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Abstract: Internet of Things (IoT) communication technologies have brought immense revolutions
in various domains, especially in health monitoring systems. Machine learning techniques coupled
with advanced artificial intelligence techniques detect patterns associated with diseases and health
conditions. Presently, the scientific community is focused on enhancing IoT-enabled applications
by integrating blockchain technology with machine learning models to benefit medical report man-
agement, drug traceability, tracking infectious diseases, etc. To date, contemporary state-of-the-art
techniques have presented various efforts on the adaptability of blockchain and machine learning
in IoT applications; however, there exist various essential aspects that must also be incorporated to
achieve more robust performance. This study presents a comprehensive survey of emerging IoT
technologies, machine learning, and blockchain for healthcare applications. The reviewed articles
comprise a plethora of research articles published in the web of science. The analysis is focused
on research articles related to keywords such as ‘machine learning’, blockchain, ‘Internet of Things
or IoT’, and keywords conjoined with ‘healthcare’ and ‘health application’ in six famous publisher
databases, namely IEEEXplore, Nature, ScienceDirect, MDPI, SpringerLink, and Google Scholar.
We selected and reviewed 263 articles in total. The topical survey of the contemporary IoT-based
models is presented in healthcare domains in three steps. Firstly, a detailed analysis of healthcare
applications of IoT, blockchain, and machine learning demonstrates the importance of the discussed
fields. Secondly, the adaptation mechanism of machine learning and blockchain in IoT for healthcare
applications are discussed to delineate the scope of the mentioned techniques in IoT domains. Finally,
the challenges and issues of healthcare applications based on machine learning, blockchain, and IoT
are discussed. The presented future directions in this domain can significantly help the scholarly
community determine research gaps to address.

Keywords: IoT; machine learning; healthcare; pandemic; blockchain; convergence; health monitoring

1. Introduction

Internet of Things (IoT) integrates large numbers of physical devices through the
Internet to collect, share, and assess a vast amount of data [1]. Internet of Things (IoT)
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communication technologies have brought immense revolutions in various domains, espe-
cially, IoT has become elementary for the second phase of the digital revolution [2,3]. Cisco
statistical analysis remarked in a study that 50 billion devices could be integrated into a
single network using the Internet [4]. The integration of a large number of devices leads
to scalability and data management problems. The contemporary management systems
usually become old-fashioned due to the advancement and latest trends and technologies.
Orchestration is one of the latest automated approaches to tackle management and scalabil-
ity issues [5]. Orchestration is considered as the most cost-effective and innovative way to
manage the significant number of integrated things using IoT technology [6–8]. Wireless
sensor networks (WSNs), machine-to-machine (M2M), and cyber–physical systems (CPS)
are the key elements in IoT [9,10]. These networks are processed and communicated using
standard IP protocol with security concerns, which requires the safety of the whole network
against security attacks. Otherwise, these cyber attacks can harm IoT services, data security,
data privacy, and data integrity of the entire system [11,12].

Due to the incredible economic prospect in IoT, IT organizations and academic insti-
tutes participate in the research and advancement in IoT technologies to develop sustainable
solutions. They have introduced many free and commercial plans over the last few decades;
however, due to the lack of adaptability among IoT application development platforms,
these technologies use many data formats, boosting the critical issue of heterogeneity;
therefore, the requirement for better network management solutions to tackle the extensive
amount of data generated by this integrated system arises gradually. The existing data
storage and central processing model is unsuitable; hence, edge-computing solutions play
an essential role in analyzing data to refine these utilities in IoT technology. Big data
solutions in IoT are a new paradigm that introduces practical applications based on the
enormous data generated from extensive IoT devices. Many studies have been proposed to
handle various IoT issues and features such as IoT challenges, opportunities, and applica-
tions [13,14]. In IoT technologies, security and privacy are the leading research-oriented
challenging problems. Other such challenges include IoT and cloud integration [15], IoT
standardization [16], IoT scalable architecture, and IoT security [17–20]. Further, earlier
literature on IoT did not consider all the issues in detail, such as dealing with Quality of
Service (QoS), internet applications, and security challenges.

Figure 1 shows applications of machine learning, blockchain, and IoT for the healthcare
domain. Artificial intelligence and IoT have been consolidated to form a new specification
named Artificial Intelligence of Things (AIoT). The primary purpose of AIoT is to improve
human–machine interactions, enhance data management, and carry out data analysis.
Researchers communicate and collect data using IoT devices, and collected data are stored
in a centralized database. Then, anomaly detection and automatic pattern recognition in
the collected data can be performed with machine learning models. Machine learning
technologies predict more accurately and faster than traditional business intelligence (BI)
tools [21].

Machine learning algorithms are trained on historical network data to obtain better
models that analyze data and provision network services efficiently [22]. In recent studies,
machine learning offers clear instructions to implement machine learning algorithms to
networking. Thus, machine learning enhances the security, efficiency, and performance of
network applications [23]. The innovations and discovery of new data processing, data
analysis, and predictive analysis enable the development of intelligent applications [24–26].
Many smart architectures are proposed and based on the Internet of Things, blockchain,
machine learning, and their integrated mechanisms [26–28].

Blockchain is considered a public ledger and a type of database distinct from tradi-
tional databases such as relational databases [29,30]. Alternatively, blockchain saves data in
blocks and then chains them together based on digital signatures in a distributed network.
As new data are collected, it is passed through a new block. Blockchain key attributes
include persistency, anonymity, auditability, and decentralization. Some examples of the
usage of blockchain in the financial market are digital assets, remittance, and online pay-
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ment systems [31]. Recently, blockchain has been applied to emerging technologies such as
IoT-based public and security services. In addition, organizations use blockchain for high
reliability and security to attract customers. Furthermore, blockchain can ignore the single
point of failure issue since it is a distributed environment.
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Figure 1. Healthcare applications based on IoT, machine learning, and blockchain.

Currently, there is accelerated development in healthcare because of the progression
of advanced technologies such as IoT, blockchain, and machine learning. To date, contem-
porary state-of-the-art techniques have presented various efforts on the adaptability of
blockchain and machine learning in IoT applications [32,33]. These technologies benefit
healthcare systems by predicting diseases, drug tracing, patient tracking, and combating
deadlier pandemics such as COVID-19. In addition, IoT and network applications security
has been addressed using mechanisms based on blockchain technology [34]. Furthermore,
machine learning models based on the huge amount of data collected from medical sensors
and devices are used to predict and classify different healthcare diseases [35]. Machine
learning techniques coupled with advanced artificial intelligence techniques detect patterns
associated with diseases and health conditions. For instance, IoT-enabled applications
integrate blockchain technologies with machine learning models to benefit medical report
management, drug traceability, tracking infectious diseases, etc.

This study presents a comprehensive survey of emerging IoT technologies, machine
learning, and blockchain for healthcare applications. These health care applications are
derived from the recent web of science indexed literature. Lastly, we briefly discuss IoT,
machine learning, and blockchain-based approaches that can be used to defeat the COVID-
19 outbreak. A topical survey of the contemporary IoT-based models is presented in
healthcare domains as follows:

• A detailed analysis of healthcare applications of IoT, blockchain, and machine learning
demonstrates the importance of the discussed fields.

• The adaptation mechanism of machine learning and blockchain in IoT for healthcare
applications are discussed to delineate the scope of the mentioned techniques in
IoT domains.

• The challenges and issues of healthcare applications based on machine learning,
blockchain, and IoT are discussed.

• COVID-19 applications based on blockchain, machine learning, and IoT are discussed
as use cases for future pandemic preparedness.
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The presented future directions in this domain can significantly help the scholarly
community pick the accurate research gap to address; however, various essential aspects
must also be incorporated to achieve more robust performance.

The rest of the paper is divided as follows: Section 2 explains the methodology
of the review study. Section 3 describes the background of IoT, machine learning, and
blockchain. Section 4 presents the emerging technologies based on IoT, machine learning,
and blockchain for healthcare applications. In Section 5, we briefly discuss the COVID-
19 outbreak and research contributions. Section 6 presents the convergence of machine
learning, blockchain, and IoT for health care applications and future research directions.
Section 7 presents the conclusion and future research directions.

2. Research Methodology and Results

In this section, the methodology of the topical survey of the contemporary IoT-based
models is presented in healthcare domains based on blockchain, IoT, and machine learning.
In addition, the research objectives, questions, and research selection conditions of this
study are discussed. Finally, this survey article investigates current academic works
proposed in machine learning and blockchain for secure IoT systems. First, background to
machine learning, blockchain, and IoT will be presented. Second, healthcare applications
based on these emerging technologies will be presented. Third, the COVID-19 case study
based on these emerging technologies will be presented. Moreover, we will discuss the
convergence and adaptability of these technologies with their challenges and solutions.
Figure 2 shows the research methodology of papers collection and selection for the topical
survey of healthcare applications based on machine learning, blockchain, and IoT.

