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Abstract: The present study develops ArcMap models to implement the following three methods:
FAO-56 Penman–Monteith (FAO PM), Hargreaves–Samani (HS) and Hansen, with the former used
as a reference. Moreover, three models implementing statistical indices (RMSD, MB, NMB) are
also created. The purpose is threefold, as follows: to investigate the variability in the daily mean
reference evapotranspiration (ETo) for the Decembers and Augusts during 2016–2019, over Pelopon-
nese, Greece. Furthermore, to investigate the agreement between the methods’ ETo estimates, and
examine the former along with MODIS ET (daily) averaged products. The study area is a complex
Mediterranean area. Meteorological data from sixty-two stations under the National Observatory of
Athens (NOA), and MODIS Terra LST products, have been employed. FAO PM is found sensitive to
wind speed and depicts interactions among climate parameters (T, evaporative demand and water
availability) in the frame of climate change. The years 2016–2019 are four of the warmest since the
preindustrial era. Hargreaves–Samani’s estimations for the Decembers of 2016–2019 were almost
identical to MODIS ET, despite their different physical meaning. However, for the Augusts there are
considerable discrepancies between the methods’ and MODIS’s estimates, attributed to the higher
evaporative demand in the summertime. The GIS models are accurate, reliable, time-saving, and
adjustable to any study area.

Keywords: evapotranspiration; Penman–Monteith; Hargreaves–Samani; Hansen; MODIS ET; LST;
GIS; Peloponnese; Greece

1. Introduction

Evapotranspiration (ET) is a substantial parameter of the hydrological cycle, which
determines, along with precipitation, water availability with implementations in irrigation
and water management [1,2]. The reference ET (ETo) is a climate parameter that has been
investigated as an indicator of climate change [3–6]. The difficulty of measuring ET led
to the development of several ways of estimation, from simple empirical or physically
based models to complex algorithms employing neuro-fuzzy or machine learning tech-
niques [7–11]. The methods utilize data from meteorological stations as inputs, due to the
scarcity or unavailability of the latter to remote sensed data. Because of the relationship
between the reference evapotranspiration (ETo) and air temperature (T) (i.e., the latter as a
proxy of the energy status of the system), T is for several formulae the only pre-required
input. In addition, land surface temperature (LST) is a proxy for (near surface) air temper-
ature. Therefore, LST is the most frequently satellite-derived product for ET estimation.
MODIS daily overpassing frequency makes it the ultimate source of such data for ET
estimation, with the shortcoming of low resolution (1 km). LST can be used as a proxy of
air temperature since there is a strong relationship between LST or “skin temperature” and
near-surface air temperature (T), although those two parameters have different physical
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meanings and exhibit differentiated responses to atmospheric conditions [12]. There are a
number of parameters affecting the accuracy of LST, such as cloudiness [5], heavy aerosol
loadings [6], elevation and vegetation [4], land cover and topography, and solar radiation,
but also seasonality which incorporates different stages of plant growth [12–18]. Wan
(2008) [14] identified that the efficacy of the cloud mask used by MODIS for LST prod-
ucts appears to have a 95% confidence for areas with an altitude below 2000 m, and only
66% for higher altitudes. According to Jin and Dickinson (2010) [13], LST and T display
closer agreement for monthly time scales, and the maximum monthly skin temperature is
3.5–5.5 ◦C greater than the maximum air temperature (T). Kitsara et al. (2018) [17] used
Aqua LST, whose overpassing local time is the nearest to the time of the maximum T in
Greece. However, they found that despite the similar temporal variability between the
LSTday and Tmax, the differences in the monthly deviations were amplified in the summer-
time (up to 5 ◦C). The literature generally consents that LSTnight is a good proxy for Tmin,
both from Aqua and Terra, due to the disentanglement of solar radiation, whose complex
interactions to other variables affect the variability of those parameters [12,16,19]. Taking
into account Kitsara et al. (2018) [17], who concluded that Aqua LST displays considerable
Tmax overestimation in Greece, and Zhu et al. (2013) [20], who found considerably smaller
RMSEs for both the daytime and nighttime daily LST acquired from Terra compared to
Aqua (for the northern part of Tibetan Plateau, which has a similar latitude to Pelopon-
nese); the monthly time scale LST Terra was employed in this research. Latitude plays a
distinguished role, since along with T it determines the net radiation (Rn) of the study area
used in the FAO PM equation, according to the Food and Agriculture Organization (FAO)
guidelines for missing data [21]. Moreover, according to Dalezios et al. (2002), [22] different
latitude values affect the variability of the reference evapotranspiration (ETo) more than
fluctuations in parameters such as the degree of aridity.

Data retrieved from meteorological stations have been used to create T distributions
via geospatial interpolation [12]. The accuracy of the produced distribution is affected by
the spatial and temporal variability of the interpolated climate variable and the density of
the stations [23]. Vicente-Serrano et al. (2003) [24] found that ordinary kriging is one of the
most accurate methods for the distributions of weather variables, over topographically and
climatically complex terrains. Moreover, ordinary kriging produces better predictions in
areas with a low spatial density of available data. Dalezios et al. (2002) [22] obtained reliable
ETo contours for Greece based on kriging geostatistical interpolation. Thus, ordinary
kriging, which is conditioned with elevation, was used in this study for interpolating Rs,
Rn, wind speed at 2 m height from the surface (u2), and es-ea (see Table 1). The latter
difference is known as vapor pressure deficit (VPD).

