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Abstract: The economic and environmental sustainability of extensive livestock production systems
requires the optimisation of soil management, pasture production and animal grazing. Soil com-
paction is generally viewed as an indicator of soil degradation processes and a determinant factor in
crop productivity. In the Montado silvopastoral ecosystem, characteristic of the Iberian Peninsula,
animal trampling is mentioned as a variable to consider in soil compaction. This study aims: (i) to
assess the spatial variation in the compaction profile of the 0–0.30 m deep soil layer over several
years; (ii) to evaluate the effect of animal trampling on soil compaction; and (iii) to demonstrate the
utility of combining various technological tools for sensing and mapping indicators of soil charac-
teristics (Cone Index, CI; and apparent electrical conductivity, ECa), of pastures’ vegetative vigour
(Normalised Difference Vegetation Index, NDVI) and of cows’ grazing zones (Global Positioning
Systems, GPS collars). The significant correlation between CI, soil moisture content (SMC) and ECa

and between ECa and soil clay content shows the potential of using these expedient tools provided
by the development of Precision Agriculture. The compaction resulting from animal trampling was
significant outside the tree canopy (OTC) in the four evaluated dates and in the three soil layers
considered (0–0.10 m; 0.10–0.20 m; 0.20–0.30 m). However, under the tree canopy (UTC), the effect of
animal trampling was significant only in the 0–0.10 m soil layer and in three of the four dates, with
a tendency for a greater CI at greater depths (0.10–0.30 m), in zones with a lower animal presence.
These results suggest that this could be a dynamic process, with recovery cycles in the face of grazing
management, seasonal fluctuations in soil moisture or spatial variation in specific soil characteristics
(namely clay contents). The NDVI shows potential for monitoring the effect of livestock trampling
during the peak spring production phase, with greater vigour in areas with less animal trampling.
These results provide good perspectives for future studies that allow the calibration and validation of
these tools to support the decision-making process of the agricultural manager.

Keywords: livestock trampling; precision grazing; sensors; soil compaction

1. Introduction

The silvopastoral ecosystem characteristic of the Iberian Peninsula, known as the
Montado in Portugal and the Dehesa in Spain, is a mixed system that integrates, in the same
place, agronomic crops (e.g., cereals, forage, or pastures), a tree stratum (e.g., Oak trees)
and livestock [1] and has been proposed to optimise economic and environmental benefits,
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including income from animal production, the condition of farm woodlands, and carbon
sequestration [2]. Such ecosystems play a crucial role in sustaining local communities
and their economies in regions with marginal soils, by providing them with an additional
income through livestock farming [3]. Traditional practices carried out in these areas are
often regarded as environmentally friendly and landscape-preserving, and the fields are
also considered to be of high natural value [3,4]. This ecosystem covers an estimated
area of 850,000 square kilometres in the Mediterranean basin, mostly occupying areas
characterised by unfavourable soil and climatic conditions [3]. Sustaining an important
economic activity for local populations, while maintaining the pastures’ productivity and
avoiding land degradation is a challenge that will determine the socio-economic viability
and environmental conservation of these semi-arid areas in the face of climate change [3].

The economic and environmental sustainability of extensive livestock production
systems requires the optimisation of soil management, pasture production and animal
grazing [5], which justifies the actual research interest in animal/soil interactions [1] or in
tree/soil interactions [6]. Livestock production is, however, associated with some negative
environmental impacts on pasture quality or on soil attributes, becoming a precursor
to degradation processes [7]. About 20% of the world’s pasture areas are degraded as
a consequence of overgrazing and its associated erosion and compaction [8], where the
main impact mentioned is the soil compaction by animal trampling [2]. According to
Jordon [9] and Drewry et al. [10], a cow exerts a greater static pressure (160–190 kPa)
on soil than a sheep (approximately 80 kPa), because of their low ratio of body weight
to soil contact area [8]. In the specific case of the bovine breeds involved in this study
(Mertolenga and Alentejana; with the mean weight of adult cows close to 400 kg and
600 kg, respectively), considering an approximate ground contact area of about 0.01 m2

per hoof [8,11], the static pressure exerted by the animals at each point of contact in
grazing is approximately 100 to 150 kPa. These dynamic stresses can be significantly
enhanced during the movement of the cow, when not all hooves are in contact with the
soil surface [8,12]. Grazing animals can exert downward pressures on the soil surface
similar or greater than those of heavy mechanical equipment [1,8,12,13]; therefore, this
concern is understandable [1]. Soil compaction is considered, in general, a determinant
factor of crop productivity [14], known and accepted as the factor that most negatively
alters soil structure [7,15]. The hoof impact of livestock tends to cause the collapse of
the larger soil pores, thus forming more small pores, increasing soil bulk density and
soil penetration resistance, favouring soil compaction and, consequently, hindering the
regrowth and renewal of the pasture and reducing productivity [7]. For these reasons, soil
compaction is associated with serious soil degradation processes which culminate in a
decrease in the soil aeration and water infiltration rate, and cause waterlogging, leading to
runoff [1,14–16]. This process has a negative impact on the soil’s productive potential [17].
Soil type, soil moisture content and grazing management (e.g., stocking rate, stocking
density or timing) are some of the factors that can accentuate the compaction resulting from
animal trampling [2,7]. It is known that this risk is highest when the soil moisture content tends
to increase [12,13]. Consequently, the autumn–winter and spring seasons, when practically all
precipitation is concentrated, are the periods of greatest soil compaction vulnerability.

The degree of compaction of the sub superficial layers of the soil can be measured
through soil penetration resistance, or the resistance of the soil against mechanical pen-
etration (Cone Index, CI, in kPa), which consists of quantifying the resistance observed
against the penetration of a body of a certain shape, usually a cone [18,19]. The field
penetrometer is a rapid and easy-to-use tool when compared to the more conventional soil
determinations, such as soil bulk density [19]. The CI, utilised to quantify the mechanical
impedance of the soil, is considered one of the key indicators for the diagnosis of the
most restrictive soil layers for root growth at depth [19]. Such evaluations offer essential
information about the ease or difficulty of the growth of crop root systems [18]. According
to Donkor et al. [13], Krajco [16] and Debiasi et al. [20], if the CI is higher than 2 MPa, this
may lead to restrictions on root penetration and growth. However, measurements of the
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CI values are highly influenced by diverse soil factors: intrinsic (e.g., soil moisture, bulk
density, texture and structure) and extrinsic (e.g., management system) [19]. Moreover, the
results of field penetrometers depend on user operating speed (penetration rate), which
is often challenging to standardise; a change in operating speed alters the force the users
apply to insert the equipment rod, which, in turn, changes the result [15,18]. On the other
hand, the characterisation of this and other soil properties is a difficult process due to the
high soil spatial variability [14] and the interaction and combination of the factors involved,
particularly in silvopastoral systems [1]. The soil’s superficial micro-variability is mainly
controlled by soil and crop management practices, plant roots, wet/dry cycles and, in
non-tillage systems, by surface-sealing processes [19].