The primary purpose of this review study is focused on the latest research papers
and upcoming trends in blockchain, machine learning, and IoT applications to combat
pandemic diseases. Table 1 shows the research keywords criteria for selection of research
papers. These keywords are based on IoT, blockchain, machine learning, COVID-19, and
adoption of blockchain in IoT. Furthermore, keywords such as artificial intelligence and
machine learning in IoT were used to filter the search criteria of articles and review papers.
Table 2 presents research questions for the literature selection and review.

Table 1. Criteria and the searched keywords.

Key Criteria

Search keyword

(“blockchain” or “Blockchain”) AND (IoT OR “Internet of Things”) AND
(COVID-19 OR “coronavirus”) AND (“machine learning”) AND (applications
of blockchain OR “IoT challenges” OR IoT solutions using blockchain) AND
(AIOT OR “Artificial intelligence-enabled Internet of Things”)

Limiters Article date between 2015 and 2021.
Expanders Without the word “healthcare”.
Search keyword Search keyword appear anywhere in the research paper.

Table 2. Research questions for the literature review.

S.No Question Description

1 What is blockchain, and different concepts in
blockchain-related to healthcare?

Examine review role to blockchain and finding better techniques
in healthcare based on blockchain.

2
What is machine learning, and different concepts of
machine learning related to healthcare?

Examine review role to machine learning and finding better tech-
niques in healthcare based on machine learning.

3
What is the Internet of Things (IoT), and different
concepts in healthcare-related to IoT?

Examine review role to IoT and finding better techniques in health-
care based on IoT technology.

4
What is COVID-19 disease, and how to tackle
COVID-19 challenges using the latest technologies?

To investigate different IoT, machine learning, and blockchain
concepts associated with healthcare, issues, and solutions used to
overcome these challenges.
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Table 2. Cont.

S.No Question Description

5
Which machine learning algorithms have been used in
healthcare applications?

To pick out the most used and suggested machine learning techniques
applied with healthcare-based methods.

6
Which blockchain techniques have been used in healthcare
applications?

To identify the most utilized and suggested blockchain applied with
healthcare-based methods.

7
Which IoT technologies have been used in healthcare ap-
plications?

To recognize the most used and recommended IoT technologies applied
with healthcare-based methods.

8
How IoT, machine learning, and blockchain technologies
can tackle COVID-19 challenges?

To megitate pandemic diseases such as COVID-19 disease, these tech-
nologies are being utilized with medical systems.

9 How to overcome the challenges of the adoption of
blockchain in IoT?

Some characteristics are being upgraded using the latest research studies
to overcome issues while adopting blockchain in IoT.

10
How artificial intelligence-enabled IoT systems can
improve interactions between machine-to-human and
machine-to-machine?

Analysis and comparison of AIOT applications. Analyzing if AIOT based
applications significantly enhance IoT solutions.
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Organized works to 
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Organized works to 
Blockchain area

Adoption of Blockchain and ML 
in IoT based healthcare

Background of IoT

Introduction to IoT 

 IoT App Development 
Platforms

IoT Architectures Initiatives

Healthcare Applications in IoT
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Introduction to Blockchain

Security and Reliability

Applications of Blockchain

Healthcare Applications in 
Blockchain

Background of ML

Introduction to ML

Applications of ML

Healthcare Applications in ML

Algorithms of ML

Research Problems

Analyze Studies

Search 
Conditions

Future research Constraints 
and Directions

COVID-19 and other 
health systems

Figure 2. Methodology for Topical Survey of IoT, Blockchain and Mchine learning for Healthcare Applications.
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A total of 263 research papers and articles were selected and cited in this topical
review paper. The selection was made based on different panoramas such as search
engines, sources, years of publications, to name a few. We consider the recent literature to
be the basis for developing a research model that heads in the right direction. This topical
review paper is based on a variety of articles based on the last six years. Figure 3 illustrates
the number of publications per year that have been cited in this paper.
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Figure 3. Publications in the last 6 years (2015–2021).

The illustration depicts that most of the research studies are based on the year 2020,
with 105 articles counted. After 2020, 2021 is the most noticeable year, with 64 research
articles. The second bar in the figure shows the percentage of the research articles that
contributed to this review article. The percentage of research papers from the year 2020 is
40%, and the remaining 60% cited articles from the remaining five years. These publishers
and the selected journals are indexed by the web of science, and are well-known among
the researchers, for instance, IEEE, Springer, MDPI, Google Scholar, and Elsevier. IEEE is
the leading portal where articles and review papers were searched. A total of 107 research
papers were selected from the IEEE database, which is the highest among all other search
portals. For instance, 40.68% of selected research papers are from the IEEE portal. In
addition, some of the research papers were searched using Google Scholar, Science Direct,
and other research search portals. For instance, 56 papers were selected from Google
Scholar and 32 journal papers from Elsevier. Research articles in other categories include
less-known search engines such as Bing. These search portals include various publisher
databases as illustrated in Figure 4. The selection criteria for publishers was their familiarity
with the scientific community.
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Figure 4. Research publishing websites used for research paper collection.

We analyzed the research papers based on the subject of the research articles. The
collected articles are based on five major subject areas: machine learning, IoT, blockchain,
healthcare, and COVID-19. The main focus of this study is the convergence mechanisms
for tackling pandemic diseases such as COVID-19 using these emerging technologies. Most
of the collected papers are based on IoT, with a total number of 102 articles. There are
63 collected articles associated with blockchain, 58 articles are proposed solutions based
on the machine learning area, 35 research papers are based on the COVID-19 pandemic,
and the five remaining papers are considered to be miscellaneous subject areas. Figure 5
presents the percentage analysis of the contribution based on subject areas.

Our study cites almost 72% of papers from the various web of science indexed journals
and magazines, 19% from proceedings, 3% from books, and 6% from other sources such as
websites. Figure 6 illustrates the comparative analysis research articles types.

The following keywords belong to the paper’s central theme: IoT, COVID-19, blockchain,
machine learning, adoption of blockchain in IoT, and artificial-intelligence-enabled IoT.
Without the limitation on the scope of this topical review, the collected research papers from
the literature review will be tremendous. Moreover, filtering and reducing the selected
research papers is an extra benefit differentiating our research work from past studies and
survey papers. Figure 7 shows the top journal papers cited in this work. Most of the journal
articles have been collected from IEEE Access.
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Figure 5. Research papers based on the subject area.
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Figure 6. Research papers based on research articles types.
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Figure 7. Research papers based on top-quality journals.

The most relevant research articles from the last couple of years were collected based
on their top priority to perform effective analysis. Scholarly works older than two years
were studied and utilized for background knowledge of the sections stated in this research.
Research and survey papers with poor publisher and publication venue parameters were
excluded; for instance, exclusion criteria include journal citation reports and other impact
factors. This topical review paper preferred research papers that mainly focused on
blockchain, machine learning, and IoT technologies to address the COVID-19 pandemic
and other health-related challenges.

3. Background

IoT is acknowledged as one of the top emerging fields in the newest technologies, and
its application is practical in various industries [36]. The IoT system provides communi-
cation between human-to-device, device-to-device, and human-to-human. IoT systems
redefine the world where everything is connected and allows sharing data between humans
with the help of electronic devices in a smart way [37]. Machine learning is a subtype of
artificial intelligence and has become a vital technology in recent scientific studies. The
progress and improvements in various areas, such as healthcare, banking, manufacturing,
physics, chemistry, and bioinformatics, require innovative, intelligent techniques [38,39].
Nowadays, cryptocurrency is a very famous term in academic circles and businesses. It is
a digital currency that can be used to buy goods and services. Bitcoin transactions could
occur without any third party and are developed based on blockchain technology with a
specially designed storing structure [40]. This section presents background studies of IoT,
machine learning, and blockchain based on the recent web of science indexed literature.

3.1. Internet of Things

IoT integrates hundreds of thousands of physical devices through communication
technologies and has brought immense revolutions in various research domains. IoT
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technologies focus on information service, understanding cognitive actions, and control of
the real world by the equal number of connections between main and edge network [41].
IoT integrates cloud computing, sensor networks, electronic devices, mobile services based
on advanced framework and information processing technologies. Many of us believe
that IoT connects personal computers, tablets, smartphones, telephones, and servers;
however, IoT connects sensors and actuators fixed in digital devices; usually, all devices
are connected to the same internet protocol (IP). Smart home security, wireless inventory
trackers, biometric scanners, and smart tennis rackets are some examples of IoT systems.
These systems generate massive data that can be processed through statistical and machine
learning analysis.

