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Abstract. Chow varieties are a parameter space for cycles of a given variety

of a given codimension and degree. We construct their analog for differential
algebraic varieties with differential algebraic subvarieties, answering a question

of [11]. The proof uses the construction of classical algebro-geometric Chow

varieties, the theory of characteristic sets of differential varieties, the theory
of prolongation spaces, and the theory of differential Chow forms. In the

course of the proof several definability results from the theory of algebraically

closed fields are required. Elementary proofs of these results are given in the
appendix.
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1. Introduction

For simplicity in the following discussion, let k be an algebraically closed field.
The r-cycles over k of a k-variety V are elements of the free Z-module generated
by the integral subvarieties of V of dimension r defined over k. If the coefficients
are taken over N then the cycle is said to be positive or effective. For a given
cycle

∑
niVi, the degree of

∑
niVi is given by

∑
ni ·deg(Vi). The positive r-cycles

of degree d of a k-variety V are parameterized by a k-variety, which we denote
Chowr,d(V ). For background information on Chow varieties and Chow forms, see [3]
(or [14] or [4] for a modern exposition). The purpose of this article is to carry
out the construction of the differential algebraic analog of the Chow variety, whose
construction was begun in [11], but was completed only in certain very special cases.
For our purposes, one can view Chow varieties and their differential counterparts as
parameter spaces for cycles with particular characteristics (degree and codimension
in the algebraic case). The algebraic theory of Chow varieties also has numerous
applications and deeper uses (e.g. Lawson (co)homology [9] and various counting
problems in geometry [6]).

Given a differential algebraic variety V over a differentially closed field K, the
group of differential cycles of dimension d and order h is the free Z-module generated
by irreducible differential subvarieties W ⊆ V so that the dimension, dim(W ), is d
and the order, ord(W ), is h. The differential cycles of index (d, h, g,m) are those
cycles with leading differential degree g and differential degree m. These invariants
have a very natural definition and are a suitable notion of degree for differential
cycles; see section 3 for the definitions. Our main result establishes the existence
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of a differential variety which parameterizes this particular set of differential cycles
of V .

There are various foundational approaches to differential algebraic geometry (e.g.
the scheme-theoretic approaches [26] or the Weil-style definition of an abstract
differential algebraic variety [23]). Such abstract settings will not be pertinent
here, since we work exclusively with affine differential algebraic varieties over a
differential field. In this setting, beyond the basic development of the theory, there
are two approaches relevant to our work. The first is the classical theory using
characteristic sets [22]. We also use the more recent geometric approach using the
theory of jet and prolongation spaces [31]. This approach allows one to replace a
differential algebraic variety by an associated sequence of algebraic varieties, but
owing to the Noetherianity of the Kolchin topology, some finite portion of the
sequence contains all of the data of the sequence. This allows the importation of
various results and techniques from the algebraic category.

We use the two approaches in the following manner. We use classical algebraic
Chow varieties to parameterize prolongation sequences. We then use the generic
components of these prolongation sequences to parameterize the characteristic sets
of differential algebraic cycles with given index. There are essentially two steps to
the construction. First, degree bounds are used to restrict the space of Chow vari-
eties in which we must look for the points which generate the prolongation sequences
parameterizing differential cycles of a given index; this development uses basic in-
tersection theory (e.g. [16]) and the theory of differential Chow forms [11]. Within
the appropriate Chow varieties which parameterize these prolongation spaces, only
a subset of the points will correspond to differential cycles with the specified index.
We show that this collection of points (such that the characteristic set corresponding
to the generic components of the prolongation sequence has the specified numerical
invariants) is in fact a Kolchin-constructible subset.

The construction of differential Chow varieties is related to canonical parameters
in the sense of model theory. In the theory of differentially closed fields, canonical
parameters manifest themselves as the generators of fields of definition of differential
varieties. In recent years, detailed analyses of canonical parameters have been
undertaken in analogy with results of Campana [1] and Fujiki [10] from compact
complex manifolds (for instance, see [33, 2, 29]). The following is essentially pointed
out by Pillay and Ziegler [33]. Let K be a differential field and x an n-tuple of
elements from some differential field extension. Let X be the differential locus of
x over K. Let L be a differential field extension of K and let Z be the differential
locus of x over L, and assume that the inclusion Z ⊆ X is proper. Let b be a
generator for the differential field of definition of Z over K. That is, there is some
differential algebraic subvariety Y ⊆ An × Am so that b ∈ Am(L), (x, b) ∈ Yb and
the second projection map π : Y → Am is differentially birational over its image.
Consider Y := xY , the fibre of Y over x via the first projection Y → An, which is
subvariety of a certain differential Chow variety of X in the sense of this paper. The
main result of [33] is that Y is internal to the constants. One could certainly expand
upon these observations to give statements about the structure of differential Chow
varieties, but we will not pursue these matters in further detail in this paper.

In [33, page 581], Pillay and Ziegler write of the above situation,
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We are unaware of any systematic development of machinery and
language (such as “differential Hilbert spaces”) in differential al-
gebraic geometry which is adequate for the geometric translation
above. This is among the reasons why we will stick with the lan-
guage of model theory in our proofs below. The issue of algebraizing
the content and proofs is a serious one which will be considered in
future papers.

Subsequent work by Moosa and Scanlon [31] did algebraize and generalize much of
the work by Pillay and Ziegler, but no systematic development of differential Hilbert
schemes or differential Chow varieties appears to have occurred in the decade fol-
lowing Pillay and Ziegler’s work. One should view [11] as the beginning of such a
systematic development, where the theory of the differential Chow form was devel-
oped, and the existence of differential Chow varieties was established in certain very
special cases. In [11, section 5], the authors write that they are unable to prove the
existence of the differential Chow variety in general. The work here is an extension
of [11], in which we will establish the existence of the differential Chow variety in
general, answering the most natural question left open by [11]. As we have pointed
out above, our general technique is also the descendant of a line thinking that orig-
inated (at least in the model theoretic context) with Pillay and Ziegler’s work on
jet spaces and the linearization of differential equations.

The rest of the paper is organized as follows. In section 2, we give background
definitions and some preliminary results which we use later in the paper. In addi-
tion, we describe the relationship of the problems we consider to the Ritt problem.
Following this interlude, we prove the results which eventually allow us to work
around the issues involved in the Ritt problem (whose solution would allow for a
simplification of the proofs of the results in this paper). In section 3, we describe the
necessary background from the classical theory of Chow varieties. Our approach
is slightly nonstandard in this section, owing to the fact that we work with affine
varieties. In section 4, we establish various bounds on the order and degree of the
varieties we consider using the theory of differential Chow forms. In section 5, we
establish the existence of differential Chow varieties, proving the main result of the
paper.

The appendix gives elementary proofs of several facts from algebraic geometry
which we require. The facts proved in the appendix are well known and frequently
used in model theory (for instance, see the citation in appendix 3.1 of [20]), however,
the proof given here seems to be new. Constructive proofs of the result (which give
additional information about certain bounds, rather than simply proving that a
certain bound exists) are much more involved (see [35], which corrected the proof
given in [17]). Various other non-constructive proofs of the theorem are given in
the literature [13, 15.5.3] [5, where a nonstandard approach is taken] [19, where a
model theoretic approach is taken to give an elementary proof].

2. Preliminaries and Prolongations

We fix U a saturated differentially closed field. Implicitly, all differential fields we
consider are substructures of U. If W is an algebraic variety or a differential variety,
then an expression of the form “a ∈ V ” is shorthand for “a ∈ V (U)”. Throughout,
K will be a small differential subfield of U and δ denotes the distinguished derivation
on K, U, or, indeed, any differential ring that we consider. Unless explicitly stated
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to the contrary, all varieties and differential varieties are defined over K. Often, we
will use phrases like “δ-variety”, “δ-constructible”, “δ-field”, et cetera as synonyms
for “differential variety”, “differentially constructible”, “differential field”, et cetera.

If f : X → Y is a morphism of varieties, then by f(X) we mean the scheme
theoretic image of X under f . That is, f(X) is the smallest subvariety Z of Y
for which f factors through the inclusion Z ↪→ Y . On points, f(X) is the Zariski
closure of {f(a) : a ∈ X(U)}.

We write K{x1, . . . , xn} for the differential polynomial ring in the variables
x1, . . . , xn over K. For m ∈ N, we write

K{x1, . . . , xn}≤m = K[{x(j)i : 1 ≤ i ≤ n, 0 ≤ j ≤ m}]
for the subring of differential polynomials of order at most m where we have written

x
(j)
i for δjxi.