In this context of high soil spatial variability, it is essential for management to take ad-
vantage of the technological developments associated with Precision Agriculture
(PA) [21,22]). The objectives of PA are to optimise production by increasing yield or
reducing costs, minimise the use of natural resources, reduce the environmental impact
and improve soil quality [14]. To achieve these goals, many new technologies have been
developed and used for sensing and mapping crops and soils [14]. Thus, the use of new
technologies for the correct management of farms is important to prevent the degradation
of new areas, since the use of pastures is a practical alternative for feeding ruminants and,
concomitantly, for producing meat and/or milk [7]. One of the most widely used parame-
ters for the management of soil spatial variability is the mapping of apparent soil electrical
conductivity (ECa), which allows the farmer to identify differentiated management zones
(e.g., for differential fertiliser application, soil amendment or irrigation) [22,23]. The ECa
is defined as the soil’s capacity to conduct electric currents, which is influenced by many
physical-chemical features of the soil, including the clay content [14,24,25]. The temporal
stability of this parameter has allowed the recognition of the geospatial measurements
of ECa as a valuable mapping tool that indicates the soil’s potential productivity [14,26]).
Simultaneously, the measurement of the ECa can be considered a relatively inexpensive,
easy and fast technique with the potential to contribute to the identification and prediction
of spatial variability of soil compaction [14,16]. However, in the recent literature, there is a
lack of scientific papers regarding the relationship between these two parameters [14].

Other technologies that can be very useful for monitoring animal trampling are Global
Positioning Systems (GPS collars). These collars have several applications in PA; for exam-
ple, they can be used to monitor preferred grazing areas [27]. The geolocation of animals
by remote sensing (RS) from satellites, at regular time intervals, allows the identification of
grazing patterns and areas of higher grazing intensity throughout the vegetative cycle of the
pasture [27]. These preferential grazing areas are potentially at greater risk of compaction
by animal trampling, especially in periods of higher precipitation, such as winter or spring
in regions with a Mediterranean climate. The use of RS imagery based on the Sentinel-2
satellite to obtain vegetation indices, namely the Normalised Difference Vegetation Index
(NDVI), also proved a promising tool to express the response pattern of pastures’ vegetative
vigour [7,28–30]. Therefore, with the vegetation indices that can be obtained from digital
images and are sensitive to changes in the vegetation cover of pastures, before and after
grazing, it is possible to monitor and to identify degraded areas with overgrazing, as well
as areas that are arid or without vegetation, for example, in large or small fields and at
different time scales [7].

This study aims: (i) to assess the spatial variation in the compaction profile of the
0–0.30 m soil layer over several years; (ii) to evaluate the effect of animal trampling on
soil compaction; and (iii) to demonstrate the interest of combining various technological
tools for sensing and mapping indicators of soil characteristics (CI and ECa), of pastures’
vegetative vigour (NDVI) and of cows’ grazing zones (GPS collars).
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2. Materials and Methods
2.1. Site Description, Field Management and Sampling Scheme

The field of the study (Figure 1) is located at the Mitra experimental farm of the Univer-
sity of Évora in the southern region of Portugal (coordinates 38◦32′10”N; 7◦59′80”W). This
field of Quercus ilex ssp. rotundifolia Lam. and bio-diverse pastures has been used for exten-
sive and rotational grazing of 60 adult cows of two native breeds (“Alentejana”—25 animals;
and “Mertolenga”—35 animals) [5]. Of the total grazing area (about 100 ha), 20 ha were
monitored (11 ha in “Field A” and 9 ha in “Field B”). Grazing was conducted to have a
mean stocking rate of about of 0.6 head.ha−1 in both fields (A and B) between October
and December. In January and February and between April and June, no animals graze
in “Field B”, while in March, no animals graze in “Field A”. More details of this grazing
management system can be consulted in Serrano et al. [5].
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Figure 1. Grazing area and sampling area of the experimental field.

The dominant soil type of this field is acidic and a not very fertile Cambisol [31],
mainly used for mixed agrosilvopastoral systems.

The chronology of the measurements carried out in the experimental field is presented
in Figure 2. In April 2018, the ECa and altimetric surveys, as well as soil sampling and CI
measurements, were carried out. The CI measurements were carried out again in March
2019, September, November and December 2021 and March 2022. Animal monitoring
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was carried out between January and May 2021. Vegetation Index (NDVI) time series
reconstruction was performed throughout the 2021/2022 pasture vegetative cycle (between
September 2021 and June 2022).
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Figure 2. Timeline of measurements carried out in the experimental field.

The monitoring area (“Field A” + “Field B”) was sampled in two phases: the first in
2018–2019 and the second in 2021–2022. In the first phase, 24 Sentinel-2 pixels “10 m × 10 m”
were georeferenced for sampling in areas without trees (outside the tree canopy, OTC;
Figure 3a), with 12 in each field (A and B). In the second phase, half of these areas was
sampled (12 sampling pixels, 6 in each field, A and B), as well as the area under the tree
canopy (UTC) closest to each of these pixels (12 sampling trees; Figure 3b).

Sensors 2023, 23, x FOR PEER REVIEW 5 of 29 
 

 

March 2019, September, November and December 2021 and March 2022. Animal moni-

toring was carried out between January and May 2021. Vegetation Index (NDVI) time 

series reconstruction was performed throughout the 2021/2022 pasture vegetative cycle 

(between September 2021 and June 2022). 

The monitoring area (“Field A” + “Field B”) was sampled in two phases: the first in 

2018–2019 and the second in 2021–2022. In the first phase, 24 Sentinel-2 pixels “10 m × 10 

m” were georeferenced for sampling in areas without trees (outside the tree canopy, OTC; 

Figure 3a), with 12 in each field (A and B). In the second phase, half of these areas was 

sampled (12 sampling pixels, 6 in each field, A and B), as well as the area under the tree 

canopy (UTC) closest to each of these pixels (12 sampling trees; Figure 3b). 

 

Figure 2. Timeline of measurements carried out in the experimental field. 

 

Figure 3. Sampling scheme of the experimental field in each phase of this study: (a) 24 sampling 

pixels; (b) 12 sampling pixels and 12 sampling trees. 

