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with saturated clay, which is more difficult. The strain 

path (b) is essentially the same as in Fig. 1.1b for stages 

o - 1 - 2, practically volume-conserving during a rapid wall 

rotation 2 - 3 - 4, and accompanied by volume changes during 

a subsequent fully drained slow rotation. The stress path 

(c) deviates, with the onse-t of wall rotation, from ° 1 = 
const until the excess pore pressure is fully dissipated. 

In the active case, the pore pressure decreases so that 0, 

. increases; the opposite happens in the passive case. A 

volume increase (4 - 5) is accompanied by an increase of °2 
in the active case, and a volume decrease with 02-increase 

in the passive case. Close to the limiting states (4) nar

row shear zones arise. Delays reveal a marked influence of 

pore-water flow and viscosity of the grain skeleton. 

A bearing capacity problem with dry sand is represented by 

Fig. 1.4. It is helpful to consider at lease one soil ele

ment under the centre of a strip foundation (A) and one 

under the neighboured free surface (B). Sedimentation and 

unloading by erosion are the same for A and B, the paths 

corresponding to Fig. 1.1. The strains (~) due to strip 

loading are first contractant, later dilatant. The stress 

paths (c) tend towards limiting states earlier in A than in 

B. For equilibrium reasons 01 is nearly constant in Band 

02 is roughly equal in A and B. In strain space A corresponds 

to the active and B to the passive case of Fig. 1.2. Narrow 

shear zones occur in the vicinity of limit states (4). 

Fig. 1.5 shows the corresponding problem with saturated clay. 

After uniform precompression the strains (b) are nearly 

volume-conserving during rapid load application, and after

wards, with sufficient drainage time, contractant in A and 

dilatant in B. The effective stress paths (c) are governed 

by pore pressure increase in A and decrease in B which is 

dissipated slowly so that the paths tend to the same statical 

conditions as in Fig. 1.4. Slip surfaces can occur. 

Fig. 1.1 to 1.4 may suffice to represent typical boundary 
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,value problems of foundatjon engineering. Other and more 

complicated problems can only be mentioned here: 

· darns, slopes, cuts and cavities imply other shapes of 

boundaries; 

· walls and foundations of other shapes and other foundation 

bodies imply other. boundaries and kinematical conditionsi 

• layers, faults and tectonic stresses produce other initial 

states than the ones of Figs. 1.1 to 1.5; 

. loads and displacements imposed to the earth body can be 

very rapid, transient, repeated, or cyclic; 

· hydraulic, chemical, thermal or electrical processes can 

play an important role. 

We leave these aspects aside not as they are unimportant but 

as the existing constitutive relations do not even cover 

yet all the cases described by Figs. 1.1 to 1.5 in a satis

factory manner. Another class of boundary value problems 

has t.O be dealt with here, however. It arises when soil 

bodies are sollicitated in order to detect their material 

properties. Numerous field and laboratory tests can serve, 

without being element tests (i.e. implying uniform stress 

and strain in the soil body), to check constitutive assump

tions and to determine material constants defined by one or 

the other constitutive relation. Preferably such boundary 

value problems should yield closed-form solutions. 

The expansion of a vertically cylindrical cavity by a 

pressuremeter is represented by Fig. 1.6. The strain path (b) 

of a surrounding soil element is practically volume-conserving 

~ith saturated clay (c), and first contractant than dilatant 

with dry sand (s). The effective stress path (cl tends to a 

limit state with decreasi.ng °2 and (J1 vlith soft clay, whereas 

0, increases with sand (and hard clay). Unfortunately, the 

initial state (1 in Fig. 1.6) is not well-defined and at best 
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produced by a process as in Fig. 1.1 which implies a plane 

of strains orthogenal to the one of Fig. 1.6. Thus even the 

best pressuremeter and associated theory cannot y,i~:.ld more 

than crude estimates of material parameters. 

Fig. 1.7 shows a sample in a triaxial apparatus. Even with 

a perfect end lubrication and non-rotating end plates bulging 

(a) can· occur. This bifurcation conceals the true s tress

strain curve (dashed) from a certain point (B) onwards. It 

can be prevented by use of flat samples, where a necking 

under triaxial extension is always occurring if the confin

ing stress ~2 is produced by fluid pressure. Localized modes 

of bifurcation (narrow shear bands and cracks) cannot even 

be avoided with purely strain-controlled tests. Evaluation 

of test results as if diffuse or localized modes of bi.furca

tion had not occurred leads to wrong conclusions with respect 

to constitutive relations and parameters. 

Another important group of boundary value problems is associ

ated with so-called undisturbed samples. Extracting a solI 

element from the ground and inserting it into a testing appa

ratus adds a complicated and rarely well-defined history to 

the one of Fig. 1.1. If a constitutive relation does not 

reflect this procedure its practical application can be 

rather unrealistic. 

Physical model tests, possibly with artificially increased 

gravity, can reproduce such processes as depicted in Figs. 

1.1 to 1.6. Constitutive relations are the clue to model laws 

which are needed for the transfer of results to prototypes. 

Thus constitutive relations should represent similarity pro

perties of the material. (Another use of model tests - and 

large scale tests - will be discussed in Sec. 3). 

2. Properties to be represented 

Strictly speaking, material properties are defined by con

stitutive relations (irrespective of their analytical or 



- 60 -

graphical representation). We here denote by properties 

relations for certain very restricted processes of soil 

elements represented by certain types of graphs or functions 

as far as they have been corroborated by element tests. Such 

r.elations do not suffice to solve boundary value problems 

but serve as a kind of frame for constitutive relations. 

The stress and strain paths represented in Figs. 1.1 to 1.6 

can be decomposed into monotonic sections separated by sharp 

bends or even reversals. A monotonic section can be straight 

in stress or strain space, but not generally both. We con

sider paths with 0, 1 or 2 sharp bends. The influence of vis

cosity is suppressed by assuming constant magnitudes of 

strain rates first; this simplification will be dropped at 

the end of this section. 

Monotonic paths without sharp bends occur during sedimentation 

and, more generally, in the laboratory. They have been studied 

in strain-controlled cuboidal tests with sand (Goldscheider 

1976) and biaxial tests with clay (Kuntsche 1982). When start

ing with zero stress, proportional strain and stress paths 

are associated (Fig. 2.1). We consider three distinguished 

strain path directions (a): isotropic (A), uniaxial (B), and 

so that the soil element remains practically unstressed (e). 

The latter cannot precisely be determined and is therefore 

replaced, in Fig. 2.1, by a closely neighboured path. It is 

contractant for clay, nearly isocl1oric for loose sand, and 

dilatant for dense sand. The physically possible sector of 

strain paths is delimitated by type C directions. 

The associated stress paths (b) are also hydrostatic in case A, 

and have an inclination 02/01 = Ko in case Bi Ko is the so

called earth pressure coefficient at rest. The nearly stress

free path is close to the inclination 02/01 = Ka' Ka being the 

coefficient of active earth pressure. The relationship among 

stress and strain path directions is nearly independent of the 

material (not depicted). Ko and Ka in case of clay are in

dependent of density, but increase with initial density in 

case of sand. 
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The representation is completed by a plot of void ratio e 

versus mean effective stress a (c). The curves for clay do 

not strongly depend of the path direction. They can scarcely 

be determined for a -T 0 and evidently show e -T 0 for (j -~ CD. 

The void ratio of sand a.t a :: 0 can be produced by placement 

of the grains. With increasing 0, the change of e is markedly 

different from the one of clay. With type A and B paths, the 

compressibility is drastically reduced by an increase of 

grain hardness and density (although the asymptote e -T 0 for ° -T 00 remains valid). Type C paths are abnormal by leaving 

e constant with loose sand and implying an increase of e with 

clense sand. These relations are partly veiled by the scatter 

of results: it is not possible to exactly reproduce a certain 

initial void ratio. 

We now turn to paths with one sharp bend. The first sections 

may be as in Fig. 2.1, the second ones straight either in 

strain or stress space. Due to their wide variety only narrow 

subgroups of such paths have been studied eXperimentally. The 

material properties outlined in the sequel are subject to 

some doubt as they have not generally been checked. 

Consider four bilinear strain paths (Fig. 2.2a). The associated 

stress paths (b) of the second sections are curved. They tend 

towards these stress paths which had been produced by the 

strain path direction of the second section from the very be

ginning. This property of both sand (Gudehus et ale 1977) and 

clay (Kuntsche 1982) holds for strain paths within the possible 

sector of Fig. 2.1 aj path II of Fig. 2.2 is .one example. 

States during proportional stress and strain paths are called 

swept-out-memory- or SOM-states as they do not bear the mem

ory of more complicated histories. It appears that SOM-states 

are produced by any monotonic strain paths of sufficient 

amount. If the strain path direction is outside the physically 

possible sector (cf. Fig. 2.1a) the stress path comes back 

to the origin (e.g. IV), i.e. the soil element tends to decay. 

Certain path directions (e.g. III) lead to the SOM states 
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associated with the sector limits of Fig. 2.1 and leave the 

stress state unchanged then. These are limit states both in 

the statical and the kinematical sense (Goldscheider 1976). 

Fig. 2.3 illustrates that identical strain paths are associ

ated with geometrically similar stress paths, if the latter 

start close to zero stress. This kind of self-similarity is 

characteristic of sand and clay. It holds also for unstressing 

paths, as. shown in Fig. 2.4 with an initial uniaxial com

pression (cf. Fig. 1.1). (Zero stress has to be excluded in 

order to avoid contradictions.) 

Fig. 2.5 shows a special case of the properties outlined by 

means of Figs. 2.2 and 2.3: constant-volume cylindrical com

pression (C) and extension (E) of clay after isotropic com

pression; such processes occur in undrained triaxial tests. 

The stress paths (b) imply a reduction of mean stress up to 

the limit states (in this case called critical states). Limit 

states are not clearly reached under extension with confining 

fluid pressure due to necking of the sample. Note that such 

stress paths are very special as compared with the ones in 

the field (cf. Figs. 1.3 and 1.5). It appears that only the 

SOM and similarity rules as outlined above remain valid. 

Similar properties are revealed with bilinear stress paths. 

We will refer here to results of triaxial compression tests 

only as with other triaxial tests of this kind uniform sample 

deformations have rarely been secured. Typical sand results 

by Hettler are plotted in Fig. 2.6. Two geometrically silnilar 

stress paths (b) produce identical strain paths (a). After 

an isotropic compression of negligible amount there is first 

uniaxial compression (~2 = 0). The relative dilation ~2/~' 
at the limit state is the same as the one which produces a 

limit state in the sense of Fig. 2.2 if the density is equal. 

Fig. 2.7 shows corresponding results for clay (drained tri

axial compression). The stress paths (b) differ from the 

ones for sand only by the stress ratio 0,/°2 reached at limit 

states. The strain paths (a) are nearly vertical (~2 ~ 0) first; 
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the relative volume change i2/~1 comes close to -1/2, i.e. 

constant volume, when reaching the limit states. 

A generalization of these properties to other bilinear stress 

paths requires some caution. The observation of C2 = 0 at 

the onset of cylindrical compression (not made with conven-· 

tional tests) is certainly restricted to cylindrical symmetry. 

A change from contractancy to dilatancy is typical of the 

strain paths. More generally, it has been found that immediate

ly after any sharp bend of a bilinear stress path there is 

a volume decrease (Goldscheider 1975, Kuntsche 1982). 

The similarity property has to be relaxed for large amounts 

of pressure, presumably due to deformation and fracture of 

grains. Strain paths with higher initial stress reach limit 

states with lower dilatancy and stress ratios and higher amounts 

of strain. Conversely, stress paths with higher pressure level 

produce higher strain and compression amounts. However, this 

effect is practically negligible if the stress components do 

not exceed ca. 1 HN/m2 • 

Rather little is known about paths with two sharp bends be

cause of their wide variety. Some features of sand behaviour 

under plane strain are illustrated by Fig. 2.8a and b. After 

the second sharp bend (pOint 2) a straight stress path section 

may turn back (A) or be orthogonal to the previous section 

(B, sometimes called loading to the side). With any density 

the strain path is contractant immediately after the bend 

(Goldscheider 1975). From a certain stress point (3) onwards 

the subsequent strains develop as if the previous stress path 

had been proportional (1. e. 0 - 3 straight). The then required 

path length (2 - 3) increases with the deviation of the path 

directions before and after the bend. Observations indicate 

that the similarity rule as outlined above holds again. 

It appears that sufficiently long monotonic paths after the 

second bend lead to SOM-states again. There are states in 

between (2 - 3), however, which cannot only be characterized by 

stress and density. (In a rather vague sense, not yet defined 
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for arbitrary pa.ths with two sharp bends, they are frequently 

called overconsolidated or preloaded states.) 

Similarity and memory properties can also explain the repeat

ability of test results with not more than one scheduled sharp 

bend: remnants of more path bends at low stress level inevita

bly encountered at the beginning of the test are swept out by 

subsequent monotonic paths. 

Stress paths of the same kind imposed upon clay produce strain 

pa"ths as shown in Fig. 2. Bc. The volume changes differ from 

the ones of sand both in quality and quantity. Volume decrease 

is more prenounced, and increase is almost inevitably localized 

in shear bands (dashed path section). It appears that larger 

monotonic strains than with sands are needed to reach SOM-states. 

The similarity rules seem to hold again. 

Finally, some notes on soil viscosity are suited. Its influence 

can be represented by associated plots of strain and stress 

paths with absolute time labels. The experimental results are 

restricted to very few types of paths. The importance of vis

cous effects increases with the relative amount of water in 

the diffuse double layers around the soil particles. The follow

ing restriction to clay should not veil the fact that qualita

tively the same viscous properties are observed with sand and 

silt. 

Proportional stress paths with different rates are associated 

with different proportional strain paths (Fig. 2.9). A reduc

tion of stress rates by orders of magnitude causes only slight 

changes of strain ratios and amounts. Isochoric strain paths 

with different rates are associated with different effective 

stress paths of the same type (Fig. 2.10, cf. Fig. 2.5). The 

change is only noticeable if the rates vary by orders of magni

tude. 

It appears that the similarity and memory properties outlined 

above are not affected if the rates of stress or strain remain 

within one order of magniture. Stronger changes of rates affect 

both directional and intensity (stiffness) properties, however. 
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3. Manageability 

A constitutive relation should be conceived and represented 

in such a manner that one can reasonably work with it. As 

this seemingly trivial requirement is by no means always 

satisfied it will be specified in the sequel. To sum up, the 

representation should be tractable, the determination of the 

required material constants should be technically and econom~· 

ically feasible, and the equations should be analytically 

and/or numerically well-posed and economically feasible. All 

these requirements are only necessary, not sufficient. 

Tractability of a paper can effectively be tested by having 

it worked through by a reader who is willing and able to 

understand but not familiar with details of the concept. If 

he obtains the same analytical relations from the given set 

of assumptions, and the same figures from given sets of datal 

the paper is tractable. As such tests, made by the author and 

some of his co-workers, produced negative results with more 

than 3/4 of the papers tested, it is of reason to give some 

hints here. (Their necessity reflects how complicated the 

field of constitutive relations has become.) 

The used set of assumptions should be completely outlined. 

Logical completeness, as with a set of axioms, is only desir

able. More important is a hierarchical order of presentation 

so that the reader can more easily look for possible incon

sistencies. Following K. Popper, one should strictly distin

guish contradictions of the assumptions among each other and 

versus observations. Even oversimplified assumptions may be 

justified for engineering approaches, if they are clearly 

stated as such. It is helpful, though not indispensable in 

the sense of tractability, to justify the assumptions by ob

servations (this is not yet a strict validation) . 

All the quantities occurring in the proposed relations should 

be completely defined. Of course, stress and strain definitions 

can be taken from the literature on continuum mecllnnics. Nota

tions and sign conventions are not yet standardized, unfortu-
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nately, but this is only a minor source of confusion. New 

quantities should be introduced by ShOYling how to work with 

them analytically and numerically, i.e. by working defini

tions. Functionals, functions, variables, parameters and con

stants should be clearly discerned. The reader can learn 

their meaning with a well-organized typology and some signi

ficant examples. (It is sometimes required that all the quan

tities should have 'physical meaning'; this will be achieved 

if the reader can get familiar with the proposed relations by 

working with them.) 

A complete procedure for determining the material constants 

should be given. This implies a description of 

required sampling and testing equipment and procedure, 

evaluation of test results and typical range of constants. 

The tractable description should enable the reader to repeat 

the procedure and to judge the range of applicability of the 

proposed relations. Thus it will turn out whether the proposal 

is technically and economically feasible. 

Some sophisticated constitutive relations imply material con

stants which can only be determined by element tests with 

rarely available equipment (such as a truly triaxial apparatus) 

or not yet existing machines (such as for general shear defor

mation). This has to be clearly stated together with recommended 

values of such constants. This shortcoming cannot be avoided: 

simpler constitutive relations tacitly imply fixed values of 

such constants (e.g. by neglecting the effects of third and 

mixed invariants). If the mathematical formulation is well

posed, such assumptions can be checked by comparing solutions 

of boundary value problems with model test results. 

The economical aspect cannot easily be judged as simplicity 

is not a measurable notion. The number of constants is certain

ly not a relevant measure, except for the required human and 

artificial memory. A rough economical measure is the required 

sum of expenses for sampling, testing, and evaluation. If 
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'constitutive relations are thought for practical application, 

required working duration and qualification of equipment and 

staff should be given (note that with a non-tractable descrip

tion the duration would be infinite). As with any data acquisi

tion in the light of safety and economy, such an information 

cannot be sufficient, however; engineering judgment is also 

needed. 

Constitutive relations are analytically and numerically well

posed if 

they lead to solutions of boundary value problems which can 

be physically realized (existence); 

they lead to one solution if there is only one in reality 

(uniqueness) ; 

the solutions with small deviations of material constants 

show small deviations only if this is also the case in 

reality (stability). 

As relevant constitutive relations of soils are represented 

by nonlinear or sector-wise linear sets of differential equa

tions these requirements cannot generally be checked by the 

presently available methods of functional analysis. They can 

as yet only be tested by numerical experiments which will be 

indicated in the sequel. Note that the above requirements are 

only necessary and imply some rather general hypotheses of 

continuum mechanics (local action, simple material) . 

The numerical tests should begin with soil elements under uni

form stress and strain, i.e. with simulated element tests. 

One has a set of ordinary (not partial) differential equations 

then. Within the intended range of application, characterized 

by path directions and strain rates, histories should be 

systematically scanned by means of numerical integration. 

Graphical representations (as by response envelopes, e.g. 

Gudehus 1979) are recommended for rapid discrimination. The 

reader can easily follow these tests if flow charts or even 

programs arc given. 
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This_procedure should precede any publication. It will help 

the respective author to eliminate h-'Iproper formulations and 

to delimitate the range of applicability. The class of histories 

must not be restricted to element tests available to the author 

(such as triaxial compression only, say). The examples of Figs. 

1.1 to 1.7 show that the complete range has to be tested. 

Numerical stability should be checked first. If this has been 

achieved (and tractably demonstrated), the range of unique

ness should be ascertained. Note that non-uniqueness of the 

response of soil elements has not been observed experimentally 

(which is not to be confused with bifurcation of samples) . 

Non-existence should only occur with certain continuations 

from limit states. 

If the proposed constitutive relation has passed this numer

ical element test it should be further tested with boundary 

value problems implying only one or two spatial derivatives. 

Examples are 

expansion and compression of a cylindrical or spherical 

cavity; 

expansion and compression of a cylinder or cuboid vii th 

deviations from uniform strain; 

rotation of a wall with uniform backfill around its feet; 

shear of a thin layer between two rigid plates. 

Some reference experiments are available for such cases. A 

few numerical and physical aspects will be outlined now. 

The moment of truth during such tests arises with sudden 

changes of path directions. They occur in reality if imposed 

boundary ~tresses or displacements are reversed, and in case 

of bifurcations. A sensitive change of intensity response 

to change of path direction, especially in the vicinity of 

limit states, is characteristic of soils and has thus to be 

modelled by relevant constitutive relations. If the equations 

are sectorwise incrementally linear (as elastoplastic laws, 

e.g.), the switch conditions needed for changes of sectors 
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can destroy numerical stability. Completely nonlinear founda

tions (as some rate-type laws) have to be linearized by a 

kind of Newton-Raphson method the convergence of which is by 

no means guaranteed. Many of the published constitutive rela-

tions cannot pass such tests even with only one spatial deri

vative (cavity expansion and compression, e.g.). 

Economy of the proposed equations should be teste! as outlined 

above for lnaterial constants. Although the sum of expense~ 

for hardware and staff is not a sufficient measure estimated 

figures for it are helpful; they should rely upon the solution 

of real boundary value problems. 

It is noted once more that the criteria of manageability are 

necessary and not sufficient altogether. As with any theory, 

comparison of predictions with acceptable experimental results 

is an indispensable part of validation. 
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r. Introduction 

Geological materials can often have microstructures composed 

of coherent grains (monocrystals), sometimes with only weak 

bonding forces between them, or of granules in an unbonded aggr

egate. When nominally coherent, they typically have pores and/ 

or cracks, randomly distributed in the volume of a solid. (Niko

laevskii and Rice, I979) 

Concrete is one of the most complex construction materials 

consisting of randomly distributed inclusions embedded in a conti

nuous relatively softer porous matrix (hardened cement paste) 

the properties of which depend on time. The effect of this hetero

geneity is to cause non-uniform internal strains, and both the 

process of cracking and failure in such a material become complex 

and discontinuous. (Swa~ and Sriravindrarajah, 1982). The aggre

gate-matrix interface in suCh a system becomes critical and the 

weakestu link; pre-existing microcracks in this area cre'ate nuclei 

of potential crack propagation, inelastic behaviour and failure 

of concrete. 

There are many models which allow to describe the behaviour 

of random cracks in a material such as rocks and concrete under 

various load conditions. hlathematical treatment of the nroblem .. 
of random cracks in a three-dimensinal body is very complicated. 

Therefore in most of theories this problem ·is reduced to the 
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problem of random cracks in a two-dimensional body. 

l Let us at first analyse models in which a material with random 

cracks is supposed to be quasihomogenious. These models are main

ly used to describe the behaviour of rocks and hardened cement 

paste (hcp). After that the models which take the significantly 

inhomogenious structure of a material (such as concrete) into 

consideration will'be analysed. 

2. ~dels of guaaihomogenious solids (rocks, hcp) with random 

cra.cks. 

2.1. Uniaxial tension, biaxial loading (tension+tension, tension 

+compression). 

For such loading conditions opening mode cracks (Mode I) are 

typical. Carpinteri, Di Tomasso and Viola (1978) have analysed 

a part of solid body - a thin plate with random cracks • 

The plate is subjected to the biaxial tension (or compression 

with tension) 5,., 6~ • The length of cracks is assumed 

to be small as compared to the plate dimtsions. The interaction 

of cracks is neglected. It is assumed that propagation of the 

most dangerous crack leads to the failure of the solid. To esti

mate the load value when the crack starts to propagate, formulae 

of fracture mechanics are used. By various values o:f 03 / 01 
different values of crack inclination 

strength of the solid (see fig.I) 

j3 are decisive for 

A similar model was analysed by Panasjuk et al (1976). 

It has been shown that the interaction of n existing random 

cracks can in principle be taken into consideration with the help 

of' a system of integral equations. However di:fficul ties of' the 

computation prevent the estimation of the interaction of more than 

two random cracks. ~esults for two random cracks according to 
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Fig.2.5 Panasjik et al (I976) are given in fig.2-5. 

Here dash lines correspond to the left tips of cracks, and 

solid lines - to the right tips. Curves I and 2 correspond to 

cracks No.! and No.2. From fihg.2 one can see that by O..c.ft<71T/30 

fracture begins ~om internal tips and by .fi '/' 77T/30 from ex

ternal tips. Critical load P,* is minimal by fi -;;'5"./36. 

the critical load is the same as by an isolated 

crack (p,. = Po ), oriented perpendicular to the external stress. 

From fig. 2 one can see that the angles 8~ of the initial 

crack propagation are negative by 0 ~..::.. Tf/6 and 5rr/124. j3 ~ 7T/2. 
It means that fracture propagates not in the direction to the 

nearby crack but in the direction away from it. 

On fig. 3 the minimal. critical load corresponds to .f3 ~5lT/36 
again. Fracture begins from the left ~internal) tip of the 

crack No.2. ay increase of ~. -value the initiative of fracture 

g,,&sover to the right tip (and then to the left one) of crack No.I. 

Fig. ~ shows the corresponding angle of the initial crack pro

pagation too. 

From fig. 4 one can see that by ~ ~ 7rr/'tJ6 fracture ini tiatea 

from the left (internal) tip of the 2nd crack, and by of., > 7rr/?>6 

from the right ~internal) tip of the Iat crack. . 

Fig. 4 sh~e effect of orientation of the second crack 

on the direction of initial propagation of the Ist crack. By devi

ation of the 2nd crack from coplanarity, the fracture from the 

right (internal) tip a·f the rat crack will propagate in the di

rection to the more distant tip of the 2nd crack. 

From fig. 5 one can see that by such crack position nearly by 

any orientation of the 2nd crack, the critical load is higher 

than for an isolated crack (, p* / Po > 1 ), oriented 

perpendicular to the external stress. 
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It is remarkable that curves forp/p on fig. 2-5 qualitatively 
* 0 

differ only little from the curves :for an isolated 

crack of random orientation (dotted lines). 

Failure criteria for a solid with random cracks subjected 

to biaxial tension {or compression with tension} have been 

alao investigated by Panasjuk et al (1976). It was assumed 

that all random cracks interact but this interac-

tion takes place only in pairs. It means that in a solid there 

are some pairs of interacting cracks, moreover, distance be

tween pairs is so large that the pairs may be considered iso

lated pairs. For each pair the crack length 21 and the distance 

d between centres of cracks are given. For such a model fig.1 

shows failure criterion Qy plane state of atress by A= 2l/d 

= 0,5 (curve r1. Curve 2 shows the same failure criterion for 

a body with only one isolated crack of a related length; this 

length is chosen from the condition that uniaxial tensile 

strength of the body. with one isolated crack and with pairs 

of interacting cracks "is the same. One can see from fig. 1 

that the interaction of cracks qualitatively only slightly 

affect the railure criteria Qy plane state of stress. 

There are also some theories w/bich pay attention not so 

muCh to geometrica1 arrangement of random cracks as to pro

babilistic concept of' crack formation and crack propagation. 

H.Lahashi (1983) has assumed, that. failure processes of 

brittle materials may be regarded as a kind of ~rkoff 

process, because the probability of cracking is influenced 

only by th~tate of the previous instant but it is indepen-

dent of the motion preceding the time instant t. Markoff 
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process is characterized by a transition probability .p 01 \. t) 

representing the probability that the state of the element is 

changed from state 0 (non-fracture) to state I (fractured) 

(Fig.6a). Since the fracture of brittle materials is caused 

by cracking, the transition probability may be equal to the 

rate of crack initiation 11 (t). When an element is composed 

of n units, the rate of crack initiation which leads to the 

fracture of the element is given qy the following equation: 

l'(t) = n-fo (t) 
where ji (t) is the mean value of jl (t) for a large number of 

n, J4 (t) is the probability of fracture initiation at the 

mome_ t. 

According to the theory of stochastic process: 

where 

cL Po (t) ::. - POi (t) Po (t) 
cit 

Po (t) means the probability that no :ti'racture occurs 

before the time t in any units. The vpriable t may have other 

meanings but time: for example, stress under a monotonically 

increasing load, the number ot' cycles under a repeated load. 

Failure process of a solid is composed of a series of local 

orittle fracture tthat is assumed to be cracking). The number 
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of units n might be connected with th~lumber of some kinas of 

nether large microcracks (Fig. 6b) A large number of' 'n' may 

describe a very porous solid. 'J.:he 

theory of Mihashi provides a basis for mathematical formulation 

of the influence of some factors of strength: the rate of load

ing, enviromental temperature, size of the specimens, age of 

the specimens and the upper stress of repeated load. 

liowe~er, qy this model, as by all the models described above, 

the following question still remains open: how to calculate 

tensile macrostrain of a solid with respect on crack formation 

and crack propagation, i.e. how to estimate the real inelastic 

behaviour of' a solid with random cracks. 

There are some attempts to evaluate deformation of a body 

with respect to defects lpores and;' cracks) with help of effec

tive modulus E of elasticity and effective Poisson's ratio V 

'.:chis valueS may be expressed as t:ollows CR.Salganik, 1974): 

where SC ~s a little parameter, 5( = N e2. , Ii - num-

ber of' defects in a volume unity, 1 - defec~ size, Eo and Vo 
l .po .,.. b dy • t9. d f t k o;:r:.po - va ues OL E and v n 4n a 0 W~ out e ec s; = J Lor 

pores and k = I for cracks. It is assumed in this approach 

that defects are isotropically distributed on the body and that 

defects are small ssJ?ompared to dimension of' the body. It must 

be noted that such a1sumptions restrict the use of' this model 
.po . k b pro'O.at!: a tin&l'. th . Lor concrete and roc s, eca~vnrac~ 1n ese mater1als 

are oriented wi -ch respect to the exter'll.al load \pc..rallel to 

load by compression or perpendicular to it by tension), and 

crack dimensions near to ultimate load are co~parable to dimen-
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sions of a sample. Tfierefore it seems to be appropriate for 

calculation of inelastic deformation to take into account 

cracks of the real length an~of the real orientation. 

Budiansky and O'Connel (I976) have proposed an analytical 

metod for estimation of effective elastic moduli for a solid 

containing random cracks of different shape. Calculations are 

made for the Case of ellyptical cracks. 

Effect of orientation and number of cracks on the strength 

and other properties of a solid was analysed by Ikeda, Kaba

yashi and Sakurai (r97'). A model of microstructure with cracks 

using statistical methods, including generalization of the 

model qy Walsh for the multiaxial state of stress, has been 

developed by Brady (I969,I970, 1913). 

~re precise estimation of inelastic behaviour of a solid 

w"..i th random cracks can be '. made with the help of the model 

shown on fig. 7a; it wa~ssumed that the centres of cracks 

are statistically uniformly distributed on the area in figTa 

~hich represents the specimen size,\ (Zai tsev, 1980, 1982,; Zai

thev and Wittmann, I98I). The length of cracks is uiliformly 

distributed on th~nterval [0..,&] • The angle of crack orien-

tation with respect to the external load is also ulii-

formly distributed on the interval [0 J 2 Tf ] • For every 

crack the interaction with only one nearby crack was taken 

into account~ this was made according to the results given in 

fig.2-~The. random structure has been created by a computer 

progaam. The possibility of crack arrest by crack crossing 

was taken into consideration. 

Taking the opening of cracks into consideration, the 
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contribution of cracks to the longitudinal strain £ can be 

found, i~ we assume the linear superposition of the two COill-

ponents 
E., = E~ + E~ 

c l 

where '-~ is the contribution of the elastic unfractured 
II 

material, E1 is the inelastic component caused by the 

displacement of crack edges. According to Panasjuk, Savruk, 

Dazyshin (I976), the half' width v of a crack of the length 

21 in a material with modulus of elasticity E subjectEd to 

tensile stress p (perpendicular to.' the cracks, ol = Tr/2 ) 

can be found as follows: 

whereby the maximal half-width is equal to 

If' the angle between crack direction and load direction 

fA.:f=. 7T /2, i. e. a crack is inclined with respect to load di

rection, these expressions may be rewritten as follows: 

iif (X,O) ; 2 P sLn2o( J ei
- Xi! E ; 

1fma.x = 2 P e., ~Ln,2 c{ / E 

The effect of shear stress ~ :: 'P sLn,Ov COS"" on the 

crack opening is neglegtea.. 

'the component E: is equal to () / E ,while the compo
c." nent c 1 can be found if' we assume that elongation caused 

by the displacement of the crack edges is "smeared" on the 

volume of the sample. Thus for one crack we have 
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E; ~ 2 !v-mdt/ 6h 
o 

and £or all the n cracks 

2e.~ 2ft 

t~;; 2 t fV(f)d1 = 4EP t. SLtt2oCi.f~""""lt--f="'""2' cl.$ 
v1 ~~ ( o 0 

Jdg.?b shows stress-strain ctn'ves in uniaxial tension accor-

ding to the results of simulation of crack propagation in a 

sample, (See fig. 7&)· 

Damage approaCh for concrete in uniaxial tension has been 

developed by Loland ~r980), Lorrain and Loland (I98,) 0 Damage 

\~) denotes the relative portion of the nominal fracture area 

( A in fig.8 a) which is not mechanically intact. Damage in

cludes pores(f}and all kinds of cracks(2).rt is suggested that the 

ini tiation of cracking is more depended on strains than on 

atresses. 

When straining a specimen, damage will occur within the total 

length of the strained body when strain Ct ) is less than 

the strain capacity ( Ec.o.p) 0 Above this strain level, damage 

will develope in the :t'racture zone only as shown in Fig. .8 b. 

Fig. 8e shows a summary of damage approach for concrete in 

uniaxial tension. 

2.2. Uoi- and multiaxial compression. 

The models with opening-mode cracks (Mode I) can describe 

the behaviour of solids subjected mainly to the uniaxial ten

sion, sometimes also to the biaxial tension o~ension with 

compression. ay uniaxial compression (typical for concrete) 

and especially by multiaxial compression (which is typical 

for rocks), propagation of shear cracks (~ode II) must be also 
taken into consideration. 
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Rong and Xiao-Xiu (I9807 have studied behaviour of gabbro 

under triaxial compression. The development of microcracks 

was studied under the microscope •. It was found that under 

low stresses, the microcracks occur within the crystal grains 

of the rock minerals and their orientation is determined prin

cipally by the configuration of the crystals. When the applied 

stress reaches about 70-80% of the ultimate strength, the 

cracks become more concentrated in the central part near one 

diagonal of the sample. At this time there appear a few micro

faults whiCh pass through several crystal grains. The orien

tation of thes.e microfaults depends obviously on the direction 

of the external strees,which makes an angle less than 40° with 

the direction of maximum stress. The volume changes-

in the rock samples were also measured 

and compared with the observations in the microcracks. It is 

found that the development of the microcracks and their in

fluence on other physical properties of the rock are depen

dent on the dimensions of the crystal grains. 

In a paper by Simmons and Richter (I976) results are gi

ven of the petrographical studies of microcracks in rock. The 
. 2 

length of microcracks ~s usually of IO mm range but may be 

of some meters length. Data on structure and propagation of 

pores and microcracks are given also by Brace et ale (I972), 

Gash (I97I) and other investigators. 

Uicrocrack closure in rocks under increasing stress was 

observed directly by Batzle (I980) with a scanning electron 
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microscope. Uniaxial stresses to 300 bars were applied to 

specimens o~ granite, both unheated and previously heat-cycled 

to 500°, and diabaze, heat cycled to 700
0 

• An assumption 

was made, that numerous factors influence the behaviour of 

cracks under stress including orientation, shape, source, and 

the proximity of other f~actur.es. In general, fractures orien

ted perpendicular to the maximum stress direction close, and 

those oriented parallel tend to open. ~hese trends, however, 

are often changed by the other factors~ Natural cracks have 

walls that are irregular, etched and pitted, and poorly match

ed. Closure is incomplete with many portions of the crack re

maining open and interconnected. A single fracture may partial

ly close, forming numerous smaller cracks. 

Experimental results have been summarized by Nikolaevskii 

(I982) on the diagram, giving a classification for fracture 

of rocks (fig. 9). One can see on fig. 9 fracture surface 

BB', surface of onset of dilatancy (inelastic volume change 

due to microcracking) AA', zone of dilatancy (shaded area) 

and 00' - line of the Coulomb condition , with 

friction coefficient jU • 

The numbers on fig.9 correspond to granite. To the left 
CJ 

from the point 0' (0,5 GPa, 400 C) rocks fail brittle, to 

the right - plastic. EW low confining pressure (I) cracks 

propagate parallel to the axial compression (vertical) as the 

opening mode cracks.~ increasing confining pressure crack 

edges closed (2), crack propagate now as inclined cracks, 

and angle of' inclination in the respect to the axial load 

depends on the principal stress ratio and some other factors 



Fig.IO 

- 87 -

o 
In the interval from the point 0,2 GPa, 200 0 to the 

point 0' shear bands (3) are formed due to the localization 

of dilatancy cracks. Then one can see pseudoplastic lcata

clastic) fracture 4 (due to formation of a large number of 

little cracks) and plastic (dislocation) :fracture 5. To the 
Q 

right from the point ~Pa (or 1,5 GPa, 500 0, or 0,7 GPa, 
o 

800 C) there are no cracks, rocks become waterproof. 

An idealized model for rocks (see Fig. IO.a) consists, after 

Nikolaevskii and Rice ~I979), of a solid with a randOm array 

of flat Griffith cracks that are closed under compressive 

principal stresses and which can begin to slip when the Oou-

10Illb condition is met based on locally-re-

solved shear ~ CC ) and normal ( 6') stresses. If the crack 

surfaces are flat so that slippage i~ot accompanied by dila

tant uplift at asperities, and if no local tensile fissures 

are opened at the crack tips. there is no plastic dilatancy. 

The idealized model of Fig.lOa suffices also for an exami

nation of subsequent yield surfaces. In particular, as illust

rated in Fig.IO b, the macroscopic yield surface can be consi

dered as the inner envelope of an essentially infinite family 

of yield surfaces for individual fissures of all possible 

orientations, ,Nikolaevskii and Rice, I979). Initially, these 

indi vidual yield surfaces have the form Gt' = JI (J 

the orientation of an individual crack enters in the 

where 

calculating at 

pic stress state. 

and from the macros co-
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Later, as slips ~ u develop, a 

kind of tthardening" occurs since not all of' the nominally appli

ed shear stress ~ is actually carried by the crack surface. 

In Fig. 10 c limit surf'aces representative of' coherent rock, 

e.g. granite, are given after Nikolaevskii and Rice (1979). 

Here the zone of dilatancy is located between the line of onset 

of dilatancy and the limit failure curve. Inside, the response 

can be modelled by rule of' nonassociative plasticity, although 

on the microlevel the cracking is brittle. 

In Fig.rO d the case of porous limestone is illustrated. 

Under high 5 the response is similar to that of porous metals, 

due to the effects of p~astic ~ow around pores. This gives the 

capped form of yield surface of' the entire material, where the 

region at lower 0 corresponds to inter-pore shearing. At 

limit conditions these shears combine to a macroscopic surface 

of localization. 

TheI localization of' previously homogeneous def'ormatiom in

to narrow shear band is a common feature of' geological materials 

that are loaded to failure under multiaxial compression. Rudnic

ky and Rice (1975) explained the onset of localization asa 

bifurcation into a localized mode that is predictable in terms 

of the non-elastic constitutive relations prevailing up to the 

moment of lmcalization. 

The onset of' localization may be important to the inception 

of earth faulting and also to the concentration of' deformations 

into narrow shear zones in a variety of geotechnical problems, 

e.g_, in land81ides on slopes. ~Vhat is missing in the theoreti-
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cal description thus far developed is the explanation of what 

happens as deformations proceed within the localized zone. 

Using method of Geniev, Kissjuk and Tjupin (1974), in pa

pers by!{ozachevskij (I98T), Kozachevskij and Z:iiazin (1982) 

a dila~ model of theory of plasticity is developed. This 

model is based on the non-linear behaviour of concrete not 

only Qy shear deformation, but also by volume deformation, 

taking into account cracking connected wit~ dilatancy. 

Dilatancy as a result of cracking can be explained with the 

help of model by Stavrogin (1969), Stavrogin and Protasenja 

(I919). Statistical ideas of this model are explained on Fig. 

II (a,b,c,d) where 4 different cases of loading with stresses 

0'1 , 62 are shown, whereby the value of C = C;; /61 increase 

by transition from 1t.a~ to ltd". Statistically distributed de

fects b.y loading of the body cause shear on the microareas, 

which coincide with defects. Detects are distributed uniform-

1y with mean distance Itb". Density of defects N increase by 

increase of 0. If shear stress on microareas has reached a 

critical value, shear deformation occurs, which leads to frac

ture on vertical microarea (see Fig. lI,e). ~croscopical1y 

a rough shear surface w is formed, and the part I of the 

body moves with respect to the part 2. Fracture on vertical 

microareas causes the increase of volume of a body. 

It can be calculated on this model (see fig.II f,g) that 

with respect to crack formation V -value is equal to V = E1/ £.2.= 

=~/2t9~· 
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Influence of cracks on effective elastic moduli in com-

pression have been studied by many investigators. In papers 

by Walsh (I965a, 1965 b, I980), 'jjalsh and Brace (1968, 1972) 

rock is considered to be elastic and isotropic, containing 

pores or elliptical cracks of random orientation. Non-linear 

stress-strain behaviour and hysteresis due to cracks are ana

lyzed. Cracks close under increasing compressive stress, 

causing an increase in Young's modulus. Modulus may not be 

equal to that of solid material since frictional sliding at 

crack faces can occur.:> 

C If the fluid is not permitted to enter the pores by a 

plastjc barrier, the eff'ective compressibility must also in

clude a term to account for the resulting decrease in porosi-

t Y2 Expressions for effective compressibility of rocks having 

various shapes of pores, including spherical, penny-shaped, 

and elliptical, ar~iven. The pressure required to close a 

crack is~e order of E~ where E is Young's modulus and 

~ is the aspect ratio. Cracks having an aspect ratio of 

I/IOOO can be closed by moderate pressure. 
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Results of investigation of all 

elastic moduli have been published by Warren and ~ashner (1976;, 

~chanical properties of rocks and rock masses have been 

considered by Bernaix (1974) as depending on presence and be

haviour of cracks (fissures). Fissure reaction mechanisms are 

investigated using models, covering plane fissures to fissures 

with random asperities. Rock behaviour is analysed with refere

nce to these basic mechanisms and it is found that,under some 

confining stresses, fissures develop gradually under load from 

stable to unstable. 

Models described above allow to describe inelastic deforma-

tion of a quasihomogenBous material under multiaxial compression, 

which is typical for rocks. The second quasihomogeneous materi

al considered in this, lecture is hardened cement paste, which . 
in most cases is subjected to the state of atress close to uni-

axial compression. ~ such conditions the propagation of longi

tUdinal opening cracks (splitting cracks) is typical - see 

fig. 9 , region I. 

~hashi has modified his model mentioned above (see fig.6) 

for this cas~ 

C:1~e case of compressive failure lFig.6d ) may be described 

by two different types of models . • If the failure 

process is modelled by two states (i.e. non-fractured state 

and fractured state), TYpe A model is available even for com-
(see fig.6a) . 

pressive fr~n the first step of failure process does 
(fig.6c) 

not mean the fracture of a specimen, Type B should be use~t 

is also possible to make much more complex models only by means 

of increasing the number of' states. However, the equation 
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becomes ve~y comlpex and it is not easy to define the coeffi

cients rationally. 

It must be noted that the theory o:f iidhashi does not allow 

to estimate maerostrain of a solid .with respect on crack for

mation and crack propagation. 
v 

Bazant (I980) has suggested that there are aasically t.wo 

types of inelastic. strains - plastic. and fracturing. 'The plas
Fe 

tic strains, a....E. Lj , are due to plastic slip which takes 

place at constant stress and dOBS not affect elastic stiffness 
fr-

and the fracturing strains:;d,E. Lj are due to microfrac-

turing or microcracking which is accompanied by a stress drop 

and result in a degradation of material stiffness. 

d cLSLj + cLe'·'· eLj ;: 2& LJ 

in which "Y! and 

d " d pf cl t,. e .. = e .. + e··· LJ I.J I.J ) 

are the plastic and fracturing 

loading functions; G. - esastic shear modulus, introduced for 

dimensional convenit!nce; $Lj = Oi..j - di.j 6' = stress 

ueviator; 6 = 6kk / 3 = volumetric stress; ei.j = ELj - 8Lj E 
= strain deviator; E. = E.kk /3 = volumetric strain~ 

di.j = Kronecker delta; derJ = plastic strain increments, 

deU = fracturing strain increments. 

For data fitting, a computer program has been developed. 

Small loadig steps are used to integrate the constitutive 

relation numerically for specified forms of materials functions 

and given material parameters. 

Problems of application of fracture mechanics to concrete and hcp 



- 93 -

have been studied by many authors, for instance, Ba~ant (I979), 

Cappinteri, Di Tomasso and Viola (1978), Desay (I977), Dias 

and Hilsdorf (I973), Hillerborg(I983), ~ndess (1983), U~aven

zadeh and Kuguel (I969), Sauoma,Ingraffea and Catalano (19~0), 

Slate, Jaguot, Lierse, Ringkamp, Rastogi, Terrien (I983), Shah 

(197%, I979), Shah and McGarry (I97I), Wit.tmann tI98), Ziegel

dorf (I98) and others. 

l~on-linear behaviour of concrete has been experimentally in

vestigated by many authors, for instance, Ba~ul and ~so tI982), 

Desay er977), Dias and Hilsdorf (I97), Evanse and Marathe (1968) 

Gerstle, Aschl, Belotti, Bertacchi, Kots'ovos, Hon-Jim, Linse, 

Newman, Rossi, Schickert, Taylor, Traina, Winkler and Zimmermann 

(19801, Hau, Slate, Sturman, Winter (196$), Jonston (I970), Lott 

and Kesler (1966), Stlroeven (I973), Ziegeldorf (r983) and others9 

In a model of Zaitsev (I969 to I982), Zaitsev and Wittmann 

(197I to I98I), Wittmann and Zaitsev (I912 to I98I) it was 

assumed that hardened cement paste has pre-existing defects 

in form of pores and cracks. First of all the in±eraction of 

Fig.I2 two pores with cracks (Fig. 12) has been studied with help of 

Fig.I3 methods of fracture mechanics. Main results are shown in Fig. I3. 

First stages at crack propagation are stable. The presence of 

neighbouring holes causes the unstable fashion of crack props-

gation (by Y= 't'2, and <t: <= ~:QX , see curves 2 on 

Fig'. I3); curves 2a correspond to irreversible cracks and curves 

2b - to reversible cracks. The calculations for different c/r

values have shown that the related crack length (at the end of 

the length of stabLe crack propagation) 'i'; is nearly con

stant ( "0/2 ::: 0.69 -:- 0.73 for internal cracks and ~ = 0.5I 

-:- 0.55 :for external cracks). The related crack length ~ 
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~one pore with two coplanar cracks) 
which corresponds to qlrtQ.)( on the line raY, can also b~ re-

1+ 

garded as a constant. t ~ == 0,46 .;- 0,47 ). 

The process of crack propagation discussed above will lead 

to the joining of two internal cracks and formation of a new 

crack, crossing both holes 6see dotted lines on Fig. IZ). The 

results, which were obtained in a similar way, are given in 

Fig. I3 ~line 4). A comparison of curves 2 and 4 shows that 

if the load has reached the value qmax 
:* 

(i.e. cracks have 

entered into the zone of unstable propagation), both interact

ing cracks join at once and the A -value "jumps It from curve 2 

to curve 4 (wave line). 

The following, stage of crack propagation, when three, four 

and more coplanar cracks interact, is a process having a sta

tistical nature, because this interactinn depends significant

ly on the distribution of' distance between pores. This prQcess 

can be simulated using wnte-Carlo-Methods. The results of the 

simulation aescribed by Zaitsev er97I, 1974), Zaitsevand 

Wittmann (I97I,I974) show a satisfactory agreement with exist

ing experimental results. 

In the model described above it is assumed that all the 

cracks are coplanar. It is, however, well known that real 

hardened cement paste has cracks oriented at random. Therefore 

a more complicated model has been analysed. It was assumed that 

all pores are statistically uniformly distributed on the area 

Fig.I4 in Fig.I4a, which represents the specimen size. Each pore has 

two pre-existing cracks, the length of which is uniformly dis-

tributed wi thin the range 0 < eji ~ 2 • The angle of 

crack orientation dli with respect to the external load 

is also uniformly distributed within the limits of 0 and 2F . 
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The interaction of cracks was taken into account by the 

assumption that ~vo cracks (i = I; 2) will interact and co-

alesce if cA. 1 and c\2 are both below 1T/6 

(above 5 TriG) • The random structure has been created by a 

computer prQgram. 

Simulation of crack propagation as described above makes 

it possible to estimate the effect of pore size distribution 

on the fracture mechanism, mechanical strength and strain 

behaviour of hardened cement paste. In particular, it was 

found (Zaitsev, I980) that by increasing the mean size of 

pores while keeping the quantity constant, the ultimate load 

will dec~ease. Increasing the maximum size of pores but keep

ing a constant mean size and a constant quantity of pores 

will decrease the ultimate load too. 

Fig. 14b shows stress-strain, curves in uniaxial com-

pression of a sample (see Fig.14a) according to results of 

simulation of crack propagation, by E: according to results 
of paragraph 2.I. 

,. ~dels of significant~y inhomogeneous solids with random 

cracks ( concretes'. 

,.I. Uniaxial tension. 

Phenomenological aspects of the inelastic properties of con

erete in uniaxial tension may be summarized as follows. The 

6'- E diagram is linear up to stresses of about 80% of' 

the ultimate stress. The deviation of the 0-£ diagram 

from the straight line is connected with enlargement of pre

existing bond cracks. At higher loads continuous cracks ti.e. 
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cracks combining some bond cracks and mortar cracks) are 

formed. Some propagating cracks can be arrested by aggregate 

particles. About the origin of pre-existing bond cracks 

different views exist. Usual+y such crack formation is ex

plained Qy shrinkage of the hydrating cement paste. However, 

according to Ziegeldorf (I98~),shrinkage cracks muat emanate 

radially from aggregates. The second point of view is related 

to the observation, that water lenses develop under coarse 

aggregates during setting of the £resh concrete t and the crack 

density is greatest ,in the horizontal direction at all stress 

levels. It seems that both effects (shrinkage and bleeding) 

are responsible for pre-existing cracks, and the crack pattern 

according to fig. IS ,a must be expected in concrete (Ziegel

dorf, I983). 

Model of L4ihashi described above can also be applied to the 

case of concrete in tension • 

Application of methods of fracture mechanics :may be very 

useful for such problems. However, Bazant (1979) has shown 

that methods of linear fracture mechanics can be applied to 

concrete (regarded as a quasi"homogenious solid) only by crack 

dimensions in order of magnitude of some meters, which is 

significantly more than dimensions of real cracks in concrete 

structures. Therefore, by investigation of crack propagation 

in concrete with help of' methods of' fr~ure mechanics it is 

necessary to analyse concrete as as a multiphase system con

sisting of quasihomogenious matrix (hardened cement paste) and 

inclusions (aggregate particles). Such an approach has also 

an important advantage: it gives the possibility to evaluate 

the effect of' quantity, shape of particles, Krcand E -values 

of aggregate on inelastic behaviour of concrete. 
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Let us now analyse crack propagation in concrete subjected 

to uniaxial tension, according to the model of Wittmann-Zaitsey. 

We shall investigate the problem of crack propagation in an 

elastic plate of relative thiCkneesicontaining circular inclu

sions (coarse aggregate particles). Each inclusion has one pre

existing bond crack; the dimension of the most dangerous crack 

in the matrix (hardened cement paste), defining its strength, 

is small as compared to the dimension of the inclusions. We 

shall assume also that the value of KIC for inclusions is 

greater than the value of KIt for the matrix, and the value 

of for the matrix is greater than the value of K Ie 

for the interface, i.e. 

K
INe!. > 
LC 

IF 
:> K1C • 

With these assumptions, this problem has been solved by 

eherepanov~- He has found the following relationship between 

the external tensile load ~'* and the angle e , which de

fines the dimension of the crack: 

F ( 8) ;:: 4 (3 - cos e) / fiT 
~ 5.LtL (;) (J.jJ.j+-12 cos 9 + 12 cost e --4 cos 4 B + sLnlj9 ) 

Line I on Fig. 16 shows this relationship; on the y-ax~s 

valures of the related load CV;F = q,,, {2Rjrr'j K:: 
are given. Vlhere 8 <. 80 (8o =rr/4) a crack propagates 

in an unstable fashion (descending part of the curve), but 
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when the crack becomes stable (ascending part 

of the curve). The crack can propagate in a stable fashion only 

before the external load has reached a definite critical value, 

corresponding to the appearance of matrix branches of the crack 

according to Fig. 16 (above), which will again lead (by 8> 82 ) 

to an unstable fashion of crack propagation. 

of 8 2 depends on the value of K~~ / K~t 
this value is, the less the angle 81 is. Ey 

The precise value 

: the greater 

KIF / M 
It KIc = O,G 

(whiCh is near to the experimental results of Alexander, Hiller-

maier and Hilsdorf't Ziegeldorf and Hilsdorf, etc) 82 =rr/2 • 
This situation is shown in Fig. 16 ,where line 3. gives the 

values of the related load for the interfacial part of the crack 

(i.e. o 0 

CYM = 0,5 CYIF ) t and line 2 

gives the values of the related load for the crack in the matrix. 

the last values have been found in an approximative way as for 

a Griffith's crack of thep-ength 2( t + R). The load value q 0 

(beginning of the stable stage of crack propagation along the 

interface) is equal to approximately 80% of the value Of~2 ' 

which corresponds to the beginning of the unstable stage of 

crack propagation in the matrix. The following stages of crack 

propagation in concrete can be analysed in an analogous way. 

Now we can simulate the structure of concrete and the crack 

propagation using Monte-Cerlo-Methods. Typical examples of one 

Fig.I7 of the computer realisations are shown in Fig. I7. For the 

simulation, 50 circular inclnsions have been produced, and each 

of them is assumed to have one pre-existing interfacial crack. 
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It was also supposed that there are pre-existing cracks in the 

matrix. It was assumed that the centrea of cracks in the matrix 

and the centres of aggregate particles are uniformly distributed 

an the area of the sample. The length ~ pre-existing matrix 

and interfacial cracks as well as the diameter of aggregate 

particles are assumed to have a Gaussian distribution. 

Taking the opening of cracks into consideration, the contri

bution of cracks to the longitudinal deformation E i can be 

found, if we assume linear superposition of the two components 

(see page 8). 

Fig. 18 shows stress-strain curves for concrete according 

to the resDIts of simulation of crack propagation. On the X-axis, 

values of the related strain E. / E:e are given ( E:e = ~tt / E , 
Q;:ttis the fracture stress) t and on the Y-axis values of related 

load q.,:: '1r* ~2RJTT'j K;c 1 where it is mean value of the diameter 

af aggregate particles. 

The simulated 0- E curves for concrete in tension may be 

divided into the three regions shown in figure 18 • In the 

region I, which corresponds to the crack patte.L'n in figure 17a , 

the external load is less than the £Va -value \see Fig. 16 ) 

for each of the pre-existing cracks. This means that cracks do 

not propagate and there is only ver~ little extension (widening) 

o,f these cracks. The 0'- E diagram (line 2 in Fig. 18 ) is 

linear, but it has a little bit greater declination as compared 

to the line 1, which corresponds to a material without cracks; 

this dit'i'erence is due to the crack extension twidening'}' men-

tioned above. 

In the region 2, cracks according to Fig.I7abegin to propa-
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gate in a stable fashion, which corresponds to external 

load values greater tnan the qo-value (see Fig. 16 ) for the 

most dangerous cracks. The corresponding 6' - E. curves become 

slightly non-linear (see lines 3 in Fig. 18, each line corre

sponds to one realization of the Monte-Carlo-~ethod.) 

In region :5 (see Fig l1 b,c) cracks begin to propagate through 

the matrix between the aggregate particles. The 6' - E. curves 

become significantly non-linear (see line 3 in .ltig. ,.S , upper 

parts.) Finally J failure of the sample occurs tsee .ldg. I7d). 

rt was found that region I corresponds. to 0 4 0,55 Ouft ; 

region 2 to o. 65 ~tt < 0 < 0,9 Outt ) and region 3 to o:>O,90ultr 

It was also found that, by assumed parameters of crack re

distribution, the critical load for pre-existing matrix 

cracks (according to paragraph 2.I) was higher than Ou.£t 

for concrete, thus the failure of concrete in this case only 

depends on the propagation of pre-existing interfacial cracks. 

Fig. 19 shows the mean value (trom 20 realizations) of the 

summarized length of cracks (related to the area of the 

sample) as a function of the related strain EjE*. Lines I 

and 2 correspond to interfacial and matrix cracks. Lines 3 

and 4 are given according to experimental results. :AlI re

sults of simulation of crack propagation in concrete de

scribed above are in reasonable agreement with existing expe

rim~ntal results. 

3.2. Uniaxial compression 

Phenomenological aspects oi' inelastic properties of con

crete cubjected to the uniaxial compression may be summarized 
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as follows. 'llhe pre-existing bond cracks initially do not 

propagate. From external stress of 30-40% of the ultimate 

stress, the bond cracks begin to propagate in a stable 

manner along the interface, then mortar cracks appear. At 

70-80% of the ultimate stress there is a significant in

crease in the number of mortar cracks, and by joining with 

nearby bond cracks, these begin to form continuous cracks. 

Their orientation is mainly parallel to the direction of the 

external 10ad.At all stress levels bond cracks predominate 

whereby failure of the contact zone of sand particles rarely 

occurs. For higher strength concretes the strain-stress 

curve is linear up to a higher stress-strength ratio than 

in normal concretes because of a decrease in the amount and 

extent of bond cracking (Ziegeldorf, 198;). 

The phenomenological description of the fracture process 

of concrete has delivered valuable information. But many 

fundamental problems are still unsolved. In particular, the 

experimental results concerning the e:ffect of' aggregate con

centration on concrete strength are rather contradictory, 

the effect of aggregate -paste bond strength on concrete 

strength is not well understood_; 

('What generally is missimg is a theoretical basis capable 

of explaining such effects. 

Model of Mihashi, model of Zaitsev-Wittmann described 

above can be applied to the case of concrete in compression 

too •. ,-

'. In the model of Zai tsev-Vii ttmann for the case of' concrete 

in compression a problem of crack propagation in an elastic 
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plate of thickness I, containing inclusions tcoarse aggregate 

particles) is analysed. Inclusions having in this case ran

dom po~gonial shape are randomly distributed in a matrix. 

The size and shape distribution and the volume content of the 

inclusions can be varied in order to simulate different con-

crete mix proportions. Each inclusion has one pre-existing 

bond crack; the dimension of the most dangerous crack in the 

matrix (hardened cement paste), defining its strength, is 

small as compared to the dimension of the inclusions. 

we begin with the simplest case of a randomly inclined 

crack in an elastic plate loaded at infinity. In Fig.20 an 

initial crack having a length of 2f, and an inclination ofol 

with respect to the direction of external compressive load 

q(q <0) is shown. This crack might propagate along the same 

inclined line as a shear crack (Mode II). It can be shown, 

however, that in our example at te tips of the initial crack, 

two branching cracks of Mode I (splitting,or opening cracks) 

are created (Dias and Hilsdorf (I97:3), Desay (I977»). By in

troducing simplifYing assumptioms the crack length £2 
according to Zaitsev (1977), Zaitsev and Wittmann (I977) can 

be expressed as follows~ 

PI JrrE2 '= K Ie 

where P = T sin dv and T is the resulting force of shear 

stress ~f~ ,causing sliding of two oppositE sides of the 

inclined crack. Taking the coefficient of friction f into 

consideration, T can be expressed as follows: 
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From these equations we can obtain (crack of Mode I in matrix): 

Q~ '" _ J1Tt1. K:C 
YI 2 t1 A (d..,j) 

where A (a.,j)::: SLn,2(;{COS'* -j'sltt.3oL • From the lower eq~tion one 

can see that the propagation of such a crack is stable, i.e. 

E2 will steadily increase as Iql increases. A similar stable 

propagation of such cracks has been observed experimentally. 

After analysing this simplest case, we shall now consider 

a homogeneous matrix with one polygonial inclusion, represen

ting'an aggregate particle in an infinite matrix. An initial 

interfacial crack with length 2 e-1 is assumed ~ to be located 

along one side AB (see .J?ig. 2JD). This problem can be treated 

in a similar way as the one with an inclined crack in a homo

geneous matrix, taking into consideration, however, concen

tration of shear and normal stress.in the interface. This can 

be done by introducing coefficients of stress concentration 

lc ,k~ .• It can be shown that the initial shear crack 

spreads (mode II) in an unstab~e fashion as soon as the criti-

cal load (rubde II, interface) is reached: 

KIF 
q;~:: _ _Me 

,!1 V1Tti' DIF (~,J) 
where D '"' k,[Sln.GlCOSu\. - k5"ySLrt2.cA. • The shear crack reaches 

the length 2L1 (see Fig.2Ib) and stops, because further crack 

propagation in the same inclined direction would take place 
M IF 

through the matrix, where K~c.» Koc. 

If, however, the external load is increased to a higher 

critical value ~ 
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~=_ M K~ 
~lT L1 DIF (~,.F ) 

branching cracks in the matrix will develop (see Fig.21 c). 

The actual crack length in the matrix can be given as a 

function of load analogously with the case of a homogeneous 

material treated alone: 

0.-- f!ib 
'V - 2L" A1F(d...,j') 

where AIF (ot,!):. DIF (d.,f) 5\,n "'- ,and e2, corres ponds to the 

distance !A' as shown in Fig. 2Ic. 

In Fig.22 the situation as shown in figure 21'c is repeated, 

but now it is assumed that the branching crack AA' meets a 

second inclusion as it propagates. Further crack growth will 

either take place through the inclusion maintaining the same 

direction, or the crack has to follow the same inretface illN, 

but as a crack of' Mode II (see Fig. 22c). To know which path 

will be followed, three critical load values must be compared: 

~Ntl.. _ _ ~Tf t2,' 
I - 2L~ 

K
1NCL 
Ie 

~NT __ 2Kfl ~/L1 
I - AI~ (ol,.p) {3co!)~ +cos ¥J -3BIF(ct,j»{sLtLt +sLn¥} 

q;INT = _ 2 Ki~ {TT'f; / L~ 
Q AIr (tA.~.P){ Slrtf +si.n ;,: J + B1F(d.,P) {cos~ +cos 3: J 

The index INCL denotes that values are valid for the crack 

propagation through the second inclusion; t2 corresponds to 

the distance~' as shown in Fig. 22b and B1F(ol,f) is equal 

to: 
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F th . for q;UICL q;INT q;1.NT rom e express~ons 
I' I 7 II 

it is evident 

that the further crack path depends on the relationship be-
ltitl. IF IF 

tween interface and inclusion chai:acteristics KIt , KIt:. , Kuc 
as well as on the geometry of the crack path A'- ABE' (see ex-

pressions for AIF (rA.,f), BlF (~,f)) 

interface 1:iN. 

and the inclination of the 

For further dissussion of these theoretical predictions we 

shall look into... three different cases: 
If INCl. - normal concrete (where IGc. -<::..<. KIC ) 

• IF INCL 
- high strength concrete (where K1c, ~ K

1C 
) 

- lightweight concrete (where K!~ »K~~Cl.. ) 

These three cases shall be dealt with separately. 

In the case of normal concrete a crack will propagate mainly 

along the interface MN, because the critical qJ:CL -value 

K1NCl. 
will be too high as a result of high IC -values. Whether 

crack propagation according to Mode I or to Mode II will take 

place, depends significantly on the sign of ~ (see Fig.22). If 

J3 < 0 a crack of Mode I is to be expected but if} :> 0 (as in 

Fig.22), a crack of Mode II is more probable. 

It must be noted that shear cracks (Mode II) are facilitated 

by shear components of external pressure, whereas the presence 

or normal confining components of external compression makes 

the formation of opening cracks in the interface (~ode I Qy 

j<O) less likely as compared to the formation of shear cracks 

(Mode J.I by } '> 0). This theoretical prediction has been ve

rificated experimentally (Zaitsev and Wittmann, 1981). As a 

consequence, in a material with randomly distributed inclusions 

(where the probability of occurence of positive and negative 



- 106 -

values of ~ are equal) new interfacial cracks will propagate 

mainly according to Mode II by } > O. This means that a resul

ting crack running through the total specimen will contain 

some interfacial parts,which deviate largely in the same di

rection ( } '> 0 ! )from the external load direction (see also 

Fig. 22). Thus, the resulting crack will be slightly inclined 

and not exactly parallel to the external load direction. 

In the Case of high-strength concrete a crack as shown in 

figure 22 will propapagate either according to the mechanics 

described above (i.e. along the interface), or it will pene

trate into the inclusion. With increasing values of J crack 

propagation along an interf'ace occurs at higher loads. 

Above a critical value J* of the angle of' inclination of 

the interf'ace side J , cracks will choose their way through 

inclusions. The critical value, ,*, is practically indepen

dent of J.. and/or .f and depends only on the ratio '):..1 of 

K1NCL. KIF • INCI..1 IF 
re and Ie • Inpart~cu1ar, by 'X. 1 = KIt Krc:::1 we ob-

tain }*:: 1T/5 • Crack propagation in the incll..lSion also 

depends on the ratio 1t1 • If 'X i .(. 4 J cracks 

grow more rapidly and if X-1 > ~ they grow more slowly as 
~or~hg-stre~ht concrete 

compared to the homogeneous matri~. Thu~ probability of 

crack deviation f'rom the direction of' the external load is much 

less as compared to the case of normal strength concrete. 

In the case of lightweight concrete, where the interface 

strength is much higher than the matrix strength, fracture 

surfaces run across the matrix and aggregate pabticles. For 

this case the model of crack initiation at pores according to 

paragraph 3.I can be used. It has been shown that such cracks 
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propagate in lightw,eight concrete in a stable fashion analogous 

ito the case of hardened cement paste discussed above. After 

a crack has reached an inclusion it propagates into the inclu

sion. This popagation becomes instable because of the small 
INC~ M KIc -values as compared to corresponding KIt. -values. When 

the crack, after having passed through the inclusion, reaches 

the matrix again, it stops. After further increase of the ex

ternal load (depending on "V = K1NCL 
/ KM ~1 -value) the crack .. Ie IC 

will propagate through the matrix again as if it were a homo

geneous material. 

After describing all essential elements of crack propagation 

in a two-phase material, we can simulate the structure of con

crete and the crack propagation using Monte-Carlo-Methods. 

Typical examples of computer realizations of the structure of 

normal and lightweight concrete are shown in Fig.23. In the 

case of normal concrete 30 polygonal inclusions have been 

produced. Each particle is supposed to have one interfacial 

crack. The structure can also be used to study crack propaga

tion in high strength concrete. In this case the geometrical 

arrangement is maintained, but the fracture mechanics parame

ters are modii'ied. The random structure of lightweight con

crete is simulated by 20 round inclusions and small pores 

spread over the matrix. 

As the load in the computer experiment is increas€d, first 

the most critical cracks will propagate. Further increase of 

the load produces a characteristic crack pattern and finally 

one crack will run throuh the total specimen. This is de1'ined 

to be failure of the material. 
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Different load levels and corresponding crack patterns are 

Fig. 24-26 found by means of a computer experiment as shovm mn fig.24-26. 

Fig.27 

A discussion of this result is published by Zaitsev and Witt

mann (I98I), Wittmann and Zaitsev (1981). Cracks in normal 

concrete do not penetrate aggregates, thus they contain some 

interfacial parts which mo.stly have an angle of inclination 

of the same sign, and the resulting never-all" crack will be 

slightly inclined. To the author's knowledge, this often ob

served behaviour is now theoretically explained for the first 

time. 

Fig. 27 shows stress-strain curves in uniaxial compression 

according to the results of simulation of crack propagation 

for normal concrete a~ter Zaitsev and Kazatskij (I982). The 

effect of Krc.and E- values of aggregates on the shape of 

(j-E -curves of concrete have been studied. KIt - and E- values 
", "/1 for matrix were equal to 0,3 UPla.m and 27 GPa respec-

ti~ 
K Ie -

MPla.m 1/t 

40,5 GPa 

and E -values for aggregates were equal to 0,33 

and 29,7 GPa (curve 11, 0,45 LaPla.m "/2 and 

(curve 2), 0,57 lIilPa.m 1
/
2 and5I,3 GPa (curve 3), 

0,81 MPa.m~1 and 72,9 GPa (curve 4). Geometrical arrangement 

of simulated structure of concrete,. including pre-existing 

cracks Was the same for all realizations. As we can see from 

Fig. 27, computer experiments give a possibility to evaluate 

the effect of aggregate properties on inelastic behaviour and 

strength of concrete and provide a solid basis for further 

systematic investigations. Differing material structures as 

well as failure under a multiaxial state of stress can be studied 

in a similar way. Time-dependent processes such as f'ailure under 

high sustained load can be included in this type of investigation 
too. 
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FIGURE CAPTIONS 

Fig. I. Failure criteria in biaxial tension for a solid with 

rando;u cracks. 

Fig. 2-5. Interaction of two random cracks. 

Fig. 6.Stochastic model for hardened ce~ent paste; a - tran-

sition line graph of a stochastic Drocess for tension; 

b - scheme of fracture in tension; c - transition line 

graph for compression; d - scheme of fracture in com-

pression. 

Fig. 7. Consequent stages of crack propagation In a quasihoillo-

geneous porous solid under tension and stress-strain 

curves according to results of crack propagation. 

Fig. 8. Damage approach for hardened cement paste and concre~c 

in tension; a - fracture zone with pores (I) and 

cracks (2); b - net contours (net area An) of a speci

men with reference to the load-elongation curve; c -

net stress S, damage W and nominal stress 0 
related to strain e • 

FiC_ 9. Classification of f'racture f~or rocks. I - stress patl1; 
~_._. ______________ . _____ .. ______ . __ . ____ -------.J 

2 - yield surface for individual fissure; 3 - elastic 

zone; 4 T post-loading limit surf'aces; 5 - :failure; 

Fig. ro. L:odel of' rocks with random cracks. <r--.----

Fig. II. L~odel of rocks with a geometrical arrange;nent of cracks. 

FiC. 12. Scheuatic representation of' tV10 pores a.'1d coplanar 

cracks in hardened cement paste. 

FiC. 13. Ralationsliip between related external load and relatod 

crack length near two pores: a) c/r = 2 b) c/r = IO 
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I - relationship for two cracks (Io.) and one CIb) isolated 

crack (Vlitfuout interaction) 2 - relationship for interacting 

external cracks. , - relationship for interacting internal 

cracks. 

Fig. I4. Consequent stages of crack propagation in a quasi

homogeneous porous solid under compression a~d stress

strain carves according to results of simulation of 

crack propagation. 

Fig. IS. Cracks in concreteC!n compreSSTOn~a·-=--cr;;i:-S in' 
unloaded concrete; b - consequent stages of crack 

propagation and stress-strain relationship;vI - aggre

gate, 2 - mortar, ) - interface cracks, 4 - cracks 

between aggregates. 

Fig. I6. Relationship between related external tensile load 

and related length og an interfacial crack; I - in-

terfacial crack (load is related to KIf 
IC 2 - inter-

facial crack {load is related to 
n 

KIt :3 - inter-

facial crack and additional matrix (load is related 

to ) . 
Fig. I7. Crack pattern for different load level ~n concrete. 

Cracks originating :trom interfaces run around a{;cre-

gates. 

Fig. IS. Stress-strain curves for concrete ~n tension according 

to results of simulation at' crack proragation; I -

linear for a material vii thout cracks; 2 - linear 

for a i.1o.terial wi th pre--existing cracles which do not 

propaeatej :3 - non-linoar ta~ing into Qccount crack 

propae3.tion; 4 - experinentE\l curves for concrete in 

tenGion. 
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Fig. I9. Summ,arized length o:f cracks as a function of related 

/ 
. r 

strain E. E'/t;;, I - simulated (intef'ace cracks); 2 -

simulated (matrix crEl.cks), 3 - experiraental (inter

face cracks), 4 - experimental (matrix cracks). 

Fig. 20. Schematic representation o~ the development of 

branching cracks and definition of symbols used in 

corresponding equationso 

Fig. 2I .. An initial crack with length 2 e., (a) grows in an 

unstable fashion along an interface AD ~b) and 

finally stable branching cracks AA' a~d 33 1 are 

created as the load is increased. 

Fig. 22. A crack path as shovm in Fig. 2I, in the vicinity of 

the second inclusion (a); the crack Iaeets the second 

inclus'ion (b); finally the cracl\: will propagate 

along the interface WI (c) .. 

Fig. 23. Typical computer realization of random structure; 

a - normal concrete;b - lightweight concrete. 

Fig. 241 Crack pattern for two different load levels in nor-

mal concrete. Cracks are ruuJ.J.ing around inclusions .. 

Fig. 25. Crack pattern for two different load levels in high 
, 

strength concrete. Some cracks penetrate through 

inclusionD. 

Fig. 26. Crack pattern for two different load levels in 

Iighti'leight concrete. Cracks originating ~rom porEES 

run through inclusions 

Fig. 27. Stress-strain curves for concrete according to re-

suIts of siilulation of crDcl\: propaGg,tion .. 
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The Mechanics of Fracture 

fJnder I-ligh-Rate Stress Loading* 
\ 

Dennis Grady 
Thcrmomccha,nical & Physical Division, 1534 

Sandia National Laboratories 
Albuquerque, New Mexico 87185 

Abstract 

The fracture properties of brittle materials subjected to impulsive or high 
rate loading is considered. Fracture is viewed as a microstructural process 
through the activation, growth and coalescence of a system of interacting 
cracks. The loading rate dependence of fracture stress is explained in terms 
of inertia of isolated cracks. The number of cracks participating in the 
fracture process, and the number and size of fragments in the failed material 
are related to both the inherent flaw structure and the rate of energy 
application required to sustain the system of growing cracks. Differences in 
loading conditions leading to material failure can result in vastly different 
fragment size distributions. These differences are compared with physically 
based statistical laws and possible relations to the loading conditions are 
explored. Lastly, continuum modelling of dynamic fracture focused toward 
computational analyses of complex applied problems is covered. 

,. This work performed at Sandia National Laboratories supported by the U.S. Department of 
Energy under contract number DE-AC04-76DP007S9. 
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1 Introduction 

The response of a single crack to both static and impulsive loading has 
received considerable attention over the past several decades and is reasonably 
well understood. The mechanics of a system of such cracks under impulsive or 
stress-wave loading and how this cooperative response relates to the transient 
strength and ultimate failure of a solid body is less well understood, and has been 
under study in several laboratories over the previous several years. Experimental 
studies of fracture under high rate loading have revealed unusual features as
sociated with the phenomena such as greatly enhanced material strength and 
fracture stress dependence on loading conditions. Although such observations 
have lead to the postulation of rate dependent material properties, most of these 
features can be understood in terms of fundamental fracture concepts when 
considered in terms of a system of interacting cracks. 

In applications of the concepts of dynamic fracture, or the theories which 
purport to describe such fracture, there are a number of features worthy of 
prediction. Perhaps the first, and most fundamental, is the transient strength, or 
ability to support an impulsive load, either without sustaining fracture damage, 
or else sustaining fracture damage within some tolerable level without permitting 
total failure. In partially fractured bodies the spacing or fabric of the cracking 
may be of importance along with the void volume and extent of intersection, 
which will relate to the permeability of the crack system. In completely failed 
bodies the degree of fragmentation is of interest in many applications. The size 
and velocity of ejected fragments is of concern, and the distribution in fragment 
sizes and how this relates to the conditions of loading is also of importance. 

The present paper reviews several of the features of dynamic fracture and 
fragmentation which have come to light over the past several years. In the 
scr.ond section, the concept of dynamic fracture strength is treated. Experimental 
studies have shown that solids subjected to high rate or impulsive loading ex
hibit dramatically enhanced material strength. A number of criteria have been 
proposed to account for this effect over the years. Recently, the strength properties 
of a single crack subjected to stress-wave loading have been explored and found 
to relate well with the behavior of a system of cracks within a body as a. 
whole. Ea.rlier criteria appear to be similar statements of the sa.me behavior. 

In the third section the properties of the material and the conditions of 
loading which lead to the number of fractures participating in the fracture 
process and the number and size of fragments resulting in the failed body are 
considered. Two interrelated concepts are important here. First is the inherent 
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distribution of flaws or sites of weakness in the body which constitute the 
points of fracture activation. The second relates to the energy or the rate of 
energy application required to sustain the system of growing cracks. Although 
the inherent flaw distribution, a material property, has been used to determine 
fracture number and fragment size in most previous work, it has been found 
that in numerous applications a kinematic energy condition appears to govern 
the fracture fabric. 

The following section is concerned with the mechanical and statistical condi
tions which determine the distributions in fragment size resulting from catastrophic 
fracture events. This is an interesting, diverse, and extremely complex topic 
about which very little is currently known. Two statistical concepts which have 
been proposed in the earlier literature for determining fragment size distribu
tions are considered. The first is based on Poisson statistics while the second is 
a unique application of Boltzmann energy statistics. They lead to vastly different 
distributions and each appears to have application in certain circumstances. 
There is evidence that both the mode and the multiplicity of the dynamic 
fracture event is important in determining the shape of the distribution. 

