Math 891: Core Course in Analysis I, Fall 2017
 Speaking Topics

Class members shall form themselves into pairs. Each pair shall choose a topic. Topics are available on a first come first served basis. Some topics depend on other topics. A team can use the results of these other topics freely. Each talk should last twenty minutes with a few minutes for questions at the end. The team members should participate equally in preparing the presentation and in speaking to the class. Each team should submit a written summary outlining the presentation at least one day before the presentation. Not all the topics are of same degree of difficulty. The presentations will be graded on: correctness of mathematics, written submission, clarity of presentation, and ability to respond to questions.

1) Let $(\mathbb{R}, \mathfrak{M}, m)$ denote the measure space of the Lebesgue measurable subsets of the real line and m Lebesgue measure. By m^{*} we denote Lebesgue outer measure.
a) Show that for any $A \subset \mathbb{R}$ there is $E \in \mathfrak{M}$ such that $A \subseteq E$ and $m^{*}(A)=m(E)$.
b) Let $V \subset \mathbb{R}$ be in \mathfrak{M} with $m(V)<\infty$. Show that for any subset $A \subseteq V$ there is $E \in \mathfrak{M}$ such that $E \subset A$ and $m^{*}(V \backslash A)=m(V \backslash E)$.
c) Let $V \subset \mathbb{R}$ be in \mathfrak{M} with $m(V)<\infty$. Let $E \subset V$ and suppose that $m(V)=m^{*}(E)+m^{*}(V \backslash E)$. Show that $E \in \mathfrak{M}$.
2) Let (X, \mathfrak{M}, μ) be a measure space and let $\mathfrak{N}=\{E \subset X \mid \exists A, B \in \mathfrak{M}$ such that $A \subseteq E \subseteq B$ and $\mu(B \backslash A)=0\}$. I showed that \mathfrak{N} is a σ-algebra containing $\mathfrak{M} .{ }^{(1)}$
a) For $E \in \mathfrak{N}$ and $A, B \in \mathfrak{M}$ such that $A \subseteq E \subseteq B$ and $\mu(B \backslash A)=0$, let $v(E)=\mu(A)$. Show that the value of $v(E)$ does not depend on the choice of A and B.
b) Show that v is a measure on \mathfrak{N}.
c) Show that for $A \in \mathfrak{M}$ we have $\mu(A)=v(A)$.
3) Let \mathfrak{B} be the σ-algebra of Borel subsets of \mathbb{R} and let μ be a measure on $(\mathbb{R}, \mathfrak{B})$ such that μ is translation invariant $(\mu(x+E)=\mu(E)$ for $x \in \mathbb{R}$ and $E \in \mathfrak{B}$) such that $\mu((0,1])=1$. Show that μ is the restriction of Lebesgue measure to \mathfrak{B}. (Use Dudley Theorem 3.1.10 and Rudin 2.20 (d). ${ }^{(2)}$)
${ }^{1}$ Rudin: Thm. 1.36
${ }^{2}$ R. M. Dudley, Real Analysis and Probability, Cambridge U. Press, 2002
4) Let $x, y \in[0,1)$ and write $x+y$ to mean addition modulo 1 (i.e. \mathbb{R} / \mathbb{Z}). For $x, y \in[0,1)$ let $x \sim y$ mean that $x-y$ is rational. By the axiom of choice there is $P \subset[0,1)$ that contains exactly one representative from each equivalence class. Let $\left\{r_{i}\right\}_{i}$ be an enumeration of $\mathbb{Q} \cap[0,1)$ with $r_{0}=0$. Let $P_{i}=P+r_{i}$. Show that
a) $[0,1)=\cup_{i=0}^{\infty} P_{i}$ and $P_{i} \cap P_{j}=\varnothing$ for $i \neq j$;
b) P is not Lebesgue measurable;
c) if $E \subset P$ is measurable, then $m(E)=0$;
d) if $E \subset[0,1)$ is an subset with $m^{*}(E)>0$, then E contains a nonmeasurable set.
5) Let (X, \mathfrak{M}) and (Y, \mathfrak{N}) be measurable spaces and \mathcal{P} the smallest σ algebra containing the measurable rectangles $E \times F$ with $E \in \mathfrak{M}$ and $F \in \mathfrak{N}$. Show that \mathcal{P} is the smallest monotone class containing the elementary sets (the finite disjoint unions of measurable rectangles). ${ }^{(3)}$
${ }^{3}$ Rudin: Thm. 8.3
6) Let μ be a finite measure on X with $\mu(X)<\infty$. Let $\left\{f_{n}\right\}_{n}$ be a sequence of measurable functions on X and f another measurable function such that for every $\epsilon>0$ there is N such that for all $n \geq N$, $\mu\left(\left\{x\left|\left|f_{n}(x)-f(x)\right|>\epsilon\right\}\right)<\epsilon\right.$. Then we say that $\left\{f_{n}\right\}_{n}$ converges in measure to f. Show that
a) if $f_{n}(x) \rightarrow f(x)$ almost everywhere then $\left\{f_{n}\right\}_{n}$ converges to f in measure;
b) for $1 \leq p \leq \infty$, if $\left\|f_{n}-f\right\|_{p} \rightarrow 0$ then $\left\{f_{n}\right\}_{n}$ converges to f in measure;
c) if $\left\{f_{n}\right\}_{n}$ converges in measure to f then $\left\{f_{n}\right\}_{n}$ has a subsequence that converges to f almost everywhere.
7) Let \mathcal{I} be a collection of intervals (open, closed, or half open, but all with non-empty interior) and $E \subseteq \mathbb{R}$ be a set. We say that \mathcal{I} covers E in the sense of Vitali if for all $x \in E$ and all $\epsilon>0, \exists I \in \mathcal{I}$ such that $x \in I$ and $l(I)<\epsilon$.