2018 2019 2020 2021 2022

12 sampling pixels + 12 sampling trees

CEa and Altimetric
surveys

Soil sampling

CI 
measurements

Animal 
monitoring

(GPS)
NDVI time-series

reconstruction (RS) 

CI 
measurements

24 sampling pixels

CI 
measurements

B12

B10

B9
B8

B7

B6

B5

B4

B3B2

B1

B11

A12

A10

A9

A8 A7

A6

A5

A4

A3

A2

A1

A11

Field A

Field B

B10

B8

B4

B2

B1

B11

A9

A6

A5

A3

A2

A1

Sampling tree

Field A

Field B

(a) (b)

Figure 3. Sampling scheme of the experimental field in each phase of this study: (a) 24 sampling
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2.2. Characterisation of the Climate

The climate of this Mediterranean region is classified as Csa (Köppen–Geiger classifi-
cation) [32]. It is characterised by high inter-annual irregularity and low rainfall (<600 mm)
that is more frequent in the autumn–winter period and practically nil in the summer [33].

The thermopluviometric diagram of the Évora meteorological station between July
2015 and June 2022 is presented in Figure 4. This also shows the monthly rainfall between
July 2020 and June 2021 and between July 2021 and June 2022. The great irregularity of the
rainfall distribution is evident: for example, 2020/2021 shows high accumulated rainfall in
February (142 mm), October (141 mm), November (108 mm) and April (106 mm) and very
low rainfall in March (18 mm), while 2021/2022 shows high accumulated rainfall in March
(135 mm), October (113 mm) and December (97 mm) and very low rainfall in January
(5 mm), February (10 mm) and November (15 mm). This irregularity and, especially, the
occurrence of events with a high concentration of rainfall, associated with poorly drained
soils, can lead to situations of flooding and, consequently, potentiate soil compaction by
animal trampling.
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2.3. Soil Apparent Electrical Conductivity (ECa) and Altimetric Surveys

With the aim of measuring ECa, a contact-type sensor (Veris Technologies, Salina, KS,
USA) was utilised. Measurements at a depth of 0–0.30 m were performed in April 2018.
An all-terrain vehicle was used to pull the sensor. The average speed of the vehicle was
2.0 m s−1; consecutive passages, spaced 10 m, were made across the field. The spatial
resolution of the ECa measurements was a 2 by 10 m grid, since a measurement was taken
every second. A global navigation satellite system (GNSS) antenna was installed near the
sensor. The obtained data were used to produce the ECa map with the ArcMap module of
ArcGIS 9.3 software (v10.5, ESRI, Inc., Redlands, CA, USA), after conducting a geostatistical
analysis with the extension Geostatistical Analyst.
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The data of the GNSS antenna were used to create the digital surface elevation model
(elevation map) using the linear interpolation TIN tool from ArcGIS 9.3 and converted to a
grid surface with a 1 m grid resolution.

2.4. Soil Sampling and Laboratory Reference Analysis

In the 24 sampling areas (Sentinel-2 pixels; Figure 3a), after measuring ECa, composite
soil samples (comprised of five subsamples) were collected at a depth of 0–0.30 m. These
soil samples were analysed for moisture content (SMC), particle size distribution (texture:
sand, silt and clay content), pH, organic matter (OM) and cationic exchange capacity (CEC).
The standard processes used in the laboratory were described in detail by Serrano et al. [5,6].
All maps of the soil parameters were produced after conducting a geostatistical analysis
with ArcGIS using a 1 m grid resolution. Was used the inverse distance weighting (IDW)
interpolation of the georeferenced data.

2.5. Cone Index Measurements

An electronic cone penetrometer “FieldScout SC 900” (Spectrum Technologies, Aurora,
IL, USA) was used to measure the soil resistance to penetration (Cone Index, CI, in kPa) [15].
The main rules for the determination of CI values are standardised by the American Society
of Agricultural and Biological Engineers (ASABE; EP542 and S313.3) [15].

In each sampling point, five CI measurements were carried out between 0-0.45 m
(maximum depth allowed by the device), one in the central point of the sampling area, and
one in each of its four quadrants. As suggested in other works [15], to minimise possible
errors resulting from the uncertainty of maintaining a constant penetration rate during the
determination, measurements were always carried out by the same experienced operator.
When the insertion speed changes, the equipment registers an error, and the measurement
is repeated. CI measurements were carried out in the 24 pixels in April 2018 and March
2019 (Figure 3a), and in the 12 OTC pixels and the 12 UTC areas, in September, November
and December 2021 and March 2022 (Figure 3b).

After the field measurements, data processing was carried out. A preliminary analysis
was conducted to remove outliers from the data set. This procedure is fundamental, since
the CI is measured using portable penetrometers, with manual operation, and the roughness
of the soil surface and the variation in the speed of the rod going into the soil profile can
influence the results [19]. The inconsistent and unreliable readings that may occur near
the soil surface due the unevenness of the soil surface, led us not to consider the readings
obtained in each point at 0 m depth, an aspect also suggested by Mayerfeld et al. [2]. The
mean CI value of the set of five measurements was calculated for each sampling area and
each depth of determination.

Taking into account, on the one hand, the recommendations of Mayerfeld et al. [2] that
soil compaction investigations in silvopastures should extend to at least a depth of 0.30 m
and, on the other hand, of Pentos et al. [14] that soil compaction measured in deeper soil
layers is of no practical relevance because of limitations in rooting depth, in this study, the
mean CI of 0–0.10 m, 0.10–0.20 m, 0.20–0.30 m and 0–0.30 m was calculated. In shallow
soils, as is the case for soils typical of the Montado ecosystem [33,34], measurements below
0.30–0.35 m may be in contact with the bedrock, as reported by Mayerfeld et al. [2].

2.6. Animal Tracking with GPS Collars and Data Analysis

To monitor the grazing patterns, five randomly selected cows were fitted with GNSS
(Global Navigation Satellite System) position loggers (“Digitanimal”, Madrid, Spain). The
tracking system consisted of a GNSS unit, a lithium battery pack, a PVC enclosure resistant
to water and dust and a communication module (GPS collars) [35]. A total of four loggers
were programmed to collect geolocation data every thirty minutes between 1 January and
17 March 2021, and the fifth receiver was programmed to collect geolocation data every
five minutes between 6 and 19 May 2021. Data were transmitted over the “Sigfox”, a global
network dedicated to the internet of things featuring low power, a long range, and small
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data. The devices, weighing 265 g, were adjusted to the neck of the animals using a stripe
with a buckle, without affecting the animals’ movements. Figure 5 shows two patterns of
animal behaviour throughout the year in the Montado ecosystem: UTC at peak summer
sunshine hours (a) and in preferential grazing areas in other seasons (b).
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Figure 5. Typical behaviour of grazing cows: (a) under tree canopy, UTC, in the hot season (summer);
(b) in preferential grazing areas in the other seasons (autumn, winter and spring).

