannot be trusted, and other methods (such as those using Airy functions) must 
be employed. 

We used the well known W KB approximation medlod as well as the stcp-i~otemial mcdlod 
of quantum mechanics to obtain the spatial dependence of the cocllicicms (~1 the wavefutlctiowl. 
This in turn, allowed us to determine lhe rcllccii~m and trun~misshm coctticicnt~ and Ihc tl~ltulc 
of the wavefunclions. The tl~tl:ll WKB Illclht)d xvilh c()llslanl c~cllicicnl~ and (alH~(~l) ctm~l~mt 
,wave number k is successfully al)plicd cvcn when (l~c c()cllicicnl~ and wave nulld~cr arc n~)t 
constant everywhere. The s()ltlll()ll Iroln tllis 'hlslHil(~,llll2t)us" WKB ( IWKB ft)r sh()l ' l) I1]clht)d 
agrees ful ly with that obtained fr~ml a purely classical mlmclical mcth~d where Ihe p~tcmial 
is replaced by a collcctRm (ff steps. "l'hc rcsullillg wa',cl()rms satisly the i , , c r  ~u~d Ihc ()utcr 
boundary conditions. Our method of ~)btainit~g soluti~m.~ should bc valid Ior any bh~ck ht~lc 
geometries which are asymptotically tlat so that radial waves could be used at a large distance. 
This way we ensure that the analytical solution in closer to the exact solution. In region II, in 
some regions, the WKB method cannot be applied and hence an Airy function approach or 
our step-potential approach could be used. 

In the literature, rellection and trans;missit)n c()cllicicnts are dclincd at a si~gle potent. 
These delinitions are meani~glul only if lhe potential sharply cha~lgcs in a sm~dl regi(m while 
studies are made from a huge distance. In the present case, however, the polcntial cha~ges 
over a large distance and we are studying these regions as well. Although we used the ,.vords 
'rellection' and 'transmissitm' coellicicnts in this paper very loosely, our dclinitions a~c very 
rigorous and well delined. These ClUantitics are simply the instantaneous values. It is our belief 
these are more physical. The problem at hand in xcry similar to the pr~blcm of rcllcction and 
transmission of acoustic waves from a struck slrin B of m~n-conslant density where rcllccli()n 
and transmission (~ccurs at c:~ch p()illl. 

U t d i k e  in the cil~;c ~ t  ;t Ker r  b l ack  h(dc.  lhr '~()luli()t| ()1 the all~2ttt;tt ctlu:.tli()ll ~tt)tttltl ;! 

Schwarzschild black hole is indcl~cndcnt of the azimuthal or mcridi~mal mLulc~ 15-71. Thi~ is 
expected because of symmetry of spacclime. I I()\vcvcr, olhcrwisc Ihc n;Hurc (~f Ihe rcllcclion 
and transmission coefficients was fotmd to s;trongly disli~aguish soluliotls of dillcrest rest 
masses and different energies, as illustrated in ligures 10(a)-(d). For instance, when the 
energy of the wave is increased for a given mass of the parliclc, the rcllcclcd component goes 
down. In regions where R > 0.5, Re, Z , )  goes d~wn with energy, but where R < 0.5, Re(Z+) 
goes up with energy. In any case, the waves scattered off are distinctly dilTcrcnt. I~ a way 
therefore, black holes can act as a mass spectrograph! For instance a mixture of waves should 
be split into its components by the black hole. Our methodis quite general and should also be 
used to study outgoing I lawking radiations. 'lhis is beyond the scope of Ihis paper and will be 
deult with in future, 
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A b s t r a c t .  We are familiar with Dirac equation in ttat space by which we can inves- 
tigate the behaviour of half-integral spin particle. With the introduction of general 
relativistic effects the form of the Dirac equal, ion will be modified. For the cases of 
,lilr,,r,,Iit lmckgrot, ml geometry like h:err, Schwarzschild etc. the corresponding form 
of the Dirac equal, loll ms well ;Is the solution will be difl'erent. In 1972, 'Feukolsk.v 
wrote the l)irac equation in Kerr geometry. (~handr,'tsekhar separated it into radial 
arid angular parts in 1976. Later Chakral)arti solved the angular equation in 1!t8,1. 
Ill 1999 Mukhopadhyay and (:hakrabarti  have solved the radial Dirac equation in 
Nerr geolnetry in a spalially complete manner. In this review we will discuss thes," 
,l('veh)l)tllelllS syst.t'lll;tl, i('ally ;Lilt[ I)resent sonm solutions. 

K~'ywcn'~ls ' (;, 'neral relativity, gravitation, ldack hoh's, quantum,aspects 

PACS Nos. : 0'1.20.-~1, (}.l.70.-s, 0,1.70.Dy, 95.30.Sf 

1. I n t r o d u c t i o n  

I 'h, l tavh)ur ~1" I:>a, rl, iclos w i t h  ha l f  inte~ra, I spin can I>e inw.,stig;tte~l t l l ro l I~h  TIle 
.st ~ldv of I)irac eqHa.tion. ( ;eneral ly,  wo are famil iar  with the Dirac equat ion 
and its solut ion when lhe space- t ime is tlat. In the curved space- t ime  where 
l ll~, influence of the  gravi ty  is in t roduced,  the cor responding  equat iou  will 
I)e change~l in form. its solution will also be ditferent. In 1972, Teukolsky [1] 
wrote the l) irac equ;t t ion in curved space-r ime par t icular ly  in Kerr  geomet r.v [2] 
llsing Newlna i l - l )enrose  formal ism [3]. Through  this modified l ) i rac eqlla~ion 
w(, can st u(Iv tile I)ehaviour of spin half  l)articles a r o u n d  the sp inn ing  black 
h~fles, l) ,w l~ I)resen('e of (:eIil, ral black hole lhe sl)a('e-t.inlp is inltuen('o(I and 
Iwllaviour ~d" tho par t ic le  is changed with respect to t, ha t  of flat space, l:roTll 
Ihe sam( '  e(lual.ion of Teukolsky, l)irar eqllali(m for %chwarzschil~l Tn~,lrh [2} 
(.'-;chw;irzs~'hil,I gO()lllOl I'3'), w h o r e  [h( '  i ' ( ' l l | l ' ; l l  black hole is s ta t ic  Call t)t, 5,1 iI~lil,,l 

�9 1999 IACS 
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I,la.~]~ ~g]eS"t~e {he ,nod,f led Dirac eqt, at,,on for curv,,d sl,a,'e-t,,,.,,' ([or Kerr  
and Schwarzschi ld geonmtry  [2-3]) and its solut ion reduce into that  of the fiat 
space. 

In this  review we will first indica te  how Dirac equat ion  in curved space- 
t ime can be wr i t t en  using Newman-Penrose  formalism [3]. Newman-Penrose  
formal i sm is one of the t e t r ad  formal ism where null ha,sis are chosen instead 
of o r t h o n o r m a l  basis. To fulfil} the unders tanding,  of Dirac (,(tuat, ion in this 
formal ism we also need to know the 'Spinor  Analysis '  [3]. In l, ho next  Section. 
we will briefly describe this in the context  of our present purlmse.  In ~3 w~, 
will wri te  the Dirac equa t ion  in Newman-Penrose  formalism for tlat, and curw,,l 
sp;tce-t inm. For curw,d space we wi l l  sepa.ral.e the l ) i r ; u  ,'(lua.tion under the 
background  of Kerr geomet ry .  In w and ~,5 we will brielly out l ine  the angula r  
and radial  so lu t ion  of Dirac equa t ion  respectively. In w we make concluding; 
renlarks .  

2.  S p i n o r  a n a l y s i s  

In Minkowski  space we consider  a point  x i (i = O, 1 ,2 ,3)  on a null ray whose 
norm is defined as 

_ _ ( x , ) ' ,  _ (xa)  = o .  ( 1 )  

Now, wecons ider  two complex numbers,5. ~  and their comp lexcon jug~ to  
number s  ~o' and ~1' in t e rms  of which each point  can be wr i t ten  ms, 

x ~ -- 1 . ( : ~  sr 1') (2a) 
- , / i  

x '  1 ( 2 b )  = + 

_ 1 /co~l' ,1.'2_ V f ~  ~ -- ~'e. 0') (2C) 

x 3  ,: _ ( 2 d )  
- 
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Conversely, we can write. 

Let, 

857 

cO~O'_ 1 (:r" 
, - v / ~  +* '~)  

~<,~l' = v~2(a:i + ix'2) 

(l~o'  = v~2(x I _ i. '2) 

v:(~~ - ~ ~ ) 

. ) ( ' '  

(3d, 

where, 
dimensionaA sp<'wes. The t,r:tnsformatioll of x' is r as, 

x =/:Jjx:. (.~ 

Now, using equation (2) and (3) we can write, 

- 0 '  c-O' " '  - , ' -  " - " '  -0' ' �9 :7  = ~ , . . . o < o +  m.~')(<~o,. +~y,~ ) + i ,~,<o .I~,)(<~,,.  ~ +(~,,<, ~ t < q ) %  + i,v. ) V / -~ \  c'O% 

l ,  o - o '  i - t '  /' ] o - o '  ' 
= 7tO~o~o, + % , , o , ) ( .  ~ + :r .~) + 7 (o , , ( , , ,  + ,~I ,~, I , ) (~ ~ _ .:~) 

jr i t  0 - 0 '  1 -1 '  l 0 - 0 '  1-1 ~t<~oC~'t, + C, oa~,) (z  ~ + ix 2) + ~ ( c ~ % ,  + <,~%',)(z ~ - i:r,2). (~ 

c.4 _ o<.4 e(in (.l~i 

A' -B' ,e2' = a B,~ (-l~, 

( A ,  ]3, A' ,  B '  = 0 . 1 ) ,  a r e  the l i nea r  t r a n s f o r n l a t i o n s  in c o m p l e x  lw(,- 

Simila.rly, we can write down  the relations between xl,, x~ and :r~ with a 's  an,l 
x's. Therefore, keeping in mind (fi) we (:an write, 

1 I 0 - 0 '  ~ o & l o , ,  3o + jo = -o~o, + 

0 - 0 '  i 

~o i/? = ~o_ -o '  , - , '  
- -  ,.,~OC~,l, Jr- r  

jo + i!jo o -o' 1 - ,' 
-- Q'I O'0' Jr- (~1Q'0" 

Now, imposing the ('ondition that the transformation (5) is Lorentzian we can 
write, 

(s3oo)..> (/?)~ s~o ,~ o)~ - - ( 2 )  - ( &  = I 
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S o ,  

~o...o' _ ,~ , '  ^~176 = I. (T) 
Ot'l(J"O' Jr" (~lt~O ' Ul I '  

This  gives,  

II II _o, _o, II ~~176 c~~ C~o' tal' - - A A  1 (~) 
- 1 ,  , ,  - = 
O' O, t~ 1 , 

Now we consider  A - A = 1, so individually each t r an s fo rma t ion  of ( is 
Loren tz ian .  So we can conclude if t r an s fo rma t ion  (5) is Lorentzian,  the neces- 
sa ry  condi t ion  is t r a n s f o r m a t i o n  (4) is also Lorentzian.  

Now we define spinors  {A, r/A' of rank one a.s (A = n ~ (  s and q :"  = a~,T/~' B'. 

(A, A' ,  B,  B '  = 0), where  c~ A = o s ,  = 1. Since and 71A a r e  two sl)inors 

of s a m e  class, 

11 ~~ ~' ~')/~ 
,/o .,1, ]l=~~ ' -  (9) 

which is invar ian t  under  un imodu la r  t r ans fo rma t ion ,  i.e., 

C A B ~ A r l  B ~ i n v a r i a n t  (10) 

where ,  EAB is Levi -Civi ta  symbol .  Here ms in the case of tensor  analys is  ~AB 
and eA'B'  are used to lower the spinor  indices as, {A = {C~CA.  

Now,  using above in format ion  the representa t ion  of position vector  x ~ can 
be wr i t t en  as 

X i 
r ~o~,, 
~14o, ~1~1, 

1 x ~ + x 3 x 1 + ix '2 
x I _ i x  2 x o _ x 3 

(11) 

Genera l l y  any vector  X i can be wri t ten in t e rms  of spinor of rank two as, 

~00 '  ~011 

X~ ~ ~0' ~ l '  
1 I X ~  + X3  "k'l + iX'2 B' 

- -  V~ ~ X 1 _ i X  2 X 0 _ X 3 : X A 

So a 4-vec tor  is associa ted  with a hermit ian  mat r ix  such tha t ,  

( x ~  = ( x O + x 3 ) ( x O - x ~ ) _ ( x  I + i x 2 ) ( x  ' _ i x  ~) 

= 2(~oo'~11' ~ol'&0,) (~o0'&o ,+&1,~11' ( . '  AS' --  : "Jr-~10t~ 10' "~- ~ 0 1 ' )  --" X A B  ' .X 

From the  definit ion of norms,  we can write it in two different represen ta t ions :  

g i j X i X  j --- ( A C ~ B , D , X A B ' x  CD' (13) 

There fo re ,  we can t r ans fo rm X i +9 X AB '  using, 

X i _ i  v A B '  
= c~AB,A (14a) 
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xAB'  _ aAB'x  ~ (14b) 

where, cr AB' and crii~.R' are nothing but Pauli matrices and their conjugate 
matrices with a fat, for 1 

~'2  
A curved space-time is locally Minkowskian. At each point of space-time 

~a A ' (  a'a' an orthonormal Dyad basis can be set up a.s ( ) and ((a') = 0.1 and 

A, A ~ = 0, I) for spinors. 
- l A. The condition of orthonormality is We define, ((A) = o.4 arid (~) - 

e A B O A I  B = oOl I -- o l l  ~ = O B  l s  = - - o A I A  = 1. 

Also it is clear that. ~(a)(b):'A / 'B __ e.AB s(~)',(b} 
Then the null vectors are defined as 
l i ~ o A o  B ' ,  m i ~ oA'[ B ' ,  71Z i t-+ l A b  B ' ,  7t i ~-~ IA'[ B ' .  

Where, vectors obey relations of null tetrads such as, 
lini = 1, miffzi = -1  and all other products give zero. 
[n this way using dyad basis we can set up four null vectors which are basis 

of Newman-Penrose formalism. Using (14) we can write the basis explicitly as 

Thus, in 
7kr 

I i _i , 'A 7 B  I' _ _  CriABtoA6BJ 
- -  r B,%(O)~,(O, ) 

I _ t  , 'A ~ B '  ( r tAB ,oAIB '  m "-- aAB,r  ) --  

�9 _t ,-A Z B '  __ C r ~ B , l A b B '  fi~' = a AB'q(l)r 
�9 i A - B '  n' = crAS'Qll( l'l = ' IAIs '  

(t5a) 

(155) 

(15 ) 

Newman-Penrose formalism the Pauli matrices change their forms 

�9 I l l  i mi [ 

- " 

Therefore in this basis, tile directionaJ derivatives can be written as, 
1) = l iOi ,  ~ --  7flOt, r5 = 7nio i  ~tnd  ~* - -  7hiOi.  

"l'llus, the spinor equivalents of Newman-Penrose formalism ~re 
0oo, = D ,  0 t l ,  = ~ .  0ol, = ~, 01o' = 6". 
Due to the reason, ms explained earlier ~7i ~-~ ~AB', SO we can write. 

(16a) 

(16b) 

V i X  3 -" X j ; i  +'+ ~ A B ' X c D '  "- X C D ' ; A B ' ,  

therefore, 
j 

X C D , : A  B,  "- O'CD,Cr A B , X j ;  i. (17) 

For covariant derivatives spin coefficients r are introduced. Ill tile Newman- 
Penrose formalism these different coefficients are assigned in terms of special 
,~ymbols which are given below: 

F(,,)(b)(c)(d') 
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(a)(b)  O0 Ol or 10 11 

(c)(d') 

00' ~ r lr 

10' p & A 

01' cr 8 # 

11' r "t u 

3 .  D i r a c  e q u a t i o n  a n d  i t s  s e p a r a t i o n  

Before going into discussion, we should mention about tile unit of the svstem. 
Here we have chosen throughout h '= c = G = 1, where h = Planck constant, 
c = speed of light and (;  = gravitational constant. It is very cl(,ar that silnul- 
taneously all these quantities are chosen as unity implying the corresponding 
system is dimensionless. 

The Dirac equation in fiat space using Newman-Penrose formalism can be 
written as, 

i , p A  - 

aaB,Oi + i l l .QB ,  = 0 (lSa) 

i A - 
aAB,OiQ + ila. PB, - -  0. (18b) 

Here, p A  and QA' are the pair of spinors. # . / v ~  is the mass of the particles 
and Cr/AB, is nothing but Pauli matrix, because l / v /2  factors are canceled in 
the equation. 

In curved space time Dirac equation reduces to 

  B,PA �9 ;, 4- i#.QC'~c,B, : O, (19a) 

i A CZAB,Q;i + i#.PC'~C,B, = O, 

where, a~4 B, is same as defined in equation (16a). 
Now, consider B' = 0, then (19a) reduces to 

(19b) 

i o , p )  �9 -1'  %o,P;,+a,o, ;,-~u.Q =0 

or~ 

Therefore, 

(aoo, P ~ + C~oo, P b) + (a,o,P' + r~ b) - i # . O "  = o, 

�9 - i t  
( D  + F~ooo, - Foo lo , )P  ~ + (6" + Fl~oo, - F o ~ o , ) P  ~ - z u . Q  = 0 (20) 
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Similarly, choosing B' = 1, we can get ~mother similar type equ~tt.ion atnd then 
we can get corresponding conjugate equation of both by interchanging t --~ mid 
Q. Now choosing, 

F1 = po, F2 = p1, GI = Ql',  G2 = _Q0' 
and replacing various spin coefficients by their named symbols we get, the 

the Dirac equation in Newman-Penrose  formalism in its reduced form as, 

(D  + -= - p)F~ + (5" + rr - a )Fa  = i/Z.G1, (':la) 

(A__ + P - "r)F2 + (5 + [3 - r)F~ = i/z,G.2, 

(D  + s" - p ' ) G 2  - (5 + rr* - a*)Gl  = i /z .&,  

( ~  + p" - 3'*)GI - (5" + [3" - r*)G2 = i / z .Fx.  

('2Ib) 

(21c) 

(21d) 

3.1. Basis vectors of Neu'man-Penrose formal ism in terms of Kerr geometry 

The contravaria, nt form of Kerr metric is given a,s [3], 

E2/p '2A  0 0 
�9 . 0 - A / p  2 0 

g'~ = 0 0 - 1/p'2 
2 a M r / p 2 A  0 0 

2 a M r  /p2 ) 

- ( A  - a 2 s i n 2 0 ) / p 2 A s i n 2 0  

(22) 

where, E is the energy, a is specific angular  momentum of tile black hole. A1 = 
mass of the black hole, p'2 = r2 + a'2cos20 (should not confuse with the spin 
coefficient F(o)(o)(l)(o,) = P), E 2 = ( r2 + a2) 2 - a'2Asin'ag, A = r 2 + a 2 - 23.Ir. 

dt (,.2 +.2) E.  
In [(err  geometry, the tangent  vectors of null geodesics are: d--7 = ~ 

d,- _ :i:F, dO _ 0, - E ,  where r is the proper time (not to be confused 
d " 7 -  ' d ' 7 -  d r  - -  'A 

with spin coefficient F(o)(o)(l)(1,) = r ) .  
Now, the basis of Newman-Penrose formalism can be defined in [(err ge- 

omet ry  as (in te t rad form), 

1 
li = - ~ ( A ,  _p2 ,  O, --aAsin20), 23a) 

('2ab) 
1 nl = . (A p2, 0, - a A s i n 2 0 )  

2p2 , 

1 ( ias in0,0  _p2 _ i ( r  2 + a2)sin0) 
: v ~  ' ' ' 

- ---~ (r 2 4- a 2 , A, 0, a), I i 

hi= l= ( r  2 + a s  , _ A , 0 , a ) ,  
P x/2 

mi - (23c) 

2'ad) 

(2ae) 
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1 
mi -- fly/. ~ ( i,'~sinO, O. 1,/cosec/)), (23f) 

7hi and rh i are noth ing  but  complex conjugates of mi and m i respectiv(,ly. 

3.2. Separation of Dirac equation into radial a ,d  angular parts 

It is clear tha t  the basis vectors basically beconle derivative operators when 
these are applied a,s tangent  vectors t.o the function c i(at+mr tlere, ~r i's the 
frequency of the part icle (not to be confused with spin coelticient F(0)(0)(0)ll') = 
a )  and m is the az imutha l  quantum number [3]. 

Therefore,  we can write, 
_ A  t i s  6" / '=  D = D o  i f =  A =  2--TflDo, 7 f i = ~ =  ff~= = s , - -  ~ , , / ~  o ,  ~. 

where, 
ih" r - M 

z~,, = 0~ + -X- + "~,,---X--, 

D~ = O~ ih" r -  M 
- - - Z  

s = 0e + Q + ncot0 

= Oe - Q + ncote:  

(2-1a) 

(2.1b) 

(25a) 

(25b) 

K = (r 2 + a2)a  + a m ,  Q = aasin8 + ,ncosec& 
The spin coefficients can be written as combination of basis vectors in 

Newman-Penrose  formal ism which are now expressed in terms of elements 
of different components  of Kerr metric. So we are combining those different 
components  of basis vectors in a suitable manner and get the Sl)in coefficients 
as ,  

g =  a - -  X - -  u ' -  ~ - - 0 .  (26a) 

- 

ias in .O A r -  ltI r -  p~,T' # = - ~ ' 7 = 1 ~ +  2 - W ' a = T r - l T " "  (2Gb) 
Using the above definit ions and results and choosing f l  = tS*Fl, 92 = fXV2. 

f2 = F2, gl = G1 the Dirac equation is reduced to 

Dof i  + 2-11'2f-.l12f2 = ( ip . r  + a#.cosO)gl ,  (27a) 

AT)]/:h - 2 '12s = -2(iF,.," + a~.cosO)g2, 

~og2 - 2 -1/'2s alx.COSg)f2, _il2g 1 = ( i p . r  - 

A D ] / u g  I + 2112s = -2 { i l L . r  - a#x.co.~0)fl, 

Now we wi l l  separate t i le Dirac equation into radial and angular 
choosing, 

(2rb) 

('err) 

(27d) 

parts by 
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f ,  (,', O) = i?._,l.a(,.),s'_,l.2(O ). A{", O) = I?.,i.2(,.),S',1.2(0), 
g, (,', O )=  Ril.2(,'),b'-ll.2(O}. .qe(r, O) = 1r ). 
Ret}lax:ing these fi and gi (i = 1,2) into (27) amd using sep~tration constant 

k we get, 
s189 = - ( k - a m ~ c o s 8 ) S  , {28a) 

�9 2 - g  

z:*,_s_, = +(A + {28b) 
2 2 

1 . I 

X~-:P0R ~_ = (A+~mpr)A~R+~_,  {29a) 
2 2 

1 f 
k~T)0.x, �89189 = ( A -  impr )R_•  (29b) 

2 

where, mp is the mass of the particle which is nothing but 21/2#.. Also. 
21/2R_l/2 is redefined as R-I~2. 

Equat ions  (2g) a.nd {29) are the angular and radial Dirac equation resl)ec- 
Lively ill {'Oul}led fo l 'n i  with l, ho Spl)arath}n {:OliSl, ant A [:1], 

4.  S o l u t i o n  o f  a n g u l a r  D i r a c  e q u a t i o n  

i particles Decoupling equa.tion (2~) we obtain the eig;envalue equation for spin- 7 

/-2}s + A ~-<,---],T{o-'<461s +(J'2-a'2,rl.2pcos20) S_~ 

Similarly, one c,'tn ol)tain (lecouplpd equation for spin+�89 particles. [-/erp lhe 
,separation cons tan t  A is considered to I)e the eigenvalue of the equation. The 
exact solutions of this equation for A and ,b" ~ is possible in terms of orbital 

-7  
;tnKular m o m e n t u m  quantum number l and the spin of the particle s when 

l i t  I ,  
l, hp i) ; i . r ; t inel,er Pl = ' ,~ = 1. \ V h e n  l, ho anlgula.r n i o n i e n t u n i  of" l, he b lack h,}le 
is zero i.e., Schwa.rzschild case, the e q u a t i o n  iS reduced in such ~t ['orln thai 
whose solution is nothing but s tandard spherical harmonies such a~s [g-9]. 

18}~.i,,~4, S- l l2 t  - _  ~_ ~m (0, (/$), {31) 
2 

tile eigenvalue i.e., the separation constant can be solved as, 

,\2 = (l + 1t2) 2. (32) 

Similarly, for spin+�89 particle one can solve S+l/2 as 

C tn~ ~ imr  , 
. . + l l . 2 t v f <  = , lqm(0,r + ~  (33) 

with same eigenvalue A. 
For any non-integral,  massless, spin particle the solutions are [8-9] 

,S'+.~ ((~}, ,,,,e, =~:,, ~.~,,, (0, r  (:~.i) 
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~,2 = ( / +  I,~t)(t- tst + x). (35) 
In the case of Kerr geometry, when a r 0 the equation can be solved by 
perturbative procedure [5] with perturbative parameter act. The solution for 
p ,  = , ,~ , , / , ' ,  = l ~ , , d  ,,' = +�89 is [5]  

i 2 [ y2 ] (36) ~ = ( t + ~ )  + a ~ ( p + 2 , , , ) + a 2 ~  2 l - 2 ( t + l ) + . . x  ' 

a(ry 
, S.,~ = ,_}I,,, + }~)+t,,~ (37a) 

2 2(I + 1) + aa:r 

_ s St,,, = = 1_ } i,,, aay  , (37b) . - -  _ l } ' l + l m  
2 2 2 ( l + l ) + a c r x  

where, 

and 

p = F( t , t ) ;  �9 = F ( l  + ~,t § 1); ,v = F(Z, l  + 1) 

i I l 
I : ' ( I , , l .2) = [(2l..~ + I)(2/, + 1)]~ < 121mott,,,, > [< 1.21~oll,:~ > 

1 1 
+(- - l ) /2 - /  < 121lltOl/l'/Z > [< /21~01/~ > +(-1)t~-tplv/2 < 1 2 1 - -  

(3s) 

1 1111 
2 7 >]] 

(39) 
with < .... I.. > are the usual Clebsh-Gordon coefficients. 

If Pl -7 (: 1 then exact solution is not possible, in those cases the analytic 
expression of eigenvalue and angular wave-function are found ms infinite series 
not in a compact form as the case pl = 1 . 

From the general convergence of series expansions one can truncate the 
infinite series upto certain order for particular values of l, s and m. For l - 1 - - 7 '  
s = - ~ l  and r n = - 7 , 1  up to third order in aa, oneob ta in s  [5], 

1 2 (acr)2h(l ,  m) m) (40) A 2 = (l + -~) + aafl(l ,  m) + + (aa)af3(l, , 

( ~ ) [~ 4 (act) 2 ( 1 -  P~)] �89 s }  ~ = - s i , , o  - s in  3 - si~Ocos~ a~(1 + p,)  + 

2 2 [ 5~ ~cos3-~+ 3sin-~cos ~J. (41) +-g(aa)  (1 - p~) s in  -~ - 6sin;  0 0 4 0 ] 

The accuracy of eigenvalues and eigenfunctions decreases as aa -+ 1. 

5 .  Solu t ion  of rad ia l  Di rac  equa t ion  

In the radial equation independent vari:~ble r is extended from 0 to c~. For 
mathematical simplicity we change tile independent variable r to r.  as 

r . = r  + 2Mr+ + am/Crlog ( r +  1) - 2 M r _ +  a m / a l o g  (r__ - 1) (42) 
r+ -- r_ r+ -- r_ r_ 



Dirac equation in Kerr geometry 865 

(for r > r+) ,  here in new r. co-c~rdinate system horizon r+ is shifte(I t,~, - o o  
u n l e s s  o" < ,,m -- 2Mr+ [3], SO the  r eg ion  is e x t e n d e d  f r o m  - o o  to oc .  W e  a l so  

choose R_,_ = P _ t  A~R+r  = ' P+2~-" Then we are defining 
2 2 . 

