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Abstract: Considering the high compression requirements of transmission, lossy block codes are
particularly concerned due to their good compression performance and simple implementation. This
paper investigates and analyzes the distortion rate performance of protograph LDPC (P-LDPC) codes
for Bernoulli sources over AWGN channels. We first analytically establish the connection between
the parity check matrix of a P-LDPC code and the extra distortion caused by the noisy channels. It
was found that the additional distortion related to channel noise increases with the rising total degree
of a parity check matrix. Further, two design algorithms are proposed for optimizing lossy multirate
P-LDPC codes, considering the effect of noisy channels. Finally, simulation results demonstrate the
robustness of the optimized P-LDPC codes over noisy channels.

Keywords: lossy compression; protograph LDPC codes; quantization; distortion rate; AWGN channels

1. Introduction

Efficient compression can save hardware storage resources and reduce bandwidth
consumption during transmission. Compared with lossless compression, lossy compression
can compress data to a greater extent, resulting in a rate smaller than the entropy of the
source. In the practical transmission environment, the compressed bits may be interfered
by the channel noise, leading to extra transmission distortion, and thus, the study of lossy
compression over noisy channels is of great significance.

Lossy compression is based on the distortion rate theory [1,2], and the source is
quantized by source coding. Source coding and channel coding have a duality [3], so
source compression can be realized by channel coding. Quantization using channel codes
is to replace the equivalent codes of the quantization subspace [4] by the channel codes.
Therefore, it is of great significance to find error-correcting codes with low complexity and
suitable for different source characteristics. Low-density parity check (LDPC) codes are
found to be feasible for lossy compression [5], and they have been proven to asymptotically
achieve the distortion rate limit for the equal-probability binary symmetric sources, but
no specific codes have been proposed [6]. As the dual codes of LDPC codes, low-density
generator matrix (LDGM) codes are proposed to compress the Bernoulli sources, which
has made the distortion close to the distortion rate limit [7,8]. As a subclass of LDPC
codes, protograph LDPC (P-LDPC) codes can obtain their parity check matrix (H) by
extending a small protomatrix [9,10]. Compared with the randomly generated LDPC
codes, P-LDPC codes have linear encoding and decoding complexity. Therefore, the lossy
compression using P-LDPC codes has lower complexity, which makes it feasible in practical
scenarios. For the compression of Bernoulli sources, Liu [11] proposed two algorithms to re-
design P-LDPC codes over noise-free channels. The resultant codes achieved a compression
performance close to the distortion rate limit. However, in practical applications, a complete
communication system has to consider the sensitivity to noisy channels.
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For the compression procedure, the P-LDPC codes and the reinforced belief propaga-
tion (RBP) algorithm [12] jointly operate on the sources, serving as a quantization [13,14]
scheme for binary sources. The size of the quantization subspace of P-LDPC codes is related
to its error correction ability. Since the degree of each variable node of a P-LDPC code
varies, the error correction ability of each variable node is different, and this causes the
non-uniform error correction interval (i.e., quantized subspace). Therefore, when P-LDPC
codes are used for source compression, we need to re-design the P-LDPC codebooks to
minimize the quantization distortion (DS). Further, the index assigned to each codeword
after quantization is transmitted over the channels, and the corrupted index will lead
to extra channel distortion (DC) [15–17]. In this paper, we view information bits of each
codeword as an index of the linear block codes. Moreover, it is noted that the design
of lossy P-LDPC codes only concerns the parity check matrices, taking into account the
index assignment and the noisy channels. We point out that the RBP algorithm for lossy
P-LDPC codes and the standard BP algorithm for channel LDPC codes could share the
same decoding module on a ship, improving the on-ship area efficiency.

For underwater acoustic communications or power line communications, the robust-
ness of a compression scheme to harsh channel conditions has to be considered, since the
channel distortion DC could become the dominant distortion. Therefore, we first analyze
the key factors affecting the channel distortion and then consider the influence of channel
noise while optimizing the P-LDPC codes. By doing so, the average distortion at both low
and high signal-noise ratio (SNR) regions could be balanced. The main contributions of
this paper are described as follows:

1. The connection between DC and the total degree of the variable nodes of a protomatrix
is derived and experimentally verified.

