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These notes are tailored for my fall 2018 MATH 5703 class.

1 Basic examples

Definition 1.1. Let n be a positive integer. An n-manifold is a topological
space X such that:

• For every x ∈ X, there is an open neighborhood U of x in X that is
homeomorphic to an open ball in Rn.

• X is Hausdorff and second countable.

If X is an n-manifold for some n, then X is a manifold.

The term topological manifold is a synonym for manifold, and is sometimes
used to distinguish topological manifolds from spaces with even more struc-
ture (e.g. smooth manifolds, Riemannian manifolds, complex manifolds, etc.).
Remarks:

• The second condition is a technical condition to exclude certain bad ex-
amples; the content of the definition is in the first condition. The first
condition may be summarized by saying “X is locally homeomorphic to
Rn.”

• Here is one of the bad examples. Let X be R∪{0′}. The topology on X is
the same as that of R, except that 0 and 0′ are in exactly the same open
sets. (Specifically, X has a basis consisting open intervals not containing 0,
and sets of the form (a, b)∪{0′} where (a, b) is an open interval containing
0.) This X is the line with a doubled point. Notice that X is locally
homeomorphic to R, but is not Hausdorff. We do not want to consider X
to be a 1-manifold.

• Another bad example is the long line, which is described in many standard
references including Munkres. This is a space that is locally homeomorphic
to R, but is not second countable. The long line is a space where sequences
do not always detect limit points, and we do not want to consider it a 1-
manifold.
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• Two exercises: finite products of manifolds are manifolds, and countable
disjoint unions of n-manifolds are n-manifolds. Why is an uncountable
disjoint union of manifolds not a manifold?

• An open subspace of an n-manifold is an n-manifold.

• Glueings of manifolds are usually not manifolds; for example, a wedge sum
of two manifolds is never a manifold.

• Fact: every connected 1-manifold is homeomorphic to the circle S1 or to
the line R1.

From here on, we focus on surfaces.

Definition 1.2. A surface is a 2-manifold.

Examples:

• The plane R2 is a surface. It is connected and noncompact. It is con-
tractible. The open disk is homeomorphic to R2.

• The open annulus A = {(x, y) ∈ R2|1 < x2 + y2 < 2} is a surface. It
is connected and noncompact. It has the same homotopy type as S1, so
π1(A) = Z. It is homeomorphic to R1 × S1.

Another model for A: let S = [0, 1] × (0, 1); then A is homeomorphic to
S/∼, where ∼ identifies (0, t) with (1, t) for all t ∈ (0, 1).

• The open Möbius strip M is a surface. This is easiest to describe as a
quotient: let S = [0, 1] × (0, 1); then M is homeomorphic to S/∼, where
∼ identifies (0, t) with (1, 1−t) for all t ∈ (0, 1). Notice thatM is connected
and noncompact, and M is homotopy equivalent to the annulus A.

However, M and A are not homeomorphic. For contradiction, suppose
f : M → A is a homeomorphism. Suppose g : S1 → M is a simple closed
curve with g∗ an isomorphism of fundamental groups. Then f◦g is a simple
closed curve in A, and f restricts to a homeomorphism from M − f(S1)
to A− f ◦ g(S1). However, M − f(S1) is connected, but A− f ◦ g(S1) is
not, which is a contradiction.

• The sphere S2 = {(x, y, z) ∈ R3|x2 + y2 + z2 = 1} is a surface. Exercise:
show this from the definition. S2 is compact and connected, and π1(S2) =
1. However, S2 is not contractible, as we will see next semester.

• The torus T 2 = S1×S1 is a surface, since it is a product of 1-manifolds. It
is compact and connected, and π1(T 2) = Z2 (since π1 respects products).

There is a standard cell complex structure on T 2. In this, the 0-skeleton
is 1 point ∗, there are two edges in the 1-skeleton, and there is one cell in
the two-skeleton. If we direct the edges and label them a and b, then the
2-cell is glued in so that its boundary reads out aba−1b−1. Figure 1 is a
proof-by-picture that this cell complex is homeomorphic to T 2. Then Van
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Figure 1: Cutting up a torus to get a square, or, in reverse, glueing up a square
to get a torus.