(A :k im~r) = exp(-l-iO)v/(A '2 + m2pr '2) 

and 

Finally choosing, 

P+} = V+} exP [ -~ i  tan-l (m---~--~)] , 

P , = m, ~xp [+ l i tan- '  ( ~ ) ]  - ~  - ~  -~ 

Z~ = e+} + m_,_ 

and combining the differential equations (29) we get, 

(;. - IV) Z+ = i(TZ_, (43a) 

and 

where, 

and 

) + IV Z_ = iaZ+, 

§  r 

1 2 A~,(A + ThaT'2) a/2 
W = ~2(,X2 + m~or 2) + ampA/2a" 

where, w 2 = K_. 
G 

Now decoupling equations (43a-b) we get,  

(4:~b) 

) + ~-' Z~ = v• (~,~) 

where, V• = W 2 + aw 472. and ~. is extended from - o o  (horizon) to +c~. 
The equat ion (45) is nothing but one dimensional SchrSdinger equation 

[10] with potentials  V+ and the energy of the particle cr 2 (since the system 
is dimensionless) in Cartesian co-ordinate system. The equation (45) can be, 
solved by W K B  approximation method [10-11]. The corresponding solution is 
[6-7], 

.4.  B+ 
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where, 

and 

~,+ = V/(~,2 - ~,"~), (.171 

u+ = f k + d ? . .  (.lSl 

Now we improve the solution by introducing space (lel~en(lences on coeltici~,nl- 
A+ and Be [6-7] (this is beyond \VI,~B approximal, ion, Imcausr \VI,~t~ ,1r 
with solutions with constant coefl3cients). It is seen that  far away fronl a I~lack 
hole, potential varies very slowly. Thus. in those regions ~)ne can safel\ write,. 

,14- - Be = ( 'ons tan t (=  c). 1.1!)) 

Since the sum of relleclion and translllission coefficients musl 1~, ul~ilx. 

+ = (5() / 

Near the horizon it, is seen that potenlial heigh! rer I,r zr s~, lh~' rr 
tion in that  region is Mmost zer(~ an(I t ransltlission is a.lmr I{)()~/,. 'l'his is Ih,, 
i n n e r  b o u n d a r y  condi l ion .  Solving (.19) and (50)we gel, analvtic;d r162 
of space dependent reflection and transmission coefficients far a,wav fr~l~l lht' 
black hole which satisfy outer  boundary  condi l ion .  (:ombining the inner atlr 
outer boundary conditions, we gel analvticM expression of space r 
coefficient A• and B+ which is valid in whole region ( - ~  to +oc). For ~l~,- 
tails see [6-7]. The space dependency of ,4+ and B+ i.e. the lra nsmission and 
reflection coefficients arises due to the variation of potential with distance. 
So from the analytical expressions one can ea,sily find out at each poinl wha~ 
fraction of incoming matter  is going inward and what other fraction is ~(~- 
ing outward ms a result, of the interaction with the black hole. These space 
dependent transmission and reflection coefficients are given below [6-7], 

�9 c (  ) 
c r  - + 4h+ 

T+ - a'~ ( c 1 + 7 )  c 1 +  + c. 2 2k+ - c 2 
k+ - h+ 72 (51 (z 

R4_ = b~ _ (c.2 - ~) ( c r  ) +  4h+ (51b k +  ) ~  c.2 - 7 2 + c. 2 2#+  - (.2 

Here, a4. and b4. are defined as 

.4+ (52(z 
a e -  x / h e / k  + , 

B+ 
b+_ /v~/k+ 52b) 
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which ~ro t.ransnlit.t, ed and rofh, ctod anlplitu~le~ of t, he solution with ino~lifie~l 
Vr niel, liod (g(>ill~ beyond WI'(B lnelhoil) and 

h a =  e l +  + c .2 -  + ( e l + c 2 )  k+ - c '2+ '2 ' 

where, cl and c.2 are two cons tan t s  in t roduced to satisfy the inner  bounda ry  
condi t ion.  The  final form of the solut ion is 

a+ czp( iu~)  + b+ 

.'Jince the relation between Z+ and R+l 
radial wave f u n c t i o n  R+�89 

is kno',,vrl, one can ea,sily ca lcula te  the 

6. Conc lus ions  

Ill t, hi.~ review we write tile l) irac eClUa.t,i~n in curved space-l, inle and part ir 
larlv ill Norr gelmtetry.  F'rottl this. the I~ehaviour of non-int,egral spiu particles 
~'au I,o st, udiod in curved spar 1;rein the form of the equat ion  and its 
solui, iou it, is clear t ha t  in curw,d space the particles behave in different ly than 
in a Ilat space- t ime.  The  Newman-Pen rose  formal ism is used t,o wri te  the equa- 
lieu where the I:,a.sis svstenl  is null. l ) irac equat ion is separat, er into ant4ular 
;lu,I ra~lial i)aris..";itiiilar sol)aratit>u can he, p~).~sil)lo on the l)ack~rounr r Dvr 
I,la~k Itr [1;2]. l ' ho  ~olllt, i~,it r angula.r r nent of t, he I.)irac equat.ioi~ i.'<, 
lirmt reviowo~i. 'l 'heoxact,~r is l)r for '"v -- 1 oi,hr, rwisothesolut ir  
is at~l~r~,xiulaio [3]. l ln l ike  in the r of a l,G,rr black hob>, t, he solution of the 
a u ~ l l a r  O~luath)n a round  a %chwarzschild Hack hole is i ndependen t  of the az- 
iivt,Jlhal r uir anglos [.5, 13.1.1]. This  is expected because of s y m l n e t r v  
,,['the ~p;i.co-t inv:,. 

I ']le ra.,<lial l ) i rac Or is sr162 using \VI(B approxin la t ion  more clearly 
uu~difior X,'X'l(IJ al)pri~xinlatiotl [6-7], where t.he space dependen t  tlallSllliSsiolI 
au,l roflc,~'ticm c(>(,[lir are calculator Alt, hr W N B  met;hod is :.l, it ap- 
proxiluaLe tuotllo~[, it, is improvised it) such a wa.y t, hat  spatia.l dependence  o1" 
the r of the wave functiori is obta ined.  This  wav we ensure tha t  tile 
ana lv i i ca l  solution is closer to the exact  solution.  The  reflectiorl and t ransmis-  
sion coe[[icienis wore founr t,o dis t inguish s t rongly the solut ions of different 
rest lllassos anr , l ifferent crier t ies.  The  solution luight be of immense  use in the 
si, u~lv ~1" t h e  SlWCl rtllll o f  l ) a r l i c les  eillit.t.or ['rr a black hole horizon ( l lawkin~ 
radiat.icln). 
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where the magnetic viscosity is dominant neutron torus may be formed. ~.V," also 
talk about the fate of Li ~ aml D during the accretion. The outtlowing wiml.~ from 
the disk could carry the new isotopes produced by nucleosynthesis and r 
the surroundings. From the degree of contamination, one could pinpoint the intlow 
parameters. 

K e y w o r d s  : Accretion, black holes, nuclear ~tstrophysics, origin amt abuudau,',' of 
elements 

P A C S  Nos.  �9 97.10.Gz, 04.70.-s. 98.80.Ft, 26.0 

1. I n t r o d u c t i o n  

There  are many  observational evidences where the incoming mat ter  has tile 
potential  to become as hot as its virial t empera tu re  T,,iri,t " 1013 Ix Ill. 
Through  various cooling effects, this incoming ma t t e r  is usually cooled down 
to produce hard and soft s tates [2]. In tile accretion disk, mat te r  in the sub- 
Keplerian region generally remains hot ter  than Keplerian disks. The mat ter  
is so hot t h a t  af ter  big-bang nucleosynthesis this is the most fevourable tem- 
pera ture  to produce significant nuclear reactions. The energy generation ~lue 
to nucleosynthesis could be high enough to destabilize the flow and the mod- 
ified composi t ion may come out through winds to affect the metallicit.v of the 
galaxy [3-7]. Previous works on nucleosynthesis in disk wa.,~ done for ,ocdor 
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thick accretion disks. Since the sul,-Neplerian region is much hotter than of 
Neplerian region and also tha, n the central temperature (~ I(}rN) of stars, 
presently we are interested to study nucleosynthesis in hot sub-Keplerian re- 
gion of accretion disks. 

2. Basic equations and physical systems 

In 1981 Paczyfiski & Bisnovatvi-Kogan IS] initiated the study of viscous tran- 
sonic tlow although the global solutions of advective accretion disks were 
el)rained Illuc}l later [9] which we live here. In tile advective disks, matter 
must have radial motion which is transonic. The supersonic flow must I)e sub- 
l<eplerian and therefore must deviate from a Keplerian disk away from the 
black hole. Th(' ha.sic e(lua.tions which m a t t e r  (A,eys while falling towa, r(Is tit(' 
bla, ck hell' from the l)oundary Iwtwoon I~(,Idorian a,n(! sul.~-l'~el~leriatt regiot~ are 
given below (for detai ls ,  see, [9]): 
(a) The radial momentum equation: 

2 dl) 1 d f '  At, , , , -  A 2 , 
/ ~  + - ~  + - 0 ( ]a)  

dx p dz x 3 ' 

(b) The continuity equatiotv 

d 
dz (_,zO) = O, 

(c) The azimuthal momentum equation' 

(lb) 

dA(x) 1 d 
t~ 

dz  Ex dz  

(d) Tile entropy equation: 

(z2lV~,) = 0, ( lc)  

2napv~h(x) da a29b(x)  dp ._ f Q +  (ld) 
7 dx ") dx 

where the equation of state is chosen ms a 2 = 2ff-e. Here, A is the specific angular p 
momentum of the infalling matter. AK,r, is that in the Keplerian region is 

- -  X 3 defned as A~.ev 2(z_1)~ [10],--. is vertically integrated density, I 4 ~  is the 

stress tensor, a is tile sound speed and b(z)  is the half thickness of the disk 
(,.~ ax l /U(x  - 1)), n - Gl_i is the polytropic index, f is the cooling factor which 

is kept constant throughout our study, Q+ is tile heat generation due to the 
viscous effect of the disk. For the time being we are neglecting the magnetic 
heating term. 

During infall different nuclear reactions take place and nuclear energy is 
released. Here, our study is exploratory so in the heating term Q+, we do not 
include the-heating due to nuclear reactions. (Work including nuclear energy 
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rolea~se term is in [6].) Another parameter  fl is defined ms ratio of ga.s pre.csllrp to 
l, ol, a,! pressure, which is assul~e,l to be a collsLa, nt value throughout  a particular 
cruse. Actually, the factor fl is used to take into account, the cooling due to 
Comptoniza t ion .  To compute  the temperature  of the Comptonized flow in the 
advective region which may or may not have shocks, we follow Chakrabar t i  & 
Ti tarchuk [2] and Cltak.rabarti 's I l l ]  works and method.  The temperatttre is 
computed from. 

T - a'2P'mPfl vk (2) 

It is seen that  due to hotter nature of the advective disk especially when accre- 
tion rate is low, Gompton cooling is negligible, the major  precess of hydrogen 
burning is the ra.pid proton capture process, which operates at T > 0.5 x 109N 
which is much higher than the operat ing tempera ture  of PP chain (operates 
at T ,--, 0.01 - 0.2 • 1091'~) and CNO cycle (operates at T ,--- 0.02 - 0.5 x 109N) 
which take place in the cruse of stellar nucleosynthesis where temperature  is 
much lower. Also in stellar cruse, in different radii same sets of reaction take 
I)lace I)ut in the cruse of disk, in different radii different reactions (or different 
sets of reaction) can take place simultaneously. These are the bmsic diiFerences 
between the nucleosynthesis  in stars and disks. 

For simplicity,  we take the solar abundance  a.s the initial abundance of 
the disk ;tnd our computat ion s tar ts  where mat ter  leaves a l'(eplerian disk. 
: \ccording to [2] and [11]. the black hole re.mains in hard states when viscosity 
an,! a.ccrel.ion rate ;tre Slll~tller. In this ca.se, xlr (at  radius Xlr mat te r  deviates 
from I(eplerian tosub-l'~el)lerian region)is large. In this l)arameter range the 
protons remain hot, (Tp ,'-, 1 - 10 x I0:~!'~). The corresponding factor f ( =  
I -- ( ~ ) + / Q - )  iS n o t  low ellOtlgh to cool down the disk, (in [1], it is indicate,  I 
that  ~h/~v "2 is a good indication of the cooling efficiency of the hot flow'), where 
(~)+ and Q)- are l.he heat gait, attr heat loss ~lue to viscosity of the disk. 

\,Vo have s tudied a large region of parameter  space with O.O001 s ,~ < I. 
0.001 < l i l  < 100.0.01 < ,~ < I..I,I3 < 7 < 5/3. We study a cruse with a stand- 
ing shock ~m well. In selecting the reaction network we kept in mind the fact 
lha t  hotter  fl~ws may produce heavier elements through triple-c, and rapid 
prol.on and rt capLure processes. Furthermore due to photo-dissociation sig- 
nilicant neut.rons may be produced and there is a possibility of production 
()f neutron rich isotol)~'s. Thus. we consider suificient number  of isotopes on 
oil.her side of the sta.bilitv line. The network thus contains protons, neutrons, 
till r2(7;~' a,ltoget, her 255 nuclear species. The s t andard  reaction rates were 

taker, [G]. 

3. R e s u l t s  

II<'re we present+ a typical case conta+ining a shock wave in the advective region 
[G]. We express t.he hm~t.h in lhe unit of one 5":,chwarzschild radius which is 
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aC;M where M is the ma~ss of the blac:k hole. velocit:v is express(,d in l,hr unil 

of velocity of light c and the unit of time is 2(;^I We use the mm~s o1 lhe 
black hole M/M| = 10 (M(~ = solar mass), [I-stress viscosity 1)ara~eter 
~gl = 0.05, the location of the inner sonic l)oint a:i,~ = 2.8695, the value of the 
specific angular  momentum,  at the inner edge of the black hole ..ki,, = 1.6, the 
polytropic index "7 = 4/3 a.s free l)arameters. The net accretion rate 7h = 1 ill 
tile unit of Eddington rate, cooling factor due to ( 'Oml)tonization /t = 0.03, 
.r/,- = -181. The  proton t empera tu re  (in the unit of 109),  velocity distril~ution 
(in the units of 101~ cm sec-1),  density distribution (in the unit of 2 • 10-* 
gm cm -a) are shown in Fig. l(a). 

In Fig. lb ,  we show coml)osition changes close to the black hole both for 
the shock-free branch (dotted curves) and the shocked branch of the solution 
(solid curves). Only prominent  elements are plotte(l. The difference belween 
the shocked and the shock-free cases is that ,  in the shock case the silnilar 
burning takes place far ther  a wa.v from the t,lack hole because of" much Itig;hor 
tempera ture  in | , l ie lmSl.-shock region..-\ significant anl~mnl, of lh(, ll~'lllrt~ll 
(with a final abundance  of };~ ,-- l(} -:~) is prc~duc~,d due 1,o I~ht~l.,,-diss~wiali,m 
process. Note tha t  closer to tile black hole. lg , ,  1~0, '~4Mg and 2s, gi  ar~' all 
destroyed completely.  Among the new species which are formed closer to l.he 
black hole are :m,5"i, 4c'Ti, ~cg',r. Note thai the final abundance  of '2~ is sig- 

nific,'mtly higher than the initial value. Thus a significant met;tllicity could I;e 
supplied by winds from the centrifugal barrier. In Fig. lc we show tile change 
of abundance  of neutron (n), deuterium (D) and li thium (TLi). I! is noted that 
near black hole a significant amount of neutron is formed although initially 
neutron abualdance was almost  zero. Also D and 7Li are totally burnt  oul near 
black hole which is against  tile major  claim of Yi &, Narayan [13] which found 
significant l i thium in the disk. It is true that due to spallation reaction, i.e., 

4He +4 He __+r Li + p 

7Li may be formed in the disk but due to photo-dissociation in high temper- 
ature all 4He are burn t  out before forming 7Li i.e. the formation rate of 4He 
from D is much slower than  the burning rate of it. Yi & Narayan [13] do not 
include the possibili ty of photo-dissociation in the hot disk. 

In Fig. ld ,  we show nuclear energy relea.se/absorption for the flow in 
in units of erg sec -1 gm -1. Solid curve represents the nuclear energy re- 
lease/absorpt ion for the shocked flow and tile dotted curve is that  for unstable 
shock-free flow. As ma t t e r  leaves the b:eplerian region, the rapid proton cap- 
ture suct, as, p+lSO _+is N+4Hc etc.. burn hydrogen and releases energy to the 
disk. At around x = 50, D -~ 7~+p dissociates D and the endothermic reaction 
causes the nuclear energy release to become "negative', i.e., a huge anlount of 
energy is absorbed from the disk. At around x = 15 the energy release is again 
dominated by the original processes because no deuterium is left to burn. Due 
to excessive t empera tu re ,  immediately 3ttc breaks down into deuterium and 
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F i g u r e  1. Variation of (a) proton tempera ture  (Tg), radial velocity v,o and 
densi ty dis t r ibut ion 0-~ (b) matter  abundance Y in logarithmic scale (c) 
neutron,  deuter ium and lithium abundance Y in logarithmic scale and (d) 
nuclear energy release and absorption as a functions of logarithmic radial 
distance z. See text  for parameters. Solutions in the stable braslch with shocks 
are sofid curves and those without the shock are do t ted  in (a-d). At the shock. 
t empera tu re  and density rise and velocity lower significantly and cause a 
significant change in abundance even farther out. Shock induced winds may 
cause substant ia l  contamination of the galactic composition when parameters 
are chosen from these regions [6]. 

through dissociation of D again a huge amount  of energy is absorbed from the 
disk. It is noted tha t  energy absorption due to photo-dissociation as well as the 
magni tude of tile energy release due to proton capture process and that  due to 
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F i g u r e  2. The  convergence of the neutrgn abundance through successive 
i terations in a very hot advective disk. From bot tom to top curves 1st, 4th, 
7th and l l th  iteration resuhs are shown. A neutron torus with a significant 
al: mdance is formed in this case [15]. 

viscous dissipation (Q+) are very simUar (save the region where endothermic 
reactions dominate).  This suggests that  even with nuclear reactions, at least 
some part  of the advective disk may be perfectly stable. 

We now present another interesting case where lower accretion rate (rb. = 
0.01) but higher viscosity (0.2) were used and the efficiency of cooling is not 
100% ( f  = 0.1). Tha t  means that the temperature of the flow is high (~ = 0.1, 
maximum temperature T~ n~'z = 11). In this case ZK = 8.8, if the high viscosity 
is due to stochastic magnetic field, protons would be drifted towards the black 
hole due to magnetic viscosity, but the neutrons will not be drifted [13] till 
they decay. This principle has been used to do the simulation in this case. 
The modified composition in one sweep is allowed to interact with freshly 
accreting matter  with the understanding that  the accumulated neutrons do 
not drift radially. After few iterations or sweeps the steady distribution of 
the composition may be achieved. Figure 2 shows the neutron distributions 
in iteration numbers 1, 4, 7 & 11 respectively (from bottom to top curves) 
in the advective region. The formation of a 'neutron torus' is very apparent 
in this result and generally in all the hot advective flows. In 1987 Hogan &: 
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Al)plegate [1,1] showed that formation of neutron torus is possible with high 
a,ccretion ra.l;e. IJul high accretion r;tte ineans high rate of photon to dul i lp into 
sub-l,~e.l)lerian region and high rate of inverse Compton process through which 
matter  cool down, that  is why photo,dissociation will be less pronlinent. Also 
formation of neutron is possible through the photo-dissociation of deuterium in 
the hot disk which is physically possible prominently in our parameter region, 
where neutron torus is foriiled. Details are in Chakrabart i  & ; lukhopadhyay 
[15]. 

4. D i s c u s s i o n s  and conc lus ions  

in this paper, we have explored tile possibility of nuclear reactions in advective 
accretion flows around black holes. Temperature  in this region is controlled by 
the efficiencies of brenlsstrahlung and Conlptonization processes [2, 7]. For a 
higher lieplerian rate and higher viscosity, the inner edge of the Keplerian 
comt)onent comes closer to the black hole arm the advective region becomes 
cooler [2, 9]. Ilowew, r, as the viscosity is (lecrea.sed, the inner edge of the l(ep- 
lerian c oinlmnel,t moves away and the Conipton cooling becomes less efficient. 

The ('.ownlmsition chan~es especially in the centrifugal pressure SUl)ported 
denser region, where matter is hotter and slowly moving. Since centrifugal 
pressure SUplmrte~l region can be treated as an effective surface of the black 
hole which may generate winds and outflows in the same wav as the stellar 
surl'ac~,, one coul~l mlvisag~, that the winds produced in this region would carry 
away nlodilied composilion [16-18]. in very hot disks, a significant amount of 
free nmli, rons are produced which, while coming out through winds may re- 
,oni l) i l ie with oul.flowing i)r~ltons at, a. cooler environinent to l)ossiblv form 
<leuleriunis. A Pew related ~lUeSlions have been ~usked lately: ("an l i thiuin iit 
the universe be l)roducetl in black hole accretion [12,19]? We believe that this 
is not i)ossible. When the full network is iised we lind that lhe hotter disks 
where sl)allation wouhl have I)een i i l l l)ortluii, also heliuins phoio-dissociate into 
,Ioul.eriuins and l.hen to prOlOliS and neutrons before any significant produc- 
Ii()n of l i thi l i ins. Anolhf,r <llieslion is: ('.(luld the nlet, allicil.y of l, ho galaxy I)o 
explained, el. least partially, I>v nuclear reactions? We believe that this is quite 
possible. Details a.re in [6]. 

Another  important  thing which we find that  in the case of hot inftmvs for- 
marion of neutron tort is a very distinct possibility [15]. Presence of a neutron 
torus around a black hole would help the formation of neutron rich species as 
well, a process hitherto attributed to the supernovae explosions only. It can 
also help production of ki on the conipanion star surface (see [6] and references 
therein). 

The advective disks as wf> know toclav <1o not l)orfectly lnaich with a I,{e- 
plerian disk. The shear, i.e.. d~2/d.r is always w~ry small in the advectiv~, flow 
compared t.o that, of a l,G,l)l~,rian ,lisk near the oi l ier bolln,larv c~t' the advocti\'o 
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region. T h u s  some  improvement s  of the disk mo(lel at lhe  t, ral~siliol~ r('~ir is 
needed.  Since m a j o r  react ions are closer to the black hole, we I)eliex'e that  ,~:uch 
modi f i ca t ions  of the  model would not change our conclusions. The  neutri1~o 
luminos i ty  in a s t e a d y  disk is generally very small  compared  t,o the l)holon 
luminos i ty  [6], bu t  occasionally, it is seen to be very high. In these cases, 
we predic t  t h a t  the  disk would be unstable .  Neu t r ino  luminc)si~y fionl a (o~I 
advec t ive  disk is low. 

In all the  cases,  even when the nuclear composi t ion  chaI~ges are not very 
significant, we note  that the nuclear energy release due to exothermic  react ions 
or a b s o r p t i o n  of energy' due to endothermic  react ions  is of the s ame  order 

as the  g r a v i t a t i o n a l  binding energy reh, ase. Like the energy relea.se due It~ 
viscous processes ,  n~tclear energy release s t rongly  del)ends on t emperat~tre.~. 
This  add i t iona l  energy  source or sink may destabi l ize the flow [6]. 
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Abstract. Significant nucleosynthesis is possible in the cen- 
trifugal pressure-supported dense and hot region of the accre- 
tion flows which deviate from Keplerian disks around black 
holes. We compute composition changes and energy genera- 
tions due to such nuclear processes. We use a network con- 
taining 255 species and follow the changes in composition. 
Highly viscous, high-accretion-rate 1lows deviate from a Ke- 
pterian disk very close to the black hole and the temperature 
of the flow is very small due to Compton cooling. No signifi- 
cant nucleosynthesis takes place in these cases. Low-viscosity 
and lower-accretion-rate hot Ilows deviate farther out and sig- 
nificant changes in composition are possible in these cases. We 
suggest that such changes in composition could be contributing 
to the metatlicities of the galaxies, Moreover. the radial ,i'ariation 
of the energy generation/absorption specitically due to proton 
capture and photo-dissociation reactions could cause instabili- 
ties in the inner regions of the accretion flows. For rnost of these 
cases sonic point oscillations may take place. We discuss the 
possibility of neutrino emissions. 

Key words: accretion, accretion disks - black hole physics - 
stars: neutron - shock waves - nuclear reactions, nucleosynthe- 
sis. abundances 

1. Introduct ion 

In Chakrabarti & Mukhopadhyay ( 1999. hereafter referred to as 
Paper l) we studied the result of nucleosynthesis in hot. h!ghly 
viscous accretion flows with small accretion rates and showed 
that neutron tori can form around a black hole. In the present 
paper, we study nucleosynthesis in disks in other parameter 
space, where the photo-dissociation may not be complete and 
other reactions may be important, and show that depending on 
the accretion parameters, abundances of new isotopes may be- 
come abnormal around a black hole. Thus. observation of these 
isotopes may give a possible indication of bkick holes at the 
galactic center or in a binary system. 

Earlier. Chakrabarti (1986) and Chakrabarti et al. (1987. 
hereinafter CJA) initiated discussions of nucleosynthesis in sub- 
Keplerian disks around black holes and concluded that for very 
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low viscosity (o parameter less than around 10 -4) and high 
accretion rates (typically. ten times the Eddington ratel there 
could be significant nucleosynthesis in thick disks. Radiation- 
pressure-supported thick accretion flows are cooler and signifi- 
cant nucleosynthesis was not possible unless the residence time 
of matter inside the accretion disk was made sufficiently high by 
reducing viscosity. The conclusions of this work were later ver- 
ified by Arai & Hashimoto (1992) and Hashimoto et al. (1993). 

However, the theory of accretion flows which contain a 
centrifugal-pressure-supported honer and denser regiem Jii the 
inner part of the accretion disk has been developed m~lc re- 
cently (Chakrabarti 1990. hereafter C90 and Chakrabarti 199(~. 
hereafter C96). The improvement in the theoretical understand- 
ing can be appreciated by comparing the uumerical simulatitm 
results done in the eighties (e.g. Hawlev et al. 1984, 1985) and 
in the nineties (e.g. Molteni et al. 1994: Moheni et al. 1996: 
Ryu et al. 1997). Whereas in the eighties the matching of d~t:orv 
and numerical simulations was poem the matching of the results 
obtained recently is close to perfcct. It is realized that in a large 
region of the parameter space, especially for louver accretion 
rates, the deviated 1low would be hot and a significant nuclear 
reaction is possible without taking resort to very low viscosity. 

We arrive at a number of the important conclusions: (a) 
Significant nucleosynthesis is possible in the accretion Ilo,,vs. 
Whereas most ot" the matter of modified composition enters in- 
side the black hole. a fraction may go out through the winds and 
will contaminate the surroundings in due course. The metallic- 
itv of the galaxies may also be influenced. {b) Generation or 
absorption of energy due to exothcrmic and cndothermic nu- 
clear reactions could seriously affect the ,,tabilitx of a disk. I t )  
i lot matter is unable to I)rotlucc l,ithium ("l,i) or I)cutcrium (I)) 
since when the tlow is hot. photo-dissociation (photons partially 
locally generated and the rest supplied by the nearby Keplerian 
disk (Shakura & .Sunyaev 1973) when the region is optically 
thin) is enough to dissociate all the elements completely into 
protons and neutrons. Even when photo-dissociation is turned 
off (low opacity cases Or when the svstem is fundamentally 
photon-starved) Li  was not tound to be produced very much. 
(d) Most significantly, we show that one does not require a very 
low viscosity for  nucleosynthesis in contrary to the conclusions 
of the earlier works in thick accretion disk (e.g.. CJA). 