The geostatistical analyses of the GPS collars were carried out with the ArcGIS Desktop
software (v10.5, ESRI, Inc., Redlands, CA, USA). The “Optimised Outlier Analysis (Spatial
Statistics)” algorithm, based on incident points, obtained by the GPS collars, creates a
map of statistically significant hot spots, cold spots and spatial outliers using the “Anselin
Local Moran’s I statistic”. This map, with s 5 m spatial resolution, includes 5 classes (“Not
significant”, “High-High cluster”, “High-Low outlier”, “Low-High outlier”, and “Low-Low
cluster”) and serves to characterise the grazing density pattern. With this tool, statistically
significant spatial clusters of high values (hot spots), low values (cold spots) and outliers
were identified within the dataset. The characteristics of the input feature class of the
data to establish settings that produce optimal clusters were evaluated, and, automatically,
(i) incident data were aggregated, (ii) multiple test and spatial dependence were corrected
and (iii) a proper scale of analysis was determined. When a high positive z-score for a
given feature is obtained, the features of nearby areas have similar values. The “Output
Feature Class” is “High-High” or, conversely, “Low-Low”, respectively, for a statistically
significant cluster of high or low values. On the other hand, the “Output Feature Class” is
“High-Low” or “Low-High”, respectively, when the feature has a high value and nearby
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areas have low values or, conversely, when the feature has a low value and nearby areas
have high values.

2.7. Vegetation Multispectral Measurement and NDVI Time Series Reconstruction

For this study, a multi-temporal Sentinel-2 imagery data set, free of clouds and atmo-
spherically corrected, was downloaded from the Copernicus data hub. Band 8 (B8; NIR;
842 nm) and band 4 (B4; RED; 665 nm), both with a 10 m spatial resolution, were used
to calculate the satellite vegetation index (NDVI; Equation (1)) and for the reconstruction
of the mean NDVI trends (NDVI time series records). Values are the mean of the set of
pixel sampling areas corresponding to “high livestock trampling” and of the set of pixel
sampling areas corresponding to “low livestock trampling”.

NDVI =
B8− B4
B8 + B4

(1)

2.8. Statistical Analysis

Descriptive statistical analysis was performed for all the evaluated soil parameters.
Regression analysis with a 95% significance level (p < 0.05) and the analysis of variance

(ANOVA) of the data were carried out using IBM SPSS Statistics package for Windows
(version 28.0, IBM Corp., Armonk, NY, USA). The multiple comparisons (Tukey’s HSD test)
were applied for mean separation whenever the variables presented significant differences
in the ANOVA. The specific analysis of the GPS collars and the determination of the NDVI
from satellite image data were described above.

3. Results and Discussion
3.1. Soil Parameters: Spatial Variability and Relationship with Soil Apparent Electrical
Conductivity

The descriptive statistics of the soil parameters of the experimental field are shown in
Table 1. The low pH (5.5 ± 0.2), the low clay content (10.5 ± 1.8%) and OM (1.5 ± 0.3%)
and the spatial variability are the most important features. According to the classification
proposed by Pias et al. [19], the soil parameters show low spatial variability (pH and
sand, with a CV < 12%) or medium-to-high variability (all other evaluated soil parameters,
with a CV between 12 and 62%). This spatial variability is the basis for site-specific
management [36–38], which, in this case of extensive animal production, corresponds
to variable livestock management [5]. This spatial variability is also shown in the maps
of Figure 6.
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Table 1. Descriptive statistics of the soil parameters of the experimental field (0–0.30 m) in 2018 and
2019 surveys.

Soil Parameter Mean SD CV (%) Range

23 April 2018

Clay (%) 10.5 1.8 17.0 7.2–13.9

Silt (%) 11.4 2.1 18.7 8.2–15.3

Sand (%) 78.1 3.8 4.9 71.5–84.6
pH 5.5 0.2 4.4 5.0–5.8
OM (%) 1.5 0.3 21.5 0.9–2.1
CEC (cmol kg−1) 10.8 2.8 26.4 5.2–17.9
SMC (%) 18.4 4.9 26.7 11.9–26.7
CEa (mS m−1) 2.3 0.9 39.1 0.6–4.7
CI0–10 (kPa) 1875 763 40.7 207–3378
CI10–20 (kPa) 2042 656 32.1 853–3137
CI20–30 (kPa) 1912 813 42.5 896–4551
CI0–30 (kPa) 1970 559 28.4 207–4551

21 March 2019
CI0–10 (kPa) 1441 332 23.0 845–2043
CI10–20 (kPa) 1687 532 31.6 744–2743
CI20–30 (kPa) 1313 429 32.6 331–2111
CI0–30 (kPa) 1445 364 25.2 331–2743

SD—Standard deviation; CV—Coefficient of variation; OM—Organic matter; CEC—Cationic exchange capacity;
SMC—Soil moisture content; ECa—Soil Apparent Electrical Conductivity; CI—Cone Index.
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Figure 6. Maps of the soil characteristics: (a) clay; (b) silt; (c) sand; (d) organic matter; (e) pH; and
(f) cationic exchange capacity (CEC).

Figure 7 shows the elevation (a) and ECa (b) maps. These highlight the slightly
undulating topography, characteristic of this region, and the very low ECa values (<5 mS.m;
Figure 7b), typical of coarse-textured and dryland soils [24,35].
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Figure 7. Maps of the experimental field: (a) elevation; (b) soil apparent electrical conductivity (ECa).

The relationship between soil apparent electrical conductivity (ECa) and the soil
parameters of the experimental field (Table 2) showed positive and significant correlations
with moisture (SMC) and clay and soil silt content, and negative and significant correlation
with soil sand content. The reverse behaviour of clay and sand in the relationship with
ECa is visible in Figure 8. Figure 9 shows the significant relationship between SMC and
ECa and between SMC and CI: on the one hand, the positive effect of the SMC in ECa
and, on the other, the decrease in the CI with the increase in the SMC are visible. The
positive and significant correlations of ECa with the SMC, clay and soil silt content, and
negative and significant correlation with soil sand content has also been verified in other
works [14,24,39–41] and shows the interest of the measurement of ECa as an expedient tool
for identifying homogeneous management zones [22].

Table 2. Correlation coefficients between soil apparent electrical conductivity (ECa) and soil parame-
ters of the experimental field (0–0.30 m) on 23 April 2018.

Soil Parameter Correlation Coefficient (Significance)

Clay (%) 0.688 (**)
Silt (%) 0.523 (*)
Sand (%) −0.611 (**)
pH 0.227 (ns)
OM (%) 0.420 (ns)
CEC (cmol kg−1) 0.119 (ns)
SMC (%) 0.795 (**)

OM—Organic matter; CEC—Cationic exchange capacity; SMC—Soil moisture content; **—Statistically signif-
icant at the 99% confidence level (p < 0.01); *—Statistically significant at the 95% confidence level (p < 0.05);
ns—Not significant.
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Figure 8. Relationship between soil apparent electrical conductivity (ECa) and sand and clay content
in the 0–0.30 m soil layer (2018).
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Figure 9. Relationship between soil moisture content (SMC) and soil apparent electrical conductivity
(ECa) and the Cone Index (CI) in the 0–0.30 m soil layer (2018).

