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Abstract

In this article we prove a convergence S-arithmetic Khintchine-type the-
orem for product of non-degenerate ν-adic manifolds, where one of them
is the Archimedian place.1

1 Introduction

Metric Diophantine approximation on Rn. Any real number can be
approximated by rational numbers. Diophantine approximation concerns the
precision of the approximation. For instance, by Dirichlet’s Theorem, one can
see that for any real number ξ, there are infinitely many integers p and q, such
that |qξ− p| < 1/q. This, in some sense, indicates that in order to get a “good”
approximation you do not need a “very large” denominator. On the other
hand, it is well known that any quadratic algebraic number cannot be “very
well” approximated. One can ask what happens for a “random” number, which
is the subject of metric Diophantine approximation. Let us be more precise.
Let ψ be a decreasing function from R+ to R+ e.g. ψε(q) = 1/q1+ε. A real
number ξ is called ψ-approximable if for infinitely many integers p and q, one
has |qξ − p| < ψ(|q|). It is called very well approximable if it is ψε-A for some
positive ε. A. Khintchine [Kh24] has shown that almost all (resp. almost no)
points, in terms of the Lebesgue measure, are ψ-A if

∑∞
q=1 ψ(q) diverges (resp.

converges)(See [St80, Chapter IV, Section 5]) . There are two ways to generalize
the notion of ψ-A to Rn:

a) ‖qξ − p‖ < ψ(|q|)1/n for infinitely many q ∈ Z and p ∈ Zn.

b) |q · ξ − p| < ψ(‖q‖n) for infinitely many q ∈ Zn and p ∈ Z.

A priori there are two notions of VWA vectors, i.e. being ψε-A for some
positive ε, either in terms of (a) or (b). However by means of Khintchine
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transference principle, these two give rise to the same notion (See [BD99, Chap.
1]) or [Ca57, Chap. 5]). Groshev [G38] proved the aforementioned theorem in
setting (b) (See [G38]), while in setting (a) it was already known to Khintchine
in 1926.

Metric Diophantine approximation on manifolds. One can restrict
oneself to a submanifold of Rn, and ask if a random point on this submani-
fold is ψ-A. In fact one of the first questions in this direction was posed by
K. Mahler [Ma32]. He conjectured that almost all points on the Veronese
curve {(x, x2, · · · , xn)|x ∈ R} are not VWA. Lots of works had been done to
prove this conjecture by J. Kubilius, B. Volkmann, W. LeVeque, F. Kash, and
W. M. Schmidt. In particular, the problem was solved for n = 2 by Kubil-
ius [Ku49] and for n = 3 by Volkmann [Vol61]. Finally Mahler’s conjecture
was settled affirmatively by Sprindžuk [Sp64, Sp69], and his proof led to the
theory of Diophantine approximation on manifolds. According to his termi-
nology, a submanifold M ⊆ Rn is called extremal if almost all points of M
are not VWA. He conjectured [Sp80] that any “nondegenerate” submanifold of
Rn is extremal (ref. [BD99] for the definition of nondegeneracy). In fact, he
conjectured this in the analytic setting. It is worth mentioning that a man-
ifold M = {(f1(x), · · · , fn(x))|x ∈ U} with analytic coordinates fi’s is non-
degenerate if and only if the functions 1, f1, · · · , fn are linearly independent
over R. D. Kleinbock and G. Margulis [KM98] proved a stronger version of
this conjecture using dynamics of special unipotent flows on the space of lat-
tices. Later V. Bernik, D. Kleinbock, and G. Margulis [BKM01] and V. Beres-
nevich [B00a, B00b, B02] independently proved a convergence Khintchine-type
theorem on manifolds. For instance, they showed that if

∑
q∈Zn\0 ψ(‖q‖n) con-

verges, almost no point of a non-degenerate submanifold is ψ-A. The divergence
case has been also completely solved by V. Beresnevich, V. Bernik, D. Klein-
bock, and G. Margulis [BBKM02].

S-arithmetic Diophantine approximation. There are relatively less
known results in the p-adic, and simultaneous approximation in different places.
In a recent work V. Beresnevich, V. Bernik, E. Kovalevskaya [BBK05], proved
both the convergence and the divergence Khintchine-type theorem for the p-adic
Veronese curve, i.e. {(x, x2, · · · , xn)|x ∈ Qp}. It is worth mentioning that the
convergence case had been already proved by E. Kovalevskaya [Ko99]. There
are a few other results of convergence Khintchine-type for more general curves
in the p-adic plane or space, e.g. [BK03, Ko00]. We take on this case in [MS07]
where we prove both the convergent and the divergent Khintchine-type theorem
for non-degenerate p-adic manifolds.

Situation in the simultaneous Diophantine approximation is even less clear.
The most general Khintchine-type theorem, in this case, is a recent work of
V. Bernik and E. Kovalevskaya[BK06]. They establish an inhomogeneous con-
vergence Khintchine-type theorem for the Veronese curve with components
in product of several local fields, more specifically {(x,x2, . . . ,xn)|x ∈ C ×
R ×

∏
p∈S Qp}. For product of non-degenerate manifolds, D. Kleinbock and

G. Tomanov, in a recent paper [KT07], came up with an S-arithmetic version
of metric Diophantine approximation. They carefully defined the notion of ex-
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tremal manifolds and proved the analogous theorem. Let us briefly recall some
of the definitions and results from their work.

Fix a set S of cardinality κ consisting of distinct normalized valuations of
Q. Let QS =

∏
ν∈S Qν , Sf = S \ {ν∞}, and S̃ = S ∪ {ν∞}. Using a Dirichlet-

principle-type argument, one can show that for any ξ ∈ Qn
S with S-norm at

most one, there are infinitely many (q, q0) ∈ Zn × Z, such that

|q · ξ + q0|κS ≤ ‖q‖−n∞ if ν∞ ∈ S,

|q · ξ + q0|κS ≤ ‖(q, q0)‖−n−1
∞ if ν∞ 6∈ S.

Accordingly, they defined the notion of VWA for a vector in Qn
S ; namely, ξ ∈ Qn

S

is called VWA if for some ε > 0, there are infinitely many (q, q0) ∈ Zn×Z, such
that

|q · ξ + q0|κS ≤ ‖q‖−n−ε∞ if ν∞ ∈ S,

|q · ξ + q0|κS ≤ ‖(q, q0)‖−n−1−ε
∞ if ν∞ 6∈ S.

Extremal submanifolds of Qn
S were defined similar to the real case and they

proved that:

Theorem A. Let M ⊆ Qn
S be a non-degenerate Ck manifold, then M is ex-

tremal.

A few terminologies and the statement of the main result. Here we
introduce necessary notations to state the main results of the article, and refer
the reader to the second section for the definitions of the technical terms. Let
S, Sf and S̃ be as before. It is well known that ZS̃ = Q ∩ QS̃ ·

∏
ν 6∈S̃ Zν is a

co-compact lattice in QS̃ , and [0, 1)×
∏
ν∈Sf Zν is a fundamental domain of ZS̃

in QS̃ . As we mentioned before any vector in Qn
S can be approximated with

rational vectors. However this time, we view the field of rational numbers as the
field of fractions of R a subring of ZS̃ . It is worth mentioning that any subring
of ZS̃ is of the form ZS′ for a subset S′, which contains the infinite place, of
S̃. Any such R is discrete, so it has just finitely many elements ar in a ball of
radius r in QS̃ . It is easy to see that ar grows polynomially with the growth
degree g(R) equal to |S′|. In particular one has |Br ∩R| < 2rg(R).

Using Dirichlet-principle-type argument one can see that for any ξ ∈ Qn
S

with S-norm at most one, there are infinitely many (q, q0) ∈ Rn ×R such that

|q · ξ + q0|κS ≤ ‖q‖
−ng(R)
S if ν∞ ∈ S,

|q · ξ + q0|κS ≤ ‖(q, q0)‖−(n+1)g(R)

S̃
if ν∞ 6∈ S.

Accordingly, one can define the notion of R-VWA; namely, ξ ∈ Qn
S is called

R-VWA if for some ε > 0, there are infinitely many (q, q0) ∈ Rn ×R such that

|q · ξ + q0|κS ≤ ‖q‖
−ng(R)−ε
S if ν∞ ∈ S ,

|q · ξ + q0|κS ≤ ‖(q, q0)‖−(n+1)g(R)−ε
S̃

if ν∞ 6∈ S.
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A manifold M ⊆ Qn
S is called R-extremal if almost no point of it is R-VWA.

One can rephrase the result of Kleinbock and Tomanov, theorem A, and say
that any non-degenerate Ck manifold is Z-extremal. In fact, it is easy to adapt
their proof and show that any such manifold is R-extremal, for any subring R
of ZS̃ .