If I ⊆ K{x1, . . . , xn} is a differential ideal, then we write V(I) for the differential
subvariety of AnK defined by the vanishing of all f ∈ I, and for S ⊆ An(K), we let
I(S) ⊆ K{x1, . . . , xn} be the differential ideal of all differential polynomials vanish-
ing on V . On the other hand, if I ⊆ K[x1, . . . , xn] is an ideal, then we write V (I)
for the variety defined by the vanishing of all f ∈ I, and for S ⊆ An(K), we write
I(S) for the ideal of polynomial functions in K[x1, . . . , xn] which vanish on S. By
convention, when we speak of an irreducible variety (irreducible differential vari-
ety, respectively), we mean an absolutely irreducible variety (absolutely irreducible
differential variety, respectively).

In general, if R is a reduced ring, we write Q(R) for its total ring of fractions.
WhenR is a differential ring, so is Q(R). We writeK〈V 〉 for Q(K{x1, . . . , xn}/I(V )).
When I(V ) is prime, that is, when V is irreducible, this is called the differential
function field of V . For S ⊆ K{x1, . . . , xn} we write (S) for the ideal generated by
S and [S] for the differential ideal generated by S. When S = {f} is a singleton,
we write (f) := (S) and [f ] := [S]. Likewise, we write V(f) for V([f ]).

We sometimes speak about “generic points”. These should be understood in
the sense of Weil-style algebraic (or differential algebraic) geometry. That is, if V
is a variety (respectively, differential algebraic variety) over K, then η ∈ V (U) is
generic if there is no proper subvariety (respectively, differential subvariety) W ( V
defined over K with η ∈W (U). Provided that V is irreducible, this is equivalent to
asking that the field K(η) (respectively, differential field K〈η〉) be isomorphic over
K to K(V ) (respectively, K〈V 〉).

Next, we follow the notation of section 2 of [30]. There, the authors define a
sequence of functors τm indexed by the natural numbers from varieties over K
to varieties over K (to be honest, the functor may return a nonreduced scheme,
but the distinction between a scheme and its reduced subscheme is immaterial
here). For affine space itself, one has τm(An) ∼= An(m+1) where if we present An
as Spec(K[x1, . . . , xn]), then τm(An) = Spec(K{x1, . . . , xn}≤m). If V ⊆ Am is
a subvariety of affine space, then τmV = Spec(K{x1, . . . , xn}≤m/({δjf : f ∈
I(V ), j ≤ m}). Note that the ideal ({δjf : f ∈ I(V ), j ≤ m}) is contained in
[I(V )] ∩K{x1, . . . , xn}≤m, but the inclusion may be proper.

There is a natural differential algebraic map ∇m : V → τmV given on points
valued in a differential ring by

(a1, . . . , an) 7→ (a1, . . . , an; δ(a1), . . . , δ(an); . . . ; δm(a1), . . . , δm(an)) .

We call points in the image of ∇m differential points.
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The image of the map ∇m need not be Zariski dense, even on U-valued points.
For any differential subvariety W ⊆ V of the algebraic variety V , we define Bm(W )
to be the Zariski closure in τmV of ∇m(W (U)).

The functors τm form a projective system with the natural transformation πm,` :
τm → τ` for ` ≤ m given by projecting onto the coordinates corresponding to
the first ` derivatives. We write πm,` : τmV → τ`V rather than πVm,`. Moreover,

τ0 is simply the identity functor so that we write V rather than τ0(V ). From the
definition, for W ⊆ V a differential subvariety, it is clear that πm,` restricts to make
the sequence of varieties (Bm(W )) into a projective system of algebraic varieties in
which each map in the system is dominant.

We write τm for the result of composing the functor τ1 with itself m times. There
is a natural transformation ρm : τm → τm which for any algebraic variety V gives
a closed embedding ρm : τmV ↪→ τmV . To ease notation, let us write the map ρ in
coordinates only for the case of V = A1 and m = 3. The general case requires one
to decorate the variables with further subscripts and to nest the coordinates more
deeply. Here

ρ(x(0), x(1), x(2), x(3)) = (((x(0), x(1)), (x(1), x(2))), ((x(1), x(2)), (x(2), x(3))))

For the formal definitions of the items discussed above, please refer to [31, 30].

Definition 2.1. A sequence of varieties X` ⊆ τ`An (l ∈ N) is called a prolongation
sequence if

(1) The map induced by projection X`+1 → X` is dominant.
(2) For all `, ρ`+1(X`+1) is a closed subvariety of τ1(ρ`(X`)).

Given a prolongation sequence (X`)`≥0, the U-points in the differential variety
V given by (Xl)l≥0 is the set

{b ∈ An(U) : (∀`) ∇`(b) ∈ X`(U)} .

From the point of view of differential ideals, if I =
⋃∞
`=0 I(X`) ⊆ K{x1, . . . , xn},

then V = V(I).
There is a bijective correspondence between irreducible prolongation sequences

(by which we mean each variety in the sequence is irreducible) and irreducible
differential varieties. Given a differential variety V , the prolongation sequence
corresponding to V is given byX` = B`(V ) for all ` ≥ 0 in [30, discussion proceeding
Definition 2.8]. Thus, prolongation sequences are in one-to-one correspondence
with differential algebraic varieties, and the Noetherianity of the Kolchin topology
guarantees that a finite portion of a prolongation sequence determines the entire
sequence.

Definition 2.2. Given an algebraic variety V ⊆ τ`An, we say that V is prolonga-
tion admissible if ρ`(V ) ⊆ τ `−d(ρd(π`,d(V ))) for all 0 ≤ d < `.

The following fact is the basis of the well known geometric axioms for differen-
tially closed fields, written in our language:

Fact 2.3. Given irreducible varieties V and W over U with W ⊆ τ1(V ) so that
the restriction of π1,0 to W is a dominant map to V , then for any U ⊆ W (U), a
Zariski open set, there is a ∈ V (U) such that ∇1(a) ∈ U .

Indeed, Fact 2.3 characterizes differentially closed fields; for details, see [32].
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Lemma 2.4. Suppose that V ⊆ τ`(An) is an irreducible prolongation admissible
variety. Then for any open subset U ⊆ V , there is some a ∈ An(U) such that
∇`(a) ∈ U .

That is, a variety is prolongation admissible if and only if the differential points
form a dense subset.

Proof. Since V is prolongation admissible, ρ`(V ) ⊆ τ1(ρ`−1(π`,`−1(V ))). So, we
have the following commutative diagram:

V

π`,`−1

��

� � ρ` // ρ`(V ) ⊆ τ1(ρ`−1(π`,`−1(V )))

π1,0

��

π`,`−1(V )
� �

ρ`−1

// ρ`−1(π`,`−1(V )).

Since each ρ is an embedding, we must have that π1,0 is dominant to ρ`−1(π`,`−1(V )).
Thus, by Fact 2.3, the set of points

{∇1(a) ∈ ρ`−1(π`,`−1(V ))(U) | ∇1(a) ∈ ρ`(V )(U)}

is Zariski dense in ρ`(V ), so the set ρ−1` (∇1({a ∈ π`,`−1(V )(U) | ∇1(a) ∈ ρk(V )(U)}))
is Zariski dense in V . Every such point has the form ∇`(b) for b ∈ An(U), proving
the claim. �

From the definition, it is easy to see that if V is a set of prolongation sequences
V := (V` ⊆ τ`An)∞`=0, then the sequence (

⋃
V ∈V V`)

∞
`=0 is also a prolongation se-

quence. This justifies the following definition.

Definition 2.5. Given a variety V ⊆ τh(An), the prolongation sequence generated
by V is the maximal sequence of subvarieties V` ⊆ τ`An which is a prolongation
sequence and for which Vh ⊆ V .

The following lemma follows from the observation above that the closure of an
arbitrary union of prolongation admissible varieties is also prolongation admissible.

Lemma 2.6. Given V ⊆ τhAn, there is a finite set of irreducible maximal prolon-
gation admissible subvarieties of V .

Lemma 2.7. If V ⊆ τh(An) is an irreducible prolongation admissible variety and
(V`)

∞
`=0 is the prolongation sequence generated by V , then for each ` ≥ h there is a

unique component, U`, of V` which projects dominantly to V = Vh and moreover,
U` = dim(V ) + (`− h)d where d = dim(V )− dim(Vh−1).