Show that if $m^{*}(E)<\infty$ and \mathcal{I} covers E in the sense of Vitali, then for all $\epsilon>0$ there exist $I_{1}, \ldots, I_{n} \in \mathcal{I}$ such that

$$
\left.m^{*}\left(E \backslash \bigcup_{i=1}^{n} I_{i}\right]\right)<\epsilon
$$

This is called Vitali's covering lemma. ${ }^{(4)}$
8) Let f be continuous on $[a, b]$ and suppose that for $x \in(a, b)$ we have

$$
\limsup _{\epsilon \rightarrow 0^{+}} \frac{f(x+\epsilon)-f(x)}{\epsilon} \geq 0
$$

then for all $x, y \in[a, b]$ with $x<y$ we have $f(x) \leq f(y)$. (Hint: suppose $\delta>0$ and let $g(x)=f(x)+\delta x$. Prove the claim for g then make an inference about f.)
9) Let f be a non-decreasing function on $[a, b]$. Then f is differentiable almost everywhere with derivative f^{\prime}. (5) Moreover

$$
\int_{[a, b]} f^{\prime} d m \leq f(b)-f(a)
$$

${ }^{5}$ H. L. Royden, Real Analysis 3rd ed., Theorem 3 of $\$ 5.1$, p. 100. The proof uses Vitali's covering lemma.
10) Let V be a vector space and $E \subset V$ be a convex subset. We say that $x \in E$ is an extreme point of E if whenever we write

$$
x=\lambda y+(1-\lambda) z
$$

with $y \neq z \in E$ we must have either $\lambda=0$ or $\lambda=1$.
a) Let $1<p<\infty$ and $B \subset L^{p}[0,1]$ be the closed unit ball $B=\{x \mid$ $\|x\| \leq 1\}$. Let $S=\{x \mid\|x\|=1\}$ be the unit sphere. Show that every point of S is an extreme point of B and only these points are extreme points.
b) Let $B \subset L^{\infty}[0,1]$ be the closed unit ball $B=\{x \mid\|x\| \leq 1\}$. Show that x is an extreme point of B if and only if $|x(t)|=1$ for almost all $t \in[0,1]$.
c) Let $B=\left\{x \in L^{1}[0,1] \mid\|x\| \leq 1\right\}$. Show that B has no extreme points.
11) Let $c_{0}=\left\{\left(x_{n}\right)_{n}\left|\lim _{n}\right| x_{n} \mid=0\right\}$ and for $x \in c_{0}$ let $\|x\|_{\infty}=\sup _{n}\left|x_{n}\right|$.