In the final topical section a brief review of the various approaches to con
tinuum modelling of dynamic fracture currently under consideration is presented. 
Such modelling represents a necessary final goal in that the complexities of stress 
loading, geometry, and the interaction of stress and relief waves necessitate the 
use of wave-propagation codes to address realistic problems. 

2 Dynamic Fracture Strength 

The dependence of the dynamic fracture strength of rock on the rate of 
loading can be studied through the response of an isolated crack under the action 
of constant tensile strain-rate loading. Illuminating studies on the strength of 
a body due to stress concentrating effects of cracks under static loading have 
emerged from the concepts initiated by Griffith [1920]. The impact response of 
an clastic solid containing a crack and subjected to an abrupt tensile loading 
normal to the crack surface has also been well characterized and is extensively 
discussed by Chen and Sih [1977], while response of a solid to more general 
loading functions a.pplied to the crack has been considered by Freund [1973]. 
Application of these methods to constant tensile strain-rate loading have been 
explored in detail by Kipp et al. [1980] and provide an understanding of many 
of the features observed in the dynamic fracture of rock. 
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2.1 The Dynamic Stress Intensity Factor 

The theory of linear elastic fracture mechanics applied to the dynamic 
loading of an isolated crack has provided a clear understanding of the response 
of cracks to transient tensile loads. The response to various types of Heaviside 
loading has been outlined by Chen and Sih [1977) and the Heaviside response 
function may be employed as a Green's function for other dynamic pulse shapes 
[Freund, 1973]. 

In particular, if a Heaviside tensile stress of magnitude a o is applied to a 
crack with a characteristic dimension a, then the functional form of the stress 
intensity factor, J{/ at the crack tip, is 

(1) 

where Cs is the shear wave velocity. The response to an arbitrary stress loading 
function, a(t), may then be expressed as [Freund, 1973], 

KI(a, t) = .,fi(i l' a'(s)f(c,(t - s)/a)ds. (2) 

A convenient loading function for comparison with experimental data on 
the dynamic fracture strength of rock is that of constant strain rate loading 
[Kipp et al., 1980J .. For linear elastic response the constant strain rate, Eo, and 
stress rate, a 0, are related through the elastic modulus of the material. Under 
this special loading condition Equation (2) becomes, 

KI(a,t) = (,o.,fi(i l' f(c./a)ds. (3) 

Fracture is expected to initiate at a time, t e , when the stress intensity factor in 
Equation (3) achieves the critical stress intensity factor. At this time the applied 
stress will have achieved the fracture stress level, ae , related to te through ae = 

aote . Thus, 

(4) 

provides an implicit relation for the fracture initiation stress and the dependence 
on both the crack size and the critical stress intensity factor. 
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2.2 A Strain Rate Dependent Fracture Criterion 

Before discussing the dynamic fracture process it is important to recall the 
form of the function, !(css/a). An elastic analysis of the Heaviside loading has 
been considered by Chen and Sih [1977]. Solutions for both the penny-shaped 
crack and the plane crack exhibit the familiar square root singularity in time at 
the crack tip for the stress intensity factor, followed by overshoot and oscillating 
convergence to the static value. 

To achieve an explicit relation for the strain rate dependence of the fracture 
stress, a solution expected to be valid at high loading rates has been used [Grady 
and Kipp, 1979a; Kipp et al., 1980]. Assuming the solution for penny-shaped 
crack response to Heaviside loading valid for small normalized time, 

(5) 

and, as before, using Equation (5) as a Green's function for constant strain- rate 
loading of a crack results in the crack-size independent relation for the stress 
intensity factor, 

(6) 

Here N is a geometric coefficient equal to 1.12 for the penny-shaped crack. As 
in Equation (4), a relation among the critical stress intensity factor, the fracture 
stress, and the fracture time can be established and results in the strain-rate 
dependent fracture stress, 

(7) 

Equation 7, of course, corresponds to the stress level required to initiate fracture 
on an isolated, normally-oriented circular crack which is sufficiently large relative 
to the loading conditions specified by the strain rate, f. In a body with a 
distribution of flaws under similar loading conditions, fracture initiation within 
some population of this distribution would be expected, providing flaws spanning 
a characteristic size of the order a "'-' (CsKlc/ Efo)i, were contained within the 
distribution. Assuming that the material is sufficiently flawed, Equation 7 might 
be expected to provide a reasonable measure of the dynamic strength of the 
body. 
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2.3 Experimental Measurements of the Fracture Strength of Rock 

Explosive or percussive rock breakage involves dynamic fracture in the sense 
that transient waves or the interaction of transient waves with local free surfaces 
carry regions of rock into tension, initiating fracture and fragmentation. It has 
been known since the early studies of Rinehart [1965] that the dynamic fracture 
strength of rock can exceed the static strength by as much as one order of 
magnitude. This observation has been substantiated by later studies and has 
attained fairly wide acceptance. In rock blasting calculations, the known static 
fracture strength is often arbitrarily increased by a factor of seven or eight to 
account for dynamic conditions. 

A fairly substantial body of experimental data exists in which loading rates 
comparable to impulsive rock breakage applications have been simulated. These 
data tend to support the discrepancy between static and dynamic strength. 
Dynamic laboratory measurements using compressive [Kumar,1968; Green and 
Perkins, 1968; Lindholm et al.,1974; Lundberg, 1976; Lankford,1976], torsional 
[Lipkin et a1.,1977]' and tension [Birkimer, 1971] Hopkinson bar techniques have 
identified rate sensitive rock fracture. Plate impact induced spall in rock has 
also been studied [Shockey et a1.,1974; Grady and Hollenbach, 1979; Grady 
and Kipp,l979; Cohn and Ahrens,1981]. Rock fracture through magnetic stress 
loading methods has also been pursued (Forrestal et a1.,1978]. 

Fracture toughness measurements [Oucherlony, 1980] have been obtained 
on some of the rocks for which dynamic strength as measured by plate impact 
spall experiments is also available. In figure 1, comparison of dynamic spall 
data with the dynamic fracture relation in Equation 7 illustrates a reasonable 
correlation, and the practical applicability of this relation in providing estimates 
of dynamic rock strength. In the spall experiments a nominal strain rate of Eo :::::::. 
104 / s was achieved and used in the calculation. Figure 2 illustrates a similar 
comparison of the strain rate dependence of Equation 7 with data obtained with 
both Hopkinson bar and plate impact experiments [Grady and Lipkin,1980]. 
Although in reasonable agreement in both rate dependence and magnitude for 
most rocks, the relatively rate independent response of Solenhofen limestone, 
which has also been observed by others [Green and Perkins,1968J, is noted. It is 
believed that the relatively small flaw size and homogeneity of this rock leads to 
the observed rate independence over the 102/8 to 104/8 strain rate regime. The 
behavior of Solenhofen limestone emphasizes that caution should be exercised in 
generally applying E~quation 7 to dynamic rock strength predictions. 
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2.4 Comparison With Other Dynamic Fracture Criteria 

In past years other dynamic fracture criteria have been established to describe 
observed dynamic strength behavior. In general, these studies have lead to criteria 
similar in form to the expression in Equation 7. Tuler and Butcher [1968] proposed 
a criteria for incipient dynamic fracture damage of the form 

(8) 

where a and T are the tensile pulse amplitude and duration, respectively, and at 
is the stress threshold for damage growth. They found that A = 2 provided the 
best agreement with spall data on aluminum. Assuming that a is significantly 
larger than at and considering constant strain rate loading, Equation 8 leads to 
a cube root dependence on strain rate similar to Equation 7. 

Birkimer [IU71]' in an attempt to explain Hopkinson bar fracture data on 
quartzite and concrete proposed that fracture occurred when the work on the 
fracture plane, 

'Ill = A.I adx, (9) 

achieved a critical value. a is the stress and A is the area of the bar. Using the 
relation dx = (cO' / E)dt (c is the wave velocity), and assuming constant strain 
rate loading results in the relation. 

(10) 

Steverding and Lehnigk [1976] developed a relation described as a least 
action law for fracture initiation, 

(11) 

Here, /' is the specific surface energy for crack growth. It is apparent that 
their proposed fracture criterion will also lead to a cube root dependence on 
strain rate. A similar spall fracture criterion has been discussed by Ivanov and 
Mineev [1978]. 
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Because of the importance of the state of fracture damage created in rock 
breakage, it is useful to consider a seemingly different criteria related to rock 
fracture due to Von Rittinger [1867]. This relation states that the energy required 
to fragment a body is inversely proportional to the size modulus, x, of the 
resulting fragment distribution, namely; 

U -!?. - , 
x 

(12) 

where b is a constant. As far as can be determined, no physical basis has been put 
forth for Rittinger's law. Application of this relation has been actively debated 
in the field of grinding and crushing[ e.g., Charles, 1957; Faddeenkov,1975] and 
has given rise to alternative relations such as those of Kick [1885] and Bond 
[1952]. Conditions of multiple particle breakage during crushing and grinding 
arc complex. Bergstrom et al.,[1961]' however, has shown that in single breakage 
Equation 12 is obeyed for numerous brittle materials. 

In single breakage the energy to fracture the material is initially stored as 
clastic energy and if the specimen supports a stress (J at fracture then the energy 
in Rittinger's relation (Equation 12) is of the order (J2/2E. In brittle catastrophic 
fracture, erack propagation will rapidly approach a terminal growth velocity, eg . 

If cracks coalesce to form fragments at a time, t e , then the nominal fragment 
size will be on the order of x r....I cgte. Applying these relations to Equation 12 
and assuming constant strain rate loading results in 

(13) 

suggesting that the fragmentation behavior noted by Rittinger may have a 
similar physical basis. 

3 Energy Concepts In Catastrophic Fragmentation 

The damage created in severe impulsive tensile fracture events in rock or 
rock like material is a complexity of intersecting cracks which may reflect both 
t.he intensity and the orientation of the applied tensile stress field. As an example, 
the fracture damage of an explosion placed in a deep borehole consists of severe 
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comminution to small particle sizes in the rock immediately adjacent to the 
explosion and grading to larger fragments with increasing distance. Further from 
the charge the fracture damage reduces to a small number of radial cracks which 
may propagate a considerable distance before arresting. In many applications of 
explosive or percussive rock breakage the production of optimum and uniform 
fragment sizes is either the objective or is important to the efficiency of the 
process. Consequently an understanding of the fracture effects governing the 
intensity of cracking and fragment size is needed. 

3.1 Inherent Flaw Effects in the Dynamic Fracture Process 

As pointed out in the previous section, by adjusting the rate of loading, 
different levels of tensile stress can be achieved in the material before catastrophic 
failure occurs. This behavior is understood by hypothesizing that the virgin 
material contains a distribution of flaws with various sizes and orientations 
[Grady and Kipp,19g0]. The flaws become active and grow when subjected to 
tensile loads of various magnitudes. The active flaws grow during the period 
of load application and eventually coalesce, causing material failure. When a 
load is applied slowly, only those flaws which become active at low stress levels 
actually contribute to the fragmentation process because these flaws grow and 
coalesce, and failure occurs, before the applied load reaches a level of stress 
high enough to activate other flaws. This results in a low apparent threshold 
for material failure and comparatively large fragments because the number of 
contributing flaws is small. When the load is applied more rapidly, a higher 
level of stress is achieved before flaw coalescence occurs; thus, a greater number 
of flaws participate, causing the fragment dimensions to be smaller and the 
apparent threshold for material failure to be higher. 

It is also recognized that a specific amount of energy is required to create 
a new fracture surface during the fracture event, and this energy must come 
from the loading stress wave. This surface energy is of the order /(lc/2E, where 
K/c is a measure of the fracture toughness and E is the elastic modulus. If the 
material is loaded at a rate such that a stress a c is achieved before failure occurs 
then an elastic energy of order a~/2E is stored in the body and available for 
fragmentation. A consideration of energy balance suggests that a fragment size of 
approximately d "'--' (Klc/ac)2 might be achieved in the dynamic fragmentation 
event with a corresponding fragment surface area per unit volume of A ~ 6/ d. 
Direct observation has shown that this energy balance is never achieved, and 
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measured fragment surfaces are typically one or more orders of magnitude below 
this energy limit. 

Consequently, based on this observation, previous studies have assumed that 
fragment sizes achieved in dynamic fracture events are flaw rather than energy 
governed and considerable effort has been focused on characterizing the flaw 
distribution in rock material, through direct observation [Shockey et al., 1974]' 
or other indirect methods [Grady and Kipp,1980; Margolin, 1983]. Usually the 
flaw distribution has been related to the stress level of flaw activation with N(a) 
providing the number of flaws per unit volume which activate at or below a 
stress, a. Thus, if a threshold stress a c is achieved before failure, the nominal 
fragment size predicted is d,......., N(act!. 

3.2 Kinetic Energy Considerations 

Although accurate characterization of the flaw structure appears to be 
jill portant, there is evidence that such characterization alone is not sufficient to 
explain all of the observed effects in dynamic fracture and fragmentation. Energy 
balance principles still appear to playa significant role. As described earlier, 
the dynamic fracture stress appears to be governed largely by fracture energy 
considerations. Also, the fragmentation studies of Rittinger[1867J, Charles[1957]' 
and Bergstrom[1961] reflect, at least qualitatively, energy aspects in the breakage 
process. 

There is another way to model the dynamic fracture process which leads 
to an energy balance governing the average fragment size [Grady,1982a]. In this 
approach kinetic energy rather than elastic strain energy is considered to be the 
important energy fueling the fracture process. The model is thought to be most 
reliable in extremely catastrophic fragmentation events, however, in application 
it has been found quite useful over a fairly broad range of fracture rates. 

Consider a body which has previously been compressed by some means 
and is currently in a state of rapid expansion. The instantaneous kinematic 
state will be determined by the density, p, and the density rate, p, which will 
be assumed uniform over a sufficiently large region encompassing the point of 
interest. Conceptually, one might consider an elastic sphere which has been 
compressed uniformly and suddenly released and is currently in a state of rapid 
outward cxpansion. The kinetic energy associated with the outward motion is 
responsible for the fracturing forces and surface tension associated with newly 
creatcd fractures resists the fracture process. It is equally intuitive that, after 
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fragmentation, particles will continue to fly apart at high velocities. Thus, the 
production of fragment surface area cannot simply be governed by a balance of 
kinetic energy and surface energy, since a large portion of the kinetic energy 
remains after fragmentation. 

An expression for the kinetic energy available for fragmentation can be 
determined by considering an element of the expanding body with a volume 
of the order of the fragment size expected from the event. With reference to 
a specific coordinate system, the kinetic energy of this element can be decom
posed into a center-of-mass kinetic energy, Tem , and the kinetic energy relative 
to a coordinate system referenced to the center of mass, T'. Assuming average 
response, forces acting on the element during fragmentation should, due to sym
metry, exert no net impulse and, consequently, both the center-of-mass velocity 
and kinetic energy of the particle should remain invariant during fragmentation. 
Thus in a decomposition of the kinetic energy, the center-of-mass kinetic energy, 
1~m, of the fragments must be conserved during fragmentation and only the 
kinetic energy relative to the center of mass, T', is available to fuel the breakage 
process. This latter energy may be regarded as a local kinetic energy which is 
available for fragmentation without violating local momentum conservation. 

An explicit expression for the local kinetic energy can be obtained by con
sidering a spherical mass element of radius, a, expanding uniformly at a density 
rate, p. The kinetic energy about the center of mass for this single sphere is, 

·2 

T' = 211" ~a5 
45 p 

(14) 

Dividing by the volume of the spherical element and expressing in terms 
of the fragment surface area to volume ratio, A = 3/a, a measure of the local 
kinetic energy density, in terms of the surface area created by fragmentation is 
obtained 

·2 

T=~L. 
10 pA2 

The new fragment surface energy density is simply, 

r = 'fA, 

and the total energy is given by, 

(15) 

(16) 

(17) 
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We will assume that during the catastrophic fragmentation process, forces 
brought about will seek to minimize the energy in Equation 17 with respect to the 
fracture surface area. This approach assumes that the coordinate, A, is available 
or free to vary during the fracture process and, consequently, requires a sufficient 
supply of flaws or sites of fracture initiation during the process, although precise 
requirements are not yet clearly understood. 

At equilibrium, dU / dA = 0, and the equilibrium fracture surface area is, 

A=(3/)t 
5p"l 

(18) 

Equation 18 provides a quantitative measure of the fragment surface area 
created in the fracture process in terms of fundamental thermodynamic and 
kinematic properties. Typically a nominal fragment size, rather than surface 
area, is of interest. Assuming spherical fragments of equal size, the fragment 
diameter is related to the surface area through, d = 6/ A. 

If Equation 18 is used along with, E = p/3p, and, "I = Klc/2pc2, an 
expression for the nominal fragment diameter for dynamic fragmentation in a 
brittle material is obtained, 

( 19) 

where, E, is the linear strain rate and, K[c, is the fracture toughness. Nominal 
fragment size data for oil shale have been obtained as a function of strain rate 
[Grady and Kipp, 1980]. Material properties for the oil shale studied are, K[c = 

0.9 M N /m ~, p = 2300 kg/m3
, and c = 4000 m/ s. The prediction of Equation 

19 is shown to provide a reasonable description of the data in Figure 3. Further 
work [Grady,1982a;1982b; Grady and Benson,1983; Costin and Grady,1983] are 
showing that Equation 18 or 19 provide a useful predictive relation for numerous 
dynamic fragmentation applications and that energy rather than flaw considera
tions govern the fragmentation. It also suggests that kinetic energy rather than 
strain energy is more important in many cases in determining fragment sizes. 

3.3 Application to Well Shooting 

An interesting and perhaps useful application of the fragment size expres
sion derived from the model based on energy principles can be found in the 
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process known as well shooting or the dynamic stimulation of wellbores through 
explosive or propellant loading ['Narpinski et aI, 1979; Schmidt et a1., 1981]. 
The multiple fracturing of wellbores holds promise for stimulating naturally 
fractured reservoirs through intersection with the pre-existing fracture network. 
The use of high-strength explosives have been found to have detrimental effects, 
however, through crushing and plastic flow near the borehole which can result 
in a residual compressive stress field and a tightly locked formation rather than 
the desired multiple fracture pattern and enhanced permeability [Smith et a1., 
1978]. Extensive experiments by Schmidt et a1.[1981] in Nevada Test Site tuff 
have shown that propellants with appropriate burning rates can produce stress 
loading behavior which optimizes the dynamic multifracturing process without 
excessive crushing or plastic damage. They conclude that perhaps the most cru
cial parameter is the initial stress loading rate in the wellbore. 

Certain aspects of this problem can be understood in terms of the energy 
expression for fragment size determined in the previous section. By assuming 
a geometry more appropriate to the radial cracking process occurring in the 
dynamically loaded wellbore, an expression similar to that of Equation 18 or 19, 

N=(~)~ 
6K[c ' 

(20) 

can be obtained for the number of fractures per unit length occurring at a strain 
rate, E. Assuming a wellbore diameter, D, the number of cracks initiating from 
the wall is predicted to be, 

(21) 

This relation can be compared with the experiment of Schmidt et a1.[1981] in 
NTS tuff in which an intermediate burning rate propellant provided a loading 
rate of 20 psi/ /lS, to a peak pressure of 13,800 psi. This translates to a circum
ferential strain rate at the well bore wall of approximately, E = 30/ s. Using 
the material properties for tufT of, p = 1600 kg/m3 , c = 2000 mis, K[c = 

O.:~ M N /m~, and a wellbore diameter, D = 0.15 m, Equation 21 provides a 
fracture number of, ND = 6.7. This compares well with the seven major frac
tures and several minor fractures actually observed by mine back met.hods in 
this experiment. 

Although the agreement is encouraging and well shooting is an interesting 
application of the energy balance approach to predicting fracture spacing in 
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dynamic fracture, this is only one aspect of a complex pulse tailoring problem. 
Extensive calculations have been performed by Swenson[19 ] focused on optimiz
ing all aspects of well bore stimulation by multiple fracturing. 

Considering the relatively gentle loading rates associated with well bore 
stimulation, it is not presently clear why an energy balance considering only 
kinetic energy and fracture surface energy while ignoring the strain energy 
should be successful in predicting fracture spacing. It would also seem from 
dimensional considerations that the wellbore diameter might enter the relation 
in a more complicated way. The calculation clearly suggests, however, that the 
fracture process is not simply predicted by a description of inherent flaws in the 
neighboring rock. A complete theory of the multiply fracturing event should also 
include the energy concepts identified here. 

4 Particle Size Distributions Occurring in Dynamic Fragmentation 

In the opening section of this report concepts relating to the transient 
strength and dynamic fracture stress of brittle solids subjected to impulsive 
stress-wave loading were considered. The following section provided a discussion 
of flaw structure and energy factors governing the new fracture surface area 
created in catastrophic fragmentation. It remains to consider a concept which is 
frequently the end concern in numerous impulsive fracture applications, namely, 
the distribution in sizes of the particles created in the event. 

Numerous areas in science and everyday experience can be cited. One cur
rent application is concerned with recovery of oil from oil shale. Economic 
recovery requires effective fragmentation and distribution of void volume through 
explosive bla.,'>ting methods [Boade et al., 1981]. More generally, aspects of frag
mentation and resulting fragment distributions are important to a number of ex
plosive or percllssive rock breakage applications including deep drilling [Varnado, 
1978], cxplosive or propellant stimulation of gas and oil wells [Warpinski et al., 
1070], and quarry, mining and construction blasting [Langefors and KihIstrom,1967]. 
On a less tcchnical chord, theories concerned with the accretion of planetary 
bodies have been proposed which depend on impact fragmentation and result
ing fragment distributions [Matzui and Mitzutani,1977]. Distributions of iron 
particles on the ocean floor, apparently resulting from the catastrophic a.bla
bon of meteorites entering the earth's atmosphere [Yamakashi et a1.,1981], and 
the natural occurrence of the explosive eruption of a volcano or the catastrophic 
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impact of a major meteorite [O'Keefe and Ahrens,1975] involve processes of 
fragmentation which can distribute debris through the earth's atmosphere. 

Because of the continuing practical interest in material fragmentation, studies 
on various aspects of the problem can be traced through the literature for 
more than a century. The statistical nature of fragmentation was recognized 
early and stimulated efforts in identifying size distribution relations which cor
rectly described the resulting fragmentation. Various standard distributions such 
as Poisson [Lienau,1935; Bennett,1936J, binomial [Gaudin and Meloy,1962], log 
normal [Kolmogorov,1941], and Weibull [Rosin and Rammler,1933], have been 
used and functions associated with the names of Rosin and Rammler[1933]' 
Schuhmann[1940], and Gaudin and Meloy[1962] have acquired popularity in 
certain applications. 

The strictly statistical approaches to fragmentation, however, tacitly ig
nored the dynamics of the fragmentation event and did not provide a means 
of correlating energy, or some other measure of the loading conditions, with 
the fragment distribution. These ideas appear to have first been explored in the 
studies of Mottl,] 9471 and have been pursued more recently by GradY[1981a,b). 
In this approach more significance is attributed to the dynamics of fracture 
activation and growth, including the nucleation process and the influence of 
material deformation properties. Mott[1947]' in considering a restricted geometry, 
combined the spatial randomness of the fracture process with the growth of 
plastic tensile release waves and predicted fragment distributions dependent on 
both dynamic and material properties. More recent studies [Shockey et al.,1974; 
Dienes, 1978; Margolin,19831 have focused on developing physically founded 
laws governing the nucleation, growth and coalescence of fracture during one
and two-dimensional stress-wave propagation. A different approach to the statis
tics of fragmentation has been proposed by Griffith [1943]' where particle frac
ture surface energy is related to the distribution through a unique applica
tion of classical Boltzmann statistics concepts. 

4.1 The Weibull Distribution 

The statistical representations which have been used to describe fragment 
size distributions are almost as numerous as the fragmentation phenomena. 
Most were selected from classical statistical formulas. The Wei bull representation 
is a flexible two-parameter analytic formula which has been found successful 
in describing a large body of fragmentation data. Application of the Weibull 



- 164 -

formula to fragment distributions appears to have been first suggested by Gates 
[19 15J. The most extensive comparisons of empirical data with this statistical 
representation was made by Rosin and Rammler(1933) in terms of mining and 
ore reduction applications. 

Considerable effort has focused on supplying a theoretical framework for a 
WeibuH description of fragmentation. Bennett[1936]' GilvarrY[1961]' and Kuznetsov 
[1975J have focused significant efforts in this direction, however, a clear theoreti
cal basis has yet to be demonstrated. In fact, exact applicability of a Wei bull 
representation to fragmentation has theoretical problems at the fine end of 
the distribution in terms of divergence of expressions for the fragment num
ber and fragment surface area. 

The purpose here is not to provide theoretical support for a Wei bull descrip
tion of fragmentation. A Weibull distribution has been found very successful in 
terms of describing fragmentation over the range of available data and is used 
here as a convenient means for examining systematic features of fragmentation 
phenomena. 

According to the Weibull representation of fragmentation, the cumulative 
distribution of fragment volume fraction (or mass fraction) finer than size, x, is 

(22) 

The volume density distribution is provided by the derivative of Equation 22, 

n(x)n-l (at)" v(x) =;;;; e- C7 (23) 

In Equation 22 or 23, 0', is the scale parameter and is closely related to the mean 
fragment size. The shape parameter, n, determines the variance and the skewness 
of the distribution. The Weibull representation has the flexibility of describing 
a very fiat distribution with, n:::::::: 1, to a strongly centered distribution for large 
values of n. 

The exponential expression in Equation 22 and 23 provides the cutoff for 
the large particle upper end of the distribution. If attention is focused only on 
the fine portion of the distribution (ie., x sufficiently smaller than 0'), then simple 
power representations are obtained with, 

(x)n V(x) = -;;. , (24) 
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and 

n (x)n-l 
V(X) = -;; -;; (25) 

This distribution is frequently convenient in application and has further con
venience in the present paper where comparison with other distributions which 
are not Weibull in their upper end behavior is desired. 

Experimental evidence indicates that the shape parameter, n, can range 
from as low as 0.5 to an upper limit of about 5. A theoretical upper limit of 
n = 6 is suggested by one statistical approach [Grady and Kipp,1983]. Behavior 
of the distribution shape over various methods of fragmentation is typified by 
the plot in Figure 4. A large body of fragmenting munitions data, exemplified 
by the work of Weimer and Rogers[1979] show values of n ranging from about 
4 to 5. Direct impact fragmentation experiments show n from about 2 to 3 
[Shockey et al.,l974] and in tension Hopkinson bar tests, where substantial 
shearing fragmentation occurs, values from about 1.2 to 1.8 are typical [Grady 
et al.,1981; Costin and Grady,1983J. A large and diverse body of fragmentation 
data show distributions with n equal or close to unity. Ball milling comminution 
of minerals results in distributions with n near one [Rosin and Rammler, 1933]. 
Explosive crushing experiments on glass spheres also provide values of n very 
close to unity [Bergstrom et al.,1962] 

Several examples can be cited from the geophysical literature. Perkins and 
Tilles[1968] have suggested that interplanetary debris, presumably due to comet 
disintegration or to 3...,teroid break up is best described by, n ~ 1, at least for the 
fine particles, While Matsui and Mizutane[1977] have found this particular dis
tribution appropriate in calculations of planetesimal fragmentation. Yamakashi 
et aI.[1981]'hav·e shown that magnetic spherules in deep sea sediments attributed 
to atmospheric ablation or to earlier fragmentation of iron meteorites, are also 
well described with a particle size distribution with n near unity. 

The data available are far from complete, or systematic, but evidence is 
mounting which suggests that the rather broad range of the distribution parameter, 
n, may be related, at lea.<;t in part, to the type or method of fragmentation. 
It appears that single tensile fragmentation leads to fragment size distribu
tions with large values of n. In contrast, fragmentation with significant shear
ing and continued comminution leads to lower values, with indications that 
n = 1 may be a limiting value. 
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4.2 The Single Fracture (Poisson) Limit 

In fragmentation phenomena, events in which abrupt, single or initial one
time fragmentation occurs, as opposed to events in which continued reduction of 
already broken fragments occurs, can be identified. For instance, a rapidly ex
panding spherical shell of material will undergo an abrupt fragmentation process 
when the tensile strength is reached. Individual fragments will continue to fly 
outward on roughly radial trajectories and no further breakage will occur. The 
distribution in fragment size is determined by the physics and statistics of the 
process at the time of failure. In contrast, when a brittle solid is deformed in 
shear, the initial fracture event is followed by continued comminution as frag
ments roll and tumble and repeatedly impact one another. As another example 
of continued comminution, if the spherical shell in the first example were a duc
tile solid or liquid and if the initial fragments were ejected at a sufficiently high 
velocity into a finite atmosphere, further fragmentation of these particles would 
occur through aerodynamic breakup, ablation, or burning processes. The final 
size distribution of particles is observed to reflect this multiplicity of breakup 
processes. 

The present section will focus on theoretical concepts leading to the frag
ment size distributions which result from the first example, namely, that of single 
fracture. The added effect of continued comminution will be considered in the 
following section. 

With one notable exception, which will be addressed later [Griffith,1943], 
theories focused on predicting fragment size distributions have started with the 
fundamental premise of a randomly cracked body. This immediately invokes 
concepts of Poisson statistics which were central to the developments of Bennett 
[1936]' Lienau [1935], Gilvarry [1961)' and Mott [1943]. The approaches differ and 
that of Lienau and Mott, who apparently were not biased by a desire to arrive at a 
Wei bull representation, appear to be the more correct application of the concepts. 
Extension of the statistical concepts to two and three dimensions proposed by 
Mott can be questioned, however, and an alternative method has been pursued 
by Grady and Kipp[1983]. The concepts are most readily appreciated in one 
dimension, however, where fractures are considered to be points distributed 
randomly on an infinite line. 

Consequently, consider, after the fracture event, an infinite one-dimensional 
line or rod along which fractures occur randomly with an expected or average 
size, :ro. Handomly distributed points on an infinite line obey Poisson statistics 
and the probability of finding, n, fractures in a length, x, is given by, 
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P( n, Xl = (:J e-f,; In! (26) 

To determine the probability distribution in fragment lengths, we first obtain 
the probability of a length, x, having no fractures in it, 

P(o, x) = e--f; , 

and then the probability of finding one fracture in a length, dx, 

1 
P(1, dx) = --dx . 

xo 

(27) 

(28) 

Then, the probability of finding a fragment of length, x, within a range of x to 
x + dx is given by, 

1 x 
elP = P( 0, x)P(1, dx) = - e-X;; dx , 

xo 
(29) 

\vhich provides an exponential fragment size probability distribution of the form 
[Lienau,1936]' 

) 
I_A.. 

p(x = - e XQ • 

Xo 
(30) 

The dynamic ductile fracture of radially expanding thin metal rings which 
closely approximates the one-dimensional fragmentation process has been found 
to be well described by the predicted exponential distribution [Grady et a1.,1983]. 

Mott[1913] recognized the applicability of the development of Lienau [W36] 
a.nd used it as the basis for deriving the well-known Mott distribution for the 
fragmenta.tion of thin shells. lIe reasoned that Equation 30 might still apply to 
two-dimensional fragmentation (and, by logical extension to three dimension) 
and related the linear measure of the random variable to the fragment mass 
through, x "'-' m~. A change of variables then provides the probability distribu
tion, 

p(m) = 1 e-JrnllL , 
2J/-Lm 

(31) 

where, /-L, is the expected value of the fragment mass. Integration provides the 
familiar Mott cumulative fragment number distribution, 

(32) 
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against which a large body of exploding shell data have been compared. 

Grady and Kipp[1983] have argued that, in the application of Poisson statis
tics to two and three dimensional fragmentation, a measure of area, or volume, 
respectively, should be selected as the random variable. For volume fragmenta
tion an exponential probability density distribution in the fragment volume, 

() 
1 _" 

p v = - e "0, 
Va 

(33) 

is obtained. 

When related to the cumulative mass distribution shown in Figure 5 the 
Mott development leads to a shape parameter of, n = 4, while that of Grady 
and Kipp provide, n = 6. It is currently believed that an upper limit of, n = 6, 
corresponds to truly random fragmentation. It is not yet clear, however, whether 
natural fragmentation is a strictly random statistical process, at least in the sense 
discussed here. 

4.3 The Multiple Fracture (Boltzmann) Limit 

As pointed out earlier, experimental values for the shape parameter, seem 
to range from about 1 to 5, and although not yet well understood, there are 
indications that the more complex the fragmentation event in terms of oppor
tunities for fragments to experience repeated breakage, the closer the value of n 
is to unity. For example, in the process of mineral reduction through ball milling 
[Rosin and Rammler,1933], resulting distributions show values of n very close to 
one, and numerous further examples exist, some of which were cited earlier. 

There are some immediate theoretical problems with a cumulative mass 
fraction distribution of the form, M(x) = xla (compare with Equation 24). The 
mass fraction density distribution is, dM Idx = 1/a, while the fragment number 
and area distributions should behave as, dN Idx ---., x-3 la, and dAldx ~ X-I la, 
respectively. Due to the behavior of the distribution at small particle size both 
the integrated fragment number and area are infinite. Consequently, a theory 
which explains the fiat, n = 1, distribution should also account for a cutoff at 
small particle size. 

A theoretical approach which holds some promise for explaining both fea
tures was suggested Griffith [1943]. This study was not pursued and has lain 
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dormant for a number of decades. Never-the-Iess its appeal to fundamental con
cepts is attractive and the ideas warrant further investigation. This approach is 
based on equipartition of energy concepts where the energy of interest is the new 
fracture surface energy created in the fragmentation event [Griffith,l943]. The 
basic premise is the same as that used in the development of classical Boltzmann 
statistics. Namely, the number of material elements in an energy state is deter
mined by the most probable distribution of all the material elements over the 
available energy states consistent with the total energy. The most probable num
ber of elements is found to be, 

(34) 

where the parameters a and f3 are determined by the total number, N, and 
energy, E, of the system and gj is the density of states corresponding to the 
energy level, Ej. In the present application the energy, E, corresponds to the 
new fracture surface energy. It is not clear that recourse to temperature is either 
necessary or has meaning. Since the surface energy of a fragment will be of the 
order, '1X2 , and the volume, of the order, x3, a relation between a particle energy 
state and size, of proportionality, 1/x, is arrived at. Griffith [1943] arrived at a 
distribution of the form, 

(35) 

where Band b are constant parameters of the distribution. In that development a 
uniform density of states was assumed which is not obvious and is one feature of 
the theory which should be considered more deeply. Never-the-Iess, the resulting 
distribution leads to a flat, n = 1, behavior at large particle size and has an 
exponential cutoff for small x. 

Grady and Varga [1983J have carefully analyzed the particle size distribu
tion resulting from an explosively shocked quartz sample to a shock pressure of 
approximately 8 CPa. A photometric apparatus was used to accurately deter
mine the particle size distribution down to less than 1 j.Lm. The particle size dis
tribution is compared with the theoretical distribution of Equation 35 in Figure 
5. For values of 11 = 0.001 j.Lm- 1 and b = 4.5 11m, the theoretical expression 
provides a remarkably good description of the data including the rollover between 
1 a.nd 10 j.Lm, the relatively fiat, n = 1, behavior between about 10 and 200 J-lm, 
and the large particle cutoff at 250 il,m. From the reasonably good agreement 
with the present fragment data, it would seen that the statistical energy theory 
of Griffith [1943J warrants more serious attention. The agreement may be for
tuitous, however. The application is significantly different from the usual physical 
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processes described by Boltzmann statistics and the treatment of the density of 
states is open to question. 

5 Continuum Modelling of Dynamic Fracture 

Practical application of the concepts of dynamic fracture mechanics typi
cally involve complex loading situations where the stresses and stress rates vary 
in both space and time over the region of interest. Applications to consider 
which illustrate the complexity of problems of interest include explosive blast
ing in single or multiple boreholes, with or without nearby free surfaces; im
pact or explosive cratering; and percussive or drag bit drilling, to name a few. 
Such applications involve unique stress-wave propagation geometries leading to 
the dynamic fracture process and are difficult to evaluate by strictly analytic 
methods. 

With the advance of high-speed computer methods, efforts have been directed 
toward developing continuum descriptions of the fracture, fragmentation, and 
wave propagation to evaluate complex fracturing events. Davison and Stevens 
[1973] have established the fundamental concepts necessary in a thermodynami
cally consistent continuum description of dynamic fracture. Several groups have 
pursued models based on the activation, growth and coalescence of inherent 
distributions of fracture-producing flaws to predict crack and fragment size 
spectra in brittle fracture [Shockey et a1.,1974; Grady and Kipp,19g0; Dienes, 
HJ80; Margolin,1982]. Other workers have preferred to apply well developed con
cepts from plasticity to the problem of fracture [Butkovich, 1976; Johnson,1978; 
Glenn,1976], predicting regions and levels of damage, nonrecoverable void volume, 
and tensile or shear fracture. The most appropriate approach has not yet been 
ide ntified. 

5.1 Directions In Continuum Modelling 

The present discussion of continuum modelling of dynamic fracture is not 
intended to be an exhaustive review. Rather, it points out the variety of ap
proaches which have been, and are still being, pursued to provide methods for 
calculating dynamic fracture phenomena. Such work is still quite active and con
siderable effort appears to remain before the best approaches emerge as mature 
calculational techniques. 
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One of the earliest, and simplest, methods for establishing a state of dynamic 
fracture within a stress-loaded body was to specify a tensile stress threshold 
(or spall threshold) at which point the corresponding elements were assumed 
to instantaneously fractured. The technique did illustrate certain of the stress
wave propagation features characteristic of fracturing bodies, however, it is now 
recognized that a fracture threshold independent of the size of the body and rate 
of loading is not a physical property. 

Davison and Stevens [1973] studied the application of high intensity and 
short duration loads to brittle materials which results in intense local fracturing 
or spaUing of the body. They introduced a concept of fracture damage in terms 
of a vector field describing the size and orientation of distributed penny-shaped 
cracks throughout the region of fracture. Damage was allowed to incur gradually 
according to some specified law of growth determined by the changing stress 
state at the point of fracture. 

This general idea has been pursued by others. Curran and coworkers in a 
series of papers [Shockey et al., 1974; Seaman et al., 1976; Curran et a1., 1977] 
have developed a theory of dynamic brittle fracture based on the nucleation and 
growth of penny-shaped crack fracture damage which evolves gradually to full 
coalescence of fragments. The inherent distribution of fracture-producing flaws 
is regarded as observable and petrographic methods are described in their work 
for determining such distributions. Laws based on the current stress state are 
specified to drive fracture nucleation and growth. The model has been imple
mented in two-dimensional stress wave codes and has been used extensively in 
several geo-engineering related applications. 

A model of continuum fracturing devoted primarily to explosive fragmenta
tion of oil shale was developed by Grady and Kipp [1980]. The general framework 
followed that of Davison and Stevens [1973] in that fracture damage represented a 
scalar variable measure of crack-like defects which could grow under appropriate 
tensile stress loading. Physics of the activation and growth process, however, was 
guided by a dynamic application of Wei bull statistical concepts which leads to the 
known size dependence of fracture stress observed in static testing [Jaeger and 
Cook, 1959]. This approach allowed the fracture damage activation parameters 
to be determined directly from experimental measured fracture stress and frag
ment size dependence on strain rate [Grady and Kipp 1979,1980]. 

A I3edded Crack Model of dynamic fracture for brittle and quasibrittle 
materials has been developed by Margolin and coworkers [Dienes, and Margolin, 
1980; Margolin and Adams, 1982; M?xgolin, 1983]. Fracture damage is based 
on a microphysical description of fracture following the Griffith theory and con-
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siderable care in consistently relating damage and material integrity through 
an effective modulus theory was achieved. The model is amenable to computa
tional simulation and dynamic fracture features such as rate dependent fracture 
strength appear naturally within the workings of the model. 

A somewhat different approach to stress-wave induced fracture is represented 
in the work of Butkovich [1976] developed to calculate underground explosive 
fracture and induced permeability in coal. The method is more akin to con
ventional elastic-plastic calculations in that stress-space surfaces of yield or 
failure are established to determine onset of fracture. Fracture due to shear
ing is explicitly treated and two parameters are associated with fracture damage; 
a shearing related distortional strain and a tensile induced cracking or porosity 
which is related to the permeability. 

A similar plasticity model of dynamic fracture has been described by Johnson 
[1978) and applied to explosive fracture in oil shale. A scalar fracture damage 
parameter is related to the damage-induced reduction in the unconfined yield 
stress of the material, although the parameter is a mathematical concept rather 
than a measured property. Damage growth is related to the over stress in ex
cess of a pressure dependent yield surface, with no damage growth above a 
brittle-ductile transition point on the yield surface. Computer simulations of ex
plosives placed in boreholes provided successful descriptions of extent and regions 
of fracture damage and dependence on explosive energy and geometrical features. 

5.2 An Application of Continuum Fracture Modelling 

Computer simulation of a complex dynamic fracture application can be il
lustrated by calcula,tions performed in support of large scale explosive fragmen
tation experiments conducted in the colony Oil Shale Mine near Grand Junction, 
Colorado [Harper and Ray,19811. The computer model used was that of Grady 
and Kipp [1980] and various extended applications have been considered by 
Boade et a!. [1981] and Chen et al. [1983]. In this model stress and strain are 
related through, 

(36) 

where f( and G are the intrinsic moduli of the oil shale and the time changing 
efTective moduli are determined by a scalar measure of the fracture damage, D. 
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the constitutive description in tension is provided by two rate equations for the 
fracture damage and fracture surface area, 

(37) 

(38) 

where the specific forms are determined by physical considerations of internal 
cracks to high rate loading and the Weibull crack statistics concepts noted earlier 
[Grady and Kipp,1979,1980j. The parameter Cg is a crack propagation velocity 
and n{ f) is a crack activation law specified by the Weibull fracture theory. 

The complexity of the stress waves generated by explosive charges, and the 
appearance of relief waves that emanate from free surfaces or regions previously 
fractured, necessitate the use of wave-propagation codes to address realistic 
problems. The codes numerically integrate the conservation equations of mass, 
momentum,and energy, along with the constitutive equations for the material. 
The fracture model described above was incorporated into the Lagrangian two
dimensional wave code, TOODY-IV [Swegle,1978]. 

A calculation is illustrated for one Colony Mines fragmentation experiment 
in Figure 6. This experiment involved the detonation of a 5.2 kg, 0.75 m long 
charge of AN-FO at the bottom of a 0.1 m diameter, 2.0m deep borehole drilled 
into the floor of the mine. Profiles of the excavated crater measured at 90° 
intervals around the axis of the borehole are shown in the figure. Based on 
earlier experiments [Grady et a1.,1980]' a damage level of 0.2 had been selected 
as a criterion for fracture damage levels sufficient for ejection. The numerical 
calculation established the damage contours and domains of fragment size shown 
in Figure 6 and are regarded as a reasonably good simulation of the cratering 
experiment. This type of calculation has been extended to evaluate concepts 
in explosive blasting [Boade et a1.1981]. Multiple charges with variations in 
placement and timing have been accessed. Optimization of charge decking in 
the same borehole has .also been performed by calculation. 
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6 Summary 

There appears to be a clear relation between the fracture threshold of a 
single crack subjected to high strain rate loading and the response of a crack 
system in determining the transient strength and fracture stress of a rapidly 
loaded body. Although certain conditions pertaining to the density and distribu
tion of flaws are apparently required, studies on rocks over a variety of material 
conditions and strain rates seem to support this observation. 

Perhaps one of the most interesting and important observations which is 
emerging from current studies on the bulk or continuum fracture properties 
of materials subjected to very rapid or impulsive loading is the importance of 
some measure of the fracture surface energy. A fracture toughness or strain 
energy release rate appears to be a necessary ingredient fundamental to both 
the dynamic strength of materials and in determining the number of cracks 
participat.ing in the fracture process along with the final fragment size in the 
failed material. 

This concept has been noticeably absent in the large body of continuum and 
computer modelling which has appeared in the literature to date. Considerably 
more emphasis has been focused on describing an initial condition of the body 
in terms of inherent flaws and weaknesses; perhaps more than is warranted. The 
ideas which are emerging suggest that both inherent flaw properties and energy 
conditions are probably important, but at the higher loading rates the latter 
effect becomes increasingly dominant. 

Lastly, the description fragment size distributions resulting from fracture 
events and relating these distributions to the different geometries, material properties, 
and loading conditions is an interesting and complex problem which, at present, 
is very poorly understood. Distributions are observed to range from sharply 
centralized to broadly dispersed and there are indications that these differences 
may relate to the mode and multiplicity of fracture. Physically based statis
tical laws including those of Poisson and Boltzmann are being compared with 
fragmentation data, however, observations and conclusions at the present time 
are very tentative. 
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7 Figure Captions 

Figure 1. Spall fracture strength of selected rocks. 

Figure 2. Strain-rate dependent fracture strength of several rocks. 

Figure 3. Strain-rate dependence of average fragment size in oil shale. 

Figure 4. Behavior of the fragment size distribution dispersion parameter 
over various fragmentation methods. 

Figure 5. Particle size distribution from shock fragmentation of quartz. 

Figure 6. Computational calculation of (a) fracture damage and, (b) mean 
fragment size, about an explosively loaded borehole in oil shale. 
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Summary 

This presentation discusses the mechanical description of 
the interface between two adjoining solids, rocks in particu
lar. The macroscopic mechanical variables of interest here 
are the shear stress 1(, the normal stress e-, the sliPS and 
the surface separation D. The possibility of slip in more 
than one direction, the relative rotation of neighboring sur
faces, or the effects of in plane stress components are not 
included. Also neglected are the effects of transient changes 
in temperature, chemical environment and fluid pressure. 

A t continuum point t., a concept that is not necessarily 
applicable in all situations, refers to a region that includes 
the adjoining surfaces as well as a thin layer of Solid. It 
must be large enough to average the hetorogeneous micro-mechan
isms, yet small enough that deformation of the adjoining solids 
is macroscopically homogeneous. The deformation variables ~ 
and D can be defined by the separation of material points on 
opposite sides of the surface and somewhat removed from it. 
The slip ~, for example, is the shear displacement not 
accounted for by the bulk deformation of an equivalent quan
tity of solid with the same stress state. 

Interest in the description of frictional constitutive 
relations has been motivated by the two general questions of 
1) strength and 2) stability. Most constitutive descrip
tions are primarily concerned with strength, the largest shear 
stress 'Y, for a given normal stress (f" as slip proceeds 
a macroscopic distance. Constitutive relations aimed at 
understanding stability of slip' are centered on conditions 
under whichT decreases with 4. We will emphasize this latter 
class of constitutive laws, especially the state variable laws 
that have followed from the work of Dieterich. 
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Abstract 

Geologic materials show localization on all scales from centimeters to 
kilometers, at all metamorphic grades and for extended periods of geologic 
history. We review here the analyses of shear localization for two end 
members of possible rheologies: 'brittle faulting' which is pressure
sensitive and relatively rate-sensitive, and 'fully plastic' flow instability 
which is temperature- and rate-sensitive and relatively pressure-insensitive. 

Localization in a pressure-sensitive, dilatant material has been analyzed 
as an instability in the constitutive relation of homogeneous deformation. 
Prediction from such bifurcation analyses is compared with recent laboratory 
and field observations. Difficulties still exist with regard to the 
appropriate representation of the complex micromechanical processes within a 
continuum framework, and the scaling from laboratory specimen to geologic 
dimension. 

Shear zone formation in the fully plastic region involves strain 
weakening which may be caused by thermal weakening. transition in flow 
mechamisms, weakening due to metamorphic reactions or several other causes. 
Our current understanding of the weakening processes is qualitative at best, 
and further theoretical treatment of the instability is limited by lack of 
quantitative field and laboratory data. 

Introduction 

Shear localization is observed in geologic materials on scales ranging 

from the size of thin sections up to zones that are hundreds of kilometers 

long and perhaps 30 km or so in width. Geologic deformation occurs over a 

broad spectrum of temperature, pressure, and time scales. At one end of the 

Preceding page blank 
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spectrum, localization results in shear bands commonly referred to as 

Ifaults', in which case the onset of localization occurs with relatively 

little inelastic strain (typically not more than a few percent) and 

insignificant dislocation activity. On the other hand, 'shear zones' are 
1 

quite common in geologic settings for which deformation is believed to have 

occurred at temperature and pressure high enough for crystal plasticity and 

possible steady state creep processes to be operative over the time scale 

involved. 

It is well known that predictions from localization analyses are very 

sensitive to the details of the constitutive equations used. In general the 

inelastic behavior of rock is expected to be pressure, temperature and rate 

sensitive with varying degrees of strain softening or hardening under the 

pressure and temperature range of geophysical interest (Figure 1). Therefore, 

relevant instability analysis can be carried out only for situations for which 

inputs on mechanical behavior from detailed laboratory and field studies are 

available. 

Since geologic materials are so rich in examples of strain localization. 

we will not attempt to present a comprehensive review of the whole subject. 

The transition from the brittle to the ductile field is extremely complex 

(Carter and Kirby, 1978,· Paterson, 1979). While a localization .analysis in 

this context is well worth study, our current understanding of rock rheology 

in the transitional regime is too limited for developing a meaningful 

theoretical frameworL We will therefore limit our scope and focus on two end 

members: brittle faulting where the deformation is highly pressure-sensitive 

and relatively rate-insensitive, and shear zone formation where the 

deformation is highly rate-senstive and basically pressure-insensitive. 

Following cuxrent rock mechanics usage, the latter mode of deformation will be 
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referred to as 'fully plastic.' 

Recent development in theoretical, field and laboratory work have allowed 

new insights into the brittle faulting process. An active research area in 

continuum mechanics is the analysis of shear localization as a bifurcation 

phenomeno~ Such an approach for a rate-insentive, but pressure-sensitive and 

dilatant material have provided a unified framework for the continuum 

description of .faulting (Rudnicki and Rice, 1975). On a microscopic scale, 

systematic electron microscopy studies (Wong. 1982) detail the complexity of 

the micromechanical processes and provide a comparison with the continuum 

description. At the same time, detailed mapping of geologic faults (Segall 

and Pollard. 1983: Aydin and Johnson. 1983) and seismological study of mining

induced earthquakes (McGarr II !.l., 1979) highlights some difficulties 

regarding the scaling question. The presence of water can have significant 

effects on the brittle behavior of rocks. This subject is discussed in 

another presentation (Rudnicki, 1983~ we will focus our discussion on brittle 

faulting in dry rocks. 

An analysis of flow instability has to take into account the strain-rate 

sensitivity. activation enthalpy, strain hardening (or softening) and 

adiabatic heating (Argon, 1973; Jonas, £1 !.l .• 1976). One major advance in 

rock rheology study in the past decade has been in the careful determination 

of the flow laws for steady state creep of materials thought to be 

constituents of the upper mantle and lower crust (Goetze. 1978.' Kirby, 1980). 

Such experimentally determined constitutive relations have provided the 

essential input parameters for baSically all the theoretical analyses of 

ductile shear zone formation. Mechanisms proposed include 'thermal runaway' 

(Yuen tl .!l .• 1978; Fleitout and Froidevaux. 1980), 'plastic instability' 

(Poirier II .!l.r 1979) and 'chemical weakening' (Sorensen, 1983). 



- 194 -

Another ad~ance has been through the extensive use of transmission 

electron microscopy and chemical microanalysis techniques in the study of 

deformation-induced microstructures. Systematic sampling in the field and 

comparison of the microstructures seen in field samples with those in 

laboratory specimens have provided important constraints on the operative 

mechanisms (Christie and Ord, 1980,· Kohlstedt and Weathers, 1980," White tl 

.!.l., 1980). 

In a certain sense, the analysis of shear localization for geologic 

materials proceeds along lines similar to earlier developments in applied 

mechanics for metal, polymer and metallic glass. This parallel development 

does not appear to be broadly appreciated nor fully exploited. We will try to 

emphasize such parallel developments where appropriate in the following 

discussion. 

Localization Analysis for Frictional, Dilatant Materials 

When loaded under compressive stresses in the brittle field, a rock fails 

by development of a localized shear band. This process, commonly called 

'faul ting' in a geologic context has been extensively studied, and a 

comprehensive review was recently given by Paterson (1978). We will first 

summarize recent theoretical results from bifurcation analyses of constitutive 

relations proposed for pressure-sensitive, dilatant materials and then compare 

them with experimental observations. 

The theory of local ization of plastic deformation was reviewed by Rice 

(1976), and results pertinent to geologic materials such as rock and soil were 

summarized by Cleary and Rudnicki (1976). Since then, there have been several 

papers proposing constitutive relations for rock-like materials (e.g., Bazant 

and Kim, 1979; Nemat-Nasser and Shokooh. 1980). Most of these involve 

pressure-dependent yielding and dilatancy but otherwise one similar in spirit 



- 195 -

to the flow theory of metal plasticity. We will focus on the following 

relation proposed by Rudnicki and Rice (1975) for brittle rock which has the 

essential features of this class of constitutive relations with the least 

complication: 

with 
P .. = a'· ./2'C 1J 1J 

Q •• = a'· ·/2'C 1J 1J 

+ A/3 S .. 
f' 1J 

V 
where Dij is the symmetric part of the rate of deformation, and aij is the 

spin-invariant Jaumann rate of Cauchy stress. The first term in bracket 

represents the usual Rookean behavior, whereas the second part is the 

inelastic contribution. a'ij is deviatoric part of the stress tensor, and 'C 

is the square root of the second stress invariant J 2• Note that the inelastic 

deformation is described by 3 parameters: a hardening modulus h. a dilatancy 

parameter ~, and a frictional parameter ~. 

The deformation is therefore rate-insensitive, and the relation reduced 

to the classical Prandtl-Reuss relation when the pressure dependence of 

yielding and dilatancy are insignificant. Rudnicki and Rice (1975) argued on 

physical grounds that subsequent yield surfaces should have a vertex 

structure. Non-normality coupled with yield surface vertices render the 

analysis to be more involved than that in classical metal plasticity. 

Recently. Needleman (1979) presented a detailed plane-strain analysis of the 

incompressible case. Rudnicki and Rice (1975) neglected terms of the order 

stress divided by shear modulus in their final computation. Vardoulakis 

(1980) and Anand and Spitzig (1982) recently suggested that such terms can be 

important in certain situations, and compare predictions from the more 

involved calculation with experimental data on granular sand. 
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Fitting stress-strain data for brittle rock, Rudnicki and Rice (1975) 

e s tima ted J.l to ranse from 0.4 to 0.9 and ~ from 0.2 to 0.4. For such 

materials. the bifurcation analysis predicts a localized zone inclined at 

about 300 to al (the maximum principal compressive stress) for a sample loaded 

to fracture under axisymmetric compression. This is in general agreement with 

experimental observations (Paterson, 1978). For a fixed J.l and ~. the critical 

value of h at onset of localization is strongly dependent on the loading 

configuration. In general, localization under plane-strain deformation has to 

occur at the hardening stage (Anand and Spitzig, 1982). For a wide range of J.l 

and ~, the critical h for axisymmetric compression is generally predicted to 

be very negative (well into strain softening). The result is modified if the 

influence of yield surface vertex (Rudnicki and Rice. 1975) and stress-induced 

anisotropy (Rudnicki, 1977) are included. 

lficromechanics of Brittle Faulting 

Earlier experiments with strain gauges (Hadley, 1975). acoustic emission 

(Lockner anell Byerlee, 1980). and holography (Soga II aI, 1978) indicate pre

failure localization of strain at a hardening stage. Direct micrOscopic 

observation requires samples deformed stably through the post-failure region 

with displacement control. Using a testing machine of high stiffness and 

special loading-unloading technique (Wawersik and Brace, 1971), Wong (1982) 

obtained complete suites of pre- and post-failure samples of Westerly granite 

for scanning electron microscope (SEM) study. 

The SEM observation points out the complexity of the localization process 

in this relatively isotropic. low porosity (about l~) rock. Inception of 

faul ting in the sense of local !zed deforma tion extending over two or more 

grains is quite evident in samples stressed to just beyond peak stress. The 

micromechanical processes leading to the formation of a through going fault 
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include a number of mechanisms dependent on mineralogy and grain orientation. 

These include three types of geometric instability well known to the material 

scientists: microbuckling of slender columns in grains segmented by 

microcrack arrays (Figure 2), with characteristic dimension of a grain size 

(Evans and AdlerJ 1978); kinking in biotite grains (Figure 3) which have 

reached the plastic yield stress (Frank and Stroh. 1952): rotation and 

crushing of 'joint blocks' formed by pore-emanated cracks in plagioclase 

(Figure 4), with characteristic dimension dictated by the pore spacing 

(Goodman, 1976). In addition, shear slip along cracks at high angle to 0'1-

favorable for frictional displacement is evident in the post-failure samples 

(Figure 5). 

A continuum description such as (1) of the brittle behavior of a 

complicated. polycrystalline material such as rock is probably adequate over a 

continuum element large enough for the effects of grain scale inhomogeneity 

and anisotropy to average out. The SEM observation shows that the mineral 

quartz. comprising about one-third by volume of the granite, has limited 

participation in the localization process in the initial post-failure stage. 

In other words, localized deformation extending over a continuum element with 

grains of all major mineral types is not observed until the sample has been 

deformed well into the post-failure stage. In this limiting sense, the SE101 

observa tion agrees with the theoretical prediction discussed above. 

Physical Theory of Dilatancy in Brittle Rock 

A number of physical theories have been developed aiming to determine the 

macroscopic stress-strain behavior of a brittle rock in terms of the 

micromechanical processes. A group of models, commonly referred to as 

'sliding crack models' postulate that frictional sliding along grain 

boundaries or cracks inclined at high angle to 0'1 pull open other tensile 
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cracks, causing the latter to extend parallel to al and giving rise to 

dUa tancy (Kachanov, 1982: Moss and Gupta, 1982). Kachanov's approach is in a 

sense similar to the slip theory of Batdorf and Budiansky (1949). His results 

show that there is limited path-independence for stress histories which do not 

depart too much from proportional loading, and elaborate on the development of 

yield surfsce corners. Important qualitative insights have emerged from such 

micromechanical models on phenomenological descriptions represented by (1) 

which are motivated by a phYSical model analogous to the 'sliding crack.' 

On the other hand, Stevens and Holcomb (980) argued on the basis of SEM 

observations and their own study of hysteresis in stress cycling tests that 

the 'sliding crack' is unreal istic. SEM studies of Tapponier and Brace (1976) 

concluded that dilatancy is primarily a consequence of two types of cracking: 

(I) widening and extension of pre-existing discontinuities, such as grain 

boundaries, cracks and pores; (2) initiation and propagation of cracks at 

localities with high contrast in elastic moduli, such as at transverse grain 

boundaries between different minerals. Recently, Kranz (1979) and Batzle et 

li. (1980) suggested that geometric irregularities such as asperities at grain 

boundaries may be important in the initiation of stress-induced cracks. 

A conclusion common to all the SEM studies is that the stress-induced 

cracks are in general 'mode I' tensile cracks. The crack orientation has a 

highly anisotropic distribution. and is mostly at low angles (say, less than 

ISO) to al' Neither Tapponier and Brace (1976) nor Kranz (1979) found a 

significant number of inclined cracks. Al though Wong (19S2) did observe a 

number of cracks inclined at high angles to al in granite samples deformed 

under pressure and temperafure higher than previous work, no appreciable mode 

II or III deformation along such cracks are evident in the pre-failure 

samples. 
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A number of mechanisms have been proposed as alternatives to the 'sliding 

crack.' Stevens and Holcomb (1980) suggested the 'reversible Griffith crack', 

and Janach and Guex (980) proposed the 'shear bubble' model which hinges on 

the behavior of interfacial cracks with different elastic properties on either 

side. The implications of such alternative micromechanical models on 

phenomenological descriptions have not been quantitatively explored in detail. 

There are, however. some recent observations in agreement with the 

'sliding crack model.' Focal mechanism study of acoustic emission from 

brittle rock undergoing dilatancy concludes that many of the emission sources 

can not be adequately represented by a tensile crack (Sondergeld and Estey, 

1982). strongly suggesting that shear slip has to be involved. Tensile 

opening of microcracks is easily resolved under the SEM. Whereas recognition 

of appropriate 'strain markers' helps one to identify shear displacement 

discontinui ty in the field. no unambiguous approach is available for 

identifying shear cracks under the SEM. 

The Scaling Problem 

The size effect is of particular importance in ro~k mechanics because of 

the large span in dimension between laboratory samples and rock mass involved 

in engineering practice or tectonic processes. Most of the data available are 

in em-size cylindrical specimens deformed in a conventional triaxial 

configuration. Several laboratories are interested in developing larte-scale 

testing facilities. and the progress was reported in a recent workshop (Cook 

and Heard, 1981). 

The size effect for uniaxial compressive strength has been investigated 

to an extent. The ratio of laboratory to field strengths for several 

relatively weak rocks can be as high as 10. and it seems that there is a 

critical size of about 1 m such that larger specimens suffer no further 
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decrease in strength (Singh. 1981; Brace. 1981). It is fair to say that more 

thorough studies. both theoretical and experimental. are necessary before a 

more definitive conclusions can be draw~ 

A question naturally arises as to the relevance of laboratory results to 

the understanding of large scale faulting. There are not many comprehensive 

field studies of the evolution of brittle faulting. Two recent studies on 

different scales concluded that the mechanical processes in the field are very 

similar to the laboratory observation. McGarr ~ Al. (1979) reported that the 

localized deforma Hon due to mining-induced earthquake s pos ses se s feature s 

quite similar to those seen by Hallbauer £! Al. (1973) in laboratory specimens 

of the country rock stressed to failure. A careful mapping of the Navajo and 

Entrada sandstones in Utah was carried out by Aydin and Johnson (1983), who 

cone 1 uded tha t many of their observa t ions can be adequately interpre ted by 

Rudnicki and Rice's model. 

However; a recent field study by Segall and Pollard (1983) concluded that 

the laboratory observation may not be universally applicable in the field. 

Their observation of faulting in granodiorite in the central Sierra Nevada 

indicates that faults are nucleated on pre-existing joints (large scale 

tensile cracks). The joints subsequently act collectively as a weak zone and 

undergo significant shear motion probably induced by a stress field rotated 

over time. More careful field studies of this nature are needed to clarify 

how applicable such a localization process is to other geologic settings. 

Localization of Flow in the Plastic Regime 

Lapworth (1985) was the first to describe a fine-grained, well-laminated 

rock along the Moine Thrust zone in Scotland and named it mylonite. Since 

then, geologists have recognized that mylonites indicate shear zones of 

localized deformation which may extend to continental dimensions (Figure 6). 
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Mylonites in such shear zones usually show grain size reduction. and some 

times show evidence of melting. The deformation mechanism is inferred to be 

rate-sensitive plastic flow in many instances. 

A convenient (but not necessarily exact) criterion commonly used for the 

localization analysis of rate-sensitive materials is that the onset of 

localization occurs if the load bearing capacity decreases with strain 

(Backofen. 1972; Argon. 1973). Recently, there have been some studies (e.g., 

Bai, 1982; Steif £1 ~ .• 1982) to explicitly consider the development of 

runaway instability of strain associated with an initial imperfection. 

There are two important differences between the usual material science 

and the geologic analysis of strain localization in this context. First. the 

change of area with loading is an important consideration especially with 

regard to the development of necking in metals. Al though there are 

extensional tectonic settings for which necking seems to be im~ortant 

(Taopponier and Francheteau, 1978) most of the shear zones occur at geologic 

settings for which the loading can be approximated as simple shear and 

therefore the area variation needs not be considered. 

Second, although thermal softening induced by adiabatic heating is of 

importance to metals only for dynamic loading (Culver, 1973; Costin et ~., 

1979) it can be significant for geologic materials with a much lower thermal 

diffusivity. As a matter of fact, most of the theoretical analyses have aimed 

to assess the possible contribution of thermal softening. Poirier (1980) 

recently presented a comprehensive analysis with the geologic problem in mind. 

He considered a constitutive relation for simple shear of the following form: 

a = M(l+n+m) ~o en em exp (mQ) 
RT 

(2) 

where M is the Taylor factor (Kochs, 1958), ~o is a constant possibly weakly 

dependent on temperature, e is the strain, £ is the strain rate, n is the 
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strain hardening coefficient (n = aa
l
. ). m is the strain rate sensitivity as 8, T 

(!~I ), and Q is the activa tion energy. as 8, T, ' 

He took for convenience the criterion for onset of localization that: 

a Ina = (1+n+m) dinM + dln't'o + .!! 
as de de e 

mdlne _ mQ dT = 0 
de R:r2 de 

(3) 

From left tlO right, the contributions from the different terms, are referred to 

as 'geometric softening,' 'structural softening.' 'strain softening,' 'strain 

rate softening.' and 'thermal softening,' respectively. Of course, they will 

be referred to as 'hardening' with the Signs reversed. 

It is quite evident from field evidence that metamorphism and deformation 

are often concurrent (Beach, 1980). Chemical reactions between minerals, 

influx or egress of water, and thermal perturbation can all alter the 

coefficients above. Although we discuss separate softening mechanisms below, 

it is important to recognize that the decoupling of processes is strictly 

pedagc.gical. 

Thermal Softening 

Among the mechanisms proposed for shear zone formation, thermal softening 

is probably the most thoroughly analysed from a theoretical point of view. 

Most of the geologic studies follow the approach of Gruntfest (1963) who 

showed that thermal runaway Occurs under constant stress (ao ) boundary 

conditions if the parameter: 

Gu ( 4) 

archieves a critical value. Here, ~o is the viscosity at temperature To' 1 is 

the characteristic dimension, and k is the thermal conductivity. The 

viscosity ~ at temperature T is given by ~ = ~o exp (-a(T-To». Gruntfest's 

formalism has been adapted to analyze the instability of magma flow (Fujii and 
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Uyeda, 1974) and glaciers (Clark .!!. aI, 1977). 

Although an instability condition such as (3) can in principle be applied 

to materials with a wide range of rheology, our current understanding of flow 

behavior of rock is limited. A fair amount of experimental studies have been 

performed on steady state creep of rocks (Goetze, 1976," Kirby, 1980). 

but; although the brittle-ductile transition is an area of active research 

(Tullis and Yund, 1977: Caristan. 1982), quantitative results on the flow 

behavior are too limited to be of much use for such an analysis. 

Yuen llli. solved the I-dimensional problem of coupled heat transport 

and deformation of two half-spaces with an instantaneous stepwise increase in 

slip at the interface. The rheology was taken to be Newtonian viscous. with 

the effective viscosity adjusted to agree with experimentally determined power 

law creep results. An important conclusion is that thermal runaway probably 

is uncommon with constant velocity boundary conditions (which is considered to 

be the more realistic situation for geologic application). In fact, the shear 

zone broadens out to a dimension that scales as the square root of time. 

If a characteristic dimension is introduced into the problem by 

specifying a width for a pre-existing weak zone (e.g., induced by a thermal 

anomaly), a transient stage is possible with strain gradually localized 

towards the cent er (F1 e i tout and Froidevaux. 1980). As expected, the 

subsequent long-term behavior will be similar to that considered by Yuen £i 

a1. (1978). 

Poirier et al. (1979) considered a more realistic rheology by including 

transient creep behavior extrapolated from Goetze's 0971} experimental data 

for Westerly granite. An initial imperfection with a flow stress lower than 

the surroundings (at the same temperature and strain rate) is introduced. No 

runaway instability is possible with constant velocity boundary condition even 
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for total Ildiabaticity. As a matter of fact, the long term response of the 

weakened zone is to deform uniformly at a strain rate which scales as the 

ini tial strength defect and the inverse of" strain rate sensi tivity. 

A common conclusion to all these studies is that the thermal anomaly 

characteristically extends to a dimension wider than that for strain 

concentration, which can be significant in the field comparison of mineral 

assemblages and strain data. However, the degree of strain concentration 

predicted by the model calculations is not as drastic as some of the field 

observations. The results may be modified if one performs the computation for 

a 2- or even 3-dimensional geometry. Necking, for example, is sensitive to 

the geometry and loading configuration (Backofen, 1972). However, the major 

weakness is probably the inadequacy of the constitutive relations used. We 

will discuss below the field and laboratory observations which all point to 

the complexity of softening mechanisms. A quantit~tive description of these 

mechanisms is urgently needed before a more realistic consideration of shear 

zone formation is possible. 

Geometric, $tructural and Strain Softening 

In addition to the inference that plastic flow has occurred, three 

elements seem to be intrinsic to the definition of a mylonite: 1) occurrence 

of a planar zone, narrow with respect to the surrounding undeformed rock, 2) 

reduction of grainsize from protolith to mylonite zone, 3) enhanced feliation 

or lineation (Tullis tl .!l., 1982). The first of these elements is, of 

course, the evidence for localization of shear (Ramsay. 1980). However, it is 

important to remember that while the field evidence certainly indicates at 

least transient strain localization. the steady state shear zone structure is 

not known. In fact, Sorenson (1983) has argued, on the basis of field 

evidence, that strain softening of the rocks may indeed be followed by strain 
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hardening. 

It is generally believed that the grain she reduction in shear zones 

occurs by recrystallization during deformation. 1. e., dynamic 

recrystallization (Bell and Etheridge. 1973; White, 1977; Christie and Ord, 

1980: Koh1stedt and Weathers, 1980) although small grain sizes could also 

result from the formation of new minerals (Robin, in Tullis tl al •• 1982). 

Experiments on dynamically recrystallizing metals document weakening of 0.20 

of the yield stress or more at the onset of recrystallization (Glover and 

Sellars, 1973,' Sellars. 1978: Ion et li., 1982). Micrographs of these 

experiments show newly formed grains along previously existing grain 

boundaries. There is a striking similarity between the textures in the 

dynamically recrystallized metals and in materials deformed in the 

superplastic regime on the one hand, and the progression of textures in a 

mylonitic shear zone on the other hand. For example, compare micrographs from 

Glover and Sellars (1973) or Ion et al., (1982) with Figure 7 (from Kohlstedt 

and Weathers, 1980). Thus it has been suggested that the strain localization 

in the shear zone results from strength differences between the coarse grained 

protolith and the fine-grained mylonite. The difference may result from 

geometric weakening due to preferred orientation of the dynamically 

recrystallized grains, or from structural weakening induced by increased 

recovery due to recrystallization from enhanced grain boundary sliding (see 

White. 1977 for a review) or a transition to diffusional superplastic flow 

(Boullier and Gueguen, 1975). An additional source of structural weakening 

may derive from the strength differences due to rearrangement of the geometric 

distribution of the phases in po1ymineralic rocks (POirier, 1980). 

Al though comparisons between the dynamically recrystallized metals and 

textures in geologic shear zones are intuitively and esthetically appealing. 
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recent experiments on dynamically recrystallizing rocks are equivocal. Post 

(1977) has observed localized zones of finely recrystallized grains in a 

series of mechanical tests on Mt. Burnett dunite. The formation of 

recrystallized zones 'Was sometimes associated 'With stress drops of 0.3 0.6 

of the peak stress. Those stress drops have been ascribed to either the onset 

of grain-size sensitive flow (Twiss, 1976: Goetze, 1978) or transient creep 

effects (Post, 1977; Zeuch. 1982, 1983). However, other experiments in 

peridoti te (Chopra and Paterson, 1981), quartzite, (Christie et a1., 1983) and 

limestone (Schmid, Paterson, and Boland, 1980) deformed to large strains do 

not show strain weakening during recrystallizatio~ 

Recent experiments on peridotites (Chopra and Paterson, 1981) and hal ite 

(Guillope and Poirier, 1979) may provide important keys to reconciling these 

results: Chopra and Paterson showed that the presence of water promotes 

recrytallization and have suggested that the decreased strength of 'wet' 

samples is due to stress relaxation along grain boundaries. Guillope and 

Poirier (1979) have demonstrated that dynamic recrystallization m~y occur 

either by progressive subgrain rotation or grain boundr..ry migration. Poirier 

(1980) has suggested that no weakening would be expected during the operation 

of the former mechanism. Thus. on the basis of present experimental data, the 

presence of finely recrystallized material cannot necessarily be presumed to 

be causative of strain weakening. It is possible that both the production of 

fine grains and the operation of strain weakening may depend critically on the 

introduction of water or some other chemically weakining agent (Etheridge and 

Wilkie, 1979,. Sorenson, 1983). 

Metamorphic Reactions and Strain Softening 

It has long been recognized that deformation in shear zones commonly is 

accompanied by metamorphic reactions (Teall, 188S,· Beach, 1980). Often times, 
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petrologic examination reveals that the shear zone was an open chemical system 

and that minerals in the zone have undergone extensive hydration (Kerrich £1 

.!l., 1977: Beach. 1980). However this need not always be true, since in at 

least some cases, localized strain may develop in rocks undergoing prograde 

reactions (e.g., Brodie, 1980,1981). 

Mechanical tests on metals, ceramics and minerals alike show that both 

brittle and plastic strength may depend on the chemical environment. For 

instance, deformation by pressure solution is strongly dependent on the 

chemical properties of an intergranular fluid (Robin, 1978). Deformation of 

quartz by dislocation and diffusional mechanisms is dramatically affected by 

the presence of water (see a review by Paterson and Kekulawala, 1979) and 

perhaps by the activity of other chemical species as well (Hobbs, 1981). 

Furthermore exothermic metamorphic reactions (e.g., retrograde hydration 

reactions) will provide an additional heat source. 

Tbe metamorphism may also cause structural weakening since the reaction 

products form a new mineral assemblage which may be weaker than the unreacted 

rock (White and Knipe, 1978~ this is particularly so i~ the case of hydration 

of feldspar to form phyllosilicates. In addition, new minerals dispersed 

throughout the matrix may inhibit grain growth allowing grain size sensitive 

mechanisms including diffusional flow, pressure solution or grain boundary 

sliding to operate with enhanced strain ra tes (Etheridge and Wilkie, 1979). 

It is clear that chemical reactions may profoundly affect the mechanical 

strength of rock~ apparently the converse is equally true. Reduction of the 

grain size of a potential reactant will increase the grain boundary area 

available as a reactant site (Mitra, 1978.° Wintsch. 1975) and can potentially 

greatly increase the metamorphic reaction rate. Deformation may also increase 

the rate of introduction of water, either through dilatancy enhanced 
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permeability (Sibson, .!!.!.!, 1975) or by plastic strain. It has been shown 

that the temperature of the a-p phase transition in quartz is affected by 

nonhydrostatic stress (Coe and Paterson, 1969) and it is probable that other 

mineral equilibria will also be affected CYund and Tullis, 1980; Wintsch, 

1975, 1981). Finally, chemical potential gradients due to non-hydrostatic 

stresses may well couple with gradients between reactants and products to 

cause increased diffusion rates (Brodie, 1980) or to provide favorable 

nucleation sites for new minerals (Knipe, 1979). Thus concurrent metamorphic 

and deformation processes are tightly coupled, and to understand the 

mechanical behavior of reacting mineral assemblages will require the 

consideration of both sets of phenomena. 

Conclusion 

We reviewed here the study of shear localization in geologic materials in 

two contexts. An interesting observation is that our understanding of the two 

phenomena, brittle faul ting and shear zone formation. seem to have followed 

quite different lines of development. 

Laboratory studies of dilatancy and fracture in brittle rock have been 

very active in the past twenty years or so. The quantitative evaluation of 

the stress-strain relationship as well as microscopy study of stress-induced 

microstructures have motivated seminal work on the formulation of constitutive 

equations incorporating dilatancy and pressure-sensitivity. The subsequent 

bifurcation analyses provide insight on the importance of both loading 

configurations and physical parameters on the onset of localization. 

In contrast. only limited field study with a quantitative approach has 

been made. although the phenomenon is widely observed in tectonic settings. 

As a result, a number of important questions concerning the scaling problem 

remain unanswered. 



- 209 -

On the other hand, the tectonics study of shear zones has been an active 

area of research. Field evidence frequently indicates that fluids have 

entered sheared regions and that metamorphism and deformation are concurrent 

and, quite probably, intricately coupled processes. Geometric. structural and 

strain softening may result from spatial redistribution of a weak phase, 

refinement of grain size and subsequent transition to grain size sensitive 

creep. reduction of the Taylor factor due to the production of preferred 

orientation. or increased recovery due to transient creep effects. 

In contrast, quantitative study of this problem in the laboratory is very 

limited. partly due to the experimental difficulty and partly due to the 

complexity of the process. Although a generalized framework can be adapted 

from materials science, the advance in theoretical interpretation is 

relatively slow in the absence of appropriate constitutive equations for 

strain softening specialized to geologic materials. Thermal softening is one 

problem analyzed theoretically to some detail. and thermal runaway appears to 

be unlikely unless imperfection with drastic strength reduction is present or 

the boundary condition is approximated by constant stress. 
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fhpre Caption, 

Figure 1. Schematic drawing of a two layer model of a large fault zone (after 

Sibson). 

