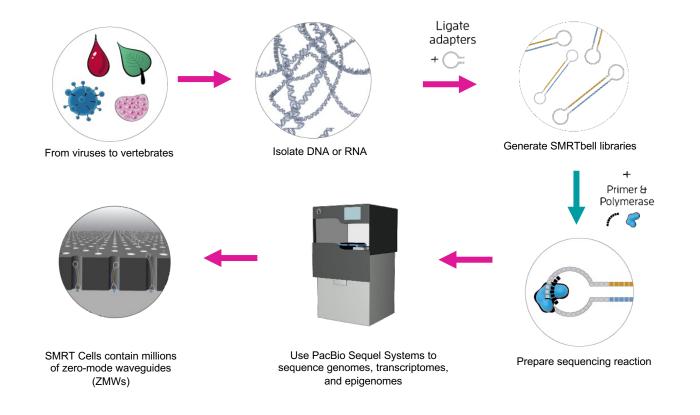
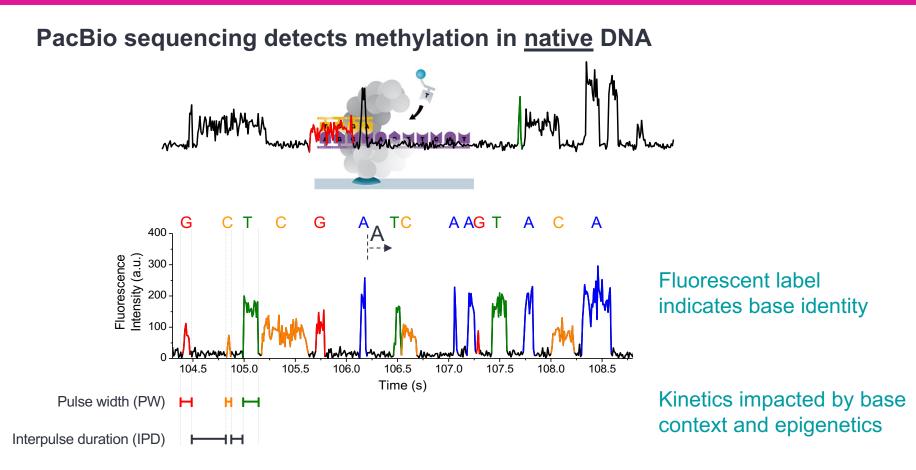
PacBi

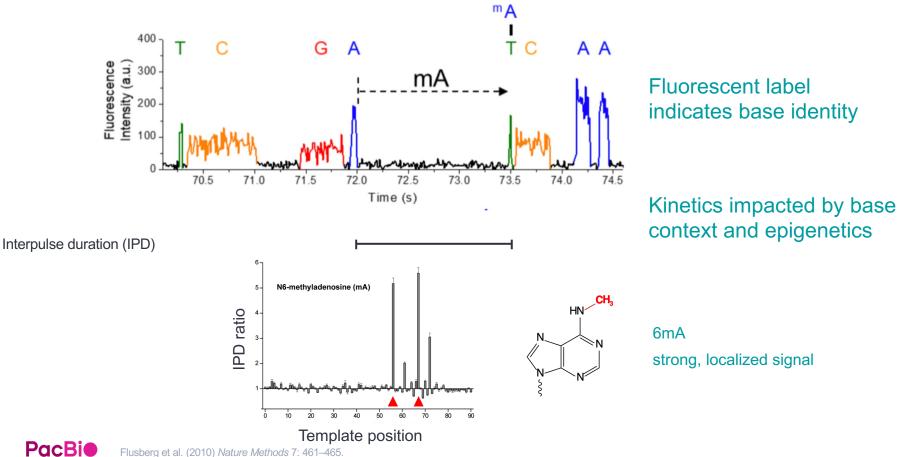

Unlock the promise of genomics through PacBio sequencing

Single Molecule Real-time Sequencing Analysis Overview

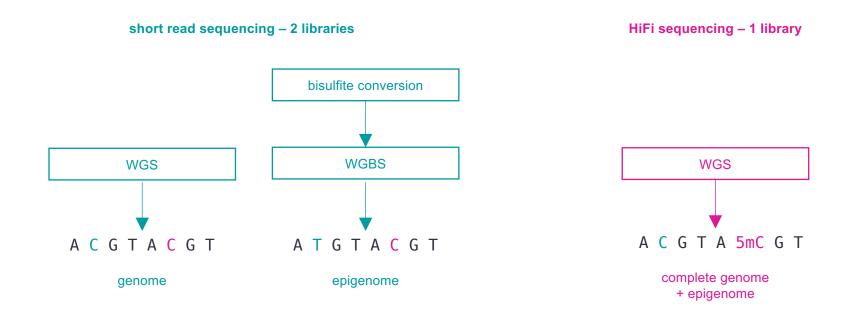
27 June 2023 彭彦菱 Lynn Peng | Bioinformatics Engineer, Blossombio Taiwan

PacBio 生物資訊教育訓練 基礎班 HiFi 101 Lecture A

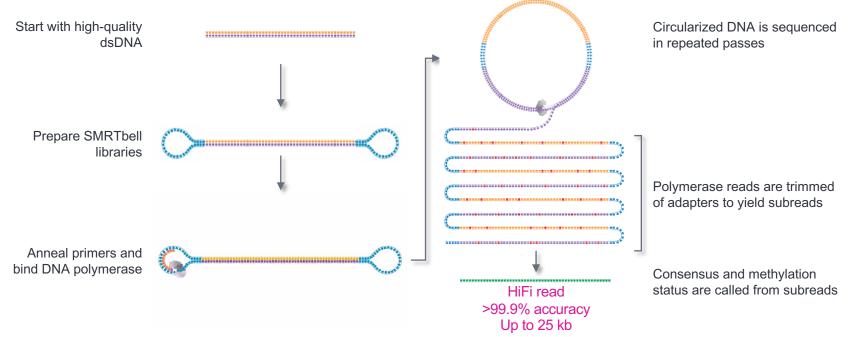

From Sample to SMRT Sequencing



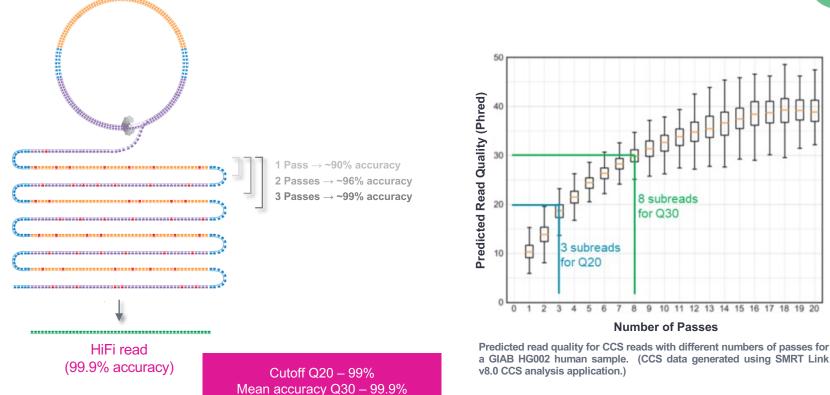
Single Molecule, Real-Time (SMRT) Sequencing



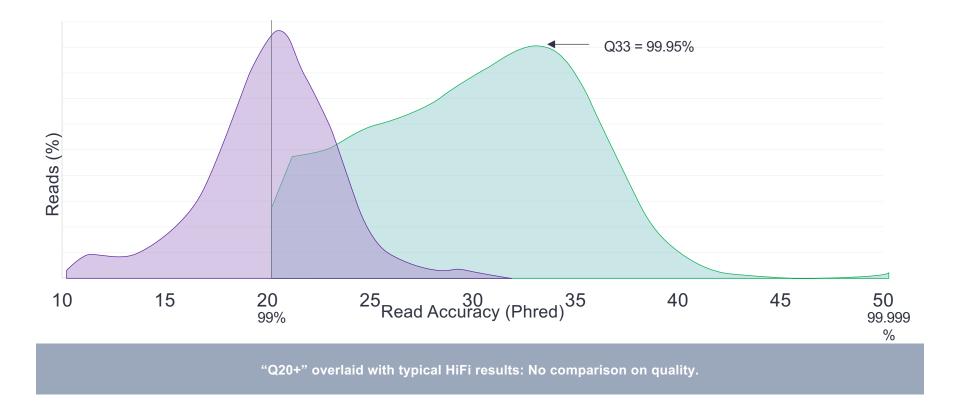
PacBio sequencing detects methylation in <u>native</u> DNA


Flusberg et al. (2010) Nature Methods 7: 461-465.

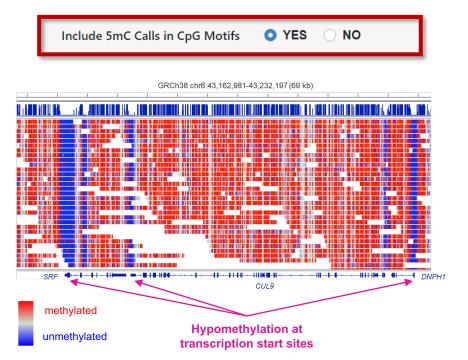
Measuring 5mC methylation with DNA sequencing


What are HiFi reads?

HiFi reads are produced using circular consensus sequencing (CCS) on PacBio long-read systems. HiFi reads provide base-level resolution with 99.9% single-molecule read accuracy. HiFi reads are unbiased, no DNA amplification, least GC content and sequence complexity bias



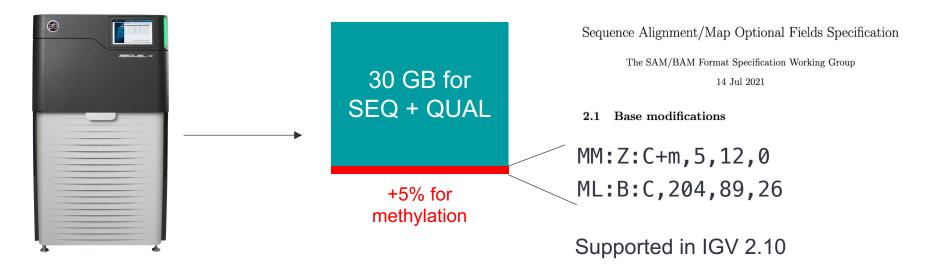
PacBio HiFi reads combine long read lengths with high accuracy


ONT's Q20+ chemistry vs HiFi

Include 5mC calls in CpG motifs

If selected, kinetic signatures of cytosine bases in CpG motifs will be automatically analyzed to identify the presence of 5mC during on-instrument CCS (Sequel IIe system only) or during CCS analysis in SMRT Link

- Default setting = YES when specifying 'HiFi Reads' or 'Custom' application types
- 5mC detection is automatically performed on-instrument with the Sequel IIe system and in SMRT Link with the Sequel II system (data outputs are the same for both methods)
- 5mC calls are output in hifi_reads.bam as BAM standard MM and ML tags and can be easily visualized in <u>IGV</u>
- Processing and storage requirements are minimal:
 - File size increase is ~5%
 - On-instrument processing time for Sequel IIe systems is ~10 minutes
- Kinetics are not retained in the CCS analysis output by default, but they can **optionally** be retained as well.
- 5mC calls require a **CpG context and symmetrical methylation** (i.e., does not detect hemi-methylated sites)
- Though trained on human data, 5mC detection has been demonstrated to work on non-human data (e.g., plants (Maize)).
- 5mC consensus calling and other tools planned for a a future SMRT Link version.
 - For guidance on command line tool options for 5mC analysis, please contact your local PacBio support team or <u>PacBio Technical Support</u>


Example IGV plot demonstrating 5mC detection in HiFi reads for a human HG002 sample. Hypomethylation at active transcription start sites can be easily visualized (unpublished data).

Representation of 5mC CpG data uses BAM format standard

Standard library prep, no extra compute, negligible data footprint, and standardized representation

Sequel lle system

hifi_reads.bam

Also available as off-instrument analysis

Output kinetics tags from Sequel Ile system and run primrose software or SMRT Link workflow

Run design

Kinetic tags

on-instrument

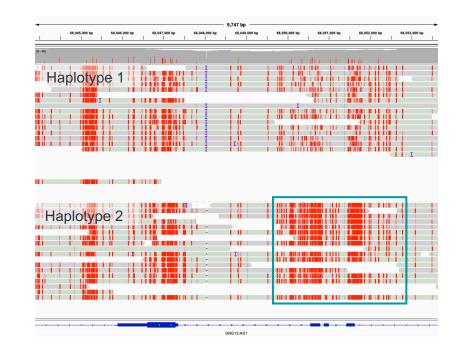
CCS Analysis Output – Include Kinetics Information

• YES 🛛 NO

TGTTTAGACTCCGTAATTACTCGCCTAGGAATTCTCAAGGGCACAATCAG

fi:B:C,22,70,24,12,10,21,16,8,45,5,31,16,12,9,12,2 fp:B:C,18,45,21,10,22,33,9,9,62,13,9,57,23,6,29,15 ri:B:C,17,30,9,12,9,7,16,17,26,16,8,19,94,5,14,14 rp:B:C,28,26,10,24,20,25,18,11,16,18,4,9,39,34,17

primrose <bamIn> <bamOut>

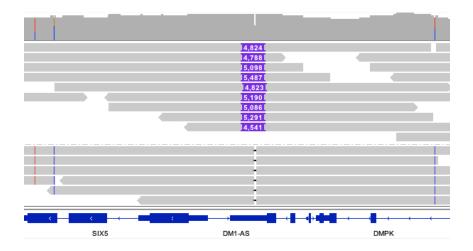

Mm:Z:C+m,4,12,16,4,16,19,44,10,11,4 Ml:B:C,249,4,247,177,210,228,245,244,100,246

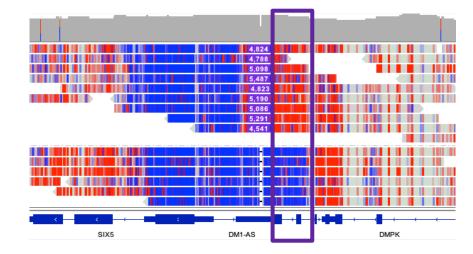
IGV supports coloring reads by methylation annotation

Rename Track Copy read details to clipboard		
Change Track Color		
Experiment Type Cluster (phase) alignments	•	
Linked read view (BX) Linked read view (MI)		
Link supplementary alignments Link by tag		
Group alignments by Sort alignments by	>	
Color alignments by	none	
Re-pack alignments	read strand	
Y Shade base by quality Y Show mismatched bases Show all bases Y Quick consensus mode	read group sample library movie	
Quick consensus mode	ZMW	
View as pairs	base modification	
Set insert size options	tag bisulfite mode	

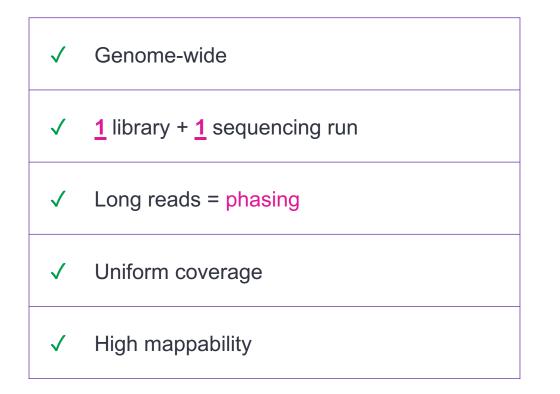
Supported in IGV 2.10

Allele-specific methylation (imprinting)

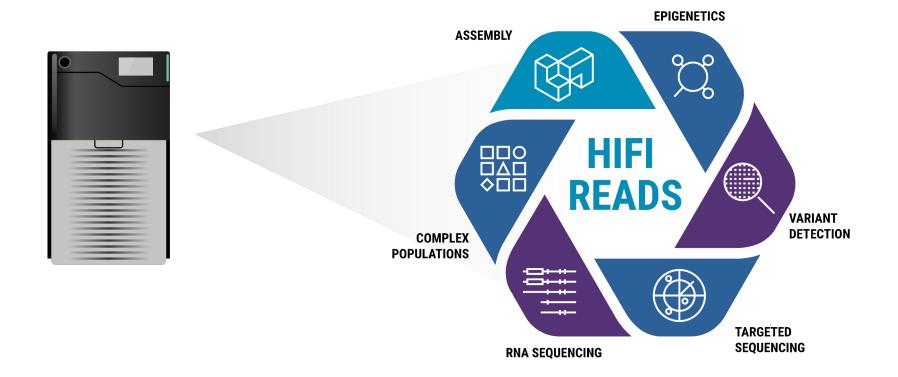

Hypermethylation induced by pathogenic repeat expansion


Myotonic dystrophy due to DMPK repeat expansion

chr19:45,765,480-45,774,126 (8.6 kb)

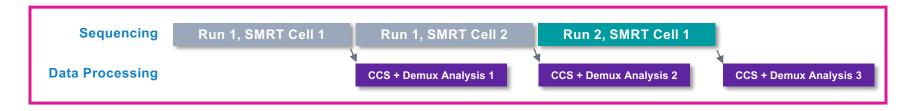


Tomi Pastinen, Children's Mercy Kansas City


HiFi 5-base sequencing: a complete genome & epigenome

A C G T + 5mC

Complete and accurate long-read sequencing

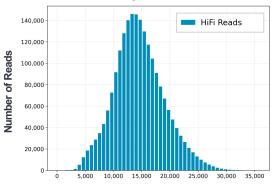

Sequel lle system output files & data structure

Sequel Ile System on-instrument CCS and demultiplex analysis

Sequel IIe System computer hardware enables on-instrument circular consensus sequencing (CCS) read generation and barcode demultiplexing analysis during runs

• On-instrument CCS and barcode demultiplexing analysis occurs **in parallel** with sequencing data collection to minimize overall sequencing run times

- A new sequencing run can be started while CCS data analysis from the preceding sequencing run is ongoing
- For a SMRT Cell movie collection yielding 30 Gb of HiFi (≥Q20 CCS) data, the typical on-instrument CCS analysis time is approximately 8 hours


hifi_reads.bam data file properties

By default, the Sequel Ile System on-instrument CCS (OICCS)* analysis workflow outputs a hifi_reads.bam

On-instrument CCS analysis workflow for standard (default) run designs

- A standard Run Design performs on-instrument CCS analysis without including low-quality reads and generates a hifi_reads.bam output file and transfers it to the network server.
- hifi_reads.bam contains only HiFi reads (≥QV 20 CCS).
- After transferring to the storage server, the hifi_reads.bam file can be used directly as input for downstream analysis using SMRT Analysis or other third-party analysis tools that expect ≥QV 20 data
- Refer to Sequel II and Ile Systems: Data Files (<u>102-144-100</u>) for further technical details regarding the contents of the hifi reads.bam file

Read Length Distribution

Read Length (bp)

Example Run QC read length distribution plot for a standard run design without including low-quality reads in the OICCS output.