There is a consensus in the literature that the FAO-56 Penman–Monteith (FAO PM)
equation can serve as a reference method, since it produces the most accurate results com-
pared against lysimetric measurements [25–27]. There is a wide range of different methods
for ETo estimation, from simple formulae to very complex algorithms [28]. However, most
international studies address ET as a side variable needed to close the water balance or
to calibrate the models. Especially in Greece, few methods have been applied for the
estimation of ETo, whereas actual evapotranspiration (ETa) and crop evapotranspiration
(ETc) are mostly examined to define the specific irrigation needs from farm-level to local-
scale crop plots and few basins, mostly over Thessaly Plain (central Greece) [29–38]. Thus,
wide mainland regions with interchanges of relief and land use/land cover (LULC) types
have never been targeted regarding ETo. From the methodological aspect, the majority of
those studies use data derived from a small number of meteorological stations for each
study area (a couple at basin scale, usually three over Peloponnese, and up to twenty-eight
for Greece as a whole) [17,22]. Consequently, those results are hardly representative at
a regional or local scale, since in Greece the relief and LULC substantially changes over
short distances. Gridded data have been also used for ETa investigation of Greece [39,40].
Another methodological aspect is that in studies where remote sensed data are employed,
those data cover very short time intervals (usually a few selected days and usually the
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most convenient). At last, although MODIS is a suitable remote sensed data source for ET
studies due to its frequency of overpassing, there are few studies incorporating MODIS
products for Greek areas. This is because those studies are not focused on ETo investigation
as a primary objective [41–44]. Kitsara et al. (2018) [17] used MODIS LST in place of T in
Hargreaves–Samani (HS), with Penman–Monteith as a reference for Greece. They found
similar errors in ETo from the aforementioned methods to more complex algorithms in the
literature. Paparrizos et al. (2017) [45] investigated several methods, among which was
Hargreaves method to estimate the potential ET (ETp) (three river basins of Greece). They
concluded that the temperature-based equations led to more accurate results, followed by
the radiation-based equations. Mamassis and Panagoulia (2014) [46] verified that T (as
a proxy of Rs) has a governing role on annual evaporation, while the relative humidity,
wind speed and sunshine duration follow. During the summer months, T affects the most
monthly evaporation. The influence of T and sunshine duration on evaporation is greater
during the summer months, and the opposite. Efthimiou et al. (2013) [47] computed ETo
with HS for NW Greece. Hargreaves–Samani (HS) exhibited generally good performance
(low RMSE compared to FAO PM) in the winter season (October–February), but poor
performance in the summer season (March–September). Diamantopoulou et al. (2011) [48]
(North and central Greece in 2005) found RMSE between HS and FAO PM from 0.55
(northmost station) to 0.72 mm (southmost station), with HS underestimating ETo.

To our knowledge there are no reports of studies on ET specifying over Peloponnese
peninsula, although it is an area that occupies almost 1/6th of Greece territory, with
terrain combining wide plains with high mountains and populated cities. The sharp
relief and the high spatial variability of the meteorological conditions over very short
distances provide a suitable testbed for the comparison of the selected methods. The
purpose of the study is threefold, as follows: to investigate the variability of the daily
mean ETo for the Decembers and Augusts during 2016–2019, over Peloponnese, Greece.
Furthermore, to examine the agreement between the methods, as well as the differences
between the daily mean ETo and MODIS ET (daily) averaged products. The methodological
novelty of the study is the way the methods are implemented and the statistical indices
are computed, which is via GIS models with interactive character. Those models are
developed as python scripts, which can run as they are for any study area by providing the
corresponding inputs. The statistical models are user-friendly and applicable to any study
area as well. They compute areal indices by processing large images with more than 20,000
valid values (e.g., MODIS products, ET distributions produced by the above-mentioned
models, interpolated meteorological data), which provides accuracy and reliability. The
study exhibits interdisciplinary interest regarding remote sensing, hydrology, climate
change, water management, and sustainability. The years 2016 and 2019 are the warmest
years on record since the pre-industrial era [49]. The Mediterranean regions are anticipated
to be subjected foremost to climate change consequences in the near future, due to the
undergoing increase in T, the decrease in rainfall in the summertime, and the shifting of
precipitation patterns [50–52].

The study is organized into four sections after the introduction. In the Materials
and Methods, the used equations and statistical measures are presented. Moreover, the
followed steps of the methodology and data processing are elaborated. Section 3 provides
the characteristics of the study area, which makes it a suitable testbed for the research. In
Section 4, the statistical indices that have been implemented as GIS models are described.
The results are presented in Section 5 with a pattern. In Section 5.1, the descriptive statistics
of the areal daily ETo and MODIS ET estimates are presented. Section 5.2 includes the
spatial distributions of ETo produced by the three methods for the 8 months of interest
and the graphs of the statistical indices, which assess the agreement between the methods’
estimates (in pairs). In Section 5.3 the spatial distributions of MODIS ET are displayed,
followed by the graphs of statistical indices, which assess the differences between each
method’s ETo estimates against the MODIS ET estimates. Those indices are displayed as
graphs of each statistical measure against the month of interest (i.e., Augusts or Decembers)
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of the period 2016–2019. The graphs facilitate the visual representation of the variability of
estimations for the months of interest through the examined years. In Section 7, the results
are discussed via the following two axes: (i) the ETo estimates of the methods separately
for the Augusts and Decembers, since seasonality patterns occur; (ii) the similarities (or
differences) between the ETo and MODIS ET estimates despite their different physical
meaning. The limitations and future research follow, and at the end the main conclusions
are deduced.

2. Materials and Methods
2.1. Methods

Reference evapotranspiration (ETo) represents “the evaporation of a surface of green
grass of uniform height (0.12 m), growing with adequate water” [21]. The estimations of
ETo have been produced by three methods, namely, the physically based method FAO-56
Penman–Monteith (FAO PM) [21], which has been used as the reference method, and
the temperature-based methods Hansen [53], and Hargreaves–Samani (HS) [54]. Those
methods are well established in literature and have been previously used for other areas in
Greece with satisfying performance [17,32,45,55,56]. Another reason for the selection of
these methods is that they demand as inputs parameters that are available (from ground-
based or remote sensed datasets) or that could be estimated via the available parameters
according to FAO guidelines [21].

2.1.1. FAO 56 Penman–Monteith

The method used as reference is FAO PM (Equation (1)) [21]. FAO PM employs
air temperature (T), net radiation (Rn), vapor pressure and wind speed at 2 m from soil
surface (u2). Despite Rs, Rn at a given location depends on latitude, Julian day, albedo (a),
cloudiness and elevation (z). The parameters ∆, γ, es-ea are functions of T and/or pressure
(P), with pressure being a function of z (Table 1).

ETo =
0.408 ∗ ∆(Rn − G) + γ 900

T+273 ∗ u2(es − ea)

∆ + γ(1 + 0.34 ∗ u2)
(1)

2.1.2. Hansen Equation

Hansen method is a simple method with Rs and T inputs (Equation (2)) [53], which
has been previously applied in Greece [34].