Figure 2. Axial crack arrays in microcline (mi) and quartz (qtz) observed in 

a sample retrieved just after loaded to the peak stress (0'1-0'3 = 

1.21 GPa). The confining pressure C(3) was 250 MPa and temperature 

was ISOoC. The microcline grain has segmented into slender columns 

and incipient microbuckling is evident. Mineral at the top is 

plagioclase (pg). Maximum compression (0'1) was vertical. 

Figure 3. Kinking in a biotite grain located right next to the shear band in 

a post-failure sample deformed at 250 MPa and 1500 • Note the 

cracks along the easy slip planes. 

vertical. 

Maximum compression was 

Figure 4. Pore emanated cracks in a plagioclase grain in a post-failure 

sample. The spacing of the pores seems to dictate the 

characteristic dimension of the 'block' structures which undergo 

rotation and crushing to accomodate strain localizatio~ Maximum 

compression was vertical. 

Figure 5. Coalescence of a crack array in quartz (qtz) and a crack network in 

plagioclase (pg) wi th a grain boundary (g) to form a throughgoing 

fault. The long axial cracks in quartz outline slender columns 

that were continuous and have buckled during the instability 

process, wehreas not many well-defined elongatpd columns can be 

traced in the plagioclase grai~ At high magnification, the longer 

cracks in the latter can be seen to be joining up with pores. 

Shear slip along the grain boundary is evident. Maximum 

compression was vertical. 
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Figure 6. Aeiral photograph of the Nordre Stromfjord shear zone in Greenland. 

The rocks above the fjord are largely undeformed while those below 

the fjord have suffered strains about 6.0. The total offset along 

the 120 km long feature is about IS km. The width of the fjord in 

the photograph is about 3 km. 

Figure 7. Transmitted light photomicrographs of the development of 

microstructure in a quartzite from the Idaho Springs-Ralston shear 

zone showing progressively larger amounts of dynamic 

recrystallization towards the center of the shear zone. The 

similarity of these textures to dynamically recrystallized metals 

is striking. (From Kohlstedt and Weathers, 1980, permission of 

American Geophysical Union). 
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FRACTURE PROPAGATION IN ROCK 

A. R. Ingraffea 
Associate Professor of Structural Engineering 

Cornell University 
Ithaca, New York 14853, U.S.A. 

1 . INTRODUCTION 

Suppose one wants to predict numerically the stability and trajectory of 

a set of discrete cracks in rock or a rock mass. Further, suppose one wants 

to apply a rigorous, fracture-mechanics-based approach to this situation. 

Two problems immediately present themselves. First, how does one measure, 

accurately and inexpensively, the fracture toughness of the rock? Second, how 

does one formulate a numerical model which captures all the physics required 

by fracture mechanics as applied to rock? 

The intent of this paper is to answer both of these questions. A survey 

of actual and potential applications of fracture mechanics principles to the 

problem of crack propagation in rock is unnecessary. One has only to scan the 

Proceedings of the United States National Symposia on Rock Mechanics over the 

past decade to understand that such applications range over virtually all time 

and distance scales of interest to geotechnical, structural, and materials 

engineers. An excellent starting point for such a perusal is the excellent 

keynote paper by Fairhurst and Cornet [1]. 

Again, rather than summarizing all developments in fracture toughness 

testing of rock, this paper will detail a single method which is likely to 

become a practical standard. The reader is referred to excellent summaries 

by Barton [2] and Ouchterlony [3] for range and background on this topic. 

While other, more exotic numerical methods are being brought to bear 

on the modelling problem, approaches based on standard finite and boundary 

1 
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element formulations are detailed here. The reader will surely find counter

point to these methods in the accompanying Discussion to this paper. 

Finally, what of the synergism between computer and numerical method in 

the area of rock fracture modelling? State-of-the-art interactive graphic 

techniques can, as will also be shown here, greatly facilitate the solution 

to this difficult class of problem. 

2. FRACTURE TOUGHNESS TESTING 

As part of his activity with the ASTM Subcommittee E24.07 on Fracture of 

Brittle Non-Metallic Materials, the proposer conducted an international survey 

of fracture toughness testing techniques for rock. Results of that survey, 

conducted in 1979, indicated that no fewer than ten different specimen geome

tries had been employed for this purpose. Since then, interest has continued 

to grow rapidly as evidenced by the recent compilations by Ouchterlony and 

Barton mentioned above. Together, these summaries of test results indicate 

that at least 70 rock types have been tested using no fewer than two dozen 

different geometries. 

Evolution of Practical Fracture Toughness Testing Specimens 

Selection of the most appropriate geometry for practical application, as 

opposed to basic research, testing can be approached by applying the following 

constraints. The specimen must: 

1. Be easily and inexpensively prepared from core with minimal wastage. 

It is anticipated that a large number of tests would be required to 

accommodate in a statistically meaningful way variation in test 

parameters and lithologies. This constraint 1n itself effectively 

eliminates from consideration geometries requiring many and accurate 

machining operations. In the writer's best judgment, the only 

candidate geometries remaining after application of this constraint 
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are core-based; these are the hollow pressurized cylinder (PC) [4], 

the short-rod (SR) [5], the single-edge-cracked (or chevron-edge

notched) round-bar-in-bending (SECRBB, CENRBB) [6], and the disc

shaped compact specimen (DC(T» [7]. Figure 1 shows how it would 

be possible, using the last three geometries, to use a single length 

of core to measure toughness in three mutually perpendicular 

directions [8]. It is apparent that if there is not a large 

anisotropy in toughness, the more-difficult-to-test DC(T) specimen 

would be superfluous. 

2. Be able to produce valid fracture toughnesses with one dimension as 

small as two inches. Since only preliminary testing can indicate 

minimum dimension requirements for valid results, it is difficult to 

say whether this constraint would, a priori, eliminate any of the 

candidates listed above with the common NX core size. It should be 

noted, however, that only one of those geometries, the short-rod, 

offers the possibility of testing cracks longer than the core 

diameter. 

3. Be easily instrumented and loaded, even at high temperatures. This 

constraint effectively eliminates the HPC from consideration because 

of the effect of high temperature on the pressurizing fluid and 

pressure seals. Monitoring crack length in the CCD would also 

present a problem. Loading and instrumentation on the SECRBB/CENRBB 

and SR are straightforward at room temperature, but require some 

modification for high temperature testing. 

4. Possess a firm analytical basis in the form of compliance and stress 

intensity factor calibration. The SR [9,10,11], the SECRBB/CENRBB 

[6,12], and the DC(T) [7J meet this constraint. 



- 230 -

5. Have a proven track record of use on rock. The writer [13,14], 

Barker [5J, and Atkinson [15] have together tested at least 30 

different rock types using the SR. The SECRBB/CENRBB has also seen 

extensive use on rock [6,16]. 

Other constraints may well arise. For example, if available core is 

subject to discing, the SECRBB/CENRBB may not be suitable in that, with its 

crack propagating ~n the direction of the discing planes, it might produce 

biased toughness measurements. 

Application of these constraints and observations indicates that only 

two candidate specimens currently exist, the SECRBB/CENRBB and the SR. 

Actually, of the two RBB specimens, only the CENRBB should receive further 

consideration since, like the SR, it has the distinct advantages of a chevron 

notch design. These considerable advantages are: 

1. No fatigue precracking is required since a natural crack is produced 

during the stable growth phase of loading. 

2. Neither crack length nor displacement measurements are required if 

the specimen conforms to LEFM size restrictions. Even if small-scale 

inelasticity is permitted, that is, the specimen is used for J Ic or 

KP (defined below) measurement, crack length is still not required. Ic 

3. To evaluate K
Ic 

on specimens meeting size restrictions, only the 

maximum load applied by a soft testing machine is required. 

In a comparison between the SR and CENRBB specimens, the CENRBB ~s eas~er 

to prepare, while for the SR substantially less core length is required, 

load-line-displacement is easier to measure and, as noted above, much longer 

natural crack lengths are available. 

The author has used the SR extensively in fracture toughness testing of 

a wide variety of rocks at Cornell University [13,14]. In the next section 

experience with the SR is detailed with descriptions of specimen calibration, 

testing technique, and result interpretation is presented. 
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The Short-Rod Testing System 

Considerable effort has been expended in establishing complete testing 

systems built around the short-rod [17,14]. The starting point for such a 

system is accurate compliance and stress-intensity factor calibration of the 

specimen. An entire symposium [14,18] was recently held on this topic. A 

proposed standard short-rod geometry, Figure 2, very similar to that used in 

all testing at Cornell, was analyzed by a number of workers using both finite 

and boundary element techniques. The results of these analyses can be 

expressed as follows. For critical stress-intensity factor, 

P Y. max m1n 

Brw 
where, 

P = maximum applied load max 

B = specimen diameter 

w = specimen length 

and Y, 1S the minimum value of the average, normalized stress intensity m1n 

factor given by, 

here, 

Y = 

b = length of the crack front 

a = crack length 

C = compliance at point 1 in Figure 2 

The Y, value found in the author's analyses is 28.3 and occurs at a m1n 

critical crack length, a , of O.83B. This value is in excellent agreement 
c 

with those obtained analytically and experimentally by other workers [10,18]. 

A least-squares fit to computed compliances produced the following 

expression, 
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Fig. 1 Three core-based test specimens from one piece of core. From Ref. 8. 
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Fig. 2 Preferred short-rod specimen geometry and nomenclature. From Ref. 11. 
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CEB = -3049 + 20l24.7(a/B) - 52052.3(a/B)2 

+ 67368.7(a/B)3 - 43334.7(a/B)4 

+ lll92.9(a/B)5 (3) 

which is valid for 0.65 < alB < 1.1. Equations 1 through 3 are valid if LEFM 

restrictions are met by the specimen S1ze in use. The short-rod can also be 

used, however, to produce J Ic or JIc-like measures of toughness through simple 

calculations described later. 

A practical testing system should not involve time consuming, expenS1ve 

specimen preparation procedures. Three simple operations are used to prepare 

a short-rod specimen directly from rock cores. First, the specimen is cut to 

a nominal length of 1.4SB using a standard, water-cooled, rock cut-off saw. 

The ends are made parallel by proper adjustment of the core guide prior to 

cutting. Second, the diametral cuts are made. The specimen is held at the 

proper angle for each of two cuts necessary to produce the chevron notch by 

a simple fixture which prohibits core rotation about its axis between cuts. 

Lastly, metal end plates are epoxied to the top surfaces to act as loading 

lines for the splitting force. The use of plates as opposed to the groove 

shown in Figure 2 was chosen for load transfer because the latter method would 

require a grinding operation. Preparation time is such that a technician 

with minimal training can prepare 20-30 specimens a day from rock cores. A 

prepared specimen is shown in Figure 3. 

The method of testing of a short-rod is also straightforward and involves 

application of an opening load to the mouth of the specimen. As the load is 

increased, a crack initiates at the point of the chevron slot and advances 

longitudinally in a stable manner, tending to split the specimen in half, 

Figure 3, right. If microcracking and plasticity effects are negligible, the 

opening load reaches a maximum when the crack reaches a critical location; 

thereafter, the crack-advancing load decreases with further crack growth. 
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The maximum load is linearly related to the fracture toughness, K1c ' from 

fundamental principles of linear elastic fracture mechanics by way of Equa-

tion 1. 

In tests at Cornell the splitting force is applied with a simple 

mechanical testing apparatus. The loading device is hand held and operated 

and is shown in Figure 3. Turning the actuating knob creates the splitting 

force which is read directly on an integral force gage. General test 

procedure consists of inserting the jaws of the loading device between the end 

plates, turning the knob, and recording the failure load which is given by a 

following needle on the gage. 

Testing of a range of rock types showed that application of the splitting 

force sometimes caused horizontal shearing failure in specimens with weak 

bedding planes when these planes were close to perpendicular to the expected 

fracture plane, Figure 4, lower right. The method used to eliminate this 

phenomenon was an application of an axial pressure prior to testing. This 

pressure serves to give the bedding planes greater shearing resistance. The 

clamps used to apply the pressure were calibrated. Accordingly, a known 

torque on the clamps produced a known pressure. The modification to the 

general testing procedure for axial loading involved applying and tightening 

the clamps to give the desired a~ial pressure prior to insertion of the jaws 

of the loading device. As before, the failure load is recorded and is sub-

stituted into a relationship like Equation 1 which has been corrected for 

axial pressure [14]. Figure 4 shows the clamps attached to a specimen ready 

for testing. 

If the crack tip process zone, which might be experiencing microcracking 

and/or plasticity, is too large relative to the crack length to be negligible, 

but still sufficiently small compared to other specimen dimensions, the 

measured critical stress intensity assumes the role of K. An inelasticity 
Q 
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Fig. 3 NX size short-rod specimens of Indiana limestone. Prepared for test, 
left. After test, right. 

Fig. 4 Premature failure of specimen, lower right. Calibrated clamps on 
specimen, rear. 
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correction factor can then be applied to KQ to produce a Kic value. Hereafter 

KP is used to denote the "elasto-plastic K "whose meaning and measurement Ic Ic 

were first described by Barker [19]. Kic is similar to J Ic in that it is a 

value of toughness which would be equal to a K
Ic 

obtained from a spec~men 

large enough to meet LEFM restrictions. There are substantial differences 

between the two and also certain advantages ~n using the Kic approach. These 

are discussed by Barker [19J who used a Kic approach to obtain valid KIc 

values for Indiana limestone from specimens which were too small to produce 

KIc from LEFM calculations [20]. 

If the specimen is sub-size, a record of load versus any displacement 

proportional to the load-line displacement ~s required to measure Kic' The 

equation proposed by Barker [19] for computing KP ~s, 
Ic 

1 + 1/2 
= ( P) 1 p KQ 

where 

KQ = critical stress intensity as computed from Equation 1, 

where, for this case, P is replaced by the load max 

corresponding to the critical crack length, a = 0.83B. 
c 

p = inelasticity correction index 

The correction index is computed from a load-displacement plot, such as the 

hypothetical example shown in Figure 5, by way of, 

/'J.x 
o 

P - /'J.x 

The reader should study Reference 19, and for justification of Equations 4 

and 5. 

Figure 6 is a plot of apparent toughness, K
Q

, versus crack length for 

over 100 tests on Indiana limestone. Four investigators and five specimen 

geometries were used over a period of ten years to generate these results. 

(4) 

(5) 
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; 

(LOAD POINT OPENING) 

Fig. 5 Idealized load versus load point opening loading cycle for ~hort-rod 
specimen with small scale inelasticity. From Ref. 19. 
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References cited and figure itself are in Ref. 14. 
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Of special interest here are the short-rod results from Cornell, labeled as 

present study, and by Barker. Results from 34 tests at Cornell (slightly 

corrected for deviation from nominal dimensions) plot well within the KQ vs 

a trend established by other geometries. Barker's results are actually values 

of KP and indicate that, for Indiana limestone, the NX core size used for the 
Ic 

Cornell tests is not quite large enough for LEFM use. 

It is certainly safe to say that, with the introduction of the short-rod 

testing system, toughness measurements, even when limited by available core 

size, are now practical. With information controlling the behavior of a 

discrete crack available from testing, it follows that techniques for emloying 

such information in an analytical model should be addressed. 

3. NUMERICAL MODELLING OF DISCRETE CRACK PROPAGATION 

Why should one study fracture propagation? Is not prediction of fracture 

initiation the object of fracture mechanics? In his papers on rupture under 

tensile and compressive loading, Griffith [21,22] proposed conditions for 

fracture initiation which he presumed to be coincident with structural 

instability. The vast majority of the fracture mechanics research since 

Griffith has addressed the problem of predicting structural failure as the 

immediate consequence of fracture initiation. Yes, considerable attention has 

been focused on sub-critical crack growth as in fatigue and ductile fracture. 

However, the amount of propagation before fracture initiation in these cases 

is typically small compared to that which potentially occurs after. Why, 

then, should one be interested in modelling propagation: where a crack goes, 

what it does along the way, and how much energy it takes to get there? 

There is nothing in the rules of rock mechanics (or fracture mechanics, 

either) which says that a fracture, once initiated, is always unstable. It 

may stop. Where? Why? What was its trajectory? What must be done to get it 

going again? Moreover, these questions must be addressed for each crack since 
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in rock mechanics study of the propagation of a single crack is not often the 

case. So, already one has: 

Observation #1: Fracture propagation can be stable in the load 

control sense. Assuming linear elastic fracture mechanics (LEFM) 

conditions (unless otherwise noted), this implies that stress-intensity 

is decreasing with increasing crack length. As shall be seen, this 

situation is generally due to the preponderance of compressive in situ 

stresses and loadings in geotechnical engineering. Obviously, it will 

not be sufficient just to compute stress-intensity factors for an initial 

crack configuration. A good numerical model should be able to update 

stress-intensity factors as crack length changes. 

Observation #2: Propagation of multiple cracks is common in realistic 

problems of rock mechanics. A numerical model should be versatile enough 

to accommodate propagation of many cracks. 

This latter observation leads to another difficulty 1n modelling of frac

ture propagation. With each growth increment of a given crack, a new boundary 

value problem is generated. Displacement and traction boundary conditions may 

change, stress trajectories are altered, even loading may change in direction 

and intensity. As a consequence, propagation of one crack may cause 

initiation of another, and cracks may influence each other's stability and 

trajectory. This is clearly the case in dynamic fracture because of stress 

wave reflections. But without a periodic "look" at the full stress field 

during quasi-static propagation, one might overlook: 

Observation #3: Each increment of fracture changes the structure. 

One should be able to predict the effects of this change on the 

stress field and on other cracks. 

With the possibility of mUltiple cracks propagating quasi-statically one 
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must dispense with another simplification often applied in fracture mechanics, 

that of self-similar propagation. Curvilinear (mixed-mode, to some people) 

crack propagation is common in rock mechanics. Therefore, one must have: 

Observation #4: Cracks curve during propagation in response to a change 

the stress field. A numerical model should be able to predict a changing 

crack trajectory. 

Moreover, if one accepts that mixed-mode stress intensity factors, for 

example KI and K
II

, can be present along a crack front, then there follows: 

Observation #5: Theoretically, mixed-mode fracture initiation can 

occur when Kr ~ KIc ' Consequently, a numerical model must incorporate 

an interaction theory which accurately predicts the critical mixture 

of stress intensity factors which will cause the next increment of 

propagation. 

Of course, fracture can be foe as well as friend to the geotechnical 

eng1neer. Mine, tunnel, dam abutment, and rock foundation instability prob

lems are often the result of unpredicted fracture propagation. A numerical 

model which can predict the likelihood of a roof fall or rock burst, and can 

suggest a method of fracture stabilization or an alternate form of energy 

release can be an invaluable design tool. 

Clearly, the problems of crack propagation modelling, even with the 

simplifying assumptions of LEFM, are manifold. The problem begins with frac

ture initiation, so one has to go a bit further than simple stress-intensity 

factor solutions. This is the purpose of the present section. Within the 

context of modern techniques of stress analysis, the finite and boundary 

element methods (FEM and BEM), the following topics are addressed: 

1. A method for efficient, accurate calculation of stress intensity 

factors for substitution into, 
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2. Mixed-mode fracture initiation theories for critical mixture and 

angle change predictions. 

3. Methods for crack increment length prediction for a given load 

change, or, conversely, the prediction of the load required to drive 

a crack a given distance. 

4. Algorithms for incorporating the above into efficient computer 

programs. 

5. Techniques for efficient remeshing to accommodate discrete crack 

growth. 

6. The use of interactive computer graphics in the highly adaptive, 

nonlinear field of fracture propagation modelling. 

This will be accompanied with example problems whenever possible. 

The first of these will be presented in the next section to provide a 

physical basis for the observations particular to rock fracture just 

presented. 

The Nature of Fracture Propagation in Rock 

The following example problem will serve a number of purposes. It will 

lend physical insight into characteristics particular to fracture propagation 

in rock. It will clarify some misconceptions and their implications regarding 

the theoretical fracture resistance of rock structures. Finally, it will 

serve as a basis for development and comparison on the techniques required for 

modelling fracture propagation. 

Example 1: Observations on Fracture Propagation 
Under Compression 

The problem is shown in Figure 7 and is recognized to be that addressed 

by Griffith in his second paper [221. Rock plates like those shown in 

Figure 7 were tested by the author [23,24,25] with the following results: 
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1. As predicted by Griffith [22], first crack growth occurs from points 

initially under tensile stress concentration on the notch (see 

Figure 8). This set of two, symmetrically placed cracks was labelled 

primary. 

2. Primary crack trajectory was curvilinear. 

3. In contrast to what Griffith [22] expected, propagation of primary 

cracks was observed to be stable: an ever increasing load was 

required to increase crack length. 

4. After considerable primary crack propagation, a second set of two, 

symmetrically placed, cracks appeared. These were labelled secondary 

and originated in the interior of the plate in a newly formed tensile 

stress zone (see Figure 9). 

5. Failure of the plate, defined as a through-going rupture, was a 

result of unstable secondary crack propagation, Fig. 8, at a load 

level in the range of 3 to 5 times the primary crack initiation load. 

These observations were typical for plates of Indiana limestone and St. Cloud 

charcoal granodiorite, with 30 Q < B < 90 0
• 

Observations 2 and 3 differentiate the observed fracture response of this 

configuration from that usually observed in tension-loaded structures. Stable 

primary crack propagation indicates that, within the assumption of LEFM, the 

associated energy release rate, G, decreases with increasing crack length for 

a constant load. The curvilinear nature of the primary crack path is a result 

of a variable, mixed-mode stress intensity being applied to the incrementally 

advancing crack tip. 

Items 3 through 5, above, deserve special attention. The often quoted, 

and quite incorrect, theoretical ratio of compressive to tensile strength of 

rock is based on the supposition that the initiation of what are here called 

primary cracks is synonymous with rupture. That such 18 not the case has 
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Fig. 7 Angle-notched plate loaded in uniaxial compression. From Ref. 23. 

Fig. 8 Results of test on Indiana limestone plate. Primary cracks to points 
A. Secondary cracks nucleated near points B. From Ref. 23. 
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been observed by many experimentalists (e.g. 26,27,28) and digested by few of 

anybody else: sub-critical crack growth can occur under ideal LEFM conditions 

and monotonically increasing load. 

Observations 4 and 5 are particular to rock. In tests on glass, poly

methylmethacrilate (PMMA) and CR39 in the same configuration [26,27,28], 

only primary cracking was evident and rupture did not occur. This phenomenon 

is shown in Figure 10 which depicts the primary crack behavior of a PMMA plate 

loaded to near its compressive yield stress. Results 4 and 5 therefore indi

cate a fundamental difference in the fracture response of rock structures as 

compared to glass, plastic, and metals. As we shall see later, the high 

(though not theoretically predictable!) compressive to tensile strength ratio 

of rock compared to those materials leads to what the author has called the 

strength ratio effect [29]. This effect explains the initiation of what are 

called secondary cracks in the present problem, and is the proximate cause 

of rupture in this as well as many other problems in rock fracture. The 

strength-ratio effect is actually a corollary to Observation #3 mentioned 

earlier, but bears individual emphasis: 

Observation #6: Due to fracture propagation, new regions of tensile 

stress can be generated. Although the magnitude of those tensile 

stresses may be low compared to an applied compressive stress, the 

relatively low tensile strength of rock makes such regions potential 

sites for nucleation of additional cracks. A model for fracture 

propagation should be capable of predicting formation of such sites. 

With these experimental observations, and with a list of requirements for 

modelling of fracture propagation in hand, one can begin model formulation. 

Stress Intensity Factor Computation 

The prediction of load level, angle change, and length corresponding to 
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Fig. 9 Composite micrograph of granodiorite fractures. Notch tip, A; 
primary crack tip, B; nucleating secondary crack, C to D. From 
Ref. 23. 

Fig. 10 Results of test on PMMA plate. Primary cracking only; no rupture 
occurs. From Ref. 23. 
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each increment of fracture propagation requ1res accurate computation of mixed-

mode stress intensity factors. Their efficient computation is also desirable 

since, as noted above, many analyses may need to be performed in a single 

problem. Virtually all of the numerical methods applicable to elastostatics 

have been used for stress intensity factor computation. A particularly simple 

yet accurate method which does not depart from standard FEM and BEM approaches 

is available. This method is described in detail elsewhere [30,31,32]; 

however it will be briefly summarized here. 

Consider the typical crack-tip region shown in Figure 11. Assume that 

the region has been discretized with standard, isoparametric, linear-strain 

triangles and that two of these are arrayed as shown. It has been shown 

that these elements will reproduce the LEFM-predicted displacement and stress 

fields if, as shown in Figure 11, the mid-side nodes of all element sides 

emanating from the crack tip are moved to the quarter-point position. 

Shih et al [33] have further shown that the displacements computed at the 

labeled nodes in Figure 11 can be correlated with the theoretical displace-

ments at their positions with the stress intensity factors as weight 

functions. Solving for the stress-intensity factors loads directly to, 

=v'21r~[4(v' -v') +v' -v'] 
L K+l B DEC (6) 

1n which, 

L = length of singularity element side along the ray, 

Vi = crack-opening nodal displacements, 

u' = crack-sliding nodal displacements. 

K = (3 - 4 v) for plane strain 

The primes indicate that the global-coordinate nodal displacements have been 

transformed to the crack-tip coordinate system defined in Figure 11. The 
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above procedure has been generalized to the three-dimensional case by 

Ingraffea and Manu [34]. This approach is also available. with only slight 

modification, for BEM codes which use isoparametric element formulations 

[35,36J. For studies on the accuracy of the method the reader should see 

References 30, 31, 34. 

Algorithmically, the displacements and coordinates of the crack face 

nodes belonging to the quarter-point FEM or BEM elements need to be 

flagged and retrieved for each crack increment solution. These are then 

transferred to a simple subroutine which codes Equations 6. In a crack 

propagation analysis, this computation would be done for each crack tip after 

each load or growth increment. The computed stress intensity factors would 

determine the stability and angle change of each crack tip according to one of 

the theories outlined in the next section. 

Theories of Mixed-Mode Fracture 

The determination of fracture initiation from an existing flaw in com-

bined Mode I and Mode II requires knowledge of the stress intensity factors, 

determined analytically and functions of geometry and load, and the appro-

priate fracture toughness, a material state property, determined experimen-

tally. These parameters combine in a theoretical mixed-mode fracture 

initiation function analogous to a multi-axial stress state yield function of 

plasticity. A number of theories are available which produce such a function 

[37,38,39]. Only one of these theories will be briefly summarized here. 

The 0(6) theory was first formulated by Erdogan and Sih [37J. The max 

parameter governing fracture initiation in their theory is the maximum circum-

ferential tensile stress, 0(6) , near the crack tip. max 

Given a crack under mixed-mode conditions, the stress state near its tip 

can be expressed in polar coordinates as, 



1 0 [( . 2 0) 3 0] crr = 12~r cos 2 Kr 1 + s~n 2 + 2 Krr sin 0 - 2Krr tan 2 + •.• 

1 1" - -- cos 
r0 12~r 

o [ ] 2 Kr sin 0 + Krr (3 cos 0 - 1) + 

The cr(0) theory states that: max 

1. Crack extension starts at the crack tip and ~n a radial 

direction. 

2. Crack extension starts in a plane normal to the direction of 

greatest tension, i.e., at 00 such that 1"r0 = O. 

3. Crack extension begins when cre reaches a critical, material 

constant value. max 

The theory is stated mathematically using Eqs. (7), 

cr0 12~r = constant = 

or 

1 = cos 

and, 

3 KII 
- -- sin 
2 Krc 

Equations (9) and (10) are the parametric equations of a general fracture 

(7) 

(8) 

(9) 

(10) 

initiation locus in the KI-KII plane, shown in Figure 12. Also, the direction 

of the initial fracture increment, 00 , can be found from Eq. (10) which gives, 

o = ± ~ (trivial) o 

In summary, the governing equations of the cree) theory are (9) and max 

(11) 
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Fig. 12 Fracture initiation loci for mixed-mode theories. 



- 251 -

(10). Algorithmically, the stress intensity factors for a g1ven crack tip 

location and loading are first substituted into Eq. (10) to obtain the new 

angle of propagation, 0
0

, The stress intensity factors and the angle 60 are 

are then substituted into Eq. (9). If it 1S not satisfied, the stress 

intensity factor pair plots either within or outside the fracture locus shown 

in Figure 12. If within, then that crack cannot propagate without a suffi-

cient increase in stress intensity factors. If outside, then the crack is 

unstable and can continue to propagate until it reaches a free surface or 

until the stress intensity factor pair returns to within the locus. 

In a quasi-static fracture propagation analysis the governing equations 

for one of the theories would be applied at the end of each growth step or 

load step. Recall Observation #3: It may not be necessary to increase loads 

to bring the stress intensity factors of previously stable crack tip onto the 

fracture locus. The propagation of another crack may cause the same effect. 

Algorithmically, this implies that the interaction factor for each crack tip, 

the right-hand-side of Eq. (9), be updated in memory after each crack or load 

increment. As shall be seen later, depending on the mode of interaction 

between the program and the user, the former or the latter will use the 

interaction factors to decide which one or more of the crack tips should be 

propagated in a given fracture step. 

Comparison of Mixed-Mode Fracture Theories 

Figure 12 compares the interaction effects predicted by the 0(6) , max 

S(0). , and G(e) theories. It can be seen that the 8(0). theory is 
m1n max m1n 

the least conservative of the three shown. It also predicts that the Mode II 

fracture toughness of most rocks (v < 0.3) is larger than KIc ' while the other 

theories predict a smaller value. 

How does theory compare to experiment? References 23 and 40 contain much 

data and lengthy discussion relevant to this question, but the comparisons are 
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all based on materials other than rock. The author has performed wide 

spectrum, mixed-mode fracture initiation tests on Indiana limestone and 

Westerly granite [41]. The results are shown in Figure l3a and l3b for the 

limestone and granite, respectively. It appears, based on this somewhat 

limited data, that the S(9). theory is the most accurate of the three 
m~n 

theories used for comparison. 

It should be emphasized, however, that a crack finding itself under sub-

stantial Mode II loading does not long remain in the high KIr/Kr domain of 

interaction. Such a crack quickly changes trajectory to minimize or eliminate 

the KII component. Consequently, the life of a crack propagating quasi

statically is spent in the high Kr/Krr region of the interaction plane where 

the differences among the theories are minimal. It is the author's opinion 

that, except for fracture increments under high KII , use of any of the refer 

enced theories would result in substanially the same trajectory and load 

history. This will be seen in example problems to follow. 

Predicting Crack Increment Length 

Previous sections showed how to compute stress intensities, and how to 

use them to predict local stability and angle change. However, Observation #1 

is a reminder that to complete a fracture propagation model one must also be 

able to predict either, a) the length of a fracture increment for a given load 

change, or, b) the load change required to drive a crack a specified length. 

These predictions are relatively simple and straightforward. 

The fundamental principle here is that a fracture, once initiated, will 

continue to propagate as long as there is sufficient energy or, equivalently, 

effective stress intensity, available. Effective stress intensity, K*, here 

refers to a mixed-mode case and is the combination of Mode I, II, and III 

stress intensity factors required by the particular mixed-mode theory in use. 

The right-hand side of Equation (9) can, therefore, be viewed as normalized 

effective stress intensity factors. 
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One must consider a number of possible stability cases in creating an 

algorithm for predicting fracture increment length. These possibilities will 

be addressed through Figures 14 and 15. For simplicity, assume that LEFM 

applies for all crack lengths. Further assqme that one is investigating 

propagation along some predicted direction eO' 

Case 1: Effective stress intensity increases monotonically with crack length, 

curve OA in Fig. 14. If the initial flaw size is less than ai' no propaga-

tion occurs. For a = a., propagation can occur and it will continue at 
~ 

P = Pi; that is, a condition for local instability has been met. Of 

course, an algorithm could be written which would place such a scenario 

in displacement or crack-length control: A crack increment, ~a, could be 

specified and the load decrement required to just bring the crack tip to a 

a. + ~a could be computed. This situation is depicted by curve OA' in 
~ 

Figure 14. To compute P recall that LEFM specifies that at instability, 

where, 

a = factor depending on geometry and 

interaction theory 

Therefore, 

a. ra::-
P;+1 = ---~- P. ~ 

.... a i +l ~ 8 i +1 

Equation (13) is only directly useful, however, if the a i +
1 

coefficient is 

known at Step i. For arbitrary problems, this is certainly not the case. 

An alternative is to propagate the fracture an amount ~a in the direction 

eO and compute Ki+l at load level Pi' The new load level is then, 

K 
= ( *IC) Pi 

K. 1 ~+ 
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as can be seen ~n Figure 14. Behavior described in this case 1S typical 

of many of the Mode r fracture specimens used to measure KIc of rock. It 

can also occur in a variety of circumstances in practical rock fracture 

problems. 

Case 2: Effective stress intensity increases, reaches a maximum value, and 

then decreases with increasing crack length, curve OA in Figure 15a. For 

the value of KIc shown and at load level PI' no crack propagation is 

possible. At load level P
2

, propagation is possible only at crack length 

a = a
2

, but the corresponding, theoretical fracture increment length is 

/).a = O. At load level P 3' propagation can occur for a crack of length aI' 

and it would be unstable in load control. Again, as in case 1, above, 

using a crack length or displacement control algorithm the crack of initial 

length a 1 could be propagated stably to length a2 by decreasing the load 

incrementally from level P3 to level P2 , as shown in Figure ISb. 

For crack lengths longer than a
2

, fracture propagation is stable in the 

load control sense. An effective stress intensity monotonically decreasing 

with increasing crack length implies that a monotonically increasing load is 

required for continued propagation. In Figure IS, it can be seen that if the 

load ~s aga~n increased to P
3 

propagation to crack length a
3 

is possible. 

An example of this behavior for a pure Mode r case is shown in Figure 16 

which is taken from a study on fracture propagation around underground open

ings [29]. Cracks are induced at crown and invert of a circular opening ~n 

plate under the indicated biaxial compression. The computed K* (here K~ = Kr) 

versus crack length relationship at two load levels 1S shown. Although it was 

assumed that the effective toughness, KQ, increased with crack length, the 

propagation scenario is the same as described above. Propagation is unstable 

at first, but ceases each time the Kr and KQ curves intersect. This type of 

propagation behavior is very common in rock mechanics. It occurs, for 

example, in hydro fracturing. 
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Fig. 16 Stress intensity factor variation for crack propagating from 
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Ref. 29. 
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If one is starting with crack length aI' and load level P3 (Figure 15), 

the prediction technique is the same as described under Case 1: Propagate the 

fracture an amount 8a in the direction 00 at load P3' compute the effective 

stress intensity for the new crack length, and apply Equation (14). 

Suppose, however, that one is at load level P2 and crack length a2 . One 

can still use the same algorithm: the only difference is that the quantity in 

parentheses in Equation (14) will now always be less than one. 

The reverse of Case 2 is also possible: Effective stress intensity can 

at first decrease and then begin to increase with increasing crack length. 

(See, for example, References 42 and 43.) This implies nothing new algorith

mically, however, since the implications of this situation are handled by the 

techniques described in Cases 1 and 2. 

A number of alternative numerical techniques for fracture increment 

length prediction are available [23,44,45]. Some are based on energy balance, 

some are more approximate than others. The simple technique described here 

is theoretically exact for pure Mode I) colinear propagation. Recalling 

Observation #4, however, we can see that any technique which employs finite, 

straight fracture increments will be approximate. One is updating effective 

stress intensity incrementally, rather than continuously. A curvilinear 

trajectory is being modeled piecewise by straight segments. Stress intensity 

factors and angle changes will be somewhat in error, The error depends on the 

specified length of the fracture increment. 

The analogy here is with dynamic analysis where the time step controls 

accuracy and stability of the solution. It is the author's experience with 

his codes that predicted trajectories sometimes oscillate about an average 

path. This is a manifestation of error in KII simulation which is a result 

of "kinking" the crack path rather than allowing it to continuously curve. 

Spuriously high KII values are computed which, alternating in sign with each 
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increment, zig-zag the crack. However, it is quite possible that if too large 

an increment is used divergence of predicted trajectory could occur. 

All the theoretical ingredients for fracture propagation modelling under 

mixed-mode, LEFM assumptions have now been presented. These ingredients have 

been combined in computer programs developed by the author and his students at 

Cornell University. In the next section, some general observations concerning 

these programs will be presented. 

4. FRAC'l'lJRE PROPAGATION PROGRAMS 

Research and application thrusts into fracture propagation modelling at 

Cornell University can be divided into areas of numerical method and user

computer interface. 

Numerical Methods 

Incremental fracture propagation codes have been developed using both the 

finite and boundary element methods. As will be shown, each of these methods 

has characteristics which make it the appropriate choice for given structure, 

dimensionality of model, or interface hardware. 

In general, the boundary element method as used here is suited to 

elastic, homogeneous structures containing few propagating cracks. The 

boundary element method is superior in efficiency and accuracy to the finite 

element method for modelling of three-dimensional crack propagation problems. 

Since only the boundaries of the structure, including the crack faces, need to 

be discretized, the data base for a boundary element method analysis is much 

smaller than that of a finite element method analysis. Also, since perspec

tive views of three-dimensional meshes are not encumbered with all the 

interior nodes and elements of a finite element mesh, effective user-computer 

interface can be obtained with low-level computer graphics equipment. 

A two-dimensional code, Boundary Element Fracture Analysis Program, 

BEFAP [44,46], is operational, and an example of its use is described later. 
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The three-dimensional version is under development 1n connection with the 

Cornell Program for Computer Graphics for use with high-level computer 

graphics hardware (see next section for description of high- and low-level 

computer graphics hardware). 

For problems involving inhomogeneities, interfaces, or many cracks, 

BEFAP currently is not suitable. For problems of this type, as well as those 

involving material nonlinearity, the Finite Element Fracture Analysis Program, 

FEFAP [45,47], has been developed. Again, the two-dimensional version of 

FEFAP is operational, and the three-dimensional version is being implemented 

in a high-level interactive computer graphics environment. Examples of 

problems solved using FEFAP will also be presented later. 

User-Computer Interface 

Three levels of user-computer interfacing are available for operation 

the BEFAP/FEFAP group: 

1. Interactive Without Graphics: the standard keyboard entry of 

data, editing of files, and spooling of output to a printer. 

2. Low-Level Interactive Computer Graphics: storage tube graphic 

display devices. Display of initial mesh, deformed mesh, prin

cipal stress vectors, crack increment trajectories, G curves, 

and load displacement curves. Interactive programming capability, 

meaning that the user participates in the real time solution of 

the problem by, for examples, editing each mesh update, or selecting 

the length of a crack increment or magnitude of a load increment. 

3. High-Level Interactive Computer Graphics: vector refresh graphic 

display devices. With high-level graphics, all of the capabilities 

of low-level exist but the display is continually updated. This 

means that selected regions of the display can be changed nearly 

instantaneously without the necessity for redraw of the entire 
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display. The mesh can be "zoomed" or panned to highlight detail, 

and three-dimensional objects can be translated and rotated to 

enhance the user's perception of a complex object and its mesh. 

The operational version of BEFAP currently operates only in the interactive 

mode, while FEFAP operates in interactive, low-level, and high-level inter

active graphic modes. 

In the example problems to follow, one will notice an evolution in the 

user-computer interface towards increasing use of interactive computer 

graphics. This evolution is still underway but the original objectives are 

the same. These are: 

1. Minimize Manual Generation of Input Data. 

This applies both to the total amount of data necessary to define the 

problem and the physical act of transferring this information to the 

computer. The user should communicate geometrical information to his 

code by way of interactive graphics, e.g., a digitizing tablet and 

pen in conjunction with a vector refresh display terminal or a cursor 

and key system such as on some storage tube terminals. Only the 

geometrical information absolutely required for automatic mesh gener

ation should be input in this manner. 

2. Make the Programs Interactive and Adaptive. 

On request, the user should be informed of real time progress of the 

analysis by way of graphic displays. Moreover, he should be given 

the freedom to modify the course of the analysis by changing the data 

base while it is in progress. 

3. Results Should be Displayed in a Simple and Effective Way. 

The user should be able to see graphic display of intermediate and 

final stress and displacement fields, load histories, crack patterns. 
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Automatic Remeshing 

All of the programs developed at Cornell University employ automatic 

remeshing algorithms. This means that the programs, after computing stress 

intensities, interaction, angle change, and change in load or fracture length, 

automatically relocate each crack tip and remesh accordingly. The remeshing 

algorithms developed by Blandford [44] for BEFAP and Saouma [45] for FEFAP 

are very versatile. They accommodate mixtures of ,element types and allow a 

wide range of crack configurations to be modelled. This versatility will be 

evident in the examples to follow. 

Example Solutions 

Example #2: Simulation of the Tests Described 1n Example #1 

Numerical Method: Finite Element and Boundary Element Solutions 

User-Computer Interface: Punch Cards and Manual Remeshing for Finite 

Element Solution; Interactive Without 

Graphics for Boundary Element Solution 

The author used finite elements to simulate [23,25] the behavior shown in 

Figure 8 for the first, and most rudimentary, example of fracture propagation 

modelling using the techniques described in this chapter. Each fracture 

increment required manual remeshing and a job resubmission. Dozens of man

hours were required to produce the results of ten primary crack increments. 

More recently the same problem was analyzed by Blandford [44,46] using 

BEFAP. A typical mesh is shown in Figure 17. Initial data preparation 

required about 3 man-hours. The analysis itself, involving 7 primary crack 

increments and computation of domain stresses, required about 10 CPU minutes 

on an IBM 370/168. Still, however, the computed stress field had to be 

manually plotted to mark the area of secondary crack nucleation. A comparison 

of typical finite element, boundary element, and experimental results is shown 

1n Figure 18. 
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b) typical notch tip detail. From Ref. 46. 
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Example #3: Collapse of Underground Cavity 

Numerical Method: Finite Element 

User-Computer Interface: High Level Interactive Computer Graphics 

The structure shown in Figure 19 represents a cross-section through a 

deep underground cavity loaded by overburden and horizontal stresses. The 

model shown was tested by Hoek [48]. An analysis of this structure was 

performed using the high-level interactive computer graphics facilities at 

the Cornell Program for Computer Graphics. An interactive graphics pre

processor [49] was used to generate the initial finite element mesh, shown 

in Figure 20a, and its attributes. Generation of all initial data required 

about 10 man-minutes. 

The fracture response of this structure is similar to that of the pre

vious example. Primary cracks initiate at crown and invert and propagate in 

the manner described previously with respect to Figure 16. 

The initial major principal stress field is depicted in Figure 20b. 

Shown is a photograph taken from a color postprocessor display [50]. Regions 

in which the stress exceeds the postulated tensile strength are shown here 1n 

black. Such postprocessing can be performed at the end of each fracture 

increment; fields of principal, normal, and shear stress, strain energy 

density, and displacement can be quickly displayed. Moreover, no additional 

man-effort is required to generate an image since the postprocessor data base 

is common with that of the preprocessor. 

Next, secondary cracks nucleate in the plate interior in a tension zone 

developed in response to primary crack propagation. This zone can be seen as 

the blackened area shown in the postprocessor image of Figure 2la. A "zoomed" 

detail of the final mesh showing the predicted secondary crack path is shown 

in Figure 21b. Experimental results for a similar problem [51] are shown in 

Figure 22. 
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Fig. 19 Rock plate model used in experimental study of collapse of under
ground cavity. From Ref. 48. 

Fig. 20 a) Initial mesh for example #3; b) initial major principal field. 
From Ref. 29. 
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Fig. 21 a) Major principal stress field after stabilization of primary 
crack at point A; b) detail of final mesh. From Ref. 29. 

Fig. 22 Fracture patterns observed in tests on plaster models similar to the 
structure in Figure 19. From Ref. 51. 
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Example #4: Fracture Propagation Under Indentation Loading 

Numerical Method: Finite Element 

User-Computer Interface: Low-Level Interactive Computer Graphics 

The mechanisms of fracture propagation under a tunnel boring machine 

roller cutter have been much studied but, in the author's opinion, are not 

yet completely understood. Paul [52] proposed that at the point of contact 

with the rock surface high bearing stresses would generate a bulb of very high 

hydrostatic pressure. He used finite element analysis to prove that such a 

condition would produce a primary radial crack as shown in Figure 23. FEFAP 

was used to model this occurrence as well as to predict the trajectories of 

the secondary radial cracks which Paul [52] surmised would occur after primary 

c~ack stabilization. 

The initial and final meshes are shown in Figure 24. The predicted 

fracture pattern closely resembles those observed after TBM roller cutter 

passage over granite [53], Figure 25. 

FEFAP, designed by 8aouma and the author [45,47], is highly interactive 

and adaptive. The user receives information graphically after each analysis 

step, and is put in control of each subsequent step. For example, Figure 24a 

shows a typical fracture increment control page and its question/response 

dialogue. The automatic mesh modification algorithm in FEFAP can accommodate 

multiple cracks, a mixture of Q8, L8T, and quarter-point singular elements, 

and interior or symmetry line cracks. The user is given the option of 

interactively modifying a generated mesh. 

5. FRACTURE PROPAGATION KlDELLING - THE FUTURE 

The techniques described in this paper are certainly not the only ones 

available for modelling of fracture propagation. Alternative approaches can 

be based on other numerical methods, theories, and algorithms. However, it 



- 269 -

P 

INDENTOR 

CHIP 

"':~\9Jj~7Jl~~~~~~"~-CHIP BOUNDARY 

PULVERIZED 
ZONE 

SECONDARY 
RADIAL CRACKS 

INITIAL RADIAL 
CRACK 

Fig. 23 Postulated fracture pattern under indentor loading. From Ref. 52. 
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Fig. 25 Fracture patterns on cross section of granite plate after TBM cutter 
pass. From Ref. 53. 
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1S the author's strongly held opinion that, regardless which model is pursued, 

interactive computer graphics will playa decisive role in determining the 

viability of and program in the marketplace of "real world" problems. The 

continuing, rapid revolution in graphics hardware capability and software 

development and the ever-increasing cost-effectiveness of fast, virtual

memory, mini-computers are the driving forces in the evolution of sophisti

cated fracture propagation programs. 

Nowehere will this be more evident than in the area of fully three

dimensional modelling. The present high cost of performing analysis of three

dimensional structures is due largely to the human effort required to define 

and check geometrical data, element topology, boundary conditions, and 

material properties. In fact, the complexity of error detection, or even 

slight modification, with three-dimensional meshes can substantially reduce 

the cost effectiveness of a program. The user falls back onto a two

dimensional or axisynnnetric model that is "good enough," sacrificing the 

realism of the three-dimensional problem 1n the face of the reality of 

tremendous labor cost. 

However, interactive/adaptive preprocessing can eliminate a large per

centage of such cost while simultaneously placing the engineer back 1n control 

of computer analysis. For example Perucchio and the author [54,55] have 

developed three-dimensional finite and boundary element preprocessors for use 

with fracture propagation codes in a high-level computer graphics enV1ron

ment. An example use of the boundary element preprocessor 1S the simulated 

hydrofracture propagation sequence shown in Figure 26. 

Figure 26a shows the initial-stage BEM mesh, while Figure 26b shows only 

the fracture plane with the fracture surface removed. Figures 26c and 26d are 

analogous images after a fracture propagation step. 

The complete boundary element mesh of Figure 26a can be rotated, 
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Fig. 26 Views of three-dimensional boundary element mesh for simulated hydro
fracture, a)complete mesh, b) crack plane with fracture surface 
removed for clarity. 
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translated, zoomed, and depth cued. The user need not sacrifice to the CPU 

his engineering insight into the physics of the problem. Figure 26b shows 

that the mesh can be taken apart to study cross-sections, sub-domains, or even 

elements of interest. This capability will be invaluable during the course of 

a fracture propagation analysis. 

Given the changes 1n the speed and cost of computers and the increasing 

use of interactive graphics, the author sees the use of truly three-

dimensional fracture propagation codes, with the versatility of existing 

two-dimensional programs, as a certainty in only a few years. 
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Introduction 

Although cracking represents a salient feature of the behavior of 

concrete structures, not only under ultimate loads but also at service 

states, fracture mechanics has not been used in practical analysis of 

structures. Structural engineers had a good reason; the linear fracture 

mechanics was found to be inapplicable to typical concrete structures, and 

the premises of ductile fracture mechanics did not match material behavior. 

However, in various recent investigations, particularly those at the 

Technical University of Lund, Northwestern University, and Politecnico di 

Milano, it has been shown that fracture mechanics can be applied to concrete 

structures provided that one takes into account the effect of a large micro-

cracking zone or fracture process zone that always exists at the fracture 

front. The objective of the present paper is to review the results of the 

investigations at Northwestern University, many of them carried out under a 

cooperative agreement with Politecnico di Milano. It is not possible to 

include a comprehensive review of all the work on fracture of concrete; 

other work may be consulted for that [1-6]. 

Blunt Crack Band Model 

The simplest way to model cracking in a finite element program is to 

assume that the cracks are continuously distributed over the area of the 

,Preceding page blank 
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finite element and manifest themselves by a reduction of the elastic modulus 

in the direction normal to the cracks. Complete cracking corresponds to a 

reduction of the elastic modulus to zero. In this description, introduced by 

Rashid [7), the crack band front cannot be narrower than the width of the 

frontal finite element. At the same time, the width of the crack band front 

cannot be wider than a single element. Of course, one could enforce the 

crack front to be of a multiple-element width, however, that would not be 

justified mechanically since one finds that localization of strain into a 

single-element width generally leads to a release of elastic energy. There 

is a further reason why a multiple-element width at the crack front is not a 

correct model; if we make the loading step sufficiently small, then only one 

element cracks during the loading step, and this relieves the stresses in the 

finite element that is on the side of the element that has just cracked, thus 

preventing an increase of the crack front width, except if a uniform strain 

distribution is enforced by heavy reinforcement. Even if two finite elements 

at the crack front had exactly the same stress values, it would be unreal

istic to assume that they both crack simultaneously since the statistical 

scatter of material properties will always cause one of these elements to 

crack before the other does. Thus, one may adopt the blunt crack band 

model with a single-element wide front as a realistic and numerically very 

convenient model for cracking in concrete [10-16]. A similar approach can 

be applied to rock [10, 17]. 

Regardless of whether the zone of micro cracking at the fracture front in 

concrete is very wide or not, two elementary justifications may be offered 

for the blunt crack band model. One of them is the heterogeneity of the 

material. We treat the material as a smoothed, homogeneous continuum in 
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the macroscopic sense. In this treatment, the macroscopic stresses and 

strains represent the averages of the actual (microscopic) stresses and 

strains over a certain so-called representative volume of the material which 

* must be at least several times the maximum aggregate size in cross section. 

Obviously, the rapid and scattered variation of stresses and strains over 

smaller distances cannot be described by a continuum approach. Therefore, 

using finite elements of sizes less than several times the aggregate size 

would not allow any improvement in the description of the actual stress and 

strain fields within concrete. Even if one wishes to treat a continuous 

sharp crack in concrete, the blunt crack band model does not represent the 

reality any worse than a sharp inter-element crack model because the actual 

crack path is not straight but highly tortuous. 

As another justification, of the blunt crack band model for describing 

sharp fractures in concrete, one may cite the recently documented fact that 

a sharp inter-element crack and a blunt crack band 6f single-element width 

yield approximately the same results for not too crude meshes (roughly 

when there are at least fifteen finite elements in a square mesh across the 

cross section). Both models give energy release rates that differ not more 

than a few percent from the exact elasticity solution. To illustrate it, 

Fig. 2 exhibits some of the numerical results from Ref. 12. In these cal

culations, the normal stress in the direction perpendicular to the cracks 

was assumed to drop suddenly to zero when the energy criterion for crack 

band propagation became satisfied. The finite element mesh in Fig. 2 covers 

a cut-out of an infinite elastic medium loaded at infinity by uniform n(')xmal 

stress cr perpendicular to a line crack of length 2a. The nodal loads 

applied at the mesh boundary are calculated as the resultants of the exact 

* See Fig. 1 
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stresses in the infinite medium, based on Westergaard's exact solutton 

which is shown as a solid curve. The data points in Fig. 2 show 

numerical results for the square mesh shown (mesh A), as well as for finer 

meshes Band C (not shown) for which the element size was 1/2 and 3/8 of 

the element size shown, respectively. A similar equivalence of results for 

the sharp inter-element crack and the blunt crack band can be demonstrated 

when the stress is considered to drop gradually rather than suddenly to 

zero [11]. 

Aside from the foregoing justifications, the blunt crack band model 

appears to be more convenient for finite element analysis. When a sharp 

inter-element crack extends through a certain node, the node must be split 

into two nodes. This increases the total number of nodes and changes the 

topological connectivity of the mesh. Unless the nodes are renumbered, the 

band structure of the structural stiffness matrix is lost. Moreover, if 

the direction in which an inter-element crack should extend is not known in 

advance~ one needs to make trial calculations for various possible locations 

of the node ahead of the crack front through which the crack should pass, 

in order to determine the correct direction of crack propagation. On the 

other hand, in the blunt crack band model, a fracture propagating in any 

direction through the mesh can be modeled as a zig-zag crack band with any 

direction of the cracks relative to mesh lines. All that needs to be 

done to model an oblique crack direction is to reduce the elastic stiffness 

in the direction normal to the cracks. 

Recently, various attempts to observe the distribution of microcracks 

ahead of the fracture front in concrete have been made [18-20]. From strain 

measurements by Moire interferometry [19, 20], it appears that the width of the 
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microcrack zone at the fracture front is about one aggregate size. Within 

this width, there is a crack concentration. However, the line along which 

the most dense microcracks are scattered is not straight but rather tortuous 

(Fig. 1), which would not be modeled by a straight inter-element crack any 

better than by a crack band. Correlation of the crack band model to such 

microscopic observation is, of course, difficult since the microcrack 

density varies while in the crack band it is assumed to be uniform. The 

question then is at which microcrack size to draw the distinction. 

Thus, the width of the microscopally observed crack band front depends on 

the definition of the width of the microcracks that are counted within the 

crack band. 

One significant difference from ductile fracture of metals cons,ists in 

the size of the fracture process zone, defined as the zone in which 

the material undergoes strain-softening, i.e., the maximum principal stress 

decreases at increasing strain. This zone is large for concrete 

but relatively small for metals, even in the case of ductile fracture. 

In the latter case, there is a large yielding zone, but the material 

does not soften in this zone (Fig. 3). 

The stress-strain relation with strain-softening for the fracture 

process zone may be replaced by a strain-displacement relation if the 

displacement represents the integrated value of the strains across the 

width of the crack front. In this sense, the present blunt crack band 

model is equivalent to the previous line crack models with softening stress

displacement relations, introduced by Knauss, Wnuk, Kfouri, Miller, 

Rice and others [21-27]. For concrete this approach was pioneered by 

Hillerborg, Modeer and Petersson [27, 28] in their model of a fictitious 

sharp inter-element crack. 
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Let us now outline one possible form of the softening stress-strain 

relation for the fracture process zone. Let the virgin crack-free material 

be described by the elastic stress-strain relation 

C ° 

Here, o, € are the column matrices of the cartesian normal components of 

strain and stress, in cartesian coordinates xl = x, x2 = y, and x3 = z. 

C is a 3 X 3 square compliance elastic matrix of the virgin material, with 

components Cll' C12 '···C33 . For the sake of simplicity, we may now assume 

that all microcracks spread over the finite element are normal to axis z. 

Appearance of such cracks has no effect on the lateral strains € and £ , 
X Y 

and the only effect is an increase in the averaged normal strain € in the 
z 

direction perpendicular to the cracks. This may be described by cracking 

parameter ~ introduced only in one diagonal form of the compliance matrix 

[10,11], Le., 

(1) 

(2) 

The cracking parameter ~ is I for the initial crack-free state, and approaches 

° for the final fully cracked state. It has been shown [11], that the limit 

of the inverse of the compliance matrix C(~) as ~ 7 ° is, exactly, the 

well-known stiffness matrix for a fully cracked elastic material, nfr. This 

matrix is identical to the elastic stiffness matrix for the plane state 

of stress, which exists in the material between the cracks. 

The cracking parameter may be calibrated so as to yield the desired 

tensile stress-strain relation with strain-softening, ° = EF(€ ), in which z z 
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.E = l/C33 = Young's modulus. Then one has ~ = F(c )/c. Function F(€ ) 
z Z z 

may be given as a bilinear stress-strain diagram (Fig. 4), characterized by 

tensile strength f~, softening modulus Et (negative), and limit strain EO 

for which full cracks are formed. For computer analysis, the foregoing 

stress-strain relation is differentiated to obtain an incremental form to 

be used in a program with step-by-step loading. 

The strength limit f~, needs adjustment to take into account the effect 

of multiaxial stress state. In particular, the tensile strength limit is 

decreased due to normal compressive stresses 0 and 0 parallel to the x y 

crack plane. Correction may be done according to the well-known biaxial 

failure envelope for concrete [11]. 

The use of cracking parameters ~ resembles the so-called continuous 

damage mechanics, in which damage is characterized by parameter w which 

corresponds to 1 -~. There is, however, a fundamental difference in that 

the damage due to microcracking is considered to be inseparable from a 

zone of a certain charasteristic width that is a material property, as we 

will explain later. 

The energy consumed by crack formation per unit area of the crack plane, 

i.e., 

represents the fracture energy; w 
c 

c 
J"O 0 

a z 

width of the crack band front 

(3) 

(fracture process zone), and Wf = work of maximum principal tensile stress per 

unit volume = area under the uniaxial tensile stress-strain curve (Fig. 4). 

The magnitude of w is obviously an important factor. If the stress
c 

strain relation, including its strain-softening range, is considered to be 
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a material property, which seems logical, then the larger w is the larger 
c 

is the fracture energy G
f

. However, it has been previously demonstrated 

[12, 13] that finite element calculations yield results independent of the 

choice of the element size (except for a negligible numerical error), only if 

the fracture energy G
f 

is considered as a material constant. Eq. 3 then 

indicates that the width w of the crack band front must also be a material 
c 

constant, to be determined by tests. Indeed, if the value of w is changed 
c 

without adjusting the strength limit f~ or the strain-softening modulus E
t

, 

the predicted values of loads needed for further crack propagation may change 

drastically [12, 13]. For the bilinear tensile stress-strain relation 

(Fig. 4), we have Wf 
1 Ct )f,2w 1 f' = 2(C33 

= - EO or 
33 t c 2 t 

2G
f 1 (4) w = --

c f,2 t 
t C

33 
- C

33 

in which C~3 = l/Et (negative). Thus, the width of the crack band front may 

be determined by measuring the tensile strength, the fracture energy, and the 

softening modulus E
t

• Note that Eq. 4'is similar to the well-known Irwin's 

expression for the size of the yielding zone. It should be also noted that 

determination of w from mechanical measurements depends on1tihe knowledge of 
c 

the strain-softening slope Et . If this slope is changed, a different value of 

w is obtained, and fracture test data may still be fitted equally well, 
c 

within a certain range of w. In fitting test data for concrete fracture c 

from the literature, it has been noted that good fits could be obtained for 

w ranging from 2d ti 4d where d is the maximum aggregate size. The front c a a a 

width, 

w 
c 

3d 
a 

(5 ) 
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was nearly optimum, and at the same time was consistent with the softening 

* modulus E
t 

as observed in the direct tension tests of Evans and Marathe [32]. 

Most of the important test data from the literature [33-49], have 

been fitted with good success using the present nonlinear fracture model 

[11]. Some of the fits obtained in Ref. 11 by finite element analysis 

using square meshes are shown in Figs. 5 and 6, in which P ,representing - max 

the maximum measured load, is plotted as a function of either the crack 

length (flaw depth) or the specimen size. The optimum fits obtainable 

with linear fracture mechanics are shown for comparison in these figures as 

the dashed lines. The loading point was displaced in small steps in com-

putations, and the reaction, representing load P, was evaluated at each 

loading step by finite elements. The same bilinear stress-strain relation 

was assumed to hold for all e'lements. 

Note that the crack band approach to fracture models well not only the 

results for notched fracture specimens, but also the results for unnotched 

beams, in which the nominal bending stress at failure decreases as the beam 

depth increases (Fig. 5). This phenomenon is due to the fact that the large 

fracture process zone (strain-softening zone) cannot be fully accommodated 

in a small beam. The same phenomenon was previously modeled as a statistical 

size effect; however, explanation in terms of fracture mechanics, previously 

proposed by Hillerborg, appears to be the correct one. 

Deviations from linear fracture mechanics have been also described for 

metals by the so-called R-curves (resistance curves), which represent the 

variation of apparent fracture energy as a function of the crack extension 

from a notch. Based on an original proposal by Krafft et al. [50], the 

R-curve may be considered for most situations as a fixed material property, 

* Strain-softening in direct tensile tests of concrete has been also documented 
in Refs. 51-53 and 49. 



0 
0.. 
..... 

0..
1 

- 292 -
--------. 

---------------Rel. Initial Crack Depth (0
0 

I H) 
r-------~----------------------~ 

(el Nonllneor Theory 
Llneor Theory 

Carpinteri (19801 

Po - 18191b. 

, , , , , , 

o 

, 
" " .... 

o 1.50 

1.2' 

0..
0 

..... 1.00 .. 
o 
E 0.75 

Q. 

0.50 

0.2' 

o ( 1 I Nonlinear Th.ory 
Linear Theor y 
Corplnterl (/980.) 0 

Po - 2067 lb. 

~ 
\ 

\ 
\ , , 

0 , , , 

~[oo 
, 

.... 

IIH " 

0.2 0.3 0.4 0.5 °o.L-----o.~.~I----~o.~.~2----~0~.3~--~0~.-4----~05 

(01 Nonllnea, Theory 
Linea, Theory 
Mtnde", Lawrence, 

K .. le, (19171 0 

Po - 935 lb. 

0 
Q. 

"-.. 
0 

Q.E 

10. 
o 

08 

06 

04' 

- ,------------
, (b) NonllMor Theory , , LInear Theory 

K oplon (19611 
(Beam 616120In.) 

Po -296Clb 

" 0 , 
" , 

Q2~----~----~----~----~-! , 
0.6 0.7 01 0.2 03 04 0..5 

o 

0.6 
R.el. Initial Flow Depth (00 I H) 

r---~a--T\--(-c-,-N-o-n-li-n-e-or--T-h-e-Or-y----~ 100~~~~~~(d--,-N-o-n-lIn-e-o-r--T-he-0-r-y--
\ Linear Theory Linear Th.ory 

0.7' 

0.'0 

0.25 

0.0. 

oz 
b 

Huonv (1981) 0 Huonv (19811 o 
Po -2916 lb. 0.75 Po -4373 lb. 

025 
o 

" " 
0.2 0.4 0..6 0..8 °0L-----0~.-2----0~.4-----0~.6-----0~.-8----~1.0 

ReI. Initial Flow Depth (Og/H) ReI. Initiol Flaw Depth (Oo/H) 

(01 
I .• (III 

-;; 01 

a 
A 1.2 

./I: 

0-

-- - Lineor Th.ory 
• SlIOh and McGarry (19111 
A GI.n, S.nn •• ", Arn ... nIl9711 

o~~--~--~--~--~~ 
0. 0..1 0.4 0.6 

ReI. Initial Hoteh Depth (Og/HI 

~ 1.0 

u; 
oo.s 
c: 

i .. ae 
CD 

~ 04 

-_ .. _-------

-- Nonlln.ar Theory 
--- Lin.ar Tlleory 
-.- Model 01 Hille,boro. ,,",od.,. P.'.' ..... 119761 

a T •• r. 01 _ • __ _ 

)) 
O~--~----~----~----~----~-J 
o ~ 10 I~ 20 2~ 

ReI. Seam Dep'h (H/wc ) 

.-~~--~-~---------~--------.-.---------

Fig. 6 - Crack Band Calculation Results Compared With Further Maximum Load 
Test Data From the Literature (after Bazant and Oh, 1983). 



- 293 -

although in reality it may be such only asymptotically, for infinitely small 

crack extensions from a notch (for longer extensions, the R-curve should, 

in theory, also depend on the boundary geometry, location of the loads, crack 

path, etc.). It is noteworthy that the present theory achieves a good fit 

of test data without introducing any variation of fracture energy Gf , i.e., 

G
f 

is a constant. In fact, the present theory allows calculating the R-curves. 

For this purpose one needs to evaluate the work of the nodal forces acting at 

the crack front element during a small crack band extension. In this 

manner the R-curves have been calculated, using the same fracture parameters 

as in the previous fitting of maximum load data. These calculations have 

led to good fits of R-curve data reported in the literature [11]; see 

Fig. 7, using test data from Refs. 33, 36, 45, and 48. For the details of 

analysis, see Ref.ll. (It is worth noting that the present theory has been 

also used with equal success to fit the test data for various rocks [10, 17].) 

Statistical analysis of the test data available in the literature 

revealed that the crack band theory allows a great reduction of the co

efficient of variation wOof the deviations of test data from the theory. 

In the case of maximum load data, wO= 0.666, while for the best fits with 

linear elastic fracture mechanics, wO= 0.267. For the strength criterion, 

wO= 0.650. In the case of R-curves, the present crack band theory yields 

standard deviation for the deviations of test data from the theory as 

s = 0.083, while linear fracture mechanics with constant fracture energy 

yields s = 0.317; see Ref. 11. These are significant improvements in 

the error statistics, and the present crack band 

theory is seen to be sufficient for practical purposes. The analysis of 

test data from the literature allowed it also to set'clp an approximate 
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empirical formula for the prediction of fracture energy on the basis of 

tensile strength f~, maximum aggregate size da , and Young's modulus E; 

(6) 

in which f~ must be in psi (psi 

h 1 · G 3d f,2 CE-l_ 

6895 Pa), and Gf is in lb./in. Exploiting 

-1 
Et )/2, one can further obtain a prediction t e re atlon f ~ a t 

formula for the softening modulus 

-69.9E 
f' + 56.7 

t 

Application in Finite Element Programs 

(7) 

Finite elements of size h = w = 3d may be too small for many practical 
c a 

applications. However, we cannot simply increase the element size because 

according to Eq.3 the energy consumed by fracture would increase proportionally 

with h, other parameters remaining unchanged. Obviously, in order to main-

tain the same energy consumption by fracture, the area under the tensile 

stress-strain diagram must be changed in inverse proportion to the element 

width h. This may be done most conveniently by adjusting the strength limit 

from the actual strength f' to an equivalent tensile strength f' • If we 
t eq 

use the bilinear stress-strain diagram and keep the softening modulus Et 

constant, we obtain the following expression for the equivalent strength in 

a square mesh in which the fracture propagates parallel to the mesh line; 

f' eq 
E 

= efCl + -=E) 
t 

k2 2G E' 
f 

(w r) 
h f 

in which cf is a calibration factor close to 1, depending on the type of 

finite element, and r
f 

is a correction for the compressive normal stress 

parallel to the crack plane Cr
f
= 1 - v' 03/01)'* We see that the tensile 

strength limit must be reduced in inverse proportion to the square root of 

element size. 

* Here v' 'V/(l - v), v Poisson ratio. 

(8) 
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If the tensile strength limit is not changed when the element size 

changes, fracture analysis is unobjective in that the results may strongly 

depend on the analyst's choice of the element size. A glaring example of 

this was presented in Ref. 15 in which a rectangular panel, either plane or 

reinforced, waS analyzed for propagation of a symmetric central crack band. 

It was demonstrated that by changing the element size four times, the cal-

culated value of the load needed for further crack band propagation changed 

this by a factor of 2 (i.e., by 100%). (If the element size is much larger 

than we' the value of equivalent strength f' is very small and may be eq 

neglected. Then one obtains the no-tension material pioneered some twenty 

years ago by Zienkiewicz et al.) 

Keeping the strength limit the same regardless of the element size doe§ 

not necessarily lead to wrong results. In fact, in many situations finite 

element analyses with a constant tensile strength yielded good results, in 

agreement with tests. The reason why this happens is that many structures 

are fracture-insensitive, i.e., their -failure depends primarily on other 

phenomena such as plastic yielding of steel rather than on cracking of 

concrete. The flexural failure of reinforced beams is a good example. To 

decide whether the problem is fracture-insensitive, the analyst needs to run 

the finite element calculations twice: once with the actual tensile strength 

f~, and once with a zero tensile strength. If the results do not differ 

significantly, one may forget about adjusting the tensile strength limit. 

For structures much larger than the aggregate size, the size of the 

fracture process zone may become negligible compared to the cross section 

dimensions (this is true, e.g., for gravity dams). If the finite elements are 

not very small, a small fracture process zone can be obtained by considering 
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a vertical stress drop instead of gradual strain-softening. A small fracture 

process zone is a prerequisite for the validity of linear p.lastic fracture 

mechanics, and indeed it is found [10, 11) that the use of a sudden stress 

drop after the tensile strength limit has been reached leads to results 

that are very close to the exact solutions of linear elastic fracture 

mechanics. The results with the present crack band model are just as close 

to the exact solution as those obtained with the sharp interelement crack 

model [10). 

When a vertical stress drop is assumed, the energy criterion of 

fracture mechanics can be more closely approximated by a direct calculation 

of the energy release due to crack band extension, rather than the use of a 

specified tensile stress-strain diagram with equivalent strength. A formula 

for the change in potential energy due to crack band extension was given 

in Refs. 10 and 11. In this formula, one calculates the work of the nodal 

forces acting upon the frontal finite element during the fracture formation. 

One must also consider the differences between the initial and final strain 

energy within the cracked frontal finite element, as well as the work of 

distributed forces transmitted by reinforcement on concrete. 

Instead of directly calculating the work of nodal forces on the frontal 

finite element, one may also obtain the exact energy release through the 

use of the J-integral. This method of analysis was developed by Pan and 

coworkers [54]. 

An important advantage of the blunt crack band model is that the 

direction of mesh lines need not be changed if the fracture runs in a skew 

direction. The crack band propagation criterion then requires some adjust

ment in order to give results that do not depend on mesh inclination. 
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We consider a rectangular mesh of mesh sizes ~x and ~y (Fig. 8). An in-

clined crack band is represented as a zig-zag crack band of overall orienta-

tion angle aF. Let aM be the orientation angle of the mesh lines x, and 

a
C 

be the direction of the cracks within the finite element (Fig. 9). We 

seek the effective width wef of a smooth crack band that is equivalent to the 

zig-zag band. Consider one cycle, of length £, on the line connecting the 

centroids of the elements in the zig-zag band. The number of elements per 

cycle ~ in the x-direction is N = £ cosa/~x, and the number of those in the 
x 

y-directionis Ny = ~ sina/~y in which a = laF - aMI provided 

that 0 ~ a < 90
0

• The area of the zig-zag band per cycle £ is 

(Nx ~y) ~x + (Ny ~x) ~y. This area must equal the area £ wef of the 

equivalent smooth crack band, in order to assure the same energy content 

at the same stresses. This condition yields the effective width 

w = ~x sina + ~y cosa 
ef 

o 
(0 :: a :: 90 ) 

A somewhat different equation, giving similar results for a < 45 0 has been 

used in previous work [13-l5J. 

(9) 

A different adjustment is needed when one considers a sudderi stress drop 

and determines crack propagation directly from the energy change ~u caused 

by extending the crack band into the next element. The propagation condition 

then is ~U/~a =-Gf where ~a is the length of extension of the crack band, 

which is equal to the mesh size h if the crack band propagates parallel to 

the mesh line [12, 13, 6]. In the case of a zig-zag band, ~a must be 

replaced by an effective crack band extension ~aef in the direction of the 

equivalent smooth crack band. We may assume ~a~f to be the same for each 

crack band advance within the cycle £ in Fig. 8, whether this advance is in 

the x- or y-direction. Then ~aef = £/N where N = Nx + Ny = number of 
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elements per cycle t. This condition yields 

. -1 
(

COS a + S1n a) 
~a = ef ~x ~y 

It has been demonstrated that the calculation results are objective 

(10) 

not only with regard to the choice of element size but also with regard to 

the choice of mesh inclination relative to the fracture direction. Meshes 

of various inclination have been used to calculate the load-- crack-length 

diagram for the rectangular panel considered before; $hey have been found 

to yield essentially the same results, except that the scatter (numerical 

errors) are somewhat larger for the zig-zag crack bands than for a smooth 

band; see Ref. 15. 

It is one problem when the fracture direction is known and the zig-zag 

crack band is placed so as to conform to the average fracture direction, 

and another problem when the fracture direction is unknown in advance and 

a choice of the next element to crack must be made. The latter problem 

is obviously more difficult. It has been found that any finite element mesh, 

including a square mesh, is not entirely free of a directional bias. This 

bias is the strongest when the angle of fracture direction with the mesh line 

is small. For example, if a square mesh in the center-cracked rectangular 

panel is only moderately slanted (Fig. 8b), then the equivalent strength 

criterion with the effective width given by Eq. 8 indicates the crack band 

to extend straight along the mesh line, i.e., in the inclined direction, 

while correctly there should be side jumps so that the zig-zag band would, 

on the averate, conform to a horizontal direction. It appea~s rather 

difficult to avoid this type of bias. Various methods to avoid it are 

being studied [55-58]. Some search routines to determine which element 
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is the next to crack (the element straight ahead or the element on the left 

or on the right) are being investigated. 

When concrete is reinforced, attention must also be paid to the question 

of bond slip of reinforcing bars embedded in concrete. It has been shown [13], 

that neglect of the bond slip is impossible, leading to unobjective results 

strongly dependent on the mesh size and converging to a physically incorrect 

solution. If no slip is considered to occur at the nodes between the bars 

and concrete, and if the element size is varied, then the stiffness of the 

connection between the opposite sides of a fracture changes with the mesh 

size and would approach infinity for a vanishing mesh size, thus preventing 

anY crack propagation at all. In reality, due to a limit on the bond stress 

that can be transmitted on the surface of a steel bar, there is a certain 

bond slip length L on each side of a crack band. This length depends on the 
s 

bar cross section ~, ultimate bond force Ub' ratio n' of the elastic moduli 

of steel and concrete, stress a in the bars at the point of crack band s 

crossing, and the reinforcement ratio p (the bars are assumed to be spaced 

regularly and densely). The following expression was derived [13J, 

L 
s 

~ u
As

, (a - as') ~ ~U' 1 1 -+p , 
b s b - P n P 

a 
s 

(11) 

For convenience of programming it is further possible to replace this actual 

* bond slip length with an equivalent free bond-slip length Lwhich coincides 
s 

with a distance between certain two nodes within the mesh, and which permits 

neglecting the bond shear stresses that are difficult to model in a finite 

element code. The cross section area ~ must also be adjusted to a value 

* * * ~. The values of Ls and ~ are then determined'from the condition that the 

extension of the steel bar over the length L , with bond shear stresses present, s 

* would be the same as the extension of a bar of cross section area ~ and 

* length L with zero bond stresses; see Ref. 13. 
s 
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When reinforcement is used, the expression for the equivalent strength 

must also be adjusted. The following formula has been derived from energy 

release considerations [6, 15]; 

f' eq (1 + c p n' ~ cosa ) 
L s 
s 

(12) 

in which a = angle of the reinforcing bars with the normal to the crack band, s 

and c is an empirical coefficient to be found by numerical calibration, i.e., 
p 

comparisons of results for different mesh sizes [15]. 

It might be more realistic to treat reinforcement and bond slip by 

introducing two overlaid continuua, one representing the plane concrete, 

and one representing the reinforcement mesh. These continuua would be 

allowed to displace relative to each other and would transmit distributed 

volume forces from one to another, depending on the relative slip. This 

approach would be, however, much more complicated. 