Kampen’s theorem gives another proof that π1(T 2) = Z2, since this cell
complex clearly has fundamental group 〈a, b|aba−1b−1 = 1〉.
What does it look like if we delete a disk from T 2? Let N be a disk that is
a neighborhood of ∗, and let Sa and Sb be strips that are neighborhoods
of a and b respectively. Then T 2−N ∪Sa ∪Sb is a disk. We can visualize
N∪Sa∪Sb as a disk in the plane with strips attached. A careful inspection
of the structure shows that the strips are attached untwisted, so that they
cross over each other. This is illustrated in Figure 2.

Figure 2: A torus with a disk deleted, expressed as a disk with strips attached.

• The real projective plane RP 2 is an important example of a surface. RP 2

is S2/∼, where x ∼ −x for all x ∈ S2 (RP 2 is S2 with antipodal points
identified). It follows that RP 2 is also D2/∼, where opposite points on
∂D2 are identified. This description gives RP 2 a CW-complex structure,
as illustrated in Figure 3. This structure has one vertex ∗, one edge a,
and one 2-cell, glued in so that its boundary reads off a · a. From this
structure, it follows that π1(RP 2) = 〈a|a2 = 1〉 = Z/2Z.

Figure 3: Glue up this bigon to get RP 2.
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As we did we the torus, we delete a disk from RP 2 and express the resulting
space as a disk with strips glued on. Let N be a disk that is a neighborhood
of ∗ above. Let S be a strip that is a neighborhood of a. Then N ∪ S is
RP 2 −D2, where D2 is a disk in the interior of the 2-cell. By inspecting
the cell structure, it is clear that S is glued to N with a twist. It follows
that N ∪ S is a Möbius strip. See Figure 4. In other words, RP 2 is
homeomorphic to a Möbius strip with boundary glued to a disk.

Figure 4: RP 2 with a disk deleted can be rearranged to be a Möbius strip.

2 Connected sums

Definition 2.1. Suppose X and Y are surfaces. The connected sum of X and
Y , denoted X#Y , is the following space: pick open disks A ⊂ X and B ⊂ Y
with cl(A) and cl(B) both closed disks. Then X#Y is X − A glued to Y − B
by a homeomorphism f : ∂A→ ∂B.

Proposition 2.2. For any surfaces X and Y and any choices of A, B and f ,
X#Y is a surface.

Proof. From the construction, it is straightforward to show that X#Y is Haus-
dorff and second countable. Suppose x ∈ X#Y . If x is not on ∂A (the glueing
locus) then x has an open neighborhood entirely contained in X or Y , and this
neighborhood contains a smaller neighborhood of x that is homeomorphism to
an open disk, since X and Y are surfaces. If x is on ∂A, then a neighborhood
of x is a glueing of a neighborhood of x in X − A with a neighborhood of x in
Y −B. Since the closures of A and B are closed disks, these neighborhoods can
be arranged so that we are glueing two halves of an open disk together, to form
an open disk as a neighborhood of x in X#Y .

Proposition 2.3. Suppose X and Y are connected, and at least one of X or
Y is T 2 or RP 2. Then the homeomorphism type of X#Y does not depend on
the choices of A, B, or f .

In fact more is true; all we really need for X#Y to be well defined is that
both X and Y must be connected. However, the only proof that I can see for
this uses the classification of surfaces.
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Proof. We only sketch the proof.
Claim: if A and B are two different open disks in X, whose closures are

closed disks, then X −A is homeomorphic to X −B.
We pick points x ∈ A and y ∈ B. We pick a simple path p from x to y,

which must exist since X is connected. We find an open neighborhood U of
p that is homeomorphic to a disk. If A 6⊂ U , then we find a homeomorphism
X → X, supported on a neighborhood of A, that sends A to a disk contained
in U . Therefore we can assume that A,B ⊂ U , and further, that A ∩ B = ∅.
It is then enough to construct a homeomorphism f : X → X that sends A to
B. We do this by making f equal to the identity outside of U , and using ideas
from analysis to build the restriction of f to U , working with it as if it were a
subset of R2. This shows the first claim.

Now fix A ⊂ X and B ⊂ Y as in the definition. Claim: if f, g : ∂A → ∂B
are homeomorphisms and f and g are homotopic, then (X − A) ∪f (Y − B) is
homeomorphic to (X − A) ∪g (Y − B). ∂A has a neighborhood in (X − A) ∪f
(Y −B) that is an open annulus U . We build a homeomorphism h : (X −A)∪f
(Y − B) → (X − A) ∪f (Y − B) that is the identity outside of U , and we use
the homotopy between f and g to define h on U . We leave the details as an
exercise.

