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ABSTRACT

In the background of China’s economic development mode being focused the

worldwide attention, there is a growing trend to study the risk transmission

pattern and the crisis forecasting mechanism for China’s financial markets by

domestic and global academics. The study progress, however, is observed to be

affected by two gaping research problems: 1) few studies construct comparative

contagion models and integrated crisis forecasting systems for China’s financial

markets and 2) current econometric models hired to the risk spreading effects

detection and the financial crisis forecasts are yet deterministically investigated

in terms of the effectiveness on China.

To fill the gaps, this research proposes two hybrid contagion models and pro-

totypes the early warning systems with motivations of first analyzing the cri-

sis linkages and transmission channels across domestic markets in hierarchical

frameworks, and then predicting the market turbulence by integrating the crisis

identifying techniques and time-dependent deep learning neuron networks. To

accomplish our aims, the full project is progressed in phases by solving four tech-

nical challenges that portray two literature gaps of A) the crisis identification on

the basis of price volatility state distinction, B) the decomposition for multivari-

ate correlated patterns to infer the interdependence structure and risk spillover

dynamics respectively, C) the real-time warning signals generation in compari-

son of between traditional and stylized predictive models and D) the contagion

information fusion in the EWS frameworks to distinguish the leading indicators

from between internal macroeconomic factors and external risk transmitters in

statistical validation metrics.

The research mainly contributes to the comparative analysis on financial con-

tagion effects detection and market turbulence prediction through the hybrid

model innovations for CM and EWS development, and meanwhile brings practi-

cal significance to improve the risk management in investing activities and support

the crisis prevention in policy-making. In addition, the model experimented re-

sults corroborate the China-characterized mode on risk transmissions and crisis

warnings that 1) the stocks and real estate markets are verified to play the central

role among risk transmitters, while the managed floating foreign exchange rate

and the non-fully liberalized bond market are peripheral during the crisis; and

2) the all-round opening up policy increases the possibility of domestic security

markets being exposed to external risk factors, especially relating to the cash

flows, energy commodities and precious metals.
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Chapter 1

Introduction

1.1 Background information

Numerous literature studies have focused on China’s economy as its meteoric rise

to the world stage since the milestone point of either 1978, the start of reform

and opening-up, or 2001, the formal join the WTO. A volume of financial mod-

els on the basis of experience in other countries have been referred to as they

notice the similarity between the progress of China adopting market-oriented re-

forms and the paradigmatic framework from other free markets, especially for risk

transmissions during financial shocks. The most important paradigm in the U.S..

Retrospecting the U.S. subprime mortgage crisis in 2007, its spreading effects

triggered the nationwide collapse of domestic economic major sectors of housing

to banks and led to worldwide recession in the West and some Asian countries in

the aftermath. The domestic contagion started from successive bankruptcies. By

the end of 2008, the U.S. stock market drastically glided as the Dow Jones index

dropped from 14279 points to 7800 points with a total loss of 45%, and the U.S.

dollar index fell by 12% in the same year. The Federal Reserve (FED) then cut

the effective fund rate to 0%−0.25% and held such a ‘zero’ interest rate level for

more than six years to spur economic recovery. The most noxious international

transmission is subsequent sovereign debt crises burst in European economies

since 2009, and even a decade later, the recovery of the global financial system is

still undergoing due to the vast damage.

Being one of the greatest emerging markets and the second-largest economy

in the globe, China has attracted increasing attention from domestic and over-
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seas investors, and the main concern is thus naturally placed on whether the

crisis-episode risk spillover across principal sectors in China will copy the U.S.

mode towards a free market in a discursive style or will make distinctive economic

models to shed the global shocks by virtue of solving problems in quintessential

“China-style” ways considering to its historical and politic particularity. Such an

argument is seemingly unsettled. The former opinion is supported by referring

to the cultural similarity across Asian countries (Nagayasu, 2001; Ghosh and Ba-

surto, 2006) that have been frequently observed in the financial system’s stability

during crises. For instance, in the 1997 Asian crisis, the currency of Thailand col-

lapsed in January 1998 with a drop of over 100%. Within one month, the banking

interest rate bubbled to the top before the nationwide financial markets started

to avalanche. Soon after that, Thailand SET stock index hit the bottom points of

207 with a maximum draw-down of 76% at the start of September 1998, and the

local housing price also dramatically fell by 20% in such unfolding and lasting

impact in the final quarter of 1999. The latter one stems from the researches

(Shalendra and Sharma, 2010; Huang and Ali, 2012) that realize China’s special

operation mode by imposing fiscal policy to regulate the financial disputes as to

the crisis burst. The practical evidence has been provided by Yuan and Qiang

(2010), who analyses the risk transmission path across principal Chinese markets

of stocks, bonds, and the gold, and surprisingly find that the market contagion

between the stock and the gold exists but becomes insignificant during the stock

crisis, and the China’s bond market performs as a safe haven in the extreme stock

market collapse.

In the pros and cons of the argument, the econometric model for detecting

contagious effects in China must be developed and applied, and better to be

comparative to either of advanced and emerging countries. That is the first task

of this thesis explores to specify the transmission channels across a broad range of

assets in China and make appropriate comparisons to the free-market paradigm

on the basis of contagion model (CM) development. As for which assets will be

included, we opt for the real-estate, equity (of stocks), bond, and currency, which

four are vigorously growing and taking the majority of transactions in China’s

trading markets.
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The follow-up work for the contagion models’ development across Chinese fi-

nancial markets is to design a forecasting system that absorbs and analyzes both

contagious and macro-economic information to generate in-time warnings to as-

sist market participants and policymakers in decision-making. In the ideal case,

the perfect warning signals output will contribute to hedge investment risks and

guide authorities to block the systematic crackings. Such forecasting mechanism

has a formal name of Early Warning System (EWS) and covers not only indi-

vidual financial markets (Eichengreen et al., 1995; Schimmelpfennig et al., 2003;

Gennaioli et al., 2014; Babecký et al., 2014) but the entire economic system (Oh

et al., 2006; Samitas et al., 2020) as well. In our study, China’s early warning

system construction will be first discussed for two essential investment markets of

stocks and bonds to 1) display the idiosyncratic building process for each invest-

ment market and 2) explain their corresponding results to propose individually

targeted advice for different types of investors. Further exploration on merging

contagious factors into studying the possibility of sovereign crises appearing in

China will be implemented for guiding power-oriented policy.

Recollecting the turmoil days of Chinese stock markets, the Composite index

of Shanghai Stock Exchange (SSEC) experienced one of its greatest falls at the

end of 2007. The crashed bubbles in mid-2015 led to another extreme turbulence

that triggered the instability in domestic financial surroundings. As the burst and

lasting effect of stock market crises is recognized as the cause of critical society

stress and results in increasing financial loads of the government, a systematic

model that monitors the economic scenarios of financial markets and generates

early warning signals for potential extreme risks is in heavy demand. Meanwhile,

considering the Chinese bond market has been over 98 trillion yuan (14.5 tril-

lion dollars) in 2019 and overtaken Japan to be the world’s second-largest bond

market, in such booming market shares and complex international surroundings,

strengthening the institutional norms and reinforcing the risk control to main-

tain a steady and neutral situation for the bond market thus becomes demanding.

Recently, the sudden rise of default events, especially for the high credit rating

corporate bonds, for example, 120 bonds issued by 46 companies defaulted with

a total scale of 111.217 billion yuan in the year of 2018, also make investors urge
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to find an effective early warning system for the rapidly expanding but crisply

toppling China’s bond market.

Besides, the concern from international investors on the Chinese sovereign

bonds is not totally immune to tension during the outbreak on COVID-19, even

though both the S & P’s global rating and Fitch rating have given ‘A’ for China

issued euro sovereign bonds and the 5-year euro bond with a negative yield rate

of -0.152% sold out in a short order time (Zheng, 2018). The concern is sourced

from two worries. First, the outstanding government debt load has exceeded 10

trillion yuan at the end of 2010, which appeals that the exaggerated expansion

of local governments’ debt may lead to moral risks to sovereign default especially

considering the poor opacity of data on local debts. On the other hand, China

shows strong ties between countries’ banking industries and governments sector

(Deev and Hodula, 2016; Chen, 2017), specifically the state-owned banks can

directly participate in large governmental projects, which implies the banking

fragility may result in the deterioration of state funds and further raise the risk

transmitting to sovereign default. Thus, the early warning system for predicting

Chinese sovereign crises is required to suggest appropriate political instructions

to maintain the low level of systematic risks in national debts and credits.

1.2 Research topics

In response to the argument on CM exploration and the rising concern on EWS

construction for China, two mentioned issues in Section 1.1, we first do a survey on

current studies of analyzing the contagious relationship across financial markets

and structuring the financial crisis forecasting system, and then, in a nutshell,

find two main types of research problems (RP).

• RP1: From the knowledge and experience level, there is limited literature

being directly referred as to develop the CM and EWS for China.

• RP2: In the technique perspective, the methodologies being used to model

the econometric connectedness and to predict forwarding output based on

historical data are manifold abundantly exploited for developed and emerging

countries but uncertainly determined for China.
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1.2.1 Current questions

The mentioned two research problems can be explored as following four challenge

questions according to our literature survey.

1. How to identify the crisis episodes for specific markets?

To be the most important basis of the CM and EWS researches, identifying

the crisis episodes (or defining the crisis variable in the EWS development)

should be delicately addressed. In the previous studies for advanced and

emerging countries, the CM often recklessly disregarded the univariate anal-

ysis on each asset for being the origin of crises, instead of straightforward

model the co-movement dynamics by either decomposing the common and

idiosyncratic components (i.e. latent factor models) or capturing the con-

ditional heteroskedasticity of time-varying variances and co-variances (i.e.

correlation-based models). The EWS studies, though, greatly promote crisis

identification by quantifying the composite index based on several essential

asset price dynamics and forming the crisis indicator function, scantly dis-

cuss the cutoff level for determining the significance of being abnormally

deviated from being crisis observations.

2. How to exploit appropriate technique fragments to formulate the

contagious linkages as well as trace the risk transmission channels

across different domestic markets?

In a massive volume of hired methodologies, the contagious effect is recog-

nized as the joint tail behavior for multiple assets. The complex correlation

is usually pairwise decomposed and investigated in a static way, rarely per-

formed in a dynamic way to display the time-varying contagious effect dy-

namics, not to mention the inappropriateness of directly modeling the high

dimensional joint distribution in simple structural breaks. Furthermore,

previous works of CM studies have paid overwhelming efforts to explain the

variation of correlated structure across different nations or continents to

serve for the risk control during global financial crashes but rarely mine the

insights to crisis-period risk transmitting across domestic financial sectors

in the same country to drive the diversification of portfolio allocations.
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3. How to make the predictive mechanisms in EWS development

more practically comparative to produce in-time warning signals?

The progress of developing the EWS generally embeds essential compo-

nents of the crisis classifier and the predictive model. The former one will

be settled as the first question can be solved. The latter one includes

three competitively accredited models of classic parametric regression, non-

parametric signaling approach, and stylized machine learning techniques,

where they have been richly learnt for predicting banking and currency

crashes based on low-frequency data to instruct the policy scheming for

regulators, yet systematically compared in the EWS horse race to exam-

ine their practical significance for directing investment on specific financial

assets based on high-frequency data for practitioners. Besides, the sophisti-

cated frame of machine learning networks is always criticized by its complex-

ity and ambiguity in explaining the relationship between input factors and

the output (especially when compared to the parametric regression, which

model allows to infer the marginal effects and visualize the impacting sig-

nificance for each factor), in spite of considerably boosting the predicting

accuracy.

4. How to integrate the contagion information into the crisis fore-

casting mechanism and investigate whether they share equivalent

contributing degrees with macro-economic factors in producing

effective warning signals?

Some researchers have realized the importance of contagion information in

developing the crisis forecasting system, for example, Dawood et al. (2017)

pioneers that the contagion factors should be regarded as an essential part

to predict the sovereign debt crisis. However, few studies dig deep into

either proposing the workable ways to transfer the contagion information

into time-varying dynamics as other input factors or evaluating their sig-

nificance of contributing degree as compare to empirical macro-economic

inputs.

The four questions are logically connected according to the order in which we

find the gaps as learning the current literature.
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1.2.2 Overview of jumping-offs

To jump over these obstacles, we then intuitively appoint solvable start-ups.

First, to solve Question 1, the usual way is either to collect experts’ opin-

ions or to define the crisis indicator function based on quantized/composite price

index. However, the former one is too expensive for individual academics and

practitioners to afford, especially for China, whose financial sector yet sets up

a public database with transparency and free access, the quantified econometric

techniques are more preferred to identify the crisis observations. In practice, the

latter method is handier, especially being combined with appropriate statistical

models. For example, the crisis samples are usually described as extreme events,

which can be fitted in Extreme Value Theory (EVT) frameworks (McNeil and

Frey, 2000; Lestano, 2007; Samuel, 2008). The alternative way is based on the

price index dynamics volatility jump, which has been proven more efficient in

distinguishing between the turmoil and tranquil states for specific financial mar-

kets (Hamilton, 1989; A and B, 1994; Abiad, 2003; Christiansen et al., 2012). It

seems the question can be perfectly solved, but in formulating the binary crisis in-

dicator variable for the EWS development, new troubles relating to the arbitrary

thresholding cutoff and the fixed volatility levels are accused of lacking flexibility,

which thus inspires us to innovate schemes that allow for variation on cutoffs and

volatility regimes.

Second, Question 2 mentions dual requirements to construct the CM for

China: 1) technically, the complex joint tail behavior cannot be simply described

but hierarchically decomposed to model the financial series that is full of the non-

normality and 2) economically, the analysis cannot be dull for the single country

but lively as compared to one of the other paradigm countries. The first require-

ment can be solved by the hybrid contagious models (Jondeau and Rockinger,

2006; Rodriguez, 2007; Aloui and Ben Aı̈ssa, 2016; BenSäıda, 2018), that provide

the feasible way to estimate the joint tail behavior layer by layer, which not only

decomposes the dependent relationships and infer the transmitting channels in

structure but saves computational cost as well. For the second one, the domestic

markets in the U.S. will be opted as the paradigm of developed countries to make

a comparison for discussing whether the risk transmission shows any difference
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between advanced and developing countries1.

Third, corresponding to Question 3 ’s requirement on producing a time-efficient

prediction, the deep neural networks of the LSTM, which specialize in process-

ing the time-dependent sequence data, will be first included in the horse race

of stylized predictive models based EWSs (Nag and Mitra, 1999; Ohtsu, 2007;

Sevim et al., 2014; Samitas et al., 2020). Meanwhile, to tease out the input

factors’ importance to the final prediction, like a traditional predictive model of

logit regression-based EWS estimating parameters to gain the understanding of

factors’ marginal effects (Eichengreen et al., 1995; Bussiere and Fratzscher, 2006;

Dawood et al., 2017; Filippopoulou et al., 2020), the attention mechanism (the

technique that has been widely adopted in the natural language processing) is first

combined with machine learning-based EWS models to estimate the contributing

degree for each factor. In addition, to calculate the statistical metrics as previous

studies done to evaluate the EWS performance, we directly apply the produced

early warning signals to the investment portfolio and use the back-testing and

reality check to investigate the practical guiding role of the EWS in investment

risk control.

Last, as mentioned in Question 4, the fused EWS requires input factors in the

form of time series, thus to quantify the contagion information as time-varying

dynamics, we resort to both of DCC-GARCH model (that estimates the corre-

lated relationship between two assets) and SWARCH model (that infers the crisis

originator’s probability of being unstable) to innovate the contagious intensity in-

dex given the specific crisis transmitting direction from the contagious source to

the risk receiver. The further requirement is to validate the drawn weights’ sig-

nificance deviating from zero and the stability of referred non-zero contributors

performing on between in-sample and out-of-sample sets. It inspires us to imple-

ment the hypothesis testing given appropriate assumption, similar to the p-value

inference process in logit regression, on attention drawn weights. Here, we do

not use the Gaussian distribution assumption that most traditional parametric

regression models impose on factors, but first investigate their empirical distri-

1China has become the paradigm of developing countries because of its rapid economic
growth and strong comprehensive prosperity in recent decades.
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butions to make sure the rationality of implementing the hypothesis testing2.

1.3 Objectives

According to current research problems (proposed in Section 1.2), the overall aim

of our study is thus to develop effective CM for detecting the co-movement dy-

namics and risk transmitting channels across principal markets and to construct

robust EWS for predicting turmoils or crises for a specific market, to finally in-

struct investors and governors to prevent themselves being exposed in unexpected

damage from market turbulence oriented crises.

Figure 1.1: A diagram that illustrates the specific progress of structuring the
thesis.

To accomplish this aim, we implement four major tasks. As the diagram in

Figure 1.1 shows, these tasks are logically linked with each other in the sequence

of achieving the following objectives embedded on both economic backgrounds

for China and technical research problems for model construction mentioned in

2The Gaussian assumption is usually imposed on the parameter hypothesis testing in logit
regression, but for attention drawn weights, the scheme will be more delicate as not any the-
oretical deduce has been appeared to prove such assumption’s rationality on machine learning
mechanism.
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Section 1.1 and 1.2, respectively.

Objective 1. To classify the crisis observations for specific markets.

• Use the volatility of price index dynamics to identify different

levels from the tranquil to turmoils, and then samples locating

in most high volatility state are recognized as crisis observations.

Objective 2. To make comparative contagion models for both of the

US and China to investigate the connectedness across prin-

cipal markets of stocks, bonds, real-estate and currency.

• Visualize the co-movement dynamics and transmitting channels.

• Decompose the multivariate joint tail behavior in hierarchical

model frameworks.

Objective 3. To construct early warning systems for China’s stock

and bond markets, respectively.

• Discuss the impact of cutoff levels’ variation (detailed in Chap-

ter 5.2 by introducing the dynamic thresholding scheme) and

volatility state number’s change (discussed in Chapter 5.3 by

applying the RCM in Markov switching model frameworks) on

identifying the crisis and non-crisis samples.

• Produce in-time warning signals by hiring time-dependent deep

neural networks in comparison with other stylized machine learn-

ing models and classical econometric models based EWS’s out-

put in statistical metrics.

• Retrieve the predicted results in portfolio construction for eval-

uating in practice.

Objective 4. To construct the contagion information fused early warn-

ing system for China’s sovereign bond market.

• Quantify the contagion information in time-varying series to em-

body the risk transmission intensity given the contagious source

being recognized as the crisis originator (being in turmoil state).
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• Distinguish the contributing degree between macro-economic

factors and contagious factors, and judge whether they perform

equal importance on predicting crises.

• Validate the attention mechanism drawn contributing degrees

by adopting hypothesis tests given appropriate statistic vari-

ables for each input feature.

1.4 Main research workflow

This section will introduce the workflow of exploring the full PhD project during

the research progress.

1.4.1 Literature basis for projects

At the start of exploring the projects, the literature survey should be well col-

lected, filtrated, and sorted corresponding to solve current problems. Thus, three

main clusters of references will be reviewed: (1) crisis identification methods ap-

plied in CM and EWS development, (2) contagious effects detection models in

terms of decomposing the joint tails behavior across different markets, and (3)

early warning system models developed for predicting financial crises for both of

systematic economy and specific markets. The analysis for each cluster’s pros

and cons will be explored in Chapter 2.