2. Two optimization algorithms are proposed based on the principle of balanced degree
allocation, and the optimized codes have excellent compression performance and
error resilience.

The remainder of this paper is organized as follows. Section 2 introduces the system
model. The optimization of the P-LDPC codes is presented in Section 3, including the
analysis for the low SNR region and optimization for the high SNR region. The experimental
results and analysis are given in Section 4. The conclusion is given in Section 5.

2. System Model

The Bernoulli source compression system model using P-LDPC codes as the quantiza-
tion codebook over noisy channels is shown in Figure 1.
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Figure 1. Lossy compression transmission system using P-LDPC codes over AWGN channels for
Bernoulli sources.

SN represents the Bernoulli source, and sN = (s0, s1, · · · , sN−1)
T is a Bernoulli source

sequence of length N. cN is the quantized codeword. We used the Hamming distance to
measure the distortion, i.e.,

dH(si, ŝi) =

{
0 i f si = ŝi

1 i f si 6= ŝi,
(1)
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d(sN , ŝN) =
1
N

N−1

∑
i=0

dH(si, ŝi). (2)

For the compression system using linear block codes, k is the length of information
bits, which is also the length of the binary index ck of the P-LDPC codes. The distortion DS
and DC are expressed, respectively, by:

DS =
1
N

2k−1

∑
i=0

2N−k−1

∑
j=0

p
(

sN
ij

)
d
(

sN
ij , cN

i

)
, (3)

DC =
1
N

2k−1

∑
i=0

2k−1

∑
j=0

P
(

ck
i

)
P
(

ck
j

∣∣∣ck
i

)
d
(

cN
i , cN

j

)
, (4)

where sN
ij is the jth source sequence of the ith quantization subspace. As pointed out in [15],

when the quantized codeword and subspace division satisfy the centroid codeword and
minimum distortion division, the total distortion is equal to the sum of DS and DC.

This system consists of three parts. The first part is the encoding module. This
module is the quantization module, which introduces the quantization distortion DS. In
this module, the parity check matrix H of the P-LDPC codes is designed by considering the
statistical characteristics of the source, so as to reduce DS as much as possible. Then, by
considering the influence of channel noise on the index, combined with the corresponding
relationship between the index and the codeword, constraints are added to the H matrix to
reduce DC. Next, by using the RBP algorithm, each quantization subspace of the source is
shrunk to a codeword of P-LDPC codes, so as to achieve the purpose of lossy compression.
The schematic diagram is shown in Figure 2, which is to quantize the N-bit Bernoulli source
SN to 2k P-LDPC codewords cN , and the quantization subspace (coding subspace) is the
error correction range of the LDPC codes, then through the interception of information bits,
that is to extract the index for transmission, to further compress the source.
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Figure 2. Simplified diagram of system principle.

The second part is the transmission module. In this module, the k-bit binary index is
modulated by QPSK, and after transmitting over AWGN channels, QPSK demodulation is
used to obtain the index with possible errors. The third part is the decoding module, where
the generator matrix (G) corresponding to the H matrix is multiplied by the demodulated
index to perform linear decoding.

3. Analysis and Optimization Methods
3.1. Analysis for Low SNR Region

For the low SNR region, channel noise will cause serious errors on the index during
transmission, leading to a large DC. We can minimize DC by reducing the distance between
the two quantization subspaces corresponding to adjacent indices of the P-LDPC codes.

Now, let us assume n1 is an original source sequence of length N, n2 is a reconstructed
sequence at the receiver, and w is the Hamming distance between the two sequences.
Moreover, let u1 represent the k-bit binary index, which is a short sequence transmitted
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over the channels. Let u2 be the short sequence demodulated after demodulation. To this
end, DC can be expressed by

DC = w

= ‖n1 ⊕ n2‖1

= ‖G(u1 ⊕ u2)‖1.

