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Consider the three functions

f (x) = cos
(

ln
(

2πx +
√

4πx2 + 1
)) (

ex2 + e−x2
)

+

sin
(

ln
(

2πx +
√

4πx2 + 1
)) (

ex2 − e−x2
)

,

g (x) =
{

x, x ≤ 2
x2, x > 2

,

h (x) =
{

x + 2, x ≤ 2
x2, x > 2

.

Are they all elementary functions? If not, then which do we call elementary functions?
How can we use this knowledge to our advantage?

The fact that we are considering elementary functions might point to g (x) and h (x)

as elementary functions since they are the simplest. Sherlock Holmes might see these
functions and say to his companion, “these are elementary, my dear Watson.” How-
ever, this is incorrect; in actuality, f (x) is an elementary functions and g (x) is not an
elementary function. Sadly, h (x) perplexes us as we cannot conclude anything about
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its status as an elementary function. Despite what the name suggests, an elementary
function is not necessarily “simple” and a “simple” function is not necessarily an ele-
mentary function. Unfortunately, the distinction between a function that is easy on the
eyes and an elementary function is rarely discussed today and was seldom discussed in
the past. This distinction is important to make, powerful algorithms can be created for
solving problems that involve elementary functions and even those that do not. They
provide us with a rare case of a set of mathematical objects which is both broad and
has substantive implications. We challenge the reader, after reading this, to open an
undergraduate textbook on engineering or physics to a random page and nearly all of
the functions which appear are likely to be elementary functions.

Background
Throughout history, the need to solve scientific problems prompted growth in mathe-
matical knowledge. As mathematicians created special functions to solve these prob-
lems, they sought to distinguish the functions which had been familiar for centuries.1

Joseph Liouville (1809–1882) was among the first to give a primitive “definition” of
elementary functions in showing that certain integrals are not solvable in terms of el-
ementary functions [8], but his work was predated by other mathematicians such as
Marie-Jean Marquis de Condorcet (1743–1794) [3], Pierre-Simon de Laplace (1749–
1827) [4], and Niels Henrik Abel (1802–1829) [9, p. 352–369]. These facile definitions
allowed for mathematicians to demonstrate certain results on integration, but they set a
harmful precedent. The lack of rigor present in these early definitions of an elementary
function continues into the modern day.

Most twentieth-century calculus textbooks have “elementary function” in the index
but none provide a proper definition. Instead, they provide a description in order to
be palatable and appeal to a wide readership. We later show via examples, that there
are many ways in which they could benefit from being more stringent on particular
details in their descriptions. Differential and Integral Calculus by Richard Courant
devotes a section to exposing students to the various types of elementary functions be-
ginning with polynomials and rational functions, then algebraic functions, and finally
transcendental functions [2].2 A more recent attempt is found in Calculus by Tom M.
Apostol where he says that an elementary function can “be obtained from polynomials,
exponentials, logarithms, trigonometric or inverse trigonometric functions in a finite
number of steps by using the operations of addition, subtraction, multiplication, divi-
sion, or composition” [1, p. 367]. Unfortunately, his “definition” is found toward the
end of the first volume in the chapter on Taylor series rather than in the first chapter
where functions are introduced, and it is incorrect which could lead to false conclu-
sions by readers about what constitutes an elementary function. The descriptions given
by Courant and Apostol allow for the misidentification of an arbitrary piecewise func-
tion as an elementary function. More often than not, twentieth-century calculus texts
have ambiguities that can lead to misidentifications of elementary function.

This trend continues in contemporary calculus textbooks. Essential Calculus by
James Stewart bears similarity to Apostol’s textbook. Stewart explains that elemen-
tary functions “are the polynomials, rational functions, power functions (xa), expo-
nential functions (ax), logarithmic functions, trigonometric and inverse trigonometric

1The strict definition of special functions is an interesting question which we do not answer here. For now, we
leave it to readers to consider how we might provide an actual definition for a special function given our definition
of an elementary function.

2This raises the question: exactly what do we mean by algebraic and transcendental functions?
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functions, and all functions that can be obtained from these by the five operations of
addition, subtraction, multiplication, division, and composition” [15, p. 339]. Stewart’s
description again allows for the misidentification of piecewise functions as elementary
functions. Referencing elementary functions by name without giving a precise descrip-
tion is an unfortunate and common trend that can also be seen in Silverman [14] as well
as Thomas and Finney [6].