In terms of possible impacts on soil compaction [14,42], the results of this study
highlight the important variability in OM (1 to 2%) and clay (7 to 14%) contents. In
this regard, several studies state that soil compaction is affected by small changes in soil
texture [15–17]. Mayerfeld et al. [2] and Nawaz et al. [17] conclude, for example, that silt
loam soils with low colloid contents are more susceptible than medium or fine-textured
loamy and clay soils at low water contents, while sandy soils are slightly susceptible to
soil compaction.
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According to Pentos et al. [14], many physical, chemical and biological properties
of soils that affect soil compaction, namely SMC, OM or particle size distribution, also
influence the soil’s electrical parameters, and, therefore, there is a close relation between
soil compaction and soil apparent electrical conductivity. The ECa maps frequently show a
high degree of correlation with soil compaction and, thus, can potentially provide a rapid
alternative for assessing soil compaction [14,16].

3.2. Cone Index (CI) of Spatial Variability

The assessment of soil compaction through the CI in spring 2018 (Figure 10a) and
spring 2019 (Figure 10b) showed different vertical profiles in the two subplots under study
(“Field A” and “Field B”): while in 2018 there was a trend towards higher compaction
in “Field B” and only in the 0–0.20 m soil layer, in 2019, there was an inverse trend, with
higher compaction in “Field A” throughout the assessed soil profile (0–0.30 m).
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It can also be seen that the mean CI in “Field A” showed a similar pattern in 2018 and
2019, not exceeding 2000 kPa, while in “Field B”, the CI reached values above 2500 kPa in
the 5–10 cm soil layer in 2018, not exceeding 1500 kPa in 2019. It is important to link this
evaluation to the livestock management: the soil compaction measurement in 2018 was
carried out near the end of April, after all the animals had been in “Field B” since the
beginning of April; on the other hand, the soil compaction measurement in 2019 was
carried out near the end of March, after all the animals had been in “Field A” between
January and March.

Figures 11 and 12 show the spatial variability in the CI in the two assessments carried
out (2018 and 2019, respectively) in the various soil layers (0–10 cm; 10–20 cm; 20–30 cm;
and 0–30 cm). These figures reflect the CV of 20–40% shown in Table 1. The spatial pattern
is variable both in terms of depth and between dates.

The descriptive statistics of the SMC and CI relative to all data obtained between
September 2021 and March 2022 are presented in Table 3. The results of the ANOVA applied
to the CI measurements are also presented. This analysis shows significant differences
for the variables “Date of measurement” and “Depth”, and non-significant differences for
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the variables “Tree canopy” and “Fields”. The compaction profiles show similar patterns
for OTC and UTC for all of the four evaluation dates (Figure 13). The mean separation
(multiple comparison of Tukey) for the variable “Date of measurement” showed higher CI
values in September 2021, followed by March 2022, with no significant differences between
November and December 2021. These results show a trend towards lower CI values as the
SMC increases (Figure 14), which confirms the already presented relationship between the
SMC and CI (Figure 9). The mean separation for the variable “Depth” showed higher CI
values at a depth of 0.10–0.20 m, relative to the other two soil layers considered (0–0.10 m
and 0.20–0.30 m).
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Figure 12. Cone Index (CI) maps of the experimental field in March 2019: (a) 0–0.10 m;
(b) (0.10–0.20 m; (c) 0.20–0.30 m; (d) 0–0.30 m.
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Table 3. Descriptive statistics (mean ± standard deviation) of soil moisture content (SMC) and Cone
Index (CI) between September 2021 and March 2022, and inferential analysis of CI.

Factors n SMC (%) CI (kPa) CI_Signif.

Date of measurement *
1 (17 SEP 2021) 485 7.0 ± 1.8 3169 ± 1717 a
2 (03 NOV 2021) 1187 15.0 ± 2.6 2205 ± 974 c
3 (21 DEC 2021) 1101 14.9 ± 3.2 2318 ± 1084 c
4 (15 MAR 2022) 1106 13.0 ± 1.8 2749 ± 1197 b

Tree canopy ns
OTC 1997 13.2 ± 3.0 2557 ± 1204 -
UTC 1882 13.6 ± 4.1 2465 ± 1252 -

Fields ns
A 1861 14.7 ± 3.6 2506 ± 1258 -
B 2018 12.1 ± 3.1 2519 ± 1201 -

Depths *
0–0.10 m 1384 - 2459 ± 633 b
0.10–0.20 m 1269 - 2964 ± 891 a
0.20–0.30 m 1226 - 2780 ± 966 b

n—Number of CI measurements; SMC—Soil moisture content; CI—Cone Index; OTC—Outside the tree canopy;
UTC—Under the tree canopy; Signif.—Significance; *—Statistically significant at the 95% confidence level
(p < 0.05); ns—Not significant; Different lowercase letters in the interactions indicate significant differences
in the mean CI for the “Fisher’s” test (Prob. < 0.05).Sensors 2023, 23, x FOR PEER REVIEW 17 of 29 
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Figure 13. Average Cone Index (CI) at 0–0.30 m soil depth, outside and under the tree canopy
(OTC and UTC, respectively): (a) 17 September 2021; (b) 3 November 2021; (c) 21 December 2021;
(d) 15 March 2022.
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Figure 14. Relationship between mean soil moisture content (SMC) and mean Cone Index (CI) in the
0–0.30 m soil layer (2021/2022).

The spatial variability in the CI found in this study during the various moments of
assessment (CV of 28 to 41% in 2018; of 23 to 33% in 2019; and 44 to 54% in 2021/22),
associated with the vertical variability in the soil profile (depths of 0–0.10 m; 0.10–0.20 m;
and 0.20–0.30 m), shows that the measurements of the CI values are highly influenced by
diverse soil factors [19]. The mean CI of 1900–2000 kPa registered in this study in 2018
and 1300–1700 kPa registered in 2019 (Table 1) are values below those limits generally
considered critical for plant root growth. In the evaluations performed in 2021/2022,
however, the mean CI was 2200–2300 kPa in November and December 2021, reaching
very high mean values in March 2022 (>2700 kPa) and, especially, in September 2021
(>3100 kPa), showing an inverse relationship with SMC. This aspect is very important,
since the vegetative cycle of dryland pastures normally begins in September (after the first
autumn rains), an important phase in plant root development [42]. This trend towards
higher CI values as SMC decreases, or vice versa (exponential relationship), confirms the
results of other studies [15,18] and is attributed to the reduction in the cohesive forces
between clay particles [43]. It should be noted, however, that this relationship between
the CI and SMC restricts direct comparisons of CI values among same soils with different
moisture contents [15].