Structural Size Effect 

The dispersed and progressive nature of cracking at the fracture front 

may be taken into account by introducing the following hypothesis [59]: 

The total potential energy release W caused by fracture in a given structure 

depends on both: 

1) The length a of the fracture, and 

2) The area of the cracked zone, and 
a 

in which n is a material constant characterizing the width of the cracking 

zone at the fracture front [11], n ~ 3. The dependence of W upon crack 

length a describes that part of energy release that flows into the fracture 

front from the surrounding uncracked regions of the structure. 
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Parameters a and a d are not nondimensional. They are permitted 
n a 

to appear only in a nondimensional form, which is given by the following 

nondimensiona1 parameters 

a 
d' (13) 

They represent the nondimensional fracture length and the nondimensiona1 

area of the crack zone. Furthermore, W must be proportional to volume d
2

b 

of the structure, b denoting the thickness, and to the characteristic energy 

density a~/2 Ec in which aN = P/bd = nominal stress at failure, P = given 

applied load, and d = characteristic dimension of the structure. Consequently, 

we must have 

2 

W - ~ (~) bd
2 

f (0.1 ' 0.2 , ~i) - 2Ec bd 
(14) 

in which f is a certain continuous and continuously differentiable positive 

function, and ~. represent 
1 

the shape of the structure. 

ratios of the structure dimensions characterizing 

To illustrate the structural size effect, we now consider structures of 

different sizes but geometrically similar shape, including the same ratio 

of fracture length to the characteristic dimension of the structure, and 

the same reinforcement ratio. Under this assumption, the shape parameters 

~. are constant. Using the energy criterion for crack band propagation, 
1 

dW/da = G
f 

b, in which G
f 

is the fracture energy, we obtain (for constant 

~i) df/da = f l (da1/da) + f2 (da2/da) where we introduce the notations 

f1 = df/da1 , f2 = df/da2 • Substitution of Eq. 12 into Eq. 13 then yields 
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(15) 

Here the fracture energy may be expressed as the area under the tensile stress

strain curve i e G - n d (1 - E IE ) f,2 /2E in. which E is the initial , .. , f- act t c' c 

Young's elastic modulus of concrete, Et is the mean strain-softening 

modulus, which is negative, and f~ is the direct tensile strength of concrete. 

* Substituting this expression for Gf together with the relation P = ON bd i~nto 

Eq. 14, we finally obtain 

Bf' 
t 

d 
+Td o a 

geometrically similar structures of different sizes are considered. Inthe 

plot of log ON versus log (did ) where did is the relative structure size, a a 

Eq. 18 is represented by the curve shown in Fig. 10. If the structure is 

very small, then the second term in the parenthesis in Eq. 15 is negligible 

compared to 1, and a = B f' is the condition characterizing failure, N ·t 

representing the strength criterion which in Fig. 10 corresponds to a 

horizontal line. This special case is obtained if W depends only on the 

crack·-zone area but not on the fracture length. If the structure is very 

large, then 1 is negligible compared to the second term in the parenthesis 

of Eq. 15. Then ON = const./ld. This is the type of size effect known to 

apply for linear elastic fracture mechanics. Thus, linear elastic fracture 

(16) 

mechanics must always apply for a sufficiently large concrete structure. it 

is interesting to note also that the preceding nondimensional analysis yields 

this limiting case when the starting hypothesis includes only dependence of W 

on the fracture length but not on the cracked zone area. In Fig. 15 the 

limiting case of linear fracture mechanics is represented by the straight line 

of downward slope - 1/2. 

* Here ON = nominal stress at failure. 
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The size effect in concrete structures failing due to cracking of 

concrete represents, as we have shown, a gradual transition from the strength 

criterion to the energy criterion of linear fracture mechancis. Unfortunately, 

among the numerous test data on fracture of plain concrete as well as on 

brittle failures of concrete structures, as reported in the literature, only 

a very small fraction involves fractures of specimens of sufficiently 

different sizes to check our preceding conclusion. From fracture testing 

of plain concrete, the size effect may be checked from the test data of 

Walsh [47] (Fig. 6). A very good agreement with Eq. 15 is found from these 

data. As for brittle failure of concrete structures, a check can be made 

using certain data for the diagonal shear failures of concrete beams with 

longitudinal reinforcement but without stirrups. Results of such tests are 

shown in Fig. 11 for test data from Refs. 61-67. In spite of the large 

scatter, due to comparing test data from different laboratories for different 

concretes, the declining trend is obvious. A horizontal line, corresponding 

to the strength criterion (as well as to the present ACI or CEB-FIP codes), 

is contradicted by the test data. At the same time, however, one can clearly 

see a substantial deviation from the straight line representing linear 

elastic fracture mechanics. For more detail, see Ref. 60. 

In the preceding analysis we have not paid any particular attention to 

reinforcement. If a densely and regularly distributed reinforcement is 

present, one finds that the size effect is again governed by Eq. 15, however, 

with different constants, provided that the reinforcement remains elastic. 

Compared to plain concrete, the asymptotic straight line for linear elastic 

fracture mechanics is pushed in the plot of Fig. 10 toward the right, i.e., 

there exists a greater range of sizes for which the strength criterion applies. 
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Nevertheless, for sufficiently large structures, a transition to the size 

effect of linear fracture mechanics does occur. This conclusion, however, 

is true only if the reinforcement does not yield. If it does, then there is 

another transition in Fig. 10 to a horizontal asymptote (see Ref. 59). 

The decrease of nominal stress at failure with the structure size has 

been explained in the past as a statistical phenomenon. The strength of 

concrete is randomly variable, and in a larger structure there is a greater 

chance of encountering a smaller strength, which could explain the size 

effect. However, since the random variations occur only within certain 

representative volumes of small size, the statistical size effect must lead 

to a horizontal asymptote. Thus, the asymptotic behavior is totally different 

from that we obtained for fracture mechanics. Needless to say, the fracture

type size effect appears to be the correct one. 

Other Aspects 

For some types of loading, especially those in dynamics, the principal 

tensile stress may initially cause only a partial cracking and fracture may 

be completed later under a principal tensile stress of a different direction. 

For such situations, a softening stress-strain relation that can be applied 

for a general loading path with rotating principal stress directions is needed. 

An attractive method to develop such a stress-strain relation is the micro

plane model [68, 69J. In this model, analogous to the well-known slip 

theory of plasticity [70, 71], one specifies the constitutive relation 

between the stresses and strains acting within the microstructure on a plane 

of any orientation. No tensorial invariance restrictions need to be satisfied 

by this relation, since they are satisfied subsequently by a suitable com

bination of microplanes of all possible orientations. It appeas that for the 
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modeling of progressive fracture, the strains from all microplanes must be 

constrained to the same macroscopic strain tensor, and requiring that the 

energy dissipation must be the same whether expressed macroscopically or 

microscopically, one finds that the inelastic stress relaxations from all 

microplanes must be superimposed, evaluating a certain integral over a unit 

hemisphere. This model has been shown [69J to be able to represent tensile 

strain softening of concrete. Furthermore, it was shown that the same model 

can describe the shear resistance of cracks and their dilatancy caused by 

shear [72J. 

While the microplane model represents a refinement of the crack band 

model, a simplified approach is also of interest. It has been recently 

investigated whether concrete fracture can be predicted by an approximate 

equivalent linearly elastic fracture analysis based on the concept of R-curves 

(resistance curves) known from fracture analysis of metals [73J. This 

approach is based on two hypotheses: 1) for the purpose of determining the 

energy release rate, the crack length a is not required to represent the 

actually measured crack length but permits a to be any fictitious crack 

length. 2) The fracture energy G is not a constant but varies as a function 
c 

of the extension c of the fictitious crack from the body surface or a notch 

(c = a - aO where a
O 

= notch length; Fig. 12). In the second hypothesis, 

the dependence of fracture energy on crack extension is supposed to be 

unique, as proposed for metals by Krafft et al. [50, 3lJ. This is certainly 

a simplification, since in reality the R-curve is different for different 

body geometries, different loading arrangements, different loading paths, etc., 

and indeed the R-curves calculated by finite elements from the blunt crack 

band theory as explained before exhibit such a dependence. Nevertheless, 
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for many situations, a unique curve of fracture energy versus crack extension, 

called the R-curve, is an acceptable approximation (Fig. 12). 

In the R-curve approach, the critical state of failure is obtained when 

the following two conditions are satisfied [31]: 

W'(a) = G (c), 
c 

aW'(a) 
3a 

aG (c) 
= __ ~c __ _ 

ac 

in which W'(a) = aW/aa = energy release rate of the body, and c = a - a
O

' 

In elastic fracture mechanics, the energy release rate function has the form 

2 
W'(a) = P Wi(a), in which Wi(a) is the energy release rate function for 

P = 1. Substituting this relation into Eq. 16, one has two equations for two 

(17) 

unknowns c and the failure load P. These two equations are nonlinear and have 

to be solved iteratively. However, if the function G (c) is assumed to be a 
c 

parabola and the function Wi(a) to be a straight line, then Eq. 15 can be 

reduced to a single quadratic equation for P [31]. 

[73]. 

The bulk of fracture test data was analyzed using the R-curve approach 

Various algebraic expressions have been used for the R-curve G (c), 
c 

including an exponential curve with a horizontal asymptote, a segment of a 

parabola terminating at its apex,after which a horizontal line follows, and a 

bilinear diagram. By statistical analysis of the test data available from the 

literature, it was found that the precise shape of the R-curve cannot be 

determined. The optimum fits were about equally good with the aforementioned 

expressions as well as other expressions. Only the initial value of G , the 
c 

final value G
f 

and the overall slope,were found to be of importance. This 

conclusion implies that it makes no sense trying to develop sophisticated 

differential equations for determining the shape of the R-curves. 
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Therefore, the expression for the R-curve should be chosen from the 

viewpoint of convenience, and from this viewpoint the parabolic formula is 

probably best, since it yields a quadratic equation for P. Fig. 13 reproduces 

a plot from Ref. 73 of the theoretical versus measured values of P at 

failure, normalized with regard to the failure load Po calculated from the 

strength theory. The parabolic formula is used in this comparison. If the 

theory were perfect,the data points would have to fallon a straight line 

through the origin, of slope 1. The deviations from such a strain line are 

the measures of the error. Their coefficient of variation is only 0.06, 

which means that a very good approximation of the existing test results is 

possible. 

The R-curve can be sufficiently characterized by three parameters, its 

initial and final values and the mean slope of the rising segment. These 

three material characteristics can be easiest determined by carrying out 

maximum load tests for three substantially different test specimens. Best 

probably are geometrically similar specimens of substantially different sizes. 

Measurements other than maximum load values are then not needed, which is a 

significant advantage of this approach. It is very difficult to measure other 

quantities such as the crack length and opening, loading and unloading 

compliancies at the critical state, etc., and it is attractive for practical 

applications to be able to avoid such measurements. 

For concrete structures, it is of importance to model not only isolated 

fractures but also systems of cracks. Of particular interest is the system of 

parallel equidistant" cracks which forms under a uniform tensile loading 

of a panel reinforced by a mesh of bars, or in a beam with longitudinal 

reinforcement subjected to tension or bending. For the parallel crack system, 
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it is necessary to determine the spacing of the cracks, after which the 

crack width can be estimated, and also the overall strain at which the cracks 

form. This problem has been traditionally analyzed on the basis of strength 

criteria, coupled with the conditions of bond slip. However, the strength 

criteria govern only the initiation of microcracking, since they pertain to 

the peak point of the tensile stress-strain diagram. For a complete crack 

formation, strain-softening must reduce the stress to zero, which means that 

the full strain energy under the tensile stress-strain diagram must be dissi-

pated. Therefore, complete crack formation should properly be calculated from 

energy fracture criteria. This approch has been taken in Ref. 74, and 

simplified formulas for the crack spacing based on energy analysis were 

determined. Since the cracks are usually spaced rather closely compared to 

the maximum aggregate size, the energy balance conditions have not been 

written for the formation of the crack over its entire length. The formulas 

obtained from this fracture mechanics approach agreed reasonably well with the 

* scant test data on crack spacing and crack width available in the literature. 

Crack width is rather important for the shear transmission capability of 

cracks in concrete, which is essential for the load carrying capability of 

concrete structures. The shear response of cracks in concrete may be 

characterized by an incremental relation expressing the increments of the 

normal and shear stress transmitted across a crack as a function relative 

displacement (opening) and the tangential relative displacement (slip); see 

Ref. 75. 

* Aside from energy balance, the evolution of crack spacing of a growing crack 
system is also governed by certain stability conditions; see Ref. 76. 
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Conclusions 

After a period of doubts regarding the applicability of fracture mechanics 

to concrete, it has now become clearly established that fracture mechanics 

does apply. However, a nonlinear form of fracture mechanics which takes into 

account the existance of a large fracture process zone ahead of the fracture 

front must be used. An attractive formulation is the crack band model, which 

is particularly suited for finite element analysis. Nevertheless, many 

questions remain open and much further research is needed. 
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INTRODUCTION 

The presence of pore f1 u; d ; n 1 aboratory rock samples or fi ssured rock 

masses can substant i ally alter the response to app lied or induced loads and 

the conditions for failure. Pore fluid effects have been proposed as playing 

a role in a wide variety of geophysical and geotechnical phenomena. These 

include the following: migration of aftershocks (Nur and Booker, 1972; 

Booker. 1974); fault creep (Ri ce and Simons, 1976; Ri ce, 1979a); earthquake 

precursory processes (Nur, 1972; Anderson and Whitcomb, 1975; Scholz et al., 

1973; Rudnicki, 1977, 1979; Rice and Rudnicki, 1979) hydraulic fracture (Rice 

.and Cleary, 1976; Ruina, 1978; Cleary, 1979); water level changes in wells 

(Johnson, et al.,1973); induced seismicity (Bell and. Nur, 1978; Simpson, 1976; 

Raleigh et al., 1976; Ohtake, 1974; Zoback and Hickman, 1982); wave speed 

travel time delays (Leary et al., 1979) and migration of earthquake swarms 

(Johnson, 1979). 

The most familiar effect of the pore fluid is to reduce the effective 

value of the mean normal compressive stress. 

in terms of so-called effective stress laws: 

This effect is usually expressed 

the effect of the pore fluid on 

some aspect of the mechanical behavior can be incorporated by replacing the 

stress by the effective stress, ali near combi nati on of the stress and pore 

fluid pressure. Because the inelastic deformation of many geological mater

ials is inhibited by an increase of hydrostatic compression, an increase in 

pore fl uid pressure decreases the effecti ve compressi ve stress and promotes 

further inelastic deformation. Conversely, a decrease in pore fluid pressure 

tends to inhibit further inelastic deformation. 

Coupling of deformation with pore fluid diffusion also introduces time 

dependence into the response of an otherwi se rate -i ndependent so 1 i d. An 

elastic fluid-infiltrated solid responds more stiffly to deformations that are 

• 
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rapid compared to the time scale of diffusion than for deformations that are 

slow compared to the diffusion time. Because many geological materials change 

volume when sheared inelastically, pore fluid diffusion can also be coupled to 

inelastic deformation. A volume increase due to microcracking and opening of 

pore space, as is typical of brittle rocks deformed in compression, tends to 

decrease the local pore fluid pressure. If the creation of new pore space 

occurs slowly, the tendency for the pore fluid pressure to decrease will be 

alleviated by fluid mass flux. If, however, new pore space is created more 

rapidly than fluid mass can diffuse into it, then the pore fluid pressure 

decreases, increasing the effective stress, and inhibiting further inelastic 

deformation. 

This review considers the mechanical effects of pore fluid on the deform

ation and failure of geological and geotechnical materials. Applications to 

brittle rock and, more specifically, to earth faulting are emphasized. Fot~ 

the purpose of this article the subject is divided into those effects that can 

be treated on the basis of Biot1s (l941a) formulation for a linear elastic 

fluid-infiltrated porous solid and those that arise from inelastic volume 

changes. Several other recent review articles also treat this subject, 

Reviews by Rice (1979a, 1980, 1981) on the mechanics of earthquake rupture and 

precursory processes have included discussion of pore fluid effects. Rudnicki 

(1980), in a review of fracture mechanics applied to the earth1s crust~ has 

discussed coupled deformation diffusion effects in fault propagation, and 

Rudnicki (1981) has reviewed the stabilizing effects of coupled deformation 

and diffusion on an inclusion model of faulting. Paterson (1978) has given a 

concise review of experimental work up to 1977. 
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LINEAR ELASTIC FLUID-INFILTRATED POROUS SOLID 

The governing equations for a linear elastic fluid-infiltrated solid have 

been established by Biot (1941a). Although obviously an idealization of the 

behavior of rocks, this theory has proved rich enough to provide insight into 

a wide variety of physical phenomena. At the same time, the complexity of the 

equations is such that the number of solutions is not great. More elaborate 

theories--many derived from mixture theory--have been proposed, but they offer 

few advantages over the Biot approach. Uncertainties about material 

parameters and difficulties of solution argue against pursuing overly 

intricate theories at this time. Until recently, very few solutions to the 

fully coupled Biot equations have existed. These include solutions for sur

face loading of half-spaces (Biot, 1941b; Biot and Clingan, 1941; McNamee and 

Gibson, 1960,a,b) and for the response of planar acquifers (Verruijt, 1968) 

and spherically symmetric pressurized cavities (Cryer, 1963). However, the 

possible role of coupled deformation diffusion effects in earth faulting has 

provided motivation to develop additional solutions. 

The next subsection reviews the governing equations of the Biot theory. 

Rice and Cleary (1976) have given an appealing reformulation of the Biot 

theory and the description to be given here closely follows their point of 

view. After a brief subsection discussing material parameters of the Biot 

theory, a sampling of recent solutions and applications is given in the 

succeeding subsections. 

Governing Eguations 

Let 0ij denote the total stress so that niOij ;s the force per unit area, 

including both solid and fluid phases, with unit normal ni. Although some 

authors prefer to decompose the stresses into portions acting separately on 

the solid and fluid phases, that is unnecessary and yields no advantage. 
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Deformations can be described by the strains of the solid matrix £ijO Two 

additional variables are needed to include the effects of the pore fluid. 

These are chosen to be the pore fl ui d pressure p and the fl ui d mass content 

per unit volume m. It is often convenient to express m as the product of the 

mass density of homogeneous pore fluid p and an apparent volume fraction of 

voids v, i.e. m = pV. The pore fluid pressure is defined as the pressure in 

an imaginary reservoir of homogeneous pore fluid that would be needed to 

prevent any fluid mass flux to or from the reservoir when it is connected to a 

material element. 

Linear relations for 0ij and the deviation of m from an ambient value mo 

have the following form: 

O· . lJ 

m - mo = R.. €.. + Qp lJ lJ 

(1) 

(2 ) 

where Lijkl is a tensor of elastic moduli, Mij and Rij are additional constant 

constitutive tensors and Q is a scalar. The tensors Lijkl. Mij and Rij have 

the symmetries derived from the symmetry of 0·· and £ ..• Because the response 
lJ lJ 

is elastic, the work increment can be expressed as a change in the Helmholtz 

function cp having the following differential form (Biot, 1941a, 1973) (at 

constant temperature): 

dcp = o .. d£ .. + pd(m/p) 
1 J lJ (3) 

The Maxwell relation that follows from taking the mixed partial derivatives of 

the dual potential cp - pm/p with respect to £ij and p in either order is 
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<lcr· . lJ _ 
p---

am 
(4) 

ap 

Substituting (1) and (2) into (4) yields 

( 5) 

When the deformation is slow enough so that alterations of the pore fluid 

pressure from its ambient value are eliminated by fluid mass flux, conditions 

are said to be drained. In this case, p = 0 and Lijkl can be identified as 

the tensor of elastic moduli for drained deformation. The deformation is said 

to be undrained when it is too rapid to allow .time for fluid mass flux to or 

from material elements. In this case, m = mo and (2) can be solved for the 

pore fluid pressure to give 

p = -Q -1 pM .. e: .. 
lJ 1 J 

where (5) has been used. Substituting (6) into (1) yields 

where 

is the tensor of elastic moduli appropriate to undrained response. 

(6 ) 

(7) 

(8) 
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The constitutive formulation is completed by Darcy's law. In the absence 

of body forces, Darcy's law can be expressed as 

ql· = -pK·· ap/ ax. 
lJ J 

( 9) 

where qi is the mass flow rate across a unit area with norma 1 in the ith 

direction, and Kij is a (symmetric) permeability tensor. 

When the response is ( -1 ) i sotropi c, the tensors M .. = p R.. and K·· are 
lJ lJ lJ 

diagonal and, consequently, can be expressed as 

(10 ) 

where 0ij is the Kronecker delta. Furthermore, for isotropic response the 

tensors of elastic moduli for drained response must have the following form: 

where G and K are the shear and bulk moduli, respectively. 

(ll) 

u The form of L;jkl 

is the same as that for L;jkl but the values of the shear and bulk moduli may 

be different for undrained and drained response. However, substitution of 

these forms for the modulus tensors and (10) into (8) reveals that the value 

of the shear modulus is the same for drained and undrained response and Q is 

given by 

(12) 

where Ku is the bulk modulus for undrained response. 
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Consequently, for isotropic response, equations (1), (2), and (9) can be 

. rewritten as follows: 

cr1"J" = (K - 2G/3) 0"" €kk+ 2G€""- ~pO"" 1 J lJ lJ 
(13) 

( 14) 

qi = - P K ap/axi (15) 

In these equations the value of the density p is constant, as appropriate for 

a linear theory, and equal to the mass density of the homogeneous pore fluid 

as it ex; sts in the reservo; r ;mag; ned to be connected to the materi a 1 

element. The parameter ~ can be expressed as 

I 

l; = 1 - K/K s 

I 

( 16) 

where Ks is another bulk modulus that can be identified, under some 

circumstances (Nur and Byerlee, 1971;· Rice and Cleary, 1976), with the bulk 

modulus of the solid constituents. The bulk modulus for undrained response 

Ku satisfies K ( Ku< ~ where the upper limit is attained for separately 

incompressible solid and fluid constituents and the lower for highly 

compressible pore fluid. Thus, the response is elastically stiffer for 

undrained . response. The scalar permeabil ity K is often expressed as 

K = k/Il where jl is the· fluid viscosity and k is a permeability with 

dimensions of length squared and usually given in units of darcies (1 darcy = 

10 -8 cm2) • 
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The bu 1 k modul i for drai ned and undrai ned response can be used to deri ve 

Poisson's ratios for drained (v) and undrained (vu) response according to the 

usual relation 

v = (3K - 2G)/2 (3K + G) ( 17) 

The limits of Ku require that the Poisson's ratio for undrained response 

Vu satisfies v ~vu~ 1/2. If (13) and (14) are combined to obtain a relation 

between the pore fluid pressure and the mean normal stress for undrained 

response, the result is 

(18 ) 

where 

B = ~Ku/(Ku - K). (1 9) 

Thus, Band Vu can be used as alternatives to ~ and Ku. The following 

alternative expr'essions for vu and B can be obtained from the results of Rice 

and Cleary (1976): 

= 3v + ?; B (1 - 2v~ 
Vu 3 - ~ B (1 - 2v 

(20) 

(21) 

where Kf is the bulk modulus of the pore fluid, Vo is the apparent porosity in 

the the reference state and KS" is another bulk modulus that can, in special 

cases, be identified as the bulk modulus of the solid constituents. 

The constitutive equations (13), (14), and (15), must be combined with 

field equations expressing compatibility, equilibrium 'of total stresses (in 

the absence of body forces) and fluid mass conservation. These are as 
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fo 11 ows: 

g .. =~ (al.l ·/ax . + au./ax·) 
lJ L 1 J .J 1 

acr· . / ax. = 0 
1 J 1 

aq;lax ; + am/at = 0 

where ui is the displacement of the solid matrix. Substituting (15) 

into (24) yields, for constant p and K, 

(22) 

(23) 

(24) 

(25) 

where 1]2( •••• ) = a2( ••• )/axi axi. Substituting (13) into (23) and using 

(22) yields 

(26) 

Differentiating this equation with respect to Xj and adding the appropriate 

multiple of it to (25) reveals that the fluid mass per unit volume m 

satisfies the homogeneous diffusion equation 

~m = 1 am 
c at 

where the diffusivity c is given by 

K (K + 4G/3) (Ku - K) 
c = ---;:--,----..::..---

1;2 (Ku + 4G/3) 

or, in terms of B, \I and \I as 
u 

( 27) 

(28) 
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( 29) 

The formulation given here assumes that a description of the pore fluid 

pressure in terms of a single scalar variable is adequate. For very rapid 

deformations on the time scale of wave propagation, the pore fluid pressure 

will be different in differently oriented neighboring fissures comprising a 

single point in a continuum formulation. Consequently the term undrained 

conditions refers to response on time scales that, although short, are long 

enough to allow for local pressure equilibrium among neighboring fissures. 

Estimates of relaxation times and constitutive response at shorter time scales 

have been given by O'Connell and Budiansky (1971) and Cleary (1978a). 

Material Parameters 

A 1 though the Bi ot theory ; ntroduces only two addit i ona 1 e 1 ast i c 

constants, Vu and i30r Ku and 1;, there have been few detailed investigations 
, II 

of their values. Rice and Cleary (1976) noted that if Ks· and Ks are assumed 

to be approximately equal to Ks ' the bulk modulus of the solid 

constituents, vuand B can be calculated from measured or inferred values of 

v, Kf and Vo • Using this procedure, they have tabulated results for six 

rocks: two granites, three sandstones, and Tennessee marble. Values of 

v are about 0.25 for the granites and marble, and lower, 0.12 to 0.20, for 

the sandstones. The undrained Poisson's ratio Vu ranges from 0.27 for 

Tennessee marble to 0.34 for Westerly granite. The value of B ranges from 

0.51 for Tennessee marble to 0.88 for Ruhr sandstone. Roeloffs (1982) also 

discusses some measurements of the parameters in the Biot theory and quotes 

v = 0.2, Vu = 0.34 and B = 0.51 for Boise sandstone. 

A measure of the magnitude of coupled deformation - diffusion effects is 
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the ratio 

n = (1 - v)/(l - vu) (30) 

which figures prominently in many of the solutions to be discussed in 

succeeding subsections. Values for the rocks just discussed range from 1.03 

for Tennessee marble and 1.04 for Charcoal granite to 1.28 for Ruhr 

sandstone. As noted by Rice and Rudnicki (1979), the presence of large 

fissures tends to increase Vu and decrease v so that the value of n in situ 

may be larger than that inferred from laboratory data, at least for low 

porosity rocks. They also point out that there is no direct source of the 

values of Vu and v in situ. Although measurements of seismic wave speeds can 

be used to obtain a value for Poisson's ratio, this value corresponds to 

neither v nor Vu (O'Connell and Budiansky, 1977; Cleary, 1978a): the 

deformat ions induced by the passage of waves at typi ca 1 sei smi c frequenci es 

aTe too rapid to allow for the establishment of local pore fluid equilibrium, 

as assumed 1.n the Biot .theory. As an indirect means of inferring in situ 

values of v and vu' Rice (1979a) and Rice and Rudnicki (1979) have used the 

calculations of O'Connell and Budiansky (1974) for the elastic properties of 

cracked saturated solids. O'Connell and Budiansky (1974) give the elastic 

properties as a function of a crack density parameter. The value of this 

parameter can be inferred from observations of seismic wave speeds, and the 

results ~f the calculations can be used to obtairr Poisson's ratio. Using this 

procedure and O'Connell and Budiansky's (1974) inference of the crack density 

parameter from measurements of wave speeds prior to the San Fernando 

earthquake, Rice and Rudnicki (1979) suggest that values of n in the range 

1.10 to 1.25 may be representative of field conditions. 

A . characteristic time scale of these elastic coupled daformation 

diffusion effects is proportional to L2/c where L is a length scale and c is 



- 329 -

the diffus;vity. Values of c inferred by Rice and Cleary (1976) from 

laboratory tests on intact samples range from 1O-4m2/s for the granites and 

marble to 1.6 m2/s for Berea sandstone. The largest value is comparable to 

the value of 1.0m2/s suggested by Anderson and Whitcomb (1975) as being 

consistent with several field measurements in the vicinity of shallow 

earthquakes. Rice and Simons (1976) discuss this value in some detail and 

pOint out that it corresponds to plausible flow rates in fissured rock. Rice 

(1979a) has also inferred a value of 0.1 m
2

js from changes in water well level 

observed by Kovach et ale (1975) in response to creep events on the San 

Andreas fault. Li (personal communication, 1983) has determined values of c 

from published reports of a variety of field measurements and he finds values 

ranging from 10-1 to 102m2/s. 

Plane Strain Shear Dislocation 

The solution for a suddenly introduced edge dislocation was derived by 

Booker (1974) for incompressible constituents and b.¥ Rice and Cleary (1976) 

for compressible constituents. The line of the dislocation is assumed to 

extend infinitely in the z direction so that conditions of plane strain 

deformation apply and all field quantities are independent of z. The sudden 

introduction of an edge dislocation at the origin at time t = 0 corresponds to 

the following displacement continuity: 

Ux (x,O+, t) - ux(x, 0-, t) = bH(-x) H(t) (31 ) 

where Ux is the displacement in the x direction, b is the magnitude of the 

discontinuity and H is the unit step function. The pore fluid pressure is 

gi ven by 

p(x,y,t) (32) 
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where r2 = x2 + i and the shear stress in the plane of the dislocation is 

given by 

where 

l' (x,O,t) = _---..;G=b __ t. (x2/4ct) 
21f (1 - vu) X 

= 1 _ -( v_u ..... ~_v_)_ ~-l (1 _ e -;) • 

(1 - v) 

Because t. (e;) has the 1 imits t (00) = 1 for short times and 

l(o) = (l-v }j{l-v) = n-1 
u 

(33) 

(34) 

for long times, the shear stress is reduced from its initial value by a factor 

-1 
n 

Nur and Booker (1972) have poi nted out that the induced pore pressure 

predicted by (32) could reduce the confining stress near a recently slipped 

fault and provide a mechanism for the generation of aftershocks. The decrease 

with time of the pore pressure for y >0 could cause the observed decay in 

numbers of aftershocks with time. Johnson (1979) has also used this solution 

to discuss the possibility that the migration of earthquake swarms on 

subsidi ary faults transverse to a major transform fault could be caused by 

time-dependent changes of shear stress and pore fl uid pressure induced by sl i p 

on the transform fault. 

Booker (1974) (also, Rice, (1980,1981) has noted that the reduction of 

shear stress with time predicted by (33) predicts that the coupling of 

deformation and diffusion will act to reload a fault subjected to a sudden 
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stress drop. This feature is made clearer by rewriting (33) as follows: 

6:r: (X, 0, t) = 6:r: (X, 0, 0+) t (X2 / 4ct) (35) 

where ~'t(x,O,O+) is the stress drop at t = 0+ and t:.r: has been written for 

r: to emphasize the interpretation as a stress drop. Because the stress drop 

predi cted by (35) decreases with time by the factor n-1, the total stress on 

the fault will increase, possibly contributing to the generation of 

aftershocks. Rice (1980. 1981) has estimated the time scale of the reloading 

for a slipped zone of length 2a by superimposing dislocations of opposite sign 

at x = t2aj,r. This arrangement simulates a plane strain shear crack of 

length 2a in the sense that, for drained response, the magnitude of the shear 

stress at x = 0 is related'to b in the same way that the shear stress on the 

crack is related to the relative slip at the center of the crack. The 

magnitude of the stress drop at the center of the dislocations is then given 

by 

t:..(t) = t:..(t = 0+) 1. (a 2/1Tct) 

Rice (1980, 1981) plots the ratio set-up as 

~. (t = 0+) - t:.-r (t) 
t:.r: (t = 0+)- t:..(t = ~) 

= ( 2 2) 2 2 1T ct/a' [1 - exp(-1T ct/a )] (36) 

versus a/ct and defines as characteristic the time at which the right hand 

side of (36) equals 0.5. For 2a = 4km and values of the diffusivity c in the 

range 0.1 m2/s to 1.0 m2/s, the characteristic time ranges from 3.5 to 35 

days. 

Stabilization of Slip on a Narrow, Weakening Fault Zone 

Rudnicki (1979) has also made use of the dislocation solution to study 

the effects of coupling between deformation and diffusion in stabilizing rapid 
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slip on frictional surfaces. If the magnitude of the displacement 

discontinuity in (31) is time dependent, then the stress induced in the plane 

of the dislocation is given by the following superposition integral: 

L (X,o,t) = G ft --L- (t')lCx2/4C(t-t')]dt' 
21£ (l - vu)x -co at I 

If dislocations of opposite sign are again located at x = t2a/1£ to simulate a 

crack of length ta and the shear stress at the center of the dislocations is 

added to the uniform remotely applied stress L , the result is 
co 

ft ~ (t ') l [a2/ic(t-t I )]dt I - ~' . 

( 37) 

where Lf is assumed to be a function of the slip b. If the Lf versus b 

relation has a peak, then the occurrence of a rapid runaway of fault slip, 

interpreted as an earthquake, is possible. This runaway instability occurs 

when the ratio of an increment of slip to an increment of farfield stress 

becomes unbounded. For drained response, (37) reduces to 

G L --.--..;;;.--b 
CO> 2a(1-v) 

u 

(38) 

Runaway instability occurs when the slope of the friction stress versus slip 

relation satisfies 

G - ----'--
runaway 2a(1-v) 

(39) 

Rice (1979a) has given a graphical interpretation of this instability and 

noted that it is analogous to the i nstabil ity that occurs ina soft testing 
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machine when the capacity of the sample to carry load decreases faster than 

the machine can unload. In (39) the magnitude of the right hand side is the 

effective stiffness of the material surrounding the slip surface. If the 

material surrounding the slip surface is fluid "infiltrated, the rapid slip 

that occurs as (39) is approached induces undrained response. For undrained 

response, vis replaced by vu' Thus, the ratio of the stiffness of the 

surrounding material during undrained response to that for drained response is 

n (see (30)). Because vu > v , this ratio exceeds unity and, consequently, 

the slope of the 'tf vs. b curve must be more negative in order to achieve 

runaway instability under undrained conditions. Because the slope typically 

decreases with slip, the coupled deformation diffusion acts to delay 

instability from the point at which (39) is satisfied to that at which the 

corresponding relation for undrained response is met. 

For simplicity. Rudnicki (1979) assumes the following parabolic relation 

for Lf versus b; 

(40) 

The peak stress is '"Cp ' the sl ip at peak stress is bp' and 'r is the residual 

stress attained at slip bro For thi s 'f versus slip 1 aw, the stabil i zi n9 

effect of induced undrained response results in the foll owi n9 additional 

amount of slip prior to instability: 

G (b _ b)2 (v - v) 
r p u 

( 41) 

The time necessary to achieve this additional slip for a constant rate of 

farfield stress is called the precursor time. Rapid slipping during this 



· - 334 -

precursory period may give rise to detectable effects that would make it 

possible to anticipate the instability. 

Rudnicki (1979) has solved (37) with stress slip relation (40) 

numerically for slip histories in response to a prescribed constant rate of 

farfield ~tress. The calculated values of the precursor time range from less 

than a day to a few days for plausible ranges of the parameters. One 

particularly interesting feature of the results is that the precursor time can 

decrease with increasing length of the slip zone. Although the diffusion time 

a2/ic increases with length of the slip zone and contributes to a longer 

precursor time, the effective stiffness of the material surrounding the slip 

zone is proportional to the reciprocal of the length of the zone. This 

decrease in effective stiffness decreases the amount of additional slip that 

can be achi eved by pore f1 ui d stabi 1 i zat ion (see (41)) and,· hence, tends to 

decrease the precursor time. Rudnicki (1981) has also discussed this effect 

from another pOint of view. 

Steadily Moving Shear Dislocation 

The expressions (32) and (33) can also be used to obtain the pore fluid 

pressure and shear stress generated by a dislocation moving steadily, but 

quasi-statically, at a speed V. If the step function time dependence in (31) 

is replaced by a Dirac delta function 00IRAC(t), the solutions are obtained 

from (32) and (33) by differentiation with respect to time. The result for 

the pore fluid pressure is 

B (1 + "u) 
p(x,y,t) ;:: 

31\' (l - "u) 

(42) 
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For introduction of the dislocation at tl, t is replaced by t_tl on the right 

hand side of (42). Then, setting Xl = vt l and x = X + Vt, and integrating 
I I 

from t = __ to t = t yields 

t y -[x+V(t-t ' )]2 
p(X,y) - f i 2 exp { I 

4c ( t -t ) 4c ( t -t ) 
-co 

}dt I} 

(43) 

The integral can be rearranged to yield 

p(X,y) 
B (l+vu) y VX/2 

- - bG 2 2 { , - (VR/2c) K, (VR/2c) e- c} 
3n (l-v ) X +y . u 

(44) 

where R2 = X2 + y2 and K1(Z) is the modified Bessel function of order 1. The 

following result for the shear stress in the plane of the dislocation can be 

obtained in similar fashion: 

Gb (v -v) VX/2 
T(X,O) = --- {l - u [(2c/VX) - (X/IX!) e- c K,(VX/2c)]} 

2n(1-vu)X (l-v) 
(45) 

The expression (45) has been derived previously by Simons (1978) using 

integral transform techniques and Cleary (1978b) has given a plot of the term 

in square brackets obtained by numerical integration of (33). Both 

expressions (44) and (45) approach the undrained elastic solution in the limit 

Wesson (1981) has used the solution for a steadily moving dislocation in 

an ordinary elastic solid to discuss observations by Johnson et al., (1973) of 

water well level changes in response to creep events on the San Andreas. 

Wesson (1981) neglects coupled deformation diffusion effects and assumes that 

the pore fluid pressure is equal to the mean normal stress caused by passage 
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of the dislocation. This is the term that remains from (44) in the limit 

V -+- co after replacing 'IIu by v and setting B = 1. An examination of (44) 

suggests, however, that coupled deformat ion diffus i on effects can be 

significant. The pore fluid pressure from (44) is plotted in nondimensional 

form against VX/2c for three values of Vy/2c in Figure 1. For comparison, the 

dashed lines show the result for the limiting case V -+- co, which is the same 

as that obtained by neglecting coupled deformation - diffusion effects. 

Because the solution is for steady states, reading the graph from right to 

left gives the pore fluid pressure history experienced by a point a fixed 

distance from the plane of the dislocation. Coupled deformation diffusion 

effects not on ly reduce the magnitude of the pressure change but a 1 so cause 

the pressure change to reverse sign behind the dislocation and to approach 

zero through negative values rather than positive v.alues predicted by the 

ordinary elastic solution. The coupled deformation diffusion effects diminish 

with distance from the fault, b~t for c in the range 0.1 to 1.0 m2/s and V in 

the range of 1 to 10 km/day, as observed for creep events on the San Andreas, 

Vy/2c corresponds to 1.7 to 173 meters from the fault. For 

'IIu = 0.4, B = 0.6 and G = 2 x 1010N/m2 ( = 2 x 105 bars) and V and c in the 

same range, the peak of the curve for Vy/2c = 1.0 corresponds to a pressure 

change of 1.6 to 160 mb for a slip of lmm. 

Steadily Propagating Shear Crack 

Rice and Simons (1976) have examined a more realistic model of a quasi

statically propagating fault. They solve the problem of a semi -infinite, 

plane strain shear crack steadily moving at a speed V. The crack is loaded by 

shear stress Ta applied to the crack faces over a distance L behind the crack

tip in order to simulate a finite length fault. For an ordinary elastic 

solid, the shear stress ahead of the crack-tip is well-known (e.g. Rice, 1968) 
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to have the form 

T (X,D) = K (2nX)-1/2, X >0 (46) 

where K is the stress intensity factor. For the geometry and loading 

considered here, K is given by 

K = Ta(8L/~)1/2 (47) 

Rice and Simons (1976) find that in a fluid-infiltrated elastic solid, the 

shear stress near the crack-tip again has the form (46) but the stress 

intensity factor is given by 

K = Knom h{VL/c) (48) 

where Knom is the value in (47) and h is a function that decreases 

monotonically from unity at V = a to n-1 at V =~. Consequently, the stress 

at a fixed distance ahead of the crack is less in the fluid-infiltrated solid 

than in an elastic solid. The energy released per unit area of crack advance 

is related to the stress intensity factor by (Rice, 1968) 

( 49) 

The drained value of Poisson's ratio enters (49) because the boundary 

condition p = D on the crack faces requires that the neighborhood of the 

crack-tip be drained (Rice and Simons, 1976; Simons, 1977). If it is assumed 

that the fracture continues to propagate as long as the energy released per 

unit crack advance equals some critical value, say /.1 crit. then this criteria 

takes the form 

(50) 
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substituting (48) and rearranging yields 

J.I I A = h -2 (VLI c) '') nom .... --t: rit (51 ) 

where .a'nom = (1 -\I) K2 nom/2G. The 1 imit i ng value of the ri ght hand si de of 

(50) is n2 • Because h decreases monotonically with V, the energy that must 

be supplied by the applied loads, ~ nom' must increase in order to 

mai ntai n <J = /,j crit as crack speed increases. 

Rice (1966, 1979b) has emphasized that a model that idealizes the crack-

tip as a singularity in the elastic stress field is appropriate only when the 

actual processes of material breakdown occur in a region having a size much 

less than any other relevant length scale. Consequently, in the fluid-

infiltrated solid, the singular crack model is unsuitable at speeds for which 

the diffusion length c/V becomes comparable to the breakdown zone. To remedy 

this effect, Rice and Simons (1976) include a finite size end zone in their 

ca 1 cul ati on. They then fi nd that 4nom l <trit does not increase monotoni ca 11y 

with crack speed but, instead, has a peak and then decreases. For speeds 

greater than that corresponding to the peak in the curve, the crack increases 

speed without,any increase in the driving stresses and hence ;s unstable. 

Rice and Simons (1976) discuss in detail the implications of their 

results for pore fluid stabilization of fault creep events and of slip surface 

propagation in overconsolidated clay slopes. Specifically, they note that 

the propagat ion vel od ties of observed creep events on the San Andreas fau 1 t 

in California, one to ten km per day, correspond, for realistic values of 

material parameters, to a range in which the curve of/J nom/.o'crit is rising 

stab 1y. Furthermore, thei r results suggest that creep events propagating at 

greater velocities are not observed because they rapidly accelerate to seismic 
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speeds. 

Simons (1977) used boundary layer analysis to study further the 

propagation of plane strain shear cracks in fluid infiltrated solids. Ruina 

(1978) has studied the tensile crack problem analogous to the problem treated 

by Rice and Simons (1976) and has discussed its application to hydraulic 

fracture. Cleary (1 978b) has numerically obtained solutions for steadily 

propagating singularities and used these to formulate integral equations for 

steady propagat i on of fi n i te 1 ength faults or s 1 i p zones. He gi ves examp 1 es 

for several types of loadings. 

Three Dimensional Fundamental Solutions 

Although few three dimensional solutions exist for the fully coupled 

equations, Cleary (1977) has derived the fundamental point force and fluid 

mass source solutions. After correcting a minor error in Cleary·s expressions 

for a continuous fluid mass source, Rudnicki (1981b) has shown that Cleary·s 

solution for the displacement components ui and pore fluid pressure p due to a 

poi nt force sudden ly app 1 i ed at the ori gi n at t = 0 can be arranged in the 

fo 11 owi ng form: 

P. x.x. 
Gu

i
(x

1
,x

2
,x

3
,t) = __ .:...J __ {-¥ + (3-4v )o .. } 

16 1T r(1-v
u

) r U 1 J 

(52) 

B(1+",u) a B(1+"lI) 1 
--- + Pk - [ - erfc(r/lct)] 

(l-vu) aXk 121T( I-vu) r 
(53) 
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where the Pj are components of the point force, 

and 

co 2 
erfc(s) = 2~-1/2 J e-a da = 1 - erf(s) 

s 

(54) 

The first term in (52) has the form of the usual elastic solution with the 

undrained value of Poisson's ratio., For t + CD, p = 0 and (52) reduces to 

the ordinary elastic solution with the drained value of Poisson's ratio. The 

term in square brackets in (52) and' (53) is the solution for continuous 

injection of fluid mass at the origin at a constant rate Q where Q is given by 

pC 3 (vu-v) 
Q =------- (55) 

G ~ (l-v) (l+vu) 

Hence, as emphasized by Rudnicki (198lb), the second term in each equation is 

the response to a fluid mass dipole. Cleary (1977) has derived other singular 

solutions, for example the point dislocation, and has outlined their use in 

modelling embedded regions of inelasticity. 

Deformation of Spherical Cavities and Inclusions 

Rice et al. (1978) have solved the problem of a spherical cavity in an 

infinite linear elastic fluid-infiltrated solid loaded by uniform tractions at 

the cavity boundary. For loading by sudden application of tractions derived 

from a uniform deviatoric tensor Sij' the displacement at the cavity boundary 

r = a is gi ven by Ri ce et a 1. (1 978) as 

2Gu. = s· .x. [~ - f(ct/a 2) (~ - ~)J 
1 lJ J u u (56) 
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where c is the diffusivity, ~ = 2(4-5\))/(7-5\)), and ;u= 2(4-5\)u)/(7-5\)u). 

The funct ion f depends on whether the condi t i on on the pore fl ui d at the 

cavity boundary is no change in pore pressure (p = 0) or no fluid mass flux 

(ap/ar = 0) but, in either case, f has the limiting .values 

f(O) = 0 and f(co) = 1. For no change in pore fluid pressure at the cavity 

boundary. Rice et al. (1978) give an explicit expression for and present a 

graph of f. If the cavity boundary is loaded by a uniform radial compressive 

stress 00 and a pore fluid pressure Po' Riceet ale (1978) use the solution of 

Rice and Cleary (1976) to show that the displacement at the cavity boundary is 

independent of the pore fluid pressure and is given by 

(57) 

The distribution of pore fluid pressure outside the cavity is (Rice and 

Cleary, 1976) 

p = po(a/r) erfc [(r_a)/(4ct)1/2] (58) 

The displacement of the cavity boundary in both (56) and (57) is compatible 

with a homogeneous deformation of the cavity interior. This feature made it 

possible for Rice et a1. (1978) to use (56) and (57) to. obtain relations for a 

spherical inclusion in a fluid-infiltrated elastic solid analogous to those 

obtained by Rudnicki (1977) from Eshelby' s (1957) results for inclusions in 

ordinary elastic solids. These Eshelby relations connect the stress and 

strain in a homogeneous inclusion to the stress and strain applied in the 

farfield. For the fluid infiltrated solid, these relations are as follows: 
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(59) 

(60) 

where (J is the mean normal stress, e: is the volume strain, L is a shear 

stress~ y is a shear strain, and the subscripts 00 and inc refer to quantities 

in the farfield and inclusion, respectively. The form of (60) assumes that 

the response is drained at t = 0 and the generalization from (56) and (57) to 

(59) and (60) assumes that the inclusion is highly permeable so that it is a 

reasonable assumption to regard the pore fluid pressure there as uniform. A 

third relation, obtained by balancing the rate of increase of fluid mass in 

the inclusion with the mass flux through the cavity boundary computed from 

(58) and (59), is as follows: 

t 
+ J a '" 

---'-, -, /2 {J)1' nc(t ) - p oo(t )} dt 
-00 [ 1TC ( t -t ) ] 

(61 ) 

where it has been again assumed that the inclusion is relatively permeable. 

Rice and Rudnicki (1979) have used (60) to analyze stabilizing effects of 

coupling between deformation and diffusion, analagous to those discussed for 

frictional slip, for an inclusion model of faulting (Rudnicki, 1977, 1981a). 

When the inclusion shear stress is given as a function of the inclusion shear 

strain and the farfield response is taken to be elastic, (60) becomes a 

relation for the inclusion shear stress as a function of the applied farfield 
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shear strain. Runaway instability corresponds to the possibility that an 

increment of farfield shear strain can induce an unbounded increment of 

inclusion shea,r strain. For purely drained conditions, runaway instability 

occurs when the slope at the tinc versus Yinc curve satisfies the following 

condition: 

dTi nc G 
= (62) 

dYinc ~ 

The magnitude of the right hand side, G/~, is the effective unloading 

stiffness of the material surrounding the inclusion. If the response is 

purely undrained, the condition for runaway instability is obtained by 

replacing ~ by 'u in (62). Because v < vu ' ~u < ~ and, hence, the unloading 

stiffness is greater for undrained response than for drained response. 

Consequently, the development of undrained response due to rapid straining as 

(62) is approached can transiently stabilize the rock ma5S and delay the onset 

of runaway instability from the time at which (62) is met until the time at 

which the corresponding condition is met in terms of the undrained response. 

This delay time is termed the precursor time and is representative of the time 

.period during which it may be possible to observe evidence of the impending 

instability. 

Rice and Rudnicki (1979) calculate the precursor time and time history of 

inclusion straining for an imposed constant farfield shear strain rate and a 

Tinc versus Y;nc curve that ;s assumed to have the following form near peak 

stress: 

(63) 

where Yp is the strain at peak stress Tp and A describes the sharpness of 
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the peak For T = 1 bar/year, G = 200kbar and 
00 

A = 

0.0025, Rice and Rudnicki (1979) present results for two values of ~/~u' 1.10 

and 1.25, three values of the inclusion radius, a = 1, 3, and 5 km., and two 

values of the diffusivity, c = 0.1 and 1.Om2/s. The results for the precursor 

time range from 14 to 400 days. Rice and Rudnicki (1979) note that the 

precursor times are a factor of two to three longer for c = 1.Om2/s than for c 

= O.lm2/s and a factor of two to four longer for a = 5 km than for a = 

km. Although the precursor times are much longer than those for the case of a 

narrow slip surface, .precursor times estimated for a narrow, slitlike 

ellipsoidal inclusion with aspect ratio 18 to 1 range from 1.3 to 22 days. 

COUPLING BETWEEN INELASTIC DEfORMATION AND DIFFUSION 

Because inelastic deformation of geological and geotechnical materials 
I> 

often involves volume change, inelastic deformation can also be coupled to 

pore fluid diffusion. In brittle rocks, inelastic volume increase, or 

dilatancy, can result, even when all principal stresses are compressive, from 

microcracking in response to local tensile stresses at tips of fissures or 

near other inhomogeneities and from uplift in sliding over asperities on 

frictional surfaces (Brace, et ale 1966). Inelastic volume increase in 

response to shear is also observed in overconsolidated clays and can result 

from grain rearrangement in densely packed sands or other granular 

materials. Although the discussion here will emphasize inelastic volume 

increase, shear induced compaction is observed in very porous rocks and 

loosely consolidated granular materials. 

The next subsection outlines a framework for describing the inelastic 

response of brittle rock, including the effects of pore fluids, and 

illustrates the hardening effect of dilatancy-induced pore pressure 

reductions. Succeeding subsections review results on the stability of 
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dilatantly hardened deformation and applications to earth faulting. 

Inelastic Constitutive Law for Brittle Rock 

Rice (1975) has formulated a description of inelastic deformation for the 

special deformation state of combined shear and uniaxial compression. 

Rudnicki and Rice (1975) generalized the formulation to arbitrary deformation 

states and magnitudes. Their framework, including the incorporation of pore 

fluid effects, has recently been reviewed by Rudnicki (1983a). However, it 

will be simplest to follow the development of Rice and Rudnicki (1979) for 

material subjected to shear stress T and hydrostatic compression cr. For a. 

stress increment (dT, dcr) that involves continued inelastic deformation, the 

increments of shear strain dy and volume strain de are as follows: 

(64 ) 

de = -dcr/K + dP e: (65) 

where G is the elastic shear modulus, K is the elastic bulk modulus, and 

d Py and d Pe: are the inelastic increments of shear strain and volume strain, 

respectively. For elastic unloading the second terms in (.64) and (65) are 

dropped. Because an increase in hydrostatiC compression inhibits inelastic 

deformation in brittle rock, the inelastic increment of sh~ar strain is taken 

to have the following form: 

where ~ is a friction coefficient and H is an inelastic hardening modulus. 

For constant hydrostatic stress H is related to the slope of the T versus y 

curve by 
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dr H· (66) 
- = do = O. 
dy 1 + H/G 

Because inelastic volume strain arises from processes that accompany inelastic 

shear, that is, extension of microcracks by local tensile stresses, uplift in 

sliding over asperities and grain rearrangement, the inelastic volume strain 

increment is assumed to be given by 

( 67) 

where e is the dilatancy factor. (For shear-induced compaction, 13<0). In 

general, II and a, as well as G, K and H may depend on the current state of 

deformat i on and even on the past hi story of deformation (although not on 

deformation increments), but for applications to brittle rocks it often 
• 

suffi ces to assume that ll' a, G and K are constant. Laboratory observat; ons 

on brittle rocks suggest values of a in the range 0.1 to 0.3 and lJ in the 

range 0.3 to 0.6 (Rice, 1975; Rudnicki and Rice, 1975; Rudnicki, 1977). 

To include the effects of pore fluid pressure, the hydrostatic stress 0 

is replaced by the effective stress. For elastic deformation, the form of the 

effective stress is, as discussed earlier, cr - ~p. For inelastic deformation 

arising from extension of sharp-tipped microcracks and frictional sliding on 

fi ssure surfaces wi th sma 11 contact areas Ri ce (1977). has shown that the 

appropriate form of the effective stress is cr - p • This deduction is 

consistent with experimental observations on inelastic properties of brittle 

rock (e.g. Cornet and Fairhurst, 1974; Brace and Martin, 1968). An equation 

for m, the fluid mass content per unit volume, is also required. As for 

elastic deformation, m can be expressed as pV, but now the increment dv is 

separated into an elastic portion and an inelastic portion dPv. The elastic 

portion is calculated as in the Biot theory and, for the same conditions that 
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o - P is the appropriate form of the effective stress, dPv = dP~ (Rice, 

1977). Thus, the increments of shear strain, volume strain, and fluid mass 

content per unit volume are as follows: 

dy = d·r/G + edT - ].I(do - dp)]/H (68) 

d~ = -(do - l;dp)/K + f3 edT - ].I (do - dp)J/H ( 69) 

-1 d p m = (70) 

For undrained response, the change in fluid mass content per unit volume 

is zero. Setting dm = 0 in (70) and solving for dp yields 

-13 Keff 
dp =----- dT (71 ) 

H + ].IS Keff 

where, for convenience do has been taken as zero and, using (16), Keff can be 

written as follows: 

( 72) 

Hence, for dilatant inelastic deformation (13)0) the pore fluid pressure tends 

to decrease. When (71) is substituted into (68), again with do = a , the 

result is 

dy = dT/G + dT/(H + ].If3Keff) (73 ) 

Because the hardeni ng modul us has been augmented by the term ].IS Keff , the 

response is stiffer and the rock mass is said to be dilatantly hardened. 

Dilatant hardening is a well known phenomenon in the mechanics of granular 
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materials and appears to have been first discussed by Reynolds (1885). Its 

relevance to earthquake faulting was pointed out by Frank (1965). Brace and 

Martin (1968) and Martin (1980) have observed dilatant hardening in 

axisymmetric compression tests on brittle rock. 

As discussed by Rice (1975) and by Rice and Rudnicki (1979), the dilatant 

hardening effect can be significant for representative values of 

).1, 13, and Keff " Because the term that augments H is proportional to the 

product ).18, the effect vanishes if there is no inelastic volume change or if 

inelastic deformation ;s not affected by hydrostatic stress. For highly 
I II 

fissured rock, Ks and Ks » K and Kf/v. Therefore, (72) reduces to 

Keff - K(l + VK/K f )-l 

If the pore fluid is liquid water (Kf = 22 kbar) and the porosity is less than 

10%, Keff - K. If Kf is substantially reduced by high temperatures, 

exsolution of trapped gas and pressure reduction, 

Keff - Kf/v 

and dilatant hardening disappears in the limit Kf + O. 

Stability of Dilatant Hardening 

Rice (1975) has studied the stability of dilatant hardening for a layer 

subjected to a combination of uniaxial compression and pure shear. He finds 

that homogeneous dilatantly hardened deformation becomes unstable, in the 

sense that infinitesimal spatial nonuniformities will grow exponentially in 

time when the peak of the underlying drained stress-strain curve has been 

reached. That i nstabil ity sets in at the peak of the drai ned stress strai n 

curve is an artifact of the special deformation state considered: in general, 

dilatantly hardened homogeneous deformation will become unstable when 

conditions for localization of deformation (Rudnicki and Rice, 1975; Rudnicki, 
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1 983a) are met in terms of the drained response and this may occur before or 

after the peak of the stress-strain curve. 

Rice (1975) also noted, however, that if for a layer with an initial 

finite size imperfection the development of instability would depend on the 

time scale of deformation. Rudnicki (1 983b) has explored this possibility by 

considering the shear deformation of a layer containing a slightly weaker 

sublayer. To simplify the analysis. Rudnicki (1 983b) assumes that the 

deformations of the sublayer and of the surrounding material are 

homogeneous. In addition, the rate of fluid mass flux out of the sublayer is 

assumed to be proportional to the difference in the pore fluid pressures of 

the sublayer and the surrounding material. The coefficient in this relation, 

which must be regarded as an empirical parameter, is expressed as c/h2 where c 

is a diffusivity and h is the width of the weakened sublayer. In this case, 

the response becomes unstable, in the sense described by Rice (1975), when the 

weakened sublayer reaches the peak of its underlying drained stress strain 

curve. However, dilatant hardening delays the onset of a catastrophic 

instability until the weakened sublayer reaches the peak of its undrained 

response curve. The time period during which the response is stabilized is 

again termed the precursor time. 

To calculate the precursor time, Rudnicki (1 983b) assumes that both the 

sublayer and the surrounding material have drained stress strain curves of the 

form (63), but that the peak stress in the weakened sublayer is slightly lower 

than that in the surrounding material. When the time scale of the applied 

deformation is much greater than that for fluid mass exchange between the 

layers, as appropriate for application to tectonic deformations, Rudnicki 

(1983b) obtains an asymptotic solution for the history of straining in the 

weakened sublayer. The resulting asymptotic prediction of the precursor time 
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is as follows: 

(74) 

where CL = \lSM/G, M is an elastic modulus for one-dimensional strain, 6. is 

the difference in values of peak stress divided by GA, and y is the constant 
00 

applied farfie1d strain rate. The asymptotic solution is valid for 

2. 0 1 -14 -1 . cA/h Y »1. For Yoo= 2.5 x 0 s ,on the order of measured tectonlc 
. 00 

strain rates in southern California, h = 1m, c = 0.1 m2/s 

and A = .0025, CA/h2Y(II) = 10lO. For b. = 0.1 and CL = 0.3, t prec '" 6 hours. Note 

that the precursor time becomes arbitrarily 1 arge for y + 0, but that the (II) 

. additional strain accumulating during this period goes to zero in the same 

limit. 

Rudnicki (1983a) has extended this formulation to arbitrary deformation 

states •. Although the sol uti ons can be shown to have the same character as 

those for the simple case of pure shear, no expl i cit results are avail ab 1 e 

yet. 

Dilatant Hardening for an Inclusion Model of Faulting 

Rice and Rudnicki (1979) have examined the effects of dilatant hardening 

for an inclusion model of earth faulting (Rudnicki, 1977). These effects are 

complementary to those due to the time dependence of the unloading stiffness 

discussed earlier and they are also stabilizing. Again, instability cannot 

occur abruptly when the condition for runaway instability in terms of the 

drained response is met. The rapid deformation that occurs as this condition 

. is approached induces dilatantly hardened response of the inclusion 

material. Consequently, instability is delayed until (62) is met with the 

undrained slope of the tini versus Yinc curve entering the left-hand side of 
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(62). Thus, dilatant hardening delays instability by increasing the value on 

the left-hand side of (62) whereas the time- dependent unloading stiffness 

delays instability by increasing the magnitude of the right-hand side. 

Rice and Rudnicki (1979) calculate strain histories and precursor times 

using the Eshelby relations (59) and (61) for a spherical inclusion. Because 

the time-dependent unloading stiffness effects are neglected, the drained form 

of (60), correspondiny to f = 1, is used. The drained response of the 

inclusion material is assumed to be described by (63) •. For ! _ 1 bar/year, 
(lO -

G = 200kbar, A = 0.6, e = 0.3 and Kf = 22kbar, Rice and Rudnicki (1979) 

calculate precursor times ranging from 55 days for an inclusion radius a = lkm 

and diffusivity c = 1.0 m2/s to 1418 days for a = 5 km and c = 0.1 m2/s. They 

also note that a factor of two decrease in the di1atan~y factor e reduces the 

precursor time by slightly more than half, whereas a tenfold decrease in the 

pore fluid bulk modulus Kf reduces the precursor time by slightly less than 

half. Although the precursor times are generally long, Rice and Rudnicki 

(1979) suggest that values toward the lower end of those calculated may be 

more appropriate. 

Rice and Rudnicki (1979) also calculate the decrease from ambient value 

of the pore fluid. pressure in the inclusion. The predicted decrease does not 

appear to be large enough to cause a liquid-to-vapor phase transition in the 

pore fluid until very near to instability. Such a phase transition would be 

needed to cause the substantial changes in wave speed rat i os that have been 

suggested as precursors to earthquakes (Nur, 1972; Anderson and Whitcomb, 

1975) • Consequently, the calculations do not support this possibility. 

Nevertheless, they do indicate that transient stabilization of incipient 

failure by di1atant hardening, as well as by time-dependent unloading 

stiffness effects, could cause a period of accelerating time-dependent strain 
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prior to instability. Martin (1980) has observed such stabilization in 

axisymmmetric compression tests on saturated Westerly granite. The 

observations are in qualitative accord with the predictions of Rice and 

Rudnicki (1979) (Rudnicki, 1981), but quantitative comparison is not possible. 

Dilatant Hardening Effects on propagating Shear Fractures 

Rice (1973, 1979a. 1980, 1981) has analyzed dilatant hardening effects in 

the end zone of a stead; ly propagati ng fracture. He assumes that a uni form 

uplift accompanies shear in the endzone. By assuming one dimensional 

diffusion of pore fluid into the endzone, Rice calculates the distribution of 

suctions induced on the fault plane. Because these suctions reduce the 

effective value of the stress normal to the fault plane, they inhibit 

propagation or, in other words, they increase the energy that must be supplied 

to continuing advancing the fractures. Although the values of material 

parameters enteri ng the analysi s are uncertai n, Ri ce demonstrates that the 

effect can be significant. He calculates a factor of 50 as a rough upper 

bound on the increase of required energy for which it is possible to maintain 

quasistatic .propagation (Rice, 1979a). But he notes that the process may be 

self-limiting for two reasons: the amount of uplift decreases with increasing 

normal stress and the induced suctions may be large enough to cause 

vaporization of the pore fluid or exso1ution of gases. 
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CONCLUDING DISCUSSION 

This paper has reviewed the mechanical effects of pore fluid diffusion on 

the quasi-static deformation and failure of brittle rock. These effects have 

been illustrated by applications to earth faulting. The role of pore fluid in 

reducing the effective value of the confining stress in bulk samples and the 

norma 1 stress across fri ct i ona 1 surfaces has been demonstrated in 1 aboratory 

experiments (e.g. Brace and Martin, 1968; Byer1ee and Brace, 1972) and in 

field studies (e.g. Raleigh et al., 1976; Zoback and Hickman, 1982). In 

addition, the solutions reviewed here strongly suggest that the coupling of 

pore fl ui d diffus i on and deformation can i nt roduce rate -dependence into the 

deformati on of an otherwi se rate-i ndependent solid and make a si gnif; cant 

contribution to the time scale of the failure process. However, few 

laboratory or field studies of these effects exist. Consequently, although 

relevant solutions of coupled-deformation and pore fluid diffusion problems 

have by no means been exhausted, the most pressing need is for laboratory and 

field data. Data are needed both to provide better estimates of material 

parameters and to test the accuracy of analytical predictions 

Although the time dependence introduced into the failure process is 

evident in the solutions reviewed here, ide.ntification of these effects in 

situ is complicated by the presence of other time dependent processes. These 

include bulk viscoelastic response, coupling of crustal deformation with 

underlying viscou's material (e.g., Anderson, 1975; Budiansky and Amazigo, 

1976; Lehner et a1., 1981), time dependence due to slow crack growth (e.g., 

Das and Scholz, 1981) and time dependent frictional slip (e.g., Dieterich, 

1978). The time scales of these processes are probably different, but present 

uncertainties in material parameters are too great to distinguish mechanisms 

on this basis. Observations of water level changes in calibrated wells (e.g., 
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Kovach et al., 1975) or increased use of dilatometers may be helpful ;n 

identifying coupled deformation - pore fluid diffusion. Althouyh observations 

of changes in sei smi c wave speed rat i os (Aggarwal et a 1 ., 1975; Whitcomb et 

a 1., 1973) have not proved to be as effective an earthquake precursor as had 

been hoped, such measurements may prov; de i nformat; on about crack dens it i es 

and saturation levels from which material parameters can be inferred. 

(However, Rice (1980) has emphasized that electro-kinetic effects which do not 

depend on degree of saturation, will be more indicative of crack density.) 

Moreover, there is some recent evidence (Leary et al., 1979) that extremely 

small changes in wave speed (-.1%) over relatively short time scales (a few 

days) may be caused by deformation coupled with fluid diffusion. Because of 

the difficulties in anticipating the time and location of spontaneous events 

such as earthquakes and creep, field studies in which the pore fluid pressure 

is actively changed by changing reservoir levels or by direct pumping (Raleigh 

et al., 1976) will be especially useful. 

Although di rect extrapol at i on of measurements on 1 aboratory samples to 

field situations in which properties can be strongly affected by large 

fissures is impossible, the difficulty and expense of making relevant field 

observat ions vi rtua lly ensure that 1 aboratory measurements wi 11 continue to 

contribute to understanding coupled deformation diffusion effects. 

Unfortunately, most laboratory experiments have been limited to investigation 

of the effective stress principle for various properties and have not 

considered the rate dependent effects of coupling of deformation with pore 

fluid diffusion. As has been mentioned already, relatively few determinations 

exist of the parameters of even the linear Biot theory. Apparently, the only 

laboratory investigation of coupled deformation diffusion effeG:ts in setting a 

time scale for the failure process is that of Martin (1980). Although 
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Martinis (1980) observations agree qualitatively with the predictions of Rice 

and Rudnicki (1979) (see discussion by Rudnicki (1981)), the data are not 

extensive and there is a need for additional work in this area. 

Although there are limitations on the Biot approach, most notably to 

linear behavior, there is general agreement that the B;ot equations are a 

suitable approximation for many conditions of quasi-static loading. Much less 

agreement exists, however, for dynamic conditions. The Biot theory has been 

extended (Biot, 1956a,b) to describe the dynamic response of saturated porous 

materials and, at least in some instances, gives results in reasonable accord 

with observations. But it is clear that 9 theory that is phrased in terms of 

a single scalar pore pressure will be suitable for a limited frequency 

range. Some estimates of the time scale for which the Biot theory is 

applicable have been given by O·Connell and Budiansky (1977) and by Cleary 

(1978). Cleary (1978) has also outlined a general formulation but, as yet, 

the values of parameters enteri ng thi s theory are 1 arge ly unknown. A better. 

understanding of the dynamic response of saturated porous media seems 

essential for applications to explosive loadings, interpretation of data from 

geophysical explorations, and ultrasonic measurements in biological materials. 

The review has been limited to discussing the mechanical effects of pore 

fluids, but the importance of chemical effects has been increasingly 

recognized. Recent experiments (e.g., see Atkinson (1982), Rice (1979a, 

1980) and Rudnicki (1980) for reviews) have indicated that small amounts of 

pore fluid can promote slow growth of cracks in rock at speeds ranging down to 

la-10m/so Typically, these results are presented in relations of the 

following form between the crack speed V and the tensile stress intensity 

factor K: 
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or V = B exp(bK) 

where A and n or Band b are parameters depending on the environment. Small 

amounts of pore fluid on frictional slip surfaces may also contribute to time

dependent behavior by accelerating deformation at asperity contacts (Dieterich 

and Conrad, 1978). Moreover, much of the observed time-dependent behavior of 

brittle rocks may be due to environmentally assisted growth of microcracks. 

Costin and Mecholsky (1983) have successfully used laboratory results on slow 

growth of a single crack to predict the time dependent response of an intact 

specimen in uniaxial compression. 

Envi ronmenta l1y ass i sted crack growth may be very important in 

establishing the longtime strength of crustal rocks, for example, on time 

scales comparable to the recurrence time of large earthquakes or the desired 

lifetime of nuclear waste repositories. Although it is not yet clear whether 

there is a threshold value of K below which no crack growth occurs, the 

existence of such a threshold is imp'ortant for long time strength 

predictions. Moreover, Rice (1978) has pointed out that crack healing may be 

an important mechanism of strength recovery on faults. Although Rice (1978) 

has described a theoretical framework of analyzing environmentally assisted 

growth of single cracks, the analysis of these effects has not progressed to 

the point where they can be incorporated into the solution of relevant 

boundary value problems. 
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1. INTRODUCTION 

EFFECT OF PORE WATER AND 

ITS DIFFUSION IN CONCRETE 

G. Horrigmoe 

Multiconsult Narvik A.S. 

Dronningens gt.51, P.O.Box 381 

8501 Narvik, Norway 

The mechanical behavior of porous materials, 

including concrete, is known to depend strongly 

on the distribution and history of moisture content. 

Material parameters affected by variations in moisture 

content comprise practically all the. major parameters 

employed in the analysis and design of concrete 

structures , e.g. strength, modulus of elasticity 

thermal conductivity, moisture diffusivity and permeability 

[1] Moreover, pore humidity is a key factor in long-

time deformations of concrete, known as creep and shrinkage. 

Thus, reliable mathematical models that can predict the 

distribution of pore humidity in concrete structures is of 

major importance. While a large body of experimental 

information on moisture transfer in concrete has been 

assembled over many years of research, the development 

of prediction methods attracted relatively minor attention 

following the pioneering effort by Carlson [8] in 1937. 

It was not until the introduction of novel applications 

of concrete, especially in the form of pressure vessels 

Preceding page blank 
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for nuclear reactors, that research in mathematical 

models for predicting moisture transfer gained momentum. 

In these structures, a correct prediction of heat and 

moisture transfer is a prerequisite for safe and economical 

desings, and this has undoubtedley been major contribution 

factor in the recent developments in mathematical models 

for diffusion of pore water ,in concrete. 

Among the building materials in cornmon use, concrete 

is the only material for which basic questions regarding 

mechanisms of deformation and constitutive relations remain 

unsettled. Whereas constitutive modelling for materials 

such as metals and polymers has been carried well into the 

nonlinear regime,most of the material research in concrete 

remains focused on the behaviour in the working stress rang~. 

In particular, constitutive relations for creep and 

shrinkage continue to be a question of considerable 

controversy in the literature J2J. Since the ultimate 

values of these time-dependent deformations are known to 

be several times greater than the instantaneous elastic 

response, their importance as the main cause of defections, 

redistribtion of stresses and cracking, is undisputed. 

However, considerable disagreement prevails regarding the 

the microstructural mechanisms involved in creep and 

shrinkage deformations. Above all, the effect of changes 

in pore humidity on creep and shrinkage and its constitutive 

modelling is far from being resolved. 

The purpose of the present paper is to summarize 

and review the effects of diffusion of pore water in 

concrete, with special emphasis on mathematical models 

for moisture transfer. Drying of concrete under isothermal 

(or quasi-isothermal) condititions is a problem of widespread 

interest. The application of diffusion theory to model 
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moisture transport during drying is outlined in Section 3. 

Various formulations are discussed together with the effects 

of advancing hydration and variable temperature. The 

formulation of coupled heat and moisture transfer then 

follows in Section 4. The influence of pore humidity 

on creep and shrinkage and the corresponding constitutive 

relations are briefly examined in Section 5. 

2. PHYSICAL NATURE OF PORE WATER IN CONCRETE 

Concrete is formed by chemical reactions between 

Portland cement and water. This process is generally 

referred to as hydration and results in a very fine gel-

type structure. Typical porosities of hardened cement paste 

are in the range of 0.40 - 0.55. The major part of the' 

voids constitutes of micropores. The larger capillary 

pores are randomly distributed throughout the cement paste 

and, at least in mature and dense concretes, capillary 

pores can be v~ewed as isolated voids and not as an 

interconnected system. The dominant role of the micropores 

in cement paste produces an enormous internal surface area 

(of the order of 5-10 8 m2 per m3 , or approximately 200 000 m2 

per kg [1]. 
Water in concrete is held with varying degree of 

firmness. First, there is ~~~~~£~!!Y_~Q~~9_~~~~E which 

forms a part of the hydrated compounds. Next, there is 

~9~~Ee~9_~~~~E' i.e. water held by surface forces in the 

form of films on the pore walls. Due to the compara ti vely 

large size of the capillary pores, water in these pores 

is beyond the influence of surface forces and is referred 

to as free water or ~~E~!!~EY_~~~~E. The separation of 

water into these three categories is mainly of theoretical 
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value since at present there is no experimental technique 

available by which the various forms of water can be 

quantitatively determined. 