1.4.2 Methodology basis for projects

To attain the objectives being inspired by jumping-off points, methodological pre-

liminaries relating to filling the research gaps will be emphatically studied in terms

of (1) crisis identification based on SWARCH model specified volatility levels, (2)

contagious models that hierarchically analyze the correlated relationship across

markets in Copula structured inference, Bi-SWARCH depicted co-movement peri-

ods and EVT estimated heavy tails, and (3) time-dependent deep learning model

of LSTM based predictive model in EWS development on high-frequency data.

The specific method formulation process will be detailed in Chapter 3.
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1.4.3 Development of two hybrid CMs

Based on the second objective and proposed jumping-off points, two hybrid con-

tagion models are developed and applied parallel to the log returns of housing

and stock prices, the short-term interest rates, and the off-shore exchange rates

in China and the U.S.. The attempt is to gain a more holistic view of the risk

transmission channels across a broader range of assets, including the real estate,

equity, bond, and currency in the emerging and developed markets.

The development process will be arranged as follows. First, the crisis and con-

tagion episodes of the financial markets will be detected by univariate SWARCH

and bivariate SWARCH, respectively. Second, by adopting the Extreme Value

Theory (EVT) and regular vine (R-vine) copulas, we make an attempt to ex-

plore the joint behavior of heavy tails as well as the risk transmission channels

in both Chinese and American financial systems during crises. Last, implications

obtained from the empirical results will be discussed from a practical perspective

by comparing the asset contagion behaviors in China and the U.S.. Chapter 4

will be further referred to diagram the procedure of implementing two CMs.

1.4.4 Development of EWS

To achieve the goal of constructing EWS for China, two essential markets for

stocks and bonds that share the greatest trading volume in China will be differ-

entiated in Chapter 5.

• For stocks, we first attempt to develop a robust crisis classifier based on

SWARCH combined dynamic thresholding technique to precisely identify

stock market turbulence on a daily basis, and then hire the LSTM network

as the predictive model to produce alarming signals. In the comparison of

CMAX based crisis classifier and other machine learning based predictor,

the proposed integrated EWS algorithm will be examined by not only sta-

tistical metrics on out-of-sample set but cross-validation and back-testing

as well. The reality check for data snooping will also be applied to retrieve

the EWS performance in practice.

• For bonds, the ambiguity of defining the crisis variable will be first re-
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solved by adopting SWARCH and clustering the observations into select-

ing appropriate count of volatility states in regime classification measure

(RCM). Then, to weigh the economic factors in perceiving the forewarned

turmoils and recognize the key economic factors to be inspected for making

a timely macro-control policy, the attention combined bidirectional LSTM

is adopted to predict warning signals and fully verify in multi-dimensional

evaluating measurements.

1.4.5 Development of contagion fused EWS

To terminate the debate on existence of sovereign crises in China, a contagion

fused early warning system is constructed by 1) hiring the RCM-SWARCH based

quantified tools to relieve the brunt of chronological database deficiency to define

the sovereign crisis, 2) quantifying the external contagion effects as the input

features for EWS, and 3) instead of synthesizing a composite indicator index

by thresholding leading factors, using the attention mechanism to simplify the

feature selection between the leading indicators for machine learning prediction,

as well as 4) designing three types of hypothesis tests to gain the inferred leading

factors’ credibility. Different from the EWS for specific markets to guide the

practical application in investment, the contagion fused EWS is more apt to gain

the economic understanding to grasp the key vulnerability channels in policy

control. Its implementing procedure is diagrammed and detailed in Chapter 6.

1.5 Outline of the thesis

The thesis arranges seven chapters in total to outline the full projects.

Chapter 1 Introduction − briefly describes the backgrounds, the current re-

search gaps, the intuitive jumping-off points, the research objectives, the overview

of main research methodologies, the guide to read through the thesis and the

study limitations.

Chapter 2 Literature review − introduces the knowledge basis, review the

previous studies of CM and EWS development, and make comments on literature

gaps.
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Chapter 3 Methodological preliminaries − clarifies the main research method-

ologies adopted in our CM and EWS development, including volatility-based crisis

identification, models that decompose the joint tails in terms of correlated pattern

and co-movement dynamics, and deep neural networks based predictive models

for EWS.

Chapter 4 Hybrid contagion models construction − specifies the components

and structure of two hybrid CMs and empirically analyze their performance on

domestic assets for China and the U.S.

Chapter 5 Integrated early warning systems development − introduces the

conceptual prototype of the integrated EWS, including the technical improvement

on both crisis classifier and predictive models, evaluates the developed EWS

performance on specific markets of stocks and bonds in China.

Chapter 6 Contagion fused early warning system − introduces linking the

contagion with the crisis prediction, illustrates the steps of constructing the con-

tagion fused EWS, and experiments on predicting sovereign crises for China.

Chapter 7 Conclusions and discussions − underlines the study key contribu-

tions, practical implications, current limitations and further explorations.

Figure 1.2: A flowchart of the thesis.
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1.6 Study scope and limitations

This research aims to erect a compact detecting and predicting system for China’s

financial markets. The projects in this thesis focus on the research methodolo-

gies to improve the system performance on either empirical analysis or practical

instruction. The linkage between the CM and EWS, as Figure 1.2 shows, is

dashed with the contagion intensity dynamics, not directly connected with each

other. The further project will focus on bridging the limitation of converting

the contagion model structurally decomposed correlation into the EWS required

time-series dynamics input.

In the inefficient markets, the risk transmission across financial markets is

meanwhile dynamically changed by investors’ behavior against to the potential

crisis forewarning danger and their confidence in the authorities ability of prevent-

ing the crisis. Such real-time updated contagious effects are required to fed the

EWS to boost the prediction time-efficiency. Although our current research stage

does not cover this project, the methodological basis presented in this study can

be applied to develop the investing behavior uncertainty driven contagion back-

flow EWS in further explorations.
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Chapter 2

Literature review

In this Chapter, we introduce the literature surveys on fundamental knowledge

basis for defining financial crisis and contagion (see Section 2.1), modeling finan-

cial contagions (see Section 2.2) and then review the studies for financial crisis

early warning systems (see Section 2.3). The crisis identification will not be solely

discussed in one chapter but separately explored for the CM and (fused-)EWS

projects, since it though performs as the joint research basis, serves for different

goals in subsequent CM and EWS developments: in CM, the crisis identification

focuses on detecting the abnormal behaviors of market asset price fluctuations

to infer whether they possibly produce spillover effects, while in EWS, it is the

essential basis to form the crisis classifier, which will further influence on the

predicting effectiveness of the entire early warning system. In the following sec-

tions, the arguments that provide supportive evidence to our research aims will

be highlighted in bold font.

2.1 Fundamental knowledge basis

2.1.1 Financial crisis

Before going through the literature content, the elementary definition basis for

the financial crisis should be first clarified. At the end of 20th century, the IMF1

classified financial crises into four types, namely, currency crisis, banking crisis,

systemic crisis, and debt crisis. However, with the rise of emerging markets and

the increasing market openness of Asian countries, the economic map pattern of

1According to the IMF published World Economic Outlook in May 1998.
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the world has changed, which makes the definition of the financial crisis more

diversified.

At present, the financial crisis is no longer a spontaneous occurrence of a single

financial institution or sector but either comes from the transmission of financial

crises burst in other regions or relies on the downturn of economic conditions

derived from abnormal changes in several markets. For example, the global eco-

nomic shock in 2008 is generally considered to be caused by the Subprime crisis

in the United States.

By far, the most accepted financial crisis definition by most scholars and

academics is “all or most of the financial indicators including the short-term

interest rates, monetary assets, and securities’ price, real estate and landing price,

business bankruptcies and the fails of financial institutions perform a sharp, short

and super cycle deterioration in one country or several countries and regions ”.

Regardless of the defining diversity, the common feature is attached among all

types, that is, the crisis being recognized as the sharp fall in asset prices marked

financial turmoils. Thus, the author believes that, in addition to the four classified

crises, the sharp decline or the abrupt jump for the market price that has been

paid extra attention by policymakers and investors should be included in the

crisis studies.

2.1.2 Financial contagion

Financial contagion is one of the inevitable consequences of the financial crisis.

As exampled in Chapter 1, Section 1.1, the transmission process of the 2008

subprime mortgage crisis after it broke out in the United States is witnessed like

toppled dominoes, that the linkage effect among financial markets makes them

fall one after another. Besides the observed phenomenon, how to precisely define

the financial contagion?

According to the summary work by Pericoli and Sbracia (2003), there are

four definitions: 1) the crisis in one country increases the possibility of crisis

appearing in another country, which is usually cited in empirical analysis for

currency crisis; 2) the volatility of asset prices in the financial markets of the

countries being in crises spills over the financial markets of other countries; 3) as
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the crisis occurs in a regional or a group of markets, the market price occurs “id-

iosyncratic co-movement”; 4) the “volatile contagion”, which is explained as the

market structure of crisis countries changes brought the change of crisis transmis-

sion channel. Based on the different definitions, experts have constructed various

models to simulate the crisis transmitting process.2 This study considers the sec-

ond defined contagion to construct the risk transmission model for China since

its definition relies on the asset price performed abnormal fluctuations during

the crisis periods, which keeps consistent with the aforementioned study basis on

market assets’ volatility defined financial crisis.

2.2 Modeling contagious effects

Contagion effects emerge as a result of risk spillover in the financial crisis. Despite

the definition of contagion remaining diverse, the majority of existing literature

chooses to focus on either A) the increased probability of crises or B) the volatility

jump of asset returns in one country given the occurring crisis in a different

country (Dungey et al., 2005; Pericoli and Sbracia, 2003). In particular, Dungey

and Martin (2001) investigate the contagion between currency and equity markets

for a panel of countries in the East Asian crisis of 1997-98 using the latent factor

structure that decomposes the asset return by a factor model of the common and

the idiosyncratic components. The model is further extended considering the high

volatility nature of asset returns during crises by including a GARCH component

that captures the heteroskedasticity as well as the time-varying variances and

covariance, and applied to study the east Asian currency crisis (Dungey and

Martin, 2004) and stock market crash in Europe, South-East Asia, and Latin

America (Bekaert et al., 2005). The other group of correlation/covariance-based

models is built by Forbes and Rigobon (2002) to capture stock price co-movements

during the 1997 East Asian crises, the 1994 Mexican peso collapse, and the 1987

US stock market crash.

2In the following section of 2.2, the proposed contagion models will be specifically reviewed.
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2.2.1 Volatility based CM models

One of the essential drawbacks of both the latent factor models and

the correlation- or covariance-based models is that neither provides

an empirical solution to the classification of the crisis and non-crisis

periods, especially for small samples. To address this issue, the Markovian

Switching ARCH (SWARCH) model (Hamilton, 1994) provides a synchronized

solution to estimate contagion effect together with classifying crisis and non-

crisis periods. According to Hamilton (1989), the SWARCH model suggests a

probabilistic mechanism for dating the tranquil and turmoil periods by calculating

the filtering and smooth probabilities of high and low volatility states of financial

returns. This mechanism thus transfers the volatility dynamics into a visualized

mapping of the two regimes. Hamilton and Gang (1996) extend the model to the

bi-variate case, wherewith the initial purpose of studying the relationship between

the business cycle and the stock market. The so-called Bi-SWARCH is then

applied to detect contagion effects across paired stock/equity markets (Ramchand

and Susmel, 1998; Edwards and Susmel, 2001), based on the argument that it

captures the cross-market state-varying covariance and correlations according to

the volatility regimes.

2.2.2 Decomposing tail dependence in CM

To exploit the risk transmission channel across different markets, hy-

brid contagion models integrating (vine) copulas are widely used to

decompose the tail dependence of asset returns into (tree-structured)

conditional bi-variate dependence. The flexibility that copulas offer to in-

vestigate the joint tail behavior makes it tempting in many studies that intend

to discuss financial contagion matters, such as Sriboonchitta et al. (2014) (which

adopts the copula-based GJR-GARCH model to analyze the financial risk and co-

movement of stock markets across three Southeast Asian countries of Indonesia,

Philippine and Thailand), Aloui and Ben Aı̈ssa (2016) (which applies the vine

copula pair-wisely and finds significant evidence of symmetric linkages across oil,

stock and exchange rate markets in the U.S.), and Fink et al. (2016) (which

hires Markov-switching R-vine models to investigate the existence of different
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global dependence regimes). Rodriguez (2007) applies the SWARCH model with

copulas to stock indices from five East Asian countries during the Asian Crisis

and from four Latin-American countries during the Mexican Crisis, aiming to

analyze the joint tail behavior of extreme returns in the characterization of non-

linearity and asymptotic dependence during the contagion episodes. Moreover, a

regime-switching vine copula approach is adopted by BenSäıda (2018) to study

the contagion effect in European sovereign debt markets, whereas BenMim and

BenSäıda (2019) employ a regular vine copula approach to model the dependence

dynamics between major American and European stock markets by distinguish-

ing the effects during crisis and tranquility periods.

2.2.3 Modeling heavy tails in CM

Considering the heavy tail pattern of turmoils, the extreme value the-

ory (EVT), an important approach to estimate the non-Gaussian tails

of financial series, is widely applied in the study related to extreme

risks. The Generalized Pareto Distribution (GPD), a semi-parametric approach

that is widely adopted to estimate the heavy-tail of financial series, not only re-

duces the computational cost in parameter inferences also provides a more robust

fitting, especially for small-sized datasets. McNeil and Frey (2000) propose a hy-

brid model of the GARCH model (that estimates the current volatility) and EVT

(that describes the tail distribution of innovations from the GARCH model) to

estimate tail-related risk measures. Their result shows that the combined model

gives better performance than the methods that neglect the heavy tail. Allen et al.

(2013) further hire the combined model, GARCH-EVT, to estimate the volatility

indexes, FTSE100 and S&P500, for the U.K. and the U.S. stock market, and find

the evidence to support hedging strategies in extreme market conditions (such

as the Global Financial Crisis that commenced in 2007). Samuel (2008) devel-

ops a new conditional extreme value theory-based model that incorporates the

SWARCH to forecast extreme risks in the U.S. and China’s stock market and sug-

gest that the EVT-SWARCH model outperforms the pure SWARCH and GARCH

models in capturing the non-normality and providing accurate VaR forecasts in

both in-sample and out-sample tests. Wang et al. (2021) use a dynamic mixture

21



copula-extreme value theory model (DMC-EVT) to study contagion channels as

elucidating the complex and dynamic dependence between forex markets, and

their results show that the DMC-EVT model outperforms the alternative copula

models.

The works mentioned above mainly stem from the objectives related to en-

hancing the model accuracy of fitting and explaining contagion per se, which

commonly serves for the purpose of risk control in crises. The contagion effect

across financial markets of different regions, though have been emphasized by

most of the researchers, few studies mine insights into the crisis-time risk

transmission among different financial sectors in a country, which is

deemed as a crucial factor that drives the diversification of domestic portfolios

as well as the financial stability of a country. Besides, according to our survey,

the majority of existing literature in this area concerns more about modeling

the linkage between the real estate and other financial markets for developed

countries, such as the U.S. (Chan et al., 2011; Hui and Chan, 2014; Hoesli and

Reka, 2015; Caporin et al., 2019; Tiwari et al., 2019). However, whether these

risk transmission models inferred linkage results for developed coun-

tries are meanwhile comparatively applicable to China remains to be

verified.

2.3 Forecasting system for financial crises

2.3.1 Crisis predictability

Before constructing the forecasting system to predict a financial crisis, we should

figure out whether the financial crisis is predictable. In fact, the predictability of

the financial crisis is an open debating question and yet settled through trans-

centuries arguments among economists and practitioners. The core of controver-

sies focuses on whether the crisis is triggered by unexpected exogenous factors or

the market endogenous instability.

Malkiel and Fama (1970) propose the Efficient Market Hypothesis (EMH) the-

ory in 70’s of last century, which says the financial crises occur as long as external

shocks (known as ‘black swan’ events) arise, given that the securities prices fully
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reflect all available information in a perfect market. Malkiel and Fama (1970)’s

theory shows strong assumption on human behaviors’ rationality, however, market

participants are hardly to be always rational and quickly respond to market infor-

mation in practice. Arthur (1999) then relieves the strong assumption by pointing

out the evolution process of the economy is dynamic, non-linear, and uncertain,

which also inherently coincides to Schiller (2000)’s revolutionary proposal of the

endogenous market imperfection being mainly induced by the irrational factors.

Sornette (2009) formally advocates the argument that crises are the predictable

‘dragon-king’ not the unpredictable ‘black swan’ since the precursory symptoms

such as substantial outliers can be observed in reality before the crisis abruptly

bursts. It thus provides teeming evidence to acknowledge the crisis predictability

with a positive attitude given a series of rigorous statistical tests on predicted

results.

Even though perfectly grasping the exact time point of crises seems less at-

tainable in practice, both theory holders admit the fact that gaining the

awareness on precursory turbulence signals for financial shocking is

achievable. Such admitted fact hence renders the essence of most arguments on

fertilizing and flourishing the financial crisis forecasting system development to

dilute the assertion that crises are unpredictable.

2.3.2 Financial early warning system

Financial early warning systems (EWSs) are designed to forecast crises via study-

ing historical pre-turmoil patterns, thus allowing market participants to take early

actions to hedge against vital risks. In practice, the target of early warning ranges

from individual financial markets, such as the banking sector, the currency, and

stock markets, to the entire economic system. The modeling of crises is then

commonly formulated as a classification problem based on the identified crisis

indicators.

2.3.3 Crisis identification in EWS

There are usually two ways being adopted to identify the crisis observations in

the previous works - on the basis of either expert opinions or an indicator function
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describing the market “crash”.

The former approach of defining crises through the survey among experts is

widely used in the early studies of EWS, especially those concerning banking and

debt crises (Kaminsky and Reinhart, 1999; Kaminsky, 2006; Reinhart et al., 2011;

Reinhart and Rogoff, 2013; Caprio and Klingebiel, 2002; Valencia and Laeven,

2008; Laeven and Valencia, 2010, 2012; Detragiache and Spilimbergo, 2001; Yeyati

and Panizza, 2011). Despite that the expert-defined crises are considered to be

reliable for long-term predictions (Oh et al., 2006), this paradigm fails to offer

an efficient modeling solution as the frequency of observation increases.

The latter one, the indicator functions based on a pre-specified crisis threshold,

are more frequently used to define currency or stock market crashes. Reinhart

et al. (2011) define a currency crisis as the excessive exchange rate depreciation

exceeds the threshold value of 15%. More often, the Financial Pressure Index

(FPI) is used to measure the gross foreign exchange reserves of the Central Bank

and the repo rate (Sevim et al., 2014). Currency crises are thus identified as the

FPI raises more than 1.5 (Kibritcioglu et al., 1999), 2 (Eichengreen et al., 1995;

Bussiere and Fratzscher, 2006), 2.5 (Edison, 2003) or, 3 (Kaminsky and Reinhart,

1999; Berg and Pattillo, 1999; Duan and Bajona, 2008)) standard deviations from

the long-term mean. Such crisis indicator index compounding fixed thresholds

method is also applied for identifying stock crises. Specifically, stock crashes are

indicated by the CMAX index falling below its mean by 2 (Coudert and Gex,

2008), 2.5 (Li et al., 2015), or 3 (Fu et al., 2019) standard deviations.