Claim: If X is T 2 or RP 2, then there is a homeomorphism X −A→ X −A
that reverses the orientation of ∂A. This can be done explicitely, so we leave
this claim as an exercise.

Now we put these claims together. We fix standard choices A0, B0, and f0;
let Z denote X#Y using these choices, and let W denote X#Y using some other
choices A, B, and f . Using the first claim, we have homeomorphisms X −A to
X − A0 and Y − B to Y − B0, so we can assume A = A0 and B = B0. Since
f and f0 are homeomorphisms between copies of S1, it must be that they are
homotopic, or that f ◦ f−10 reverses orientation. In the second case, we use the
third claim to compose f with a self-homeomorphism of X or Y that reverses
the orientation of the boundary of the disk. This puts us in the first case, and
then the second claim shows that Z is homeomorphic to W .

So we have shown that connected sums are well defined when both spaces
are connected, and at least one of the spaces is T 2 or RP 2.

Proposition 2.4. The following holds for connected sums:

• For any connected surface X, we have that X#S2 is homeomorphic to X.

• For any connected surfaces X and Y , we have that X#Y is homeomorphic
to Y#X.

• For any connected surfaces X, Y , and Z, we have that (X#Y )#Z is
homeomorphic to X#(Y#Z).

In particular, taking connected sums of homeomorphism types of connected sur-
faces defines a commutative monoid with S2 as the identity.
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The proof is left as an exercise.
How do we compute with connected sums of surfaces?
Suppose we have a surface X expressed as a quotient of an n-gon P by

glueing together edges by homeomorphisms. We want to delete a disk A from
X, which we can choose wherever we want. We choose A so that it touches
exactly one corner of P . This then gives us an (n + 1)-gon P ′ that has X − A
as a quotient, with the extra edge becoming ∂A.

We do the same thing with a second surface Y , expressed as a quotient of
an m-gon Q. We get an (m + 1)-gon Q′ that has Y − B as a quotient. Then
we glue P ′ and Q′ together, along the edges that become ∂A and ∂B, to get a
polygon R that has X#Y as a quotient. This is illustrated for tori in Figure 5.

Figure 5: A torus with a disk deleted is a quotient of a pentagon. The connected
sum of two tori is a quotient of an octogon, gotten by glueing two pentagons
together.

We can also compute connected sums with surfaces represented as disks with
strips attached. Suppose C is a disk in X and X − C is represented as a disk
with strips. We can choose A anywhere, so we choose it so that it intersects C
in a smaller disk, and crosses X − C away from the strips. We suppose that D
is likewise a disk in Y , and Y −D is represented as a disk with strips. Again,
we choose B to intersect D in a disk. Then when we glue X −A to Y −B, we
can choose to do it so that we glue X−A∪C to Y −B∪D, and so that we glue
C − A ∩ C to D − B ∩D. The result is this: to represent X#Y as the union
of a disk and a disk with strips, simply glue X − C to Y −D by attaching two
intervals in their boundaries. This is illustrated for tori in Figure 6.

3 The classification

The following theorem has been known since the 1860’s.

6



Figure 6: A connected sum of tori, minus a disk, expressed as a disk with strips
attached.

Theorem 3.1 (The classification of surfaces). Let X be a compact, connected
surface. Then X is homeomorphic to exactly one of the following:

• S2,

• #g
i=1T

2, for some g ≥ 1,

• #g
i=1RP 2, for some g ≥ 1.

The connected sum of g copies of T 2 is called the orientable surface of genus
g. We will sometimes use the notation Mg for it. The connected sum of g copies
of RP 2 is called the non-orientable surface of genus g, and we will sometimes
refer to it as Ng.

It is important to note that we will not prove this theorem starting from
the definition of surface, but rather, we will quote the following result as a
black box. This result is usually stated in terms of “triangulations”, which are
CW-complex structures on surfaces satisfying some extra conditions.

Theorem 3.2 (Rado, 1925). Every compact surface is homeomorphic to a CW-
complex.

First we want to show that the surfaces on the list are all distinct. To do
this, we compute their fundamental groups. These computations are interesting
in their own right.

