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Abstract: This work introduces multi-objective water cycle algorithm (MOWCA) to find the accurate
location and size of distributed energy resource (DERs) considering different load models for two
seasons (winter, and summer). The impact of uncertainties produced from load and renewable
energy resource (RES) such as wind turbine (WT) and photovoltaic (PV) on the performance of
the radial distribution system (RDS) are covered as this is closer to the real operation condition.
The point estimate method (PEM) is applied for modeling the RES uncertainties. An optimization
technique is implemented to find the multi-objective optimal allocation of RESs in RDSs considering
uncertainty effect. The main objectives of the work are to maximize the technical, economic and
environmental benefits by minimizing different objective functions such as the dissipated power,
the voltage deviation, DG cost and total emissions. The proposed multi-objective model is solved
by using multi-objective water cycle algorithm (MOWCA), considering the Pareto criterion with
nonlinear sorting based on fuzzy mechanism. The proposed algorithm is carried out on different
IEEE power systems with various cases.

Keywords: uncertainty effect; multi-objective water cycle algorithm (MOWCA); power loss reduction;
voltage deviation; cost; pollutant gas emissions; renewable energy source

1. Introduction

Nowadays, the global load demand for electricity has been greatly increased [1]. This leads
to increasing the distribution system capacity by installing new distributed energy resources,
therefore installing distributed energy resources (DERs) is an urgent matter. DERs have become
an essential electric devices that integrated with modern distributed systems. Optimum place,
capacity and number of needed DERs for accurate behavior of distribution systems are essential for
ensuring optimum operating performance. The selection criteria of the DERs source is very important
to ensure providing the advantages of integrating them with radial networks [1].

Nowadays, introducing the hybrid renewable energy sources to be integrated with radial networks
providing technical and economic impacts. Hybrid renewable energy systems based on photovoltaic
and wind energy systems are used extensively and have long lifetime. The integration of hybrid
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energy resources with radial distribution networks adding many benefits, such as improving the radial
network performance, and more economic in addition to decreasing power dissipated than integration
of wind (WT) and (PV) energy resources individually [1,2]. Renewable energy systems, such as PV
and WT system can decrease carbon emissions and supply clean energy, but may not capable to cover
the needed energy for load requirements in a continuous form due to sudden changes in weather,
which leads to reducing the energy output of both PV and WT systems.

There are different configurations of solar power systems such as on-grid, off-grid, and hybrid-grid.
In on-grid systems, batteries is not required and use either solar inverters or micro-inverters,
which enables the source to be connected with the public electricity grid and widely used by
homes and businesses. These systems are not able to generate electricity during a blackout due to
safety reasons. In off-grid systems, the PV systems are not connected to the electricity grid and therefore
require battery storage. Hybrid systems contain both solar and battery storage, which operated in
standalone mode and provide power to the loads during grid-side faults or during maintenance on the
grid side [3].

Many optimization techniques have been employed to deal with the problem of DERs optimal
allocation to maximize their benefits [4,5]. The main different between these optimization techniques
are the objectives functions, the control variables, and the assumptions. Optimization objectives can be
achieved in single or multi-objective spaces. In practice, multi-objective optimization became a very
important decision-making tool rather than the single objective optimization, due to it capability of
providing a set of non-dominated solutions [1,6].

No doubt that the DERs are participate in strengthen the distribution grid networks, and evaluate
many factors based on the bio-inspired optimization techniques. This leads to many advantages that
can improve the distribution grid network behavior [7,8].

The electric power system has several load models, such as constant, residential, commercial,
and industrial loads, the reactive and real power demands values at various load models dependence
on their operating voltage profile [9–13]. This article studies the systems under different load models.

The computational fluid dynamics (CFD) was used extensively to discuss the uncertainty
inherent to renewable energy sources such as wind turbines [14] and wind farms [15]. The CFD was
implemented to optimum design for such renewable energy sources such as wind energy system and
or wind farms. The CFD provides more uncertainty to the final design of wind turbine, as well as
wind farm [16]. The implementation of CFD simulations provide variability in the wind energy system
operating performance [17].

This article presents application of (MOWCA), to find the optimal location and capacity of
DESs for reducing total network dissipated energy losses, cost, voltage deviation, and emission with
different load models. The uncertainties effects produced from renewable energy resource and load are
considered in this paper. The point estimate method (PEM) is implemented for modeling the solar,
and wind power uncertainties. Robust Optimization is applied for modeling the load uncertainties.
The MOWCA is applied to find a representative set of the Pareto accurate solutions for the three
objective functions. Therefore, a fuzzy clustering approach is integrated with the suggested technique
to choose the best and accurate solution from the Pareto front. The performance of study system is
analyzed under three values of standard deviation.

The following are the points represent the work contributions:

i. Impact of uncertainties produced from a renewable energy resource, such as (solar, and wind
power generation source) and load on the performance of the network is covered.

ii. New electric resources with suitable size, placement, and type are integrated.
iii. The optimal placement and capacity of DESs is obtained by multi-objective water cycle algorithm

(MOWCA).
iv. The effect of different values of standard deviation on the network performance is covered.
v. Various load configurations, such as (constant, residential, industrial, commercial, and agricultural)

in winter and summer are considered.
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i. The technique guarantees satisfactory solution for all possible operating conditions.
ii. The point estimate method (PEM) is utilized for modeling the solar and (WT) uncertainties.
iii. The different objective functions such as total power loss, voltage deviation and, cost,

and emission are used.