In this study, in addition to the significant differences found when comparing different
dates of the CI measurements, resulting basically from the change in SMC, but also from
changes in the animal grazing management (an aspect discussed in the next point), it is
important to note the absence of significant differences in the CI between OTC and UTC
regarding the topsoil layer (0–0.30 m). Several studies report higher compaction in UTC
areas [1,6]. As trees grow, their aboveground weight is transferred to the soil through
surface roots, which also exert compression forces on near-by soil as they increase in diam-
eter during radial growth [1]. However, this effect can be mitigated by the accumulation
of leaves and other residues UTC [1], leading to higher levels of OM in UTC areas [34],
which tends to reduce soil compaction because these open new soil channels contribute
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nutrients that support the soil rhizosphere [1], increasing the resistance to soil deformation
by increasing elasticity [17].

3.3. Effect of Livestock Trampling on Soil Compaction

Another aspect evaluated in this study was the effect of livestock trampling on soil
compaction. Figure 15 show the grazing density map based on georeferenced information
obtained by the GPS collars. In these, five classes were used: “Not significant”, “High-High
cluster”, “High-Low outlier”, “Low-High outlier” and “Low-Low cluster”.
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January and May 2021.

For the statistical analysis, only two classes were considered: the “High-High cluster”
(a statistically significant cluster of high values), which includes the sampling points A1,
A5 and A9, and the “Low-Low cluster” (a statistically significant cluster of low values),
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which includes the sampling points A2, B1, B2, B4, B10 and B11. The other sampling points
(A3, A6 and B8) were classified as “Not Significant”. “High-High” areas correspond to a
high density of animals present in the considered period, potentially with higher livestock
trampling. In contrast, the “Low-Low” areas correspond to zones with a low density of
animals in the same period, potentially with lower levels of livestock trampling.

Tables 4 and 5 show the CI of each one of the sampling areas of “Field A” and “Field
B”, respectively, at the four evaluation dates of 2021/2022, OTC and UTC, and at different
depths. In September 2021, due to the low SMC, some sampling areas did not allow
CI measurements at all depths (the electronic penetrometer showed an error due to the
excessive force requested).

Table 4. Mean Cone Index (CI; kPa) of the sampling areas of Mitra “Field A” on the four evaluation dates
(2021/2022), outside and under the tree canopy (OTC and UTC, respectively), and at different depths.

Sampling Area A1 A2 A3 A5 A6 A9
Animal Trampling High Low NS High NS High

OTC UTC OTC UTC OTC UTC OTC UTC OTC UTC OTC UTC
Date 1 (17 September 2021)
0–10 cm 4079 4531 2246 3083 1636 3393 2688 3172 3243 1699 2852 3484
10–20 cm 4908 x x x 1000 x 4542 x x 2656 3217 3628
20–30 cm x x x x x x 2661 x x x 4547 2171
Date 2 (3 November 2021)
0–10 cm 2944 2354 3150 2018 2179 2259 2605 2205 1697 2950 1690 3274
10–20 cm 4090 2179 2461 1811 2622 2366 3284 2464 3660 2633 1810 2101
20–30 cm 3946 1788 1820 2061 2753 1639 2984 2474 3628 1814 1972 1493
Date 3 (21 December 2021)
0–10 cm 2593 2580 2441 2219 2111 2705 2666 1754 1196 2449 2638 1828
10–20 cm 4065 3286 2004 2484 3272 3611 2952 2586 3033 2751 2603 1952
20–30 cm 3806 3693 1256 2165 2900 3660 2201 3003 2811 3420 1328 1966
Date 4 (15 Macch 2022)
0–10 cm 2783 3277 2278 2544 1984 2826 3359 1779 1059 3003 3244 1588
10–20 cm 4975 4582 2366 2225 2734 3161 3175 2449 1866 4270 2751 2172
20–30 cm 4196 4295 2245 2835 2840 2980 2954 3369 2198 3816 1906 1815

NS—Not significant; OTC—Outside the tree canopy; UTC—Under the tree canopy; x—“Excessive force”.

Table 5. Mean Cone Index (CI; kPa) of sampling areas of Mitra “Field B” on the four evaluation dates
(2021/2022), outside and under the tree canopy (OTC and UTC, respectively), and at different depths.

Sampling Area B1 B2 B4 B8 B10 B11
Animal Trampling Low Low Low NS Low Low

OTC UTC OTC UTC OTC UTC OTC UTC OTC UTC OTC UTC
Date 1 (17 September 2021)
0–10 cm 3175 3579 1872 1907 3300 2626 2905 1937 3582 1849 2428 2317
10–20 cm 4134 4260 x 3851 4567 5204 4646 x 3420 4640 4907 3524
20–30 cm 4975 3312 x 3420 2714 4692 4783 x 4027 1276 5899 3880
Date 2 (3 November 2021)
0–10 cm 2579 2475 2149 2240 3030 1667 2694 2208 2351 2084 2337 1903
10–20 cm 2383 2800 1657 2196 2627 2291 3064 2182 2757 2984 1870 2192
20–30 cm 1992 2061 1587 2017 2133 1982 2932 2214 2363 3020 1972 1871
Date 3 (21 December 2021)
0–10 cm 2512 1920 2521 1754 2236 1544 2938 1995 2518 1595 1699 2093
10–20 cm 2303 2751 2580 2314 2546 2857 3375 1627 2612 2765 2190 2751
20–30 cm 2108 2640 1883 2367 2082 2837 3227 1295 2392 3798 1955 2179
Date 4 (15 Macch 2022)
0–10 cm 2454 2426 2809 1404 2451 2909 3187 2259 2530 2145 1515 3136
10–20 cm 2300 3898 1958 2375 2817 3776 3562 2265 3085 3361 2970 2888
20–30 cm 2441 2981 1345 3151 2515 4055 3562 3062 2581 4077 3607 3614

NS—Not significant; OTC—Outside the tree canopy; UTC—Under the tree canopy; x—“Excessive force”.

Table 6 shows the results of the ANOVA applied to the CI measured in “high” and
“low” grazed areas, OTC and UTC, and on the four dates of 2021/2022 at different depths.
This analysis shows that the compaction resulting from animal trampling was signifi-
cant OTC on the four evaluated dates and in the three soil layers considered (0–0.10 m;
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0.10–0.20 m; 0.20–0.30 m). However, UTC, the effect of animal trampling was significant
only in the 0–0.10 m soil layer and on three of the four dates, with a tendency for a greater CI
at greater depths (0.10–0.30 m), and in zones with a lower animal presence. The compaction
profiles (including the average of all measurements, OTC and UTC) show, nevertheless, a
systematic tendency of greater CI values in areas with “high” livestock trampling when
compared to areas with “low” livestock trampling (Figure 16).