ETo = 0.7 ∗ ∆ ∗ Rs

(∆ + γ) ∗ λ
(2)

λ = 2.501−
(

2.361 ∗ 10−3
)
∗ Tmean (3)

where λ (Equation (3) is the latent heat of vaporization (MJ kg−1)) [53].

2.1.3. Hargreaves–Samani Equation

According to the literature, Hargreaves–Samani (HS) [54] is a simple method that can
be applied with only measured temperature data and indirectly incorporates humidity.
The estimates for periods of more than 5 days compare favorably with the estimates by
FAO PM [54,57]. The HS method has been satisfactorily previously used for areas in Greece
and neighboring countries [17,32,55]. The implemented Equation (5) is produced from
Equations (4) and (11) (Table 1) for KT = 0.17 [58].

ETo = 0.0023 ∗ (Ra/λ) ∗ (Tmax − Tmin)
1
2 ∗ (Tmean + 17.8) (4)

ETo = 0.0135 ∗ (Rs/λ) ∗ (Tmean + 17.8) (5)
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2.2. Data and Models of the Three Methods

The preparation of the inputs has been made in two sections. The first section is the
calculation of the equations presented in Table 1 using the ground-based measurements
of wind speed (u) measured at different heights from soil surface, Tmin and Tmax, as
inputs. These equations (Table 1) are provided by FAO guidelines to compute missing or
intermediate parameters [21]. Ground-based data were available by the National Obser-
vatory of Athens (NOA) (https://meteosearch.meteo.gr/ (accessed on 15 January 2021))
for sixty-two meteorological stations for the study area (Table A1) in daily scale. For the
computation of the missing data equations shown in Table 1 air temperature values (Tmin,
Tmax, Tmean) and wind speed (uh) derived from 62 meteorological stations under NOA
were used (Table A1). Then all the missing parameters (Table 1) were calculated for every
station in daily scale, for every December and August of the 4 study years. Then the daily
values were averaged for every station (for every month). Those average values (Rs, Rn,
es-ea and u2) were then interpolated over the study area using ordinary kriging, after
establishing normality of the data (via log transformation) where needed, in ArcMap 10.6
(https://www.esri.com (accessed on 28 March 2021)). For example, Rs was missing data,
computed via Equation (10) (Table 1), where daily T range from meteorological stations
was used to account for cloudiness. Solar radiation (Rs) has been computed the same
way [21,26,58] for all the three methods used in the study. For each one of the 8 exam-
ined months, the sixty-two (daily averaged) Rs values of the stations were interpolated
(ordinary kriging) for the study area and used as input to the corresponding models (see
Supplementary Materials). Rn was computed from Rs via Equations (11)–(14) (Table 1).

Each equation (FAO PM, HS and Hansen) produces the distribution over the study
area of the mean daily ETo (mm) of one month (e.g., mean daily ETo for December 2016
by FAO PM; mean daily ETo of August 2019 by Hansen etc.). For each method used,
one user-friendly model was developed in model builder (ArcMap 10.6), accompanied
by the corresponding python script (i.e., three models). Those three models have been
run for every December and August during 2016–2019 (i.e., 8 months). Thus 24 ETo
maps have been created. Each model takes as inputs MODIS TERRA LST day and night
(monthly scale) products as proxies of Tmin and Tmax, respectively, based on Kitsara
et al. (2018) [17], who proved that those parameters can be satisfactorily used that way for
Greece. The rest inputs are some of the interpolated parameters (Rs, Rn, es-ea and u2) from
the first section, based on each equation. Models include, amongst others, a sequence of
intermediate stages where all needed preparation is performed (e.g., the user can define
reprojections, cell size, mask etc.; see Supplementary Materials) via interactive ArcToolbox
commands. All intermediate equations (e.g., ∆, γ functions needed in FAO PM formula)
are executed via raster calculator. At the final stage of the algorithm raster calculator
computes the ETo formula of each method, producing the mean daily ETo distribution of
the examined month.

LST day and night products for 2016–2019 (16 monthly scale images) were derived
from FORTH (http://rslab.gr/downloads_lst.html (accessed on 9 March 2021)). August
and December have been selected for years 2016–2019 as representative months for sum-
mer and winter based on the meteorological conditions of the study area (e.g., in De-
cember there is less snowfall than in January) and data availability for the majority of
the stations (almost no missing data for August compared to June and July). Moreover,
according to FAO, during those months the soil is already warm or cold, respectively,
thus soil heat flux beneath the grass reference surface is relatively small, so that it can be
ignored Gday

∼= 0 [21]. Ground-based data are available online by meteosearch.gr database
(https://meteosearch.meteo.gr (accessed on 15 January 2021)) for all automatic stations
under NOA.

https://meteosearch.meteo.gr/
https://www.esri.com
http://rslab.gr/downloads_lst.html
https://meteosearch.meteo.gr
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Table 1. Formulae used to compute the corresponding parameters for 62 stations at (or adjacent to) Peloponnese for months
December and August during 2016–2019 [21] (http://www.fao.org/3/x0490e/x0490e07.htm#estimating%20missing%20
climatic%20data (accessed on 2 February 2021)).

Symbol Parameter Formula

δ solar decimation (rad) δ = 0.409 ∗ Sin
(

2π∗J
365

)
− 1.39 (6)

ωs sunset hour angle (rad) ωs = arccos(−tan(lat) ∗ tan(δ)) (7)

dr inverse relative distance Earth–Sun dr = 1 + 0.033 ∗ Cos
(

2π∗J
365

)
(8)

Ra extraterrestrial radiation (MJ m2 day−1)
Ra daily =

24∗60
π ∗ Gsc ∗ dr(ωs) ∗ Sin(lat) ∗ Sin(δ) + Cos(lat) ∗ Cos(δ) ∗ Sin(ωs) (9)

Rs solar shortwave radiation (MJ m−2 day−1) Rs = KT ∗ Ra ∗ (Tmax − Tmin)
1
2 (10)

Rns
net solar radiation (the not reflected fraction of

Rs (MJ m−2 day−1) Rns = (1− a)Rs (11)

Rso clear-sky solar radiation (MJ m−2 day−1) Rso =
(
0.75 + 2 ∗ 105 ∗ z

)
Ra (12)

Rnl
net outgoing longwave radiation (MJ m−2

day−1)
Rnl =

σ
((Tmax+273.16)4(Tmin+273.16)4)