Calculus serves as the introductory course to more rigorous college-level mathemat-
ics for most students. Further exposition on elementary functions in calculus textbooks
and courses could aid students in solving complicated problems. Providing a rigorous
definition allows for the creation of the theory of elementary functions. This theory
leads to the creation of methods for solving challenging problems in mathematical
analysis and its applications without necessarily drowning in the minutiae of those de-
tails presented here. When it comes to elementary functions, textbooks often expect
readers to be satisfied with loose descriptions of elementary functions which only hin-
der their ability to solve problems with mathematical analysis. Basic definitions and
theorems for functions given in these courses are only practical for trivial examples.
Then, upon finishing, students are often left with the impression that they can only
solve simple problems. Once elementary functions are properly described, we are able
to free students from the constraints imposed by these definitions and theorems so that
they can solve virtually any difficult problem that they will encounter.

It should be noted that elementary functions are defined on a level beyond that of
the typical undergraduate in differential algebra. J.F. Ritt [10] was among the first to
write on the subject and greatly expanded on the early work by Liouville. Elementary
functions as defined in differential algebra are a more general class than the elemen-
tary functions of a single real variable that we define.3 This definition is also depen-
dent upon prior knowledge of abstract algebra, which suggests that while elementary
functions are referenced as early as calculus they may not be defined until much later.
Furthermore, while many useful theorems have been obtained from this definition (e.g.
Liouville’s aforementioned results on integration), its dependence upon abstract alge-
bra distances it from the immediate application of elementary functions in calculus
courses. For instance, every calculus student learns how to determine the maximal do-
main of an elementary function as a subset of the the set of real numbers. However,
in differential algebra domains are often assumed to be subsets of the set of complex
numbers and are often not given direct attention. Another potential difficulty is the
typical use of exponential functions and logarithmic functions of a complex variable
to define trigonometric and inverse trigonometric functions.4 This is impossible to do
when a function of a real variable is not defined through a function of a complex
variable. In light of these difficulties for undergraduate students and the usefulness of
elementary functions, a digestible definition or at least a proper description appropriate
for calculus students seems to be a necessity.

As mentioned above, the rigorous study of elementary functions allows for the cre-
ation of algorithms that can be used to solve most types of problems in calculus in the
most arbitrary case. If an algorithm cannot be created, then it still gives great strength
in solving problems. For example, any problem of differentiation is reduced to mem-
orizing a handful of derivatives of elementary functions and their operations. Then,
finding the order of evaluation for the elementary function, reversing this order, and
taking the corresponding derivatives of each elementary function and operation creates

3However, after defining elementary functions and giving several examples of their use, we also provide ways
in which our definition may be generalized.

4For example, sin x =
(
eix−e−ix

)
/2i.
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an algorithm for differentiation of an arbitrary elementary function. Later in the paper,
continuity is treated in a similar manner in an example. Almost all topics in calculus
can be treated in this manner with a few exceptions, e.g. the range of a function of two
or more variables. Even in cases where we have a piecewise function, which is not
necessarily an elementary function, a surprising theorem at the end of the paper shows
that there are cases in which piecewise functions are elementary functions. However,
before elementary functions may be enjoyed, they must be defined!

Rigorous definition of an elementary function of a real
variable
We build the elementary functions from eight fundamental elementary functions that
serve as the building blocks of elementary functions. Three fundamental elementary
operations on functions bind the fundamental elementary functions. From there, we
are able to combine these fundamental elementary functions with three fundamental
elementary operations. These two preliminary definitions then allow us to define all
elementary functions from basic building blocks.

Definition (Fundamental elementary functions). The following eight func-
tions are referred to as the fundamental elementary functions of a real variable:

f1 (x) = c, c ∈ R, with domain D1 ⊆ R (1)

f2 (x) = x, with domain D2 ⊆ R (2)

f3 (x) = 1

x
, with domain D3 ⊆ R� {0} (3)

f4 (x) = n
√

x, n ∈ N,

if n

2 ∈ N then with domain D4 ⊆ [0, +∞)

if n+1
2 ∈ N then with domain D4 ⊆ R

(4)

f5 (x) = sin x, with domain D5 ⊆ R (5)

f6 (x) = ex, with domain D6 ⊆ R (6)

f7 (x) = ln x, with domain D7 ⊆ (0, +∞) (7)

f8 (x) = arccos x, with domain D8 ⊆ [−1, 1] (8)