A more feasible way of distinguishing between different 

forms of water in cement paste is to divide it into two 

categories: evaporable and non-evaporable. The ~~~e2~~e!~ 

~~~~~ is by definition the amount of water which is 

removed from concrete upon complete drying (usually at 

10S oC). Similarly, the water remaining in the dried 

specimen after equilibrium has been achieved is the 

~2~:~~~E2~~~!~_~~~~~· 
In the pores, molecules of water vapour are attracted 

by surface forces that retain them at the solid surface, 

thus forming thin adsorbed layers of water molecules. The 

average thickness of the adsorbed layer increase with 

relative pore humidity as illustrated in Fig.2.1 for a 

micropore of variable thickness. The maximum layer 

thickness has been estimated to 5 molecules [2] ; hence, 

for a pore to accomodate complete adsorbed layers on two 

opposite walls, the pore thickness must at least be that 

of 10 molecules, or 26 A. Provided that the thickness 

of the pore allows it and, at that the relative hQ~idity 

is sufficlently high, a capillary meniscus may develop, 

thereby creating a certain amount of free, capillary 

water within the pore. 

In the pores that are less than 10 molecules thick, 

complete adsorbed layers of water molecules cannot develop. 

Such films are therefore called ~!~9§E~9_~9~2~e§9_!~y§~~. 

Adsorbed molecules are not held,permanently but retain 

sufficient mobility to be able to diffuse along the layers. 
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a) RH = 7% 

b) RH = 30% 

c) RH =60% 

d) 

Fig. 2.1 Gradual filling of a micropore 

due to adsorption and capillary 

condensation. Source: Bazant [3 ] . 

For any porous material in equilibrium with the 

surrounding air there exists a definite equilibrium 

moisture content that increases with increasing relative 

humidity. For RH = 0, the mass of evaporable water is 

zero and at RH = 100% all pores should in principle be 

completely filled with water. At a given temperature 

the material thus processes an equilibrium curve, or a 

~2!1~:t!2~_!~Q!:!:!~~~, defining the amount of evaporable 

water retained at various relative humidities. Studies 

of the relationship between evaporable water content 
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in hardened cement paste and relative humidity of the ambient 

air can be found in the pioneering work of Powers and 

Brownyard [4]. The shape of the sorption isotherm depends 

on whether the material attains its equilibrium by taking 

up or by losing moisture, that is, by adsorption or 

desorption. A qualitative picture of sorption isotherms for 

..... 
c 
CIJ 

....... 
C 
o 
u 

L. 

..c 

o 50% 100% 
RH 

Fig. 2.2 Typical sorption isotherm of concrete. 



- 371 -

concrete is sketched in Fig. 2.2. It is seen that the 

adsorption isotherm deviates from that of the preceeding 

desorption. This irreversibility is mainly caused by 

changes of the porosity of cement paste during drying 

[5°].- The shape of the sorption isotherm depends on several 

factors, such as degree of hydration, water - cement ratio 

and temperature. It should perhaps also be noted that in 

actual concrete structures the material is never completely 

dried nor does it reach complete saturation; rather, the 

moisture content at a given instant is a result of successive 

cycles of partial drying and rewetting.r;-Henc~, thao 

equilibrium moisture content becomesoa function of the 

preceeding history. 
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3. MATHEMATICAL FORMULATION OF DIFFUSION OF PORE WATER 

IN CONCRETE. 

Drying of concrete is a non-stationary hygro-tbermal 

process taking place in a chemically unstable material. 

It is generally accepted that the theory of diffusion 

[6] provides an acceptable means of describing moisture 

transfer in concrete. However, it should be borne in 

mind that transport of moisture in a material with a 

complex structure like concrete is likely to take place 

by a number of different mechanisms. Consequentely, 

diffusion theory can only represent an approximation 

to the true behaviour. 

In general; mass transfer in porous materials 

can be described by a linear relationship between the 

flux of the diffusing substance and the potential 

gradient, which represents the drivin9 force. Thus, 

J = - c grad V (3.1) 

where J represents the mass flux per unit area and time, 

~ is the potential and c a transfer coefficient characterizing 

the diffusion properties of the material. Although the 

above relation is empirical, it remains valid provided the 

potential gradient is sufficiently small. 

The second building block in the mathematical 

. formulation of mass transfer is the·conservation of mass, 

which reads, 

~~ + div J + S = 0 (3.2) 

Here, t denotes time and S is a source or zink term. 

J 
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Generally, moisture transfer involves simultaneous 

transport of energy, and in some cases transfer of 

momentum may also be involved. These are coupled 

processes that require the simultaneous treatment of 

each transport phenomenom involved. However, under 

certain simplifying assumptions, diffusion of pore water 

in concrete can be considered independent of other 

transfer processes. 

Linear diffusion theory 

In mature concrete (negligible rate of hydration) 

under isothermal conditions, the driving force in the 

moisture diffusion may be taken as the moisture concentration 

gradient. Letting w denote the spe9ific mass of evaporable 

water (mass per unit volume), Eq. (3.1) becomes 

J = C grad w 

where C is the diffusivity (or diffusion coefficient). 

This relation is known as Fick's first law. Neglecting 

the source term, the balance of mass equation (3.2) 

reduces to 

~~ + div J = 0 

(3.3) 

( 3 • 4 ) 

The differential equation governing diffusion of moisture 

in concrete then directly follows by combination of Eqs. 

( 3 . 3 ) and ( 3 . 4) , 

3w 
at = div (C grad w) (3.5) 



- 374 -

For constant diffusivity, i.e. C = const., the above 

equation reduces to a second order, linear differential 

equation of the form: 

oW 2 = C 'V w ot 

2 
where 'V is the Laplacaian operator. 

Because the theory of diffusion can be applied 

to a number of physically different transfer phenomena 

the solution of the above differential equation can be 

obtained by well documented procedures such as Fourier 

series, finite difference and finite element methods 

[ 7] • 

Equation (3.6), generally referred to as Fick's 

second law of diffusion, has been preferred in most 

of the litterature on drying of concrete. It was first 

used by Carlson [8] in the 193·0' s. Later the linear 

diffusion equation (3.6) has been adopted in a number 

of investigations [9 - 13] dealing with drying and 

shrinkage of concrete. The diffusion coefficients 

reported in these studies vary from approximately 10-10 

to 10-
12 ~"rn2/s, which is a considerable difference. 

( 3 • 6 ) 

An alternative formulation of the diffusion of pore 

water in condrete is possible. The potential ~ in Eq. 

(3.1) may be taken as the Gibbs free energy per unit mass 

of evaporable water. Assuming that water vapor obeys the 

ideal gas equation, the potential of water can be expressed 

as 

R 
~ = M T ~nh + ~sat (T) (3.7) 

where R is the gas constant, M is the molecular weight of 

water and T is absolute temperature. The relative pore 

humidity h is defined by 
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h = p 

Psat(T) 

in which 'p is pore pres sure' and p sat pore pres.sure at 

saturation, depending on temperature. Similarly, 

~sat(T) represents the value of Gibbs free energy 

corresponding to full saturation (h = 1.0). Assuming 

grad T to be negligibleg it follows by substitution 

of Eq. (3.7) into Eq. (3.1) that the water flux can be 

expressed as 

J = -a grad h 

in which a is the permeability and is given by 

R c T a = M 11 

(3.8) 

(3.9) 

(3.10) 

Diffusion of pore water in concrete is an extremely 

slow process and it seems reasonable to assume that 

thermodynamic equilibrium exsists between the various phases 

of water within each macropore. Thus, the relation between 

wand h as given by the desorption isotherm (Fig~2.2) may 

be taken as valid for the moisture diffusion during drying 

of concrete. For mature concrete and constant temperature, 

one may write 

dW 
ah == or dh = k(h) dw 

in which k(h) is the inverse slope of the desorption 

isotherm w = w(h), see Fig.2.2. The variation of the 

coefficient k is not too large, exept for the lower 

humidities, which are outside the range of interest 

for ordinary'drying. Hence, without any significant 

loss of accuracy, k may be taken as constant within 

the interval 0.95 ~ h ~ 0.25. 

(3.11) 
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Differentiating Eq. (3.11) with respect to time 

and substituting the result into Eqs. (3.4) and (3.9) leads 

to the following differential equation: 

dh 
at = div (C grad h) (3.12) 

where diffusivity C is given by 

C = ka (3.13) 

Equation (3.12) represents the differential equation, 

in terms of h, governing drying of concrete under isothermal 

conditions and was developed by Bazant and Najjar [14, 15]. 

This formulation cannot be directly applied to rewetting 

of concrete since the slope of the adsorption isotherm 

deviates significantly from that during desorption 

(Fig.2.2) • 

If the boundary condition at the surface of a drying 

body is that of perfect moisture transfer, this is easily 

implemented by requiring that 

h = he 

with he being the environmental humidity at the surface. 

For completely sealed surfaces. the normal flux water 

vanishes, i.e. 

n • J = 0 

where n~is the unit outward surface normal. 

(3.14) 

(3.15) 

The two formulations of drying defined by Eqs. (3.5) 

and (3.12) are equivalent provided that change of material 

parameters due to hydration in neglected. The formulation 

in terms of pore humidity makes it easier to incorporate 



- 377 -

the effect of aging of concrete because h is directly 

related to Gibbs free energy 11, cfr. Eq. (3.7), which 

is not the case with w, see Ref. 15. Moreover, as we 

have already seen, boundary conditions are most 

conveniently defined in terms of relative humidity. 

Constitutive relations for creep and shrinkage depend 

on pore humidity, so that the distribution of h has to 

be known before th8 time-dependent deformations can be 

computed. For these reasons, the differential equation 

for drying in terms of h, Eq. (3.12), seems to have 

distinct advantages compared to the formulation in 

terms of w as defined by Eq. (3.5). It should be 

noted that according to the definition of pore humidity 

(3.8) a formulation in terms of pore pressure p would 

equivalent to that in terms of h. 

In developing Eq. (3.12) it has been tacitly assumed 

that concrete may be treated as an isotropic~ homogeneous 

material. Looking at the microstructure of concrete, 

this certainly seems an oversimplification. Moreover, 

it is obvious that in concrete structures some parts 

will exhibit considerable anisotropy due to the methods 

used for placing of concrete. Hence, in a rigorous 

formulation diffusivity should be treated as atensorial 

quantity. However, there is no experimental data available 

supporting such a formulation and in view of this the use 

of a single scalar parameter to characterize diffusivity 

of concrete seems completely adequate. 

The speed with which pore water migrates in concrete 

depends on the structure and distribution of pores in 

cement paste. Thus, diffusivity is a function of water

cement ratio and the degree of maturity, as evidenced by 

laboratory tests. 
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Fig. 3.1 Dependence og Sh on pore humidity h 

The differential equation governing drying of 

concrete, including the effects of advancing hydration 

and variable temperature, then becomes 

dh 
at = div (C grad h) + a~: + K ~~ (3.22) 

This form of the diffusion equation is due to Bazant and 

Naj jar [15]. It is limi,ted to slowl.y varying temperatures 

since grad T ~ 0 has been assumed in the derivation of 

Eq. (3.22). Otherwise, the temperature gradient must be 

included as an additional driving force in the transfer of 

moisture [17 J. This leads to a coupling of heat and

moisture transfer and will be dealt with in Section 4. 
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Effect of hydration 

In fresh concrete, the advancing hydration calls 

for certain modifications of the diffusion equation. 

During hydration a certain amount of evaporable water 

is consumed by the chemical reactions. This effect 

can be accounted for by adding a correction term to 

Eq. (3.11) so that the relation between pore humidity 

and water content becomes-

.dh = kdw + dhs 

where dhs represents the drop in pore humidity caused 

by hydration. The function hs(t) thus. represents 

(3.16) 

the so-called self-desiccation taking place in a sealed 

specimen. The direct effect of hydration on pore 

humidity is relatively small since it is somewhat 

counterbalanced by the simultaneous reduction in 

porosity. 

It is clear that self-desiccation, permeability 

and the slope of the desorption isotherm must depend 

on the degree of hydration. An objective measure of 

the maturity or degree of hydration of cement paste 

is the so-called equivalent curing period t e , defined 

by [2] 

te = J dte = JST (T) . fb(h)dt 

where BT is assumed to obey the Arrhenius equation, 

in which Uh is the activation energy of hydration and 

T~ {~ a chos~n reierence value of the current ~bsol~te 
- . -6 . -0';-: 

temperature T. For temperatures between 0: and 100.J~ 

(3.17) 

(3.18) 
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The actual functional dependence of hs , a and k 

on te is not dealt with here, but it is known from 

experiments that the effect of curing time on. permeabili!:y . 

can be servere. It should also be noted that drying 

inevitably causes the distribution of te to be non-uniform 

throughout the body, cfr. the definition of Sh (3.19) 

The ~ffect og humidity on the equival~nt curing 

period can be approximated by the empiricial formula 

[2] 

Sh = [1 + ( 3 • 5 - 3. 5h) 4 ] - 1 ( 3 . 1 9 ) 

which is shown graphically in Fig.2. It is known 

that the rate of hydration becomes negligible when pore 

humidity drops below h = 0.6 and this is well represented 

by Eq. ( 3 • 1 9) • 

Effect of temperature 

The dependence of pore humidity on temperature 

can be accounted for by augmenting Eq. (3.16) by one 

additional term, 

dh = kdw + dhs + K d T 

where K'is the hygrothermic coefficient, 

ah 
K= ( - ); . 

aT. ,.w, te -= cons t. 

whose variation with h is shown in Fig.3.2. 

(3.20) 

(3.21) 
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Fig. 3.2 Hygrothermic coefficient K. 

Source Bazant [16] • 

Nonlinear diffusion theory 

As means of obtained approximate solutions, the 

linear diffusion theory with constant diffusivity may be 

adequate for a great number of practical problems. 

Still, this simplified approach suffers from serious 

shortcomings. Assuming a constant value for the diffusion 

coefficient is contradictory to experimental evidence 

on the drying behavior of concrete. Laboratory test 

clearly demonstrates that in an initially fully saturated 

specimen subjected to drying, moisture is lost with 

increasing diffuculty as drying progresses. Thus, 

diffusivity should decrease with decreasing values of 

pore humidity (or specific water content). This fact 

was noted already in th~ earliest theoretical investigations 

of ~rying, see e.g. Ref. 8. Later,the dependence of 
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moisture conductivity on specific moisture content 

has been thoroughly discussed by Pihlaj avaara [18 - 21] 

who also carried out numerical studies based on 

differential equation (3.5) with diffusivity taken 

as a linear function of moisture content w. 

The alternative nonlinear formulation in terms 

of pore humidity (3.12) has been explored by Bazant 

and Najjar [14, 15] . This approach requires the 

diffusivity C = C(h} to be determined by fitting of 

test data. However, it seems that most experimental 

data on drying are in the form of measured weight 

losses and only for a very limited number of tests 

has the distribution of pore humidity at various 

stages IDf drying been reported. From fits of relevant, 

data it was concluded that the following relationship 

provided acceptable agreement with experiments: 

C (h) = C1 [0'.0 + 
1 + 

1-0'. . o· 
- . ] 

(l-h ) n 
l-h c 

(3.23) 

where C1, 0'.0 , hc and n are constants. In Ref.15 it was 

found that most of the available_ data could be fitted by 

setting 0'.0 = 0.05, hc = 0.75 and n = 16. The same formula 

with n = 3 was adopted by Argyris et ale [17]. The 

coefficient Cl represents the value of diffusivity at 

h = 1.0 and is a function of temperature T and maturity 

teo A semi-empirical formula for Cl (T, tel based on 

the activation energy concept is given in Ref.2. 

The dependence of diffusivity on h is shown 

graphically in Fig. 3.3 which also illustrates the meaning, 

of 0'.0 and hc' and the effect of varying the value of the 

exponent n. It is evident from Fig.3.3 that the highly 

nonlinear relationship between C and h may cause serious 

difficulties for the numerical solution of the diffusion 
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equation (3.12). Thus, exstreme care should be exercised 

in selecting an appropriate solution algorithm as discussed 

by Argyris et ale [17]. 

1,0 ,. 
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I 
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Fig. 3.3 Diffusivity C as a function of 

humidity h according to Eq. (3.23). 

A plausible explanation of the severe reduction 

in diffusivity between h = 0.8 and h = 0.6 is suggested 

in Ref.15. At low humidities (h < 0.6) the migration 

h 

of water molecules along ~he absorbed layers is considered 

to be the dominant factor in the diffusion process. For 
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hu~idities above h = 0.8 the flow of capillary water 

is the most important factor in the moisture transport. 

The interval between h = 0.6 and h = 0.8 may then be 

thought of as a transition zone in which flow of the 

less firmly held molecules in the outer layers is 

gradually replaced by flow of capillary water. The 

modelling of the transition zone is strongly dependent 

on the value of the exponent n, as can be observed 

from Fig. 3.3. 

In Refs. 14,15 solutions obtained by the nonlinear 

diffusion equation (3.12) with C defined by equation (3.23) 

were compared with test data. Fig 3.4 shows some results 

for pore humidity in the centre of a slab subjected to 

drying in various environmental humidities. The 

experimental values plotted in Fig .3.4· were reported in 

Ref.22. Also shown for comparisons are t.he results 

obtained by setting C = const. 

Fig. 3.5 shows the distribution of pore humidity 

at different times for the same experiments as in Fig.3.4. 

The nonlinear diffusion equation is in relatively good 

agreement with the test data while $evere discrepancies 

can be observed for the results obtained from the use 

of a constant diffusion coefficient. Although, the 

numerical studies reported in Refs. 14 and 15 are limited 

in number, it may be concluded that predict~on for 

drying of concrete based on nonlinear diffusion theory 

gives better correlation with experimental data than does 

the simplified linear diffusion equation. 

Saturated concrete 

So far, only diffusion of pore water in nonsaturated 

concrete has been.considered. The differential equation 

governing diffusion in completely saturated concrete is 

similiar to Eq. (3.12) and can be written in the form 
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(3.24) 

where p is hydraulic pressure in excess of atmospheric 

pressure and Csat denotes diffusivity of pore water 

in saturated concrete, which is directly related to 

permeability a through the equation[23] 

Here, Y is the volunetric compressibility of capillary 

water and gw the unit weight of liquid water. 

(3. 25) 

With the aid of Eq. (3.25) values of diffusivity 

can be calculated from measured data on permeability. 

This conversion has been carried out by Murata [24] who 

reported values of Csat ranging from 10- 8 to 10- 4 m2/s. 

Compared to the normal di"ffusivities in nonstaturated 

concrete these values are several orders of magnitude 

higher. Hence, for structures like concrete dams in 

which both saturated and nonsaturated regions may exist, 

a discontinous jump between ~ and Csat is to be expected 

at the interface between saturated and nonsaturated 

concrete. 

Another important aspect in massive concrete structures 

is the water deficiency created by hydration which leads 

to considerably smaller values ofdiffusivity than that 

associated with a saturated state. 'This can be attributed 

to nonsaturated conditions due to air-filled voids 

produced by self-dessication before the arrival of the 

hydralic front. It should be noted that the use of air

entraining admixtures reinforces this effect. The diffusion 

equation (3.25) can be easily modified to account for the 

influence of self-dessication, see Ref.23. 
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Fig. 3.4 Experimental (dots) and calculated 
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solid line: variable C, dashed line: 

constant C. Source: Baiant and Najjar [14]. 
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Fig. 3.5 Experimental (dots) and calculated 

distributions of pore humidity in drying 

slab; nonlinear diffusion theory (solid line) 

and linear diffusion theory (broken line). 

Source: Bazant and Najjar [14] . 

4. COMBINED HEAT AND MOISTURE TRANSFER. 

Heating of concrete will cause increased pressures 

in the pores of the material, which in turn causes 

migration of moisture and eventual drying. At the same 

time, moisture transport influences heat transfer and, 

hence, temperature distribution throughout the body. 

Moreover, the existence of temperature gradients will 

act as a driving force of moisture transfer in addition 

to the gradient of moisture concentration already discussed 

in Section 3. This leads to a coupling of the fluxes of 
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heat and mass with the gradients of temperature and 

moisture concentration. 

combined heat and mass transfer in concrete (and 

its effects on time-dependent deformations) influences 

structural behaviour of a variety of modern concrete 

structures, although this is often neglected in stress 

analysis and design. Of particular interest is the 

effect of high temperatures on the mechanical behavior 

of concrete in modern prestressed nuclear reactor vessels. 

Another problem of great concern for these structures 

is the radiation shielding capacity which is strongly 

dependent on moisture content. 

Research on high temperature effects in concrete 

has traditionally been focused on evaluating fire resistance 

of concrete structures. A major portion of this research 

effort has been emp~rical and directed towards the study 

of the behavior of structural elements rather than 

fundamental material properties. Still, the available 

experimental information on high-temperature behavior 

of concrete is by no means insignificant, as indicated 

by the recent survey [25]. A complete review of the 

influence of temperature on material properties is 

beyond the scope of this paper and the reader is referred 

to Ref.25 for details and numerous references. In the 

following, only a few of the more fundamental aspects 

of high-temperature behavior will be discussed. 

It is well known that an increase of temperature 

accelerates drying. At room temperature it may take 

years for a cylindrical specimen of 150 rom diameter to 

dry completely while the drying time at 100°C is less 

than a day. It is generally assumed that all evaporable 

water in a specmen is removed when equilibrium has been , 
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reached at a drying temperature of 10SoC. 

Another important effect of high temperatures 'is 

the gradual dehydration of cement paste. As temperature 

is raised beyond 120°C, both cement gel and calcium 

hydroxide are continuously decomposed and the chemically 

bound water is released into the pores. Dehydration 

increases with temperature and becomes complete at 

temperatures of approximately 600 - 8S0oC [26, 27]. 

The chemical decomposition gradually destroys the micro

structure which in turn leads to increased porosity. 

Harmathy [26] reports that the porosity growth from 

10SoC to 8S0oC can be as much as 40 per cent. 

It is to be noted that chemical changes take place 

in the aggregates as well. However, for ordinary 

° aggregates this effect can be neglected for T < SOO C. 

For the analysis of heat and mass transfer, 

information on heat capacity and thermal conductivity 

is needed. Due to the presence of various constituents 

in concrete (cement paste, aggregates, water, air) and the 

phase changes that may take place in pore water, the 

dependence of heat capacity and thermal conductivity 

on temperature and moisture content is a rather complex 

problem with little experimental data available. The 

lack of quantitative "test data also holds true for moisture 

conductivity and permeability, although these quantities 

can be assumed to obey the activation energy concept up 

to 100°C. The accelerated drying observed for temperatures 

above 100°C indicates ajump.upwards in diffusivity as 

100°C is exceeded. This may be attributed to a possible 

change in the mode of moisture transfer, from migration 

along adsorbed layers below 100°C to flow of vaporized 

steam at elevated temperature [2S]. .. 
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When concrete is subjected to high temperatures 

in a drying environment, one faces the problem of coupled 

heat and mass transfer in a porous body undergoing micro

structural and chemical changes. The general mathematical 

formulation of such problems is well-established within 

the theory of irreversible thermodynamics [28] The 

influence of deformations on the fluxes of moisture and 

heat can be neglected,which, of course, simplifies the 

problem considerably. When the distribution mf temperature 

and moisture in the body has been obtained, the resulting 

stresses can be calculated from the assumed constitutive 

relation which is a function of current values of 

temperature and pore humidity, and their history. 

It appears that .significant developments of the 

theory of thermal moisture transfer in porous solids 

have taken place in the Soviet Union. Unfortunately, 

very little of the results of this research has been 

published in western literature, except the book by 

Luikov [29] A summary of the theoretical work by 

Soviet" scientists in this area has been prepared by the 

same author [30] With the introduction of powerful 

discretization procedures such as the finite element 

method the numerical solution of complex problems in 

heat and mass transfer has been made feasible. This 

includes applications to transient heat conduction 

[31 - 35] as well as numerical modelling of drying of 

porous bodies_[36 ~ 381. 

As already stated, the heat flux q depends not 

only on the temperature gradient but also on the gradient 

"of moisture concentration w (Dufour effect). Similarly, 

the flux of moisture J is linearly' related to grad w 

and, in addition, J is a function of the temperature 

gradient (Soret effect). This can be written in the 
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form 

J = - a1 1 grad w - a12 grad T 

(4. 1 ) 

q = - a21 grad w - a22 grad T 

where w is to be interpreted as the mass of all free 

(not chemically bound) water per unit volume of concrete. 

The problem is nonlinear due to the dependence of the 

coefficients a ij (l,J = 1.2) on moisture concentration, 

temperature and degree of hydration. Moreover, a 12 + a21 

bacause grad wand grad T are not the thermodynamic driving 

forces associated with the fluxes J and q , cfr. [28] • 

Equation (4.1) leads to a system of coupled partial 

differental equations whose solution can only be obtained 

by sophisticated numerical procedures. The numerical 

solution in itself is a formidable task. Another 

difficulty stems from the identification of material 

parameters from test data. Given the limited experimental 

information available, it seems necessary to explore the 

possibility of simplifying Eq. (4.1). 

One such simplification can be achieved if the 

moisture flux is governed by a single potential ~ (w,T). 

Bazant [39] has suggested that this potential be taken 

as the pore water pressure p, i.e. 

J = a 
g grad p (4.2) 

where a is the permeability (in m/s). This is equivalent 

to the relation used in Section 3, see Eq. (3.9), the 

gravity acceleration g = 9.806 m/s2 having been included 

for reasons of dimensionality only. 

The Dufour effect is usually of little significance 

for the heat flux; hence, a21 ~ 0, and consequently, 
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q = - bgrad T ( 4 • 3 ) 

where the thermal conductivity b has been substituted 

for the coefficient a22 in Eq. (4.1). 

The simplifications imbedded in Eqs. ( 4 .2) and ( 4. 3 ) 

may seem drastic, and, in particular, neglecting the effect 

of the temperature gradient on the moisture flux is not 

generally justified. However, the effect of grad T is 

implicitly included in Eg. (4.2), because we have 

grad p(w,T) = .£E grad w + ~ grad T 
aw aT 

FOLmulation of the conservation laws requires 

careful consideration of the physical processes involved. 

As already discussed, dehydration of cement paste for 

temperatures beyond 1200 Cimplies that chemically bound 

water is released into the pores. This phenomenon must 

be accounted for in the conservation of mass equation, 

which, according to Bazant and Thonguthai[40, 41] can be 

expressed as 

aw aWd 
at + div J - ~ = 0 ( 4 • 4) 

where wd is the mass of water released by the dehydration 

process. 

The heat capacity of a multicomponent and multiphase 

system like concrete is not a single, well-defined 

quantity. However, a rigorous formulation in terms of 

contributions from the various components (solid micro

structure,'. adsorbed water, capillary water, vapor) seems 

unnecessary complex in view of the limited experimental 

data presently avaliable. Thus, it may be justifiable 
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to consider the specific heat capacity c of concrete 

as a function of temperature only. The balance of 

heat equation them becomes [40, 41] 

aT pc at - Cw J . grad T = - div q (4.5) 

in which p is the mass density of concrete and Cw is the 

heat capacity of liquid water. The second term on the 

left-hand side of the above equation represents the heat 

supply due to moving water and may be neglected exC?pt 

for situations where rapid heating occurs. 

To complete the formulation, a constitutive relation 

between pore pressure p, water content wand temperature T 

in concrete is needed. An approximate, semi-empirical 

formula has been suggested by Bazant ang Thonguthai [40, 41]. 

This relation is shown diagramatically in Fig. 4.1 where 

the ratio of free, evaporable water content to cement 

content versus relative pore pressure is plotted. Below 

the critical point of water (374.15 0 C) one has to 

distinguish between unsaturated and saturated concrete. 

In Fig. 4.1 the transition from saturated to nonsaturated 

state is modelled by a straight line., 

In general, permeability is a function of temperature 

and humidity, i.e. a = a (h,T). Below 100 0e the dependence 

of permeability on temperature may be assumed to be 

governed by activation energy. Experimental observations 

[49] indicate that permeability increases approximately 

by two orders of magnitude for temperatures above 100°C. 

Below the boiling point of water permeability (like 

diffusivity, cfr. Section 3) decreases with decreasing 

relative pore humidity. Detailed expressions defining 

the approximate dependence of permeability on T and h 

can be found in Refs. 40 and 41 and only a grap~ical 

representation is included here, see Fig.4.2. 
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Spatial discretization of the field equations 

(4.2) -(4.5) can be performed by means of a finite 

element formulation of the Galerkin procedure. Within 

each discrete element pore pressure and temperature 

are interpolated from a set of nodal values. The 

discretized algebraic equations of the finite element 
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assemblage which are computed as a sum of contributions 

from individual elements, can be written in the following 

general form: 

(4 .6) 

Here, p and T are nodal values of pore pressure and 

temperature, respectively. A dot denotes differentiation 

with respect to time. Detailed expressions for the various 

submatrices in the above equation are available in Ref.40. 

In the time domain, the problem has to be solved by a . 
step-by-step procedure. Special care must be exercized 

to avoid numerical instabiiity. 

Several computer programs for predicting water 

release and pore pressures in heated concrete already 

e~i~t {40~44]. Tljese programs are essentially similar 

as ~ar as the mathematical formulation of the major mechanisms' 

controlling heat and mass transfer are concerned but differ 

in the choice of material parameters and their dependence 

on temperature and moisture content. Differences also 

exist between the above programs in the selection of the 

spatial discretization techique (finite differences, 

finite elements) as well as numerical solution procedures. 

Comparisons of the computer programs with test data have 

been performed [45, 46] Such evaluations are, however, 

somewhat inhibited by the relatively little amount of 

relevant experimental information available [40,43, 47-49]. 

There seems to be considerable differences in the predictions 

.of temperature, water release and pore pressure between the 

above computer programs as well as in relation to test data. 

The closest agreement is achieved for temperature distributions 

and total water release. The calculated pore pressures, 
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on the other hand, are relatively poor and l~ave room 

for considerable improvements. 
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Fig. 4.2 Permeability as a function of temperature 

and humidity. 

Source: Ba zant and Thongu thai [40 I 41 ] ~ 
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5. TIME-DEPENDENT DEFORMATIONS 

Under sustained loading, deformat~on of concrete 

increas~s with time. This phenomenon is known as creep 

and the final value of creep strain can be several times 

as large as the instataneous elastic strain upon loading. 

In addition, concrete exhibits shrinkage (or swelling) 

which is a stress-independet deformation due to change 

in water content. In laboratory tests, creep is taken 

as the difference between the total deformation at a 

given time of a loaded specimen and the deformation 

of an "identical", unloaded companion specimen stored 

under the same conditions during the same period of 

time. 

Interest in creep and shrinkage has been increasing 

and considerable progress has been achieved in the under

standing of these phenomena. However, in spite of the 

extensive body of literature on this subject, many basic 

questions regarding the constitutive modelling of creep 

and shrinkage remain unsettled. Undoubtedly, this is 

due to the complexity of concrete as an engineering 

material. In particular, the strong interaction with 

environmental conditions (temperature and humidity) 

which causes migration of pore water within the material 

is one of the major unresolved problems in the theory 

of creep and shrinage. The survey papers [2,50] provide 

an excellent insight into the complexities involved in 

the development of constitutive relations for timeddependent 

deformations of concrete. Effects of variable temperature 

and humidity will be dealt with in detail by other, 

lectures [51, 52] and the subsequent discussion is therefore 

restricted to a brief examination of the effects of pore 

water diffusion in existing mathematical models for 

predicting creep and shrinkage deformations in cpncrete. 
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The hydration of cement is accompained by a volumetric 
concentration of the system cement plus water. This 

reduction in volume, which takes place while concrete 

is still in the plastic state, is commonly referred 

to as E!~~t!~_§hf!D~~q~ but comprise a number of 

different mechanisms [53] ~EY!~9_~~E!D~~9~ takes 

place in the hardened cement paste and is caused by a 

removal of water from the pores of concrete due to 

diffusion of moisture from the interior towards the 

drying surface. As outlined in Section 3, this is 

an extremely slow process provided severe cracking 

does not occur. It can also be deduced from the 

discussions in Section 3 that drying shrinkage increases 

with decreasing environmental humidity and decreases 

when age at the start of drying is higher. 

Creep of concrete under sealed conditions (no 

exchange of moisture with the environment) and at 

constant room temperature is usually referred to as 

~~~!£_£~~~. Due to hydration, creep deformations . I .. 

are reduced with increasing age at loading. Moreover, 

for stresses below approximately 40% of the compressive 

strength creep of concrete obeys the principle of 

superposition, which means that the strain due to a 

s~~ of stress histories is equa~ to the sum of the 

responses due to the individual stress histories. 

When concrete under sustained load is allowed to dry, creep 

is accelerated. This is the sn-called ~~Y!D9_~f~~p effect. 

Drying creep increases with decreasing environmental 

humidity and is accelerated by rapid changes in water 

content. Creep deformation of concrete under sustained 

temperature increases as the temperature level is raised 

it.h~£I]!~l_Q£~~J2J. It is also worth noting that '~temperature 

cycling leads to a sharp increase in the creep deformation 

rate. 
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Host of the eXisting mathematical models for creep and 

shrinkage consist of simple algebraic formulas whose 

main area of application is in design of ordinary concrete 

structures [54 - 57]. These formulas, which are usually 

semi - empirical, are capable of predicting average 

specimen or'cross sectional behavior. As far as the 

hygro-thermal effects are concerned, approximate 

solutions of the ,nonlinear diffusion equation (3.12) 

are in ess:ence. incorporated in these simplified 

algebraic expressions. It is thus important that they 

are not confused with constitutive relations which are 

associated with local behavior (i.e. a point) of the 

material; It is also clear that many of the suggested 

formulas for predicting creep and shrinkage deformations 

do not comply with the principles of invariance and 

objectivity on which valid constitutive relations must 

be based. 

In a recent comparison [58] of some of the suggested 

simplified formulas with test data it was found that these 

prediction methods are rather crude. Although, this may 

in part be attributeed to the great statistical scatter 

of available test data, it is felt that the accuracy of 

the prediction methods needs to be improved. 

Nonuniform specimen behavior 

A huge body of test data on creep and shrinkage 

of concrete has been published, especially during the 

last decade, Yet, this vast experimental information 

cannot be directly used as the basis for development 

of a quantitative theoretical model. The main reason 

for this is that laboratory specimens are not in a 
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uniform state of stress during the test. The outher 

part of the specimen will loose moisture at a higher 

rate than the central core, thereby producing non

uniform distributions of pore humidity and shrinkage 

strains over the cross section. As a result of the 

inhomogeneity of concrete, a complex three-dimensional 

state of stress is set up in the drying, load-free 

specimen. Depending on the environmental humidity 

and the duration of drying exposure, tensile stresses 

in the region closest to the surface may reach the 

tensile strength of concrete. The drying cracks thus 

formed cause redistribution of stresses within the 

specimen which alters the observed average deformation. 

In a recent investigation, Wittmann and Rolefstra [59] 

studied the effect of drying-induced cracking by a simple 

material model combined with pore humidity distributions 

determined by solving the diffusion equation (3.12). 

The results of these computations clearly indicate the 

profound effect of cracking on the time-dependent 

deformation of specimens subjected to drying. 

In creep tests in a drying atmosphere, the external 

loading superimposes a uniform compressive stress on the 

nonuniform stresses produced by differential shrinkage 

deformations. This will reduce crack formation as 

compared to that in the companion load-free specimen 

used to determine pure shrinkage deformation. Moreover, 

in creep tests a uniform cross-sectional deformation 

is imposed which also causes stress redistributions. that do 

not occur in the shrinkage specimen [60]. Hence, the 

companion "identical" specimens used in shrinkage and 

creep experiments are nor identical and, consequently 

the separationmn the total deformation into shrinkage 

and creep components is invailed. Wittmamm and 

Roelfstra[59] , no independet mechanism of deformation 

may be involved in drying creep which, at least 
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for a major part, may be explained by crack prevention 

caused by the applied load. 

To avoid formation of drying-induced cracks, 

environmental humidity must be gradually decreased 

so that large difference in pore humidity does not 

occur within the specimen. Calculations based on linear 

diffusion theory carried out by Bazant and Raftshol [ 61 ) 

indicate that the required drying rate is too slow to 

be practically feasible. Alternatively, tile gradient 

in pore humidity can be eliminated by reducing the 

thickness of the specimen. However, the critical 

thickness is so small «approximately 1.0 rom) [61, 62) 

that specimens have to be made of cement paste rather 

than concrete to avoid the formation of drying cracks. 

Creep laws 

Creep of concrete at h = 1.0 and constant temperature 

may be treated within the well-established framework of 

aging viscoelastic materials. Accordingly, creep strain 

can be expressed as a functional of the previous history 

of stress. To avoid storing the entire stress history 

a rate-type creep law i preferred. To this end, a 

generalized Maxwell chain model with age-dependent elastic 

mduli E~ and viscosities n~ may be selected, see Fig. 5.1. 

The stress 6~ in the ~th element obeys the differential 

equation 

= E - £ ° 0,; ~ = 1, 2 , •• ,. ,11 

in which £ is the total strain and £ois load-independent 

strain caused by shrinkage or thermal dilation. A 

general procedure for converting the integral-type creep 

law into above rate-type formulation is available in 

(5.1) 
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Ref. 63. 

Fig. 5.1 Maxwell chalin model 

A simple extension of the generalized Maxwell 

chain model to account for variable temperature (h = 1.0) 

was suggested by Ba~ant and Wu_[641. The effect of aging 

is included by making the material parameters E~ and n~ 

depend on equivalent hydration period t e , Eq. (3.17), 

rather than actual time t. In Ref. 64 it was further 

assumed that the major creep mechanism is the diffusion 

of solids and water along adsorbed layers in the micro

structure. These processes can be identified by the 

dashport whose viscosities may .then be assumed to depend 

on temperature through the Arrhenius equation, 

1 

n~ 

l'" 

= _1_ ,expIUR~ 
n . 
~o 

(5.2) 



- 403 -

where U]..1 is the activation energy associated with the ]..1th 

dashport and n is:a reference value of nIl at the chosen 
]..10 I"' 

reference temperature To 

In a ;subsequent paper the same authors [65] extended 

their creep model to variable humidity. This was done 

by separating each unit of the Maxwell chain into two 

parts, one representing stresses at in solids and the 

other o~ representing stresses in pore water. Thus 

the uniaxial constitutive relation becomes 

• s < s ES . • 0 a ' + ¢SSl1 all = (€ - € ) 
11 11 

w w -f ] EW • ·0 
C ' + ¢. [o.~ = (€ - € ) 

0 W'Wll 11 11 11 

(5.3) 

where theindecies sand ware associated with "sOlids" 

and "water", respectively. The rate coefficients <Pwwll ' 

characterize the microscopic diffusion fluxes of solids 

and water and £11 is the value of o~ in the micropores 

that would be necessary for thermodynamic equilibrium 

with water in the adjacent capillary pores. 

The aboye constitut.ive~relation can be generalized 

to multiaxial stress and rewritten in incremental form 

so that it can be directly incorporated into standard 

finite element programs [66]. The chief drawback of 

this formulation is that the number of material 

parameters is relatively high and available experimental 

information does not, at present, provide a straight

forward answer to the material identification problem. 

Time-dependent deformations of concrete, including 

hygro-thermal effects, conctitute a class of pr6blems 

that can be described within the context of nonlinear 

thermodynamic theory. Although the physical micro

structural mechanisms involved in creep and shrinkage 
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are not yet clarified, these effects can be accounted 

for by the introduction of internal variables that 

in an average macroscopic sense represent the effects 

of the microstructural changes. The internal variable 

theory is well-established within the theory of 

nonlinear thermodynamics and provides a rat~onal 

mathematical structure for constitutive modelling of 

nonlinear material problems. The adaption of this theory 

to creep of concrete is due to Argyris and co-workers 

[67 - 69J • The fundamental aspects of internal variable 

theory of concrete creep have thus been founded but further 

refinement in the form of constitutive assumptions and 

optimal selection of suitable internal variables as well 

as their identification from test data, is needed. 

6. CONCLUDING REMARKS 

In concrete, pore water and its diffusion plays 

an important role in the understanding of time-dependent 

deformations which are strongly influced by hygro-thermal 

conditions. Constitutive relations for shrinkage and creep 

require the spatial distribution of pore humidity to be 

known a priori before the deformation problem can be 

solved. Thus, the need for accurate and reliable 

mathematical models for predicting pore humidity is 

evident. There is ample experimental evidence supporting 

the use of nonlinear diffusion theory in which diffusivity 

depends on relative pore humidity, but further test data 

is required to determine the functional dependence og 

moisture diffusivity on pore humidity~ 

Heat and moisture transfer in concrete at elevated 

temperature can be described by standard coupled 

differential equations in terms of temperature and water 

content. The introduction of pore pressure as a variable 

leads to a relatively simple and computationally efficient 
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formulation. Constitutive assumptions regarding the 

relationship between pore pressure, water content and 

temperature will require more extensive test data to 

be completely verified. This is also the case with 

permeability and its suggested dependence on 

temperature. 

Over the years, various mechanisms have been 

suggested to explain shrinkage and creep deformation 

of concrete, but no single mechanism has gained 

exclusive acceptance. Recently, attention has been 

focused on the effect of moisture diffusion and 

associated cracking for the observed time-dependent 

deformations of concrete specimens. The results of 

this research have exposed the need for a more careful 

evaluation of existing test data since drying specimens 

are in a spatial nonuniform state of pore humidity, 

strain and stress. This also emphasizes the importance 

of continued theoretical research since a constitutive 

theory is necessary for a proper understanding and 

evaluation of experiments. It is felt that significant 

progress in the constitutive modelling of creep and 

shrinkage of concrete can best be achieved bya 

coordinated effort that unifies experimental research, 

continuum mechanics and numeriual analysis. 
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I. INTRODUCTION 

Professor Prager was instrumental during his lifetime in the development 
of simple material models to represent the behavior of solids beyond the elas
tic range. Thus, his name is associated closely with the development of modern 
theories of plasticity (for example, the perfectly plastic solid). In addi
tion he later became interested in numerical methods and computing and how 
numerical techniques could be used to provide solutions to problems in the· 
field of solid~mechanics. In the last 20 years we have seen a tremendous 
growth in the field of computational solutions in mechanics--promoted primarily 
by advocates of the finite elements method--and today numerical methods allow 
us to solve multi-dimensional problems of solid mechanics where the materials 
obey complex constitutive laws. This, with the advent of numerical methods 
and large capacity computing machines to solve complex analytical problems, 
there is a reawakening to the need to develop physically based constitutive 
laws to represent real material behavior. 

The purpose of this paper ;s to describe three constitutive models that 
have been developed for rocks, concrete and filled polymers to represent 
creep, thermal, stress, and aging effects. Also described in the paper are 
how these constitutive models are being used to numerically predict the be
havior of solids in such diverse situations as aging creep of concrete struc
tures and creeping mantle convection. In all cases low strain rate, compres
sive material behavior will be the main interest. 

For the time-dependent behavior of concrete under long-term loads, visco
elastic models have been developed and applied to the numerical analysis of 
the behavior of concrete structures. A commonly applied theory for concrete 
structures is the linear, aging viscoelastic theory for which the superposition 
principle applies. Section II of the paper discusses the theory for aging 
concrete creep including expansion of the creep functional in a finite 
Dirichlet series that enables the numerical solution of practical concrete 
creep problems. A numerical example of calculating the creep of a concrete 
structure is illustrated. How the theory is altered to account for tempera
ture amd moisture effects is also discussed. 

One of the difficulties with using the viscoelastic constitutive model is 
its inability to handle nonlinear dependence on the stress. In both the con
ventional and aging viscoelastic theories the creep rate depends on the stress 
to the first power whereas with real materials viscoelastic creep occurs 
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superimposed over a rate-independent plastic behavior. Section III of the 
report briefly summarizes some recent work at the Los Alamos National 
Laboratory and Carnegie Mellon Institute concerning the development of a new 
viscoplastic theory for materials that exhibit a rate-dependent viscoelastic 
creep response together with rate-independent plastic behavior. 

Section IV of this paper examines temperature and stress effects in creep 
of rocks with the ultimate goal of developing a capability to realistically 
model material flow, temperature and deformation in the Earth's crust and 
mantle. The major difficulty in modelling geodynamic phenomena today is the 
complex rheological behavior of rocks. Depending on conditions of tempera
ture, pressure and stress, rocks can act as elastic or viscoplastic solids, 
brittle solids subjected to fracture, or viscous fluids. A successful predic
tive capability must be able to cope with these constrasting rheological prop
erties within a single computation because the interaction between materials 
which behave differently (for example, the coupling of an elastic lithosphere 
to an underlying viscous asthenosphere) is an essential aspect to most unsolved 
geological problems. 

The basic equations for creeping flow of rocks, including energy trans
port, are described in Section IV. There also is discussed the currently ac
cepted creep models for rocks subjected to high temperature (T > 0.5 Tm, 
where T is the liquidus temperature) and stress. The basic equations have m 
been implemented in a two-dimensional finite element code, which is currently 
being used to study Rayleigh-Benard convection in a square box model of the 
Earth's upper mantle. Calculations are illustrated to show the effect of tem
perature on mantle creep for the cases of base heating and combined internal 
and base heating, which is the case most relevant to the Earth's mantle. Ex
tension to stress and temperature dependent creep behavior of the material 
making up the Earth's mantle is discussed as well as how aging effects are 
important and can be factored into such models. 

II. CREEP, THERMAL, AND AGING EFFECTS IN CONCRETE 
The physical mechanisms underlying the creep of concrete, just now being 

fully understood, are very complex, (1,2) and their complete incorporation 
into numerical codes for the prediction of the creep of complex concrete 
structures ;s still impossible. Useful numerical results can often be ob
tained though, by using simplified creep constitutive models that do not yet 
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incorporate the complicating effects of moisture change, temperature change, 
and an extended working range of stress and strain. In this section we will 
first present the simplest such constitutive model, the so-called linear aging 
viscoelastic model, that has been proposed and often used for the numerical 
creep analysis of massive concrete structures. Later in the section we will 
discuss the effect of temperature and how this effect is accommodated in the 
constitutive law. 
The Linear Aging Model 

The characteristic of concrete that distinguishes it from the traditional 
viscoelastic material ;s the aging effect. Thus, as a function of time the 
constitutive law is changing through the chemical action of hydration, and it 
is extremely important to its creep response as to when in its lifetime an 
aging viscoelastic structure is loaded. Fortunately, experiments indicate 
that the response due to an increment in load is independerit of all other past 
load increments, and the superposition principle applies. Thus, for small 
increments in stress do = a(t')dt' occuring at t l measured from the time 
of casting, we have 

t 

E (t) = I 
o 

where J(t,tl) ;s called the creep function. 

(2.1) 

Numerical creep analysis based on the stress-strain law of Eq. (2.1) may 
be performed by subdividing the total time interval of interest into time 
steps At and discrete times tr (r = 1,2, ••• ). The integral in Eq. (2.1) 
can then be approximated by finite sums involving incremental stress changes 
over the time steps. Details of this method, which is generally applicable to 
any form of the creep function J(t,t l

), are given in Bazant. (1) Because the 
numerical method results in extensive storage and computational requirements, 
it has been superceded by methods that involve approximating the creep func
tion J(t,tl) by a Dirichlet series and thus tying the constitutive model 
physically to Kelvin chain models (or Maxwell chain models if the relaxation 
function is approximated), which then yield the structural equations. 
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The creep function J(t,tl) is approximated by a series of real exponen
tials of the form 

1 J(t,tl) =--+ 
E(t I) 

n 

L 
;=1 

1\ 
in which Li are constants called retardation times and E; are aging co-

(2.2) 

efficients. When this function ;s introduced into the superposition integral 
(Eq. (2.1») the integrand degenerates into the product of a function of t' and 
a function of t. The latter function does not involve the variable of inte
gration and can be extracted from the integral, leaving only an integration of 
functions that are independent of t. Thus, at each new time step, it is only 
necessary to compute the change in value of the integral from the last time 
step rather than from the time of initial loading, as is required in a general 
case. Using this method Ref. 3 describes a completely stable numerical method 
for obtaining computational solutions to concrete structural creep problems. 

Restricting ourselves to situations of one-dimensional stress, it can be 
shown that the Dirichlet series is the solution to the system of ordinary dif
ferential equations 

• • n • e: = alE + L: e: • 
i =1 

, 
• e: • = a;ln; i = 1,2, ••• ,n , (2.3) 

• • • a = a + E .e: . 
1 1 

i = 1,2, ••• ,n 

when a unit step stress a(t) is applied at time tl. This system of equa
tions, which corresponds to the physical system shown at the top of Fig. 1 and 
with variables E, Ei , ni as shown, is called the Kelvin chain model. 
Since the formulation defined by Eq. (2.3) states the relations between the 

. rates of stress and strain, it is referred to as a rate-type formulation. 
Another formulation of the viscoelasticity problem is through the use of 

the relaxation function G(t,tl) rather than the creep compliance function 
J(t,t l

), 
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t 

a(t) = I • G{t,t') E(t') dt ' (2.4) 
o 

If the relaxatiion function is expanded in a Dirichlet series and substituted 
into Eq. (2.4), it can be shown that the differential equations {for one di
mensional stress} 

a = 

• 
E = 

• 0,. + a./T . , , 
E. , 

(2.5) 

i = 1,2, •• :,n 

are obtained.(4) This system of rate equations corresponds to the physical 
system shown at the bottom of Fig. 1 and is called the Maxwell chain model. 
The quantity, '''[ i = n;lEp is the relaxation time of the ith unit of 
the Maxwell chain. As with the Kelvin chain model described previously, in
cremental stress-strain laws for the Maxwell chain model can be formulated. 
As with the Kelvin model the stress history in the incremental law is defined 
by a recurrence relation, and the need to sum the complete stress history at 
each time step is eliminated. 

Kelvin and Maxwell chain models can be used interchangeably to solve creep 
problems provided the relaxation function G can be determined from J, or vice 
versa. For example if G ;s smooth and there is no aging effect then one can 
solve 

t 

G(O)J(t) + I G{s)J(t-s) = 1 
o 

(2.6) 

to obtain the creep function J while for aging material the general relation 
Eq. (2.1) must be solved. In general, advantages accrue to the Maxwell model 



when the effects of temperature and humidity change are included since these 
involve summing stored stress variables. 
Modelling Temperature Effects in Aging Viscoelastic Solids 

Accommodating the Kelvin chain model to pore moisture and temperature 
changes is not possible based on the underlying physics of the creep mechanism 
for concrete. On the other hand, as shown in Bazant,(l) incorporating the 
temperature effect into the creep law corresponding to the Maxwell model is 
rather simple. Equation (2.5) is rewritten as 

" + 
e: = 

where ni is the age-dependent viscosity associated with the ith Maxwell 
unit, which equals ~ .E; at constant temperature T. Since creep is a 

1 1 

(2.7) 

thermally activated process, it is known from physics that ni should depend 
on temperature according to the Arrhenius equation, 

1 1 [Ui(l 1)] n i = nO exp R In -T (2.8) 

where TO is the reference temperature, nO is the value of n at TO' R 

is the universal gas constant, and Ui is the activation energy of the ith 
Maxwell unit. The effect of temperature on aging is represented by making 
Ei and n i dependent on te rather than on t, where 6te is an equiv-
alent hydration period that yields the same degree of hydration at temperature 
T as occurs during a period 6t at temperature TO. This equivalent time is 
given by 

(2.9) 

with 

(2. 10) 
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in which Uh equals the activation energy for hydration. 

App1 ications 
The consititutive equations for the Kelvin or Maxwell models of aging vis

coelastic materials have been incorporated into several US and European con
crete creep analysis computer codes. In particular Ref (5) describes how the 
constitutive laws are incorporated in a large finite element code for the 
creep analysis of complex three-dimensional concrete structures, and many 
examples are given. Below is illustrated one such calculation that indicates 
the current state of the art in concrete creep analysis. Temperature effects 

>'i.l,~ 

were not considered in this problem. 
Figure 2 illustrates a concrete ring that is posttensioned by two cables 

on the exterior surface as shown. In this problem the steel cables are elas
tic whereas the concrete creeps according to the viscoelastic aging relation 
of the Dirichlet series form given in Eq. (2.2). A two-term approximation was 
used. For this example the coefficients Ei(t ' ), i = 1,2 are given by 

1 n. 
=--",.,....... = a. + b. (tl) 1 
Ei(t) 1 1 

(2.11) 

where a, = a2 = 7.5 x '0-9, b, = b2 = 0.233 x 10-6 and n1 = n2 = -0.333. 
The re1axatio~\ times were taken to be '[, = 5.6 d and '[2 = 56 d, respectively. 

Figure 3 illustrates the variation of the post-tensioning strain in the 
cable as a function of time out of 400 d starting from an initial strain in 
the cable of 0.0005 applied at 90 d from concrete casting. Also shown for 
comparison is a shell solution to this problem for a complete composite con
crete steel shell with the same geometry, material quantity, and material 
properties as in the finite element model. At 350 d there is a 1.3% dif
ference in th~ finite element cable strain and the cable strain predicted by 
the shell theory solution. Further details are given in Ref. (5). 
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III. A NEW VISCOPLASTIC CREEP MODEL 
Certain materials, in particular highly filled polymers,* exhibit uniaxial 

stress-strain behavior as illustrated in Fig. 4. Although a linear visco
elastic material would produce this form of stress-strain curve, a relaxation 
function that produces the loading curve predicts much smaller values of the 
offset strains E" E2 than those observed experimentally. Alternately, 
an elastic-plastic material with very small yield stress and extreme work 
hardening would exhibit a similar stress-strain picture without the hysteresis 
but wouldn't show the creep and relaxation effects that these materials ex
hibit. 

This section presents a simple model for truly viscoplastic material be
havior that has been recently developed by M. E. Gurtin and W. O. Williams of 
Carnegie-Mellon and R. V. Browning of Los Alamos based on experimental data 
obtained at the Los Alamos National Laboratory.(6) The model is based on 
the following two hypotheses. 

1. There is a constitutive quantity called the pseudo stress n, which 
is related to the strain through an elastic-plastic stress-strain law. 

2. The true stress a is related to n through a linear viscoelastic 
law. 

Thus, the model combines rate-independent nonlinear plastic behavior with lin
ear viscoelastic behavior. Experimentally determining the constituents of 
this viscoplastic model is of major importance to USing it. Three separate 
creep type experiments will be shown to determine the parameters of the model. 
Description of the Model 

In developing the model Gurtin, Williams, and Browning first introduce the 
constitutive equation, which describes one-dimensional behavior of an 
elastic-plastic material. Thus, 

wheren =n(t) is the stress at time t, E = E(t) is the strain at t 
and Em(t) is the past maximum of the strain, 

(3.1) 

*Highly filled polymers are formed by a random distribution of crystals in a 
matrix material. In these materials there are no preferred slip directions as 
in metals. As for concrete and rocks, these materials are weak in tension. 
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(3.2) 

Gurtin, Williams, and Browning then introduce the terms virgin states (in 
which £ = Em) and damaged states (in which £ < Em). According 
to the terminology of plasticity the damaged state corresponds to states in 
which unloading has tak~n place. For the virgin stress-strain curve we define 

1T = g(£) = F(£,£) 

and rewrite (3'~ 1) as 

(3.3) 

1T = g (E: ) f (E: ,E: ) m m (3.4) 

where f is the damage function and corresponds to a loading or unloading (pre
sumed to be the same path) in the damaged region. Note that 

(3.5) 

Figure 5 illustrates the constitutive relations representing the rate indepen
dent behavior of these solids. Note the similarity with the elastic-plastic 
solid with the difference being that the unloading-loading curves are not con
str~ined to have their slopes equal to elastic modulus of the solid. 

To introduce rate dependence into this model, Gurtin, Williams, and 
Browning redefine 1T of £q. (3.1) as a pseudo-stress and they relate 1T to 
the stress a by a linear nonaging viscoelastic law 

It 
a (t) = 

o 
G(t-s) i(a)ds (3.6) 

where G is a stress-relaxation function (see Eq. (2.8) for the aging form). 
Conversely Eq. (3.6) can be inverted to give a relationship between 1T 

and·a 
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It .. 
n(t) = J(t-s)o(s) ds 

o 
(3.7) 

where J is the creep function (see Eq. 2.1 for the aging form). The creep 
formulation can be completed by writing the analogous expression for Eq. (3.4) 

E = k (1£ ) h (1£ ,1£ ) m m (3.8) 

where nm is the past maximum of n. The function k, which is the inverse 
of g, describes the virgin response while h is the damage function and repre
sents loading-unloading states off of the virgin curve. Reference (6) estab
lishes the validity of the inverse relation, Ea. (3.8), given Eq. (3.4). 
Experimental Characterization 

Here we briefly describe how the constituents of the viscoplastic theory 
(the functions J, g, and k) are determined from three experimental loading 
programs (that is, specified o(t)). These loading programs are a standard 
creep test, a ramp test, and an unloading test and all are necessary to deter
mine the parameters of the model. The three loading prqgrams are shown sche
matically in Fig. 6. 

First a standard creep test* is carried out. If o(t) = 0
0 

for all 
t > 0 then the corresponding pseudo-stress nO from Eq. (3.7) is 

and the strain EO (t) is 
o 

EO (t) = k [0 0 J(t)]. 
o 

(3.9) 

(3.l0) 
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Now we write 

and taking the limit as a
O

'" 0 and assuming thatk is approximately lin-
ear for small v'alues of its argument we will obtain J(t), the creep function. 

A second experiment involving ramp loading now suffices to determine the 
functions k and g. Taking the creep function J found above, one may in
tegrate it together with the experimental a(t) to obtain IT(t). Then a 
plot of IT(t} versus the experimental E(t) reveals the form of g. In prin
ciple a single. experiment suffices, but a useful test of the constitutive 
hypothesis that J encompasses the entire rate dependence is afforded by taking 
a series of such tests at differing rates and comparing th~ corresponding 
graphs. The function k is the inverse of the function g. 

Finally, to determine the damage function it is necessary to use experi
ments involving unloading and, optimally, reloading processes utilizing a 
large selection of values of Em or lT m• For example the sawtooth load-
ings such as those shown in Fig. 6 may be used. From the experimental a(t) 
one uses Eq. (3.7) to compute IT (t) and then considers a IT..£ plot over 
each interval on which Em is constant and £ < Em. The correspond-
ing IT-£ plots, each for a different value of lTm' may be used to con-
struct f(£~£m) by a two-variable fitting process. 

Using the above procedure a highly filled polymer was characterized. The 
;:,-:. 

material selected for study was only slightly viscoelastic over the time scale 
of the experiments carried out. After characterization the material was sub
jected analytically and experimentally to the loading program shown in Fig. 7. 
The analytical and experimental results are compared in Fig. 7. Comparisons 

, between theory and experiment are excellent considering that the experiment 
involved a factor of 10 differences in loading rates. 

*Alternately a relaxation test could be conducted for G(t) and J(t) determined 
from Eq. (2.6). 
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IV. CREEP, THERMAL, AND AGING EFFECTS IN ROCKS 
There are many phenomena in the Earth that testify to the importance of 

long-term creep processes. These include geoidal flattening of the Earth as a 
whole, plate tectonic motions in the outer hundred kilometers of the earth 
driven by thermal creep of the underlying mantle, and episodal creep events 
along major faults down to grain-scale ductile flow. Fully understanding these 
phenomena will eventually require the development of constitutive models that 
take into account temperature, stress and aging effects on the creep rates of 
rocks and implementation of these constitutive models in numerical procedures 
that can predict the large scale phenomena that are being observed. These 
models can then be calibrated using the observed data such as surface velocity, 
heat transfer and surface deformation. Finally, with a well calibrated model 
basic questions of time history of evolution of the Earth's structure and 
questions of aging can be more confidently addressed. This section briefly 
describes constitutive laws that have been proposed for modelling high temper
ature creep of rocks causing mantle convection as well as detailed calcula
tions with a finite element code that describe high Rayleigh number convection 
of the mantle from combined internal and base heating. 

The elastic and inelastic behavior of rocks at low (near surface) stresses 
and temperatures is dominated by fractures on all scales. Here compaction and 
dilation are important processes with the resulting inelastic strains mainly 
due to primary and tertiary creep. However, at absolute temperatures greater 
than one-half the melting temperature, most large scale ductile deformation of 
rocks occurs as secondary or steady-state creep. Here the flow involves plas
tic deformation resulting from dislocation motion.(l) 

Useful laboratory steady-state creep results for uniaxial stress are 
available for a number of rocks over wide ranges of strain-rate, temperature 
and driving stress. Among these are ice, halite (rOCk salt), marble, lime
stone, dolomite, anhydrite, quartzite, granite, dunite, pyrosenite, and peri
odite. All of these steady-state creep results are well-fit by a relationship 
of the form(7,8) 

(4.1) 
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where Q and V* are activation energies and volumes, ~ is the shear modulus 
and A and N are material constants. In Eq. (4.1) R ;s the universal gas con
stant and T, p and a are absolute temperature, pressure and octahedral 
shearing respectively. In many cases Eq. (4.1) can be simplified to 

~ = B exp[-(Q + pV*)/RTJaN (4.2) 

where B ;s a material constant. For the previously mentioned solids values of 
Q vary from 120 to 500 kJ/mol and N from 3 to 9. Data on V* are ~uite limited. 

Numerical calculations using the constitutive model Eq. (4.2) have been 
presented for the behavior of underground cavities(9) and geotechnical 
structural models that represent rifts and rock folds(lO,ll) usually driven 
by direct stresses caused by material discontinuities, for instance. Also, in 
Ref. (12) analytical solutions are given for an underground spherical cavity 
for the case where the surrounding medium is a constant viscosity solid. Cur
rently accepted models for plate tectonic motion, on the other hand, are driven 
not by direct stresses but by drag forces developed during slow creep of the 
underlying mantle. The equations describing this process of mantle creep are 
inherently nonlinear even for constant viscosity situations, and have in the 
past been solved by boundary layer or finite difference numerical tech
niques.(13, 14) However, these methods do not handle the physically in
teresting cases of nonconstant (for example, stress, temperature or pressure 
dependent) viscosity or the situation of internal heating of the material of 
the mantle caused by. radioactive decay. The method of analysis described below 
does not possess these restrictions. 

We reconsider the problem of Rayleigh-Benard convection in a square smooth 
box. The basic equations that describe the creep of the material of the box 
under thermally-induced buoyancy forces are the equilibrium equations, the 
constitutive law ,for the relation between deviatoric stresses (sx' Sy' 
~ty) and velocity (u,v) gradients, the incompressibility equation, and the 
energy transport equation. Written with respect to an Eulerian reference frame 
and using theMusual Boussinesq approximation, these equations are 

as 
x + ax 

a~ 

a¥.-~=o (4.3) 
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aT as 
aXxY + .~y - ap prn(T T) crv Ty = - 'r 0-

(4.4) 

where a is the bulk coefficient of expansion and where]..l =]..1 (0 ef' T) 
is the viscosity as a function of temperature and octahedral shearing stress, 
which can be of a form consistent with Eqs. (4.1) or (4.2). For details see 
Reference 10. Also, 

au + .!y = 0 ax oy (4.5) 

is the incompressibility requirement and 

(4.6) 

is the energy transport equation where p is the density, Cp is .the heat 
capacity, k is the thermal conductivity and Q is the internal volumetric heat
ing. In the above equations terms of the order of products of velocity have 
been neglected since velocities can be shown to be small (~ 10-10 m/s) in 
mantle convection. 

The equations embodied in (4.3)-(4.6) have been discretized by the finite 
element method using a 6-node triangle with quadratically interpolated veloc
ities and linearly interpolated pressures and implemented in a computer pro
gram.(15,16) This computer program, called MANTLE, has been compiled on the 

L~s Alamos computer system, modified for random access memory, energy checks 
an·d balances, graphics, and other features and used in the numerital studies 
of creep and thermal effects in the Earth1s mantle that are described below. 
The finite element method was chosen as the numerical approach since it pos
sesses the advantage of allowing for a variable mesh and the concentration of 
elements in the thin boundary layers where the resolution is required for high 



- 428 -

Rayleigh number flow. The nonlinear terms in Eq. (4.6) were handled by 
iterating between the flow equations, which determine u, v and p, and the 
energy transport equation, which determines T. 

The problem that we have investigated is represented by a two-dimensional 
square box containing a creeping solid (or a very viscous fluid) that is heated 
on its under side and internally, cooled on the top, and insulated on the ver
tical sides. All boundaries are mechanically rigid and smooth. When the 

.:.." 
temperature difference between the bottom and top is small enough, energy 
transport occurs only by conduction in the solid. However, as the bottom tem
perature (or flux) is raised, a critical temperature is observed (both experi
mentally and analytically) at which the material in the box begins to convect 
heat as well as conduct it. In the absence of internal heating the critical 
temperature difference for onset of flow of a constant viscosity solid in a 
square smooth box of the length L can be determined analytically by the criti
cal Rayleigh number Rc' 

where K is the
4
thermal diffusivity, v is the kinematic viscosity and 

TB-TO is the temperature difference. When internal heating is accounted 
for, the critical temperature difference must be determined numerically. 

(4.7) 

Figure 8 illustrates the problem geometry, material properties, and 
boundary conditions for the bottom heated convection case together with three 
of the finite element meshes that are being used in. this study. Material 
properties and the dimensions of the box were selected so that a base 
temperature of one degree corresponds to the critical Rayleigh number. For 
all bottom heated cases the velocity field consisted of a single cell vortex 
flow. Figure 9 illustrates the horizontally-averaged temperatures in a 
c~nstant viscosity convecting solid for the 18 x 18 variable mesh of Fig. 8 
and where the Rayleigh numbers are 200 and 2700 times the critic!l value 
(779.293). For these Rayleigh numbers it can be seen that there are fairly 
narrow boundary layers along the top and bottom edges of the box (this is true 
of the vertical edges, also) where the temperature gradients are high, and a 
central core of material that is nearly isothermal and at the average 
temperature of the solid. Table I below summarizes the results we have 
obtained so far for high Rayleigh number constant viscosity 
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TABLE I 
SUMMARY OF NUMERICAL RESULTS FOR HIGH RAYLEIGH NUMBER 

BOTTOM HEATED THERMAL CONVECTION 

Finite Element Finite Element 

R/Rc Mesh Nusselt Mesh Nusselt 
Spacing Number Spacing Number 

100 18 x 18 9.730 48 x 48 9.625 
200 18 x 18 12.162 48 x 48 11.987 
300 18 x 18 13.844 
500 18 x 18 16.289 80 x 80 16.153 

1000 18 x 18 20.289 96 x 96 20.13 
2700 18 x 18 27.698 
5000 18 x 18 33.422 96 x 96 33. 1 

10000 18 x 18 40.765 96 x 96 40.7 

convection using the 18 x 18 nonuniform mesh of Fig. 8. Also shown are the 
results of Jarvis and peltier(14) for uniform finite difference meshes. The 
comparison is based on the Nusselt number, which is the ratio of the total 
heat transmitted out of the top of the box to the heat that would be trans
mitted if only conduction in the solid were occurring. The quantity Ra/Rc 
is the ratio of the actual to critical Rayleigh number. 

The agreement of the finite element results with the finite difference 
results shown in Table I is very good particularly at the high Rayleigh num
bers characteristic of Earth mantle convection. The 25 x 25 variable mesh 
shown in Fig. 8 will be used to calculate Nusselt numbers at extremely high 
Rayleigh numbers (up to 100 000) and will provide further confidence in the 
numerical capability. 

Thermal effects on the material creep behavior were also investigated. 
Here the aim is a systematic study of how convection is influenced by increas
ingly large viscosity variations within the creeping solid. Since, as shown 
above, temperature variations are confined to narrow boundary layers at high 
Rayleigh numbers, there will be large effective viscosity variations within 



- 430 -

these boundary layers. Again the variable mesh capability ofa finite element 
approach is a crucial factor in resolving these large viscosity variations. 

Variation of the effective viscosity of mantle rocks as ~ function of 
depth is a subject of some controversy. For our purposes we have taken a 
viscosity variation with temperature of the Arrhenius form (that is, of the 
form of Eq. (4.2) with V* = 0 and N = 1). We have selected the parameters B 
and Q/R so that the effective viscosity at the top of the model, where 
T = OoC in all cases, is 1.2 x 1021 Pa-s while at T = 10000C we assumed 
the viscosity to be three orders of magnitude less, which is in agreement with 
available geophysical data on variation of rock viscosity with depth in the 
mantle. Calculations with MANTLE were then carried out for the bottom heated 
thermal convection case with base temperatures equal to 100, 200, and 300 and 
using the 18 x 18 variable mesh of Fig. 8. This corresponds to factors of 10, 
40, and 100 decrease in viscosity from top to bottom, respectively. The re
sults. are summarized in Table II below. Here is given the average temperature 
of the isothermal central core, the viscosity corresponding to that tempera
ture, and the value of R /R corresponding to the bulk solid viscosity and 

a c 
the base temperature as corrected by Eq. (4.7). 

TABLE II 
SUMMARY OF NUMERICAL RESULTS FOR BOTTOM HEATED THERMAL CONVECTION WITH 

TEMPERATURE DEPENDENT VISCOSITY SOLID 

Bottom Core Average Nusselt 
Temperature Temperature Viscosity Number Ra/Rc 

100 55.0 .28 x 1021 Pa-s 14.506 430 
200 116.3 .089 x 1021 Pa-s 23.103 2700 
300 180.5 .037 x 1021 Pa-s 31.589 10000 

The horizontally averaged temperature profiles are shown in Fig. 10, and Fig • 
• tl shows the temperature profiles for the case of bottom temperature equal to 
200. Comparing with the results for the constant viscosity cases shown in 
Fig. 9 and Table I, we see a significant difference in the form of convection 
caused by the temperature-dependent creep behavior of the mantle material; the 
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boundary layers become more concentrated at the warmer base of the model as 
expected, the isothermal region enlarges, and the bulk temperature of the 
isothermal region is higher than the mean of the base and top temperatures. 

We have also carried out studies of convection of the mantle with combined 
heating from within and below. Here boundary layer theory doesn't apply and 
consequently less work has been done in this case, which is more relevant to 
the Earth's mantle. Here the critical Rayleigh number for convection is not 
known apriori and must be determined numerically. Several cases of varying 
ratios A of internal heating to total heating have been investigated. Re
sults will be illustrated for the case A = 0.6 where the critical internal 
heating rate was determined to be 3.1 x 10-12 W/m3. Table III illustrates 
some recent results for higher internal heating rates using the uniform mesh 
shown in Fig. 8. 

Whereas ihe bottom heated case showed only a single convection cell up to 
very high Rayleigh numbers, the combined heating case often produced solutions 
composed of one or two convection cells and with two or three boundary layers 
respectively. Figure 12 illustrates the one and two cell temperature profiles 
for Ra/Rc = 645. Figure 13 again illustrates the horizontally averaged 
temperatures for the two solutions obtained at Ra/Rc = 645. Calculations 
were also carried out with the temperature-dependent creep law described 
previously to ascertain the effect of coupling the thermal profile to the 
effective viscosity of the mantle material. These results for the heating 

Ra/Rc 
161 
322 
645 

! 968 
1290 
1613 

TABLE III 
SUMMARY OF NUMERICAL RESULTS FOR 

COMBINED INTERNAL AND BASE HEATING A = 0.6 

Nusselt Number 
Mesh Spacing One Cell Two Cell 
20 x 20 6.208 5.335 
20 x 20 7.198 6.487 
20 x 20 8.204 7.812 
20 x 20 8.781 8.690 • 
20 x 20 9.361 
20 x 20 9.090 
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conditions corresponding to Ra/Rc = 645 of Table III are shown in Figs. 14 
and 15. Only the converged two-cell solution was obtained at Ra/Rc = 
645. Again a significant change in the Nusselt numbers (9.3l1 vs 7.812) and 
the temperature profiles is observed. 

The inclusion of thermal effects on the creep behavior of rocks will allow 
us to new address the lithospheric thinning problem. The erosion of the 
Earth's crust by a thermal plume at its base is undoubtedly an important 
aspect of continental rifting and the creation of oceanic swells. In this 
calculation a hot plume will impinge on a thick continental lithosphere and 
will erode the lithosphere by warming it and carrying away lithospheric 
material made mobile by virtue of its higher temperature. The finite element 
approach wi 11 allow a concentration of elements in the transition region 
between the lithosphere and asthenosphere to resolve the large viscosity 
variation across this region. Thinning rates, surface heat flow and uplift 
rates will be calculated as a function of plume strength; these quantities are 
geological observables and can accordingly be used to constrain model 
parameters. Figure 16 illustrates the proposed calculational model. 

Incorporation of aging effects in mantle convection and its interaction 
with the Earth's crust would also be an important consideration. For example, 
the carbonate rocks thought to make up the mantle could change from the car
bonate phase to a chemically reduced material with the attendant release of 
CO2 which would significantly affect material (including creep) properties. 
Partial melt of mantle materials or precipitation of material from a molten 
state would also affect material properties significantly. Thus, aging 
effects, while difficult to incorporate into the mantle creep models, are 
important considerations for the prediction of the structural behavior of the 
Earth's mantle and crust. 
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Fig. 4. A typical stress-strain diagram for 
a highly-filled polymer. 
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Fig. 5. Enveloping stress-strain curve and loading
unloading paths for a highly-filled polymer. 



- 439 -

CREEP TEST 
. eTo ..... -----------

rr 

TIME 

RAMP TEST 

TIME 

SAWTOOTH TEST 

TIME 

Fig. 6. Three stress-time histories used to calibrate the 
viscoplastic solid. 
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Fig. 7. Comparison of experimental (0) and calculated (0) 
strains for a typical filled polymer. The stress
rates are 5.0 and 0.5 MPa/min. 
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Fig. 11. Temperature profiles for temperature dependent 
viscosity solid heated from below with TB = 200. 
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Fig. 14. Horizontally averaged temperature for combined 
heating case with Ra/Rc = 645. Temperature 
dependent viscosity solid. 
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Fig. 15. Plume development for combined heatinQ case with 
Ra/Rc = 645. Temperature dependent solid. 
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CRUST-MANTLE INTERACTION MODEL 
INITIAL MESh 

Fig. 16. Crust-mantle interaction model. 





DEFORMATION OF CONCRETE AT VARIABLE MOISTURE CONTENT 

F. H. Wittmann 
Swiss Federal Institute of Technology Lausanne 

Laboratory for Building Materials Science 
Lausanne, Switzerland 

Introduction 

Any change of moisture content provokes a volume change of a porous 
material such as concrete. By means of modern numerical methods it is possible 
to predict hygral volume or length change if the physical processes involved 
are sufficiently well known. If drying takes place under load the total defor~ 
mation observed is always bigger than the sum of drying shrinkage and creep. 
This increased deformation is often explained by special mechanisms such as 
drying creep or load induced shrinkage. A similar situation exists if the 
temperature is changed. So far, however, it is an open question if transient 
hygral or transient thermal creep exist or if this observation has to be ex
plained in another way. 

In this contribution we will briefly describe an approach to deduce ma
terials behaviour from their composite structure. To do so three structural 
levels are introduced. Therefore this approach has been called Three Level 
Approach or in abreviated form TL-Approach. 

TL - Approach 

It can be shown that it is not possible to link processes within the 
structure of hardened cement paste directly with the observed behaviour of 
concrete. Therefore different structural levels have to be introduced. 

On the microlevel we will discuss drying and shrinkage mechanisms as well 
as creep mechanisms which are characteristic for a xerogel such as hardened 
cement paste. 

In real concrete additional influences such as geometry, inclusions and 
cracks determine the behaviour. These parameters are taken into consideration 
on the mesolevel. Micromechanics of composite materials is the most important 
tool of the mesolevel. 

Finally on the macrolevel the material is considered to be homogeneous 
and all imperfections are treated as being smeared out over the entire speci
men. The macrolevel serves essentially to collect all information available 
and to formulate material laws. 

Preceding page blank 
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Creep of Hardened Cement Paste 

It has been shown that creep of hardened cement paste can be satisfacto
rely described as a thermally activated process /1/. Time-dependence, in
fluence of temperature, and applied load can be represented by the following 
equation : 

€ = a· t K . exp(-R~) sinh(b· cr) (1 ) 

This equation degenerates to the well-known double-power function if 
temperature and load are kept constant. In addition it is only valid if the 
moisture content is kept constant. Equation (1) thus represents creep of har
dened cement paste on the microlevel. 

Drying of Hardened Cement Paste 

The dryfhg process of hardened cement paste can be adequately described 
by diffusion equations /2/. In this context the relative humidity H with which 
the microporous system ;s in equilibrium is often used as variable. Formally 
the flux of the relative humidity JH can then be expressed by the following 
equation : 

(2) 

In this equation 0 stands for the diffusion coefficient. For an infinite 
long cylinder the drying process can then be described by means of the follo
wing differential equation : 

~=l.1... Dr ~ 
at r ar ar 

It has been shown both experimentally and numerically that 0 depends 
among other factors on humidity. 

0::: f(RH) 

For this reason equation (3) has to be solved numerically. 

Shrinkage of Hardened Cement Paste 

(3) 

(4) 

Moisture loss of microporous xerogel such as hardened cement paste is 
always accompanied by a volume change. If an infinite thin sheet dries out 
instantaneous drying shrinkage is the consequence. This idealized material 
behaviour is called unrestrained shrinkage. It is a material property which 
depends on water/cement ratio, degree of hydration, type of cement, etc. In 
the range of 100% RH and 50% RH unrestrained shrinkage can be approximated by 
a straight line: 

€~ ::: a + bH (5) 

where a and b are parameters which depend on the microstructure of the harde
ned cement paste. 

If we have calculated the moisture distribution in a cylinder by means of 
equation (3) we get the internal state of stress by introducing equation (5). 
Drying shrinkage of a real specimen thus depends on the material property i.e. 
unrestrained shrinkage and the geometry. It has to be mentioned at this point, 
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that the actually observed drying shrinkage is significantly influenced by 
crack formati~n. 

Behaviour of the Composite Material 

So far we have limited ourselves to the discussion of the behaviour of 
hardened cement paste. We have to introduce the specific properties of the com
posite structure of concrete now. 

If concrete is loaded the instantaneous deformation creates a complex 
state of stress in the composite structure. Most aggregates in normal concrete 
can be looked upon to react linearely elastic. Due to creep of hardened cement 
paste stresses in the structure of concrete are redistributed. By means of 
finite element analysis this process can be realistically simulated. It can 
be shown in particular that during the creep process elastic energy is stored 
in the aggregates. This is one of the reasons why partial creep recovery is 
observed on concrete after unloading. 

In normal concrete aggregates can be considered to be impermeable to . 
moisture flow. The diffusion coefficient of concrete depends on the diffusion 
coefficient of the porous hardened cement paste and on the aggregate volume 
concentration ... By means of finite element analysis an effective diffusion 
coefficient of the composite material can be determined. 

For a very long time the drying process creates an internal state of 
stress in concrete. The deformation of a drying specimen is the consequence of 
this long lasting process. 

We have already mentioned that shrinkage stresses can cause cracking in 
the outer layers of a drying specimen. This is also true for concrete. In 
addition cracks are formed in drying concrete due to the fact that the inert 
aggregates in the shrinking matrix create additional stresses. 

Simultaneous Creep and Shrinkage 

Usually in a concrete structure drying shrinkage and creep occur simul
taneously. It is not astonishable that there exist still diverging views on 
the total deformation of a loaded drying concrete specimen. The analysis arid 
the simulation of all processes involved is far from being trivial. 

Diffusion theory allows us to calculate the time dependent moisture con
tent. We have seen that the moisture distribution creates an internal state of 
stress. In an unloaded specimen drying shrinkage is significantly influenced 
by crack formation. Application of a compressive load to a drying specimen 
reduces or eliminates crack formation. 

As a consequence the internal state of stress of a drying specimen is 
changed by an applied load. It has been shown that this effect explains at 
least an important part if not all of what is called drying creep /3/. 

Let us now consider a volume element in a drying concrete cylinder. 
Drying does not only create an internal state of stress but all material pro
perties are dependent on moisture content. Creep of moist concrete for ins
tance is much bigger than creep of dry concrete. Thus all mechanical proper
ties of a given volume element change as the drying process proceeds. The 
Elastic modulus and the strength increase whereas time-dependent deformability 
decreases. This complex situation can be analysed and simulated by means of 
numerical methods. 



- 454 -

Conclusions 

Creep and shrinkage of a composite material such as concrete can only be un
derstoodon the basis of a comprehensive analysis of the different mechanisms 
involved and of the different superimposed stress fields. The TL-Approach has 
proved to be a powerful tool to deal with this problem. Subdivision of the 
total deformation of a loaded drying specimen into basic creep, drying shrin
kage and drying creep is meaningless. To analyse and to simulate the material 
behaviour realistically we have to apply numerical methods. 
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Abstrac't 

Numerical analysis and constitutive modelling are the 
essential and inseparable ingredients for the solution of 
problems in geomechanics. For this reason much of the progress 
of the last decades was achieved by collaboration or 
simultaneous contributions on both fronts. 

This paper reviews the progress and indicates some 
future trends. For clarity it is devided into three parts. 
dealing respectively with: 
a. the general formulation for analysis of porous. 

saturated. media 

b. some aspects of numerical solution 
problem~ and 

of non linear 

c. models of typical geomechanical materials. 