In Paper I, we ah'eady presented tile basic equations which 
govern accretion 1lows around a compact object, so we rio uot 
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present them here. The plan of the present paper is the follow- 
ing: we present a set of  solutions of these eqt,ations in the next 
section which would be used for nucleosynthesis work. When 
nucleosynthesis is insignificant, we compute thermodynamic 
quantities ignoring nuclear  energy generation, otherwise we in- 
clude it. The detailed method is presented here. We divide all the 
disks into three categories: ultra-hot, moderately hot, and cold. 
In Sect. 3. we present the results of  nucleosynthesis for these 
cases. \",'e find that in ultra-hot cases, the matter is completely 
photo-dissociated. In moderately hot cases, proton-capture pro- 
cesses along with dissociation of deuterium and aHe are the 
major processes. In the cold cases, no significant nuclear re- 
actions go on. In Sect. 4, we discuss the stability properties of 
the accretion disks in presence of nucleosynthesis and conclude 
that only the very inner  edge of the flow is affected. Nucleosyn- 
thesis may affect the metallicities of the galaxies as well as Li 
abundance in companions  in black hole binaries, in Sect. 5. we 
discuss these issues and draw our conclusions. 

2. Typical solutions of accretion flows 
In our work below, we choose a Schwarzschild black hole and 
use the Schwarzschild radius 2GIll/{-'  to be the unit of the 
length scale where G and r. are the gravitational constant and 
the velocity of light respectively. We choose c to be the unit of 
velocitv. We also choose the cgs unit when we lind it convenient 
to do so. The nucleosynthesis  work is done using cgs units and 
the energy release rates are in that unit as well. 

A black hole accretion disk must, by detinition, have radial 
motion, and it must also be transonic, i.e., ,halter must be 'roper- 
sonic (C9()) wl!ile entering through the horizon. Tim supersonic 
flow must be sub-Keplerian and therefore deviate from the Ke- 
plerian disk away from the black hole. The location where the 
flov,' may deviate will depend on the cooling and heating pro- 
cesses Iwhich depend on viscosity). Several solutions of the 
governing equations (see Eq. 2(a-d) of Paper I) are given in 
C96. By and large, we follow this paper to compute themlodv- 
namical parameters along a Ilow. However, we have considered 
Comptonization as in Chakrabarti & Titarchuk ( 1995. hereafter 
CT951 and Chakrabarti ( 19R7. hereafter C97). Due tO computa- 
tional constraints, we include energy generation due to nuclear 
reactions t Q,,,,~) only when it is necessary (namely. when Q,,,,,. I 
is comparable to energy generation due to viscous effects I. and 
we do not consider energy generation due to magnetic dissi- 
pation ~due to reconnection eft'ects, lot instance), in Fig..I. we 
show a series of solutions which we employ to study nucleosvn- 
thesis processes. We plot the ratio A/,\tr (Here. A and A,,. are 
the specific angular  momen tum of the disk and the Kcplerian 
angular momentum respectively.) as a function of the logarith- 
mic radial distance. The coefficient of the viscosity parameters 
are marked on each curve. The other parameters of the solu- 
tion are in Table I. These solutions are obtained with constant 
f = 1 - Q - / Q +  and (2 + include only II~e viscous heating. 
In presence of significant nucleosynthesis,  the solutions are ob- 
tained by choosing f = 1 - c 2 - / ( C 2  ~ + (2,,,,,,), where C),,,,, is 
the net energy generation or absorption due to exothermic and 

1 . 2  L . . . .  I . . . . . . . .  l i [ 
/ 
l" 0.07 10 "a 
L a .=0 .2  0.2 0.01 0.05 10- 

1 .... ,. /' I 

~ 0 . 6  ~ 

0 . 2  

i 0 ' ~ 
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Fig. 1. Variation of A/AK with Iogarkhmic radial distance for a few 
solutions which are employed to study nucleosynthesis. The viscosity 
parameter rm is marked on each curve..r = .rh ~here , \ / , \ l ,  = 1. 
represents the location where the flow deviates from a Keplerian disk. 
Note that except for the dashed curve marked 0.01 ,~ hich is for "~. = 
5/3. and the rest are for "7 = ,I/3)..rl, generally rise, v. i,h decreasing 
iln. Thus. high viscosity flows mus! deviate from the Keplerian disk 
closer to the black hole. 

endothermic reactions. The rnotivation tor choosing the partic- 
t, lar cases are mentioned in the next section. At .r = .rl, ,  the 
ratio ,\/,\1r = I a u d  therefore .rt, represents the transition re- 
gion where tim Ilow deviates Imm a Kcplcrian disk. FirsL lu~tc 
that when other parameters (basically. specific angular momen- 
tum and the location of the inner sonic point) remain roughl~ 
the same. :rt, '  changes inversely with viscosit.~ parameter ~rt 
IC96). (The only exception is the curve marked with I).l)l. This 
is because it is drawn for ~. = 5,3:  all other curves are for 
" = -1/3.) If one assumes, as Chakrabarti & Titarchuk 119951 
and Chakrabarti (1997) did. th~,t the alpha ~ isco,,ity parameter 
decreases with vertical height, lhen it is clear from the gen- 
eral behaviour of Fig. I that .rt, would go up x~ ith height. l 'hc 
disk will then look like a sandwich with higher xiscositx Kcp- 
lerian matter tlowing along tim equatorial plane. As the ~ iscos- 
ity changes, tim sub-Keplerian and Kcplerian 11o~ s redistribute 
(Chakrabarti & Molteni 1995) and the inner edge of the Kcp- 
lerian component  also recedes or advances. This lact that the 
inner edge of the disk should move in and out v.hen the black 
hole goes into soft or hard state (as t~bserved b',. e.g.. Gi!fanov 
et al. 1997; Zhang et al. 1997) is thus nalurally established froln 
this disk solution. 

In C90 and C96. it was pointed out that in a large region 
of the parameter space, especially for inlermedk, te viscosities. 
centrifugal-pressure-supported shocks wouh.I be present in ttlc 
hot. accretion Ilows. In these cases n shock-free >olution passing 
,hrongh the outer sonic point was f~rescnt. Hov. ex or. this branch 
is not selected by the tlow and the Ilm~ passes through the higher 
entropy spit, lion-through shocks :,nd the inner >unit points m- 
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stead. This assertion has been repeatedly veritied independently 
by both theoretical (Yang & Kafatos 1995. Nobuta & Itanawa 
1994: Lu & Yuan 1997; Lu et al. 1997) and numerical simu- 
lations (with independent codes, Chakrabarti & Molteni 1993; 
Sponholz & Molteni 1994; Ryu et al. 1995; Molteni et al. 1996 
and references therein). When the shock forms, the temperature 
of the flow suddenly rises and the flow slows down consid- 
erably, raising the residence time of matter significantly. ,This 
effect of shock-induced nucleosynthesis is also studied in the 
next section and, for comparison, the changes in composition 
in the shock-free branch were also computed, although it is un- 
derstood that the shock-free branch is unstable. Our emphasis is 
not on shocks per se, but on the centrifugal-pressure-dominated 
region where the accreting matter slows down. When the shock 
does not form, the rise in temperature is more gradual. We gen- 
erally follow the results of CT95 and C97 tO compute the tem- 
perature of the Comptonized flow in the sub-Keplerian region 
which may or may not have shocks. Basically we borrow the 
mean factor FCornpt ~ 1 by which the temperature of the flow 
at a given radius z (<  ;r,K) is reduced due to Comptonization 
process from the value dictated by the single-temperature hy- 
drodynamic equations. This factor is typically I/31) ~ 0.(}:~ for 
very low ( ~  O. I) mass accretion rate of the Kepleriolt r'om/~o- 
~tent (which supplies the soft photons for the Comptonization) 
and around 1/100 ~ 0.01 or less for higher Keplerian accre- 
tion rates. In presence of magnetic fields, some dissipation is 

present due to reconnections. Its expression is O,,,,~ :~13: +. 
(Shvartsman 1971; Shapiro 1973). We do not assume this heat- 
ing in this paper. 

The list of major nuclear reactions such as PP chain. CNO 
cycle, rapid proton capture and alpha (rr) processes, photo- 
dissociation etc. which may take place inside a disk are already 
given in CJA. and we dr) not repeat them here. Suffice it to say 
that due to the hotter nature of the sub-Keplerian disks, espe- 
cially when the accretion rate is low and Compton cooling is 
negligible, the major process of hydrogen burning is some rapid 
proton capture process (which operates at T > 0.5 • 10 !) K) and 
mostly (p. r reactions as opposed to the PP chain (which op- 
erates at much lower temperature 7" .--, (1.1)1-(1.2 • I() ~j K) and 
CNO cycle (which operates at T ~ 0.(12-1).5 • 10 !J K) as in 
CJA. 

Typically. accretion onto a stellar-mass black hole takes 
place from a binary companion which could be a main sequence 
star. In a supermassive black hole at a galactic center, matter is 
presumably supplied by a number  of nearby stars. Because it 
is difficult toestablish the initial composit ion of the intlow, we 
generally take the solar abundance as the abundance of the Ke- 
plerian disk. Furthermore, the Keplerian disk being cooler, and 
the residence time inside it being insignificant compared to the 
hydrogen burning time scale, we assume that for :r > ;rt,, the 
composition of the gas remains the same as that of the con+- 
panion star. namely, solar. Thus our computation starts only 
from the time when matter is launched from the Keplerian disk. 
Occasionally. for comparison, we rtm the models with an ini- 
tial abundance same as the output of  big-batlg tlucleosynthesis 
(hereafter referred to as "big-bang abundance '  ). These cases are 

particularly relevant for nucleosynthesis around proto-galactic 
cores and the early phase of star formations. We ha~e also tested 
our code with an initial abundance same as the compositiou of 
late-type stars since in certain cases they are belie~ ed to be com- 
panions of galactic black hole candidates (Martin et al. 1992. 
1994; Filippenko et al. 1995; Harlaftis et al. 1996). 

2.1. Selection of  models 

In selecting models tbr which the nucleosynthesis should be 
studied, the following considerations were made. According to 
CT95, and C97, there are two essential cornponents of a disk. 
One is Keplerian (of rate rh, a) and the other is sub-Keplerian 
halo (of rate rhh). For rh,~ ~< 0.1 and T~, < 1. the black hole 
remains in hard states. A lower Keplerian accretion rate gener- 
all)" implies a lower viscosity and a larger :rt, (a'K "~ 30-10()(1: 
see, C96 and C97). In this parameter range the protons remain 
hot, typically, Tp ,-,., 1-10 • 1() '~ degrees or so. This is because 
the efficiency of emission is lower ( f  = l - Q -  'Q+  ~ t)1. 
where, Q+ and Q -  are the height-integrated heat generation and 
heat loss rates [ergscm -2 sec - t  I respectively. Also. see Rees 
(1984). where it is argued that ~h/r~ ~ ix a good indicatign t~f 
the cooling efficiency of the hot Ilow. ). Thus. we study a group 
of cases (Group A) where the net accretion rate fit ~ 1.() and 
the viscosity parameter (r ~ 0.001-0.1.  The Comptonization 
factor Fr "~ 0.03, i.e.. the cooling due to Comptonization 
reduces the mean temperature roughly by a factor of around 
30. which is quite reasonable. Here. although the density of the 
gas is Ibw, the temperature is high enough to cause signilicant 
nuclear reactions in the disk. 

When the net accretion rate is very low (fit < ().(11) such 
as in a quiescence state of an X-ray novae, the dearth of soft 
photons keeps the temperature of the sub-Keplerian flow to a 
very high value and a high Comptonization factor Fc.,,,,,p, ~ I). ~' 
could be used (Group B). Here signilicant nuclear reactiotl talcs 
place, even though the density of matter is very Iox~. Basically. 
the entire amount of matter is photo-dissociated into protons 
and neutrons in this case even when opacity is very low. 

In the event the intlow consist of both the Keplerian laccrc- 
tion rate 6~,t) and sub-Keplerian <accretion rate ;i;,, I matter as 
the modern theory predicts, there would be situations xshere the 
Itet accretion rate is high. say 6~ = ;i;,; + ;i;;, ~ 1-7,. and vet 
the gas temperature is very high (7" > l() ~). This happens when 
viscosity is low to convert sub-Keplerian inttow into a Keplerian 
disk. Here, most of the inflow is in the sub-Keplerian compo- 
nent and very little (6~,t "~ 0.01) matter is in the Keplerian flow. 
Dearth of soft photons keePs the disk hot. while the density of 
reactants is still high enough to have profuse nuclear reactions. 
The simple criteria for the cooling efficiency (that ;h/~(-' > l 
would cool the disk. see Rees 1984) will not hold since the radi- 
ation source (Keplerian disk) ix different from the cooling body 
(sub-Keplerian disk). 

One could envisa,,e yet another set t)l cases tOloup C), 
where the accretion rate is very high ( ;i~ ~ 11)- I()111, and the s(fft 
phottms are so proluse that the sul~-Kcpleriatl region t~t the disks 
hecolnes very cold. hi this case. typically+ viscu,,itx i~, '.er', high 
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0.2. .rK becomes low (.rh" " :1-117). The efficiency of cooling is 
very high (Q+ ~ Q - ,  i.e., f ~ 11). The Comptonizatio~ factor 
is low Fc,,,,,pt < 0.0L. The black hole is in a soft state. There 
is no significant nuclear reaction in these cases. In the proto- 
galactic phase when the supply of matter is very high. while 
the viscosity may be so low (say. 10 -4)  that the entire amount 
is not accreted, one can have an ultra-cold accretion flow with 
Fcompt "" 10 -3 .  In this case also not 6auch nuclear reaction 
goes on. 

The above simulations have been carried out with polytropic 
index ~ = 4/3.  In reality, the polytropic index could be in be- 
tween 4 /3  and 5/3.  If 3' < 1.5 then shocks would form as in 
some of the above cases. However. for 3' > 1.5, standing shocks 
would not form (C96). We have included one illustrative exam- 
ple of a shock-free case with 3, = 5 /3  which is very hot and we 
have presented the result in Group B. In this case the Keplerian 
component is far away and the intercepted soft photons are very 
few. 

2.2. Selection of  the reaction network 

In selecting the reaction network we kept in mind the fact that 
hotter flows may produce heavier elements through triple-~ 
and proton and t~ capture processes. Similarly, due to photo- 
dissociation, significant neutrons may be produced. Thus. we 
consider a sufficient number of isotopes on either side of the 
stability line. The network thus contains protons, neutrons, till 
r2Ge - altogether 255 nuclear species. The network of coupled 
non-linear differential equation is linearized and evolved in time 
along the solution o fC96  obtained from a given set of initial pa- 
rameters of the flow. This well proven method is widely used in 
the literature (see Arnett & Truran 1969: Woosley et al. 1973). 

The reaction rates were taken from Fowler et al. (1975) in- 
cluding updates by Harris et al. (1983). Other relevant references 
from where rates have been updated are: Thielcmann (1980); 
Wallace & Woosley (19817; Wagoner et a11(1967); Fuller et 
a1.(1980. 1982). For details of the procedure of adopting re- 
action rates, see. CJA and Jin et al. ( 1989. hereinafter JAC). The 
solar abundance which was used as the initial composition of 
the inflow was taken from Anders & Ebihara (1982). 

3. Results 

In this section, we present a few major results of our simula- 
tions using different parameter groups as described above. For 
a complete solution of the sub-Keplerian disks (C96) we need 
to provide (a) the mass of the black hole M.  (b) the Viscosity 
parameter C~rt, (c) the cooling efficiency factor f ,  (d) the Comp- 
tonization factor Fc,,,,,p~, (d) the net accretion rate of the flow 
6~. (e) the inner sonic point location ~r~,, through which the flow 
must pass and finally, (1"7 the specific angular momentum Ah, at 
the inner sonic point. 

The following table gives the cases we discuss in this paper. 
The l~I-stress viscosity parameter ~rt, the location of the inner 
sonic point :~:i,, and the value of the specific angular  momentum 
at that point ,\i,, are free parameters. The net accretion rate 6~. 

the Comptonization factor F~r,,,,,~,~ and the cooling efficienc~ 
f are related quantities (C"I'96, C977. For extremely incfticicm 
cooling, f ,---, 1.(7. and for extremely efficient totaling f = iI 
or even negative. The derived quantities, such as the value t)f 
maximum temperature T~ ~"• of the flow (in units of 1(7 !1 K1. 
density of matter (in cgs units7 at T,~ ..... , a.'1,, the location frt~m 
where the Keplerian disk on the equatorial plane becomes sub- 
Keplerian are also provided in the table. In the rightmost colum~a. 
we present whether the inner edge of the disk is stable (S) ~r 
unstable (U) in the presence of the accretion flow. Three groups 
are separated as the parameters are clearly from three distinct 
regimes. 

The basis of our three groupings are clear from the "l,~ble. 
Very low ~'tt/c~ 2] in Group B makes the cooling efficiency to be 
very small. Thus we choose a relatively large f --~ 0.2-0.5. It 
also makes the cooling due to Comptonization to be very Iox~ 
( f'~,,,,,q,t ,--, (7. I ). Thus the disks c()uld he ultra-h(~t. Intermediate 
6t/C~l in Group A means that the cflicicncy of cooling is liner- 
mediate f ,--, 0.1 and the Compton cooling of the sub-Keplerian 
region is average: Fco,,pt ~' (7.(73. The sub-Keplerian disk in 
this case is neither too hot nor too cold. Extremely high ~i~/~i~ 
causes a strong cooling in Group C. Thus. we choose f = iT. a~ld 
a very efticient Compton cooling F'c.,,,,,r, ~ ().()I-(1.()1)11 As a 
result, the disk is also very cold. Now. we present our numerical 
results in these cases. 

3.1. Nucleosynthesis in moderately hot.flows 

Case ;4.1: In this case. the termination of the Keplerian conl- 
ponent in the weakly viscous tlow takes place at .r = [(j35.7. 
The soft photons intercepted by the sub-Keplerian region re- 
duce the temperature of this region but not by a large fattest. 
The net accretion rate 61 = 1 is the sum of(very low) Kepleri~ln 
component.and the sub-Keplerian cotnpr Using computa- 
tions of CT95 and C97 for 6~,t ~ ().1 and mr, ~ (1.9. we lind 
that the electron temperature "I',. is around (;(1 keV "/'9 ~ II.li 
(T,~ is the temperature in units of 11,) ~) K) and the ion temper- 
ature is around 7]) = 2.5. This fixes the Cotnptonization fac- 
tor to about F'~',,,,~,t = ().()3. This factor is used to reduce the 
temperature distribution of sotutic)ns of C96 l~vhich does n~,~ 
explicitly use Comptonization) to temperature distribution with 
Comptonization. The ion temperature (in T,~) and density l in 
units of 10 --I~ gmcm ..:1 to bring in the same plot) distributi~r~ 
computed in this manner are shown in Fig. 2a. Fig. 2b gives the 
velocity distribution (velocity is measured in units of l(7 tr clt'~ 
see - l ) .  Note the sudden rise in temperature and slowing do~ va 
of matter close to the centrifugal barrier :r ~ 3(). Fig. 2c shr 
the changes in composition as matter is accreted onto the black 
hole. Only those species with abundance ]~; > 117 -4 have becl~ 
shown for clarity. Also'. compositions closer to the black hr 
are shown, as variations farther out are negligible. M~st ~1 the 
burning of species takes place below .;' = I(}. A signiliczlm 
amount of the neutrons (with a final abundance r }~, ~ l(l ++ 
is produced by the photo-dissociation process. Nt>te that clt+,,ct 
to the black hole. i~- ,  t~(). '., 1319 and -"~.~i are all destroyed corn+ 
pletely, even though at around .+' = "> ~r so. the abundance t+t 
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Table I. 

Model 3I/Mo 7 z l ,  Ai,, on r~. t F'c,,mpt xK -/'~ ..... p ...... S/U 

A.I I0 413 2.7945 1.65 0.001 1 0.1 0.03 1655.7 5.7 6.2x10 -7 S 
A.2 10 4/3 2.9115 1.6 0.07 I 0.1 0.03 401.0 4.7 4.9• I0 - r  S 
A.3 I0 ~ 4/3 2.9115 1.6 0.07 I 0.1 0.t)3 401.0 4.7 4 .9x  11) v., U 

B.I 10 413 2.8695 1.6 0.05 0.01 0.5 0.1 481.4 16.5 3.9x tt] -~ S 
B.2 10 4/3 2.8695 1.6 0.05 4 0.5 0.1 481.4 16.5 1.6x It) ~'~ U 
B.3 10 5/3 2.4 1.5 0.01 0.001 0.5 : 0.1 84.4 47 3.3x 10 - I~  S 
B.4 10 4/3 2.795 1.65 0.2 0.01 0.2 0.1 8.4 13 I.I x 10 -~ S 

C.I I0 4/3 2.795 1.65 0.2 I00 0.0 0.01 4.8 0.8 I.I x 10 -4 S 
C.2 106 4t3 2.795 1.65 10 -4 t00 0.0 0.00l 3657.9 0.2 6.2x t0-1~ S 

some of them went up first before going down. Among the new 
species which are formed closer to the black hole are 3~ 4cTi. 
5aC'r. The final abundance of  2~ is significantly higher than 
the initial value. This was not dissociated as the residence time 
in hotter region was insufficient. Thus a significant metallicity 
could be supplied by winds from the centrifugal barrier. 

Fig. 2d shows the energy release and absorption due to 
exothermic and endothermic nuclear reactions (Q,,,,,.) that are 
taking place inside the disk (solid). Superposed on it are the 
energy generation rate Q+  (long dashed curve) due to viscous 
process and the energy loss rate Q -  in the sub-Keplerian flows. 
For comparison, we also plot the hypothetical energy genera- 
tion and loss rates (short dashed curves marked as Q~,,,~, and 

QKer, respectively) if the disk had purely Keplerian angular 
momentum distribution even in the sub-Keplerian regime. All 
these quantities are in units of  3 x 10" and they represent height- 
integrated energy release rate (ergs cm -'~ sec-  ~ ). Note that these 
Qs are in logarithmic scale (if Q < 0, -lo.q(IQI) is plottedl. 
As matter leaves the Keplerian flow. the proton capture tp:. ~1 
processes (such as tSO(p, ~) lSN, tSN(p, c~)':~'7, ~Li(p. ~ I:~Hc. 
7L i (p. a ) 4He, t 1B (p, 3") 3c~, J 70 (p, (~) t'lN. etc.) burn hydrogen 

and release energy to the disk. (Since the temperature of the disk 
is very. high. PP chains or CNO cycles are not the dominant pro- 
cesses for the energy release.) At around a: = 4(I. the deuterium 
starts burning (D( ' f ,  n)p) and the endothermic reaction causes 
the nuclear energy release to become 'negative' ,  i.e.. a huge 
amount of energy is absorbed from the disk. At the completion 
of the deuterium burning (at around x = 21)) the energy release. 
tends to goes back to the positive value to the level dictated by 
the original proton capture processes. Excessive temperature at 
around .r = 5 breaks :~He down into deuterium (:~Hc('.p)D. 
D('y. n)pl .  Another major endothermic reaction which is dom- 
inant in this region is tvO("f,n)tt~O. These reactions absorb a 
significant amount  of energy from the ttow. Note that the nuclear 
energy release or absorption is of  the same order as the energy 
release due to viscous process. This energy was incorporated in 
computing thermodynamic quantities following these steps: 

(at Compute thermodynamic quantities without nuclear energy 
(b) Run nucleosynthesis code and compute Q,,,,. 
(c) Fit Qn~,,: using piecewise analytical functions and include 
this into the definition of f ,  

Q _ 

f = t  (I) 

(d) Do sonic point analysis once more using this extra heat- 
ing/cooling term and compute thermodynamic quantities. 
(e) Repeat from step (b) till the results converge. In this case. 
there in virtually no difference in the solution and the solution 
appear to be completely stable under nucleosynthesis. 

Case A.2: Here we choose the same ,let accretion rate. but wi th  
a larger viscosity. As a result, the Kcplerian component moves 
closer. The Comptonization is still not very effective, and the 
flow is moderately hot as above with F~.,,,,q,, = tl.tl3. The tlow 
deviates from a very hot (sufficient to cause the llow to pass 
through the outer sonic point) Keplerian disk at .:'f, = -lI)l.(I. 
and after passing through an outer sonic point at .: = 50. and 
through a shock at ;r...,. = 15. the Ilow enters into ,he black hole 
through the inner sonic point at .r = 2.911.5. \Ve ,how the re- 
sults both for the shock-free branch (i.e.. the one ~ hich passes 
through only the outer sonic point before plunging into the black 
hole. dotted curves) and the shocked branch of the solution (solid 
curves). Fig. 3a shows the comparison of the temperatures and 
densities (scaled in the same way as in Fig. 2a~. The tempera- 
tare and density jump sharply at the shock. Fig. 3b shows the 
comparison of the radial velocities. The velocit,, ,harply drops 
at the shock. Both of these effects hasten the nuclear burning in 
the case which includes the shock. Fig. 3c sho~,; the compari- 
son of the abundances of only those species who,~e abundances 
reached a value of at least 1(1-4. The difference between the 
shocked and the shock-free cases is that in the shock case sinai- 
lar burning takes place farther away fro,n the black hole because 
of much higher temperature in the post-shock region. 

The nature of the (height integrated) nuclear energy release 
is very similar to Case A. 1 as the major reactions which take 
place inside the disk are basically same. except that the exact 
locations where any particular reactions take place are differ- 
ent since they are temperature sensitive. In Fig. 3d. we show 
all the energy release/absorption components lbr the shocked 
[low (solid curveL For comparison, we include the nuclear en- 
ergy curve of the shock-free branch (very long dashed cur\'e). 
Note that in the post-shock region, hotter and denser tlow of 
the shocked-branch causes a particuhu' nuclear reaction to take 
place farther away from a black hole when ctmapared with Ihe 
behaviour in the shock-free branch as is also reflected in the 
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composition variation in Fig. 3c. The viscous energy genera- 
tion ((2 +) and the loss of  energy ( O ~ )  from the disk (long 
dashed) and shown. As belore, these quantities, if the inner 

part had Keplerian distribution; are als O plotted (short dashed). 
When big-bang abundance is chosen to be the initial abun- 
dance, the net composit ion does not change very much. hut 
the dominating reacti()ns themselves are somewhat different 
because the initial composi t ions  are different. The dot-dashed 

curve shows the energy release/absorption in the shocked ltm~ 
when big-bang abundance is chosen. All these quantities ate. 
as before, in units of  3 x 10 ~; and they represent height in- 
tegrated energy release rate (ergs cm- - '  s ec - t ) .  For illSttlllCC. 
in place of proton capture reactions for compt,tations with ,~,. 
lar abundance, the fusion of deuterium into V-/r plays a domi+ 
nant role via the following reactions: l ) l  D .  , r V t  , . l ) t  I'. " !:;11, . 

D(  D .  p)T.  :~ftc( D .  p)  l H c .  This is because n<.~ heavv element,  
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were  p resen t  to begin  wi th  and proton capture  p roces se s  in- 
volving heavy  e l e m e n t s  such  as were  prevalent  in the st)lar 

abundance  case  canno t  take place here.  E n d o t h e r m i c  reac t ions  
at a round  .r = 2 0 - 4 0  are domina t ed  by deu t e r i um d issoc ia -  

tion as before .  However ,  a l te r  the c o m p l e t e  des t ruc t ion  o f  deu-  

ter ium,  the e x o t h e r m i c  reac t ion  is m o m e n t a r i l y  d o m i n a t e d  by 

neut ron cap ture  p roces se s  (due to the s ame  neu t rons  wh ich  are 

produced earl ier via D ( %  It )p) such as :~I f c ( , .  p) T ~vhich pro- 
duces tile spike at around .r = 1-1.5. Folh)wing this. ~It, and T 
are destroyed as in the solar abundance case (i.e.. :~flc(h'. p)D. 
D(~. )t)p. T(')'. n)D) and reaches the m i n i n m m  in the energy 
re lease  curve  at a round .r = 6. T h e  t e n d e n c y  of  going back to 

the exothermic region is stopped due to the photo-dissociat ion 
of 4tte via lfle(3.p)T attd It/v(")'. n):~lfr At the end of' the 
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big-bang abuudance calculation, a signilicant amount of neu- 
trons are produced. The disk was found to be perfectly stable 
under nuclear reactions. 
Case ,4.3: This case is exactly same as A.2 except that the mass 
of the black hole is chosen to be 10a,~,l.~,. The temperature and 
velocity variations are similar to the above case. Because the ac- 
cretion rate (in non-dimensional  units) is the same, the density 
(which goes as 6z/r2v)  is lower by a factor of 10 -'~. Tenu- 
ous plasma should change its composition significantly only at 
higher temperatures than in the previous case. However. the in- 
crease in residence time by a factor of around 10 ~ causes the 
nuclear burning to take place farther out even at a lower temper- 
ature. This is exactly what is seen. Fig. 4a shows the comparison 
(without including nuclear energy) of the composit ion of matter 
when the flow has a shock (solid curves) and when the flow is 
shock-free (dashed curve). We recall that the shock-free flow 
is in reality not stable. It is kept only for comparison purposes. 
Note that unlike earlier cases, a longer residence time also causes 
to burn all the '2o,a,;e that was generated tu ~r'o. 