Proof. At the cost of permuting the coordinates of An, we may assume that the

sequence x
(h)
1 , . . . , x

(h)
d gives a transcendence basis of K(V ) over K(Vh−1). Let

Q ∈ O(Vh−1)[x
(h)
1 , . . . , x

(h)
d ] so that each x

(h)
i is integral over the localized ring

O(Vh−1)[x
(h)
1 , . . . , x

(h)
d , 1

Q ]. For each i with d < i ≤ n, let gi(X) be the minimal

monic polynomial of x
(h)
i in O(Vh−1)[x

(h)
1 , . . . , x

(h)
d , 1

Q ][X] and let Si := g′i(x
(h)
i ) be

its separant. Let R := Q
∏n
i=d+1 Si and let Z be the differential variety V([R]).

Let W be the differential subvariety of An r Z given by V . We claim that for
` ≥ h if Y is a component of V` then either Y is the Zariski closure of B`(W )
or π`,h(Y ) ⊆ Z. Indeed, after inverting R, it is clear that for each ` ≥ h, the
ideal generated by {δjf : j ≤ (` − h), f ∈ I(V )} is prime and is generated by
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I(V ) and expressions of the form x
(j)
i − Ai,j for d < i ≤ n, h < j ≤ `, and

Ai,j ∈ O(V )[{x(t)s : 1 ≤ s ≤ d, h ≤ t ≤ `}][ 1R ].

Thus, the differential ring K{x1, . . . , xn}[ 1R ]/[I(V )] is an integral domain and
therefore embeds into U over K. The image of (x1, . . . , xn) is thus a generic point
in W and its image under ∇` is the generic point of B`(W ). �

Remark 2.8. From the proof of Lemma 2.7, the differential variety corresponding
to the prolongation sequence generated by a prolongation admissible variety V ⊆
τh(An) has a unique component with maximal differential dimension and order.
The previous result has a partial differential analog, but the situation is more
complicated. See [28] for details.

We shall speak of definable families of definable sets and of certain properties
being definable in families. These are general notions but we shall use them only for
the theories of algebraically closed fields of characteristic zero and of differentially
closed fields of characteristic zero. In these cases, “definable” is synonymous with
“constructible” or “differentially constructible”, respectively.

Definition 2.9. We say that a family of sets {Xa}a∈B is a definable family if there
are formulae ψ(x; y) and θ(y) so that B is the set of realizations of θ and for each
a ∈ B, Xa is the set of realizations of ψ(x; a).

Given a property P of definable sets, we say that P is definable in families if for
any family of definable sets {Xa}a∈B given by the formulae ψ(x; y) and θ(y), there
is a formula φ(y) so that the set {a ∈ B : Xa has property P} is defined by φ.

Given an operation F which takes a set and returns another set, we say that
F is definable in families if for any family of definable sets {Xa}a∈B given by the
formulae ψ(x; y) and θ(y), there is formula φ(z; y) so that for each a ∈ B, the set
F(Xa) is defined by φ(z; a).

We will require the following facts about definability in algebraically closed fields.

Fact 2.10. We work relative to the theory of algebraically closed fields.

(1) The Zariski closure is definable in families.
(2) The dimension and degree of the Zariski closure of a set are definable in

families.
(3) Irreducibility of the Zariski closure is a definable property. More generally,

the number of components of the Zariski closure is definable in families.
(4) If the Zariski closure is an irreducible hypersurface given by the vanish-

ing of some nonzero polynomial, then the degree of that polynomial in any
particular variable is definable in families.

(5) The family of irreducible components of the Zariski closure is definable in
families.

Fact 2.10 is established in the Appendix 7. As we noted in the Introduction,
other proofs appear in the literature.

2.1. Methods of algebraic and differential characteristic sets. In this paper,
the Wu-Ritt characteristic set method is a basic tool for establishing a correspon-
dence between differential algebraic cycles and algebraic cycles satisfying certain
conditions. In this section we recall the definition and basic properties of differen-
tial and algebraic characteristic sets.
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Fix a sequence of variable x1, x2, x3, . . .. A differential ranking is a total order

≺ on the set Θ := {x(j)i }i,j∈N satisfying

• For all α ∈ Θ δα � α for all and
• If α1 � α2, then δα1 � δα2.

An orderly ranking is a differential ranking which satisfies in addition

• If k > `, then δkxi � δ`xj for all i and j.

Throughout the paper, we fix some orderly ranking.
Let f be a differential polynomial in K{x1, . . . , xn}. The leader of f , denoted

by ld(f), is the greatest variable with respect to ≺ which appears effectively in f .
Regarding f as a univariate polynomial in ld(f), its leading coefficient is called the
initial of f , denoted by initf ,

and the partial derivative of f with respect to ld(f) is called the separant of f ,
denoted by Sf . For any two differential polynomials f , g in U{x1, . . . , xn}, f is said
to be of lower rank than g, denoted by f < g, if

• ld(f) ≺ ld(g) or
• ld(f) = ld(g) and deg(f, ld(f)) < deg(g, ld(f)) (here deg(h, y) means the

degree of h as a polynomial in the variable y).

The differential polynomial f is said to be reduced with respect to g if no proper
derivative of ld(g) appears in f and deg(f, ld(g)) < deg(g, ld(g)).

Let A be a set of differential polynomials. Then A is said to be an auto-reduced
set if each differential polynomial in A is reduced with respect to any other element
of A. Every auto-reduced set is finite [34].

Let A be an auto-reduced set. We denote HA to be the set of all initials and sep-
arants of A and H∞A the minimal multiplicative set containing HA. The saturation
differential ideal of A is defined to be

sat(A) = [A] : H∞A = {f ∈ K{x1, . . . , xn} : ∃h ∈ H∞A for which hf ∈ [A]} .

An auto-reduced set C contained in a differential polynomial set S is said to be
a characteristic set of S if S does not contain any nonzero element reduced with
respect to C. A characteristic set C of a differential ideal I reduces all elements of
I to zero. Furthermore, if I is prime, then I = sat(C).

Definition 2.11. For an auto-reduced set A = {A1, . . . , At} with ld(Ai) = x
(oi)
ci ,

the order of A is defined as ord(A) =
∑t
i=1 oi.

Let I be a prime differential ideal in K{x1, . . . , xn}. The differential dimension
of I is defined as the differential transcendence degree of the differential extension
field K〈V(I)〉 over K.

Definition 2.12. [24] Let I be a prime differential ideal of K{x1, . . . , xn}. Then
there exists a unique numerical polynomial ωI(t) such that

ωI(t) = tr.deg(Q(K{x1, . . . , xn}≤t/(I ∩ (K{x1, . . . , xn}≤t))/K)

for all sufficiently large t ∈ N. The polynomial ωI(t) is called the Kolchin polynomial
of I.

In the present paper, we also need the Wu-Ritt algebraic characteristic method
to deal with the prolongation ideals of a differential ideal, regarded as pure alge-
braic ideals. Below, we conclude this subsection by recalling basic concepts about
algebraic characteristic sets [36].
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Consider the polynomial ring K[x1, . . . , xn] and fix an ordering on x1, . . . , xn,
say, x1 ≺ · · · ≺ xn. Given f ∈ K[x1, . . . , xn]\K, the leading variable of f is the
greatest variable xk effectively appearing in f , denoted by lv(f). A sequence of
polynomials A1, . . . , Ar is said to be an ascending chain, if

• r = 1 and A1 6= 0, or
• all Ai are nonconstant,
• lv(Ai) < lv(Aj) for 1 ≤ i < j and
• deg(Ak, lv(Ak)) > deg(Am, lv(Ak)) for m > k.

Suppose A = 〈A1, . . . , Ar〉 and B = 〈B1, . . . , Bs〉 are two ascending chains in
K[x1, . . . , xn]. We say A is of lower rank than B, denoted by A ≺ B, if either

• there exists k ≤ min{r, s} such that lv(Ai) = lv(Bi) for i < k and lv(Ak) <
lv(Bk), or
• r > s and lv(Ai) = lv(Bi) for i ≤ s.

Given an ideal I in K[x1, . . . , xn], an ascending chain contained in I which is of
lowest rank is called an algebraic characteristic set of I. If V ⊆ An is an irreducible
variety, then an algebraic characteristic set of V is defined as the characteristic set
of I(V ).

Lemma 2.13. Algebraic characteristic sets with respect to an arbitrary ranking are
definable in families.

Proof. Let (Vb)b∈B be a constructible family of algebraic subvarieties of An. By the
algebraic version of [15, Corollary 6.2], there is a number r only depending on the
degrees of the defining equations of (Vb)b∈B and n such that Vb has a characteristic
set of degree bounded by r.