The rest of this paper is ordered as follows: Section 2, presents previous work, Section 3 provides
the problem formulation. Section 4, introduces the mathematical model of the DERs. Different
loading models were displayed in Section 5. Load uncertainty is presented in Section 6. The pest
estimation method is discussed in Section 7. Section 8, introduces the mathematical model of the
proposed technique. The results and discussions of applying the suggested technique in different cases
displays in Section 9. The conclusion of the paper is given in Section 10.

2. Previous Work

A review of the applied techniques for the optimal allocation of DERs in RDS is depicted in Table 1.

Table 1. The summaries of published applied techniques.

Reference Optimization Algorithms IEEE Bus
System

Load
Model

RES N-RES Uncertainty Source

PV WT FC MT PV WT Load

[18] Multi-Objective Antlion
Optimisation (MALO). 33-bus bio-mass
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3. Problem Formulation

3.1. Minimization of Power Losses (Ploss)

Integration of DESs at suitable location and capacity leads to minimization of network power loss.
The loss calculation is demonstrated below [29]:

ipq =
VP −Vq

rk + jxk
iqp =

Vq −Vp

rk + jxk
(1)
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where p, and q = to bus and from bus for kth line; Vp and Vq = to bus and from bus complex voltage (pu);
rk is the resistance of kth line (pu); and xk is the reactance of kth line (pu).

Spq = Vp × ipq
∗ Sqp = Vq × iqp

∗ (2)

Spq is the complex power flow from bus p to bus q through kth line. Sqp is the complex power
flow from bus q to bus p through kth line.

Total loss =
∑n line

k=1
Spq − Sqp (3)

Ploss = Real (Total loss), (4)

Qloss = Imaginary (Total loss) (5)

3.2. Minimization of Voltage Deviation (VD)

The voltage deviation is decreased after the installation of DG with optimal allocation. The voltage
deviation (VD) of any of the studies system bus is evaluated related to substation bus that still has
1-pu voltage. It is calculated as given in Equation (6). Here, Vnj refers to the substation voltage for
kth line [34].

VD =
Nb∑

nj=1

∣∣∣Vnj − 1| (6)

The objective function for decreasing power dissipated and voltage deviation is formulated
as follows:

F1 = 0.6× Ploss + 0.4×VD (7)

3.3. Minimization of Cost

A best dispatch problem requires achieving system loads in the most economical manner possible.
The total expense is the total buying force cost of the main substation and DES, which can be calculated
from the following [35]:

F3 = Cost = Costgrid +
∑NDERs

i=1
CDERs,i (8)

The total buying force cost of the main substation as follows:

Costgrid = Pgrid.πgrid (9)

The cost of a DES encompasses its fixed cost and a variable cost can be formulated by:

CDERs,i = CostFX
DERsi + CostDERs,i.PDERs,i (10)

From the last equation, the DERs expense includes its initial cost term and a variable term.
CostFX

DERs,i is initial investment (or fixed) cost, which includes the cost of equipment, infrastructure,
commissioning, as follows:

CostFX
DERs,i =

Ccap,i. Pcap,i. rb
T × 365× 24×KDERs,i

(11)

where CostDERs,i is variable cost associated with operation and maintenance (O&M) as well as fuel,
which can be formulated as:

CostDERs,i = CO&M,i + CF,i (12)

The suggested (DERs) technologies are shown in Table 2.
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Table 2. The suggested (DERs) technologies.

Generation Capacity
(kW)

Capacity
Factor

Life Time
(Year)

Capital Cost
($/kW)

Maintenance
Cost ($/kWh)

Annual
Conversion Factor

FC 400 0.4 10 3674 0.001 0.1006
MT 250 1 10 750 0.039 0.2152
PV 300 0.25 20 6675 0.005 0.0543
WT 300 0.2 20 1500 0.005 0.1006

3.4. Minimization of Emission

In this objective, decreasing of emissions created from various electric sources and grid is the goal.
The following gases are considered, i.e., carbon dioxide (CO2), nitrogen oxides (NOx) and sulfur
dioxide (SO2). The Grid, and the DER data is given in Table 3. The values of emission coefficients of
DES units and the grid are represented as follows [36]:

F4 =

NMT∑
i=1

EMTi +

NFC∑
i=1

EFCi +

NWT∑
i=1

EWTi +

NPV∑
i=1

EPVi + EGrid (13)

Table 3. Emission related for resources.