In the crisis indicator function, two major drawbacks emerge in the practical

aspect. First of all, despite that, the paradigm of handling crises as crashes

captures the associated acute loss, fails to consider the extreme risk that

comes along with the volatility jump. Moreover, the threshold selection

criteria should be handled more delicately, taking into account the trade-off

between missing crises and false alarms resulted from over-/under-

estimated thresholds (Babecký et al., 2014).

Back to our aim - constructing the EWS for China, more disadvantages will

appear as adopting two mentioned identification methods. On the one hand, the

crisis definition based on collecting experts’ opinion is hard to achieve
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in China since 1) there is not an officially published database to be the open-

source for evidencing China’s specific market crises, and 2) the process of collect-

ing experts’ opinions to establish such database analyzing the instability of vari-

ous China’s markets for different periods is labor-intensive and time-consuming,

as well as unlikely to be timely updated in high frequency. On the other hand,

the development degrees for markets are inconsistent in time horizon

(for example, the stock market performs greater maturity and openness than the

bond), which leads the fluctuating amplitude of different market prices to present

disparate characteristics (for example, the price dynamics fluctuation amplitude

in the stock market are greater than that of more secured assets of bonds). Thus,

the singular way3 to cut the high quantile observations as the extreme crisis events

cannot satisfy the personalized distribution patterns for each market.

We opt to define the target variable for crisis identification in the

EWS frameworks by inspecting on the volatility since the index volatil-

ity has been proven efficient in both predicting the future state for specific fi-

nancial markets (Harvey and Whaley, 1992; Fleming, 1998; Granger and Poon,

2003; Christiansen et al., 2012) and constructing the comprehensive crisis indica-

tor (Kim et al., 2004a,b; Kim, 2013) to produce the warning signal for predict-

ing country-specific financial crisis. Such works support the rationality of using

volatility to define the target variable for the early warning system. As analyzed

in Section 2.2, Hamilton and Susmel (1994) propose an appealing way to clas-

sify the volatility into different states and visualize the process of volatility state

transition in Markov regime switching frameworks. The specific formulation pro-

cess will be displayed in Chapter 3, Section 3.1. Note that the volatility based

binary crisis indicator function cannot escape from the pain of cutoff selection

either, and it moreover bears the extra problem of distinguishing volatility levels

(i.e. regime count determination problem). We will explore the methodologies to

relieve such pains relating to cutoff and volatility regime selections in Chapter 5.

3Based on the crisis binary function, the cutoff usually a fixed value by taking the mean of
crisis indicator index with one or more than one standard deviations.
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2.3.4 Predictive models in EWS

In terms of the predictive model, three types of methods are commonly applied to

generate early warning signals for crisis predictions, namely the parametric logit-

probit regression (Frankel and Rose, 1996; Eichengreen and Rose, 1998; Demirgüç-

Kunt and Detragiache, 1998; Bussiere and Fratzscher, 2006; Beckmann, 2007), the

non-parametric signaling approach (Kaminsky and Reinhart, 1999; Kaminsky,

1998; Berg and Pattillo, 1999; Davis and Karim, 2008) and machine learning-

based models (Nag and Mitra, 1999; Kim et al., 2004a; Celik and Karatepe,

2007; Yu et al., 2010; Giovanis, 2012; Sevim et al., 2014).

According to the order in which they are proposed, we divide them into two

generations. The first two types of models are mainly based on econometric

and statistical approaches, and being started up in the late 1990’s, we categorize

them into the first-generation model. The second-generation model, namely styl-

ized machine learning techniques, are initiated in the contemporary data science

backgrounds considering the model specializes in predicting big size non-linear

data. The impetus brought by these state-of-art models accelerates the progress

of predicting financial crises in the data-driven situation.

Generation I: empirical models

The logit-probit regression is a widely applied statistical model that makes cri-

sis predictions based on the leading factors among the pooled data of economic

variables. The univariate probit regression is firstly adopted in Frankel and Rose

(1996) to characterize currency crashes on the annual data of one hundred devel-

oping countries from 1971 to 1992. The multivariate-probit model proposed by

Eichengreen and Rose (1998) cooperates the macro-economic factors to improve

the forecasting accuracy on predicting banking crises for one hundred developing

countries during 1975-1992. The multivariate-logit binomial model, which is ap-

plied in Demirgüç-Kunt and Detragiache (1998) to study the factors that led to

the emergence of systemic banking crises from 1980 to 1994 for more than forty

developed and developing countries. The extended works for the multivariate-

logit model in Bussiere and Fratzscher (2006) proposes a multinomial early warn-

ing system to address the post-crisis bias problem that comes along with the
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binomial discrete-dependent-variable model, and the proposed multinomial-logit

model outperforms in predicting financial crises for emerging markets. As for

application in specific markets, Coudert and Gex (2008) use logit and multi-logit

models to predict stock and currency market crises and find the leading effect

of risk aversion indicators in the stock market crisis warning. The significance

of S&P 500 futures and options in predicting stock market crashes is also shown

by Li et al. (2015) in the study based on a logit model. By combining the logit

model and Ensemble Empirical Mode Decomposition, Fu et al. (2019) recently

developed an EWS for daily stock crashes using daily stock market valuation and

investor sentiment indicators and achieved good in-sample and test-set results.

The KLR model (Kaminsky and Reinhart, 1999) explores signals of increasing

exposure to risks in the financial system by studying the deviation of variables

with pre-specified thresholds. This method is firstly applied to predict currency

crises for twenty countries in the period of 1970-1995. The KLR indicator is ex-

tended in Kaminsky (1998) by considering more variables associated with risks.

Berg and Pattillo (1999) further include the correlations across variables and de-

velop the composite KLR indicator in the emerging markets. Davis and Karim

(2008) compare between the KLR and logit regression methods and argue that

the multinomial logit model is more reliable for predicting global banking crises,

and the KLR indicator approach is for constructing country specific early warning

system. Peng and Bajona (2008) apply the KLR approach to study the proba-

bility of China suffering the currency crisis and successfully label two risky high

periods of currency devaluation.

The vulnerability of crisis, however, cannot be convincingly revealed

by the first generation of models cluster, as IMF published paper (Berg and

Pattillo, 1999) summarized according to the exercised results on the 1997 Asian

currency crisis, their predicting power is barely satisfactory unless under

plausible modifications.

Generation II: stylized models

Machine learning techniques (Oh et al., 2006; Celik and Karatepe, 2007) are then

locked to construct the second generation of early warning systems considering
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its specialization in predicting big size non-linear data. Chamon et al. (2007)

attempts the binary classification tree (BCT) to predict capital account crises for

emerging markets and finds the model though is able to capture some signs of

crisis, but the overall predicting effectiveness is unsatisfactory. Nag and Mitra

(1999) construct the early warning system by artificial neural networks (ANNs)

to forecast the currency crisis for developing countries. The ANNs model, in gen-

eral, bring more robust and effective predictions than classic statistical methods

in dealing with linear and non-linear time series. The back-propagation neural

networks (BPNN) and feed-forward neural networks (FANN) are then applied to

predict the financial and banking crises for Asian countries (Kim et al., 2004a;

Celik and Karatepe, 2007; Yu et al., 2010), extend the ANNs model to multiple-

scale and forecast the currency crisis by proposing an empirical decomposition

learning paradigm. In addition, Giovanis (2012) develops an EWS based on the

neuro-fuzzy inference to examine the U.S. recessions in the period 1950-2010.

The deep learning (DL) techniques revolute the machine learning (ML) model

by empowering the algorithm in a rapid and accurate way. Its fast development

has appealed to a lot of studies in solving the economic issues, especially for asset

market predictions (Jiang, 2021). Chong et al. (2017) investigate the advantages

and drawbacks of deep learning for stock market analysis and prediction using

five-minute intra-day data from the Korean KOSPI stock market and prove the

deep learning shows general effectiveness in predicting returns and risks. Long

et al. (2019) suggest a multi-filters neural network (MFNN) model by integrating

convolutional and recurrent neurons in a multi-filters network structure to predict

stock movements on Chinese stock market index CSI 300, and such state-of-art

model is proven to outperformed the ordinary machine learning and statistical

models by at least 11.47% and 19.75% respectively.

Among all DL models, the recurrent neural networks (RNNs) (Jordan, 1997)

stand out since it not only allows the time-dependency information injection

from previous moments but endows the networks with ‘memory’ functions from

the past neuron inferred content as well. Sezer et al. (2020) surveys the search-

able studies of deep learning techniques for financial time series prediction and

finds the RNN based DL models (LSTM and GRU included) are the most com-
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mon among studies. As the special type of RNNs, the long-short term memory

(LSTM) network in Hochreiter and Schmidhuber (1997) is further designed to

learn both long- and short-term dependencies for sequential forecasting purposes.

This deep learning technique has been widely used for various predic-

tions in financial engineering works. Yan and Ouyang (2017) prove that the

LSTMs have a better predicting performance on capturing complex features such

as non-linearity, non-stationary, and sequence correlation of financial time series.

More similar prediction works such as Fischer and Krauss (2018) and Liu (2019)

validate the LSTM out-performance on forecasting the financial series.

The LSTMs networks can be further hierarchically combined with

traditional time series models to predict the price index volatility. Kim

and Won (2018) develop hybrid models as combining the LSTM with three dif-

ferent GARCH-type models to forecast the volatility of stock index KOSPI 200

and find the GEW-LSTM outperforms others in terms of comparing error mea-

surements. Hu et al. (2020) propose a hybrid method that combines the LSTM

and ANN to forecast the copper price volatility and comparing to the GARCH

combined LSTM model. It generates better volatility forecasts even though the

configuration of ANN combined model should be fine-tuned according to the

measure of prediction errors. Zolfaghari and Gholami (2021) further extend the

hybrid LSTM literature by combining the adaptive wavelet transform (AWT),

LSTM and ARIMAX-GARCH family models, and AWT, LSTM and heteroge-

neous autoregressive model of realized volatility (HAR-RV) model to predict the

U.S. stock price index and volatility respectively. Their results indicate the AWT-

LSTM-ARMAX-FIEGARCH model performs more robust than benchmarks in

the prediction of different size time horizons (from 1-day to 60-days ahead).

The dual-layer information processing mechanism embedded in deep

neural networks is first proposed by Schuster and Paliwal (1997), who makes the

information flow in RNNs frame with both forward and backward directions

as adding the extra backtracking layer to boost the ‘memory’ power in

a more substantial way. As the explored form of bidirectional RNN (Bi-RNN),

BiLSTM is similarly structured and used in financial predictions. Ahmed et al.

(2018) evaluate the BiLSTM and stacked LSTM by comparing with the bench-
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mark LSTM networks on a public data set for stock market closing prices and

conclude the BiLSTM is superior to the benchmark. Ren et al. (2020) establish a

model based on the BIAS measured investors reaction-after-news index and the

BiLSTM model to predict the short-term trend of stock prices using news text

data and find the adopted model outperforms other models counterparts in terms

of prediction accuracy.

Comparing to the logit-probit regression model and KLR indicator approach,

the sole (deep) neural networks though greatly boom the forecasting power, barely

make a comparable inference to illustrate the contribution degree of exogenous

variables. To render the estimation on input variables importance available for

neural networks but avoid the lengthy process of dropping out one feature variable

for each time to draw the feature importance, attention mechanism (Bahdanau

et al., 2014; Xu et al., 2015) from natural language processing (NLP) is believed

to evaluate the factors’ contributing degree effectively for neural net-

works. A few recently released publications have applied the attention model

and validated its functionality in forecasting financial markets. Liu et al. (2018)

adopt a two-level attention mechanism to quantify the importance of words and

sentences in given news to predict stock movements. Hergott (2018) posted a blog

of structuring an LSTM attention model to review the 2013 “Taper Tantrum”

- the abrupt event that happened in the US bond market that the anticipa-

tion of a multi-trillion-dollar buyer disappearing brought a big selloff in bonds.

Ouyang et al. (2021) investigate the attention mechanism based predictive model

to study the systemic risk early warning of China and find the attention mecha-

nism included LSTM deep neural network model is more accurate in all the cases.

Thus, to make the proposed EWS model more comparable to KLR and paramet-

ric regression based in terms of weighing the exogenous variables, the attention

mechanism will have coalesced with deep neural networks in our study.

2.4 Sovereign crisis prediction

Different from previous EWS studies for predicting sovereign crisis on the macro-

economic level, we intend to renovate the issue in terms of 1) classifying the
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volatility levels to define the sovereign crisis on a daily basis, 2) quantifying the

contagion dynamics as the input factors of EWS and 3) distinguishing the leading

indicators from between the contagious factors and the traditional monetary pol-

icy related indicators. To rationalize the innovated sovereign crisis definition and

specify the process of fusing the quantized contagion information into the EWS,

one intact section is used to review the literature for sovereign crisis definitions

and the sovereign crisis determinants from contagious sources.

2.4.1 Define the sovereign crisis

In most previous studies, the sovereign crisis is virtually identical to be called

the sovereign debt crisis (A et al., 2012; Gerali et al., 2017; Beltratti and Stulz,

2019), especially during the hardship for Euro-zone since 2010 (Mody and Sandri,

2012; Ahmad et al., 2013; A and B, 2020). However, the specific rising and

fading dates of the sovereign debt crisis are difficult to be uniformly

clarified in the experts’ reports and academic studies (Ciarlone and Trebeschi,

2005; Fioramanti, 2008; Roman et al., 2016; Reusens and Croux, 2017; Afonso

et al., 2018) because the causes for sovereign crises stuffs the subjectivity

and diversity (Meier et al., 2021), which leads to further confusion to judge such

works’ credibility.

The alternative substitution for the sovereign crisis is the sovereign default

(Fuertes and Kalotychou, 2007; Correa et al., 2014), though this name is accused

of losing the categorized accuracy (Julianne Ams and Trebesch, 2018) among

technical, contractual and substantive types of defaults. The IMF once published

several working papers (Schimmelpfennig et al., 2003; Pescatori and Sy, 2007) to

distinguish between defaults and debt crises, by clarifying the debt crises as

“events occurring when either a country defaults or its bond spreads

are above a critical threshold.”, however, in practice, either default

events or critical thresholds4 are difficult to be uniformly standardized

(Sy, 2004).

In the perspective of quantifying the crisis in market price dynamics, some

4The threshold determination is a cost work because of the complexity and variety among
global countries and economies’ development levels and fiscal policies.
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market-based indicators such as CDS (credit default swaps) spreads and sovereign

bond spreads, are recognized as the good proxies5. Their deficiencies, how-

ever, are embodied in 1) being interfered by the credit-rating agen-

cies’ subjectivity, and 2) ignoring the seniority differentiation across

bond creditors. To remove the subjectivity interference, new indicators of

CCA (Contingent Claims Approach) (Souto et al., 2007) and DtD (distance to

default) (Singh et al., 2021) are recently proposed to sign the sovereign bond

market vulnerability to default. In practice, however, totally purifying the

credit-judgment subjectivity in the quantifying process for sovereign

crises by creating a new proxy is pricey and demanding.

In 2011, the World Bank encouraged countries, especially emerging countries,

to open up the local bank debt markets, which triggers the sovereign bond mar-

kets’ instability being in charge of multiple types of risk sources, especially being

exposed to diversified risks from large international financial tsunami transmis-

sion. Such risk exposure led instability can be fully reflected by volatility fluctu-

ations, which makes the methodology based on volatility clustering more

appropriate to mitigate the pain of quantifying sovereign crisis, since

it not only mirrors the market turbulence, the macroeconomic funda-

mentals fluctuations but credit-rating announcement changes as well

(Genberg and Sulstarova, 2008; Nowak et al., 2011; Daude, 2012; Ribeiro et al.,

2017; Chatterjee and Eyigungor, 2019; Raimbourg and Salvadè, 2020). Some

studies for sovereign bond markets have taken advantages of such method, for

example, Keddad and Schalck (2020) use Markov switching time-varying model

to analyze the sovereign risk transmission across domestic banks and BenSäıda

(2018) combine vine copulas with Markov regime switching model to study the

contagious effects across advanced countries’ sovereign bond markets.

In the Markovian frameworks, the time-varying probabilities for estimating

the market price dynamically changed volatile states will be opted for quantify-

ing the sovereign crisis by inspecting the volatility regime switching process of

sovereign bond observations.

5Lina et al. (2013) has proven bond spreads are better proxy than CDS in affine model
frameworks.
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2.4.2 Determinants for sovereign crisis

The determinants for the sovereign crisis can be categorized into two groups.

The first category is the macro-economic factors, which successfully

lock researchers’ attention even earlier than the EU countries bursting sovereign

debt crisis in 2010, because macro-fundamentals’ dynamics change often

underlies antecedent clues for financial shocks. Schimmelpfennig et al.

(2003) ever identified the macroeconomic variables relating to solvency and liq-

uidity factors to be the leading indicators for sovereign debt crises by applying

both logit and binary recursive tree model frameworks to 47 economies over the

period of 1970-2002. Fuertes and Kalotychou (2006) find factors of trade to GDP,

external debt to GDP, official debt to total debt, IMF credit to exports, and credit

to the private sector over GDP robust to foresee the sovereign default risks by

analyzing 96 emerging/developing economies over the year of 1983–2002. As a

chain reaction of the 08’s global financial crash, the EU debt crisis made such

studies more flourished. Besides the macroeconomic indicators relating to debit

and credit level to GDP, the suspicious shifted inflation level and accumulated lo-

cal governments’ hidden domestic debts also precede the sovereign crises for both

emerging and advanced countries (Reinhart et al., 2011; Dawood et al., 2017;

Ghulam and Derber, 2018; Rho and Saenz, 2021). Meanwhile, the inflation pro-

cyclical dynamics reveal the transmitting channel from political uncertainty to

sovereign default risks (A and B, 2014; Kraussl et al., 2016; Ghulam and Derber,

2018) as it has been proven sensitive to monetary policy shifts (Dongho, 2017).

The second cluster is the contagious factors or the risk transmitting

factors. Considering the jumbled causes for contagion impacting on the sovereign

bond, we therefore further group the contagious factors into two sub-branches of

geographical economies and trading markets6 to discuss their respective roles as

follows.

1. Geographical factors mainly cover two types: the neighborhood community

(e.g. the EU) and major economies in the globe (e.g. the US).