Table 6. Descriptive (mean ± standard deviation; kPa) and inferential analysis of Cone Index in
“high” and “low” grazed areas, outside and under the tree canopy (OTC and UTC, respectively), on
the four dates (2021/2022) at different soil depths.

Date OTC UTC
Depth High Low Signif. High Low Signif.
17 September
2021:
0–10 cm 3147 ± 1007 2773 ± 1045 * 3226 ± 1302 2497 ± 1247 **
10–20 cm 4207 ± 1001 3956 ± 1205 * 3491 ± 964 4199 ± 1153 **
20–30 cm 3231 ± 1226 4773 ± 1306 ** 2068 ± 727 3369 ± 1125 **
0–30 cm 3602 ± 809 3246 ± 1105 * 3142 ± 1203 3033 ± 1102 ns

3 November
2021:
0–10 cm 2413 ± 801 2599 ± 710 ns 2611 ± 734 2065 ± 518 **
10–20 cm 3092 ± 1332 2242 ± 543 ** 2248 ± 268 2377 ± 630 ns
20–30 cm 2929 ± 1226 1974 ± 462 ** 1878 ± 617 2164 ± 649 *
0–30 cm 2811 ± 1007 2281 ± 412 ** 2253 ± 367 2202 ± 403 ns

21 December
2021:
0–10 cm 2681 ± 581 2321 ± 387 * 2090 ± 862 1871 ± 459 *
10–20 cm 3215 ± 878 2366 ± 420 ** 2419 ± 731 2623 ± 538 ns
20–30 cm 2634 ± 1570 1925 ± 572 ** 2596 ± 1252 2586 ± 1012 ns
0–30 cm 2774 ± 619 2214 ± 316 ** 2338 ± 857 2401 ± 438 ns

15 March 2022:
0–10 cm 3226 ± 927 2320 ± 607 ** 2251 ± 809 2439 ± 720 ns
10–20 cm 3658 ± 1157 2654 ± 613 ** 3064 ± 1229 3101 ± 950 ns
20–30 cm 3016 ± 1172 2518 ± 773 ** 3049 ± 1524 3316 ± 1023 *
0–30 cm 3240 ± 799 2506 ± 387 ** 2706 ± 1010 2941 ± 628 ns

Signif.—Significance; **—Statistically significant at the 99% confidence level (p < 0.01); *—Statistically significant
at the 95% confidence level (p < 0.05); ns—Not significant.

The complexity of regularly monitoring animal grazing makes the assessment of the
impact of animal trampling on soil compaction difficult. In this study, the use of GPS
collars on cows introduced an important technological advancement, allowing detailed
and practically continuous information to be obtained on grazing pathways, preferred
grazing zones and areas of higher stocking densities. Consequently, better knowledge can
be obtained about the interactions between several components of the Montado ecosystem,
which is essential as a support tool for making decisions [44].
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Our results show a systematic trend of a greater CI in areas with “high” livestock
trampling, compared to areas with “low” livestock trampling. However, the evaluation
of soil compactness of silvopastoral systems (as is the Montado) is complex due to the
difficulty in determining the relative importance of trees versus livestock trampling on the
soil’s physical properties [1]. This work shows that the compaction resulting from animal
trampling was significant in OTC areas (in all evaluated dates and depths); nevertheless, in
UTC areas, the effect of animal trampling was significant only in the 0–0.10 m soil layer.
The tree canopy potentially provides a cushion between hoof and soil during grazing,
which can mitigate the compaction by animal trampling [1]. These results seem to indicate
the important role played by tree roots in the structural support of the soil in layers
below a depth of 0.10 m, reducing the potential compaction effect that animal trampling
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tends to produce. On the other hand, a soil with higher levels of OM (as is the case of
UTC soil [34]) generally has a better structure because OM helps create large, strong soil
aggregates that help resist compaction [8]. In addition, this complexity also reflects the
balance of restorative and compaction processes that may occur in a differentiated manner
UTC and OTC throughout the vegetative cycle of the pasture. Besides the direct effect
of trampling, livestock can indirectly change soil properties by consuming vegetation
that would otherwise contribute to the availability of organic matter to soil microfauna
by reducing the amount and extent of fine roots that open new soil channels for the soil
rhizosphere [1]. The biological restorative action of soil decompaction provided by pasture
roots and by the activity of soil mesofauna is enhanced when the pasture management
favours the accumulation of phytomass in the aerial part and in the root system of the
plants [42,45], which is what happened in “Field B” of this experiment (several months
without grazing animals and without any sampling area with “high” livestock trampling).
Potentially, rest periods from grazing also enhance soil recovery by physical processes
(variations in soil temperature and moisture content) [1,9].

Another relevant aspect relates to the depth at which soil compaction occurs due to
livestock trampling. The compaction was significant at a depth of 0–0.10 m on three of the
four dates of evaluation in both OTC and UTC areas (Table 6). At depths of 0.10–0.20 m
and 0.20-030 m, the effect of livestock trampling was significant only in OTC areas. Several
studies report that the highest compaction impact caused by animal trampling is confined
to the topsoil layer under wet soil conditions [8], which has practical implications because
deeper soil layers (below 0.15 m [17]) are generally slower to recover from compaction [1,17].
For example, Roesh et al. [8] and Debiasi [20] report that the greatest impact by livestock
hooves is limited to the top 0-0.05 m soil layer, while Sharrow et al. [1], Reichert et al. [42]
and Vzzotto et al. [45] extend this influence to the top 0–0.10 m soil layer, and Mayerfeld
et al. [2], Medina [12] and Donkor et al. [13] indicate that this impact can reach up to a
depth of 0-0.15 m or even 0.20 m [17]. This effect depends on several factors, among them
the animal load [20] or grazing intensity [2]. When the animal load is very high, an increase
in compaction due to trampling may occur in deeper layers [20]. The magnitude of the
differences in the CI in the top 0.20 m also appears to be variable over time; therefore, the
longer-term tracking of changes in the CI may be required [2].

3.4. Effect of Livestock Trampling on Pastures

The impact of livestock trampling on pastures was evaluated by the NDVI time series
obtained from satellite imagery (Sentinel-2). Figure 17 shows the reconstruction of the
mean NDVI time series retrieved between July 2021 and June 2022, without the records
affected by the existence of clouds. The values are the mean of the set of pixel sampling
areas of “high livestock trampling” and of the set of pixel sampling areas of “low livestock
trampling”. It is possible to observe higher NDVI values in March, which reflects the
differential grazing management (“Field A” versus “Field B”). In the period of peak pasture
production (April and May), the behaviour of the NDVI is inverted, with higher values in
areas of “low livestock trampling”, which are potentially less compacted and, therefore,
with greater vegetative vigour.
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Figure 17. Mean Normalised Difference Vegetation Index (NDVI) time series obtained between July
2021 and June 2022 in high and low livestock trampling areas. *—Statistically significant at the 95%
confidence level (p < 0.05).