CCS Analysis Output - Include Low Quality Reads 📀

YES ONO (Default)

PacBio * Note: Users can optionally specify in SMRT Link Run Design to include polymerase kinetics information (for secondary epigenetics analysis) in the hifi_reads.bam or reads.bam file – however, BAM file size is 5X larger if kinetics information is included.

File and directory structure output by the Sequel Ile System

Example default file and directory structure output by the Sequel IIe system for each SMRT Cell transferred to network storage

```
<your specified output directory>/r64012e 211206 183753/1 A01/
--m64012e 211206 183753.baz2bam 1.log
--m64012e 211206 183753.ccs.log
|--m64012e 211206 183753.ccs reports.json
                                                                   Minimum list of files needed to analyze
--m64012e 211206 183753.ccs reports.txt
                                                                    SMRT sequencing data in SMRT link
--m64012e 211206 183753.consensusreadset.xml
                                                                     .consensusreadset.xml file
|--m64012e 211206 183753.hifi.reads.bam
                                                                     .hifi reads.bam file
--m64012e 211206 183753.hifi.reads.bam.pbi
                                                                     .hifi reads.bam.pbi file
--m64012e 211206 183753.sts.xml
|--m64012e 211206 183753.zmw metrics.json.gz
|--m64012e 211206 183753.transferdone
```

- In this example, r64012e_211206_183753 is a directory containing the output files associated with one sequencing run
 - 64012e is the instrument ID number
 - 211206_183753 is the run date, in YYYYMMDD format, and time, in UTC format
- The main run directory includes a subdirectory for each movie collection (SMRT Cell) associated with a sample well in this case, 1_A01. Each subdirectory contains data output files of interest.

File and directory structure output by the Sequel Ile System (cont.)

If 5mC CpG Detection is performed, the following additional files are output:

- |-- m64012e_211206_183753.5mc_report.json
- |-- m64012e_211206_183753.primrose.log

If on-instrument barcode demultiplexing is performed, the following additional files are output:

- l-- bc1001--bc1001/m64012e 211206 183753.bc1001--bc1001.consensusreadset.xml
- |-- bc1001--bc1001/m64012e 211206 183753.hifi reads.bc1001--bc1001.bam
- |-- bc1001--bc1001/m64012e 211206 183753.hifi reads.bc1001--bc1001.bam.pbi
- |-- m64012e_211206_183753.barcodes.fasta
- |-- m64012e_211206_183753.lima.log
- |-- m64012e 211206 183753.lima counts.txt
- |-- m64012e 211206 183753.lima guess.json
- |-- m64012e 211206 183753.lima guess.txt
- |-- m64012e 211206 183753.lima reports.txt
- |-- m64012e_211206_183753.lima_summary.txt
- |-- m64012e 211206 183753.unbarcoded.consensusreadset.xml
- |-- m64012e 211206 183753.unbarcoded.hifi reads.bam
- |-- m64012e_211206_183753.unbarcoded.hifi_reads.bam.pbi

Note: The undemultiplexed hifi_reads.bam file is not transferred, it is partitioned into the file structure shown here

SMRT Link software overview

Sequel lle System and Software v12

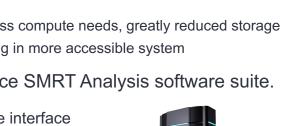
Sequel Ile System - the only sequencer with highly accurate long reads

- off the box •
 - Fast time to results, significantly less compute needs, greatly reduced storage ٠
 - Lower overall solution cost resulting in more accessible system •

SMRT Link – PacBio's open source SMRT Analysis software suite.

Support intuitive GUI or command-line interface

Software Download


DOWNLOAD SMRT LINK V12.0 NEW

SMRT Link v12.0 supports Revio, Sequel II and Ile systems. v12.0 is required for Revio customers, and is an optional update for Sequel II and Ile system customers. Customers with Sequel systems should use SMRT Link v.10.2.

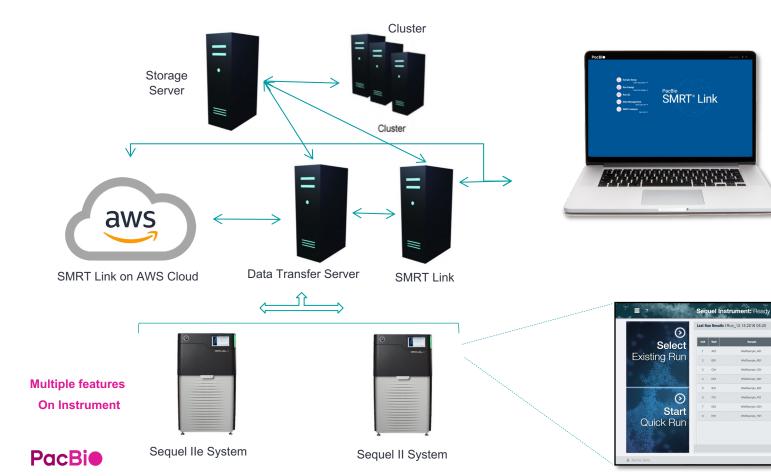
Please ensure you meet minimum system requirements before upgrading to v12.0. If you are operating SMRT Link without meeting minimum system requirements, please contact PacBio Support to assist with your upgrade.

NOTE: Customers who have not yet migrated from WSO2 to Keycloak for user management in SMRT Link, must migrate before or during the upgrade to SMRT Link v12.0.

Download SMRT Link v12.0

SMRT Sequencing Data on a Network Server

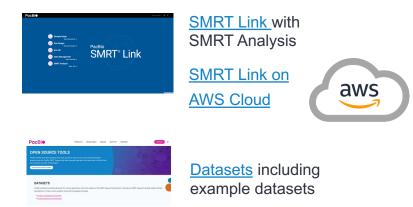
SMRT Cell 8M


https://www.pacb.com/support/software-downloads/

SMRT Link software overview

SMRT Link system

e Status ide


26

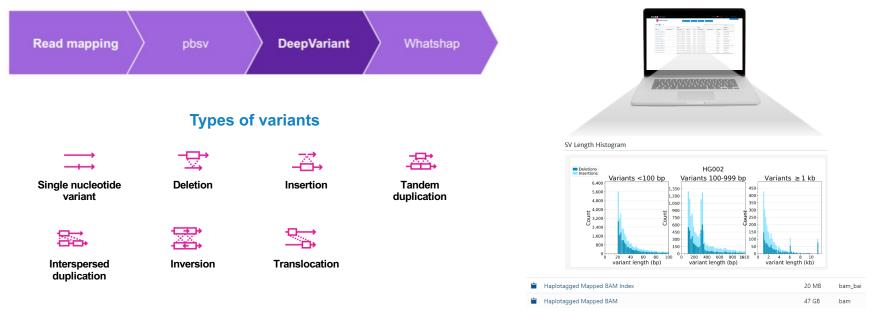
Not complet

PacBio Software suite and analysis pipeline for SMRT data

Denovo assembly	Improved Phased Assembly (IPA)
Variant Calling	DeepVariant + whatshap + pbsv
Structure variant	pbsv
Isoform detection	Iso-Seq
Single cell isoform	MAS-Seq
Metagenome	HiFi + Third party tools
16S Full-length	HiFi + Third party tools

- Fully automated analysis
- Efficient integration with LIMS and third-party analysis tools
- User-friendly UI design
- Industry-standard output formats: FASTA, FASTQ, SAM/BAM, VCF

PacifioP tools distributed via Bioconds are: pre-release versions, not necessarily ND compliant, intended for Breearch Use Chry and not for use in diagnosite procedures, intended only for command-line stem, and possibly never than the currently available SMRT# Analysis builds. While efforts have been mode to ensure that missase on Bioconda live up to the quality that focilitations that use make nev warrater (regarding any Bioconda missase.


<u>pbbioconda</u>

(developmental tools)

SMRT Link variant calling analysis application overview

New Variant Calling pipeline featuring DeepVariant

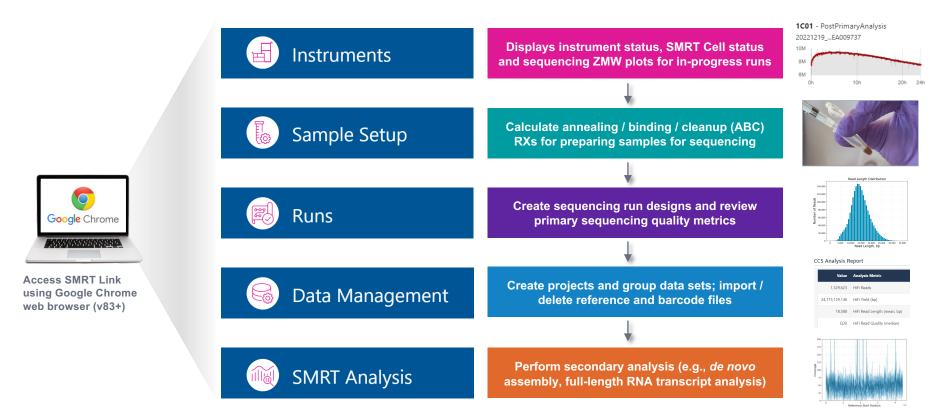
- New Variant Calling pipeline accepts HiFi reads (BAM format) as input and performs read mapping, structural variant-calling using pbsv, small variant calling using DeepVariant, and phasing using whatshap
- Use this application to identify single-nucleotide variants, short insertions and deletions, and structural variants for a WGS sample against a specific reference genome.
- · Variants are automatically phased and haplotagged

Computer requirements

Compute requirements Sequel lle system

Head Node			
Cores	32		
RAM	64 GB		
Local Storage	1 TB SSD/Flash storage		
Compute Nodes			
Cores (Total)	64		
Minimum RAM per slot (1 slot = 1 core)	>4 GB 64 x 4 = 256 GB RAM		
Local Storage	100 GB		
Shared Data Storage			
Sequencing Data	20 TB ^ª		
Analysis Data	40 TB ^a		
Network			
10 GbE strongly recommended, 1GbE required ^b			

^aStorage is calculated for one Sequel IIe System, assuming 100 human genomes per year at 30-fold coverage, *de novo* assembly ^bConnection between the Head Node and Sequel IIe System


Server OS: CentOS 7.x and 8.x, and Ubuntu 18.04 and 20.04 64-bit Linux[®] distributions (This also applies to SMRT Link compute nodes.)

PacBi

SMRT Link GUI overview

SMRT Link v12.0 core functions and organization

SMRT Link v12.0 enhances many core functions, features a new 'Instruments' module and combines Run Design & Run QC into a new 'Runs' module

SMRT Link v12.0 Runs module

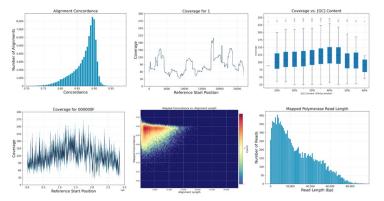
Creating a new Run Design

+ Create New Run To create a **new Run Design**, click on Create New Run on Runs module home page to go to Create New Run Design page

Runs 🕶		Alarms Request Error: Network Error Settings Help smark (Lab Tech)
Runs / Create New New Run Design		Cancel Triplete + Add Sample View Summary Save
Run Information	Sample Information	
Instrument Type Sequel II Sequel IIe	Y Plate 1, Well A01:	🖺 Copy 🔓 Delete
Revio	Plate Well 🕄 Required	Plate 1, Well A01 \$
Run Name Run 12.23.2022 16:53	Well Name 🔁 Required	
Plate 1 Required	Well Comment	
÷ X	Library Type Required	Standard
Lot Serial Expiry	Polymerase Kit Required	Revio polymerase kit 🔶
Plate 2 3	Application	HiFi Reads +
Lot Serial Expiry	Samples	
Run Comments	Adapters / Barcodo Requir Sample Names	ed
Experiment Name	Require	d including from the
	> Run Options	
Experiment ID	> Data Options	
	> Analysis Options	

SMRT Analysis v12.0 for specifying workflow type

Data processing workflows are now separated into 'Analyses' and 'Utilities'


		Notifications 400 Settings Help	smark (Lab Tech
SMRT Analysis / Create New Analysis			Projects: All My Pro
1. Select Data 2. Select Analysis		Specify One Analysis for All Data	py From Next I
Job Name Required	Workflow Type	Sets when performing variant calling analysis of multiple data sets	
SMRT Analysis Demo - Creating a New Analysis	O ANALYSIS O DATA UTILITY	analysis of multiple data sets	
	Analysis of Multiple Data Sets		
only HiFi reads as input	One Analysis for All Data Sets	\$	
	Choose an option when multiples Data Sets are selected.		
🗮 🛪 E 🕫	Disp	playing rows 107 to 119 out of 2000 (scroll to load more) Search	
Data Set Details >	Sample Det	Sample Det Run Data >	Metadata >
□ Name If ♡ Date Created ↑ Well Sample Nam	tun Name 北 ` Created By ↓ Bio Sample Nam	Demultiplexed S $\$ Barcode Name l^{-} Total Length of $\$ Instrument	Na Version ↓↑ ♡
☑ 20221228_840 2022-12-30 20221228_840 3	0221228_8 rdalal Hg002-G7	bc2055bc2055 88,725,681,2 84023	3.0.1
☑ 20221228_840 2022-12-30, 20221228_840	0221228_8 rdalal Hg002-G7_16	bc2096bc2096 740,226 84023	3.0.1

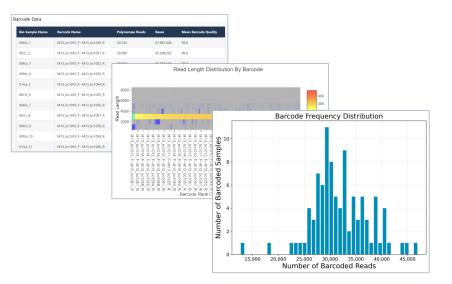
- Analysis: An analysis uses applications designed to produce biologically-meaningful results. These analysis applications only
 accept HiFi reads
- Data Utilities: Data processing utilities are used as intermediate steps to producing biologically-meaningful results. Some data utilities accept only HiFi reads whereas other data utilities accept only subreads (formerly known as "Continuous Long Reads" in previous SMRT Link versions)

Analysis applications produce biologically-meaningful results

Analysis applications accept only HiFi reads as input

- Genome Assembly
 - Generate de novo assemblies of genomes.
- HiFi Mapping
 - Align (or map) reads to a user-provided reference sequence..
- Iso-Seq Analysis
 - Characterize full-length transcript isoforms.
- Microbial Genome Analysis
 - This combines and replaces the Microbial Assembly and Base Modification Analysis applications in the previous release.
 - Generate de novo assemblies of small prokaryotic genomes, optionally identify 6mA and 4mC with associated nucleotide motifs.
- Variants Analysis
 - Identify single-nucleotide variants, short insertions and deletions, and structural variants for a single sample against a specific reference genome.
- Structural Variant Calling
 - Identify structural variants (Default: ≥20 bp) in a sample or set of samples relative to a reference. (support trio analysis)
- Single-cell Iso-Seq
 - Enables analysis and functional characterization of full-length transcript isoforms with additional single cell information

Data Utilities

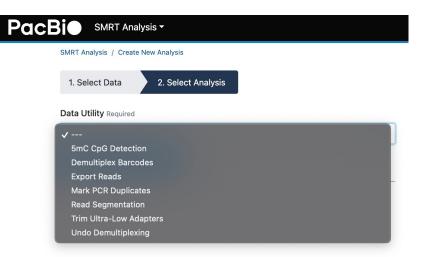

PacBio Data Utilities are used as intermediate steps to producing biologically-meaningful results

The following data utilities accept **only** HiFi reads as input:

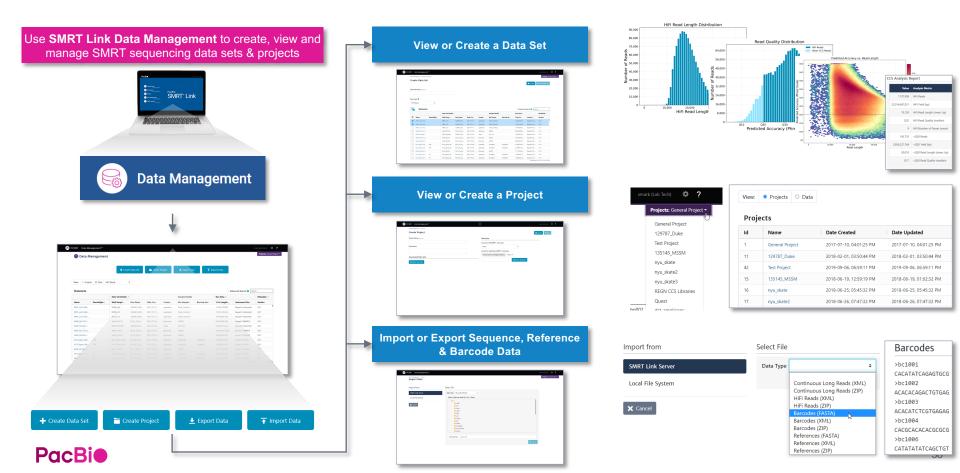
- 5mC CpG Detection
 - Analyze the kinetic signatures of cytosine bases in CpG motifs to identify the presence of 5mC. (Sequel II only.)
- Demultiplex Barcodes
 - Separate reads by barcode.
- Export Reads
 - Export HiFi reads that pass filtering criteria as FASTA, FASTQ and BAM files.
 - For barcoded runs, you must first run the Demultiplex Barcodes application to create BAM files before using this application.
- Mark PCR Duplicates
 - Remove duplicate reads from a HiFi reads Data Set created using an ultra-low DNA sequencing protocol.
- Trim Ultra-Low Adapters
 - Trim PCR Adapters from a HiFi reads Data Set created using an ultra- low DNA sequencing library.

The following data utilities accept **only** subreads as input:

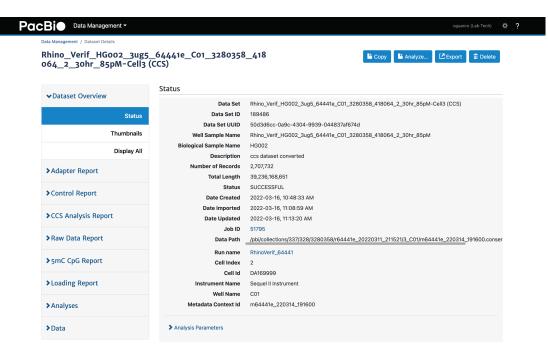
- Circular Consensus Sequencing (CCS)
 - · Identify consensus sequences for single molecules.