In Fig.4b, we show a comparison of various height- 
integrated energy release and absorption curves as in Fig: 3d 
(in ergs cm -:z see - I ) .  The nuclear energy remains negligibly 
small fill around .r = 1()(1. After that tile endothernfic reactions 
dominate. This is due to the dissociation of D, :~lte and 7Li and 
also of ~7"C, tgf), -'~Ne etc. all of which produce ~Ht'. The solid 
curve is for the branch with a shock and the very long dashed 
curve is for the shock-free branch. A small amount of neutrons 
are produced (~], ~, 10 -:~) primarily due to the dissociation of 
D. These considerations are valid for solar abt, ndance as the 
initial composition. In the case of big-b'mg abundance (dash- 
dotted curve), similar reactions take place but no elements heav- 
ier than 7Li are involved. The three successive dips are due to 
dissociation of D. :~Ite and ~H~ respectively. 

Below .r = 10. IQ,,,,,-I is larger compared to Q+ by 3--4 
orders of magnitude. This is because of the superposition of a 
large number of photo-dissociation effects. We expect that in this 
case the disk would be unstable. This is exactly what we see. Ira 
Fig. 4c. we show the effects of nuclear reactions more clearly. 
The dotted curve and the solid curves are. as in Fig. 3b, the 
variation of velocity tor the solution without and with shocks, 
respectively. The dot-dashed curve represents velocity variation 
without shock when nuclear reaction is included. Tile dashed 
curve is tile corresponding solution when nucleosynthcsis of the 
shocked branch is included. Both branches are unstable since 
the steady flow is subsonic at the inner edge. In these cases, the 
flow is expected to pass through the inner sonic point in a tirne- 
dependent manner  and some sort of quasi-periodic oscillations 

cannot be ruled out. 

3.2. Nucleosynthesis in hot flows 

Case B . h  This case is chosen with such a set of parameters 
that a standing shock forms at .r, = 13.9. A very low accretion 
rate is chosen so that the Compton cooling is negligible and the 
Ilow remains very hot (Comptonization factor/;'c:,,,,,i,, = I).l). 
We show the results both for the shock-free branch (dashed) 

and the shocked branch (solid) of the solulion. Fig. 5~1 show,, 
the comparison of the temperatures and densities (in units of 
i()-2~ gmcm -:~ to bring in the same plot). Fig. 5b shows the 
comparison of the radial velocities. This behaxiour is similar 
to that shown in Case A.2. Because the temperature is suitable 
for photo-dissociation, we chose a very small set of species 
in the network (only 21 species up to l i b  are chosen). Fig. 5c 
shows the comparison of the abundances of proton (p), ~H~ 
and neutron (n). In the absence of the shock, the breaking up 
of ~He into n and p takes place much closer to the black hole. 
while the shock hastens it due to higher temperature and density. 
Although initially the flow starts with }~, = 0.7425 and ~H~' = 
0.2380, at the end of the simulation, only proton I}~, "-' 0.8786) 
and neutron (Y,, ,.~ 0.1214) remain and the rest of the species 
become insignificant. 

Fig, 5d shows the comparison of the height-integrated nu- 
clear energy release (units are as Fig. 2d). As the flow leaves 
the Keplerian disk at :rl, = 481 ..I, the deuterium and ~)13e are 
burnt instantaneously at the cost of some energy from the disk. 
At the end of deuterium burning at ~lround .r = 200. the rp 
and proton capture processes (mainly via l lt3(p. - )3'JHr ' which 
releases signilicant energy) and neutron capture t:~ll~'(n. I~)T) 
take place, but further in. :~1I~, (vizl :lll~.(~,.. p) l ) l  lirst and tlf~ 
(mainly via Itt~(~,. ,):~tf~. and  1It~'(~. p)T.  7 ( - .  it )D) subse- 
quently, are rapidly dissociated. As soon as the entire helium 
is burnt out. the energy release becolnes negligible. This is be- 
cause there is nothing left other than free protons and neutrons 
and hence ~lo more reactions take place and no energy is released 
or absorbed. The solid curve is for tile branch ~ith a shock artd 
the very long dashed curve is for the shock-free branch. In- 
clusion of an opacity factor (which reduces photo-dissocimion ~ 
shifts the burning towards the black hole. The disk is found to 
be completely stable even in presence of nucleosvnthesis. 
Case B.2: As discussed in Sect. 2. in extreme hard states, a black 
hole may accrete very little matter in the Keplerian component 
and very large amount of matter in the sub-Keplerian compo- 
nent. To simulate this we used B.I parameters, but tit = 1. 
The resulting solution is found to be unstable when shocks arc 
present. In Fig. 5b, we superimposed velocity variation withoul 
nuclear energy (same as with nuclear energy as far as Case B. I i s  
concerned) and with nuclear energy. The dash-d(~tted curve next 
to the un-shocked branch and dashed curve next to the shocked 
branch show the resulting tlevi;Jtion. While the branch witht~ut 
shock still remains stable, the other branch is distinctly trusta- 
ble as the steady-state solution is sub-sonic at the inner edge. 
The only solution available must be non-steady with oscillations 
near the sonic point. 
Case B.3: In this case. accretion rote is chosen to be even smaller 
(fi~ -- 0.l)01) and the polytropic index is chosen to be 5/':L 
The maximum temperature reaches T..,~ ..... = 47. After leaving 
the Keplerian flow. the temperature and velocity of the tlo',,. 
monotonically increases. Because of excessive temperature. I) 
and :~1te are photo-dissociated immediately after the tlow Icavc~, 
the Keplerian disk at :rt, = 84..1. At around .r = 3(L all Ilf, i~ 
photo-dissoci:.lted exactly as in Case 13. I. Sut'~equenlly~ the lh~',', 
contains only protons and IleutrollS alld there is nt> more cncr~.', 



B. Mukhopadhyay & S.K. Chakrabarti: Nucleosynthesis in accretion Ilows around black holes 1037 

0 

- i  

> ' - 2  v 

eat) 
O 

- 3  

a 

- 4  

' I ' ' ' I ' ' ' I ' ! ' I ' ' ' 

' ; I 
, , , ,  :..'}... ! ..... 

: . . . .  

0 . 4  0 . 6  0 . 8  1 

|og(x) 

P 

4 H e  

10 

I leO 0 

,a C 

I ~ N e  

wFe 

sis 

a N e  

- 1 0  

b 

T ' ' ' I ' ' ' ' I ' ' ' ' I  . . . .  I ~ ' ' 1 '  

"" ~ ~  Q K e p  

" . . . .  ~. - i  , - . ~ l ~ -  

f. ................. 

k , , , I , , , l l  , 
0 0 . 5  1 1.5 2 2 .5  

log(• 

1 . 5  �84 

1 i 

VIO ',,,, 

0 .5  

0 
0 . 5  1 1 .5  2 2 ,5  

c log(x)  

l.qR. 4a.-c. Variation of a matter abundance Y, in Iogaridunic ~calc. 
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parameters are AI = 10~3/ . .61  = I.().uu = ().07as functionsol 
logarithmic radial distance fir in units of Schwarzschild radiusl. See 
text and Table I for other parameters of Case A.3. In a solutions in the 
stable branch with shocks are solid curves and those without the shock 
are short dashed. Curves in b are described in the text. Basic conclu- 
.,;ions are as in the previous case. In c. dot-dashed curxe and dashed 
curves are drawn when nuclear energy is taken into account. 

release from the nuclear  react ions.  This  behaviour  is c lea rb  seen 

in Fig. 6. The nota t ions  are the same as in the previous run. This 

ultra-hot ease is found to be s table since the energy release took 
place far away from the black hole where  the matter  was moving 
slowly and there tore  the rate (Q,,,,,.) was not high compared io 
that due to viscous  d iss ipa t ion  (units  are as Fig. 2d}. 
Case B.4: In this case, the net accret ion rate is low Oh = I}.{}l ) 
but viscosity is h igh and the efficiency of  emission is interme- 
diate ( f  = 0.2). Tha t  means  that the temperature of the flow 

is high (Fr = 0.1, m a x i m u m  temperature  T,.'j ..... = 13). 
Matter  deviates from a Kepler ian disk at around .rK = ,%1. 
Assuming that the high viscosi ty is due to stochastic magnetic 

field, protons would be drifted towards the black hole due to 

magnet ic  viscosity, but the neutrons will not be drifted tRees et 

al. 1982). They will general ly circle around the black hole tilt 
they decay. This  principle has been used to do the sinlrdalion 
in this case. The modi t ied composi t ion in one s~eep  is allowed 
to interact with freshly accreling matter  with the understanding 
that the accumula ted  neutrons do not drift radially. After few 
iterations or sweeps the steady distribution of the composi t ion 
is achieved. Fig. 7a shows the neutron distribution in the sub- 
Keplerian region. The  formation of a 'neutron torus'  is very 
apparent  in this result. In fact. tile tormation of a neutron disk is 
very generic in all the hot. highly viscous uccretion flows us ah, o 
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Fig. 5a -d .  Variation of a ion temperature (Tb) and density (p_ ~.). b radial velocity I , .  n c matter ;ihundance ~ ~ in logaridmfic scale a n d  d various 
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are described in the text. The ultra-hot temperature of the flo~ pholo-dissociales tHe into protons and neutrons. The shocked branch (which is 
stable) causes such dissociation farther out from tile bhick hole than tile unstable shock-free branch. In b. dot-dashed curve and dastlcd ctlr~ es 
~ue drawn when nuclear energy is taken into iiccount and fi~ -~ .I is chosen ICase B.2). 

seen in Cases B. I-B.3 (for details ,  see,  Paper I ). The nuclear re- 
actions leading to the neutron torus formation are exactly same 
as previous cases  and are not described here. However,  we wish 
to present the energy release curve in Fig. 7b, only to impress 
the fact that the degree o f  absorption o f  nuclear energ3 from a 

given annulus o f  the disk is general ly  correlated wiOl the amtmt 
of  neutrons deposited in that annuhls .  This  is because no signif  

icant reactions other than pho to -d i s soc i a t i on  are taking pla,:c in 

lhe disk. 
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Fig. 6. Specific nuclear energy rate variation curve (solid) for a -'/ = 
5/3.  ultra-hot case ( T..,~ .... = ,14) as functions of logarithmic radial dis- 
tance (.r in units of Schwarzschild radius). The entire initial abundance 
is photo-dissociated at z ,~, 30. The viscous energy generation curve 
(Q+) and absorption curve ( Q - )  Iboth long dashedl are presented for 
comparison. 4- QK~p (dotted) curves are the specific energy generation 
and absorption rates provided the inner disks were Keplerian. Os are 
in units of ergscm -2 sec -~ . See Table I for parameters of Case B.3. 

3.3. Nucleosynthesis in cooler flows 

Case C.I: Here we choose  a high-viscosi ty  flow with a very 

hig h accret ion rate. Mat ter  deviates from the Keplerian disk very 

close to the black hole :t:tr = 4.8. The ttow in the centr ifugal  

barr ier  is cooler  ( temperature max imum T..,~ ..... = I).8). Fig. 8a 

shows the variat ion of  the temperature  and .density (in units 

of 10 -5  gm c m - 3  to bring in the same plot) of  the flow. Fig. 8b 

shows the veloci ty variation. Clearly. high viscosi ty removes  the 
centr ifugal  barr ier  complete ly  and matter  falls in a lmost  freely. 
Due 1o very short residence tinte, no significant change  in the 
compos i t ion  takes place. Only a .4rnall amount  of proton capture 
(mainly  due to l tB(p. 7)3'nH~ ', "Y)(p. ~)xa:V. JSN(p. ~)v~.  
i~O(p: r t.gF(p, r~)160) takes place. A small  amount  of  

deuter ium dissociat ion also take phtce, but it does  not change 
the energet ics  significantly. Fig. 8c shows the height- integrated 

energy release curves  (units same as in Case A. I ). Sittce the con- 
tr ibution due to nuclear  reactions (Q,,,,,.) is very much smaller  
than the viscous energy release, the ltow is not found to be un- 

stable in this case. 
Case C.2: This  is a test case for the proto-galact ic  accretion 
flow. In the early phase of  galaxy formation,  the supply of mat- 
ter is high. and the temperature  of the Ilow is very low. The 
viscosity may or may not be very high, but we choose  very low 

(presumably,  radiative) viscosity (~ = 10- ' l ) .  The motivat ion 

is to use s imilar  parameters  as were used in JAC whi le  s tudying 

the nucleosynthes is  in thick accretion disks. The central mass 
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Fig. 7a a n d  I). I::ormation of a neutron torus in a hot mtlow, a Neu- 
tron abundance as a function of the logarithmic radial distance (.r in 
units eft' Schwarzschild radius), b Various height-integrated spccilic 
energy release and absorption rates (units same as in Fig. 2d). Note 
the correlation of the neutron abundance with the degree of nuclcar 
energy absorption. This is due to the endothemfic nature of the photo- 
dissociation. See, Table I for parameters of Case B.4. 

AI = I06M,9, the maximum temperature  is T,'~ "'''< --, 0.2 and 
the Comptoniza t ion  factor Fc:,,,,u,t = (I.()01. The temperature 
variation is similar to Fig. 2a when  scaled down bv a factor of 
30 (basically by the ratio of  the Fcs,,,,pt values). The velocity 

variation is similar to Fig. 2b and is not repeated here. Due to the 

low temperature,  there is no signil icant  change in the nuclear 
abundance.  Note that since thick accretion disks are rotation 
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dominated,  the res idence t ime was very hmg in CJA simula- 
tion and there was signif icant  change in composi t ion even at 

lower temperatures .  But in this case the ttow radial velocity is 

very high and the res idence  time is shorter. The nuclear energy 

release is negl igible  th roughout  and is not shown. 

4 .  N u c l e o s y n t h e s i s  i n d u c e d  i n s t a b i l i t y  

CJA. while s tudying nuc leosynthes is  in cooler, mainly rotating 

disks, suggested that as long as the nuclear  energy release is 
smaller  than the gravi ta t ional  energy release, the disk would 

be stable. In the present paper, we lind that this suggestion is 
still valid, indeed, even when momentari ly the nuclear energy 
release or absorption is as high as the gravitational energy re- 

lease ( through viscous dissipation),  tile disk ma', be stable. For 
instance, in case A.I (Fig. 2d) at arot, nd .r = 4 these rates are 

similar. Yet tile velocity, temperature and densit~ distribution,, 

(Fig. 2a,b) remain unchanged.  In Case A.3. (2 ..... is several mag- 

nitudes greater  than viscous energy release Q -  and the thermo- 

dynamic  quanti t ies  are indeed disturbed to the extent that the 

flow with same injected quanti t ies (widl the same density and 
velocity and their gradients) at the outer edge does not become 
supersonic at the inner edge. In these cases, the tlow must be 
unsteady in an effort to searclt for the "right" sonic point to ell- 
ter into the black hole. On tl]c other hand. uhra-hot cases like 
B,2 show deviation it] non-shocked solution while the shocked 
solution is unstable. 
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The general behaviour suggests that the present model of 
accretion disks is more stable under  nuclear reactions compared 
to the earlier, predominantly rotating model. Here, the radial 
velocity (t') spreads energy release or absorption radially to a 
distance cro(p. T) = OND//Vp cm, where. No is the number 
density of. say. Deuterium and N o  is its depletion rate. For a free 
fall. t" ,--- .r -t/2. while for most nuclear reactibns, rD(p. T} -~ 
:if'. with n > >  1 (since reaction rates are strongly dependent 
on density and temperature). Thus, Q,,,,,: for the destruction of a 
given element spreads out farther away from the black hole. but 
steepens closer to it. Large dQ,,,,:/d:z: causes instability since 
the derivatives such as dv /d z  at the inner regions (including the 
sonic point) become imaginary. 

5. Discussions and conclusions 

In this paper, we have explored the possibility of nuclear reac- 
tions in inner accretion flows. Because of high radial motion and 
ion pressure, matter deviates from a Keplerian disk close to the 
black hole. The temperature in this region is controlled b.v the 
efficiencies of bremsstrahlung and Comptonization processes 
(CT96. C97) and possible heating by magnetic lields (Shapiro 
1973): for a higher Keplerian rate and higher viscosity, the in- 
ner edge of the Keplerian component  comes closer to the black 
hole and the sub-Keplerian region becomes cooler (CT95 I. The 
nucleosynthesis in this soft state o f  the black hole is quite neg- 
ligible. However. as the viscosity is decreased to around (}A)5 or 
less. the inner edge of the Keplerian component  moves away and 
the Cutup(on cooling becomes less efficient clue to the paucity 
of tile supply of soft photons. The sub-Kcplerian region, though 
cooler by a factor of about Fc,,,,,pt = ().0l to 0.03 I'rom that of 
the value obtained through purely hydrodynamical calculations 
of C96. is still high enough to cause signilicant nuclear reactions 
to modify compositions. The composititm changes very close to 
the black hole. especially in the centrifugal-pressure-supported 
denser region, where matter is hotter and slower. 

The degree of change in composit ions which takes place 
in the Group A and B calculations, is very interesting and its 
importance must not be underest imated.  Since the centrifugal- 
pressure-supported region can be treated as an effective surface 
of the black hole which may generate winds and outflows in the 
same way as the stellar surface (Chakraharti 1998a.b: Das & 
Chakrabarti 19991. one could envisage that the winds produced 
in this region wouldcar ry  away a modified composition and 
contaminate the atmosphere of the surrounding stars and the 
galaxy in general. 

One could estimate the contaminat ion o f  the galactic nletal- 
licity due to nuclear reactions. For instance, in Case A. 1. leC'. 
tt~. ",_eve. :~oSi" .t.l(-, a and 5zC'. r are found to be over-abundant 
in some region of the disk. Assume that. on an average, all the 
.V stellar black holes are of equal mass ;~/ and h:tve a non- 
dimensional accretion rate o f  around th ~. I (th = ,}'t/All.:,t,i). 
Let .._k}',. (few times [()-:~) be the typical change in composition 
of this matter during the run and let f,,. be the fraction of the in- 
coming l t ow that goes ()tit ;.is winds and outllows (c()uld be from 
ten percent to more than a hundred percent when disk e~acua- 

(ion occurs), then in the lifetime of a galaxy [say. 11) !') yrsL tile 
total 'change'  in abundance of a particular species deposited in 
the surroundings by all the stellar, black holes is given by: 

rh. N /x~; f,,. (~};) 

( M , , 
tOM ) ( ~ . r ) (  ~I, , , ,1  t ~ ) -  . (2) 

The subscript "small' is used here to represent the contribution 
f rom small black holes. We also assume a conser',ative esti- 
nlate that there are 1() ~ such stellar black holes in a galax.v. 
the mass of the host galaxy is around lt)tI,X[: and the life- 
time of the galaxy during which such reactions are going on is 
about 10t~ We also assume that Ay ,  ~ 10 -:~ and a fraction 
of ten percent of matter is blown off as winds. Tile resultin?. 
(~} i )  "" 10-7 may not be very significant it" one considers 
averaging over the whole galaxy. However. for a lighter galaxy 
(&Tti) could be much higher. For example, for .}I,30i = [0!).}1 : .  
(A}]) ,~ 10 -~. This would significantly change the average 
abundances of ;~ooi, +~Ta and '~'2Cr. On the other hand. if one 
concentrates on the region of the outflows only. the change in 
abundance is the same as in the disk. and should be detectable. 
(e.g.. througl't line emissions). One such observation of stronger 
iron-line emission was reported tbr SS433 (Lamb et al. 1983: 
see also Arnould & Takahashi 1999, for a recent discussion oil 
galactic contaminations). 

When we consider a case like A.3, we lind that teC'. i(~f). 
2~ and 2,,sSi are increased by about 10 -:~ in .,,ome regions. 
In this case, the average change of abundance due to accretion 
onto the massive black hole situated at the galactic centre v.(~ttld 
be. 

.=X); f,,. 
(-~}~)t,i~, ~ f e w •  1(1 ~( )( ~ )( - -  l 

M T,,,,I ) .lI,,j _~ 

Here. we have put 'big" as the subscript to indicate the contri- 
bution from the massive black hole. Even for a lighter galaxy. 
e.g.. of mass -~/g,~l = [()~J,1l:, ~}~ = 1(}-" which may not 
be significant. If one considers only the regions of outflows. 
contamination may not be negligible. 

A few related questions have been asked lateh: Can lithiun~ 
be produced in black hole accretion? We believe not. The spa[- 
lation reactions (Jin 1990: Yi & Narayan 1997) which may pro- 
duce such elements assuming that a helium beam hits a helium 
target in a disk. Using a full network, rather than only He-He 
reaction, we find that the hotter disks where spal[ation would 
have been important also photo-dissociate (particularly due to 
the presence of photons from the Keplerian diskJ helium to deu- 
terium and then to protons and neutrons before any significant 
lithitml could be produced. Even when photo-dissociation is 
ver.~ low (when tile Keplcrian disk is far away. for inst:mcc), or 
when late-type stelhu'c()mpt)sititm is taken :is the initial compo- 
sition. ',re find that the 7Li production is insignilictmt, particu- 
larl', it one cc, nsidcrs more massive black holes I .~ 1 ~ l I)" .1/. ) 

Recently. it has been reported by ,,cvcral authors (Martin 
el al. 1992: 1994: Filippenko et al. 1995: Harlalm, ct al. 199(,) 
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that a high abundance of  L i  is observed in late type stars which 
are also companions of  black hole and neutron star candidates. 
This is indeed surprising since the theory of  stellar evolution 
predicts that these stars should have at least a factor of ten  lower 
Li abundance. These workers have suggested that this excess Li 
could be produced in the hot accretion disks. However, in Paper 
I as well as in our Cases A and B computat ions  we showed that 
Li is not likely to be produced in accretion disks. Indeed, we ran 
several cases with a mass fraction of  He as high as 0.5 to 0.98, 
but we are still unable to produce Li with a mass fraction more 
than 10-10. Recent work o f G u e s s o u m  & Kazanas (1999) agrees 
with our conclusion that profuse neutrons would be produced 
in the disk. They farther suggested that these energetic neutrons 

can produce adequate Li through spallation reactions with the 
C.  N ,  and O that is present in the atmospheres of these stars. 
For instance, in Cases B. I and B.3 we see that neutrons could 
have an abundance of  ,-, 0.1 in the disk. Since the production 

rate is similar to what Guessoum & Kazanas (1999) found. Li 
should also be produced on stellar surface at a similar rate. 

What would be the neutrino flux on earth if nucleosynthcsis 
does take place? The energy release by neutrinos (the pair neu- 
trino process, the photoneutrino process and the plasma neutrino 
process) can be calculated using the prescription of  Beaudet et 
al. (1967. hereafter BPS; see also ltoh et al. 1996) provided 

the pairs are in equil ibrium with the radiation field. However. in 

the case of accretion disks, the situation is signilicantly different 

from that inside astar  (where matter is in static equilibrium). Be- 
cause of  rapid infall, matter density is much lower and the infall 
time scale could be much shorter compared to the time-scale 
of various neutrino processes,  especial ly the pair and photo- 
neutrino processes. As a result, the pair density need not attain 
equilibrium. One important thing in this context is the opacity 
('rl,ai r) of the pair process. Fol lowing treatments of Colpi et al. 
( 19841 we find that Tl ,a i  r < | for all our cases, and therel2)re 
pair process is expected to be negligible (for Case B.2, q,air is 
the highest [0.9]). Park (I 990a,b), while studying pail" creation 
processes in sPherical accretion, shows that even in the most 
favourable condition, the ratio of  positron (~+)  and ion (~h) 
is no more than 0.05. A simple analysis suggests that neutrino 
production rate is many orders of  magnitude smaller compared 
to what the equilibrium solutions of  BPS and Itoh et al. w~)tlld 
predict. Thus. we can safely ignore the neutrino luminosity. 

When the nuclear energy release or absorption is comparable 
to the gravitational energy release through viscous processes. 
we find that the disk is still stable. Stability seems to depend on 
how steeplv the energy is released ~r abs~arbcd in the disk. This 
in turn depends on TOY, the distance traversed inside the disk 
by the element contributing the highest change of energy before 
depleting significantly. Thus. an ultra-hot c~lse (Group B) can be 
stable even though a hot (Group A) case can be unstable as we 
explicitty showed by including nuclear cnergy release. In these 
"unstable" cases, we lind that the steady flow does not satisfy 
the inner boundary condit ion and becomes  subsowfic close to the 
horizon. This implies that in these cases the Ihaw must become 
non-steady, constantly searching for the supersonic branch to 
enter into the black hole. This can induce oscillations :Is have 

been found elsewhere (Ryu et al. 1997). In such cases, one is 
required to do time dependent simulations (e.g., Molteni et al. 
1994, 1996) to include nuclear reactions. This will be atternpted 

in future. 
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Abst rac t .  The Dirac equati,on is separable in curved sl~acctime and its solution has becn found 
for both spherically and axially symrnclric geometry, th,wever, most work on this subject has 
been done without ctmsidcring the chmgc t,f the Hack hole. I lctc v,c cot)sitlcr Ihc ~;phcricully 
symmetric chmgcd bhtck-holc backgrt,und, nmncly the P, cisstlcr-Noldstrlhlt hhlck h~,lc. Duc It, 
the presence of the ohmgo of the bhtck-holc, charge-charge interaction will bc important for the 
case of an incoming charged p;trliclc (e.g. an electron, l~i~)ton, clot. ' lherclorc. holh gravitational 
and elcctronmgtlctic gauge liclds sht~uld bc intn,duccd. Naturnlly the bchltvi~ur of the particle 
will I,e chatu.~cd Itoltt Ihat ill the Sch.',~.ltl,".,chihl get,inch),. M, tt �9 COmlmtC bt,th lilt." 'r lit 
the cltse of :1 Rcissncr-Nt,rdstrilm bhlck htdc there is ;I pt,ssibilily of SUl,cr-radilmcc unlike in the 
Schwarzschild ca,;e. We also check this blanch (~1 the solution. 