IoT applications are combined with blockchain technology in various areas such as in-
surance, education, healthcare, voting, stock exchange, to name a few. Blockchain is mainly
used in smart cities where many IoT devices are placed in different locations. Adopting
blockchain in IoT technology improves scalability, efficiency, robustness, time effectiveness,
and computational cost-effectiveness. IoT generates data that can be stored in a blockchain
managed by cloud-based servers. The authenticated users can access their private data
from the cloud databases in a secure way [42,43]. IoT technologies identify integrated
devices by unique internet protocol (IP) addresses using collections of transmission control
protocol (TCP) and non-TCP. The approach of virtualizing electronic devices such as actua-
tors and sensors into virtual objects is known as device virtualization [44–47]. IoT integrates
virtual objects and electronic devices using transmission protocols such as WiFi, ZigBee,
long-range wide area network (LoRaWAN), Bluetooth low energy (BLE), and Z-Wave, to
name a few. The IoT devices have an adequate setup, and remotely available interfaces
[48]. Latest research and development based on IoT introduces new terminologies, and
IoT concepts such as artificial-intelligence-enabled IoT (AIoT), Internet of Anything (IoA),
Internet of Everything (IoE), Industrial IoT (IIoT), Social IoT (SIoT), Web of Things (WoT),
and machine-to-machine (M2M).

BLE is an enhanced version of Bluetooth, a widely used wireless method for a success-
ful connection within 10 meters. Bluetooth 5.2 is the latest version that adds an advanced
IP support profile. Research demonstrates that BLE is an entirely established and improved
mechanism for IoT devices [49]. WiFi is a widely used internet protocol that communicates
between IoT and physical devices. The communication range between most electronic
devices is around 50 m, which is five times greater than BLE communication [50]. ZigBee
is also short-range wireless, which transfers protocol with a data transmission rate of
250 kbps. For a productive transmission of data between IoT devices, ZigBee is the most
acceptable solution due to its security, high-level scalability, low-power consumption, and
durability [51]. Z-Wave is a low-power transmission protocol that uses wireless frequency,
fashioned for computerization systems such as sensors and lamp regulators. Z-wave can
communicate protocol within 30–100 m; Z-wave is better than other protocols such as
WiFi, Bluetooth, and ZigBee [52]. The LoRaWAN protocol is used for electrically powered
long-range IoT devices for devices connectivity at long ranges using power. It recognizes
the noise level of signals assumed from a threshold range. LoRaWAN is used by those
applications where a huge number of devices are integrated for securely sharing of data us-
ing memory, and require minimal power consumption such as smart cities, smart hospitals,
and smart homes [53–55].

The concept of IoE is presented by Cisco as the integration of global network data,
humans, things, and devices [56–58]. The sharing of data between machine-to-machine as
well as a human is known as M2M [59]. M2M automates sharing of information among
machines without any human intervention [60]. Analyzing data, discovering resources,
and managing devices are the main activities performed by these systems. A cloud and
fog-based computing platform was deployed to the gateway layer for the management of
services [61]. The edge node has a limited number of resources in edge computing (EC).
Thus, relocation of computing resources to the cloud is necessary for performing huge and
complex tasks [62,63]. Data trimming is considered a major issue in the Cloud of Things
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(CoT). Scientific community introduced efficient IoT architecture-based smart gateway to
tackle the data trimming issue [64–66] . Data collection, pre-processing, data filtering, and
data reconstruction into a more valued format are some of the operations performed by
these smart gateways [67–69].

IT organizations are investing significantly in the development of fundamental IoT
technologies due to strong economic potential. As a result, these organizations have intro-
duced different IoT paid and open source applications in the last few years; however, a
standard framework is required to introduce feasible IoT systems and overcome interoper-
ability, heterogeneity, and diversity problems [70]. IoT applications have been implemented
in many fields; the industrial area is considered the essential [71]. The fourth industrial
revolution with IoT is named Industry 4.0, which integrates industrial observations using
smart technologies. In industrial IoT applications, security and privacy are considered
critical issues [72–74]. To handle and analyze these issues, Cisco, IBM, GE, and AT and T
initiated a platform for the industrial IoT [75–77].

3.2. Machine Learning

Machine learning is a branch of artificial intelligence that provides data analysis that
automates analytical model development. Machine learning can learn from data, identify
patterns and make decisions with minimal human intervention. Advanced fields of ma-
chine learning, such as automated machine learning, further minimize human intervention
by automating the model-building processes from preprocessing to model evaluation [78].
The traditional software systems are developed in program code that rules the system
behaviors; however, in machine learning, these rules are deduced from training data with
machine learning algorithms. Machine learning algorithms automatically create rules
according to the kind of data [79]. Subfields of machine learning based on the kinds of
algorithms are supervised learning, unsupervised learning, semi-supervised learning, and
reinforcement learning. Prediction and classification are examples of supervised learning,
and clustering is an example of unsupervised learning.

Prediction is about expecting what will happen in the future, such as weather forecast-
ing, future market performance, predicting heart disease using risk factors. On the other
hand, classification recognizes class labels, i.e., handwritten digits, sentiment analysis,
and identifying spam emails; therefore, prediction and classification are performed on
labeled data. Unsupervised learning is based on unlabeled data. Clustering is an example
of unsupervised learning; clustering is a task that divides similar data points or similar
sets of objects into groups, usually of larger datasets [80]. For instance, Netflix uses an
unsupervised learning algorithm for movie recommendation [81]. Machine learning is
used as a supplementary technology in emerging technologies such as IoT and blockchain.
For example, machine learning with blockchain in healthcare applications has been used
for medical data analysis, remote patient monitoring, electronic health data management,
biomedical study, pharmaceutical supply chain management, and education. Blockchain
technology has produced flexibility in the last few years, leading to its integration in a vast
range of systems, including healthcare and biomedical applications [82]. The integration
of blockchain and machine learning in IoT can play a vital role in Industry 4.0 and the
internet of health things [83,84].

3.3. Background of Blockchain

Blockchain is considered a public ledger and a type of database different from tradi-
tional databases such as relational databases in which data are stored. Instead, blockchain
saves data in blocks and then chains them together with digital signatures in a distributed
network. As new data comes, they pass into a new block. The distributed consensus and
asymmetric cryptography algorithms have been implemented to achieve overall system
reliability, ledger consistency, and user security. In addition, blockchain technology has
some key attributes such as persistency, anonymity, auditability, and decentralization.
These attributes can significantly reduce the cost and enhance efficiency. Some examples of
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financial services that use blockchain are digital assets, remittance, and online payment
systems [31].

Additionally, blockchain can be applied in many other areas, such as IoT, public
services, and security services. Transactions cannot be edited once put into the ledger
since the blockchain is unchangeable. Organizations use blockchain for high reliability and
security to attract customers [85–87]. Furthermore, blockchain can ignore the single point
of failure issue since it is a distributed environment. To date, contemporary state-of-the-art
techniques have presented various efforts on the adaptability of blockchain and machine
learning in IoT applications [88]. IoT and network applications security has been addressed
using mechanisms based on blockchain technology. Furthermore, machine learning models
based on the huge amount of data collected from sensing devices are used to predict and
classify different problems. Machine learning techniques coupled with advanced artificial
intelligence techniques detect patterns in data. For instance, IoT-enabled applications
integrate blockchain technologies with machine learning models to benefit medical report
management, drug traceability, tracking infectious diseases, etc.

4. Healthcare Applications

The emergence of IoT, machine learning, and blockchain technologies have greatly
enhanced healthcare systems’ functionality and services. This section aims to review the
application of IoT, machine learning, and blockchain in smart healthcare based on the web
of science indexed journals. We also find out the key issues and future research areas in
applying machine learning and blockchain technologies in healthcare systems based on
IoT [89].

4.1. IoT-Based Healthcare Applications

IoT is revolutionizing healthcare systems and is a powerful platform for healthcare
applications [90–92]. For instance, IoT combines thermal cameras and embedded sensors in
electronic devices that collect data from essential points. IoT devices collect real-time health
statuses and other patient information and then share these data with healthcare personnel.
Patient health monitoring systems have the capability of monitoring patients by using the
latest technologies [93–100]. In addition, it allows the sharing of patient records with the
healthcare teams for data analysis. A healthcare system was proposed based on e-Health
sensors for hospital management to examine patient health status and send the analysis
to healthcare personnel [101]. The researchers used electrocardiogram (ECG) sensors to
analyze heart functions, regulate the patient’s condition, body temperature measuring, and
acceleration sensing [102,103].

Moreover, the scientists used environmental sensors to measure the patient’s room
environment. For instance, Moghadas et al. [104,105] introduced a health application
for arrhythmia patients based on an ECG device to analyze the heartbeat and applied
the k-nearest neighbor (KNN) algorithm to predict the types of arrhythmia disease. A
mobile application named Alzimio is used to confirm secure area hotspots and activity
detection for patients affected by autism, Alzheimer’s, and dementia diseases. It also
allows medical teams to select specific actions, and unsafe zones receive warning signals
when any crucial actions are detected. GPS is also utilized in many IoT devices to track
patients and alert healthcare teams when the patient walks outside a specific zone [106].
An IoT-based application was developed to measure a soldier’s health status by using
body temperature, pulse rate sensors, and an oxygen analyzer. The system can track the
soldier’s live location based on GPS [107,108]. Summary of various IoT-based healthcare
applications is shown in Table 3.
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Table 3. Summary of IoT-based healthcare applications.