One can naturally view the space of sets of n− d polynomials of degree at most

r as a definable quotient of A(n+r
r )·(n−d). We claim that the set of points in this

space which correspond to algebraic characteristic sets of Vb is a definable set.
By definition, algebraic characteristic sets are those ascending chains which are

minimal with respect to our fixed ranking. Ordering the coordinates by the rank

of the corresponding monomials in each of the n− d copies of A(n+r
r ), the property

for a finite set of polynomials to be an ascending chain is definable by quantifying
over the support of the polynomials in the set. Minimality among ascending chains
can be seen easily by quantification over the (definable) set of ascending chains and
quantifier free statements regarding the support of the sets of polynomials. �

2.2. The Ritt problem. Irreducibility of differential varieties is not known to
be a definable in families. This essentially comes down to the fact that it might
not be possible to bound the order the differential polynomials which witness the
non-primality of the differential ideal only from geometric data. Developing such
a bound is equivalent to several problems considered by Ritt [15, for instance, see
the statement of Theorem 5.7 along with the references in the following remark],
and we will refer to the development of such a bound as the Ritt problem.

Characteristic sets are an answer to this problem; various properties become de-
finable in families of characteristic sets. The drawback is that for points p such that
the product of the separants of a given characteristic set vanish at p, determining if
p is in the differential variety with a given characteristic set is an open problem [20,
see the discussion in the appendices]. In this paper, we will parameterize char-
acteristic sets of δ-cycles rather than parameterizing generators of δ-ideals. One
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might seek a more direct parameterization by generators of differential ideals, but
doing so while following our general strategy would, at least on the surface, seem
to require a solution to the Ritt problem.

Here is a specific indication of the problems that can arise when working directly
with the generating sets of differential ideals; the following example shows that the
order, h, will not suffice for the bound described in the previous paragraphs.
Example 2.14. [20] Let V = V(2x(1)x(3) − (x(2))2 − 2x). Differentiating the
defining equation results in the equation 2x(1)(x(4) − 1) = 0. From this, it is easy
to see that V consists of two components, x = 0 and the generic component.

Of course, more differentiations might be necessary:
Example 2.15. [34] Consider V = V(f) where f = (y(2))2 − y ∈ K{y}. Differen-
tiating f successively 3 times, one obtains

δf = 2y(2)y(3) − y(1)

δ2f = 2y(2)y(4) + 2(y(3))2 − y(2)

δ3f = 2y(2)y(5) + 6y(3)y(4) − y(3)

Then 2y(3) · δ3f − (6y(4) − 1)f (2) = y(2)(4y(3)y(5) − 12(y(4))2 + 8y(4) − 1) ∈ [f ].
Thus, V = V(f, y(2)) ∪ V(f, 4y(3)y(5) − 12(y(4))2 + 8y(4) − 1) is reducible.

Informally, the Ritt problem asks if there is an upper bound to the number of
required differentiations in terms of the “shape” of the equations. An equivalent
form of the Ritt problem [20, Appendix 1] is testing when a given point (say 0) at
which the separants of the characteristic set vanish is in the generic component of
the differential ideal generated by the characteristic set.

2.3. Skirting around the Ritt problem. As we described in the previous sec-
tion, the facts corresponding to 2.10 are not known in the differential setting. Our
replacement for these facts will be the results of this section and the use of prolon-
gation sequences. The next lemma follows easily from Fact 2.10 and the definition
of prolongation admissible.

Lemma 2.16. Prolongation admissibility is definable in families.

Given a system of differential equations of order h, one might use our character-
ization of prolongation admissibility to express the system of differential equations
via a prolongation admissible variety. For a prolongation admissible variety, the
order and dimension of the corresponding differential variety are clearly definable,
applying Lemma 2.7. A more direct geometric argument not using prolongation
sequences is also possible, which we give here.

In [11], intersections of differential varieties with δ-generic hyperplanes were an-
alyzed. The coefficients of the defining equations of the hyperplanes were taken to
be sets of differential indeterminates u over the differential field K in which the
variety was defined and various aspects of the geometry of the resulting intersec-
tion were established over the field K〈u〉. The geometry of generic intersections of
differential varieties was analyzed in [7], where the following result was proved.

Theorem 2.17. Let V ⊆ An be a geometrically irreducible affine differential variety
which is not an algebraic curve. Let H be a hyperplane defined by an inhomoge-
neous linear form over U whose coefficients are δ-generic over K. Then V ∩ H
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is a geometrically irreducible differential variety, which is nonempty just in case
dim(V ) > 0. In that case, V ∩H has Kolchin polynomial:

ωV/K(t)− (t+ 1) .

One can use Theorem 2.17 to prove the definability of dimension and order; as
we have remarked above, there seem to be various other ways to prove these results;
also see section 5.

Lemma 2.18. Given a δ-constructible family of δ-varieties (Xs)s∈S, with dim(S) =
0, the set {s ∈ S(U) : dim(Xs) = d} is a δ-constructible subset of S

Proof. Fix d and n + 1-tuples (ci,j)1≤i≤d,1≤j≤n+1 such that the elements in the
tuple are differentially independent over K. Then by Theorem 2.17, for s ∈ S one
has

dim(Xs) ≥ d ←→ Xs ∩ V ({
n∑
j=1

ci,jyj − c1,n+1}di=1) 6= ∅ .

�

One should note that Theorem 2.17 applies in this case only because over any
base of S, we know that any point on S is of differential transcendence degree 0.
So, choosing some collection of independent differential transcendentals over the
base of all of the definable sets, S, the collection is independent and differentially
trancendental over any given point in S. We will refer to an inhomogeneous linear
form,

∑n
j=1 cjyj − cn+1, whose coefficients are independent differential transcen-

dentals as a generic inhomogeneous linear form. The zero set of such a form will
be called a generic hyperplane. A collection of such forms whose coefficients are
independent will be called a set of independent generic forms and the corresponding
set of hyperplanes will be called a generic independent set of hyperplanes.

Lemma 2.19. Differential dimension is definable in families. That is, given a
δ-constructible family of δ-varieties (Xs)s∈S and a number d ∈ N the set {s ∈
S(U) : dim(Xs) = d} is a δ-constructible subset of S.

Proof. Adopt the notation of Lemma 2.18. Suppose that dim(S) = n1. Then
pick 2n1 + 1 systems of d(n+ 1)-tuples of mutually independent δ-transcendentals
(equivalently, fix an indiscernible set in the generic type, over K; then pick any
(2n1 + 1)d(n+ 1) elements from this set). Denote the chosen elements

{ck,i,j : 1 ≤ k ≤ 2n1 + 1, 1 ≤ i ≤ d, 1 ≤ j ≤ n+ 1}

Of course, over any given fiber of S some of the 2n1 + 1 systems do not give generic
independent sets of hyperplanes. But, because dim(S) = n1 and the systems are
mutually independent, at least n1 + 1 of the systems are generic over any given
fiber φ−1(s).

Now, the requirement that dim(φ−1(s)) ≥ d is equivalent to the condition that
for at least n1 + 1 values of the k,

φ−1(s) ∩ V(

n∑
j=1

ck,1,jyj − ck,1,n+1, . . . ,

n∑
j=1

ck,d,jyj − ck,d,n+1) 6= ∅ .

�
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Recall that the set of numerical polynomials can be totally ordered with respect
to the ordering: ω1 ≤ ω2 if and only if ω1(s) ≤ ω2(s) for all sufficiently large
s ∈ N. Given a differential variety V , we define a generic component of V to be a
component which has the maximal Kolchin polynomial among all the components
of V . By the order of a differential variety V , we mean the order of the generic
components of V .

The order of a family of finite rank differential varieties is definable in families
by [20, Appendix A.1]. The general result follows by reducing to this case via an
argument similar to the proof of Lemma 2.19. See [8] for complete details.

Lemma 2.20. The order of a definable set is definable in families.

Lemma 2.21. The number of generic components of a differential variety is de-
finable in families. Characteristic sets of the generic components and the product
of their initials and separants are definable in families.

Proof. Let (Vb)b∈B be a δ-constructible family of δ-subvarieties of An.
Throughout this proof we will be repeatedly using Fact 2.10. By Theorem 6.1

of [15], given a finite set S of differential polynomials, there is a bound on the
order and degree of the elements in the characteristic sets of the minimal prime
differential ideals pi (i = 1, . . . , `) containing the set S. Indeed, combining Theo-
rems in [34, p.135] and [11, Theorem 2.11], the order of each pi does not exceed
maxni=1 ord(S, xi). Thus, the order of each differential polynomial in a characteristic
set of pi with respect to our orderly ranking is also bounded by maxni=1 ord(S, xi).
Let h be the order bound for the differential polynomials which define our family
of differential varieties. The order of the differential varieties corresponding to the
minimal primes is thus bounded by n · h. These bounds are independent of the
choice of b ∈ B.

