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Abstract: The Location-Routing Problem (LRP) becomes a more intricate subject when the limits of 
capacities of vehicles and warehouses are considered, which is an NP-hard problem. Moreover, as 
the number of vehicles increases, the solution to LRP is exacerbated because of the complexity of 
transportation and the combination of routes. To solve the problem, this paper proposed a Discrete 
Assembly Combination-Delivery (DACA) strategy based on, the Binary Equilibrium Optimizer 
(BiEO) algorithm, in addition, this paper also proposes a mixed-integer linear programming model 
for the problem of this paper. Our primary objective is to address both the route optimization prob-
lem and the assembly group sum problem concurrently. Our BiEO algorithm was designed as dis-
crete in decision space to meet the requirements of the LRP represented by the DACA strategy ca-
tering to the multi-vehicle LRP scenario. The efficacy of the BiEO algorithm with the DACA strategy 
is demonstrated. through empirical analysis utilizing authentic data from Changchun City, China, 
Remarkably, the experiments reveal that the BiEO algorithm outperforms conventional methods, 
specifically GA, PSO, and DE algorithms, resulting in reduced costs. Notably, the results show the 
DACA strategy enables the simultaneous optimization of the LRP and the vehicle routing problem 
(VRP), ultimately leading to cost reduction. This innovative algorithm proficiently tackles both the 
assembly group sum and route optimization problems intrinsic to multi-level LRP instances. 
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1. Introduction 
It is crucial for a reasonable logistics system design to reduce the total cost of the 

supply chain and improve supply efficiency. In order to achieve the above two objectives, 
it is usually necessary to determine two levels of decision-making: the immediate deter-
mination of facility location problems (FLP) and the vehicle routing problem (VRP) [1]. 
Historically, researchers usually treated these as two types of decisions separately. 

The FLP stands as a quintessential quandary within the realm of operations research. 
This locational puzzle has an extensive array of applications spanning production, daily 
life, and logistics such as establishments of factories, warehouses, first aid centers, and 
logistics hubs. Hu et al. [2] employed a multi-objective mixed integer model in their in-
vestigation to ascertain the optimal siting of hazardous goods recycling stations, account-
ing for traffic constraints on urban roads. The efficacy of their approach was substantiated 
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through solving a real-world case study on hazardous material logistics in Shandong, 
China. In the work of Oksuz et al. [3], a two-stage stochastic model was harnessed to tackle 
the location challenge posed by temporary medical centers. By factoring in patient types, 
requirements, potential road and hospital damage, along with the distances between dis-
aster areas and hospitals, the model methodically sought optimal solutions for temporary 
hospital placements. This model was then practically employed in selecting a suitable site 
for a temporary hospital during an Istanbul disaster. Additionally, Karagöz et al. [4]. lev-
eraged the ARAS extended interval type-2 fuzzy model to resolve the location quandary 
for vehicle recycling centers, juxtaposing it against the conventional interval type-2 fuzzy 
approach to underscore the potency of the ARAS method. Nonetheless, in practical sce-
narios, a challenge will emerge after the identification of suitable facility sites: the optimi-
zation of vehicle routes to effectively serve customers within the designated coverage 
area. This challenge aligns with long-term decision-making imperatives. 

The second vital factor in a logistics system design is the VRP. According to refer-
ences [5-7], different VRPs have different mathematical models, and mixed integer linear 
programming is often used to solve problems. According to the client’s ordering demand 
with a certain capacity-limited set of vehicles, the appropriate travel routes from the lo-
gistics center to the clients are organized so that the vehicles pass through all the clients 
in an orderly manner to reach a certain goal under the satisfaction of certain constraints 
(e.g., demand, service time limitation, vehicle capacity limitation, mileage limitation, etc.). 
Qin et al. [8] used the original heuristic algorithms based on reinforcement learning for 
the vehicle path problem with a multi-vehicle fleet of different capacities and tested on a 
large dataset, achieving an average GAP of 6.4% compared to the classical algorithms of 
PSO, GA, and SA; Altabeeb et al. [9] proposed a cooperative hybrid firefly algorithm for 
solving the vehicle routing problem with capacity constraints and tested it on 108 bench-
mark cases, achieving an average GAP of 3.4% compared to HAHA and 4.9% compared 
to LNS-ACO. Rabbouch et al. [10] solved the enriched vehicle routing problem with time 
window and pause time constraints using an efficient implementation of a genetic algo-
rithm, which was able to complete the enriched vehicle path problem 1–17 min faster than 
the GA’s CPU response time depending on the size of the algorithm. 

The FLP and the VRP were usually addressed separately, although they are mutually 
influenced and restrained. This disjointed approach would fail to achieve an overarching 
optimal solution due to the lack of integration between these two critical aspects. The sig-
nificance of their integration was underscored by Maranzana et al. [11] and Webb et al. 
[12], prompting a shift towards combining these problems. Consequently, the fusion of 
FLP and VRP has gained prominence, leading to the emergence of the Location-Routing 
Problem (LRP) propelled by advancements in optimization technology. LRP is an NP hard 
problem [13]. In [14], Muñoz-Villamizar et al. designed an integer linear programming 
model for urban logistics, which solved the problem of logistics center positioning and 
distribution in cities and achieved a distance cost lower limit of 20.77%. In [15], Heidari et 
al. proposed a mixed integer linear programming to solve the transportation problem of 
hazardous materials. In a small case with 2 nodes and 3 retailers, the solution only took 
0.19 s. In [16], Shaerpour et al. designed a multi-layer multi-objective mixed integer linear 
programming model to solve the management and transportation of medical waste, and 
demonstrated the effectiveness of the proposed model in a practical case in Tehran. This 
confluence has ushered in a surge of research into LRP. Cao et al. [17] introduced a two-
stage mixed integer model for the procurement of farm crops and the ensuing two-stage 
LRP involving processing facilities. Similarly, Biuki et al. [18] tackled the two-level LRP 
inherent to perishable goods supply chains. Their hybrid heuristic algorithm, integrating 
genetic and particle swarm optimization algorithms, outperformed traditional meta-heu-
ristic methods across a comprehensive benchmark assessment. The burgeoning interest in 
LRP is evident in the work of Ferreira et al. [19], which highlights the increasing attention 
directed towards this problem. 
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In practical applications, the LRP often focuses on the Capacitated Location-Routing 
Problem (CLRP), which is tightly bound by stringent vehicle capacity constraints. Specif-
ically, the determination of warehouse locations and vehicle routes exhibits a mutual in-
terdependence. The chosen warehouse locations exert a profound influence on subse-
quent vehicle route planning, while the resultant vehicle route plans inherently reflect the 
efficacy of the warehouse location selection. A previous study [13] employed nested meth-
odologies for an iterative resolution of location and routing predicaments. This involved 
the locator sequentially identifying sets of warehouses, followed by the routing program’s 
endeavor to optimize routes based on the designated warehouses. However, the above 
approach faces limitations in that vehicle paths corresponding to distinct warehouse as-
semblies tend to operate independently, impeding the effective utilization of valuable his-
torical vehicle routing insights. 