SMRT Analysis is HiFi centric


Analysis Applications

PacE	SMRT Analysis -
	SMRT Analysis / Create New Analysis
	1. Select Data 2. Select Analysis
	Analysis Application Required
	√
	Genome Assembly
	HiFi Mapping
	HiFiViral SARS-CoV-2 Analysis
	Iso-Seq Analysis
	Microbial Genome Analysis
	Read Segmentation and Single-Cell Iso-Seq
	Single-Cell Iso-Seq
	Structural Variant Calling
	Variant Calling


Data Utilities

SMRT Link data management workflow overview

DataSet Overview

PacBi

CCS Analysis Report – Summary Metrics

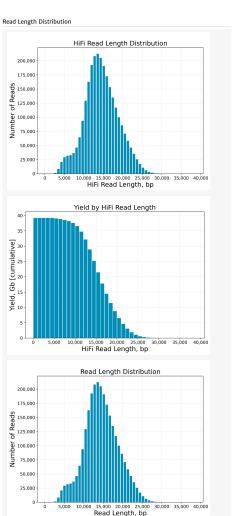
	CBIO Data Management - cguarco (Lab Tech)						
Data Management / Dataset Details							
Rhino_Verif_HG002_3ug5_ 064_2_30hr_85pM-Cell3 ((_64441eC01_ CCS)	3280358_418	Copy Analyze	Export Delete			
> Dataset Overview	CCS Analysis Re						
Adapter Report	Value	Analysis Metric					
	2,707,732	HiFi Reads					
Control Report	39,236,168,651	HiFi Yield (bp)					
	14,490	HiFi Read Length (mean, bp)					
	Q34	HiFi Read Quality (median)					
Summary Metrics	12	HiFi Number of Passes (mean)					
HiFi Read Length Summary							
HiFi Read Quality Summary							

Read Length Distribution

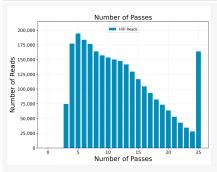
CCS Analysis Report – HiFi Read Length Summary

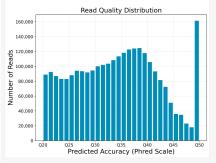
Bio Data Management -					cguarco (Lab Tech)
Data Management / Dataset Details Rhino_Verif_HG002_3ug5_ 064_2_30hr_85pM-Cell3 ((CCS)			Copy Analyze	. 🕻 Export 🗊 Dele
> Dataset Overview	HiFi Read Length Sum Read Length (bp)	Reads	Reads (%)	Yield (bp)	Yield (%)
Adapter Report	≥ 0	2,707,732	100	39,236,168,651	100
Control Report	≥ 5,000	2,664,322	98	39,051,919,399	100
✓CCS Analysis Report	≥ 10,000	2,353,137	87	36,541,368,326	93
Summary Metrics	≥ 15,000	1,164,272	43	21,435,305,025	55
-	≥ 20,000	294,460	11	6,522,779,501	17
HiFi Read Length Summary	≥ 25,000	21,062	1	559,040,421	1
HiFi Read Quality Summary	≥ 30,000	1,012	0	35,294,569	0
Read Length Distribution	≥ 35,000	388	0	15,240,023	0
Number of Passes	≥ 40,000	129	0	5,578,841	0
Read Quality Distribution					

CCS Analysis Report – HiFi Read Quality Summary

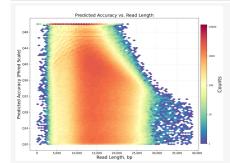

PacBio Data Management -		cguarco (Lab Tech) 🔅 ?
Data Management / Dataset Details		
Rhino_Verif_HG002_3ug5 064_2_30hr_85pM-Cell3	64441eC013280358418 (CCS)	🖺 Copy 📑 Analyze 🔀 Export 🛱 Delete
Dataset Overview	HiFi Read Quality Summary	

Dataset Overview								
	Read Quality (Phred)	Reads	Reads (%)	Yield (bp)	Yield (%)			
Adapter Report	≥ Q20	2,707,732	100	39,236,168,651	100			
Control Report	≥ Q30	1,811,377	67	25,413,473,886	65			
CCS Analysis Report	≥ Q40	679,582	25	8,150,599,400	21			
Summary Metrics	≥ Q50	146,257	5	1,355,549,531	3			
HiFi Read Length Summary								

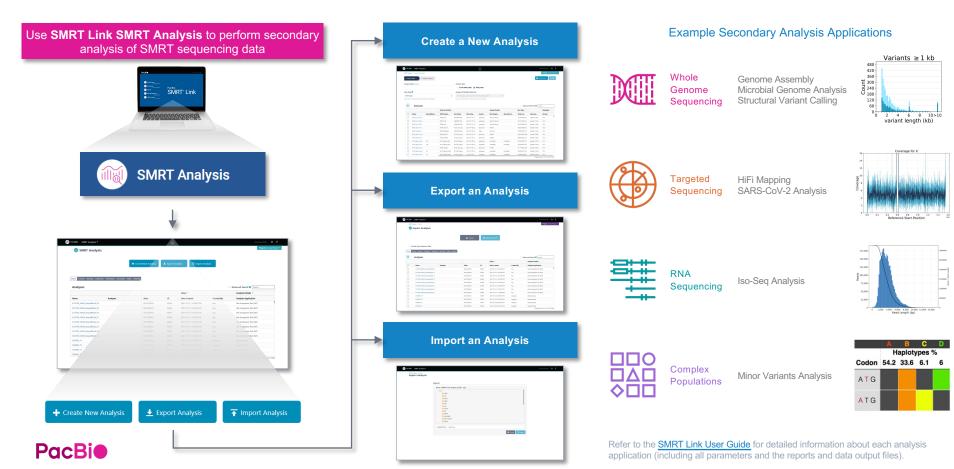

HiFi Read Quality Summary


CCS Analysis Report Distributions explain summary metrics

✓CCS Analysis Report					
Summary Metrics					
HiFi Read Length Summary					
HiFi Read Quality Summary					
Read Length Distribution					
Read Length Distribution Number of Passes					



Number of Passes



Predicted Accuracy vs. Read Length

PacBi

SMRT Link SMRT Analysis workflow overview

Applications support documentation

Application notes & best practices guides

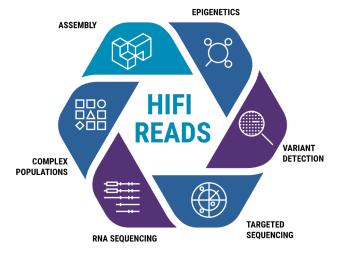
Whole genome sequencing applications

- Application brief Whole genome sequencing for de novo assembly Best practices (102-193-627)
- Application brief Microbial whole genome sequencing Best practices (<u>102-193-601</u>)

RNA sequencing applications

Application note – MAS-Seq for single cell isoform sequencing (<u>102-326-549</u>)

Metagenomics applications


• Application brief – Metagenomic sequencing with HiFi reads – Best practices (102-193-684)

Targeted sequencing applications

- Application brief HiFi target enrichment Best practices (<u>102-193-603</u>)
- Application brief Targeted sequencing for amplicons Best practices (<u>102-193-603</u>)

Application technical overviews

- Technical overview MAS-Seq library preparation using the MAS-Seq for 10x Single Cell 3' kit (<u>102-829-300</u>)
- Technical overview Multiplexed amplicon library preparation using SMRTbell prep kit 3.0 (<u>102-395-900</u>)
- Technical overview Nanobind HT kits for automated HMW DNA extraction (Coming soon)
- Technical overview Whole genome and metagenome library preparation using SMRTbell prep kit 3.0 (<u>102-390-900</u>)

Technical documentation & training resources

SMRT Link & other data analysis documentation

- Brief primer and lexicon for PacBio SMRT sequencing webpage (v12.0)
- PacBio bioinformatics file formats documentation webpage (v12.0)
- SMRT Link v12.0 cloud reference guide (<u>102-978-000</u>)
- SMRT Link v12.0 release notes (<u>102-877-200</u>)
- SMRT Link v12.0 software installation guide (<u>102-878-100</u>)
- SMRT Link v12.0 user guide (<u>102-877-300</u>)
- SMRT Link v12.0 web services API use cases (<u>102-982-400</u>)
- SMRT Tools v12.0 reference guide (<u>102-978-000</u>)


PacBi

Assembly Analysis Application

27 June 2023 彭彦菱 Lynn Peng | Bioinformatics Engineer, Blossombio Taiwan

PacBio 生物資訊教育訓練 基礎班 HiFi 101 Lecture A

Assembly of the First COMPLETE Human Genome With HiFi Reads

The basis of the first gapless human reference genome T2T-CHM13 assembly is a highresolution assembly string graph built directly from HiFi reads

"In contrast to the first T2T assembly of chromosome X—which relied on ONT sequencing to create a backbone that was then polished with other technologies—we shifted to a new strategy that leverages the combined accuracy and length of HiFi reads to enable assembly of highly repetitive centromeric satellite arrays and closely related segmental duplications"

High-resolution assembly string graph of the CHM13 genome

chr12

chr6 chrX chr8

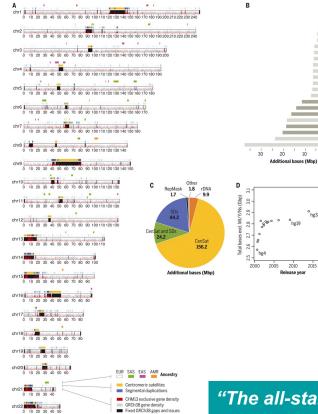
chr11 chr10 chr18

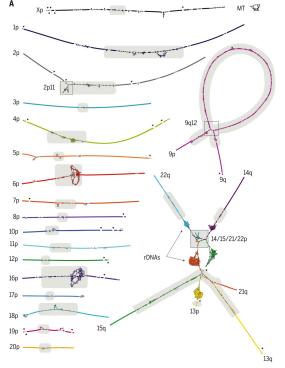
chr19

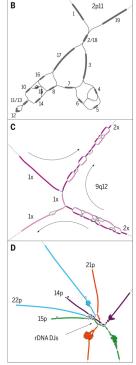
chr^g chr

> chr15 chr1

> > chrs


CHM13


hp.38


2010 2015 2020

Release year

10

"The all-star of this assembly has been PacBio HiFi."

chrX **PacBi**

Adam Phillippy, NIH

T2T-CHM13 Improves Understanding of the Genome

Summary	GRCh38p13	CHM13v1.1	±%	200 million bp of novel sequence
Assembled bases (Gbp)	2.92	3.05	+4.5%	
Unplaced bases (Mbp)	11.42	0	-100.0%	
Gap bases (Mbp)	120.31	0	-100.0%	
# Contigs	949	24	-97.5%	
Ctg NG50 (Mbp)	56.41	154.26	+173.5%	
# Issues	230	46	-80.0%	Gapless assemblies of 22 autosomes, >
Issues (Mbp)	230.43	8.18	-96.5%	\sim Oapless assemblies of zz autosoffes, z
Gene Annotation				chromosome, and mitochondrial genom
# Genes	60,090	63,494	+5.7%	chiomosome, and millochonunal genom
protein coding	19,890	19,969	+0.4%	
# Exclusive genes	263	3,604		
protein coding	63	140		
# Transcripts	228,597	233,615	+2.2%	
protein coding	84,277	86,245	+2,3%	
# Exclusive transcripts	1,708	6,693		
protein codina	829	2 780		
				Adds 2,226 paralogous gene copies,
				including 115 predicted to be protein co

Build the best reference genomes

Capturing Biodiversity

VPR 28 2021 Research

Project to Read Genomes of All 70,000 Vertebrate Species Reports First Discoveries

Summary

A bold project to read the complete genetic sequences of every known vertebrate species reaches its first milestone by publishing new methods and the first 25 highquality genomes.

Beth Shapiro University of California State Cruz Contensity of California Contensity of California

Species Monitoring

A High-Quality, Long-Read *De Novo* Genome Assembly to Aid Conservation of Hawaii's Last Remaining Crow Species

Vaquita Genome Offers Hope for Species' Survival

Genome-wide diversity in the California condor tracks its prehistoric abundance and decline

Asian Giant Hornet Complete Genome Released by the Agricultural Research Service

Plant & Animal Biology

Leveraging the secrets of hibernation to treat diabetes

90 🖬 🖂

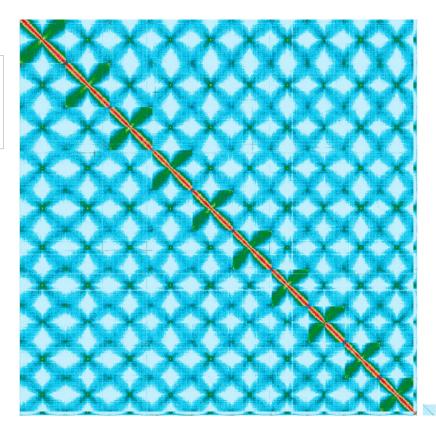
The New York Times

A Question Hidden in the Platypus Genome: Are We the Weird Ones?

Researchers have produced the most comprehensive platypus genome yet, as well as that of another monotreme, an echidna.

f 🛛 🖌 🗖 🛤 🔶 🗍 🐺

Mistletoe genome


From the Darwin Tree of Life project:

2022: The year we built the biggest genome in Britain and Ireland

Luke Lythgoe | 16 Dec 2022

90 Gb genome size

 $(30 \times human genome)$

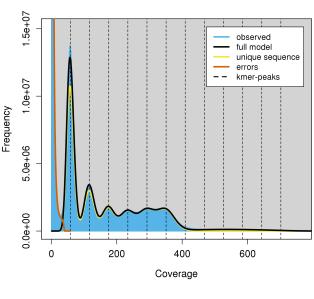
human genome

DECEMBER 22 2022 | PLANT + ANIMAL BIOLOGY

The HiFi difference Christmas edition

– Big genomes

pacb.com/blog

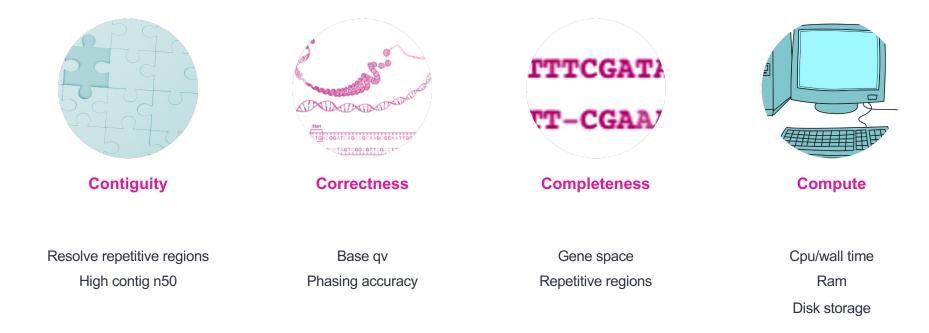

y in f

https://www.darwintreeoflife.org/news_item/2022-the-year-we-built-the-biggest-genome-in-britain-and-ireland/; https://www.pacb.com/blog/the-hifi-difference-christmas-edition-big-genomes/

Hexaploid persimmons (6 × 800Mb)

Collaboration with Jeremy Schmutz (HudsonAlpha Institute for Biotechnology) & Scott Brainard (Savanna Institute)

HudsonAlpha Booth # 433


7

Why switch to HiFi for *de novo* assemblies?

HiFi reads for improved assembly

Hifiasm Propels Hifi to longer contiguity than any other long read technology

Haplotype-resolved *de novo* assembly with phased assembly graphs

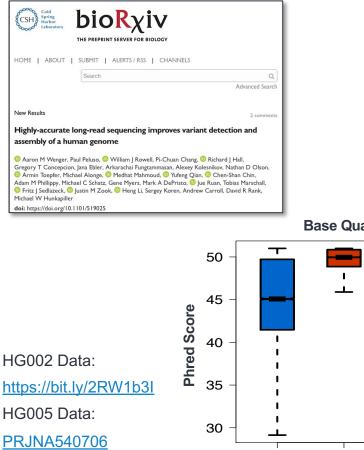
Haoyu Cheng $^{1,2},$ Gregory T Concepcion 3, Xiaowen Feng $^{1,2},$ Haowen Zhang 4, and Heng Li 1,2,*

¹Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
 ²Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
 ³Pacific Biosciences, Menlo Park, CA, USA
 ⁴College of Computing, Georgia Institute of Technology, Atlanta, GA, USA
 *To whom correspondence should be addressed: hli@jimmy.harvard.edu

Dr. Heng Li Dana-Farber Cancer Institute, Harvard


Deterat	A an ample les	Size	NG50	NGA50	OV	Multi-copy genes	Resolved	Gene complete	eness (asmgene)
Dataset	Assembly	(Gb)	(Mb)	(Mb)	QV	retained (%)	BACs (%)	Complete (%)	Duplicated (%)
CHM13	hifiasm	3.043	88.1	65.4	54.3	76.9	95.3	99.14	0.28
(HiFi 32×	HiCanu	3.047	76.3	59.4	53.9	76.7	96.5	99.13	0.33
	Peregrine	2.990	36.5	33.2	43.8	41.4	38.4	98.84	0.26
ONT 120×)	Falcon	2.862	26.3	23.8	50.1	24.6	33.1	98.62	0.11
	Canu (ONT)	2.992	74.1	60.5	26.6	61.6	92.1	97.79	0.27
HG00733	hifiasm (purge)	3.039	70.0	56.8	49.8	67.3	83.2	99.09	0.31
HG00733 HiFi 33×	HiCanu (purge)	2.932	35.2	31.6	50.7	62.4	73.7	97.76	0.33
$ONT 50 \times$	Peregrine	3.035	30.1	30.1	40.5	37.2	38.5	98.70	0.31
JINT (JUX)	Falcon	2.861	24.4	23.2	46.3	33.6	38.0	96.51	0.15
	Canu (ONT)	2.834	40.5	35.1	22.7	22.5	69.3	91.26	0.14
HG002	hifiasm (purge)	3.063	98.7	65.4	51.4	74.8		99.31	0.35
HG002 HiFi 36×	HiCanu (purge)	3.000	44.7	35.9	52.1	67.1		98.97	0.23
$ONT 80\times$	Peregrine	3.081	33.4	32.5	41.3	42.5		99.14	0.36
JINI (00X)	Falcon	2.955	30.4	29.0	46.7	36.6		99.00	0.20
	Canu (ONT	2.831	32.3	30.5	21.9	19.6		88.94	0.21

https://arxiv.org/abs/2008.01237


HiFi vs. CLR in human

- -HiFi is as contiguous as CLR
- -HiFi is more accurate than CLR

	CHM13 (Vollger e <i>t al.</i> 2019)					
Data Type	CLR	HiFi				
Coverage	77-fold	24-fold				
Contig N50	29.2	29.5				
Median Base QV	40.7	45.0				
Method	FALCON, Arrow	Canu, Racon				

PacBi

Base Quality

HG002

HiFi

HG005

HiFi

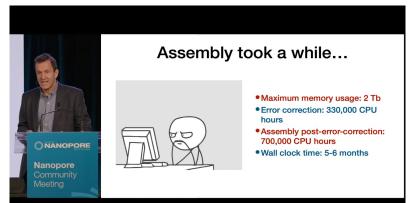
HG002

CLR

COMPUTE: California redwood project

Sequoia sempervirens

<u>17 days for entire project:</u> -sample collection -library -sequencing -assembly