I"ACS numbers: 0.120. 0470. (LI7()I). 953()S 

1. Introduction 

Chandrasekhar separated the Dirac eqtmtion in the Kerr geometry into rildial and anguhlr 
parts [1] in 1976. His separation method can be extended to the Schwarzschild geometry and 
corresponding separated equations can be tound. However, hedid  not consider the charge of 
the black hole. If we consider the black hole to be charged then electromagnetic interaction is 

I particle, important for an incoming particle with charge. "Ib study the behaviour of a spin-~ 
the Dirac wave js treated as a perturbation in spacetime which is nsyntptotically Ihtt I I I. Far 
away from the black It,,! its influence on the particle is not signilicmtt. As it comes closer, 
it feels the curvature t .~ ' e spacetime and the corresponding hchavit>ur sllll| I() CJHIII~e with 
respect to that of Ilat space. Particle bchaviour around a black hole without charge has bccn 
studied in the past by several authors 11-61. In this paper, we will introduce charge in the 
black hole. Here, we study a simpler problem to gaiu insight into the sohflion when the black 
hole is tlon-rotating but charged. We have to solve the l.)irnc cqtmtion in an electromagnetic 
lield around a Reissner-Nordstr~ht~ black hole. Thus wc will study the particle in ~'ros.~ed 
electromagnetic and gravitational fields. It in very clear that the potewitial Iclt hy Ihe incomitlg 
Dirac wave will be different From that for the Schv,arzschild black hole 151. For ~m incomillg 
uncharged particle such as a neutron, the 61ectromagnetic lield does n~,t ph~y a part nnd the 
Dirac equation will be reduced to being the same ns in the Schwarzschitd case except for the 
redelinition of the horizon. For a clmrged incoming particle such as an electron, prot0u, elk, 
an electromagnetic gauge field should be introduced. One can also study the neutrino w~we 
whose behaviour is known for the Kerr geometry 171. In the next section, we present the basic 
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I) i ,ac cqtmlimls  and SClmr:llC them in Ihi,~ cros'~cd licld. 111 Nt'cti~m 3, wc sludy the hcl lavimu 
~fl lilt' Ii~flClllial filial Ihc II<~ssihilily ~1 ~llpt'r Illdi;ult'C. In sct,'lion .1, w c  I)It'SClII ii C~mllflClt.' 
soht l ion.  I:inally, in sccl ion 5, we draw ~111 conchls ions .  

2. D i r a c  e q u a t i o n  a n d  its s e p a r a t i o n  

By in t roduc ing  an e iec t romagne t i c  interaction and gravitat ional  effect  the covarianl  derivatives 
take the form as 

D~, --'-- 0 n + i q l A ,  +q2Vt~. 

The  derivat ive o f  the spinor  pA can be written as 

A I' Dt ~ pA = O t  * pA + iql A t, pA + q2F~,,.P , 

(~) 

wllere qj and qz are coupl ing  constants ,  ql is the charge of  the incoming  particle (say ql = q) 
and q2 is chosen  th roughou t  as I. A~, and F[~,. are the e lec t romagnet ic  and gravitat ional  
gauge  (spin coeff ic ients)  fields, respectively.  Thus.  fo l lowing 171 the Dirac equation in the 
N e w m a n - l ' e n r o s e  fo rmal i sm can be written as 

I1 l" A - " 
aAU' DIt + tilt, Q (  ~c 'n"  = O, (3a) 

u QA /3c"~c., O, (3b) aAlrl) t ,  + tilt, n '  = 

i X XAir: A, B O, I where ,  for any vector  Xi,  accord ing  Io the spinor  formal ism 17] crAn, ; = = . 

Here,  we in t roduce  a null tetrad (l', n, m. m) to satisfy or thogolmli ty  relations, [ .  ~ = I, 
,fi �9 ~l = - I  and [ .  ~i'~ = ;; �9 ~i'~ --= / ' .  ,~l -'= i; . i~ = () Io lh ,wing Newman  and l 'cnrosc 1~1. 
21/212i, is Ihe Inass of  the l) irac particle. In terms of  this new basis in Ihe Ncwman-i~enrosc  
fo rma l i sm Pauli matr ices  can be v,'ritten as 

I, I ( I' m" ) 
= ( 4 )  

CrAIJ' ~ fil I' ii1' ' 

1~(i = I"l , 

we obtain 

l;'(~t, + iqA; , )Fi  + ff?~(Ot~ 

Using  equa t ions  (2), (3a),  (4) and choos ing  B = 0 and subsequent ly  B = I we obtain 

PL(Ot, + iqAIL)P ~ + tilt' (01, + i q A i , ) P  I + (I'l~llr -- l ' lxlm')P~ + (I'tl01r -- l '01m')P I 

- i / z .  ~ l '  = 0, (5a) 

mu(Oj, + iqAl~)P ~ + nl'(Oi, + i q A i , ) P  I + (I'1o(11' - I'(~)II')P ~ + ( l ' l lm '  - I ' o l I v ) P  I 

+i / z . f2  cr = O. (Sh) 

Next,  by taking complex  con juga t ion  of  equat ion (3h), wri t ing various spin coclI icients  using 
their  named  symbo l  171 and choos ing  

I ' l  = F'2, 0 1' = GI, Oo= -(72 

+ iqAn)F2  + (r - p )Ft  + (,-r - ~x)F2 = i/It, G1, (6a) 

mlt(Ot, + iqAl , )Fi  +hi'(01, + iqAi ,)F2 + (l~ - y)F2 + (fl - r ) F i  = ilznG2, (6b) 

U ( O f  + iqAl~)G2 - m ' (~) ,  + i q A , ) G i  + (E* - p*)G2 - (~* - o~*)Gi = iltl. f~, (6c) 

nl*(Ojz + iqAiL)Gi  - JTP'(0, + i q A i , ) G 2 + ( l ~ *  - y ' ) G I  - (/J* - r*)G2 = il~vl:'l. (6d) 

(2) 



Ih, hat ' icmr ol 'a .v~in- ! Im , t i r  ' ,m , t tnd  ,I ,'har.,,cd Idetek hoh'  2(119 

These arc the Dirac equations in tile NCwllWall-Pt2111o:,;C /(WUUdiSm in curxcd spaccii uc in tile 
presence of an electromagnetic iuteractitm. 

Now we write the basis vectors of the null letrad in terms of elcmcnls of tile Rcissncr- 
Nordstr6m geometry 17, 91 as 

I , 
1" = ~ ( , " ,  A, O. 01. (Ta) 

I 
11 t' = 2r 2 ( t " ,  - - A ,  O, 0), (7/;) 

I 
tn" = (0,(), I . i c o s e c 0 ) ,  (7(') 

r v / 2  

I 
if1" = 7 - -~(0 ,  0, I , - i c o s e c O ) .  (7d) 

where & = r 2 - 2 M r  + Q2, and G --- h = c = I are chosen. Here M is the mass of the black 
hole, Q ,  is the charge of the black hole, G is the gravitational constant, h is Planck's constant 
and c is the speed of  light. 

i ( , , t + m 4 , )  �9 . We consider  the spin-�89 wave/traction as tile Io,m o l c  .1(,,r whe,e cr ix tile 
frequency of  the incoming wave and ,n is the azimttthal (luautum number. The tempo,al 
and azimuthal  dependences are chosen to be the same but radial and polar dependences are 
chosen differently for different spinors. Thus we write 

J'l = ei ("t+"'r  F~, J'2 = ei'~"+'"r F2, 

g l  = ei(or+"'q~)Gl, g 2  = e i ( O ' + ' " 4 ' ~ r ( ; 2  �9 ( 8 )  

Now we strictly consider the static field so the magnetic potentials are chosen to be zero, i.e. 
A u = (A t , 0, 0, 0). A' is nothing but the corresponding scalar pgtential of the field as (in this 

spherically symmet , ic  s p a c e t i r n e )  

At = q Q* (9) 
r - r+ 

where r+ = location of  the horizon = 34 + v/M -' - Q~. 
So using equations (7)-(9) and writing various spin coefticients in terms of the Reissner- 

NordstrSm metric elements (actually in terms of basis vectors) 17] equation (6) reduces to 

where 

"Do.l'l + 2-I/2s = iPt,  t'gl 

A D I / 2 j .  2 . , / 2 r 1  " = - 2 i p  l .  , t . . , i / 2 , l l  i , r , t ~ 2  

Dog2 -- 2 - 1 / 2 s  = il.~prJ'2 

A D I / 2 g  j + 21/2 s  2 = --2ili,,rJT 

d i, '2a i q Q , r  2 
"Dn -~- - -  + - -  + 

dr A A(r - r+) 

r - M 
+ 211 

A 

d i r : o  iq Q,,.2 

D~ -- dr  & ~ ( r  - r+) 

r - M 

(10. )  

( lOb) 

( I 0 c )  

( I Od)  

(I1) 
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d 
12. = . . . . .  ~- Q + II Col O, 

rio 

d (12) 
s = dr - Q + n cot O, 

Q = m c o s c c 0 .  

Now considering f l ( r ,O)  = R_l/2(,r)S_l/2(O), .12(r,O) = Rt/2(r)SI/2(O), gl(r ,  0) = 
Ri/2(r)S-i /2(O),  g2(r, O) = R_I/2(r)S+I/2(O) and following Chandrasekhar 171 we can 
separate the Dirae equation into radial and angt!lar paris as 

A I/2Dt)R_l/2 = (~. + imt,r)A~/2 Ri/2, (13a) 

AI/2Do AI/2 RI/2 = (~. - impr)R_l/~,  ( t 3b) 

s = -XS-I/2,  ( 1 4 a )  

s 2S I/2 = )~S~/2. (14b) / - 

Here m r, is the normalized rest mass of the incoming particle and X is tile separation constant. 

3. N a t u r e  of  the poten t ia l  in a decoupled  sys tem 

Equations (14a) and (14b) are the same as tile angt!lar equation in the Schwarzschild geometry 

whose solution is given in [2, 10, I I1 as 

I 2 ! = + I/2Y,,, (0). )2 (l + ~) , R+1/2 = standard spherical harmonics = (15) 

It is clear that the separation constant dcpends on the orbital angular momentum quantum 

number  I. 
Equations (13a) and (13b) are in coupled form. Following Chandrasekhar 's  171 and 

Mukhopadhyay  and Chakrabart i 's  [5] approach we can decouple it as 

+ o  ,2 Z + =  V+Z~, (,16) 

where 

I m,,r q Q ' I  I 2r, ,'~ 
?, = r , +  2or tan-I  ~. + l o g ( , r - r _ ) +  )2 

f')" t ' +  - -  F _  ( F +  - -  F _  

r;. 

( r  - -  r .  ) ( r  - r + )  

1"2 

r ,  -- r -- 3M + r+2 Iog(r - r+) ~ -  Iog(r - r_),  
r +  - -  r _  r .  - -  ?'_ 

I 

,.+ = M + ~/ M 2 - Q~.  

In the extreme case when M = Q*. the expression for ~. and r~ are given as 

Z~ ~ A II2 Rii2ei()12 + R...ll.,e-i(-~12, 

::) 
(17) 

(18) 

(-) = mt, r/~.. (,,19) 

M-' . . . .  (18') r ,  = r -  M + 2 M h ) g ( r -  M ) -  ( r -  M ) '  

1 mt, r qQ~, [ 2M 2 2M ] 
~ +  l o g ( r -  M )  - -  , ( 1 7 ' )  

?, = r , + 2 c r  tan-I  L a ( r - M ) - '  ( r -  M) 



I imrl ich, m'ouml a clmrged black hole 202 I Ih, lmviour o.[a spin- 5 

Here, ~. varies I'ronl -eye to +ecj (( ' ;u' lesian coordi lmle) .  I f  we compare eqll~llh~U (16) wifl~ the 
cmc-( l imcl ls ion;d Schr i~d i l~cr  equalhm in a ( 'a,le~iaH c~ . , dhm lv  ~yslvm. Ihe cm' lpy /-' ~1 Ihe 
i ncom ing  imr l i c lc  t:an Im wr i l le l |  ;is I- ~• o ; and Ihe potent ial  ( l,/i ) Iclt by lhe ImI l ic lc  is given 
as 

AO.  2 + ,n} , r"  r 
v •  

[ r2(X 2 + ,,~,r 2) (I + Q.q/(r - r+)cr)+ A X , , J 2 c r ]  2 

A(X 2 + ,,~,i '~) 
4- 

[ r2{X  2 + m~,r 2) {I.+ Q,q /{ r - r+)a)+ AXmt,/2a]3 

[1 ' , ( --Q'q ) + x r2(X 2 + m r , , " )  I + (r - ,'+)a 2a 

( ~ . 2  4-  m~,r2) I/2 
2 .2  "~ "~ "~ x AI /2  { ( r - -  M ) ( X  2 + m / , I  ) + 3 A r m ~ , } - -  A I /2 (X  2 + m ; , r - )  ~/2 

x 2 r (X  2 + mr, r -  ) + (r  - r+)cr ( r  - r+)o 

(," - M ) ~ m ,  1] Q*q + . (20) --r2(X2 + mZpr2) (r -- r§ 0 

From the expression of V-a: it is very clear that the potential depends strictly on tile charge 
of the particle as well as of the black hole. More precisciy, it depends on tile Coulomb 
interaction between the charge of the black hole and the incoming particle. When the charge 
of the black hole or particle, or both, are chosen to bc zero the potential reduces to being the 
same as in the Schwarzschild geometry 15]. When the factor Q,q/ct is positive, the potential 
varies smoothly. W h e n  Q,q/cr becomes negative, V:~ diverges at a certain location r = c~. 
For the second case, the factor (! + Q,q/(r - r+)cr) vanishes at r = r§ - Q,q/cr > r+ 
and then becomes negative. At r = cx > r+ the denominator of V~ vanishes. For 
all other cases r < r+ always, so there is no scope to diverge the potential. Thus for 
the positive energy solution when the electromagnetic scalar potential in Ihe licld is of au 
attractive nature, the corresponding potential diverges, again for the negative energy solution 
the potential diverges for the repulsive electromagnetic scalar potential. For the integral 
spin particle, it is found that when the potential diverges energy extraction is possible, i.e. 

I 
super-radiation occurs in the spacetime [7]. On the other hand, for the case of a spin-~ 
particle in the Kerr geometry, although at a certain parameter region the potential diverges, 
super-radiation does not exist 17]. In the case of a spherically symmetric Schwarzschild 
geometry the potential does not diverge at all and there is no scope for super-radiation 151. 
Here it is interesting to note that although our spacetime is spherically symmetric, due to 
the presence of the electromagnetic interaction term a region exists which is expected to be 
super-radiant. 

Figure I shows the behaviour o1 the potential t,/~ for dillercnt values of black-h()lc charge, 
where a = 0.8, m p =  (.).8, I = t q = ! are chosen: cr < r+. When Q, = 0 (solid curve), 
the potential reduces to being the same as in the Schwarzschild case shown in figure 2 by 
Mukhopadhyay and Chakrabarti 151. It is also seen that with increasing black-u~lc charge, 
the barrier height decreases. An increase of the black-hole charge indicates an increase of the 
electromagnetic coupling and a corresponding repulsive scalar potential opposes the attractive 
gravitational tield. So the net effect decreases. Figure 2 shows the Change of potential barrier 
for different values of particle charge, where cr = 0.8, m ,  = 0.8, I = �89 Q, = 0.6 are chosen; 
ot < r+. The solid curve indicates the potential felt by a neutron-like particle. 
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Figure  1. Behaviour of  the potential for different values of  tile black-hole ch:trge. The fixed 
parameters  are: r = 0.8. m I, = 0.8. I = 5 I arlt] "l = I.,. From tile upper to the louver curves the 

~ 

charge Q ,  of  the black hole is chosen as O. 0 . 2 . 0 . 4 . 0 . 6 . 0 . 8 . 0 . 9 9 8 .  

Now we come  to the case when Q,q/rr is negative. For these cases tile ~. - r relation is 
mult ivalued.  For  both r ~ cx~ and r ~ r+, ~, ~ ,,,~. As exph!incd above lhe net potential 
barrier  diverges at a certain location in this parameter  region. From equation (20) it is very 

clear  that near r = r the potential varies as I / ( r  - u )~. So it has two branches, one repulsive 

and one  attractive on ei ther side of  the singular point. As a result super-radiation is absem 

for the case o f  Reissner-Nordstr~hn geometry  as in other cases {5, 7]. We can choose any 
comhina l iou  o f  Q . ,  q :rod cr in such ~! way thai Q.q/cr i~ ncgalivc. 

In figure 3 wc shr hr the lt;lllllC cIl;Ihc IIr (V,) cl'mt~2cs with Iht' ;cxl m;Ix~; ~I 
the incomi~lg Imrliclc where n :.-. 1).8, Q..--:  ().5, ! .--= / q == I IHc chanson, ' lhc xr curve 
shows the nature of  the ncutrinr wave. It is very clc~lr from tile ligurc thai with Ihc itlctcasc of 
rest mass of  the incoming particle the gravitatiotml imeraction increases and the corresponding 

potential  barrier  attains a high value. 

4. T h e  c o m p l e t e  so lu t ion  

Now we will lind the spatially complete  solutitm. As menticmed earlier a solution of the 
angular  part is ktlOWll which is tile sm~e as in the Sch~vmzschild case I5, I0, I 1 }. For the radial 
solution we need to solve a dccouplcd radial equation. The st4uti(m of equation (16) for the 

potential  V+ and V_, usi'ng the instantaneous \VKB ~ll~l~roximation ( I W K B ) m e l h o d  15, 61, can 
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Figure 2. Bcha','iour ,af the potcmial tt~r diffcrcm x alucs of the incoming pmliclc chmgc. The fixc0 
parameters are: er = 0.8. m t, = (1.8. I = .1 alld Q, = 0.6. [:rotll lilt? upper to the l~c r  cttrvcs the 
charge q of the particle is chosen as 0.0.25. 0.4.0.6.0.8. t'i 

be wri t ten  as 

where  

with 

Z+ = , , /7+[k , ( ; , ) l  e x p ( i , , ) +  v / R d k + ( L ) l  c x p ( - i ! , + ) ,  

Z_ = , / T _ l k _ ( ; , ) i e x p ( i u - ) +  \ /R_lk_(F',i]exp(-iu_).  

(2 la) 

(2 th)  

k~(F,)  - 7(cy: - V~:), (22) 

u+(F,) = f k+(F,) dF, + constant.  (23) 

T§ + R+(r)  = I, T_( r )  + R _ ( r )  = I hlslanlancously.  (24) 

Here,  k is the wavenumber  of  tile incoming wave and u is the eicmml, 7~ and R~ are 
instantaneous transmission and reflection coefficients [5]. respectively. Using this method 
at each location, inst~,mt~mcotls, ly. the WKB I11clh~)d is applied. "Ntis ~olulion is valid when 
(l/k)(dkid~',)  << k, oll icrwisc a tlilTcrcrlt nlclhod ]5) sht)lfld fie usctt. 

In figure 4, the compar i son  of  the instant~ulcous rcllcction :ltltl transmissi~m cocllicicnts 
for the Schwarzschi ld  and Reissner-Nt~rdstr(hn geometr ies  is showm The par~uncters chosen 
are given in the ligure caption. With decreasing barrier height, the transmission coefticieut 
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Figure  3. Behaviour of  the potential fur dillcrcnt ~alues of the rest mass of the incomin~ particle. 
The IJxed parameters are: o' = 0.8. ~ ,  = ().5. I -- / and q = I. Frorn the upper to the Io,.~.er 
curves the mass me, of  the particle i s chosen  as 0.4.0.3.1).2,  0. I, 0. 

increases and the reflection coefficient decreases. It can be seen that by the introduction of 
the electromagnetic coupling, the potential barrier height reduces so that the corresponding 
transmission probability increases with respect to that of the Schwarzschild case (the behaviour 
for the Schwarzschild case is shown graphically in J51) for a particular set of parameters. So 
the presence of" the black-hole charge decreases the curved natttre of spacetime. 

N o w  r c c ( l n l l ' l l t t i t l g  X ,  l | t ltl  Z o l l e  Cllll s fitliI tilt.' (~ri~.,..ittll] rlt(IiIll I) ir l lC wllvt. ' l t t t lctit)l |Y. 

Rt/2 a l l d  Ir 15J. I ; i n a l l y ,  wc  w i l l  have  a Cotlll~lL'tt2 .~t)ltlti()ll its . l( l ' , (t) := Ir t /Z( / / ) .  

5. Conclus ions  

In this paper, we have studied analytically the scattcrino of spin -t  particles around a P, eissner- 

Nordstr6m black hole. Our lllaill motivation is to show analytically how tile spin -/  particles 
behave in the presence of an electromagnetic interaction in curved spacetime. We introduced 
the gravitational and electromagnetic gauge lields. Since no such study had been carried out 
previously we started frorn scratch. Firstly, we wrote the corresponding dynamical equation of 
a spin -1 particle, namely the Dirac equation in a combined gravitational and electromagnetic 
background. Due to the curvature of the spacetime a gravitational gauge tield (here, spin 
coefficients for the Reissner-Nordstr6m gct)mctrs') was introduced. The electromagnetic 
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F i g u r e  4. I n s t a m a n c o u ~  rctlecti tm ( R } and lmnsmb;, ; i tm ( 7 ) coc t l i c i cms  for Rc i~snc r -No td~ . r6m 

(sol id cu rves )  and S c h ~  arzschi ld  {dotted cur~ cs} black holcs.  Thc physical  para lnctcrs  are chosen  

as rr = (I.8. m t, = 0.8. I = / .  q = I. For  the P, c i s snc r -Nords t r~hn  case Q .  = 0.5. 

interaction comes into the game because of the charge of the black hole. I Ic,c, we have 
considered a steady-state problem and the corresponding c{mq~oncnts {}1 tile electromagnetic 
vector potential are set to zero. Wc then sepuraled the equation into radial and atlgular pro-t,;. 
It is seen that in the case of a spherically symmetric spacetimc, the presence of a charge of the 
gravitating object does not affect the behaviour of the incoming particles in thc polar ditectitm. 
Only the radial part of the equation ix inftttenced. We then decouplcd the r~dial l)irac equation. 
Now the potential is dependent tm charge-charge c{mpling in the Slmcctime. If the charge {~i 
the black hole reduces to zero, the potential reduces to Ihat of the Sch~varzschild case. With 
the presence of a repulsive (or attractive) char[zc-clmr~c intcraclion for a p{}sitivc for negative} 
energy solution the maglfitude of the curvature ellcot 1educes. "Ibis is because of the opposing 
nature of the two simultaneous interactions. 

There is one interesting sector of the solutitm {~vhich was absent in Ihe uncharged 
spherically symmetric spacctimc}. If the chargc-ch:trgc interaction is {~1 an ~luractive n a t u r e  

for the positive energy solution (t}r repulsive lot the ncgati~ e cncr~zy solution) then the potential 
at a certain location {r = {~') divcr[2cs, llm,,cvcr, because of Ihc I / ( r  - -  Or) ~ Val'i;.lllCC O1' tht 
potential super-radiation is absent. 

Here we study the behaviour of the potential by varying the charge of the black hole, the 
charge of the incoming particle and the rest mass of the incoming particle. We also study 
the space-dependent rellection and transmissit~n c{~cllicicnls and display them graphically tt}r 
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one set of phy.'.;icM p: l r l t l t le tcrs .  It is sect1 ttml :1~ the pt~tcntial bmficr height decreases, the 
corresponding transmission probubility itlcrcascs. We sol.re the radial I)i,;tc cqtulti(m by the 
IWKB method. 
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A b s t r a c t  

Chandrasckhar separated the l)irac CtlUati(m I'(.' .~pinning and massive particles in Kerr ge(mmlry 
in radial and angular parts. Chakrabarti stflvcd the angular cquation and found the corrcsponding 
eigenvalues for different Kerr parameters. The radial equations were solvcd asymptotically by 
Chandrasekhar. In the present papcr, we use the WKB approximation to solve the spatially complete 
radial equation and calculate analytical expressions of radial wave functions for a sct of Kerr 
and wave parameters. From these solutions we obtain local values of reflection and transmission 
coefficients. �9 2000 Elsevier Science BIV, All rights reserved. ,, 

PACS: 04.20.-q; 04.70.-s; 04,70,Dy; 95.30.Sf 
Keywords: Black holes; Kerr gemnctry; I)irac waves 

I. Introduction 

One of the most important solutions of Einstein's equation is that of the spacefime 
around and inside an isolated bfack hole. The spacetime at a large distance is fiat 
and Minkowskian where usual tluanttml mechanics is applicable, while the spacetime 
closer to the singularity is so curved that no satisfactory quantum licld theory could be 
developed as yet. An intermediate situation arises when a weak perturbation (due to, say, 

gravitational, electromagnetic or Dirac waves) originating from inlinity impinges on a 

black hole, interacting with it. The resulting wave is partially transmitted into the black 
hole through the horizon and partially scatters off to intinity. In the lincarized ("test field") 
approximation this problem has been attacked in the past by several authors 11-41. The 
master equations of Teukolsky 121 which govern these linear perturbations for integral 
spin (e.g., gravitational and electromagnet ic)  fields were solved numerical ly hy Press and 
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'l'cnkolsky 151 and 'l'cuk{}lsky aml l'rcss I{}l. While the cquati{ms g{wcrning Ihc massive 

Dirac particles were separated by Chandrasckhar ] 3 I. So far, truly Ihc angular cigeuftmction 
and eigenvalue {which hal}l}ens to be the separation constant) have bccn obtained 171. 
Particularly interesting is the fact that whereas gravitatiotml and electromagnetic radiations 
were found to be amplilied in some range of incoming frequencies, Chandrasekhar 141 
predicted that no such amplilications should take place for Dirac waves because of the very 
nature of the potential experienced by the incoming tields, ltowevcr, these later conclusions 
were drawn using asymptotic'solutions and i:o attempt has so far been made to determine 

the nature of the radial wave functions, both incoming and outgoing, for the Dirac wave 

perturbations. He also speculated that one needs to look into the problem for negative 

eigenvalues (~) where one might come across super-radiance for Dirac waves, 
In the present paper, we revisit this important problem to study the nature of the radial 

wave functions as a function of the Kerr parameter, rest mass and frequency of incoming 
particle. We also verify that super-radiance is indeed absent for the I)irac field. Unlike 
the works {}1' I'rcss alld "l'cuk{}l.~ky 151 ;.|lid "l'cuk{}lsky {llld Press 161 where numerical 
(sh~}{}ting) methods were used I{} s{}lve the tlmslcr equations g{}vcrning gravitational and 
electromagnetic waves, we use an approxinmte analytical method lk}r the massive Dirac 
wave. The details of the method would be'presented below. 

The plan ol: tile paper is as folh}ws: in tile next section, we present the equation governing 
the Dirac waves (waves for half-integral massive spin particles) as they were separated 
into radial and angular coordinates. We then brielly present the nature of the angular 
eigenvalues and eigenfunctions. In Section 3, we present our method of solution and 
present the spatially complete radial wave functions. Finally, in Section 4, we draw our 

conclusions. 

2. The  Dirac equa t ion  in Kerr  geometry  

Chandrasekhar 131 separated the Dirac equation in Kerr ge{}metry into radial (R) and 
uugular (S) wave fuuctions. Below, we pre~ent these equations from Chandrasekhar [4J 

using the same choice of  units: we choose h = ! = G = c. 
The equations governing the radial wave-functions R+~ corresponding to spin +�89 

respectively, are given by: 

AI/2"DoR_I/2 -" (X + impr)Al/2R+l/2, (In) 

A I /2"D~A I/2 R+~ = (X - i m p r ) R - l / 2 .  (tb) 

where, the operators I) ,  and "D~ are given by, 

iK ( r -  M) (2a) 
D, = ~)r + ~ + 2n z~ 

iK (r - M) (2b) 
= - s  + 2,, A 

alld 
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A = r 2 + a 2 - 2 M r ,  

K = (r ~ + a2)cr -t- am. 