In the first section we show the possible generalization 
of Biot's equations and various limiting situations. Here an 
approximate formulation with only displacement and pressure 
variables is given with its limits of applicability as well as 
the limits of purely undrained behaviour in Fig. 1. 

In the second section we show that recent'progress in 
the solution of dynamic transients will probably result in such 
processes as 'dynamic' or 'viscous' relaxation becoming the 
standard methodology for both static and dynamic solutions. 
Accelerated Viscous Relaxation has recently shown dramatic 
operations count reduction and is now being tested in a variety 
of problems (Figs. 2 and 3). 

The third section dealing with material modelling is by 
necessity. selective. Here we discuss: 

a. the modelling of tensile cracking behaviour and show 
that the simple, distributed crack. models are still the 
optimal approach (Fig. 7) 

b. tnat various models can adequately give reasonable 
prediction for static soil mechanics problems. 

c. that for cyclic (densification) modelling two relatively 
simple modifications allow prediction of pore pressure 
rise. cyclic mobility and liquefaction. Here in 
particular a simple boundary surface model recently 
introduced is effic.ient even with only two new physical 
parameters introduced. 

d. that for rate sensitive. degrading. behaviour a set of 
new models requires to be introduced. This is of 
importance in· dynamic loading of concrete structures. 
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With such models dynamic transient analysis of 
earthquake response of structures and their foundations becomes 
possible. As such analyses are at least comparable in cost to 
the currently used (and somewhat irrational) 'linearised' 
procedures we believe they will become standard practice in the 
near future. 

Fig. 14 shows the results of a recent analysis of the 
San Fernando dam failure of 1971 indicating the large movements 
which could have occured in the first 10 seconds of the 
earthquake (the complete failure taking place in some 60 
seconds). 

Fig. 17/18 show a similar transient analysis of the 
Koyna dam movements and cracking which again are reasonably 
modelled. (1967 earthquake). 
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7r" =w~~2 = 7r2(~2 
- , 
k-kincmatic permeability 

V; = (D + Kf/n)/p 

"" {3Kf/Prrl 
== K,IPr (speed of sound in water) 

(3= Pr/ p /I = 0.33 {3 = 0.33 

U Undrained behaviour valid 
ill - Full Biot type form necessary 
II - u-p approximarion renable 
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:r 

I - u-p approximation all dynamic terms disappear 
(consolidation equations) 

FIGURE 1 LIMITS OF APPLICABILITY OF VARIOUS ASSUMPTIONS 
IN SOIL-FLUID INTERACTION 
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Order of NOP end NSTORE for a problem of order 2m = 2 
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~14 N3 

FIGURE 2 COMPARISON OF OPERATIONS (NOP) AND STORAGE 
INSTOREl OR TIME STEP INSTEP) REQUIREMENTS FOR 
DIRECT SOLUTION • VISCOUS RELAXA TION AND 
ACCELERA TED VISCOU.S RELAXATION 
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MESH 

LINEAR CASE 
CONTOUR I NTERVRL , 0.02 

CRSE , F·EXF (ul 
CONTOUR INTERVRL , 0.02 

Computime = 
NSTEP = 

Computime = 
NSTEP = 

Nonlinear 
(hardening) 

Computime = 
NSTEP = 

CASE , k·k lui ·I·u 
CONTOUR I NTERVRL I 0.02 

FIGURE 3 COMPARISON OF COMPUTATION TIMES 
LINEAR/NONLINEAR PROBLEM OF HEAT 
CONDUCTION 
LJ =0 ON BOUNDARY 
'V(k'Vu)..f=O 
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(a) (b) (e) 

(d) 

FIGURE 4 BASIC COMPONENTS FOR MATERIAL MODELS 
(a) SPRING - REVERSIBLE LINEAR/NONLINEAR 

ELASTICITY 
(b) DASHPOT - LINEAR/NONLINEAR CREEP 
(e) SLIDER - PLASTIC RESISTANCE (STRAIN 

DEPENDANT) . 
(d) POSSIBLE - VISCOPLASTIC ASSEMBLY 
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(b) 

FIGURE 5 AL TERNA TIVE APPROACHES TO MODELLING 
OF CRACKS 
(al DISTRIBUTED CRACKING 
(bl CRACK ON ELEMENT INTERFACE 

(ELEMENT SEPARA TIONI 
(e) FRACTURE MECHANICS - STRESS INTENSITY 

FACTOR APPROACH 
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(b) 

a 

e: (TENSILE) 

---l· 
t 

FIGURE 6 BEHAVIOUR IN UNIAXIAL TENSION 
CD FIRST TENSILE LOADING 
(1) STRAIN SOFTENING 
® COMPRESSIVE RELOAD 
@ SUBSEQUENT BEHAVIOUR 

SHADED AREA - ENERGY DISSIPATION PER UNIT VOLUME (El 
WIDTH OF CRACK ZONE W 
WE = CONSTANT IF W TOO LARGE REDUCE a max AS SHOWN IN (bl 
ft - UNIAXIAL STRENGTH IN TENSION 
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FIGURE 8 TYPICAL ELASTO-PLASTIC GEOMECHANIC MODELS IN 
DEVIATORIC a/MEAN STRESS O'm/SPACE 
(DEPENDENCE ON THIRD INVARIANT IMPLICA TIONI 
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(al Typical behaviour 
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(Lower San Fernando Dam - Experimental data by Seed et al 1980 1 

FIGURE 10 DENSIFICA TION OF SANDS UNDER CYCLIC LOADING 
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FIGURE 11 BOUNDING SURFACE PLASTICITY. CRITICAL SURFACE 
MODEL WITH VOLUMETRIC AND DEVIA TORIC HARDENING 
(WILDE 1977) 
a = E yolP + f( E -PI 
(al Yield surface in stress space 
(bl Deviatoric hardening function 
(el Stress-strain behaviour in drained loading 
Plastic modulus interpolation 
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a 

Visco-plastic model with Fo defining plastic yield at 
proportionality limit 

• . ao. f VP = y< F - Fo> aQ 

0. - Plastic potential 

j t • 
work = Q. EVP dt 

o 
Wp - Plastic 

Y = Y(Q) FF = failure monitoring surface = F 

Degradatio~ FF 

FF . ----, 
Fo 

Point of "failure" 

( a m canst) 
Residual strength 

y 

. 
a 

FIGURE 16 THE VISCO-PLASTIC-ELASTIC MODEL FOR RATE 
EFFECTS AND DEGRADATION OF CONCRETE 
(Bicanic et al 1980) 
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NUMERICAL MODELS FOR DYNAMIC LOADING 

I. Sandler and M. Baron 
Weidlinger Associates, New York, NY 10001 

Introduction 

The constitutive modeling of geological materials for applications in-
volvingdynamic loading has become a major area of interest in applied 

mechanics. The problem is complicated by the fact that the choice of model 
must depend on the application at hand: the appropriate model to be used 
depends on the type of material and the geometry of the problem as well as 
the loading rates, stress levels and periodicity or repetitiveness of the 
loading. In this paper some of the considerations which affect the choice 
of such models will be examined. The range of problems considered here is 
indicated by the following list: 

Ground shock resulting from explosions 
Soil-structure interaction under explosive loading 
Ground shock under repeated loadings (multiple bursts) 
Soil-structure interaction under earthquake loading. 

For each of the above classes of problems, the level of sophistication 
in the mathematical modeling of the geological materials has risen 
considerably in the last two decades. The applicability of the models 
ranges from essentially hydrodynamic fluid behavior for the extremely high 
pressures (megabars) in the neighborhood of a burst point through inelastic 
solid material in regions at intermediate pressures to nearly linear 
behavior at sufficiently low pressure levels. Generally, no single model 
can be applied for all of the problems of interest. 

Because real materials consist of variable amounts of mineral grains, 
air voids, and water, their mechanical behavior can exhibit wide variation 
and can be quite complicated. One must, however, consider carefully the 
scale and scope of the problems of interest since, for practical purposes, 
a number of essentially microscopic effects can be averaged in many cases. 
For large scale problems, which cover distance from tens to many thousands 
of feet, no practical attempt can be made to account for the interaction of 
the various individual constituents of materials, but averaged solid
material models which exhibit nonlinear behavior (with appropriate 
hysteretic effects in both pressure and shear) can be developed. Isotropy, 
homogeneity and rate dependence are usually assumed although experimental 
evidence generally indicates that the quantitative response of geological 
materials will be more complicated. The mathematical models are fitted, 
wherever possible, from experimental data corresponding to the applicable 
loading of the problem under consideration. 

Parallel to the theoretical development of more realistic material 

,Preceding page blank 
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models have been the increasingly difficult demands on experimentalists for 
tests which would reproduce the behavior of the material throughout the 
entire range of pressures. These tests, which are an essential tool in 
model development, serve two major purposes: (1) to give an indication of 
the behavior at appropriate pressure ranges; and (2) to provide data for 
the evaluation of the various material constants which appear in the 
mathematical models. Generally static and "dynamic" laboratory tests on 
small samples are the major source of material property data. (Both of 
these tests usually are, in fact, "quasi-static" insofar as wave-pro
pagation effects .in the specimen are unimportant). Different tests are 
generally available for soil and rock materials. For those tests which 
are common to both materials, e.g., ~r1axial compression and proportional 
loading (occasionally available), different phenomena are of importance 
for soils than those for rocks. For example, a major effect in a soil 
-is an irreversible volume decrease during compression (compaction), 
although this is generally not of major importance for rocks. 

In addition to laboratory tests. there are sometimes large-scale 
field events which are adequately instrumented. Such tests may be viewed 
as material property tests, but they also serve as check results for both 
the modeling and the calculational procedures. The relation between the 
properties obtained from tests in small laboratory samples and the pro
perties of the in situ material are also of considerable importance, but 
this is a question which can be appropriately answered only by carefully 
controlled and coordinated suites of large in situ and small scale 
experiments which are rarely, if ever, performed. Such questions are 
touched on later in this paper. 

General Consideratione 

As noted in the introduction, a model developed for a particular class 
of problem may not be directly applicable to problems of an entirely diff
erent nature. For example, models developed for ground shock in which at 
most a few cycles-of predominantly P-wave motion occur, have to be modi
fied for use in seismic problems in which many cycles of shearing motion 
predominate. 

It is desirable that a particular form of model be able to fit a wide 
class of geological materials. In this manner, the same form of model 
could be used for the different materials or layers found in a single 
problem, with ori1y the various parameters changed. A special case of 
this occurs when setting certain parameters to special values (such as 
zero) reduces the more complex model to a simpler one. 

The model should satisfy the theoretical requirements needed to 
prove existence, uniqueness and stability of solutions. This is necessary 
in order to be confident that any numerical solution is an approximation 
(in some sense) of the physical problem, and not nonsense that will vary 
widely with computer accuracy or choice of algorithm. Further. in any 
particular analysis dependence on unknown (or not readily available) 
variables must be avoided if calculations are to have any real value. 

Numerous models are currently used for both explosively induced 
ground shock and seismic analysis. The simplest of these is the elastic 
model (most often linearly elastic) which also serves as the most common 
starting point from which other models are developed. Moreover. this 
simple model continues to be useful because most analytical solutions can 
be found only for linear problem formulations. In addition, elastic models 

,-.. -
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are often used to represent hard competent basement rock layers even when 
more complex models are used for the near surface materials. 

Viscoelastic models are often used in seismic analysis. The hysteresis 
found in cyclic loading is approximated by linear viscoelasticity. The 
resulting linear problem may then be solved in the frequency domain. Non
linear (strain dependent) 'hysteresis is approximated by an iterative 
scheme. During each of the successive iterations, the amount of damping 
in every element is adjusted to correspond to the strain amplitude found 
'in the previous iteration for that element. 

In addition, viscoelasticity can be combined with other types of 
models which are used to represent the plastic behavior exhibited by geo
logical materials. These include variable moduli, cap and endochronic 
models, ~ome of which will be considered in detail in subsequent sections 
of this paper. 

Simple Plasticity Models 

The early plasticity models were elastic-ideally plastic, i.e., there 
is a fixed yield condition 

(1) 

which restricts the magnitude of the stress. If the material is isotropic. 
the yield condition can depend only on the p~incipal stresses, or alter
natively on the stress invariants 

(2) 

Within the yield surface the material is elastic, i.e. 

E I I 
d£ij = ZG dS ij + 9K 0ij dJl 

(3) 

E where d Sij is the strain increment, dSij the increment in the stress 

deviator and 0ij the Kronecker delta. The bulk and shear moduli are K and 

G, respectively. 

Stresses outside the yield surface are not possible. On the yield 
surface, the strain increment will consist of elastic and plastic parts 

E The elastic part dS ij is given by Equation 3, while the plastic part is' 

where A is a non-negative scaler function, and ~ is the plastic 
potential. When the plastic potential and the yield condition' 
are the same, 

cP :: F 

(4) 

(5) 

(6) 
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in which case Equation 5 becomes the associated flow rule 

(7) 

and the plastic strain increment is normal to the yield surface at the 
current stress point. Fm:'thermore,; when F is convex, unique solutions 
are assured. When the non-associated flow rule~quation 5 with ¢ + F) is 
used, one cannot in general prove uniqueness. The simplest form of the 
yield condition is the von Mises condition 

r;; = k 

where J I is the second invariant of the stress deviator 
2 

and k is a constant. The von Mises condition is actually a good 
representation of the failure surface of many saturated clays. The 

(8) 

von Mises yield surface is a cylinder in principal stress space, Fig. la. 
A more realistic yield condition for granular material 

(10) 

was suggested by Drucker and Prager (1952). It is shown as the cone of 
Figure lb, opening towards the positive (compressive) J

1 
axis. When the 

J, 

Q) VON MISES (CYLINDER) b) DRUCKER -PRAGER (CONE) 

Figure 1 Simple Yield Surfaces 
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cohesion k is zero. Equation (10) reduces to the Mohr-Coulomb relation. 
It is instructive to examine the behavior of the two simple models in 

uniaxial strain. This is illustrated in Figure 2 for constant elastic 
moduli. The stress strain curve starts with the elastic constrained 

4 . 
modulus K + 3 G as its slope. 

with its elastic slope 4G 

The stress path sl versus p likewise starts 

At point A the yield surface is reached, and 
3K 

in the von Mises case (Figure 2b), the axial stress deviator cannot 
2 increase further, beyond the limiting value 3 k. Any further loading to 

1 say point B, can result only in an increase in the mean stress p = 3 J. 

The corresponding segment AB of the stress strain curve, Figure 2a, is 
parallel. to the hydrostat, i.e. it has a slope K. Upon unloading at B, 
the stress point moves away from the yield surface, and the material be
haves incrementally elastically. i.e. the lines BC and OA are parallel in 
both Figures 2a and 2b. At point C, the reverse side of the yield condition 
is reached, and sl is again limited, this time to -l k. Thus, any further 

3 
unloading ~~11 be along the yield surface and the slope in the stress strain 

plot again will be K. The cycle is complete at point D at which 
01 = 51 + P = O. 

In the case of the Drucker-Prager yield condition, Figures 2c and 2d, 
the behavior is similar until yield is first reached at point A. As 
loading continues to point B, the value of sl increases according to the 

yield condition 
2 

s 1 = 3 (k + 3ap) 

If this value of sl were added to hydrostat, the slope of the resulting 

stress strain curve would be 

MeWD = K(l 1: 2/3 a) 

(with the upper sign). Equation (12) ·ls represented by line AB d in . cw 
Figure 2c. This is not the solution for the Drucker-Prager material, 
which is shown as the solid line slope 

(11) 

(12) 

K 
(1 f 2 .f3 a)2 (13) 

MDp = 1 + 9a2 K/~ 
(again with the upper sign). The difference is explained in Figure 2d. 
With the associated flow rule, Equation (7), the plastic strain rate vector 

• p 
along AB,EA ,has a negative (tensile) volumetric component. Therefore, a 

greater stress is required {Figure 2Q to reach the same strain. as com
pared to the case of a non-associated flow rule (one without any plastic 
volume change). The CWD subscript used in Equation (12) and Figure 2 
refers to "CouJ.ombwithout di1atacy" and results when·a von Mises plastic 
"potential is used in conjuction with the Drucker-Prager yield condHion. 

4 4G 
Unloading from point B is again elastic with slope of K + 3 G and 3K 
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in Figures 2c ~nd 2d, respectively. At point C the far side of the yield 
condition is again reached. The stress point moves along the yield surface 
until 01 = 0 at point D in Figure 2d. In the case of the CWO material, the 

VON MISES -
8 

", 

b 
I 

b .... 
A - B 

~----~------.------------o 

p 

0) STRESS - STRAIN 

DRUCKER - PRAGER 

O 0" 0 cwo 

c) STRESS - STRAIN 

B 

.. .,.. 
(/) 

-,.., 
b 

Ot----------+---.. P , 
-1~ 

b) STRESS PATH 
YIELD SURFACE 

S = :!: .£. (k+ 3ap)--
1 ~ 

1 
0<20f3 

2 --k 
./3 

~--------~--_7~--~~p 

d) STRESS PATH 
Figure 2 Uniaxial Strain Behavior of simple elastic ideally plastic models 
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, 
negative value of sl is added to the hydrostat and the resultant slope of 

segment CD
CWD 

in the stress strain curve is given by Equation (12) with the 

lower sign. In the case of the associated flow rule, there is again a 
volume expansion component to th~~ plastic strain rate vector. and the 
resulting modulus-from, Equation (13),with the lower sign, is necessarily 
softer than that of the CWD material. While unloading from point B has 
resulted in a permanent compaction of the material at 01 :: 0 (point D).un-

loading from some higher stress would have reached the far side of the 

yield su~face at C' , and resulted in net volume expansion,(dilatancy) at 

the end of the cycle at D. This dilatancy is not observed in experi
ments and was the primary motivation which led to the development of 

more advanced EIP models. Nevertheless. to relatively low stress levels 
such as tothooe d~a\o:n in Figure 2c. thE:' Drucker-Prager model stress st~ain 
leads to a uniaxial strain response \lhic~ h:J.s 1:L'l:ly of thc qU.3.litive featurcD 
o"oservcd exper.imentally. :;:he model continues to be frequently used to 
1:ep-resent "frictional" materials. 

4. More Detailed Plasticity Models 

In order to represent soil behavior, in which permanent compaction is 
usually a dominant characteristic, the simple plasticity model was expanded 
to include a.non-linear pressure-volume relationship involving two different 
bulk moduli, one for initial loading, and a second for unloading/reloading. 
Mathematically, 

dp = K d£kk 

where K = ~(p) for initial loading 

and K= ~(p) for unloading/reloading 

Requiring ~(p) : ~(p) 

insures volumetric hysteresis even in infinitesimal initial loading -
unloading cycles. Another modification was the generalization of the 
yield condition to , 

J = f(J
1

) . 2 

(14) 

(lSa) 

(lSb) 

(16) 

(17) 

which is sketched in Figure 3. The function f(J
l

) is chosen such that it 

is approximated by the Drucker-Prager condition, Equation (10), at low 
pressures, and by the von Mises condition, Equation (8), at high pressures. 

The final modification in~lves the treatment of the deviatoric 
stresses within the yield surface. The incremental relation 

dS
ij 

c 2G de
ij 

(18) 

i~ used with a variety of specifications of the shear modulus. The 
simplest assumption is to consider the shear modulus G to be constant. 
While this model (with an associated flow rule) satisfies all theoretical 
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requirements, the computed stress path in uniaxial strain is unrealistic 
when ~»~. If ~ increases with increasing pressure, the stress path 

is shown by the dashed line in Figure 4. The path would gradually ap
proach, and finally reach, the upper yield surface.. On unloading, at 
least in the case of soils where the unloading bulk modulus is appreciably 
larger than the initial loading modulus, the unloading.path would not 
generally intersect the lower yield surface. In fact, for moderate peak 
pressures (and when ~»~), the unloading stress path would cross the 

loading path and intersect the upper yield surface. This behavior is not 
experimentally observed in most cases where stress path data is available. 

An alternative simple assumption which has been used is that of a 
constant ratio of K/G or a constant Poisson's ratio v. For this case, 
the stress path is shown by the solid line in Figure 4. It starts with 
a upper branch of the yield surface until a load reversal occurs. When" 
unloading begins, the subsequent stress path is parallel to the initial 
loading path until the lower yield surface is encountered. The segment 
along the lower yield surface, until the line sl + p = 01 ~ 0 is reached, 

is associated with the tail at the bottom of the unloading segment of the 
stress strain curve. A variant of this approach but one which matches . 
the data even more closely, is .the use of two distinct values of Poisson's 
ratio", ,v

L 
and VUe The choice could depend whether ~ or ~ were being 

Figure 3 Yield Condition for the Advanced Elastic-Ideally 
Plastic Model 

used, or on the sign of the incremental deviatoric work, si. de ..• The 
. J 1J 

corresponding stress path is illustrated as a broken dotted line in 
Figure 4. In either case, the stress paths agree, at least qualitatively, 
with experimental observations. The difference between the two simple 
assumptions of constant G or constant V in loading is not of real im
portance. This is not true in unloading. 

Unfortunately, it is possible to introduce stress paths for which a 
constant Poisson's ratio model (with ~ increasing with pressure) will 

produce energy for each load - unload cycle. The same criticism may be 
applied to other models which have been used in which V was piecewise 
constant or in which G was a more general functioll of pressure. 
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Different constant values of G in loading and unloading have also 
been used. Models of this type are not subject to the above criticism. 
However, they fail to satisfy a continuity condition which will be dis
cussed in conjunction with the variable modulus model in the next section. 

In addition to the constant G model. another possibility which also 
satifies theoretical requirements and moreover, leads to stress paths 
which are closer to those observed experimentally, is the use of a shear 
modulus G which depends only upon maximum previous pressure. During 
initial loading, the shear modulus increases as the pressure increases. 
On unloading or reloading to the maximum previous pressure p ,the max 
value of G(p ) remains constant. The uniaxial strain stress path for max 
for such a model is shown in Figure 4 for the case when Ku increases with 

increasing pressure (dash-dot curve). 

51 /YIELD SURFACE __ -

f~ __ --- 4----- --.,)JI' _-

~~-~G=C 
:;,;-

# 

G(P max} ./ 

'yo 

Figure 4 Loading paths for Elastic Ideally Plastic Models. 

The models described above have been used extensively for ground 
shock in both soil and rock. In rock, the pressure-volume hysteresis 

P 

is much smaller than in soils, and in competent rocks, it "is ~ften 
neglected entirely, i.e. a single bulk modulus is used. The use of an as
sociated flow rule in conjunction with a pressure dependent yield con
dition produces dilatancy, which is generally observed in most rocks. 
Therefore the Drucker-Prager model is a better approximation to rock than 
to soil behavior at low stresses. 

It is of interest to consider the triaxial behavior of advanced 
elastic - ideally plastic material models of the general type discussed 
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in this section. This is shown in Figure 5, which represents the re
sults in the form of a (01 - 03) versus £1 diagram. Because of the 

variable bulk modulus ~(p), the initial loading curve first softens and 

then hardens. As the yield surface is reached (at different levels for 
different values of the lateral stress 03)' the material "fails" and 

"flows" as represented by horizontal lines shown parallel to the strain 
axis. It is clear that none of the simple treatments of the shear 
modulus described previously can mirror the usual stress strain curves 
in a triaxial compression test; these are the dashed lines in Figure 5. 

In order to overcome this defect and to match laboratory data from 
all available .tests, the "variable moduli" models were introduced, Nelson 
and Baron (1971). In these models both the bulk and shear moduli are 
taken as non-linear functions of the stress and/or strain tensor 
invariants. Different functions are used in in loading and unloading. 
The variable moduli material has no unique stress strain relation, even 
in initial loading, but rather is defined in terms of stress rate-strain 
rate (incremental) relations, Equations (14) and (18). No e.xp1icit 
yield condition is specified. However, the behavior of the variable 
moduli models corresponds in many respects to that of elastic - plastic 
models. 

The pressure volumetric strain relation is similar to that used in 
the advanced EIP mode.ls. Namely, one bulk modulus function of pressure 
(or volumetric strain) is used in initial loading (p ~ 0 and p = p ), max 

and another is used in unloading (p < 0) or reloading (p > 0, but 
p < p ). There are also different shear moduli used in deviatoric max 
(initial) loading and unloading, i.e. 

, . , 
G = GLD(P, J 2) J 2 

> 0 

J') 
. , 

G == GUN(p, J 2 
> 0 

2 

The condition , , 
o < GLD(P, J 2) :: GUN(p, J 2) 

(19) 

(20) 

(21) 

insures deviatoric energy dissipation in any incremental load - unload 
cycle. 

Although 
pressure, the , 
J 2 increases. 

there is no explicit yield surface, at any constant 
(initial) loading shear moduli functions get smaller 

The limiting condition 

corresponds to an implicit yield condition. 

as 

(22) 

S~ch a model was fit to a rather complete set of laboratory data for 
a particular soil material and good agreement for uniaxial strain triaxial 
compression and proportional loading tests was obtained. Moreover, it 
would appear that the variable moduli approach would be ideal for implicit 
finite element codes in which the current values of K and G in every element 



- 487 -

would be available to construct the stiffness matrix. 
The major problem with the variable moduli formulation, is qualitatively , 

illustrated in Figure 6, where the point A lies on a surface J 2 = Constant. 

Consider two paths, AB and AB", arbitrarily close to each other, but on 
opposite sides of the surface. On the outer path AB, the shear modulus GLD 

would apply, while on AB'. GUN would be used. Consequently, there will be a 

definite difference in strain~ even when the points Band B' are 
infinitesimally close to one anotner. , 

The violation of continuity in neutral loading (J = C.onstant) or near 
2 

neutral loading is similar to that discussed by Handelman, Lin and Prager 
(1947). in their studies on deformation theories of plasticity. In fact, 
deformation theory may be considered a special case in which the rate 
equations of the variable moduli formulation are integrable. 

In the case of proportional loading in shear, i.e., when there is a 
single independent stress deviator, the variable moduli approach (can be 
made to satisfy all theoretical requirements. including continuity. 
This is true for planar. or spherically symmetric problems, as well as for 
all of the common laboratory tests. In other problems, in which the stress 
history is close to proportional loading, the present theory, like de
formation theory, is probably satisfactory. For problems in which the 
stress history involves an appreciable amount of neutral (or near neutral) 
loading, use of the variable moduli formulation is not recommended. 

Theoretical Considerations 

Continuum models intended for use in dynamic multidimensional problems 
should satisfy certain theoretical requirements. These requirements insure 
that the initial and boundary value problems involving the constitutive 
model, together with the equations of continuum mechanics (e.g., conserva
tion of mass, momentum, energy), be properly posed, i.e., that such problems 
have solutions which exist. are unique, and depend continuously on the 
initial and boundary conditions. These seemingly abstract requirements are 
of considerable practical importance this age of numerical solutions. In 
particular. one should avoid attempting computer solutions for problems 
without solutions and,in addition,avoid problems with several solutions for 
fear that a non-physical. through mathematically correct, solution would be 
obtained. Further, because all numerical solutions are subject to several 
kinds of error (due to truncation or round-off, the order of accuracy as
sociated with the chosen numerical scheme, and errors in specification of 
initial and boundary conditions), any solution which is unduly dependent 
on such errors, is highly suspect. Therefore, the continuous dependence 
of solutions on the input data 1s directly related to the confidence 
with which numerical solutions can be obtained for real problems. 

- (Continuous dependence on the data implies that a small change in the 
surface loading will lead to a correspondingly small change in the 
solution. A simple example of a discontinuous material is an elastic 
string with tensile strength 0T. For loads P < 0TA, the uniform stress 

will be ° ~ PIA and the corresponding strain £ = plEA. For loads just 
greater than O~. the string will break and the "solution" will be entirely 
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different. The soil and rock models discussed up to this point have 
avoided any mention of the tensile stress region. Clearly natural 
materials, especially rocks,to fail suddenly. Yet, to allow the nature of 
a numerical solution to depend entirely on such artifical parameters as mesh 
box size, time step, or numerical algorithm ifo compl~tely unsatisfactory) 

The continuity problem discussed in connection with the variable moduli 
model constitutes a lack of continuous dependence on the input data. 
Slightly different input, or slightly different numerical techniques, 
could result in a significantly different computed results. 

A major contribution to the continuum models was the introduction of 
Drucker's stability postulate, Drucker (1956). Non-negative work must be 
done by an external agent in any excursion from equilibrium. In particular. 

o for any stress cycle, where 0ij is the stress at the equilibrium state, 

J (Oij - °i~) d£ij ;: 0 (23) 

The equal sign applies only for elastic or reversible paths. Satisfying 
Drucker's postulate is sufficient (but not necessary) to insure unique 
solutions, and continuous dependence on the data. 

A geometric interpretation of Drucker's postulate is shown in Figure 7. 

By eliminating the· elastic or reversible .strains and by choosing 

the yield surface, one obtains the condition for stability in the 
for elastic-plastic models, i.e. 

p 
dOiod£io > 0 

J J-

o 
0ij on 
"small" 

(24) 

A consequence of Equation (24) is that the yield condition can only move 
outward (or not move) at a stress point, i.e., work softening or strain 
softening is not permitted. One may also obtain the condition for 
stability in the "large" for elastic-plastic materials, Le. 

o p 
(Oij - 0ij) d£ij > 0 (25) 

Equation (25) xequires the normality of the plastic strain rate vector, and 
the convexity of the yield condition. 

-----------E, 
Figure 5 Triaxial Behavior of Ela~ticldeally Plastic 

Models Compared to Real Soils 
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Cap Models 

In order to satisfy uniqueness continuity and stability require
ments, the cap model was developed. It is a continuum material model 
which is based on the classical incremental theory of plasticity. It 
has been used to represent both the high and low pressure mechanical 
behavior of a number of geological materials, including sands, clays 
and various types of rock. The model has been used primarily for 
computational studies of ground shock and structure medium interaction 
effect arising from nuclear or chemical explosions. In addition, it 
can be used for the study of earthquake effects; some work has already 
been done to apply the model to seismic problems. 

The discrepancy between the observed compaction of soils and the 
dilatancy resulting from normality to any yield surface similar to that 
of Drucker-Prager, disturbed investigators for many years. Drucker, 
Gibson and Henkel (1957) first added a movable cap to the yield surface 
to eliminate this discrepancy. In the 1960's Roscoe and his coworkers 
at Cambridge University in England introduced the critical state model, 
Schofield and Wroth (1968). It had many similarities to the earlier 
model and to the current cap model. Finally, a group at MIT also worked 
on a similar model, e.g •• Christian (1966). 

A cap model was proposed by Dimaggio and Sandler (1971) for the 
representation of granular soils, and similar models have been used for 
many ground shock calculations. The yield surface Figure 8 is composed 
of a fixed failure envelope. Equation (17) and a movable cap which crosses 
the p axis. The combined yield surface is everywhere convex, and the as
sociated flow rule is used throughout,i.e., the components of the plastic 
strain rate form a vector in stress space which is normal to the yield 
surface at the stress point and is outwardly directed, as shown in Figure 
8. Three different modes of behavior are possible for the model: elastic, 
failure and cap. Elastic behavior occurs when the stress is within the 
failure envelope and stress changes result in recoverable deformations. 
Although various types of nonlinearly elastic behavior can be modeled in 
complex cases, the model considered here (for isotropic materials)uses a 
constant bulk modulus, K, and a constant shear modulus, G. During the 
postualated elastic behavior the volumetric and deviatoric components of 
stress and strain are decoupled, i.e., a purely volumetric change in 
strain does not affect the deviatoric stress components and a purely 
deviatoric strain increment produces no change in pressure. 

During the failure mode of behavior, the stress point lies on the 
failure envelope, represented by 

J J; '" A - C exp (3Bp) (26) 

where A, b and Care material constants. As shown in Figure 8 the as
~ociated flow rule requires that the plastic strain rate vector be di
rected upward to the left •. Therefore, the plastic strain during 
failure is composed of a deviatoric or shear, component together with 
a volumetric, or dilatant component. . 

The cap mode of behavior occurs when the stress point lies on the 
movable cap and pushes it outward. The motion of the cap is related 
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to the plastic strain by means of a hardening rule. Although considerable 
leeway exists in the choice of the cap, an ellipical surface of the form 

(27) 

is found acceptable for a wide range of geologic materials. In equation 
(27), PA and PB represent the values of p at points A and B in Figure 8, 

while R can be function of the position of the cap. In the simple eight 
parameter version of the model discused here, R is assumed to be constant. 

Figure 6 Example of Discontinuous Behavior 
in Variable Moduli Model 

NEW YIELD SURFACE 

\ dEP 
LOCAL TANGENT .----. ~ du 

EXISTING YIELD 
SURFACE 

Figure 7 Geometric Interpetation of Druckers 
Stability Postulate 
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The pressures PA and PB which 

independent. From Figure 8. it is 
the failure envelope and the cap. 

define the extent of the cap are not 

clear that. because point E lies on both 

IZ mA-
2 E (28) 

and 
I 2 2 

+ 9 R J 2 E = (PB - PA) (29) 

Further, since PE PA' Equations (28) and (29) lead to 

(30) 

for the relation between PA and PB. Therefore, the specification of either 

PA or PB is sufficient to describe the position of the cap. 

The cap position is related to the plastic strain history of the 
material through a hardening rule. which, again. can be chosen with con
siderable leeway. For the eight parameter model discussed here, the harden
ing rule is assumed to be 

£~ = W[l - exp(-3DPB)] (31) 

in which Wand D are material constants and £P is related to the plastic 
_p v 

strain history. ]he hardening parameter, E depends upon the history of 
v 

the dilant as well as compactive plastic strain for soils, while for rocks 
it depends only on the plastic strain which has been produced by cap action 
i.e., compaction. 

As shown in Figure 8, the associated flow rule requires that during cap 
action the plastic strain rate vector be directed upward and to the right. 
This implies that the plastic strain rate produces an irreversible decrease 
in volume in conjunction with the irreversible shear strain. This reduction 
in volume is referred to as compaction and represents the volumetric 
hysteresis observed during compression of most geologic materials. 

As the cap action proceeds. the compaction resulting from the asso-

ciated flow rule leads to an increase in the cap parameter EP • which.through 
v 

Equation (31), leads in turn to an increase of PB. Therefore the cap moves 

to the right in Figure 8, increasing the extent of the elastic region in

side the new yield surface. Either p or J
2 

(or both) must increase in such 

a way as to keep stress point on the cap in order to maintain this mode 
of behavior. 

The cap does not move during purely elastic deformation. The be
havior of the cap when the stress point lies on the failure envelope alone. 
however. depends upon the amount of dilatancy. or plastic volumetric expan-

sion. This dilatacy leads to a decrease in £P. resulting in the leftward v 
movement of the cap. Th(~ cap movement is limited if and when the cap 
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reaches the stress point (so that the stress point lies at the corner of the 
yield surface.) 

For most soils and for weak rocks. the low stress behavior of the model 
can be simplified. In the range designated as '~small cap, It Figure 9, the center 
of the elliptical cap is at the origin. The transition point is reached 
when the cap is large enough to intersect the failure surface. as it is 
shown in the figure. 

The soil cap model described above was developed primarily for use in 
computations of explosions which usually involve much higher stress levels 
than are involved in earthquake~induced ground response and which are 
generally characterized by a single peak compressive stress followed by 
smaller stresses. An exception is the case of outrunning ground motion in 
layered soil media. which involves cyclic, low amplitude response signals 
similar to those of earthquakes. As a rule. however, hysteresis in cyclic 
loading subsequent to an initial pulse is generally viewed as having sec
ondary importance. Hysteresis becomes quite important, however, for earth- . 
quake-induced loadings where cyclic shear is the predominant effect. 

The adaptations of the cap model described below make the basic model 
suitable for the seismic environment. These extensions of the model repre
sent hysteresis in cyclic shear loading and also include pore water effects 
in wet media. 

FAILURE 
ENVELOPE 

-----.------
--L_-~;;;;:; 

E 

A B 

Figure 8 Yield Surface in the Cap Model 
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Cap Model For Cyclic Loading 

A version of the cap model was developed to represent materials which exhi
bit viscoelastic behavior during cyclic loading. It has also been used to 
represent rate independent cyclic hysteresis over a limited range of loading 
rates. 

In the viscous cap model linear viscous damping is introduced into 
the previously elastic portion of the cap model. For example, a standard 
solid was chosen to govern shear behavior within the yield surface. The 
parameters which define the nonplastic portion of the model are an in
stantaneous modulus GF , a long term modulus G

s 
< G

F
, and a relaxation 

rate T. The model is shown schematically in Figure 10. The parameters G 

and T are related to those in the figure via 

and 

G s 

GFGV 
= 

s 

(.33) 

The deviatoric stress strain relation for the model is 

dS
ij 

dt 

v where e.. is the viscoelastic deviatoric strain, i. e.. the total strain 
1J 

minus the plastic strain. 

(34) 

The shear response which may be obtained from the model is illus
trated by the solid line in Figure 11 where stress difference versus com
puted strain difference is plotted for a simulated stress-controlled 
triaxial compression test. The figure illustrates the qualitative be
havior possible with this model. The large permanent strains in the 
figure during initial loading result from plastic deformation associated 
with the expanding cap. The small loop results from the viscoelastic 
behavior within the yield surface. For comparison. the response of the 
standard (nonviscous) cap is shown by the dashed curve. There are two 
effects of the modified model which are apparent in the figure. The 
first is the creep relative to the instantaneous cap response which in
creases slightly as the loading frequency decreases. The second is the 
hysteresis loop for each successive cycle. With appropriate parameters. 
both the average slope and the area of the loops are relatively insensi
tive to the frequency of loading (about some IIcentering" frequency). 

The pressure-volumetric strain relation within the plastic yield 
surface may be chosen as elastic, or as a similar standard solid with con
stants ~, KS and Tv. It should be noted that the instantaneous response 

for any level of stress and/or strain is given by the current cap model 
with elastic constants ~ and GF• Therefore. implementation of this type 

of model in various dynamic codes becomes a relatively straightforward 
modification of the "elastic portion" of the subroutine. 
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Figure 9 Some Details of the Cap Models 

For situations in which experimental data suggest that the amount of 
hysteresis is independent of strain rate, a cap model can be constructed 
uSing kinematic hardening Prager (1966). This extended model is obtained 
by replacing the stress tensor O'ij by the quantity (O'ij - <Xij ) , where 

p 

<Xij is a tensor whose components are memory parameters defining the trans

lation of the yield surface in stress space. Because the kinematic harden
ing is assumed to occur is shear only, only five of the six <Xij are 

independent, and 

(35) 

This type of hardening is illustrated qualitatively in Figure 12 for the 
one-dimensional case in which only a single normal stress component 0' and 
a shear stress component T are considered. The entire yield surface 
translates along the T-axi~ by the amount <X. 
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Figure 10 Schematic Representation of Viscous Cap Model 

To complete the specification of the model, an evolutionary equation 
which governs the value of the memory parameter a ij is required. This is 

the kinematic hardening rule which may be expressed as 
.p 

a ij = fijk~ (Oij' a ij , K, Eij ) ek~ (36) 
.p 

where ek~ are the deviatoric components of plastic strain and the usual 

summation convention is implied. 
Obtaining the function fijk~ so as to fit the relevant available 

data is the key to constructing a model for a specific type of soil. 
Figure 13 illustrates the behavior of a kinematic cap model with a non
linear choice of function fijki. 

The stress path for a cyclic triaxial stress test is shown in Figure 
13a, while the corresponding stress-strain curve is shown in Figure l3b. 
The material behavior illustrated in the latter figure is qualitively 
similar to much of the laboratory data obtained for dry sands. 

As more experimental data become available, various nonlinear 
hardening rules such as those proposed in Mroz, Shrwastava and Dubey 
(1976) or Ghaboussi and Karshenas (1977) may be required to fit the be
havior of any single material. Comparisons of a particular model with 
test data are shown in Figures 14 to 16. The model was used in compu
tations of a structure - medium interaction experiment involving an 
artifical1Y generated seismic environment. . 

The Modelling of Saturated Media 

The introduction of substantial amounts of water into the solid 
matrix of soils and rocks may lead to a level of complexity above and 
beyond what has been discussed so far in this paper. If the migraticn 
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Figure 11 Comparison of Standard and Viscous Cap 
Models 

of pore fluid is a significant ·factor a mu1tiphase analysis is required; 
each phase must be modelled separately, and a system of individual phase 
conservation laws must be applied. 

4.2 

For excitations resulting from explosions and for short-lived 
seismic motions, it may be possible to neglect the migration of pore 
water. In such cases a single phase analysis is possible by combining 
the solid matrix x:onstitive equation with a Terzaghi (1936) type of pore
pressure approach. 

4.8 
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One such approach is described in Sandler, Dimaggio and Baron (1983) 
in which a laboratory remodeled kaolinite wet clay was modelled. Ordinarily 
such clay would be expected to be nearly isotropic. However. because the 
clay was K consolidated before the triaxial testing. and because the subse-o 
quent triaxial tests were known to exhibit substantial anisotropy, the 