Definition (Fundamental elementary operations). For any two functions (of a
real variable) f (x) and g(x) with domains Df , Dg and ranges Rf , Rg, respectively, the
following operations are called the fundamental elementary operations on elementary
functions:

1. Addition: For all x ∈ D = Df ∩ Dg �= ∅, f (x) and g(x) are both defined and
have values a and b (where a ∈ Rf and b ∈ Rg). Thus, for all x ∈ D there is a unique
corresponding real number c = a + b. Hence, we define a new function

(f + g) (x) = f (x) + g(x)

where the domain of f + g is D = Df ∩ Dg. This function is called the sum of f (x)

and g(x).
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2. Multiplication: In a similar fashion to addition, we define

(fg) (x) = f (x) · g(x)

where the domain of fg is D = Df ∩ Dg. This function is called the product of f (x)

and g(x).
3. Composition of Functions: In order to define the composition g ◦ f , it is neces-

sary that the domain of f is such that the range of f is a subset of the domain of g. If
and only if this condition is satisfied can we then find (g ◦ f ) (x) for all x ∈ Df . Thus,
we define g ◦ f to be the composite function of f (x) and g(x), if and only if

{
Rf ⊆ Dg

(g ◦ f ) (x) = g (f (x)) , x ∈ Df

.

Definition (Elementary functions). A function F(x) with domain D is called an
elementary function, if it can be obtained from one and the same set of fundamental
elementary functions using a finite number of fundamental elementary operations in
one and the same way for all x ∈ D.5

In other words, any elementary function may be written with only one formula that
consists of the allowed functions and operations for all values in the domain used
finitely many times. This is why the definition of an elementary function specifies
that it employs a finite number of fundamental elementary operations in one and the
same way for all x ∈ D. Of course, defining them in this way excludes functional
series and piecewise functions from necessarily being elementary functions. However,
if the functional series or piecewise function may be written as specified in the above
definition, then it is an elementary function. As an example, the series

∑+∞
n=0

xn

n! with
domain may be written as ex so that it is an elementary function.

It follows directly from the definition that elementary functions can also be obtained
by performing the fundamental elementary operations on any elementary functions.
There are many other operations and elementary functions which can then be obtained.
In the following section, we define other classes of elementary functions which are not
fundamental elementary functions and other operations on elementary functions which
are not fundamental elementary operations. Then we no longer worry about using only
the fundamental elementary functions and operations, and instead have an extensive
list of functions which are elementary functions and operations on these elementary
functions. We can then consider finitely many of these elementary functions obtained
from finitely many of these operations in one and the same way as an elementary
function. This gives the breadth of elementary functions.

Basic results
The following is a list of a set of functions and operations on elementary functions
(denoted f (x) and g (x)) that also yield elementary functions along with a sketch of
the proof:

5Not using a certain fundamental elementary operation is also considered to be using a finite number of this
operation.

VOL. 53, NO. 1, JANUARY 2021 THE COLLEGE MATHEMATICS JOURNAL 5



• Subtraction

– We have f (x) − g (x) = f (x) + (−1) (g (x)) is an elementary function as
it consists of multiplication and addition of elementary functions.

• Division

– We have f (x)

g(x)
= f (x) · 1

g(x)
is an elementary function as it consists of multi-

plication and composition of elementary functions.
• Polynomial functions

– This follows from multiplication and addition of elementary functions carried
on finitely many times.

• Rational functions

– By definition, a rational function may be expressed as a quotient of two poly-
nomials. Hence, rational functions are elementary functions from division of
elementary functions and the fact that polynomial functions are elementary
functions.

• Rational powers of elementary functions

– We have (f (x))
m
n = n

√
(f (x))m is an elementary function using multiplica-

tion and composition of elementary functions where m > 0 or using division,
multiplication, and composition of elementary functions where m < 0.

• Trigonometric functions

– We can define cos x = sin
(
x + π

2

)
which consists of addition and compo-

sition of elementary functions. Using cos x and the ever-expanding list of
elementary functions, we have that sec x = 1

cos x
, csc x = 1

sin x
, tan x = sin x

cos x
,

and cot x = cos x

sin x
are elementary functions.