To seek better and more effective methods for the CLRP, meta-heuristic algorithms 
were applied in recent years. This idea found practicality in the study by Ferreira et al. 
[19], where a hybrid meta-heuristic algorithm was employed to resolve the CLRP, yield-
ing superior outcomes compared to conventional solutions. Furthermore, Akpunar et al. 
[20] addressed the CLRP using a broad domain search algorithm, albeit without incorpo-
rating combinatorial assembly optimization for multi-vehicle fleets at the VRP stage. It is 
found that there are two key points to using meta-heuristic algorithms to solve CLRP. 
Firstly, since the solution of CLRP is a combinatorial problem, finding an appropriate ex-
pression of the solution in the decision space becomes the key to the problem. The second 
is that since CLRP involves location selection and combinatorial path optimization, its 
solution space has continuous and discrete characteristics, so selecting appropriate meta-
heuristic algorithms is also a key element. 

To optimize the assembly combination of multi-vehicle during vehicle path optimi-
zation by considering constraints of the CLRP, this paper proposed the BiEO algorithm 
with a multi-vehicle decision set for the assembly combination of multi-vehicle routing. 
Table 1 shows the comparison of this paper’s problem and algorithm with other articles. 

Table 1. Comparison of this paper’s problem and algorithm with other papers. 

Papers Algorithm FLP VRP CLRP Combination 
Karagöz et al. [4]. ARAS P O O O 

Qin et al. [8]. RLHH O P O O 
Altabeeb et al. [9]. CVRP-CHFA O P O O 

Rabbouch et al. [10]. GA * O P O O 
Ting et al. [21]. MACO P P P O 

Vincent et al. [22] SA P P P O 
Zhang et al. [23]. HPSO P P P O 

Peng et al. [24] PSO P P P O 
Yu et al. [25] HGA P P P O 
This paper BiEO P P P P 

This paper needs to optimize the location of warehouses for material storage in resi-
dential areas with a population of about 300,000 (assuming a fixed daily material demand 
of 400 g per resident) and optimize the transportation routes for subsequent truck trans-
portation of materials. This is an LRP problem, and it is worth noting that in the transpor-
tation route optimization problem in this article since each distribution area uses four 
trucks to transport goods, it is necessary to optimize the assembly of goods on the trucks 
before planning the transportation route. The model and method proposed in this paper 
are used to solve the problem of simultaneously assembling and transporting routes on 
trucks. The final solution solved in this paper is the assembly plan and transportation 
route for each truck in each distribution area. 
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The contribution of this paper is that firstly, it proposes a BiEO algorithm that can 
effectively solve the route optimization problem in this paper. Secondly, this paper pro-
poses a DACA strategy to solve the assembly combination and route optimization prob-
lems of multiple vehicles in this paper. The two methods proposed in this paper have 
achieved better results in solving real LRP compared to other algorithms in the experi-
ment. 

The initial section provides an introduction to FLP, VRP, and LRP, especially CLRP. 
The subsequent section delves into a comprehensive review of pertinent prior research, in 
which emphasis was placed on introducing various variants of LRP, as well as precise 
methods and heuristic and meta-heuristic methods for solving LRP. In the third section, 
we designed the framework and formal problem statement of the Binary Equilibrium Op-
timizer (BiEO). At the same time, the DACA strategy was proposed to solve multi-vehicle 
routing problems. Moving on, the fourth section Introduced the LRP mathematical model 
proposed in this paper to solve the case study. The fifth section offers an extensive expo-
sition of empirical findings derived from applying the proposed BiEO algorithm to real-
world scenarios. Lastly, the sixth section engages in a comprehensive discussion of the 
results and implications of this study’s contributions. 

2. Related Work 
2.1. Variants of LRP 

The multi-level LRP is an important variant of the LRP, which involves a distribution 
system integrating warehouses, intermediate warehouses, and retailers. Investigating the 
multi-level LRP holds the potential to significantly curtail distribution costs and enhance 
turnover efficiency, thereby conferring substantial importance to its study. In 2012, Ngu-
yen et al. [26] addressed the two-level LRP employing the GRASP technique. This ap-
proach encompassed intermediate warehouse localization, path optimization from ware-
house to intermediate warehouse, and further optimization from intermediate warehouse 
to retailer. The incorporation of GRASP facilitated enhanced solutions through its iterative 
learning process and path re-linking mechanism. Subsequently, Nguyen extended this 
work by embracing a multi-starting approach, coupling the ILS + PR algorithm [27], en-
riched with enhancements such as greedy random heuristics and diverse short-term tabu 
lists, culminating in improved outcomes. Nevertheless, it’s important to note that such 
enhancements may incur elevated computational time. 

Another variant of the LRP is characterized by randomness and fuzziness, denoting 
the consideration of uncertainties and ambiguities in customer requirements during lo-
gistics route planning. These uncertainties are often amenable to modeling through sto-
chastic, probabilistic, or fuzzy functions. Ghaffari-Nasab et al. [28] tackled a two-objective 
LRP involving probabilistic travel times, offering both modeling and solution strategies. 
An enhanced particle swarm optimization algorithm was presented to fulfill the random 
demands in LRP scenarios [23]. Thereafter, Zarandi et al. [29] proposed an analog embed-
ding simulated annealing algorithm as a solution approach in the context of the multi-site 
CLRP with fuzzy travel times. 

The CLRP stands as a prevalent variation within the broader LRP framework, where 
warehouse capacity, depot capacity, vehicle load, and other relevant factors are subject to 
constraints [20]. Due to the complexity of combinatorial solutions and the diversity of 
constraint conditions, traditional path optimization is difficult to achieve. Therefore, re-
searchers are attempting new ways to solve this problem. Yu et al. devised an innovative 
Hybrid Genetic Algorithm (HGA) [25], adept at exploring between feasible and infeasible 
solution domains, yielding commendable outcomes when applied to solving the CLRP 
involving warehouse capacity limitations. Building upon this, Akpunar et al. [20] intro-
duced a hybrid meta-heuristic approach, fusing Adaptive Large Neighborhood Search 
(ALNS) and Variable Neighborhood Search (VNS) algorithms. In this composite frame-
work, the VNS algorithm serves as an elite local search mechanism, thus amplifying the 



Axioms 2024, 13, 31 5 of 19 
 

efficacy of the ALNS algorithm. Consequently, the proposed hybrid meta-heuristic ap-
proach seamlessly integrates diversification and intensification strategies through the dis-
tinctive merits of the ALNS and VNS algorithms, respectively. The meta-heuristic ap-
proach provides a new approach to solving CLPR problems, which requires finding ap-
propriate meta-heuristic algorithms and solution structures for the practical CLPR. 

2.2. CLRP Solution 
2.2.1. Precise Solution 

A precise solution for CLRP is to use mathematical methods to find the optimal so-
lution for CLRP. In 2011, Belenguer et al. [30] introduced a branch and cut methodology 
for CLRP, employing a customized set of valid inequalities within a 0–1 linear model. 
Their approach effectively ascertained optimal solutions, particularly suitable for in-
stances involving up to 40–50 customers and 5 potential warehouses. Shortly thereafter, 
Baldacci et al. [31] proposed an alternate precise technique grounded in the set partition-
ing formulation of CLRP, broadening its applicability to a wider spectrum of optimization 
scenarios. Their strategy entails decomposing the challenge into a finite collection of 
Multi-Depot Vehicle Routing Problems (MDVRP) through lower bounds established by 
diverse boundary programs. Contardo et al. [32] expanded the scope by introducing me-
ticulous methods founded on cutting and column generation techniques. It’s important to 
acknowledge, however, that the potency of precise methods tends to diminish as the com-
plexity of the problem escalates. This is evident in instances such as the 40-customer cases 
documented in [33], where the resolution process can extend over several hours. 