Assume that S contains the Archimedian place. Let Ψ be a map from Rn to
R+. A vector ξ ∈ Qn

S is called (Ψ,R)-A if for infinitely many (q, q0) ∈ Rn ×R
one has |q · ξ + q0|κS ≤ Ψ(q). In this article, we prove an S-arithmetic R-
Khintchine-type statement. Let us fix a few notations before stating the precise
statements.

a) Places: S: a finite set of places containing the Archimedian place.

b-1) Domain: U =
∏
ν∈S Uν where Uν ⊆ Qdν

ν is an open box.

b-2) Coordinates: f(x) = (fν(xν))ν∈S , for any x = (xν) ∈ U, where

i) fν = (f (1)
ν , · · · , f (n)

ν ) : Uν → Qn
ν : analytic map for any ν ∈ S, and can be

analytically extended to the boundary of Uν .

ii) Restrictions of 1, f (1)
ν , · · · , f (n)

ν to any open subset of Uν are linearly in-
dependent over Qν .

iii) ‖fν(xν)‖ ≤ 1, ‖∇fν(xν)‖ ≤ 1, and |Φ̄βfν(y1, y2, y3)| ≤ 1/2 for any ν ∈ S,
second difference quotient Φβ , and xν , y1, y2, y3 ∈ Uν (For the definition
of Φβ , we refer the reader to the second section).

c) Ring: R is a subring of ZS , and so for some SR ⊆ S, we have R = ZSR .
Let SRc be the complement of SR in S.

d) Level of approximation: Ψ : Rn \ {0} → (0,∞) satisfies

i) Ψ(q1, · · · , qi, · · · , qn) ≥ Ψ(q1, · · · , q′i, · · · , qn) whenever |qi|S ≤ |q′i|S .

ii)
∑

q∈Rn\{0}Ψ(q) <∞.

Theorem 1.1. Let S, U, f , Ψ, and R be as above; then

W f
R,Ψ = {x | f(x) is (Ψ,R)−A}

has measure zero.

Remark. 1- This theorem has been proved when S = {ν∞} by Bernik, Klein-
bock and Margulis [BKM01].

2- As we mentioned earlier, for Ψ(q) = ‖q‖−ng(R)−ε
S , where ε is a positive

number, Kleinbock and Tomanov [KT07] essentially proved this theorem.

3- Kleinbock and Tomanov [KT07] asked for such a theorem for R = Z.
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4- It is clear that the above theorem holds for product of any non-degenerate
ν-adic analytic manifolds. Indeed, the condition on the domain or the first
two conditions on the coordinate functions are consequences of analyticity
and non-degeneracy of the manifold. The last condition on the coordinate
functions can be achieved by replacing f with f/M for a suitable S-integer
M .

5- (With or without the Archimedian place) As we have seen in the intro-
duction, there is an intrinsic difference between the cases either with or
without Archimedian places even though the methods are somewhat sim-
ilar. For instance in the setting of this paper, namely when ν∞ ∈ S, we
formulate and prove a simultaneous approximation with coordinates in any
subring R. However when ν∞ 6∈ S, we can formulate and prove such a
theorem only for R = Z, in [MS07], see the remarks at the end of this
paper for the precise statement.

6- (Divergence) Following the above remark, we should also mention that
in [MS07] we also prove the divergence counter part as long as we deal with
only one non-Archimedian place. Our argument comes short of proving
the divergence counter part of simultaneous approximations. In particular,
in the setting of this paper, namely when S contains the Archimedian place
and a non-Archimedian place, we do not get the divergence part.

Idea of the proof of theorem 1.1. We essentially follow the same stream
line of the proof of [BKM01]. However we have to do careful analysis on families
of p-adic Ck functions. Spaces over p-adic fields are “easier” when one deals
with number theoretic properties. However the analysis in some problems gets
subtle as we have neither the notion of angle nor connectedness! So almost all
the steps need a new approach or at least perspective.

For a fixed q ∈ Rn \0 we study the behavior of the function f(x) ·q, and the
philosophy is that when the gradient of this function is “large”, the value of the
function cannot be close to R for a “long” time. This will take care of points
with “large” gradient. Hence we need to deal with the points with “small”
gradient. To do so, we use a quantitative version of recurrence of polynomial-
like maps on the space of S-arithmetic modules. What is roughly explained here
is the process of reducing the proof of theorem 1.1 to the following theorems,
modulo Borel-Cantelli Lemma.

Theorem 1.2. Let U and f be as above and 0 < ε < 1
4n|S|(1+|SRc|) . Let A bex ∈ U| ∃q ∈ Rn, Ti

2
≤ |qi|S < Ti,

|〈f(x) · q〉||S|S < δ(
∏
i Ti)

−g(R)

‖∇fν(xν)q‖ν > ‖q‖−εS , ν ∈ SRc
‖∇fν(xν)q‖ν > ‖q‖1−εS , ν ∈ SR

 ;

then |A| < Cδ |U|, for large enough max(Ti) and a universal constant C.

For the convenience of the reader, let us recall thatR = ZSR , and the growth
of the numbers of elements of R in a ball of radius T in QS is a polynomial
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on T of degree g(R) = |SR|. Let us also add that whenever needed we view a
vector as a column or a row matrix.

Theorem 1.3. Let U and f be as before. If ‖f(x)‖ ≤ 1 and ‖∇f(x)‖ ≤ 1,
then for any x = (xν)ν∈S ∈ U, one can find a neighborhood V =

∏
ν∈S Vν ⊆ U

of x and α > 0 with the following property: For any ball B ⊆ V, there exists
E > 0 such that for any choice of 0 < δ ≤ 1, T1, · · · , Tn ≥ 1, and Kν > 0 with
δ|S|( T1···Tn

maxi Ti
)
g(R)∏

ν∈S Kν ≤ 1 one has∣∣∣∣∣∣
x ∈ B| ∃q ∈ Rn \ {0} :

|〈f(x) · q〉| < δ
‖∇fν(x)q‖ν < Kν , ν ∈ S
|qi|S < Ti


∣∣∣∣∣∣ ≤ E εα|B|, (1.3)

where ε = max{δ, (δ|S|( T1···Tn
maxi Ti

)
g(R)∏

ν∈S Kν)
1

κ(n+1) }.

Theorem 1.3 is proved using dynamics of special unipotent flows and S-
arithmetic version of Kleinbock-Margulis lemma, which was proved in [KT07].

Structure of the paper. In section 2, we start with some geometry and
analysis of p-adic spaces, and continue observing some of the properties of dis-
crete ZS-submodules of

∏
ν∈S Qmν

ν . Section 3 is devoted to the proof of theo-
rem 1.2. In section 4, we recall the notion of good functions and establish the
“goodness” of families of ν-adic analytic functions, which will be needed in the
proof of theorem 1.3. This technical section, in some sense, is the core of the
proof of theorem 1.3 modulo theorem 6.2. In section 5, we translate theorem 1.3
in terms of recurrence of special flows on the space of discrete ZS-submodules
of
∏
ν∈S Qmν

ν . In section 6, we shall recall a theorem of Kleinbock-Tomanov,
and use it to establish theorem 1.3 proving its equivalence in the dynamical
language. The proof of the main theorem will be completed in section 7. We
shall finish the paper by discussing a few remarks, and open problems.

Acknowledgments. Authors would like to thank G. A. Margulis for intro-
ducing this topic and suggesting this problem to them. We are also in debt to
D. Kleinbock for reading the first draft and useful discussions. We also thank
the anonymous referee(s) for their remarks and suggestions.

2 Notations and Preliminaries

Geometry of p-adic spaces. For any place ν of the field of rational
numbers Q, Qν denotes the ν-completion of Q. In particular, when ν is the
Archimedian place of Q, Qν is the field of real numbers R. A non-Archimedian
place (resp. the Archimedian place) is also called a finite (resp. infinite) place.
Let pν be the number of elements of the residue field of Qν if ν is a finite
place. For a a positive real number and ν a finite place of Q, let daeν (resp.
bacν) denote a power of pν with the smallest (resp. largest) ν-adic norm bigger
(resp. smaller) than a. For any ring R and two vectors x, y ∈ Rn, we set
x · y =

∑n
i=1 x

(i)y(i). Let ν be a place of Q and V a vector space over Qν . For
any subset X of V, XQν (resp. XZν ) denotes the Qν (resp. Zν) span of X . We
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recall the notion of distance and orthogonality on V even if ν is a finite place. In
the infinite place we take the Euclidean norm on V, and in a finite place, for the
notion of distance, we take a Qν basis B for V, and define the maximum norm
‖·‖B with respect to B on V. For the space Qm

ν , one can consider the norm with
respect to the standard basis, and in this case we drop B from the notation.
Any basis for V gives rise to a basis for

∧
V, so we can extend the corresponding

norm on V to a norm on
∧
V, and we do so. The following definition and/or

lemma gives us the notion of orthogonality.

Definition 2.1. Let ν be a finite place of Q. A set of vectors x1, · · · , xn in
Qm
ν , is called orthonormal if ‖x1‖ = ‖x2‖ = · · · = ‖xn‖ = ‖x1 ∧ · · · ∧ xn‖ = 1,

or equivalently when it can be extended to a Zν-basis of Zmν .