2 ∗
(

0.34− 0.14 ∗ ea
1
2

)
∗
(

1.35 ∗ Rs
Rso
− 0.35

)
(13)

Rs/Rso relative shortwave radiation (limited to ≤ 1.0)

Rn net radiation (MJ m−2 day−1) Rn = Rns − Rnl (14)

eo(T)
saturation vapor pressure at the air

temperature T (kPa) eo(T) = 0.6108 ∗ e
(17.27∗T)
(T+237.3) (15)

ea(T)
actual vapor pressure at the dewpoint T (kPa)
(eo(Tdew) ∼= eo(Tmin) when Tdew is missing) ea(T) = eo(Tdew) = 0.6108 ∗ e

(17.27∗Tdew )

(Tdew+237.3) (16)

γ (Gamma) psychrometric constant (kPa◦C−1)
γ = 0.00163∗P

2.45 =

0.000665 ∗ P(KPa◦C− 1)
(

f or T = 20 ◦C and λ = 2.45 MJ kg−1
)

(17)

P atmospheric pressure (kPa) P = 101.3( 293−0.0065∗z
293 )5.26

(when Po = 101.3 kPa at zo = 0 m and TKo = 293K f or T = 20 ◦C) (18)

u2 (uh) wind speed at 2 (h) m height (ms−1) u2 = uh∗4.87
ln(67.8∗h−5.42) (19)

∆
(Delta)

slope of the saturation vapor pressure curve
(kPa◦C−1) ∆ = 4098 eo

(T+237.3)2 = 4098∗0.6108∗e
17.27∗T
T+237.3

(T+237.3)2 (20)

Note. J: number of the day in the year between 1 (1 January ) and 365 or 366 (31 December ); Gsc: solar constant = 0.0820 MJ m−2 min−1; σ:
Stefan–Boltzmann constant (4.903 10−9 MJ K−4 m−2 day−1); lat: latitude (rad); z: elevation above sea level (m); Tmean, Tmax, Tmin stand for
mean, maximum and minimum air temperature, respectively.

2.3. Statistical Models

Descriptive statistics (i.e., areal values of max, min, mean, std) of each ETo distribution
have been calculated in ArcMap 10.6 (via calculate statistics). In order to investigate the
agreement between different methods, statistic indices, namely, mean bias (MB), normal-
ized mean bias (NMB) and root-mean-square deviation (RMSD) [59,60] were computed via
developing the corresponding models in model builder. These models execute the equa-
tions of each statistical index presented in Table 2. Despite that, they include steps of data
preprocessing preparation (e.g., reprojections, masks) aiming at exactly the same cells of
the participating images to have valid values in order for accurate cell-to-cell computations
to take place. Raster calculator is used for all the intermediate equations as well.

For every month (e.g., August 2019) we have run the 3 statistical models for all possible
pairs of methods (e.g., RMSD values between the following: HS and FAO PM, Hansen and
FAO PM, Hansen and HS). Then, we created the graph of every statistical index separately
for Augusts and Decembers during 2016–2019 (e.g., graph of RMSD values for Augusts
2016–2019) to observe their variability with years.

2.4. MODIS ET Products

MODIS products of net ET (MOD16A2V6) have been acquired (32 images) from
EarthExplorer and EARTHDATA platforms (https://earthexplorer.usgs.gov/ (accessed

http://www.fao.org/3/x0490e/x0490e07.htm#estimating%20missing%20climatic%20data
http://www.fao.org/3/x0490e/x0490e07.htm#estimating%20missing%20climatic%20data
https://earthexplorer.usgs.gov/
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on 11 February 2021); https://urs.earthdata.nasa.gov/ (accessed on 11 February 2021)).
Evapotranspiration MOD16A2V6 products are not raw data, but are produced based on
a recently updated complex algorithm [61] based on Penman–Monteith equation, which
employs reanalysis meteorological data (humidity, air temperature, radiation) from NASA’s
Global Modeling and Assimilation Office (GMAO, v.4.0.0) and remote sensed vegetation
data. Each one of the 32 images constitutes an 8-day composite of ET and includes, amongst
other layers, net ET (cell size of 500 m). The images were then appropriately prepared in
ArcMap 10.6 (reprojection, masked with the outline of the study area, cell size of 1000 to be
compatible with the distributions of ETo distributions (see Section 2.2)). Then the images
of each month were averaged (using cell statistics (mean) command, set to ignore no data
pixels). Thus, the mean daily MODIS ET (mm) distributions of the study area for Augusts
and Decembers of years 2016–2019 were produced.

MODIS ET is an estimate of actual ET, whereas the three methods produce ETo.
Those parameters have different physical meanings and different responses to weather
conditions (e.g., precipitation, wind speed). This study is the first part of a thorough
research project investigating the agreement between several methods estimating ETo
or ETa and the differences among the aforementioned estimates to MODIS ET estimates,
and to pan evaporation measurements. This methodology presents novelty in the way
methods are executed, via ArcMap models with an interactive character of letting users
adjust properly the settings of their study area. They would be available for usage by other
researchers and they are prone to creative expansion by researchers (both in python and
in model builder environment), which makes them flexible and user-friendly. Another
novelty is the creation of statistical models of RMSD, MB and NMB providing the areal
value. Those models are developed in a way that they can compute indices by processing
large images (with more than 20,000 values) cell-to-cell, instead of the time-consuming
process of extracting points from the distributions in ArcMap and using external statistical
software to compute the areal index in a series of steps, which demands expertise.

3. Study Area

Peloponnese is a peninsula to the south of Greece, occupying 21,439 km2, which
is about 1/6 of the Greek territory, separated from the mainland, with a population of
1,086,935 (census 2011; https://www.statistics.gr/el/statistics/-/publication/SAM03/20
11 (accessed on 20 March 2021)). A large part is covered by high hills and mountains
running NW to SE—the highest is Taygetus (2407 m, S). The wider plain (Ilia plain) lies
over the west coastal part (Lappa to Kyparissia area). The biggest city is Patra at the north
edge. The hydrographic network is well developed [62], though with few large rivers (e.g.,
Alfeios, Evrotas, Pineios). The main land use/land cover (LULC) types are agricultural
patterns, forest and transitional vegetation (Figure 1a), a large part of which (Western
Peloponnese) had been subjected to the most severe wildfires of Greece in 2007 [63].