2.2.2. Heuristic and Meta-Heuristic Solution 
Owing to the formidable computational intricacies and heightened complexity en-

tailed in addressing large-scale CLRP problems through precise methodologies, the re-
search focus has gravitated towards heuristics and meta-heuristics. Prins et al. [34] de-
vised the Greedy Stochastic Adaptive Search Program (GRASP), a dual-component ap-
proach encompassing warehouse location acquisition and subsequent path refinement, 
effectively resolving the CLRP challenge. Extending this work, Duhamel and Prins et al. 
[35] introduced GRASP × ELS, an evolution of GRASP wherein evolutionary local search 
(ELS) superseded conventional local search. Ting et al. [21] proposed a Multi-Ant Colony 
Optimization algorithm (MACO) that dissects CLRP into three distinct sub-problems—
warehouse selection, customer allocation, and vehicle routing. The algorithm deployed 
three ant colony iterations tailored to these sub-problems, consistently exhibiting superior 
or near-optimal performance across benchmark instances. Vincent et al. [22] harnessed 
Simulated Annealing Heuristics (SA) for CLRP, encoding solutions as lists and reposito-
ries as sub-lists. Employing pseudo-zeros, routes were iteratively combined, building 
upon an initial solution generated through the greedy approach and subsequently refined 
via local search. A similar SA encoding was presented by Jokar et al. [36], wherein the 
initial solution underwent refinement through a dual-stage process involving greedy ini-
tialization and subsequent local search. In another vein, a pragmatic and effective Hybrid 
Genetic Algorithm was introduced by Lopes et al. [37], employing route representation 
and featuring specialized route copy crossover and two mutation operators “add”, and 
“swap”. Moreover, distinct local search routines were tailored for depot location and 
route enhancement. 

On the basis of the implementation of the meta-initiation algorithm in the CLPR 
problem, researchers have further improved its solution accuracy. Quintero-Araujo et al. 
[38] introduced a partial stochastic meta-heuristic algorithm to address CLRP, culminat-
ing in a solution that demonstrated a 0.4% improvement over the classical BKSS reference 
solution. In parallel, Peng et al. [24], leveraging the Particle Swarm Optimization algo-
rithm (PSO), achieved a 2.4% enhancement over the classical BKSS solution when dealing 
with a test set involving 20 customers and 5 warehouses. Furthermore, Zhang et al. [23] 
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crafted a hybrid heuristic grounded in the PSO algorithm, tailored for CLRP scenarios 
with fuzzy requirements. This approach yielded outcomes notable for their stability when 
compared to CPLX-based solutions. 

However, combinations arising from multi-vehicle transportation in the VRP phase 
have not been considered in previous CLRP work. 

3. Location-Routing Optimization with Capacity Based on BiEO 
The difficulties in solving the multi-vehicle distribution route combination scheme 

with capacity constraints are: 1. The number of demand points that each group of vehicles 
passes through is different due to the different transportation ranges of each distribution 
point; 2. Since there are capacity constraints on the vehicles and they are transported in 
multi-vehicle mode, there exists an optimization problem for the combination of assem-
blies for each group of vehicles prior to transportation. Therefore, studying optimization 
algorithms that are suitable for delivery needs and formulating decision plans for multi-
vehicle delivery is crucial. 

To address the challenges inherent in the assembly combination optimization and 
route optimization of multi-vehicle fleets within LRP, this paper proposed the Binary 
Equilibrium Optimizer (BiEO) and binary combination list solution for multi-vehicles to 
satisfy the multi-vehicle combination distribution problem with capacity constraints. 

3.1. Equalization Optimizer 
The Equilibrium Optimizer (EO) [39], introduced by Afshin Faramarzi et al. in 2019, 

stands as an optimization algorithm, drawing inspiration from the hybrid dynamics of 
mass balance physics with a robust control volume. At its core lies the mass balance equa-
tion, capturing the intricate physical processes that govern mass entry, exit, and genera-
tion within the defined volume. Notably, the EO effectively surmounts the challenge of 
converging to local optima, achieved through its implementation of a candidate pool 
mechanism and the multi-directional updating attributes. When juxtaposed against ge-
netic algorithms and particle swarm optimization algorithms, the Equilibrium Optimizer 
boasts heightened optimization prowess and swifter convergence rates. The algorithmic 
workflow of EO is depicted in Figure 1. 
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Figure 1. EO algorithm. 

The EO algorithm is different from other algorithms in that it has an equilibrium pool 
mechanism that allows for better global and local development performance. The equilib-
rium pool is generated according to Formulas (1)–(3). 𝐶 , 𝐶 , 𝐶 , 𝐶 = 𝑠𝑜𝑟𝑡 min 𝑓𝑖𝑡 𝐶 , 𝑓𝑖𝑡 𝐶 , 𝑓𝑖𝑡 𝐶 , 𝑓𝑖𝑡 𝐶  (1)

𝐶 = 𝐶 + 𝐶 + 𝐶 + 𝐶4  (2)𝐶 · = 𝐶 , 𝐶 , 𝐶 , 𝐶 , 𝐶   (3)

The update formula for the EO algorithm is Formula (4). 𝐶 = 𝐶 + 𝐶 − 𝐶 �⃗� + �⃗�𝜆V 1 − �⃗�  (4)

where �⃗� is the exponential term generated by Formula (5); 𝜆 is assumed to be a random 
vector in the interval of [0, 1]. �⃗� is the generation rate generated by Formula (7). �⃗� = 𝑎 𝑠𝑖𝑔𝑛(𝑟 − 0.5) 𝑒 ⃗ − 1  (5)

where is 𝑎  constant value that controls exploration ability; r is a random vector between 
0 and 1; t is defined as a function of iteration generated by Formula (6). 

𝑡 = 1 − 𝑖𝑡𝑒𝑟𝑀𝑎𝑥_𝑖𝑡𝑒𝑟 _   (6)

where 𝑖𝑡𝑒𝑟 and 𝑀𝑎𝑥_𝑖𝑡𝑒𝑟 present the current and the maximum number of iterations, 
respectively, 𝑎  is a constant value. 

In reference [39], the available values for 𝑎  and 𝑎  are 𝑎 = 1, 1.5, 2, 2.5, 3 , 𝑎 =0.1, 0.5, 1, 1.5, 2 . In the work of this paper, 𝑎  and 𝑎  have chosen 𝑎 = 2 and 𝑎 = 1. �⃗� = �⃗� �⃗� (7)

where �⃗�  is the initial value generated by Formula (8). �⃗� = 𝐺𝐶�⃗� 𝐶 − 𝜆𝐶  (8)

where 𝐺𝐶�⃗� generated by Formula (9). 𝐺𝐶�⃗� = 0.5𝑟     𝑟 ≥ 𝐺𝑃0           𝑟 < 𝐺𝑃 (9)

where 𝑟  and 𝑟  are random numbers in [0, 1]. 
EO was applied to reference [40] to enhance the voltage profile in the distribution 

system by reconfiguring the DG placement through an equalization optimizer algorithm 
due to its superior accuracy of optimization search and convergence speed than algo-
rithms such as GA and PSO. However, the original EO algorithm’s decision space design 
proves inadequate for accommodating constraints during the process of path optimiza-
tion and assembly problem-solving. 