6The tight correlation between sovereign bond and banking system is also being buzzed
(Alter and Beyer, 2014; Georgoutsos and Moratis, 2017), but the contagious direction is too
intricate to be determined since the sovereign bond abnormal fluctuation is sometimes recog-
nized as leading to the banking sector’s uncertainty, especially in the stressful finance episodes
(Yu, 2017; Keddad and Schalck, 2020).
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The crisis spillover effects across continental Europe have been proven by

plentiful studies. Arghyrou and Kontonikas (2012) proves the sovereign debt

crisis can be divided into two subs, and the early stage is mainly driven by

Greece while the latter one is multiple sourced contagion with prominent

performers of GIPS7 countries. Fernández-Rodŕıguez et al. (2015) further

show that the core EU countries are the triggers in spillover effects while the

peripheral countries are dominant transmitters during the crisis, whose con-

clusion corresponds to Kalbaska and Gatkowski (2012)’s claim that PIIGS8

members have lower capacity to trigger contagion than core EU countries.

To date the crisis phases and test contagious effects over Germany for other

Euro-zone countries, Cronin et al. (2016) develops MS-VAR models on daily

10-year sovereign bond spreads database, and the results show though the

risk transmission is mutual across PIIGS and the core group of EU, the

market co-movements are more often due to inter-dependency rather than

contagion. From the most recent study of Hamill et al. (2021), the global

financial and European sovereign debt crises are implied not only altering

the sentiment of the Euro-zone countries but deteriorating and even ex-

acerbating the contentedness across Euro-sovereign bond markets as well.

In addition, the role of developed countries in cross-regional contagion is

worth being further explored since they conventionally most reign over the

discourse power in global economies. For instance, Kim et al. (2015) shows

that news from the three major economies of the U.S., the EU, and China

has significant spillover effects on other national sovereign bond markets

by investigating the asymmetric news effects on the pricing and volatility

of sovereign CDS spreads. Nitschka and Thomas (2018) and Zhang et al.

(2020) also reinforce such conclusion by studying the impact of the U.S.

monetary policy on other countries’ government bond returns and analyzing

the sovereign contagious effects across between China and other countries,

respectively.

2. Trading markets primarily refer to the vibrant financial markets with strong

7GIPS is the abbreviation for Greece, Ireland, Portugal, and Spain
8PIIGS is the abbreviation for Portugal, Italy, Ireland, Greece, and Spain
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liquidity, such as stocks, foreign exchange rates, commodities, and oil.

Most recent studies reveal the correlated dynamics across the sovereign

bond market and stocks, exchange rates, oil, and commodities. The stock

market, as Sun et al. (2020) and Ibhagui (2021) concluded, occupies the

dominant position in the interactive spillovers among either the sovereign

CDS, stock and commodity markets in G7 and BRICS countries or the

sovereign CDS, stock indexes, and currency-basis swaps in the Euro-zone,

the U.K., Australia, and Japan. In the study of Bouri et al. (2019), the

commodity and energy markets are further investigated and concluded that

either commodity or energy market shapes the sovereign risks in middle and

upper volatility quantile for exporters (e.g. Brazil and Russia), while for im-

porters (e.g. China), the predictability is only significant in upper volatility

quantile. According to Feng et al. (2021)’s exploration on constructing the

forecast error variance (FEV) decomposition based spillover index to explore

the “sovereign CDS-exchange rate” system, the exchange rate is proven to

have a higher spillover effect on the sovereign CDS. The oil price/volatility

shocks are proven positively correlated to sovereign risks. Such correlation

evidently amplifies the sensitivity to structural breaks (Tule et al., 2017),

but has an asymmetric presence in the shock transmission. For instance,

Bouri et al. (2018) reveal that oil exporters of BRIC9 countries are more

sensitive to positive oil shocks, whereas oil importers perform in a contrary

way.

For these two types of factors, the first one (macroeconomic factors) can be

directly input in the EWS predictive models10, while the latter one (conta-

gious factors) cannot swagger to the predicting module since the conta-

gion information usually conveys both risks transmitting strength and

spillover directions, which is difficult to be quantized as time series

containing structural patterns.

9BRIC = Brazil, Russia, India and China
10Most accessed macroeconomic factors are time series.
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2.4.3 Contagion quantification for the EWS

To solve the obstacle of quantifying contagious intensity, empirical studies of

detecting risk spillover effects will be referred to. We have mentioned in the

last section of 2.2 that the contagion detection based on latent factor models

and covariance-based models Dungey et al. (2005) are prone to infer the vari-

ables correlated structures, not appropriate to depict the time-varying dynamics

for contagious intensity11. The Dynamic Conditional Correlation multivariate

GARCH (DCC-GARCH) (Engle, 2003) provides a feasible way to detect pos-

sible changes in conditional correlations over time. As Celik (2012) concluded,

the DCC-GARCH model not merely continuously adjusts the correla-

tion for the time-varying volatility but accounts for the standardized

residuals’ heteroskedasticity in a direct way as well. Such attributes have

been verified by many studies to demonstrate the co-movements across for both

macroeconomic fundamentals (Jones and Olson, 2013) and financial markets of

stocks (Syllignakis and Kouretas, 2011; Hou and Li, 2016), foreign exchanges

(Gomez-Gonzalez and Rojas-Espinosa, 2019) and energy products (Hou et al.,

2019; Chen et al., 2020). Besides, recent studies combine the DCC-GARCH with

structural break models, such as regional factor model (Bonga-Bonga and Mabe,

2020) and the Diebold–Yilmaz model (Akhtaruzzaman et al., 2021) to assess the

geographic shock transmission.

The DCC model quantized time-varying correlated intensity cannot be di-

rectly input as the risk transmission factors to the EWS unless being imported

the crisis transmitting direction, in other words, the DCC can infer the dy-

namic changes of correlated linkages across markets but hardly af-

fords to point out the crisis originator. Being sparkled by the Hamilton

(1989)’s work, which model infers the probability of market being in the crisis,

the DCC produced correlation coefficients can be pairwise combined with the

SWARCH inferred probability of contagious source markets being in

crisis periods to form the final contagious intensity dynamics, which

not only reflects the complete contagion information but accesses the EWS in-

11Almeida and Czado (2012) though allows the time-varying inference on the dependent
structure across variables, the full transmitting pattern is so complex as to bring computing
intractability in practice.
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put layer directly as well. The specific exploration process for constructing such

contagious intensity dynamics will be described in Chapter 6, Section 6.2.

2.5 Gaps in the literature

The research gaps for CM and EWS development that have been found in the

review process will be summarized as follows.

1. For both CM and EWS, the crisis identification is problematic.

The crisis has been numerously defined or identified in the CM and EWS

literature, but the studies are still unsatisfactory in terms of defining for

specific markets on high-frequency data (usually daily basis) and discussing

the challenge of threshold selection and volatile levels determination, espe-

cially relating to the EWS crisis classifier’s effectiveness in practice.

2. For CM, the correlated structure across domestic asset markets

should be hierarchically decomposed but not be singularly ex-

plained by a simple model. The complexity risk transmitting channels

are more appropriately modeled by hierarchical strata frameworks to imple-

ment dual aims of visualizing the contagion episodes (pairwise) and figuring

out the contagious paths. Rare literature, to the best of our knowledge, nei-

ther distinguishes the difference between such two types of hybrid models

nor accomplishes comparative analysis for domestic assets between China

and the developed country.

3. For EWS, each component module in the frameworks, especially

the predictive model, is yet to be fully explored. A great number of

studies have developed the EWS model, few discuss each of the functional

parts in an integrated framework. Furthermore, the competitive horse race

among empirical and stylized predictive model generations continues, espe-

cially after the deep learning techniques being flourished in financial studies.

Meanwhile, the exploration on developing the EWS that fuses the contagion

information and draws the leading indicators with statistical significance

testifying is still in the bud.
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Chapter 3

Methodological preliminaries

Before formally introducing the CM and EWS development process, the knowl-

edge basis for methodological preliminaries in the project will be first presented

here. In this chapter, we will first formulate the crisis detection based on volatility

regime switching principles in Section 3.1, and then detail the bi-variate SWARCH

model, heavy tail modeling technique of EVT, and multivariate correlated struc-

ture model of vine copulas in Section 3.2 to make preparations for constructing

two hybrid CMs. Last, the stylized predictive model of deep neural networks

of LSTM, which are used in further EWS development, will be displayed after

sketching the basic neural networks in Section 3.3.

3.1 Volatility based crisis identification

3.1.1 SWARCH model

Different from the widely-used autoregressive integrated moving average (ARIMA)

models that impose stationarity to time series, the autoregressive condition-

ally heteroscedasticity (ARCH) class of models, including the generalized ARCH

(GARCH) model, the exponential GARCH (EGARCH) model, and the quadratic

GARCH (QGARCH) model, etc., deal with non-stationary data by exhibiting

time-varying volatility. The univariate SWARCH model is stylized to fit innova-

tions by clustering states of different volatility regimes (Hamilton, 1989) and is

further applied to identify possible crisis episodes (A and B, 1994).

In general, an AR(p)-SWARCH(K,q) model, where the AR(p) component
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captures the long-term stationary part of the process, can be expressed as follows.

yt = u+ θ1yt−1 + θ2yt−2 + · · ·+ θpyt−p + εt, εt|It−1 ∼ N(0, ht), (3.1)

h2
t

γst
= α0 + α1

ε2t−1

γst−1

+ · · ·+ αq
ε2t−q
γst−q

, st = {1, . . . , K}, (3.2)

where u is the constant, {θ1, ..., θp} and {α0, α1, . . . , αq} denote the parameters

to be estimated, st is the unobserved state variable with K different regimes and

γst is the scaling parameter which controls the variance process. The residual

term εt conditional on one-step back information is assumed to follow a normal

distribution with mean 0 and variance ht. The latent state variable st follows a

Markov chain with the transition probabilities of

pij = Prob(st = j|st−1 = i), i, j = {1, 2, ..., K}. (3.3)

Hence the full structure of transition matrix is

P =


p11 p21 . . . pK1

p12 p22 . . . pK2

...
... . . .

...

p1K p2K . . . pKK

 (3.4)

with the constraint
∑K

j=1 pij = 1. In this way, st governs the conditional density

of the observation vector yt as

f(yt|Yt−1;θ) := f(yt|st, st−1, . . . , st−q,yt−1,yt−2, . . . ,y0;θ), (3.5)

where θ is the vector of all model parameters.

To implement the Maximum Likelihood Estimation (MLE) to estimate the

parameters, the log-likelihood function L (θ) is given by

L (θ) =
T∑
t=1

logf(yt|Yt−1;θ) (3.6)

=
T∑
t=1

log
( K∑
i=1

P (st = i|Yt−1;θ)f(yt|st = i,Yt−1;θ)
)
, (3.7)
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where P (st = i|Yt−1;θ) is the prediction probability at time t based on observa-

tions until t− 1, and can be computed based on the filtering probability.

In previous studies, the regime cases are customarily divided into two volatility

states - high and low, to make the most common sense of capturing the dynamic of

financial return oscillations. The model of AR(1)-SWARCH(2,1) is thus specified

as follows.

yt = u+ θ1yt−1 + εt, εt|It−1 ∼ N(0, ht), (3.8)

h2
t

γst
= α0 + α1

ε2t−1

γst−1

, st = {1, 2}, (3.9)

where st = 1 indicates the low volatility state, and st = 2 indicates the high

volatility state.

In order to visualize the regime switching dynamics of states and to date

the crisis episodes, the filtering and the smooth probabilities, written as P (st =

i|Yt;θ) and P (st = i|YT ;θ), need to be computed. By definition, the filtering

probability is the conditional probability based on the current information, whilst

the smooth probability is the inferred probability according to the full length of

observations (Kim, 1994; Kuan, 2002). The observation at time t will be judged

locating into high or low volatility states as its corresponding either filtering or

smooth probability is greater than the empirical value of 0.51.

3.1.2 Further variations on SWARCH classification

After solving the crisis identification problem in clustering financial series volatil-

ity, two questions intuitively crop up.

1. Is the fixed cutoff value of 0.5 being ‘omnipotent’ or the ‘Jack-of-all-trades’

for all SWARCH model based crisis identification cases?

2. Whether two regimes are enough to distinguish the volatility levels for all

return dynamics from different markets?

To answer the questions, we explore a further step for each EWS development

of Chinese stock and bond markets according to their price featured patterns,

1R package MSGARCH (Ardia et al., 2017) is applied to model the univariate SWARCH.
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respectively. Specifically, the cutoff value will be sprinkled by introducing a vari-

ation scheme to gain the SWARCH model based crisis classifier’s adaptability to

different windowed samples in stocks; and then a trial of varying the regime count

will be experimented to find the optimal division way to distinguish the dynam-

ics fluctuating levels especially for China’s bonds, which market volatility is not

significant enough for a long period because of the monetary policy forced in-

tervention2. The methodologies of two-peak dynamically thresholding and RCM

determination for attaining the question points of 1 and 2 will be described in

Chapter 5 for stock and bond markets’ application backgrounds, respectively.

3.2 Joint tail behaviour decomposition

3.2.1 Bivariate SWARCH model

The SWARCH model is further extended to the bi-variate case given a potential

volatility originator3 in each couple of markets. It is necessary to specify the

crisis originator as investigating their volatility linkage to further explore the

existence of a reversed risk transmission per se. Given two-state specification of

the the univariate SWARCH settings for the high- and low- volatility cases (i.e.

s = 1 for low volatility, and s = 2 for high volatility.), the Bi-variate SWARCH

(Bi-SWARCH) model will include four primitive states that can be written as

below,

st = 1 : so,t = 1, sr,t = 1;

st = 2 : so,t = 1, sr,t = 2;

st = 3 : so,t = 2, sr,t = 1;

st = 4 : so,t = 2, sr,t = 2,

where st denotes the primitive states at time t for the Bi-SWARCH model, so,t

and sr,t are the univariate states for the crisis originator and the recipient, re-

2China’s bond market prices, before the interest rate liberalization being proposed, are
strongly regulated by the national department that sets the financial policy.

3The volatility originator refers to the market where the crisis is originated and spills over
to other markets (Ramchand and Susmel, 1998; Edwards and Susmel, 2001).
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spectively. The transition probabilities of pij are rather flexible given different

imposed restrictions on assumptions. For example, pij = poiip
r
ij means there are

two independent volatility states for the paired markets (i.e. the state indepen-

dence assumption), while pij = 0, for all i, j ∈ [2, 3] assumes that two volatility

states are shared with each other in the coupled markets (i.e. the volatility syn-

chronization assumption).

The Bi-SWARCH(2,1,2) model with 2 regime states for each variable (the first

2), 1 time lag in the variance (the middle 1) and 2 covariances (the last 2) can

be written asyo,t
yr,t

 =

uo
ur

+

θo
θr

yo,t−1

yr,t−1

+

εo,t
εr,t

 , [εo,t, εr,t]′ |It−1 ∼ BN(0,H t,st), (3.10)

where BN is the bivariate normal distribution. And the time-varying state-

dependent conditional variance-covariance matrix H t,st is structured as follows,

H t,st =

 h2
o,t ρstho,thr,t

ρstho,thr,t h2
r,t

 , (3.11)

with the conditional variance terms

h2
o,t

γo,st
= αo,0 + αo,1

ε2o,t−1

γo,st−1

, (3.12)

h2
r,t

γr,st
= αr,0 + αr,1

ε2r,t−1

γr,st−1

, (3.13)

and the state-dependent correlation coefficients ρst . The value of ρst is assumed to

be dependent on the state of crisis originator, thus can be more precisely denoted

as ρost . As argued in Bollerslev (1990), this simplification not only increases the

efficiency of converging the maximum likelihood, but facilitates the hypothesis

testing for contagion as well. That is, if ρost in the high volatility state is proved

to be significantly higher than that in the low volatility state, the contagion effect

is indicated.
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3.2.2 EVT model for heavy tails

The abnormality of financial series is performed as heavy tails. In the decompo-

sition process, to estimate the heavy tails of univariate asset, the extreme value

theory (EVT) method will be adopted. According to the Peak-Over-Threshold

(POT) method, exceedances over the thresholds can be captured by a generalized

Pareto distribution (GPD), and the margin for standardized residuals zt
4 can be

expressed as follows,

F (zt) =


NL
N

(
1 + ξL

uL−zt
βL

)− 1
ξL , zt < uL

Fem(zt), uL < zt < uR

1− NR
N

(
1 + ξR

zt−uR
βR

)− 1
ξR , zt > uR,

(3.14)

where uL, uR are the lower and upper thresholds assigned to be the 10% and the

90% percentiles respectively. ξL, ξR and βL, βR are coefficients of the GPD. N is

the sample size. NL and NR are the counts of exceedances beyond the lower and

upper thresholds. Fem is the empirical distribution of zt.

Coalescing with the Bi-SWARCH model and the parametric EVT

model, one of our hybrid contagion models, Bi-SAWRCH-EVT model

is thus designed to measure the joint tail behavior of paired asset re-

turns in the occurrence of extreme events. The corresponding imple-

mentation diagram will be drawn as a flowchart in Chapter 4, Section

4.1.1. The other hybrid contagion models, which contribute more to

understand the risk transmitting paths across multiple markets simul-

taneously, rely on the copulas.

3.2.3 Vine copulas

Copulas are believed to excel in capturing the non-linear correlation with its

inhabited asymptotic tail-dependence property. Sklar’s Theorem (Sklar, 1959)

provides the basis of copulas and argues that the n-dimensional distribution

F (x1, x2, . . . , xn) with margins of F1(x1), . . . , Fn(xn) can be decomposed as fol-

4zt is the innovated term of the SWARCH model, and satisfies εt = ztht.
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lows with a n-copula.

F (x1, x2, . . . , xn) = C1,...,n(F1(x1), . . . , Fn(xn)), (3.15)

where the margins Fi and the copula C1,...,n are differentiable and the multivariate

density functionf(x1, . . . , xn) can be written as,

f(x1, . . . , xn) =
∂C1,...,n(F1(x1), . . . , Fn(xn))

∂x1 · · · ∂xn
· f1(x1)f2(x2) · · · fn(xn) (3.16)

= c1,...,n(F1(x1), . . . , Fn(xn)) · f1(x1)f2(x2) · · · fn(xn). (3.17)

The multivariate distributions are thus decomposed in the product of multiple

copulas and individual marginal functions where the non-linear dependence across

multiple financial series can be elaborately modeled.

As a widely applied family of copula functions, vine copulas provide a promi-

nent solution to the inflexibility raised in handling multivariate data and allow for

a wide variety of dependence structures in a multidimensional scale. The regular

vine (R-vine) copula (Bedford and Cooke, 2002), one of the most powerful copula

families that recognizes the complex patterns of dependence by applying R-vine

decomposition, breaks down the multivariate probability density into bi-variate

conditional copulas. Specifically, the full dependence structure across n variables

is represented as a set of trees V = {T1, ..., Tn−1}, by regarding each variable as

the node and the pairwise bi-variate copula dependency as the edge. To con-

struct an R-vine copula, the first tree T1 includes all variable nodes of N1 and all

bi-variate edges of E1, respectively. Then, in the second tree, T2, the number of

nodes is counted as the number of edges in the first tree, i.e. N2 = E1 and the

set of edges E2 contains all bi-variate dependencies conditioning on the common

node that two nodes share in tree T1. In a recursive way, the R-vine tree Tj,(j>2)

with nodes Nj = Ej−1 and edges Ej can be finally formed.