Lithology, climate, and tectonic activity define the relief formation of the area
(Figure 1b) [64]. The bedrock of Peloponnese consists of the formations of geotectonic
zones (west to east), as follows: the Ionian zone, Gavrovo–Tripolis zone, Olonos–Pindos
zone (External Hellenides) and Pelagonian zone (Internal Hellenides) (Figure 1b). The
climate of Peloponnese is a Mediterranean warm temperate climate with a dry sum-
mer (Csa) [65,66]. The annual average temperature ranges from below 8 ◦C to 20 ◦C,
precipitation ranges between 400 to over 2000 mm, and sunshine between 1900 and
3100 h (http://climatlas.hnms.gr/sdi/?lang=EN (accessed on 20 March 2021)). How-
ever, during the years 2016–2019, which are four out of the five of the warmest years
since the pre-industrial era [31], there have been substantial departures from the average T
(https://meteosearch.meteo.gr/ (accessed on 15 January 2021)).

https://urs.earthdata.nasa.gov/
https://www.statistics.gr/el/statistics/-/publication/SAM03/2011
https://www.statistics.gr/el/statistics/-/publication/SAM03/2011
http://climatlas.hnms.gr/sdi/?lang=EN
https://meteosearch.meteo.gr/
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4. Statistical Measures

There are specific statistical indices used in the literature for the assessment of the
agreement between the different methods of ET estimation [22,47,59,60]. According to the
literature, the coefficient of determination (R2) has been proven as oversensitive to extreme
values and insensitive to additive and proportional differences between the compared
values, thus it is characterized as a rather misleading goodness of fit for hydrological
parameters [69]. For these reasons, the root-mean-square difference (RMSD), mean bias
(MB) and normalized mean bias (NMB) were used, which are satisfactorily reliable [70].
The root-mean-square difference expresses the average difference between the compared
values of ET (in mm). The mean bias (MB) demonstrates the bias or the mean bias error
(MBE) (in mm) (Table 2). The normalized mean bias (NMB) or normalized mean bias
error (NMBE) (Table 2) are both dimensionless measures, so that direct comparisons of
ET values between different time scales are possible. Aiming to calculate RMSD, MB and
NMB values between pairs of methods, models have been developed in ArcMap 10.6
(model builder). Those models are easy and quick to run, while they process raster images
(213*218) with more than 20,000 (valid) pixels. The plots display MB and NMB rather than
MBE and NMBE, respectively, since they have the same absolute value, but the former
are signed. A plus sign (+) expresses the overestimation of the method compared to the
reference, whereas a minus sign (−) expresses underestimation. The model of RMSD
results in a raster of squared differences (RSMD2) calculated cell-to-cell and their mean
value, the square root of which is RSMD. The MB model results in a raster of differences
(cell-to-cell), the mean value of which represents MB. The model producing NMB masks
the denominator raster, using the nominator raster as a mask in order to acquire the same
size (213*218) and exactly the same no data pixels as the nominator raster.
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Table 2. Statistical measures formulae (RMSD, MBE = |MB|, NMBE = |NMB|).

Statistical
Measures RMSD MB MBE NMB NMBE

formula
√

1
N

n
∑

i=1
(Pi −Oi)

2 1
N

n
∑

i=1
(Pi −Oi)

1
N

n
∑

i=1
|(Pi −Oi)|

∑n
i=1(Pi−Oi)
∑n

i=1 Oi

∑n
i=1|(Pi−Oi)|

∑n
i=1 Oi

5. Results
5.1. Descriptive Statistics (Mean, SD) of Areal Daily ETo and MODIS ET

As presented in Table 3, the daily mean ETo estimates by FAO PM are greater, followed
for December by the Hansen’s and HS’s estimates. The MODIS ET mean values are closer
to the Hansen mean values. For August, FAO PM produces higher estimates followed by
HS and Hansen. The MODIS ET values are substantially lower than empirical methods’
estimates, and similar to the FAO PM estimates for December (Table 3).

Table 3. Descriptive statistics of areal daily mean ETo (mm) and MODIS ET (mm) of Decembers and Augusts for years
2016–2019.

December ETo Daily Mean (SD) August ETo Daily Mean (SD)

FAO PM HS Hansen MODIS FAO PM HS Hansen MODIS

2016 1.37 (0.17) 0.89 (0.11) 0.98 (0.09) 0.80 (0.12) 5.30 (0.80) 4.87 (0.45) 4.30 (0.33) 1.58 (0.61)

2017 1.59 (0.31) 0.89 (0.11) 0.97 (0.08) 0.80 (0.13) 5.53 (0.49) 5.53 (0.49) 2.86 (0.16) 1.46 (0.56)

2018 1.35 (0.28) 0.92 (0.11) 1.00 (0.08) 0.88 (0.15) 5.21 (0.27) 4.61 (0.34) 4.12 (0.17) 1.93 (0.70)

2019 1.45 (0.23) 0.96 (0.10) 1.02 (0.07) 0.98 (0.17) 5.74 (0.28) 5.16 (0.38) 4.53 (0.26) 1.71 (0.66)

5.2. Daily Mean ETo Estimates for Decembers and Augusts
5.2.1. Spatial Distributions of Daily Mean ETo for Decembers and Augusts

The outcomes of the models for FAO PM, Hansen and HS for the December daily
mean ETo of the years 2016–2019 are shown in Figure 2a–d. FAO PM produces greater
values, whereas Hansen and HS appear to have a closer range of values, especially the
maximum values. As depicted in Figure 3a–d, FAO PM appears to have closer estimates
to HS for August, whereas Hansen produces lower ones. However, the departures of the
FAO PM range for August 2019 and for the maximum value of August 2016 are noted.
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5.2.2. Statistical Measures between Estimates by Empirical Methods

