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Problem 1 (Aluffi III.7 Problem 11). Let

0 M1 N M2 0 (∗)

be an exact sequence of R-modules. Suppose there is any R-module homomorphism ϕ : N −→ M1 ⊕M2

such that the diagram

0 M1 N M2 0

0 M1 M1 ⊕M2 M2 0

ϕ

commute, where the bottom sequence is the standard sequence of a direct sum. Prove that (∗) splits.

Solution. By the five lemma, ϕ must be an isomorphism. This is the definition of ‘split’ in the Aluffi-sense,
which is equivalent to the definition of split in the other sense.
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Problem 2 (Aluffi VI.I Problem 13). Let A be and abelian group such that EndAb(A) is a field of charac-
teristic zero. Prove that A ∼= Q.

Solution. Note that, for a field k, every k-module (i.e. a k-vector space) is free (see Proposition VI.1.7 in
Aluffi). That is, an abelian group A is a k-vector space if and only if A ∼= kS for some set S. Furthermore,
for two k-vector spaces A ∼= kS and B ∼= kT , we have A ∼= B if and only if |S| = |T |. This comes from the
fact that k is an integral domain, and Exercise VI.1.8 (Corollary VI.1.11) in Aluffi, which we prove here.

Lemma 1 (Corollary VI.1.11). Let R be an integral domain and let S and T be sets. Then

FreeR-Mod(S) ∼= FreeR-Mod(T ) if and only if S ∼= T.

Proof. If S ∼= T , then clearly FreeR-Mod(S) ∼= FreeR-Mod(T ). Indeed, given a bijection f : S −→ T , we have
the induced isomorphism FreeR-Mod(S) −→ FreeR-Mod(T ) given by∑

a∈A
raa 7−→

∑
a∈A

raf(a) =
∑
b∈B

rbb.

So suppose there is an isomorphism ϕ : FreeR-Mod(S) −→ FreeR-Mod(T ). Define the set T ′ = {ϕ(1Rs) | s ∈ S}.
Since {1Rs | s ∈ S} is a linearly independent set in FreeR-Mod(S), T ′ mst be a linearly independent set
in FreeR-Mod(T ) since FreeR-Mod(S) ∼= FreeR-Mod(T ). But T is a maximal linearly independent set in
FreeR-Mod(T ), so |T ′| ≤ |T | by Proposition VI.1.7 in Aluffi. But |S| = |T ′| and thus |S| ≤ |T |. Analo-
gously, define the set S′ =

{
ϕ−1(1Rt)

∣∣ t ∈ T}, and we have |T | = |S′| ≤ |S|. Hence |S| = |T |, and thus
S ∼= T .

Lemma 2. Let A be a Q-vector space.

1. If A 6∼= Q, then EndAb(A) is not a field.

2. If A ∼= Q, then EndAb(A) ∼= Q.

Proof. All vector spaces over Q are of the form A ∼= QS for some set S. Then A is isomorphic to Q if and
only if S has exactly one element.

1. If S is empty, then A = {0} and EndAb(A) = {0} which is not a field. So suppose that A ∼= QS and S
is a set with more than one element. Let s0 ∈ S and define a map πs0 : QS −→ QS

πs0 :
∑
s∈S

rss 7−→ rs0s0.

This is a nonzero endomorphism on QS as an abelian group that is clearly not surjective and thus has
no inverse in the ring EndAb(QS). Hence EndAb(QS) ∼= EndAb(A) is not a field.

2. Consider Q as an additive group. For each f ∈ EndAb(Q), we have

f(na) = f(a+ · · ·+ a) = f(a) + · · ·+ f(a) = nf(a)

for all a ∈ Q and n ∈ Z. Similarly, for each nonzero m ∈ Z we have

f

(
1

m
a

)
=

1

m
mf

(
1

m
a

)
=

1

m
f

(
m

1

m
a

)
=

1

m
f(a).

Hence f(p
q ) = p

q f(1) for each f ∈ EndAb(Q) and p
q ∈ Q. Consider the isomorphism EndAb(Q) → Q

given by
f 7−→ f(1).

Indeed, this is injective, since f(1) = 0 implies f(a) = 0 for all a ∈ Q and thus f = 0. This is also
surjective, since for each p

q ∈ Q there is a group endomorphism defined by f(a) = p
qa.
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Proposition 3. If A is an abelian group such that EndAb(A) is a field of characteristic zero, then A ∼= Q.

Proof. Note that A as an abelian group has a Z-action given by the multiplication maps µn ∈ EndAb(A)
with µn(a) = na. Since EndAb(A) is a field with characte1ristic zero, for each n 6= 0 there is an a ∈ A
such that µn(a) 6= 0. Otherwise there is an n such that nµ1 = µn = 0 and thus EndAb(A) would have
characteristic at most n. Hence, for each n 6= 0, the multiplication map µn is not the zero map in the field
EndAb(A), and thus each µn with n 6= 0 has an inverse (µn)

−1 ∈ EndAb(A). Define a Q-action by extending
the multiplication maps to µ p

q
for p

q ∈ Q by

µ p
q

:= µp ◦ (µq)
−1
.