Let hb be the order of Vb and let db be the dimension of Vb. Both of these
quantities are definable in families by Lemmas 2.19 and 2.20. Then

dim(Bnh(Vb)) = (nh+ 1)(db) + hb .

We claim that the irreducible prolongation admissible components of Bnh(Vb) of
dimension (nh + 1)(db) + hb are in one to one correspondence with the generic
components of Vb. Every generic component of Vb has the same Kolchin polynomial
as Vb. Since nh is at least as large as the order of any component of Vb, if X is
any component of Vb, then X is a generic component if and only dim(Bnh(X)) =
(nh+ 1)(db) + hb.

On the other hand, prolongation admissible varieties are characterized by the
fact that for Y ⊆ τhAn, points of the form {u ∈ An(U) | ∇h(u) ∈ Y (U)} are Zariski
dense in Y . So, by Lemma 2.7, each irreducible prolongation admissible component
Y of Bnh(Vb) of dimension (nh+ 1)(db) +hb will determine a generic component of
Vb, which is just the unique generic component of the differential variety associated
to the prolongation sequence generated by Y . Applying Fact 2.10 and Lemma 2.16,
the number of generic components of Vb is definable as a function of b ∈ B.

By [15, Theorem 6.1], there is a uniform bound on the degree of the elements of
a characteristic set of the minimal prime differential ideals containing I(Vb). Using
this bound we may parametrize the characteristic sets of the generic components
of Vb uniformly. �
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Remark 2.22. Let us note a subtlety in the proof of Lemma 2.21: while there is
a correspondence between the irreducible prolongation admissible components of
Bnh(Vb) and the generic components of Va, it need not be the case that the dif-
ferential variety given by such a prolongation admissible component be irreducible
itself; it may be necessary to consider higher derivatives in order to single out a
generic component. In particular, we do not know whether there is a finite bound
on the number of additional differentiations required over the family. In general,
given a characteristic set of a differential ideal, we do not know a bound for the
order of the generators of the differential ideal determined by the characteristic set.

Many of the arguments and bounds in this paper are theoretical, but could
be made effective (for instance, many of the definability arguments could be made
effective using differential elimination algorithms.). Our proof of Lemma 2.21, by its
reliance on nonstandard methods [15], is an exception; producing explicit equations
for differential Chow varieties in specific cases would require effectivizing Theorem
6.1 of [15]. The process used in the proof of Lemma 2.21 will not produce all of the
components of Va in all circumstances. For instance, consider the equation (y′)2 −
4y = 0. Because δ((y′)2−4y) = y′(2y′′−4), the differential ideal [(y′)2−4y] ⊆ K{y}
is not prime. The minimal primes in K{y}/[(y′)2 − 4y] correspond to the generic
component of the solution set and the special component y = 0. Of course, h = 1
is a bound for the order of the components of the equation (in the notation of the
previous proof). The only maximal irreducible prolongation admissible subvariety
of (y′)2−4y = 0 considered in τ1A1 is the entire variety. In this case, the differential
variety corresponding to the prolongation sequence generated by (y′)2 − 4y = 0 is
not irreducible, but the differential variety corresponding to [(y′)2 − 4y] : (y′)∞ is
irreducible.

There is a way of partially remedying this defect given in [12]; let S be a collection
of differential polynomials. Then there is an algorithm which produces a finite set
of characteristic sets such that the radical differential ideal I generated by S is the
intersection of the prime differential ideals given by the characteristic sets. Then
the minimal primes of the differential radical ideal generated by S are among the
prime differential ideals given by the finite list of characteristic sets. However, there
is no known algorithm for testing which of these ideals are actually minimal. For
complete details, see [12].

3. Chow forms and varieties

In this section we recall the definitions of Chow forms, Chow varieties, and
their differential algebraic analogs. Suppose K is an algebraically closed field. The
algebraic Chow form was first defined for projective varieties by Chow [3]. When∑n
i=0 ciyi is a linear form with {ci}ni=0, a tuple of independent transcendentals, we

call the form algebraically generic, and we call the zero set of such a form a generic
hyperplane.
Definition 3.1. [3, 18] Let V ⊆ Pn be an irreducible projective variety of di-
mension d. Take d independent generic linear forms Li = vi0y0 + · · · + vinyn
for 1 ≤ i ≤ d), then V intersects V (L1, . . . , Ld) in a finite set of points, say
(ξτ0, . . . , ξτn) (τ = 1, . . . ,m). Then there exists a polynomial A ∈ K[v1, . . . ,vd]
such that F (v0, . . . ,vd) = A

∏m
τ=1(

∑n
j=0 v0jξτj) is an irreducible polynomial in

K[v0, . . . ,vd] where vi = (vi0, vi1, . . . , vin). This F is called the algebraic Chow
form of V .
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The Chow form is that F is homogeneous in each vi of degree m. We call m
the degree of V , denoted by deg(V ). Throughout the remainder of this paper,
unless otherwise indicated, varieties and differential varieties are affine. First, we
introduce the concept of algebraic Chow form for irreducible varieties in An.

Definition 3.2. Let V be an irreducible affine variety of dimension d in An. Let
V ′ be the projective closure of V with respect to the usual inclusion of An in Pn.
We define the algebraic Chow form of of V to be the algebraic Chow form of V ′.

An (effective) algebraic cycle in An of dimension d over K is of the form V =∑l
i=1 tiVi (ti ∈ Z≥0) where each Vi is an irreducible variety of dimension d in An.

We define the algebraic Chow form of V to be F (v0, . . . ,vd) =
∏l
i=1(Fi(v0, . . . ,vd))

ti

where Fi is the algebraic Chow form of Vi, and define the degree of V to be∑l
i=1 ti deg(Vi), which is the homogenous degree of F in each vi. The coefficient

vector of F , regarded as a point in a product of projective spaces, is correspondingly
called the Chow coordinate of V . Each algebraic cycle is uniquely determined by
its algebraic Chow form, in other words, determined by its Chow coordinate.

In [3], Chow proved that the set of all algebraic cycles in Pn of dimension d and
degree m in the Chow coordinate space is a projective variety, called Chow variety
of index (d,m). In general, the set of all algebraic cycles in An of dimension d
and degree m is not closed in the Chow coordinate space. Below, we give a simple
example.

Example 3.3. Consider the set X of all algebraic cycles in A2 of dimension 0
and degree 1. Each V ∈ X can be represented by two linear equations ai0 +
ai1y1 + ai2y2 = 0 (i = 0, 1) with a01a12 − a02a11 6= 0. Then the Chow form of V is
F (v00, v01, v02) = (a01a12−a02a11)v00− (a00a12−a02a10)v01 +(a00a11−a01a10)v02.
So the Chow coordinate of V is (a01a12−a02a11,−a00a12 +a02a10, a00a11−a01a10).
Thus, the Chow coordinates of cycles in X is the set {(c0, c1, c2) : c0 6= 0} =
Pn \ V (c0), which is not a closed variety, but is a constructible set.

The following result shows that the set of all cycles with given degree and di-
mension is always a constructible set in the Chow coordinate space.

Proposition 3.4. The set of all algebraic cycles in An of dimension d and degree
m is a constructible set in a higher dimensional projective space. We call this set
the affine Chow variety of index (d,m), denoted by Chown(d,m), or Chow(d,m) if
the space An is clear from the context.

Proof. Let M be the set of all monomials in v0, . . . ,vd which are of degree m in each

vi. That is, M = {
∏d
i=0

∏n
j=0 v

σij

ij |σij ∈ Z≥0,
∑n
j=0 σij = m}. Let F0 =

∑
φ∈M cφφ

where cφ are algebraic indeterminates over K. By [3, 18], there exists a projective

variety W ⊆ P|M |−1 such that (c̄φ : φ ∈ M) ∈ W if and if F̄0 =
∑
φ∈M c̄φφ is the

algebraic Chow form of an algebraic cycle in Pn of dimension d and degree m.