An example of the R-vine tree based on four variables of {1, 2, 3, 4} is presented

as Figure 3.1, where each copula edge is expressed in the comma-separated form of

its connective nodes. The conditional structures are indicated by the conditional

sign ‘|’.5 There are three trees in the R-vine decomposition for four variables.

5Without loss of generality, the dependence structure formed by R-vine copulas is not pre-
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(a) Tree 1 (b) Tree 2 (c) Tree 3

Figure 3.1: The example R-vine decomposition trees.

The nodes in the tree Tj+1 are the edges of the tree Tj, and will be bridged by

a copula edge if a common node is shared in the previous tree Tj. In our study,

each node represents one market asset of interest, and the edges are estimated in

bi-variate copula functions between two of them. The general formulae for the

R-vine conditional marginal density can be written as follows,

f(x|v) = cx,vl|v−l(F (x|v−l), F (vl|v−l)) · f(x|v−l), (3.18)

where v is the n-dimensional variable vector and v−l denotes the variable vector

excluding lth element. Aas et al. (2009) and Almeida and Czado (2012) specialize

the multivariate density formula for C-vine and D-vine copulas, as Eq. (3.19) -

(3.20) show, to perform the different types of decomposed patterns for modeling

the correlated structure. C-vine gives a star or radiation while D-vine shows a

path, which means, in the sequential method for vine tree selection, we identify

the root variable in C-vine trees by searching for strongest dependencies to all

other variables (i.e. maximum column sum for a matrix of empirical Kendall’s

tau.) but should determine the order of variables by solving a Hamiltonian path.

f(x)
C−vine

=
n∏
k=1

f(xk)
n−1∏
j=1

n−j∏
i=1

cj,j+i|1,...,j−1(F (xj|x1, ..., xj−1), F (xj+i|x1,...,xj−1
))

(3.19)

f(x)
D−vine

=
n∏
k=1

f(xk)
n−1∏
j=1

n−j∏
i=1

ci,i+j|i+1,...,i+j−1(F (xi|xi+1, ..., xi+j−1), F (xi+j|xi+1,...,xi+j−1
)),

(3.20)

determined. Figure 3.1 only provides one possible form as an example of the R-vine.
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where j and i denote the jth tree and the ith edge respectively, c is the bi-variate

copula density function. For n variables, the log-likelihood for joint distribution

thus can be fully written as

l(x) =
n−1∑
i=1

lnfi(xi) + lnc1,...,n(F1(x1), F2(x2), ..., Fn(xn)). (3.21)

In the process of inferring vine copula structures for multiple variables, two

central issues should be solved: i) select appropriate vine copula trees to structure

dependence patterns. In other words, choose from R-vine, C-vine and D-vine

to decompose the joint distribution; ii) select suitable bi-variate copulas to fit

the conditional dependence for each subtrees. Dißmann et al. (2013) propose

feasible selection criteria in practice, that is, the sequential method based on

maximizing the sum of absolute values for empirical Kendall’s taus by using

spanning tree (MST) algorithm6. More specifically, we assume that the value for

empirical Kendall’s tau for the variable pair (also edge) ei,j in n variables is τi,j,

then maximize the sum of absolute values for all Kendall taus (see Eq. 3.22) to

select the first spanning tree for all variables, then in the selected spanning tree,

copulas and corresponding parameters will be selected and estimated by following

Akaike and Bayesian Information Criteria (AIC and BIC) in maximum likelihood

estimation. Note that, in this step, all opted copula families will be computed

and made comparisons.7 Then, this selection procedure for spanning tree and

copulas will be iterated on all rest of conditional variable pairs for sub-trees till

we reach the final sub-tree (where only one edge is left).

max
∑

ei,j∈spanning tree

|τi,j|, for1 ≤ i, j ≤ n. (3.22)

The full options for copula families in our study, though have been detailed in

the manual for R package ‘VineCopula’, such as elliptical (Gaussian and Student-

t) and Archimedean (Clayton, Gumbel, Frank, Joe, BB1, BB6, BB7 and BB8)

copulas that cover most dependence patterns. We summarize them in Table 3.1,

where the number in the second column labels the corresponding copula family’s

tag, as shown in R package ‘VineCopula’.

6MST is an important mathematical algorithm in Graph Theory
7A test for independence will be performed beforehand.
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Copula family number par1 par2
Gaussian 1 (-1,1) -
Student-t 2 (-1,1) (2,+∞)
(Survival) Clayton 3,13 (0, +∞) -
Rotated Clayton (90 and 270 degrees) 23,33 (-∞,0) -
(Survival) Gumbel 4,14 [1, +∞) -
Rotated Gumbel (90 and 270 degrees) 24,34 (-∞,-1] -
Frank 5 R\{0} -
(Survival) Joe 6,16 (1, +∞) -
Rotated Joe (90 and 270 degrees) 26,36 (-∞,-1) -
(Survival) Clayton-Gumbel (BB1) 7,17 (0, +∞) [1, +∞)
Rotated Clayton-Gumbel (90 and 270 degrees) 27,37 (-∞,0) (-∞, -1]
(Survival) Joe-Gumbel (BB6) 8,18 [1, +∞) [1, +∞)
Rotated Joe-Gumbel (90 and 270 degrees) 28,38 (-∞,-1] (-∞, -1]
(Survival) Joe-Clayton (BB7) 9,19 [1, +∞) (0, +∞)
Rotated Joe-Clayton (90 and 270 degrees) 29,39 (-∞,-1] (-∞, 0)
(Survival) Joe-Frank (BB8) 10,20 [1, +∞) (0,1]
Rotated Joe-Frank (90 and 270 degrees) 30,40 (-∞,-1] [-1,0)
(Survival) Tawn type 1 104,114 [1, +∞) [0,1]
Rotated Tawn type 1 (90 and 270 degrees) 124,134 (-∞,-1] [0,1]
(Survival) Tawn type 2 104,114 [1, +∞) [0,1]
Rotated Tawn type 2 (90 and 270 degrees) 124,134 (-∞,-1] [0,1]

Table 3.1: The copulas and their family number in R package of ‘VineCopula’.

Thus, being combined with the fore-works of univariate SWARCH

to detect the single crisis time horizon for one asset and EVT to

model the heavy tails behavior, the other hybrid CM, namely paired

SWARCH-EVT-Copula is constructed. Different from the Bi-SWARCH-

EVT being competent to trace the contagious episodes between mar-

kets, the Copula based one underlines the structural analysis on infer-

ring the transmission path.

3.3 Predictive models

As reviewed in the literature survey, the predictive models adopted for con-

structing the EWS are clustered into two generations - the empirical parametric

(Eichengreen et al., 1995; Frankel and Rose, 1996; Bussiere and Fratzscher, 2006;

Dawood et al., 2017) and non-parametric methods (Kaminsky and Reinhart, 1999;

Berg and Pattillo, 1999; Lestano et al., 2004; Davis and Karim, 2008; Peng and

Bajona, 2008), and the stylized machine learning techniques (Ahn et al., 2011;

Sevim et al., 2014; Chatzis et al., 2018; Samitas et al., 2020). The machine
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learning models are state-of-art techniques being more flexible than traditional

econometric models to predict complex data with non-linearity. Being taken such

advantages, a wide range of EWS models have constructed on machine learning

techniques, such as neural networks (Nag and Mitra, 1999; Oh et al., 2006; Celik

and Karatepe, 2007; Yoon and Park, 2014), decision trees (Tanaka et al., 2016;

Holopainen and Sarlin, 2017), support vector machine (Ahn et al., 2011), and

deep neural networks (Wang et al., 2020a,b; Ouyang et al., 2021), have been

studied. This section will put more emphasis on neuron models to introduce the

time-dependent deep neural networks of LSTM, the predictive model that is hired

in our EWS development. For other machine learning models that are adopted

as the baseline for comparison, their adept aspects will be detailed and analyzed

in Appendix B.

3.3.1 Neural Networks

Big data science has unsealed a nova technology era. More powerful models are

required to solve the non-linear problems with greater precision and less cost.

Artificial neural networks (ANN) are born in this background. By far, despite

brimming with disputes on transparency and interpretability, the neuron models

are generally acknowledged as the most robust and flexible model for financial

predicting work. Nag and Mitra (1999), Oh et al. (2006) and Fioramanti (2008)

have successfully predicted the currency, stock and debt crises by hiring the feed-

forward multi-layer perceptrons.

Figure 3.2: Three layered neural networks.

Figure 3.2 shows an example architecture of a three-layer feed-forward neural

network embedded on a 4-cell input later, a 6-cell hidden layer, and a 1-cell output
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layer. Green circles are cells of activation functions to process information before

passing through the corresponding layer. The arrows represent the information

flow direction from input to output, where red and blue label the positive and

negative edge proportional to assigned weights. In practice, the count of neurons

in the input layer is required to be the same as the dimension of input predictors,

and the cell number for hidden layers will be determined in trials that start from

2 and increase at a rate of 2 power. Such expanding neurons will bring structural

complexity for predicting effectiveness, especially long-winded networks that will

make the model over-parameterized (i.e. less generalized beyond the trained

samples).

The neurons in each layer provide a driving force to aggregate information by

hiring activation functions. Plenty of activation functions, such as sigmoid, ReLU

and tanh, are available to process various non-linear relationships according to

the property of the learning target. The sigmoid activation function is mostly

used to output the probability by confining the predicting value between 0 and 1.

sigmoid: f 2(x) =
1

1 + e−x
. (3.23)

Before the output being processed, the weight parameters vector will be ap-

plied for each layer neurons, thus the aggregated information can be normally

connected. Denote w1 and w2 to be the weight parameters for bridging between

(1) input layer and hidden layer and (2) hidden layer and output layer. Thus,

the predicted result for a three-layer ANN with n input variables, m-cell hidden

layer and single cell output layer, can be written as follows,

ŷt+1 = f 2(
m∑
j=0

w2
j · f 1(

n∑
i=0

w1
j,i · xi,t)), (3.24)

where xi,t is the value of variable i at time t, wj,i is the applied weight to the ith

input neuron for producing the input for jth hidden neuron and wj is the applied

weight to jth hidden neuron output for the final singular prediction. For more

than three layers model, the process can be recursively implemented by assigning

various dimensional weight parameters. The parameters will then be optimized

by minimizing the L2 penalized objective function in a number of epoch iterations.
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3.3.2 Deep neural networks of LSTM

The deep neural networks (DNNs) are the extended frameworks for the conven-

tional neural networks (NNs). Subasi (2020) summarizes that the main difference

between the NN and DNN is embodied in the hidden layer complexity, where the

NNs have more shallow depth (of one or two layers) than DNNs. The convo-

lutional neural networks (CNNs), recurrent neural networks (RNNs), and long-

short term memory neural networks (LSTMs) are all members of DNNs. The

long-short term memory (LSTM) network (Jordan, 1997) is the extended form

of recurrent neural networks (RNNs) (Hochreiter and Schmidhuber, 1997) which

learns from both long- and short-term dependencies for sequential forecasting.

Its advantage is not merely embodied by carrying the time-dependence between

observations but being embarked on collaborating with more advanced neuron

layers(such as bidirectional LSTM and attention mechanism equipped), making

it more adaptive to various application scenarios.

Figure 3.3: The LSTM cell inner structure at time t.

As an extension of classic RNN, LSTM keeps its merit which allows the pro-

cessing of sequential data with arbitrary lengths via the hidden state vector, at

the same time enhances the learning power of long-distance dependency by intro-

ducing the ‘memory’ cell. As Figure 3.3 displayed, the inputs of at−1 (activation

function) and Ct−1 (peehole function) that carry historical information from the

former cell to pass through the LSTM cell to generate the output and next input

information for time t. The at and Ct will be recurrently employed for the sub-
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sequent memory block. The initial values of C0 and a0 are both zero. Γf , Γu, Γo

are sigmoid function of the forget gate, the update gate and the output gate that

determine the information to be discarded, added and reproduced, respectively.

Γf,u,o will process the information to balance between the previous activation and

the current input. C̃t is the new candidate output created by the tanh layer on

the basis of absorbing the current input and the previous hidden state. It serves

for the next state Ct which is a combination of the previous memory Ct−1 and the

updated hidden state C̃t. The formulation for Γf ,Γu,Γo and the new candidate

state C̃t can be written as follows,

Γf = σ(xtU
f + at−1W

f ),

Γu = σ(xtU
u + at−1W

u),

Γo = σ(xtU
o + at−1W

o),

C̃t = tanh(xtU
g + at−1W

g),

where σ is the constant parameter, xt is the input observation vector, U is the

weighted matrix connecting inputs to the current layer, W is the recurrent con-

nection between the previous and current layers.

Based on the LSTM cell, the integrated EWS for stocks and more advanced

EWS variants, including bidirectional information processing layer and attention

mechanism stacked layer for bonds, will be further explored in Chapter 5 to satisfy

the aforementioned objectives.

By far, the elementary methodology bases for the CM and EWS development

have been described in terms of formulations and diagrams. The following three

chapters of 4, 5 and 6 will respectively introduce the proceedings of 1) the hybrid

contagion models construction and empirical analysis on the database for the U.S.

and China, 2) the integrated early warning system development for China’s stocks

and bonds with advanced crisis identification techniques and deep learning based

predictive module and 3) the contagion fused early warning system that quantized

the contagious effects by proposing a new contagion intensity index and validates

the machine learning drawn leading factors by designing appropriate statistical

hypothesis tests.
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Chapter 4

Hybrid contagion model
construction

4.1 Hierarchical structure for modeling conta-

gion - Two hybrid CMs

With the purpose of detecting augmented linkage within the financial sectors

in the domestic scale of China, two hybrid contagion models, namely the Bi-

SWARCH-EVT and the Paired SWARCH-EVT-Copula, are developed and im-

plemented to handle the joint tail behaviors and dependence structure of paired

assets in the occurrence of crises. The implementing process will be factorized

by hierarchically arranging elementary bases of SWARCH, EVT and R-vine cop-

ulas, that have been formulated in sections of 3.1−3.2. Different from previous

studies on contagion effects, our hybrid models can solve and clarify contagions

among the internal markets for one country in a more comprehensive way: 1) the

Bi-SWARCH model marks the co-movement period for each paired two markets,

2) the EVT allows to separately discuss the heavy tail effect of financial variables

after stripping out the contagious effects, and 3) the copula melts the bergs of

imposing a contagious originator and disability of inferring risk transmitting path

in the Bi-SWARCH based contagion model frame.

4.1.1 Bi-SWARCH-EVT Model

The Bi-SWARCH model assumes residuals to follow the normal distribution with

zero means, which is deemed to be an ideal case, especially for the chaotic financial
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markets. In contrast, characterizing residuals of return series as non-symmetrical

distribution with fat-tails is proven to be a reliable approach, especially in terms

of handling extreme returns under financial turmoils. One of the handy ways

to model heavy-tailed residuals is to utilize the so-called Peak-Over-Threshold

(POT) method, together with the Block Maxima method, is one of the two major

techniques covered in Extreme Value Theory (EVT). Instead of directly assuming

the whole residuals follow complex distributions of normal-inverse Gaussian and

hyperbolic functions, the EVT allows us to investigate the behavioral characteris-

tics of heavy tails separately. By integrating EVT with the Bi-SWARCH model,

the hybrid contagion model enables the parameterization of the tail behavior of

residuals with applicable distributions.

Figure 4.1: Bi-SWARCH-EVT model frame.

In detail, the Bi-SWARCH-EVT model is implemented in three steps. As

Figure 4.1 shows, the log returns are first empirically fitted in the Bi-SWARCH

model given the crisis originator. Then, the model processed outputs will be

collected as two parts of i) bi-variate SWARCH model estimated parameters,

including θ, the state-varying correlation coefficient ρst and the filtering/smooth

probabilities, and ii) standardized residuals. In i), potential contagion episodes

between the paired markets will be clarified by thresholding the filtering/smooth

probabilities under 0.5 cutoff level. Last, the extracted residuals will be further

fitted by the GPD. The model estimated parameters of ξ’s and β’s will gain

an understanding of the tail behavior of asset returns under the Bi-SWARCH

specifications.
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4.1.2 Paired SWARCH-EVT-Copula Model

The assumption that Bi-SWARCH-EVT model imposes a crisis originator brings

two problems: 1) the bi-variate model limits the study scope to the risk trans-

mission between each of two markets - such limitation though can be resolved by

reversing the crisis originator to the role of the recipient for each couple, bring

the computational cost in practice; 2) it is, both theoretically and technically,

challenging to extend the SWARCH model to a higher dimension than two to

simultaneously study the crisis transmission across multiple internal markets for

a country. The alternative hybrid CM of Paired SWARCH-EVT-Copula can fill

the dual gaps by saving the cost of replicating experiments for reversing the cri-

sis originator role and studying the risk transmission path for including multiple

financial markets.

Figure 4.2: Paired SWARCH-EVT-Copula model frame.

By integrating R-vine copulas and EVT with the univariate SWARCH, the

implementation process for Paired SWARCH-EVT-Copula model, as Figure 4.2

displays, will be unpacked in three steps. First, the log returns data of each

asset is fitted by the univariate SWARCH model, and the model estimates, es-

pecially of filtering/smooth probabilities for both high- and low- volatility states,

are extracted to date the crisis episodes for each asset, which is also regarded as

the supportive evidence to discover potential crises spread as the complementary

results to the Bi-SWARCH model. Then, standardized residuals from the uni-

variate SWARCH model will be fitted in the GPD to measure the asymptotic
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tail behavior of each asset return. R-vines are meanwhile applied to all univari-

ate SWARCH extracted innovations to measure the connected structure and tail

dependence channels across multiple markets.

Table 4.1: Two proposed hybrid Contagion Models and their corresponding high-
lights.

model CM1: Bi-SWARCH-EVT CM2: SWARCH-EVT-Copula

SWARCH Bi-variate: Date the conta-
gion episodes for paired mar-
kets based on the smooth
probability of the high-high
volatility state; Infer the
contagion intensity via the
dependent correlation coeffi-
cient.

Univariate: Date the crisis
episodes for a given asset based
on the smooth probability of
the high volatility state.

EVT The heavy tail of asset returns are fitted by the semi-parametric GPD.

Copula C-/D-Vines: The dependence
structure across financial mar-
kets are investigated by pair
based on the conditional bi-
variate dependency; Risk trans-
mission paths are identified by
estimating the vine trees.

Highlights · Visualize contagion episodes
pairwise

· Visualize crisis episodes indi-
vidually

· Infer correlation-based in-
tensities

· Infer the risk transmission
channels

By far, two hybrid CMs constructing and implementing procedures have been

fully depicted. Table 4.1 summarizes the proposed models’ highlights in the com-

parison to show what they are competent for in the contagious effects detection,

respectively. Each of model components being hired in the hybrid CM construc-

tion is displayed and described their functioning. As the bottom row concludes,

the Bi-SWARCH-EVT model visualizes the contagion periods between each pair

of asset markets and meanwhile estimates the contagious intensity during the

crisis originator’s high volatile period, whilst the latter model of SWARCH-EVT-

Copula is capable of specifying the crisis period for each asset and clarifying the
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risk transmitting pattern across multiple assets.