Emission Type
Emission Factors (lb/MW h)

Grid MT FC WT PV

NOX 5.06 0.4 0.03 0 0
SO2 11.6 0.008 0.006 0 0
CO2 2031 1596 1078 0 0

The emission produced from MT (EMTi, ) can be calculated by the following equation:

EMTi =
(
COMT

2 + NOMT
x + SOMT

2

)
×PMTi (14)

The emission produced from FC (EFCi,) can be formulated by:

EFCi =
(
COFC

2 + NOFC
x + SOFC

2

)
×PFCi (15)

The emission produced from WT (EWTi) can be expressed as follows:

EWTi =
(
COWT

2 + NOWT
x + SOWT

2

)
×PWTi (16)

The emission produced from PV (EPVi) is formulated as follows:

EPVi =
(
COPV

2 + NOPV
x + SOPV

2

)
×PPVi (17)

The emission produced from grid (EGrid) can be calculated using the following equation:

EGrid =
(
COGrid

2 + NOGrid
x + SOGrid

2

)
×PGridi (18)

3.5. Constraints

The active and reactive power supplied by DES, and bus voltages are examples of operational
constraints needed to achieve them while finding the best DES position.
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3.5.1. Power Balanced Constraints

In these limitations, the total power flow through the distribution system coming from DGs and
grid must be equivalent to the total power flow going to load and loss of the system, as follows.∑nb

nj=1
pgnj + pgrid =

∑nb

nj=1
pdnj + ploss (19)

∑nb

nj=1
Qgnj + Qgrid =

∑nb

nj=1
Qdnj + Qloss (20)

3.5.2. Inequality Constraints

Nonrenewable Generation limit: The upper and lower constrains of powers supplied by DES are
calculated using the following equation:

Pmin
gnj ≤ Pgnj ≤ Pmax

gnj (21)

Qmin
gnj ≤ Qgnj ≤ Qmax

gnj (22)

Voltage limit: the buses’ voltage limitation is shown as follows:

Vmin
i ≤ Vi ≤ Vmax

i (23)

Line thermal limits: The complex power through any line is limited by its rated value as follows:

Si j ≤ SMax
ij (24)

4. DERs Modeling

In this work, the DERs devices are modeled as RESs and N-RESs. The control of PV and WT in
this study is adjusted to operate at unity PF.

4.1. Photovoltaic System (PVS)

In this section, the probabilistic modelling of photovoltaic system in RDS is presented. Sunlight
is converted into electrical energy by a photovoltaic generator. The main parameter that affects the
amount of power output from this generator is the amount of solar radiation. To model the behavior
of solar irradiance, assume the irradiance of the solar irradiance performance β PDF and CDF are
implemented to represent it according to (25) and (26) [37]:

fB(si) =

 Γ(α+β)
Γ(α)Γ(β) .si

(α−1)(1− si)
(β−1) f or 0 ≤ si ≤ 1 ,α ≥ 0, β ≥ 0

0 otherwise
(25)

FB(si) =

si∫
0

Γ(α+ β)

Γ(α)Γ(β)
.si

(α−1)(1− si)
(β−1)dsi (26)

where α and β are the parameters of beta PDF presented as follows:

α = µ

(
µ(1 + µ)

σ2 − 1
)

(27)

β = (1− µ)
(
µ(1 + µ)

σ2 − 1
)

(28)
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The relationship between solar irradiance and solar power is expressed as follows:

Ppv(si) = Ac.η.si (29)

when applying Equation (21) the probability density function fPpv

(
Ppv

)
for the output power of PVs

can be obtained as the following equation:

fPpv

(
Ppv

)
=

 Γ(α+β)
Γ(α)Γ(β) .(Ac.η.si)

(α−1)(1−Ac.η.si)
(β−1) i f Ppv ∈

[
0, Ppv(si)

]
0 otherwise

(30)

4.2. Wind Energy System (WES)

The wind energy is converted into electric power by wind turbines (WT). The factors affecting
the power generated from a wind turbine are accessibility and speed of wind, the power curve of
wind turbines, and size and shape of the turbine. The output power produced by WT is calculated as a
function of wind speed vwind according to the following equation: [1]:

Pw(Vwind) =


0 vwind < vci or vco ≤ vwind

pR. (vwind−vci)
(vr−vci)

vci ≤ vwind < vr

pR vr ≤ vwind < vco

(31)

The probability density function fpw(Pw) for the power generated by WES is expressed as follows:

fpw(Pw)


1− [Fv(vco) − Fv(vci)]pw = 0(

(vr−vci)
pR

)(
π

2V2
m

)
×

(
vci + (vr − vci).

pw
pR

)
× exp

−( vci+(vr−vci).
pw
pR

2
√
π

Vm

)2 0 < pw < pR

Fv(vco) − Fv(vr)pw = pR

(32)

4.3. Full Cell Unit (FC)

The electric power output of FC units is described as follows [1]:

CFC = CgasFC ×
PFC
ηFC

(33)

4.4. Micro Turbine Unit (MT)

The electric power output of MT units is obtained from the following equation: [1]:

CMT = CgasMT ×
PMT

ηMT
(34)

5. Load Model

In this study, five different types of loads are considered. The considered load types are constant,
residential, commercial, Industrial, and agricultural load type. The real and complex power of the
load is considered as constant power in the classical load flow problems, despite, the load may be
nonlinear such as residential, commercial, Industrial, and agricultural which discussed by models
in [23]. The effect of different types of loads is represented by exponential function as the following form:

Pi = PoiV∝i (35)

Qi = QoiV
β
i (36)

The values ofα andβ for different types of load models in winter and summer are listed in Table 4 [22].



Energies 2020, 13, 5800 8 of 24

Table 4. The exponent values for various load models.