It is obvious by the statistical indices (RMSD, MB and NMB) that Hansen and HS
display RMSD ≤ 0.11 mm in the daily mean ETo estimation of December for the 4 years
(Figure 4). Concerning the reference method (FAO PM), Hansen is closer with the latter
underestimating ETo (RMSD between 0.41 and 0.67 mm d−1), whereas the corresponding
RMSD for HS lies within 0.50–0.74 mm d−1, with the maximum daily mean ETo appearing
for December 2017. For August, the statistical indices indicate that the HS and FAO PM
estimates are consistently close, with the former underestimating ETo with an RMSD
between 0.72 and 0.76 mm d−1 (Figure 5). It is obvious that for August 2017 the estimation
by Hansen shows significant departure, thus explaining the differentiation between Hansen
and HS, which generally display close estimations (RMSD ≤ 0.66 mm d−1) for the Augusts
(slight underestimation by Hansen) of the other 3 years.
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5.3. Daily Mean MODIS ET Estimates for Decembers and Augusts
5.3.1. Spatial Distributions of Daily Mean MODIS ET for Decembers and Augusts

As shown in Figure 6a, the daily mean values of the December MODIS ETs for
2018 and 2019 exhibit greater maximum values, whereas the minimum values are similar
(0.33–0.36 mm), except from 2016, which is slightly higher (0.45 mm). As Figure 6b demon-
strates, there is a gradual increase in the maximum daily mean values of MODIS ET from
2016 to 2019, whereas the minimum values are either 0.10 mm (2017, 2019) or 0.20 mm
(2016, 2018).
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5.3.2. Statistical Measures for Investigating the Difference between Empirical ETo and
MODIS ET Estimates for Decembers and Augusts

As shown in Figure 7, HS and MOD16A2V6 produce very close estimations for the
daily mean ET in December for all of the years (RMSD between 0.15 and 0.17 mm d−1),
with the former appearing to have higher values. Hansen follows with higher values
compared against MOD16A2V6, ranging between 0.16 and 0.22 mm d1. FAO PM shows the
greatest difference to MOD16A2V6 (RMSD around 0.62 mm d−1 on average for the 4 years),
with a maximum deviation for RMSD in December 2017 (0.84 mm d−1). Figure 8 depicts
that the deviations between the empirical methods and MOD16A2V6 are considerable
for the August daily mean values, with the latter appearing to have substantially lower
daily mean values compared to FAO PM. Hansen is closer to the MOD16A2V6 estimation,
with the latter appearing to have lower ET values (RMSD between 1.51 and 2.91 mm d−1).
Moreover, the minimum disagreement between the Hansen and MODIS estimations was
found for August 2017. The latter, along with the largest deviation for August 2017 by
Hansen against the rest empirical methods (Figure 8) underlined above, implies that the
Hansen and MODIS algorithms may share sensitivity (or degrees of freedom). Compared
to MODIS, HS exhibits an RMSD between 2.80 and 3.68 mm d−1, and FAO PM an RMSD
between 3.36 and 4.13 mm d−1. The fact that the empirical methods produced greater
values compared to MODIS is shown by the positive signs of the MB and NMB indices.
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6. Discussion
6.1. Parameters Differentiating the Distributions of Reference Evapotranspiration (ETo) and
MODIS ET

For December 2016 (see Figure 2a), although all of the methods assign the lowest
values to the northcentral part the physically based FAO PM differentiated from HS and
Hansen by assigning the maximum values in the following two patterns: where the
maximum u2 (>12.50 ms−1) and elevated Rn occurs (eastern part), or when the maximum
Rn (>2.53 MJ m−2) and elevated u2 (>7.30 ms−1) is encountered (SE part). For December
2017 (see Figure 2b), Hansen and HS demonstrate almost identical distributions. FAO
PM differentiates the northcentral edge due to a very high mean monthly u2 (>9.50 ms−1).
The sensitivity of FAO PM towards u2 and Rn is responsible for a maximum of 1 mm
greater than those of the rest methods assigned to the area around Argos, where VPD is
the maximum (0.48 kPa) (u2: 7.99–13.46 ms−1, Rn: 2.56–2.63 MJ m−2 and VPD: 0.30–0.35
kPa). For December 2018 (see Figure 2c), Hansen and HS exhibit similar contributions and
a similar range of values. The main difference is the green area, which FAO PM assigns
at the northwestern part, which is due to the very low monthly mean u2 reported at the
station (<0.09 ms−1) since the other parameters are rather elevated (VPD = 0.38 kPa and
Rn = 2.17 MJ m−2), expressing the sensitivity of FAO PM to wind speed (u2) not only for
the maximum, but also for the minimum ETo values assignments. For December 2019
(see Figure 2d), FAO PM displays the maximum due to increased Rn (>2.61 MJ m−2) and
u2 (>7.78 ms−1). The high u2 (>9.65 ms−1) at the northcentral edge is responsible for the
yellow color in the FAO PM distribution in contradiction with the green color assigned by
the other methods that do not incorporate u2.
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For August 2016 (see Figure 3a) FAO PM by the green central zone reflects that Rn and
u2 are both low, and VPD is elevated. The eastern part of Peloponnese displays similarity
for all of the methods with a maximum where the monthly mean values of T and Rn,
wind speed and VPD are the maximum of Peloponnese. For August 2017 (see Figure 3b),
FAO PM contribution resembles that of 2016; however, the rest of the methods display
differentiated distributions with enough similarities to each other. The maximum values of
FAO PM are displayed over the south-central spots where both Rn and u2 have some of the
greatest monthly mean values reported, followed by the values over the western part. The
latter is also displayed by both the Hansen and HS methods. Kardamili and Molai exhibit
lower values of Rs (depicted by the green color of Hansen and HS), but also increased
values of u2, reflected only in FAO PM (yellow color). The obvious difference over the
central part, which is green in FAO PM but redish in the other methods’ distributions, is
that those stations display increased Rs (and Rn) values in which the three methods are
sensitive, but also elevated VPD values (around 1.0 kPa) and low u2 values. FAO PM is
the only method incorporating all of those parameters. The northcentral part exhibits low
values for all of the parameters.