(5)

First, suppose that a one-bit error occurs in the binary index during transmission, and
let Hm×n = [Hm×k|Im×m ] be a systematic matrix. Without loss of generality, we assume
the single-bit error occurs at the last position of the index, and then, we have

∆u = u1 ⊕ u2

= (0, 0, · · · , 0, 1)T ,
(6)

G · ∆u =

[
Ik×k

Hm×k

]
· ∆u

=

 k︷ ︸︸ ︷
0, 0, · · · , 0, 1,

m︷ ︸︸ ︷
h1k, h2k · · · , hmk


T

,
(7)

where hij is the (i, j)th entry of the Hm×n matrix and i ∈ [1, m]∗ and j ∈ [1, k]∗, where ∗
represents integers in this range. Therefore, the source distortion generated by the one-bit
error of the binary index is:

w1 = 1 +
m

∑
i=1

hik

= 1 + V(k),

(8)

where V(k) is the degree of the kth variable node. Therefore, the average distortion (in bits)
generated by the one-bit error of the binary index is:

w1 =
1
k

(
k +

k

∑
j=1

m

∑
i=1

hij

)

= 1 +
1
k

k

∑
j=1

V(j).

(9)

Following the same way, we assume a two-bit error occurs in the index, and the
corresponding distortion becomes

w2 = 2 + V(j) + V ˆ(j), (10)

where j 6= ĵ and the average distortion in bits is:

w2 = 2 +
1

C2
k

k

∑̂
j=1

V ˆ(j) +
k

∑
j 6= ĵ

V(j)


= 2 +

k− 1
C2

k

k

∑
j=1

V(j)

= 2

[
1 +

1
k

k

∑
j=1

V(j)

]
.

(11)

Finally, the average distortion generated by an e-bit error of the binary index is:
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we = e ·
[

1 +
1
k

k

∑
j=1

V(j)

]
=

e
k

V(G), (12)

where V(G) is the total degree of the G matrix. The check matrix of P-LDPC codes whose
copy times are Z fills the cyclic matrix in the M ∗ N square matrices after the protomatrix is
copied. Therefore, for P-LDPC codes, the distortion formula of the e-bit error of the binary
index can be changed to:

we = e ·
[

1 +
1

(N −M) · Z
N−M

∑
j=1

M

∑
i=1

(
Z · Bij

)]

= e ·
[

1 +
1

N −M

N−M

∑
j=1

V(j)

]
,

(13)

where Bij is the (i, j)th element in the protomatrix BM×N .
Figure 3 shows the relationship between DC (in bits) and the total degree of variable

nodes in a 3 × 5 protomatrix with code rate 0.4, and the length of the information bits is
1000. As can be seen from Figure 3a, a small number of index errors have little effect on
the compression system, showing a slow linear growth; a large number of index errors
cause a sharp rise in DC, while the proportion of the total degree of the H matrix to the
DC influence becomes larger. After the number of assumed index error bits is fixed, we
can obtain the simplified Figure 3b from Figure 3a. As can be seen from Figure 3b, if the
index error increases (the channel condition is worse), the total degrees have more influence
on DC.

6 8 10 12 14 16 18 20 22

Total Degrees of Information Bit Variable Nodes

0

200

400

600

800

1000

1200

D
c
(b

it
s
)

Binary index with 100 bit errors

Binary index  with 70 bit errors

Binary index  with 50 bit errors

Binary index  with 30 bit errors

Binary index  with 10 bit errors

Binary index  with 1 bit error

(a) (b)

Figure 3. Relationship between total degrees corresponding to information bits in the protomatrix
and DC . (a) Effects of different transmission errors and total degrees on DC (b) Distortion effects of
increased total degrees for different index errors.

For continuous burst errors that may occur in other channels, we now assume that
the probability of two consecutive errors during transmission is independent and identical,
and then, we assume the two-bit error occurs at the last two positions of the index, i.e.,

∆u = u1 ⊕ u2 = (0, 0, · · · , 1, 1)T . (14)

The source distortion in this case is:

w2̃ = 2 +
m

∑
i=1

hi(k−1) +
m

∑
i=1

hik

= 2 + V(k− 1) + V(k).