Let $\ell^{1}=\left\{\left(x_{n}\right)\left|\sum_{n}\right| x_{n} \mid<\infty\right\}$ and for $x \in \ell^{1}$ let $\|x\|_{1}=\sum_{n}\left|x_{n}\right|$.
Let $\ell^{\infty}=\left\{\left(x_{n}\right)_{n}\left|\sup _{n}\right| x_{n} \mid<\infty\right\}$ and for $x \in \ell^{\infty}$ let $\|x\|_{\infty}=$ $\sup _{n}\left|x_{n}\right|$.

Show that
a) if $y \in \ell^{1}, x \in c_{0}$, and we let $\Lambda_{y}(x)=\sum_{n} x_{n} y_{n}$, then $\Lambda_{y} \in c_{0}^{*}$, $\left\|\Lambda_{y}\right\|=\|y\|_{1}$, and every $\Lambda \in c_{o}^{*}$ is Λ_{y} for a unique $y \in \ell^{1}$.
b) if $y \in \ell^{\infty}$ and $x \in \ell^{1}$ and we let $\Lambda_{y}(x)=\sum_{n} x_{n} y_{n}$, then $\Lambda_{y} \in \ell^{1^{*}}$, $\left\|\Lambda_{y}\right\|=\|y\|_{\infty}$ and for every $\Lambda \in \ell^{1^{*}}$ there is a unique $y \in \ell^{\infty}$ such that $\Lambda=\Lambda_{y}$.
12) Let $\mathbb{T}=\{z \in \mathbb{C}| | z \mid=1\}$ and $e_{n}: \mathbb{T} \rightarrow \mathbb{C}$ be defined by $e_{n}(z)=z^{n}$ for $n \in \mathbb{Z}$. The functions in the linear span of $\left\{e_{n}\right\}_{n}$ are called trigonometric polynomials. Let $C(\mathbb{T})$ be the Banach space of continuous complex valued functions on \mathbb{T} with the norm $\|f\|=\sup _{z \in \mathbb{T}}|f(z)|$. Show that the trigonometric polynomials are dense in $C(\mathbb{T})$. (Theorem 4.15 in Rudin)
13) Let X and Y be Banach spaces and $T: X \rightarrow Y$ a linear map. The graph of $T, \Gamma(T)$, is the subspace $\{(x, T x) \mid x \in X\} \subset X \oplus Y$. We make $X \oplus Y$ a normed space with the norm $\|x \oplus y\|=\|x\|+\|y\|$. We sat that the graph of t is closed if $\Gamma(T)$ is a closed subspace of $X \oplus Y$. Prove the closed graph theorem which assert that T is continuous if and only if its graph is closed. ${ }^{(6)}$
${ }^{6}$ See Rudin Exercise 5.16.
14) Let $A=\left(a_{i j}\right)_{i j=1}^{\infty}$ be a matrix with complex entries. If $s=\left(s_{1}, s_{2}, s_{3}, \ldots\right)$ is a sequence of complex numbers we let $\sigma=A$ s be the sequence $\left(\sigma_{1}, \sigma_{2}, \sigma_{3}, \ldots\right)$ whose $i^{\text {th }}$ entry is

$$
\sigma_{i}=\sum_{j=1}^{\infty} a_{i j} s_{j}
$$

Show that A transforms convergent sequences s to convergent sequences σ with the same limit if and only if the following three conditions are satisfied.
a) for all $j, \lim _{i \rightarrow \infty} a_{i j}=0$
b) $\sup _{i=1}^{\infty} \sum_{j=1}^{\infty}\left|a_{i j}\right|<\infty$
c) $\lim _{i \rightarrow \infty} \sum_{j=1}^{\infty} a_{i j}=1$.

Show that $a_{i j}=\left\{\begin{array}{cc}\frac{1}{i+1} & \text { if } 1 \leq j \leq i \\ o & \text { otherwise }\end{array}\right.$ satisfies the conditions, as does the matrix $a_{i j}=\left(1-r_{i}\right) r_{i}^{j}$ where $0<r_{i}<1$ and $\lim _{i \rightarrow \infty} r_{i}=1$. For each of these A^{\prime} s, give an example of a sequence s which doesn't converge but $\sigma=A s$ does. ${ }^{(7)}$
${ }^{7}$ See Rudin Exercise 5.15.