Calculus of functions on p-adic spaces. Here we recall the definition
of p-adic Ck functions, and refer the reader to [Sf84] for further reading. Let F
be a local field and f an F -valued function defined on U an open subset of F .
The first difference quotient Φ1f of f is a two variable function given by

Φ1f(x, y) :=
f(x)− f(y)

x− y
,

defined on ∇2U := {(x, y) ∈ U × U | x 6= y}. We say, f is C1 at a ∈ U if

lim
(x,y)→(a,a)

Φ1f(x, y)

exists, and f is said to be C1 on U, if it is C1 at every point of U. Now let

∇kU := {(x1, · · · , xk) ∈ Uk| xi 6= xj for i 6= j},

and define the kth order difference quotient Φkf : ∇k+1U → F of f inductively
by Φ0f = f and

Φkf(x1, x2, · · · , xk+1) :=
Φk−1f(x1, x3, · · · , xk+1)− Φk−1f(x2, x3, · · · , xk+1)

x1 − x2
.

One readily sees any other pair could be taken instead of (x1, x2), and so Φkf
is a symmetric function of its k + 1 variables. f is called Ck at a ∈ U if the
following limit exits

lim
(x1,··· ,xk+1)→(a,··· ,a)

Φkf(x1, · · · , xk+1),

and it is called Ck on U if it is Ck at every point a ∈ U . This is equivalent to
Φkf being continuously extendable to Φ̄kf : Uk+1 → F. Clearly the continuous
extension is unique. As one expects Ck functions are k times differentiable, and

f (k)(x) = k!Φ̄k(x, · · · , x).

It is worth mentioning that, f ∈ Ck implies f (k) is continuous but the converse
fails. Also C∞(U) is defined to be the class of functions which are Ck on U , for
any k. Note that analytic functions are C∞.
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Now it is straightforward to generalize this to several variables. Let f be an
F -valued function defined on U1 × · · · ×Ud, where each Ui is an open subset of
F. Denote by Φki f the kth order difference quotient of f with respect to the ith

coordinate. Then for any multi-index β = (i1, · · · , id) let

Φβf := Φi11 ◦ · · · ◦ Φidd f.

It is defined on∇i1+1U1×· · ·×∇id+1Ud, and as above the order is not important.
The function f is called Ck on U1 × · · · × Ud if for any multi-index β with
|β| =

∑d
j=1 ij at most k, Φβf is extendable to Φ̄βf on U i1+1

1 × · · · × U id+1
d .

Similarly to the one variable case the obvious relation between Φ̄βf and ∂βf
holds.

For a C1 function f = (f1, · · · , fn) from Fm to Fn, let ∇f(x) be an m by
n matrix whose (i, j) entry is ∂jfi(x).

Discrete ZS-submodules of
∏
ν∈S Qmν

ν . For any finite set S of places
of Q which contains the infinite place ∞, set Sf = S \ {∞}, QS =

∏
ν∈S Qν ,

and ZS = Q ∩ (QS ×
∏
ν 6∈Sf Zν) where Q is diagonally embedded in QS . For

a non-Archimedian (resp. Archimedian) place ν, let us normalize the Haar
measure µν of Qν such that µν(Zν) = 1 (resp. µ∞([0, 1]) = 1). On

∏
ν∈S Qmν

ν ,
we take the maximum norm ‖ · ‖S , i.e. ‖x‖S = maxν∈S ‖xν‖ν . By the Chinese
reminder theorem, it is clear that ZS is a co-compact lattice in QS , and by
the above normalization and the product measure on QS , the covolume of ZS
is one. For any x ∈ QS , |〈x〉| denotes the distance from x to ZS , and we
shall choose 〈x〉 ∈ ZS such that ‖x−〈x〉‖S = |〈x〉|. For any x ∈

∏
ν∈S Qmν

ν , let
c(x) =

∏
ν∈S ‖xν‖ν . Here and for all we set κ = |S|, clearly one has c(x) ≤ ‖x‖κS .

By virtue of [KT07, proposition 7.2] one can see the following lemma which
shows that any discrete ZS-submodule of

∏
ν∈S Qmν

ν is essentially coming from
ZS .

Lemma 2.2. If ∆ is a discrete ZS-submodule of
∏
ν∈S Qmν

ν , then there are
x(1), · · · ,x(r) in

∏
ν∈S Qmν

ν so that ∆ = ZSx(1) ⊕ · · · ⊕ ZSx(r). Moreover for
any ν ∈ S, x(1)

ν , · · · , x(r)
ν are linearly independent over Qν .

Definition 2.3. Let Γ be a discrete ZS-submodule of
∏
ν∈S Qmν

ν ; then a sub-
module ∆ of Γ is called a primitive submodule if ∆ = ∆QS ∩ Γ.

Remark 2.4. Let Γ and ∆ be as in definition 2.3, then ∆ is a primitive
submodule of Γ, if and only if there exists a complementary ZS-submodule
∆′ ⊆ Γ, i.e. ∆ ∩∆′ = 0 and ∆ + ∆′ = Γ.

3 Proof of theorem 1.2

As in the introduction we have R = ZSR . Let |SR| = κR and |SRc| = κ̃R
and so |S| = κ = κR + κ̃R. Fix q = (q1, · · · , qn) ∈ Rn with Ti/2 ≤ |qi|S < Ti
and define T =

∏
i Ti and R = T

1
nκ . As in the theorem, let 0 < ε < 1

4nκ(1+ fκR)

8



be fixed through out the paper. Let g(x) = f(x) · q, for any x ∈ U, and set

Aq = {x ∈ A| the hypothesis of the theorem holds for q = (q1, · · · , qn)}.

This means that any x ∈ Aq satisfies the following properties:

P1) For some q0 ∈ R, |g(x) + q0|κS < δT−κR .

P2) For any ν ∈ SRc, ‖g(x)‖ν > ‖q‖−εS .

P3) For any ν ∈ SR, ‖g(x)‖ν > ‖q‖1−εS .

It is worth mentioning that because of (b-2, iii) the third condition on the
coordinate maps, g also satisfies the following conditions at any point x:

C1) For any ν ∈ S, ‖∇gν(xν)‖ν ≤ ‖q‖ν .

C2) For any ν ∈ S, 1 ≤ i, j ≤ dν , xν , x′ν , x′′ν ∈ Uν , Φ̄ij(gν)(xν , x′ν , x
′′
ν) ≤ ‖q‖ν .

We will show that, |Aq| < Cδ T−g(R)|U|, which then, summing over all possible
q’s, will finish the proof.

Let B(x) be a neighborhood of x which is defined as follows.

(i) If κ̃R > 0, let

B(x) =
∏

ν∈SRc
B(xν ,

1
4R1/fκR‖∇gν(xν)‖ν

)×
∏
ν∈SR

B(xν ,
R1/κR

4d∞‖∇gν(xν)‖ν
)

(ii) If κ̃R = 0, let

B(x) =
∏
ν∈S

B(xν ,
1

4d∞‖∇gν(xν)‖ν
)

For x ∈ Aq, let q0 be an element in R which satisfies (P1).

First step. For any y ∈ B(x), B(g(y), 1
4R ) ∩ R ⊆ {q0}, i.e. q0 is the only

possible 1
4R approximation of g(y) with an element of R.

Proof of the first step. Let q′0 ∈ B(g(y), 1
4R ) ∩ R. Assume that q0 6= q′0. In

order to get a contradiction we will use the Taylor expansion of g about x at
each place, i.e.

q0+gν(yν) = q0+gν(xν)+∇gν(xν)·(xν−yν)+
∑
i.j

Φ̄ij(gν)(•)(x(i)
ν −y(i)

ν )(x(j)
ν −y(j)

ν ),

where the arguments of Φ̄ij(gν) are some of the components of xν and yν . We
divide the proof into two parts:

(i) κ̃R = 0. In this case, |q0 + g(y)|S < 1
4 because of the Taylor expansion

and the following inequalities,
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• |q0 + gν(xν)|ν ≤ 1
4d∞

because of (P1),

• |∇gν(xν) · (xν − yν)|ν ≤ 1
4d∞

because of the way we defined B(x),

• |
∑
i.j Φ̄ij(gν)(•)(x(i)

ν − y
(i)
ν )(x(j)

ν − y
(j)
ν )|ν ≤ 1

4d∞
because of (C2),

(P2), and the definition of B(x).

so |q0 − q′0|S < 1
2 , which says q0 = q′0.

(ii) κ̃R > 0. Similar to the previous case, we will compare the maximum
possible values of each of the three above expressions at each place ν. The
first one is always small. It is enough to compare the last two. Because
of the way we defined B(x), the second term is less than 1

4R1/gκR (resp.
R1/κR

2 ) for ν ∈ SRc (resp. ν ∈ SR). Indeed the third term is also less than
these values because of (P2) (resp. (P3)), |qi|S ≤ Ti (resp. Ti/2 ≤ |qi|S),
and ε being small. So we have

∏
ν∈S |q′0− q0|ν < 1

4 , which contradicts the
product formula, since we have q0, q

′
0 ∈ R ⊆ ZS .

Second step. For any ν ∈ S and y ∈ B(x), we have

‖∇gν(yν)−∇gν(xν)‖ν < ‖∇gν(xν)‖ν/4.