Let N = {vm00
d∏
i=1

n∏
j=0

v
σij

ij |σij ∈ Z≥0,
∑n
j=0 σij = m} ⊆ M and let {c1, . . . , c|N |}

be the set of all coefficients of F0 with respect to monomials contained in N . Let
W1 = W \ V (c1, . . . , c|N |). We claim that there is a one-to-one correspondence
between Chown(d,m) and W1 via algebraic Chow forms. On the one hand, for
each point in Chown(d,m) corresponding to an algebraic cycle V , the algebraic
Chow form F =

∑
φ∈M c̄φφ of V has the following Poisson-type product formula:
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F = A
∏m
τ=1(v00 +

∑n
j=1 v0jξτj) where A ∈ k[v1, . . . ,vd] and (ξτ1, . . . , ξτn) is a

generic point of a component of V . Thus, there exists at least one monomial φ ∈ N
such that φ appears effectively in F . As a consequence, (c̄φ) ∈ W1. On the one
hand, for each (c̄φ : φ ∈ M) ∈ W1, F̄0 =

∑
φ∈M c̄φφ is the algebraic Chow form

of an algebraic cycle V̄ ′ =
∑
i tiV

′
i in Pn of dimension d and degree m. Also from

the Poisson-product formula, we can see that each V ′i 6⊆ V(x0). Thus, F̄0 is the
algebraic Chow form of the algebraic cycle V̄ =

∑
i tiVi ∈ Chown(d,m). Hence, we

have proved that Chown(d,m) is a constructible set. �

Let V ⊆ An be an irreducible differential variety defined over K of dimension d
and

Li = ui0 + ui1y1 + · · ·+ uinyn (i = 0, . . . , d)

be d + 1 differentially generic inhomogeneous linear forms. For each i, denote
ui = (ui0, ui1, . . . , uin). Let

(1) Iu = [I(V ), L0, . . . , Ld]K{y1,...,yn,u0,...,ud} ∩K{u0, . . . ,ud}.
Then by [11, Lemma 4.1], Iu is a prime differential ideal in K{u0, . . . ,ud} of codi-
mension one.

Definition 3.5. The differential Chow form of V or I(V ) is defined as the unique
(up to appropriate scaling) irreducible differential polynomial F (u0, . . . ,ud) such
that Iu = sat(F ) under any rankings.

Differential Chow forms uniquely characterize their corresponding differential
ideals. The following theorem gives some basic properties of differential Chow
forms.

Theorem 3.6. [11] Let V be an irreducible differential variety defined over K
with differential dimension d and order h. Suppose F (u0, . . . ,ud) is the differential
Chow form of V . Then F has the following properties.

1) ord(F ) = h. In particular, ord(F, ui0) = h for each i = 0, . . . , d.
2) F is differentially homogenous of the same degree m in each ui. This m is

called the differential degree of V.

3) Let g = deg(F, u
(h)
00 ). There exist differential extension fields Kτ (τ =

1, . . . , g) of K and ξτj ∈ Kτ (j = 1, . . . , n) such that F = A
∏g
τ=1(u00 +

u01ξτ1 + · · ·+u0nξτn)(h) where A is a differential polynomial free from uh00.
Moreover, each ξτ = (ξτ1, . . . , ξτn) are generic points of V and L1, . . . , Ld
all vanish at ξτ .

4) The algebraic variety Bh(V ) ∩ V (L
(h)
1 , · · · , L(h)

d , L
(h−1)
0 ) ⊆ τhAn is of di-

mension zero. Its size, g, is called the leading differential degree of V .

A differential variety is called order-unmixed if all its components have the same
differential dimension and order. Let V be an order-unmixed differential variety of

dimension d and order h and V =
⋃l
i=1 Vi its minimal irreducible decomposition

with Fi(u0,u1, . . . ,ud) the Chow form of Vi. Let

(2) F (u0, . . . ,ud) =

l∏
i=1

Fi(u0,u1, . . . ,ud)
si

with si arbitrary nonnegative integers. In [11], a differential algebraic cycle is

defined associated to (2) similar to its algebraic analog, that is, V =
∑l
i=1 siVi is
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a differential algebraic cycle with si as the multiplicity of Vi and F (u0, . . . ,ud) is
called the differential Chow form of V.

Suppose each Vi is of differential degree mi and leading differential degree gi,
then the leading differential degree and differential degree of V is defined to be∑l
i=1 sigi and

∑l
i=1 simi respectively.

Definition 3.7. A differential cycle V in the n dimensional affine space with
dimension d, order h, leading differential degree g, and differential degree m is said
to be of index (d, h, g,m) in An.

Definition 3.8. Let V be a differential cycle of index (d, h, g,m) in An. The
differential Chow coordinate of V is the coefficient vector of the differential Chow
form of V considered as a point in a higher dimensional projective space determined
by (d, h, g,m) and n.

Proposition 3.9. The differential Chow form of an order-unmixed differential
variety V is definable in families. The index (d, h, g,m) of a δ-cycle in An is
definable in families.

Proof. The definability of d and h in families is given by Propositions 2.19 and
2.20, respectively. It is clear that g and m are definable in families, given that the
differential Chow form is definable in families.

Suppose now that V ⊆ An has δ-dimension d and order h. The characteristic sets
of the generic components of a family of differential varieties are definable in families
by Lemma 2.21. Let u = (u0, . . . ,ud) be δ-indeterminates with ui = (ui0, . . . , uun)
for 0 ≤ i ≤ d. Let Li := ui,0 +

∑
j=1 uijxj ∈ K{u, x1, . . . , xn}. Let I be the

differential ideal generated by I(V ) and {L0, . . . , Ld}.
Let W := V(I). Visibly, W is uniformly defined from V . Moreover, Bh(W ) is

uniformly defined from W . To see this, note that by [21, Remark 3], the degree
of Bh(W ) is uniformly bounded in terms of a number of variables, and the degree
and order of the equations defining W . The variety Bh(W ) is defined by at most
(n+ (n+ 1)(d+ 1))(h+ 1) + 1 polynomials over K of degree at most deg(Bh(W ))
(see [16], for instance). Among all zero sets of such collections, the ones which
contain the δ-points of W and are minimal with respect to containment give Bh(W )
since the δ-points are dense in Bh(W ). Now take the projection of Bh(W ) to
the coordinates corresponding to u and their derivatives. By the definition and
properties of differential Chow form, I(Bh(W ))∩k{u0, . . . ,ud}≤h = (F ), where F is
the differential Chow form of V . Thus, the image of the projection is a hypersurface
of degree at most deg(Bh(W )), given by the vanishing of the differential Chow
form. �

Definition 3.10. Fix an index (d, h, g,m) and n and consider the set

V(n,d,h,g,m) = {V : V is a differential cycle of index (d, h, g,m) in An }.
If V(n,d,h,g,m) has the structure of a δ-constructible in some affine differential variety
of finite type, then V(n,d,h,g,m) is called the differential Chow Variety of index
(d, h, g,m) of An, denoted by δ-Chow(n, d, h, g,m).
Theorem 3.11. [11, Theorem 5.7] In the case g = 1, the differential Chow variety
δ-Chow(n, d, h, 1,m) exists.

Remark 3.12. In the algebraic setting, for an arbitrary tuple (d,m), Chown(d,m) is
always a nonempty constructible set. However, it is more subtle in the differential



DIFFERENTIAL CHOW VARIETIES 17

case and V(n,d,h,g,m) may be empty for certain values (n, d, h, g,m). For example,
when a differential algebraic cycle is of order 1, its differential degree is at least 2,
so V(n,d,1,g,1) = ∅.

4. Degree bound for prolongation sequences

We are interested in the space of all differential cycles in n dimensional affine
space of some fixed index (d, h, g,m). Ultimately, the point in our parameter space
corresponding to a differential cycle

∑
i aiVi will be given by the point representing∑

i aiBh(Vi) in an appropriate algebraic Chow variety. In order to ensure that
the space of such algebraic varieties has the structure of a definable set, we must
establish degree bounds for the corresponding algebraic cycles. This is the topic of
the present section.

Proposition 4.1. Suppose V is an irreducible differential variety of index (d, h, g,m)
in An. Then there is a natural number D depending only on (d, h, g,m) such that
Bh(V ) ⊆ τhAn is an irreducible algebraic variety with degree satisfying deg(Bh(V )) ≤
D.

Proof. The irreducibility of Bh(V ) follows from the fact that Bh(V ) = V
(
I(V ) ∩

K{x1, . . . , xn}≤h
)
. It remains for us to show that there is D with the claimed

properties.
Suppose F (u0, . . . ,ud) is the differential Chow form of V where ui = (ui0, . . . , uin)

(i = 0, . . . , d). Let u be the tuple of variables (ui,j)
d,n
i=0,j=1. That is, we are omitting

the variables of the form ui,0. Set K1 = K〈u〉. Let W be the differential variety in
Ad+1 defined by sat(F ) considered as a differential ideal in K1{u00, . . . , ud0}. Then
by Theorem 3.6, Bh(W ) = V (F ) ⊆ τhAd+1 is an irreducible variety.

