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What is ENIGMA? Encryption Process Theory Tries

An “Enigma” machine 1s a type of machine that was used in
World War II by the Germans to send encrypted messages. The
machine 1itself 1s constructed using gears. Depending on the
amount, orientation, labels, and sequence of those gears, there
are potentially billions and billions of ways to encode a given
message. One can see how that would make it incredibly difficult
to crack.

Alan Turing, along with a team of researchers, were able to create
a machine, the “Bombe” that helped decrypt German messages.
Using information they intercepted, the Allied Powers were able
to prevent a large number of attacks planned by the Nazis.

The encryption will require us to select an initial gear order and
initial key that 1s 5 characters long. Each gear 1s set to begin at
the corresponding letter from the key.

After selecting the message we’d like to encode, we set the top
indicator of the first gear to the first letter of the encryption. The
corresponding letter on the next gear 1s the first encrypted letter.
As we continue encrypting the first 4 letters based on the top set
of indicators, we must then shift to the bottom set of indicators
for the next 4 letters of the message.

The process 1s repeated until the message 1s fully encoded.

Motivation

Our goal 1s to build a program that decodes the Enigma V En-
cryption Machine in an efficient and timely manner utilizing the
advancements of computer hardware and software made in the
last 80 years. Our program will have the ability to emulate the de-
cryption machine that was used during World War 11, the Bombe.

We specifically are working on decrypting the following message:

0081 0061 0172 0165 0108 0174 0161

0123 0142 0079 0058 0108 0177 0129

ALQQ NXEN Z4QD SBQP ZS4N ZNUV OXIL
56ID N7FX ALGD N44F PMUW ALQT Z7XX
87.6] 777V 8ASN AN4G AXJL BJFL 64QQ
B9QJ 67XI 61FV 85VG FBQG OXZL ONXL
ROKE HWK1 R.B

Decryption Process

To begin our decryption, we define an initial gear order and the
initial key that 1s 5-characters long. We must set each gear to
begin at the corresponding letter from the key.

We then rotate the second gear so that the top indicator 1s now set
at the first encrypted letter. We begin our decryption by reading
the top indicator of the first gear, after the rotation. We then rotate
the third gear so that the top indicator 1s pointed to the second
encrypted letter.

This process 1s continued until the message 1s fully decoded. A
challenge we are faced with involves the ability to define a new
wheel order or a new key at any point during the encryption, thus
our decryption must take this into account.

Some Prefatory Calculations

Our Machine

Five gears

Each gear 1s labelled on both sides
Interchangeable arrangements

Gears 1, 3, and 5 rotate clockwise
Gears 2 and 4 rotate counterclockwise

The indicators on Gear 1 are separated by five spokes

vV vV v v v v YV

The indicators on Gears 2, 3, 4, and 5 are separated by seven
spokes
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The picture above shows a simplified depiction of our Enigma
machine.

We have five, double-sided gears. That means the number of po-
tential arrangements for the gears 1s given by:

51%2° = 3,840

Each gear has 37 spokes.

The characters on those spokes are uniquely organized on each
gear.

Only the positions of the gears relative to the starting arrows
matters to us.

So the number of possible keys 1s given by:
37° = 69,343,957

Therefore, the total number of settings for our machine 1s:
3,840 69,343,957 = 266,280,794,880

Even 1f a human being was able to test one setting every minute, 24

hours a day, every day of the year, it would take them 506,622.52
years to try every single setting.

To analyze a given decrypted ciphertext we perform a two stage
test. First, a quick, rough test to sort out those decrypts which
are either too random or too structured. For example, 1f our ci-
phertext 1s 8 characters long, we wish to exclude decrypts like

(FIBQWETYV) and those like (AAAAAAIL).

There 1s a method, described below, for performing this check
with a constant number of simple arithmetic operations. After
this quick check we perform a more intensive check using a dic-
tionary of over 25,000 English words. From this we produce a
ranking of decrypted ciphertext corresponding to the percentage
of characters which appear in a word.

Our quick pass test using a metric popular in cryptanalysis called
the Index of Coincidence (IC). We will briefly describe the test
here, but further materials can be found in [Wiki][Shene].

Essentially IC 1s a metric describing the probability of randomly
pulling the same character twice from a given text. In particular
the formula 1s given by:

4| a; ai—l
IC = ‘A‘;NEN—Ig

where @' is the number of occurrences of the i character in the
alphabet, |A| is the size of the alphabet, and N is the number of
characters 1n the given message.

Given a complete random sequence, 1.e. one with the number
of occurrences of each character being approximately equal, we
would have IC = 1. For a text consisting the same character re-
peated, we would have IC = |A|. Now, for a sufficiently large
English text we expect to see an IC = 1.7. Using these bounds
we can attempt to narrow 1n on interesting”’ decrypts for further
analysis.

However, having the same IC as English 1s not enough to say
that a message 1s meaningful. For example, consider the mes-
sage; "COME BACK SOON”. We can simply rearrange the let-
ters to obtain "ABCC EKMN OOOS”, which has the same IC but
1s meaningless. So we must perform further analysis before we
record a candidate decryption.

In order to check 1f a decrypt with a promising IC rank 1s mean-
ingful, we test what percentage of characters belong in a word.
For instance, rearranging our previous example again we can ob-
tain "CABC KMEN OOSO”, which contains "CAB”, ’"ME”, and

”SO”. Thus we have % — 58% of characters involved in words.

Testing every sequential substring against a dictionary 1s the most
expensive computation we need to frequently perform. For that
reason we had to select an efficient algorithm. We use a data
structure known as a trie for this task, as it 1s very computationally
efficient. An image of a trie 1s shown to the right.
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Conclusions

Our Enigma machine came with a number of complications that
made 1t difficult to write a program that emulated 1t. There were
several 1terations of code that we went through in order to make
the code run faster. With billions of settings to try, we couldn’t
wait years to acquire the various outputs that would need to be

filtered.

The execution of our thought process was 1nevitably faced with
a fair amount of bumps 1n the road. Billions of potential outputs
are a lot more results to comb through than we 1nitially expected,
and coming up with an efficient mechanism to filter these outputs
turned out to be significantly more difficult than anticipated.

While we were not able to successfully construct a solution to
the last part of this process in the given time frame, we are ded-
icated to continue constructing, testing, and modifying various
algorithms that will allow us to filter through the outputs we are
currently acquiring and narrow them down to those that contain
sensible English.
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