For August 2018 (see Figure 3c), the Hansen and HS distributions look almost identical,
even if Hansen’s maximum value is a little lower. The maximum ET values for the three
methods are displayed over the west part, the same as in 2017 (increased Rn, u2 and VPD
values). FAO PM assigns the west-central spots to the yellow scale, recognizing the lower u2
values (average <1.40 ms−1). The eastern part and SC spots display high values due to the
elevated values of the pattern Rn and u2 (similar VPD values). The FAO PM distribution
reflects the same general pattern as in 2016 and 2017, with the green zone trending from
the north-central to the southwestern part; however, with the zones of lower values merely
declined. Moreover, even if FAO PM has a central green zone, the fact that its minimum
(green) value (4.56 mm) corresponds to the medium (yellow–orange) values of the other
two methods practically assigns similar ET values to the central part. The green areas of the
Hansen and HS methods have all in common low Rs values. HS assigns the S part to the
yellow scale, which is closer to the FAO PM output. The latter appears to have a minimum
value of 1 mm greater probably because of the u2 elevated values [71]. For August 2019
(see Figure 3d), the maximum values of FAO PM and HS are around 6.30 mm. FAO PM
assigns the highest values to the northeastern part (Rn and u2 pattern). FAO PM has a
diminished green zone compared to the previous years around the central mountainous
part, turning into yellow as the values of Rn and u2 increase. Hansen and HS assign high
values only around Sparti station, which has the highest Rs, neglecting the increased u2
values (around 8.00 ms−1) of the nearby stations.

Throughout the years, August 2016 exhibits higher maximum values at the southmost
part (around Geraki). Regarding the distribution by FAO PM, it is obvious that the green
central lane from the northmost to southmost edges in 2016 is eventually diminished to
just the central mountainous part in 2019. This spreading of the redish areas with the
years can also be noticed from the distributions of the other two methods with a lower
consistency over the years. Our findings are in line with the seasonality, which makes
empirical methods deviate more during the summertime, as several researchers have noted
not only for the South Mediterranean areas in general, but also specifically for Greece [47].
Both Hansen and HS exhibit good performance (low RMSD) in the winter season, but poor
performance in the summer season. Their performance has been reported to be the opposite
for the winter and summer of neighboring areas with humid climates (e.g., Serbia [55])

6.2. Differences and Similarities between Estimates of Reference Evapotranspiration (ETo) and
MODIS ET

MODIS ET is a product of a sophisticated algorithm; however, it produces considerable
underestimation in the literature (such as by 26%; [72]; and by 25% uncertainty [73])
compared with sites of the AmeriFlux network, which has been used for the calibration of
the updated algorithm [61] attributed to the need of further refinement. Besides, global
satellite products generally contain more noise than ground-based measurements lacking
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in accuracy [33,74]. Westerhoff (2015) [74] has conservatively set the uncertainty of satellite
to ground-based estimations equal to 1.5. For December, FAO PM showed the greatest
difference to MOD16A2V6 for all of the statistical indices (e.g., RMSD: 0.52–0.84 mm d−1,
MB: 0.47–0.78 mm d−1). HS appeared to have a minimal difference to MODIS ET (e.g.,
RMSD: 0.15–0.17 mm d−1, MB: –0.02–0.09 mm d−1) and Hansen followed (RMSD: 0.16–
0.22 mm d−1, MB: 0.03–0.18 mm d−1). Moreover, all of the empirical methods compared to
MODIS ET, except from Hansen, exhibited the greatest departures (maximums) in statistical
indices (demonstrating lowest agreement) for 2017. Relative studies in Greece report
accuracy of empirical methods’ performances during the winter. Aiming at investigating
whether good performance is a seasonal characteristic also for 2016–2019, the research
should be expanded to the rest of the months of this period. The estimates of ETo are close
to MODIS ET in the Decembers of 2016–2019, because although the former reflects the
evaporative demand of the atmosphere, the latter is an estimate of actual ET subjected to
water stress. However, during December the evaporative demand of the atmosphere is
low, the VPD is low (thus relative humidity is elevated), and December is the month with
the third highest precipitation (in mm) in Greece, so the evaporative demand is satisfied.

The opposite happens during the Augusts when the evaporative demand is elevated
(high Rn, T, VPD and low u2), but due to water stress during the summertime it cannot
be adequately satisfied. Thus, the MODIS ET values are considerably lower than the ETo
estimates, with the former appearing values almost at the levels of December (i.e., FAO
PM values for December). FAO PM differs the most from MODIS (as also in December)
(RMSD: 3.87–4.06 mm d−1, MB: 3.26–4.06 mm d−1) due to its incorporation of more
climate parameters, and the Hansen estimates are the closest to the MODIS ones (RMSD:
1.51–2.91 mm d−1, MB: 0.96–1.71 mm d−1) followed by HS; however, with considerable
discrepancies in both cases. The Hansen ETo values exhibit the greatest difference from the
MODIS actual ET estimates for the two warmest years (2016 and 2019). Considering the
physical meaning of ETo and MODIS ET, this might imply Hansen being more affected
by Rs (and subsequently by T) than the rest. Another observation is that Hansen bears
similar departures in the estimates to MODIS ET for August 2017, which should be further
investigated in terms of sensitivity.

The main limitations are the following: Rs is not measured during the study years but
computed under the FAO guidelines for missing data, with a KT (0.17) coefficient used
for both coastal and mainland areas. Moreover, the constant value (0.23) used for albedo,
the replacement of which is with MODIS albedo products, would refine the estimates.
Model builder in ArcMap cannot process raster images and point features together, thus
the RMSD model bears the limitation of producing the squared areal RMSD value (RMSD2).
However, the square root of a number can be trivially computed.

The primary contribution of the study is that the application of ETo models and
statistical models addresses international and interdisciplinary interest. Moreover, the
produced maps of ETo and MODIS ET of Peloponnese can be used for comparisons against
the local ETo and ETa estimates produced by other methods or from data acquired from
alternative sources. In particular, FAO PM distributions could be employed as a reference
by researchers. Moreover, considering their physical meaning, ETo and MODIS ET maps of
the most warm recent years provide water managers of Peloponnese with a general picture,
which can be integrated to define the irrigation needs during the Augusts [34,51], and the
flooding risks during the Decembers [50].

7. Conclusions

Our findings are in line with the seasonality, which makes the empirical methods more
accurate in the winter (December) and deviate more during the summertime (August),
both for the South Mediterranean areas and specifically for Greece. For the Decembers of
2016–2019, the estimates by HS and Hansen are almost identical (NMB up to 0.11 mm),
but FAO PM produces higher estimates attributed to the wind speed (u2) sensitivity of the
latter. For August 2016–2019, HS and FAO PM present almost identical estimates, probably
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because the wind speed values can be neglected for the majority of the cells. The Hansen
method produces departures (lower values) for August 2017 compared to the rest. These
departures are also observed for MODIS ET, thus the relations would be investigated in
terms of physical or computational factors, which affect alike the sensitivity of the two
different approaches.