Title Description Advantages Disadvantages

Super-resolution of Reti-
nal Images [109]

Using multi-kernel SVR
for IoT healthcare applica-
tions.

Processing retinal images, generate
good quality retinal images which help
image analysis.

The IoT-based eye-care system required
minimal human intervention.

SilverLink [110] Smart home health moni-
toring for senior care

A home-based mobile health system for
reporting user activity and health status
and for approaching with family mem-
bers. Uses object and human sensors
for specifying a patient’s health status.

Average range of the object and human
sensors was determined to be approx-
imately 7.3 m, so signal transmission
stability required improvements.

MOD-SET [111] Mobile diagnosis system
with emergency telecare
in Thailand

Combination of emergency telehealth
and smartphone-based system in order
to find the nearest health center in case
of emergency.

The system tested with a limited num-
ber of patients presenting conditions.

Smart space-based Ap-
proach [112]

Assistance service system
for emergencies in person-
alized mobile healthcare

An assistance service healthcare system
in emergencies for remote and mobile
patients.

The system has needed overwhelming
human intervention.

Vital Signs Monitoring
[113]

Salah activities recog-
nition model based on
smartphone.

Correct or reject distorted signals of vi-
tal signs based on the data fusion ap-
proach.

High energy consumption and static
platform for handling emergent condi-
tions.

InterIoT [114] Active and assisted living
healthcare services sup-
port.

Living mobile healthcare services in the
aspect of faster detection and correction
of critical situations.

The performance evaluation of the inte-
grated platform is not yet presented.

Smartphone-centric Plat-
form [115]

A remote health monitor-
ing platform for detecting
heart failure.

Communicate through traditional
client-server systems, the hub of data
shared by sensors and smart proces-
sors, and autonomous sensors of the
patients’ activity using a high-accuracy
motion detection algorithm.

The current system is not capable of pre-
cisely computing the patients’ pedes-
trian speed, and the integration be-
tween smartphones and other sensor
nodes is applied to other physical de-
vices.

H2U Healthcare System
[116]

Intuitive IoT-based H2U
healthcare system for el-
derly patients

A healthcare application to increase the
healthcare quality services, and can pro-
vide early treatment and recognize de-
teriorating conditions relatively early to
prevent the need for hospitalization.

Privacy and security are vital treats
while the central patient database is
shared on the Internet.

Smart Healthcare System
for Isolated Areas [117]

IoT-based smart health-
care monitoring system
for rural areas.

To overcome the health issues facing in
rural/isolated areas.

Demands 24 × 7 connectivity where ru-
ral areas facing Internet issues such as
slow, expensive, and spotty.

ECG Web Services [118] Patient health monitoring
in the Internet of Things.

To diagnose body temperature, heart-
beat, and blood pressure using IoT-
based sensors.

ECG reveals the heartbeat rate only dur-
ing the few seconds it takes to store the
tracing.

Patient Monitoring Sys-
tem [119]

An IoT-based patient mon-
itoring system using Rasp-
berry Pi

An effective monitoring patient’s body
temperature, heartbeat, respiration rate,
and body movement using Raspberry
Pi board at a reduced cost.

Shares all the health data of the partic-
ular patient to the web database. Any-
body can easily access the web and can
see the health information of patients.

ECG Monitoring System
[120]

An IoT-cloud-based wear-
able ECG monitoring sys-
tem for smart healthcare

High bandwidth rates for healthcare
data transmission, and web-based GUI
for versatile services.

No scheduling mechanism for handling
emergent conditions of remote patients.

Tracking COVID-19 [121] Anonymity preserving
IoT-based COVID-19 and
other infectious disease
contact tracing model.

Send and receive alerts when people
are close to a confirmed case.

The cost of scaling this solution is ex-
pensive, and the prototype smart con-
tract did not apply security and other
fine-grained solutions.

NFS [122] NFC Based Public Health-
care Monitoring System

To provide secure and reliable solutions
to a patient with long-term disorders.

The system is not accessible to everyone
due to geographical barriers.

4.2. Machine Learning Based Healthcare Applications

Machine learning models have been used to detect patterns associated with diseases
and health conditions. Usually, machine learning models are trained using historical
datasets of healthcare records and other patient data. Recent advancements in machine
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learning technologies helped healthcare systems in developing countries to innovate sus-
tainable solutions for chronic disease such has cancer diagnosis and treatment [123–125].
Machine learning algorithms are very effective in classifying complex patterns in data.
Hence, machine learning algorithms are particularly used in medical applications, es-
pecially those medical application that depend on advanced proteomics and genomics
analyses. Machine learning algorithms are fundamentally used in several disease detection
and diagnosing problems. Machine learning models based on different algorithms are
used in healthcare applications such as support vector machine (SVM), naïve Bayes (NB)
classification, k-nearest neighbors (KNN), fuzzy logic, and classification and regression
trees (CART) for different types of diseases [126,127].

Summary of research articles and reviews relevant to machine-learning-based health-
care applications are shown in Table 4.

Table 4. Summary of machine-learning-based healthcare applications.

Title Accuracy Relative Demerits

Heart diseases detection using
naive Bayes algorithm [128]

86.41% The system is developed based on data mining models for clas-
sifying the data patterns and detecting the heart diseases and
considered as the best algorithm for many healthcare problems.
The naive Bayes algorithm performs positively with categorical
data but poorly with numerical data in the training set.

Diabetes diseases classification
using SVM and CNN [129]

95.83%, 95.24% Used transfer learning from CNN as the input features for classifi-
cation using the SVM that reduces the executed time required by
the classification process using CNN with fine-tuning. Only 2 out
of 8 CNN architectures give 90+ accuracy due to the small dataset.

Thyroid disease diagnosis using
SVM [130]

97.49% Classify thyroid data using optimal feature selection and kernel-
based classifier process. Takes high computation time.

Breast cancer diagnosis using
four algorithms [131]

SVM = 99.10% Assess the preciseness in classifying data concerning efficiency
and effectiveness of each algorithm.

Breast cancer prediction using
SVM and DT [132]

91% An accurate prediction model for diagnosing breast cancer using
data mining techniques.

Diabetes Type-2 diagnosis using
six algorithms [133]

RF = 94.10% Forecasts the risk pertaining to diabetes mellitus type 2.

Classification of breast cancer
data using J48 [134]

95.00% The researchers discovered a method using the J48 decision tree
algorithm to automatically recognize if a tumor is malignant or
benign. The classification is performed through the analysis of
cell features extracted by the X-cyt program.

Breast cancer classification using
decision tree [135]

J48 = 99% Analyzed best model for breast cancer data using decision tree
classification algorithms performance.

COVID-19 detection using SVM,
random forest, and K-NN [136]

98.14, 96.29, 88.89% Detecting COVID-19 patients by using machine learning algo-
rithms and chest X-ray images to prevent the spread of this pan-
demic as soon as possible.

Swallowing detection using DT,
SVM, and NN [137]

93.2, 86.2, 93.7% Achieved high accuracy binary swallowing recognition from au-
dio recordings using machine learning algorithms.

Kidney disease diagnosis using
SVM [138]

93% Diagnosis of kidney disease using machine learning algorithms
based on laboratory tests, clinical history, and physical tests that
are cheap, safe, and noninvasive.

Kidney disease diagnosis using
CNN-SVM [139]

98.04% The proposed sensing module can be used with the skills of deep
learning for recognizing CKD dataset more efficiently than exist-
ing techniques.

Kidney disease diagnosis using
six algorithms [140]

RF = 99.75%, LR + RF = 99.83% Suitable regarding samples and imputation diagnosis. The gen-
eralization performance might be limited due to relatively small
available data samples in model development. The model cannot
identify the severity of CKD because there are only two groups of
data samples in the dataset, such as CKD and NOTCKd.

Alzheimer’s disease diagnosis
using five algorithms [141]

NN = 98.36% Identifies of Alzheimer’s in its initial stage by applying machine
learning algorithms. It will reduce the chances of creating further
complications of Alzheimer disease patients.
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Machine learning algorithms have been used to diagnose heart disease based on
publicly available datasets from UCI machine learning repository. SVM and multi-layer
perceptron have been used for heart disease prediction [142]. Multi-layer perceptron algo-
rithm offers 90.57% accuracy, and SVM provides 92.45% accuracy for two-class problem.
Likewise, the multi-layer perceptron algorithm achieves 68.86% accuracy, and SVM pro-
vides 59.01% accuracy for five class problems. Many machine learning algorithms are
used to increase the accuracy of diabetes disease analysis based on datasets from UCI
machine learning repository. Researchers proposed a machine learning technique for di-
agnosing diabetes by applying the NB algorithm and decision trees. The NB algorithm
offers 79.56% accuracy, and the decision tree algorithms’ accuracy is 76.95%. Machine
learning algorithms such as SVM and decision trees were also applied to predict thy-
roid diseases by using dataset from UCI machine learning repository [143]. For instance,
Begum et al. [144] proposed an advanced system based on data mining algorithms for
diagnosing thyroid disorder.