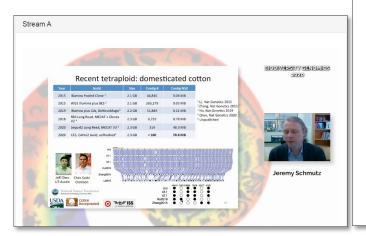

hifiasm

Haoyu Cheng _~7,200 CPU hrs asm Heng Li Lab

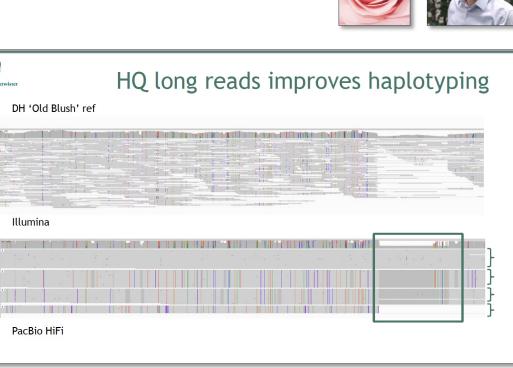
-6 days wall time

- 64 cores with 512 GB RAM
- -~46,000 CPU hrs CCS

Versus ONT + ILM Assembly


https://medium.com/pacbio/a-genome-fit-for-a-giant-seguencing-the-california-redwood-ed722be9e49c

Polyploid genomes


Depends on type of polyploidy

Separate subgenomes accurately vs. one primary contig and multiple haplotigs

Future work to explore, HiFi data ideal to separate alleles

PacBi

https://www.pacb.com/blog/rose/

Generate contiguous assemblies with HiFi

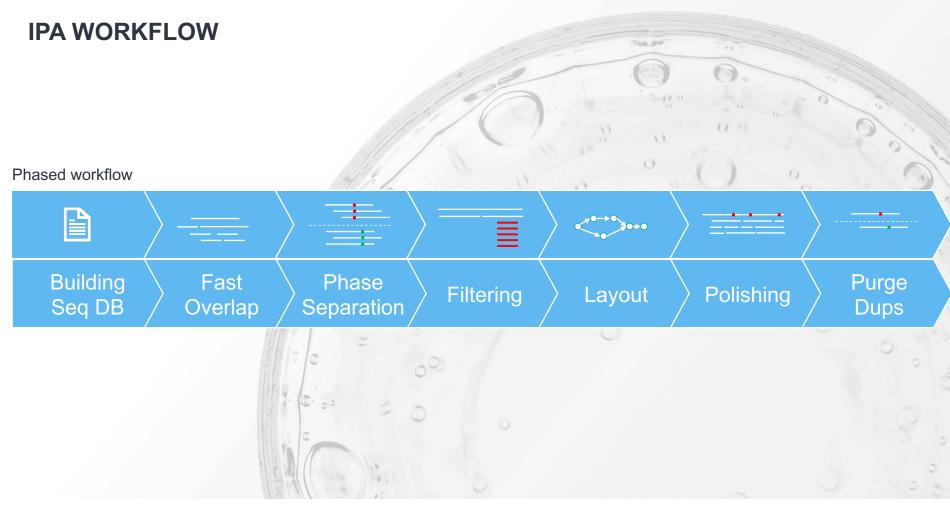
Dataset	Drosoph	nila	Hun	nan
Mode	Long Reads	HiFi Reads	Long Reads	HiFi Reads
Size Selection	BP >15 kb	19 kb ELF	BP >15 kb	15 kb ELF
Coverage	71-fold	20-fold	50-fold	22-fold
Contig N50 (Mb)	3.5	6.5	12.6	30.5

Contiguity is **equivalent**, **if not better** using lower coverage HiFi data. This is true even for highly repetitive genomes as you can now see **minute differences** between repeats.

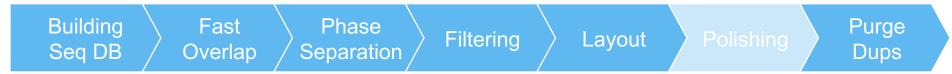
PacBi

Generate complete and correct assemblies with HiFi

Dataset	Droso	phila	Hu	man
Mode	Long Reads	HiFi Reads	Long Reads	HiFi Reads
Assembly Size	0.148	0.150	2.85	2.92
Base pair accuracy (Phred/Percentage)	Q44 / 99.996%	Q50 / 99.999%	Q41 / 99.992%	Q49 / 99.9987%
BUSCO complete	N=2,799 98.8%	N=2,799 98.9%	N=4,104 94.8%	N=4,104 94.9%
Species-specific genes in frame	N=13,947 98.8%	N=13,947 99.5%	N=19,313 96.4%	N=19,313 99.5%


Accuracies approaching Q50 (99.999%) >99% of genes in frame More of the genome assembled

Improved and Phased Assembly (IPA)



IPA WORKFLOW Is Modular

Polishing can optionally be switched on/off: Fast draft assembly

Phased workflow

Haploid workflow

HiFi WGS data analysis recommendations for large genomes

Using HiFi reads for de novo assembly analysis of large genomes

- Perform CCS analysis on-instrument using the Sequel IIe system or in <u>SMRT Link</u> to generate highly accurate and long single-molecule reads (HiFi reads)
- 10- to 15-fold HiFi read coverage per haplotype is recommended for most de novo assembly projects
 - \rightarrow Target HiFi Base Yield = [Haploid Genome Size (Gb)]x [Ploidy Level]x [Target HiFi Coverage per Haplotype]

E.g., for *de novo* assembly analysis of a 3 Gb diploid genome:

Recommended Minimum Target HiFi Base Yield = 3 Gb x 2 x 10 = 60 Gb

- Output data in standard file formats, (BAM and FASTA/Q) for seamless integration with downstream analysis tools
- Can use <u>SMRT Link</u> Genome Assembly analysis application (powered by <u>IPA</u>) or other third-party software for *de novo* assembly analysis using HiFi reads:
 - <u>Hifiasm</u>
 - <u>HiCanu</u>
- Contact PacBio Technical Support (<u>support@pacb.com</u>) or your local Bioinformatics Field Applications Scientist for additional information about data analysis recommendations

PacBi

Results: long phase blocks in human, high base QV

HPRC HG002 34x Dataset – Phased workflow with polishing – no "purge_dups"

	FALCO	N-Unzip	IPA (I	Phased)
	primary	haplotigs	primary	haplotigs
N50 [Mbp]	31.40	0.191	33.75	0.352
Max length [Mbp]	110.12	1.62	110.94	2.30
Total length [Gbp]	2.95	1.99	3.02	1.85
CPU time [h]	51	102	Ę	590
			8.64x	Faster!

PacBi

Assembly tool

Results: great haplotig separation

Atlantic Bluefin Tuna (0.85%)

Red Admiral Butterfly (1.1%)

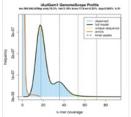
	IPA + purge_dups			IPA	+ purge_dups
	primary	haplotigs		primary	haplotigs
Contig N50	20.12 Mb	4.21 Mb	Contig N50	12.12 Mb	4.80 Mb
Assembly size	790 Mb	730 Mb	Assembly size	368 Mb	369 Mb
BUSCO [C]	98.6%	92.8%	BUSCO [C]	99.3%	97.7%

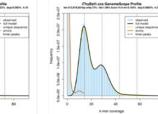


Tuna collaboration with Paul Peluso1, Greg Concepcion1, Jay Ghurye2, Nathan Truelove3 and Barbara Block4, 1PacBio, 2Dovetail Genomics, 3Monterey Bay Aquarium Research Institute, 4Hopkins Marine Station. Butterfly collaboration with Mara Lawniczak & Mark Blaxter (Sanger Institute)

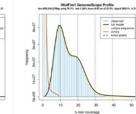
Drosophila melanogaster F1 – Phased and polished

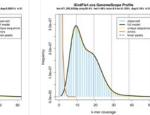
	Hifiasm + purge_dups		IPA + purge_dups	
	primary	haplotigs	primary	haplotigs
N50 [Mbp]	22.55	1.28	13.49	2.42
Max length [Mbp]	28.13	6.81	23.47	12.48
Total length [Mbp]	160.19	149.87	134.19	115.26
Base QV	48.1	47.4	47.97	46.87
Phase accuracy	0.788	0.998	0.826	0.999
BUSCO of primary	C:98.5% S:98.0%,D:0.5%		C:98.7% S:98.2%,D:0.5%	

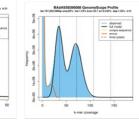

* Cabanettes F, Klopp C. (2018) D-GENIES: dot plot large genomes in an interactive, efficient and simple way. PeerJ 6:e4958 https://doi.org/10.7717/peerj.4958

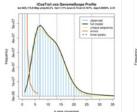

Results: Bug Genomes

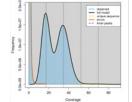
Darwin Tree of Life, SANGER Testing on real-world samples - butterflies, moths & mosquitoes

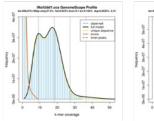


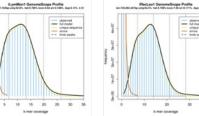


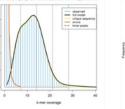


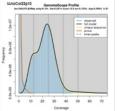



iParStr1 GenomeScope Profile to unic7575. htt://fs.kcer.1) ard.21Ps.doi:1.015.k.31 - observed unique seg empris Inmenipeak 10 20 30 40 50 60 k-mer coverage

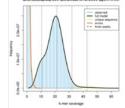








UK1209 GenomeScope Profile

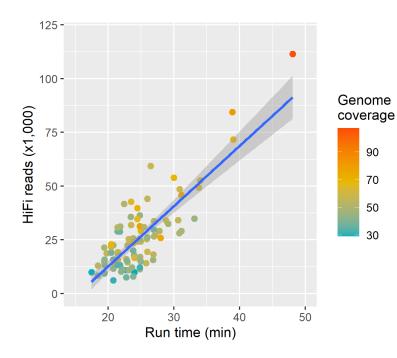


40

iCraLig1 GenomeScope Profile

PacBi

Microbial assembly analysis application


Microbial whole genome sequencing and assembly with HiFi data

Short turn-around times

Typical time to results for Microbial Assembly analysis is ~20 to 60 minutes*

Minimum compute requirements: Head Node: Cores: 32, RAM: 64 GB, 1 TB local tmp, 256 GB local db_datadir Compute Nodes: Cores: 64, RAM: 4GB per core, 1 TB local tmp, 256 GB local db_datadir

Experimental design and input data requirements

HiFi WGS data analysis recommendations small genomes (microbial multiplexing applications)

Using HiFi reads for de novo assembly and base modification detection analysis of microbial genomes

- Perform CCS analysis on-instrument using the Sequel IIe System or in <u>SMRT Link</u> to generate highly accurate and long single-molecule reads (HiFi reads)
- 15-fold HiFi read coverage per microbe is recommended for most *de novo* assembly projects
 - → Target HiFi Base Yield = [Microbe Genome Size (Mb)]x [Target HiFi Coverage per Microbe]

E.g., for *de novo* assembly analysis of a 5 Mb microbial genome:

Recommended Minimum Target HiFi Base Yield = 5 Mb x 15 = 75 Mb

- Output data in standard file formats, (BAM and FASTA/Q) for seamless integration with downstream analysis tools
- Can use <u>SMRT Link</u> Microbial Genome analysis application for *de novo* assembly and base modification detection analysis using HiFi reads:
 - Easy to use (no requirement for laborious parameter input/optimization)
 - Enables fast and efficient microbial assembly results using HiFi reads (typical time to result is ~20-60 minutes* for analysis of a 96plex microbial data set (up to 375 total sum of genome sizes))
 - Outputs complete, high-quality microbial genome assemblies (including chromosomes and plasmids)

WGS sample preparation procedure description

Procedure & Checklist – Preparing whole genome and metagenome libraries using SMRTbell prep kit 3.0 (<u>102-166-600</u>) describes a method for constructing SMRTbell libraries that are suitable for generating HiFi reads on the Sequel II and IIe systems for WGS and metagenomic shotgun sequencing applications.

Procedure Highlights

- Uses SMRTbell Prep Kit 3.0 (102-182-70) and supports high-throughput processing using 500 ng 5 μg of input genomic DNA amounts
 - We recommend starting with ≥1 µg of input DNA per SMRT Cell 8M (or ~3 µg for up to a 3 Gb WGS sample to enable running 3 SMRT Cells 8M)
- Multiplexing of samples can be performed using SMRTbell barcoded adapter plate 3.0 (102-009-200)
- Recommend shearing high-quality gDNA using a Megaruptor 3 System (Diagenode)
 - 15 kb 18 kb target insert size for large (plant / animal / human) genomes
 - 7 kb 12 kb target insert size for small (microbial) genomes
 - 7 kb 12 kb target insert size for shotgun metagenomic samples
- 4.5-hour workflow time to process up to 8 samples from shearing to size selection (6 hours for 24 samples)
 - Time difference is from DNA shearing, which can be performed in sets of 8 samples.
 - Excludes time needed for DNA sizing QC analysis using a Femto Pulse system.
- WGS SMRTbell libraries can be size-selected using AMPure PB Beads without the need for third-party equipment

Preparing whole genome and metagenome libraries using SMRTbell® prep kit 3.0							
Before you begi	n						
This procedure describes the wo and metagenomic DNA using the							
Overview							
Samples per SMRTbell prep kit 3.0	1-24						
Workflow time	4.5 hours for up to 8 sam Time difference is from E Excludes measuring DNA	NA shearing, which is d	one in sets of 8 samples.				
DNA input							
Quantity	300 ng-5 µg per library						
			Metagenomes				
DNA size distribution (Femto Pulse system)	50% ≿ 30 kb & 90% ≿ 10 kb	90% ≥ 7 kb	90% ≥ 7 kb				
DNA Shearing (Megaruptor 3 system)	Speed 31	Speed 40	Speed 40				
Target fragment lengths	15-18 kb	7-12 kb	7-12 kb				
Size selection required	AMPure® PB beads	none	none				
© 2022 PacBio, All rights reserved. Ret PH 102-166-600 FA V1 18FER0022	search use only. Not for use in die	agnostic procedures.	PacBie				
PH 102-100-000 EA VI 18PEB2022							

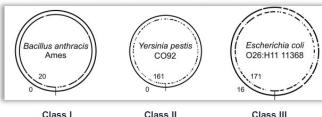
APPLICATIONS WHOLE GENOME SEQUENCING

De Novo assembly & variant detection Microbial assembly Shotgun metagenomics

PacBio Documentation (102-166-600)

Example performance

https://downloads.pacbcloud.com/public/dataset/2021-11-Microbial-96plex/


PacBi

Example sequencing performance for a 96-plex microbial WGS library prepared with SMRTbell prep kit 3.0

Sample preparation workflow

Experiment design

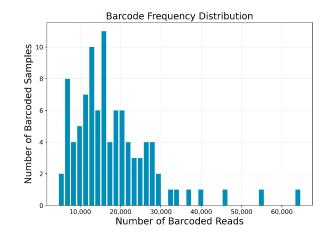
 24 different microbes; each ligated independently to 4 different barcodes for 96-plex

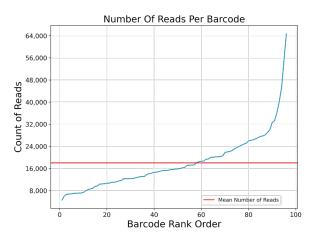
Microbial genome assembly complexity

 $\mbox{Class I}$ – Have few repeats except for the rDNA operon sized 5 to 7 kb

Class II - Class II genomes have many repeats, such as insertion sequence elements, but none greater than 7 kb.

Class III - Contain large, often phage-related, repeats >7 kb.

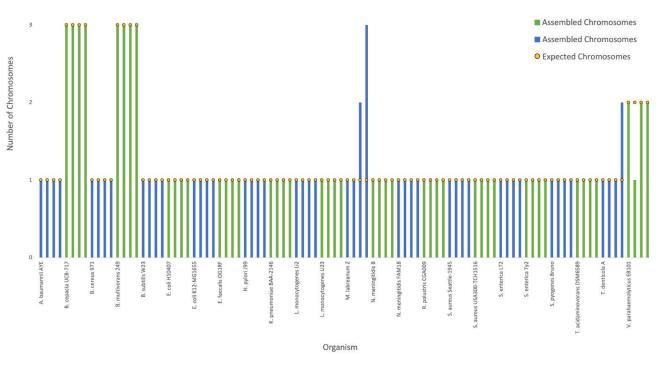

	Microbial species	Genome size (bp)	GC content (%)	Microbial genome complexity	Barcode names
	Acinetobacter baumannii AYE	3,960,239	39.35	Class 3	bc2001 / bc2025 / bc2049 / bc2073
	Bacillus cereus 971	5,430,163	35.29	Class 1	bc2002 / bc2026 / bc2050 / bc2074
41.7	Bacillus subtilis W23	4,045,592	43.5	Class 1	bc2003 / bc2027 / bc2051 / bc2075
itly	Burkholderia cepacia UCB 717	8,569,621	66.6	Class 3	bc2004 / bc2028 / bc2052 / bc2076
	Burkholderia multivorans 249	7,008,277	66.68	Class 3	bc2005 / bc2029 / bc2053 / bc2077
	Enterococcus faecalis OG1RF	2,739,503	37.75	Class 1	bc2006 / bc2030 / bc2054 / bc2078
	Escherichia coli H10407	5,393,109	50.71	Class 1	bc2007 / bc2031 / bc2055 / bc2079
	Escherichia coli K12 MG1655	4,642,522	50.79	Class 1	bc2008 / bc2032 / bc2056 / bc2080
11	Helicobacter pylori J99	1,645,141	39.19	Class 1	bc2009 / bc2033 / bc2057 / bc2081
ij	Klebsiella pneumoniae BAA-2146	5,780,684	56.97	Class 2	bc2010 / bc2034 / bc2058 / bc2082
ij	Listeria monocytogenes Li2	2,950,984	37.99	Class 1	bc2011 / bc2035 / bc2059 / bc2083
/	Listeria monocytogenes Li23	2,979,685	38.19	Class 1	bc2012 / bc2036 / bc2060 / bc2084
	Methanocorpusculum labreanum Z	1,804,962	50.5	Class 1	bc2013 / bc2037 / bc2061 / bc2085
	Neisseria meningitidis FAM18	2,194,814	51.62	Class 3	bc2014 / bc2038 / bc2062 / bc2086
	Neisseria meningitidis Serogroup B	2,304,579	51.44	Class 1	bc2015 / bc2039 / bc2063 / bc2087
	Rhodopseudomonas palustris CGA009	5,459,213	64.9	Class 3	bc2016 / bc2040 / bc2064 / bc2088
	Salmonella enterica LT2	4,950,860	52.24	Class 1	bc2017 / bc2041 / bc2065 / bc2089
	Salmonella enterica Ty2	4,791,947	52.05	Class 1	bc2018 / bc2042 / bc2066 / bc2090
d	Staphylococcus aureus Seattle 1945	2,806,348	32.86	_	bc2019 / bc2043 / bc2067 / bc2091
	Staphylococcus aureus USA300_TCH1516	2,872,915	32.7	Class 1	bc2020 / bc2044 / bc2068 / bc2092
IS	Streptococcus pyogenes Bruno	1,844,942	38.48	_	bc2021 / bc2045 / bc2069 / bc2093
	Thermanaerovibrio acidaminovorans DSM6589	1,852,980	63.78	Class 1	bc2022 / bc2046 / bc2070 / bc2094
	Treponema denticola A	2,842,721	37.87	_	bc2023 / bc2047 / bc2071 / bc2095
	Vibrio parahaemolyticus EB101	5,146,979	45.33	Class 1	bc2024 / bc2048 / bc2072 / bc2096



Example sequencing performance for a 96-plex microbial WGS library prepared with SMRTbell prep kit 3.0 (cont.)