Proof of the second step. This time, we will use the Taylor expansion of
∂igν about xν . So let z = (zν) where yν = xν + zν . In this setting, we have

∂igν(yν) = ∂igν(xν) +
∑
j Φ̄j(∂igν)(•)zjν

= ∂igν(xν) +
∑
j(Φ̄ji(gν)(•) + Φ̄ji(gν)(•))zjν ,

where the arguments of Φ̄ij(gν) and Φ̄j(∂igν), as before, are some of the com-
ponents of xν and yν . Now similar to the first step, one can argue and get the
following inequalities, which complete the proof of the second step.

(i) If ν ∈ SRc then

|∂igν(yν)− ∂igν(xν)|ν < |zν |ν ≤
1

4R
1gκR ‖∇gν(xν)‖ν

≤ ‖∇gν(xν)‖ν
4

,

(ii) If ν ∈ SR then

|∂igν(yν)− ∂igν(xν)|ν < 2d∞|q|ν |zν |ν ≤ 2d∞|q|νρ ≤
‖∇gν(xν)‖ν

4
,

where ρ = 1
4d∞‖∇gν(xν)‖ν if SR = S and ρ = R

1
κR

4d∞‖∇gν(xν)‖ν otherwise.

Third step. |πν(Aq ∩B(x))| ≤ C ′(δT−g(R))
1
κ rν |πν(B(x))|, where rν = 1

R1/κR

(resp. R1/fκR , 1) for ν ∈ SR (resp. ν ∈ ScR, ν ∈ SR = S) and πν is projection
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into the Qdν
ν .

Proof of the third step. Without loss of generality, we may and will assume
that ‖∇gν(xν)‖ν = |∂1gν(xν)|ν . In fact, we will show that the considered set is
thin in the e1 direction, and it gives us the factor saving. So let y,y′ ∈ Aq∩B(x),
and assume that πν(y′) = πν(y) + αe1. Note that by the first step and (P1),
for some q0 ∈ R, we have |q0 + g(y)|κS ≤ δT−g(R) and |q0 + g(y′)|κS ≤ δT−g(R),
and so

|g(y′)− g(y)|κS ≤ 2κδT−g(R). (1)

As always set yν = πν(y) and y′ν = πν(y′).

(i) ν ∈ S\{∞}. Again we use the Taylor expansion to get a “mean value
theorem” at the norm level.

gν(yν + αe1)− gν(yν) = ∂1gν(yν)α+ Φ11g(•)α2,

as before a norm comparison, gives us

|gν(yν + αe1)− gν(yν)|ν = |∂1gν(yν)|ν |α|ν (2)

(ii) ν =∞. Here we have the mean value theorem and so for some z∞,

g∞(y∞ + αe1)− g∞(y∞) = ∂1g∞(z∞)α (3)

Now by fixing the last dν − 1 entries, we slice our set, and equations 2 and 3
coupled with inequality 1 and the second step tell us that the measure of each

slice is at most C ′′ (δT
−g(R))

1
κ

‖∇gν(xν)‖ν = C ′′(δT−g(R))
1
κ rν × radius of πν(B(x)). Now

direct use of Fubini’s theorem completes the proof of this step.

Final step. For any ν ∈ S, {πν(B(x))}x∈Aq is a covering of πν(Aq). Using
Besicovitch covering lemma (see in [KT07] for details on this) and the third
step, we can conclude that

|πν(Aq)| ≤ C ′′′(δT−g(R))
1
κ rν |Uν |,

for some universal constant C ′′′. the following inequalities complete the proof:

|Aq| ≤
∏
ν∈S
|πν(Aq)| ≤ C

∏
ν∈S

((δT−g(R))
1
κ rν)|U| = Cδ T−g(R)|U|.

4 Good functions

In this section, first we recall the notion of a good function and a few known
theorems, then we establish the “goodness” of a family of ν-adic analytic func-
tions, which will be needed in the proof of theorem 1.3.
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Definition 4.1. [KM98] Let C and α be positive real numbers, a function f
defined on an open set V of X =

∏
ν∈S Qmν

ν is called (C,α)-good, if for any
open ball B ⊂ V and any ε > 0 one has

|{x ∈ B| ‖f(x)‖ < ε · sup
x∈B
‖f(x)‖}| ≤ C εα|B|.

The following is tautological consequence of the above definition.

Lemma 4.2. Let X =
∏
ν∈S Qmν

ν ,V and f be as above then

(i) f is (C,α)-good on V if and only if ‖f‖ is (C,α)-good.

(ii) If f is (C,α)-good on V, then so is λf for any λ ∈ QS .

(iii) Let I be a countable index set, if fi is (C,α)-good on V for any i ∈ I, then
so is supi∈I ‖f‖.

(iv) If f is (C,α)-good on V and c1 ≤ ‖f(x)‖S/‖g(x)‖S ≤ c2, for any x ∈ V,
then g is (C(c2/c1)α, α)-good on V.

Let us recall the following lemma from [KT07, lemma 2.4].

Lemma 4.3. Let ν be any place of Q and p ∈ Qν [x1, · · · , xd] be a polynomial
of degree not greater than l. Then there exists C = Cd,l independent of p, such
that p is (C, 1/dl)-good on Qν .

Next we state a variation of [KT07, theorem 3.2] without proof.

Theorem 4.4. Let V1, · · · , Vd be nonempty open sets in Qν , Let k ∈ N,
A1, · · · , Ad, A′1, · · · , A′d positive real numbers and f ∈ Ck(V1× · · ·×Vd) be such
that

Ai ≤ |Φki f |ν ≤ A′i on5k+1 Vi ×
∏
j 6=i

Vj , i = 1 · · · , d.

Then f is (C,α)-good on V1 × · · · × Vd, where C and α depend only on k, d,Ai,
and A′i .

Another useful fact which can be easily adapted to the ν-adic calculus is propo-
sition 3.4 of [BKM01].

Theorem 4.5. Let U be an open neighborhood of x0 ∈ Qm
ν and let F ⊂ Cl(U)

be a family of functions f : U → Qν such that

1. {∇f |f ∈ F} is compact in Cl−1(U)

2. inff∈F sup|β|≤l |∂βf(x0)| > 0.

Then there exist a neighborhood V ⊆ U of x0 and positive numbers C = C(F)
and α = α(F) such that for any f ∈ F

(i) f is (C,α)-good on V .
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(ii) ∇f is (C,α)-good on V .

Proof. The argument in [BKM01, proposition 3.4] goes through using theorem
4.4.

Corollary 4.6. Let f1, f2, · · · , fn be analytic functions from a neighborhood U
of x0 in Qm

ν to Qν , such that 1, f1, f2, · · · , fn are linearly independent on any
neighborhood of x0, then

(i) There exist a neighborhood V of x0, C & α > 0 such that any linear com-
bination of 1, f1, f2, · · · , fn is (C,α)-good on V .

(ii) There exist a neighborhood V ′ of x0, C ′ & α′ > 0 such that for any
d1, d2, · · · , dn ∈ Qν , ‖

∑n
k=1 di∇fi‖ is (C ′, α′)-good.

Proof. Let F = {d + D · (f1, · · · , fn)| d ∈ Qν , D ∈ Qn
ν , ‖D‖ = 1}. By our

assumptions on f1, · · · , fn, the family F satisfies the conditions of theorem 4.5
which gives the corollary.

The following theorem is the main result of this section. This technical theorem
is crucial in the proof of theorem 1.3. Let us first recall the notion of skew
gradient from [BKM01, section 4]. For two C1 functions gi : Qd

ν → Qν , i = 1, 2
define ∇̃(g1, g2) := g1∇g2 − g2∇g1. This, as one expects from the definition,
measures how far two functions are from being linearly dependent ref. loc. cit.
for a discussion on this.

Theorem 4.7. Let U be a neighborhood of x0 ∈ Qm
ν , f1, f2, · · · , fn be analytic

functions from U to Qν , such that 1, f1, f2, · · · , fn are linearly independent on
any open subset of U. Let F = (f1, · · · , fn) and

F = {(D · F, D′ · F + a)| ‖D‖ = ‖D′‖ = ‖D ∧D′‖ = 1, D,D′ ∈ Qn
ν , a ∈ Qν}.

Then there exists a neighborhood V ⊆ U of x0 such that

(i) For any neighborhood B ⊆ V of x0, there exists ρ = ρ(F , B) such t
supx∈B ‖ ∇̃g(x) ‖≥ ρ for any g ∈ F .

(ii) There exist C, α positive numbers such that ‖∇̃g‖ is (C,α)-good on V ,
for any g ∈ F .

Proof. The case ν = ∞ is proposition 4.1 of [BKM01], so we may assume ν is
a finite place. We start with part (i) proceeding by contradiction. If not, one
can find a neighborhood B of x0 such that for any n, there would exist gn ∈ F
with ‖∇̃gn(x)‖ ≤ 1/n for any x ∈ B. Let gn = (Dn · F, D′n · F + an). If there
is a bounded subsequence of an, going to a subsequence, we may assume gn
is converging to g ∈ F . Therefore ‖∇̃g(x)‖ = 0 for any x ∈ B which contra-
dicts linearly independence of 1, f1, · · · , fn. Thus we may assume that, an →∞.
However inf‖D‖=1 supx∈B ‖D∇F (x)‖ = δ > 0, therefore supx∈B ‖∇̃gn(x)‖ → ∞
in contrary to our assumption.
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Now we prove part (ii). The proof will be divided into two parts. First we shall
deal with the“compact” part of F , i.e. when we have an upper bounded on |a|,
later we will prove the unbounded part.