TRANSLATED YIELD SUR FACE 

f1 (0"', T) :0 
~~~~~~~~~~-----

I 
.. " --.. ---.-.--: -- INITIAL YIELD SURFACE -- .. ~-- , 

z ... '" - "", TRANSLATED CAP 

~f2[0":(T-a). K J:O 
~----------------------~---------------------

... .... --- ._- ,," CAP EFF. NORMAL STRESS. , ~ , 
, f3 (0" • T • K ) : 0 

Figure 12 Kinematic Hardening Cap Model 

0" 

model with a kinematically and isotropically~a~dening cap (where the cap 
has an offset in the direction of vertical compression) was utilized. 
In addition. the material was assumed to be incompressible under the un
drained test conditions, i.e., the elastic and plastic volumetric strains 
were taken equal to each other in magnitude but of opposite sign. 
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Figure 13 Triaxial Behavior of the Kinematically Hardening 
Cap Model 

Since all the laboratory tests - those for which data was provided 
and those to be predicted - were performed in a narrow range of mean pres
sure (in the vicinity of 40 psi), a simple 9-parameter model was used with 
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linear failure and hardening. This made it possible to fit and exercise 
the undrained triaxial tests on horizontal and vertical specimens together 
with consolidation data. The model was exercised to predict behavior of 
inclined specimens under a series of stress paths. (These predictions were 
made before corresponding laboratory data were available for purposes of 
comparison.) Very good agreement between predictions and experiments was 
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Figure 14 Fit of a Kinematically Hardening Cap Model (Low Shear) 

.16 

obtained. A typical example of the pore pressure predictions of the model 
is shown in Figure 17. Further details may be found in Sandler, Dimaggio 
and Baron (1983). 

Role of Insitu and Large-Scale Tests 

This paper would not be complete without a discussion of the role of 
the material property data on the models. In order to illustrate some 
points of interest let us consider the problem of validation of procedures 
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used to analyze and predict explosively induced ground shock. 

.32 

There were a number of large scale field tests in the U.S. in the 
early 1970's to test the validity of ground shock calculations. Two 
of the major series of events were MIDDLE GUST and MIXED COMPANY. The 
procedure in force at the time consisted bf a site investigation and a 
core sampling program. Intact "undisturbed" samples would be brought 
to the laboratory and tested in uniaxial strain and triaxial compression. 
Representative property data wou!d 1>~ ~ho~~n fo;- each of ;!l~ distinct 
materials or layers present at the site. The-recommended properties 
would then be fit with constitutive model and a finite difference 
calculation would be run to simulate the field test. 

.40 
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An example of the "agreement" found between the calculational results 
and the field measurements is shown in Figure 18 for MIDDLE GUST - Event 
II, a 100 ton spherical shot of TNT. Both the small displacement LAYER 
code, and LAYER II (which includes transport terms) code results are very 
different from thet measured in the field, despite the fact that the cap 
model was used in the calculations. 
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3.5 

The discrepancies found in MIDDLE GUST and MIXED COMPANY were the 
subject of a great deal of investigation and soul searching on the part 
of the ground shock community. Much of the work in the area, in recent 
years, has been directed towards resolving these questions. 

The main conclusions of these studies is that material model de
velopment cannot be based solely on laboratory tests but must also be 
based on the in situ behavior of the material. In many cases, the be-

4.0 
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Figure 17 Comparison of Predicted and Observed Pore Pressure 
for Kaolinite 

havior of small disturbed samples of material in the laboratory does not 
adequately represent the in situ behavior of the material. There are 
several reasons for this. For certain materials it is almost impossible 
to obtain truly undisturbed samples for laboratory testing. In addition, 
large scale inhomogeneities may make adequatesmapling of the site im
practical. The presence of anisotropy may lead to unrepresentative be
havior in the laboratory specimens (which are almost always obtained 
from vertical cores). The release of lithostatic stresses of unknown 
magnitude, which may be significant at rock site, may alter laboratory 
behavior. Finally the rates at which some laboratory tests are performed 
may differ from those observed in ground response in explosive events. 
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Because of the above considerations and because material models should 
be based on as wide a range of loading paths as possible, a number of in 
situ testing procedures to supplement the laboratory tests have been 
dew'loped. 
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In addition to the field seismic survey, these in situ test include 
wave propagation tests with planar. cylindrical and spherical symmetry. 
All of the in situ tests give response data which can be interpreted 
4>Dly if some assumptions are made with respect to material behavior. 
For the relatively complicated material behavior that real geological 
materials exhibit. it is difficult if not impossible to obtain mathe
matical models based solely on the in situ tests. Consequently a pre
liminary mathematical model is fitted to the comprehensive data from 
laboratory tests as well as any situ material wave speed test that is 
available. This model is then used to compute the in situ test con
figurations and ammended so that the computed in situ response of the 
media mirrors the measured response. The final computational material 
model is thus determined by means of an iterative procedure in which 
both the laboratory data and the in situ ~~ta'are rttilized. The ex
tremely important (and often major) role that the in situ data plays 
in the development of mathematical models for ground shock calcu
lations is now widely recognized, and this iterative procedure is cur
rently being used whenever possible. 

Conclusions 

An overview of some of the consideration involved in the construction 
of numerical models for dynamic loading of geological materials has 
been given. Various models appropriate for a number of physical 
situations of interest are presented and brief descriptions of their . 
behavior are given. 

The role of laboratory and in situ experimental data in material 
modeling is discussed in order to indicate how the phenomenological and 
practical aspects of modeling interwine. These aspects, together with 
the theoretical requirements, then constitute the salient points of 
model development. 
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1. INTRODUCTION 

CONSTITUTIVE RELATIONS FOR SOILS 

Discusser's Report 

W. F. Chen 
School of Civil Engineering 

Purdue University 
West Lafayette, IN 

Before I go into the ~iscussion of Professor G~dehu~'s paper 

on constitutive relations for soils, I think it is appropriate to 

say'a few words about the historical developments of ~onstitutive 

equations in s~il mechanics. This discussion has to start with 

the historical development of analytical methods for solving 

problems in soil mechanics in the past. The analysis of problems 

in soil mechanics is generally divided into two distinct groups -

the stability problems and the elasticity problems. They are 

then treated in two separate and unrelated ways. The stability 

problems deal with the condition of ultimate failure of a mass of 

soil problems r~ earth pressure, bearing capacity, and stability 

of slopes most often are considered in this group. The most 

important feature of such problems is the determination of the 

loads which will cause failure of the soil mass. Solutions to 

these problems can often be obtained by simple statics by assum-

ing failure surface of various simple shapes -pl~ne, circular, 

o r log s P ira 1 and by u sin g C 0 u 10m b f ail u r e c r i t e rio n • . ~T his i 5 

known as the limit equilibrium method in soil mechanics. 

Preceding page blank 
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The earliest contribution to this method was made in 1773 by 

Coulomb who proposed the Coulomb criterion for soils and also 

e~tablished the important concept of limiting equilibrium to a 

continuum and applied it to determine the pressure of a filion a 

retaining wall. Later, in 1857, Rankine investigated the limit-

ing equilibrium of an infinite body and developed the theory of 

earth pressure in soil mechanics. In this historical develop-

ment, the introduction of stress-strain relations or constitutive 

relations of soils was obviated by the res triction to the con

sideration of limiting equilibrium and the appeal to the extremum 

principle. Subsequent developments by Fellenius (1926) and Ter-

zaghi (1943), among many others, have made the limit equilibrium 

method a working tool with which many engineers develop their own 

practical solutions. Perhaps the most striking feature of this 

approach is that: no matter how complex the geometry of a problem 

or loading condition, it is always possible to obtain some 

approximate but realistic solution. 

The elasticity problems on the other hand deal with stress 

and deformation of the soil at working load level when no f~ilure 

of the soil is involved. Stresses at points in a soil mass under 

a footing, or behind a retaining wall, deformations around tUn

nels or excavations, and all settlement problems belong in this 

group. Solutions to these problems are often obtained by using 

the theory of linear elasticity. This approach is rafional for 

problems at short-term working load level, but limited by the 

assumed elasticity of the soils whose properties approach most 
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nearly those of a time-independent elastic, material where time-

dependent effects are significantly large; introducing long-term 

working stresses over a given period, it is obviously wrong to 

design a structtire on the basis of this time-independent Hooke's 

law for soils. In this case the design must consider the influ-

ence of time on the deformations. This is known as creep. Such a 

behavior may be modeled as viscoelastic and the theory of viscoe-

lasticity may be applied to obtain solutions. 

Intermediate between the elasticity problems and stability 

. 
problems mentioned above are the problems known as progressive 

failure. Progressive failure problems deal with the elastic-

plastic transition from the initial linear elastic state to the 

ultimate failure state of the soil by plastic flow. The essen-

tial constituent in obtaining the solution of a progressive 

failure problem is the explicit introduction of stress-strain or 

constitutive relations of soils which must be considered in any 

solution of a solid mechanics problem. 

As mentioned previously, for a long time, solutions in soil 

mechanics have b~en based upon Hooke's law. of linear elasticity 

for describing soil behavior under working loading condition and 

Coulomb's law of perfect plasticity for describing soil behavior 

under collapse state because of simplicity in their respective 

applications. It is well known that soils are not linearly elas-

tic and perfectly plastic for the entire range of loading of 

practical interest. I? fact, actual behavior of soils is known 

to be very complicated and it shows a great variety of behavior 
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when subjected to different conditions. Drastic idealizations 

are therefore essential in order to develop simple mathematical 

constitutive models for practical applications. For example, 

time-independent idealization is necessary in order to apply the 

theories of elasticity and plasticity to problems in soil mechan-

ics. 

It must be emphasized here that no one mathematical model 

can completely describe the complex behavior of real soils under 

all conditions. Each soil model is aimed at a certain class of 

phenomena, captures their essential features, and disregards what 

is considered to be minor importance in that class of applica

tions. Thus, a constitutive model meets its limits of applicabil-

ity where a disregarded influence becomes important. This is why 

Hooke's law has been used so successfully in soil mechanics to 

describe the general behavior of soil media under short-term 

working load conditions, while the Coulomb's law of perfect plas

ticity providing good predictions of soil behavior near ultimate 

strength condiUons, because plastic flow at this ultimate load 

level attains a dominating influence, whereas elastic behavior 

becomes of relatively minor importance. 

As we can see from this historical sketch, constitutive 

modeling of soils has come a very long way, not only through the 

hundreds of years of historical developments in t~e otder theory 

of earth pressure by Coulomb's and by Rankine~s work, but also 

the establishment of the classical theory of soil mechanics by 

Terzaghi. During the last 15 years, the theory of soil 
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plasticity has been intensively developed. The modern develop-

ment of soil plasticity has been strongly influenced by the 

modern development of somewhat older theory of metal plasticity. 

It is therefore appropriate to mention here the important works 

of Roscoe and his students (1958-63) on work-hardening theory of 

soil plasticity (Palmer, 1972, Parry, 1972) and also the subse-

quent developments and applications that mark the beginning of 

the modern development of a consistent theory of soil plasticity 

(Chen, 1975). 

As a result of these and allied developments coupled with 

the rapid development of finite element computer programs, there 

are exaggerated hopes in the soil mechanics field that soil prob-

lems could soon be solved on a sound theoretical basis similar to 

. 
that existing with regard to problems relating to steel struc-

tures. This limitless faith, developed in recent years, espe-· 

cially by the younger generation of soil mechanician, does give a 

strong indication of recent progress in soil mechanics today. 

The high hope on the application of mechanics to soil leads to 

the conception by some young soil mechanicians, who were trained 

by their curriculum in modern continuum mechanics in general and 

soil mechanics in particular, to insist upon the prediction of 

computer calculation of the settlement of a foundation with the 

field measurement to within an exactness of say lmm. Otherwise, 

it is to blame the constitutive model of soil for the - ... nong pred-

iction. 
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On the other hand, soil engineer, mainly elder members of 

the profession with his analysis and design based primarily on 

experience and case history, knows well the fact that no matter 

how thorough a site investigation is attempted, there are always 

incomplete exploration and knowledge of the original condit~ons. 

It is not possible to explore, detect and measure every sand 

seam, loose spot or weak plane. Thus, no actual site could be 

completely characterized by any mathematical models, simple or 

complex. Even a most sophisticated theory cannot describe fully 

the ,details of an actual geotechnical problem due to the imper

fectness of the laboratory investigations and the incompleteness 

of site investigations. 

As demonstrated convincingly by Professor Leonards in his 

1980 Terzaghi's lecture (1982) on several failure case studies, 

the actual failures of many geotechnical problems were often the 

result of the existence of some weak seams or loose spots that 

could not be detected in the exploration or that were not con

sidered in the -theories of soil mechanics~ even though the 

defects had been detected. These painful experiences revealed 

clearly that these were neither due to the deficiencies of the 

theories, nor to the imperfectness of the laboratory investiga

tions, but to the fact that the lack of adequate knowledge and 

understanding of some physical phenomena at the site that 

requires the establishment of a proper concept, that gOuides the 

exploration before construction, that helps to decide an 

appropriate rational approach and mathematical theory during the 
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analysis and design stage, that gives a deeper insight into the 

working conditions of the problem, a~d that provides, at the end, 

the engineer a clear physical picture of his problem and the 

range of validity of his theory and design. 

As mentioned previously, the early studies in soil mechanics 

were based on the mathematical theory of linear elasticity and 

limit equilibrium of perfect plasticity. This theoretical 

mechanics approach has led to the rati~nal establishment of a 

number of good design rules for practical applications. With the 

present developments in computational techniques like the finite 

element method, more general theory of continuum mechanics like 

hyper- or hypo-elasticity, classical and endochronic plasticity, 

and visco- elasticity and plasticity (Chen and Saleeb, 1982) have 

been developed to describe the very complex behavior of soils 

involving phenomena like inelasticity, soil-water interaction, 

time dependency, dynamic and cyclic loading conditions (Chen, 

1983, b,c). This advanced development may produce the danger of 

a possible sepaiation between the practical soil engine~r and the 

theoretical academic engineer. This danger has been brought out 

to the open by Professor Gudehus' paper. In his overview on con

stitutive relations for soils, he pointed out clearly the 

shortcomings of the existing theories and the inadequacies of the 

existing methods. As a result, on the one hand, khe academic 

soil engineers or mechanicians tend to generate more expert opin

ions that will drift far and far away from the reality of con

struction and their propositions and refined approaches may not 
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be put into practice. On the other, discouraged partly by the 

negative .contributions of the recent achievements of modern soil 

Mechanics and partly by the complexity of modern mathematics, 

continuum mechanics, and computational methods, the practicing 

soil engineers may be forced and driven away from this fundamen

tal theoretical approach and try to rely more and more upon their 

experiences and case histories. 

In the preceding discussions, I may exaggerate the trends 

and factors as perceived by Professor Gudehus's viewpoint on the 

dis;rdere~ st~te of the present state of soil mechani~s that may 

be detrimental for the further development of soil mechanics. 

However, it can be stated here that the present state of consti

tutive modeling in the field of soil mechanics is rather a satis

factory one and the efforts made by the soil engineers and soil 

mechanicians in recent years have led to a more fundamental 

understanding of soil behavior under different conditions. A s a 

result, some of the constitutive models and methods that have 

been developed ~nd refined in recent years to such a completeness 

that many practical applications have been made and good predic

tions with field measurements have been observed. In these later 

cases, it can be appreciated that these concepts, theories and 

methods have become working tools with which every modern 

engineer should be conversant. Therefore, in the_.following sec-

tions, some of these positive developments will be brfefly sum-

marized. Here, my emphasis is placed on a special class of sim-

ple soil plasticity models and the way in which they affect the 
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practical solutions. 

2. CRITERIA OF MODEL EVALUATION 

There exists a large variety of models which have been pro

posed in recent years to characterize the stress-strain and 

failure behavior of soils. All these models have certain 

inherent advantages and limitations which depend to a large 

degree on their particular application. Professor Gudehus has 

proposed some basic requirements for evaluating these models. 

These include tractability, material constants, economy and 

numerical considerations. Alternatively, we may consider the 

following three basic criteria for model evaluation: 

1. Theoretical evaluation of the models with respect to 

the basic principles of continuum mechanics to ascer

tain their consistency with the theoretical require

ments of continuity, stability and uniqueness. 

2. Exper'-mental evaluation of the models with respect to 

their suitability to fit experimental data from a 

variety of available tests, and the ease of the deter

mination of the material parameters from standard test 

da ta • 

3 • N u mer i cal a Ii d com put a t ion ale val u a t ion 0 f t h.e mod e 1 s 

with respect to the facility with which they can be 

implemented in computer calculations. 
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In general, the criterion for model evaluation should always 

consider the balance between the requirements of rigor from the 

continuum mechanics viewpoint, the requirements of realistic 

representation of soil behavior from the experimental-testing 

viewpoint, as well as the requirements for simplicity in applica

tion from the computation viewpoint. 

For the most part, the concept of perfect plasticity has 

been used extensively in conventional soil mechanics in assessing 

the collapse load in stability problems. The standard and 

widely-known techniques used in conventional soil mechanics are 

the limit equilibrium method. However, it neglects altogether 

the important fact that the stress-strain relations constitute an 

essential part in a complete theory of continuum mechanics of 

deformable solids. Modern limit analysis method, however, takes 

into consideration, in an idealized manner, the stress-strain 

relations of soils. This idealization, termed normality or flow 

rule, establishes the limit theorems on which limit analysis is 

based. Wit h in . the f ram e w 0 r k of per f e c t pIa s tic i t Y and the ass 0 -

clate flow rule assumption, the approach is rigorous and the 

techniques are competitive with those of limit equilibrium 

approach. In several instances especially in slope stability 

analysis and bearing capacity calculations, such a level and com

pleteness has been achieved and firmly established in recent 

yea r s t hat the lim ita n a 1 y sis met hod can b e use d a s a ~w 0 r kin g 

tool for design engineers to solve everyday problems (Chen, 

I 9 75) • 
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Most of the early applications of limit analysi~ of perfect 

plast{city ·to geotechnical problems have been limited to soil 

statics. Recent works attempt to extend this method to soil 

dynamics, in particular to earthquake-induced stability problems. 

Recent results show convincingly that the upper bound analysis 

method can be applied to soils for obtaining reasonably accurate 

solutions of slope failures and lateral earth pressures subjected 

to earthquake forces (Chen, 1980, 1983a, Chang and Chen, 1981, 

1 982 ) . 

As a further example, the Drucker-Prager type of elastic

perfectly plastic models were discussed and evaluated in the book 

by Chen (1975), among others. These models are computationally 

simple. With the proper selection of the material constants, the 

Drucker-Prager model can be matched with Coulomb condition. This 

simple model reflects some of the important characteristics of 

soil behavior such as: elastic response at lower loads, small 

material stiffness near failure, failure condition, and elastic 

unloading after"yielding. A simple model of this type can be 

considered a fair first approximation in the progressive failure 

analysis of soil media and soil-structure interaction problems. 

3. ROLE OF STRAIN-HARDENING PLASTICITY IN SOIL MECHANICS 

There are several i~portant features mentioned in the first 

part of Professo.r Gudehus's paper (Leonards, 1983) 

1. There is a clear review of the stress and strain paths 
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associated with typical boundary value problems in soil 

mechanics. These paths are generally nonproportional, 

irreversible and nonlinear. 

2. It is shown that element (uniform strain distribution) 

tes ts are: 

a. rare 

b. often do not simulate those stress paths for com

mon boundary value problems 

3. The difficulties of interpreting non-element tests 

close to, or beyond, the initiation of failure are 

emphasized. 

From an academic point of view, strain-hardening models are the 

most attractive to model the soil, because they are inherently 

capable of treating conditions of unloading, stress path depen-

dency and dilatancy as required in item (1). Furthermore, use of 

these models uiually satisfy the rigorous theoretical re.quire-

ments of continuity, uniqueness and stability. On the other 

hand, it is rather difficult to correlate these plasticity models 

with data from conventional tests as described in items (2) and 

( 3) • Thus, the difficulty is extended to the proper determina-

tion of specific values for the parameters involved~ 

Because ieal materials tested in various manners at dif-

ferent laboratories often do not appear to behave in any con

sistent and unique way, no practical model can be expected to 
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represent such materials in full details. The Drucker-Prager 

perfectly plastic model may represent a first but crude attempt 

to use a pIa s tic i t Y th e 0 r y • The "cap model" represents a more 

refined attempt which can fit most available experimental data 

reasonable well (Chen, 1983c). Herein, the cap model will be 

used to handle and predict the complicated situations such as 

nonlinear, nonproportional loading and unloading, stress path 

dependency, and dilatancy as reviewed by Professor Gudehus on 

some typical boundary value problems in soil mechanics. From 

this.numerical demonstration, it shows clearly that the "cap" 

type of plasticity models not only reflects some important 

features of soil behavior under laboratory condition, but it also 

provides a rather accurate prediction of some detailed soil 

stress-strain histories typically occurring in the ground and in 

field as sketched in Figs. 1.2, 1.3 and 2.2 of Professor Gudehus' 

paper. 

4. DEMONSTRATION OF A SIMPLE CAP MODEL 

The schematic shape of this simple model is drawn in Fig. 1. 

The model is co.mposed of a linearly elastic region bounded by a 

perfectly plastic failure surface of Drucker-Prager type taking 

the simple form, in the usual notation 

+ 0. I 
1 

= k 

and a strain-hardening cap taking the form of a quarter of an 

€ llip se 

(1) 
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(I - L)2 + R2
J - (X - L)2 = 0 

1 2 
( 2) 

where 

a,k material constants related to c, ~, of Coulomb 

criterion. 

L value of II at center of elliptic cap 

R ratio of major to minor axis of elliptic 

cap, taking a constant aspect ratio 

x = hardening function that effectively controls materi~l 

compaction and/or dilatancy, taking the simple form 

e:P = W ( e D X_I ) 
kk 

(3 ) 

The f 0 11 0 win g va 1 u e s of th e mat e ria 1 con s tan t s w ere use din 

the present calculation made _by McCarron (1983) since they were 

already available from previous work for a specific material 

(Baladi and Rohan!, 1979). 

cp = 49.1
0 

R 4.33 

c = 0 W· = 0.0075 

\) = 0.2736 
-5 2 

D 6.78 x 10 ft /lb 

E 841400 Ib/ f t 
2 

For the plane ~train condition, we have: 

a = 0.2309 

k = 0 

The initial cap position is assumed at the origin of the II' J
2 

space (Fig. 1). The numerical results are summarized in the 

forthcoming: 
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The plane strain earth pressure problem with granular soil 

as depicted in Fig. 1.2 of Professor Gudehus' paper was selected 

and solved in the following manner and the numerical results are 

shown in Fig. 2. 

1. The material was loaded in uniaxial strain until a 

v e r tic a 1 s t res s of 3 0 psi 101' a sac h i ev e d ( pat h 0 - 1, Fig. 

2). During this interval the stress state is on the 

cap for the path. 

2. Unloading (uniaxial strain) then occurred until the 

vertical stress was reduced to a value of 8.5 psi (path 

1-2, Fig. 2). The stress-strain relation was linearly 

elastic along this path. 

3. For- the passive case a iterative procedure was used to 

follow th est res spa t h (constant o ). 
1 

The material 

first is linearly elastic and theri elastic-plastic when 

loading begins on the cap (path 2-3-4, Fig. 2). 

4. For the active case the stress path was also followed. 

The material behaved elastically until the failure sur-

face was r~ached (path 2-3-4, Fig. 2). A t th is poi n t 

the model was unable to follow the stress path. 

The corresponding earth pressure problem of Fig. 1.2 with 

saturated clay as shown in Fig. 1.3 of Professor Gudehus's paper 

was also selected here and solved, and the results are summarized 

in the following (Fig. 3). 
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1. The initial loading and unloading paths are identical 

to those in Fig. 1.2 (path 0-1-2, Fig. 3). To simulate 

the saturated condition, strain paths which were 

volume-constant were prescribed (€ =-e: 
1 .2' 

€ = 0) 
3 

2. For the passive case the response is initially elastic 

until the failure surface is reached (path 2-3-4, Fig. 

3). If loading continues in a constant-volume manner 

the state of stress eventually becomes constant 

(unchanged) (path 4-5, Fig. 3). For the present case 

loading continues along the failure surface until the 

s tat e 0 f s t res s co inc ide d wit h th e i n t e r sec t ion 0 f the 

cap and failure surface (corner loading). At th i s 

point the direction of the strain path was altered so 

that the volume decreased. 

3. For the active case the same procedure was followed 

except the volume-conserving strain path was terminated 

before ·reaching the failure surface (path 2-3-4, Fig. 

3). A volume-increasing path was then followed (path 

4-5, Fig. 3). 

If the original volume-constant path has been followed along the 

failure surface, the stress path would change directions so that 

both 01 and 02 would increase and stress path would be opposite 

to the curve 4-5 shown in Fig. 3(b). 

As a last example, the material response given by the cap 

model for the four bilinear strain paths described in Fig. 2.2(a) 
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of Professor Gudehus~ paper is show in Fig. 4. I t exhibits the 

type of behavior that Professor Gudehus discussed, namely, that 

sufficiently large monotonic strain path may remove the memory of 

a previous stress/strain state. 

The following four strain paths were used for the calcula-

tion of th e corresponding stress paths shown in Fig. 4 . 

For Path i: The s.train ra t io ( fj £1 : fj £2 : fj £3 ) 

For Path i i : The strain ra t i 0 was (1:3:0) 

For Path iii: The strain ra t io was (3:-2:0) 

For Path iv: The strain ra t io was (1:-4:0) 

Paths i, ii, and iii have continuous loading on the cap. 

Path iv loads first on the cap when the strain path is 

parallel to Path i. When the incremental strain direction 

changes, the path is first elastic, then on the failure surface, 

then at the intersection of the failure· surface and cap (or 

corner loading). 

From these example calculations, it can be concluded that 

the cap model is capable of reproducing the stress-strain 

behavior discussed by Professor Gudehus. However, as Professor 

Gudehus mentioned, several practical and numerical problems may 

cause difficulties when solving boundary value problems. Profes

sor Gudehus seemed particularly concerned with the fo(lowing 

three problems: 

1. Viscosity (time-effects) 
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2. Saturated soils (water) 

3. Correct representation of the soil load history 

The first point presents considerable difficulties. Considerable 

effort should be expected in developing the necessary constitu-

tive relationships, computer code, and determination of the 

required material parameters. Perhaps a more basic problem is the 

requirement of a deterministic load history. 

The analysis of saturated soils presents an interesting 

problem. The normal procedure appears to be to consider the 

total medium as incompressible (de: =: 0). 
kk 

For an elastic 

material this may be approximated by a Poisson's ratio of : 0.5 

or an extremely large bulk modulus. If, however, the material is 

in an elastic-plastic state, it appears that the appropriate 

treatment to enforce incompressibility is 
e p 

to ha v-e de:
kk 

=: - d e:
kk 

• 

At the .present time it seems unclear as to the best method to 

sat i sf y th is re 1 at i on • 

Finally, the concern with correctly representing the load 

history of a soil history is addressed by Professor Gudehus. 

This aspect presents considerable practical problems in determin-

ing the past geological history of a site as well as the influ-

ence that construction activity may have in disturbing the soil 

mass. Professor Gudehus' concerns seem to focus on the validity 

of solutions obtained by say the finite element methods if the 

'history' of a soil is not well represented. However, the 

theoretical solution does provide a rational and useful 
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understanding of the behavior of geotechnical problems, just one 

of the steps that is needed with any practical applications. 

It is therefore very important to conclude here that soil 

mechanicians and soil engineers must have both adequate under-

standing and appreciation in the field of the other party. This 

will certainly help to contribute to the sound development of 

constitutive relations in soil mechanics and, as a consequence, a 

certain overlap in each other's development, rather than a cer-

tain separation to occur in the future. 
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CONSTITUTIVE RELATIONS FOR CONCRETE AND ROCK 

Discusser's Report 

by 

W. F. Chen 
School of Civil Engineering 

Purdue University 
West Lafayette, IN 

1. INTRODUCTION 

Although the applications of mechanics to reinforced con-

crete structures and to rock engineering are old and in many 

respects well established, the nonlinear deformation and ultimate 

load analysis of triaxially loaded concrete structures and mining 

problems related to rocks by means of finite element techniques 

is relatively re cen t (Chen, 1983). D iff ere n t asp e c t s 0 f th e s e 

advances were rep or ted in several recent books, conference 

proceedings, and state-of-the-art reports. T his inc 1 u des th e 

books by Chen (1982), Chen and Saleeb (1982, 1984), the C onf e r-

ence Proceedings by IABSE (1979, 1981), by U.S. Defense Nuclear 

Agency (1981), and the state-of-the-art reports by ASCE (1981), 

by Politecnico di Milano (1978), among others. 

M 0 s t <) f th e fin i tee 1 e men t studies consider concrete and 

rock to behavior as an elastic or elastic-plastic solid in 

compression and as a brittle material in tension. Simple consti-

tutive models have been proposed and used extensively in the 

early studies of concrete and rock mechanics by modeling cracking 

in the form of tension cut-off criteria via Rankine theory of 
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maximum tensile stresses for tension concrete and by combining 

this with either a nonlinear elasticity theory or with a plasti-

city theory via von Mises or 

associated flow rule. 

Coulomb yield 

Wit h th e pr e sen t rap i d de vel 0 p men t. s in 

criterion and its 

compu ta tiona 1 tech-

niques and computing capability, more general theory of continuum 

mechanics like hyper- or hypo-elasticity, classical and endo-

chronic plasticity, and visco-elasticity and plasticity must be 

developed to describe the very complex behavior of concrete and 

rock materials involving phenomena like inelasticity, cracking, 

time dependency, and discontinuity. In Professor Dougill's 

paper, he has confined his presentation to the most fundamental 

aspects of concrete and rock mechanics, tha t is, the general 

technique used in the discussion of stress-strain laws based on 

the theories of elasticity and plasticity leading from modeling 

concrete and rock materials in the pre-failure regime to modeling 

the progressively fracturing solidS in the post-failure ra nge • 

In Professor Dougill's presentation, he has placed his emphasis 

on the critical subject of path dependence requirements and their 

implications for plasticity and fracturing and also the dual for-

mulation in stress and strain space. In the following, I will 

concentrate my discussion on a number of topics that have not 

been covered in Professor Dougill's lecture. This includes a 

number of constitutive modeling techniques that were introduced 

in recent years to describe the nonlinear deformation as well as 

failure behavior of concrete or rock under triaxial conditions. 
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The scope is restricted to time-independent material behavior in 

the pre - and post-failure range which can be described on the 

continuum level. 

2. CONSTITUTIVE MODELING 

Within the framework of continuum mechanics, the behavior of 

rea 1 materials is generally idealized as time-independent or 

time-dependent. In the time-independent idea liza tion, su ch as 

elastic and elastic-plastic models described in Professor 

Dougill's lecture, time effects are neglected. Time does not 

a p pea r explicitly as a variable in the constitutive relations; 

phenomena like rate sensitivity, aging effects, and creep are not 

included in thes e modeling techniques. Further, for an ideal 

elastic material, the behavior is reversible and independent of 

the loading path, while it is irreversible and load path depen-

dent in a plasticity-based model. On the other hand, in the 

time-dependent material idealization such as the viscoelastic and 

viscoplastic models, time effects are considered, and, therefore, 

they are generally capable of describing rate- and history-

dependent behavior. 

In concrete and rock mechanics, constitutive modeling of 

the s e materials under triaxial stress conditions is of central 

importance to the analyses and engineering design of triaxially 

load concrete structures and mining systems. Elastic modeling 

has been used most widely and is well understood, but irreversi-

b le deformation is not. This is an area of great importance for 
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concrete and rock materials. The principles of continuum mechan-

ics provide the needed general guidelines for characterization of 

these materials, a field of increasing importance for sophisti

cated analyses. 

It must be emphasized here that the pre v i 0 us idealizations 

and subsequent classification of the constitutive modeling tech-

niques are only for mathematical convenience in describing the 

actual complex behavior of real materials. Nothing can compel the 

material to behave according to any of thes e idealized models. 

Indeed, for concrete and rock materials, the actual material 

response will exhibit the behavior characteris tics of most of 

these models under certain conditions of stresses, temperatures, 

vibration, and strain rates. Therefore, in any practical prob-

lem, it is essential that we determine the limits and conditions 

under which the material can sensibly be assumed to exhibit the 

dominant characteristics of a particular type of the idealized 

models. Furthermore, since any idealized model has its own 

shortcomings, all the results obtained must be interpreted care-

fully in terms of these shortcomings. 

3. FAILURE CRITERIA 

The failure of concrete or rock in three-dimensional s ta t e 

of stress is extremely complicated. Numerous criteria have been 

devised to explain the conditions for failure of a material under 

such a loading state. These models can be classified as one-

parameter models including the Rankine or Griffith criterion of 
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maximum tensile s t re s s failure and the Tresca criterion of 

failure at maximum shear stress, two-parameter models including 

the Mohr-Coulomb criterion of shea r f a i I u r e, th r e e ~ par a met e r 

models including the well-known Mohr-Coulomb criterion with a 

small tension cut-off, and four- and five-parameter models with a 

nonlinear relation between octahedral normal and shea r stresses 

( <1 
oct 

T ) as well as noncircular cross sections on the devia-
oct 

toric plane (Fig. 1). 

I naIL th es e strength models, two basic postulates are 

adop'ted; isotropy, and convexity in the principal stress space. 

The first assumptions is mainly introduced because of the 

inherent simplification of the failure model. It is certainly 

true some concrete especially rocks exhibit significant aniso-

tropy with respect to their strength which requires the formula-

tion of the failure surface in the six-dimensional s t re s s space 

instead of th e three-dimensional space of principal stresses. 

For concrete and many rocks, however, the assumption of isotropy 

is reasonable. On the other hand, convexity is an assumption 

which is supported by global stability arguments in plasticity 

(see for example, Chen and Saleeb, 1982). C 1 ear 1 y , th ere are 

some questions on the validity of this postulate, and in fact, 

the re is strong indication that the failure envelope for rocks, 

for example, over a wide range of hydrostatic (confining) pres-

sures may be non-convex with respect to the hydrostatic axis. 

Most of these three-, four-, and five-parameter models give 

a close estimate of the relevant experimental data, contain all 
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the three stress invariants for an isotropic material, reflect 

all the required characteristics concerning smoothness, convex-

ity, symmetry, curved meridians, etc. as shown in Fig. 1 • But 

the Will a m - Warn k e ' s five-parameter mode 1 includes most of the 

earlier one-, two- and three-parameter models as special cases 

and therefor~ becomes increasingly popular in recent years (Chen 

and Han, 1983a). The five-parameter failure model of Willam-

Warnke may be adopted as the basic surface for further develop-

ment of elastic-plastic-fracture model 

Han, 1983b). 

4. PRE-FAILURE RANGE 

Linear elasticity for isotropic and 

for concrete (Chen and 

tr a n s ve r s ely isotropic 

materials constitutes the oldest and simplest approach to model-

ing the stress-strain behavior of concrete and rocks under low 

deforming loads. However, for higher loads or for rocks with 

large pore space such as the weaker sedimentary rocks, the 

stress-strain Curve is generally nonlinear, and any analysis 

based on linear elasticity would not be realistic. Such nonlinear 

behavior may be characterized by variable stress-strain moduli. 

The simplest approach to formulate such nonlinear models is to 

simply replace the elastic constants in the linear stress-strain 

relations with secant moduli dependent on the stress or s t ra in 

invariants. 

These models are mathematically and conceptually very sim-

pIe. The models account for two of the main characteristics of 
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concrete and rock behavior; nonlinearity and the dependence on 

the hydrostatic stress. The main disadvantage of the models is 

that they describe a path-independent behavior. Therefore, their 

application is primarily directed towards monotonic or propor-

tional loading regimes. 

A more rigorous approach in formulating secant stress-strain 

models for .concrete and rocks can be developed on the basis of 

hyperelasticity theory. This type of formulation can be quite 

They accurate for concrete and rock in proportional loading. 

sat is f y th e rig 0 r 0 u s th e 0 ret i cal r e qui r e U1 e n t s 0 f con tin u i t Y , s t a -

bility, uniqueness, and energy consideration of continuum me chan-

ics. However, here, as noted previously, this type of models 

fail to identify the inelastic character of concrete and rock 

deformations, a shortcoming that becomes apparent when the 

material experiences unloading. The main objection to the 

h Y per e 1 a s tic for m u 1 a t ion sis th a t it of ten contains too many 

material parameters. For instance, a third-order isotropic model 

requires nine constants; while 14 constants 

fifth-order isotropic hyperelastic model. 

tests is generally required to determine these 

limit the practical usefulness of the models. 

are needed for a 

A large number of 

constants, which 

The path-independent behavior implied in the previous secant 

type of stress-strain formulation can be improved by the hypo-

elastic form~lation in which the incremental s t re s s and s t ra i n 

tensors are linearly related through variable tangent material 

response moduli that are functions of the stress or strain state. 
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In the simplest ca s e of hypoelastic 

formulated 

models, the incremental 

stress-strain relations are directly as a simple 

extension of the isotropic linear elastic model with the elastic 

constants replaced by variable tangential moduli which are taken 

to be functions of the stress and/or strain invariants. Mode 1 s 

of this type are attractive from both computational and practical 

viewpoints. They are well suited from both computational and 

practical viewpoints. They are well suited for implementation of 

finite element computer codes. The material parameters involved 

in the models can be easily determined from standard la bora tory 

tests using well defined procedures; and many of these parameters 

have broad data base. However, the application of this type of 

hypoelastic models should be confined to loading situations which 

do not basi~ally differ from the experimental tes ts from which 

the material constants were determined or curve-fitted. Thu s, 

the isotropic models should not be used in cas es such as non-

proportional loading paths or cyclic loadings. 

A general description of hyper- and hypo-elastic formula-

tions has been given in Professor Dougill's paper. Here, I would 

comments on problems associated like to add the following two 

with the hypoelastic modeling. The first problem is that, in the 

nonlinear range, the hypoelastic models exhibit s t re s s induced 

anisotropy. This anisotropy implies that the principal axes of 

stress and strain are different, introducing coupling effect 

between normal stresses and shear strains. As a result, a total 

of 21 material moduli for general triaxial conditions have to be 
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defined for every point of the material loading path. This is a 

difficult task for practical application. The second problem is 

that under the uniaxial stress condition, the definition of load

ing and unloading is clear. However, under multiaxial stress con-

ditions, the hypoelastic formulation provides no clear criterion 

for loading or unloading. Thus, a loading in shear may be accom-

panied by an unloading in some of the normal stress components. 

Therefore, assumptions are needed for defining loading-unloading 

criterion. Furthermore, the material tangent stiffness matrix 

for a hypoelastic model is generally unsymmetric which results in 

a considerable increase in both storage and computational time. 

As a result of this, uniqueness of the solution of boundary value 

problems cannot generally be assured. 

well 

The mechanics of concrete and rocks in the elastic range is 

developed. Predictions of acceptable accuracy based on some 

of these models mentioned previously have been made to many prac-

tical problems. However, elastic analyses do not account for the 

important phen~~enon of irreversible deformations of materials. 

I n g e n era 1, it is th i sin e 1 a s tic, i r rever sib 1 era n g e 0 f de for m a -

tion that is of great concern in a nonlinear deformation and 

ultimate load ana ly sis of concrete structures and mining prob-

1 ems. PIa s tic i t Y th e or y is well est a b 1 ish e d wit h a long 

of successful application to metals. For concrete 

materials, the internal microcracks developed and grown 

loading can be considered as a irreversible behavior. 

history 

or rock 

during 

Figure 2 

shows a typical uniaxial stress-strain diagram for plain concrete 
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in the compression range. The material exhibits an almost linear 

behavior up to the proportional limit at point A, from which the 

material constitution is progressively weakened due to internal 

micro-cracking up to failure at point D. The nonlinear deforma-

tions are essentially inelastic, since upon unloading only .the 

. f e port10n 0 e: can be recovered from the total deformations 

E=e:e+e:p
• It is clea r tha t th is phenomenon corresponds 

exactly to the behavior of a work-hardening elastic-plastic 

solid. 

The plasticity-based models can account for in principle, 

path-dependent irreversible inelastic deformations. Using a 

properly choosing pressure-dependent yield function, a hardening 

rule, and a flow rule, the models developed can fit rather well 

to the triaxial stress-strain tes t data of concrete. The 

material parameters involved can also be determined relatively 

easily. 

The theory of plasticity enables one to go beyond the e La s-

tic range in a time-independent but theoretically consistent way, 

because the theory satisfies the conditions of uniqueness, con-

tinuity, stability, and thermodynamic laws. Consistency is 

admirable and the practicability of the theoretical situation is 

something tha t cannot be avoided. Thus, where it is possible, 

efforts should be made to introduce theoretical concepts and 

mathematics to concrete and rocks. If this is not possible, an 

empirical and engineering treatment may be introduced. However, 

experiments for determining the stress-strain diagrams beyond the 
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elastic range for general two- and three-dimensional s ta t e s of 

stress are difficult to perform, especially for concrete and rock 

type of materials. Little has been done in the a rea 

loading, rate-dependency, nonproportional loading, 

of 

and 

cyclic 

post-

failure response. The question of modeling s t ra in softening in 

the post-failure range using plasticity theory is highly contr-

oversial. This can, to some extent, be rectified by introducing 

the concept of progressively fracturing solids, a subject very 

much emphasized in Professor Dougill's lecture. The formulation 

of a purely fracturing material is completely analogous to that 

of flow plasticity. 

As apparent from the preceding discussion, it is necessary 

to include many complex effects in the material model in order to 

describe the behavior of concrete and rock properly. An impor-

tant step in the direction of developing a more unified and 

comprehensive material model for concrete or rock is the general

ization of the theory of viscoplasticity by introducing the meas-

ure of intrins~.-:: time (Valanis, 1971). 

endochronic theory of viscoplasticity. 

This is known as the 

T his th e 0 r y 0 f fer sap 0 s -

sibility to accurately model concrete or rock behavior in a wide 

range of loading conditions. The theory has been adopted with 

good success to concrete materials (Bazant, 1971) , bu t there 

seems to be no application to rock yet either in static or 

dynamic loading conditions. 

The concept of intrinsic time provides a good measure of the 

irreversible damage ca use d by the internal mi crocra ck s tha t 
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contribute directly to the inelastic strains. In this theory the 

degradation of material stiffness is obtained directly from the 

evolution of the damage function without recourse to the 

loading-unloading conditions. This type of models can represent 

many features of concrete behavior. However, the models gen-

era 11 Y involved many functions and parameters which are obtained 

by a rather complicated fitting procedure. Also, some of thes e 

models are incrementally nonlinear, and thus they may require 

excessive programming and computer effort. 

5. POST-FAILURE RANGE 

Concrete fails or fractures in extremely complex modes. It 

is known that concrete or rock material can be roughly as brittle 

at one extreme and ductile at another extreme, depending on the 

confining pressure or hydrostatic pressure. Thu s, 

speaking, we should speak of the "brittle state" or 

strictly 

"ductile 

state" of materials, rather than of "brittle materials" or "dtic-

tile materials." Nevertheless, in the following discussion, we 

shall consider concrete or rock as a brittle material unde~ ordi-

nary load condition and it approaches a ductile rna te r ia 1 under 

extreme high hydrostatic pressure condition. 

To this end, we classify the mode of failure into th ree 

types, na me ly, the cracking, crushing and a mixture of cracking 

and crushing. Documented test results for tension-tension or 

tension-compression biaxial conditions show the cause of fracture 

is primarily a brittle splitting in the plane normal to the 
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maximum tensile strain direction. This phenomenon should be stu-

died within the framework of fracture mechanics correlating the 

propagation of discrete cracks to the stress concentration at the 

crack tip. Here, in the concrete community, a contrary continuum 

p oin t of view is generally adopted, in which distinct cracks are 

smeared or distributed evenly within a finite element. It is 

then assumed that the cracked concrete element becomes an ortho-

tropic (or more accurately, transversey isotropic) elastic 

material, with one of the material axes being oriented along the 

direction of cracking, such formulations easily allow for gradual 

build-down of strength in the direction of tension (tension 

softening or stiffening). Also shear-strength reserves due to 

aggregate interlocking and dowel action of reinforcement can be 

accounted~for by retaining a positive shear modulus. The con-

"~" 
tinuous model with a tension cut-off criterion (maximum tensile 

stress or stra'li'h) for cracking has been used in most of the com-

putational models for analysis of reinforced concrete structures. 

It is kno~n (Bazant, 1976) that the strength criterion for 

crack formation over a finite element is unobjective and leads to 

incorrect results when the stress concentrations near the f ron t 

of the fracture are calculated with more and more refined finite 

element meshes. It has been found that the overall stiffness of 

a structure and the predicted load-carrying capacity reduced with 

the decrease of the size of the element meshes. If the charac-

teristic length of the problem is large (say, O.34m, as suggested 

by Nilson, 1982), the brittle fracture model based on a strength 
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criterion ca n be use d. For smaller size structures or for small 

element meshes, the softening cracking model based on 

criterion should be used. 

an e ne r g y 

In the mix e d fa i 1 u r era n g e , th e rna t e ria 1 fa i 1 sin the form 

of cracking and sliding due to excessive tension and shear. 

Since microcracks are not oriented regularly, but rather randomly 

in this region, softening of materials would occur in all stress 

components. Such a multiaxial softening behavior may be treated 

by the fracturing theory (Dougill, 1976). A further improvement 

may be made by combining the plasticity and fracturing theories 

to model the softening behavior of fractured concrete due to 

cracking and sliding in the mixed failure zone (Bazant and Kim, 

1979). 

Ins u m mar y ,. th ere are nob r itt 1 e 0 r d u c til e materials, the 

medium is only subjected to loading conditions which cause brit-

tIe or ductile response in the post-fail~re range. For concrete 

or rock type of materials, hydrostatic confinement plays the key 

role in distinction between different failure modes by the s ta te 

of stress. Other factors such as the rate of loading, the compo-

sition of concrete, the amount of reinforcements have also impor~ 

tant effects on the post-failure response of this material. 

Therefore, the perfectly brittle and the perfectly ductile models 

for the two extreme hydrostatic pressure cases combined with the 

plastic-fracturing model for the transition range form a good 

modeling basis for the actual post-failure behavior of fractured 

concrete or rock material. The difficulty of this approach is 
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that good softening data for concrete or rock are lacking. So, 

the shape and the expansion of the fracturing surface required in 

the progressively fracturing theory can not be easily defined. 

Further investigations are therefore urgently needed on the fol-

lowing topics: post-failure behavior, unconventional loading 

paths including cyclic response phenomena, rate effects, compo-

site behavior and numerical algorithms. 
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INTRODUCTION 

The two papers dealing with "the Behaviour of Solids with a System 

of Cracks" cover the main fields of the matter. 

The first one, "Inelastic Properties of Solids with Random Crack" of 

Professor Zaitsev (1983) is concerned with the quasi-static problems. 

The second one, "The Mechanics of Fracture Under High-Rate Stress 

Loading" of Professor Grady (1983) is concerned with the dynamic problems. 

Zaitsev insists on the randomness of the distribution of cracks and 

inhomogeneities in the solids. A difference is made between rocks and hardened 

cement paste which are quasi-homogeneous at the scale of the problem, and 

concrete which is significantly inhomogeneous. 

Grady deals with four problems. In the first part he investigates the 

strain rate dependence of the critical traction stress of a solid. In the se

cond part, he shows how kinetic energy considerations can predict the size of 

particles produced in dynamic fragmentation without reference to the initial 

distribution of flaws. In the third part, he looks at the dynamic fragmenta

tion with a statistical point of view, and in the last part, he uses a damage 

parameter D with an appropriate rate equation to produce a continuum model

ling of dynamic fracture. 

First of all, let us underline the fact that concerning solids with a 

system of cracks the question we may have to answer are significantly dif

ferent if we consider a static loading or a dynamic loading. 
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Let us look at the stress intensity factor KI at the crack tip of a 

crack with a characteristic dimension a. 

If we apply a static loading,Kr is proportionnal to va, while if we 

apply a dynamic loading with a constant strain rate, for example, the stress 
. . f .. d d f h k' d . 1 3/2 ~ntens~ty actor ~s ~n epen ent 0 t e crac s~ze an proport~onna to t 

for small time t in comparison with alc s (cs is the shear were velocity). 

Let K
IC 

be the toughness of our material. In the static case the Kr 

of the greatest cracks reaches KIC at first and only those cracks propagate . 

. 
In the dynamic case, with a constant strain rate so' all the cracks 

with a characteristic size a greater than a certain value a o will have the 

same stress intensity factor K
I

, and then a lot of cracks will reach the 

critical value K
rc 

and propagate at the same time, giving a fragmentation 

of the solid. 

·-2/3 
The value a o is decreasing with the strain rate as So 

Because of these qualitatively different behaviours of the system of 

cracks, we shall discuss them separately. 

In the first part, we shall discuss about the quasi-static problems. 

The dynamic problems will be discuss in the second part. 

I - QUASI-STATIC PROBLEMS 

Among, the quasi-static problems dealing with micro cracked solids, 

at least three questions arise naturally. 

The first one is about the influence of the presence of microcracks 

on the macroscopic behaviour. 

The second one is about the consequences on the macroscopic behaviour 

of the propagation of these microcracks. 

The third one is about the coalescence of microcracks which produces 

a macrocrack and leads to the failure of the solid. 

The numerous references given in the paper of Zaitsev (1983) show 

that there is a lot of method to try to answer these questions, at least in 

the quasi-homogeneous case. 

Before we discuss the Monte-Carlo method proposed by Zaitsev, we shall 

comment the macroscopic thermodynamical approach, and the homogenization 

technic which are two among the most classical ways to tackle that sort of 

questions. 
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a- Ma~o~cop~c thenmodynam~ca£ app~oach 

It is possible to account for the macroscopic experimental results 

directly by the use of a set of thermodynamical internal state variables, 

with some of them characterizing the microstructure of the material. Then 

a thermodynamical potential (the free energy for example) and a dissipative 

pseudo-potential or rate equations satisfying thermodynamic restrictions 

(see, for example, Germain (1973) or Nguyen (1981) can define the macrosco

pic behaviour of the material. 

The difficulty of that approach is to postulate a good choice for the 

internal state variables and the potentials. To do that, one generally makes 

a simplified physical model for the microstructure. The crossing· from the 

microlevel to the macrolevel is often done using homogenization technic. 

In the case of microcracked bodies the use of damage parameters as 

internal variables summarizing the effects of microcracks on the macroscopic 

behaviour has been done extensively. 

Kachanov (1958), Lemaitre (1978, 1979) or Mazars (1982) use for example 

a scalar damage parameter D(t) to explain the decreasing of the elastic modu

lus (for experimental results see, for example, Terrien (1980». 

E(t) = (1 - D(t» Eo (1) 

That damage parameter, the value of which increases from zero to one is 

physically bounded with the fraction of flaws surface in a section of the so

lid. 

Some solution for brutal damage in elastic brittle solids where para

meter D can take only two values, D = 0 for the sane material, D = 1 for the 

totally damaged material, has been given by Buiand al. (1980), (1981), (1983). 

Shah and al (1983a) , (1983b) gives a thermodynamic approach with a vecto

rial representation for damage to account for the planar nature of microcracks. 

If we want to account for the non isotropic natures of the micro

cracking process, it is possible to have a tensorial representation for dama

ge Q(t), to change the initial elastic matrix Eo in the actual one !(t), (Bui, 

Dang Van, Stolz, (1982»). 

(I - Q(t»!o (2) 

where I is the identity tensor. 
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The thermodynamic force associated with the rate of damage D is the . 

elastic strain energy W (Lemaitre, (1978)) and then generally D is postulated 

as a function of W. 

That approach with damage parameters is especially suitable for trac

tion. When dealing with traction and compression, the formulation is far more 

complex because of the microcrack closure which can restore the initial elas

ticity matrix in compression. 

It is then possible to use instead of damage parameters other internal 

state variables such as a fracturing strain (Bazant (1980)). That choice can 

account for the sliding of the two lips of closed microcracks. 

b- Homogeniz~on ~e~hni~ 

The second very classical way to look at quasi-homogeneous solids is 

to consider that each point at the macroscale represents a small solid at the 

microlevel which would be in an uniform stress state if it included no flaw 

or other inhomogeneity. 

The size and position of flaws or inhomogeneities are characterized 

by a finite number of parameters at the macroscale. 

The value of the fields at each point at the macroscale is the mean 

value of the same field at the microlevel in the volume of the microelement, 

there fields being characterized by a finite number of parameters. 

The coherence needs some additional condition, "the localisation condi

tion" which may be the classical Hill-Mandel condition (Mandel (1964), Hill 

(1-967»), or a periodicity hypothesis, or other conditions (see, for example, 

Suquet (1982)). 

Generally the use of that homogenization technic needs some hypothesis 

on the microstructure. For example, shall we consider only one crack in the 

microelement, or two interacting cracks, or more ... ? 

One we have chosen our microstructure and our "localisation condition", 

we have to solve a finite loading parameters problem on the microelement. If 

we have such a solution, the mean value of the fields and the rate of the 

characteristic parameters give us the macroscopic behaviour. 

A very good application of that technic for the microcracked bodies has 

been recently done by Andrieux (1983), which looked at a single cracked micro

structure in plane strain and used a solution depending on two parameters 
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characterizing the discontinuities of displacements on the crack lips. 

He deduced then the macroscopic behaviour of a microcracked body 

which seems to well approximate the experimental results in compression and 

in traction for concrete. 

From the solution of two interacting cracks, it is possible to apply 

the same technic to a more sophisticated microstructure. 

That homogenization technic is often the first stage of a macroscopic 

thermodynamic approach. It permits to construct a continuum modelling with a 

set of internal state variables at the macrolevel and their rate equations 

from a simple model of the microstructure, the behaviour of which is known. 

Then from a given state of the solid, it is to say from a given ini

tial field of internal variables, we can calculate the evolution of the 

fields for a given loading. When no more solution exists, the failure occurs. 

The important point we must underline in view of Zaitsev's paper 

(1983) is that we must know the initial field of internal variables to know 

the further evolution. 

In certain problems, such as plasticity problems for example, the 

initial value of internal variables is, to a certain extent, of little impor

tance, and can be given the value zero. 

On the contrary, when dealing with microcracked bodies, it is general

ly not possible to hypothesize that the initial distribution of flaws is zero, 

and that initial distribution is of the greatest importance since the damage 

concentrates in the weakest zone. 

We must then account for the initial random distribution of flaws or 

internal variables in the case of a continuum modelling. 

Q.- The. Mon.:te.-Ccvr.1.o me.:thod 

Zaitsev chooses to investigate the influence of the initial random 

distribution of flaws in a .quite interesting manner. 

He numerically simulates the evolution of a system of microstructures, 

the behaviour of which is known. 

Dealing with different problems, he chooses different microstructures 

with different behaviour, as in his figures (7, 17, 23) (Zaitsev(1983)). 
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Each microstructure being characterized by a finite number of parame-

ters, he chooses some statistical laws for the initial value of these parame

ters, and he generates a random macrostructure with the help of a computer. 

The behaviour of each microstructure being well known, he can simulate 

a loading and compare the results for different initial distributions of flaws 

and experimental data. 

His first simulation (Zaitsev (1980), Zaitsev and Wittmann (1981» is 

done with cracks, the center, the length, and the orientation of which being 

statistically uniformly distributed, and he considers the interaction between 

two neighbouring cracks. 

His second simulation Zaitsev (1981), Wittmann and Zaitsev (1981) has 

been done with a microstructure made with pores and cracks. Each pore has two 

coplanar preexisting cracks. The position, length and orientation of the micro

structure is statistically uniformly distributed. 

Then he made simulations with circular inclusions with one preexisting 

interfacial crack and preexisting cracks in the matrix, another simulation for 

concret with polygonal inclusions with one preexisting bond crack and for 

hightweight concrete he made a simulation with round inclusions and small 

pores. 

For each simulation the calculation gives the global a - s curve and 

the macrocrack loading to the failure of the sample. 

Let us notice that he does not use a continuum modelling of his micro

cracked sample because he generates directly some microstructure, but there is 

no essential difference with a random generation of initial internal variables 

values through a finite element method for a continuum modelling. 

In both cases the Monte-Carlo method provides an efficient tool to 

study the qualitative response of a sample to a certain loading, the influence 

of the parameters of the random distribution, and a global .statistical charac

terization of the behaviour of the sample. 

But, before answering these questions we must determine how many.mi

crostructure or finite elements are needed to have significant results 

(Zaitsev (1983) chooses 50 microelements) and how many numerical simulations 

are sufficient to deduce statisticallY satisfying results (Zaitsev (1983) makes 

twenty realisations of the Monte-Carlo method to deduce the results of his fi

gure 19). 
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Then the influence of the parameters of the random distribution may 

be quite easily simulated, while a statistical characterization of the global 

behaviour is not a simple question and we have a quite similar problem when 

we want to deduce the behaviour of a material from experimental data. 

Nevertheless that method is very efficient since it can be adapted 

to a lot of problems simply by changing the microelement or the interaction 

between microelements as it can be seen in the Zaitsev's paper (1983). 

Especially that method can be used to give a probabilistic response 

to the problem of determining the risk of failure of a complex structure sub

mitted to a complex quasi-static loading. 

11- DYNAMIC PROBLEMS 

We have already underlined the fact that while under a static loading 

only one or a few macro cracks appear in the solid, with a dynamic loading all 

the microcracks the length of which is upper than a certain size a o can propa

gate; leading to the dynamic fragmentation of the solid (ao is decreasing with 
. -2/3 . 

the stra1n rate as Eo ). 

The dynamic stress intensity factors for a single crack has been ex

tensively studied in a lot of paper among which we can mention, De Hoop (1958), 

Craggs (1963), Broberg (1960), Baker (1962), Cotterel (1964), Eshelby (1969), 

Achenbach (1970), Achenbach and Nuismer (1971), Glennie and Willis (I 971) , 

ChenandSih (1973), Bui (1978), and especially Kostrov (1966), (1975) and 

Freund (1972a) , (1972b), (1973), (1974). 

Atkinson and Eshelby (1968), Kostrovand Nikitin (1970), Freund (1972) 

and Bui, Ehrlacherand Nguyen (1980) have studied the problems bounded with the 

energy release rate at the crack tip. 

From these works we can deduce, in the single case of a non propaga

ting crack and for small time in comparison with a/c (where a is the crack 
s 

length and c the shear wave velocity) that, for constant strain rate loading, s 
the stress intensity factor at the crack tip is independent of the crack-size 

d d · d . h' 3/2 ( . (1980» an epenent W1t t1me as t K1PP and al . 

If we hypothesize that the crack tip will propagate as soon as the 

stress intensity factor will reach the critical value Krc ' we can deduce the 
" -1/3 fracture t~me and the stra~n rate dependent fracture stress as Eo 
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Grady hypothesizes that for a system of crack under constant strain rate 

loading all the cracks the length of which is sufficiently high behave in the 

same way, and he deduces the general strain rate dependence of the fracture 

stress as E~/3 for the sufficiently flawed material (that seems not to be the 

case for Solenhofen Limestone (Grady and Lipkin (1980». 

Then he demonstrates that other classical dynamic fracture criteria 

such as those of Tuler and Butcher, Birkimer, Steverding and Lehnigk or even 

Von Rittinger give similar results. 

b- The nJtagme.n:t -6-<-ze. 

In view of applications the most important question is to determine 

the fragment size occuring in the dynamic fracture process. 

There are three ways to approach the average fragment size d. 

The simplest one is a relation between the fragment size and the 

number of activated cracks. If we note N the number of activated cracks per 

unit volume, the fragment size d is of order N- 1/3 • 

If we recall the order of the characteristic size of the activated 

cracks given by Grady. 

(3) 

and if we hypothesize that the number of cracks per unit volume, the size of 

which is upper than a o is of order 

a/a~ (4) 

where a is a non dimensional parameter, we find that the fragment size d 

would be of the order of 

d -1/3 _ a- 1/3 (c K IE' )213 
a a o s Ie Eo ( 5) 

The second way to approach the fragment size is to consider the strain 

energy stored in the solid before the fragmentation occurs. 

When the cracks propagate, that strain energy is transformed In sur

face energy for one part and in kinetic energy for the other part. It is well 

known that more rapid is the crack propagation, more important is the second 

part. 

For example, if we consider a single cracked body under a static 

loading. If the crack does not propagate, there is a static energy release 
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rate Gstat which characterizes the fields near the crack tip. If suddenly the 

crack propagates at speed ~, then the energy release rate is 

G ( 0) Gstat 
gI a . (6) 

where gI(~) is a universal function of the crack tip velocity decreasing from 

one to zero when a increases from zero to the Rayleigh wave velocity CR' 

(Atkinson and Eshelby (1968), KostrovandNikitin (1970), Freund (1972), 

Ehrlacher (1980». 

The function gI(~) can be analyticaly written in a complicated manner, 

but is ve.ry well approximated by the linear function 

(7) 

Then, a gI(;) Gstat is the rate of the dissipated energy through the crack tip 

propagation and ;(1 - gI(;» G
stat 

is the rate of transformation of strain 

energy in kinetic energy. 

As, in general, during fragmentation process, the velocity of the 

crack tips are of the order of the Rayleigh wave velocity (;/CR - 0.6- 0.7) 

the most important part of the strain energy is transformed in kinetic energy. 

2 
Then the fragment size is not of order of (Krc/Oc) as an energy ba-

lance neglecting the kinetic energy would have suggested, but is one or more 

order of magnitude greater. 

That point is reinforced by the fact that the energy needed to create 

a new surface is not constant but seems to be an increasing function of the 

crack tip velocity because the dissipative mechanisms are more complex for 

rapid cracks. 

On the contrary kinetic energy considerations instead of strain energy 

considerations give quite interesting and applicable results (Grady (1983». 

The order of fragment size which can be deduced (equation 19 of Grady (1983» 

shows the same dependence in tenacity Krc and strain rate Eo as in the flaws 

distribution approach. 

As it can be seen on figure 3 of Grady (1983), the experimental data 
0-2/3 seem to be well predicted by a strain rate dependence as Eo • 
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e- Cont£nuum modetting app~oaeh 

From the work of Davison and Stevens (1973) the continuum modelling 

approach for dynamic fragmentation seems to be an interesting way. 

Grady's paper (1983) shows very well the variety· of the continuum 

modelling approach through numerous references. 

The model proposed by Grady and Kipp uses a classical scalar damage 

parameter D with an appropriate rate equation deduced from physical conside

rations on statistical concepts. 

The comparison of his figures (6.a) and (6.b) (Grady (1983» shows 

very well how effective such a direct continuum approach can be with the use 

of a wave propagation code. 

Those types of continuum modelling give a good approximation of the 

shape of the boundary between the sane zone and the fragmentation zone, and a 

good agreement between the value of the calculated damage.parameters ~n the 

fracture zone and the experimental measures of the fragment size. 

Perhaps can we hope that a continuum modelling will describe, through 

a good choice of internal state variables and rate equations, the statistical 

nature of the fragment size at each point at the macroscale. 
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CONCLUSION 

The quasi-static and the dynamic behaviour of a micro cracked solid is 

quite different, since in the static case only the more susceptible microcracks 

can propagate and coalesce to induce the failure of the solid in two or a few 

pieces, while in the dynamic case a lot of microcracks propagate at the same 

time inducing the fragmentation of the solid. 

In the quasi-static case the behaviour of the solid is very sensitive 

to the initial distribution of flaws and then the Monte-Carlo method proposed 

by Zaitsev is a very powerful tool to compare the experimental results to nu

merical simulations, and to predict the risk of failure of a complex structure 

under complex loading. 

When dealing with dynamic problems the initial distribution and SLze 

of flaws may be important to predict the fragment size in the failed material, 

but the Grady's approach from the kinetic energy point of view can give quite 

predictive results without referring to that initial distribution. 

In both static and dynamic loadings, it seems that a continuum model

ling with the help of damage parameters and appropriate rate equations can 

provide a relatively simple and quite efficient tool in view of applications. 
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SU~1t~ARY 

The discussion in this paper is divided into four main combinations 

of categories: 

1.1 Phenomenology and observations of fracture in the microscaTe. 

1.2 Modelling of (brittle) fracture processes on the microscale. 

"2.1 Experimental investigation of fracture on the macruscale. 

2.2 Analysis of (brittle) fracture for testing and structural design. 

A brief review is given of representative research and development in 

each of these areas, with particular emphasis on the relation to perceived 

reality. Major unresolved problems are posed for future investigation. 



- 568 -

INTRODUCTION AND BACKGROUND 

An understanding of fracture is essential to the whole spectum 

of human fabricat10n activities, and has finally gained its rightful 

role in engineering research and development over the past three decades 

or so. The essential ingredients in fracture mechanics of materials are: 

A. A detailed knowledge of the stress distribution in the body 

of interest, at all scales of interest - often divided into micro 

and macro for convenience of reference, although scales obviously 

merge into each other asymptotically. 

B. A reliable estimate of the material response to the local stress 

level at any point, including the effects of temperature and 

stress history; especially, conditions for rupture instability 

(which may have to be viewed as non-local) must be well determined. 

The central aspects of these ingredients are the constitutive rela-

tions for unruptured response of the materials (for any relevant loading 

history) and adequate criteria for the onset and propagation of rupture 

processes - which we comprehensively refer to as fracture. The most common 

parameters employed are the (perhaps incremental) material moduli for stress 

analysis and the fracture energy required to grow the rupture; the former have 

attracted considerable theoretical and experimental attention in solid 

mechanics for many decades (especially from the group spearheaded by William 

Prager, as other contributions in this Symposium Proceedings will attest) 

but detailed resolution of the issues involved in fracture growth/direction 

criteria has been slower, despite intense scrutiny over the past decade 

especially (e.g. Liebowitz, 1968- , Erdogan, 1976). 



..., 569 -

A major cause of this contrast is certainly the additional geornetry

dependence (non-local) character of the fracture process, which tends to 

produce a greater variety of phenomenology and especially a strong size

effect in the response of a material sample. Although .this size-effect 

has also been more recently realized to haunt the development of adequate 

constitutive relations for materials with hierarchies of microstructure 

(especially flnatural" materials such as rock, cement, concrete and perhaps 

even ceramics), as aqainst more homogeneous processed materials which have 

been solidified from a uniform (liquid) melt, it has its source of 

aggravation mainly in fracture-related processes: moduli dependence on 

scale is more readily incorporated in analyses and design. 

It ;s thus appropriate for us to concentrate especially on the mechanics 

of fracture, since the major complexities of materials response must be 

implicitly embedded in any such study: if intrinsic materials behavior 

is integrated with the presence or development of rupture processes, 

w.e should be able to deduce the overall (so-called microscale) material 

response - which can then be embedded in a larger-scale (so-called macro

scopic) structural analysis, perhaps including the presence of a fracture 

which has evolved from linkage of the small-scale ruptures. This logic is 

the motivation for the sequence of sub-division presented next. 
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1.1 PHENOMENOLOGY AND OBSERVATIONS OF FRACTURE ON THE MICROSCALE 

The process involved here can be very complex but, essentially, they 

require some nuclei at which initiation and growth can take place. These 

can be stress concentration points (e.g. granular./asperity contact), 

inclusions such as hard or soft second phases, dislocation pile-up sites, 

or just weak grain-boundaries in polycrystals. Many reviews have been 

done on the melt-processed construction materials (e.g. Chalmers et al., 

1954- ) but much less has been done on the more "natural" materials. The 

reasons for this may be found in the more complex and precise requirements 

of the expensive melt-processed materials (metals, polymers and composites): 

they must withstand all conceivable states of loading, including cycles 

of temperature and stress (which can ratchet eventual fatigue in even the 

toughest materials) whereas the "natural" materials have had lower imposed 

expectations - and fail even these in all too many circumstances! Cracked 

pavements, mine roof falls and earthquake-proof conventional buildings 

illustrate the poor structural response of such solid-bonded compositions, 

so they are rightly the focus of much recent work, described by Bazant(1983) 

for instance. 

The most basic problem with materials produced by solid mixing and 

bonding (albeit with some chemical reactions in the cementing process) is 

that they typically contain intrinsic flaws (e.g. pores and cracks) and 

other sources of stress concentration (e.g. asperity contacts). The cement

ing bond ~an also be quite weak, but some researchers (e.g. Birchall and 

Kelly, 1983) claim dramatic increases in strength and toughness, even up 

to levels comparable with melt-processed materials, when intrinsic flaws 

are removed. In any case, the presence of inhomogeneity sites is c1early 
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central and it presents two major aspects for study: 

a) How do we determine the response (and hence the strength/toughness 

reduction) associated with any particular/generic site? 

b) How do we characterize the distribution and interaction of such sites? 

Experimental evidence to resolve these questions is not very abundant, 

especially on details of response around inhomogeneity sites. Some deduc

tions can be made from macroscopically-observed crack patterns (e.g. Jaegar 

and Cook, 1979) and more detailed electron microscopy studies have been 

conducted by others (e.g. Tapponier & Brace, 1976) for nominally macroscopi-

cally homogeneous stressing conditions. Actually, of course, it is well 

known that stresses are not uniform in testing of samples with conventiona1 

apparatus and thus the interpretations assigned can be quite misleading; 

in the Resource Extraction Laboratory at MIT we have been developing 

various techniques to achieve more uniform conditions and have especially 

done extensive testing (plus electron microscopy studies) on a technique 

called pore-pressure-induced-cracking (PPIC), in which the porous sample 

has internal pressure higher than confining stress-hence a tensile effective 

stress (which governs rupture onset). This technique, combined with detailed 

analysis of pore-fluid diffusions, promises to allow a detailed study of 

microcrack onset and population evolution for the first time(e.g.Hess, 1983). 

The formation of a linked-up macroscopic fracture, and the associated 

development of crack patterns, have been observed by some researchers 

(e.g. Hoagland et al, 1973), and an attempt has been made to relate these 
-

processes to the observed macroscopic crack growth (Ingraffea, 1983 and 

overall reviews by Argon, 1982 and Bazant, 1983). However, although broad 

features seem consistent, there are serious shortcomings in the level 

of associated prediction: 
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1. 2 ANALYSIS OF FRACTURE PROCESSES ON THE MICROSCALE 

Two major questions have been posed for experimental and theoretical 

analysis hopefully toward more general predictions, without the need for 

as much experimentation, in the future. 

The first question has been chiefly regarded as a study in classical 

solid mechanics: the site is identified as a pore or crack or asperity in 

an otherwise homogeneous region and the isolated effect is worked out, 

using an estimated tensile strength or critical stress-intensity factor 

to decide on initiation/propagation of a crack from the nucleating site. 

Indeed, various estimates of strength reduction have been worked out; with 

some success (e.g. McClintock and Argon, 1968; Sikarsie, 1973), on the 

basis of this approach and size-effects (e.g. strength varying as sample 

size to a power between 0.5 and 1.0) seem to support such mechanisms as 

brittle cracking and effective dislocation pile-ups. 

The second question has generated a greater variety of approaches. 

Chief among these as been a smearing out of the influence created by 

surrounding sites, best represented by the "self-consistentll technique 

(e.g. Cleary, Chen and Lee, 1980); the technique can be made arbitrarily 

precise in principle, but is practically limited by the few available 

solutions for interaction between sites: special cases like two spheres 

are available, but an infinite 3-D array would be more useful (e.g. as 

used by Barr and Cleary, 1982, for a 2-D array of surface cracks in the 

context 6f thermal or shrinkage cracking, see also Bazant, 1983). Actually, 

our computer programs are now reaching the stage (e.g. Narendran and 

Cleary, 1982) where quite complex arrays of growing cracks can be studied 

and are are being compared with experimental patterns observed in the 
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laboratory (see also Sec. 2.2 later). Thus, techniques are becoming 

available to correctly analyse the response of a continuum element 

containing a representative distribution of microcracks, if such a model 

(e.g. Kachanov,1982) is useful, e.g. up to the onset of site/crack co

alescence and macroscopic rupture formation. 

A complementary approach, also needed to decide on onset of fracture 

at any particular site, is to assign a statistical distribution of strength 

to various well-defined site locations, such as grain-boundaries (e.g. 

McClintock and Mayson, 1976). Then, by using many available techniques 

such as dipole dislocation representations of each cracking event, the 

stress-field can be compute~ at each instant/load and the crack pattern 

can evolve in a combined deterministic/stochastic fashion. Results of this 

method in 3-D arestill to be obtained (McClintock, private comm., 1983) 

but the expectation seems to have the right trend in helping to explain 

size-effects as due to (statistical) sample size as well as micro-fracture 

mechanics, which Bazant(1983) seems to regard as exclusively rational ising 

the observed data for concrete. 

2.1 EXPERIMENTAL INVESTIGATION OF FRACTURE ON THE MACROSCALE 

The essential features of this activity are: 

a) Choice of a suitable geometry for crack growth observations 

b) Analysis of stress distributions for the chosen geometry 

c) Determination/classification of conditions for fracture onset and growth 

d) Relation of observations to mechanisms operative on the microscale 

Many possible choices have evolved for specimen geometry; these are 

summarized in Ingraffea(1983) and Ouchterlony(1982), but we should add some 

others that we have found useful in the Resource Extraction Laboratory at 

r~IT. A diametrally-loaded core (HBrazilian" test, Jaegar and Cook, 1979) 

can be modified to include a diametral crack of various lengths - cast into 
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artificial specimens or cut from a central hole in rock cores. This loading 

is simpler to apply than the internal pressure in the notched annular core 

(NAC), and may have more potential under confining pressure, but it does 

not have the desirable insensitivity to crack length in deducing toughness 

from the critical load at which unstable crack growth sets in. 

A common attribute of these samples is the facility for stress analysis 

and deduction of some appropriate crack-tip-loading parameter. Extensive 

lists of solutions exist in the literature (e.g. Ouchterlony,1982) for 

linear isotropiC materials response and may anisotropic nonlinear analyses 

are also being conducted (e.g. Cleary and Miller, 1983 for the NAC and 

the compact tensile specimen used extensively by us, Switchenko and 

Cleary, 1979). Great attention must be paid to ensure that the crack near 

tip stress field is not influenced in character by the boundaries, and 

then itsampl itude (expressed as stress-intensity factor K or energy

release-rate J) can be regarded as critical in deciding fracture onset 

or growth for other geometries where the same near-tip field applies-

hence the name fracture toughness testing. 

2.2 ANALYSIS OF (BRITTLE) FRACTURE GROWTH IN TYPICAL STRUCTURES 

The essence of such analysis are two distinct features: 

a) Determination of the stress distribution in the (cracked) structure. 

b) Evaluation/imposition of an appropriate criterion for fracture onset. 

Both aspects have produced a vari ety of approaches, some of whi c.h are 

discussed by Ingraffea(1983). It may be worth summarizing the major 

methodologies here. 

a. Two separate approaches have developed, one based on the Finite 

Element Method (e.g. Rice, 1981) and another on the so-called Boundary 

Integral Method (e.g. Ingraffea, 1983). The BIM has the advantage 

of requiring discretion only along boundaries, but is practically limited 

to linear/isotropic response of simple regions; whereas the FEM allows 
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arbitrary nonlinearity and severe inhomogeneity, but requir'es a volume 

discretisation and complete remeshing for any charge of boundaries. To 

avoid the weakness of either method, we have combined the two techniques 

(Annigeri and Cleary, 1983) to get a most effective scheme for analysis 

of fractures growing through structures (as against stationary dracks 

for which FEM may be the best approach, Cleary and Miller, 1983): we 

have modified the conventional B1M to a Surface Integral Equation, 

allowing more natural representation of growing cracks and their near

tip singularities, without extensive remeching, and we have interfaced 

with FEM - which naturally picks up all nonlinearity and inhomogeneity 

(including boundaries). Available general 2~D analysis codes (e.g. 

Narendran and Cleary, 1983) are now being extended to 3-D fracture 

problems (e.g. Cleary, Kavvadas and Lam, 1983). 

h. The criteria for brittle crack growth seem now to be convention

ally accepted as that of a critical value for the opening stress-intensity

factor Kr at onset of propagation and that of KII= 0 for the direction of 

incremental growth. We have used these criteria successfully to trace 

the growth of fractures observed in our laboratory apparatus (e.g. 

Papadopoulos, Narendran and Cleary, 1983). Other criteria for directions 

have been proposed (such as maximum strain-energy density and maximum 

. energy release rate J for a probe in the new direction of growth), but 

these seem to often give quite similar results (e.g. Ingraffea, 1983). 

When the near-crack-tip stress field is no longer 1/1:r, then a more 

general ~ criterion must be used and even that will break down if the 

near-tip field has interference from boundaries or other mechanisms set 

in (such as slip-bands in large-scale yielding of ductile materials); such 

considerations are now the main concern of the extensive research 

effort in elastic-plactic fracture mechanics(e.g. Rice, 1981) "thich 

may require much more adaptation for application to fracture of 

"na tural" materials. 
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CONSTITUTIVE EQUATIONS FOR CONCRETE UNDER PLANE STRESS CONDITIONS 
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1. Equivalent Stress - Strain Relationship 

In case of concrete under plane stress conditions, there exists an 
elastic zone on a stress space or a strain space, where the stress or the 
strain is very small. When strained beyond the boundary of the elastic 
zone, additional irreversible deformation occurs and the elastic zone 
expands corresponding ly (See Fig.I.). A subsequent e last ic zone is 
developed even in the strain softening conditions. Within this newly 
developed elastic zone, we found the linear relationship between the 
equivalent stress S and the equivalent elastic strain Ee as 

S Eo K Ee (1) 

where Eo is a constant corresponding to the initial stiffness and K is the 
ratio of linear elastic stiffness to the initial one. The equivalent stress 
and the equivalent elastic strain is defined as 

Stress Path 

Strain Path 

s- -1J 

Fig. I Elastic Zones on Stress and Strain Spaces 
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(2) (3) 

where fc is the uniaxial compressive strain and ~oo is the corresponding 
compressive strain. 

Then the boundary should be defined as Ee equal to Eemax and the 
corresponding equivalent stress Smax shall be 

Smax = Eo K Eemax (4) 

In the plastic theory, K is considered constant and the relation 
between the both boundaries on.the stress and strain spaces is unchanged. 
However, in case of concrete, K is not constant and from the experimental 
resul ts of biaxial unloading paths, we have found the K values shall be 
calculated by 

K = exp(-0.73Emax(1-exp(-1.25Emax») 

E = r aBe da .. J as eij IJ (5) 

as shown in Fig.2, where E is a strain path-dependent index E called as the 
total equivalent strain. This nonlinearity is because the local buckling 
due to the extension of microcrackings and disappearance of some volume in 
which the strain energy is reserved. The parameter K expresses this 
behavior and accordingly we call this parameter as a fracture parameter. 

When the subsequent e last ic zone is expanded, it a 1 so moves on the 
strain space according to the kinematic shift of plastic strains. The 
effective plastic strain defined as 

(6) 

cannot be applied for concrete under compression - tension stress state as 
shown in Fig.3. We have newly introduced the equivalent plastic strain Ep 
representing the shift of the elastic zone on the strain space. We 
formulated Ep as the function of the total equivalent strain 

Ep = J-lli- ds .. 
as eij PIJ 

E = Ee + Ep 

= . 20 
Ep Emax-,-<1-exp (-0.35Emax» 

based on the test results shown in Fig.2. 
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2. Flow Rule 

3.0 

2.0 

Uniaxial COmpression 
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- Tension 

~ 

0.5 

~ 

Max. Equivalent Elastic Strain 
Fig.3 Effective Strain 

in the Plastic Theory 

In completing the system of constitutive equations, it is required to 
formulate the directional correlation between the stress and strain 
invariant vectors and the principal stress direction under an arbitrary 
strain path. Within the elastic zone, the directional relationship can be 
assumed isotropic and symmetric as 

1 
= E* 

[ 
1 - 1) 0 1 [0'0] 

o 1 +lJ_ 'Co 

Propl'Otionai coefficient 

(8) 

The Pois son's ra tio was experimenta 11y obtained as shown in Fig.4. When 
the strain moves within the elastic zone, two stress invariants can be 
obtained by solving Eq.l and Eq~8 simultaneously. 

o 0.5 1.0 
Bmax Max. Equivalent Strain 

Fig.4 Poisson's Ratio in Elastic Zone 

To formulate the flow rule governing the direction of the plastic rate 
vector, we introduced the directional correlaton between stress invariant 
rate and total strain invariant rate. The stress invariant rate can be 
divided into two components, VI and V2 as 
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(9) 

where the first term VI is the tangential component to the stress surface 
of constant S and the second term V2 is the parallel component to the 
stress invariant vector. The total strain invariant rate has two components 
Xl and X2, corresponding to VI and V2 respectively as shown in Fig.l. 

The direction of Xl must coincide with the tangential vector on the 
boundary of strain space due to the continuity condition. The direction of 
X2 was obtained from the experiments inc 1 uding non-proportional loading 
paths as shown in Fig.5 which indicates all the component X2 of the same 
strain surface converge to the same point. According ly, we get the total 
strain invariant rate X expressed by 

x • -Xl+X2-

c1Ee 
- aTo 

&It + 
(10) 

The flow direction of plastic strain invariants is now obtained from 
Eq.8, 9 and 10. Typical cases are shown in Fig.6. For low stress level, the 
direction is approximately parallel to the normal vector as the normality 
rule indicates. On the contrary, for the high stress level the direction 
tilts from the normal vector, especially in the compression - tension 
stress state. This is the result of the anisotropic behavior of concrete. 
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ENDOCHRONIC DESCRIPTION OF SAND BEHAVIOR 
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The endochronic theory of plasticity [1] has been applied to describe the 
mechanical behavior of drained sand. In this application, the endochronic 
constitutive equations have been modified to account for special features of 
sand behavior [2]. They read 

£ = 1 (A a + L Bhqh + L Cdqd) ~ + E2 ~ + LF~ £s 
h d s 

in which £ is the strain; a is the hydrostatic 
h d s 

stress; ~ is Kronecker's delta; q , q , and £ 

variables such that r = h + d + s; A, Bh, Cd, 

constants. 

stress; ~ is the deviatoric 

are r number of internal 

E2 , ·and F~ are material 

(1) 

The values of these internal variables grow as the internal structures of 
materials change by deformation. The r internal variables are divided into 
three groups, each being active only for a specific function. Thus, h number 

of internal variables qh are active in the representation of hydrostatic 
response, s internal variables £s are responsible for deviatoric response and 

d number of internal variables qd are related to volume change (densification 

or dilation) due to shearing. The last group, qd, distinguishes granular 
materials from other continua such as metals or concrete. 

The rate of change (or evolution) of each group of internal variables is 
a material property and depends on the material that the model is presumed to 
describe. Therefore, the evolution equation may be linear or nonlinear 
depending on the material at hand. In [2], it has been found that a nonlinear 

evolution equation for qh, and linear evolution equations for £s and qd are 
satisfactory for the sands considered. 

The evolution equations may be integrated resulting in expressing the 
current state of internal variables in terms of deformation histories leading 
up to the present state. By substituting these expressions for the internal 
variables into Eq. I, and thereby eliminating the internal variables from the 
equation, an explicit equation relating the current stress to the deformation 
history is obtained. It is remarked that the form of this equation is highly 
dependent upon the form of the evolution equations, even though the internal 
variables do not appear explicitly in this equation. 
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In the present model for drained sand, three intrinsic (endochrnnic) 
times are used and denoted by zH' Zs and Zo respeetlv~~ly (ot' hydrostatic 

response, deviatoric response, and densification (and/or dilation). The 
evolution of internal variables is with respect to these intrinsic times. 

This constitutive equation has been applied to model sand behavior under 
various loading conditions. Discussion would include: 1) the nonlinear 
volumetric response at isotropic consolidation, 2) the deviatoric response and 
its dependence on the normal stress, 3) densification and dilation due to 
change in the deviatoric state, and 4) effects of unloading, reloading and 
cyclic loading. 

The theoretical results are compared with experimental data found in the 
literature. 
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Introduction 

The conventional elasto-plastic theories are not well adapted to describe 
the soil behaviour for several physical reasons such as : 
1. A virgin soil has no elastic domain, but a previous strain history induces 
nearly elastic range in the vicinity of the previous loading path: the elastic 
limit is very complex and strongly dependent on the strain history. 
2. It is particularly difficult to exhibit experimentally a general three
dimensional loading-unloading criterion. 
3. The elastic portion of strain increments depends mainly on the number and 
the kind of contacts between the particles. The plastic strains influence very 
much these contacts. Therefore, the elastic strain increment can not be expres
sed independently of the previous plastic deformations. 

We propose rather to study directly the relationship between dJ and ~ 
(for rate-independent materials): d! =- f(d,.y) . We will see briefly three 
main properties of .E , then the general formulation of a new class of incre
mental constitutive laws and finally a simple law of this kind. 

Properties of the incremental constitutive relation 

1. The rate-independent behaviour of the medium implies that t: is homogeneous 
of degree one : w it 0 F ( A d ()") =- ). F ( dO") . 

V ~}"'" -.J """,,,,,,,,, 

2. The plastic irreversibilities induce the non-linearity of f : f(-cl:r);c-£(~) 

3. The structural anisotropy of a deformed sample implies the mechanical aniso
tropy of F . 

.-.oJ 

We consider the six-dimensional vectors {dc oc } and ldO"(l} . According 
to property 1, the six functions ~ verify Euler's identity for homogeneous 
functi ons :. c:- d ) -' d Fot d _ M d 

It)(. ( cr(l - o-~ - elf'). Q"'f.> 1 
. a(d(j~) I~ 

where the thirty-six functions MI)(~ are homogeneous functions of degree zero 
of day . Therefore these functions depend only on the unit vector {u } defined 
by : u =. d'Q / II d tr II r 

Y Y N , (1) 
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, norm of do-. . .v with: 1\ cJJ 1\ :: { d rrrJ. cI ~ = j d<rjj d IJ"'j i 
The general formulation of the incremental 
by (Darve and Laban; eh [1)) : 

rate-independent laws is then given 

dEO( : M O(~ (uy}d op . ( 2) 

Study of the cons ti tuti ve tensor M (<-I) 
~ ,y 

Let us consider one of the thirty-six functions MOC(3 • We can have an 
approximate expression of M~~ by its Mac Laurin series development (for 
functions of several variables) : 3 

M-1 2. M " ., 
M \)I.~ (u'{):: OI.(!. + Moc~'( u'( + 1)(('\'( ~ .... ~ "'r ;- ... (3) 

With the definition (1) of U ,the relation (3) allows us to write (2) under 
the following form : ~ 

dE ... :: M" dO""l). + ~ M 2 dlJ
r 

dO"'A -+ _1_ M'\, (. cllT"{ do-y do;;,+ ... (4) 
'" I)I.~ I'" Uc\O"'\1 OI.~y \"' lid cr-II 4 ocl~ya II . ,-

'V --

or in a concise manner: ~ 1 Mn I d 
d£ L dO""p,'" O"A J (5) 

c(::: -1 ndlTlln-1" OIf!'"o .. (31'1 1-'" I~n 1'1 ~ IV 

where: { 0I'~1""-'~n E {1, 2, ... ,6} 
p ~ 1 is the choose order of the deve 1 opment. 

The case p = 1 in the constitutive law (5) gives the trivial solution 
of the elasticity: dE _ M" do-: 

()( - I)(~ r.- I 

but, for p> 1, we can describe by (5) the plastic irreversibilities, because 
this relation is nc<n-linear in ~ and not because of a change of M"with a 
loading-unloading criterion as in elasto-plasticity. ~ 

The case p = 2, which gives the simplest incrementally non-linear 
constitutive law, has been called by Darve [2] and Darve, Thanopoulos [3] 
"incremental law of second order" and its general form is : 

c\ E - M -1 d IJ"n. + _1_ M2. flo do:. d O"'Q. • 
0( - IX/l ,.. ndcrll IX1_Y I I~ 

~ 

(6) 

-1 2. 
M and M 
IV _ ~ 

Determination of the constitutive tensors 
·12 

For the law (6), t:1 and Ij are only dependent on the loading history 
and the second main basis of the law is to determine ~1 and ~1 by identi
fying the behaviour given by (6) with the real behaviour of the soil for 
"generalized triaxial paths". This particular set of paths is defined, in 
fixed pdncipal axes of stress and strain, by the increase (compression) or 
decrease (extension) of one of the principal stresses, the other two remaining 
constant but not necessarily equal (as for conventional triaxial paths). 

With the assumption of orthotropy for the incremental law and with some 
simplifications of the general expression of M'l., the knov/ledge of the 

responses of the SOiJ }~)the s1' oin)cremer~l )pathS 

~=ll '1J 'if 
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-1 
(which belong to the set of generalized triaxial paths) allow us to write t1 
and n2 as functions of the current states of stress and strain, the current 
value of the void ratio, and others material parameters depending on the 
previous load history (Darve and Labanieh [4] , Darve [5J ). 

For this reason this law can be calle~ "incremental law of the interpo
lation-type" since once the two matrices tj and 1j'1 are obtained from the 
basic tests, any other stress increment gives the interpolated strain incre
ment by relation (6). 

Conclusion 

The framework of the conventional elasto-plasticity seems to be not 
able to describe the main characteristics of the soils behaviour particu
larly for cyclic loadings. We propose a different way which is based essen
tially on an incrementally non-linear constitutive relation (see (6)) whose 
matricial coefficients are determined by the experimental knowledge of the 
behaviour for generalized triaxial paths. Our formulation is three-dimensio
nal, valid in cyclic loadings and the constitutive constants are given by 
conventional drained triaxial tests. 
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CONSTITUTIVE RELATION FOR ROCK-LIKE MATERIAL, BASED ON A SHEAR CRACK MODEL 

Introduction 
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In a previous paper [1] elastic-plastic constitutive equations were devel
oped for u n i a x i a 1 compression of rock-like material. In this paper 
they will under certain assumptions be generalized to plane strain, or even 
to 3-dimensional deformation. 

Fundamentals 

At the beginning let us consider the u n i a x i a 1 stress (<1) - strain 
(c) diagram only, of a rock-like material under compression as shoWn in 
Fig. 1 in which, (j and E are counted positive. Up to the level 0'"0' Co 
the behaviour be completely elastic. Thereafter growing arrays of crack faces 
give rise to internal friction so that the deformation, now being referred 
to as crack-"plastic" or "clastic" becomes dissipative. After the so-called 
point of failure is reached, i.e. the maximum of the curve (5 = f5 (c:) the 
weakening influence of the cracks prevails. In this "post-failure 11 regime the 
curve. drops down to a constant state of residual strength G"Rwhich is a
dopted if € ~ E R ' or otherwise asymptotically (1. e. C R - (0) • 

Based on a rheological model the "elements" of which incorporate linear or 
non-linear elasticity, "sticking-friction" until fracture occurs, and after
wards slipping-friction along crack-fa~es, the following loading equation was 
derived in ref. [lJ, 

G(c.) = SU~f(T,E,)dT+ }(l-F(l,E)]} (1) 
-01) 

In it, S is a dimensional factor proportional to the number of elements 
used in the model. The constant ratio J denotes the mean stress in those 
elements which alreaciy.slip, related to their limit stress at fracture. For 
each pre-strain E. ~ 0 given, F( T , E.) is the overall statistical dis
tribution function, and f ( 1:" , £ ) the corresponding distribution density of 
dimension-less elastic stress ~ of the model elements, standardized in 
such a manner that 't' = 1 represents the limit of the fracture. f and F 
fulfil among other conditimns. , also 

F('T,E) = f(1:",£) = 0 if £ ~ tR (2) 

Besides (1), also uniaxial unloading and reloading conditions have been de
rived in [1 J, and been illustrated 0,.applieati,0na1e~les. 

Preceding page blank 
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Biaxial state of strain 

We now assume that for plane strain loading, also a lateral principal pres
sure r acts so that the vertical principal pressure p = p(r,e) may be
come different from es • The direction called "vertical" belongs to the lar
ger pressure i.e., 

o ~ r " p(r, e ) (3) 

and the "equivalent" deviatoric strain € due to the overshooting. stress 
p - r only, is also mea~ured vertically. Then we make the following assump
tions: 

a) The number S of the model elements is independent of r. 

b) The loading (or limit, yield) condition for the residual state be de
scribed using a given £unction ~, by means o£ the equation 

p - r = gR{ r ) (4) 
c) The functions f, F to refer to the deviatoric state of elastic shear 

in the model elements only, are independent of a superimposed hydrostatic 
pressure. 

Assumption (c) holds rigorously if as an examp~terial is linear elastic 
or elastically incompressible, elastical~ isotropic, and the individual frac
ture limits of the model elements are statistically independent of r. 
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Analysis 

We first apply the lower pressure r as a hydrostatic one, and then superim
pose the deviatoric pressure p - r in vertical direction so that by virtue 
of assumptions (a, c) equ. (1) can be written as follows, 

I p; r _ f L f(t',€. )d'r + J(l - F(l,£)) (5) 
-(10 

Then it holds for any loading path in the (abstract) p, r - plane provided 
that p - r never becomes negati:ve. J being independent of t , is ob
tained using (2), (4) if € ~ E R to yield, 

J - E....::...!. 1 ( - s =:sgR r ) 

Therefore equ. (5) becomes, 
1 

p - r = g(r, E.) = s J'T f( 'T, E. )dT + (1 - F(l, c)] gR ( r ) 

(6) 

(7) 

From it the integral as well as S can be eliminated if (7) would after 
substituting r "" 0 ,i.e. p = (5 be written down again, and then substrac
ted from equ. (7) to yield, 

(8) 

Equ. (7) or (8) is the bi-axial loading condition searched for. Besides 
gR- the two functions e5 ([,), F (1 , £, ) have to be determined experimen .... 
tally. . 

Using (6) also the conditions for unloading and reloading, given in (1) 
may be transformed correspondingly though the resulting expressions then be
come less simple. Of course for E. = e. or E = ER respectively, a 
continuous transition takes place. a 