Barcode demultiplexing results

Value	Analysis Metric
96	Unique Barcodes
1,731,704	Barcoded Reads
18,038	Mean Reads
64,709	Max. Reads
4,565	Min. Reads
7,856	Mean Read Length
24,632	Unbarcoded Reads
98.66%	Percent Bases in Barcoded Reads
98.59%	Percent Barcoded Reads

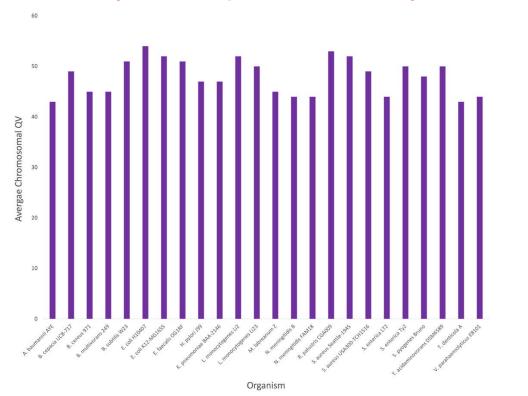


• All 96 barcodes detected

- Mean # of barcoded HiFi reads per microbe is ~18,000
- Mean HiFi base coverage per microbe is 36-fold (Range is 19- to 63-fold)

Example sequencing performance for a 96-plex microbial WGS library prepared with SMRTbell prep kit 3.0 (cont.)

HiFi de novo assembly results – assembled chromosomes


 Achieved 1 Contig / Chromosome for 92 out of 96 assemblies
 For all 96 microbes, chromosomal assemblies were complete and of the expected sizes

Microbial assembly statistics from a 96-plex pool of bacteria relevant to food safety and human health. These data were generated on the Sequel II system and assembled with the fully automated HiFibased Microbial Assembly application in SMRT Link using the default parameters, without any manual curation. <u>Download</u> and explore the data yourself.

Example sequencing performance for a 96-plex microbial WGS library prepared with SMRTbell prep kit 3.0 (cont.)

HiFi de novo assembly results - representative assembly accuracies

With HiFi data and the Microbial Assembly application in SMRT Link, genome assemblies are consistently >99.99% accurate

PacBi

Analysis workflow overview

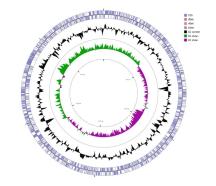
HiFi microbial assembly workflow

HiFi microbial assembly workflow stages

Assemble high-quality microbial chromosomes and plasmids High contiguity, high per-base quality of final microbial assemblies Fast assembly, easy to use, no need for parameter input/optimization

Chromosomal assembly	Mapping and filtering	Plasmid assembly	Filter plasmid contigs	Ori-c rotation & prep for NCBI	Graph-based mapping	Base modification detection
-------------------------	-----------------------------	---------------------	------------------------	--------------------------------	---------------------	-----------------------------------

Ori-c rotation


HiFi microbial assembly workflow stages


Chromosomal assembly	Mapping and filtering	Plasmid assembly	Filter plasmid contigs	Ori-c rotation & prep for NCBI	Graph-based mapping	Base modification detection
-------------------------	-----------------------------	---------------------	------------------------	-----------------------------------	------------------------	-----------------------------------

Task: find origin of replication, header and file formatting

Method: GC-skew for origin of replication

detection

Analysis results guide

SMRT Analysis report

Polished Assembly

MRT Analysis / Analysis Results					
Microbial_assembly-Klebsie	lla Sample8	2	SUCCESSFUL	🕒 Сору	นี้ De
>Analysis Overview					
	Value	Analysis Metric			
Mapping Report	5	Polished Contigs			
	5,435,735	Maximum Contig Length			
Summary Metrics	5,435,735	N50 Contig Length			
Polished contigs from Microbial	5,781,317	Sum of Contig Lengths			
Assembly Hifi	5,117,894	E-size (sum of squares / sum)			
➤Coverage					
Base Modifications					
Modified Base Motifs					
>Data					

SMRT Analysis report

Polished Assembly

SMRT Analysis - SMRT Analysis / Analysis Results Microbial_assembly-Klebsiella Sample	e82		No	stifications Settings Help
Analysis Overview	Polished contigs from Microbial Asse	mbly Hifi		
Mapping Report	Contig	Length	Circular	Coverage
· mapping Report	ctg.s1/p/c/000000/0	5,435,735	yes	34
✓Polished Assembly	ctg.s2/p/c/000000/0	140,824	yes	29
Summary Metrics	ctg.s2/p/c/000001/0	117,755	yes	30
Polished contigs from Microbial Assembly Hifi	ctg.s2/p/c/000002/0	85,164	yes	32
➤Coverage	ctg.s2/p/c/00003/0	1,839	yes	11
>Base Modifications				
> Modified Base Motifs				
>Data				

SMRT Analysis report

Data

File Downloads

Edit Out	tput File Name Prefix Example:analysis-Bio Sample 64-955
	File
	Mapped BAM Index
	Mapped BAM
	Coverage Summary
E F	Final Polished Assembly for NCBI
i i	PacBio.Index.SamIndex file
i 1	Modified Base Motifs
i i	Per-Base IPDs for IGV
i i i	Final Polished Assembly
	Motif Annotations
i i	Final Polished Assembly Index
i i	Per-Base Kinetics
1	Modified Bases
i	Analysis Log
i 9	SMRT Link Log

Final Polished Assembly for NCBI [analysis-A baumannii AYE bc2001 -45009-assembly.rotated.polished.renamed.fsa]

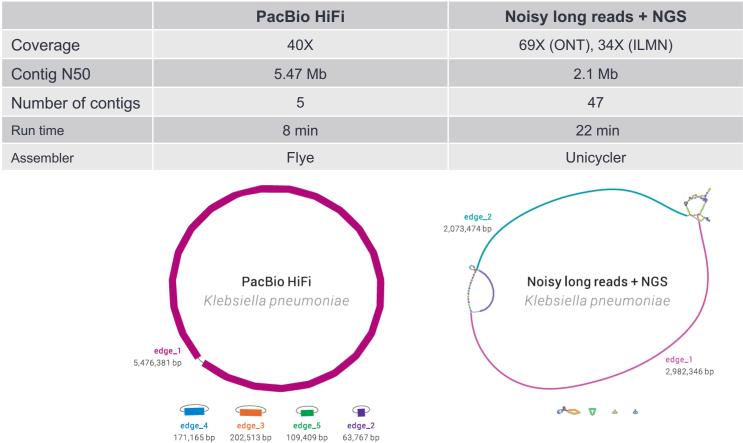
>ctg.s1.000000F [topology=circular][completeness=complete]

TCAATTGTGAATAACTTTTTGCACATCCTGTGGATAAATTATCACATAAACTTATCCACAATCCATAAAGACAATAAAAACAGAGTTA TCAACAGTTCAAATATATGTTTTTTTAAATTTAAAACTGTGGAAATCCACAAGAAAAGTCCACACTAATAAGAATAAAATTTAAATTTTAA AATTTGAATTTAATAGGGCTGATCCAAATTGTGGATAACTAAAAAATATGAATTTAAATTCAAATATACCAAAACCAAC TTCACATCAAGGTTTGTTGGTAAGTATGTAAATAAGAAGTGTATATCTTAAAAGTCTTAATAAAAAATAAACAATTACCTTGGCATAA CTTTTAAATAAGAAAAATAGGCTAAATATAAAGAAGAAGATAAAAAGTTAAAAAATTTGACTTAAATAACAATTTCACGTTTTTCAT TGACAGCGTAAACATTGCACAATAAAAAACGCGGACCTTTATAGAAAGATCATTTTGGGAGTTTCGATATGAAACGTACTTTCCAACC ATCTGAATTAAA

Final Polished Assembly: The final polished assembly with applied *oriC* rotation and header adjustment for NCBI submission, in FASTA format.

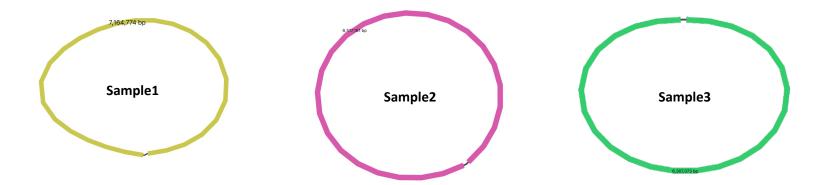
Final Polished Assembly [analysis-A_baumannii_AYE_bc2001 -45009-p_ctg_oric.fasta]

>ctg.s1.000000F shifted by bp:-1218400/3943308


TCAATTGTGAATAACTTTTTGCACATCCTGTGGGATAAATTATCACATAAACTTATCCACAATCCATAAAGACAATAAAAAACAGAGTTA TCAACAGTTCAAATATATGTTTTTTTAAATTTAAAACTGTGGAAATCCACAAGAAAAGTCCACACAATAAAGAATAAATTTAAATTTTAA AATTTGAATTTAATATGGGCTGATCCAAATTGTGGGATAACTAAAAAATATGAATTTAAATTCAAATATACCAAAATCAAAACCAAC TTCACATCAAGGTTTGTTGGTAAGTATGTAAATAAGAAGTGTATATCTTAAAAGTCTTAATAAAAATAAACAATTACCTTTGTGCATAA CTTTTAAATAAGAAAAATAGGCTAAATATAAAGAAGAGATAAAAAGTTAAAAAATTTGACTTAAATAACAATTACCATTTCACGGTTTTTCAT TGACAGCGTAAACATTGCACAATAAAAAACGGGGACCTTTATAGAAAGATCATTTTGGGAGTTTCGATATGAAACGTACTTTCCAACC ATCTGAATTAAA

Final Polished Assembly: The final polished assembly with applied oriC rotation, in FASTA format.

Case Study Sharing



Case sharing: Microbial WGS via single technology

Complete sequence the closed genomes

Sample ID	Number of reads	CCS Reads Length Mean (mapped)	Contig number	Sum of Contig Lengths (bp)	Circular
Sample1	228,521	7,752	1	7,164,774	Y
Sample2	134,703	9,914	1	6,517,161	Y
Sample3	117,743	8,936	1	6,307,073	Y

Downstream Applications

Useful tools for further analysis

Genome Annotation

- Kbase: <u>http://kbase.us/</u>
- Prokka: <u>https://github.com/tseemann/prokka</u>
- RAST: <u>http://rast.theseed.org/FIG/rast.cgi</u>

Comparative Analysis

- QUAST: <u>http://quast.sourceforge.net/quast</u>
- MUMMER: <u>http://mummer.sourceforge.net/</u>
- Assemblytics: <u>http://assemblytics.com/</u>

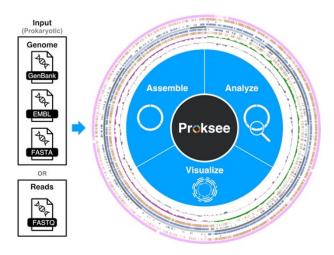
Visualization

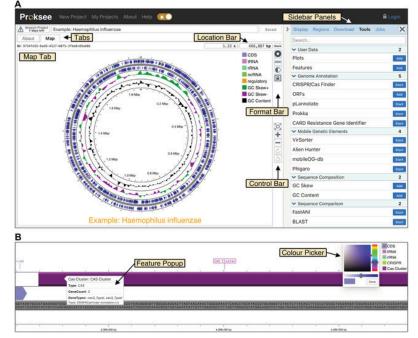
- Ribbon: <u>http://genomeribbon.com/</u>
- IGV: <u>https://igv.org/</u>
- BUSCO: https://busco.ezlab.org/

Other Genome Assembly tools

- FLYE: <u>https://github.com/fenderglass/Flye</u>
- Unicycler: <u>https://github.com/rrwick/Unicycler</u>
- Ciclator: <u>https://sanger-pathogens.github.io/circlator/</u>
- Canu(including Trio Binning Assembly):
 - <u>https://github.com/marbl/canu</u>
 - <u>https://canu.readthedocs.io/en/latest/quick-start.html</u>
- hifiasm: <u>https://hifiasm.readthedocs.io/en/latest/index.html</u>

Proksee

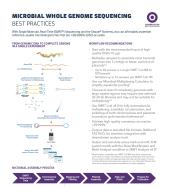

JOURNAL ARTICLE


Proksee: in-depth characterization and visualization of bacterial genomes 👌

Jason R Grant, Eric Enns, Eric Marinier, Arnab Mandal, Emily K Herman, Chih-yu Chen, Morag Graham,

Gary Van Domselaar 💌 , Paul Stothard 💌 🛛 Author Notes

Nucleic Acids Research, gkad326, https://doi.org/10.1093/nar/gkad326 Published: 04 May 2023 Article history ▼



Documentation

Documentation

Application Brief: Microbial whole genome sequencing – Best Practices (<u>BP101-</u> <u>013020</u>)

Summary overview of application-specific sample preparation and data analysis workflow recommendations

Procedure & Checklist – Preparing whole genome and metagenome libraries using SMRTbell prep kit 3.0 (<u>102-</u> <u>166-600</u>)

Technical documentation containing sample library construction and sequencing preparation protocol details

SMRT Link User Guide – Sequel Systems (102-278-200)

Technical documentation describing how to use SMRT Link software. SMRT Link is the webbased end-to-end workflow manager for Sequel Systems.

Introduction This document describes the command-li

This document describes the command-line tools included with SMRT[®] Link v10.2. These tools are for use by bioinformaticians working with secondary analysis results.

 The command-line tools are located in the SIGHT_NOOT/smrtlink. smrtends/bin subdirectory.

Installation

The command-line tools are installed as an integral component of the SMR Link software. For installation details, see SMRT Link Software Installation (v10.2).

 To install only the command-line tools, use the --smrttools-only option with the installation command, whether for a new installation or an upgrade. Examples:

smrtlink-*.rus --rootdir smrtlink --amrttools-only smrtlink-*.rus --rootdir smrtlink --amrttools-only --upgrade

Supported Chemistry

SMRT Link v10.2 supports all chemistry versions for Sequel[®] II Systems and chemistry v2.1 and later for Sequel Systems.

Pacific Biosciences Command-Line Tools

Following is information on the Pacific Biosciences-supplied command-line tools included in the installation. Third-party tools installed are described at the end of the document.

Tool	Description
ban2fasts/ ban2fastq	Converts PacBio [®] BAM files into gzipped FASTA and FASTQ files. See "bam2fasta/bam2fastq" on page 2.
bansieve	Generates a subset of a BAM or PacBio Data Set file based on either a list of hole rumbers, or a percentage of reads to be randomly selected. Set "humoirce" on page 3.
cca	Calculates consensus sequences from multiple "passes" around a circularized single DNA molecule (SMRTbelf" template). See "cor" on page 6.
dataset	Creates, opens, manipulates and writes Data Set XML files. See "dataser" on page 14.
Demultiplex Barcodes	Identifies barcode sequences in PacBio single-molecule sequencing data. See "Densitiplex Barcodes" on page 20.

SMRT Tools Reference Guide (102-278-500)

Technical documentation describing command line tools included with SMRT Link. These tools are for use by bioinformaticians working with secondary analysis results.

Public data

HG002 Human Pan-Genome Reference Consortium

4 cells: 2 cells 20kb and 2 cells 15kbp

- ~34x coverage
- <u>https://github.com/human-</u> pangenomics/HG002_Data_Freeze_v1.0

human-pangenomics / HG002_Data_Freeze_v1.0						• w	atch 🕶 6	\star Star	26	¥ Fork	3
<> Code	() Issues 0	1) Pull requests 0	Actions	Projects 0	💷 Wiki	C Security	lılı İns	ights			
Human Par	Human Pangenome Reference Consortium - HG002 Data Freeze (v1.0)										
-0- 3	2 commits	🖗 1 branch	ı	🗊 0 packages	ages 🖏 0 releases 😃 2		2 con	tributors			
Branch: ma	ster - New pu	Ill request			Create	new file Up	load files	Find file	Clone	or downloa	ad 🗸

Sequencing Data

The annotated table of sequence data can be downloaded here.