Load Type Constant Residential Commercial Industrial Agricultural

∝ β ∝ β ∝ β ∝ β ∝ β

Summer 0 0 0.9 2.9 0.7 2.5 0.1 0.6 1.4 1.4
Winter 0 0 1.5 2.8 0.8 2.4 0.1 0.6 1.4 1.4

6. Load Uncertainties Model

To enhance the flexibility and robustness of the proposed system planning and providing reliability
to the analysis, the commonly used normal distribution is adopted to approximately characterize the
uncertainty of load. The random active power (Pd) of load i are generated based on the probability
density function of the load power, f(Pdi) according to the following equation: [38]:

f (Pdi) =
1√

2πσ2
Pi

d

exp

−
(
Pdi − µPi

d

)2

2σ2
Pi

d

 (37)

where the standard deviation (σPd) of normal distribution is taken 10% of the considered load level
with zero mean (µPd

) value [39]. Therefore, the uncertainty of power demand prediction is modeled by
a vector of independent Gaussian random variables, which is represented as an addition injection at
each selected load bus.

7. Model of Uncertainties Based on PEM Method

Point estimate method (PEM) is one of the appropriate tools to deal with uncertainties. Details of
this method are discussed in [38–40]. In this article, (2m + 1) Hong’s PEM scheme [40] is employed
to three buses in each distribution network to represent the load uncertainty. In each case study,
the optimization methods performed (2 × 3 + 1) load-flow calculations to estimate the solution of the
load-flow based on the PEM method, where three uncertain system parameters are considered in each
test system. General steps of (PEM):

Step 1: The statistical information of the input variables is calculated.
Step 2: The concentrations for each input variables are determined.
Step 3: The F function at the points

(
p1; p2; . . . ; X1,k; . . . ; pm−1; pm

)
are evaluated by the

weighted probability factor, where p1 is the mean value of the input variable X1. The points(
p1; p2; . . . ; X1,k; . . . ; pm−1; pm

)
includethe kth location X1,k and the mean value of m−1 remaining

input variables
(
p1; p2; . . . ; pl−1; pl+1 ; pm−1; pm

)
.

Step 4: The statistical information of the output variable (Z) are calculated by using:

F
(
Z = F

(
p1; p2; . . . ; pl; . . . ; pm; c

))
(38)

Step 5: For each random variable p1, the three locations are Computed using mean value (µpl)
and variance value (σpl) of p1.

plk = µpl + εlkσpl k = 1, 2, 3 (39)

Step 6: The standard location, weighting factor wlk of the uncertain parameters can be find by the
following equations:

εlk =
λ13

2
+ (−1)3−k

√
λ13 −

3λ2
14

4
k = 1, 2 εl3 = 0 (40)

wlk =
(−1)3−k

εlk(εl1 − εl2)
, wl3 =

1
m
−

1
λ14 − λ2

13

k = 1, 2 εl3 = 0 (41)
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Step 7: The F function at this point and its new weighting factor (w0) will be calculated as follows:

w0 =
m∑

l=1

w13 = 1−
m∑

l=1

1
λ14 − λ2

13

(42)

In this work, (K = 3, εlk= 0) is used for modeling PV and WT output power under the effect
of uncertainties. After calculating two pairs of locations and weights (pl, k, ωl, k, k = 1, 2) for each
point, the output function

Z will be calculated for each variable and for each concentrated point Z(l, k) based on
F(Mp1, Mp2, . . . , plk, . . . , Mpm), which is computed according to:

E
(
ZJ

)
�

m∑
l=1

k∑
k=1

wlk ×
[
F
(
Mp1, Mp2, . . . , plk, . . . , Mpm

)] j
(43)

8. Proposed Method

The proposed optimization technique in this study is based on (WCA). The (WCA) simulates the
flow of rivers and streams toward the sea and derives from monitoring the water cycle process [41].
The complete details of the multi-objective water cycle algorithm (MOWCA) are tracked step by step
as follows [42]:

Step 1: The initial parameter of the WCA: Npop, Nsr, dmax, and Maximum_Iteration are chosen.
Step 2: a random initial population and the initial streams, rivers, and sea are generated by using

equations as below.

Total population =


Sea River 1, Sea River 2, Sea River 3

Stream Nsr + 1, Stream Nsr + 2, Stream Nsr + 3
Stream Npop

 (44)

Nsr = Number of Rivers + 1 (45)

NStream = Npop −Nsr (46)

Step 3: The value of multi-objective functions for each stream are calculated by:

Ci = Costi = f (xi
1, xi

2, . . . ., xi
3

)
Step 4: Calculate the intensity of flow for river and sea by:

Nsn = round


∣∣∣∣∣∣∣ costn∑Nsr

i=1 costi

∣∣∣∣∣∣∣×NStream

, n = 1, 2, . . . ., Nsr (47)

Step 5: Calculate the flow of streams into the rivers by:

→

X
i+1

stream =
→

X
i+1

stream + rand× c×
(
→

X
i

River −
→

X
i+1

stream

)
(48)

Step 6: Calculate the flow of rivers into the sea by:

→

X
i+1

stream =
→

X
i+1

stream + rand× c×
(
→

X
i+1

Sea −
→

X
i+1

stream

)
(49)

Step 7: Replace the positions of river and stream which achieves the best solution.
Step 8: Replace the position of river with the sea which achieves the best solution.
Step 9: The evaporation condition which can be obtained from the pseudo code are review.
Step 10: The precipitation process will be started after the evaporation condition is attained as follows:
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→

X
new

stream =
→

LB + rand×
(
→

UB−
→

LB
)

(50)

Step 11: Reduce the dmax using:

di+1
max = di

max −
di

max

maxIteration
(51)

Step 12: If the termination criteria are satisfied, the algorithm will be ended. Otherwise, return back
to step 5.