Lemma 4.8. Let U & F be as in the theorem 4.7 and FM be

{(D·F,D′·F+a)| ‖D‖ = ‖D′‖ = ‖D∧D′‖ = 1, D,D′ ∈ Qn
ν , a ∈ Qν , |a|ν ≤M}.

Then there exist a neighborhood V = VM of x0, C = CM and α = αM > 0 such
that ‖∇̃g‖ is (C,α)-good on V for any g ∈ FM .

Proof. Replacing F (x) by F (x+x0) we may assume that x0 = 0. Then rescaling
x by rx we may and will assume all the Taylor coefficients of fi’s are in Zν , and
U ⊆ pνZν . Now for any g ∈ FM there is hg ∈ GLm(Zν) such that all of the
components of ∇̃(g◦hg) are non-zero functions. By the compactness assumption
on FM , we may find h1, · · · , hk ∈ GLm(Zν) such that

sup
16j6k
x∈U

|(∇̃(g ◦ hj))i(x)| ≥ δ for 1 ≤ i ≤ m.

Hence we can find b = bδ with the following property: for any g ∈ FM there
exists 1 ≤ j ≤ k, such that for any 1 ≤ i ≤ m one can find a multi-index β
with |β| ≤ b, and |∂β(∇̃(g ◦ hj))i(0)| ≥ δ. Using theorem 4.5, there exist a
neighborhood V ′ of the origin, C and α > 0 such that for any g ∈ FM one can
find 1 ≤ j ≤ k so that ‖∇̃(g ◦ hj)‖ is (C,α)-good on V ′, which says ‖∇̃g‖ is
good on some V ′ for any g ∈ FM .

To prove the unbounded part, we need the following lemma.

Lemma 4.9. Set H = (p1, p2, · · · , pn) where pi ∈ Zν [x1, · · · , xm] are linearly
independent polynomials of degree ≤ l. For any positive real number r let
Hr(x) = H(brcνx)

brclν
. Then there exist γ and 0 < s < 1 such that for any D,D′ ∈

Qn
ν with ‖D‖ = ‖D′‖ = ‖D ∧D′‖ = 1, any a ∈ Qν with |a| ≥ plν and r < s one

has
‖∇̃Pr(x)‖B1 ≥ γ(1 + ‖Pr‖B1),

where Pr = (D ·Hr, D
′ ·Hr + a

brclν
).

Proof. First Claim. For any p(x) =
∑d
i=0 cix

i ∈ Qν [x] and 0 < δ < 1, there
exists s, such that for any r < s, one has

sup
x∈Br

|p(x)| ≥ |ck|r
k

kk
, where |ck| ≥ δmax

i
{|ci|}.

With the understanding that 00 = 1.
Proof of the first claim. We will see s = δ works. If k = 0 then |p(x)| = |c0|
for |x| < δ and there is nothing to prove. Otherwise, there exists k > 0 such
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that |Φk(p)(x1, · · · , xk+1)| = |ck| for |xi| < δ. Take x1, · · · , xk+1 such that
|xi − xj | ≥ r/k for 1 ≤ i 6= j ≤ k + 1, where r < s = δ, Let

q(x) =
k+1∑
i=1

p(xi)

∏
j 6=i(x− xj)∏
j 6=i(xi − xj)

,

be the degree k, Lagrange polynomial of p with respect to x1, · · · , xk+1. Then
we get

|ck| = |Φk(p)(x1, · · · , xk+1)| = |Φk(q)(x1, · · · , xk+1)|

= |
k+1∑
i=1

p(xi)∏
j 6=i(xi − xj)

| ≤ ‖p‖Br
(r/k)k

.

Therefore ‖p‖Br ≥ |ck|rk/kk as we wanted to show.
Second claim. There exist a0, C

′, s > 0 such that for any Q in

G̃a0 = {∇̃(D ·H,D′ ·H + a)|D,D′ orthonormal vectors, |a| ≥ a0},

and r < s, one has
‖Q‖Br ≥ C ′|a|rl−1. (4)

Proof of the second claim. As the family G = {D · H| ‖D‖ = 1} is a compact
family of functions, and pi’s are linearly independent, there exists δ′ > 0 such
that ‖D ·H‖ ≥ δ′, for any ‖D‖ = 1. Thus for any polynomial p ∈ G, there exists
a multi-index β with |β| = k ≤ l such that Φβ(p)(0) ≥ δ′. Hence for any such p,
one may find hp ∈ GLm(Zν), δp, and sp, such that |Φk1(p ◦ hp)(x0, · · · , xk)| ≥ δp
for any xj ’s with norm at most sp. Now by the compactness of GLm(Zν) and G,
there are h1, · · · , ht ∈ GLm(Zν), and positive numbers δ′′, s′ such that for any
p ∈ G, |Φk1(p ◦ hi)(x0, · · · , xk)| ≥ δ′′ (∗) for some 1 ≤ i ≤ t, and any xj with
norm at most s′.

Now let D and D′ be two orthonormal vectors and g(x) = ∇̃(D ·H,D′ ·H + a).
As ‖g‖Br = ‖g ◦h‖Br for any h ∈ GLm(Zν), we may and will replace g by g ◦hi,
where i has been chosen such that (∗) holds for p = D ·H. Hence if a0 = plν ,

the coefficient of xk−1
1 in the first component of ∇̃(D ·H ◦ hi, D′ ·H ◦ hi + a)

has norm at least δ′′|a|/plν , and moreover all the coefficients have norm at most
|a|. Now let x2 = · · · = xn = 0. We would get a one-variable polynomial whose
coefficient of term xk−1

1 has norm at least δ′′/plν times the maximum norm of all
the coefficients. Thus the first claim completes the proof of the second claim.
Final step. let P (x) = (D · H, D′ · H + a). Note that ‖Pr‖B1 = |a|/rl,
‖∇̃Pr‖ = ‖∇̃P ‖/r2l−1. Using these and 4, one sees that γ = C′

2 works.

Before proving the unbounded part, let us recall and give the needed modi-
fication of lemma 3.7 of [BKM01].
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Lemma 4.10. Let B ⊆ Qd
ν be an open ball of radius r, and B̃ be the ball with

the same center as B and of radius (pν + 1) · r. Let f be a continuous function
on B̃. Suppose C,α, and δ are positive real numbers such that

|{x ∈ B′| |f(x)| < ε · sup
x∈B′

|f(x)|}| ≤ Cεα|B′|,

for any ball B′ ⊆ B̃ and ε ≥ δ. Then f is (C,α′)-good on B whenever 0 < α′ < α
and Cpνδα−α

′ ≤ 1.

Proof. The same argument as in [BKM01] works in the non-Archimedean set-
ting, too. However we have to replace supx∈B(y) |f(x)| = ε · supx∈B |f(x)|, with

sup
x∈B(y)

|f(x)| ≤ ε · sup
x∈B
|f(x)| ≤ sup

x∈B′(y)

|f(x)|,

where B′(y) is a ball centered at y whose radius is pν times the radius of B(y).
Then use the covering of B′(y)’s instead of B(y)’s and note that

|B′(y)| = pν |B(y)|.

Lemma 4.11. Let x0, U & F be as in theorem 4.7, and

F ′M = {(D · F, D′ · F + a)| D,D′ orthonormal, a ∈ Qν , |a| ≥M}.

Then for sufficiently large M there exist neighborhood V of x0 and positive
numbers C & α, such that for any g ∈ F ′M , ‖∇̃g‖ is (C,α)-good function on V
for any g ∈ F ′M .

Proof. Without loss of generality we assume x0 = 0 and fi(x) =
∑
β∈Zm a

(i)
β xβ ,

1 ≤ i ≤ n, where a(i)
β ∈ Zν and ‖x‖ < 1. Let p(i)

l be the lth degree Taylor

polynomial of fi then |fi(x)−p(i)
l (x)| ≤ ‖x‖l+1. Let l be large enough such that

1, p(1)
l , · · · , p(n)

l are linearly independent also let r0 < s be small enough such
that

2pν Cm,2l−2(
8r0

γ
)1/m(2l−1)(2l−2) ≤ 1,

where s, γ are given as in lemma 4.9 and Cm,2l−2 is as in lemma 4.3. Now take
M ≥ plν and consider g(x) = (C · F (x), D · F (x) + a) from F ′M furthermore
set p(x) = (C · (p(1)

l , · · · , p(n)
l ), D · (p(1)

l , · · · , p(n)
l ) + a). By lemma 4.10, it is

enough to prove the following:

(∗)
For 8r0

γ ≤ ε ≤ 1, any ball B = Br(x1) ⊆ Br0(0) and any g ∈ F ′M , one has:
|{x ∈ Br(x1)| ‖∇̃g(x)‖ < ε · supx∈B ‖∇̃g(x)‖}| ≤ 2Cm,2l−2 ε

1/m(2l−2)|B|.