HG002 Data Freeze (v1.0) Recommended downsampled data mix

We encourage assembly groups to use as much of the data from the HG002 freeze as possible to get the best assembly they can. However, as no two groups are likely to use exactly the same subset of data, making comparison more difficult, and the size and variety of the HG002 freeze is not representative of what is likely to be available in future freezes, we recommend that assembly groups also run their pipeline on the following set of 4 downsampled datasets from the HG002 (NA24385) human cell line:

PacBio HiFi:

~34X coverage of Sequel II System with Chemistry 2.0

15kb:

- https://s3-us-west-2.amazonaws.com/humanpangenomics/HG002/hpp_HG002_NA24385_son_v1/PacBio_HiFi/15kb/m64012_190920_173625.Q20.fastq
- https://s3-us-west-2.amazonaws.com/humanpangenomics/HG002/hpp_HG002_NA24385_son_v1/PacBio_HiFi/15kb/m64012_190921_234837.Q20.fastq

20kb:

- https://s3-us-west-2.amazonaws.com/humanpangenomics/HG002/hpp_HG002_NA24385_son_v1/PacBio_HiFi/20kb/m64011_190830_220126.Q20.fastq
- https://s3-us-west-2.amazonaws.com/humanpangenomics/HG002/hpp_HG002_NA24385_son_v1/PacBio_HiFi/20kb/m64011_190901_095311.Q20.fastq

CHM13 data from the HiCanu preprint

- 5 HiFi datasets
- https://www.ncbi.nlm.nih.gov/sra/?term=PRJNA530776

WGS of CHM13 with PacBio CCS

1. 1 PACBIO_SMRT (Sequel II) run: 1M spots, 21G bases, 15.7Gb downloads Accession: SRX7897688

WGS of CHM13 with PacBio CCS

 1 PACBIO_SMRT (Sequel II) run: 1.4M spots, 28.7G bases, 21.7Gb downloads Accession: SRX7897687

WGS of CHM13 with PacBio CCS

 1 PACBIO_SMRT (Sequel II) run: 1.6M spots, 25.6G bases, 16.3Gb downloads Accession: SRX7897686

WGS of CHM13 with PacBio CCS

4. 1 PACBIO_SMRT (Sequel II) run: 1.6M spots, 25.1G bases, 16Gb downloads Accession: SRX7897685

WGS of CHM13 with PacBio CCS

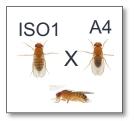
 4 PACBIO_SMRT (Sequel II) runs: 6.9M spots, 75.6G bases, 47.3Gb downloads Accession: SRX5633451

HOME | ABOUT | SUBMIT | NEWS & NOTES | ALERTS / RSS | CHANNELS

Adv	anced	Sea

New Results	O Comment on this paper	O Previous	Next
HiCanu: accurate assembly of segmental duplications, satellites, and allelic variants from high-fidelity long reads Sergey Nurk, Brian R.Walenz, Arang Rhie, Mitchell R. Vollger, Glennis A. Logsdon, Robert Grothe, Karen H. Mig, D. Fanz. Elichler, G. Adam M. Philippy, G. Sergey Koren		Posted March 19, 2020.	
		Download PDF	Email Share
🙂 Karen H. Miga, 🙂 Evan E. Eichler, 🙂 Adam M. Phillippy, 🙂 Se	ergey Koren		Citation Tools
Waren H. Miga, Wean E. Eichler, WAdam M. Phillippy, W Se doi: https://doi.org/10.1101/2020.03.14.992248	ergey Koren	Data/Code	Utation lools
• • • • • • • • • • • • • • • • • • • •		 Data/Code XML 	Citation Iools

Search


HG002

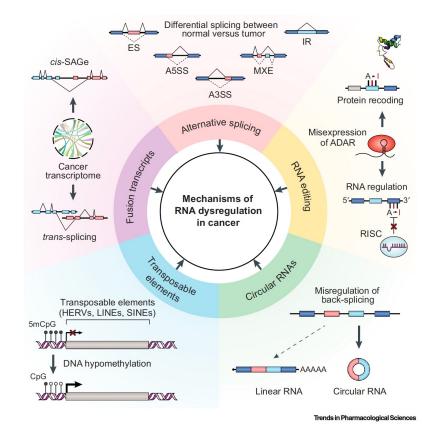
15 kb + 20 kb library 6 SMRT Cell 8M Data: PRJNA586863

Oryza sativa indica MH63

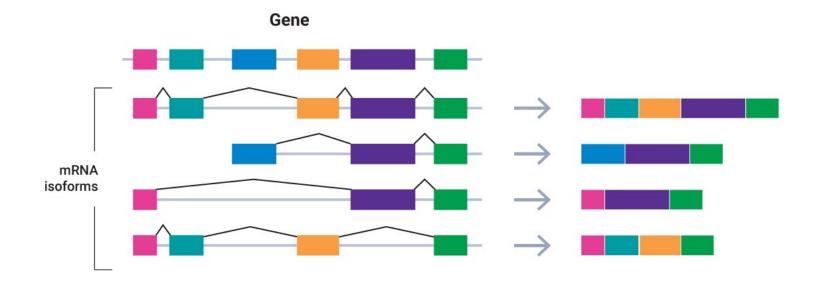
17 kb + 24 kb library 2 SMRT Cell 8M Data: PRJNA573706

Drosophila melanogaster F1

19 kb + 24 kb library 2 SMRT Cell 8M Data: PRJNA573706

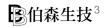

PacBi

Iso-Seq analysis application overview

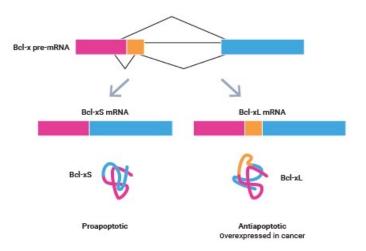

27 June 2023 彭彥菱 Lynn Peng | Bioinformatics Engineer, Blossombio Taiwan

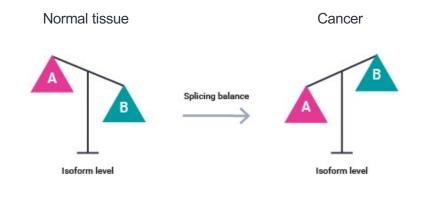
PacBio 生物資訊教育訓練 基礎班 HiFi 101 Lecture A

RNA dysregulation in cancer



Alternative splicing is fundamental in producing diversity of proteins in the human body


- >95% of genes undergo alternative splicing
- Cells express ~4 isoforms per gene



Cancers display aberrant isoform regulation

Splicing events that affect protein function

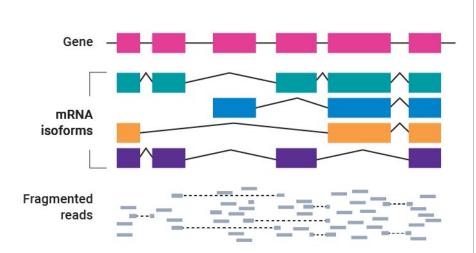
Cancer-specific switches in isoform expression

Example: The Bcl-x protein has two isoforms

- Bcl-xS (short isoform) is expressed in normal cells
- Bcl-xL (long isoform) is overexpressed in cancer cells, promotes cancer progression and resistance to chemotherapy.


Alternative transcripts are more dominantly expressed in cancer tissues than in normal tissues.

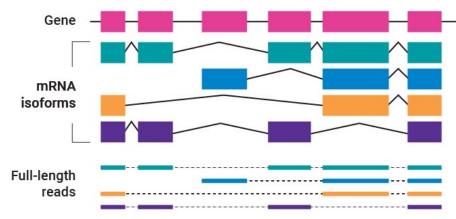
PacBi


Isoforms are important source of novel cancer biomarkers and drug targets

Cancer-specific isoforms have been shown to be actionable **biomarkers** and are an untapped source of **drug targets** for oncology.

The vast majority of cancer-specific isoforms **remain unknown**.

Long-read sequencing provides complete view of cancer transcriptome



Short read sequencing

Short-read sequencing can only assemble ~20 to 40% of human transcriptomes

PARTIAL view of cancer transcriptomes

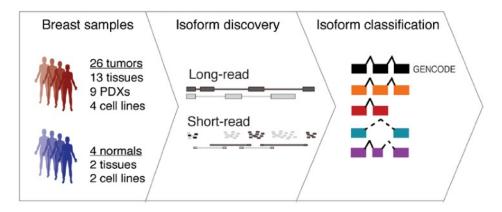
Long read sequencing

PacBio's long-read sequencing offers superior isoform discovery power

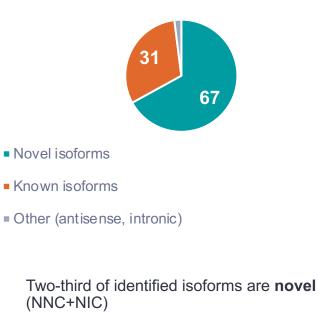
COMPLETE view of cancer transcriptomes

PacBi

Iso-seq identifies thousands of novel isoforms in breast cancer samples


SCIENCE ADVANCES | RESEARCH ARTICLE

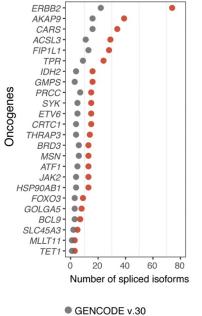
CANCER


A comprehensive long-read isoform analysis platform and sequencing resource for breast cancer

Diogo F. T. Veiga¹†, Alex Nesta^{1,2}†, Yuqi Zhao¹, Anne Deslattes Mays¹, Richie Huynh¹, Robert Rossi¹, Te-Chia Wu¹, Karolina Palucka¹, Olga Anczukow^{1,2,3}*, Christine R. Beck^{1,2,3}*, Jacques Banchereau¹*

Veiga et al., Sci. Adv. 8, eabg6711 (2022) 19 January 2022

142,514 splice isoforms detected

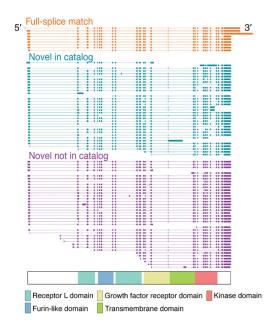


Proportion of novel isoforms is ~2-fold higher in tumor vs normal samples.

PacBi

Alternative splicing affects important functional domains in oncogenes

Novel isoform increase in oncogenes



Novel isoforms (LR-seq)

PacBi

Complex splicing regulation in

ERBB2/HER2 oncogene

Effects on important functional domains

Percent of novel isoforms with affected conserved domains

Percent of novel isoforms with predicted protein localization effects

Example – gastric cancer

Huang et al. Genome Biology (2021) 22:44 https://doi.org/10.1186/s13059-021-02261-x

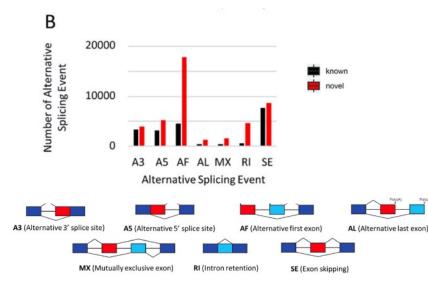
Genome Biology

RESEARCH

Open Access

Check for updates

Long-read transcriptome sequencing reveals abundant promoter diversity in distinct molecular subtypes of gastric cancer


Kie Kyon Huang¹, Jiawen Huang¹, Jeanie Kar Leng Wu¹, Minghui Lee¹, Su Ting Tay¹, Vikrant Kumar¹, Kaipana Ramnarayanan¹, Nisha Padmanabhan¹, Chang Xu¹, Angie Lay Keng Tan¹, Charlene Chan², Dennis Kappei^{2,3}, Jonathan Göke⁴ and Patrick Tan^{1,2,4,5*}.

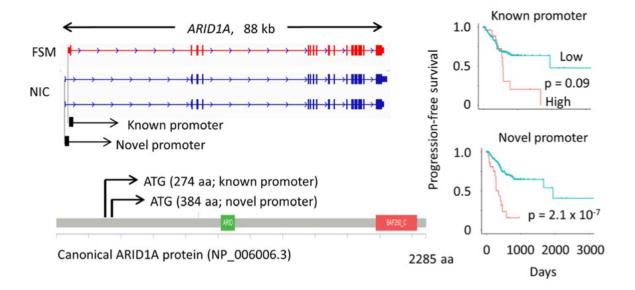
- Gastric cancer is the 3rd leading cause of cancer death
- Tumor morphology gives limited guidance
- Molecular methods (sequencing) can better help subtype GC

Example – gastric cancer

>60% Iso-Seq transcripts are novel

Majority of novelty comes from use of an alternative first exon (AF)

Alternative promoters change CDS


AFs can change the encoded protein

Linking novel promoters to potential clinical outcomes

Iso-Seq data identifies novel promoter in ARID1A

Two novel (NIC) transcripts use a novel promoter that truncates the first 384 aa; it is associated with poor survival outcome. In contrast, the known (FSM) transcript uses a known promoter and is not significantly associated with poor survival.

Advantages of the Iso-Seq method

The Iso-Seq method generates highly accurate full-length reads for bulk and single-cell transcriptome \bigcirc

No transcript assembly required

Full-length isoforms from 5' to 3' end

Can be used for

- genome annotation
- novel isoform discovery
- fusion gene finding
- differential isoform expression analysis

Iso-Seq workflow is an end-to-end solution

PacBie www.pacb.com/iso-seq

What can you get with 1 SMRT cell worth of Iso-Seq data?

) 1 SMRT Cells 8M yields up to 4 million full-length reads

Each full-length read is a full-length transcript – no assembly required

	FL reads	Unique genes	Unique transcripts
UHRR '19	4,734,362	16,328	183,689
Alzheimer Brain	4,277,293	17,670	162,290

In human whole transcriptome, >100k unique isoforms can be observed

Isoform characterization: A meal of its own

PacBio genome + Iso-Seq

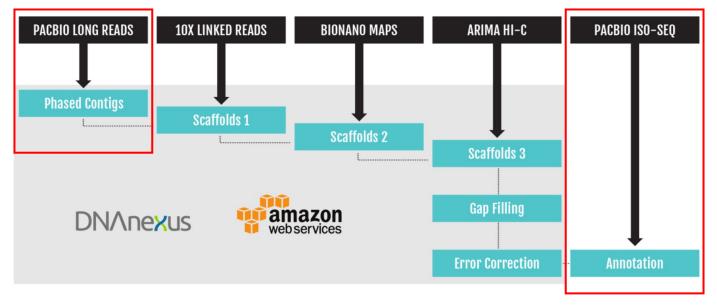
Existing ref genome 3 tissues

Existing ref genome 19 samples total

Existing ref genome 3 tissue x 3 conditions

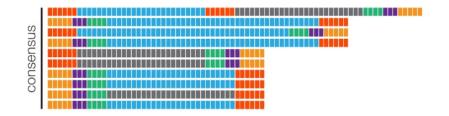
Existing ref genome 2 yeast strains

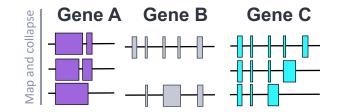
Existing ref genome 3 bears x 3 tissues x 2 conditions


Existing ref genome 10 rice cultivar RNA

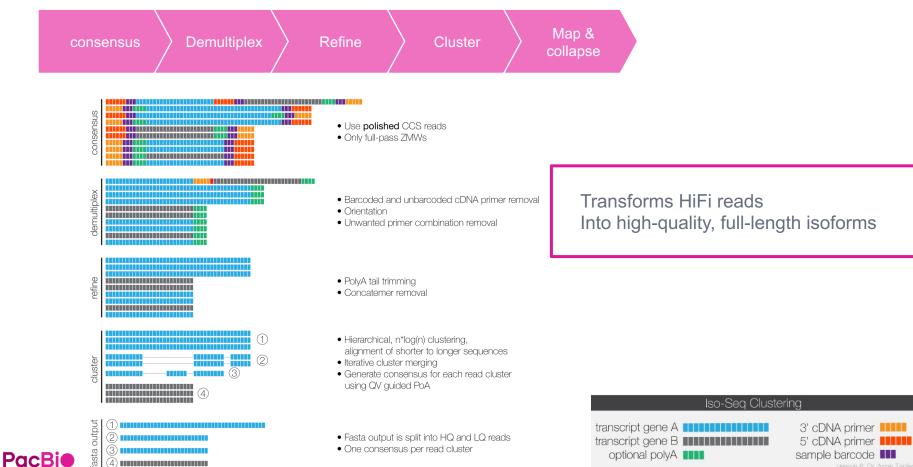
PacBi

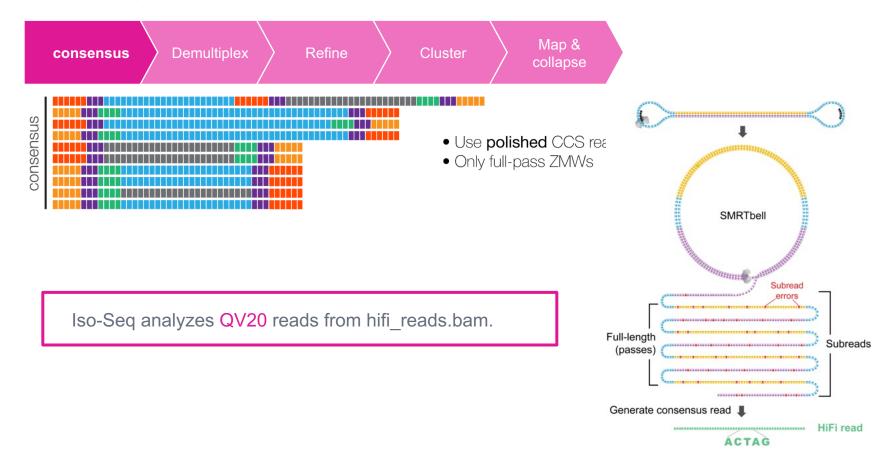
PacBio is the main technique of the VGP project

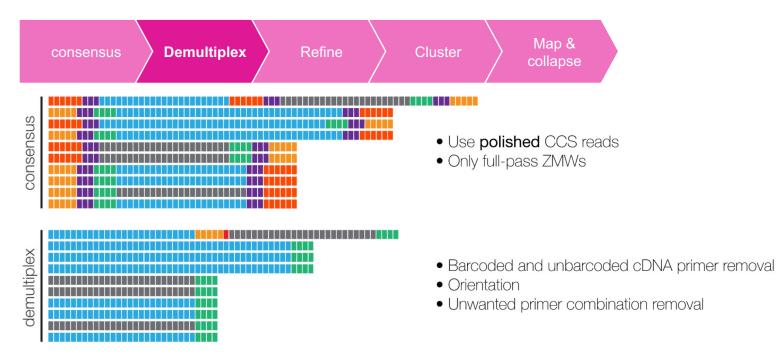

The analysis pipeline of the Vertebrate genomes projects (VGP)

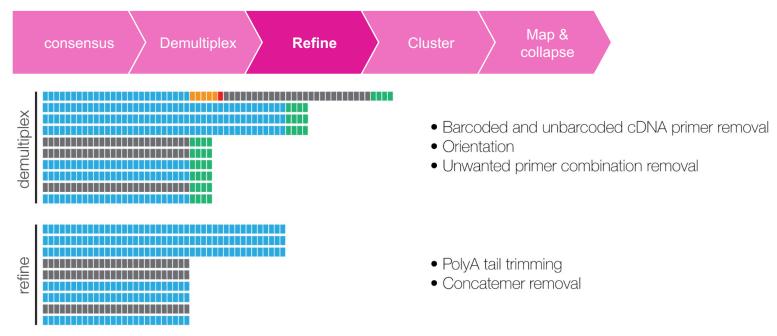


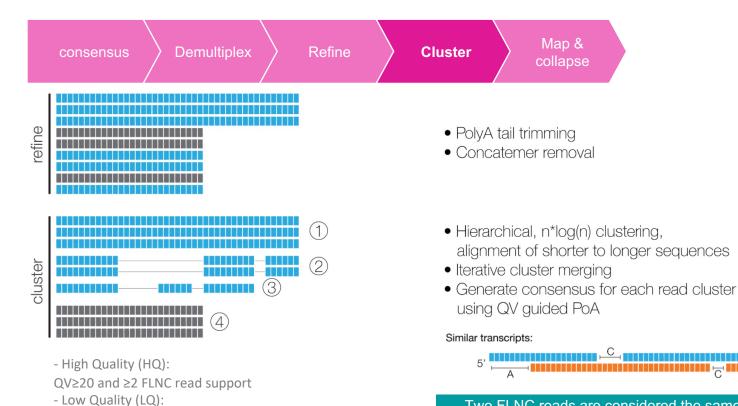
Iso-Seq Analysis


Transforms HiFi reads


Into high-quality, full-length isoforms

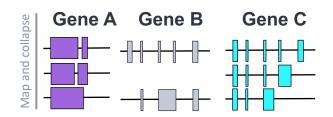



Iso-Seq Analysis mid-level workflow


Utilizes <u>demultiplex barcoding algorithm (LIMA)</u> with special `--isoseq` mode Full length reads have 5' and 3' cDNA primers, which are removed by LIMA DON'T USE DEMULTIPLEX BARCODES APPLICATION

FLNC reads: CCS reads with 5' and 3' cDNA primers, polyA tail, and concatemers removed

If your sample has poly(A) tails, use `--require-polya` to filter for FL reads that have a poly(A) tail with at least 20 base pairs and remove the identified tail (GUI - turn off on advanced parameters)


QV <99% and < 2 FLNC read support

Two FLNC reads are considered the same isoform if:

- A) <100 bp difference in 5' start
- B) <30 bp difference in 3' end
- C) <10 bp in internal gap, no limit on number of gaps

- Align to reference genome
- Remove redundancy
- pbmm2

NAME	ABBR	EXPLANATION
Full-Length Reads	FL Reads	CCS reads with 5' and 3' cDNA primers removed
Full-Length, Non-Concatemer Reads	FLNC Reads	CCS reads with 5' and 3' cDNA primers, polyA tail, and concatemers removed
High-Quality Isoforms	HQ Isoforms	Polished transcript sequences with predicted accuracy ≥99% & ≥2 FLNC
Low-Quality Isoforms	LQ Isoforms	Polished transcript sequences with predicted accuracy <99% & ≥2 FLNC

Primer/barcode set required – demultiplexing step

Primer Set :

Specify a primer sequence file in FASTA format to identify cDNA primers for removal. The primer sequence includes the 5' and 3' cDNA primers and (if applicable) barcodes.