4.3. Blockchain Based Applications in Healthcare

Blockchain has extensive healthcare applications and ledger technology aids the
secure transmission of patient medical data, maintains the medicine supply chain [145]. A
summary of different research papers and reviews related to blockchain-based healthcare
applications is shown in Table 5.

Table 5. Summary of blockchain-based healthcare applications.

Topic Description Advantages Disadvantages

Blockchain for COVID-19
[82,146]

Blockchain and AI Tech-
nology for COVID-19

Self-testing blockchain and artificial-
intelligence-based system for COVID-
19 outbreak.

Relevant stakeholders’ involvement
will be crucial to ensure the proposed
system’s efficient implementation and
viable development.

Tracing agri-food using
BC [147]

Walmart’s pork and
mango pilots with IBM

Deployed blockchain solutions
throughout the global food ecosystem
to increase safety and reduce waste.

Recreation of the supply chain is not
present in IBM’s blockchain solution.

Smart Provenance [148] A distributed blockchain-
based data provenance
system

Provides reliable data source collection,
verification, and management.

Not completely secure.

Electronic healthcare us-
ing blockchain [149]

Blockchain-based elec-
tronic healthcare record
system for healthcare 4.0
applications.

Utilizing ACP algorithms to improve
data sharing between healthcare
providers.

Lower TPS on large block size and
Higher TPS on small block size reduced
performance of the system.

BAKMP-IoMT [43] Design of blockchain-
enabled authenticated key
management protocol for
internet of medical things
deployment

Provides secure management among
health devices and local servers and
cloud servers.

Entire health data stores in cloud
servers (Data backup).

MBPA [150] A MediBchain-based
privacy-preserving mu-
tual authentication

A privacy-preserving joint verification
system for mobile medical cloud archi-
tecture.

MediBchain-based authentication
threats.

MedChain [151] Blockchain-based system
for medical records access
and permissions manage-
ment

Time-based smart contracts are used to
handle transactions and access to health
data.

High cost.

BIoMT [152] Blockchain for IoMT A light Blockchain-based model focus-
ing to secure the Internet of Medical
Things (IoMT).

Interoperability.

Blockchain distributed
ledger [153]

Blockchain distributed
ledger technologies for
biomedical and health
care applications.

Introducing blockchain platforms to the
health care and biomedical domains.

Consumes too much energy, no fault-
tolerance.
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Table 5. Cont.

Topic Description Advantages Disadvantages

Blockchain for Healthcare
[154]

Blockchain technology for
healthcare: facilitating the
transition to patient-driven
interoperability.

Expedites data liquidity, aggregation, im-
mutability, access rules, and identity.

Privacy and security considerations, scala-
bility.

EMR data sharing using
blockchain [155]

Secure and trustable EMR
sharing using blockchain

Blockchain-based medical data manage-
ment and sharing for cancer patient care.

The structure of patient data and their meta-
data are insufficient.

Tamper-resistant mobile
health [156]

Tamper-resistant mobile
health using blockchain
technology

Introduces blockchain-based system, which
allows trusted and auditable computing.

Poorly maintained and outdated codes pro-
vide vulnerability, and the theoretical limi-
tation of the consensus model has flaws.

Secure sharing of health im-
ages [157]

Secure and decentralized
sharing of medical imag-
ing data via blockchain
consensus

Removes third-party access to safeguard
medical data.

Patient-specific issues, the ability to share
data does not alone ensure its usability.

Governing drug supply
chain [158]

Governance on the drug
supply chain via gcoin
blockchain.

Creating transparent transactions of drug
data using Gcoin blockchain to prevent
counterfeit drugs, to protect public health.

Not a cost-benefit, less consultant to key
stakeholders.

Healthcare blockchain for se-
cure RPM [159]

Healthcare blockchain sys-
tem using smart contracts

Support real-time patient monitoring and
health status.

Key management issue, not be used for
emergency response, as the delay might in-
crease response time.

OmniPHR [160] A distributed architecture
model to integrate personal
health records.

Combining PHRs for patients and medical
teams using a distributed model.

Possibility of occurring duplicate data entry,
not fully secured, patient’s data that are not
in the model’s scope will not be part of the
sharing.

This system is based on a public blockchain that guarantees confidentiality and validity.
The single point failure system is handled in the proposed system. A pioneer research work
in EMR management applications is presented, which addresses the issue of scalability and
data encryption [161]. Nevertheless, the proposed system still faces some shortcomings.
Liang et al. [162] presented a mobile application to collect patient data and to share between
medical teams, insurance companies, and patients. A private blockchain was used as a
solution for privacy and access control. The efficiency and scalability problems of data
processing were also addressed in the proposed system [162].

Many research papers have been proposed to monitor and trace health and medical
products data. For instance systems were proposed to combine drug supply chains with
blockchain throughout transportation. For example, Bocek et al. [163] implemented an
Ethereum blockchain-based system for storing data of drug supply chain and provide
publicly available data with immutability considerations. Thermal sensitive devices are
introduced in this system to share temperature data throughout the transportation of
medical commodities. A rule is defined in a smart contract for exact temperature require-
ments, and to confirm the submission of temperature data for every new consignment.
Huang et al. [164] suggested a drug ledger system based on blockchain configured for
medical product traceability and regulation.

Figure 8 presents conceptual reference layer architecture for leveraging the above-
mentioned technologies for healthcare applications development based on IoT, machine
learning, and blockchain.

The reference layered architecture consists of several layers. The device layer consists
of medical sensing and actuating devices. The virtualization layer virtualizes all devices
connected to the IoT platform into virtual objects. Data owners’ layers present the data
generated by patients and electronic health record systems from the IoT platform. The
data provider layer provides data to local blockchain and data storage systems and other
data providers. Local blockchains and a central federated blockchain network allow the
interconnecting of healthcare institutions and IoT orchestrating platforms. The reference
layered architecture is designed to support healthcare stakeholders such as the data broker,
computing, machine learning, and service provider. The data provider layer aims to share
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data faster, securely, and without losing essential, trusted properties such as accountability,
traceability, and data privacy.
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Figure 8. Conceptual layered architecture of IoT, blockchain, and machine learning for healthcare applications.

5. Leveraging Technologies for COVID-19 and Future Pandemics

Machine learning algorithms could be widely used to detect and notify deteriorating
conditions in IoT and blockchain-based clinical and public health applications. These
intelligent service management mechanisms can provide decision-making to manage the
impacts of chronic diseases and pandemics effectively. This section aims to identify the
case study of the COVID19 pandemic involving machine learning, IoT, and blockchain for
pandemic readiness and response from the literature. World health organization (WHO)
and centers for disease control and prevention (CDC) stated that digital technologies
could play an essential role in enhancing health policy regarding COVID-19 disease [165].
Blockchain, machine learning, and IoT are the leading technologies to establish solutions
for the different diseases [166,167]. The integration of artificial intelligence and IoT brings
a new range of possibilities, even though AIoT is a new idea. The UAVs equipped with
IoT sensors can collect raw data to make smart decisions without any human involvement.
The scientific community considers thermal cameras as the best tools for data collection.

Nowadays, more systematic methods are needed to detect COVID-19 patients. In
addition, healthcare organizations in developing countries face problems during testing
COVID-19 patients due to a lack of testing kits. Another problem is privacy concerns in
data sharing across different healthcare organizations. Solution based on CT images was
proposed for detecting COVID-19 patients [168]. Firstly, they proposed a data normal-
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ization method that acts towards data heterogeneity as the data are collected from many
healthcare organizations with various CT devices. A capsule network-based classification
and segmentation mechanism is used for diagnosing COVID-19 patients. The proposed
mechanism can train a general model using blockchain with a federated leaning to maintain
the organization’s privacy. In addition, the developed solution utilizes recent data for en-
hancing CT images diagnosis and detection accuracy. Remarkable applications of emerging
technologies used to defeat COVID-19 are discussed in the upcoming subsection [169–171].