3.2. Design and Implementation of BiEO 
3.2.1. BiEO 

This paper proposed the BiEO to meet the discrete solution of vehicle assembly com-
bination and delivery in the route optimization process, due to the current EO algorithm 
is designed for continuous domains. BiEO can ensure that the binary population is not 
destroyed during the update process. The pseudo-code of the BiEO is as follows in Algo-
rithm 1. 
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Algorithm 1. BiEO 
Input: Population size 𝑁; the maximum number of iterations Max_iter 
Output: Best individual 𝐶; fitness of 𝐶 
1: Initialize the partice population 𝐶 , 𝑖 = 1, … , 𝑁 
2: Initializes the control parameters 𝑎 = 2，𝑎 = 1，𝐺𝑃 = 0.5 
3: While 𝑖𝑡𝑒𝑟 < 𝑀𝑎𝑥_𝑖𝑡𝑒𝑟 
4:     For 𝑖 = 1: 𝑁 
5:       calculate 𝐶  fitness 
6:     End for 
7:   sort the particle population and find the first four particles by Formula (1) 
8:   calculate 𝐶  particles 
9:   construct the equilibrium pool by Formula (3) 
10:   calculate 𝑡 
11:     For 𝑖 = 1: 𝑁 
12:       Randomly choose one candidate from the equilibrium pool 
13:       generate randomly vector 𝜆 
14:       generate �⃗�, 𝐺𝐶�⃗�, �⃗� , �⃗� 
15:       update particle population by Formula (4) 
16:     End(for) 
17:   X = abs (𝐶) 
18:     For 𝑖 = 1: 𝑁  
19:       For 𝑗 = 1: 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑓 𝐶(𝐷) 
20:         𝑀 = max 𝐶 ; 𝑚 = min (𝐶 ); 
21:         generate random number r= 𝑚 + (𝑀 − 𝑚) ∗ 𝑟𝑎𝑛𝑑 

22:         P 𝑋 = ∑  

23:           If r < P 𝑋  
24:             𝐶 =1 
25:           Else 
26:             𝐶 =0 
27:           End if 
28:       End for 
29:     End for 
30:   𝑖𝑡𝑒𝑟 = 𝑖𝑡𝑒𝑟 + 1 
31: End while 

3.2.2. The DACA Strategy for Multi-Vehicle Route Optimization 
The DACA strategy for multi-vehicles was designed as shown in Figure 2. The Sche-

matic diagram of route coding for a certain distribution point is shown in Figure 2a. In the 
figure, the depot represents distribution points, and the client represents demand 
points. A solution for a certain vehicle covers 3 elements: start-depot, client encoding, and 
end-depot. When the Start-depot is 1, it indicates that the vehicle is selected for delivery; 
When the nth client is 1, it indicates that the vehicle delivers goods to the nth client. When 
the end-point is 1, it indicates that the distribution is a feasible sub-solution under the 
condition of the limited capacity of this vehicle. As a whole feasible solution to the com-
bination multi-vehicles, all sub-solutions should be feasible. The initialization of delivery 
for multi-vehicles in decision space is shown in Figure 2b. This approach facilitates the 
concurrent optimization of both the distribution routes for the vehicles at the distribution 
point and the corresponding vehicle capacities. The DACA strategy not only addresses 
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assembly combination optimization but also effectively abides by the constraints imposed 
by vehicle capacities. 

 
(a) 

 
(b) 

Figure 2. The DACA strategy for multi-vehicles. (a) Schematic diagram of route coding. (b) Example 
of DACA strategy initialization. 

4. Model of Logistics System for Multi-Vehicles Based on BiEO 
4.1. The Model Design Based on BiEO 

Our model serves to ascertain the optimal locations and quantities of distribution 
points, while concurrently devising distribution route schedules between these distribu-
tion points and each individual demand point. The overarching objective is to minimize 
the overall cost while effectively fulfilling the material requisites of each specified demand 
point. Below, we proceed to provide definitions and elucidations pertaining to the sets, 
indices, parameters, and decision variables integral to our formulation. min 𝑍 = 𝑉∈∈ 𝑋 𝐶 𝑑 + 𝑣∈∈ 𝑥 𝐶 𝑑  (10)

Formula (10) is the optimization objective function and Z is the minimum cost opti-
mization objective. The parameters are described in Tables 2–5. 

Table 2. The solution set of the model. 

Set Description 𝑉 Set of large vehicles (𝑉 = 1, 2, 3. . . 𝑉 ) 𝑣 Set of small vehicles (𝑣 = 1, 2, 3. . . 𝑣 ) 𝑆 The number of distribution points (𝑆 = 1, 2, 3. . . 𝑆 ) 𝑅 Set of demand points (𝑅 = 1, 2, 3. . . 𝑅 ) 𝐿 Set of distribution points and demand points (𝐿 ∈ 𝑅 ∪ 𝑆) 

Table 3. Variables of the objective function. 

Parameter Definition 𝑑  The distance from the demand point 𝑖 to the demand point 𝑗, ∀𝑖, 𝑗 ∈ 𝐿 𝑉  The large vehicle from the demand point 𝑖 to the demand point 𝑗, ∀𝑖, 𝑗 ∈ 𝐿 𝑣  The small vehicle from the demand point 𝑖 to the demand point 𝑗, ∀𝑖, 𝑗 ∈ 𝐿 
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Table 4. Parameters of the objective function. 

Variables Description Values 𝐶  Cost per mile for the small vehicle 100 𝐶  Cost per mile for the large vehicle 40 

Table 5. Decision variables of the objective function. 

Decision Variables Description Values 𝑋  large vehicle 𝑋 with 𝑉 Load limit loads 𝑊 from the 
demand point 𝑖 to the demand point 𝑗 directly 

0 or 1 𝑥  small vehicle 𝑥 with 𝑣 Load limit loads w from the 
demand point 𝑖 to the demand point 𝑗 directly 

0 or 1 

The additional assumptions are the following: 
(1) The number and the capacity of distribution points are subject to defined limitations, 

which remain inviolable. 
(2) The transport vehicles adhere to capacity constraints, which are to be strictly adhered 

to. 
(3) Uniformity prevails in the transportation aspect: each distribution point caters to a 

designated transport area, employing vehicles of the same capacity, type, and uni-
form unit transport cost. 

(4) Each demand point necessitates a single visit. 
(5) The daily demand at each demand point remains constant. Meanwhile, we assume 

that each person’s daily demand is fixed at 400 g. 
The constraints are shown in the following Formulas (11)–(24). 