Primer IDs must be specified using the suffix_5p to indicate 5' cDNA primers and the suffix_3p to indicate 3' cDNA primers. The 3' cDNA primer should not include the Ts and is written in reverse complement

Each primer sequence must be unique.

Multiplex Samples:

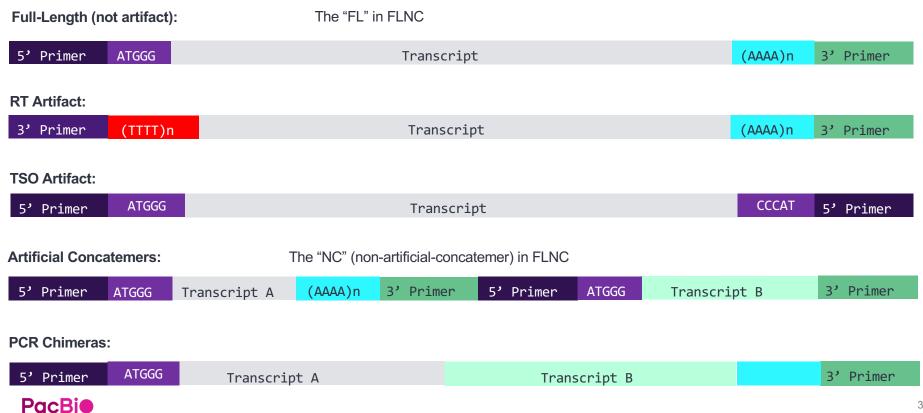
For multiplexed datasets, **Iso-Seq Analysis reports and graphs now include isoforms per barcode in addition to the total number of isoforms across all barcodes**.

If barcodes were used, they should be included.

Primer set required – demultiplex step- multiplex samples

Barcoded Adapters

bc1001_5p CACATATCAGAGTGCGGCAATGAAGTCGCAGGGTTGGGG >bc1002_5p ACACACAGACTGTGAGGCAATGAAGTCGCAGGGTTGGGG >bc1001_3p GTACTCTGCGTTGATACCACTGCTTCGCACTCTGATATGTG >bc1002_3p GTACTCTGCGTTGATACCACTGCTTCTCACAGTCTGTGTGT


Iso-Seq analysis artifacts

Types of library artifacts

Туре	Cause & phenotype	Detected By iso-seq analysis?
TSO Artifacts	C: TSO acting as a primer P: TSO on both ends	YES
RT Artifacts	C: Did not add TSO P: Missing TSO on 5' end	YES
Artificial Concatemers	C: Insufficient SMRT adapter P: cDNA primers in middle of read	YES
PCR chimera	C: PCR amplification P: Fusion of two transcripts	NO
RT switching	C: Secondary structure P: new intron with non- canonical junctions	NO (SQANTI can with mapping)
Intrapriming	C: dT priming off A-stretch P: genomic (A)s downstream of 3'	NO (SQANTI can with mapping)

Types of library artifacts - representation

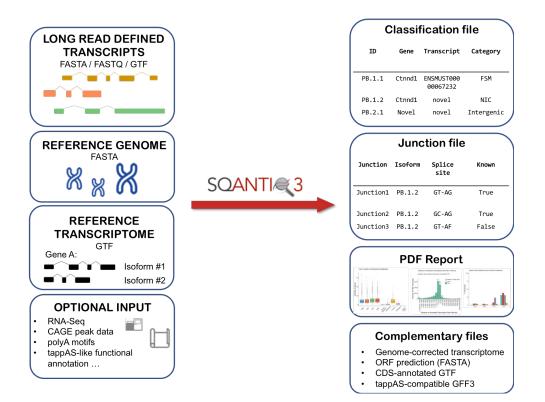
Troubleshooting artifacts

Iso-Seq v3 will detect TSO & RT library artifacts and result in few FL reads

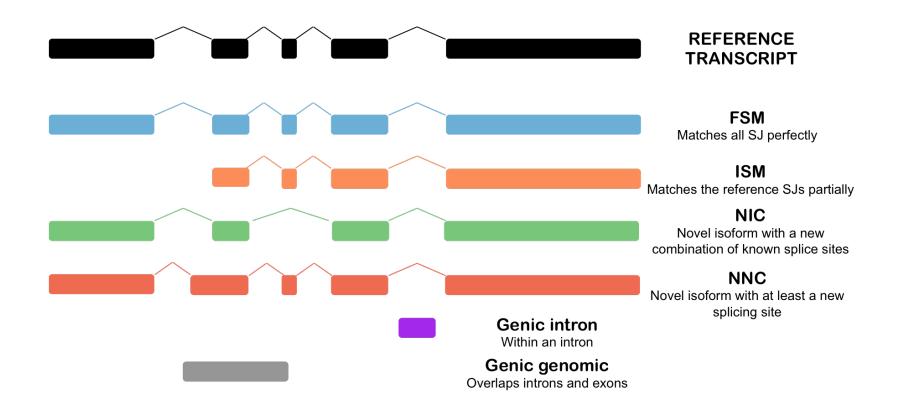
To determine which kind of artifacts it is:

- 1. Manually inspect the CCS fasta sequences
- 2. Inspect the LIMA report for hints

FILE: <job>/tasks/barcoding.tasks.lima-0/lima_output.lima.summary


ZMWs input	(A) : 486997			
ZMWs above all thresholds	(B) : 369009 (76%) # of FL			
ZMWs below any threshold	(C) : 117988 (24%) # of NFL			
ZMW marginals for (C):				
Below min length	: 950 (1%)			
Below min score	: 0 (0%)			
Below min end score	: 37824 (32%)			
Below min passes	: 301 (0%)			
Below min score lead	: 0 (0%)			
Below min ref span	: 26830 (23%)			
Without adapter	: 301 (0%)			
Undesired 5p5p pairs	: 16991 (14%)			
Undesired 3p3p pairs	: 84015 (71%)			
Undesired no hit	: 301 (0%)			

Reasons for nFL (Same read can have multiple reasons; sum can be over 100%)


Downstream analysis

Third party tools

SQANTI3: Quality control transcriptomes

SQANTI 3: isoform categorization

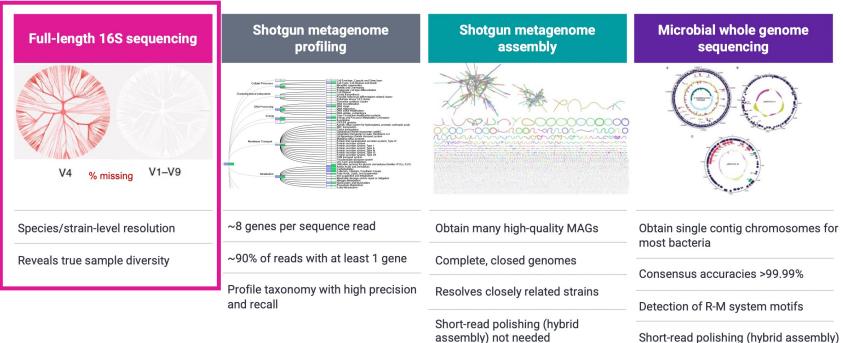


Transcript distribution is highly sample-dependent

100% Coding prediction coding non_coding 75% % Transcripts 52.1% 50% 25% 20.1% 15.6% 11.7% 0.2% 0.2% 0% 1531 ALC ANC Contract prisons Fusion Intergenic (Genicon Intron FSM

Bulk Iso-Seq, Alzheimer brain

Bulk Iso-Seq, UHRR

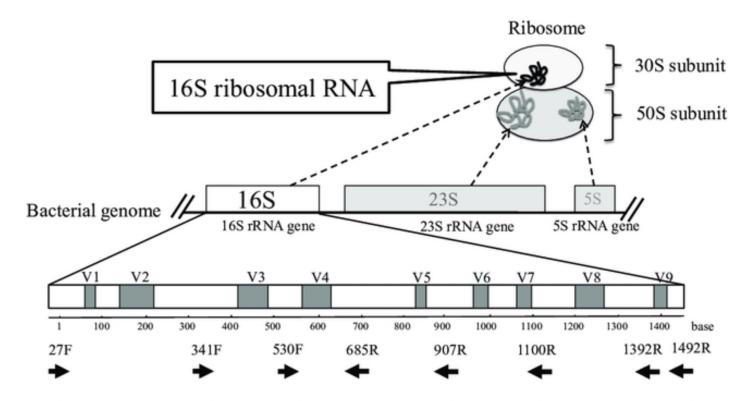

PacBi

PacBio HiFi Sequencing for High-Resolution Microbiome Research

27 June 2023 彭彥菱 Lynn Peng | Bioinformatics Engineer, Blossombio Taiwan

PacBio 生物資訊教育訓練 基礎班 HiFi 101 Lecture A

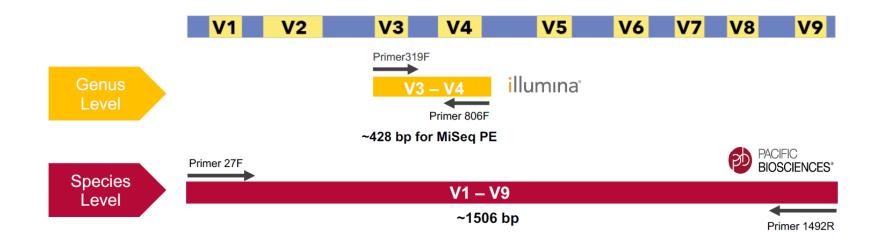
HiFi sequencing delivers the most comprehensive and highest quality data for microbial genomics



Short-read polishing (hybrid assembly) not needed

PacBi

Full-Length 16S Pipeline Overview


16s rRNA sequencing is a culture-free method to identify and compare bacterial diversity from complex microbiomes or environments

PacBi

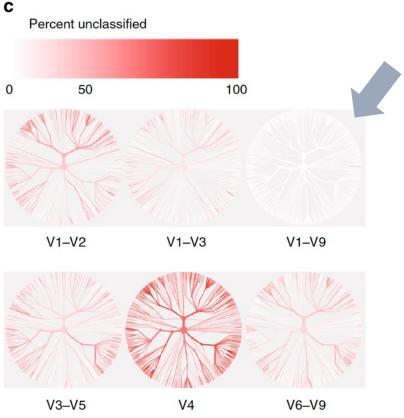
Fukuda K, Ogawa M, Taniguchi H, Saito M. Molecular Approaches to Studying Microbial Communities: Targeting the 16S Ribosomal RNA Gene. J UOEH. 2016 Sep;38(3):223-32. doi: 10.7888/juoeh.38.223. PMID: 27627970.

Amplicons can Target 16s rRNA and Beyond

Longer amplicons enable higher resolution taxonomic identification

Full Length 16S is crucial for complete taxonomy characterization in the human gut, without bias

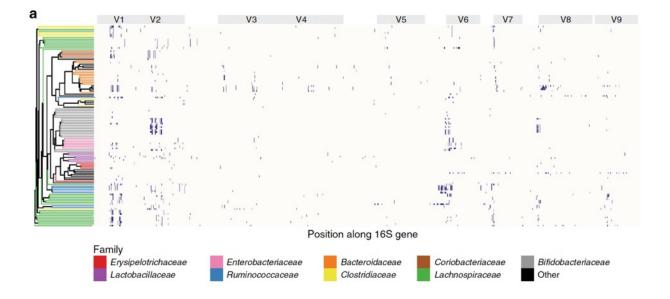
Full V1–V9 region: the only way to resolve ALL the clades that may be present in the human gut


- V4: Consistently poor performance
- V1–V2: poor for Proteobacteria
- V3–V5: poor for Actinobacteria

- V1–V3: good results for Escherichia / Shigella
- V3–V5: good results for Klebsiella,

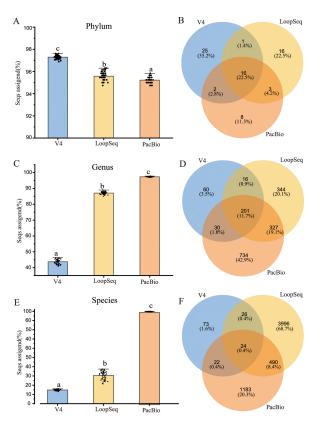
PacBi

• V6–V9: good results for Clostridium and Staphylococcus


Proteobacteria 變形菌門 Actinobacteria 放線菌門 Escherichia 埃希氏菌屬 Shigella 志賀氏菌屬 Klebsiella 克雷伯氏菌屬 Clostridium 梭菌屬 Staphylococcus 葡萄球菌屬

Johnson JS, et. al. (2019) Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nature Communications. https://doi.org/10.1038/s41467-019-13036-1

Intragenomic 16S polymorphisms are highly prevalent in the human gut

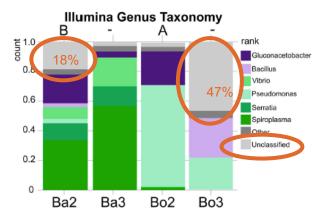

"Multiple polymorphic 16S copies are not an inconvenience to be overlooked, rather they will enable the 16S gene to be used in strain-level microbiome analysis"

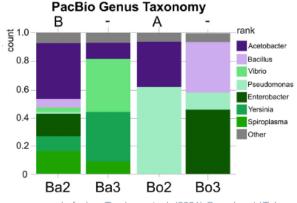
349 of 381 cultured isolates from the gut microbiome of the healthy individuals have intragenomic SNPs

More reads are classified to species and genus level with PacBio full-length 16S sequencing compared to V4 and synthetic long-read full-length 16S

PacBi

97% sequences assigned to **genus level** using PacBio vs. LoopSeq at 87% and V4 at 44%

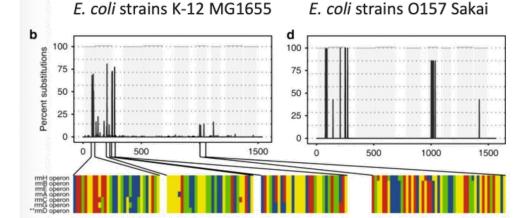

99.7% sequences assigned to **species level** using PacBio vs. LoopSeq at ~31% and V4 at ~15%


Yu, et. AI (2022) Effects of Waterlogging on Soybean Rhizosphere Bacterial Community Using V4, LoopSeq, and PacBio 16S rRNA Sequence. **DOI:** https://doi.org/10.1128/spectrum.02011-21

8

8

Full-length 16S sequencing yields more in-depth taxonomic classification than short read V4



PacBi

- "Our data show that Illumina data analysis provides a less effective taxonomic profiling than PacBio data analysis, with a high percentage of unclassified reads at the order and genus levels."
- "Ultimately, while Illumina short-read sequencing is effective in microbiome analysis at a higher taxonomic level, longread analyses show much greater power for in-depth classification."

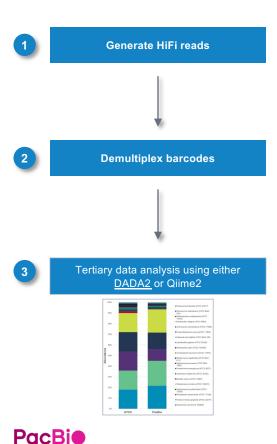
Lefoulon, Truchon, et. al. (2021) Greenhead (Tabanus nigrovittatus) Wolbachia and Its Microbiome: A Preliminary Study. Microbiology Spectrum. https://doi.org/10.1128/Spectrum.00517-21

HiFi reads can identify 16S polymorphisms

Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. *Nat. Methods* **13**, 581 (2016).

> CAS PubMed Central Article PubMed Google Scholar

Edgar R. C. UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. Preprint at *bio Rxiv* <u>https://doi.org/10.1101/081257</u> (2016).


Eren, A. M. et al. Minimum entropy decomposition: unsupervised oligotyping for sensitive partitioning of high-throughput marker gene sequences. *ISME J.* **9**, 968–979 (2015).