(3u) 

(3b) 

Here, a.is the Kerr parameter, n is an integer or halT-integer, cr is the frequency of incident 

wave, M is the mass of the black hole, mr, is the rest mass of the Dirac particle, X is the 

eigenvalue of the Dirac equation and m is the azimuthal quantum number. 
I The equations governing the anguh~r wave-functions S~ ~ corresponding to spin :E~, 

respectively, arc given by: 

/2 :~ S+ ~ = - (X - am t, cos 0 )S_ ~, 

/211S ~ = +(X + am t, cos0)S+ I, 

where, the operators/2,, and/2~ are given by, 

(4a) 

(4b) 

/2,, = 00 + Q + n c o t 0 ,  

s = a0 - Q + n cot 0 

(5a) 

(5b) 

and 

Q = act sinO +. m Cosccr (6) 

Note that both the radial and the angular sets of equations, i.e., Eqs. I(a), I(b) and 

Eqs. 4(a), 4(b) are coupled equations. Combining Eqs. 4(a), 4(b), one obtains the angular 

eigenvalue equations for the spin- ~ particles as 17 J 

s  + s + ( X 2 - a 2 m ~ , c o s 2 0 ) X ,  = 0 .  (7) 
X + ~ t n z p c o s O  - ~  

There are exact solutions of this equation Ik~r the cigcnvalues X and the eigcnlunctions 
S ~ when p = m t , / a  = I in terms of the orbital quantum numberl  and azimuthal quantum 

number m. T h e s e  solutions are [71: 

and 

[ ,2 ] 
X 2 =  l +  + a o ' ( p + 2 m ) + a 2 c r  2 I -  2 ( / + l ) + a c r x  ' (8) 

where 

C1r V 
I St,,, = ~ YL,,, - I Y t + l , , , ,  (9)  

2 ( / +  l ) + a ~ x  

p = F ( I , I ) ;  x = I:'(/-t- I , / +  I): v = ! " ( I , I  + I) 

and 

F (/,, t2) = [~2t2 + I)~2t~ + 1~]'/2(/2 ~,,,011,,,,) 

• [ ( l ~ i 'o l / , -~ )+  ~ - I  ~'-~-'(I_~ I,,,011,,,,)I(/21 ~ol/, ~ ) +  i -  I ~'~-' , , , ,~(/~ I - ~ ~ I'/, ~)ll 
(10) 

wi th ( . . .  I "  "I are the u.~ual Clcb~h-Gordon coefticients. I::or other ',alues of /~ ~me ha~ 

to use perturbation theorie,'-;. S(duthm~ upto sixth ~rdcr usin,- perturbali(m parameter ~m- is 
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given in Chakrabart i  17 I. The cigcnvalucs Xarc rcquircd to solve the radial equations which 

we do now. 
This radial equat ions { I a}, ( I b) are in coupled form. One can decouple  them and express 

the equat ion either in terms of spin up or spin down wave functions R t :~ but the expression 

loses its transparency, it is thus advisable to use the approach of Ch~andrasekhar [4] by 

changing  the basis and independent  variable r to 

2 M r + + a m / C r l o g ( r  ) 2 M t _ + a , , , / c r  ( r )  
r . = r +  ~ -  ! - l o g  - I ( 1 1 )  

r +  - -  r _  r +  l ' +  - -  r _  

( f o r  r > r+) ,  

d A d 

d r .  -- o2 2 d r '  (12) 

0)2 = r 2  _}_ o~2 {12 = a2 + am/r r ,  ( I 3) 

t{} t ransform the set {}1" ct}upled Eqs. I (a), I (b) int{} two independent  one dimensional  wave 
equat ions given by: 

d io P4_1 - - -  (X - impr}P, i ,  (14) 
, ~ 0 )  2 - -  

+ic r  P I - -  (X + iml, r)P+ l . (15) 
- ~ o )  2 

o2 2 d f to 2 d Here,  "Do -- -S (aZ-, + i~) and D O = ~ (  ,aZ, - io)  were used and wave functions were 

redefined as R t = P t and A I / 2 R + t  ~ ----- P + I .  - ,~ - ~  . 

We now delin~ a new variable, 

0 = t a n  - I  ( m l ,  r / X } ,  

which yields 

X 
c o s O  = a n d  s i n O  = 

CX 2 + nt21,r2 

and 

6 : (X + impr) -- exp(:t:iO) 2 + m~,r 2, 

so the coupled  equat ions take the form 

and 

111 p r 

CX + m ~ r  2 

(__) [ d i~ P+,~ (~.2 +,n~,,.2)l12p e• - i t a n  - I  \ - - ~ } 3  
dr, - {0 2 - 

[ {X 2 -i- m l ,  r ' )  112 I - -  ~ " P+~ exp i tan-  �9 
z~ll 2 

..) 

( t ) -  
+ i c y  P , - -  - , ~  

Then,  defining, 

P+ ~ = qz+ ! e x p [ -  -'(m""t] I i tan \ - ~ -  

(16) 

(17) 

(18a) 

(18b) 

{ 19a)  
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and 

we obtain, 
d@+�89 

at-. 

and 

(191)) 

za x,,,p l ) a ' /2  ( ~2o~) _ = x2 + ,,,~,,.2),/2V,_ ~ 
kr I +  m2 2(7 X 2+,,,~,r 2 ~+) w 2 

,4 ~.,np 1 ) A m/2 
d~_~ + k r  1+  ~,,~,,.2 ~ - ~ - -  o9~(X2, +,n2r2)l/2~+~. (20b) 

dr, 6a 2 2rr X2+ 

,, I ~ A X,,,,, ~ ) d , ' , ,  the Further choosing r,  -- r, + ~S tan-I ( X ) so that d/:, - (! + ~ ~ X +,,,~,,. 

above equations become, 

(d -~ , - i c r )~p+~=  W~_,,~ (21a) 

and 

where 

{21 b) 

and 

equations, 

d2 -{-o.2)Z 

where 

+ W Z_ =icrZ+. (23b) 

Fro,n these equations, we readily obtain a pair of independent one-dimensional wave 

dW 
V+= W2+ dJ:, = [w2(X2 + m~,r 2) +XmpA/2ol 2 

x * (c , - -  A)] 
A3/2(X2 q- m~,r2) 5/2 

lw2(X 2 +my, r 2) + xmpa/2cr 13 

x [2r(X 2+m; , r  ) -4-- , , , / / , ; - r+X,nv( , -  M)/a] .  

= V+ Z+,  (24) 

.,,2,.2~3/2 ,_1_2,,.2 +,,,p, J 

(25) 

AI/2(X2 + m2~r2) 3/2 
W = (22) 

W2(X 2 + m 2 r  2) + X m p A  /2cr" 

Now letting Z+ = r  �89 4- r  ~ we can cotnbine the differential equations to give, 

(-dd~-, - W)Z+ = kr Z_, (23a) 
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()no iml}orlant I}oinl ltl m}le: lhe Iranslt}rtnali{m {}1 Slmlial c{}t)rtlinale r I{} r ,  (and ; , )  is 

taken not only  for mathemat ica l  s implici ty  hut also for a physical  s ignil icance.  When r 

is chosen  as the radial coord ina te ,  the decoup led  equat ions  for independent  waves show 

d iverg ing  behaviour .  However ,  by t ransforming  those in terms of  r ,  (and i:,) we obtain 

well behaved  funct ions .  The  hor izon is shifted from r = r+ to ?, = -cx:) unless c, ~< o,  = 

- a m / ( 2 M r + )  (Eq. (I 1)). In this connec t ion ,  it is cus tomary  to deline o c where cv 2 = 0 (Eq. 

(13)). Thus ;  oc = - m / a .  If {7 <~ cr~, the region is expected  It) be super-radiant  14] because 

for integral  spin part icles  for ~ <~ c~.,. there exhibit  Super-radiation. 

3. S o l u t i o n  o1" the  r'adinl e{lual ion 

Out  o f  the total physical  parmneter  space,  in one region (region I) the total energy of  tile 

particle iS a lways  greater  than tile height  {}1' potential  barrier and in lhe other region (region 
II) the energy  is less than of  the m a x i m u m  height  of  the l}otential barrier, lit region II, the 

wave  hits the wall of  barrier and tunnels  th rough it. One Iias to treat these two cases a little 

differently. 
The usual WKB approximation [g] is used t{} obtain tim 7.eroth order soluti{m. We 

i m p , o v e  the solut ion by proper ly  incorporat ing the inner and outer  boundary  condi t ions.  

Af ter  es tabl i sh ing  the general  solut ion,  we present  here the solut ion of Eq. {24) for three 

sets o f  pa ramete rs  as il lustrative examples .  F'or those examples  the choice  of parameters  is 

made  in such a way that there is a s ignil icant  inleract ion be tween  the particle and the black 

hole, i.e., w h e n  the C o m p t o n  wave leng th  of  the h~comh'ig wave is of the same order  as the 

radius of  the outer  hor izon of  the Kerr black hole.  So, 

(;I v + - . 2 1  t} 
.---, - -  (26)  

{,2 I I I  p{' " 

We choose  as before  G = h = {" = !, so 

I 
,,., (27} I11 p . .~ . 

[ M + x / l 1 4 2 - a - I  

Similar ly ,  the f requency  of  the i ncoming  particle {or wave} should  be of  the same order as 

the inverse o f  the light cross ing t ime of  the radius {}f the black h{lle, i.e., 

~.3 
-~rl. {28) 

GI M + x /M 2 - a  2 ] 

Us ing  the same units  as before,  we can write, 

-.. [M + ,/i4  2 l ' 

in pr inciple ,  however ,  one can choose  any vahtes o t ' o  and m I, for it par t icuhu black hole 

and the co r r e spond ing  solut ion is possible.  
One  can easily check  from Eq. 125) that for J ~ r li.e.. s --* ~cYo) V§ ~ nt2p. So we 

expand  the total pa ramete r  space in terms of  thc f requency {}t'the particle {{}r wave), cr and 

the rest mass  of  the particle, rap. It is clear tim! in half' of  the paranlelcr  space spanned 
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Fig. I Contours of constant Wmax= m a x ( ~  dk �9 dT.) are shown to indicate that gencrally ~s, << I and 

therefore the WKB approximation is valid in m o s t  Of the physical region. Labels indicate values of 

l /J  TTI a X �9 

by o" - m I, where ,  ~ < rap,  purt ic lc~ urc rclca~cd at f ini te d is lance w i th  ~o l i t t le energy 

that they cannot escape to inlinity. In this case, tile total energy -~. 0 2 of tile incoming 

particle at a large distance is less than the potential energy of the system. We will not 

discuss solutions in this region. The rest of the parameter space (or >1 mr,) is divided into 

two regions - -  I: E > V,,, and I1: E < V,,, where E is tile total energy of tile inconlitlg 
particle and V,, is the maxinlunl of the potcIHial. In region !, tile wave is l o c a l l y  sinust)itlal 
because the wave nulnber k is real for tile entire range of ~,. In region II, on the other hand, 
the wave is decaying iH some rcgi~m when I- -" V ,  i.c.. where the wave "hits" the p~lcntial 
barrier and in the rest o1' the regitm, tile wave is propagating. Wc shall show s.lutions in 

these two regions separately. In region-! whatever be the physical parameters, the energy 

of the particle is always greater than the potential energy and the WKB approxim~tion is 
I dk generally valid in the whole range ( i .e . ,  ~. ~i;.-] << 1 ). In cases of region-II, the energy of the 

particle is always less than the maximum height of potential barrier. Thus, at two points 

(where k = 0) the total energy matches the potential energy and in the neighbourhood of 

those two points the WKB apl~roxinlate method is not valid. They have to be dealt with 

sep'  '  ely. I,i Fig.  I. w e  s h . w  . f  ,,...,;., = f . r  ;, se t  

(or, m/~) of paralneters. The labels shmv the actual values r "'m,x. Clearly, in i,r t~l the 

paralnetcr regions the WKi3 al~pr-ximati-n is salclv valid for ~my value of i:0. ()no has Io 
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employ a different method (such us using Airy ftmctions, see below) to liml solutions in 

those regions where u~,,ax attains a la rge  value which indicates the non-validity of WKB 

method. 

3.1. Solutions of region I 

We rewrite Eq. (24) as, 

d2Z+ 
+ (or 2 V+)Z+ = 0. (30) 2 

This is nothing but the Schr6dinger equation with total energy of the wave cr 2. This can be 

solved by regular WKB method. 

Let 

k ( ~ . ) - -  ~/cr 2 - -  V+, ,t(t':'.) = / k(/:.)d/:. +cons tan t ,  

k is the wavenumber of the incoming wave and u as the Eiktmal. The solutiota of the 

Eq. (30) is, 

A+ A_ 
Z+ = - ~  exp(iu) -k -~  e x p ( - i u )  (31) 

with 

A2+ + A2__=k. (32) 

The motivation of Eq. (32) ix to iml~ose tile WKB method at the each space point so that 

sum of the transmission and retlection coefficients are same at each location. In this case 

0 -2 > V+ all along and also ~. dL ~i;., << k, so the WKB approximation is valid in the whole 

region. 
It is clear that a standard W KB solution where A + and A_.. are kept constant throughout, 

can not be accurate in whole range of ~, ,  since the physical inner boundary condition 

on the horizon must be that the reflected component is negligible there (since there the 

potential barrier height goes down to zero). Thus the WKB approximation requires a slight 

modification in which a spatial dependence of A ,  is allowed. On the other hand, at a large 

distance, where the WKB is strictly val:id, A+ and A_ should tend to be constants, and 

hence their difference is also a constant: 

A+ - A_ = c. (33) 

Here, one can choose also the sum o1 A ~ and A_ are constant instead o1 dilTcrcncc as 

Eq. (33), but the linal result will not hc aflcctcd, i lcrc, c is dclcrmincd from lhc WKB 

solution at a large distance. For simplicity we choose A+s are real. This along with Eq. (32) 

gives, 

c  /2kIr)-c 2 (34) A:t:(r) = + ~  + 2 

This spatial variation, strictly valid at large distances only. should not be extemtable to the 

horizon without correcting for the imler boundary condition. These values are to be shifted 
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I )y ,  say, A t/, fcspcclively,  su thai tm tilt' ht~t i,,tm tmc t~htains tilt' i)hysical R and l .  We lirst 

cofrect  the reflection coefl icient  ol1 the horizon as follows: l.et A_ h be the value of  A__ on 

the hor izon (see Eq. (34)), 

c , / 2 k U ' + ) - c  2 
A - h  = ~ -  4- 

2 2 

It is appropriate to use .t4_ = A_ - A_h rather than A_ s ince .A_ vanishes at r = r+. 

Incorporat ing these conditiong, tile solution (3 I) becomes,  

A+ .,4_ 
Z+ = ~ exp( iu)  4- - ~  e x p ( - i u )  (35) 

with the usual normal izat ion condit ion 

A 2 (36) + +  = q  

where A +  = A+ - A+/~. 
I)elernfinulion of  A i/, is done  by mlforcing R obtained Ironl I-q. (37a), which is shown 

below, is the salne as that obtained by tile aclual WKB method.  Tile q is used to compute  

the t ransmission coefl icient  7" from Ee I . (36). In this way, normalizat ion of R + 7" = I is 

t dq 
' l 'hc n(nmal izat ion l ; t c t ( ) r  q --+ I,' tin ['++ - -  ~ t l l ld  t i l e  C(>l ld i t i ( ) l l  ~i ;.i[.: << rl is  l()till+.l t() 

be satistied wheneve r  / ~ << k is satislied. This is the essence of  our nloditication of the 

WKB.  in a true WKB,  A:E tire constants and tile normalizati tm is wiih respect to ;A (almost) 

constant  k. However,  we afe using it as if tile WKB is instantaneously valid everywhere .  

Our method  may therefore  be called "Ins tantaneous"  WKB approximation or IWKB for 

short. Using the n e w  no t t t t i ons ,  tile instantaneous values (i.e., local vahtes) t)l tile rellection 

and t ransmission coefl icients  are given by (.see Eq. 1351), 

R -- , (37a) 
q 

A 2 
7" = + 137b) 

q 

Whatever  may be the value of the physical paratnetets.  ~ dk << k is satislicd in whole  rauge 

of ~, for region I. 
'l 'hc varialitm t>l rcllcctitm tlltd Iransmissitm ct~cllicicnts wt>uhl I)t., well tlll<.h.'lSlt~t+d il wc 

imagine  the potential barrier consists of  a htrgc number  of  steps. I:rotn situple quantum 

mechanics ,  in be tween  each two stcps, we can calcuhtte the rellection and transmission 

coefl ic ients  191. Clearly these rellection and transmission coeflicients at diffcfcnt junct ions 

will be diffcrent .  This  is discussed in detail below. "l'u bc ctmcfete,  wc choose one set of  

parameters  frotll region !. Here, the total energy of  the incoming particle is greater than t i le  

potential barrier height for all values of  p':,. We use. Kerr fmratneler, a = 1).5: mass of  tile 

black hole, M = I; Mass of  the particle. , t  t, = 0.8" orbital anguhu  IIIt)lllClltttlll qtlttlllUlll 

nuJnbcr. / = I /2:  azimuthal  tlUanlttm number,  t ,  --= --- I/2:. Ircqtu.'ncy ~1 the im:t~,ninu wave, 

cr = 11.8. The derived Imrat+|cturs ; t , r  r ,  = /~,! 4 x/ill -~ --r t  -i ~ 1.8(~(~113: r;,--- I' (r, = 

().()(~6t)87" o '2 --= --(),()(~25. I"~1" thcs~: p:Ar; t l l lCt , . ' r s .  Iht_' t.'igCllV;.Ihle is 3. =-().t)2 17 I. 
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Fig. 2. Bchavk)ur of {a) V+ (stolid curve) and V._ (dashed curve), lb)!./4_ (~4id curve), k (dashud 
curve), total energy E (short-dashed curve), {c) local transmission { 7, solid curve) and rcllcctiun { I?, 
dashed curvc) cor us I'unctionx t f f / - , .  "]'he I~:.ltalllctcr~ arc a = 0.5. M = I. i,,1/, = 0.g, 1 = 1/2. 
m = - 1 / 2 ,  ~" = 0 . g .  

Here it is clear that a- is in between n,. and ~, and cx 2 < (), r~ > I, ' l . ,'.;o wc arc in a 
str ict ly non SUl~er-radi:mt rc~imc sh~cc hcru', n > n, 14]. 

I:r(m) I-q. (24) we observe that there arc tv,'(~ wax'u" ctlu;Iti(ms I(~l two) p(~lcnlialx v l  and 
V . The II:t|lll'c ()1" tilt.' p~lvnlhds is shl>wn ill lii/_ ,. 2In). It iS CICm" Ir~ml the I:iL,. 2(a) llml 

tile i)otcmial.s V.]: arc wel l  buhavcd. ' l hcy  arc mon~tunica l ly  t lccrcasing as the ixut ic lc 

aPI)roaches the black hole, and tile total cm.',~y chuxcn in Ihis case (~2)  is always higher 

Ilmn v:t.:. For concl'ctcncss, wc study the ctl tmli(m with Ix)tcnlial v I . A simi lar pr()ccdurc 

(IWKB mcthi)d) ;is explained above can bc ad~q~lcd using tiiL" IX)tcntial V to C{)lllpLllC Z_ 

and its form would be 

' - ' A'.. - A'_ h c x p ( - i . ' ) .  (35') Z_  -- A+ A+h c x p ( i . ' )  

v / ~  ,{~i; 

Note the occur rence  of  the nc[zali\c sign m from ~1 fl~e retlcclcd wave. This  is Io satisly 

"tile asyml)l()lic l~i()pcrly of  the wave Itmcli(ms. 



II. A'I++~(IIr,'IJrIrlIPx,++x', .S'.K. ( ' l . d . r<d~+ t r l i  I Nu<'h'+. l'hx +Jc',, I1 5,~2 +2IlOIH n27  (~,1.~ (~ ~7 

:> 

0 ,6  ,-t-l--'--~--r--l-T'1-t-'"l-r"-r-"vr'l ' "' | 

- 10 0 10 2 0  
F. 

0.4 

0.2 

0,8 

0.6 
[-., 

0.4 

0.2 

0 0 
- 5 0  

+ I - 1 " ' I  + T "  

J I I I J] I I i I I I I I I._I l I I I 

0 50 100 150 

Fig. 3. (at Steps (solid) appruximaling a potential tduucdl, thus rcduuing the problem U~ thai 
OI" tl <+Ikl~.lllltllll lllechtllliC~,. ' l 'hc IlilrtllllCI.crs ILl'L" '.,little its ill I:i~. 2. (11) ('t~lllr)t11-ixtm uf \,tlriatitm (~I 
ins l tmtancous  l 'cllcctitm u<~cllicicnt R and tl 'anxtnisshm ct~cl+iicicnt 7' With the rltdial ct)urdilmtc i". 
using atullytictll W KI3 llllctllt)tl ( s o l M )  and stcl+-l+t}tctttiI11 nnclht~d (dollcd).  The  l+t11'ttlltCtcls arc SalUC 

as Fig. 2. 

In Fig. 2(b), we show Ihe nature or vt  (s(~lid curve),  k (dashed curve)  and / - ( = r r - )  

( shor t -dashed  curve) .  In the SOhltions ( |-qs. (35) and 135')) the tirsl lernll cor responds  1o the 

incident  wave and tile second telnil corresp<mds It) Ihle reflected wave. 

In Fig. 2(c), the variat ion of  rcl lection and t lansnfission coel! icients  are shownl. It is seen 

that as 1nailer c o m e s  close to the black hole.  the barrier height  goes down.  As a result, the 

penetllation pl't~bability i n c r e a s e s ,  caus in lg  tile r i se  o l  lille Irtllnlslnlissi(m c ( ) e l l i c i cn t .  

l .ocal values ~)I the 1ellecti~m and trtln,,nti,,,,i~Ul c}..'Ilit.'icnts c~mhl alst} hc c';tlculalud 

usi l tg  Iltc we l l  knt~wn ql11anltlltl I1tcu'hmticIfl ;q+lmmt.'h. l;il>,t tmc ha,, It}. ,u ldauu Il lc I+t~tulltiulx 

(as shown in Fig. 2(a)) by a col lec t ion u l  step Iulllctit)nls tin sllOwll ill l:ig. 3(a). ' lhe  Slal))dald 

. junction cond i t ions  r tile type 

Z + . ,  = Z + . , + I .  ( 3 8 a )  

where  

Z I.,, = A,, expl  ik,,F+.,, ] + / / , ,  e X l q -  ik,,F, .,, I. 

~.tlld 

("Z+ I _ dZ" I (3~b) 
cl~, ,, d~, ,,+I 

whc1"c 

d Z +  I = il,',, A,, expI ik , ,? . . , ,  ) - ik,, IL, expI - i k , ,F , . , ,  ) 
dT"+ I. 

tit each or  ti le u steps were  used to ctmnleut ~(d1.1tionls at SUCCL'SSiVe SICI',< l:1otn lhlc ~innlflc 

tlU;.Ulium 111echtll1'.ic;lll calcll.ll;.lltion we (~bt;.llitll dlr re ih. 'cdun and hnnXlllli~'<i~ull c(~,._'f(icicnlt~ al 

1he euuhl .it,ncti~mn. ('tearty at diflu'n.'nt .it,ncli~;n',: i.u.. at d i f fu run l  rml i i  Il l in rulh_'cti<m ami 
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transmissi{m cocflicicnts will l}c diHcrent. As lwI~,c, xvc use the inner b{mmhuy ~.~mdition, 

to be h' ~ () at I~', - +  -- ."x,. In realilv ~vc use as IlIiIiIV steps as possible 1{} IDll{}w acuuraR'ly 

ll~c shape of lhe polcnlial. Snmllcr slep si/cs x~erc used whenever k varies lanier, l:ig. 3{h} 

shows the comparison of the instantanc{ms ru'lleL'lhm and transtnissitm c{}cIIicicnts in I~ofll 

tile methods. The agremnent shows thal the WKB can be used at each point quite success- 

full y. 

It is to be noted,  that. strictly speaking,  tile terms "reflection'" and "uausmis s ion"  

coef l i c ien t s .a re  t radi t ional ly  dcl]ned with respect to Ihe asymptol ic  values. The  spatial 

d e p e n d e n c e  that we show are just  the dependence  of  the ins tantaneous  values. This  is 

cons is tent  with the spirit of  IWKB approx imat ion  that we are using. 

The  radial wave func t ions  R 4 { and R { which arc of spin up and spin down particles 

respect ively  of  the original  D i r a c e q u a l i o n  iue given below. 

Re(R{  A t / z )  = a + c o s { .  - O) + ~t.._cos(. + ~'t) 

t t t 

o t c o s { t t ' - - O ) - - ~ t  t.'osItt -l--l)} 
+ { 39a) 

2 

IIII,,I?~Z~II2,___ ~t ) S i l l ( l / -  t)) ~t Sill{'ll t .0 }  
. . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . .  

I ~ t 

o+ sin{u' -- O} + .' sln{, +O) 
+ - (39b) 

I~.e{R ~ ) = ~ 1 7 6  

- 2,A 
,, I t 

_ a_~ c o s ( . '  t - O }  . - . .  {.'{}s{. - o }  ( 3 9 c }  

l m ( R  t ) = a ~  s i n { t , + d ) - - a  s i n ( . - - O )  

- 2 v " k  
! , / t 

O4. st11(r~ + { 1 1 + o '  sin{rt - -{1}  
{ 39{I) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2" . . . . . . . . . . . . . . . . . .  �9 

r  I I t '  

Here, a+  = {A+ - A + h ) / x / 7 ~  and , .  = { A  - -A  ~ , ) / q , , / ~ .  ,.,.p aml -~-,/~, are t l le t rans-  

nlit ted and ret lectcd ampl i tudes ,  rcspccti \Cl\ ' ,  for tile wave of  correspt}nding p{}tetltial V . 
In I:ig. 4(a}-(d)  we sh{}w the naltlre {}l lllest.' wav,.,ll, lnt.'ti{}ns. The  ciktmals ttst'{I in i}h}lting 

these f tmcl i tms (see I!tlS. (39al-(39d}} haxe I}et.'t! calcttlaled I}y al}l}rt}xitmtliug Vt in terms 
_ _~. ....... 7 ~ {}f a i}{}lynonlial tllld us ing tile delinitit}n tr(7', ) = .I' \ o -  - %':t-tl/":,. This  was done  S}llCe Xr/ ~ 

is not direct ly  il~tegrablc. Note that tile ampl i tude  as '.,.ell as wavelength  remaii~ c{}llsIu, tlls 

in regions  where  k is also ctltlSlalll. 

3.2 .  S o h t t i o n s  o [ ' t z ' g i o .  II 

Here we s tudy the solut ion of  a region ~vhcrc for any set of physical  palal l lc |els ,  Ihc Iotal 

energy of the incoming particle is less than the lll~LXiIlltlIll hci-hte t}f file polcnlial barricl. 

S{} the WKB appr{}ximati{m (hi,we preci',eI.~. {mr I\VKB apIm}xim;dhm)ix mU valid in 
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Fig. 4. Nt~.tu'c of real and hluL~in~u'y paris of radial wave ftmclions for Case I. 

tile whole range of i;,. In the rc.~ions where the WKB is not valid, the solutions wil l  bc 
the linear combination of  Air  X Functions because Ihc polclltial in a line,u Iullclh)n o1 ~, in 

Illosc illtel'v~lls. At the jul lct ions one lias to lllatch the solutions includin B Airy Iullction.~ 

with the solulion oblaincd by WKB mclhod. 
In lho region whom Ihc W K B  approximalion is valkl, local values of rcllcclion and 

Iransmission cor and lhc wave Iunclion can he calculalud uusily by t~)llowin~ lhr 
same mcd~od described in Previous suh-scclhm (sohuions of rc~ion I) mid II~c solu|ion wil l  

be same as Eqs. (35}, ~35'). In od~er rc2.ions, the cqu~fiim reduces u~ 

d2Z.F 
. v Z  ~ = (), (4 ( ) )  

whcl'e .x" ----/~I/'~(F, - P). /~ is chosu'n u~ bc P()silivc ~md P i~ Ihc crilical P(finl ~hcrc lhc 

h)lal energy and potcnlial c.ncI~y arc mulching. 
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Is ' l  / I (.~) .~ q / " ) ' (  ~ ) mid c{m, , idc l in~ vc,.z,i~iv~ 

~ ( I2y  t ' ) '  ( . , . ,  l )  
x - -  ..... ~- + x . . . . .  t- )'(.~ ) : :  (1. 

d.~- d.v 4 

By making another transformation 

() I lw cqtmli(u~ (.1())It_'du~.'t'~, h) 

~, ( ~ ) a n d  / 

: ~.V 3/2 
3 

we obtain 

~e2tlZY dY ( l) 
this is tile modil i(d I}csscl e(.ltUlli~m. The s(dulhm of this C(.lUathm is I 

So thc  Solutiou of Eq. (4()) will he 

When .v < () II~e corresp(mding equuli~m is. 

~e2d2Y~ d Y ( ~ J l )  

which is the Bcssel equation. The corresponding so lu t ion  is 

(41) 

(42) 

(43) 

, (~ ) .  