(15)
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The different short sequence indices transmitted are connected in the channels, and
each index bit transmitted affects each bit variable node on the information bit. Let V0

k
represent the kth position error of the 0th index short sequence, and the DC caused by it is
affected by the degree of the variable node at the kth position in the H matrix:

u0︷ ︸︸ ︷
· · ·V0

k−2 V0
k−1 V0

k

u1︷ ︸︸ ︷
V1

1 V1
2 · · ·V1

k

u2︷ ︸︸ ︷
V2

1 V2
2 V2

3 · · · .
(16)

When the index has two consecutive errors in transmission, the corresponding variable
nodes that affect the source distortion are (assuming that there can be consecutive errors at
the beginning and end)

· · ·V0
k

∣∣∣V1
1

V1
1 V1

2

· · · · · ·

V1
k−1 V1

k

V1
k

∣∣∣ V2
1 · · · .

(17)

Taking all possible errors to calculate the average channel distortion of a source
sequence, the average distortion (in bits) caused by two and three consecutive index errors
is, respectively:

w2̃ =
2

k + 1

[
k +

k

∑
j=1

V(j)

]
, (18)

w3̃ =
3

k + 2

[
k +

k

∑
j=1

V(j)

]
. (19)

Therefore, the average distortion caused by e consecutive index errors is:

wẽ =
e

k + e− 1

[
k +

k

∑
j=1

V(j)

]
. (20)

A special case when e = 1 and k→ ∞ is:

w1̃ = w1 = V(G)
/

k,

lim
k→∞

wẽ = lim
k→∞

we = e. (21)

It can be summarized from the aforementioned analysis that DC is positively related to
the total degree of the parity check matrix H. Therefore, a low-weight parity check matrix
is highly preferred for reducing DC in the low SNR regime.

3.2. Optimization for High SNR Region

It is known that DC would be small for the high SNR regime, and thus, more attention
should be paid to reducing source distortion DS. In order to reduce DS caused by quan-
tization, the division of the quantization subspace needs to be more suitable for source
statistical characteristics, and the equivalent codeword of the quantization subspace needs
to be closer to the central codeword. In the compression system using linear block codes as
the quantization codebook, we can adjust the partition of the quantization subspace and
quantization codebook by assigning the degree of variable nodes.
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In order to do so, we propose a new algorithm designing the P-LDPC codes based on
the codes of [11]. The proposed Algorithm 1 including the check degree allocation (CA)
algorithm and the check-variable degree allocation (CVA) algorithm is based on the concept
of degree balance, and the resultant codes achieve better distortion rate performance in
the high SNR regime, as shown in the next section. In addition, the proposed Algorithm 2
is based on the global degree allocation (GDA) algorithm, which can find codes of better
compression performance. Moreover, the GDA algorithm can also achieve a variable code
rate and balance compression performance and channel noise robustness by selecting
appropriate degrees. The notations in Algorithms 1 and 2 are explained as follows:

Algorithm 1 CA algorithm and CVA algorithm

Require: AR3A-impr codes and AR4JA-impr codes [11]
Ensure: CA-AR3A-impr codes and CVA-AR3A-impr codes;

CA-AR4JA-impr codes and CVA-AR4JA-impr codes.
1: for j = M + 1→ N do
2: Cxj ← Vj/M
3: if x ≥ M−Vj%M then
4: Cxj ← Cxj + 1
5: else
6: Cxj ← Cxj
7: end if
8: end for

9: if
M
∏

x=1
Cxj =

M
∏

x=1
Cinput

xj then

10: Cxj ← Cinput
xj

11: else
12: Cxj ← Cxj
13: end if

// End of the degree allocation of check nodes.
// Output CA-AR3A-impr and CA-AR4JA-impr codes.