(1) Each demand point can only have one distribution point responsible for delivery. 𝑢∈ = 1 ∀ 𝑖 ∈ 𝑆 (11)

where 𝑢  indicates that distribution point 𝑖 is responsible for the delivery of demand 
point 𝑗, 𝑢 ∈ 0,1  
(2) The total amount of transported materials is less than the inventory. 𝑤, ∈ 𝑋 + 𝑤 𝑥, ∈ − 𝐸 𝑢, ∈ = 0  (12)

where 𝑤  is the total load w of large vehicles from demand point 𝑖 to the demand point 𝑗, ∀𝑖, 𝑗 ∈ 𝐿; 𝑤  is the total load w of small vehicles from demand point 𝑖 to the demand 
point 𝑗, ∀𝑖, 𝑗 ∈ 𝐿; 𝐸  is the demand of the demand point 𝑖, ∀𝑖 ∈ 𝑅; 𝑋  is large vehicles 
load W from demand point 𝑖 to demand point 𝑗; 𝑥  is small vehicles load w from de-
mand point 𝑖  to demand point 𝑗 ; 𝑤 , 𝑤 ≧ 0 ∀𝑖, 𝑗 ∈ L, ∀𝑉 ∈ 𝑉, ∀𝑣 ∈ 𝑣 ; 𝑋 , 𝑥 ∈0,1  ∀𝑖, 𝑗 ∈ 𝐿. 
(3) There is only one kind of vehicles on the transport route to a certain demand point: 𝑋, ∈ − 𝑋, ∈ = 0  (13)

𝑥, ∈ − 𝑥, ∈ = 0  (14)

where  𝑤 represents the current load of the small vehicle departing immediately; 𝑊 rep-
resents the current load of the large vehicle departing immediately. 
(4) Transport routes can exist in both large vehicles and small vehicles: 
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𝑋, ∈ − 𝑥, ∈ ≤ 1  (15)

Formula (15) indicates that on the same transportation route, it can pass through both 
large vehicles and small vehicles. 
(5) Return when the vehicle is not enough to meet the demand of the next demand point: 𝑤, ∈ 𝑋 − 𝐸 ≥ 0  (16)

𝑤, ∈ 𝑥 − 𝐸 ≥ 0  (17)

where 𝐸  is the demand for demand point 𝑖, Formulas (16) and (17) represent the return 
to the warehouse when the transportation vehicle load does not meet the demand for the 
next demand point. 
(6) The constraint of the transport starting point and vehicle capacity constraints: 𝑤∈ 𝑥∈ ≤ 𝑊   (18)

𝑤∈ 𝑋∈ ≤ 𝑊   (19)

where 𝑊  is the maximum load of large vehicles, which is set to 10 in this paper; 𝑊  is 
the maximum load of small vehicles, which is set to 4 in this paper; Meanwhile, Formulas 
(18) and (19) indicates that the transportation load of large vehicles and small vehicles 
cannot exceed their respective load limits. 
(7) Constraints of the transportation terminal: 𝑉∈ 𝑋∈ = 1  (20)

𝑣∈ 𝑥∈ = 1  (21)

(8) Decision variable constraints: 𝑋 , 𝑥 ∈ 0,1  ∀𝑖, 𝑗 ∈ 𝐿  (22)𝑢 ∈ 0,1  ∀𝑖 ∈ 𝑆, ∀𝑗 ∈ 𝑅  (23)𝑤 , 𝑤 ≧ 0 ∀𝑖, 𝑗 ∈ 𝐿, ∀𝑉 ∈ 𝑉, ∀𝑣 ∈ 𝑣  (24)

The Formula (24) indicates that the load of large vehicles and small vehicles cannot 
be empty. 

4.2. The Implement of the Multi-Vehicle Route Optimization 
The implement scheme, shown in Figure 3, includes (1) the strategic determination 

and optimization of distribution point locations, and (2) the formulation of optimal 
routes originating from each distribution point, directing towards the associated de-
mand point. 
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Figure 3. The optimization of distribution point location and multi-vehicle route. 

5. Experiments 
5.1. Data 

The data set is sourced from the population distribution in the high-tech zone of 
Changchun, China. Specifically, the algorithm and model are utilized to establish distri-
bution points within the high-tech zones for material transportation during the COVID-
19 lockdown. 

The high-tech zone comprises 90 distinct demand points with an approximate popu-
lation of 300,000 individuals. To achieve the efficient distribution of household supplies 
to these communities, it is necessary to optimize the location of the distribution points and 
the driving route from the distribution point to the community. Firstly, due to the varying 
density of geographical distribution in residential areas and the varying population of 
each community, it is necessary to establish temporary material distribution points based 
on the above information. Secondly, within each distribution point, a fleet of four vehicles 
is available, comprising both large vehicles (with a 10-ton capacity) and small vehicles 
(with a 4-ton capacity), deployable in diverse combinations as necessitated. 

5.2. Algorithm Settings 
In this paper, the problem of location and route optimization is simultaneously con-

sidered, which means the route optimization problem involves the assembly and combi-
nation of four vehicles. Therefore, the simultaneous solution described in this paper fo-
cuses on utilizing the DACA strategy proposed in this paper to simultaneously solve the 
problem of combining vehicle assembly combination and vehicle route optimization. 

5.2.1. The Optimization of the Location of Distribution Points by EO 
The optimization objective function of the location of distribution points is to mini-

mize the distance from the warehouse to the distribution points as shown in Formula (25). 
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The location of distribution points in this paper is continuous with no pre-elected location 
of distribution points. min 𝐷 = 𝑝∈∈  (25)

where 𝑝  is the distance from the distribution point 𝑖 to the demand point j. 
Another location selection scheme is designed based on the regional population den-

sity. Demand points with high population density have bigger weights, which means dis-
tribution points’ locations will approach the areas with higher probability. On the con-
trary, Demand points with low population density will have smaller weights, and distri-
bution points’ location will stay away from areas with high probability. The objective 
function is shown in the Formula (26). min 𝐷 = 𝑤 𝑝∈∈  (26)

where 𝑤  is the weight of demand points 𝑖. 𝑤  is generated according to Formula (18). 𝑤 = 𝑘𝑁  , ∀𝑖 ∈ 𝑅  (27)

where 𝑁 is the total population within the distribution area. 𝑘  is population of demand 
point 𝑖. 
5.2.2. The Route Optimization of the Multi-Vehicle by BiEO 

The optimization objective function is the lowest distribution cost as shown in For-
mula (10). In multi-vehicle combination transportation, there are three important con-
straints: 1. All demand points have to be distributed, Formula (11); 2. The total load of all 
transportation vehicles must not exceed the demand point’s demand, Formula (12); and 
3. The starting and ending points of all transportation vehicles must be distribution 
points, Formulas (18)–(21). The DACA strategy and BiEO proposed in this paper are uti-
lized in route optimization under multi-vehicle combinations. 

The original EO’s population update has the potential to inadvertently breach the 
constraint that each demand point must be traversed by a single vehicle only once. Figure 
4a,b provide an illustrative instance of such an update. In the figure, the depot represents 
distribution points, and the client represents demand points. In Figure 4a, the two ma-
trices depict the chosen individuals prior to the update, whereas the matrices in Figure 4b 
portray the outcomes following the population update. Notably, the results displayed in 
Figure 4b conspicuously violate the stipulated constraint of singular point passage (evi-
dent through the emergence of multi-values within the same column), subsequently for-
saking their binary-coded 0 s and 1 s representation. Consequently, this renders the accu-
rate evaluation of the fitness function impracticable during subsequent assessments. To 
address this predicament, enhancements are introduced to the equilibrium optimizer to 
ensure that the result updates adhere to the prescribed constraint conditions. 