• Inverse trigonometric functions

– First, we define arcsin x = π

2 − arccos x which is clearly an elementary
function. To obtain arccotx, let arccotx = t so that x = cot t where x ∈
(−∞, +∞) and t ∈ (0, π). Through manipulation of various trigono-
metric identities, we can show that t = arccos x√

1+x2
so that arccotx =

arccos x√
1+x2

is an elementary function. Then, arctan x = π

2 − arccotx is

also an elementary function.
• Functions of the form logf (x) g (x)

– We define logf (x) g(x) = ln g(x)

ln f (x)
for all x in the domain such that f (x) �= 1,

f (x) > 0, and g(x) > 0. Hence, all logarithmic functions are elementary
functions.

• Functions of the form f (x)g(x)

– We define f (x)g(x) = eg(x)·ln f (x) for values of x such that f (x) > 0.

This list simplifies the way to obtain elementary functions. From the definition of an
elementary function, applying finitely many elementary operations (including those
listed above) to elementary functions results in an elementary function. This allows for
the quick identification of elementary functions and has shown that they are a common
group. Another basic result shows that elementary functions are very useful.

The following statements are theorems that are very often proven in textbooks, e.g.
Lang [7], Rosenlicht [11], and Rudin [13], and thus will only be stated without proofs.
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1. All eight, f1(x) − f8(x), fundamental elementary functions are continuous ev-
erywhere in their domains except at the isolated points and are discontinuous at
the isolated points and outside of the domain.6

2. The sum of two continuous functions is also continuous everywhere in its do-
main except at the isolated points and is discontinuous at the isolated points and
outside of the domain.

3. The product of two continuous functions is also continuous everywhere in its
domain except at the isolated points and is discontinuous at the isolated points
and outside of the domain.

4. The composition of two continuous functions is also continuous everywhere in
its domain except at the isolated points and is discontinuous at the isolated points
and outside of the domain.

From these four theorems, one can conclude that all elementary functions are con-
tinuous in their domains, except at the isolated points at which they are discontinu-
ous.7 In some real analysis books, continuity is defined in a way that all functions are
continuous at their isolated points as well. This gives that elementary functions are
continuous everywhere in their domains. This is a powerful and useful result, as it
allows for tedious ε − δ or limit based arguments for continuity to be avoided when
“finding the domain” of elementary functions. These definitions remain important for
finding where piecewise functions are continuous or for proving fundamental results
for continuity.

A surprising theorem
Thus far, it seems that the restriction that elementary functions may be written in one
formula will preclude countless useful functions from being elementary functions. Per-
haps the simplest case of this is the absolute value function, |x|. This is shown in the
lemma below.

Lemma 1. The absolute value function |x| =
{

x, x ≥ 0
−x, x < 0

is an elementary func-

tion.

Proof. While the absolute value function is typically written as a piecewise function
as shown above. We may also write |x| = √

x2. This clearly holds for all real values
of x. Since

√
x2 is a rational power of an elementary function, it is also an elementary

function. �
The Lemma above suggests that it is not always the case that piecewise functions

are not elementary functions. In fact, we can extend this to a much more powerful
theorem.

Theorem 1. For a function f (x) defined as

f (x) =
{

g(x), x < a

h(x), x > a

6For a function f (x) defined in a domain D, a point a is called an isolated point of D, if and only if a ∈ D

and there exists ε > 0 such that x /∈ D for all x ∈ (a − ε, a + ε)� {a}.
7As an example of an elementary function with an isolated point in it’s domain, consider f (x) = √

x +√
x (x − 1) with domain D = {0} ∪ [1, +∞).
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where g(x) is an elementary function in Dg = (−∞, a) and h(x) is an elementary
function in Dh = (a, +∞). The function f (x) with domain Df = R \ {a} is an ele-
mentary function.

Proof. Note that

|x| + x

2x
=

{
0, x < 0
1, x > 0

and

−|x| + x

2x
=

{
1, x < 0
0, x > 0

Applying a shift in x, the function f (x) could be written as

f (x) = g(x)
x − a − |x − a|

2(x − a)
+ h(x)

x − a + |x − a|
2(x − a)

with domain Df = R \ {a}. Since the formula to calculate the value of f (x) at any
point in the domain Df of f (x) consists of only elementary functions and elementary
operations, f (x) is an elementary function. �

By induction, it can be shown that a function of the form

f (x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

g1(x), x < a1

g2 (x) , a1 < x < a2

...