Pseudo-codes of the MOWCA algorithm is provided in Algorithm 1 [35]. The flowchart of the
water cycle optimization algorithm is shown in Figure 1 [36].

Algorithm 1 The general procedures of the multi-objective water cycle algorithm (MOWCA)

� Set user parameter of the WCA: Npop, Nsr, dmax, and Maximum_Iteration.
� Calculate the number of streams (individuals) which flow to the rivers and sea using Equation (45),

and (46).
� Create randomly initial population.
� Define the intensity of flow (How many streams flow to their corresponding rivers and sea) using

Equation (47).

while (t < Maximum_Iteration) or (any stopping condition)
for i = 1 : Population Size (Npop)

Stream flows to its corresponding rivers and sea using Equation (48), and (49).
Obtain the objective function of the generated stream

if F_New_Stream < F_river
River = New_Stream;
if F_New_Stream < F_Sea

Sea = New_Stream;
end if

end if
River flows to the sea using

→

X
i+1

River =
→

X
i

stream + rand ∗ c ∗
(
→

X
i

Sea −
→

X
i

River

)
Calculate the objective function of the generated river

if F_New_River < F_Sea
Sea = New_River;

end if
end for

for i = 1 : number of rivers (Nsr)
if (distance (Sea and River) < dmax) or (rand < 0.1)

New streams are created using using Equation (50).
end if

end for
Reduce the dmax using Equation (51).

end while
Postprocess results and visualization
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Figure 1. Flowchart of multi-objective water cycle algorithm (MOWCA).

9. Simulation Results Based on MOWCA

This part indicates the impact of the proposed method (MOWCA method) considering decreasing
the power losses, voltage deviation, cost, and pollutant gas emission of the RDS. The suggested
algorithm has been utilized on big RDS. An analytical software tool has been developed in MATLAB
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to run load flow, based Newoton-Raphson method and determine optimal location and size of DES.
The study scenarios are tabulated in Table 5.

Table 5. The suggested different scenario studied in this article.

Scenario # Case # Load Model Season System

Scenario 1 Case 1 Constant
Summer & Winter

IEEE 118

Scenario 2 Case 2 Agricultural
Scenario 3 Case 3 Industrial

Scenario 4
Case 4

Residential Summer
WinterCase 5

Scenario 5
Case 6

Commercial Summer
WinterCase 7

IEEE 118 bus radial distribution system

The IEEE 118-bus (RDS) is large scale study system includes 117 buses and 118 branches with
a total reactive and real load powers of 17041.07 kVAr and 22,709.72 kW, respectively, as shown in
Figure 2 [43]. The MVA and kV base of the test system are100 MVA and 11 kV, respectively. The total
reactive and real power losses are 978.7 kVAr and 1298.1 kW, respectively. System data is taken
from [44]. Regarding the uncertainty in the load demand, the normal distribution function is performed
and injected at loads on buses 21, 76, and 110. The total numbers of MT, FC, PV, WT units are 4, 4, 2,
and 2 units, respectively. MT, FC, PV, WT unit sizes are 150 kW, 400 kW, 300 kW, and 15 kW, respectively.

Figure 2. The IEEE 118 bus system diagram [44].
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Scenario 1 (constant load model)

In this case the performance of system is analyzed under three different values of the standard
deviation considering constant load model based on MOWCA. The Pareto fronts and the best
compromise solution are shown in Figure 3a–c, it’s clear that the Pareto solutions at SD = 0.1 of the
considered load level are the best solution for improving all objective functions. The three objectives
under the effect of SD are illustrated in Figure 3d, It is observed that the 10% of the considered load
level is succeeded in minimizing power loss, voltage deviation, and the emission of the network
effectively, but the min cost value obtained when SD equal to 0.05 or 0.01 of the considered load level is
closed to the value obtained when SD = 0.1 of the considered load level. The optimal allocations of
mixed DERs are listed in Table 6. The optimization results achieved by proposed the MOWCA is given
in Table 7, it’s clear that the power loss reduced by 15.14%.

Figure 3. The performance of network under constant load model (scenario 1), best solution obtained
at SD = 0.1 are cleared in (a–c), min value of different objectives is shown in Figure (d).

Table 6. Optimal allocation of different DERs for Scenario 1.

Scenario # Case # SD Value MT Size MW,
(Location (Bus No))

FC Size MW,
(Location (Bus No))

PV Size MW,
(Location (Bus No))

WT Size MW,
(Location (Bus No))

1 1 0.1

0.082006(44)
0.15(32)

0(90)
0.03612(118)

0(118)
0.4(77)
0.4(18)

0.17966(49)

0.13295(72)
0.16116(51)

0.060799(117)
0.052414(34)

Cost for Scenario 1 ($/h) 11.5622 64.8803 9.1897 3.15
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Table 7. Optimization results obtained for Constant load model.

