
Math 891: Core Course in Analysis I, Fall 2017
Speaking Topics

Class members shall form themselves into pairs. Each pair shall
choose a topic. Topics are available on a first come first served basis.
Some topics depend on other topics. A team can use the results of
these other topics freely. Each talk should last twenty minutes with
a few minutes for questions at the end. The team members should
participate equally in preparing the presentation and in speaking
to the class. Each team should submit a written summary outlining
the presentation at least one day before the presentation. Not all
the topics are of same degree of difficulty. The presentations will be
graded on: correctness of mathematics, written submission, clarity of
presentation, and ability to respond to questions.

1) Let (R,M, m) denote the measure space of the Lebesgue measurable
subsets of the real line and m Lebesgue measure. By m∗ we denote
Lebesgue outer measure.

a) Show that for any A ⊂ R there is E ∈ M such that A ⊆ E and
m∗(A) = m(E).

b) Let V ⊂ R be in M with m(V) < ∞. Show that for any subset
A ⊆ V there is E ∈M such that E ⊂ A and m∗(V \ A) = m(V \ E).

c) Let V ⊂ R be in M with m(V) < ∞. Let E ⊂ V and suppose that
m(V) = m∗(E) + m∗(V \ E). Show that E ∈M.

2) Let (X,M, µ) be a measure space and let N = {E ⊂ X | ∃A, B ∈ M

such that A ⊆ E ⊆ B and µ(B \ A) = 0}. I showed that N is a
σ-algebra containing M.(1) 1 Rudin: Thm. 1.36

a) For E ∈ N and A, B ∈ M such that A ⊆ E ⊆ B and µ(B \ A) = 0,
let ν(E) = µ(A). Show that the value of ν(E) does not depend on
the choice of A and B.

b) Show that ν is a measure on N.

c) Show that for A ∈M we have µ(A) = ν(A).

3) Let B be the σ-algebra of Borel subsets of R and let µ be a measure
on (R,B) such that µ is translation invariant (µ(x + E) = µ(E)
for x ∈ R and E ∈ B) such that µ((0, 1]) = 1. Show that µ is the
restriction of Lebesgue measure to B. (Use Dudley Theorem 3.1.10

and Rudin 2.20 (d).(2)) 2 R. M. Dudley, Real Analysis and Proba-
bility, Cambridge U. Press, 2002
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4) Let x, y ∈ [0, 1) and write x + y to mean addition modulo 1 (i.e. R/Z).
For x, y ∈ [0, 1) let x ∼ y mean that x− y is rational. By the axiom of
choice there is P ⊂ [0, 1) that contains exactly one representative from
each equivalence class. Let {ri}i be an enumeration of Q ∩ [0, 1) with
r0 = 0. Let Pi = P + ri. Show that

a) [0, 1) = ∪∞
i=0Pi and Pi ∩ Pj = ∅ for i 6= j;

b) P is not Lebesgue measurable;

c) if E ⊂ P is measurable, then m(E) = 0;

d) if E ⊂ [0, 1) is an subset with m∗(E) > 0, then E contains a non-
measurable set.

5) Let (X,M) and (Y,N) be measurable spaces and P the smallest σ-
algebra containing the measurable rectangles E× F with E ∈ M and
F ∈ N. Show that P is the smallest monotone class containing the el-
ementary sets (the finite disjoint unions of measurable rectangles).(3) 3 Rudin: Thm. 8.3

6) Let µ be a finite measure on X with µ(X) < ∞. Let { fn}n be a se-
quence of measurable functions on X and f another measurable
function such that for every ε > 0 there is N such that for all n ≥ N,
µ({x | | fn(x)− f (x)| > ε}) < ε. Then we say that { fn}n converges in
measure to f . Show that

a) if fn(x) → f (x) almost everywhere then { fn}n converges to f in
measure;

b) for 1 ≤ p ≤ ∞, if ‖ fn − f ‖p → 0 then { fn}n converges to f in
measure;

c) if { fn}n converges in measure to f then { fn}n has a subsequence
that converges to f almost everywhere.

7) Let I be a collection of intervals (open, closed, or half open, but all
with non-empty interior) and E ⊆ R be a set. We say that I covers E
in the sense of Vitali if for all x ∈ E and all ε > 0, ∃I ∈ I such that
x ∈ I and l(I) < ε.

Show that if m∗(E) < ∞ and I covers E in the sense of Vitali, then
for all ε > 0 there exist I1, . . . , In ∈ I such that

m∗
(
E \

n
∪

i=1
Ii]
)
< ε.