14: for i = 1→ M do
15: Viy ← (Ci − 1)/(N −M)

//y ≥ M
16: if y ≥ N − (Ci − 1)%(N −M) then
17: Viy ← Viy + 1
18: else
19: Viy ← Viy
20: end if
21: end for

// End of the degree allocation of variable nodes.
22: repeat
23: swap ( Viy, Viy′ )
24: until 

Vj=(
N
∑

j=M+1
Vj )/(N−M), i f M<j<N−(

N
∑

j=M+1
Vj )%(N−M)

Vj=(
N
∑

j=M+1
Vj )/(N−M)+1, i f j≥N−(

N
∑

j=M+1
Vj )%(N−M)

25: return CA-AR3A-impr codes; CA-AR4JA-impr codes; CVA-AR3A-impr codes; CVA-
AR4JA-impr codes

Vj: the degree of the jth variable node (j ∈ [M + 1, N]∗);
Ci: the degree of the ith check node (i ∈ [1, M]∗);
d: the total degree of the variable nodes associated with the information bit in the protomatrix;
Viy: the number of edges connecting the ith check node and the yth variable node

(y ∈ [M + 1, N]∗);
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Cxj: the number of edges connecting the jth variable node and the xth check node
(x ∈ [1, M]∗).

Algorithm 1 optimizes the protomatrices with good compression performance based
on the existing codes from [11] by reassigning the degrees of rows and columns. The
following Algorithm 1 takes the AR3A-impr codes and the AR4JA-impr codes [11] as an
example. Note that Algorithm 1 could be used for any codes of [11].

When the code rate is 0.57, the original and optimized codes are shown as in
Equation (22).  1 0 0 0 0 1 2

0 1 0 1 2 1 3
0 0 1 2 1 2 2


AR3A−impr

→

 1 0 0 1 1 1 2
0 1 0 1 1 1 3
0 0 1 1 1 2 2


CA−AR3A−impr

↓ 1 0 0 1 1 1 2
0 1 0 1 2 2 1
0 0 1 2 1 1 2


CVA−AR3A−impr

←

 1 0 0 1 1 1 2
0 1 0 1 1 2 2
0 0 1 1 1 2 2


CVA−AR3A−impr−temp

.

(22)

Algorithm 2 (GDA) optimizes the P-LDPC codes from scratch and uses the principle
of degree balance to generate new codes suitable for equal-probability Bernoulli sources by
global degree allocation. The initial structure of the proposed P-LDPC codes is shown in
Equation (23), which could make the partition of the quantization subspace by the P-LDPC
codes concentrated in BM×k. Algorithm 2 can make the error correction range of each
variable node as equal as possible by filling the total degree into BM×k, so that 2k quantized
subspaces are further uniformly divided. By doing so, the quantization distortion DS is
reduced. In addition, P-LDPC codes with various rates could be obtained from Algorithm 2,
by arbitrarily setting the dimension of the identity matrix and the number of variable nodes
in Equation (23). Note that in Equation (23), IM×M denotes the identity matrix, and BM×k
is the matrix to be filled.

[IM×M | BM×k ]

=


1 0 · · · 0 B1×1 B1×2 · · · B1×k
0 1 · · · 0 B2×1 B2×2 · · · B2×k
...

...
. . .

...
...

...
. . .

...
0 0 · · · 1 BM×1 BM×2 · · · BM×k

.
(23)

The procedure for generating the GDA codes is shown in Equation (24), when the
code rate is M/N.

[ IM×M |BM×k ]
input d

→
[

I
∣∣∣∣ Bb

d
k c

c1 Bb
d
k c

c2 · · · Bb
d
k c+1

c(k−1) Bb
d
k c+1

ck

]
Global degree allocation o f variable nodes

↓

[IM×M | GDA(BM×k) ]
GDAcodes

←


I

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Bb
d
M c

r1

Bb
d
M c

r2
...

Bb
d
M c+1

r(M−1)

Bb
d
M c+1

rM


Global degree allocation o f check nodes

,

(24)
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where b·c is the floor function,
⌊

d
k

⌋
implies Vj =

∥∥Bcj
∥∥

1 =
⌊

d
k

⌋
, and

⌊
d
M

⌋
indicates that

Ci = ‖Bri‖1 + 1 =
⌊

d
M

⌋
+ 1.