(44) 

(45) 

Z+(.v) = l.vltl2[l)l,/+:~ (8) 4- I)2,/~r I, (4(~) 

where ,I+.~ and I~ are dm Bcsscl lunclhms and I11c modilied Bcsscl rum:thins of order 

I /3 ,  rcspeclively. 
The Airy functions are dctined as 

I I 
Ai r .v )  = .~.v ~(~) ] .  . v - .  (). (47) 

I 
Ai ( .v )  = ~ I.,11/-~[,I 

I ' [ I _  . , - > o .  (49) B i ( . v )  = b x - ~  . 

I i.,:1~/2[. I , ( ~ ) - . !  (~)] .,--I). (5o) B i ( . v ) =  ~ '~ ~ - 

In terms o f  A i r y  Iunc l i ons ,  the suluti(m.~ (44) and (46) can be wr i t ten  as 

3 
/ r  = ~ (( '2 - ( '1 )  A i ( .v )  -t- --2 �9 (( '~ .-t- ( ' l )  l} i(.~) f o r . v > ( ) .  (51) 

3 
Z + = ~ ( l ) z + i ) l ) A i ( . v ) +  2 ( I )2 -  / ) l ) B i ( . v )  for .v  < ( ) .  (52) 

By  ma tch ing  h() tmdary c tmd i t i tms  it ix easy I() sht)w lhal lhc s(f lul i(m c~)rrcsptmtl ing .v -~ () 

and Il lal CiHTCSl~t)ndin ~.v -- () arc c't)nlinut*tP, when ("1 = ---/)1 and ('2 =-: I)2. 
As ml examp le  ()f so lu t i (ms I r tun this rcehm, x~c choose: tl == ().()5. AI = l.  m r = (). 17, 

. . ~  �9 

/ = I / 2 ,  m -- - I / 2 ,  and rr = ( ) . 2 1 . 1 h c  l~lnL'k ludc h~)li/~m is ul r ,  == ~,I --t- \, ( a l -  - .-) 
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Fig. 5. Plots arc same as in Fig. 2. The parmncicrs arc a = ().95. M = I. m/, = ().17. / = I/2~ 
m = - I / 2 ,  es =t) .21.  

1 .31225,  , , .  = 1}.52631r er, = I).18()987. n,-" = -1.35~'~ and ,~, --.- I).93 171. !! is clcm' Ihal 

tile va lues  ~ll'o,., ~., and oe 2 indicate  the rcgi~m is n~m super-radiant .  In I:ig. 5(a). we shrew 

the na ture  of V+ and V _ ,  however ,  whi le  solvin,-,  we use the equa l ion  con ta in ing  V_§ (gq.  
"l o 

(24)).  Unl ike  the case  in the p rev ious  subsec l ion ,  here cs- is im longer  greater  Ihall V+_ at all 

radii .  As a result ,  k 2 m a y  at tain negat ive  values  in s o m e  region.  In I:i~. 5(hi,  mliure o f  V+ 

(sol id curve) ,  par tuneter  k (dashed  curve)  and encri-y i- ( shor t -dashed  curve)  are shown.  

Here,  W K B  a p p r o x i m a t i o n  can be appl ied  in regions  o ther  than ~, --- - 4  to - I and I to 7 

where k is close Io zero and lhe condition / dr, ~i~ << k is nol satislied. 

In tim reg ion /z ,  = 7 to I at~ntnd the Itlrning p~in! [, = 4 .45475 the sr IUHI'-; ('Jill. 

Io be It 01, 

Z +  = 1 .087526Ai ( . r )  + [).7889r l]i(.~ ). (53) 
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I t l l ' l lS out to be I101, 

I l~) -1. i,e.. a~I~)ll~ltlllw tUl~ine lUfiul i, ..... 2.~()53 

Z+ = -11 .328096  Ai(x) -t- ().77442() Bit.v)]. (54) 

it is to be noted that in the region F, --- I to - I. even though tile potential energy dominates  

over  the total energy,  WKB approximat ion method ix still valid, i lere  the solution will take 

the form exp( - u  ) / ~  and exp( + u  )/, ,/~. Asymptot ic  values of tile instantaneous rellection 

and the t ransmission coefl icients  (which are trnditionally known as the "rel lect ion" ;and 

"transnlission" coel'licients) are obtained Ironl tile WKB approximation.  This yields the 

integral C O l l S t a l l t  ~' a s  i l l  previt)us case. 

I;lOlll I:,qs. (37a), (37b) local rcllccli(m ;.|rid |lilllSllliSsi()ll c~ellicienls are calculaled, 

bchaviours  ol  which are shown in I:ig. 5(c). The collsli|lltS A.h ;.llld A.t.h ~.lle calculated 

as before.  Note the decaying  nature of tile relleclion coellicien! inside the potential barrier. 

3.3. ,S'olulitm.s" i ,  the .S,l~er-r(tdi(mt r(,.~i~m 

In this region, the potential diverges a! r -- Ic*1. l lef t ,  tile barrier height goes up Io in l in i ty  
and then the potential cllangus sign n() that its n'aturt' chan,ee'~ II~)tll rupulniw: I~> attractive 

and vice versa. This is because a -:: a, {which ix tile coml i t ion Ior supur-rudiancu) and 

,+  < Io~1 Isee Eqs. (11) and (13)l. Unlike tile previous two cases, tile relation between r 

and ~, is not single valued. Here, at both r = r+ and r = ~o, tile value of  ~, = cx0. With the 

dec remen t  o1" r, ~, is decreased initially up to r = I~1. Subsequently.  i::~ slatIs to rise and at 

the black hole hor izon it diverges. ( )b \ ' imts ly , in  this case Imrticles hit the barrier and we 

can solve the equat ion fol lowing tile same methods  as explained in the pleVi~ms cases, i.e., 

Ihe solutions are the sanle as l:,qs. {35} aml (35') Ior tile region where tile W K B mclhod is 

valid and L:qs. {51 ) and {52) where the W K B  method ix not valid. 

For i l lustrat ive example, here, we choose: o = (}.95, M - =  I, m t, = 0.105, / = 

I / 2 ,  m = - ! / 2 ,  and o- ----0.1{}5. The bhlck hole hor izon is located at r+ = M + 

~/M 2 - a 2 ~ I .31225, and a,. = 0.526316. a,  = (). 180987, o~- = - 3.62 and X = {).97 [71. 

Chandrasekhar  showed 141 that for integral spin particl,es this region exhibits super- 

radiance aqd conjec tured  that for hal l- imegral  spins the super-radiance may be abseut. 

We investigate here if this conjecture  is valid. 
The hcltavi~mr ~f l ' l~tcnl i :ds V~ amt V nre sh~v,u in l:ig. (~(:l). It is clear tirol at r :=. 1,*1 

tile potential diverges and tile mmtre of tile pt~teutinl ix changed from rcpulsivc Io nttractive 

(for V_) and vice versa (for V+). l lcre,  x~e will treat tile equaliun with V.. as lhe polmltial 

(it ix equal ly easy to do tile lmfl~lcnl xvitll I'~ ). \Ve lhst divide our cornpulal ions into two 

paris. In the repulsive part ~fl tile i~ ten l in l  (i.e.. when ~' > (}). prot i t les conic from in l in i ly  

and most of  them rellect back from file in l in i le lv hi,,h barrier. In file al l ract i \e par! ~)t g-.. 

the potential (i.e.. when V+ < {)), particle rndinles outwards in tile ;,: cnordinatc (actutflly, 
particle goes towards tile horizon bul due t~ mull ivalueness ot  tile radial c~ordimltc F, (wilh 

respect to r)  the horizou ix mapped to inliuitv). 

In Fig. 6(b). n;.lltlrc of  ]" ./-,' ;llld I] ;.ire ,,h~wi1. l h c  \ \ 'KB appr~xilnali~m (in~rc precisely 
1 d/, .+./, 

IWKla; :q~pr~xinmti~ml ~ lc lh~ l  i', \',~lid t~,t~l inli, l i l~ I~ ?: .1(1 ,,into. ~llwrxvi,,c, i, ,i,. 
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Fi B . 6. Behav io rs "  o1' (a) v +  ( so l i d  c u r v e )  ~md V_. (dashed cu rve ) .  (1"~) ~." ( so l i d  c u r v c l ,  k for  

i'cBion where l~OtClltilil ix positive (krep. dashed curve}, k l~r rc~ion where polcnli;.d ix llC~Zafivc 
(/,'~11, ,,.; l ]orl-dashed cu rve ) ,  to ta l  ene rgy  I'.' ( d o l l e d  cu rve } .  I t ) l o c a l  u 'am:miss ion  ( ' / ' ,  so l id  cu rve )  and 

r c l l c c l i o n  ( It', dashed c u r v e )  c~c t ' l i c i cn l x  ~ls I tmc l i om ;  o f  F~. ' l h c  l 'mramclcrs  arc . --  ().~)5. /V/ .= I ,  
m / ,  = ( ) . 1 { ) 5 ,  I = 1 /2 ,  m - -  - 1 / 2 ,  tt = 0 . 1 I i 5 .  

is not satislied. In those other regions one has to apply a diltcrent method (which was 

also explained in last sub-section) Io lind solutions. The local values o1 the xellection 

and transmission c.oellicients and the wave Iunclitm of lhe particle are calculaf, ed as in 

the previous cases. Since the matter which ttnmels through the inlinitely high harrier [ace 

inl ini tely strong attractive lieh, I, the possibility ot extraction ot ellel~)' would he zero. In 
I:iB. 6(c), the variations of  local transmissi~m and. rcllecli~m c~cllicicnlx arc xl|~wn. 'l'hc 
no! transmission o1 the wave through the hori/~m is I I~.~n-l lc~at i~,e all along ~.ll~,l therefore 

super-radiation is absent, althou.~h ct ix less than or,. \\.'e helieve that the non-existeilce 

o1 sttper-radiation is due to (r - Ic~'ll ~ x~luiati~m oI the p~lenti~fl ne~lr the sin~uhlr p~inl. 
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ik't.'mlnc tfl the cxi.slcnu'u t~l ;~ttrm+'li\ c iichl, tt~c u'\llac'lit~t~ <~1 cm'lu.v in tlillictlll. ~,~ IIIc IiC1 

II;.lll.'.;llliS,'.;iOI! Of the wtt\'r Ihl't)l.l~,h the Ilt+liZt+ll ttolll % is; ;.ll\'~ ;.IS':'; pt).'.ilivc. This  ~lrUtllllcnt is 

valid lt>r ;tlly SCI (If p;.tr~.tlllCtt.'l'S \xllctc tj , r~,. 

4.  C o n c l u s i o n  

In this puper, we studied scutterinu of massive, spil~-I+udf fmrliclcs fl~ml u Kerr bluck 

hole, puttict0hu'ly the nttttlte Of the rudiul xva.ve functi()n.',:, l|lld the reflection uml transmission 

c(>r ( )ur  main uloti,. 'ation was to ,, ire a ~r anulytical c• t)f the st)luti()tl 

wh ich  can be useful I'+.n" ft.lrther sltldy. \Ve sh~xvcd few ilh.lstrtltivr c++lsen its e• 
We vcr i l ied Ihtlt th~se anulyt icul stflutitms Were i1+<.1r162 ct~rlcct by c'xplicit ly s~dvin B the 
+,;urrle set o f  r  usi1+~ <,luut+tutu mr  step-pt+tcntiul upprouch  as dc.,;cvibcd in 

Section ] .  We chtssili,r the entire fmrtlt l lctcr sl~acc i1+ tcln)s of  the phy.'-dcal ttll<.l tll+l+hysical 

fcBit>n.'-; :.uld the f~hysicul rcgi tm wux lur ther  clm, siliud itlt~ l\t.~ [,'> ' 

wl lu ther  the par t ic le  "h i t s"  the pt>tcntial barriur ur lint. Auain:  the rcgi tm whuru fmrticlc hits 

on the barr ier ,  is d iv ided  it;to t~vo lmrts, tree is Sl.tl)cr-fttdittll[ I12u[o11 ;+It+d r is llOll-XLtpCi- 

ru<.liuIH 1,,:gkm. We cht+.'.;c r162 illtlStrat+\c ,,:xu1~;plc +I+ ouch t)f Ihc 1't.'~+r We Clupha'<i/c tha! 

the mos t  "intu0csting'" lr it) ' , tudy \,,(~t.nld bu t_'h~su t(~ , l l ,  ++ n .  I Itm.uvur. v,'c l+t+hltud ()ut 

(Fig. I ) that for m I, <~ ().35. the \ \ 'KB  solut+tms Cttllt;t~t be trusted,  uml othur muthuds  (~;uch 

as those using A i ry  funct ions)mtu<t be umpl tOcd.  

Wu usc<.l the wel l  km+wn \ \ ' K B  ul+l+tt~xilluttitm Inctht+d as v,cll us the stup-I+t~tctltiul 

m e t h o d  tfl qLltll'ItLln'L lllCChtllliCS tt~ tfl'~tttill the H'mtiut dul"~ci+dunuu ~+I thu ut~+ull+ciunts t+l 

the wttvc l't111ctiott. Th i s  ii+ tttr1~, ttIlt~',c<+l u', tt~ dctcrufit+c the rcl lcct i tm uml t1tt1+,,;1~+is~,it~tt 

ct>ul'lJcic1+t.'.; a11d l.hr natt lrr  t~f v,:t',~.' lullctit~n'<. ' lhu  usu:.il WKI+ nlclllt~d with c'~,1~tant 

ct)cliicicnt.'.; tll1<.l (tlllllt>.',;t) Ct~llS.t:.ttll '0,;t\u' nUilfl'~cr I, is ~,uuct:sslt~llv Upl+liud uvuu v,,'hu,~ 

the c<.>r ~.tlld w t P , r  l lUlltbr ttrt: l+ot c'onsttttfl  u',c'r\"e,h<..'ru. ~olttlit)t+ l1t~t1~ this 

" ins tanta t+etms" W K B  for  I\\ 'KI?,) mctht~d tt~lt2c~ tullv with lhat ublu incd  llt+tll tl pttrcly 

qUUl+tUln i++echanicul m e t h o d  xvhcrc the po tcn tkd  b; rcp luccd  by u collcctiOll of  xlcp~;. Our  

m e t h o d  o f  ob tu in ing  soluti tm';  shuukl  be valid for any black hule ~ct>mctrv which  are 

a s y m p t o t i c a l l y  flat so thut radkll xvuxes could  be used at a large dis luncc.  This  way  \ re  

e n s u r e  that the analytical solutir is clost~ to the exact soluti tm. In region II. in some  

regions ,  the WKFI inu'lht>d cttl+l+t~t bc appl ied  aml hence  Airy futlc'tit>11 ;ll+l+rtulch or tmr 

stcp-i)otential al+l+roach cotfld bc used.  

In the litcruturc, rcllectitm mid ifttll'.;ttlisSiOll ct+cllicicttts UlC dr  ;.tt :.t ~ i l l~ lc  pt+hll. 

' l 'hcsc tlcfinilit)tlX arc nlr ~nlv if the l+~lt.'nli:ll x :uic~; ill :1 ~nu~ll rc,,+,i~m while  ~;ttldiCs 

Ht'L' I11;1(.Ic I'f()lll 11 I; . t l '~L' {lift;it|+,.",.' Irt+lll il. Ill tht.' I}t,,.",L'ltf L';l',C. tilL' I)(>lt.'llli;ll L'IIHIiUt,'~ A)VCt ~t 
lal'[.tr dis tance  tilld we ;.II'C ~;ttld\ it+u. . itl Ihc~.u' tt.',,it)tl~;~, its xx c'll. Altht+tiuh. \VL" t,~;t.'d the words  

"t'cllcctiOll'" ut+d "'lr;.llISllliP.;.'.;it+ll'" COr ill Ihi~< l+;tl+U't" vcr\ '  It+t+scl\. otlf dr ;.Itc 

very ri~ot 'ous tutti well  def ined .  'I hc~,c quuntitic,~ utc s imply  the itlSttlllt:.lllt.'r ' ,alucs :tnd in 

tmr bel ief  mr>re I~hysicul. The I~rtfl,lc'I~t ut hul~d i,, ,,t:rv ,.;in~ilttr tt~ the f~rtfl+;Ic,ll t~l rcllcr 

+.111(.i IF~.tlI.'..;IIli.',;si(Hi+()I" ttcOl.l+lJc \\;l\c'.; Itt>lll ~.t 5tltlCk ',,tltll~ of Iit>ll-C't+llSl~.tllt t.lCll,,itv whclc  

I"ullcctitm und tl;.tt+.~111issit~,1+ t'~ct_'t~1', at ouch I ' , t + in t .  
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s~duli~n, Ihal for xl)in - /  parliclc lhc phcmmwm~n ~)1 supcr-radimwc is abscnl. Wc believe 

lhal this is due to Ihe very way Ihe I)Olenlial dcvck~ps lhe singularily al r = IGI. Ilcre 
W_(; , )  o( (r - I~xl) -3 ,  which  results an attraclive potential  in .',;OlllC region very close to 

the black hole.  In contrast ,  V _ ( ? ,  ) (:x ( r  - IGI)-4 when e lec t romagne t ic  and gravitational 

waves  are scallered off  Ihe black hole 141 d~cs m~l crcale an ;,lllraclivc i~:~rl i~l lhc polcnlial 

alld possibly cxhibil the l)henomcn,)~ I ~I super-radiance. It is llOlCd lllal all lhc cases where 

potential diverge at r ----- o~ (i.e., so called SUl)cr-radialio~ cases) arise for a ,< c~, wilh lI~c 

negative wdues of azimuthal quanlum number (herco m = -I/2) and lhc positive Kerr 

l)aralllel.el ", a.  For posi t ive values of  m and positive values of  a,  polcnlial  th)cs m)l diverge 

at any poi nl for all values o f  a .  I f we change  ll~e spin ode  nlalion of  Ihe black hole ( negative 

values  o f  a)  and take posi t ive m again d ivergence  of  the potential  will arise. Thus ,  it seems 

thai the cases  with oppos i te  sign of  a and nt 'are physical ly  more  inlcresling. 

II is seen l.hat li)r different physical l]aramctcrs the x(dulions arc dilfcrcnI. 'lhc waves 

xcallcrcd ~II arc dislim.'IIy diIIcrc~I in diITcrcnt par~u~wlcr rcgi~ms. In a way, lhcrcI~wc, 

black h~dcs can act as a mass Sl)cctr~)graph! Am~lhcr imcrcsli~g upplication ~d ~ur mcdu)d 

wouM be Io Sltldy inleraclions oI' Hawking radialiom, in rcgkms .jus! ~ulsidc lhc h~ri;,.~. 
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A B S T R A C T  
Chandrasekhar separated the Dirac equation for spinning and massive particles in Kerr 
geometry into radial and angular parts. Here we solve the complete  wave equation and find 
out how the Dirac wave scatters off  Kerr black holes. The eigenfunctions, eigenvalues and 
reflection and transmission co-efficients are computed.  We compare the solutions with 
several parameters to show how 'a  spinning black hole recognizes the mass and energy of 
incoming waves. Very close to the horizon the solutions become independent  of  the particle 
parameters,  indicating the universality of  the behaviour. 

Key words :  black hole physic - waves - scattering. 

I I N T R O D U C T I O N  

Chandrasekhar (1976) separated the Dirac equation in Kerr black hole geometry into radial"(r) and angular (0) parts. The radial equations 
governing the radial wavefunctions, R• corresponding to spin - 1/2, are given by (with fi = ! = G -- c) : 

At/2"DoR_I/2 = (~ + impr)A'/2R+l/2; At/2"DtoAI/2R+I/2 = (2t - irnpr)R_l/2, (1) 

where the operators D,, and/9~ are given by 

AM)  iK (r - M) / gn=Br+ iKA + 2 n ( r  ; 79, t - - 0 , - ~ + 2 n - A  ' (2) 

and 

A = r 2 + a z - 2Mr; K = (r 2 + a 2 ) o  "+am.  (3) 

Here, a is the Kerr parameter, n is an integer, o- is the frequency of the incident wave, M is the mass of the black hole, mp is the rest mass of 
the Dirac particle, )t is the eigenvalue that is the separation constant of the complete Dirac equation and m is the azimuthal quantum 
number. . 

The equations governing the angular wave-functions S..-It 2 corresponding to spin ---1/2 are given by: 

~ 1 / 2 ~ , r  = - - ( ) 1  - -  amt, cosO)S_t/2; /~/2S_1/2 = +()t + ampCOSO)S+t/2 (4) 

where, the operators s and s are given by, 

s  s  (5) 

and 

Q - ao'sin 0 + mcosec 0. (6) 

Combining equation (4), one obtains a second-order angular eigenvalue equation, which admits exact solutions for spin-half particles when 
,o = mp/tr = I (Chakrabarti 1984), [ )2] 
and 

airy 
i/2S#,, =1/2 Yt,, 2(l + 1) + ao'xl/2 Yt+I,, 

* E-mail: chakraba@boson.bose.res.in (SKC); bm@boson.bose.res.in (BM) 

( )  

(8) 
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where 

p =  F(l,l); x =  F(l + 1 ,1+  I); y =  F(l,l +.l) (9) 

and 

F(l,, 12) ---- [(2/2 + l)(2/t + I)1J/2(12 Ira01/, m)[(/21 �89 �89 + ( -  I)t2-t(12 I,n01/,m)] [(/21 �89 �89 + ( -  I)h-'px/2(121 - �89 Ill, �89 

Here, ( . . .I . . .)  are the usual Clebsh-Gordon coefficients a n d ,  Yt,,, are the standard spin-weighted spherical harmonics (Chakrabarti 1984; see 
also, Goldberg et al. 1967, Breure et al. 1982) of  spin s and usual quantum numbers I and m. When p # mp/(r = 1, one obtains the solutions 
perturbatively with atr  to be the perturbation parameter. The detailed procedure to obtain eigenfunctions and eigenvalues is in Chakrabarti 
(1984) a n d i s  not described here. 

The  radial equations in equation (1) are in coupled form. One can decouple them and express the equation either in terms of spin-up or 
spin-down wavefunctions R• tt2. bu t the  expression 19ses its transparency. It is thus advisable to use the approach of Chandrasekhar (1983), 
changing the basis and independent variable r to, 

r* = r +  2Mr§ +am/tr'r+--~ Iog~k~--~.l/r ) 2Mr- I - - r ~  ~  ( r ) ( r > r , )  (10) 

where 

d _ a _ d .  ~,2 = r2 + ,~2; ,~2 = ,~2 + ,,,,,/o~ ' ( l l )  
dr ,  ~ d r '  

to transform the set of coupled equations (equation I) into two independent one-dimensional wave equations given by: 

(d--~-," i~ P+'/2 ~,/2 = ---~- ()t - impr)P- , /2;  ( d ~ . + i t r ) P - , / 2  A'I2 = --~(~t  + impr)P§ (12) 

. e r e . " o  = r  + , , , )  and were osed and w vofonc,,ons were rede,,ned = and = 

2 S O L U T I O N  P R O C E D U R E  

We define a new variable, 0--- tan-t(mf,  r/,~), which gives 

(2( +_ impr) = exp(--.i0)v/(~. 2 + m~r2). 

Also, define 

(13) 

P+I/2 = ~+, /2exp  -- �89 - I  ; P-I~2 = I/t-i/2exP +�89 t a n - l \  ~. ) j ,  

and choose ~, --- r ,  + I / ( 2G) tan - l ( (mpr ) /Y t ) ,  so that d~', -- (I + (AIJ ' ) ( ) tmr/2o' ) ( I / (Y,  2 + m~r2)))dr*, and Z• = ~b+=12 - ~b-l12. The 
above equations become 

where 

W = A�89 + m~r2)3/2 (16) 
to2(;i 2 + m~r 2) + ampA/2tr" 

From these equations, we readily obtain a pair of independent one-dimensional wave equations. 

+ o 2 Z• = V.Z•  where V .  W 2 (17) - - - d,% 

By transforming the variable from r to r .  (and P.), the horizon is shifted from r -- r+ to/- .  = - o o  unless tr < tr~ = -am/2Mr+ (equation 
10). In this connection, it is customary to define tr,. where ot 2 = 0 (equation 11). Thus, trc --- -re~a. If tr ~ try, super-radiation is expected for 
particles with integral spins but not for those with half-integral spins (Chandrasekhar 1983). Thus, we concentrate on the region where, tr > (r~. 

The  choice of parameters is generally made in such a way that there is significant interaction between the particle and the black hole, 
i.e. when the Compton wavelength of the incoming wave is of the same order as the outer horizon of the Kerr black hole. Similarly, the 
frequency of the incoming particle (or wave) should be of the same order as the inverse of the time taken for light to cross the radius of the 

black hole. These parameters yield the following equation: 

,'np ~ o" ~ [M + v/ (M 2 - a2)] -1. (18) 
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Figure 1. Behaviour of V ~ (smooth solid curve) for a = 0.5. m t, = 0.8 and tr = 0.8. "l'his is approximated as a collection of steps. In reality, tens of thousand 
steps with varying size. whleh mimic the potential with arbitrary accuracy were used. 

Thus, dealing with quantum black holes yields 'interesting' results. There are two cases of interest: ( I)  when the waves do not 'hit' the 
potential barrier, and (2) when the waves do hit the potential barrier. First, we replace the potential barrier by a large number of steps as in 
the step-barrier problem in quantum mechanics. Fig. I shows one such example of the l~otential barrier V+ (equation 17), which is drawn for 

a = 0.5, m~ = 0.8 and 0.-----0.8. In reality, we use tens of thousands of steps with suitably varying widths, so that the steps become 

indistinguishable from the actual function. The solution of equation (17) at the nth step can be written as (Davydov 1976) 

Z+., = A,, exp[ik,,P,,,] + B,, e x p [ - i k ,  P.,,], (19) 

when the energy of the wave is greater than the height of the potential barrier. The standard junction condition is given by (Davydov 1976), 

as 

dZ+ dZ+ 
Z+,. = Z+,,+l and a_ft..I" -_ d_~-. 1.+ I. (20) 

The reflection and transmission co-efficients at the nth junction are given by: 

An+l(k,,+l - kn) + Bn+l(k,+l + k , ) .  
R, = A,+t(kn+l + k,,) + B,,+t(k,,+t.- k,,)' T,, = I - R,, (21) 

At each of the n steps, these conditions were used to connect solutions at successive steps. Here, k is the wave number (k = ~ - V_-z-) of 

the wave and k, is its value at the nth step. We use the 'no-reflection' inner boundary condition: R ---', 0 at ? .  ~ -oo.  
For the cases where waves hit the potential barrier, inside the barrier (where o ~ < V+) we Use the wavefunction of the form 

g§ -----A,, exp[s-ct,,s + B,, exp[ct,,P.,,,] (22) 

where, a,, = x/V__. - o ~', as in ordinary quantum mechanics. 

3 E X A M P L E S  O F  S O L U T I O N S  

Fig. 2(a) shows three solutions [amplitudes of Re(Z+)] for the following parameters: a = 0.5, o" = 0.8 and m p =  0.78, 0.79 and 0.80, solid, 
dotted and long-dashed curves respectively. The energy 0 .2 is always higher than the height of the potential barrier (Fig. 1) and, therefore, 

the particles do not 'hit '  the barrier, k increases and consequently, the wavelength decreases monotonically as the wave approaches a black 

hole. It is to be noted that though ours is apparently a 'crude' method, it is flexible and is capable of giving an insight into the problem, 
surpassing other methods such as ODE solver packages. This is because one can choose: (a) variable steps depending on the steepness of the 

potential to ensure uniform accuracy, and, at the same time, (b) a virtually infinite number of steps to follow tile potential as closely as 
possible. For instance, in the inset, we show R in logarithmic scale, very close to the horizon. All the three curves merge, indic:tting that the 

solutions are independent of the mass of the particle. Closer inspection shows that here, the slope of tile curve depends only on o-. 