Lemma 3.3. For any g ≥ 1,

π1(Mg) = 〈a1, b1, . . . , ag, bg | a1b1a−11 b−11 · · · agbga−1g b−1g = 1〉, and

π1(Ng) = 〈a1, a2, . . . , ag | a21a22 · · · a2g = 1〉.
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Proof. First we show the statement for orientable surfaces. We use the proce-
dure for taking connected sums of surfaces expressed as quotients of polygons.
Inductively, we assume that the genus-g surface Mg is a quotient of a 4g-gon
P , with the edge glued according to the labeling a1, b1, ā1, b̄1, . . . , ag, bg, āg, b̄g.
This appears in Figure 7. Notice that this is true if g = 1, and this is our base
case. We add an extra edge to P to form P ′, as in the discussion of connected
sums; we add this extra edge between the edge labeled b̄g and the edge labeled
a1. Let Q be a square with edges glued by ag+1, bg+1, āg+1, b̄g+1, so that T 2 is
the corresponding quotient of Q. Let Q′ be the pentagon gotten by adding an
extra edge to Q between the edge labeled b̄g+1 and the edge labeled ag+1. Then
Mg+1 = Mg#T 2 is the quotient of the labeled polygon that we get by gluing P ′

to Q′ along the extra edges. Since this is the same form, we have inductively
proven that Mg is the quotient of the labeled polygon P .

Figure 7: The orientable surface of genus g is this quotient of this 4g-gon.

By inspecting P , we notice that all vertices of P become a single vertex in
Mg, and therefore Mg gets a CW-complex structure with 1 vertex ∗, and 2g
edges a1, . . . , ag, b1, . . . , bg, and a single 2-cell glued in according to the edge
labels of the polygon. The given presentation immediately follows by Van Kam-
pen’s theorem.

The argument for nonorientable surfaces is similar. An inductive argument,
with RP 2 as the base case, shows that the genus-g non-orientable surface Ng is
the quotient of the labeled 2g-gon P with edge labels a1, a1, . . . , ag, ag. This is
shown in Figure 8. All vertices become the same vertex in Ng, which then has
a CW-complex structure with one vertex, 2g edges, and one 2-cell. The 2-cell
is glued in according to the boundary of P . The lemma immediately follows by
Van Kampen’s theorem.

Figure 8: The non-orientable surface of genus g is this quotient of this 2g-gon.

Remark: Just because these presentations look different, it does not imme-
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diately follow that the groups are not isomorphic. For example, it turns out
that the groups

〈a, b, c|a2b2c2 = 1〉 and

〈a, b, c|a2bcb−1c−1 = 1〉
are isomorphic. (These are presentations of the fundamental groups of two
different cell complexes that are homeomorphic to the same surface, as we will
see below.)

Proposition 3.4. No two surfaces in the list from the classification are home-
omorphic.

Proof. In fact, no two surfaces in that list are homotopy equivalent, and no
two of them even have isomorphic fundamental groups. To see this, we take
the abelianizations of the fundamental groups. We know π1(S2) = 1, so its
abelianization is the trivial group.

To get a presentation for the abelianization of G from a presentation of G,
we simply add relations stating that all pairs of generators commute. If we
add these commutators to the presentation for π1(Mg), then the one relation
becomes a consequence of the commutators. Essentially, it is an abelian group
with 2g generators and no relations. Then Ab(π1(Mg)) = Z2g.

On the other hand, the relation from the presentation for π1(Ng) persists
after abelianizing. Let A be the free abelian group spanned by [a1], . . . , [ag], and
let K be the subgroup of A spanned by 2[a1] + · · ·+ 2[ag]. Then Ab(π1(Mg)) =
A/K. We use the following basis for A: [a1] + · · · + [ag], [a2], . . . , [ag]. In this
basis, it is clear that A/K ∼= (Z/2Z) × Zg−1. So this is our description of
Ab(π1(Mg)).

Since no two of these abelianizations are isomorphic, it follows that no two
surfaces from the list are homeomorphic.

One immediate question that should arise after reading the classification
statement is “what about T 2#RP 2?” Since it is a compact, connected surface,
it must be homeomorphic to one on the list. However, it does not appear in
that form in the list.

Lemma 3.5. We have T 2#RP 2 ∼= RP 2#RP 2#RP 2.