5.1. COVID-19

In December 2019, a pandemic epidemiologically associated with the Seafood Whole-
sale Market was reported in Wuhan, China. On the 12 March 2020, the World Health
Organization declared a coronavirus disease (COVID-19) pandemic due to its rapid escala-
tion. Since then, the world has experienced a significant increase in deaths and economic
turmoil. Moreover, the pandemic has now reached more than 200 countries around the
globe. Because of giant positive single-stranded RNA viruses, coronaviruses affect humans
as well as animals. “Tyrell” and “Bynoe” discovered coronaviruses in 1966 by refining
viruses from regular cold patients. There are four subgroups of coronavirus, namely, AL-
PHA, BETA, GAMMA, and DELTA. Mammals, specifically bats, cause ALPHA and BETA
viruses, whereas birds and pigs cause GAMMA and DELTA. The BETA virus can lead to
significant infection or possibly death, whereas the ALPHA virus causes symptom-less
diseases. SARS-COV-2 is from the B lineage of the BETA version of coronavirus and is
nearly associated with the SARS-COV virus [172]. In Wuhan, SARS-COV-2 seemingly
resulted from a transmission from animals to humans. The early medical reports of the
SARS-CoV-2 related to COVID-19 was pneumonia. Furthermore, current clinical signs
also indicate gastrointestinal and symptom-less infections, mostly among young kids. The
number of affected peoples who remain asymptomatic during the period of the disease is
still to be measured. The manifestations of the pandemic in symptomatic patients typically
start within a week, including fever, nasal congestion, cough, fatigue, and other symptoms
of breath contamination. Pneumonia commonly arises between the second and third week
of an asymptomatic virus. Unusual symptoms of virus-related pneumonia include showing
changes through chest X-rays, reduced oxygen saturation, blood gas divergence, and other
approaches [173]. Different diseases caused by coronavirus are mentioned in Table 6.

Table 6. Human diseases caused by the coronavirus.

S.No Disease Virus

1 Common Cold HCoV-229E [174–176]
2 Common Cold HCoV-HKU1 [177–179]
3 Common Cold HCoV-NL63 [180–182]
4 Common Cold HCoV-OC43 [183–185]
5 MERS MERS-CoV [186,187]
6 SARS SARS-CoV-1 [187–190]
7 COVID-19 SARS-CoV-2 [172,187,191–194]

The spreading ratio of both SARS and MERS is less than COVID-19 [195]. Anyhow,
the number of cases in COVID-19 has outnumbered the number of cases in both MERS
and SARS.

5.2. IoT-Based Technologies to Mitigate COVID-19 Challenges

IoT is leading research and analysis platforms in various academic and industrial
areas, especially in health. The accelerated development in IoT technologies can remodel
current healthcare systems by integrating social, economic, and technological views. For
example, the COVID-19 pandemic has affected the world’s economy since December
2019. The combination of artificial intelligence, blockchain, and IoT technology can help
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combat the COVID-19 pandemic. An application healthcare application based on IoT and
artificial intelligence for diagnosing COVID-19 patients and detecting it at early stages
was introduced [196]. The system’s goal is to minimize direct interaction with COVID-
19 patients with the help of several smart sensors such as blood sensors, pulse sensors,
and thermal monitoring. The researchers introduced a COVID-19 detection and tracking
application that collects real-time data from wearable sensors and mobile apps and then
applied machine learning algorithms to analyze, classify, and predict the collected datasets.
Moreover, an IoT-based framework utilizing smartwatches, infrared thermometers, optical
and IP cameras is proposed to minimize the COVID-19 outbreak [197]. The sensors are
operating automatically without any human involvement. The application operates in the
following phases. In the first step, the application measures the patient’s temperature using
thermal sensors. Then, the pulse sensor measures the heartbeat if the patient has a specific
temperature. Next, the blood sensor measures platelets and blood cell levels. Finally, if the
patient has tested positive, they must be isolated for further tests and quarantine protocols.

5.2.1. Tracking COVID-19 Using Smart Thermometers

In 2012, a health company in the USA named Kinsa presented a smart thermometer to
diagnose high fever patients. Smart thermometers were initially proposed to diagnose the
common cold. Nonetheless, it is used to track COVID-19 patients effectively. Kinsa Health
has arranged approximately a million smart thermometers for families in different states of
the US during the COVID-19 pandemic. These smart thermometers are connected with a
mobile application to monitor health status. Kinsa health company then combines the col-
lected data to illustrate daily-based graphs of the US states that observe a high-temperature
rise. Thus, allowing health organizations in the US to detect possible flashpoints. These
charts have been proven to be more accurate in detecting the spread of fever throughout
the US in recent times. In addition, Kinsa’s smart thermometer is more reliable than CDC’s
official app concerning the performance of prediction [198].

5.2.2. Battery-Operated Buttons

Many health sectors in Canada have deployed IoT buttons known as Wanda Quick
Touch to reduce the number of hospital-acquired infections (HAIs). Given below are the
features that IoT buttons were designed for:

• Fast in any service,
• Regardless of their size,
• To send quick alerts to the management team,
• Notifying any health problem that can generate a risk to citizens’ protection.

An excellent functionality of IoT buttons is their independence on exterior structure,
for example, their capability to stick to some specified aspect [199].

5.2.3. Drone Technologies

Drones may be used to track those peoples who came in contact with the virus-infected
person [200]. Drones can support tracking infected people who are leaving quarantine
early as well as enforce individuals to wear masks. Recently, drones were used in Europe
and the USA to confirm that social distancing and lockdown laws were strictly followed
or not [201]. Camera-fitted drones were deployed to issue guidelines and cautions to
persons for violating rules of COVID-19-related lockdowns and procedures [201,202].
Moreover, drones were deployed in remote inspecting of infected residents and extremely
contaminated regions. Drones have been used to provide the necessary equipment to
medical teams as well as collect and share tracks for verification during nearby services.
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5.2.4. Telehealth in a Pandemic

The usage of the Internet of Medical Things (IoMT) mechanism to provide remote
patient monitoring (RPM) is called telehealth, also known as telemedicine. It allows
healthcare providers to predict, identify, and medicate patients without requiring any
physical contact [203,204]. Several telehealth technologies and IoMT platforms are facing
challenges due to rapid overload on servers. An e-commerce technology for healthcare
problems named JD Health has reported a significant increment in requests for the online
meeting due to the rapid spread of COVID-19 [205]. Table 7 shows telehealth mechanisms
are being implemented in many countries to control the influence of COVID-19. Two
key benefits of implementing telemedicine approaches are minimizing the load on the
overworked medical personnel. It reduces the risk of the transformation of disease from
patient to hospital staff.

Table 7. Telemedicine platforms implemented to control the impact of COVID-19.

Country Organization References

United States of America George Washington University Hospital (GWUH) [206]
United States of America Rush University Medical Center [207]
India The state governments of Andhra Pradesh and Assam [208,209]
Israel Sheba Medical Center [210,211]

5.3. Machine Learning Technologies to Mitigate COVID-19 Challenges

Machine learning stands to be the most suitable technology to defeat COVID-19
disease efficiently [212]. Machine learning has been verified to be an innovative techno-
logical development. The scientific community presents remarkable research on machine
learning that can support healthcare organizations to efficiently contend the COVID-19
disease [213–217].

5.3.1. Face Recognition System

Thermal imaging with face detection is used in the first step of the proposed work [21].
The suspected patient is required to be tested to confirm the indefinite disease. According
to researchers, the face recognition system identifies a person and is labeled with a name
in four steps. Localization of a person’s face in an image is the first step in the pipeline
using a method called histogram of oriented gradients (HOG) to encode an image and to
generate a smaller size of the original image [218]. The proposed mechanism locates the
area of an image that resembles a generic HOG encoding of a person’s face with the help of
a reduced version of the image. Secondly, the person’s face may not always be straight,
and it could be rotated in different positions. There can be some issues, such as brightness,
which is solved using a model proposed in literature called named Dlib invigorated with
ResNet [219]. The third step refers to object detection using YOLO to increase accuracy
because it is challenging to select unique features from a person’s face that can be used to
differentiate them from other persons. Lastly, machine learning algorithms have been used
to find the person’s name from the encoded data.

5.3.2. Temperature Identification System

This section discusses a body temperature measuring system using an onboard-
thermal-camera-equipped UAV. The average human body temperature is 37 °C, more
than 38 °C is considered a high temperature; however, throughout the day, the average
temperature differs from person to person. If a person’s body temperature is unusual, they
will be referred for doctor consultation. The temperature identification system consists of
two parts: users and the UAVs. In the first part, the system obtains personal information
and 6–9 photographs as input from the users. Then, the system converts these images
to 128 × 1 vectors rather than sending the full image to protect the user’s privacy. UAV
responsibilities include extraction of all faces with their coordinates and verifying and
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comparing human faces coordinates captured from normal and thermal cameras. If the
body temperature is higher than 37 °C, then it takes that person’s face and converts it to a
128-dimensional vector and sends it to the central server. The system compares the selected
face with the existing database using machine learning algorithms, finds matches, and
sends a notification to the suspected person to consult a doctor soon [21].