The composition and production of a range of vegetation are the primary vulnerable
factors to grazing pressure [46]. In this study, the impact of livestock trampling on pastures
was evaluated by the NDVI time series obtained from Sentinel-2 imagery. Although this
approach has some limitations, namely, the constraint resulting from poor-quality images
on cloudy days, which can occur frequently during the pasture’s vegetative cycle [28,29],
the NDVI can be used to monitor the pasture’s development status since it mainly reflects
the chlorophyll content, an indicator of pastures’ vegetative vigour [29,30].

The results of this study show (Figure 17) an NDVI pattern that is typical of the
vegetative cycle of dryland pastures in the Mediterranean region, already presented in
other works [28–30]. This pattern is similar in “high” and “low” livestock trampling
areas and reflects the effect of the evolution of air temperature and the distribution of
precipitation [30]. In Figure 17, two moments are identified where the NDVI patterns
indicate significantly different behaviours in the two situations of livestock trampling
(“high” and “low”): (i) “differential grazing management” in “Field A” and “Field B”
(stocking rates); (ii) “pasture peak production”. Higher NDVI values were found in March
in “high livestock trampling” areas, which reflects the differential grazing management
(“Field A” versus “Field B”): during this month, grazing was concentrated in “Field B”,
where “low livestock trampling” areas predominate, while “Field A”, where “high livestock
trampling” areas predominate, was left to rest (without grazing). The fact that in March
the pasture of “Field A” was not grazed, accompanied by the rise in air temperature and
an important accumulated rainfall (135 mm; Figure 4), allowed the recovery of vegetative
vigour, which translated into a significant increase in the NDVI. In the period of pasture
peak production (April and May), the behaviour of the NDVI is inverted (Figure 17), with
higher values in areas of “low livestock trampling”, which are potentially less compacted
and, therefore, with greater vegetative vigour. Gao et al. [47] and Jin et al. [48] also state
that climatic factors such as precipitation and temperature are responsible for inter-annual
fluctuations in biomass and vegetative vigour. Psyllos et al. [3] emphasise the greater yield
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potential of rotational grazing between fields (grazed versus not grazed). This is, however,
a complex issue, as these pastures are biodiverse, comprised of grasses, legumes, forbs and
other species. Different botanical species mature at different rates [49] and show different
susceptibilities to animal trampling. For example, animal trampling has a positive effect on
the germination of some grass and forbs species [46]. On the other hand, certain botanical
species with prostrate growth (such as legumes), are more tolerant than others (grasses,
for example) to livestock trampling [50], i.e., show differential susceptibility to damage
by animal trampling [49], which can result in a greater abundance of trampling-tolerant
plants, affecting the composition of an herbaceous plant community [50]. The assessment
of the impact of animal trampling on the floristic composition of pastures is a subject that
requires future long-term investigations.

3.5. Mitigation of the Negative Effects of Livestock Trampling

The various studies carried out and published on the effects of livestock trampling are
unanimous on the greater susceptibility to soil compaction and pasture damage during
periods of high SMC. Multiple management strategies to avoid or to mitigate the negative
impact of livestock trampling should be a priority [42]. According to Reichert et al. [42],
two preventative measures may be implemented: (i) the use of mobile fences to impede the
entry of animals into more susceptible areas in the days following the occurrence of major
precipitation events; (ii) control over grazing management (stocking rates) to permanently
guarantee a minimum height of pasture to ensure soil surface protection.

One of the main causes of soil and pasture degradation resulting from livestock tram-
pling is the natural tendency of animals to agglomerate in certain areas of the pasture.
Thus, an understanding of the potential environmental effects of the concentration areas
is necessary to adequately consider mitigating grazing management practices [51]. Some
examples of grazing management practices that most influence grazing distribution and,
consequently, livestock trampling, are the location of watering sites, supplement feed-
ers (concentrate, hay or minerals), tree shade or fence and gate placement [51]. Some
compaction at gates and waterers, for example, is inevitable, but can be minimised. The
traditional advice of moving waterers and feeders, fences and gates to limit livestock con-
centration areas seems appropriate [51]. When it is possible to identify and circumscribe
these critical compaction sites, then specific improvement interventions can be carried out
at only the affected areas, minimising the cost and time necessary for the operation [42].
Furthermore, temporary livestock exclusion has been shown in previous studies to be an
attractive tool to improve the physical properties of soil [9]. This site-specific manage-
ment fits into the perspective of Precision Agriculture or, in this case, of Precision Grazing,
where several technological tools can make an excellent contribution to the definition of
homogeneous management zones, the basis for implementing differentiated management
strategies [22,38]. The technologies used in this study (e.g., GPS collars, cone penetrometer,
ECa sensor and satellite imagery) can be practical tools that allow us to monitor animal
grazing patterns, the spatial and temporal variability of the physical properties of soil or the
condition of pastures. All these are important factors that can help farmers to assess poten-
tial compaction due to animal trampling and to adopt sustainable livestock management
systems [8].

The global technological approach proposed in this study to correlate the soil com-
paction variables related to the effect of animal trampling is shown in Figure 18. Future
research on soil compaction in the Montado ecosystem, in addition to animal trampling,
may include the monitoring of the effect of tree roots. Here, too, new technological ap-
proaches can be combined. One study by Xu et al. [52] is an example of this endeavour
based on the development and validation of a new tool (a high-fidelity 3D root system
morphological model) for simulating the mechanical analysis of root–soil composites.
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4. Conclusions

The economic and environmental sustainability of extensive livestock production sys-
tems requires the optimisation of soil management, pasture production and animal grazing.
All these aspects are interdependent and linked to soil compaction. The compaction result-
ing from livestock trampling was significant in areas OTC in the three soil layers considered
(0–0.10 m; 0.10–0.20 m; 0.20–0.30 m), but in areas UTC this effect was only significant in the
0–0.10 m soil layer. These results suggest that this is a dynamic process throughout the year,
with recovery cycles associated with grazing management, seasonal fluctuations in soil
moisture and temperature, or the spatial variation in specific soil characteristics (namely
clay and organic matter contents). The application of technologies such as those used in
this study (e.g., GPS collars, cone penetrometer, ECa sensor and satellite imagery) can be
practical tools for monitoring animal grazing patterns, the spatial and temporal variability
in the physical properties of the soil and the condition of pastures. This approach shows the
opportunity provided by Precision Agriculture technologies, such as proximal and remote
sensing, to generate knowledge, support decision making and respond to the challenge of
a holistic and sustainable management system of the Montado ecosystem.
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