By Theorem [11, Theorem 4.13], the map given by

f(u0) = (
∂F

∂u
(h)
0,i

/SF )ni=1

gives a differential birational map from W to VK1
. By quantifier elimination in

DCF0, the image is given by the vanishing and non vanishing of some collection
of differential polynomials. By the compactness theorem, the number, degree and
order of these equations and inequations must be bounded uniformly depending
only on the degrees, orders, and number of variables of F and f . The results of [21]
(see Remark 3.2) give a uniform upper bound, D for the degree of Bh(V ). �

Corollary 4.2. Suppose V =
∑
i aiVi ⊆ An (ai ∈ Z≥0) is an order-unmixed dif-

ferential variety of index (d, h, g,m). Then there is a natural number D such that∑
i aiBh(Vi) is an algebraic cycle in τhAn of dimension d(h + 1) + h and degree

satisfying deg(Bh(V )) ≤ D

It is possible to give effective versions of Proposition 4.1 and Corollary 4.2 with
a more complicated proof; the following proposition gives such detailed effective
bounds. In the following section of the paper, we will use Corollary 4.2 to restrict
the space of algebraic Chow varieties which we consider. A more detailed analysis
of the particular defining equations of the differential Chow variety might be under-
taken by applying the more detailed effective bounds of the following Proposition
(or improving upon them), but the main thrust of our results in the next section
concerns the existence of differential Chow varieties, so the following result is given
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primarily given to indicate that the construction of differential Chow varieties can
be made effective in principle.

Proposition 4.3. Suppose V is an irreducible differential variety of index (d, h, g,m)
in An. Then Bh(V ) ⊆ τhAn is an irreducible algebraic variety with degree satisfying

(3) max{g,m/(h+ 1)} ≤ deg(Bh(V )) ≤ [(d+ 1)m]nh+n+1.

Proof. Suppose F (u0, . . . ,ud) is the differential Chow form of V where ui = (ui0, . . . ,

uin) (i = 0, . . . , d). Let u = (uij)
d,n
i=0,j=1 and K1 = K〈u〉.

Let J = [I(V ), L0, . . . , Ld] ⊂ K1{x1, . . . , xn, u00, . . . , ud0}. Then by the proof of

[11, Theorem 4.36], the polynomials gjk = ∂F

∂u
(h)
00

x
(k)
j +

∑k
`=1

(
h−`
k−`
)
/
(
h
k

)
∂F

∂u
(h−`)
00

x
(k−`)
j −

∂F

∂u
(h−k)
0j

(j = 1, . . . , n; k = 0, . . . , h) are contained in J. Fix an ordering of algebraic

indeterminates so that x1 < · · · < xn < x
(1)
1 < · · · < x

(1)
n < · · · < x

(h)
1 < . . . < x

(h)
n

and u
(k)
ij < x

(m)
` for all i, j, k, `, and m.

Let J[h] := J ∩K1{x1, . . . , xn, u00, . . . , ud0}≤h. Since for each f ∈ J[h], the alge-
braic remainder of f with respect to gjk is a polynomial in J∩K1{u00, . . . , ud0}≤h =
(F ), {F} ∪ {gjk : 1 ≤ j ≤ n, 0 ≤ k ≤ h } constitutes an algebraic characteristic

set of J[h]. Thus,

J[h] =
(
F, (gjk)1≤j≤n;0≤k≤h

)
:
( ∂F

∂u
(h)
00

)∞
.

Since the variety defined by the ideal
(
F, (gjk)1≤j≤n;0≤k≤h

)
:
(
∂F

∂u
(h)
00

)∞
is a com-

ponent of the closed set given by the vanishing of
(
F, (gjk)1≤j≤n;0≤k≤h

)
, by [16,

Theorem 1],

deg(J[h]) ≤ deg(
(
F, (gjk)1≤j≤n;0≤k≤h

)
)

≤ deg(F )n(h+1)+1 ≤ [(d+ 1)m]nh+n+1.

Since J[h] ∩K1{x1, . . . , xn}≤h = I(Bh(V )K1), by [16, 27], deg(Bh(V )) ≤ deg(J[h]).
Hence, deg(Bh(V )) ≤ [(d+ 1)m]nh+n+1.

Since dim(Bh(V )) = d(h + 1) + h and by [11], Bh(V ) and some d(h + 1) + h

hyperplanes defined by L
(i)
0 for 0 ≤ i < h and L

[(i)]
1 , . . . , L

[(i)]
d for 0 ≤ i ≤ h

intersect in g points, deg(Bh(V )) ≥ g. On the other hand, F can be obtained
from the algebraic Chow form of Bh(V ) using the strategy of specializations in [27,
Theorem 4.2]. So deg(F ) ≤ (h + 1)(d + 1) deg(Bh(V )) and deg(F ) = m(d + 1).
Thus, (3) follows. �

5. On differential Chow varieties

In this section, we will show that for a fixed n ∈ N and a fixed index (d, h, g,m),
V(n,d,h,g,m) is a δ-constructible set. That is, the differential Chow variety δ-Chow(n, d, h, g,m)
exists.

Consider the disjoint union of algebraic constructible sets

C =
⋃
e≤D

Chow(d(h+ 1) + h, e)(τhAn)

where D is the bound of Corollary 4.2. Let C1 be the subset consisting of all points
a ∈ C such that
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• a is the Chow coordinate of an algebraic cycle
∑
i tiWi where each Wi is

irreducible and prolongation admissible and
• the generic component of the differential variety corresponding to the pro-

longation sequence generated by Wi is of index (d, h, gi,mi) and
∑
i tigi =

g,
∑
i timi = m.

Theorem 5.1. The set C1 is constructible and the map which associates a differen-
tial algebraic cycle V =

∑
siVi of index (d, h, g,m) in An with the Chow coordinate

of the algebraic cycle
∑
siBh(Vi) identifies δ-Chow(n, d, h, g,m) with C1. In par-

ticular, the differential Chow variety δ-Chow(n, d, h, g,m) exists.

Proof. From the very definition of prolongation admissibility, it is δ-constructible
condition. Thus, for each e the set of Chow coordinates of positive cycles of de-
gree e built from prolongation admissible varieties of dimension d(h + 1) + h is
a δ-constructible subset of Chow(d(h + 1) + h, e)(τhAn). By Lemma 2.19 and
Lemma 2.20, the set of Chow coordinates in which each irreducible variety in a
given cycle corresponds generates a prolongation sequence whose corresponding
differential variety has dimension d and order h is a δ-constructible set. Thus, by
Proposition 3.9, C1 is δ-constructible.

By Lemma 2.7 the differential algebraic cycle V =
∑
siVi is determined by the

algebraic cycle
∑
siBh(Vi). By Corollary 4.2, this algebraic cycle belongs to C1. �

Remark 5.2. For the special case d = n− 1, the existence of the differential Chow
variety of index (n − 1, h, g,m) can be easily shown from the point of view of
differential characteristic sets. Indeed, note that each order-unmixed radical dif-
ferential ideal I of dimension n − 1 and order h has the prime decomposition
I =

⋂t
i=1 sat(fi) = sat(

∏t
i=1 fi), where fi ∈ K{x1, . . . , xn} is irreducible and of

order h. Thus, there is a one-to-one correspondence between V(n−1,h,g,m) and the
set of all differential polynomials f ∈ K{x1, . . . , xn} such that each irreducible

component of f is of order h, deg(f, {x(h)1 , . . . , x
(h)
n }) = g and the denomination of

f is equal to m. Here, the denomination of f is the smallest number r such that
xr0p(x1/x0, . . . , xn/x0) ∈ F{x0, x1, . . . , xn}[25]. Since all these characteristic num-
bers are definable for differential polynomials, V(n−1,h,g,m,n) is a definable subset

of A(m+n(h+1)
n(h+1) ). Hence, the differential Chow variety of index (n− 1, h, g,m) exists.
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Appendix: Geometric irreducibility and Zariski closure are
definable in families
by William Johnson

In this appendix we establish the results on definability in algebraically closed
fields stated as Fact 2.10 in the main text. We follow standard model theoretic
notations and conventions. For example, we write RM(a/B) for the Morley rank
of the type of a over B and use the nonforking symbol freely.

A.1. Irreducibility in Projective Space. Let C be a monster model of ACF .
For ~x ∈ Pn(C), let P~x be the n− 1-dimensional projective space of lines through ~x,
and let π~x : Pn \ {~x} → P~x be the projection.