5.3.3. Voice-Based Detection

Voice detection technology is one of the most convenient systems as it may be in-
troduced to recognize potential COVID-19 patients. A voice detection system is used to
measure and to choose who is required to be tested throughout these challenging times
since there is a lack of testing kits. Mobile application has been introduced based on
machine learning algorithms by university students from the DY Patil Institute, Mumbai,
India, to detect COVID-19 patients [220]. In the first stage, one has to speak into their
mobile; the values of these parameters are then compared with a normal person’s voice to
confirm if the candidate is infected with COVID-19 or not [221]. It is difficult to measure
the performance accuracy of machine learning models to aid the screening of COVID-19
patients rather than detecting them all at once. Research work is required to use machine
learning algorithms to appropriately diagnose all possible symptoms of COVID-19.

5.3.4. Face Mask Detection

Detecting the face of a person wearing a mask is a very challenging task. The heat
discharged from the human body is affected by wearing masks, and many heat sensors
are based on the forehead, which is usually visible. An algorithm for differentiating faces
with and without masks was presented. The detection of the face with the mask is made
using the YOLOv3 model, detecting persons. The model is advanced enough to recognize
face-mask mode. The system collects accurate stats such as the number and percentage of
persons wearing masks [21].

5.4. Blockchain Technologies to Mitigate COVID-19 Challenges

Nowadays, our globe is challenged with the rapid increase in novel coronavirus
disease and has created massive suffering. As of 28th June 2021, it had infected more than
180 million people, and almost 4 million individuals died [222]. After its early discovery
in Wuhan, China, the novel virus has been spread to 220 countries and territories. The
European parliamentary research service recognized blockchain as the various important
technology to mitigate COVID-19 challenges [223]. Potential blockchain solutions for the
COVID-19 pandemic include medical supply chain management, contact-tracing purposes,
and sharing of patient data across heterogeneous systems [224].

Several worldwide techs and research organizations developed applications and
platforms based on blockchain to tackle the COVID-19 pandemic, such as securing and
sharing COVID-19 data. For example, WHO launched a project named MiPasa based on
hyperledger fabric for supporting the collection of COVID-19 associated data. MiPasa
provides sharing of data with researchers, public health officials, scientists, and health
professionals. It also helps to introduce feasible methods to support pandemic management
and manage epidemics [225]. Moreover, Azbeg et al. [226] presented a precise solution for
COVID-19 to develop digital passports and track transmission. Blockchain technology has
been used to verify the records of COVID-19 testing and tracking transmission. Further, it
offers a health application that facilitates the interaction of patients with professionals to
recognize symptoms of COVID-19. Doctors can also use the application to keep track of
the health status of the patients.
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5.4.1. Sharing Patient Data

Nowadays, healthcare sectors digitally store COVID-19 patient data, including doctor
prescriptions, diagnostic reports, and personal information. For example, COVID-19 patient
data are stored in a centralized database; however, maintaining the privacy of patient
information is one of the main issues in such centralized databases, such as unauthorized
access to patients’ sensitive data [227]; therefore, consortium blockchain and interplanetary
file system (IPFS) proposed distributed storage framework for sharing COVID-19 patient’s
data [228]. Furthermore, the proposed framework makes things easier for authorized
users such as healthcare operators. A blockchain-based solution for handling and storing
vaccination data and proof of immunity for persons was proposed [229]. The method offers
a secure and well-organized way to maintain vaccination records. The solution is based on
Ethereum and relies on the idea of smart contracts in blockchain [230].

5.4.2. Social Distancing

Social distancing, i.e., avoiding gatherings and keeping social distances, is the under-
stood guideline for prevention from the COVID-19 pandemic. Blockchain-enabled IoMT
presents adequate isolation and quarantine solution to monitor social distancing during
the growth of the global pandemic [231]. Individuals with wristwatch sensors will be
automatically notified when leaving certain defined regions. Moreover, the combination
of IoT-based technologies with blockchain maintain and assures data traceability. Tech
giants such as Google and Apple provide APIs for software programmers to trace social
distancing using their wearable products [232].

5.4.3. Smart Hospital

Many hospitals cannot treat other diseases since most of the clinicians are summoned
to handle COVID-19 patients. In addition, there is significant pressure on health systems
due to the rapid increase in coronavirus patients. Blockchain-enabled IoMT can assuredly
handle pandemic situations [231]. Initially, RFID tags and IoMT devices are used to support
tracking and controlling the status of health resources such as ambulances, availability
of beds in the hospital, and flaws or failures in healthcare devices such as respirators.
Furthermore, blockchain-enabled IoMT is used in hospital buildings to facilitate real-
time monitoring of temperature and air quality. Blockchain-enabled IoMT also manages
actives devices other than passive components such as tags and sensors. For example,
robots are active devices responsible for disinfecting health centers, sanitizing hospital
wards and public areas. In the literature, blockchain envisioned software embedded
multi-swarming UAVs was proposed to minimize human intervention and to handle the
COVID-19 situation. These multi-swarming UAVs have key advantages of reliability, high
bandwidth, and very-low latency [233].

5.4.4. Tracing Epidemic Origin

Tracing the origin of the COVID-19 pandemic is a challenging and important task
for future pandemic preparedness and response. The broad adoption of heat sensors
and thermal cameras in many public areas such as educational institutes, hospitals, cafes,
airports, and malls can notify deteriorating situations quickly. Different transportation
hubs, thermal cameras have been used in public places such as airports and railway
stations [234]. The thermal cameras have been implemented to detect people with infection
of COVID-19 and other symptomatic diseases. The heat sensors and thermal cameras have
been connected with blockchain-enabled IoMT for securing data privacy and ensuring
data traceability. Moreover, with the rapid increase in DNA, RNA, and other coronavirus
tests, these systems can accelerate the detection of infected people. The connectivity
of blockchain-enabled IoMT systems can provide extensive data for many healthcare
organizations for AI and machine learning based analysis and tracing the epidemic’s
origin [231].
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6. Convergence Challenges and Solutions

Although machine learning, IoT, and blockchain are very different technologies and
different from each other. In literature, many studies present solutions based on their
combinations as a remarkable paradigm shift. Blockchain, machine learning provides
solutions to the gaps and vulnerabilities of IoT systems [235]. The security concerns
are efficiently solved using intelligent IoT where every IoT device is interconnected us-
ing the public trustless environment. Moreover, the distributed peer-to-peer nature of
blockchain has been used to address the deficiencies of the IoT client–server paradigm.
The distributed architecture of blockchain happens to be an essential technology to solve
the traditional single-point failure in IoT. A single point of failure in an IoT system may
break the whole system, which is detrimental to achieving high reliability and availabil-
ity in any system [236]; therefore, the peer-to-peer architecture in blockchain technology
is a feasible solution to handle the bottleneck and the point of failure in an IoT system
[237,238]. Additionally, peer-to-peer networks process and store the IoT data securely and
efficiently [239]. Machine learning applications in blockchain include smart home gateway
[240,241], transactional data systems in edge computing applications [242,243], tracing
supply chains [244], and wireless body area network applications [242,245]. Although the
convergence of IoT, machine learning, and blockchain can tackle significant weaknesses of
IoT solutions, the adoption is still in its infancy, suffering from various challenges; solutions
are needed to address these significant challenges. In addition, there is no consent and
consensus mechanism for reference paradigm or model specification on the adaptation of
blockchain in IoT. This section presents the fundamentals challenges, advancements, and
possible solutions to leveraging the convergence of blockchain, machine learning, and IoT.

6.1. Adaptation Challenges

The performance of machine learning models relies on the availability and quality
of data, information sharing and privacy regulations, and conditions reliant on system
infrastructure and interoperability. Usually, even the most essential health framework is
required to share data between medical institutes. For example, according to a survey
in 2018, 41% of medical institutions in the United States were unable to digitally share
observed data to health care firms [246]. Furthermore, the lack of publicly available diverse
and comprehensive datasets is a significant need for future research. In situations where
training data technically removes parts of the population data, the relevance of the model to
larger populations could be discredited. The inconsistent and incomplete labeling of ethnic,
demographic, and other racial information may also affect data quality [247–249]. Machine
learning algorithms may unexpectedly increase inconsistency by exaggerating the trial of
pandemics and improperly notifying resource allocation based upon insufficient or incom-
plete data instances. Machine learning models also deal with issues at the deployment level.
Healthcare technologies and providers must be careful when using algorithms in different
settings. Models trained in a particular socio-economic or cultural context system may not
offer similar outcomes for populations with different data features. These models must
be experienced with analytical estimation when deployed between different conditions
and settings that require time, cost, and human resources. The importance of machine
learning applications can also limit the approval, adoption, development of these models
in a real-world situation. Usually, there is a compromise between the interpretability and
complexity of the models being examined essentially in health care organizations, given
adequate and ethical implications of determination. A few surveys studies were identified
by comparing machine learning with traditional techniques. For example, more simplistic
algorithms showed similar or improved estimation while providing the alternative advan-
tage of interpretability; however, highly complicated algorithms are significantly important
for several problems, e.g., for tasks such as image classification.

