CLASS MEMBERS shall form themselves into pairs. Each pair shall choose a topic. Topics are available on a first come first served basis. Some topics depend on other topics. A team can use the results of these other topics freely. Each talk should last twenty minutes with a few minutes for questions at the end. The team members should participate equally in preparing the presentation and in speaking to the class. Each team should submit a written summary outlining the presentation at least one day before the presentation. Not all the topics are of same degree of difficulty. The presentations will be graded on: correctness of mathematics, written submission, clarity of presentation, and ability to respond to questions.

- Let (ℝ, 𝔐, m) denote the measure space of the Lebesgue measurable subsets of the real line and *m* Lebesgue measure. By *m*^{*} we denote Lebesgue outer measure.
 - *a*) Show that for any $A \subset \mathbb{R}$ there is $E \in \mathfrak{M}$ such that $A \subseteq E$ and $m^*(A) = m(E)$.
 - *b*) Let $V \subset \mathbb{R}$ be in \mathfrak{M} with $m(V) < \infty$. Show that for any subset $A \subseteq V$ there is $E \in \mathfrak{M}$ such that $E \subset A$ and $m^*(V \setminus A) = m(V \setminus E)$.
 - *c*) Let $V \subset \mathbb{R}$ be in \mathfrak{M} with $m(V) < \infty$. Let $E \subset V$ and suppose that $m(V) = m^*(E) + m^*(V \setminus E)$. Show that $E \in \mathfrak{M}$.
- **2)** Let (X, \mathfrak{M}, μ) be a measure space and let $\mathfrak{N} = \{E \subset X \mid \exists A, B \in \mathfrak{M} \text{ such that } A \subseteq E \subseteq B \text{ and } \mu(B \setminus A) = 0\}$. I showed that \mathfrak{N} is a σ -algebra containing $\mathfrak{M}^{(1)}$
 - *a*) For $E \in \mathfrak{N}$ and $A, B \in \mathfrak{M}$ such that $A \subseteq E \subseteq B$ and $\mu(B \setminus A) = 0$, let $\nu(E) = \mu(A)$. Show that the value of $\nu(E)$ does not depend on the choice of A and B.
 - *b*) Show that ν is a measure on \mathfrak{N} .
 - *c*) Show that for $A \in \mathfrak{M}$ we have $\mu(A) = \nu(A)$.
- 3) Let \mathfrak{B} be the σ -algebra of Borel subsets of \mathbb{R} and let μ be a measure on $(\mathbb{R}, \mathfrak{B})$ such that μ is translation invariant $(\mu(x + E) = \mu(E)$ for $x \in \mathbb{R}$ and $E \in \mathfrak{B}$) such that $\mu((0, 1]) = 1$. Show that μ is the restriction of Lebesgue measure to \mathfrak{B} . (Use Dudley Theorem 3.1.10 and Rudin 2.20 (d).⁽²⁾)