In the following section, the proposed models will be retrieved in practice by

accessing data from principle markets of real estate, stocks, bonds, and forex for

China and the U.S. to make comparative analysis for both countries, especially to

distinguish the difference of risk transmission between developed and developing

countries. To display the empirical results in a tidy way, the modeling process will

be introduced by A) first implementing the SWARCH-EVT-Copula model and

B) then carrying out the Bi-SWARCH-EVT model in the following application

sequence:

A-1) the univariate SWARCH inferred crisis episodes for each of market assets;

A-2) the SWARCH-EVT estimated marginal effects on heavy tails;

A-3) the R-vine copulas measured the possible risk transmission channels;

B-1) the bi-variate SWARCH inferred contagious episodes pairwise;

B-2) the Bi-SWARCH-EVT measured spillover effects.

4.2 Empirical analysis for China and the U.S.

markets

4.2.1 Data

There are seven assets’ daily log returns being sourced to investigate the conta-

gious effects and risk transmissions across the real estate, the stock, the bond,

and the forex markets in the U.S. and China based1. Specifically, we include the

iShare U.S. Real Estate ETF (IYR, U.S. real-estate index), Invesco China Real

Estate ETF (TAO, China’s real estate market index), S&P500 (U.S. stock index),

Shanghai Securities Composite Index (SSEC, Chinese stock index), 3-Year Trea-

sury Bond Yield to Maturity (T-Bond in the U.S.), 3-Year China Government

Bond Yield to Maturity (G-Bond in China), and the Off-shore Foreign Exchange

between the U.S. Dollar and Chinese Yuan (USD/CNH)2. The time span cov-

1The data set for the bond market is taken from the yield rate for one of the most popular
government bonds. In general, the short-term bonds show greater liquidity in the secondary
market tradings.

2USD/CNH is obtained from the Federal Reserve Economic Data. ITR, TAO, S&P500, and
SSEC are from Yahoo Finance. G-bond and T-bond yields are from Wind.
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ers from June 6, 2008 to April 4, 2019 with 2521 daily observations for each

asset series.

Table 4.2: Data descriptive statistics.

freq: daily
U.S. China

USD/CNH
IYR S&P500 T-Bond TAO SSEC G-Bond

min. -0.23 -0.14 0.28 -0.21 -1.61 0.80 -0.01
max. 0.15 0.10 3.38 0.18 2.22 5.11 0.02
median 0.00∗ 0.00∗ 1.04 0.00∗ 0.00∗∗ 2.63 0.00∗

mean 0.00∗ 0.00∗ 1.22 0.00∗ 0.00∗∗ 2.55 0.00∗

se.mean 0.00∗ 0.00∗∗ 0.01 0.00∗∗ 0.00∗∗ 0.02 0.00∗∗

std.dev. 0.02 0.01 0.71 0.02 0.17 0.80 0.00∗∗

skew. -0.77 -0.72 0.92 -0.02 0.99 -0.22 0.36
kurtosis 19.1 14.66 0.12 11.78 43.98 -0.21 11.59
Jarque-Bera 38645† 22836† 359.92† 14594† 203860† 24.14 14186†

∗ and ∗∗ indicate the values are statistically zero at the 10% and 5% confidence levels.
† indicates the Jarque-Bera test is failed at the 5% confidence level.

According to Table 4.2, the Jarque-Bera test significantly rejects the normality

hypothesis of all series except the G-Bond yield, which suggests the essentials of

fitting margin models to capture the innate irregularity of financial returns.

4.2.2 SWARCH-EVT-Copula estimation

Turmoil episodes for principal markets

Figure 4.3 - 4.6 show the price index and model inference plots for each asset,

specifically, the 2-by-2 subplots are respectively the price (top left), ARIMA fitted

residuals (top right), conditional volatility (bottom left) and smooth probabilities

(bottom right) of each asset. Red regions shade the observations of pst=2 > 0.5

in the last panel, which have been listed in Table 4.3 as specific dates of crisis

episodes in each sample. The following results are observed according to the plots

and specified crisis episodes from the figures and the table.

First, the smooth probabilities give consistent indications, as the residuals

and conditional volatility plots suggest. With the 0.5 threshold of the smooth

probability, the turmoil and tranquil periods could be classified in a reasonable

manner. Second, the off-shore USD/CNH exchange rate dynamics tend to remain

at a highly fluctuating level as the Renminbi policy changed to a “crawl-like

arrangement” since 2010, whilst the “crawling peg” policy sustained the stability
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of Renminbi during 2008 to 2010. Third, the interest rate market exhibits a

higher level of sensitivity towards risks as the bond yields appear to have more

frequent and lasting turmoil periods in comparison to the real-estate and stock

log returns. Last but not least, significant overlaps between the high volatility

regimes of all the American and Chinese markets are observed. In particular, two

major turmoils are the Subprime Mortgage Crisis and European Sovereign Crisis

that took place at around 2008, and the worldwide economic turbulence during

2015-2016 as a response to various economic and political shocks, including the

interest rate rise by the Federal Reserve, the Brexit voting, the collapse of the

crude oil market, and the weak global economy.

Table 4.3: The univariate SWARCH inferred crisis dates for each asset.

Country Univariate Obs.(pst=2 > 0.5) Duration

U.S.

IYR 926

2008/6/6 - 2009/6/2 2009/7/29 - 2009/10/28
2010/4/7 - 2010/7/26 2011/7/25 - 2011/12/12
2013/5/20 - 2013/7/1 2014/12/16 - 2014/12/31
2015/1/5 - 2015/5/13 2015/8/18 - 2016/3/18
2016/4/27 - 2016/5/18 2016/9/2 - 2016/12/20
2018/1/2 - 2018/4/20 2018/9/17 - 2019/2/12

S&P500 797

2008/6/25 - 2009/9/5 2010/4/26 - 2010/6/17
2011/7/27 - 2011/12/9 2014/9/23 - 2014/10/12
2014/12/8 - 2015/3/25 2015/8/14 - 2016/3/1
2016/6/21 - 2016/7/7 2016/9/8 - 2016/9/28
2018/1/10 - 2018/7/9 2018/9/27 - 2019/4/4

T-bond 1523

2008/6/6 - 2011/8/10 2013/6/6 - 2013/9/30
2014/1/2 - 2014/3/21 2014/9/19 - 2016/9/14
2016/11/14 - 2017/4/26 2018/2/1 - 2018/3/1
2018/12/18 -2019/4/4

China

TAO 860
2008/6/6 - 2009/8/7 2011/8/2 - 2011/11/14
2015/3/26 - 2015/10/16 2017/8/7 - 2019/4/4

SSEC 726

2008/6/6 - 2008/10/9 2008/12/5 - 2008/12/11
2009/2/2 - 2009/4/7 2009/6/26 - 2010/5/25
2010/9/29 - 2011/1/20 2014/11/25 - 2015/3/9
2015/8/20 - 2015/10/22 2015/12/31 - 2016/4/19
2018/2/5 - 2018/8/2 2018/10/10 - 2018/10/11
2019/2/14 - 2019/4/4

G-bond 1830

2008/6/6 - 2008/12/18 2009/3/30 - 2009/7/23
2010/5/14 - 2010/7/20 2010/8/25 - 2011/11/30
2012/1/12 - 2012/2/27 2012/5/7 - 2012/5/31
2012/7/18 - 2012/9/19 2013/5/31 - 2016/4/29
2016/11/21 - 2018/8/27 2018/9/12 - 2019/4/4

USD/CNH 1878
2008/6/6 - 2008/12/31 2010/6/11 - 2012/12/14
2013/1/25 - 2013/7/1 2014/2/13 - 2015/5/8
2015/8/10 - 2019/4/4
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Figure 4.3: Plots of the real-estate in the U.S. (upper panel) and China (lower
panel).
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Figure 4.4: Plots of the stocks in the U.S. (upper panel) and China (lower panel).
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Figure 4.5: Plots of the 3-Year bond yield to maturity in the U.S. (upper panel)
and China (lower panel).
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Figure 4.6: Plots of the off-shore forex rate between the U.S. dollar and the
Chinese yuan.

Table 4.4: SWARCH-EVT estimated parameters.

Univariate IYR S&P500 T-Bond TAO SSEC G-Bond USD/CNH
u 0.018∗∗ 0.000∗∗∗ 1.037∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 2.648∗∗∗ 0.000∗∗∗

(1.385) – (8.526) – – (11.287) –
θ1 -1.107∗ -0.609∗ -0.478∗ 0.033∗∗∗ -0.201∗ -0.196∗ 0.000∗∗∗

(-0.073) (-0.063) (-0.062) (1.638) (-0.222) (-0.556) –
α01 0.188∗∗∗ 0.415∗∗∗ 0.001∗∗∗ 0.040∗∗∗ 0.002∗∗∗ 0.001∗∗∗ 0.000 ∗∗∗

(13.164) (15.743) (9.596) (22.907) (3.903) (1.181) –
α02 0.840∗∗∗ 3.109∗∗∗ 0.004∗∗∗ 0.123∗∗∗ 0.036∗∗∗ 0.002∗∗∗ 0.000∗∗∗

(9.416) (10.277) (12.163) (12.576) (4.218) (8.095) –
α11 0.0532∗∗∗ 0.064∗∗ 0.210∗∗∗ 0.000∗∗ 0.165∗∗∗ 0.797∗∗∗ 1.000∗∗∗

(1.461) (0.084) (3.213) (0.021) (1.913) (0.965) –
α12 0.122∗∗∗ 0.186∗∗∗ 0.262∗∗∗ 0.107∗∗∗ 0.999∗∗∗ 0.523∗∗∗ 1.000∗∗∗

(2.545) (3.303) (5.021) (2.231) (312.461) (5.481) –
p1 0.622 0.678 0.381 0.597 0.665 0.283 0.174
p2 0.378 0.322 0.619 0.403 0.335 0.717 0.826

ξL 0.102∗∗ 0.048∗∗∗ 0.202∗∗∗ 0.085∗∗∗ 0.198∗∗∗ 0.305∗∗∗ 0.229∗∗∗

(1.598) (0.838) (3.012) (1.288) (2.517) (3.433) (2.854)
ξR -0.045∗∗ 0.078∗∗∗ 0.137∗∗∗ -0.021∗∗ -0.032∗∗ 0.244∗∗∗ 0.204∗∗

(-0.679) (1.151) (1.972) (-0.309) (-0.568) (3.179) (2.965)
βL 0.537∗∗∗ 3.157∗∗∗ 0.136∗∗∗ 0.277∗∗∗ 5.245∗∗∗ 0.125∗∗∗ 0.059∗∗∗

(11.223) (11.408) (10.915) (10.739) (10.008) (9.607) (9.779)
βR 0.490∗∗∗ 1.714∗∗∗ 0.120∗∗ 0.301∗∗∗ 5.379∗∗ 0.111∗∗∗ 0.069∗∗∗

(11.001) (10.853) (10.701) (10.792) (10.802) (10.207) (10.820)

The maximum likelihood estimations of the SWARCH-EVT model. The
t-values are provided in the parenthesis. ∗,∗∗ and ∗∗∗ denote significant levels at
0.1, 0.05 and 0.01, respectively. − means the value is less than 10−5
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Marginal model estimations

The estimated results of the univariate SWARCH-EVT marginal model are dis-

played in Table 4.4. Basically, it supports the validity of SWARCH-EVT as-

sumptions on the margins as all model parameters are shown to be significant.

As the state probabilities in the high (p2) and low (p1) volatility states suggest,

the bond and currency markets tend to be more volatile during the sample pe-

riod with their p2 values greater than 0.5, whilst the stock and real-estate markets

tend to be more stable in both China and the U.S. .

Empirical correlated patterns

On the basis of the univariate SWARCH-EVT estimation, marginal residuals

are obtained and transformed to uniformly distributed series to fit the pair-wise

dependence structure with bi-variate copulas. Based on the entire samples of

residuals, Figure 4.7 shows the residual histograms (the diagonal subplots), as well

as scatter plots (sub-plots in the lower triangle) and the Kendall’s τ ′s (subplots in

the upper triangle) between each pair of assets. The implications can be obtained

regarding the general tail dependence structures.

1. The stock and real-estate markets in both the U.S. and China exhibit

strong tail dependencies with high Kendall’s τ ′s (0.49 between the IYR

and S&P500 in the U.S., and 0.21 between the TAO and SSEC in China),

as well as clear linear relationships in the scatter plots.

2. In addition, the S&P500 and T-bond exhibit strong positive linkages in the

tails with the Kendall’s τ = 0.23.

3. Both the U.S. dollar and Renminbi show negative tail correlations with

their local real estate and stock markets suggested by negative Kendall’s

τ ′s, and less significant correlations with local bond markets.
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(a) The Chinese real-estate, stock, bond and forex markets.

(b) The U.S. real-estate, stock, bond and forex markets.

Figure 4.7: The scatter plots of empirical correlation between asset residuals.

The residual histograms, the pair-wise scatter plots with the linear regression results (red line)
and the elliptical contours (black), and the Kendall’s τ ′s. (∗,∗∗ and ∗∗∗ denote significant
levels at 0.1, 0.05 and 0.01, respectively.)
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Copulas estimated risk transmission paths

To gain a more comprehensive picture of the assets’ tail behaviors under market

turmoils, Figure 4.8 and 4.11 explicitly show the R-vine copula structure changes

in the entire sample and the crisis episodes. In particular, subplot (a) shows the

R-vine path whilst (b)(c)(d) are the decomposed trees with the edges labeled by

the fitted copulas and estimated Kendall’s τ ′s in parentheses. The major findings

are threefold.

1. The R-vine copula dependence structure during the crisis periods (Figure

4.9 - 4.11) varies from that in the full sample (Figure 4.8 - 4.10). In the

crisis period, the American stock market and the Chinese real-estate market

tend to play central roles in spreading risks to their local financial sectors.

2. Moreover, strong linkages between the real-estate and stock markets are

detected in both the U.S. and China during the crisis with opposite trans-

mission directions i.e. U.S.: stock → real-estate. China: real-estate →

stock.

3. In the full sample, the exchange rate is shown to be the starting node of tail

dependence in both the U.S. and China, with the transmission path of the

forex → real-estate → stock → bond market. However, the relatively low

and negative values of the Kendall’s τ suggest an overall weak spreading

effect from the forex to domestic markets.

Table 4.5 lists the parameter estimations of the R-vine copulas in Figure 4.8 -

4.11. Basically, the tail dependence parameters tell the same story as the R-vine

copula trees in terms of the risk transmission channels in the U.S. and China.

In general, the American markets demonstrate higher levels of tail-dependent

contagion effects than the Chinese markets with greater values of τ ′s and λ′s.

From the full sample estimation in panel A to the crisis-period estimation in

panel B, the values of the Kendall’s τ ′s between the real estate and stock markets

increase significantly in both countries, which further supports the R-vine copula

tree structures obtained in Figure 4.9 and 4.11.
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(a) R-vine path (b) Tree 1

(c) Tree 2 (d) Tree 3

Figure 4.8: The R-vine path and decomposed trees for all residuals in the U.S..

(a) R-vine path (b) Tree 1

(c) Tree 2 (d) Tree 3

Figure 4.9: The R-vine path and decomposed trees for crisis-period residuals in
the U.S..
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(a) R-vine path (b) Tree 1

(c) Tree 2 (d) Tree 3

Figure 4.10: The R-vine path and decomposed trees for all residuals in China.

(a) R-vine path (b) Tree 1

(c) Tree 2 (d) Tree 3

Figure 4.11: The R-vine path and decomposed trees for crisis-period residuals in
China.
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Table 4.5: R-Vine copula estimation for the U.S. (upper panel) and China (lower
panel).

Country Tree Edge Family Parameter1 Parameter2 Kendall’s τest. λU λL

panel A: full samples

U.S.

Tree 1
1,2 BB1 0.57(1.89) 1.61(2.55) 0.52 0.461 0.469
2,3 t 0.37(1.67) 5.08(3.89) 0.24 0.145 0.145
4,1 Tawn 1270 -1.21(-0.04) 0.06(0.02) -0.03 0 0

Tree 2
1,3|2 t -0.21(-0.03) 11.33(6.56) -0.13 0.001 0.001
4,2|1 Joe270 -1.06(-0.09) – -0.03 0 0

Tree 3 4,3|1,2 Tawn 1180 1.4(2.89) 0.02(0.65) 0.01 0 0.046

panel B: crisis samples

Tree 1
2,1 t 0.67(1.43) 4.79(2.67) 0.57 0.327 0.327
2,3 t 0.27(1.27) 13.7(7.29) 0.25 0.011 0.011
4,2 Tawn 1270 -1.31(-0.06) 0.25(0.93) -0.05 0 0

Tree 2
3,1|2 BB190 -0.07(-1.03) -1.04(-0.02) -0.05 0 0
4,3|2 Tawn 1180 1.9(3.19) 0.01(0.39) 0.01 0 0.010

Tree 3 4,1|3,2 t 0(2.68) 9.31(6.95) 0 0.009 0.009

panel A: full samples

China

Tree 1
1,2 t 0.34(0.61) 6.80(2.71) 0.22 0.086 0.086
2,3 t -0.02(-0.16) 14.82(5.34) -0.02 0.001 0.001
4,1 Tawn 1270 -1.30(-0.15) 0.15(0.06) -0.07 0 0

Tree 2
1,3|2 t -0.01(-1.12) 18.16(4.72) 0 0.000 0.000
4,2|1 Frank -0.32(-1.57) – -0.04 0 0

Tree 3 4,3|1,2 Tawn 2 1.14(0.12) 0.06(0.07) 0.02 0.026 0

panel B: crisis samples

Tree 1
1,2 t 0.35(2.26) 20.24(18.67) 0.23 0.004 0.004
1,3 Tawn 1270 -1.27(-0.11) 0.05(1.43) -0.03 0 0
4,1 BB7270 -1.09(-0.07) -0.1(-0.04) -0.09 0 0

Tree 2
4,2|1 Tawn 290 -1.28(-1.16) 0.01(4.29) -0.01 0 0
4,3|1 Survival Clayton 0.06(1.73) – 0.03 0.001 0

Tree 3 3,2|4,1 Tawn 1270 -1.8(-0.02) 0.01(3.45) -0.01 0 0

Edges are: for the U.S. 1↔ IYR, 2↔ S&P500, and 3↔ T-Bond; for China
1↔ TAO, 2↔ SSEC and 3↔ G-Bond. 4↔ USD/CNH for both countries.
t-statistics are in the parenthesis for Parameter1 and 2. λU and λL reflect the
tail dependence for upper and lower sides.

4.2.3 Bi-SWARCH-EVT estimation

Contagious episodes across markets

We further investigate the Bi-SWARCH-EVT model estimated contagious episodes.

Figure 4.12 - 4.13 show the bi-variate SWARCH smooth probabilities for the

high-high volatility state s = 4. The contagious episodes are thus inferred as

the estimated smooth probability pst=4 exceeds 0.5 and summarized in Table 4.6.

The Bi-SWARCH-EVT model estimated parameter results are provided in Table

4.7.
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Figure 4.12: U.S.: Bi-variate SWARCH inference based on the smooth probability
pst=4 > 0.5.
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Figure 4.13: China: Bi-variate SWARCH inference based on the smooth proba-
bility pst=4 > 0.5.
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Table 4.6: Count of contagious periods in the high-high volatility state (st = 4)
for each pair of assets.