Since A is an abelian group with a Q-action, it is a Q-module and thus a Q-vector space.
By Lemma 2 above, we see that, for a Q-vector space A, the endomorphism ring EndAb(A) is a field if

and only if A ∼= Q. Since EndAb(A) ∼= Q and Q is a field of characteristic zero, we are done.
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Problem 3 (Aluffi VI.I Problem 16). Let M be a module over a ring R. A finite composition series for M
(if it exists) is a decreasing sequence of submodules

M = M0 )M1 ) · · · )Mm = 〈0〉

in which all quotients Mi/Mi+1 are simple R-modules. The length of a series is the number of strict inclusions.
The composition factors are the quotients Mi/Mi+1.

Prove a Jordan-Hölder theorem for modules: any two finite composition series of a module have the same
length and the same composition factors.

Solution. We first show some important facts about submodules. (These were never actually shown in
class, so I figured they should be proved here since I use them.)

Lemma 4 (Second Isomorphism Theorem’ for Modules). Let R be a ring, M an R-module and N1, N2 ⊂M
submodules. Then

1. N1 ∩N2 is a submodule of M1;

2. N1 +N2 is a submodule of M ;

3.
N1

N1 ∩N2

∼=
N1 +N2

N2
.

Proof. .

1. Let a, b ∈ N1 ∩ N2. Then a + b ∈ N1 and a + b ∈ N2 since N1 and N2 are modules, and thus
a + b ∈ N1 ∩N2. Similarly, for each r ∈ R we have rm ∈ N1 and rm ∈ N2, and thus rm ∈ N1 ∩N2.
So N1 ∩N2 ⊂M is a submodule.

2. Each element of N1 + N2 is of the form a + b for some a ∈ N1 ⊂ M and b ∈ N2 ⊂ M , so a + b ∈ M
and r(a+ b) ∈M for each r ∈ R. For (a+ b), (a′ + b′) ∈ N1 +N2 and r ∈ R,

(a+ b) + (a′ + b′) = (a+ a′) + (b+ b′) ∈ N1 +N2 and r(a+ b) = ra+ rb ∈ N1 +N2

since N1 and N2 are submodules.

3. Let ϕ : N1 −→M/N2 be the R-module homomorphism defined by m 7−→ x+T . Then kerϕ = N1∩N2

and imϕ = N1+N2

N2
. By the first isomorphism theorem, imϕ ∼= N1/ kerϕ, and thus

N1 +N2

N2

∼=
N1

N1 ∩N2

as deisred.

Theorem 5 (Jordan-Hölder). Let R be a ring and M an R-module. Then any two finite composition series
of M have the same length and the same composition factors.

Proof (following the proof of Theorem IV.3.2 in Aluffi). We argue by induction. Let

M = M0 )M1 ) · · · )Mm = 〈0〉 (†)

be a composition series for M . If m = 0, then M is the trivial module and we are done. Assume m > 0 and
suppose that the theorem holds for all submodules Mk of the series with k 6= 0. Let

M = M ′0 )M ′1 ) · · · )M ′n = 〈0〉 (††)

be another composition series for M . If M ′1
∼= M1, then the result follows from the induction hypothesis.
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So we may suppose that M ′1 6∼= M1, in which case we have M1 + M ′1 = M . Indeed, M1 + M ′1 is a
submodule of M , so we have M1 ( M1 +M ′1 ⊂ M , but there are no proper submodules of M between M1

and M since M/M1 is simple. Note that K = M1 ∩M ′1 ⊂M is another submodule of M , and let

K = K0 ) K1 ) · · · ) Kr = 〈0〉

be a composition series for K. By the second isomorphism theorem, we have

M1

K
=

M1

M1 ∩M ′1
∼=
M1 +M ′1

M ′1
=

M

M ′1
and

M ′1
K

=
M ′1

M1 ∩M ′1
∼=
M1 +M ′1

M1
=

M

M1
,

and thus M1/K and M2/K are both simple modules. Therefore, we have two new composition series for M

M ) M1 ) K ) K1 ) · · · ) Kr = 〈0〉
‖ ‖ ‖ ‖
M ) M ′1 ) K ) K1 ) · · · ) Kr = 〈0〉

which only differ at the first step. These two series clearly have the same length and the same quotients. (In
particular, the first two quotients get switched from one series to the other.)

By the induction hypothesis, the composition series

M1 )M2 ) · · · )Mm = 〈0〉

is equivalent to the composition series

M1 ) K ) K1 ) · · · ) Kr = 〈0〉 .

That is, they have the same length and quotients. In particular, the length is equal to m − 1 = r + 1.
Similarly, the composition series

M ′1 )M ′2 ) · · · )M ′n = 〈0〉

is equivalent to the composition series

M ′1 ) K ) K1 ) · · · ) Kr = 〈0〉 .

So we have n− 1 = r + 1, and thus n = m, and so the composition series (†) and (††) have the same length
and the same quotients.
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