Algorithm 2 GDA algorithm

Require: M & N & d;
Ensure: GDA codes

1: for j = M + 1→ N do
2: Vj ← d/(N −M)
3: if j ≥ N − d%(N −M) then
4: Vj ← Vj + 1
5: else
6: Vj ← Vj
7: end if
8: end for

// Assign the total degree to the variable nodes
9: for i = 1→ M do

10: Ci ← (d + M)/M
11: if i ≥ M− (d + M)%M then
12: Ci ← Ci + 1
13: else
14: Ci ← Ci
15: end if
16: end for

// Assign the total degree to the check nodes
17: for j = M + 1→ N do
18: Cxj ← Vj/M
19: if ++ x ≥ M−Vj%M then
20: Cxj ← Cxj + 1

// Until the degree of the jth variable node is filled
21: else
22: Cxj ← Cxj
23: end if

// Traverse filling; the next filling position begins at an adjacent position
24: end for
25: return GDA codes

For example, if we take M = 3, N = 5, d = 13, then the obtained GDA code is[
I3×3

∣∣∣B13
3×2

]
input 13

→
[

I3×3

∣∣∣∣ Bb
13
2 c

c1 Bb
13
2 c+1

c2

]
Global degree allocation o f variable nodes

↓ 1 0 0 2 2
0 1 0 2 2
0 0 1 2 3


GDAcode

←

IM×M

∣∣∣∣∣∣∣∣∣
Bb

13
3 c

r1

Bb
13
3 c

r2

Bb
13
3 c+1

r3


Global degree allocation o f check nodes

.

(25)

Since the lossy compression system using the P-LDPC codes is the same as [11], both
the encoding and decoding complexities are linear. The complexity of Algorithms 1 and 2 is
mainly related to the length and width of the protomatrices. The CA algorithm has a
complexity of O(N −M); the complexity of the CVA algorithm amounts to O(N + M− 1);
the complexity of GDA algorithm is O(2N −M).
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4. Simulation Results and Analysis

All parity check matrices H were obtained by extending the aforementioned protoma-
trices to length N = 2520 in this paper. The RBP algorithm was used as the quantization
algorithm, and the parameters of the RBP algorithm used for each code rate were taken
from [11]. For clarity, these parameters (RBP : 1− γ, L) are given for each figure. The
simulation results over AWGN channels with [11] codes are shown in Figure 4.

987653210-1
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(a) (b)

Figure 4. Index transmission environment and compression performance of AR3A-impr codes [11]
over noisy channels. (a) QPSK modulation over AWGN channels (b) Code rate: 0.4 (RBP: 0.94 1.8).

Figure 5 shows the impacts of the total degree of the protomatrix on DC, which are
consistent with the theoretical derivation. It can be seen that the increase of the total degree
seriously affects the compression performance in the low SNR region.

The compression performance of the codes obtained by Algorithm 1 is shown in
Figures 6 and 7. Compared with the existing codes of [11], the distortion is smaller in the
high SNR region.

Note that a similar allocation algorithm can also be obtained by changing the order of
allocation in the CVA algorithm. If the degrees of variable nodes are reassigned first, the
VCA codes can be obtained. The compression performances of the codes are also shown in
Figures 6 and 7. The CVA codes may obtain better compression performance than the CA
codes in the high SNR region, but larger distortion may occur in the low SNR region. The
VCA codes will reduce the high distortion problem of the CVA codes in the low SNR region,
but the compression performance is not as good as the CVA codes in the high SNR region.
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Figure 5. The influence of the total degree of the variable nodes corresponding to the information bit.
(a) Code rate: 0.4 (RBP: 0.94 1.8) (b) Code rate: 0.57 (RBP: 0.85 2.0).
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Figure 6. The performance of the optimized codes for lossy compression over AWGN channels (code
rate: 0.4). (a) Based on AR3A codes [11] (b) Based on AR4JA codes [11].
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Figure 7. The performance of the optimized codes based on AR3A codes [11] for lossy compression
over AWGN channels. (a) Code rate: 0.57 (b) Code rate: 0.66.