¹ Rudin: Thm. 1.36

² R. M. Dudley, *Real Analysis and Probability*, Cambridge U. Press, 2002

- 4) Let $x, y \in [0, 1)$ and write x + y to mean addition modulo 1 (*i.e.* \mathbb{R}/\mathbb{Z}). For $x, y \in [0, 1)$ let $x \sim y$ mean that x - y is rational. By the axiom of choice there is $P \subset [0, 1)$ that contains exactly one representative from each equivalence class. Let $\{r_i\}_i$ be an enumeration of $\mathbb{Q} \cap [0, 1)$ with $r_0 = 0$. Let $P_i = P + r_i$. Show that
 - a) $[0,1) = \bigcup_{i=0}^{\infty} P_i$ and $P_i \cap P_j = \emptyset$ for $i \neq j$;
 - *b*) *P* is not Lebesgue measurable;
 - *c*) if $E \subset P$ is measurable, then m(E) = 0;
 - *d*) if $E \subset [0, 1)$ is an subset with $m^*(E) > 0$, then *E* contains a non-measurable set.
- 5) Let (X, \mathfrak{M}) and (Y, \mathfrak{N}) be measurable spaces and \mathcal{P} the smallest σ algebra containing the measurable rectangles $E \times F$ with $E \in \mathfrak{M}$ and $F \in \mathfrak{N}$. Show that \mathcal{P} is the smallest monotone class containing the elementary sets (the finite disjoint unions of measurable rectangles).⁽³⁾
- 6) Let μ be a finite measure on X with μ(X) < ∞. Let {f_n}_n be a sequence of measurable functions on X and f another measurable function such that for every ε > 0 there is N such that for all n ≥ N, μ({x | |f_n(x) f(x)| > ε}) < ε. Then we say that {f_n}_n converges in measure to f. Show that
 - *a*) if $f_n(x) \to f(x)$ almost everywhere then $\{f_n\}_n$ converges to f in measure;
 - b) for $1 \le p \le \infty$, if $||f_n f||_p \to 0$ then $\{f_n\}_n$ converges to f in measure;
 - c) if $\{f_n\}_n$ converges in measure to f then $\{f_n\}_n$ has a subsequence that converges to f almost everywhere.
- **7)** Let \mathcal{I} be a collection of intervals (open, closed, or half open, but all with non-empty interior) and $E \subseteq \mathbb{R}$ be a set. We say that \mathcal{I} *covers* E *in the sense of Vitali* if for all $x \in E$ and all $\epsilon > 0$, $\exists I \in \mathcal{I}$ such that $x \in I$ and $l(I) < \epsilon$.

Show that if $m^*(E) < \infty$ and \mathcal{I} covers E in the sense of Vitali, then for all $\epsilon > 0$ there exist $I_1, \ldots, I_n \in \mathcal{I}$ such that

$$m^*(E\setminus \bigcup_{i=1}^n I_i])<\epsilon.$$

This is called *Vitali's covering lemma*.⁽⁴⁾

8) Let *f* be continuous on [a, b] and suppose that for $x \in (a, b)$ we have

$$\limsup_{\epsilon \to 0^+} \frac{f(x+\epsilon) - f(x)}{\epsilon} \ge 0.$$

⁴ H. L. Royden *Real Analysis*, 3rd ed., Lemma 1 of §5.1, p. 98

³ Rudin: Thm. 8.3

then for all $x, y \in [a, b]$ with x < y we have $f(x) \leq f(y)$. (*Hint:* suppose $\delta > 0$ and let $g(x) = f(x) + \delta x$. Prove the claim for g then make an inference about f.)

9) Let *f* be a non-decreasing function on [a, b]. Then *f* is differentiable almost everywhere with derivative f'. ⁽⁵⁾ Moreover

$$\int_{[a,b]} f' \, dm \le f(b) - f(a).$$

10) Let *V* be a vector space and $E \subset V$ be a convex subset. We say that $x \in E$ is an *extreme point* of *E* if whenever we write

$$x = \lambda y + (1 - \lambda)z$$

with $y \neq z \in E$ we must have either $\lambda = 0$ or $\lambda = 1$.

- *a*) Let $1 and <math>B \subset L^p[0,1]$ be the closed unit ball $B = \{x \mid \|x\| \le 1\}$. Let $S = \{x \mid \|x\| = 1\}$ be the unit sphere. Show that every point of *S* is an extreme point of *B* and only these points are extreme points.
- b) Let $B \subset L^{\infty}[0,1]$ be the closed unit ball $B = \{x \mid ||x|| \le 1\}$. Show that x is an extreme point of B if and only if |x(t)| = 1 for almost all $t \in [0,1]$.
- c) Let $B = \{x \in L^1[0,1] \mid ||x|| \le 1\}$. Show that *B* has no extreme points.