Scenario # Case # SD Value PlosskW QlosskVA VD(PU) Vmin (Location) F1
F2

($/h)
F3

(Ib/h)

1 1 0.1 1101.5774 833.1786 4.8027 0.892 (74) 662.87 507.774 20,981.38

Scenario 2 (Agricultural load model)

In this scenario, the agricultural load model is presented under a different standard deviation values,
the value of α and β in the winter season is the same value in the summer season, there is one
optimization result for two seasons. Pareto frontiers and their 2D projections are plotted in Figure 4a–c.
It is evident that the significant reduction in all objective functions achieved by MOWCA algorithm
considering SD = 5% of the considered load level. Figure 4d shows the effect of SD value on the
different objective function. The size and location of different DERs and the optimization results for
improving system performance at SD = 0.05 are illustrated in Tables 8 and 9, respectively, it is cleared
from optimization results that the total sizes of new electric sources under using agricultural load
model are higher that the sizes obtained under using constant load model. The power loss is decreased
from 1012.6 kW to 901.8219 kW, the voltage deviation is reduced to 4.3731 PU. The total emission is
reduced from 20,609 Ib/h to 18,936.083 Ib/h.

Figure 4. The performance of network under agricultural load model, best solution obtained by
SD = 0.05 of the considered load level is cleared in (a–c), min value of different objectives is plotted in
Figure (d).
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Table 8. Optimal allocation of different DERs for Scenario 2.

Scenario # Case # SD Value MT Size MW,
(Location (Bus No))

FC Size MW,
(Location (Bus No))

PV Size MW,
(Location (Bus No))

WT Size MW,
(Location (Bus No))

2 2 0.05

0.12405(61)
0.08396(32)

0.053504(75)
0.10243(26)

0.35906(52)
0.13309(118)
0.29997(36)
0.25944(33)

0.1509(90)
0.16562(14)

0.048503(6)
0.057713(47)

Cost for Scenario 2($/h) 15.2993 68.4034 9.3018 3.115

Table 9. Optimization results obtained for Agricultural load model.

Scenario # Case # SD Value PlosskW QlosskVA VD(PU) Vmin (Location)F1
F2

($/h)
F3

(Ib/h)

2 2 0.05 901.8219 677.6467 4.3731 0.8961(77) 542.8424 466.1954 18,936.083

Scenario 3 (Industrial load model)

This scenario displays the industrial load as a load model, the Pareto solutions for proposed
algorithm under three values of SD are illustrated in Figure 5a–c. Figure 5d indicates the effect of three
values of SD on three objectives. Obviously, using SD = 1% of the considered load level provides highly
accurate results compared to results obtained with other values of SD for reducing the power loss,
voltage deviation. In addition, the results obtained at SD = 5% of the considered load level closed to the
results obtained at SD = 1%. SD = 0.05 of the considered load level is the best value for minimizing cost,
in addition, the sizes of DERs are reduced and power loss is increased compared to the results at
SD = 0.01 or 0.1. The performance of network at SD = 0.01, and 0.05 are found in Tables 10 and 11.
From the optimization result, min active and reactive loss and min voltage deviation obtained with
SD = 0.01 but min cost and emission obtained from SD = 0.05. The power loss is reduced from 1235 kW
to 901.8219 kW, the voltage deviation is decreased to 4.1282 PU. The total emissions are reduced from
21,750 Ib/h to 19,073.5745 Ib/h.

Table 10. Optimal allocation of different DERs for Scenario 3.

Scenario # Case # SD Value MT Size MW,
(Location (Bus No))

FC Size MW,
(Location (Bus No))

PV Size MW,
(Location (Bus No))

WT Size MW,
(Location (Bus No))

3 3

0.01

0.082006(44)
0.15(32)

0(90)
0.036116(118)

0(118)
0.4(77)
0.4(18)

0.17966(49)

0.13295(72)
0.16116(51)

0.060799(117)
0.052414(34)

Cost
($/h) 11.5622 64.8803 9.1897 3.15

0.05

0.11703(17)
0.13584(72)

0.15(50)
0.059788(2)

0.26878(53)
0.30641(34)
0.31301(51)
0.17517(17)

0.15813(50)
0.15277(74)

0.055867(31)
0.061031(89)

Cost
($/h) 19.1494 60.3987 8.483 3.1684

Table 11. Optimization results obtained for industrial load model.

Scenario # Case # SD Value PlosskW QlosskVA VD(PU) Vmin (Location)F1
F2

($/h)
F3

(Ib/h)

3 3
0.01 1043.894 791.5462 4.6901 0.8958(74) 628.2126 505.3910 20870.6326

0.05 1054.159 782.4240 4.7222 0.8832(77) 634.3846 494.5313 20465.8126
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Figure 5. The performance of network under Industrial load model, best solution obtained by SD = 0.01
and SD = 0.05 are cleared in (a–c), min value of different objectives is shown in Figure (d).

Scenario 4 (Residential load model)

MOWCA algorithms is employed to determine the best size and placement of DERs based
on deterministic planning under residential load model and select best value of SD in winter and
summer seasons. The optimization results obtained from the optimization algorithm under Residential
load model in two seasons are tabulated in Tables 12 and 13.

Table 12. Optimal allocation of different DERs for Scenario 4.