Figure 8 compares the distortion rate performance of GDA codes with different total
degrees. It can be seen that the protomatrices generated by the GDA algorithm with
different total degrees will have good compression performance in the range of the degrees
of the protomatrices. The codes having better compression performance than the CVA-
AR3A-impr codes can be found using the GDA algorithm. We point out that the GDA
algorithm can be used to select the optimal degrees to generate protomatrices of the source
codes for noise-free channels. For example, we can select a GDA code of rate 0.4 with a
good compression performance, as shown in Equation (26).

GDA3×5(17) =

 1 0 0 2 3
0 1 0 3 3
0 0 1 3 3

. (26)

The validity of lossy compression is measured by whether the achieved distortion
is close to the theoretical distortion rate limit. Based on the analysis and the simulation
results, the influence of the total degree on DC and DS can be summarized, for which the
increase of total degree of H matrix will cause the increase of DC. In order to adapt to the
fluctuation of the channel environment, we can select the GDA codes having enough good
compression performance, but with less degree as the source codes to realize the robustness
of the channel noise and, finally, achieve the minimum average distortion in a narrow band
of the SNR range. Figure 9 shows the simulation results.
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Figure 8. Compression performance of codes generated by different total degrees of the variable
nodes corresponding to the information bit in the protomatrix using the GDA algorithm for noise-free
channels [11]. (a) Code rate: 0.4 (b) Code rate: 0.66.
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Figure 9. (a) Distortion rate performance [11]. (b) The GDA codes generated by different degrees
have different D (code rate: 0.66) [11].

For example, although GDA3×9(33) has the smallest DS at a 0.66 code rate, considering
the influence of DC, we can select the appropriate degree to obtain protomatrix (d = 27)
with a 0.66 (3 × 9) code rate using the GDA algorithm from Figure 8 to reduce the total
distortion. The generation procedure follows the process shown in Equation (24), and the
filling process is achieved by using cyclic filling, which can satisfy the conditions of global
degree allocation with fewer allocation times.

GDA3×9(27) =

 1 0 0 1 1 2 1 2 2
0 1 0 1 2 1 2 1 2
0 0 1 2 1 1 2 2 1

. (27)

5. Conclusions

This paper studied the lossy compression system of equal-probability Bernoulli sources
using binary P-LDPC codes over AWGN channels. The index is associated with the corre-
sponding quantization subspace in linear block codes in this paper. Through theoretical
derivation, the key factor affecting the DC of the compression system was found, i.e., a
low-weight parity check matrix is highly preferred for reducing DC. Through experiments,
it was verified that the total degree has a notable influence on DC in the low SNR region.
Moreover, the quantization subspace composed of the H matrix is more suitable for the
source statistics by assigning the degree of variable nodes; two algorithms that optimize the
existing source codes were proposed; the resultant codes further reduce DS. In addition, the
proposed GDA algorithm globally assigns each given degree to obtain a series of codes with
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good compression performance, and it was found explicitly that using the GDA algorithm
within a range of total degrees can reduce DS significantly. By selecting a smaller total
degree and using the GDA algorithm to generate codes, a trade-off between compression
performance and DC can be achieved. In more practical transmission environments such as
multipath fading channels and shadowing channels or with multiple noises, the robustness
of the compression system will be further investigated in a future work.

Author Contributions: Writing—original draft, R.W.; data curation, R.W.; formal analysis, R.W. and
H.W.; software, R.W. and S.L.; investigation, S.L.; supervision, S.L.; writing—review and editing,
H.W.; validation, H.W.; funding acquisition, L.W.; methodology, L.W.; project administrator, L.W.;
resources, L.W. All authors have read and agreed to the published version of the manuscript.