The areal daily mean MODIS ET, as an estimate of the actual ET, was examined along
with the methods’ ETo estimates. Since they have different physical meanings, the ETo
values for the Augusts 2016–2019 were much higher than MODIS anticipated. However,
for the Decembers 2016–2019, HS produced almost identical estimates (NMB between
−0.02 and 0.11) with the MODIS ET averaged products. This is attributed to the low
evaporative demand during December, which can be satisfied by rainfall. HS could be
used satisfactorily regarding the accuracy for the estimation of the daily mean actual ET of
Peloponnese for the Decembers 2016–2019. The latter could be further investigated for a
larger period of years for the rest of the winter months.

Partitioning Peloponnese into rough segments with similar climate characteristics and
LULC, in order to calibrate the empirical methods for the local and regional spatial scales for
the monthly time scale, is proposed for future research, since it could assess the performance
of empirical methods during different seasons and LULC types. Moreover, examination
of ETo along with ETa, MODIS ET and Epan would contribute to the perception of their
complex relations despite their substantial differences.

Supplementary Materials: The figures presenting the topology of the models (methods and statistical
measures) which have been developed in model builder environment, are available online at
https://www.mdpi.com/article/10.3390/ijgi10060390/s1.
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Observatory of Athens (Greece)), RMSD (Root-Mean-Squared Difference), USGS (The United States
Geological Survey.

Appendix A

Table A1. Meteorological stations (62) used for ETo calculation by the empirical methods (source: https://meteosearch.
meteo.gr (accessed on 15 January 2021)).

ID Station X Y Elevation
(m) Municipality ID Station X Y Elevation

(m) Municipality

Meteorological Stations for the 3 Empirical Methods (ETo) Meteorological Stations for the 3 Empirical Methods (ETo)

1 Kalavrita 33,4349.9 4,210,128 781 Achaia 32 Oleni 282,783.4 4,177,872 61 Ilia
2 Kato Vlassia 317,683.4 4,208,558 773 Achaia 33 Pineia 285,425.3 4,191,240 184 Ilia
3 Lappa 273,550 4,218,928 15 Achaia 34 Pirgos 273,886.9 4,171,891 22 Ilia
4 Olenia 288,845.1 4,221,654 34 Achaia 35 Vartholomio 253,773.8 4,193,127 15 Ilia
5 Panachaiko 313,491.4 4,235,800 1588 Achaia 36 Zacharo 290,302.6 4,150,806 5 Ilia
6 Panagopoula 318,709.5 4,243,842 15 Achaia 37 Amoni Sofikou 424,227.5 4,186,898 55 Korinthia
7 Panepistimio 305,972.3 4,239,289 66 Achaia 38 Derveni 362,057.1 4,221,737 5 Korinthia
8 Patra 301,697.8 4,236,694 6 Achaia 39 Isthmos 408,645.4 4,200,499 6 Korinthia
9 Rio 305,898.1 4,242,177 2 Achaia 40 Kiato 389,163.5 4,207,722 15 Korinthia
10 Romanos 313,476.1 4,235,744 228 Achaia 41 Krioneri 378,491.9 4,203,310 887 Korinthia
11 Sageika 280,638.4 4,219,575 26 Achaia 42 Loutraki 410,248.7 4,202,636 30 Korinthia
12 Argos 386,329.1 4,165,059 38 Argolida 43 Nemea 381,197.9 4,188,976 290 Korinthia
13 Didima 426,936.9 4,146,702 175 Argolida 44 Perigiali 397,303.1 4,199,344 38 Korinthia

14 Kranidi 424,615.7 4,137,411 110 Argolida 45 Trikala
Korinthias 365,493.7 4,206,835 1077 Korinthia

15 Lagadia 326,139.9 4,172,057 970 Arkadia 46 Agioi Theodoroi 423,533.6 4,198,395 37 Korinthia
16 Levidi 349,386.5 4,171,330 853 Arkadia 47 Apidia 392,819.7 4,082,655 230 Lakonia
17 Lykochia 337,772.6 4,151,113 870 Arkadia 48 Asteri 386,527.1 4,076,757 8 Lakonia
18 Magouliana 334,497.7 4,171,275 1256 Arkadia 49 Geraki 384,706.6 4,094,508 330 Lakonia
19 Megalopoli 335,363 4,140,782 432 Arkadia 50 Krokees 371,576.2 4,082,640 241 Lakonia
20 Stemnitsa 330,377.8 4,157,967 1094 Arkadia 51 Molaoi 397,984.6 4,072,957 128 Lakonia
21 Tripoli 359,989.3 4,152,250 650 Arkadia 52 Monemvasia 413,811.4 4,059,051 17 Lakonia
22 Vytina 339,989.8 4,170,409 1013 Arkadia 53 Sparti 360,929.9 4,101,670 204 Lakonia
23 Spetses 424,919.5 4,124,662 3 Attiki 54 Alagonia 343,840.9 4,107,863 765 Messinia

24 Taktikoupoli
Troizinias 443,373.2 4,152,374 15 Attiki 55 Arfara 326,299.4 4,113,666 96 Messinia

25 Ydra 452,645.8 4,133,727 2 Attiki 56 Filiatra 285,439.9 4,115,175 65 Messinia
26 Amaliada 264,604.9 4,186,923 26 Ilia 57 Kalamata 331,127 4,098,974 5 Messinia
27 Andritsaina 314,220.3 4,152,125 731 Ilia 58 Kalamata Dytika 329,347.3 4,100,001 10 Messinia

28 Archaia
Olympia 287,981.3 4,163,856 45 Ilia 59 Kardamili 347,857.7 4,074,651 13 Messinia

29 Foloi 297,082.7 4,174,732 600 Ilia 60 Kopanaki 306,288.6 4,128,741 184 Messinia
30 Katakolo 263,537.2 4,169,327 2 Ilia 61 Kyparissia 291,691 4,123,584 36 Messinia
31 Lampeia 306,840.3 4,192,041 840 Ilia 62 Pylos 294,556.8 4,087,590 5 Messinia
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