Scenario # Case # SD Value MT Size MW,
(Location (Bus No))

FC Size MW,
(Location (Bus No))

PV Size MW,
(Location (Bus No))

WT Size MW,
(Location (Bus No))

4

4
0.05

(winter
season)

0.13146(74)
0.11598(22)
0.090361(2)

0.039559(16)

0.22102(2)
0.22165(32)
0.19975(62)
0.39385(54)

0.15144(75)
0.15817(34)

0.046366(66)
0.057362(60)

Cost
($/h) 15.8226 56.824 9.2672 3.1025

5
0.1

(summer
season)

0.098701(112)
0.077297(22)

0.028257(118)
0.15(73)

0.27066(33)
0.06927(59)

0.4(50)
0.36177(42)

0.13787(24)
0.15092(97)

0.060744(2)
0.066703(118)

Cost
($/h) 14.9214 70.8601 9.1631 2.8876
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Table 13. Optimization results obtained for Residential load model.

Scenario # Case # SD Value PlosskW QlosskVA VD(PU) Vmin (Location)F1
F2

($/h)
F3

(Ib/h)

4

4 0.05
(winter season) 792.7669 604.0108 4.1282 0.9111(77) 477.3114 463.0627 19073.5745

5 0.1
(summer season) 836.7660 636.9934 4.2342 0.9002(77) 503.7533 480.5165 19561.3486

Case 4 (at winter season)

The Pareto solutions for proposed algorithm and their 2-D projections are visualized in Figure 6a–c
and three objective functions are shown in Figure 6d; it is obvious that the SD = 0.1 is the suitable
value for minimizing loss and voltage deviation considering residential load model in winter season.
For minimizing cost and Emission, the SD value must be reduced to equal to 0.05. The power loss is
reduced by 14.258%, the voltage deviation is reduced to 4.1282 PU. The total emissions are reduced
from 20,483 Ib/h to 19,073.5745 Ib/h.

Figure 6. The performance of network under Residential load model in the winter season, best solution
obtained by SD = 0.05 is shown in Figure (a–c), min value of different objectives is shown in Figure (d).

Case 5 (at summer season)

In this case, the optimal optimization results obtained under SD = 0.1 with a residential load
model in summer season, Pareto frontiers and their 2D projections are shown in Figure 7a–c, the effect
of SD values on the different objective functions are cleared in Figure 7d. The best performance of the
system has been done in SD = 0.1, the power loss is decreased from 988.4 kW to 836.766 kW, the voltage
deviation is decreased to 4.2342 PU. The total emissions are reduced from 20,978Ib/h to 19,561.3486 Ib/h.



Energies 2020, 13, 5800 18 of 24

Figure 7. The performance of network under residential load model in the summer season, best solution
obtained by SD = 0.1 is shown in Figure (a–c), a min value of different objectives is shown in Figure (d).

Scenario 5 (Commercial load)

This scenario consist of two cases depend on the seasons operation considering commercial
load model. The obtained responses were deduced by utilizing the proposed MOWCA considering
commercial load model are listed in Table 14. The optimal allocation of DERs is depicted in Table 15.

Table 14. Optimization results obtained for Commercial load model.

Scenario
#

Case
# SD value PlosskW QlosskVA VD(PU) Vmin (location) F1

F2
($/h)

F3
(Ib/h)

5

6
0.05

(winter season) 927.0367 698.3412 4.4545 0.8919
(77) 558.0038 467.0967 19430.2651

0.1
(winter season) 883.5892 672.4293 4.3833 0.8977

(77) 531.9068 474.6212 19899.8357

7
0.05

(summer season) 871.2567 660.3310 4.3336 0.9030
(75) 524.4874 483.9017 20175.6564

0.1
(summer season) 886.4362 671.0857 4.3348 0.8957

(77) 533.5956 489.5236 19704.4773
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Table 15. Optimal allocation of different DERs for Scenario 5.

Scenario # Case # SD Value MT Size MW,
(Location (Bus No))

FC Size MW,
(Location (Bus No))

PV Size MW,
(Location (Bus No))

WT Size MW,
(Location (Bus No))

5

6

0.05
(winter
season)

0.015383(85)
0.15(42)

0(41)
0.095404(31)

0.34248(54)
0.085885(50)

0(102)
0.26569(10)

0.15077(53)
0.15509(117)

0.061906(29)
0.056878(23)

Cost
($/h) 11.2762 50.8856 9.2485 3.1778

0.1
(winter
season)

0.15(12)
0.11784(5)
0.15(73)

0(16)

0(118)
0.16298(34)
0.39931(54)

0.22601(118)

0.16696(113)
0.16203(51)

0.05738(2)
0.057084(91)

Cost
($/h) 17.4013 44.4291 9.3642 3.1562

7

0.05
(summer
season)

0.055985(34)
0.11883(68)

0.10844(113)
0.062769(36)

0.12831(26)
0.37876(53)

0.0014967(78)
0.21503(77)

0.15629(51)
0.14415(49)

0.060327(49)
0.058757(62)

Cost
($/h) 14.6006 52.3329 9.2214 2.8777

0.1
(summer
season)

0.023133(42)
0.11116(74)

0.040849(57)
0.058025(113)

0.38969(53)
0.4(54)

0.22774(59)
0.32221(118)

0.13633(10)
0.16455(14)

0.062158(105)
0.056239(19)

Cost
($/h) 10.199 82.519 9.2236 3.1759

Case 6 (at winter season)

The Pareto frontiers of proposed algorithm and the objective function analyzing under different
standard deviation are depicted in Figure 8a–d, respectively. The results at SD = 5% are better compared
to the results obtained at other values for minimizing loss and voltage deviation, however, the cost is
reduced based on SD = 10%. The power loss is decreased by 15%, the voltage deviation is reduced to
4.3833 PU. The total emission is decreased from 21,078 Ib/h to 19,704.4773 Ib/h at SD = 0.05.
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Figure 8. The performance of network under commercial load model in the winter season, best solution
obtained at SD = 0.1 and SD = 0.05 are depicted in Figure (a–c), min value of different objectives is
shown in Figure (d).