gn (x) , an−1 < x < an

gn+1(x), x > an

is also an elementary function.
It is interesting to consider whether or not the function f (x) is an elementary func-

tion if it is of the form

f (x) =
{

g(x), x ≤ a

h(x), x > a

where we require that limx→a−0 g (x) = limx→a+0 h (x) so that f (x) is continuous at
a. Unfortunately, we do not know if there is some way in which f (x) can be written
in terms of one formula so that it is an elementary function.8

We have shown that piecewise functions which exclude this “transition point” may
be treated as elementary functions. While they can be written in one formula, this for-
mula is not useful outside of proving a theorem and we may treat piecewise functions
by observing their constituent formulas. In addition, a piecewise function that includes

8Like the question of defining special functions, we leave this for readers to consider!
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the transition point may be treated by first excluding this point and treating the func-
tion as an elementary function. Then, reincorporate this point and apply definitions to
observe what happens at the transition point.

Concluding example
Rather than leaving the reader with a summary of the main points of elementary func-
tions, we feel it is best to leave them with an example demonstrating their newfound
knowledge of elementary functions.

Example 1. Considering the function given with the formula f (x) = √
x + √

x (x − 1),
the maximal possible domain is D = {0} ∪ [1, +∞). Since f (x) is an elementary
function, it is continuous everywhere in its domain except at 0 which is an isolated
point.

Example 2. Consider the function

g (x) =
{

sin x2 + √
x , x ∈ [0, +∞]

|x| , x ∈ (−∞, 0)
.

Where is this function continuous?
The domain of this function is D = R but the formula that we use depends on

whether x is in D1 = [0, +∞) or D2 = (−∞, 0). The transition point for this function
is 0 which is contained in D1. Unfortunately, this transition point is in the domain
so that it cannot be concluded that g (x) is an elementary function. In order to use
Theorem 1 this transition point must be excluded by considering

h (x) =
{

sin x2 + √
x , x ∈ (0, +∞)

|x| , x ∈ (−∞, 0)
.

By Theorem 1, h (x) is an elementary function. Therefore, for x ∈ (−∞, 0) ∪
(0, +∞), g (x) is an elementary function and is therefore continuous in this set. For
x = 0, the definition of continuity must be applied. Thus, the problem of continuity
has been reduced to applying the definition at only one point in the domain rather than
at an arbitrary point in the domain.

For simplicity, we use the definition of continuity with limits rather than with ε − δ.
For x = 0, we have

lim
x→−0

g (x) = lim
x→−0

|x| = 0

and

lim
x→+0

g (x) = lim
x→+0

(
sin x2 + √

x
) = 0.

Since g (0) = 0, we have

f (0) = lim
x→−0

g (x) = lim
x→+0

g (x) .

Hence, g (x) is continuous at x = 0. Therefore, while g (x) is not an elementary func-
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tion, it is continuous everywhere in its domain. The beauty in this approach is that
students are able to justify the continuity of f (x) without resorting to applying the
definition to an arbitrary point of the domain.

We conclude here with an example demonstrating the easy justification for conti-
nuity of a piecewise function given through the use of elementary functions. However,
there are many other ways in which these techniques may be applied. Differentiation
can be achieved by remembering how to differentiate several elementary functions.
Taylor series expansions of elementary functions can be done by introducing Taylor
series expansions of several fundamental elementary functions and several fundamen-
tal operations on elementary functions and their corresponding power series. Unfor-
tunately, integration of elementary functions does not always provide an elementary
function. One can consult texts by K.O. Geddes et al. [5, pp. 523–529] or Maxwell
Rosenlicht [12] for a modern treatment of this result. However, integration techniques
can be summarized by recalling a handful of simple integration formulas and catego-
rizing them based on elementary functions. Our definition of elementary functions is
for functions of a single real variable but can be extended to functions of several real
variables as well. It can also be extended to functions of a complex variable but the
notion of an analytic function is more useful for these functions. This provides further
breadth that allows for the use of elementary functions in numerous subjects including
calculus, real analysis, and differential equations.

Summary. The definition of elementary functions was never given proper attention histor-
ically and continues to be neglected in contemporary calculus textbooks and courses. Eight
fundamental elementary functions and three fundamental elementary operations are defined.
Then, an elementary function is defined using these. Several powerful results are given for
elementary functions. Algorithms and formulas may be made allowing students to solve com-
plicated problems easily if they recognize and understand elementary functions. Examples of
these algorithms and their usage are provided.
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