This is called Vitali’s covering lemma.(4) 4 H. L. Royden Real Analysis, 3rd ed.,
Lemma 1 of §5.1, p. 98

8) Let f be continuous on [a, b] and suppose that for x ∈ (a, b) we have

lim sup
ε→0+

f (x + ε)− f (x)
ε

≥ 0.
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then for all x, y ∈ [a, b] with x < y we have f (x) ≤ f (y). (Hint:
suppose δ > 0 and let g(x) = f (x) + δx. Prove the claim for g then
make an inference about f .)

9) Let f be a non-decreasing function on [a, b]. Then f is differentiable
almost everywhere with derivative f ′. (5) Moreover 5 H. L. Royden, Real Analysis 3rd ed.,

Theorem 3 of §5.1, p. 100. The proof
uses Vitali’s covering lemma.

∫
[a,b]

f ′ dm ≤ f (b)− f (a).

10) Let V be a vector space and E ⊂ V be a convex subset. We say that
x ∈ E is an extreme point of E if whenever we write

x = λy + (1− λ)z

with y 6= z ∈ E we must have either λ = 0 or λ = 1.

a) Let 1 < p < ∞ and B ⊂ Lp[0, 1] be the closed unit ball B = {x |
‖x‖ ≤ 1}. Let S = {x | ‖x‖ = 1} be the unit sphere. Show that
every point of S is an extreme point of B and only these points are
extreme points.

b) Let B ⊂ L∞[0, 1] be the closed unit ball B = {x | ‖x‖ ≤ 1}. Show
that x is an extreme point of B if and only if |x(t)| = 1 for almost
all t ∈ [0, 1].

c) Let B = {x ∈ L1[0, 1] | ‖x‖ ≤ 1}. Show that B has no extreme
points.

11) Let c0 = {(xn)n | limn |xn| = 0} and for x ∈ c0 let ‖x‖∞ = supn |xn|.
Let `1 = {(xn) | ∑n |xn| < ∞} and for x ∈ `1 let ‖x‖1 = ∑n |xn|.
Let `∞ = {(xn)n | supn |xn| < ∞} and for x ∈ `∞ let ‖x‖∞ =

supn |xn|.

Show that

a) if y ∈ `1, x ∈ c0, and we let Λy(x) = ∑n xnyn, then Λy ∈ c∗0 ,
‖Λy‖ = ‖y‖1, and every Λ ∈ c∗o is Λy for a unique y ∈ `1.

b) if y ∈ `∞ and x ∈ `1 and we let Λy(x) = ∑n xnyn, then Λy ∈ `1∗,
‖Λy‖ = ‖y‖∞ and for every Λ ∈ `1∗ there is a unique y ∈ `∞ such
that Λ = Λy.

12) Let T = {z ∈ C | |z| = 1} and en : T→ C be defined by en(z) = zn for
n ∈ Z. The functions in the linear span of {en}n are called trigono-
metric polynomials. Let C(T) be the Banach space of continuous
complex valued functions on T with the norm ‖ f ‖ = supz∈T | f (z)|.
Show that the trigonometric polynomials are dense in C(T). (Theo-
rem 4.15 in Rudin)
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13) Let X and Y be Banach spaces and T : X → Y a linear map. The
graph of T, Γ(T), is the subspace {(x, Tx) | x ∈ X} ⊂ X ⊕ Y. We
make X ⊕ Y a normed space with the norm ‖x⊕ y‖ = ‖x‖+ ‖y‖. We
sat that the graph of t is closed if Γ(T) is a closed subspace of X ⊕ Y.
Prove the closed graph theorem which assert that T is continuous if
and only if its graph is closed.(6) 6 See Rudin Exercise 5.16.

14) Let A = (aij)
∞
ij=1 be a matrix with complex entries. If s = (s1, s2, s3, . . . )

is a sequence of complex numbers we let σ = As be the sequence
(σ1, σ2, σ3, . . . ) whose ith entry is

σi =
∞

∑
j=1

aijsj.

Show that A transforms convergent sequences s to convergent
sequences σ with the same limit if and only if the following three
conditions are satisfied.

a) for all j, lim
i→∞

aij = 0

b)
∞

sup
i=1

∞

∑
j=1
|aij| < ∞

c) lim
i→∞

∞

∑
j=1

aij = 1.

Show that aij =
{ 1

i+1 if 1 ≤ j ≤ i
o otherwise

satisfies the conditions, as does

the matrix aij = (1− ri)r
j
i where 0 < ri < 1 and lim

i→∞
ri = 1. For each

of these A’s, give an example of a sequence s which doesn’t converge
but σ = As does.(7) 7 See Rudin Exercise 5.15.
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