Country Bi-variate Obs.(pst=4 > 0.5) Duration

U.S.

real-estate and stocks 112 2008/9/19 - 2009/3/20 2010/4/30 - 2010/5/14

real-estate and bond 462
2008/6/13 - 2008/6/20 2008/9/12 - 2009/9/18
2010/4/23 - 2010/6/18 2011/7/8 - 2011/10/21

real-estate and forex 476

2008/6/13 - 2008/6/20 2008/9/12 - 2009/12/4
2010/2/5 - 2010/2/12 2010/4/30 - 2010/5/7
2010/5/7 - 2010/6/11 2010/8/27 - 2010/9/3
2011/7/15 - 2011/7/29 2011/9/16 - 2011/11/4
2012/5/18 - 2012/5/25 2013/6/14 - 2013/6/21
2015/4/17 - 2015/4/24

stocks and bond 539

2008/8/29 - 2009/7/17 2010/4/30 - 2011/10/21
2015/12/18 - 2015/12/25 2016/1/8 - 2016/1/15
2018/2/23 - 2018/3/2 2018/10/26 - 2018/11/2
2018/12/21 - 2019/1/18

stocks and forex 56

2008/11/21 - 2008/11/28 2011/8/5 - 2011/8/12
2011/10/21 - 2011/10/28 2015/12/18 - 2015/12/25
2018/2/23 - 2018/3/2 2018/10/26 - 2018/11/2
2018/12/14 - 2018/12/21 2019/1/18 - 2019/1/25

bond and forex 469

2008/11/21 - 2008/11/28 2010/6/18 - 2010/12/10
2011/4/8 - 2011/4/ 2011/8/5 - 2011/8/12
2014/1/24 - 2014/2/28 2014/11/14 - 2015/4/17
2015/8/7 - 2015/8/14 2015/10/16 - 2016/4/8
2016/5/6 - 2016/7/8 2016/9/30 - 2017/1/6
2017/3/24 - 2017/3/31 2017/9/15 - 2017/11/24
2017/12/22 - 2017/12/29 2018/1/19 - 2018/2/23
2018/4/20 - 2018/4/27 2018/5/18 - 2018/5/25
2018/8/3 - 2018/8/10 2018/9/21 - 2019/2/1

China

real-estate and stocks 35
2008/6/27 - 2008/7/4 2008/9/26 - 2008/10/3
2008/11/14 - 2008/11/28

real-estate and bond 14 2008/9/26 - 2008/10/3 2008/10/31 - 2008/11/7

real-estate and forex 28
2008/12/21 - 2008/11/28 2011/8/5 -2011/8/12
2011/10/21 -2011/10/28

stocks and bond 84

2008/10/31 - 2008/11/7 2010/7/2 - 2010/7/9
2010/10/29 - 2010/11/5 2010/12/17 - 2010/12/24
2012/12/21 -2012/12/28 2013/10/25 - 2013/11/1
2013/12/6 - 2013/12/13 2014/1/3 - 2014/1/10
2016/2/5 - 2016/2/12 2017/3/17- 2017/3/24
2018/1/5 - 2018/1/12 2018/7/13 - 2018/7/20

stocks and forex 280

2008/9/5 - 2008/11/7 2010/9/17 - 2010/1//29
2013/12/6 - 2014/2/21 2014/11/14 - 2015/11/21
2015/8/21 - 2015/10/9 2015/12/18 - 2016/1/22
2016/3/11 - 2016/3/18 2016/4/22 - 2016/7/1
2016/12/16 -2016/12/23 2018/2/23 - 2018/3/2
2018/4/13 - 2018/5/25 2018/7/6 - 2018/8/17
2018/10/12 - 2018/10/26

bond and forex 98

2008/11/21 - 2008/11/28 2011/8/5 - 2011/8/12
2015/3/27 - 2015/4/3 2015/8/7 - 2015/8/14
2015/10/31 - 2015/11/7 2016/11/25 - 2016/12/2
2018/1/5 - 2018/1/12 2018/7/13 - 2018/7/20
2018/8/17 - 2018/8/24 2018/12/14 - 2019/1/18
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Figure 4.12 and 4.13 provides overall supportive evidences on the implications

drew from the R-vine copulas with additional information in terms of dating the

contagious periods.

1. There is a compelling indication of existing contagion channels in the U.S.

markets, especially between the real-estate and stock markets, as well as

the forex and interest rate markets. Moreover, risk contagious episodes

related to the real-estate and stock markets are mostly detected during the

aftermath of the 2008 Subprime Debt Crisis, whilst the bond and forex

markets are more heavily influenced by the risk spreading around mid-2016

when Brexit took place. As Figure 4.12 suggests, finance-related turbulence

tends to generate joint effects on the U.S. real-estate and stock markets

whilst the forex and interest rate are more likely to show binding reactions

towards international political shocks.

2. Although risk spreading could be observed in the China’s financial markets,

especially after the 2008 global crisis, contagion effects are more temporary

in China comparing with the U.S.. Nonetheless, a uniform spillover ef-

fect was detected in the real estate, stock, and bond markets against the

forex at around 2011, soon after the change of the Renminbi policy to

the “crawling-like agreement”. Furthermore, the Chinese stock market and

the USD/CNH exchange rate demonstrate an increasing intensity in terms

of risk transmission after 2014 mainly due to the combined effect of the

speeding-up of Renminbi internationalization and the uncertainties raised

from the global economic and political changes.

Comparative analysis on spillover effects

In Table 4.6, detected contagion episodes are summarized mainly regarding two

cases, i.e. either the real-estate or stocks to be the crisis originator. Meanwhile,

total numbers of contagious observations (in the unit of the week) between each

pair of assets are provided. Table 4.6 provides supportive evidence on the argu-

ments made according to the smooth probability plots with additional findings

summarized as follows.
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For the U.S. markets,

1. the risk spillover effects are shown to be more significant than those in the

Chinese markets, with overall longer contagion episodes especially between

the four pairs of assets, namely real-estate and bond, real-estate and forex,

stock and bond, and bond and forex, of which the contagion episodes all

exceed 450 weeks.

2. The stock and currency are shown to be the least connected pairs, with the

total number of contagion observations being 58 weeks.

The linkages between the Chinese financial sectors in terms of contagion pe-

riods are rather different from those in the U.S.. Specifically,

1. the Chinese real-estate market appears to be more stable towards transmit-

ted risks from other markets with overall less than 40 weeks of contagion

during the 21 years of observation, whilst the rest three markets are more

connected with longer contagion periods.

2. Further, it is suggested that the major risk transmission channel in the

Chinese financial sectors lies between the stock market and the USD/CNH

exchange rate with 280 weeks of contagion since 2008.

Table 4.7 shows the parameter estimations for Bi-SWARCH-EVT model given

the crisis originator of real estate. It is observed that 1) the state-dependent

correlation coefficients ρ2 (for high-vol. state) are greater than ρ1 (for low-vol.

state) for all paired American markets, but the situation conversely performs in

China; and 2) for the GPD estimations on ξ (bottom panel), all pairs of markets

in both countries perform thicker tails in downside regime (since most values of

ξL are less than ξR, except the negative value of ξR already implying the light

tail on the upper side. Thus, the table not only validates the necessity of hiring

the EVT to estimate the heavy-tail effect leading contagion but supplements the

understanding of market dependence by comparing the state-varying correlation

coefficients between high- and low- volatility states.
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Table 4.7: Bi-SWARCH-EVT model estimated parameters.

originator:real-estate

Country U.S. China
Recipient stocks bond forex stocks bond forex

uo 0.241 0.301 0.292 0.279 0.022 0.183
(1.172) (-0.109) (2.113) (1.114) (2.101) (-0.215)

ur 0.217 -0.095 -0.027 0.239 0.105 -0.029
(1.183) (-0.101) (-0.515) (1.752) (1.892) (-0.190)

θo -0.009 -0.002 -0.021 -0.004 0.010 0.002
(-0.281) (-0.160) (-0.241) (-0.178) (2.031) (1.512)

θr -0.064 -0.027 0.060 0.121 0.241 0.056
(-0.142) (-0.024) (3.140) (0.041) (2.122) (0.998)

αo,0 5.80 3.725 4.245 14.15 10.701 10.941
(2.378) (0.426) (1.896) (5.118) (2.460) (3.662)

αr,0 4.210 6.928 0.282 44.706 33.480 0.018
(1.974) (-0.237) (1.710) (5.219) (2.128) (3.261)

αo,1 0.153 0.281 0.000∗∗ 0.000∗∗ 0.000∗∗ 0.000∗∗∗

(1.136) (0.020) (0.000) (0.000) (0.000) (0.000)
αr,1 0.000∗∗ 0.132 0.297 0.645 0.638 0.216

(0.000) (0.005) (-0.061) (1.072) (0.161) (-0.083)
γo,2 20.469 29.913 19.118 87.421 12.342 7.630

(1.140) (2.963) (1.672) (6.718) (5.250) (2.314)
γr,2 14.257 15.631 0.055 95.727 17.796 16.564

(2.343) (1.587) (4.727) (4.637) (6.730) (3.721)
ρ1 0.180 0.022 0.006 0.495 0.025 0.007

(3.127) (1.296) (2.153) (1.096) (-0.128) (0.032)
ρ2 0.447 0.189 0.024 0.003 0.007 0.000∗

(2.141) (1.064) (2.011) (1.122) (0.150) (0.000)

ξL,o 0.625 0.229 0.503 -0.073 -0.107 0.308
(2.612) (1.406) (2.636) (-0.472) (-0.896) (2.017)

ξL,r 0.522 -0.137 0.336 0.879 0.008 0.359
(2.124) (-1.538) (1.749) (3.007) (0.169) (1.774)

ξR,o 0.332 0.387 0.249 0.029 0.064 -0.073
(1.749) (2.045) (1.539) (0.179) (0.454) (-0.536)

ξR,r 0.159 0.217 0.145 0.586 0.466 0.156
(0.954) (1.341) (1.008) (2.583) (2.257) (1.046)

βL,o 0.549 0.576 4.285 0.665 0.707 5.349
(3.661) (4.292) (4.311) (5.007) (5.105) (4.781)

βL,r 0.434 1.547 0.466 2.212 2.797 0.451
(4.195) (5.592) (3.964) (3.375) (2.899) (3.953)

βR,o 0.587 0.326 4.077 0.662 0.616 7.110
(4.124) (4.250) (4.502) (5.178) (5.032) (5.572)

βR,r 0.408 1.463 0.656 1.575 1.334 0.644
(4.308) (3.996) (4.636) (3.976) (4.155) (4.587)

The t-value is in the parenthesis below each estimated coefficient. ∗∗ and ∗∗∗

denote the significance at level 0.05 and 0.01, respectively.
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4.3 Implications

In this chapter, two parallel hybrid approaches are introduced by combining the

SWARCH models, EVT and R-vine copulas, with the target of studying the

contagion effects of the real estate, stock, bond, and forex markets in China in

comparison with the U.S.. In particular, the SWARCH-EVT-Copula model is

implemented to obtain information in terms of the crisis periods, tail dependence

correlations and risk transmission channels, whilst the Bi-SWARCH-EVT model

is conducted mainly to explore the possible dating of the contagion episodes.

Regarding the model results, market behaviors in response to major events, in-

cluding the 2008 global financial crisis, the modification of the Renminbi policy,

the Brexit referendum, etc., are explicitly discussed. Key implications of this

study are summarized as follows.

Country-wise, the American financial markets are shown to share a higher

level of integration and exhibit a clearer linkage than the Chinese markets with

the stronger tail dependence and longer contagion periods in crises. The major

risk transmission channels in the U.S. are within the three markets of real estate,

stock, and bond, whilst the forex is less connected to its domestic markets with a

minor negative correlation. In China, the real-estate market demonstrates overall

high stability against major economic shocks after 2008, which could be explained

by the combined effect of the urbanization process, the money supply on property

purchase, and the high expectation on housing prices. Furthermore, the risk

spillover effects between the foreign exchange rate and other Chinese financial

sectors, especially the stock market, are shown to be temporarily aggravated as

reactions to the global political and economic reshapes since 2015.

Market-wise, the real-estate and stock markets not only show the strongest

linkage but play the central role in the crisis transmission among all market assets.

With empirical evidence, the real-estate and stock markets tend to evolve into

the driving force of financial turbulence. Moreover, the bond market receives risk

spillovers from both the real-estate and stock markets and takes a longer time to

recover from the interest rate triggered crises in comparison with the real-estate

and stock markets. In addition, the USD/CHN exchange rate demonstrates a

high degree of sensitivity towards risks with the most extended high-volatility
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period in the sample and has more reactive behaviors in the Chinese markets

rather than in the U.S..

On the basis of increasing linkage across markets affecting the traders’ deci-

sions during the financial crisis (Zhang and Liu, 2018; BenSäıda, 2018; Cubillos-

Rocha et al., 2019), our study provides key conclusions for the market participants

as well as policymakers that A) the proposed hybrid models are the reliable and

thorough mechanism of understanding the contagion effects and the risk trans-

mission channels in crises, B) the American financial markets appear to be under

greater exposures of systemic risks as a result of its contagious system, and C)

despite that the investors seem to be secured from the flourishing real-estate

market in China during the last decade, the exchange rate risk emerges to play

a more prominent role in the evolution of Chinese markets with greater scales

of cross-sector co-movements and acts one of the major linkages to connect the

Chinese financial system with global markets.
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Chapter 5

Integrated early warning system
development

5.1 Conceptual model of integrated EWS

In this chapter, the conceptual model of the integrated early warning system for

specific financial market turbulence prediction will be proposed. To the best of

our knowledge, this is the first study to sculpt the EWS in a compact way to

distinguish different functional zones for the crisis classification and the crisis

prediction based on market asset price volatility dynamics.

Figure 5.1: The general structure of EWS with three essential components.
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Figure 5.1 shows the general frame for an integrated EWS, which is dia-

grammed with three essential components: crisis classifier, crisis predictor, and

warning generator.

Starting from the bottom base of the crisis classifier, the price index dynamics

will be input into the Markovian switching model to infer the probability of the

observation being in either turmoils or tranquility. After being thresholded, the

probabilities will be transformed into the identified crisis samples in a binary

function, and these identified crisis samples will access to the predictive models

as the target variable for further prediction.

In the next functional zone of crisis predictor, predictive models will take both

endogenous (i.e. price index including log returns and time-lagged price, filtering

or smooth probabilities inferred from SWARCH model) and exogenous factors

(i.e. explanatory variables that reflect the economic situations and target market

stability), and generate the final predicted warning signals as being input the

target variable.

At last, the stratum of the warning generator will output the predictions for

further usage in politics and investing activities. That is the normal flow to ac-

complish the full EWS functioning diagram yet being considered extra techniques

to improve the EWS performance on identifying crisis samples and predicting cri-

sis signals.

5.1.1 Crisis classifier: conventional versus improved

As Figure 5.1 highlights at the bottom, two red blocks can be recruited by the

SWARCH based crisis classifier as improved techniques, namely regime classifica-

tion measure (RCM) and two-peak methods. Comparing to the conventional way

that takes the fixed number of regimes (usually for high and low two volatility

states) and the arbitrary cutoff value (generally 0.5), the improved techniques

provide further explorations on determining the number of volatility levels and

optimizing the value of cutoffs to boost the appropriateness and robustness in

the SWARCH classifying process.

To make a clarified display for improved techniques, we will exploit one for

each market of China’s bonds and stocks, respectively, i.e. the RCM based
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SWARCH model will be applied to the bond market, and the two-peak dynami-

cally thresholding technique to determine the cutoff values will be examined for

the stocks.

Arbitrary versus dynamic cutoffs

The thresholding issue for crisis identification has been a noticeable problem

for financial studies especially relating to date crisis periods. Lestano (2007)

discusses the threshold variation in dating currency crises and proves that the ad

hoc thresholds are less sensitive than extreme-value determining thresholds in a

recursive selection scheme. However, in the SWARCH frame, rare studies query

whether the ad-hoc cutoff of 0.5 is absolutely universal for all asset indexes. That

is exactly the initial impetus for us to propose the question (displayed in Chapter

3, Section 3.1) on SWARCH classification ability in terms of cutoff selection and to

further explore the dynamical thresholding methodology to investigate whether

it will improve the volatility classification based crisis classifier. In our study,

the two-peak method is adopted (in the following section of 5.2.1) to accomplish

the dynamical thresholding scheme on the SWARCH inferred probabilities. The

specific reason and application process of adopting the two-peak method will be

described in Section 5.2.1

Intuitive versus metric-determined volatility levels

Corresponding to the other aforementioned question on SWARCH model defined

crisis classifier, two regimes of high and low volatility levels seem hardly compe-

tent to adapt all price index dynamics with varied fluctuation dispersion features.

In fact, the original form of SWARCH allows K (more than two) regimes (Hamil-

ton, 1989, 1994) but most studies opt for 2 to simplify the probability inference

process and avoid tangled calculation for high dimensional transition matrix1.

However, in practice, this simplified operation will not improve the accuracy of

SWARCH model’s identification of crisis samples. Even worse will bring a chaotic

crisis probability inference pattern for the assets that have not fluctuated enough

1Appendix A shows the full structure of regime-transition probability matrix for K = 2 with
two variables, which has been expanded to 16×16 dimension. The greater regime K, the more
complex the transition matrix.
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in the observed period. In our study, the appropriateness of using two volatility

regimes will be examined, and then the optimization on the count of regimes will

be made by RCM, the measurement which is proposed to determine the count of

volatile states in the SWARCH frameworks (Ang and Bekaert, 2002), based on

bond asset data. The application process will be specified in Section 5.3.4.

5.1.2 Crisis predictor: classic versus stylized

Besides owning a robust crisis classifier, the other key to generate effective warn-

ing signals in the EWS frame is to acquire a powerful crisis predictor. A number

of econometric models based on either parametric or non-parametric methods

(Eichengreen et al., 1995; Frankel and Rose, 1996; Kaminsky and Reinhart, 1999;

Abiad, 2003; Bussiere and Fratzscher, 2006; Dawood et al., 2017) have been pro-

posed to fulfill such predicting role. These classical models, though they have

strong interpretability on economic significance, the performed forecasting pre-

cision is far from the asset market investment’s requirement for timeliness, es-

pecially in the contemporary data-booming era. The stylized machine learning

models seem to remedy the classic models’ deficiency in forecasting capability

with mighty computing power and operating flexibility, even though they bear

the blame of over-parameterization and in-interpretability. In following sections,

a comparative analysis will be made in the horse race 1) between machine learning

models with different structural complexity (such as simplistic neural networks

and complex deep neural networks) and 2) between classic (such as logit regres-

sion) and machine learning models (such as attention based neural networks) for

specific markets. This horse race also inspires the further exploration on improv-

ing the machine learning models’ performance on detecting leading indicators and

validating the detected factors’ reliability, which will be discussed in Chapter 6

for the contagion fused EWS development.