Lemma 1. Let A be a small set of parameters, and suppose ~x ∈ Pn(C) is generic
over A. Suppose V is an A-definable Zariski closed subset of Pn, of codimension
greater than 1. Then π~x(V ) ⊆ P~x is well-defined, Zariski closed, of codimension
one less than the codimension of V . Moreover, π~x(V ) is irreducible if and only if
V is irreducible.

Proof. Replacing A with acl(A), we may assume A is algebraically closed, implying
that the irreducible components of V are also A-definable.

Since ~x is generic, and V has codimension at least 1, ~x /∈ V so π~x(V ) is well-
defined. It is Zariski closed because Pn is a complete variety, so V is complete and
the image of V under any morphism of varieties is closed.

Claim 2. Let C be any irreducible component of V , and let ~c ∈ V realize the
generic type of C, over A~x. Then ~c is the sole preimage in V of π~x(~c).

Proof. The generic type of C is A-definable, so ~c |̂
A
~x, and therefore RM(~x/A~c) =

RM(~x/A) = n. Suppose for the sake of contradiction that there was a second point
~d ∈ V , ~d 6= ~c, satisfying

π~x(~d) = π~x(~c).

This means exactly that the three points ~c, ~d, and ~x are colinear. Then ~x is on the

1-dimensional line determined by ~c and ~d, so

RM(~x/A~c~d) ≤ 1.

But then

n = RM(~x/A~c) ≤ RM(~x~d/A~c) = RM(~x/A~c~d) +RM(~d/A~c) ≤ 1 +RM(V ) < n,

by the codimension assumption. �

Using the claim, we see that π~x(V ) and V have the same dimension (= Morley
rank). Indeed, let ~v ∈ V have Morley rank RM(V ) over A~x. Then ~v realizes the
generic type of some irreducible component C, so by the claim, ~v is interdefinable
over A~x with π~x(~v). But then

RM(π~x(V )) ≥ RM(π~x(~v)/A~x) = RM(~v/A~x) = RM(V ),

and the reverse inequality is obvious. So the codimension of π~x(V ) is indeed one
less.

Let C1, . . . , Cm enumerate the irreducible components of V (possibly m = 1).
Each of the components Ci is a closed subset of Pn, and so by completeness each
of the images π~x(Ci) is a Zariski closed subset of P~x. The image of each of the
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components is irreducible, on general grounds. If π~x(Ci) ⊆ π~x(Cj) for some i 6= j,
then the generic type of Ci would have the same image under π~x as some point
in Cj , contradicting the Claim. So π~x(Ci) 6⊆ π~x(Cj) for i 6= j. It follows that the
images π~x(Ci) are the irreducible components of

π~x(V ) =

m⋃
i=1

π~x(Ci).

Therefore, π~x(V ) and V have the same number of irreducible components, proving
the last point of the lemma. �

Theorem 3. Let X~a ⊆ Pn be a definable family of Zariski closed subsets of Pn.
Then the set of ~a for which X~a is irreducible, is definable.

Proof. Dimension is definable in families, because ACF is strongly minimal. So we
may assume that all (non-empty) X~a have the same (co)dimension. We proceed by
induction on codimension, allowing n to vary.

For the base case of codimension one, we note the following:

(1) The family of Zariski closed subsets of Pn is ind-definable, that is a small
(i.e. less than the size of the monster model) union of definable fami-
lies, because the Zariski closed subsets are exactly the zero sets of finitely-
generated ideals.

(2) Using 1, the family of reducible Zariski closed subsets of Pn is also ind-
definable, because a definable set is a reducible Zariski closed set if and
only if it is the union of two incomparable (with respect to containment)
Zariski closed sets.

(3) Whether or not a polynomial in C[x1, . . . , xn+1] is irreducible, is definable
in terms of the coefficients, because we only need to quantify over lower-
degree polynomials.

(4) A hypersurface in Pn is irreducible if and only if it is equal to the zero-set
of an irreducible homogeneous polynomial. It follows by 3 that the family
of irreducible codimension 1 closed subsets of Pn is ind-definable.

(5) By 2 (resp. 4), the set of ~a such that X~a is reducible (resp. irreducible) is
ind-definable. Since these two sets are complementary, both are definable,
proving the base case.

For the inductive step, suppose that irreducibility is definable in families of
codimension one less than X~a. By choosing an isomorphism between P~x and Pn−1,
one easily verifies the definability of the set of (~x,~a) such that π~x(X~a) is irreducible
and has codimension one less.

By Lemma 1, X~a is irreducible if and only if (~x,~a) lies in this set, for generic ~x.
Definability of types in stable theories then implies definability of the set of ~a such
that X~a is irreducible. �

Corollary 4. The family of irreducible closed subsets of Pn is ind-definable.

Proof. The family of closed subsets is ind-definable, and by Theorem 3 we can select
the irreducible ones within any definable family. �

Corollary 5. The family of pairs (X,X) with X definable and X its Zariski-
closure, is ind-definable.
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Proof. By quantifier elimination in ACF , any definable set X can be written as
a union of sets of the form C ∩ U with C closed and U open. Replacing V with
a union of irreducible components, and distributing, we can write X as a union⋃m
i=1 Ci ∩ Ui, with Ci Zariski closed and Ui Zariski open. We may assume that

Ci ∩ Ui 6= ∅ for each i, or equivalently, that Ci \ Ui 6= Ci.
In any topological space, closure commutes with unions, so

X =

n⋃
i=1

Ci ∩ Ui.

Now Ci ∩ Ui ⊆ Ci = Ci, and

Ci = Ci ∩ Ui ∪ (Ci \ Ui),

so by irreducibility of Ci, Ci ∩ Ui = Ci. Therefore,

X =

n⋃
i=1

Ci.

Corollary 4 implies the ind-definability of the family of pairs(
n⋃
i=1

Ci ∩ Ui,
n⋃
i=1

Ci

)
with Ci irreducible closed, Ui open, and Ci ∩Ui 6= ∅. We have seen that this is the
desired family of pairs. �

The following corollary is an easy consequence:

Corollary 6. Let X~a be a definable family of subsets of Pn. Then the Zariski
closures X~a are also a definable family.

A.2. Irreducibility in Affine Space.

Theorem 7. Let X~a be a definable family of subsets of affine n-space.

(1) The family of Zariski closures X~a is also definable.
(2) The set of ~a such that X~a is irreducible is definable. More generally,

the number of irreducible components of X~a is definable in families (and
bounded in families).

(3) Dimension and Morley degree of X~a are definable in ~a.
(4) If each X~a is a hypersurface given by the irreducible polynomial F~a(x1, . . . , xn),

then the degree of F~a in each xi is definable in ~a. In fact, the polynomials
F~a have bounded total degree and the family of F~a (up to scalar multiples)
is definable.

(5) The family of irreducible components of the Zariski closure is definable in
families.

Proof. (1) Embed An into Pn. Then the Zariski closure of X~a within An is the
intersection of An with the closure within Pn. Use Corollary 6.

(2) The number of irreducible components of the Zariski closure is the same
whether we take the closure in An or Pn. This proves the first sentence. The
first sentence yields the ind-definability of the family of irreducible Zariski
closed subsets of An, from which the second statement is an exercise in
compactness.
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(3) We may assume X~a is closed, since taking the closure changes neither Mor-
ley rank nor Morley degree. The family of d-dimensional Zariski irreducible
closed subsets of An is ind-definable, making this an exercise in compact-
ness.

(4) Whether or not an n-variable polynomial is irreducible is definable in the
coefficients, because to check reducibility one only needs to quantify over
the (definable) set of lower-degree polynomials. This makes the family of
irreducible polynomials ind-definable. Therefore, the set of pairs (~a, F~a)
where F~a cuts out X~a, is ind-definable. For any given ~a, all the possibilities
for F~a are essentially the same, differing only by scalar multiples. So the
total degree of F~a only depends on ~a, and compactness yields a bound on
the total degree. This in turn makes the set of pairs (~a, F~a) definable.

(5) Every irreducible subvariety of An which is of codimension d is given (set-
theoretically) by the intersection the zero sets of d+ 1 polynomials, whose
degrees are bounded by the degree of the variety. Since the degree of a
family of varieties is uniformly bounded by the product, D, of the degrees
of the defining polynomials and the number of components is bounded by
the degree, there are at most D many maximal irreducible subvarieties,
each of which has degree less than or equal to D. Among such zero sets,
the components of the variety are those which are maximal and irreducible.

�
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