 
(a). Two selected particles 
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(b). Particle updated by EO (c). Particle updated by BiEO 

Figure 4. The particle update process of the BiEO algorithm. 

5.3. Results 
5.3.1. The Optimization Distribution Points by EO 

Figure 5 shows the location results of distribution points based on (25) and (26). The 
red star in Figure 5 represents the optimized distribution point location. The capacity of 
each distribution point is the same, with a total capacity of approximately 135 tons for the 
five distribution points. Each color distribution point is responsible for delivering demand 
points that match its color. The optimal distribution points are shown in Figure 5a, all 
demand points are distributed based on the 5 optimal distribution points. Distinct colors 
signify different zones. To align with the distribution points ‘s capacity and the commu-
nity population’s requisites within its purview, the area is partitioned into five transpor-
tation zones, each characterized by a varying number of demand points responsible for 
distribution from the distribution points. Specifically, there are 15, 29, 12, 18, and 16 de-
mand points in the five regions, totaling 90 demand points. Therefore, the DACA strategy 
dimension of each region is not the same. 

 

 
(a). The distribution points based on (25) (b). The distribution points based on (26) 

Figure 5. The location of distribution points. 

As shown in Figure 5b, the location results of distribution points with weights are 
different from those without weights. Meanwhile, in subsequent experiments, it was 
shown that weighted distribution point location selection can lower the cost of subsequent 
route optimization. 
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5.3.2. Results of Route Optimization of Multi-Vehicle 
This paper proposed a comparative experimental analysis between the binary vari-

ants of GA, DE, PSO, and the proposed BiEO using identical datasets. All four algorithms 
adopt the population initialization strategy from this study, with a fixed population size 
of 50 and 1000 iterations. To ensure fairness, a total of 21 independent experiments were 
executed. In addition, the time complexity of the combined solution of the BiEO algorithm 
proposed in this article is 𝑂(𝑀𝑎𝑥𝑖𝑡𝑒𝑟 ∗ (𝑁 log 𝑁  + 𝑁 ∗ 𝐷)),where 𝑀𝑎𝑥𝑖𝑡𝑒𝑟 is maximum 
number of iterations, 𝑁 is population size, 𝐷 is dimensions of solutions generated by 
DACA strategy. 

The experiments are implemented using MATLAB R2021a in a computer with a pro-
cessor AMD RyzenTM 9 5950Xcpu@3.40GHz. 

Additionally, this paper extends the comparison by subjecting the four algorithms to 
the same mathematical model and decision space. Notably, BiEO consistently outper-
forms the other three algorithms in terms of results. In this paper, two distribution point 
location schemes are designed. Therefore, multi-vehicle distribution was performed for 
both scenarios. The cost results of distribution are shown in Table 6. The results show that 
the distribution cost is lower for distribution points with weights. The fitness of distri-
bution areas is delineated in columns 1–5 of Table 6, with the sixth column denoting the 
total fitness. The 7th column represents the mean fitness of the five regions. where lower 
fitness values indicate better performance. 

Table 6. Comparison of fitness between weighted and unweighted location routes for delivery. 

                  Zone 
Location Scheme 1 2 3 4 5 𝒁𝒐𝒏𝒆𝒊𝟓𝒊 𝟏  ∑ 𝒁𝒐𝒏𝒆𝒊𝟓𝒊 𝟏 𝟓  

BiEO Location without weight 4647.633 5874.019 3925.837 3867.961 5433.671 23,749.123 4749.824 
Location with weight 4605.419 5935.074 3800.736 3741.302 4851.630 22,934.163 4586.832 

GA(Bi) 
Location without weight 5977.681 8051.848 4147.091 5415.425 6974.927 30,566.975 6113.394 

Location with weight 6020.909 8211.209 4168.806 5426.242 6544.810 30,371.979 6074.395 

PSO(Bi) Location without weight 4789.469 6202.087 4219.922 4174.245 5574.124 24,959.848 4991.969 
Location with weight 4683.817 6070.669 4002.426 4093.164 4889.617 23,739.695 4747.939 

DE Location without weight 5270.477 7056.845 4274.494 4733.520 6124.971 27,460.309 5492.061 
Location with weight 5231.550 7164.501 4034.021 4774.386 5742.543 26,947.003 5389.4 

In this paper, we used a simulated annealing algorithm (SA) and the proposed 
DACA strategy to estimate the cost upper bound of the route optimization stage problem, 
as shown in Table 7 for two different upper bound estimates: weighted and unweighted 
location selection schemes. 

Table 7. Upper bound estimates: weighted and unweighted location selection schemes. 

             Zone 
Location Scheme 1 2 3 4 5 𝒁𝒐𝒏𝒆𝒊𝟓𝒊 𝟏  

Location without weight 9655.254 11,322.992 6781.191 8382.823 10,310.815 46,453.078 
Location with weight 9318.230 11,575.753 6457.178 7759.367 9923.8369 45,034.367 

This paper uses upper bound estimation to calculate the Gap 
(    ×  100%) between the propose BiEO algorithm and other algo-
rithms under two location selection schemes. Therefore, a larger Gap indicates better per-
formance. As shown in Table 8, the BiEO algorithm proposed in this paper can achieve a 
higher Gap compared to other comparative algorithms. 
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Table 8. Comparison between the proposed BiEO’s Gap and other algorithms. 

Location Scheme 
       Zone 
Algorithm 1 2 3 4 5 𝒁𝒐𝒏𝒆𝒊𝟓𝒊 𝟏  

Location without 
weight 

BiEO 51.86% 48.12% 42.10% 53.85% 47.30% 48.87% 
GA(Bi) 38.08% 28.88% 38.84% 35.39% 32.35% 34.19% 
PSO(Bi) 50.39% 45.22% 37.77% 50.20% 45.93% 46.26% 

DE 45.41% 37.67% 36.96% 43.53% 40.59% 40.88% 

Location with 
weight 

BiEO 50.57% 48.72% 41.13% 51.78% 51.11% 49.07% 
GA(Bi) 35.38% 29.06% 35.43% 30.06% 34.04% 32.55% 
PSO(Bi) 49.73% 47.55% 38.01% 47.24% 50.72% 47.28% 

DE 43.85% 38.10% 37.52% 38.46% 42.13% 40.16% 

Figure 6 shows the best solution for vehicle assembly combination and it’s the deliv-
ery route. Figure 6a shows the best solution of the No. 3 distribution point, where 1 in 
the first and last columns indicates that the distribution point is the starting and ending 
points of the vehicle, and 1 in the middle of the first and last columns indicates passing 
through the demand point; 0 indicates not passing through the demand point. Figure 6b 
shows corresponding vehicle routes in Figure 6a. 

(a) 

 
(b) 

Figure 6. The best solution for vehicle assembly combination and its delivery route. (a). The best 
multi-vehicle route solution of the No. 3 distribution point. (b). Corresponding vehicle routes in the 
No. 3 distribution point. 

Furthermore, the problem addressed in this paper incorporates a VRP component 
employing four vehicles for transportation. Consequently, the VRP stage encompasses 
both the combinatorial and route optimization issues. To substantiate the efficacy of the 
DACA strategy, a control experiment is conducted, addressing the combination and route 
optimization problems independently. During the experiment, the transport vehicle’s 
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capacity is adjusted to four vehicles of equal capacity. The experiment is conducted under 
varying capacities of 8, 9, and 10 to assess the effectiveness of the DACA strategy. 

