Tarea 8

- 1).- Cuales de los siguientes funciones son homomorfismo de grupos:
- a) $\phi: \mathbb{R} \to \mathbb{R}^*$, dado por $\phi(x) = 2^x$.
- b) Sea G cualquier grupo y sea $\phi: G \to G$, dada por $\phi(g) = g^{-1}$.
- c) Sea F el grupo aditivo de todas las funciones infinitamente diferenciables sobre \mathbb{R} . Sea $\phi: F \to F$, dado por $\phi(f) = f''$.
- d) Sea $\phi: M_{n \times n}(\mathbb{R}) \to \mathbb{R}$, dado por $\phi(A) = |A|$.
- e) Sea $GL(n,\mathbb{R})$ el grupo multiplicativo de matrices invertibles. Sea $\phi:GL(n,\mathbb{R})\to\mathbb{R}$, dado por $\phi(A)=trz(A)$.
- f) Sea F el grupo multiplicativo de las funciones continuas sobre \mathbb{R} que nunca se anulan. Sea $\phi: F \to \mathbb{R}^*$, dado por $\phi(f) = \int_0^1 f(x) dx$.
 - 2).- Encuentre el Kernel de los siguientes homomorfismos de grupo:
- a) $\phi: \mathbb{Z}_{10} \to \mathbb{Z}_{20}$, tal que $\phi(1) = 8$.
- b) $\phi: \mathbb{Z}_{24} \to S_8$, tal que $\phi(1) = (2,5)(1,4,6,7)$.
- c) $\phi: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$, tal que $\phi(1,0) = 3$ y $\phi(0,1) = -5$.
- d) $\phi: \mathbb{Z} \times \mathbb{Z} \to S_{10}$, tal que $\phi(1,0) = (3,5)(2,4)$ y $\phi(0,1) = (1,7)(6,10,8,9)$.
- 3).- Sea G un grupo y sea $g \in G$ fijo. Sea la función $\phi_g : G \to G$ definida por $\phi_g(x) = gx$ para todo $x \in G$. Para cuales $g \in G$ resulta que ϕ_g es un homomorfismo de grupos?, la misma pregunta si $\phi_g(x) = gxg^{-1}$.
- 4).- Sea $\phi:G\to G'$ un homo de grupos. Muestre que si $\mid G\mid$ es finito entonces $\mid \phi[G]\mid$ es finito y es un divisor de $\mid G\mid$.
- 5).- Sea $\phi: G \to G'$ un homo de grupos. Muestre que si |G'| es finito entonces $|\phi[G]|$ es finito y es un divisor de |G'|.
- 6).- En las siguientes afirmaciones diga cuales son verdaderas o falsas y justifique su respuesta:
- a) A_n es un subgrupo normal de S_n para todo $n \geq 2$.
- b) Dados dos grupos G y G' siempre existe un homorfismo entre ellos.
- c) La imagen de un grupo de 6 elementos bajo un homomorfismo debe tener 4 elementos.
- d) La imagen de un grupo de 6 elementos bajo un homomorfismo debe tener 12 elementos.
- e) Existe un homomorfismo de un grupo de 6 elementos en un grupo de 12 elementos.
- 7).- En los siguientes incisos de un ejemplo de un homomorfismo ϕ no trivial de los grupos dados en caso de que exista tal homomorfismo; si tal homomorfismo no existe explique por no se puede dar. Sug: Utilize los ejercicios 4 y 5.

- a) $\phi: \mathbb{Z}_{12} \to \mathbb{Z}_5$.
- b) $\phi: \mathbb{Z}_2 \times \mathbb{Z}_4 \to \mathbb{Z}_2 \times \mathbb{Z}_5$.
- c) $\phi: \mathbb{Z}_3 \to \mathbb{Z}$.
- d) $\phi: \mathbb{Z}_3 \to S_3$.
- e) $\phi: \mathbb{Z} \to S_3$.
- f) $\phi: \mathbb{Z} \times \mathbb{Z} \to 2\mathbb{Z}$.
- g) $\phi: 2\mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$.
- 8).- Muestre que cualquier homomorfismo de grupos $\phi: G \to G'$ donde G es de orden primo entonces ϕ es el homomorfismo trivial o es un monomorfismo.
- 9).- Sean G, G', G'' grupos. Muestre que si $\phi : G \to G'$ y $\gamma : G' \to G''$ son homomorfismos de grupos entonces la composición $\gamma \phi : G \to G''$ es un homomorfismo de grupos.
- 10).- Sea $\phi: G \to G'$ un homomorfismo de grupos. Muestre que $\phi[G]$ es abeliano si y solo si $xyx^{-1}y^{-1} \in Ker \phi$ para todo $x,y \in G$.
- 11).- Sea $\phi: G \to G'$ un homomorfismo de grupos con $Ker \phi = H$ y sea $a \in G$. Demuestre que $\{x \in G: \phi(x) = \phi(a)\} = Ha$.
- 12).- Sea G un grupo y sea $g \in G$. Defina a $\phi : \mathbb{Z} \to G$, por $\phi(n) = g^n$. Muestre que ϕ es un homomorfismo de grupos. Describa la Imagen y las posibilidades del Kernel de ϕ .