Let gr(x) = g(brcνx+x1)
brclν

& pr(x) = p(brcνx+x1)
brclν

, it is clear that (∗) holds if and
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only if

|{x ∈ B1(0)| ‖∇̃gr(x)‖ < ε · sup
x∈B1

‖∇̃gr(x)‖}| ≤ 2Cm,2l−2 ε
1/m(2l−2)|B1|, (†)

where B1 is the ball of radius 1 about the origin. However for any x ∈ B1,
‖gr(x)− pr(x)‖ < r , ‖∇gr(x)−∇pr(x)‖ < r. Therefore

‖∇̃gr(x)− ∇̃pr(x)‖ ≤ r(r + 2)(1 + ‖pr(x)‖)

≤ 3r(1 + ‖pr(x)‖) ≤ 3r
γ

sup
x∈B1

‖∇̃pr(x)‖.

Hence {x ∈ B1(0)| ‖∇̃gr(x)‖ < ε supx∈B1
‖∇̃gr(x)‖} is a subset of

{x ∈ B1(0)| ‖∇̃pr(x)‖ − 3r
γ

sup
x∈B1

‖∇̃pr(x)‖ < ε(1 +
3r
γ

) sup
x∈B1

‖∇̃pr(x)‖}

= {x ∈ B1(0)| ‖∇̃pr(x)‖ < (ε(1 +
3r
γ

) +
3r
γ

) sup
x∈B1

‖∇̃pr(x)‖}

⊆ {x ∈ B1| ‖∇̃pr(x)‖ < 2ε sup
x∈B1

‖∇̃pr(x)‖}.

Since each of the components of ∇̃pr(x) is a polynomial of degree at most 2l−2,
and ∇̃pr is not zero, (†) holds, which finishes the proof.

Lemmas 4.8 and 4.11 complete the proof of part(ii) of theorem 4.7.

5 Theorem 1.3 and lattices

In this chapter, following [KM98], [BKM01], and [KT07] we are going to
convert the problem into a quantitative question about “special” unipotent flows
on the space of discrete ZS−submodules. In the remaining part of this article,
we let mν = n+dν +1, and we are going to work with discrete ZS−submodules
of the QS-module X =

∏
ν∈S Qmν

ν . We shall denote the standard basis of the ν-
factor Qmν

ν of X by {e0
ν , e
∗1
ν , · · · , e∗dνν , e1

ν , · · · , enν}, let W ∗ν = {e∗1ν , · · · , e∗dνν }Qν ,
Wν = {e1

ν , · · · , en−1
ν }Qν , and Λ be the ZS-module generated by e0, · · · , en,

where ei = (eiν)ν∈S for any 0 ≤ i ≤ n. Take δ, Kν ’s, Ti’s, and the function f as
in theorem 1.3, and let

Ux =

 1 0 fν(xν)
0 Idν ∇fν(xν)
0 0 In


ν∈S

.

One has

Ux

 p
0
~q


ν∈S

=

 p+ fν(xν) · ~q
∇fν(xν)~q

~q


ν∈S

.

17



So if λ =

 p
0
~q


ν∈S

has been chosen such that ~q satisfies the condi-

tions on the set 1.3, and |(p + fν(xν) · ~q)ν∈S | = |〈(fν(xν) · ~q)ν∈S〉|, we get
an upper bound on each of the coordinates of Uxλ. Now we shall rescale the
space to put Uxλ into a “small” cube by multiplying it with a diagonal ele-
ment D = (Dν = diag((a(0)

ν )−1, (a∗ν)−1, · · · , (a∗ν)−1, (a(1)
ν )−1, · · · , (a(n)

ν )−1)ν∈S ,

where a(0)
ν = dδ/εeν , a∗ν = dKν/εeν , and a

(i)
ν =

{
dTi/εeν ν ∈ SR
d1/εeν ν ∈ SRc

for any

1 ≤ i ≤ n. Having this setting in mind, we state the next theorem which proves
theorem 1.3.

Theorem 5.1. Let U and f be as in theorem 1.3; then for any x = (xν)ν∈S,
there exists a neighborhood V =

∏
ν∈S Vν ⊆ U of x, and a positive number α

with the following property: for any B ⊆ V there exists E > 0 such that for any
D = (diag((a(0)

ν )−1, (a∗ν)−1, · · · , (a∗ν)−1, (a(1)
ν )−1, · · · , (a(n)

ν )−1))ν∈S with

(i) 0 < |a(0)
ν |ν ≤ 1 ≤ |a(1)

ν |ν ≤ · · · ≤ |a(n)
ν |ν , and

(ii) 0 <
∏
ν∈S |a∗ν |ν ≤

∏
ν∈S

1

|a(0)
ν a

(1)
ν ···a(n−1)

ν |ν
,

and for any positive number ε, one has

|{y ∈ B| c(DUyλ) < ε for some λ ∈ Λ \ {0}}| ≤ E εα|B|.

Proof of theorem 1.3 modulo theorem 5.1. Using a permutation without loss of
generality, one can assume that T1 ≤ T2 ≤ · · · ≤ Tn. Now let ε as in theorem 1.3.
It is easy to verify that if one defines a(i)

ν ’s and a∗ν as in the setting of beginning of
this section, they satisfy conditions of theorem 5.1. Hence theorem 5.1 provides
us with a neighborhood V and a positive number α. Using the discussion in the
beginning of this section and the fact that c(x) ≤ ‖x‖κS , one sees that α/κ and
V satisfy the conditions of theorem 1.3.

6 Proof of theorem 5.1

In this section, using the following generalization of [KM98, section 4] proved
in [KT07, section 5], we will prove theorem 5.1. Before stating the theorem, let
us recall the notion of norm-like map (see [KT07, section 6]).

Definition 6.1. Let Ω be the set of all discrete ZS-submodules of
∏
ν∈S Qmν

ν .
A function θ from Ω to the positive real numbers is called a norm-like map if
the following three properties hold:

i) For any ∆,∆′ with ∆′ ⊆ ∆ and the same ZS-rank, one has θ(∆) ≤ θ(∆′).

ii) For any ∆ and γ 6∈ ∆QS , one has θ(∆ + ZSγ) ≤ θ(∆)θ(ZSγ).

18



iii) For any ∆, the function g 7→ θ(g∆) is a continuous function of
g ∈ GL(

∏
ν∈S Qmν

ν ).

Theorem 6.2. Let B = B(x0, r0) ⊂
∏
ν∈S Qdν

ν and B̂ = B(x0, 3mr0) for
m = minν (mν). Assume that H : B̂ → GL(

∏
ν∈S Qmν

ν ) is a continuous map.
Also let θ be a norm-like map defined on the set Ω of discrete ZS-submodules of∏
ν∈S Qmν

ν , and P be a subposet of Ω. For any Γ ∈ P denote by ψΓ the function
x 7→ θ(H(x)Γ) on B̂. Now suppose for some C,α > 0 and ρ > 0 one has

(i) for every Γ ∈ P, the function ψΓ is (C,α)-good on B̂;

(ii) for every Γ ∈ P, supx∈B ‖ψΓ(x)‖S ≥ ρ;

(iii) for every x ∈ B̂, #{Γ ∈ P| ‖ψΓ(x)‖S ≤ ρ} <∞.

Then for any positive ε ≤ ρ one has

|{x ∈ B| θ(H(x)λ) < ε for some λ ∈ Λ r {0}}| ≤ mC(N((dν),S)D
2)m(

ε

ρ
)
α
|B|,

where D may be taken to be 3d∞
∏
ν∈Sf (3pν)dν , and N((dν),S) is the Besicovich

constant for the space
∏
ν∈S Qdν

ν .

To this end, we need to define a poset P, a norm-liked map θ, a family H
of functions, and verify the conditions of theorem 6.2 for our choices of P, θ,
and any function H in H. We shall start with introducing a norm-like map θ
from

∏
ν∈S

∧
Qmν
ν to R+, and then “restrict” it to the poset of discrete ZS-

submodules of
∏
ν∈S Qmν

ν . For each ν ∈ S let I∗ν be the ideal generated by
e∗iν ∧e∗jν , for 1 ≤ i, j ≤ dν , and πν be the natural map from

∧
Qmν
ν to

∧
Qmν
ν /I∗ν .

Define θν(xν) = ‖πν(xν)‖πν(Bν), where Bν is the standard basis of
∧

Qmν
ν , and

let θ(x) =
∏
ν∈S θν(xν). For any discrete ZS-submodule ∆ of

∏
ν∈S Qmν

ν , let
θ(∆) = θ(x(1) ∧ · · · ∧ x(r)), where {x(1), · · · ,x(r)} is a ZS-base of ∆. Using the
product formula, it is easy to see that θ(∆) is well-defined, and it is a norm-like
map. Now let P be the poset of primitive ZS-submodules of Λ, where Λ is
defined in setion 4. Let H be the family of functions

H : U =
∏
ν∈S

Uν → GL(
∏
ν∈S

Qmν
ν ) where H(x) = DUx,

for any D satisfying conditions of theorem 5.1. Since the restriction of θ to∏
ν∈S Qmν

ν is the same as the function c, to prove theorem 5.1, it suffices to find
a neighborhood V of x and establish the following statements for such V.