Table 9 presents a fitness comparison between the DACA strategy and the combina-
tion VRP approach. In this context, fitness denotes the transportation cost, thus a lower 
value indicates better fitness. the results show that fitness with the DACA strategy is bet-
ter than fitness with the combination-VRP approach, which affirms the effectiveness of 
the DACA strategy. 

Table 9. Fitness comparison between the DACA strategy and combination-VRP mode. 

                            Zone 
Transportation Cost 1 2 3 4 5 𝒁𝒐𝒏𝒆𝒊𝟓𝒊 𝟏  

8 
DACA strategy 5511.236 6560.593 5066.791 4970.062 7190.940 29,299.625 

combination-VRP 5295.788 7161.854 4741.342 5208.163 7088.083 29,495.231 

9 DACA strategy 4277.268 5921.454 4209.298 3923.458 5579.974 23,911.454 
combination-VRP 4468.354 6314.061 4136.726 4097.424 5376.989 24,393.556 

10 
DACA strategy 4085.538 4881.320 3586.526 3699.209 5343.112 21,595.707 

combination-VRP 4127.397 5168.431 3711.924 4092.440 5154.732 22,254.927 

6. Discussion and Future Work 
The BiEO algorithm proposed in this article has achieved good performance in solv-

ing real-world problems compared to other algorithms. In addition, this article also pro-
poses the DACA strategy as a solution for vehicle assembly combination optimization and 
route optimization, and the results show that the performance of the DACA strategy is 
superior to the optimization scheme that separates combination assembly and path opti-
mization. 

In addition, the experimental results indicate that the weighted distribution point 
location scheme designed in this paper can lower the cost of subsequent distribution links. 
Meanwhile, in order to verify that the proposed DACA strategy can solve the combinato-
rial VRP problem in this paper, corresponding experiments were designed for verifica-
tion. The results indicate that the DACA strategy proposed in this article can achieve 
lower costs than the strategy with VRP optimization splitting in combination optimiza-
tion. 

Future research avenues may explore the following directions: While this paper has 
made strides in optimizing LRP using real datasets, the distinctiveness of distribution 
points from conventional FLP necessitates a planar coordinate search instead of relying 
on predefined distribution points. This divergence hampers its seamless integration 
with subsequent VRPs. Thus, future investigations could focus on devising innovative 
solutions to enhance the synergy between these two facets of the problem. 

7. Conclusions 
This paper proposed the BiEO algorithm, comprising two main components: (1) ad-

dressing the placement of distribution points location problem, Meanwhile, this article 
has designed two options for the location selection of distribution points, and (2) solving 
the VRP with capacity constraints for each distribution area, utilizing the DACA strat-
egy in this study. A comparative analysis was conducted against combination-VRP exper-
iments, revealing that the BiEO algorithm yielded superior outcomes within this problem 
framework compared to GA, DE, and PSO algorithms. Furthermore, the proposed DACA 
strategy effectively tackled both combinatorial problems and VRP simultaneously. 

However, this paper also has some limitations. Firstly, in the optimization model of 
this article, we assume that each person’s daily material demand is fixed (weighing 400 g 
per person), which cannot truly reflect each person’s daily material demand. In the future, 
we may consider defining each person’s daily demand in the form of fuzzy numbers. In 
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addition, due to the use of the DACA strategy in the solution, it is necessary to maintain 
consistency between the dimensions and the number of demand points in the distribution 
area during the solving process. Therefore, in this problem, when the transportation ve-
hicle load cannot reach the next demand point in the distribution area, it will return and 
cannot transport to the demand points in other areas that meet the demand, which may 
lead to an overall increase in the cost of the problem. In future research, we may consider 
that transportation vehicles can deliver to demand points outside of this distribution area. 

Author Contributions: Conceptualization, R.X., D.L. and X.H.; methodology, R.X., D.L. and X.H.; 
software, R.X.; validation, Z.W., L.G. and Z.Z.; formal analysis, R.X., D.L. and X.H.; investigation, 
R.X., D.L. and X.H.; data curation, R.X.; writing—original draft preparation, R.X. and D.L.; writing—
review and editing, R.X. and D.L.; project administration, D.L., Y.Y. and Y.Z.; supervision, D.L., Y.Y. 
and Y.Z.; funding acquisition, D.L., Y.Y. and Y.Z. All authors have read and agreed to the published 
version of the manuscript. 

Funding: This research was funded by the Agricultural Joint Fund of Yunnan Province under Grant 
no: 202301BD070001-086, the National Natural Science Foundation of China under Grant no: 
31860332. 

Data Availability Statement: Data and code will be provided on request to authors. 

Acknowledgments: This research was funded by the Scientific Research Foundation of the Educa-
tion Department of Yunnan Province, China under Grant no: 2022J0495, the National Natural Sci-
ence Foundation of China under Grant no: 32360388, and Research on the Application of Multi-
Target Swarm Intelligence Algorithms with the Multi-Modal in Biological Data. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 
1. Salhi, S.; Rand, G.K. The effect of ignoring routes when locating depots. Eur. J. Oper. Res. 1989, 39, 150–156. 
2. Hu, H.; Li, X.; Zhang, Y.; Shang, C.; Zhang, S. Multi-objective location-routing model for hazardous material logistics with traffic 

restriction constraint in inter-city roads. Comput. Ind. Eng. 2019, 128, 861–876. https://doi.org/10.1016/j.cie.2018.10.044. 
3. Oksuz, M.K.; Satoglu, S.I. A two-stage stochastic model for location planning of temporary medical centers for disaster response. 

Int. J. Disaster Risk Reduct. 2020, 44, 101426. https://doi.org/10.1016/j.ijdrr.2019.101426. 
4. Karagöz, S.; Deveci, M.; Simic, V.; Aydin, N. Interval type-2 Fuzzy ARAS method for recycling facility location problems. Appl. 

Soft Comput. 2021, 102, 107107. https://doi.org/10.1016/j.asoc.2021.107107. 
5. Kara, I.; Bektas, T. Integer linear programming formulation of the generalized vehicle routing problem. In Proceedings of the 5-

th EURO/INFORMS Joint International Meeting, İstanbul, Turkey, 6–10 July 2003. 
6. Posada, A.; Rivera, J.C.; Palacio, J.D. A mixed-integer linear programming model for a selective vehicle routing problem. In 

Proceedings of the Applied Computer Sciences in Engineering: 5th Workshop on Engineering Applications, WEA 2018, Medel-
lín, Colombia, 17–19 October 2018; pp. 108–119. 

7. Pop, P.C.; Kara, I.; Marc, A.H. New mathematical models of the generalized vehicle routing problem and extensions. Appl. Math. 
Model. 2012, 36, 97–107. 

8. Qin, W.; Zhuang, Z.; Huang, Z.; Huang, H. A novel reinforcement learning-based hyper-heuristic for heterogeneous vehicle 
routing problem. Comput. Ind. Eng. 2021, 156, 107252. https://doi.org/10.1016/j.cie.2021.107252. 

9. Altabeeb, A.M.; Mohsen, A.M.; Abualigah, L.; Ghallab, A. Solving capacitated vehicle routing problem using cooperative firefly 
algorithm. Appl. Soft Comput. 2021, 108, 107403. 