Proof. We represent the complement of a disk in T 2#RP 2 as a disk with strips
attached. Call this X. Then we manipulate X by sliding ends of strips along the
boundary of X. Since a slide move like this does not change the homeomorphism
type ofX, we get back a surface homeomorphic to T 2#RP 2 if we re-attach a disk
to X. However, a short sequence of slide moves turns X into a disk with strips
attached that we can recognize as the complement of a disk in RP 2#RP 2#RP 2.
In the first and last step, we recognize the complement of a disk in a connected
sum using the procedure given shortly after the definition of connected sum.
The proof of this lemma is given by pictures in Figure 9.

Finally we can give the proof of the classification theorem. I first saw a proof
like this one in an undergraduate class taught by Michael Starbird.
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Figure 9: Rearranging T 2#RP 2 to recognize it as RP 2#RP 2#RP 2.

Proof of classification. Let M be a compact, connected surface. By Rado’s
theorem, there is a CW-complex structure X on M . Since M is compact,
this X has finitely many cells. Since M is connected, the one-skeleton X1 is
connected.

Let T be a maximal tree for X1, and let N ⊂ M be a closed neighborhood
that has a deformation retraction to T . Since T is a tree, N is a closed disk.
For each edge e in X1 − T , let Se be a closed neighborhood of e that has a
deformation retraction to e, and such that Se − N consists of a single strip (a
disk). Let Y be the union of N with all of the Se for all e in X1 − T . Then Y
is a disk with strips. Further, M − Y consists only of interiors of 2-cells from
X, and therefore M − Y is a union of disks.

Now we show that M is homeomorphic to some surface in the list. We show
this by induction on the number of strips in Y (or equivalently, by the number
of edges in X1 outside of T ). We break into three cases, depending on what Y
looks like.

Case 1: some strip in Y is glued in with a half-twist. We visualize Y as N
with a twisted strip S1 glued in, along with some collections of ends of strips
glued in on either side of S1. Call these collections A and B. We slide A to
the right until it exits the arch of S1. This is illustrated in Figure 10. Now
we can recognize M as a connected sum of RP 2 and a surface M ′. However,
a complement of disks in M ′ can be built with fewer strips, so the inductive
hypothesis applies, and M ′ is a surface from our list. Since M = RP 2#M ′,
this is in our list if M ′ is S2 or a nonorientable surface of genus g. If M ′ is an
orientable surface of genus g, then we need to apply Lemma 3.5 repeatedly to
recognize M as a non-orientable surface of genus 2g + 1.

Case 2: no strips in Y are twisted, but some pair of strips cross each other.
We visualize Y as N with two untwisted strips S1 and S2 glued in, along with
some collections of ends of strips glued in in between and outside the ends of S1

and S2. Call these collections A, B, C, and D. In several steps, we slide these
collections out of the region under the arches of S1 and S2. This is illustrated
in Figure 11. Now we can recognize M as a connected sum of T 2 and a surface
M ′. Again, a complement of disks in M ′ can be built using fewer strips than
M , so the inductive hypothesis applies and M ′ is a surface from the list. A
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Figure 10: Processing a surface with a twisted strip to find a Möbius strip.

priori, M ′ might be a non-orientable surface (although it turns out that this
is never the case if there are no half-twists on the strips). If M ′ is S2 or an
orientable surface of genus g, then M ∼= T 2#M ′ is a surface from our list. If
M ′ is a non-orientable surface of genus g, then we apply Lemma 3.5 once, and
we recognize M as a non-orientable surface of genus g + 2.

Figure 11: Processing a surface with two untwisted, overlapping strips to find
a torus with boundary.

Figure 12: Left: an untwisted, empty arch. Right: since no strips cross, we can
recognize a connected sum.

Case 3: no strips in Y are twisted, and no pair of strips in Y cross each
other. Pick some strip S1. If one side of S1 has no strips at all, then since S1

is untwisted, that side of S1 consists of a disk in M . By gluing this disk in,
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we express M using fewer strips, and the inductive hypothesis applies to M .
If both sides of S1 have strips, then we can recognize M as a connected sum.
One of the summands consists of S1 together with the strips on one side of it,
and the other summand consists of the strips on the other side of S1. So we
recognize M as a connected sum of two surfaces that can be expressed using
fewer strips. Then M is a connected sum of two surfaces on the list. A priori,
this could be a mix of orientable and nonorientable surfaces from the list, and
therefore we would have to apply Lemma 3.5 to recognize M . (It turns out that
M would have to be S2 to end up in case 3, so in practice, we would never have
to apply that Lemma in this case.) Both parts of this case are illustrated in
Figure 12.
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