(I) There exist C,α > 0, such that all the functions y 7→ θ(H(y)∆), where
H ∈ H and ∆ ∈ P are (C,α)-good on V.

(II) For all y ∈ V and H ∈ H, one has #{∆ ∈ P| θ(H(y)∆) ≤ 1} <∞.

(III) For every ball B ⊆ V, there exists ρ > 0 such that supy∈B θ(H(y)∆) ≥ ρ
for all H ∈ H and ∆ ∈ P.
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We now verify (I-III) which will finish the proof of the theorem 1.3
Proof of (I). Let rankZS∆ = k ≤ n+ 1, and let (D∆)ν be the Qν-span of the
projection of D∆ to the ν place; then by lemma 2.2 dimQν (D∆)ν = k, for any
ν ∈ S. We choose an orthonormal set x(1)

ν , · · · , x(k−1)
ν ∈ (D∆)ν ∩Wν ⊕ Qνe

n
ν .

By adding e0
ν and possibly another vector x(0)

ν from (D∆)ν ⊕Qνe
0
ν to the set of

x
(i)
ν ’s, we can get an orthonormal base of (D∆)ν ⊕ Qνe

0
ν . Let {y(1), · · · ,y(k)}

be a ZS-base of ∆. Therefore θ(D∆) = θ(DY), where Y = y(1) ∧ · · · ∧ y(k).
Take aν , bν ∈ Qν such that

(DY)ν = aνe
0
ν ∧ x(1)

ν ∧ · · · ∧ x(k−1)
ν + bνx

(0)
ν ∧ · · · ∧ x(k−1)

ν .

Let ∇∗ḡ(xν) =
∑dν
i=1 ∂iḡ(xν)e∗iν , for any function ḡ from an open subset of Qdν

ν

to Qν , and define ∇̃∗(g)(x) = g1(x)∇∗g2(x) − g2(x)∇∗g1(x), where g1 and g2

are two functions from an open subset of Qdν
ν to Qν , and g(x) = (g1(x), g2(x)).

Let us also define f̂(x) = (f̂ν(xν))ν∈S , where

f̂ν(xν) = (1, 0dν ,
a

(1)
ν

a
(0)
ν

f (1)
ν (xν), · · · , a

(n)
ν

a
(0)
ν

f (n)
ν (xν)).

In this setting it is easy to see that

(DUxD−1)νw = w + (f̂ν(xν) · w)e0
ν +

a
(0)
ν

a∗ν
∇∗(f̂ν(xν)w),

whenever w is in Wν ⊕Qνe
n
ν . Therefore we have

πν((H(x)Y)ν) = (aν + bν f̂ν(xν)x(0)
ν )e0

ν ∧x(1)
ν ∧· · ·∧x(k−1)

ν + bνx
(0)
ν ∧· · ·∧x(k−1)

ν

+bν
k−1∑
i=1

±(f̂ν(xν)x(i)
ν )e0

ν ∧
∧
s6=i

x(s)
ν + bν

a
(0)
ν

a∗ν

k−1∑
i=0

±∇∗(f̂ν(xν)x(i)
ν ) ∧

∧
s6=i

x(s)
ν

+
a

(0)
ν

a∗ν

k−1∑
i=1

±∇̃∗(f̂ν(xν)x(i)
ν , aν + bν f̂ν(xν)x(0)

ν ) ∧ e0
ν ∧

∧
s6=0,i

x(s)
ν (5)

+bν
a

(0)
ν

a∗ν

k−1∑
i,j=1,j>i

±∇̃∗(f̂ν(xν)x(i)
ν , f̂ν(xν)x(j)

ν ) ∧ e0
ν ∧

∧
s6=i,j

x(s)
ν .

By the choice of x(i)
ν ’s, norm of the above vector would be the maximum of

norms of each of its summands. Using the fact that maximum of a family of
(Cν , αν)-good functions is again a (Cν , αν)-good function, it suffices to show
that the norm of each of these summands is a (Cν , αν)-good function for a fixed
Cν and αν . By theorem 4.6, we find a neighborhood V 1

ν of xν , C1
ν and α1

ν > 0
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such that the first two lines would be (C1
ν , α

1
ν)-good functions on V 1

ν . Also,
theorem 4.7 provides us a neighborhood V 2

ν of xν , C2
ν , and α2

ν > 0 so that the
rest would be (C2

ν , α
2
ν)-good functions. Hence corollary 2.3 of [KT07] gives us

the claim.
Proof of (II). By looking at the first line of the equation (5), one can see that
θ(DUx∆) ≥

∏
ν∈S max{|aν + bν f̂ν(xν) · x(0)

ν |, |bν |}. Thus θ(DUx∆) ≤ 1 implies
that

∏
ν∈S max{|aν |, |bν |} has an upper bound. Therefore using corollary 7.9 of

[KT07], we would get the finiteness of such ∆’s, as we claimed.
Proof of (III). Let V be the neighborhood of x given by theorem 4.7, B ⊆ V
be a ball containing x,M, ρ1, ρ2, and ρ3 be as follows

ρ1 = inf{|fν(xν) · Zν + z0
ν |ν | x ∈ B, ν ∈ S,Zν ∈ Qn

ν , ‖Zν‖ = 1, z0
ν ∈ Qν},

ρ2 = inf{sup
x∈B
‖∇fν(xν)Zν‖ |ν ∈ S,Zν ∈ Qn

ν , ‖Zν‖ = 1},

and ρ3 is given by theorem 4.7(a), and M = supx∈B max{‖f(x)‖S , ‖∇f(x)‖S}.
If rankZS∆ = 1, then ∆ can be represented by a vector w = (wν)ν∈S , with
wiν ∈ ZS for all i’s and for any ν ∈ S. The first coordinate of DUxw is then
equal to

(
1

a
(0)
ν

(w(0)
ν +

n∑
i=1

f (i)
ν (xν)w(i)

ν ))ν∈S .

Therefore c(DUxw) ≥ ρκ1 since |a(0)
ν | ≤ 1.

Now assume rankZS∆ = k > 1. As in part (I), let us denote the Qν span of
the projection to ν place of ∆ by ∆ν . Let x(1)

ν , · · · , x(k−2)
ν be an orthonormal set

in Wν∩∆ν . We extend this to an orthonormal set in (Wν⊕Qνe
n
ν )∩∆ν by adding

x
(k−1)
ν . Now if necessary choose a vector x(0)

ν to complete {e0
ν , x

(1)
ν , · · · , x(k−1)

ν }
to an orthonormal basis of ∆ν + Qνe

0
ν .

Let {y(1), · · · ,y(k)} be a ZS-base of ∆, and define Y = y(1) ∧ · · · ∧ y(k).
Since Dν leaves Wν ,W

∗
ν ,Qνe

0
ν , and Qνe

n
ν invariant, one has

θ(DUx∆) = θ(DUxY) =
∏
ν∈S

θν(DνUνxYν) =
∏
ν∈S
‖Dνπν(UνxYν)‖ν .

On the other hand, similar to the discussion in (I), there are aν , bν ∈ Qν so that

Yν = aνe
0
ν ∧ x(1)

ν ∧ · · · ∧ x(k−1)
ν + bνx

(0)
ν ∧ · · · ∧ x(k−1)

ν .

Note also that
∏
ν∈S{|aν |ν , |bν |ν} ≥ 1. Similar to the argument of [BKM01,

Section 7], let f̌(x) = (f̌ν(xν))ν∈S , where

f̌ν(xν) = (1, 0dν , f
(1)
ν (xν), · · · , f (n)

ν (xν)),

we would have:

πν(UνxYν) = (aν + bν f̌ν(xν)x(0)
ν )e0

ν ∧ x(1)
ν ∧ · · · ∧ x(k−1)

ν + bνx
(0)
ν ∧ · · · ∧ x(k−1)

ν

21



+bν
k−1∑
i=1

±(f̌ν(xν)x(i)
ν )e0

ν ∧
∧
s6=i

x(s)
ν + bν

k−1∑
i=0

±∇∗(f̌ν(xν)x(i)
ν ) ∧

∧
s6=i

x(s)
ν

+e0
ν ∧ Y̌ν(xν),

where Y̌ν(xν) =
k−1∑
i=1

±∇̃∗(f̌ν(xν)x(i)
ν , aν + bν f̌ν(xν)x(0)

ν ) ∧
∧
s6=0,i

x(s)
ν

+bν
k−1∑

i,j=1,j>i

±∇̃∗(f̌ν(xν)x(i)
ν , f̌ν(xν)x(j)

ν ) ∧
∧
s6=i,j

x(s)
ν .

In order to find a lower bound ρ for supx∈B θ(DUxY), it suffices to show that
sup

∏
ν∈S ‖DνY̌ν(xν)‖ν is not less that ρ

∏
ν∈S |a

(0)
ν |ν . Now consider the product

en ∧ Y̌(x). Our next task is to show:

(∗) sup
∏
ν∈S
‖enν ∧ Y̌ν(xν)‖ν ≥ ρ.