In order to formulate the conditions (7), (8) or its generalizations in
variantly one has to observe that, 

1 1 
r = 2 ( p + r ) - 2 ( p - r ) 

Then for ~otropic material p + r or p - r , respectively must be re
placed by, 

p - r =. I~ °1 - (2)2 + 4 eJi2 I, p + r = C5 1 + 02 

Here <5 1 , °2 , 0'12 denote the pressures or the shear stress, respec'" 
tively in orthogonal coordinates Xi' x2 • Correspondinglyc becomes, 
u~ing the associated strain rates El' £2' £12' and time t to start 
WJ.th t , 

o t 

t = f €. dt ; 
to 
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All equations could be extended to the 3-space if p, r would be taken as 
the maximum or minimum principal pressure, and no influence would be attri
buted to the intermediate principal pressure. 

Whether the flow rule belonging to the yield criterion (8) is an associate 
one or not, has not yet been examined. 

Example 

Let the residual state obey a COULOMB-MOHR loading condition i.e., 

. r sin + R + cR cos 4> R 
gR (r) = 2 I - sin¢)R 

in which 4> R denotes the internal angle of friction and ~..R ~ the cohesion. 
Then the rignt-hand side of equ. (7) also represents a COULOMB-MOHR cri
terion i.ee, 

g (r, c:) _ 2 r sing. + c COS$ 
v - I - sin<p 

in which the instantaneous angle of friction cp and the cohesion c are 
no longer constants. Rather they depend on pre-strain e according to, 

cot
2 ~( f- -cp) = I + [cot

2 ~( ; - 4>R) - ~ [I - F(l , C )] 

I 'it" ~ [S f' [] I r ,l. 1 c = tan 2'( '2 - 'f ) 2' T f( T, t. )d't" + cR I - F(l, E. ~J cot ~( i- -r R) 
-flO 

Therefore <p. = <h (e..) varies because of equ. (2) , from the value 
cp 0 = <p ( Eo) = 6 if E = E. 0 (elastic limit) up to cp R == cp ( E R) if 

C ~ ER (residual state). This is qualitatively shown in Fig. 1 • 

From the COULOMB-MOHR criterion it follo~directly that, 

while equ. (8) yields regarding (9) that, 

Both relations are also qualitatively illustrated in Fig. 1 • 
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Introduction 

In 1920, Griffith [lJ introduced concepts to analyze an idealized crack in 
an elastic continuum at thermodynamic equilibrium. Griffith's analysis applied 
Gibbs' concepts [2J and was a global balance between the change in surface 
energy of the idealized crack and the change in elastic energy of the surround
ing body during a variation of crack length. The following briefly describes 
extensions of Griffith's and other continuum mechanics concepts to obtain a 
discontinuum model of the deformations and thermodynamics during brittle frac
ture [3J. The model describes crack density with a statistical mechanics 
approach, and makes an analogy between a crack and a dislocation. Thus, a 
scalar crack density function can be defined analogous to a scalar dislocation 
density function [4J. The scalar crack density is a function argument in a 
functional representation for the relative deformations between atoms. The 
relative deformation functional has a lattice structure deformation that is 
represented by a function as in continuum mechanics and a crack deformation 
that is represented by a functional somewhat analogous to the discontinuum 
mechanics for dislocations [5,6J. The thermodynamics is almost analogous to 
that for dislocations [5,6J, except for the surface dependence during crack 
propagation and crack opening. The next section briefly outlines the deforma
tion and thermodynamic modelling. 

Deformations and Thermodynamics 

A species of crack can be identified by attributes analogously to the way 
species of dislocations can be identified. For this purpose, consider a point 
on a crack and let1 denote the tangent vector to the crack tip line, 1 denote 
a vector in the plane of the crack, v denote the velocity of the crack relative to 
the local lattice structure, VJ denote the opening rate between atoms at the crack 
tip, and UJ denote the current opening displacement between atoms at the crack 
tip. For-shorthand purposes, let 1. denote the set of vectors {1, ~ 1.,.'{.J,~J}; 
then 1. identifies a crack species and is a point in a hyperspace domain ¢ 
of crack attributes. Applying concepts from statistical mechanics, a scalar 
crack density function denoted by r(~,T,1.) can be defined as the probable num
ber of cracks in a spatial volume neighborhood of point x and in a hyperspace 
volume neighborhood of point 1. at time T. There is an evolution equation for 
r which is a statistical transport statement for each species and has been 
described elsewhere [3J. 

*Work performed under the auspices of the U.S. Department of Energy by the 
Lawrence Livermore National Laboratory under contract No. W-7405-ENG-48. 
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The crack density function describes displacements across crack tips; to 
describe the displacement between two arbitrary atoms in a body a continuum 
contribution away from crack tips is also necessary. This total relative 
deformation between two atoms, say A and B, is a functional and is denoted by 

xH A+B , t ) = ! I (A+B) + ~ I ( A+B, t) + ~J (A+B, t ) ( 1 ) 

where X} is the total relative deformation between atoms A and B at time T = t; 
XI is The initial deformation at time T = 0; and ul is the lattice displacement 
function; and uJ is the crack displacement functional. The crack displacement 
functional depends on the crack density function and is given by 

uiJ(A+B,t) 
t X(B, T) 

= f f 
o X(A, T) 

(T. ·r + T' ·r + T'>f· f)dx ·(A+B T)dT lJ lJ lJ J ' (2 ) 

where tensor operators on domain! are given by 

(3a) 

T () = T .. () :: f u. ] e . k n ~k v n () d1 - lJ ~ 1 J N N 
(3b) 

(3c) 

and the crack density change with respect to time is 
• 
r::ar+'1·c~n T 

(3d) 

In equation (2), the first integrand gives the relative displacement from 
crack opening rates, the second integrand gives the relative displacement from 
crack propagation, and the third integrand gives the relative displacement 
from changes in the crack density function at points on a line between atoms A 
and B. From equation (2), various kinematic measures of relative deformation 
can be defined. The kinematic measures are necessary for the representations 
of external work and of thermodynamic internal energy [3J. For quasi-static 
modelling, the kinematic measures are for a total relative strain tensor that 
decomposes into a strain tensor function as in continuum mechanics and a strain 
tensor functional from the crack density dependent term; a relative velocity 
that has a lattice structure relative velocity function and a crack density 
dependent relative velocity functional; and a relative rate of deformation 
tensor that has an interatomic gradient operator on the lattice structure 
relative velocity function and the crack dependent relative velocity functional. 
The kinematic functional representations follow formally the kinematic concepts 
of continuum mechanics. 

The thermodynamic modelling assumes that an internal energy functional, 
€, exists that depends smoothly on the arguments of the entropy function 
~(~,T); the lattice structure strain function, ¥(~,T)I; the crack density 
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function, r(X,T,~); and the mass density function, p(X,T); and for a 
subset R+aR("T) oT a closed body R for all times T in fo,t] and points i in 
domain~. With this assumption, an incremental change in the internal energy 
can be represented as an integral over subset R that has terms for internal 
energy changes from entropy changes, from lattice strain changes, from crack 
density changes, from mass density changes, and from surface area changes 
resulting from crack propagation and crack opening rates. Then, using the 
first law of thermodynamics, the internal energy change expression can be 
combined with expressions for external work and heat changes to obtain 

• • 
{S (~ €; - R + (A € - Q):~ + (~r€ - g-T*)r + (~ rE - Q:~ T)·VJr R T) -y _:I: - - ~ - ~- -

(4) 

At thermodynamic equilibrium, Gibbs ' methodology [2J for reversible 
thermodynamic processes leads to the following equilibrium thermodynamic 
potentials: 

T == ~ £ 
T) 

Q_==~€ ••• -y 

thermodynamic equilibrium temperature for reversible 

heat transport R 

net mechanical stress equals the thermodynamic potential 
for strain; 

stress work on a crack equals the thermodynamic potential 
for crack kinetics; 

cr:~T = cr .. J €J·k()~kl,:()() dth 
= -v= 1 J ~ JV JV ..:t.:. 

surface stress at the crack equals the thermodynamic 
potential for surface strain; and 

Q: ~ T = a·. J U. ] e . k () ~k ( ) d th - -v- lJ ~ 1 J JV ..:t.:. 

- ~vrE + Y(~r€)··· stress work during crack propagation equals the 

thermodynamic potential for surface, ~ rE, plus the spatial -v 
gradient of the thermodynamic potential for crack kinetics. 
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In the" above M~~ilibrium definitions, the operators 6vrE and 6vrE are 
derived from the internal energy functional, E, by functlonal analysis of the 
surface dependence. At thermodynamic nonequilibrium, none of the equality 
definitions need be true and a consistent thermodynamic formalism such as that 
of Onsager [7J has to be applied [3J. However, from the equilibrium thermo
dynamics considered, a thermodynamic potential for crack kinetics, a thermo
dynamic potential for surface straining at the crack tip, and an extension of 
Griffith's conditions for the thermodynamic potential of surface all emerge. 
The thermodynamic potential for crack kinetics is interpreted as a condition 
for incipient fracture. This means that fracture properties of various brittle 
materials can be classified by a thermodynamic potential, which is a material 
characteristic. This would be an immense improvement over current fracture 
classification methods that use stress intensity factors which are dependent 
on the geometry and the boundary conditions of the test specimen. 
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Introduction 

An on-going controversy among eminent researchers has recently focused 
on the predictive value of numerical studies with strain-softening materials. 
On one hand most materials exhibit limited ductility and toughness which must 
be accommodated by a realistic computational procedure for contained damage 
accumulation within the structure. On the other hand, the continuum
oriented material formulations are restricted by thermodynamic requirements 
of irreversible processes and the ensuing stability and uniqueness conditions 
e.g. of elasticity and elasto-plasticity. 

These fundamental questions are further obfuscated by two aspects: 

(i) The problematic concepts of extracting "objective" strain-softening 
formulations from strain-controlled test data, and 

(ii) The contiguous numerical problem of developing solution techniques 
which are sufficiently robust to survive the formation and propaga
tion of contained material instabilities within the structure, and 
which are at the same time sufficiently sensitive to detect over
all structural failure without undue delay. 

Strain Softening Model 

The controversy above has its origin in the attempt to monitor contained 
fracturing within the structure by an "equivalent" degradation process of 
strength and stiffness within the traditional constitutive concepts fo~ non
linear continua. Similar to the theory of plasticity which provides a phenom
enological model for the highly discontinuous propagation of line defects on 
the micromechanical level,the so-called "smeared" approach describes the pro
pagation of tensile crack and frictional slip defects on the macromechanical 
level. Clearly, the different scale of these defects in concrete and geo
materials introduces a size effect into the softening formulation which 
results from the localization of fracture within the so-called fracture pro
cess zone. If we assume that this process zone is a material property, then 
it follows that the fracture energy is released only within failure bands of 
constant width. Consequently, the identification of the material softening 
branch introduces a crack width parameter "d" which results from the homo
genization of fracture propagation within the material test sample in the 
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post-peak regime. In this sense, the softening regime is not a "proper" 
material property, but rather the result of a size-dependent averaging 
procedure of the fracture discontinuties which control the degrading post
peak behavior of a particular test specimen loaded to failure under strain 
control. 

Computational Strategy 

It is of little surprise that the numerical results of boundary value 
problems for softening materials are extremely sensitive and depend to a 
large extent on the computational strategy. Starting from the spatial 
discretisation with rank-deficient or locking finite elements to the incre
mental qu~istatic time history analysis of the inelastic fracture process, 
and the iterative enforcement of stress transfer within truly finite time 
intervals a successful solution centers around a strain-controlled driving 
strategy in analogy to strain - rather than load-controlled testing. Similar 
to the strain-space formulation of plasticity, the evolution law for the in
elastic fracture strains must be expressed in terms of total strains rather 
than stresses in order to stabilize the solution procedure. In spite of its 
slow convergence, the initial load strategy provides a convenient computa
tional scheme for softening material properties because of the underlying 
splitting of the well-conditioned positive definite elastic operator (implicit 
elastic stiffness format) from the potentially ill-conditioned fracture 
operator (explicit initial load format). For a proper appreciation of the 
computational task, the structural analyst must be aware that the contained 
fracture analysis attempts to trace the entire evolution of local material 
instabilities and the ensuing stress redistribution mechanism up to the point 
of overall instability when the redistribution capacity of the structure is 
exhausted. Clearly, the success of such an analysis depends to a large extent 
on the close tracing of the fracture process and the efficient stress transfer 
due to localized softening within truly finite increments. 

Direct Shear Test 

In order to explore the limitations of the smeared 'approach, the con
tained fracture propagation in concrete and mortar specimens was studied with 
the large capacity servo-controlled direct shear apparatus at CU, Boulder. 

, For the various ratios of normal to tangential loading, both contained tensile 
cracking and frictional slip modes of fracture were mobilized within the 
specimen which is in reality.rmini-structure'~ Some of the preliminary results 
were summarized in ref. [lJ. The identification of the crack-width parameter 
"d" from triaxial Hoek-cell tests was described in the recent report [2J in 
which the computational predictions of the smeared approach were also compared 
with the experimental results of the direct shear test indi~ating little 
sensitivity with regard to mesh size because of the high confinement of the 
shear box. 
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Nature of the problem 

Cracking in concrete elements affects the mechanical characteristics in such 
a way that both the shear strength and the shear stiffness markedly decrease com
pared to solid concrete. However, although reduced, these characteristics may still 
be important on condition that the confinement action across the cracks is signi
ficant. 

Both shear strength and stiffness of cracked concrete are mostly ensured by 
the roughness of crack surfaces (Aggregate Interlock Mechanism). Consequently, a 
first approach to the description of the behaviour of cracked concrete subject to 
shear should be based on Aggregate Interlock Properties. Nevertheless, a more ge
neral approach is needed to describe not only the shear transmission capabilities 
of existing cracks, but also the process of formation of the cracks themselves. 

Within these different approaches, two constitutive models to describe how 
cracked concrete behaves are here presented. 

The first (Rough Crack Model) refers to a system of existing parallel cracks 
and is based on finite stress-strain relations between the stresses at the crack 
interface and the "equivalent" strains produced by cracking itself. 

The second (Model of Weak Planes or Microplane Model) assumes that the non 
linear behaviour in tension (up to cracking, which is introduced by means ofequi 
valent strains) is the result of the concrete behaviour along randomly distribu~ 
ted "weak planes" (or "microplanes"). A one-to-one functional dependence is assu
med between the normal stress and the normal strain in each weak plane; cracking 
is represented in each plane by the tail of the an(En) function, characterized 
by large strain values and by zero stress values. 

Rough Crack Model 

The Rough Crack Model describes the Aggregate Interlock Mechanism, Fig.l /1/, 
starting from some simple micromechanical models (Fig.2) and from the available 
test data (mostly those by Paulay and Loeber /4/). Total stress-total displacement 
relations are worked out at the crack interface /1,3/. These relations can be re
garded as constitutive laws of the material (cracked concrete) if the following 
assumptions are introduced: the cracks are linear, parallel and densely spaced; 
solid concrete deformations between two contiguous cracks are negligible; crack 
displacements can be replaced with equivalent strains obtained by smearing the 
displacements over a length equal to crack spacing s. The stress-strain relations 
are formulated as follows: . 
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c (. ~ ) a 3 + a41 ric a l a 2 r ~ c 

ant = TO 1 - ~ +a r 1 +a 4 r 4 ' ann '" - (1 + /) 0 . 25 ant 
(1,2) 

where a
l
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4 
are constants, T = 0.25-0.30 f', r = 0 /0 = Y tIE • At constant oct n n n 

crack dilatancy (Fig.3a,b, 0 lac = 0.0725 mm3/N or aCt/o = 13.8 N/mm3) both the n nt n n 
stiffness coefficients E =aac lay and E =aac /aE have large values,. and so 

33 nt nt 31 nt n 
also the shear-opening coupling, represented by E3l • 

Microplane Model 

Because of the nature of concrete, which is a brittle aggregate material 
with hard inclusions and a weak matrix (Fig.4),the stresses are far from uniform 
at the local level, having sharp extremes in the thin cement-paste layers between 
two contiguous aggregate particles (these layers are called weak planes or micro
planes). Assume now that in each microplane the static behaviour is characterized 
by a uniaxial law 0n=C (En)'En,where n is the normal to the microplane (Figs.5, 
6); the shear stiffnessnis negligible; the normal strain En is equal to the reso! 
ved macroscopic tensor Ekm for the same plane (En= nk nm Ekm. with k,m=l,2 in two 
dimensions); the law On(En) has a softening branch (Fig.6); the microplanes have 
a random distribution at the macroscopic level (Fig.5). For the loading in tension 

of the microplanes the following intrinsic law has been adopted: ° =E E e-En/ Eo . 
Superimposing the responses of all microplanes, the stresses 0ij aRd lhen coeffi
cients Eijkm of the stiffness matrix of the material can be obtained as follows: 

I 'IT 1 'IT 
a J C n II ll. n. E dcj> E"

k 
= - J (C + dC IdE ) n. n. n

k 
n dcj> (3,4) 

ij= 'IT 0 n k m l J km ' lJ m 'IT 0 n n n l J m 
With a suitable formulation for Cn , the elastic behaviour can also be described, 
withv=0.33 (plane stresses), which can easily be corrected to 0.18-0.20 /2/. 
The formulation of the laws ° neE n) for loading in tension and in compression, and 
for unloading, can be based on the results of Aggregate Interlock tests /4/, see 
Fig.7, where 0 t and 0 n have to be smeared over a "crack band width" w equal to 
a multiple of the maximum aggregate size da (for instance wc=da).Altgough the 
constitutive law of the microplanes is path-independent, the superposition of the 
responses is path-dependent. 

Comparison with test results, and conclusions 

Both models give shear-slip curves (under imposed strain histories) which 
are in good agreement with the experimental results, Figs.8,10 (here reference 
is made only to Aggregate Interlock Tests, see the test set-up in Fig.9). 

The fitting obtained with the Rough Crack Model is even better, but the Mi
croplane Model is much more general and can describe the overall behaviour of con 
crete in tension and shear. Both models can usefully be introduced into FEM pro~ 
grams, for updating the stiffness characteristics of cracked concrete. 
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Introduction 

In cement-based composites there is a zone surrounding a crack tip within 
which a significant amount of microcracking and other inelastic deformations 
occur. Furthermore, because cracks in these materials are tortuous, mechanical 
interlock occurs between opposing crack surfaces. In concrete this interlock 
aris~s from aggregate bridging, and in fiber-reinforced mortar it arises. from 
fiber bridging. The portion of the crack which is traction free is referred 
to as the actual stress-free crack and the zone within which mechanical inter
lock and microcracking occur is referred to as the process zone. The sum of 
these two lengths is referred to as the effective crack length. Figure 1 shows 
schematically these regions. The process zone can be large and can greatly af
fect the fracture process. 

Kaplan [1] applied LEFM concepts to the study of fracture in concrete and 
mortar. He observed that strain energy release rate (GIc ) values increased 
with increasing beam size. Kaplan pointed out that these discrepancies were a 
result of slow crack growth prior to instability. This study was the first 
to indicate that the effect of slow crack growth prior to brittle fracture should 
be included in theoretical models used to predict crack growth in cement-based 
composites. More recently models have been proposed [2,3,4] which include the 
effect of the process zone. These models replace the aggregate interlock and 
microcracking in the process zone with a closing pressure which resists crack 
opening. It has been concluded that these models give a more realistic and 
accurate description of fracture than other models which do not include the 
~rocess zone. All the models used approximate analytical techniques to calcu
late the stress intensity factor produced by the loading and the closing pres
sure. Furthermore, the crack profile was assumed. In this investigation the 
physical model proposed by Wecharatana and Shah [4] is used, and a more accurate 
analytical technique is developed to calculate all physical quantities. The ef
fect of the process zone and the range of crack lengths for which this zone makes 
a significant contribution to the fracture process is determined. 

Analytical Model 

A significant amount of experimental work has been performed using three 
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point and four point bending specimens. To predict crack growth in this struc
ture, it is necessary to understand the stress and displacement fields arising 
from the external loading and from any loading which might exist along the crack 
surfaces. This is done by solving the elastostatics problem shown in Figure 2. 
The solution was obtained using the principle of superposition. This scheme is 
shown in Figure 2. By finding the stresses produced by a single dislocation in 
an infinite space on the lines y=O and y=h and applying the negative of these 
as well as concentrated forces to a layer, the solution for a layer containing 
a dislocation and loaded as shown in Figure 2 is obtained by adding the disloca
tion solution to the layer solution. The crack is modelled by replacing the 
single dislocation with a distribution of dislocations given by 

B(c) 
_3 (u+ -) - u , 
dC x x 

(1) 

integrating the effect of each, and imposing the proper stress boundary condi
tion on the crack surfaces. In equation (1) u~ and u~ represent the x-displace
ments of material points to the left and to the right of the point (O,c) respec
tively. The general solution to the problem of a layer with prescribed trac
tions on its surfaces can be found using Fourier Transform techniques (see Sned
don (5]). Applying this method to this particular problem leads to the follow
ing nonlinear integral equation for the unknown dislocation density B(c) 

{
I 2 

B(c) - +
c-y c+y 

RHS(y) - (} 

(3c+y) + 4cy } 
(c+y) 2 (c+y) 3 + Kl (c,y) dc 

(2) 

where 0 is the closing pressure function which models the mechanical interlock 
and other inelastic deformations in the process zone. Kl(c,y) and RHS(y) are not 
given here. Equation (2) was solved by the method of successive approximations. 
The crack opening displacements and stress intensity factor are given by 

+ u - u x x n J
d 

B(c)dc 
y 

fd B(c)dc 
o c-y 

Hence the problem of finding the stress and displacement fields is solved. 

Fiber-Reinforced Mortar 

(3) 

The closing pressure function for fiber-reinforced mortar was approximated 
by the following function [6,7,8J 

a = a (1 n )2 
max --r

max 

(4) 

where (} is the maximum post-cracking stress for the material in uniaxial ten-max 
sion, n is the crack opening displacement, and nf is the maximum pulled out dis-

f max 
tance of the fibers. n is taken as one-half the fiber length. To test the max 
proposed model, experimental work performed by Valezco et ale [8J was analyzed. 
By using the reported values of load and crack length, the proposed model was 
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used to predict the crack mouth opening displacement (CMOD). In modeling fiber
reinforced mortar, it was assumed that the process zone was the zone in which 
the fibers had not pulled out of the matrix. Other inelastic deformations 
around the crack tip were ignored, since the crack opening was resisted for the 
most part by the fibers. For these beams the crack opening displacements were 
always less than one-half the fiber length (1/2 inch), so that the fibers never 
pulled out of the matrix. This means that fiber bridging occurred throughout 
the 1 ength of the crncks fmd that th1.s proeeSR znne Incnw.sed D8 the erllck 
lengths increased. Figure 3 is a comparison of predicted and observed CMOD val
ues. It can be seen from this graph that the proposed model describes the ef
fects of the fibers quite adequately. Even though they are not presented here, 
it was observed that for a given effective crack length, the stress intensity 
factors are higher for the beam with a shorter initial notch length. This is 
a result of the process zone being longer for this beam at any given effective 
crack length. It can be concluded that the fibers make the material much tougher. 

Concrete 

The closing pressure function for concrete was assumed as 

~ n 
(J = f (1 - -- ) 

t n max 
(5) 

where f t is the uniaxial tensile strength of the concrete, n is the crack open
ing displacement, and nmax is the displacement which separates the actual stress
free crack and the process zone (Figure 1). Two models were used to predict the 
CMOD for a particular load and crack length. The first model (Modell) assumes 
that the measured crack length is the effective crack length. That is, the 
measured crack carried tractions up to a critical value of the crack opening 
displacement. To test this model, experiments performed by Catalano and Ingraf
fea [3] were analyzed. As seen in Figure 4, by using this model a significant 
error in the predicted CMOD's is obtained in the short crack region. The reason 
for this is that for the short cracks, the nonlinear deformations occurring 
ahead of the crack tip will have a large influence on the fracture process, and 
this model assumes these nonlinear deformations do not exist. A second model 
(Model 2) was used in which the measured crack length is assumed to be stress 
free, and a process zone exists ahead of the stress-free region. For this model 
the actual stress-free crack is plotted in Figure 4, and, as. seen from this plot, 
by using Model 2 a good correlation exists between experimental and predicted 
values of CMOD for all crack lengths. Even though they are not presented here, 
it was observed that the length of the process zone decreased as the crack 
lengths increased. This was also observed by Wecharatana and Shah [4]. This 
result is reasonable, since for the long cracks the displacements are so large 
that the length of the zone within which interlocking occurs decreases. 

Conclusions 

1. For fiber-reinforced concrete the effect of the process zone must be 
included to predict results for all crack lengths, especially for the longer 
crack lengths, since the fiber bridging zone in these cases may be equal to the 
whole length of the effective crack. 

2. In concrete, the process zone ahead of the visible crack tip where micro
cracking and other inelastic deformations occur must be included to predict re
sults in the short crack region, since the length of this zone may be on the same 
order as the stress-free length. Long cracks tend to behave as stress-free cracks. 

3. Critical stress intensity factors are a function of the crack length. 
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4. Accurate analytical procedures should be employed whenever testing a 
physical model. This will eliminate errors in the calculations, and will re
sult in a better understanding of whether the physical model is satisfactory. 

5. Experimental programs should be tailored so they can be used in conjunc
tion with mathematical models. Any physical quantity which is associated with 
the fracture process which is included in the mathematical model should be mea
sured in experiments, especially the slow crack growth and crack opening dis
placements. 
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EXAMPLES OF PRACTICAL RESULTS ACHIEVED 
BY MEANS OF THE FICTITIOUS CRACK MODEL 

A. Hi 11 erborg 
Professor of Building Materials 
Lund Institute of Technology 

P.O. Box 725, 5-220 07 LUND, Sweden 

Introduction 

By means of the fictitious crack model /1, 2, 3/ it is possible to analyse· 
all types of tensile fracture in concrete, rock and other materials. Some 
examples of results will be demonstrated. The analyses are based on the 
simplifying assumption that the a-W-curve is either one single straight line 
(S.L) or two straight lines imitating the properties of concrete (C), Fig 1. 
The a-w-curve shows the relation between the additional deformation w of the 
fracture zone and the stress across this zone. The area below the a-W-curve 
represents the fracture energy GF per unit newly formed crack area. 
From the material properties E = elastic modulus, ft = tensile strength, and 
GF, it is suitable to calculate a material property lch, called the characte
ristic length of the material 

The value of lch is often about 10 mm for cement paste, 200 mm for mortar and 
400 mm for concrete. 

Analysis of fracture mechanics tests 

The entire behaviour in a test can be analysed and simulated, e.g. complete 
load-deformation curves, crack opening displacements, crack growth etc. Con
sequently the probable result of a test can be calculated. 

Fig 2 shows the calculated Gc-values (and the corresponding KIc-values), which 
can be expected in a three point bend test, if the evaluation 1S made by means 
of linear elastic fracture mechanics. 
The lower curves are valid if the crack 
length at maximum load is assumed to 
be equal to the notch depth a, whereas 
the upper curves are valid if the 
crack length at maximum load is cal
culated from the compliance. 

Fig 3 shows the notch sensitivity, 
i.e. the change in net bending 
strength with the notch depth /3/. 
From this figure it is evident that 
the notch sensitivity is not a mate
rial property, but that it depends on 

E w ." 

Fi g. 1. 
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GC/GF KrcNGFE 
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Fig. 2. 

the ratio d/lch. 
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dItch 

fnet'f 
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k ~a 11 

Fig. 3. 

Fig 4 shows theoretical KR-curves for a beam with different initial notch 
depths and with the assumption that the crack tip is situated where w = 0.01 
mm /3/. From thi s figure it mi ght be concl uded that the KR-curve can be re
garded as a material property. Fig 5 /3/ however shows that this is not the 
case, as the curve varies considerably where different beam depths are con
cerned. 

In the same way as has been illustrated in Figs 3-5 all kinds of fracture 
mechanics test can be analysed, e.g. double cantilever beams, compact tension 
tests, ring tests, chevron notch tests etc. The double torsion test has been 
analysed /4/ with the conclusion that the ordinary evaluation method is valid 
only if a concrete specimen is very large, about 0.6 x 3 m. 

2 

I a -w,(SLI I 

50 
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aId ,,0.1 
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G

F
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Structural design 

The fictitious crack model can be applied to uncracked (unnotched) specimens 
as well as to cracked, as opposed to conventional fracture mechanics, which 
can only be applied where cracks already exist . 

. The first application of the model was the calculation of the ratio between 
the flexural strength f{ (modulus of rupture) and the tensile strength /1/. 
A result of such an aha ~sis is shown in Fig 6, where the influence of the 
choice of the shape of the ~-w-curve is also demonstrated. The dashed line 
shows the influence of shrinkage in an indoor climate. It is evident that 
this influence increases very much with the beam depth d. The flexural 
strength is of importance for the transition from the uncracked to the crack
ed state in a reinforced beam. 
The model has been applied to unreinforced concrete pipes by Gustafsson /5/. 
The pi pes can fail in bendi ng acti ng as~ __ ~ ___ ~ 
a beam or as a ring. The theoretical ~/~ 
failure load has been calculated in 
these two cases and the corresponding 
maximum stress at failure according 

3 

2 

to the ordinary elastic theory has 
been determined. This stress is a for
mal flexural strength, and it is de
noted by ff. The results are given in 
Figs 7 and 8 for a concrete quality 
wi th 1 ch = 380 mm. It can be seen that 1.5 
the formal strength for ririg failure 
is much higher than that for beam fai-
lure. The results are in agreement 
with test results. The diagrams are 
now used by concrete pipe manufactu
rers for the design of pipes, and they 

ZoO 

1.5 

t t 

Inside diameter di, mm 

------.:"'100 

1 
5 10 20 

0.01 0.05 0.1 

Fi g. 6. 

ff 1ft 

loi 
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2.5 ~ 
"" '----- 150 
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wj 

1.5~ 
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Wall thickness t, mm Walt thickness t, mm 

Fi g. 7. Fig. 8. 
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are an example of the application of 
the fictitious crack model in design. Fmax 

The most advanced application so far is 2bh~ 
the analysis of shear fracture of con-
crete beams with longitudinal rein
forcement, performed by Gustafsson /6, 
7/. Some results are shown in Fig 9. 
The upper scale on the horizontal axis 
is valid for a concrete quality with 
l~h = 250 mm. On the whole the theore-
tlcal results agree well with the test 
results, e.g. regarding the influence 

0.5 

~h 
I.. l .1 

of span/depth-ratio, reinforcement per- 250 500 750 1000 h,mm 
centage p JI,' and beam depth. The theore- 0 +---+-----4f---~_+_--+--+--
tical values are however lower than the 0 2 3 t. 5 
test values, because aggregate i nter- h/[ch 

lock and reinforcement dowel action 
have not yet been included in the ana- Fi g. 9. 

Uh 

3 
3 
3 
6 
9 

lysis. It is possible to do this in principle, but there are practical numer;
ca 1 problems as well as alack of knowl edge of some of the materi a 1 proper
ties. 
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VIBROTHERMOGRAPHY OF GRANULAR SOILS 

M.P. LUONG 
Maitre de Recherche C.N.R.S, 
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ECOLE POLYTECHNIQUE 

91128 PALAISEAU, France 

Introduction 

Rheological properties of granular soils subjected to vibratory and 
transient loading can be interpreted at the granular level where the solid 
particles interact leading to a global aggregation (contractancy) or disag
gregation (dilatancy) according to the following main deformation mechanisms. 

Deformation mechanisms 

A cohesionless granular material can be considered as a grain assem
bly. Observed macroscopic deformations are derived essentially from their 
structural modifications, i.e. rearrangements of the constitutive grains in
ducing irreversible contractive or dilative volume changes : 

Consolidation mechanism corresponding to the mutual tightening of solid 
particles inducing a contractive behaviour ; 

Distortion mechanism due to irreversible grain slidings leading initially 
to a contractive behaviour followed by a dilative behaviour when the devia
toric stress level n = q/p exceeds the grain interlocking threshold called 
characteristic state (stationary volume change) ; 

. Attrition mechanism subsequent to asperity breakage and grain crushing modi
fying the relative density under high stresses. The resulting effect is a 
contractive behaviour. 

Characteristic threshold 

The characteristic threshold is revealed by the appearance of a dila
tancy loop when the load cycle exceeds the deviatoric stress level n (Fig. 
l.a and l.b). Such observations enable the determination of the entaffglement 
capacity of a granular material [2]. 

Below the characteristic threshold, the intergranular contacts are 
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stable. The limited slidings tend to a maximal aggregation. In this subcharac
teristic domain or contractancy zone, a hysteresis loop occurs when reloading. 
The mechanical behaviour depends upon the load history. 

E == E + 2t v a r 
q == a - a a r 
p == (0 + a )/3 == p , +u 

a r 

HL Hysteresis loop 

DL Dilatancy loop 

E 
V 

DL 
---:':"~=~7 

E 
a 

q crj 
DL OESP 

/
', 
I u 
I 

I 

HL 
p,p' 

stress 
path 
TSP 

11.a) Und~ dnained eondLt{on. (1.b) Und~ undnained eondLt{on. 
Figure 1 : Vilataneif loop ob~~ved ant~ a load eife£e ~o~~~ng the 

ehaJLaetvr.lA tie line CL. 

Above the characteristic threshold, the grain contacts become unsta
ble, leading to significant slidings due to interlocking breakdown. A reload 
shows a dilatancy loop with memory loss of load history and a softening phe
nomenon occurs. 

Heat generated by friction 

When a siliceous sand grain slides against another one, there occurs 
a motion resistance called friction. What is the cause and what really happen 
on the contact surface ? 

Bowden and Tabor [1] demonstrated that when quartz or glass surfaces 
slide over one another in the dark, small sparkling points of light can be 
seen at the interface. 

The friction between grains generates heat in the same fashion aswhen 
prehistoric man used silex stones to generate fire. 

In the conventional triaxial test, if the load is cycled within the 
subcharacteristic domain under the characteristic threshold n , the deforma
tion work (a) given by the hysteresis loop in the (q,E ) diag?am is very 
small. On the contrary, if the characteristic thresho13 is exceeded, a very 
large dissipation of energy (B) occurs as shown in the Figure 2. 
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At the Laboratoire de Mecanique des Solides, infrared videothermogra
phy is used in real time with an infrared detector which treats the detected 
infrared signals and displays these upon a television monitor with colour se
ries of lOCo for each step with the aid of a colourer. 

Experimental set-up and Results 

Th~ behaviour of a Stampian sand (Fontainebleau sand) is studied when 
subjected to two types of vibratory loading. 

a- Conventional triaxial loading : Indirect shearing 

A cylindrical sand sample (dry unit weight Yd = 15.7 kN/m 3 
; void 

ratio e = 0.720 ; relative density ID = 0.62) confined under a constant iso
tropic pressure of 100 kPa is subjected to a vibratory force generated by a 
steel mass located at the top of the specimen excited by an electrodynamic 
vibrator. 

When the frequency reaches 87 Hz, with a controlled displacement of 
lmm at the base, the specimen (70 rom diameter - 150 mm high) is in resonance 
and presents a striction zone where the deviatoric stress level exceeds the 
characteristic threshold of interlocking breakdown of the granular structure, 
(Fig. 3.a). 

b- Cylindrical loading : Direct shearing 

A tubular sand sample at the same initial density confined under a 
pressure of 50 kPa is directly sheared by a concentric steel cylinder excited 
in an axial vibratory motion by the electrodynamic generator. 

In this case of loading, the principal stress axes rotate during 
loading. At the frequency of 80 Hz and with a controlled displacement of lmm, 
the characteristic threshold is reached and hot colours due to heat produc
tion by friction appear as shown in the figure 3.b. 
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Concluding remarks 

Infrared vibrothermography demonstrates the thermal dissipation of 
sheared granular material characterizing the sliding mechanism of grains when 
the granular interlocking structure breaks down on exceeding the characteris
tic threshold. 

This non-destructive testing technique allows records and observations 
in real time of heat patterns produced by the dissipation of energy due to 
friction between grains. 

The infrared vibrothermographic test couples mechanical and thermal 
energy. Additionally it offers the potential of directly monitoring the stress 
state of particle rearrangements or characteristic threshold and of predicting 
the degradation or damage of granular materials by active heating. 
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GRAVITY FLOW OF BULK SOLIDS 
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The term bulk solids is used to describe ores from mines and quarries, 
grains from farmers' fields and all therefrom derived particulate solids 
which are transported, stored and handled in bulk. The annual tonnage of 
these solids moved from the ground to their destination is in the billions~ 

The characteristics of these solids vary widely: the particle size 
and composition varies from micron size titanium dioxide to meter-size 
blocks of mine-run ores, the strength of the particles from that of 
cornflakes to steel balls, the frictional and cohesive properties from 
those of lubricated polyethylene pellets to slimy ores. 

Our interest is in the flow of these solids into, through and 
particularly out of flow channels, such as mine shafts and storage vessels. 

The theory of flow, which is over twenty years old [1,2,3], is based 
on two characteristics which all flowing solids have in common: 

1. While flowing, particles slide on each other hence, the bulk solid is 
in a limiting, i.e. plastic state of stress. 

2. When an obstruction to flow occurs and flow in a channel ceases, it is 
because the cohesive and frictional surface properties of the particles 
are sufficiently high to sustain the stresses acting within the 
obstruction. An obstruction may be in the form of an arch across the 
channel or a crater around the outlet of the vessel. In both types of 
obstruction the critical factor is the unconfined compressive strength, 
fc, which the solid has at the surface of the arch or crater. 

Flow criterion 

It follows that a bulk solid will flow through a channel provided 
that, everywhere within the channel, the strength fc is less than the 
unconfined compressive stress 01 acting within the solid at the surface of 
a potential obstruction: 

(1) 
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The design for assured flow from vessels requires the knowledge of those 
two parameters and the satisfaction of inequality (1). 

Unconfined Yield Strength, fc 

The strength fc of a solid at a given temperature and surface moisture 
is a function of the major pressure 01 which has consolidated the solid and 
the time of action of that pressure while the solid was at rest. 
Obstructions to flow caused by the interlocking of particles, which are 
large with respect to the width of the channel, will not be discussed here. 
Let us consider a typical operation of a storage silo, Figure 1. The rate 
of outflow is controlled by a feeder. Assume that the silo is filled with 
solid with negligible impact. The pressures within the solid are those due 
to gravity. Under the action of these pressures material consolidates, its 
density increases. As particles are brought closer together, cohesive 
forces increase. They usually increase also with the time of consolidation 
at rest under constant pressure. The relation fc(01)' where ql is called 
the major consolidating pressure, is referred to as the flow-function of a 
solid. Typical flow functions are shown in Figure 2. The higher the 
location of the curve, the greater the strength of the bulk solid and, 
hence the lower its flowability. 

When the feeder is started and the solid flows, a limiting state of 
stress develops within the converging part of the channel. The ratio of 
the major pressure 01 to the minor pressure 02 assumes a practically 
constant value 

1 + sin 0 
1 - sin <5 

(2) 

for a sufficiently small range of 01_ <5 is called the effective angle of 
friction of a solid and is a vital characteristic of bulk solids. 

In most industrial applications the outflow velocity is small and the 
effects of acceleration can be ignored. The equations of equilibrium in 
polar coordinqtes r,e for plane strain (m=O) and in spherical coordinates 
r,e,a for axial symmetry (m=l) are 

a + m( a - ° )! + m'r e cot el + era ~ r 

+ cos Y cos e ::: O. (3) 

- y sin e o. (4) 
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Substitute, as follows: 

or = y r s(l + sin 8 cos 2~) 

06 y r s(l - sin 8 cos 2~) 

Tr6 = y r s sin 8 sin 2~ 

aa = y r s(l + sin 8) 

to obtain 

~~ + s f (r , e) + g (r , e ) ::: 0, 

dS ) r dr + s h (r ,e + j (r ,e) ::: 0, 

where 

f(r,e) = 2(~ + 1)Sin
2
5 sin 21jr + 2r ~ sin

2
5

(sin 5 + cos 21jr) + 
cos 5 cos 5 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

+ 1.21: + m sin 12(1 + sin 5)[sin 21\r - cot e(l + cos 21\r»), (11) 
y de 25 cos 

g(r,e) ::: - .flin
2
5 sin (e + 21\r) .. SinZe, 

cos 5 cos 5 

h(r,e) 
~I, s~n S>. ) 2 d,lf sin 5 = 1 + 2(~ + 1) ·'-.... -2-U(coS 21\r - sin 5 - r~ 2 

cos 0 cos .5 
sin 21\r + 

+.E Ar + ill Sin2~(1 + sin 5)(cot e sin 21\r + cos 21\r - 1), 
Y dr S>. cos U 

j(r,e) = 
sin 5 cos e 
=~2":;' cosca + 21\r) + 2' 
cos 5 cos 5 

Now consider that as the solid flows toward the outlet, r becomes small and 
in order to obtain an approximate expression for the stresses at the outlet 
assume r=O and density y = constant. This produces the folloWing set of 
two ordinary d1fferential equations which define a radial stress field 
independent of the top boundary condition of the converging channel. 

~ = F(e,1jr,s) = de 

" . 1 - [m s sin 0(1 + sin 5)(eot ·e sin 2'1r + cos 21jr -1) + cos e -

- sin B cosCe + 2'1r) + s cos
2

BJ/2s sin 5(cos 2t - sin B), 

(12) 

(13) 

(14) 

(15) 
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ds 
de = G(e,~,s) = 

s sin 2i + sin (e + 2*) + m s sin 5Icot e(l + cos 2*) - sin 2*] 
= cos 2~ ~ sin 8 

Such convergence is a common characteristic of hyperbolic systems of PDE's. 
The above simplifications raise the obvious question of the rapidity of 
convergence and, hence, of the validity of the results to be obtained. 
Analytical evidence of convergence of general fields to radial is presented 
in references 3, 7 and 8. More importantly, a method of design based on 
these assumptions has been used - allover the world - for the past 
twenty-five years, and is still being used. 

The effective angle of friction 0 and the unconfined yield strength fc 
are measured as a function of the major consolidating pressure al on a 
shear tester [2,3,9], Figure 3. 

The other side of inequality (1), stress 01, is obtained from an 
analysis of stresses in a self-sustaining; unloaded arch spanning the 
channel {5]. Stress al as well as stress Giare computed at the wall of 
the channel. With the assumption of a radial stress field, both these 
stresses increase linearly with the width of the channel and their ratio, 
called the flow-factor, 

determines the flowability of a channel. ff is a function of m,o, the 
channel slope angle e' and the wall friction angle ¢'. Values of the 
flowfactor have been computed for a range of the above parameters. 
Examples are given in Figure 4 for 8=50°. In axial symmetry (m=l) the 
range of wall conditions (e',¢') within which flow can occur is bounded and 
depends on o. c 

In the proess of design the flowfunction, FF, Figure 2, is measured 
for the prescribed solid and operating condition (moisture, temperture, 
time of storage at rest) and is superimposed over the appropriate 
flow-factor (m,8,e',¢'), Figure 5. The two lines intersect at a value 
fcrit = fc. For conditions above the point of intersection, inequality (1) 
is satisfied and gravity flow obtains. The point of intersection thus 
determines the minimum outlet dimension 

(16) 

(17) 

B = fcrit x H(m,e')/y (18) 

The design method is fully described in reference (9] which contains a 
series of charts of ff, function H(m,e') and others. 
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MECHANICAL MODELING OF 
THE SHRINKING AND SWELLING OF POROUS SOLIDS 

S. C. Cowin 
Professor of Mechanics 

Department of Biomedical Engineering 
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New Orleans, LA 70118 

Introduction 

The purpose of this note is to point out that the theory of elastic 
materials with voids [1,2] can be used to model the swelling and shrinking 
observed in hydroscopic solids. Hydroscopic solids are discussed first, 
then modeling of the swelling and shrinking of these materials. Examples of 
hydro scopic materials include natural materials such as geological materials 
and plant and animal tissues and many man made composites. Examples of the 
effects of swelling and shrinking of plant and animal tissue include the 
warping and cracking of drying lumber and swelling of animal tissue in solu
tions of different salinity. Examples of the effects of swelling and shrinking 
of geological materials include soil heaving due to permafrost and the cracks 
that appear in the sundried gumbo at the bottom of a tormer mud puddle. There 
are numerous industrial processes which involve either the drying or wetting of 
geological materials and plant and animal tissues. 

The fluid in the hydroscopic materials is classified here as either fluid 
that is free or fluid that is structural. The free fluid can move freely 
in the pores of the material body and its movement does not involve changes 
in the volume of the solid matrix of the material. On the other hand, the 
movement of water designated as structural does involve changes in the volume 
of the solid matrix. In the literature on wood drying, for example, free 
water is as defined above and the additional moisture content of a wood speci
men is said to be "bound" water; i.e. water that is chemically bound within 
cell walls. When the moisture content of wood is progressively reduced, the 
moisture content at which the cell walls are completely saturated (that is 
to say all the bound water is retained) but no water exists in the cell cavities 
(no free water) is called the "fiber saturation poine'. For wood the fiber 
saturation point is about 30% moisture content. The fiber saturation point is 
generally considered to be the moisture content below which the physical and 
mechanical properties of wood begin to change as a function of moisture content. 
In the literature on soils and animal tissue the definitions employed by writers 
are not clear and consistent as they are in the literature on wood. Thus 
the words structural and free have been chosen to distinguish between the water 
that changes the volume of the solid matrix in which it is contained, and the 
water that does not cause volume changes, respectively. 

There is not a theory among the traditional continuum theories which per
mits a porous body to enlarge or reduce the overall volume it occupies in the 

Preceding page blank 
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absense of body tractions and gravitation. There is such a mechanism, however, 
in the theory of elastic materials with voids [I, 2]. In this theory there is 
a field representation of the balance of self-equilibrated force systems at each 
point in the continuum. Examples of self-equilbrated force systems include 
the force system surrounding a slightly larger sphere is a regular array of 
close packed identical spheres under compression, or the force system induced 
in the surrounding material by the swelling of freezing water in a closed pore 
of the material. In the classical theory of elasticity there are singular solu
tions associated with self-equilibrated force systems. These are called 
"centers of dilation or compression" or "double forces without moments". In 
the theory of linear elastic materials with voids these self-equilibrated force 
systems are assumed to exist at every point in the medium and are not associ
ated with singularities. The purpose of this note is to point out that contin
uously distributed centers of dilation and compression can be used to model 
the swelling and shrinking of porous materials under no surface tractions or 
gravitational force. 

In the next section the theory of elastic materials with voids is briefly 
summarized and, in the following section, an example of the theory's predic
tions in the case of homogeneous swelling or shrinking is presented. In the 
final section directions for the development of complete theories of swelling 
and shrinking are suggested. 

The Linear Theory of Elastic Materials with Voids 

The basic concept underlying this theory is that of a material for which 
the bulk density p is written as the product of two fields, the density field 
of the matrix material y and the volume fraction field v • 

p yv (1) 

This representation of the bulk density of the material introduces an additional 
degree of kinematic freedom in the theory, the solid volume fraction v. The 
linear theory of elastic materials with voids deals with small changes from a 
reference configuration of a porous body. In the reference configuration (1) 
can be written as PR=yRvR and it is assumed here that vR is spatially constant. 
As is customary in linear elasticity the reference configuration is 
assumed to be stress free and strain free. 

The independent kinematic variables in the linear theory are the displace
ment field u. (x,t) from the reference configuration and the change in volume 
fraction froili the reference volume fraction, ¢(~,t), 

where ~ is the spatial position 
The infinitesimal strain tensor 
field u. by the relation 

~ 

(2) 

vector in cartesian coordinates and t is time. 
E .. (x,t) is determined from the displacement 

1J IV 

E .. 
1J 

!z(u .. + u .. ) 
1,J J,1 

, (3) 
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where the comma followed by a lower case Latin letter indicates a partial 
derivative with respect to the indicated coordinate axes. 

The equations of motion governing a linear elastic continuum with voids 
are the balance of linear momentum, 

p~ + T
i 
.. + pb. .. ~ J ,J ~ 

(4) 

and the balance of equilibrated force, 

pk~ =h .. +g+q 
1,1 

(5) 

where T .. is the symmetric stress tensor, bi is the body force vector, h. 
is the ~J equilibrated stress vector", ',k is the equilibrated inertia, g 1 

is the intrinsic equilibrated body force and q is the extrinsic ~quilibrated 
body force. The extrinsic equilibrated body force q, which was denoted by 
p~ in [1] and [2], is of major importance in the problem at hand. The inter
pretation of q is as a force system like a center of dilation in classical 
elasticity, but it is a center of dilation that exists at every point in the 
medium and which e.ither acts at a distance or is externally controllable. 
Jenkins [3J suggested that q be interpreted as an externally controlled pore 
pressure. In modeling the swelling and shrinking mechanism q is an internal, 
self-equilibrated, pore pressure field that exerts no external surface trac
tions. 

The constitutive equations for the linear isotropic theory of elastic 
materials with voids relate the stress tensor T .. , the equilibrated·stress 
vector h. and the intrinsic equilibrated body f5rce g to the strain E ., the 
change i~ volume fraction ¢, the time rate of change of the volume iJ 
fraction ¢, and the gradient of the change in volume fraction ¢'i; thus 

1 
Tij = KOijEkk + 2~(Eij - 3 oijEkk) + S¢ 0ij (6) 

(7) 

2 
The coefficients ~, a, S, ~, wand K = A + -~ all depend upon v and 
~, a, ~, wand K must be positive and S mus~ satisfy the inequa~ity 

(8) 

This inequality is incorrectly reported in [1], where a factor of four 
multiplies S2 on the right hand side. 

Prediction of Homogeneous Swelling or Shrinking 

Within the context of the linear theory of elastic materials with voids 
a very simple case of homogeneous deformation is considered here in order to 
illustrate the swelling or shrinking mechanism implicit in the theory. The 
simple case is characterized not only by steady homogeneous stress, strain 
and volume fraction, but also by a neglect of gravitational forces and the 
rate effect in the theory (by setting the coefficient w equal to zero). In 



- 630 -

addition it is assumed that the body is under a uniform hydrostatic pressure 
at the boundary, T

i
. = -po • Since the deformation is assumed to be homogen

eOllS, the shape of J the ij body is immaterial, but, to fix ideas, it could 
be taken as a unit cupe or unit shpere. Equations (4) and (7)2 are satisfied 
identically and equations (6) and a combination of (5) and (7h yield the 
following equations relating E .. and ~ to p and q: 

1J 

-po .. 
1J 

(9) 

(10) 

The solution of these equations for Eij and <p is 

_ 1 ~p + S~ 
E.. - -0 .. -3 (~ S) , 1J 1J K-

In the absence of external tractions, that is to say when the external 
pressure p is zero, E .. and ~ are given by 

1J 

E '1! 1 ( 6q_),,j, = K q 
ij ~ -u ij3 K~ - 62 ~ K~ - 62 

(11) 

(12) 

This result shows that the self equilibrated pressure q can cause volumetric 
deformation in the absence of surff:lce tractions. This is the basic mechanism 
that is needed in a model of swelling or a model of shrinking. In the following 
section the formation of such models are discussed. 

Toward the Development of Complete Theories 
of Swelling and of Shrinking of ' Elastic Bodies 

The mechanism for swelling and shrinking implicit in the theory of 
ealstic materials with pores was illustrated in the previous section. In 
order to develop complete theories of shrinking or initial swelling, two 
more ingredients are necessary. First, a constitutive equation relating the 
self equilibrated pressure q to the moisture content is required. Second, 
a theory for moisture transfer in non-saturated porous bodies is needed. This 
type of theory is already under development [4. 5). 

The problem of osmotically induced swelling due to varying concentrations 
of say, salt, in the pore fluid will require a different approach. In this 
case the porous medium is fully rather than partially saturated and the cons
titutive equation for q must depend upon the concentration of a particular 
species in the pore fluid, rather than upon the moisture content. 
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STRESS-STRAIN CURVES OF CONCRETE 

UNDER MULTIAXIAL LOAD HISTORIES 

Kurt H. Gerstle and Hon-Yim Ko 
Department of Civil, Environmental, 

and Architectural Engineering 
University of Colorado 

Boulder, CO 80309 U.S.A. 

Reliable analytical predictions of the behavior and strength of 

reinforced concrete structures depend largely on our understanding, and 

appropriate analytical formulation, of the response of the plain concrete 

to applied stresses. A vast body of such analytical formulations has appeared 

in the literature in recent years. For their calibration and verification, 

these studies have depended on available test data for plain concrete under 

bi- and triaxial stresses. Almost all of the multiaxial tests available in 

the literature are under proportional, monotonically increasing loading to 

failure. Such tests are inadequate for the verification of comprehensive 

constitutive theories intended to account for stress histories consisting 

of arbitrary load paths, unloading, stress reversals, and reloading. Any 

element of a real structure could be expected to be exposed to such load 

sequences during its lifetime. 

To provide some experimental data about the response of concrete to 

such general compressive load histories, a test program was undertaken at 

the University of Colorado during 1981 and 1982, sponsored by the N.S.F., 

utilizing the well-proven test cell which uses fluid pressure to apply 

arbitrary compressive principal stresses to a 4 inch cubical specimen. The 

results of these tests are to be collected in the form of a report to be made 

available to interested researchers. It is the purpose bf this presentation 

to outline the contents and format of this report. 

,Preceding page blank 
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Sixty-five multiaxial load history tests were carried out. Stresses 

were applied in appropriate steps, and principal strains were measured and 

recorded for each load step, so that: complete stress-strain curves rDllle! 

be drawn. Details of the test program are contained in Refs. 1 and 2. 

The test program can be divided into the following series: 

1. A series of 12 cyclic triaxial tests, consisting of cyclic hydro

static preloading to various stress levels, followed by proportional 

deviatoric stress cycles without reversal along triaxial compression, 

simple shear, and triaxial extensipn paths. 

2. A series of 8 cyclic triaxial tests consisting of hydrostatic pre

loading, followed by proportional deviatoric stress cycles with 

reversal along the same deviator paths as in Series 1. 

3. A series of 13 tests consisting of hydrostatic loading, followed 

by proportional stress deviation, followed by a circular stress 

path within the deviatoric plane. (Fig. 2) 

4. A series of 22 axisymmetric triaxial tests to explore load path 

effects; in addition to proportional and hydrostatic-deviatoric 

paths. this series contained staircase-type loadings to explore 

convergence to the proportional path, tests with hydrostatic stress 

increments with and without hydrostatic preloading, and tests under 

non-proportional loadings. (Fig. 3) 

5. A serieS of 6 tests within the deviatoric plane, as well as a number 

of other tests specifically designed to check the meaning of loading 

and unloading. (Fig. 4) 

6. A series of 4 tests of piecewise-biaxial loadings. (Fig. 5) 

The presentation of the test results tries to avoid any analytical bias; 

accordingly, the information provided in the report consists only of the primary 
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test data, arranged for each test in the following sequence: 

1. Plot of stress path. 

2. Principal strains plotted against corresponding principal stress, 

as, for example, in Fig. 6. 

3. Tabulation of applied principal stresses and measured principal 

strains in three directions for each load step, as also shown in 

Fig. 6. 

It is hoped that these data will provide useful experimental information 

for scholars of concrete behavior. 
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PLAIN CONCRETE IN UNIAXIAL POST-PEAK CYCLIC 
TENSILE AND TENSILE-COMPRESSIVE LOADING 

,H.W. Reinhardt 
Professor of Structural Engineering 

Stevin Laboratory of Delft University of Technology 
Stevinweg 4, 2626 eN Delft, The Netherlands 

Introduction 

Usually, fatigue of concrete is treated by empirical relations such as 
S-N-curves and Goodman diagrams. However, the mechanism of degradation is not 
yet well understood. Because it is believed that crack propagation is an es
sential feature of fatigue a rational approach should start from cracking 
behaviour of concrete. 

Modelling 

The idea of cohesive forces (Barenblatt, Dugdale) is applied to the 
softening zone in front of a real crack. The distribution of cohesive stresses 0 

is described by 

o 1 _ ( c-x )n 
f

t 
= c-a (1) 

with f
t 

tensile strength, 2a real crack length, (c-a) length of softening zone. 

The length of the softening zone is determined by the requirement that 
the stress singularity at x = c vanishes. This condition can be fulfilled by 
equating the stress intensity factors due to the cohesive forces, Ks' and 
due to the remote stress 0 0 in an infinite panel with a central crack, Ko: 

K 2V£ J a(x) 
dx s 1T /c2 _ x2 0 

(2) 

K = 0 hc 
a 0 

(3 ) 

The results of numerical integration are plotted in fig. 1. The verti
cal axis is a measure of the length of the softening zone whereas the hori
zontal axis is the ratio between the remote stress and the tensile strength. 
The graph shows the very distinct influence of the exponent n of eq. (1) on 
the size of the softening zone. 

Preceding page blank 
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1 

.5 

o 

Fig. 1 - Softening zone length vs. stress-strength ratio 

Regarding alc 0 as a failure criterion the apparent strength ft (in 
a tensile test) is lower the smaller n, compared to the real strength f~ which 

follows from f* 1f t = ft/0 0 (al c = 0) • 

To use the model, the exponent n should be known as a function of con
crete composition and loading history. Furthermore, n can be split up into 
two parameters k and 1 governing the stress-deformation relation of concrete 
in uniaxial tension and the opening shape of the softening zone, respectively, 
according to 

-= 
<5 

o 

(4) 

(5) 

with 0 deformation of the softening zone and <5 deformation where stresses 
o 

cannot longer be transferred. 

Experiments 

In order to establish the values of k and 1 experiments are being 
carried out on concrete cylinders ¢ 110 rom and panels in deformation controlled 
uniaxial loading with three types of loading, fig. 2. The concrete cube st.rength 
is 45 N/rom2 , the tensile splitting strength 2.9 N/mm 2 , the maximum aggregate 
grain size 16 mm. 



Type1 Type 2 

o [N/mm 2[ 

.. 641 -

Fig. 2 - Types of loading 

120 
6 (ilm( 

Type 3 

Fig. 3 - Stress-deformation curve under cyclic tensile loading 

Fig. 4 - Stress-deformation curve under alternating loading 
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Fig. 3 and 4 show typical results of the cylinder test in cyclic 
loading. From 50 experiments it can be concluded that the stress-deformation 
curve seems to be unique, i.e. not affected by the type of loading. 
Furthermore, there is an indication that the residual strength is less after 
a certain number of cycles the lower the stress at unloading (i.e. compres
si ve) . 

The panel tests (300x250x50 mm) shall provide an answer to the defor
mation of the softening zone in front of a real crack. Results will be pre
sented during the symposium. 

Conclusion 

'rhe present state of the investigations allows the following conclusions: 

1) The tensile post-peak stress-deformation curve of concrete seems to be 
unique. 

2) The lower stress at unloading affects strength more the lower that stress is. 



THE USE OF THE ROUGH CRACK MODEL OF WALRAVEN 
AND THE FICTITIOUS CRACK MODEL OF HILLERBORG 

IN F.E. ANALYSIS 

J. Blaauwendraad 
Professor Civil Engineering 

Delft University of Technology 
The Netherlands 

F.J.M. van den Berg 
Research Assistent 

Delft University of Technology 
The Netherlands 

P.J.G. Merks 
Research Assistent 

Rijkswaterstaat 
NL - Utrecht 

Program Micro/1 

Structures of reinforced and unreinforced concrete in the cracked stage 
are analyzed numerically in two ways, either with discrete single cracks, 
or using the concept of smeared cracks. This paper regards applications 
of the program MICRO/l for plane stress problems w,ith discrete cracks. A 
finite element method is used which is based on an assumed stress field and 
natural boundary displacement (Lagrangian multipli-ers for the boundary 
tractions). So, differently from the standard FEM programs of the compatible 
type, the program MICRO is an equilibrium model, using boundary displacements 
as degrees of freedom. Essentially two different types of elements are 
used, namely triangular elements for the concrete and straight linear 
elements for the reinforcement. A reinforcement bar never crosses a triangu
lar element, but instead is always positioned in between two elements. 
Bond behaviour is counted for by a nonlinear spring between the concrete and 
the reinforcement. Stresses in the triangles vary linearly over the region 
of the element. This corresponds with linearly varying boundary displace
ments, linearly varying bond stresses between the triangles and the straight 
reinforcement bars,and hence a parabolic distribution of the normal force 
in the bars. 
Discrete cracks do not occur between the triangular elements, but run 
across the elements. In such a case a triangle ;s split in two parts, and 
additional degrees of freedom appear in the crack, namely for the crack 
opening and for the sliding of the two crack faces. In a cracked triangle 
the stresses can become discontinuous if necessary, and the same applies 
for the bond shear stress along the edge of a cracked element. 

The constitutive relations of the concrete correspond with the model of 
Link, which has been extended with an appropriate tension cut-off criterion. 
The bond mechanism is a nonlinear spring, which behaves elastically up to 
a maximum shear stress, and shows softening for increasing slip behind that 
state. The behaviour of cracks can be discribed with the rough crack model 
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of Walraven and the fictiouscrack model of Hillerborg, Peterson c.S. 
The latter tension-softening concept has been adopted as the fracture 
mechanics option to account for the process zone of micro cracks around 
the crack "tip". This model ;s especially active if no reinforcement is 
app 1 i ed. -

Shear failure of reinforced concrete beams 

The program has been applied to simulate the behaviour of reinforced 
concrete beams under shear loading. We consider the case in which main 
reinforcement is applied to carry the bending moments, but no shear 
reinforcement (stirrups) has been used. Furthermore we concentrate on the 
well-known fact that for such beams the shear capacity depends on the actual 
depth of the beam. Our starting point is a series of experiments which was 
carried out at the Stevin Laboratories of Delft University of Technology. 
From this series we selected two beams which correspond to each other such 
that the slendernes ratio a/h in the shear part of the beam has the same 
value (namely 3), however the depths differ considerably (respectively 
125 mm and 720 mm). The beams have been shown in fig. 1. If model laws would 
apply, these beams should show the same ultimate nominal shear stress lU~ 
which is the average shear stress at failure. The experiment however shows 
a value lU = 1.2 Mpa for the shallow beam, and lU = O.? MPa for the deep 
beam. So the shallow beam behaves far better. In fact this beam can be 
loaded until the main reinforcement starts to yield because the full plas
tic moment has been reached, producing a ductile failure behaviour. The deep 
beam cannot be loaded that far. Long before the reinforcement yields, 
brittle failure occurs in the shear part of the beam. The two beams are 
welcome bench-mark problems because of their expected simularity and still 
so different behaviour. 

The wanted material properties of the concrete to be fed in the program 
MICRO/1 are the cylindrical compression strength, the tensile strength, 
the modulus of elasticity and Po;ssons ratio. These quantities have been 
taken from the experimental data. The rough crack model of Walraven is 
related to the cube compression strength, which is also known from the 
experiment. The fictituous crack model of Hillerborg has not been applied 
in these analyses. Due to the presence of the crack arresting main reinforce
ment, the fictituous crack model is less important in this case. The data 
for bond have been chosen on basis of experience. The adopted data are 
regularly used values for normal concrete and ribbed reinforcement bars. 
In this short note we just show a comparison between the load-deflection 
diagrams found in the test and resulting from the analysis (fig. 1). The 
ductile and brittle failure is produced satisfactorily. Crack patterns, not 
shown here, do also correspond quite well. 

Mixed mode fracture in unreinforced notched beam 

The program has also been applied to the problem of crack propagation in 
an unreinforced beam. Starting point in this case is a series of tests at 
Cornell University for mixed mode crack propagation in notched beam under 
pure shear. One of the tests is shown in fig. 2. A curvilinear crack deve
lops and a typical diagram occurs for the load versus the crack mouth 
sliding displacement (CMSD). 
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In the analysis we used data for the tensile strength, compression 
strengt~elasticity modulus and Poisson's ratio which are derived from 
the experiment. For the fracture mechanics release energy Gf two 
values 35 ff/m and 100 N/m have been adopted. The results (f g. 2) show 
that the ultimate load can be computed rather accurately, but not the 
softening branch. Part of the difference between the test and the ana
lysis may be due to different definitions of CMSD. 

Conclusions 

The rough crack model of Walraven in F.E. Analysis of the shown rein
forced concrete beams yields good computational results. Used in 
combination with the fictitious crack model of Hillerborg also promising 
results were reached for failing unreinforced notched beams . 
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Figure 1 Two beams with the same shear slenderness a/h = 3, but 
the actual depths of the beam differ about a factor 6. 
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The failure type is ductile for the shallow beam and brittle 
for the deep beam. 
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Unreinforced notched beam in pure shear. In this mixed mode 
fracture problem a curved crack trajectory occurs. 
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Introduction 

Plasticity concepts have been widely adopted in the modeling and code de
velopment for the finite element analysis of concrete structures. A wide 
variety of theories has been proposed, and some have already been incorporated 
in general-purpose codes for practical applications. In this paper, we report 
a comparative study of the advantages and the suitability of various plasticity
based concrete models, regarding their tractability in numerical implementa
tion and their accuracy in predicting concrete behavior under different load
ing conditions. 

Plasticity-Based Modeling of Concrete Behavior 

One of the critical topics of concern in concrete plasticity is to select 
accurate yet sufficiently simple yielding and loading functions to describe 
the physically nonlinear, irreversible behavior prior to macrocracking. For 
convenience and consistency, it is common to assume a loading function having 
the same form as the failure criterion. The validity of this assumption was 
studied by considering five fracture criteria, namely the functions proposed 
by (a) Mises, (b) Drucker and Pager (DP) , and (c) Bresler and Pister (BP) , 
along with (d) the four-parameter model (4P) proposed by Hsieh, Ting, and 
Chen, and (e) the five-parameter model (SP) by Willam and Warnke. 

In this study, two sets of biaxial data and two sets of triaxial data 
were utilized for the purpose of comparison. Based on each criterion consi
dered, the test data for different loading conditions were evaluated to com
pute the hardening parameter as a funttion of the effective plastic strain. 
Comparison of the results has indicated that the hardening parameters for 4P 
and SP models are in close agreement with each other. However, they vary 
considerably for different stress ratios for the biaxial loading condition. 
On the other hand, for triaxial loading induced by large confined pressure, 
both models yield approximately the same hardening parameter. Furthermore, 
the limiting values of the parameter resulting from these models do not con
verge to the compressive strength, f~, in the biaxial stress condition. How
ever, they approach f' in the presence of large confined pressure. 

The behavioral p~ttern predicted by the Mises and DP criteria is essen
tially opposite to that exhibited by the 4P and SP models. Both the Mises and 
DP models yield nearly identical hardening parameters with limiting value ap

proaching f ~ for biaxial loading conditions. However, they fail to give good 
agreement in triaxial conditions. In contrast, results using the BP function 
show large discrepancy for all loading conditions considered. 
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On the basis of the argument above, the Mises criterion appears to be 
better suited in a plasticity-based formulation in the absence of large hydro
static pressure. However, modifications of the criterion regarding dilatancy 
should be included when the confined pressure is dominant. In our study, we 
Jwve proposed the following mod:ifications: /J2/il-ryOmi, whl'rl' 'Y=I whl'n ;ll] 
principal stresses are compressive and 'Y=O otherwise. In this expression, 
J2 is the second deviatoric stress invariant and om is the mean stress. The 
proposed modification reduces to the Mises criterion for the plane stress 
condition and results in nearly identical hardening parameters for the two 
sets of triaxial test data considered. This function not only considerably 
simplifies the hardening formulation, but also yields results which are as 
accurate as those predicted by the more complex 4P and SP models. 

For further comparison of the theories, an elastic-plastic finite element 
analysis was carried out. The associated flow rule, the normality condition, 
and a mixed hardening rule comprised of isotropic hardening and Ziegler-type 
kinematic hardening were assumed. Implementing the 4P and SP models has in
dicated that both models yield nearly identical results regarding plastic de
formation. The hardening parameter was determined from uniaxial compression 
tests, and reasonable correlations were obtained for uniaxial compressive 
strains. Larger discrepancies were observed in the biaxial conditions, and 
the predictions were unacceptable in the tensile region. In particular, the 
predicted strain values for the simple tension condition were several times 
larger than the recorded values. The discrepancies may be traced to the fact 
that both the 4P and SP models seem to overestimate the hardening effect in 
compression and underestimate it in tension. This behavior appears to be 
caused by the inclusion of large dilatancy effects in the functional forms of 
both IOOdels. 

Suppressing the effect of hydrostatic pressure in the loading function 
improves the prediction. Using the Mises function yields accurate predictions 
in all biaxial cases considered. For the triaxial stress conditions, the 4P 
and SP models both give good predictions. The modified Mises function yields 
slightly larger discrepancies, but the results appear to be acceptable. 

We also utilized a non-associated flow rule by suppressing the first 
stress invariant in the 4P function. In so doing, the prediction was improved 
considerably for the biaxial cases. A refined model containing two separate 
loading surfaces for the volumetric and deviatoric plastic deformations was 
also implemented. In this model, the Mises criterion was assumed for the 
deviatoric strain, and a linear function of the mean stress was taken for the 
volumetric strain. Among the classical plasticity models we considered, the 
model with two loading surfaces seems to give the best correlation with both 
the biaxial and triaxial data. 

The viscoplasticity theories based on the endochronic concept have re
ceived considerable attention in recent years. Despite some shortcomings, 
the endochronic theory has shown great potential as an alternative approach 
in plasticity-based modeling of concrete behavior. The advantages of the 
models based on the endochronic theory lie in the flexibility in curve fitt
ing and in the convenience in numerical implementation. 

The original and the advanced versions of the endochronic theory for 
concrete, both developed by Bazant and his associates, were examined in our 
preliminary work. Essentially, our study focused on the accuracy of each 
model and its ability to describe the general behavior of concrete under vari
ous loading conditions. The behavior is normalized by only one control para
meter, namely f~. Our experience has indicated that the simpler original 
version predicts concrete behavior under uniaxial and biaxial conditions 
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quite well, based on two different sets of test data. If the uniaxial com
pressive stress-strain response is controlled by strain increment, strain 
softening can be obtained. We have also evaluated the sensitivity of the 
constants assumed in the models. The results have indicated that, despite 
the large number of constants required in the curve fitting scheme, varying 
the coefficients does not change the predicted behavior significantly. 

The main drawback of the original version appears to be in its applica
tion to cyclic behavior. This 'seems to be one of the primary reasons why the 
advanced version was developed. In addition to the well-documented flaw that 
the original version fails to form a hysteresis loop, hence resulting in 
negative energy dissipation, the predicted unloading and reloading slopes 
in the uniaxial stress-strain response are not satisfactory. 

Among the many improvements in the advanced version, the most important 
appears to be the introduction of the concept of jump kinematic hardening. 
This concept introduces discontinuities in the constitutive formulation, which 
somewhat detracts from the original advantage of the continuous plasticity 
theory. However, it predicts the cyclic behavior quite well. Furthermore, 
the advanced theory provides good predictions regarding the stress-strain 
relationship for monotonic uniaxial and biaxial loading conditions. However, 
the improvements over the original version were not significant. 

As verified in our study, the hysteresis loops, modulus degradation, and 
the softening in the envelope of the stress-strain cycles appear to be quite 
satisfactory. However, it should be noted that including the jump kinematic 
condition does not appear to guarantee the formation of a hysteresis loop. 
When the reloading generates more inelastic strain than the unloading, the 
stress-strain response does not form a loop. 

One of the difficulties we encountered was that the advanced theory exhi
bited some discrepancies between the responses based on a stress-controlled 
increment and a strain-controlled increment. No significant difference was. 
found when the original version was employed. In addition, the complex func
tional form of the advanced theory was much more difficult to implement in a 
finite element code, as compared to the original version. 

If one's interest is focused on the concrete behavior prior to cracking, 
a possible approach is to introduce the jump kinematic hardening in the ori
ginal version of the endochronic theory in order to adjust its drawbacks re
garding cyclic response. The resulting constitutive formulation was simpler 
and easier to implement. Our results have also shown that the predicted uni
axial cyclic behavior is nearly as good as that predicted by the advanced 
version. It should be noted, however, that due to the lack of accurate 
cyclic test data, a quantitative comparison cannot be made at this time. 

Finite Element Analysis Implementation 

Modeling for finite element analysis of concrete structures is very com
plicated in view of the fact that it should include accurate criteria for 
cracking and post-cracking behavior. Thus, selection of a proper finite ele
ment code for analysis and verification of results becomes the critical 
question in the development of plasticity-based models. Two general purpose 
programs have been developed in our study. Based on an imporved version of 
NONSAP, a computer code, NFEAP, was developed earlier. Because the basic 
algorithm is derived from the total or updated Lagrangian formulation, an 
enormous number of iterations is required. Incorporating a complete model 
into the code requires considerable streamlining in its structure, and the 
finished code is rather inefficient. Similar difficulties have also been 
reported by other investigators. 
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Recently, a new code, STRAW-PI, has been developed based on a version of 
STRAW originated at Argonne National Laboratory. The code employs explicit 
integrations for transient large deformation analysis. Using the dynamic re
laxation technique, static response can be obtained. The code is convenient 
for implementing complicated material models and has been shown to be effi
cient and relfab 1e. Our experience has indicated thnt the devt'lopmt:'nt effort 
and CPU time for STRAW-PI are about 1% of that required by NFEAP. We have 
since implemented five different concrete plasticity models in addition to 
the cracking and post-cracking models. Presently, three different versions 
of endochronic viscoplasticity models are also being implemented. 

The verification of computer codes for concrete is an extremely difficult 
task due to the lack of complete test results. In particular, little infor
mation regarding the development of cracks is available for the validation of 
cracking behavior models. We have considered the standard split tension test, 
pull-out test, and a plain concrete cylinder subjected to implosion pressure 
as the basis for a preliminary comparison study. Our limited results have 
shown that to predict the total failure of a concrete structure, both large 
deformation and plastic deformation should be considered. However, because 
of the domination of cracking, the selection of plasticity model and failure 
criterion makes very little difference as far as load-deformation relations 
and the ultimate strength of the structure are concerned. Using any of the 
plastic-fracture theories which are considered in this study, gobd agreement 
between predictions and test results can be obtained. All models implemented 
in the computer code have indicated that the crack patterns also appear to 
be quite reasonable. 
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Introduction 

Further developments toward evaluation and implementation of a general 
approach for developing plasticity-based constitutive models will be pre
sented. The approach shows promise of handling isotropic, anisotropic 
hardening and nonassociative behavior. 

Proposed Model 

An expression for yield function, F, can be written as 

(1) 

where J; (i = 1, 2, 3) = invariants of the stress tensor, I~ (i = 1, 2, 3) = 
invariants of the plastic strain tensor, Kj (j = 1, 2, 3, 4) = joint invari
ant of stress and plastic strain tensors and am (m = 1,2, ... n) = internal 
state variables. As discussed in Refs. 1 and 2, F in Eq. (1) can be ex
pressed as a complete polynomial in J 1, J2

1/ 2, and J 3
1/ 3, from which a series 

of truncated forms can be developed. For instance, the following 

F J J 2 J J 1/3 k 2 - a ~ 20 + a 1 1 - 61 1 3 - Yl J1 - 1 - (2a) 

F ~(J2D)2 + 62 J1 J 3 - Y2 J 1
3 - k24 = a (2b) 

_ 3 3 5 6 
F = (J 2D ) + 63 J 1 J 3 - Y3 J 1 - k3 = 0 (2c) 

F = J2D + 84 J 1 J3
1/ 3 - Y4 J 1

2 - k4
2 

= 0 (2d) 

Here J 2D = second invariant of deviatoric stress tensor. 
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where ai' 8i , Yi and ki (0 = 1, ... 4) are material parameters to be deter
mined. The foregoing functions plot continuous and convex in the stress 
spaces, e.g., IJ2D - J 1 and principal stress space. 

Hardening Behavior 

The hardening behavior is defined by using the following expression: 

(3) 

where 8 = hardening or growth function, Su = ultimate value of S [= 3a, 

Eq. (2a)], Sa = hardening constant, fo = material constant related to the 
p 1/2 

initial size of the yield surface, and ~ = J (ds.~ ds .. ) The parameter, 
1 J 1 J 

r, is given by 

where rv = sv/s, rO = ~D/~, and ~v' ~D = volumetric and deviatoric parts 
of ~. 

(4) 

Nonassociative behavior is handled by expressing plastic potential 
function, Q, as the sum of the yield function and a correction function (1, 
2). Induced anisotropy is included by adding the joint invariant(s) in F 
(2, 3). 

The presentation will include results on the analysis and implementa
tion of F in Eq. (2a) and hardening behavior, Eq. (3), with some applications 
of the nonassociative and (induced) anisotropy models. 
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Summary 

1. Mathematical descriptions of complex material behaviors are fre
quently proposed generalising known material lc.:ws formulated for uniaxial 
stress, or developing often ingenious models when stimulated by observations 
and synthetising particular experimentally noticed facts. Nonlinear mechani
cal response to external and/or internal ag~ncies, and concerning the phenome
na like creep, plasticity, fissuration or internal damage growth deserves a 
study based on general principles governing the tensorial variables involved 
in constitutive or evolution laws. This appears to be of particular importan
ce for materials with oriented, inborn or developing under straining, internal 
structure exhibiting directional properties like oriented damage, deformation 
induced hardening or softening. Similarly, it can be of pertinence in presence 
of mechanical couplings with other physical or chemical phenomena which 
should be accounted for in equations regarding mechanical response. The consti
tutive relations concern thus not solely stress and strain or their rates, and 
accelerations, say but also equations governing evolution of couplings,conti
nuous damage and alike. At hoc models even dexteriously developed, might not 
fully account for the real material response, particularly as to the number 
of independent variables to be considered when studying oriented solids both 
within their deformability as well as failure. 

2. It seems appropriate, before particularisations are made regarding 
specific mechanical models, to reflect upon usefulness of the basic principles 
governing independent and dependent second order tensors, vectors and scalars 
involved in the constitutive, evolution or failure equations concerning any 
macroscopic mechanical behavior. Such principles exists in the mathematical 
theory of tensor valued functions of tensor variables. 

3. A tensor valued function of second order tensors, vectors and 
scalars can, in principle be expressed in its canonical form, thus as a linear 
combination of the basic, form invariant tensor generators specific for the 
class of internal symmetries of the material considered. The number of basic 
tensor generators as well as that of basic invariants are known for isotropiC 
materials as well as for a large class of anisotropic materials, thus those 
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possessing or developing int.ernal orientations of the mechanical, thcnrldl or 
other material response. The coefficients staying at the generators are sca
lar valued functions of the set of basic invariants of all the dependent 
tensors involved, including those accounting for the material symmetries. Our 
attention is fOGus$ed on polynomial representations of tensor valued tensor 
functions and on their applications to be mathematical modelling of materials 
response. 

4. For isotropic materials when the response is governed by one inde
pendent second order tensor the representations approach was long ago applied 
by PRAGER when formulating the general law of plastic behavior. With respect 
to the criteria of failure of plastiC solids essentially the same approach 
was used by THOMAS. Mathematical aspects of the polynomial representations 
were originally studied by RIVLIN and ERICKSEN, as well as by SEDOV and LOKHIN 
and continued by SPENCER, SMITH, WANG and, parti,cularly for orthotropic mate
rials, by BOEHLER. An isotropic tensor valued tensor fUnction of one tensor 
variable has three basic invariants and three tensor generators. This allows 
to formulate any law for isotropic behavior as a polynomial containing three 
terms. For anisotropic materials vectors or tensors specifying the material 
privileged directions enter the constitutive or the structure variations laws. 
The number of tensor generators appropriately increases and mixed invariants 
of the independent tensors appear. Representations are then more involved, but 
their properties allow to arrive at the most general form of constitutive or 
evolution equations. In this sense, for a response studied, the building blocks 
are available as well as principal rules allowing to construct a theory of 
mechanical response. Using other mathematical requirements as regards e.g. 
regularities of the stress-strain relations, time independence in case of plas
ticity and, in general thermodynamical restrictions, specific laws can be cons
tructed. Symplifications can be made in order to retain in the equations the 
essential terms as regards to their pertinence for the behavior in question. 
It is then possible to arrive at wieldy theories with the full knowledge of 
what type of effects is then neglected. Specific linearisations of the consti
tutive relations lead to the classical theories of material response, e.g. to 
the linear elasticity where the independent tensor variable being, say, linear 
strain, the stress is expressed accordingly, the nonlinear "term of the repre
sentation being neglected. 

5. Polynomial tensor, functions representations were used to specify 
the law for anisotropic plasticity, e.g for rocks, composite materials or soils 
It comes out quite evidently that the flow law, in general, is not necessarily 
associated with a yield condition. The yield condition appears in this approach 
as a consequence of the requirement that plastiC flow is insensitive on the 
time scale change. This requi.rement gives an additional relation between the 
stress and mixed stress-anisotropy tensors. Comparisons between the associated 
flow law which assumes first the existence of a yield locus with that following 
from the representation theory is discussed. General forms of yield criteria 
for anisotropic plastic material including anisotropic strain hardening are 
given and the associated failure modes discussed. A description of the plastic 
strains induced oriented hardening is given. 

6. Applications of the tensor function approach to creep are presented 
Specific creep laws can be proposed without any necessity, at this stage, to 
use tl-Je dissipation potential. A simple thaory is compared with eX:periments on 
materials plastically prestJtained before creep. The theory allows to describe 
the pertinence of experimentally observed hardening on subsequent creep. The 
same approach is used when describing the dynamic response of solids, when both 
strain and strain rates are, to some extent, independent. This allows to ac-
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count for the rate sensitivity of materials. 

7. An oriented continuous damage is studied, when the damage patterns 
posess certain symmetries. Experimentally simulated damage is considered both 
as to respect to the macroscopic response of a homogenized material as well 
as regarding the law of oriented damage growth, similarly expressed in terms 
of a tensor function representation. Mechanics of perforated sheets is studied 
both analytically and experimentally and the respective comparisons are given, 
as to the deformation laws and failure modes. 

8. The method is used as well in a study of deformation and failure of 
porous solids, both sintered metals and fissurated rocks. Results concerning 
a theory of anisotropic consolidation are also given. In this case the material 
porosity is specified by a permeability tensor not necessarly isotropiC and 
all the equations regarding deformation, fluid outflow and fluid-structure 
couplings are expressed in form of relevant representations .. The results of 
analysis are compared to the existing theories of consolidation of fluid satu
rated anisotropic soils. 

9. The paper recalls the basis of the representations of tensor func
tions and specifies their applications for concrete modes of materials res
ponse. It is application oriented and might appear useful when proposing.spe
cific, engineering oriented models as it attempts to give an information about 
the number and type of the tensor generators and tensor invariants involved 
in the behavior in question. This gives a possibility to make a suitable choice 
of variables to be entered in a specific, applicable theory. Further necessi
ty for introducing specific mathematical and mechanical principles in order 
to specify the theories is commented upon. 
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Introduction 

During the past three decades, limit analysis methods were increasingly 
applied to reinforced and prestressed concrete. Thorough comparisons with 
experiments revealed that satisfactory strength predictions are obtained in 
a wide range of practical applications. Earlier attempts to predict the 
static strength of reinforced concrete beams and slabs, such as Ritter's and 
Moersch's truss models and Johansen's yield line theory were extended, unified 
and generalized. Most codes of practice now contain ultimate strength 
provisions which are partly based on plasticity concepts. 

The majority of all reinforced concrete members are under-reinforced. 
Their strength is essentially determined by the yield strength of the rein
forcement. The concrete properties have not a pronounced influence. The 
ductile behaviour justifies the application of limit analysis methods and the 
simplicity, transparency and adaptability of these methods explains their 
practical importance. 

Limit analysis methods have also been applied to over-reinforced members. 
Their strength is partly or fully governed by the concrete. Effective con
crete strength values are determined from comparisons with experiments. Thus, 
the limited ductility and the brittleness of the concrete and other factors 
are empirically taken into account. While the theory is kept very simple it 
is necessarily restricted. However, in spite of the fundamental deficiencies 
a series of useful results have been obtained. 

Rigid-plastic models provide a reasonable basis for the ultimate ,strength 
design of common reinforced and prestressed concrete structures. Usually, a 
normal in-service performance is observed if an adequate safety margin 
against failure is chosen and if the reinforcement is well detailed and abrupt 
changes of the geometry and of the reinforcement are avoided. Simple checks 
of certain global deformations are often sufficient. However, general non
linear elastic-plastic models are needed to investigate the behaviour of 
structures with unusual or particularly critical geometrical or loading condi
tions, to determine the limits of applicability of rigid-plastic models, etc. 
Unfortunately, all elastic-plastic calculations suffer from the fact that the 
initial strains and stresses are practically unknown. Generally, only rough 
estimates of their magnitude can be made. This problem is often overlooked 
in elaborate analyses. 

Preceding page blank 
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Rigid - Plastic Models 

The. concrete is frequently modelled as an isotropic, perfectly plastic 
material governed by the Coulomb-Mohr criteria 41,1+30 < f and 0 < 0 and the - c -
associated flow rule is assumed to be valid. For uniaxial and plane stress 
states, these criteria reduce to the no-tension and no-crushing criterion 
o > 0 > - f. The effective compressive strength f is smaller than or 

c c 
equal to the cylinder compressive strength fl. The reinforcing bars are 

c 
usually assumed to be perfectly plastic and to carry stress in their original 
direction only. Their distribution and anchorage are supposed to be such 
that their action can be described by equivalent average stresses. Further
more, rigid bond is assumed between concrete and reinforcement. 

Introducing suitable generalized variables yield criteria for reinforced 
concrete elements can be obtained by considering first the yield surfaces for 
the unreinforced concrete element and for the reinforcement separately. The 
yield surface for the reinforced element is the envelope of all linear combin
ations of stresses in the concrete and in the reinforcement which do not 
violate the respective yield criteria. It is obtained by translating the 
yield surface for the concrete with its origin moved within the yield surface 
for the reinforcement or vice versa. 

Instead of treating concrete and reinforcement together as a reinforced 
concrete continuum, it is often advantageous to introduce bond forces, 
transverse forces due to curved reinforcing bars and anchorage forces as 
body and boundary forces acting on the concrete continuum. 

The lower-bound method of limit analysis provides a possible equilibrium 
system of internal forces throughout a structure under ultimate loads. It is 
directly applicable in reinforced concrete design and detailing. For 
arbitrary geometrical and loading situations the concrete dimensions and the 
dimensions, the distribution and the details of the reinforcement can be 
determined based on consistent equilibrium and ultimate strength considera
tions .by developing plane and spatial truss models and corresponding stress 
fields consisting of struts, strut connections, fans and arches. Fans and 
arches can always be replaced by statically equivalent struts or strut 
systems. The necessary minimum dimensions of the struts are determined by 
the effective concrete compressive strength f. It is suggested to assume an 

c 
average value f = .6·fl. Deviations from this value may be indicated 

c c 
depending on the required redistribution of the internal forces, the detailing 
of the reinforcement, the effect of any lateral confinement and on similar 
influences. 

The upper-bound method is generally best suited for analyzing an existing 
design and it is indispensable for a proper interpretation of experiments. 

Elastic - Plastic Models 

Generally, there are pre-existing cracks in reinforced concrete elements 
due to imposed deformations (resulting from shrinkage, creep, temperature 
effects, etc.) and/or previously applied loads. Under a certain loading 
process, some of the existing cracks tend to open and propagate while others 
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tend to close and new cracks occur in general. In this way, new structural 
systems consisting of concrete bodies and reinforcing bars are successively 
created. The concrete bodies are bounded by crack surfaces, have finite 
dimensions, are deformable and have a certain strength, in particular, a 
non-vanishing tensile strength. The crack surfaces are irregular and rough. 
Finite relative displacements occur between any couple of initially neighbour
ing points which are separated by a crack. Along certain parts of the crack 
surfaces the concrete bodies are in contact. There, forces may be transferred 
and the roughness of the crack surfaces may gradually be destroyed. The 
reinforcing bars which connect the concrete bodies are also three-dimensional 
deformable bodies. At the bar surfaces within the concrete relative displace
ments occur and forces are transferred similar to the situation at the crack 
surfaces. 

Four groups of constitutive relations are needed for an appropriate 
treatement of the concrete, the reinforcement, the aggregate interlock between 
the concrete bodies and the bond between concrete and reinforcement. Unfort
unately, the presently available test data do not yet allow a general 
incremental plasticity formulation of the aggregate interlock and bond-slip 
relationships. Therefore, different simplifying assumptions are normally 
made. A very powerful yet questionable assumption is to consider continuously 
distributed or smeared cracks. In fact, this assumption eliminates theoreti
cally the bond problem and it implies that the stresses in the solid concrete 
between the cracks must be constant if body forces are neglected and all 
reinforcing bars are straight. If in addition, the concrete tensile strength 
is neglected and the relative displacements between the crack surfaces are 
restricted to an orthogonal crack opening, one arrives at the basic assump
tions of the so-called compression field theory. According to this theory 
the cracked concrete is replaced by a fictitious continuous material with 
coinciding principal stress and strain axes which can adapt to carry uniaxial 
compressive stress in an arbitrary direction. 

Conclusions 

There is a considerable potential for further developments in the field 
of plasticity in reinforced concrete. Rigid-plastic models should be further 
advanced and their limits of applicability should be better investigated by 
comparisons with experiments and with elastic-plastic models. The progress 
of elastic-plastic models is linked with a better understanding of the 
aggregate interlock and bond characteristics. A suitable combination of 
fracture mechanics and continuum mechanics concepts should be rather fruitful. 
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Introduction 

To make realistic predictions about the behaviour of structures under load, 
it is necessary to descr"ibe the material response from first loading to 
failure. However, if only the ultimate load is sought it is possible to 
make a short-cut, using the bounding theorems of plasticity, valid under 
certain idealized constitutive assumptions. Thus it is proposed to regard 
structural concrete as a rigid, perfectly plastic material. 

Fig. 

Constitutive Model for Concrete 
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A major problem in applying plasticity to structural concrete is the formula
tion of a suitable description of concrete. Traditional analyses are based 
upon the square yield locus for plane stress, which may be generalized into 
the modified Coulomb criterion. The latter model has during the last decade 
been applied by a research group at the Technical University of Denmark to 
treat a number of non-classical problems, involving shear in plain and rein
forced concrete. 

In the a,T-plane, the modified Coulomb criterion is a failure envelope for 
The Mohr's circles of stresses on sections in concrete (Fig. 1). Adoption of 
the criterion as a yield condition results in a yield surface in principal 
stress space, the corresponding yield loci for plane stress and strain being 
shown in Fig. 2. The associated flow rule implies that the dilatancy angle 
at sliding failure is identified with the angle of friction. 
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IJ.tCJpc:r ties and the deformations at ultimate by means of just three nwt.erial 
parameters: tensile strength f , compressive strength f , and angle of in-

t c 
ternal friction lp, determining the parameter k. For most pracbcal purpo
ses, however, the tensile strength is neglected, and the standard value lp = 

37
0 

(k = 4) is adopted for the angle of friction. Thus a p<lrticular COll

crete quality is characterized alone by its compressive strength, as is the 
case with the square yield locus. 

Yield Lines in Concrete 

0) bl 

Fig. 3 

n 

A yield line is a kinematical discontinuity separating two rigid body parts 
which are moving at the relative velocity v, inclined at the angle a (Fig. 
3b). Regarding the yield line as an idealization of a narrow deforming zone 
(Fig. 3a), we can determine the principal strain rates and directions, which 
are coaxial with the principal directions of stress. It appears that the 
first principal axis bisects the angle between the relative velocity vector 
and the yield line normal. The stress state which is capable of producing 
this deformation is determined by the flow rule and the yield condition 
(Fig. 2). Multiplying the stresses by the strain rates, we compute the dis
sipation D, and introducing the parameters: 

I '= 1 - (k-l) f If 
t c 

and 

(f)_< a <Jr 
y - '2 : D == ! v f c ( I -m si n a) , 

we find: 

'!!~a~fjJ'D==!vf (l-sina) 2 . c 

The latter formula is valid for plane stress only, the normality condi-
tion imposing the lower limit a == l(J upon the deformation in yield lines 
under plain strain conditions. 

The dissipation describes the resistance of concrete to the formaU.on of a 
yield line, and it depends upon the angle a. A yield line with normal de
formation only ( a == Jr12) is called a collapse crack, and in this case the 
dissipation reduces to D == v ft' Thus the resistance to simple splitting is 

minimal, but as soon as tangential deformations are present, the resistance 
picks up, and the compressive strength becomes dominant. For pure shearing 
( a == 0) in plane stress, the resisting shear stress is equal to f 12. Thus 

c 
in order to minimize the internal work dissipated, concrete tends to fail in 
collapse cracks, or at least in yield lines with large normal components of 
the deformation rate. This entails dilation of the body, and the efficiency 
of reinforcing bars is not so much due to the directly carried applied load 
as to the resistance offered against the expansion of the deforming concrete. 
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Applications 
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WEB REINFORCEMENT 

Although the material model is quite primitive, it provides a decent des
cription of concrete at ultimate. A particular important application is the 
shear failure of beams. Theoretical and observed failure mechanisms are 
shown in Fig. 4, and Fig. 5 compares the predicted relationship between the 
nominal ultimate shear stress and the degree of vertical stirrup reinforce
ment with the results of a test series. The shear failure is characterized 
by the fact that the deformations are constrained by the non-yielding 
longitudinal reinforcement, resulting in sliding failure of the concrete. 
The corresponding stress state is a diagonal compression field with a strut 
inclination () which is half the yield line inclination f3 • The tensile con
crete strength is neglected, which means that the concrete is potentially 
cracked in all sections. Under loading, cracks form perpendicular to the 
first principal direction of concrete stress, i.e. initially at an inclinat
ion of 45°. As the stirrups pick up load, the inclination of concrete com
pression - and cracking - decreases until it reaches the strut inclination 
e=~/2 at ultimate. The solution is easily extended to beams with inclined 
stirrups or distributed loading, and to beams with little or no stirrup re
inforcement. 

Fig. 6 
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Plane stress is assumed for shear in beams. The plane strain solution is 
topical for shear strength analysis of construction joints or cracks. A 
more demanding application of the model is the pull-out of embedded bolts. 
'1'his has the appearance of a brittle phenomenon, and plastic analysif; would 
not seem to be meaningful. Yet the upper bound technique yields a reason
able description of the shape of the failure surface, as seen in Fig. 6. 
The solution also applies to punching shear failure of slabs, and Fig. 7 
shows the predicted strength compared with test results. 

Other promisjng applications of the theory include anchorage and bond fui
lure of reinforcing bars in concrete. 

Discussion 

It is not the intention to claim that concrete is a perfectly plastic ma
t.erial with an associated flow rule, but only to point out that the simple 
plastic model offers possibilities which are well worth exploring. The me
rits of the approach should then be judged by the agreement of predictions 
with reality. Minor objections may be raised concerning the shape of the fai
l ure envelope, which is not realistic for substantial hydrostatic com
pression. An attractive way of improving the model without introducing ad
ditional parameters would be to replace the straight line of Fig. 1 by a pa
rabola (Fig. 8). With a zero tension cut-off, the plane stress solutions 
would be unaffected, whereas different - presumably more realistic - pre
dictions would be obtained under conditions of plane or axisymmetric strain. 
So far, this approach has not been pursued further. 

'~ 

-I~--Fig. 8 
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