10. Rabbouch, B.; Saâdaoui, F.; Mraihi, R. Efficient implementation of the genetic algorithm to solve rich vehicle routing problems. 
Oper. Res. 2021, 21, 1763–1791. 

11. Maranzana, F. On the location of supply points to minimize transport costs. J. Oper. Res. Soc. 1964, 15, 261–270. 
12. Webb, M. Cost functions in the location of depots for multiple-delivery journeys. J. Oper. Res. Soc. 1968, 19, 311–320. 
13. Nagy, G.; Salhi, S. Location-routing: Issues, models and methods. Eur. J. Oper. Res. 2007, 177, 649–672. 
14. Muñoz-Villamizar, A.F.; Montoya-Torres, J.R.; Herazo-Padilla, N. Mathematical Programming Modeling and Resolution of the 

Location-Routing Problem in Urban Logistics. Ing. Y Univ. 2014, 18, 271–289. 
15. Heidari, M.; Jafari, M.J.; Rahbari, M. Modeling a Multi-Objective Location-Routing Problem for Hazardous Materials with CO2 

Emissions Consideration. In Proceedings of the 14th International Industrial Engineering Conference (IIEC 2018), Tehran, Iran, 
7 February 2018. 

16. Shaerpour, M.; Azani, M.; Aghsami, A.; Rabbani, M. A new fuzzy bi-objective mixed-integer linear programming for designing 
a medical waste management network in the Coronavirus epidemic: A case study. Int. J. Manag. Sci. Eng. Manag. 2023, 1–16. 
https://doi.org/10.1080/17509653.2023.2253775. 



Axioms 2024, 13, 31 19 of 19 
 

17. Cao, J.X.; Wang, X.; Gao, J. A two-echelon location-routing problem for biomass logistics systems. Biosyst. Eng. 2021, 202, 106–
118. https://doi.org/10.1016/j.biosystemseng.2020.12.007. 

18. Biuki, M.; Kazemi, A.; Alinezhad, A. An integrated location-routing-inventory model for sustainable design of a perishable 
products supply chain network. J. Clean. Prod. 2020, 260, 120842. 

19. Ferreira, K.M.; de Queiroz, T.A. A simulated annealing based heuristic for a location-routing problem with two-dimensional 
loading constraints. Appl. Soft Comput. 2022, 118, 108443. 

20. Akpunar, Ö.Ş.; Akpinar, Ş. A hybrid adaptive large neighbourhood search algorithm for the capacitated location routing prob-
lem. Expert Syst. Appl. 2021, 168, 114304. 

21. Ting, C.-J.; Chen, C.-H. A multiple ant colony optimization algorithm for the capacitated location routing problem. Int. J. Prod. 
Econ. 2013, 141, 34–44. 

22. Vincent, F.Y.; Lin, S.-W.; Lee, W.; Ting, C.-J. A simulated annealing heuristic for the capacitated location routing problem. Com-
put. Ind. Eng. 2010, 58, 288–299. 

23. Zhang, H.; Liu, F.; Ma, L.; Zhang, Z. A hybrid heuristic based on a particle swarm algorithm to solve the capacitated location-
routing problem with fuzzy demands. IEEE Access 2020, 8, 153671–153691. 

24. Peng, Z.; Manier, H.; Manier, M.-A. Particle swarm optimization for capacitated location-routing problem. IFAC-Pap. 2017, 50, 
14668–14673. 

25. Yu, X.; Zhou, Y.; Liu, X.-F. A novel hybrid genetic algorithm for the location routing problem with tight capacity constraints. 
Appl. Soft Comput. 2019, 85, 105760. 

26. Nguyen, V.-P.; Prins, C.; Prodhon, C. Solving the two-echelon location routing problem by a GRASP reinforced by a learning 
process and path relinking. Eur. J. Oper. Res. 2012, 216, 113–126. 

27. Nguyen, V.-P.; Prins, C.; Prodhon, C. A multi-start iterated local search with tabu list and path relinking for the two-echelon 
location-routing problem. Eng. Appl. Artif. Intell. 2012, 25, 56–71. 

28. Ghaffari-Nasab, N.; Jabalameli, M.S.; Aryanezhad, M.B.; Makui, A. Modeling and solving the bi-objective capacitated location-
routing problem with probabilistic travel times. Int. J. Adv. Manuf. Technol. 2013, 67, 2007–2019. 

29. Zarandi, M.H.F.; Hemmati, A.; Davari, S. The multi-depot capacitated location-routing problem with fuzzy travel times. Expert 
Syst. Appl. 2011, 38, 10075–10084. 

30. Belenguer, J.-M.; Benavent, E.; Prins, C.; Prodhon, C.; Calvo, R.W. A branch-and-cut method for the capacitated location-routing 
problem. Comput. Oper. Res. 2011, 38, 931–941. 

31. Baldacci, R.; Mingozzi, A.; Wolfler Calvo, R. An exact method for the capacitated location-routing problem. Oper. Res. 2011, 59, 
1284–1296. 

32. Contardo, C.; Cordeau, J.-F.; Gendron, B. An exact algorithm based on cut-and-column generation for the capacitated location-
routing problem. INFORMS J. Comput. 2014, 26, 88–102. 

33. Ponboon, S.; Qureshi, A.G.; Taniguchi, E. Branch-and-price algorithm for the location-routing problem with time windows. 
Transp. Res. Part E Logist. Transp. Rev. 2016, 86, 1–19. 

34. Prins, C.; Prodhon, C.; Calvo, R.W. Solving the capacitated location-routing problem by a GRASP complemented by a learning 
process and a path relinking. 4OR 2006, 4, 221–238. 

35. Duhamel, C.; Lacomme, P.; Prins, C.; Prodhon, C. A GRASP× ELS approach for the capacitated location-routing problem. Com-
put. Oper. Res. 2010, 37, 1912–1923. 

36. Jokar, A.; Sahraeian, R. A heuristic based approach to solve a capacitated location-routing problem. J. Mgmt. Sustain. 2012, 2, 
219. 

37. Lopes, R.B.; Ferreira, C.; Santos, B.S. A simple and effective evolutionary algorithm for the capacitated location–routing problem. 
Comput. Oper. Res. 2016, 70, 155–162. 

38. Quintero-Araujo, C.L.; Caballero-Villalobos, J.P.; Juan, A.A.; Montoya-Torres, J.R. A biased-randomized metaheuristic for the 
capacitated location routing problem. Int. Trans. Oper. Res. 2017, 24, 1079–1098. https://doi.org/10.1111/itor.12322. 

39. Faramarzi, A.; Heidarinejad, M.; Stephens, B.; Mirjalili, S. Equilibrium optimizer: A novel optimization algorithm. Knowl.-Based 
Syst. 2019, 191, 105190. https://doi.org/10.1016/j.knosys.2019.105190. 

40. Ali Shaik, M.; Mareddy, P.L.; Visali, N. Enhancement of Voltage Profile in the Distribution system by Reconfiguring with DG 
placement using Equilibrium Optimizer. Alex. Eng. J. 2022, 61, 4081–4093. https://doi.org/10.1016/j.aej.2021.09.063. 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au-
thor(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to 
people or property resulting from any ideas, methods, instructions or products referred to in the content. 