Funding: National Natural Science Foundation of China: 61671395.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [CrossRef]
2. Shannon, C.E. Communication in the presence of noise. Proc. IEEE 1998, 86, 447–457. [CrossRef]
3. Gupta, A.; Verdu, S. Operational duality between lossy compression and channel coding. IEEE Trans. Inf. Theory 2011, 57,

3171–3179. [CrossRef]
4. Chen, D. On two or more dimensional optimum quantizers. In Proceedings of the IEEE International Conference on Acoustics,

Speech, and Signal Processing, Hartford, CT, USA, 9–11 May 1977; pp. 640–643.
5. Matsunaga, Y.; Yamamoto, H. A coding theorem for lossy data compression by LDPC codes. IEEE Trans. Inf. Theory 2003, 49,

2225–2229. [CrossRef]
6. Martinian, E.; Wainwright, M. Low density codes achieve the distortion rate bound. In Proceedings of the Data Compression

Conference (DCC’06), Snowbird, UT, USA, 28–30 March 2006; pp. 153–162.
7. Wainwright, M.J.; Maneva, E.; Martinian, E. Lossy source compression using low-density generator matrix codes: Analysis and

algorithms. IEEE Trans. Inf. Theory 2010, 56, 1351–1368. [CrossRef]
8. Wainwright, M.J.; Maneva, E. Lossy source encoding via message-passing and decimation over generalized codewords of LDGM

codes. In Proceedings of the International Symposium on Information Theory, Adelaide, SA, Australia, 4–9 September 2005;
pp. 1493–1497.

9. Nguyen, T.V.; Nosratinia, A.; Divsalar, D. The design of rate-compatible protograph LDPC codes. IEEE Trans. Commun. 2012, 60,
2841–2850. [CrossRef]

10. Hu, X.Y.; Eleftheriou, E.; Arnold, D.M. Regular and irregular progressive edge-growth tanner graphs. IEEE Trans. Inf. Theory
2005, 51, 386-398. [CrossRef]

11. Liu, S. Research on the Design Principles of Joint Coding and Lossy Source Coding System Based on P-LDPC Codes. Ph.D. Thesis,
Xiamen University, Xiamen, China, 2021.

12. Braunstein, A.; Kayhan, F.; Montorsi, G.; Zecchina, R. Encoding for the blackwell channel with reinforced belief propagation. In
Proceedings of the 2007 IEEE International Symposium on Information Theory, Nice, France, 24–29 June 2007; pp. 1891–1895.

13. Gray, R. Vector quantization. IEEE ASSP Mag. 1984, 1, 4–29. [CrossRef]
14. Linde, Y.; Buzo, A.; Gray, R. An algorithm for vector quantizer design. IEEE Trans. Commun. 1980, 28, 84–95. [CrossRef]
15. Farvardin, N. A study of vector quantization for noisy channels. IEEE Trans. Inf. Theory 1990, 36, 799–809. [CrossRef]
16. Skoglund, M. Optimal and sub-optimal decoding for vector quantization over noisy channels with memory. In Proceedings of

the 9th European Signal Processing Conference (EUSIPCO 1998), Rhodes, Greece, 8–11 September 1998; pp. 1–4.
17. Chang, W.W.; Hsu, H.I. Robust vector quantization for channels with memory. In Proceedings of the 2001 IEEE International

Symposium on Information Theory (IEEE Cat. No.01CH37252), Washington, DC, USA, 24–29 June 2001; p. 239.

http://doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.1109/JPROC.1998.659497
http://dx.doi.org/10.1109/TIT.2011.2136910
http://dx.doi.org/10.1109/TIT.2003.815805
http://dx.doi.org/10.1109/TIT.2009.2039160
http://dx.doi.org/10.1109/TCOMM.2012.081012.110010
http://dx.doi.org/10.1109/TIT.2004.839541
http://dx.doi.org/10.1109/MASSP.1984.1162229
http://dx.doi.org/10.1109/TCOM.1980.1094577
http://dx.doi.org/10.1109/18.53739

	Introduction
	System Model
	Analysis and Optimization Methods
	Analysis for Low SNR Region
	Optimization for High SNR Region

	Simulation Results and Analysis
	Conclusions
	References