Case 7 (at summer season)

The effect of SD values on the Pareto solution and objective functions are plotted in Figure 9a–d,
respectively, and it’s clear that the min loss and voltage deviation together with minimized cost taken
when SD = 0.05. In addition, SD = 0.1 is used to minimize emission. The power loss is decreased from
1033.3 kW to 871.2567 kW, the voltage deviation is reduced to 4.33336 PU. The total emissions are
reduced from 21,160 Ib/h to 20,175.6564 Ib/h.
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Figure 9. The performance of network under commercial load model in the summer season, best solution
obtained by SD = 0.1 and SD = 0.05 are depicted in Figure (a–c), min value of different objectives is
shown in Figure (d).

10. Conclusions

Water cycle algorithm (WCA) is used to identify the optimal allocation of distributed energy
resource (DERs) in radial distribution systems for minimizing the total network power losses (Plosses),
cost (C), voltage deviation (VD), and pollutant gas emissions considering different load model.
The DERs and load uncertainties are considered in this study. The proposed method is tested on
IEEE 118-bus radial distribution system. The simulation results show the impact of different values
of standard deviation (SD) on the performance of the system. The point estimate method (PEM) is
applied for modeling the solar and wind power uncertainties. The SD is variated according to load
configuration, to improve the RDN performance. According to the summer load, when minimizing
power losses, voltage deviation and emission for industrial load, the SD is 0.01. When the SD is
increased with small increment, the cost is reduced. In winter load, the SD equal 0.01 to minimize the
energy losses, and voltage deviation, where the emission is high. When the SD is increased to 0.05 the
emission is minimized. Different values of SD are obtained for each load scenario. This assures the
well-known phrase “no free launch”.
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Nomenclature

Ac Surface areas of the arrays (m2) PMT Power produced from MT
βw Shape parameter Pgnj Active power generated by DG at bus nj

Ccap,i The capital cost of DG Pmin
gnj

The upper limit of the real power delivered by new
electric units at bus nj

CF,i Cost of fuel for DG Pmax
gnj

The lower limit of the real power delivered by new
electric units at bus nj

CFC Fuel consumption expenses in FCs ($/h). Pgrid Active power from the main substation
CgasFC Natural gas price feeding the FC ploss Active power losses

CgasMT Natural gas price feeding the MT Ppv(si)
Power produced from Photovoltaic system (kW)
for the amount of irradiance s

CMT Fuel consumption expenses in MT ($/h). Pwt Power produced from WT
CO&M,i DES operation & maintenance cost pR Rated power of the turbine = 15 kW.
CostFX

DERs,i The initial cost of DES PVS Photovoltaic system
CostDERs,i The cost of DES connected in bus i Qdnj Reactive load power at bus nj

costgrid
The cost at which energy was purchased from the
main substation

Qmin
gnj

The upper limit of the imaginary power delivered
by new electric units at bus nj

DERs Distributed energy resource Qgnj
Imaginary power delivered by new electric units at
bus nj

di
max controls the search intensity near the sea Qmax

gnj
The lower limit of the imaginary power delivered
by new electric units at bus nj

FC Full cell unit Qloss Reactive power losses
EMTi Emission produced from MT Rnj Resistance of branch nj
EFCi Emission produced from FC RDN Radial distribution network
EWTi Emission produced from WT rb The annual rate of benefit
EPVi Emission produced from PV si Solar irradiance (kW/m2)
EGrid Emission produced from main substation SO Single objective
KDES,i DES i Capacity Factor t Number of current iterations
LB lower bounds defined by the given problem T DG lifetime
MOWCA Multi Objective Water cycle Algorithm Vmin

i Minimum voltage of bus i
MO Multi-objective Vmax

i Maximum voltage of bus i
MT Micro turbine vci Cut-in wind turbine speed
nb Total number of buses vco Cut-off wind turbine speed = 18 m/s
nbr Total number of branches. Vm Average wind speed for a specific location
NDES Total number of new electrical units Vmj Voltages of bus mj
NMT Total number of MT Vnj Voltages of bus nj
NFC Total number of FC vr Appraised speed of the wind turbine = 3.5 m/s
NWT Total number of WT Vwind Actual wind turbine speed = 17.5 m/s

NPV Total number of PV rand
an uniformly distributed random number between
0 and 1

Npop Number of population Ynj Admittance between bus ni and bus mi
Nsr the summation of number ofrivers η Efficiency of the PV system

Nsn
the number of streams which flow to the specific
rivers and sea.

ηMT Efficiency of MT

Pcap,i DG capacity ηFC Efficiency of FC
Pdnj Active load power at bus nj δmj Phase angle of voltage at bus mj

PDERs,i
The real power offered by the new electrical units
at bus ni

δnj Phase angle of voltage at bus nj

PFC Power produced from FC θnj Phase angle of Yj
πgrid Energy price from the main substation
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