Assume that (∗) holds and let us finish the proof. Since the eigenvalue with
the smallest norm of Dν on W ∗ν ∧ (

∧k−1(Qνe
0
ν ⊕ Wν ⊕ Qνe

n
ν )) is equal to

(a(∗)
ν a

(n−k+2)
ν · · · a(n)

ν )
−1
, using ‖Dν(enν ∧Y̌ν(xν))‖ν ≤ ‖DνY̌ν(xν)‖ν/|a(n)

ν |ν , one
has ∏

ν∈S
‖DνY̌ν(xν)‖ν ≥

∏
ν∈S
|a(n)
ν |ν‖Dν(enν ∧ Y̌ν(xν))‖ν

≥
∏
ν∈S

|a(n)
ν |ν

|a(∗)
ν a

(n−k+3)
ν · · · a(n)

ν |ν
‖enν ∧ Y̌ν(xν)‖ν

≥ ρ
∏
ν∈S

|a(0)
ν |ν

|a(0)
ν a

(∗)
ν a

(n−k+3)
ν · · · a(n−1)

ν |ν
≥ ρ

∏
ν∈S
|a(0)
ν |ν ,

as we wanted. Thus it suffices to show (∗). To that end for any place ν ∈ S

select the term containing x(1)
ν ∧ x(2)

ν · · · ∧ x(k−2)
ν , then one has

enν ∧Y̌ν(xν) = ±z(∗)
ν (xν)∧enν ∧x(1)

ν ∧x(2)
ν · · ·∧x(k−2)

ν +
other terms where one
or two x(i)

ν are missing,

where
z

(∗)
ν (xν) = ∇̃∗(f̌ν(xν)xk−1

ν , aν + bν f̌ν(xν)x(0)
ν )

= bν∇̃∗(f̌ν(xν)xk−1
ν , f̌ν(xν)x(0)

ν )− aν∇∗(f̌ν(xν)x(k−1)
ν )

Using the first expression it follows that supxν∈Bν ‖z
(∗)
ν (xν)‖ν ≥ ρ3 |bν |ν , where

the second expression gives, supxν∈Bν ‖z
(∗)
ν (xν)‖ν ≥ ρ2|aν |ν − 2M2|bν |ν . It is

easy to see that there exists ρ0 such that

max{ρ2|aν |ν − 2M2|bν |ν , ρ3 |bν |ν} ≥ ρ0 ·max{|aν |ν , |bν |ν}.

Therefore ρ = ρκ0 satisfies the conditions of the theorem.
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7 Proof of the main theorem

Take x0 ∈ U. Choose a neighborhood V ⊆ U of x0 and a positive number
α, as in theorem 1.3, and pick a ball B =

∏
ν∈S Bν ⊆ V containing x0 such

that the ball with the same center and triple the radius is contained in U. We
prove that B ∩W f

R,Ψ has measure zero. For any q ∈ Rn, let

Aq = {(xν)ν∈S ∈ B| |〈(fν(xν))ν∈S · q〉| < Ψ(q)}.

We shall proceed by induction on n. For n = 1 set Q = R \ {0} and for
n ≥ 2, by the induction hypothesis, it would be enough to deal with the set
Q = {(qν)ν∈S ∈ Rn|q(i)

ν 6= 0 for any ν & i} i.e. the set of vectors with non-zero
coordinates, namely we have to prove that the set of points x in B which belong
to infinitely many Aq for q ∈ Q has measure zero. Now let

A≥q =
{

x ∈ Aq|
‖q∇f(x)‖ν > ‖q‖−εS ν ∈ SRc
‖q∇f(x)‖ν > ‖q‖1−εS ν ∈ SR

}
&

A<q = Aq \A≥q.

For any t = (t1, · · · , tn) ∈ Nn, let

Ā≥t =
⋃

q∈Q,2ti≤|q(i)|<2ti+1

A≥q and Ā<t =
⋃

q∈Q,2ti≤|q(i)|<2ti+1

A<q.

It is clear that the union of Aq’s where q varies in Q is the same as the union
of the Ā≥t’s and Ā<t’s where t varies in Nn.

By the conditions posed on Ψ, we have

(i) If for any i one has 2ti ≤ |q(i)|S < 2ti+1 , then Ψ(q) ≤ Ψ(2t1 , · · · , 2tn).

(ii) For large enough ‖q‖, we have Ψ(q) ≤ (
∏
i |q(i)|S)−g(R).

These show Ā≥t is a subset of the set defined in theorem 1.2 with Ti = 2ti+1 and
δ = 2g(R)

Pn
i=1(ti+1)Ψ(2t1 , · · · , 2tn). Now one notes that the convergence of the

sum
∑

Ψ(q) gives that of
∑

2g(R)
Pn
i=1(ti+1)Ψ(2t1 , · · · , 2tn). So Borel-Cantelli

lemma gives us that almost all points of U are in at most finitely many Ā≥t, as
we desired.

As we said Ψ(q) ≤ (
∏
i |q(i)|S)−g(R) for large enough ‖q‖S . So if for any i

one has 2ti ≤ |q(i)|S < 2ti+1 , then Ψ(q) ≤ 2−g(R)
Pn
i=1 ti , for large enough ‖t‖.

Now for such t we may write Ā<t = ∪ν∈SĀ<t,ν where each Ā<t,ν is contained

in set defined in 1.3, with δ = 2
−g(R)

Pn
i=1 ti

κ , Ti = 2ti+1 and

Kν = 2(1−ε)(‖t‖+1) if ν ∈ SR, Kν = 2−ε‖t‖ if ν ∈ SRc
Kω = 2‖t‖+1 if ω ∈ SR \ {ν}, Kω = 1 if ω ∈ SRc \ {ν}
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It is not hard to verify the inequalities in the hypothesis of theorem 1.3. More-
over, one has

εκ(n+1) = max{δκ(n+1), δκ(
T1 · · ·Tn
maxTi

)g(R)
∏
ν∈S

Kν} = δκ(
T1 · · ·Tn
maxTi

)g(R)
∏
ν∈S

Kν ,

So we have ε ≤ C ′2
−ε‖t‖
κ(n+1) for some constant C ′ depending on f . So by theo-

rem 1.3, and the choice of V and B, measure of Āt is at most

C2−
αε‖t‖

(n+1)κ2 |B|.

Therefore the sum of measures of Ā<t’s is finite, thus another use of Borel-
Cantelli lemma completes the proof.

8 A few remarks and open problems

1. In this article, we worked with product of non-degenerate p-adic ana-
lytic manifolds. Historically this is the case which has drawn most attention.
However most of the argument is valid for the product of non-degenerate Ck

manifolds. The only part in which we use analyticity extensively is in the proof
of lemma 4.8.

2. In this paper, we studied analytic manifolds containing a real analytic
component. In [MS07], we prove a convergence Khintchine-type theorem for
simultaneous approximation in non-Archimedian places. There we also prove
the divergent part in the p-adic case. The following is an important corollary of
the main results of loc. cit.

Theorem 8.1. Let M ⊆ Qn
p be a p-adic non-degenerate analytic manifold.

Suppose Ψ : Zn \ {0} → (0,∞) is a function of norm and decreasing in terms
of norm. Then almost every (resp. almost no) point of M is Ψ-Approximable
if
∑

q∈Zn Ψ(q) =∞ (resp
∑

q∈Zn Ψ(q) <∞).

3. Both here and in [MS07], we consider homogeneous diophantine approx-
imation, namely we are approximating zero. One can consider the inhomoge-
neous problem. As we mentioned in the introduction, V. Bernik and E. Ko-
valevskaya [BK06] proved the inhomogeneous problem for the Veronese curve
in product of local fields, i.e. C × R ×

∏
p∈S Qp. It would be interesting if the

inhomogeneous problem could be proved for non-degenerate manifolds.
4. As we recalled in the introduction, historically there are two kinds of

Diophantine approximations. One of them is coming from the dot product
which is the question that we considered, and the other one is simultaneous
approximation of each of the components.

Problem 8.2. Let ~f = (f1, · · · , fn), where fi’s are analytic functions from an
open subset U of Rd to R and 1, f1, · · · , fn are linearly independent. Let ψ be
a decreasing map from Z to R+. Define

Wf,ψ = {x ∈ U|‖q ~f(x) + ~p‖ < ψ(q) for infinitely many q ∈ Z and ~p ∈ Zn}.

24



Then Wf,ψ is null (resp. co-null) if
∑
q∈Z ψ(q)n is convergent (resp. divergent).

For a general ψ very little is known. However there are partial results in
this direction, e.g. Dodson, Rynne, Vickers [DRV91] proved the convergence
Khintchine-type theorem for a non-degenerate manifold M which is 2-convex at
almost every point i.e. at almost every point ξ for any unit vector v ∈ TξM ,
at least two of the principal curvatures τi(ξ, v), are non-zero and have the same
sign. Much more is known for the case of planar curves ref. [BDVV07], where
they settled the divergence case for C3-planner curves and the convergence case
for rational quadratic curves. However even the case of the curve (x, x2, x3) is
still open.
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