Blockchain technology initially used in cryptocurrencies has been used with IoT for
securing systems and IoT applications. Blockchain is a combination of traditional and dis-
tributed databases in which data are publicly available for users in the form of an encrypted
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and unchangeable ledger [250]. Unfortunately, the current IoT framework produces mas-
sive data that may prevent the network from service quality disruption. Furthermore,
the quality-of-service (QoS) is associated with non-functional attributes such as reliability,
security, and cost [251]. Some significant challenges of adopting blockchain in IoT are
illustrated in the given Figure 9. Privacy is among the significant challenges in blockchain
technology since each block is associated with and can access data of another block, so
anyone who wants to look on the blockchain can see whole transactions. Traditional IoT
data management is at risk as the collected data are cautious and access unauthorized
users such as malicious insiders and external hackers—this is why it is challenging to
utilize corrupt data. IoT devices must be connected to a high-quality networking resource
and computing storage to share IoT data with different stack holders; however, an IoT
network has a smaller number of abilities to connect with blockchain to facilitate innovative
business opportunities to advance new applications and services in many areas. Blockchain
technology needs more power and memory capacity, while IoT devices are developed
with less resources, such as less capacity of storage and data-processing [252]. The need
for resources for mining blocks on the peer-to-peer blockchain exceeds the abilities of
resource-limited IoT devices.
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Figure 9. Challenges of adoption of blockchain in IoT.

Furthermore, IoT devices simultaneously generate an immense amount of data, which
creates high concurrency. Since the blockchain throughput is restricted due to its security
and concurrency processes, quick contemporization of new blocks between nodes requires
a high bandwidth speed, hence increasing the blockchain throughput. Despite this, each
block contains a replica of the whole distributed ledger. Thus, the distributed storage
structure resolves bottleneck issues, enhances efficiency, and eliminates the need for the
third party’s trust protocols [253]; however, the data management of an IoT system puts
overload on the user’s private device storage [254]. So, the data storage requirement is a
considerable challenge while handling the big data of IoT networks.
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6.2. Solution of Adaptation Challenges

Many blockchain features are convenient for diverse IoT applications, such as anonymity,
decentralization, immutability, and automation; however, these features integrate several
new regulative issues [255]. The immutability feature permanently retains data in distributed
ledger technology on the peer-to-peer network and cannot be erased or changed. The data
cannot be filtered to maintain privacy before putting them on the blockchain due to a lack
of governance. It is not easy to differentiate between groups to perform transactions for
unauthorized services because of the anonymity of distributed ledger technology. Actions
ensuing from self-executing contracts between two parties, such as smart contracts on dis-
tributed ledger technology, can violate the law. The automation feature of the blockchain
introduces many advantages to IoT systems. Table 8 shows prospective solutions to the
convergence challenges.

Table 8. Convergence challenges and solutions.

Challenges Possible Solutions

Privacy

Ring signatures blockchain is an encrypted technology commonly used to handle privacy
issues [256]. Additionally, blockchain-based smart parking with fairness, reliability, and
privacy protection (BSFP) [257] system has been proposed to overcome privacy concerns.
The blockchain-based method exerts group signatures, vector-based encryption, and bloom
filters to protect user’s privacy.

Trust

This paper [254] presents a blockchain-based decentralized trust management scheme called
BlockBDM to handle the trust and security issues of IoT big data management. Data
processing can be stored in cryptography-signed and tree-based transactions and blocks
with top-quality public and distributed ledger security.

Connectivity challenges

For resolving the connectivity issues of an IoT with blockchain, multi-access edge computing
(MEC) [258] can host side-chain. The side-chain allows IoT devices to connect with the main
chain. IoT devices are connected with low bandwidth on the edge network. Side-chain
is a type of blockchain technology that presents a distributed peer-to-peer architecture to
maintain data while sharing critical information between various systems.

Balance between security, performance,
and power consumption

These studies [259,260] proposed a patient-centric agent network to balance between security,
performance, and power consumption which operates on the cloud and edge server and
can manage blockchain actions concerning the IoT devices. Another patient-centric agent
platform in [260] runs a concurrent tool and handles various blockchains for IoT data.

Data concurrency and throughput chal-
lenge

To tackle data concurrency and throughput challenge, researchers presented a method called
sharding [261] in which the peer-to-peer network of blockchain is divided into various
groups. The authentication and processing of transactions are generated in the sharding.
Members of that sharding handle the transactions. Sharding can reduce bandwidth by
preventing the propagation of transactions over the whole system.

Handling big data

Many researchers presented off-chain techniques to overcome big data issues in an IoT
system by integrating blockchain storage with standard cloud storage. The alternative
method is used to handling big data challenges is splitting IoT-generated data over dif-
ferent storage’s including many on-chain of blockchain-based on the characteristics, local
computers, and cloud service providers [262].

Current IoT practices are becoming obsolete with the novel approaches and tech-
nologies based on blockchain. These requirements need to be updated according to the
latest requirements of distributed ledger technology (DTL). Alternatively, directed acyclic
graph (DAG)-based architecture facilitates more advantages than traditional blockchain.
Andrew et al. [263] presents a DAG-based distributed ledger based on the Markov chain
model to tackle the parasite chain attack. Parasite chain attack aims to obstruct the im-
mutability and irreversibility of the ledger.

6.3. Future Pandemics Preparedness

The following section contains a summary of the lessons learned for future pandemic
preparedness: Several studies were deeply analyzed from the healthcare domain based on
IoT, machine learning, and blockchain applications. For future pandemic preparedness,
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diseases, and global outbreak such as SARS can provide research preparation for techniques
that might have allowed advanced governance of the coronavirus outbreak. The coron-
avirus pandemic’s underlying phase investigated machine learning, IoT, and blockchain.
Approximately, all this work was at the development and research level, and real-world
applications were less common. Developing publicly available immense databases based
on clinical information at the domestic or global level would be significantly helpful for
researchers. AI-based tools should be developed to enable designing multiple synopses to
make better decisions about various options that must be considered, such as the distribu-
tion of expensive rare devices and types of equipment such as ventilators, elderly patient
monitoring, school, and university education, to name a few.

6.4. Limitations of the Study

This comprehensive survey article has many limitations. Most of the research an-
alyzed in this study are applications of IoT and blockchain, machine learning and IoT,
and blockchain and machine learning, while unified studies are lacking. Despite the lim-
itations of the existing convergence solutions for IoT, machine learning, and blockchain,
several studies have been revealed for future research. This study’s main objective was
to summarize the critical use cases of IoT, blockchain, and machine learning instead of
comprehensively evaluating particular datasets or machine learning algorithms. Our future
study will be based on the unified architecture of IoT, machine learning, and blockchain to
evaluate convergence inclination and value in experimental conditions. The survey consists
of reviews, articles, conference papers to quickly review publications about the coronavirus
disease and other future pandemics. The research article survey contained legitimate
commercial and business research to discover uses of particular IoT, machine learning, and
blockchain applications by governments or organizations to handle coronavirus. Despite
the lack of publicly available research resources, this study can be considered a feasible
starting point for researchers and commercial firms to understand the background and
promising future directions for future pandemics preparation.

7. Conclusions

Advancements in IoT communication infrastructure and physical devices have brought
immense revolutions in remote health monitoring systems. Machine learning techniques
coupled with advanced artificial intelligence techniques detect patterns associated with
diseases and health conditions. In this decade, IoT-enabled health monitoring applications
have been developed using the integration of blockchain technology with machine learning
models to benefit medical report management, drug traceability, and track infectious dis-
eases. To date, contemporary state-of-the-art techniques for the adaptability of blockchain
and machine learning in IoT applications are presented. This study presents a comprehen-
sive survey of emerging IoT technologies, machine learning, and blockchain for healthcare
applications. The reviewed articles comprise a plethora of research articles published in the
web of science in the domain of machine learning, blockchain, and IoT. Firstly, a detailed
analysis of healthcare applications of IoT, blockchain, and machine learning demonstrates
the importance of the discussed fields. Secondly, the adaptation mechanism of machine
learning and blockchain in IoT for healthcare applications are discussed to delineate the
scope of the mentioned techniques in IoT domains. Thirdly, leveraging machine learning,
blockchain for IoT is discussed from the perspective of pandemic preparation and miti-
gation. Finally, we discuss challenges in the adaptation of these emerging technologies
for IoT-based health care applications. Moreover, a comprehensive summary of several
challenges in adapting blockchain in IoT technologies is discussed. The presented future
directions in this domain can significantly help the scholarly community to determine
research gaps to address.
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