11) Let $c_0 = \{(x_n)_n \mid \lim_n |x_n| = 0\}$ and for $x \in c_0$ let $||x||_{\infty} = \sup_n |x_n|$. Let $\ell^1 = \{(x_n) \mid \sum_n |x_n| < \infty\}$ and for $x \in \ell^1$ let $||x||_1 = \sum_n |x_n|$. Let $\ell^{\infty} = \{(x_n)_n \mid \sup_n |x_n| < \infty\}$ and for $x \in \ell^{\infty}$ let $||x||_{\infty} = \sup_n |x_n|$.

Show that

- *a*) if $y \in \ell^1$, $x \in c_0$, and we let $\Lambda_y(x) = \sum_n x_n y_n$, then $\Lambda_y \in c_0^*$, $\|\Lambda_y\| = \|y\|_1$, and every $\Lambda \in c_0^*$ is Λ_y for a unique $y \in \ell^1$.
- b) if $y \in \ell^{\infty}$ and $x \in \ell^{1}$ and we let $\Lambda_{y}(x) = \sum_{n} x_{n}y_{n}$, then $\Lambda_{y} \in \ell^{1*}$, $\|\Lambda_{y}\| = \|y\|_{\infty}$ and for every $\Lambda \in \ell^{1*}$ there is a unique $y \in \ell^{\infty}$ such that $\Lambda = \Lambda_{y}$.
- **12)** Let $\mathbb{T} = \{z \in \mathbb{C} \mid |z| = 1\}$ and $e_n : \mathbb{T} \to \mathbb{C}$ be defined by $e_n(z) = z^n$ for $n \in \mathbb{Z}$. The functions in the linear span of $\{e_n\}_n$ are called trigonometric polynomials. Let $C(\mathbb{T})$ be the Banach space of continuous complex valued functions on \mathbb{T} with the norm $||f|| = \sup_{z \in \mathbb{T}} |f(z)|$. Show that the trigonometric polynomials are dense in $C(\mathbb{T})$. (Theorem 4.15 in Rudin)

⁵ H. L. Royden, *Real Analysis* 3rd ed., Theorem 3 of §5.1, p. 100. The proof uses Vitali's covering lemma. **13)** Let *X* and *Y* be Banach spaces and $T : X \to Y$ a linear map. The graph of *T*, $\Gamma(T)$, is the subspace $\{(x, Tx) \mid x \in X\} \subset X \oplus Y$. We make $X \oplus Y$ a normed space with the norm $||x \oplus y|| = ||x|| + ||y||$. We sat that the graph of *t* is closed if $\Gamma(T)$ is a closed subspace of $X \oplus Y$. Prove the closed graph theorem which assert that *T* is continuous if and only if its graph is closed.⁽⁶⁾

⁶ See Rudin Exercise 5.16.

14) Let $A = (a_{ij})_{ij=1}^{\infty}$ be a matrix with complex entries. If $s = (s_1, s_2, s_3, ...)$ is a sequence of complex numbers we let $\sigma = As$ be the sequence $(\sigma_1, \sigma_2, \sigma_3, ...)$ whose i^{th} entry is

$$\sigma_i = \sum_{j=1}^{\infty} a_{ij} s_j$$

Show that *A* transforms convergent sequences *s* to convergent sequences σ with the same limit if and only if the following three conditions are satisfied.

a) for all *j*, $\lim_{i\to\infty} a_{ij} = 0$

b)
$$\sup_{i=1}^{\infty}\sum_{j=1}^{\infty}|a_{ij}|<\infty$$

c)
$$\lim_{i\to\infty}\sum_{j=1}^{\infty}a_{ij}=1.$$

Show that $a_{ij} = \begin{cases} \frac{1}{i+1} & \text{if } 1 \leq j \leq i \\ o & \text{otherwise} \end{cases}$ satisfies the conditions, as does the matrix $a_{ij} = (1 - r_i)r_i^j$ where $0 < r_i < 1$ and $\lim_{i \to \infty} r_i = 1$. For each of these *A*'s, give an example of a sequence *s* which doesn't converge but $\sigma = As$ does.⁽⁷⁾

⁷ See Rudin Exercise 5.15. December 1, 2017