The exponential dependence of R,, close to the horizon becomes obvious. Asymptotically, V~ = m~ (equation 17), thus, as mp decreases, the 
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Figure  2. (a) Reflection (R) and transmission (7") coefficients of  waves with varying mass as functions of  f,.  m r = 0.78 (solid). m r = 0.79 (dotted) and 
m r = 0.80 (long-dashed) are used. Other parameters are a = 0.5 and r = 0.8. The inset shows R in logarithmic scale, falling off exponentially just outside 
the horizon. (b) Amplitude of Re(Z,) of  waves with varying mass as functions of h .  m r = 0,78 (solid), m r = 0.79 (dotted) and mp = 0.80 (long-dashed) are 
used. Other parameters are a = 0.5 and tr -- 0.8. 
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Figure  3. (a) Reflection (R) coefficient of  waves With varying mass as functions of h ,  Itfp = 0.16 (solid), m r = 0.164 (dotted) and m p =  o. 168 (long-dashed) 
are used. Other parameters are a = 0,95 and o" = 0,168, (b) Amplitude of Re(Z0 ) of waves with varying mass as functions of f..  m r = 0.16 (solid), 
m p =  O. 164 (dotted) and m r = 0.168 (long-dashed) are Used. The nature of the potential with m r = 0.I 68 is drawn shifted vertically by 2.05 units for clarity. 

Other parameters are a -- 0.95 and o" = 0.168, 

w a v e l e n g t h  decreases .  In Fig. 2b,  w e  presen t  the ins tan taneous  va lues  o f  the ref lect ion R and t ransmiss ion  T coeff ic ients  (i.e., R,, and 7", of  

equa t ion  21)  for  the s a m e  three cases .  As  the par t ic le  mass  decreases ,  k increases  and cor respond ing ly  R decreases ,  cons is tent  with the l imit  

that  as k -.-.* oo, there should be  no ref lec t ion  at all as in a q u a n t u m  mechan ica l  p roblem.  

Figs 3(a) and (b) c o m p a r e  a few solut ions  where  the i ncoming  part icles  'h i t '  the potential  barrier.  We choose  a = 0 .95,  cr = 0 .168 and 

mass  o f  the par t ic le  mp ---- O. 16, 0 ,164  and 0 .168,  represented  by solid, dot ted and long-dashed  curves ,  respect ively .  Inside the barrier,  the 

w a v e  d e c a y s  and then  re turns  to a s inusoidal  behaviour ,  before  en te r ing  into a black hole.  In Fig. 3(b),  we  plot ted the potent ial  (shifted by 



300 

(a)  

Dirac-wave scattering off Kerr black holes 

(b) 

9 8 3  

2 5 0  

2 0 0  .~ t~ 

Xh 
) ' - 1 5 0  ~ ~, 

1oo ,~ 

0 5 0  I |  1 5 0  2 0 0  2 5 0  o 
• 

Flgure 4. (a) Contours of constanl amplitude are plotted in the meridional plane around a black hol~'. The radial direction on the equatorial plane is along the 
x-axis and the vertical direction is along the y-axis. Both radial and theta solutions have been combined. Parameters are a = 0.5, m I, = 0.8 and cr = 0.8. (b) 
Three-dimensional view of R.i12g_t~ are plotted in the meridional plane around a black bole. Both radial and theta solutions have been combined. 
Parameters are a = 0.5,  m~ = 0 .8  and o" = 0 .8 .  

2,05 along the vertical axis for clarity). Here, too, the reflection coefficient decreases as k increases, consistent with the classical result that 

as the barrier height increases more and more, reflection is taking place strongly, Note, however, that the reflection is close to a hundred per 

cent. Tunneling causes only a small percentage to be lost into the black hole, 
Figs 4(a) and (b) show the nature of  the complete wavefunction when both the radial and the angular solutions (Chakrabarti 1984) are 

included. Fig. 4 (~  shows the contours of  constant amplitude of  the wave (R_I/2S_I/2) in the meridional plane - X is along the radial 
direction in the equatorial plane and Yis along the vertical direction. The parameters are a = 0,5, m i, = 0.8 and o" = 0.8. Some levels are 
marked. Two successive contours have an amplitude difference of  0. I, In Fig. 4(b), the three-dimensional nature of  the complete solution is 
given. Both these figures clearly show how the wavelength varies with dislance. The amplitude of the spherical wave coming from a large 
distance away also gets weaker along the vertical axis and the wave is generally forced to fall along the equatorial plane, possibly due to the 

dragging of the inertial frame. 

4 C O N C L U S I O N S  

The scattering of massive, spin-half particles from a spinning black hole has been studied with particular emphasis on the nature of the 

radial wavefunctions and the reflection and transmission coefficients. The well-known quantum mechanical step-potential approach is 

applied successfully to a complex problem of barrier penetration in a space - time around a spinning black hole. One significant 
observation, was that the wavefunction and R, and T behave similarly close to the horizon independent of tile initial parameter, such as the 

particle mass mp. Particles of different mass scatter off to large distances, which are completely different, thus suggesting that a black hole 

could be treated as a mass spectrograph! When the energy of the particle becomes higher than the rest mass, the reflection coefficient 

diminishes as it should. Similar to a barrier penetration problem, the reflection coefficient becomes close to a hundred per cent when the 
wave hits the potential barrier. Another significant observation is that the reflection and transmission coefficients are functions of the radial 

coordinates. This is clear from the strongly space-dependent nature of the potential barrier, which we approximate as a collection of steps. 

Combined with the solution of the theta-equation, we find that the wave-amplitude vanishes close to the vertical axis, possibly because of 

frame-dragging effects. 
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Dirac equation in Kerr  geometry  and its solution 
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Sulnlnaryo - -  
Chandrasekhar separated the Dirac equation for splinting and massive particles in 
Kerr geometry into radial and angular parts. In tim present review, we present 
solutions of the complete wave equation and discuss how the Dirac wave sca/,ters off 
Kerr black holes. The eigenfunctions, eigenvalues and retlect.ion and ,transmission co- 
efficients are computed for different Kerr parameters. We compare the solutions with 
several parameters to show how a splinting Mack hole distinguishes mass and energy 
of incoming waves. Very close to the horizon, the solutions become independent of 
the particle parameters indicating an universality of the behaviour. 

PACS 04.20.-q - Classical general relativity. 
PACS 04.70.-s - Physics of black holes. 
PACS 04.70.Dy - Quantum aspects of black holes. 
PACS 95.30.Sf - Relativity and gravit, al, ion. 

I1 N u o v o  C i m e n t o  (in press) 

1. - I n t r o d u c t i o n  

One of the most  impor tant  solutions of Einstein's equation is that  of the spacetime 
around and inside an isolated black hole. The spacetime at a large distance is flat 
and Minkowskian where usual quantum mechanics is applicable, while the spacetime 
closer to the singularity is so curved that  no satisfactory quantum field theory could be 
developed as yet. An intermediate situation arises when a weak perturbat ion (due to, say, 
gravitat ional ,  electromagnetic or Dirac waw~s) originating from infinity interacts with a 
black hole. The resulting wave is partially transmitted into tile black hole through t.he 
horizon and partially scatters off to infinity. In the linearized ( ' test field') approximation 
this problem has been attacked in the past by several authors [1, 2, 3, 4]. The master 
equations of Teukolsky [2] which govern these linear I)erl.urlmlions for inl.~w'al spin (<g., 
gravil, ational and electromagnetic) Iiehls w~'re solv~'d mltlwrically I)y lh'r L: 'l'mtl<olslr 
[5] and Teukolsky ~ Press [6]. While the equal.ions governing l lw massive I)irac Im.rl.iclr 
were separated in 1976 [3], the angular eigr and eigenvalur (which hal)lWnS 
to be the separation constant) have br tl ol~tainr in 15184 [7] and radial sollll.ir haw~ 

(~) Societb Italiana di Fisica I 
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been obtained only recently [8, 9, 10, l l ] .  Particularly interesting is the fact that  whereas 
gravitational and electromagnetic radiations were found to be amplified in some range 
of incoming frequencies, Chandrasekhar [4] predicted that  no such ampliiications should 
take place for Dirac waves because of the very nature of the potential experienced by the 
incoming fields. Although this later conclusion was drawn using an asymptotic equation, 
we show that  this is indeed the case even when complete solutions are considered for the 
Dirac wave perturbations. Chandrasekhar also speculated that  one needs to look into 
the problem for negative eigenvalues (:X) where one might come across super-radia.llce for 
Dirae waves. 

In the present review, we discuss this important  problem and its solutions. We show 
the nature of the radial wave functions as a fimction of the Kerr parameter, rest mass 
and frequency of incoming particle. We also verify that  super-radiance is indeed absent 
for the Dirac field. Unlike earlier works [5, 6] where numerical (shooting) metllods were 
used to solve the master equations governing gravitational and electromagnetic waves, 
we use a classical approach whereby we approximate the potential felt by the particle by 
a collection of small steps. 

Below, we present the separated Dirac equations fi'om Chandrasekhar [4] using the 

same choice of units:  we choose/i  = 1 = G = c, so that  the unit of mass becomes 4 ~ '  

the unit of time becomes r ~F_~.G, and tile mJit of length beeom~'s 4 ~ "  
Ij The equ;d, iems govr I, he r~tr waw,-funcl,icms /t't : ,  c~Jr,',,Sl~,,mling t,,~ Slfin :t:~ 

respectively are given by: 

, 1 

A�89189189 = (1 - i , ,b, , ')R_ �89 

where, the operators Dn and Dtn are given by, 

(Ib) 

i /~  - M )  (,2..) 
D,~ = O,, + -A + 2n(v  A ' 

and 

iK (,. ~XM) 
v t . = 0 ~  -X + ~'~ -- ' 

A = v" + a 2 - 2 M r ,  

(2b) 

(3.) 

I'," = (v'-' + a~)~r + a m .  (:l~,) 

Here, a is the Kerr parameter, n is a n  inl, eg~'r or half integer, o- is the ['re(.ltlellcy O1' incident 
wave, M is the mass of the black hole, m.p is tile rest mass of the I)irac partMe, ~ is the 
eigenvalue of the Dirac equation and m. is the azim~,thal qll; ' tlll ,  l l l l!  l l l l l l l h c r .  
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The equations governing the angular wave-functions S+ �89 corresponding to spin + �89 
respectively are given by: 

f,]S+] = -(~ - amp cos O)S_ �89 (4a) 

12t s_ �89 = +(;~ + am v cos 0)S+ �89 (4b) 

where, the opera to rs /2 ,  and s  are given by, 

s  (5~) 

s  = 0 0 _ Q + n c o t 0  (5b) 

and 

Q = art sin 0 + m cosec 0. (6) 

For massless particles these equations were solved using spin-weighted spheroidal har- 
monics [12, 13]. Note that  both the radial and the angular sets of equations i.e., eqs. 
l(a-b) and eqs. 4(a-b) are coupled equations. Combining eqs. 4(a-b), one obtains the 
angular eigenvalue equations for the spin-�89 particles as [7] 

[s189 + ~ -+am'sinO os +(~2-a2m~c~ S-�89 (7) 

There are exact solutions of this equation for the cigenvalues A and the eigcnfunctions 
S_ l when p = 2z  = 1 in terms of the orbital quantum nulnber I and azimuthal quantum 

2 
number m. These solutions are [7]: 

:X 2 = ( l + ) 2 + a o . ( p + 2 m ) + a 2 o  "2 1-- 2 ( / ~ F 1 ) + a r r x  ' (8) 

and 

acry �89 
�89 = �89 - 2 ( / +  1) + acx (9) 

where, 

p=F(t , t ) ;  x=F( t+~ ,Z+ l ) ;  y = f ( l , l + l )  

101t~ I 1 t >]. e(t i , t2)  = [(2t~+1)(2/,+1)]�89 < t~l,,,o[t~,,,, > [< t~l:~ ~ > +(-1)t~-~t, , /5 < t 2 1 - ~ l l t l ~  
(10) 
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with < .... I.. > are the usual Clebsh-Gordon coefficients. For other values of p one has 
to use perturbation theories. Solutions upto sixth order using perturbation parameter 
a(r are given in Chakrabart i  [7] and are not described here. The eigenfunctions :X are 
required to solve the radial equations which we ~to now. 

The radial equations l(a-b) are in coupled form. One can decouple them and express 
the equation either in terms of spin up or spin down wave functions R+�89 but the expres- 
sion loses its transparency. It is thus advisable to use the approach of Chandrasekhar [4] 
by changing the basis and independent variable r to, 

2 M r + + a r n / a l o g ( ~ +  - 1 )  2M"-+ar ' t /~r log(~f -~_-  1) ( , '>r+) .  (11) 
r ,  = r +  r + - - r _  - r+--r--_ 

where, 

d A d  w 2 = r 2 + o~; o~ 2 = a 2 + am/(r, (12) 
dr, w 2 dr'  

to t ransform the set of coupled equations l(a-b) into two independent one dimensional 
wave equations given by: 

(13) 
Here, 730 = w-'~'~ ( d ' A - a  Xdr. + ie) and 790 ? = ~ t  d_4_A ~ .  -- icr) were used and wave functions were 

redetined as R �89 = P_�89 and A�89 = P+�89 
We are now defining a new variable, 

0 = tan - l (mpr /~ )  (14) 

which yields, 

cosO= and s inO= ~/(~ + m~,,~) ' j ( ~  + m~,.2) 

and 

(:~ + imp,.) = c~,p(+io) , / (a  ~ + ,,,~,.2), 

so the coupled equations take the form, 

,A, �89 [_i~,D~II_I ( ~ ) ]  ' (d-~, i")  P+ �89 = -L-r(~2 + m~'"~)~/~P- �89 e~:p (15a) 

and 

+ ic~ P-~  = -~-(~( + "op- I -+~exp (15b) 
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[t l l (]  

Then  defining, 

we obtain,  

d~+�89 
dr .  

a n d  

d~_�89 
dr .  

( A~,,,p 1 ) ~ ~., ,/., 
- - - i c r  l+w--- 7 2c~...A2+,,,.~,. 2 ~b+�89 (A2+,,,7,, '~) ~189 

( 1) A Nmp - "~ ~,1/~, 
- - + i ~  1+ ~ 2cr t~+;,~72 ~'-~ = (12+m~r'~'"e+}' 

16a) 

17..) 

17b) 

~ a )i,,~. 1 )dr.  the Further  ch~176  = r * + = - l  t a n - l (  s ~  = (I.+~o- .o )i+,,~,,.~ z a .  /~ / --"r '-77-~ ~ ' 

above equat ions become, 

and 

where, 

( ~ - - i r r )  r189 W'4, �89 

+ io- t/:_,7 = W0+~.  (186) 

W = zx~(~2 + m~r2)a/2 (lt0) 

Now letting Z:t: = ~b+�89 4-~b_ �89 we can combine tile differential equations to give, 

m,d 

(d ) - W Z+ = i r rZ_ ,  (20.,) 

( d~., + I:V) Z_ = ic~Z+. (20b) 

From these equations,  we readily obtain a pair of independent  one-dinmnsional wa,w.' 
equations,  
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dW where, V+ = W :~ + ~-"#T, 

+ o  '~ Z+ = V+Z+.  (21) 

/~(;X 2 + m~r:)s /2  
[,,.,~(:x ~ + m~, .~ )+  ;x,~,~,,',/2o-]~ [ ' ' "  (;x'- + ,,,~,.~)~:2 + ( ( , . _  M )(:x'-' + ,,,~,.-') + :~,,q.,.~)] 

, )  r , )  , )  a~(a~ + mP~2)5/~ [~,.(:x ~ + ,,,,';,.~) + ~.,,,;;~-, + :x,,,,,(,. - M)/,-,-]. T [o.,~(~x~ + ,,,~,.~) + ;x,,,,,~./2,,-]:' (~2) 

One impor tan t  point to note: the traitsformation of spatial co-ordinate r to ,'. (and r , )  
is taken not only for mathemat ical  simplicity but also ['or a physical signilicance. When 
r is chosen as the radial co-ordinate, the decoupled equations for independent waves 
show diverging behaviour. However, by transtbrming those in terms of r ,  (and i;.) we 
obtain well behaved functions. The  horizon is shifted from r = r+,, to § = - o o  unless 
cr <_ o', = - a m / 2 M r +  (eq. 11). In this connection, it. is customary to deline cr~ where 
a 2 = 0 (eq. 13). Thus, ae = - m / a .  ll'cr < r the super-radi;.t(,ion is expected [4], 

2.  - S o l u t i o n  P r o c e d u r e  

The  choice of parameters  is generally made in such a way thai, there is a sig.iticant, 
interaction between the particle and the I)lack hole, i.e., whr the (.'.omptou wa.veleugl.h 
of the incoming wave is of the same order as the outer horizon of the Kerr black hole. 
Similarly, the frequency of the incoming p~trticle (or wave) should be of the same order 
ms inverse of light crossing t ime of the radius of the black hoh'. These yield [8], 

mp *~, dr ~ [M Jr V/'(I1/[ 2 ' "  a2)] -1 (2:}) 

One can easily check from equation (22) that for 7' --+ on, (i.c'., i'. -+ oo) V+ ---> m~,. So 
the total  energy of  the physical particle should greater than square of its rest mass. So 
if we expand the total  parameter  space ill terms of frequency of tile particle (or wave), 
cr and rest mass of the particle, me, it is clear that  50% of total I~arameter space where 

< m p  is unphysical (In this case, the energy is such that  a particle released from a 
finite distance cannot  go back to infinity after scattering.), and one need not study this 
region. Out  of the total physical parameter  space there are two cases of interest: ( l )  the 
waves do not 'hi t '  the potential  barrier and (2) the waves do hit the potential barrier. 
To sole these potential  problem tirst, we replace the potential barrier by a large mmfl)c'r 
of steps as in the step-barrier problem in quantt, m mechanics. Fig. i sl,ows o,te such 
example of the potential  barrier [10] V+ (13r 22) which is drawn for a = 0.5, 7np = 0.8 
and o" = 0.8. In reality we use tens of I, housa,lds of s lops  wil.h suitable va.rial)le widdls 
so that  the steps become indistinguishable froln the actual function. 'l'he solutiol~ of Eq. 
22 at n th  step can be written as [14], 

z + , .  = A,,e~:l,[ik,,,'.,.] + /t . , ,:, ,p[-il,:, , , . . .] ('24) 
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F i g .  1 : Behaviour of V+ (smoot, h solid curve) for a = 0.5, m v = 0.8, a = 
0.8. This is approximated as a colle<:tlo,~ of steps. In reality l;cns of thous;md 
steps were used with varying siX!F* size which mimic t,hc l)Ol,cnt, i;tl wil, l, arbil.r;u'y 
accuracy. 

when ene rgy  of  the  wave is g rea te r  t han  the height, of the  po t en t i a l  bar r ie r .  T h e  s t ,andard  

j u n c t i o n  c o n d i t i o n  is given as [14], 

dZ+ 
Z+,. = Z+.+~ and ~ l , , -  I-+~. (25) 

' a t ,  dT:, 

T h e  ref lect ion and  t r a n s m i s s i o n  co-ellicicnt,s a t  nt.h .jum:(,ion arc' given by: 

lln = An+l (kn+t  - kn) + 13,,+l(kn+l + k , ) .  7;, = I - I~,~ (2(5) 
A,,+] (k, ,+l  + k,,) + / ~ , , + l  (k,,+l - k , , ) '  

A t  each of  the  n s t eps  these  cond i t i o ns  were used to connec t  so lu t ions  at, successive st,eps. 
Here,  k is the  wave n u m b e r  (k = V/ '~  - rr of t ,he  wave and k ,  is it.s value at  7~th s tep.  
We use the  'no-re l lec t , iou '  inner  b o m , d a r y  col,dit,ion: I~ --~ 0 at  i ' .  --~ - ~ , .  
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Fig. 2a: Reflection (1{) and transmission (7') coelficicnts o1' waves with varying 
mass as functions of ~.. mp = 0.78 (solid), n b, = 0.79 (dotted)  and m~, = 0.80 
(long-dashed) are used. Other  parameters  are a = 0.5 and ~ = 0.8. Inset shows 
f{: in logarithmic scale which falls off expone.ntially just  outside the horizon. 

For  the  cases  where  waves h i t  oil tile p o t e n t i a l  ba r r ie r ,  ins ide t i le  ba r r i e r  (where 

~r 2 < V+) w e  use the  wave func t ion  of  t i le form 

z+.,, = A,,~.xl,[-,~,,,~',.,,] + 13,,e~'l,[,~,,~'..,,] (27) 

where,  c~n = x/V• - or2, as in usual  q u a n t u m  mechanics .  

3. - E x a n q ) l e s  o f  S o h l t i o n s  

Fig.  2a shows th ree  so lu t i ons  [ a m p l i t u d e s  of  Re(Z+')]  fbr l ) a ramete rs :  a = 0.5, o" = 0.8 
and  m v = 0.78, 0.79, and  0.80 respec t ive ly  in sol id ,  d o t t e d  and long -dashed  ct,rw:s. T h e  
energy  ~2 is a lways  h igher  c o m p a r e d  to the he ight  of the po t en t i a l  ba r r i e r  (Fig.  1) and 
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Fig. 2b: Amplitude of Re(Z+) of waves with varying ,,,ass as functions of ~.. 
rnp = 0.78 (solid), rnp = 0.79 (dotted) and ,n~, = 0.80 (long-dashed) are used. 
Other  parameters  are a -- 0.5 and ~r -- 0.8. 

therefore  tile par t ic les  do not  ' h i t '  tile barrier ,  k goes up and the, 'efore the wavelength  
goes down m o n o t o n i c a l l y  as the wave approaches  a black hole. I t  is to be uoted tha t  
t h o u g h  ours  is a p p a r e n t l y  a ' c rude '  m e t h o d ,  it has flexibili ty and is capab le  of  present ing 
ins ight  in to  the  p rob l em,  surpass ing  any o ther  m e t h o d  such as O D E  solver packages. 
T h i s  is because  one can choose (a) var iable  s teps  depend ing  on s teepness  of  the potent ia l  
to ensure  un i fo rm  accuracy,  and a t  tile s a m e  t ime  (b) v i r tua l ly  infinite n u m b e r  of  steps 
to follow the  po ten t i a l  as closely as possible.  For instance,  in the inset,  we show R in 
l o g a r i t h m i c  scale very close to the horizon. All tile three curves merge ,  indicat ing tha t  
the so lu t ions  are i ndependen t  of  the mass  of the par t ic le  and a closer inspect ion shows 
t h a t  here, the s lope of  the curve depends  only on e.  T h e  exponent,  ial cDpend(mce of I~,, 
close to the hor izon becomes  obvious.  Asympto t i ca l ly ,  ~,'~ = m~, (eq. 22), thus, as m r 
goes down,  the wave length  goes down.  In I"ig. 2b, w(, pr~,s~,nl. I.h(, insta.ntal,l~o,.s wdul~s 
of  the reflection R and t ransmiss ion  ' / '  co('tlh:iants (i.e., IL, alld '~;~ Of I'.~( I. 2{j) for [.Ill? 
s a m e  three  cases. As tile par t ic le  mass  is decreased,  k goes up and cor responding  I~ goes 
down cons i s ten t  wi th  the l imi t  t h a t  as k -+ oo, there woukt be no retlection a t  all as in 
a q u a n t u m  mechan ica l  p rob lem.  
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Fig.  3a: Reflection (R) coefficient of waves with varying mass as functions 
of ~.. m p =  0.16 (solid), mp = 0.164 (dotted) and m p =  0.168 (tong- 
dashed) are used. Other parameters are a = 0.95 and cr = 0.168. 

Figs. 3(a-b) compare  a few solutions where the incoming particles 'hi t '  the potential 
barrier. We choose, a = 0.95, cr = 0.168 and mass of the particle mp= 0.16, 0.164, 0.168 
respectively in solid, dot ted and long-dashed curves. Inside tile barrier, the wave decays 
before coming back to a sinusoidal behaviour, before entering into a black hole. In Fig. 
3b, we plo t ted  the potential  (shifted by 2.05 along vertical axis for clarity), llere too, 
the reflection coefficient goes down as k goes up consistent with the classical result t h a t  
as the barrier height goes up more and more, reflection is taking place strongly. Note 
however, tha t  the retlection is close to a hundred percent. Tunneling causes only a few 
percent to be lost into the blttck hole. 

Figs. 4(a-b) show the nature of the complete wave fmwtion when both the radial ;rod 
the angular solutions [7] are included. Fig. 4a shows contours of constant amplitude 
of the wave (R-t/2S-1/2) in the meridional plane - X is a.long radial direction in the 
equatorial  plane and Y is along the w,rtical direcl,ion. The lmra.mel,ers ar<' a = (}.5, 
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Fig. 3b: Amplitude of Re(Z+) of waves with varying mass as fim('t.iolls o[" 
~,. mp -- 0.16 (solid), mp --- 0.164 (dotted) and "~'r = 0.168 (long-dash('d) 
are used. Nature of potential with m p =  0.168 is drawn shifting vertically 
by 2.05 unit for clarity. Other l)arameters arc a = 0.95 and cr = 0.168. 

m p =  0.8 and (7 = 0.8. Some levels are m~xrked. Two successive contours have amplitude 
difference of 0.1. In Fig. 4b a three-dimensional nature of the complete solution is given. 
Both of these figures clearly show how the wavelength varies with distance. Amplitude 
of the spherical wave coming fi'on~ a larg(? distan('(, also gets weaker along (,h(" verl;ica.I 
axis all(I the wave is forced i,o fall g('tl(wally el(rag t.hc ~,qllal,orial I)lam;, l>OSsil>ly (l~(" l,(~ 
the dr~gging of the inertial frame. 

4 .  - C o n c l u s i o n  

We review here the scattering of massive, spin-half particles from a spinning black 
hole with particular empha.sis to tile nature of the radial wave functions a, nd refle(:tiotl 
and tral~smission coclli(q('nts. I lcrr w(, I)rcsr a w(,ll know1~ qum~l,um ~wcha~ical sl,cl)- 
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Fig.  4a: Contours of constant amplitude are plotted in the meridional plane 
around a black'h01e. Radial direction on equatorial plane is along X axis and 
the vertical direction and along Y. Both radial and l,heta solutions have been 
combined. Parameters are a = 0.5, m. v = 0.8 and ~ = 0.8. 

potential  approach [10] but  one can veri['y by any numerical technique thud. the solution 
would remain  the same.  A modified WKB approximat ion  [8, 9, 11] also yields simib.tr 
result in Kerr  geomet ry  [15]. The  approach presented here  (i.e., step potential  approach) 
is very t ransparen t  since a complex problem of barrier penetrat ion in a spacet ime around 
a spinning black hole could be  tackled w.wy easily. We report  a few signilicant observa- 
tions of these  papers  tha t  the wave function and R, and 7' behave similarly close to the 
horizon independent  of the initial parameter ,  such as the particle mass m~. Particles o f  
different mass sca t ter  off to a large distance completely dill'erently, thus giving a.n im- 
pression tha t  a black hole could be treated as a mass spectrograph! When the energy of 
the particle becomes higher compared to the rest. mass, the reflection coett]cient dimin- 
ishes as it should it. Similar  to a barrier pe ,e t ra t ion  problem, the reflection coefficient 
becomes close to a ' hundred  percent whml the wave hits the potential  barrier. Another 
significant observat ion is that  the reflection and transmission coefficients are fu .c t ions 
of the radial coordinates.  This  is ulzdersl,ood easily because of the very na, ture of the 
potent ial  barrier which is strongly space del)elld(.'nt which we approximate  as a collection 
ol'stel)S. Combining  with the solut io ,  ol'lheta-~'(lualion, w(' find thai, the wave-allll,litllde 



D I R A C  E Q U A T I O N  IN K E R R  G E O M E T R Y  A N D  ITS S O L U T I O N  13 

tZ/) 

Fig .  4b: Three dimensional view of R-l/2S-l/2 are plotted in tile meridional 
plane around a black hole. Both radial and theta solutions have been combined. 
Parameters are a = 0.5, m p =  0.8 and tr = 0.8. 

vanishes  close to the vert ical  axis, possibly due to tile f r ame-dragg ing  effects. 
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