CAS Article Google Scholar

Johnson JS, et. al. (2019) Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. *Nature*. https://doi.org/10.1038/s41467-019-13036-1

16S Data Analysis Workflow Recommendations

1. Perform CCS analysis on-instrument (Sequel IIe system only) or in <u>SMRT Link</u> to generate highly accurate (≥Q20) single-molecule long reads (HiFi reads)

- 2. Demultiplex barcodes on-instrument (Sequel IIe system only) or in SMRT Link to separate HiFi reads by sample barcode
 - Barcode FASTA files for demultiplexing can be downloaded from PacBio's Multiplexing website

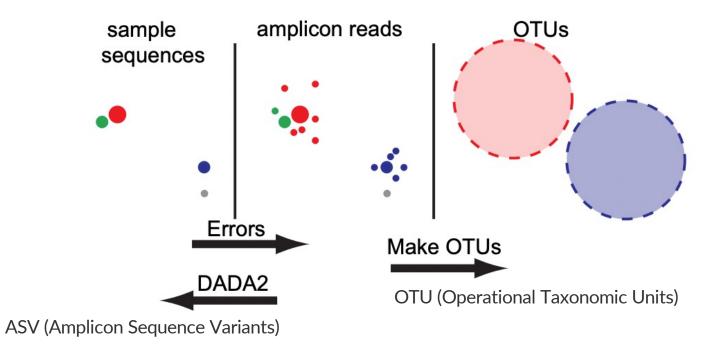
3. Analyze 16S data using <u>DADA2</u> or <u>Qiime2</u>

An example HiFi read data set for a MSA-1003 mock community sample is available for download from PacBio (Link)

11

DA² For Full-Length 16S Analysis

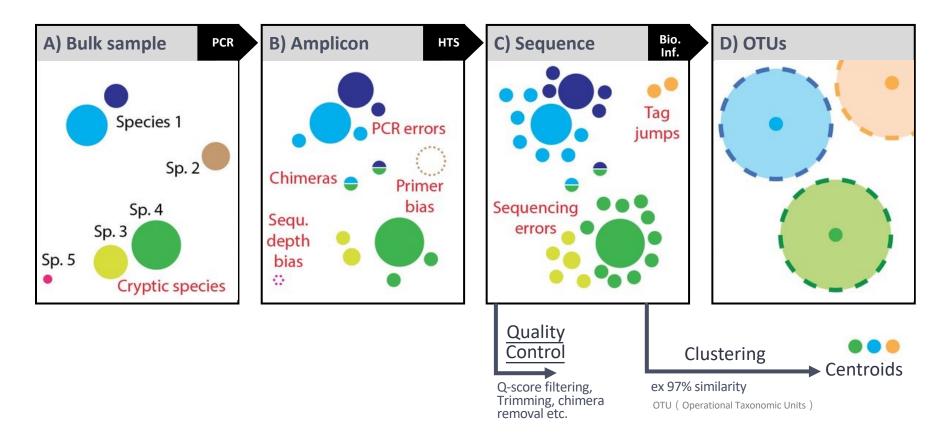
https://benjjneb.github.io/dada2/

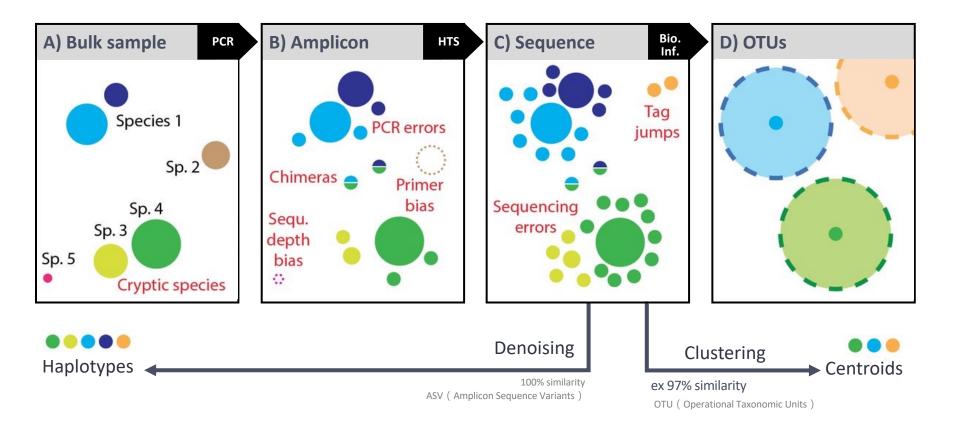

High-throughput amplicon sequencing of the fulllength 16S rRNA gene with single-nucleotide resolution d

Benjamin J Callahan ➡, Joan Wong, Cheryl Heiner, Steve Oh, Casey M Theriot, Ajay S Gulati, Sarah K McGill, Michael K Dougherty

Nucleic Acids Research, Volume 47, Issue 18, 10 October 2019, Page e103, https://doi.org/10.1093/nar/gkz569

- PacBio CCS produced multiple distinct 16S sequences per bacterial genome
- 16S sequences appear in integer ratios that reflect their copy number


Denoising and clustering



Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016 Jul;13(7):581-3. doi: 10.1038/nmeth.3869. Epub 2016 May 23. PMID: 27214047; PMCID: PMC4927377.

Denoising and clustering

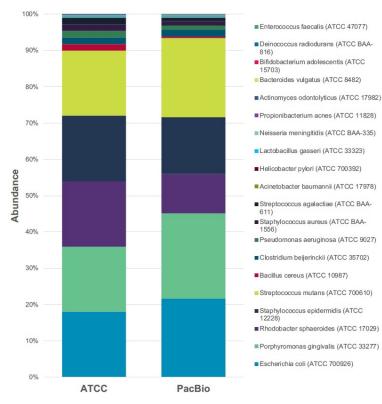
Denoising and clustering

Example workflow: 192-plex 16S amplicon library preparation using barcoded gene-specific primers

MSA-1003 Mock Community Sample Description

PacBi

- MSA-1003 is a controlled, pre-defined, standardized reference material that can help with metagenomic analysis protocol development optimization, verification, and quality control
- 20 Strain Staggered Mix Genomic Material (ATCC MSA-1003) <u>https://www.atcc.org/products/all/MSA-1003.aspx</u>
- MSA-1003 sample is a mock microbial community that mimics mixed metagenomic samples
- MSA-1003 sample comprises genomic DNA prepared from fully sequenced, characterized, and authenticated ATCC Genuine Cultures that were selected by ATCC based on relevant phenotypic and genotypic attributes, such as Gram stain, GC content, genome size, and spore formation
- For the example data shown in this presentation, replicate MSA-1003 samples were processed in parallel to generate a 192-plex pooled 16S SMRTbell library using barcoded gene-specific primers and SMRTbell express template prep kit 2.0



%	MSA-1003 component
0.18	Acinetobacter baumannii (ATCC 17978)
1.80	Bacillus cereus (ATCC <u>10987</u>)
0.02	Bacteroides vulgatus (ATCC 8482)
0.02	Bifidobacterium adolescentis (ATCC 15703)
1.80	Clostridium beijerinckii (ATCC 35702)
0.18	Cutibacterium acnes (ATCC 11828)
0.02	Deinococcus radiodurans (ATCC BAA-816)
0.02	Enterococcus faecalis (ATCC 47077)
18.0	Escherichia coli (ATCC 700926)
0.18	Helicobacter pylori (ATCC 700392)
0.18	Lactobacillus gasseri (ATCC <u>33323</u>)
0.18	Neisseria meningitidis (ATCC BAA-335)
18.0	Porphyromonas gingivalis (ATCC <u>33277</u>)
1.80	Pseudomonas aeruginosa (ATCC <u>9027</u>)
18.0	Rhodobacter sphaeroides (ATCC 17029)
0.02	Schaalia odontolytica (ATCC <u>17982</u>)
1.80	Staphylococcus aureus (ATCC BAA-1556)
18.0	Staphylococcus epidermidis (ATCC 12228)
1.80	Streptococcus agalactiae (ATCC BAA-611)
18.0	Streptococcus mutans (ATCC 700610) https://www.atcc.org/products/aii/NISA-1003.aspx

16

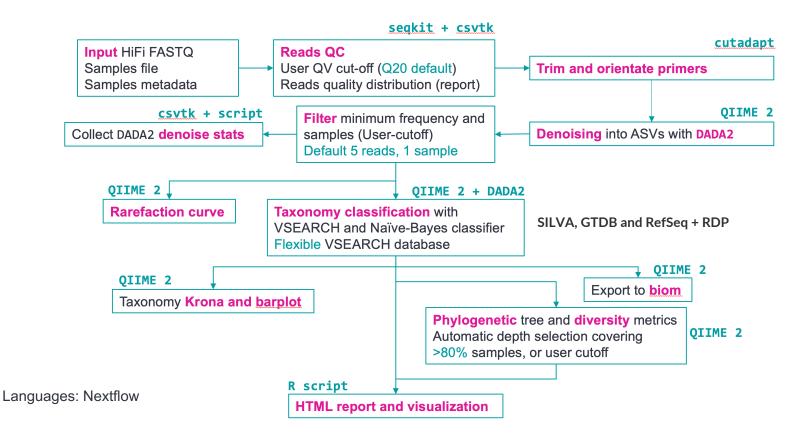
PacBio 16S Sequencing Faithfully Represents a Known Mock Community Sample

16S ANALYSIS OF THE MSA-1003 MOCK COMMUNITY

MSA-1003 SAMPLE DESCRIPTION

20 Strain Staggered Mix Genomic Material (ATCC® MSA-1003™) https://www.atcc.org/products/all/MSA-1003.aspx

Yield of >99% accurate 16S reads matches the expected composition of the MSA-1003 mock community sample


GC content ranging from 30 ~ 69% can be identified

Download and explore this 16S HiFi dataset further

Full-length (V1-V9) 16S amplicon samples were pooled at 96-Plex and sequenced on a single SMRT Cell 8M (Sequel II System Chemistry 2.0). PacBio results shown in bar graph reflect the average abundance values derived from the pooled MSA-1003 replicate samples.

pb-16-nf overview

HTML report provides useful metrics and visualizations

Important outputs are in QIIME-compatible format and TSV format for easy importing

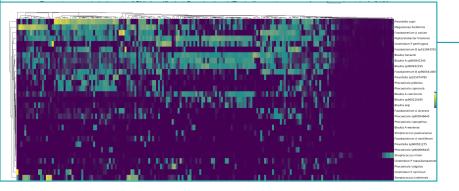
Outputs documentation:

https://github.com/PacificBiosciences/pb-16Snf/blob/main/pipeline_overview.md

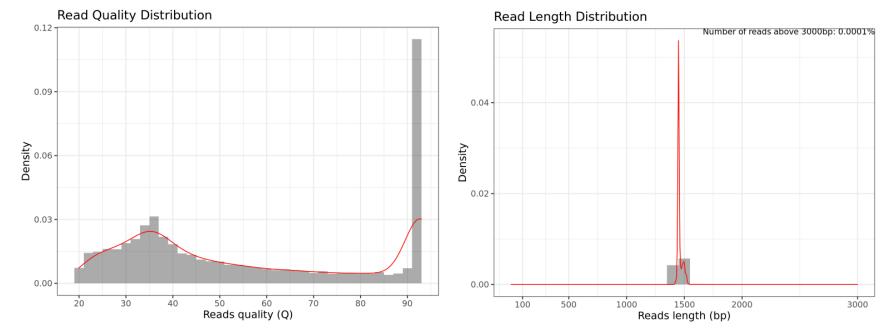
	sample-id	é inputé	filtered 🗄	percentage of	denoised 🗄	non-chimeric 🌢	Search:	n_ASV
				input passed filter			input non-chimeric $^{ op}$	
	All	All	All	All	All	All	All	All
1	3VTVMP	151083	98855	65.43	96851	96678	63.99	46
2	46EVMD	58454	38564	65.97	37284	37230	63.69	61
3	4EHTJU	30231	19807	65.52	18775	18742	62	49
4	4F747A	50845	33715	66.31	32909	32909	64.72	45
5	4H9C6C	50973	34287	67.27	33034	33002	64.74	44
6	4JAMMH	62883	41938	66.69	40797	40797	64.88	33
7	4RHFPT	21373	14065	65.81	13788	13712	64.16	22
8	4RNFPC	13929	9390	67.41	8566	8566	61.5	11
9	4VMEN7	87957	57684	65.58	56576	56576	64.32	47
10	63NDYT	121547	80036	65.85	78644	78636	64.7	50

HiFi Full-length 16S Analysis Report

Summary QC statistics


- Samples number: 192
- Final samples number post-DADA2: 192
- Missing samples (Not enough reads, do not pass QC, etc):
- Total number of CCS reads before filtering and primers trimming: 16777633
- Was primers trimmed prior to DADA2? Yes
- Total number of reads after quality filtering: 16472863 (98.18%)
- Total number of reads after primers trimming (DADA2 input): 16438413 (99.79%)
- Total number of ASVs found: 17293
- Average number of ASVs per sample: 361
- Total number of reads in 17293 ASVs: 10623342 (64.63% of all input reads)

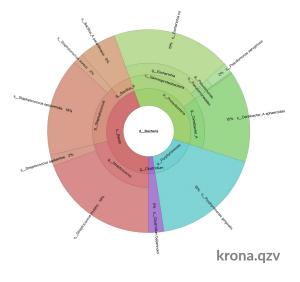
Classification using VSEARCH with a single database


- ASVs classified at Species level: 11646 (67.35%)
- ASVs classified at Species level (Excluding metagenome/uncultured entries): 11646 (67.35%)
- Percentage reads belong to ASV classified at Species level (Excluding metagenome/uncultured entries): 80%
- ASVs classified at Genus level: 11711 (67.72%)
- ASVs classified at Genus level (Excluding metagenome/uncultured entries): 11711 (67.72%)
- Percentage reads belong to ASV classified at Genus level (Excluding metagenome/uncultured entries): 81%

Classification using Naive Bayes classifier with SILVA, GTDB and RefSeq + RDP

- ASVs classified at Species level: 13515 (78.15%)
- ASVs classified at Species level (Excluding metagenome/uncultured entries): 13515 (78.15%)

DADAA 00



Input reads QC (Before filtering and primers removal)

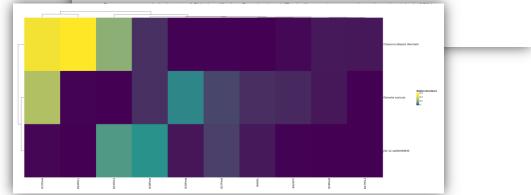
PacBi

- HTML report provides useful metrics and visualizations
- Important outputs are in QIIME2-compatible format and TSV format for easy importing
- Outputs documentation:

https://github.com/PacificBiosciences/pb-16S-nf

HiFi Full-length 16S Analysis Report

Summary QC statistics


- · Samples number: 10
- Final samples number post-DADA2: 10
- Missing samples (Not enough reads, do not pass QC, etc):
- Total number of CCS reads before filtering and primers trimming: 1635360
- · Was primers trimmed prior to DADA2? Yes
- Total number of reads after quality filtering: 1634186 (99.93%)
- Total number of reads after primers trimming (DADA2 input): 1608027 (98.4%)
- Total number of ASVs found: 2702
- Average number of ASVs per sample: 507
- Total number of reads in 2702 ASVs: 1381382 (85.91% of all input reads)

Classification using VSEARCH with a single database

- ASVs classified at Species level: 1079 (39.93%)
- ASVs classified at Species level (Excluding metagenome/uncultured entries): 1079 (39.93%)
- Percentage reads belong to ASV classified at Species level (Excluding metagenome/uncultured entries): 59%
- ASVs classified at Genus level: 1100 (40.71%)
- ASVs classified at Genus level (Excluding metagenome/uncultured entries): 1100 (40.71%)
- Percentage reads belong to ASV classified at Genus level (Excluding metagenome/uncultured entries): 59%

Classification using Naive Bayes classifier with SILVA, GTDB and RefSeq + RDP

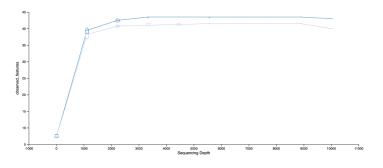
- ASVs classified at Species level: 1645 (60.88%)
- ASVs classified at Species level (Excluding metagenome/uncultured entries): 1645 (60.88%)

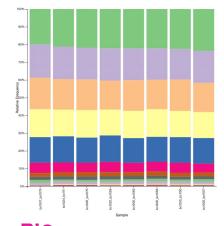

dime2view

This interface can view .qza and .qzv files directly in your browser without uploading to a server. Click here to learn more.

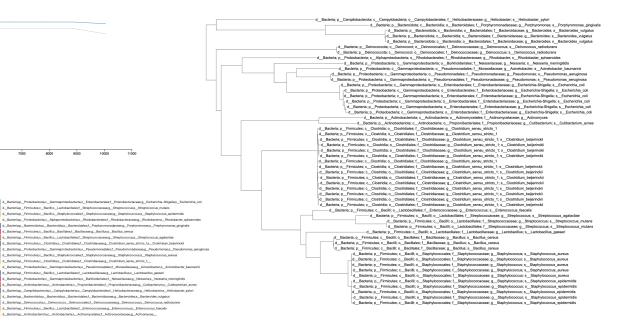
Drag and drop or click here

to view a QIIME 2 Artifact or Visualization (.qza/.qzv) from your computer.


You can also provide a link to a file on Dropbox or a file from the web.


PacBi

Analysis PacBio HiFi Mock Community 16S Data with QIIME 2 view


Rarefaction plot

Taxonomy bar plot

Phylogeny analysis

cteriap Firmicutes;c_Bacili;o_Baciliales;f_Baciliaceae;g_Bacilius;s_Bacilius;oereus

d Bacterian Firmicutes:: Clostridiano Clostridiales:f Clostridiaceae.g Clostridium sensu stricto 1

d_Bacteriap_Proteobacteria;c_Gammaproteobacteria;o_Paeudomonadales;f_Monaseliaoeae;g_Acinetobacter;s_Ac

_Bacteriap_Fimicutes;c_Bacili;o_Lactobaciliales;f_Lactobaciliaceae;g_Lactobacilius;s_Lactobacilius;gasseri

d_Bacteriap_Firmicutes;c_Bacili;o_Lactobaciliales;f_Enterococcaceae;g_Enterococccus;s_Enterococccus;faecalis d Bacterian Actinobacteristan Actinobacterian Actinomycetales f Actinomycetaceae a Actinomyceta

How does it perform? (32 CPUs)

Sample types	Number of samples	Number of FL Q20 reads (FL%)	Total ASVs	Reads in ASVs	Classified species ASVs	Classified species reads	Pipeline run time	Pipeline max memory
Oral ¹	891	8.3m	5417	5104663 (62%)	87%	91%	2.5h	34 GB
Gut ²	192	2.2m	1593	996965 (45%)	96%	99%	2h	30 GB
Animal gut ³	192	16.7m	17293	10623342 (65%)	67%*	81%	13h	87 GB
Animal gut ³	192	2.2m (99.3%)	10917	1789875 (83%)	70%	79%	5.5h	30 GB
Wastewater full ⁴	33	2.14m	11462	1969683 (92%)	39%*	63%	12h	47 GB
Wastewater 10k/sample⁵	33	326k	3974	265137 (82%)	44%*	65%	4.6h	23 GB

* Using MiDAS wastewater database increases classified species and reads to 85% for full dataset and 91% for down-sampled dataset

- Data downloaded from SRA PRJDB12588, primers already trimmed.
 Data downloaded from SRA PRJNA774819, primers already trimmed.
- 3. Customer collaboration dataset

PacBi

Downloaded from SRA PRJNA846349, reads are Q30 filtered by author.
 Downloaded from SRA PRJNA846349, reads are Q30 filtered by author. Down-sampled to 10k reads per sample.

Mock Community HiFi Data available for download

• Full-length 16S Data Set

https://github.com/PacificBiosciences/DevNet/wiki/16S-Data-Set-Sequel-II-System-2.0-Release

SAMPLE

20 Strain Staggered Mix Genomic Material (ATCC® MSA-1003™) https://www.atcc.org/products/all/MSA-1003.aspx

METHODS

- 16S protocol with Barcoded Primers (https://www.pacb.com/wp-content/uploads/Procedure-Checklist-Full-Length-16S-Amplification-SMRTbell-Library-Preparation-and-Sequencing.pdf)
- Library prep: SMRTbell Express Template Prep Kit 2.0
- Sequencing: Sequel II System binding kit (101-820-500) and chemistry (101-826-100)
- Run time: 0.5 hour pre-extension; 10 hour movie
- CCS Analysis: SMRT Link v10.0 Circular Consensus Sequencing Application (ccs 5.0.0)

DOWNLOAD

Complete 192 plex dataset: http://downloads.pacbcloud.com/public/dataset/atcc_msa/16S_192plex_HiFi.fastq.tar.gz

pb-16S-nf https://github.com/PacificBiosciences/pb-16S-nf

PacBi

PacBie う 伯森生技

www.pacb.com

Research use only. Not for use in diagnostic procedures. © 2022 PacBio. All rights reserved. PacBio, the PacBio logo, SMRT, SMRTbell, Iso-Seq, and Sequel are trademarks of PacBio. All other trademarks are the sole property of their respective owners.