The rest of this chapter’s content will be arranged as follows. The EWS for

China’s stock market will be first introduced by experimenting with the two-peak

dynamically thresholding instructed crisis classifier and deep neurons of LSTM

networks embedded predictive model in Section 5.2. Then, Section 5.3 will con-

struct the alternative EWS, which aims to solve the problems of regime number
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selection and extracting leading indicator factors extraction by i) adopting the

RCM based crisis classification and ii) stacking the attention into the deep neural

structure. Section 5.4 will summarize the implications from experiment results

and discuss unsettled questions linked to further works for constructing the con-

tagion fused EWS.

5.2 EWS for China’s stock market

In this section, we propose the stock EWS for China with threefold aims.

First, we attempt to develop a precise and robust crisis classifier to identify

daily stock market turbulence on the basis of switching ARCH (SWARCH) model

(Hamilton and Susmel, 1994) and two-peak (or valley-of-two-peaks) thresholding

(Rosenfeld and De La Torre, 1983) technique. In our case, the classification way in

two regimes of high- and low- volatility states that respectively imply the market

asset turbulent and tranquil episodes (Hamilton and Susmel, 1994; Hamilton and

Gang, 1996; Ramchand and Susmel, 1998; Edwards and Susmel, 2001) will be

adopted. Furthermore, the two-peak method will be applied in a forward sliding

approach (Jain et al., 1995) to automatically determine the threshold for more

robust segmentation based on time-varying observations.

Second, to generate effective warning signals for stock turbulence on a daily

basis, the dynamic scheme for EWS is implemented by integrating the improved

SWARCH based crisis classifier, and LSTM neural networks (Jordan, 1997) based

crisis predictor. The LSTM is proven to be a state-of-art mechanism in the general

field of financial forecasting (Chen et al., 2015; Fischer and Krauss, 2018; Wu and

Gao, 2018; Cao et al., 2019), including volatility forecasting (Yu and Li, 2018;

Kim and Won, 2018; Liu, 2019).

Last, a comprehensive evaluation of the integrated EWS should be conducted

by examining the crisis classifier and predicting robustness separately. Specif-

ically, the integrated EWS proposed crisis classifier will be compared with the

CMAX based crisis indicator function, which has been widely used to define stock

crises. And then, the LSTM crisis predictor will be evaluated upon two baseline

machine learning models of the back-propagation neural network (BPNN) and
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support vector machine (SVM), regarding the statistical metrics including the

rand accuracy (Rand, 1971), binary cross-entropy loss (Shannon, 1948), receiver

operating curve (ROC), area under curve (AUC) (Metz, 1978) and the SAR score

(Caruana and Niculescu-Mizil, 2004). To evaluate the stability for proposed EWS

as a whole, the early warning algorithm is not only performed on the test set but

testified in k-fold cross-validations as well.

5.2.1 Crisis identification: two-peak determined dynamic

threshold

Stock crashes are inevitable results of volatility jumps. Thus high/low volatility

regimes of the stock price oscillation are investigated based on the SWARCH

model (Hamilton and Susmel, 1994) to reflect the crisis/non-crisis periods. The

classification of high/low volatility regimes can be implemented on the basis of

SWARCH model inferred filtering probabilities, which is a byproduct of the max-

imum likelihood estimation (which derivation refers to Chapter 3 and Appendix

A). Here, the model of AR(1)-SWARCH(2,1) is adopted, which has been specifi-

cally formulated in Chapter 3, Section 3.1 to define the crisis classifier.

The filtering probability based on historical observations till time t can be

written as

P (st = i|Yt;θ), (5.1)

where θt is the vector of model parameters to be estimated, can be interpreted

as the conditional probability based on the current information Yt.

Then, the crisis classifier can be defined as the following binary function.

Crisist =

1, P (st = 2|Yt; θ̂t) ≥ c,

0, otherwise,

(5.2)

where θ̂t is the estimated parameter vector and c is the cutoff (that is assigned

value between 0 and 1) for identifying crises.

In this way, the stock crisis prediction, as well as the early warning signaling,
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are structured as a binary classification problem through the mechanism that

filtering probabilities of the system being in the high volatility regimes tend to

increase as the stock price becomes more volatile. There exists a threshold c that

identifies the occurrence of a potential crisis once it is exceeded. The level of c

indicates the lowest-level severity of the stock market turmoil that is classified as

“crisis”, of which the determination can be a tricky problem.

The two-peak method is thus adopted to automatically select the crisis thresh-

old that balances the trade-off between sensitivity and false alarms (Babecký

et al., 2014). It is first developed with the general purpose of finding the opti-

mal threshold in the context of binary classification and is proven experimentally

credible as solving image processing-related classification problems 2. According

to the two-peak method, the optimal threshold of a binary classification system

is the minimum value between two peaks of the observation’s frequency density

histogram (Weszka, 1978). There are several other automatic thresholding mech-

anisms that are built on the histogram, such as the Otsu’s method (Ohtsu, 2007)

that solves the multi-threshold problem by considering the pixel variance. Here

we use two-peak as it is the most straightforward and the foundation of other

approaches thereafter.

Figure 5.2: The two peak thresholded valley value for the cutoff c = α.

2Prewitt and Mendelsohn (1966) first introduce the two-peak method in the cell image
analysis of distinguishing the gray-level difference between the background and the object. The
performance of the method is further verified in Rosenfeld and De La Torre (1983) by analyzing
the histogram’s concavity structure.
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Given that our crisis classifier has two state classes of crisis (1) and non-crisis

(0), the two-peak method is applied to determine the cutoff of our crisis classifier

by the following steps:

1. Till time t, the SWARCH produces filtering probabilities for the high-

volatility state P (st = 2|Yt; θ̂t);

2. Sketch the histogram of all high-volatility filtering probabilities from time

0 to t, in which the valley bottom of two peaks is selected as the optimal cutoff

point. (Figure 5.2 examples the histogram with a valley point of α, which will be

taken as the optimal cutoff for thresholding the filtering probabilities);

3. Perform the two-peak method on a recursive basis to obtain dynamic

thresholds as the prediction moves forward along the time horizon. (See Algo-

rithm 1 in the following section).

5.2.2 Forecasting system: LSTM based crisis predictor

The LSTM is hired as the predictive model to estimate the occurrence of stock

market turmoils on daily basis based on the set of historical information with a

fixed window size l. Figure 5.4 shows the predicting procedure that is made from

a network of l LSTM memory blocks sequentially processing the input of both

the explanatory variables {xt−l+1, ...,xt}3 and the vector of filtering probabilities

for the high-volatility state {P [st−l+1 = 2|Yt−l+1; θ̂t−l+1],...,P [st = 2|Yt; θ̂t]} from

time t− l + 1 to t, for t ≥ l.

The final output ŷt+1 is produced by a sigmoid function to squash the value

in the range of [0,1], indicating the probability of the observed sample being in

high-volatility at t + 1. Early warning signals are thus released for time t + 1

once the value of ŷt+1 exceeds the optimal crisis threshold selected by the two-

peaks method (refer to Section 5.2.1). Given the full sample size of T days, T − l

predictions will be made from t = l+1 onward. The LSTM network consists of 214

input layers, 32 LSTM layers, and the output layer, which brings 5921 parameters

to be trained. The batch size and epoch numbers are 20 and 100, respectively.

3where xt−l+1 is the vector [x1,t−l+1, x2,t−l+1, ..., xN,t−l+1] for N variables
4For the stock EWS study, the count of input features is 21 in total, thus the input layer

should keep the same with it.

86



Figure 5.3: LSTM cell for stock EWS.

Figure 5.4: LSTM with window size l.

The LSTM cell structure (see Figure 5.3) mainly duplicates that is depicted

in Chapter 3, Section 3.3 (see Figure 3.3)). Note that, the difference is the output

at time t being substituted by the sigmoid function at the upper right corner,

which is only included in the last cell of the full LSTM networks to produce the

final prediction of ŷt+1 in [0, 1].
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Algorithm 1: Draw daily warning for China’s stock turbulence.

Initial inputs:
The SSEC index price Pt;
The explanatory variables xt excluding Pt;

Final output :
The predicted signals ŷt+1;

1 calculate log returns of SSEC index price, {logRt, t = 1, ..., T};
2 set up the window size l;
3 for t from l to T do
4 repeat
5 for i from 1 to t+ 1 do
6 input logRi into SWARCH;

7 output filtering probability P [si = 2|Yi; θ̂i];

8 end
9 two-peak method selects the optimal cutoff ct;

10 for i from 1 to t+ 1 do

11 if P [si = 2|Yi; θ̂i] ≥ ct then
12 Crisisi = 1;
13 end

14 end
15 for j from 1 to l do
16 input explanatory variable vector xt−l+j, filtering

probability P [st−l+j = 2|Yt−l+j; θ̂t−l+j] and identified crisis
signals Crisist−l+j into LSTM neural networks;

17 end
18 output the prediction ŷt+1;

19 until t=T;

20 end

Thus, the full picture of integrated EWS for the stock can be drawn by imple-

menting the procedure of that 1) the crisis classifier first identifies stock market

turmoils according to Eq. 5.2 based on the SWARCH filtering probability of the

high-volatility state and the improved technique for automatically determining

the crisis cutoff by the two-peak method, 2) the identified crisis samples from

the classifier enter into the target variable and are meanwhile fed into the pre-

dictive model of LSTM networks together with other explanatory variables listed

in Table 5.1, and 3) early warning signals are generated as the LSTM predicted

results as exceeding the determined cutoffs on a dynamically-recursive basis. The

procedure is programmed by Algorithm 1 on the full sample of size T .

88



5.2.3 Data

In this study, the Shanghai Stock Exchange Composite (SSEC) index is hired to

reflect the Chinese stock market oscillation. Explanatory variables that are incor-

porated to predict stock crises are described in Table 5.1 in terms of frequency,

reflection and source. Specifically, endogenous factors include the close price, log

return and daily realized volatility5 of the SSEC index. The rest of the variables

are exogenous factors of four genres reflecting the U.S. stock market, currency

level, global and domestic economies, respectively. The samples span from Oct.

7, 2008 to Sept. 18, 2018 and are split into 70% training and 30% test sets.

Table 5.2 shows the full sample statistics of data included in this study. The

correlation heat-map of explanatory variables is displayed in Figure 5.5. Most

input variable factors are weakly correlated with each other, which gives the max-

imal orthogonality of the input information, except some empirical correlations

A) between the US stock index and Chinese domestic macroeconomic factors (of

CPI, M1, M2, and Fixed asset investment gain), B) between the US stock index

and the Chinese real-estate price, C) between the Chinese real-estate price and

the domestic macroeconomic factors (of CPI, M1, M2 and Fixed asset investment

gain) and D) among the domestic macroeconomic factors (of CPI, M1, M2 and

Fixed asset investment gain).

As the fixed investment gain and real-estate price index are strongly corre-

lated with the previously entered domestic factors of CPI, M1 and M2, they may

not sufficiently contribute extra information to model predictions. Furthermore,

the domestic economic variables seem to be hooked with U.S. stock market in-

dex, which reflects globalization on the one hand but lessens the dependency of

simultaneously referring to both domestic and overseas economic indicators to

warn the Chinese stock market turmoils on the other hand.

5The daily realized volatility at time t is defined as σrv =
√

1
Nt

∑Nt

t=1(pt − p̄t)2, where the

Nt is the count of days after time t, pt is the log return at t and p̄t is the average of log return
til t.
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Table 5.2: Statistics of explanatory variables.

Size Mean St.Dev. Skewness Kurtosis Jarque-Bera

SSEC close price 2427 2766.65 560.77 0.68 1.01 291.46∗∗∗

SSEC log return 2426 0.02 1.49 -0.78 4.86 2643.2∗∗∗

SSEC realized volatil-
ity

2426 1.7 0.31 1.86 4.05 3069.1∗∗∗

10-year Gbond index 2433 117.46 3.08 -0.04 0.01 0.5650∗∗∗

SHIBOR7d 1d 2438 0.53 0.45 1.9 9.82 10825∗∗∗

SHIBOR1m 7d 2438 0.72 0.55 0.43 0.28 79.137∗∗∗

Repo 2439 0.67 0.44 1.70 7.23 6228.7∗∗∗

Real-estate price index 2505 16.46 4.8 0.7 0.74 242.75∗∗∗

USD/CNY exchange
rate

2499 76.49 0.27 0.06 -1.46 217.38∗∗∗

Forex reserve 121 31229.5 5488.29 -0.61 -0.22 113.55∗∗∗

Forex liability 121 13.94 18.15 1.08 1.74 750.47∗∗∗

Interest rate for China 121 3.06 0.22 0.73 2.22 717.48∗∗

CPI 121 95.83 6.78 -0.4 -1.04 174.59∗∗∗

M1 121 3.38† 1.08† 0.47 -0.79 151.87∗∗∗

M2 121 1.10† 3.91† 0.12 -1.21 154.91∗∗∗

Fixed investment 121 18.29 7.99 0.05 -1.17 133.87∗∗∗

ISI 120 53.95 20.33 2.02 5.83 4906.2∗∗∗

S&P500 Index 2483 1682.81 529.84 0.19 -1.04 124.03∗∗∗

VIX 2489 19.43 10.08 2.48 7.48 7822.5∗∗∗

Gold Price 2475 1296.08 231.33 0.24 -0.14 26.129∗∗∗

Oil Price 2493 73.25 22.88 -0.12 -1.41 208.00∗∗∗

St.Dev. is the standard deviation. ∗ ∗ ∗ and ∗∗ denote the (null normal) hypothesis test at the
1% and 5% significance level. † denotes the unit of M1 and M2 is 1013 Chinese yuan.

Figure 5.5: Correlogram for input variables.
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5.2.4 Crisis classifier robustness

The credibility of an EWS has rooted in a precise and robust crisis classifier.

According to Figure 5.4 and Algorithm 1, stock crisis cutoffs are dynamically

computed for each prediction taking into account the current market condition as

well as past information. To validate the reliability of the proposed classification

mechanism, we analyze the crisis identification results in terms of their precision

and robustness.

Chronological evidence

As crisis classification is a subjective topic heavily depending on the individual

understanding of the crisis, the limited analysis could be done on quantitatively

evaluating the accuracy due to the lack of true crisis labels. Similar to empirical

studies for crisis prediction, we investigate the precision of the crisis classifier

with emphasis on the empirical evidence related to volatility regimes.

Figure 5.6: Log return of the SSEC stock index (upper panel) and the corre-
sponding high-volatility filtering probability (lower panel).

Figure 5.6 highlights the identified crisis periods in both the log returns (grey

in the upper panel) and filtering probability plots (red in the lower panel). The fig-

ure suggests that the proposed hybrid algorithm successfully capture all recorded

stock crises being reflected by volatile log returns and filtering probability jumps.
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Table 5.3: Stock market critical events and the EWS identified crisis episodes.

Critical Event Sign Identified turmoil episodes

2008 Global financial crisis
SSEC ended with 65%
down in the last quarter
of 2008.

2008/10/07 - 2009/11/06;
2009/11/16 - 2010/03/28.

2010 European debt crisis
SSEC dropped by 27% in
the first half of 2010 and
15% in the whole year.

2010/05/06 - 2010/09/16;
2010/10/08 - 2011/03/17.

– – 2011/10/08 - 2012/02/17.

2013 Industrial reformation

China’s stock market is
remarked as the weak-
est in the Asia with the
6.75% drop over the year
of 2013.

2013/03/04 - 2013/03/28;
2013/07/11 - 2013/08/12.

2015 Chinese stock crash

A third of A-shares (on
SSE) value was evapo-
rated within one month
from June 12, 2015.

2014/12/02 - 2016/04/27;
2016/05/09 - 2016/05/11.

2018 Sino-US trading war

China’s stock market lost
2.3 trillion dollars (about
25% market value) in
2018.

2018/02/09 - 2018/03/06;
2018/07/02 - 2018/08/03;
2018/08/06 - 2018/08/31;
2018/09/04 - 2018/09/18.

Table 5.3 extracted the start, and end dates for the EWS classified turmoil

periods by performing Algorithm 1 on the full sample in accordance with chrono-

logical shreds of evidence of critical events on China’s stock market. During the

recent decade from 2008 to 2018, five critical events truly emerged: 1) the 2008

global financial crisis triggered 65% decline of SSEC index, 2) the 2010 European

debt crisis caused an annual drop of 15%, 3) the 2013 industrial reform led a

greatest daily drop on 5.3% and the annual decline of 6.75%, 4) the 2015 China’s

stock market turbulence accumulated more than 30% devaluation of A-shares SSE

within one month, and 5) the 2018 Sino-US trading war brought about 25% loss

for the China’s stock index till the end of 2018. Thus comparing to these recorded

events, the crisis classifier identified turmoil periods (the last column in Table 5.3)

place a promising match except the episode of 2011/10/08 - 2012/02/07, which

cannot be explained by the chronology.
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Comparison with CMAX based classifier in statistics

The robustness of a model broadly refers to its error-resisting strength and re-

silience in producing results as data change. Therefore, robust crisis classifica-

tions are subject to a dynamical thresholding mechanism to handle turbulence

with limited influence from sample variations.

Table 5.4: Statistics of crisis cutoffs in the full sample and test set.

Count Mean St.Dev Median Mode Range

Cutofffull-sample 2408 0.513 0.119 0.478 0.481 1.00
Cutofftest-set 720 0.430 0.128 0.396 0.354 0.997

Figure 5.7: Cutoffs selected by the two-peak method in the full sample (upper
panel) and test set (lower panel).

Table 5.4 summarizes the statistics of crisis cutoffs that are determined in the

full sample and test set by Algorithm 1. The number of cutoffs in a sample is

given by the difference between the number of observations T and the window

size l. With windows of size 5 (days), this study computes 2408 and 720 cutoffs in

the full sample and test set of lengths 2412 and 724 (days), respectively. As Table

5.4 displays, the cutoff distributions of the full sample and test set are both right-

skewed given the greater means (0.513, 0.430) than the medians (0.478, 0.396) and

modes (0.481, 0.354). In other words, the positive skewness indicates that cutoffs

are more likely to take values below the mean and around the median/mode.
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Moreover, test-set cutoffs exhibit lower values with mean, median, and mode

approximating to 0.4, whereas those in the full sample are closer to 0.5.

To explain this difference in the crisis cutoff distributions, Figure 5.7 shows

the histograms of SWARCH filtering probabilities in the full (upper panel) and

test (lower panel) sets. The optimal cutoffs determined at the end of Algorithm

1 for the last day observation are circled in blue. Although the test set exhibits

a greater proportion of tranquil days with a significantly higher right peak, the

two-peak method detects the true valley at 0.35 to threshold the crisis.

Table 5.5: Difference between crises identified on the full sample and test set.

Integrated EWS CMAXλ=1 CMAXλ=1.5 CMAXλ=2 CMAXλ=2.5

On full samples 195 210 109 0 0
On test set 201 155 161 128 55
non-match days 6 55 52 128 55
No. of days 724 724 724 724 724
% of non-match 2.07 7.86 7.43 18.3 7.86

With the argument that a robust classification model ought to produce stable

classification results regardless of the sampled information, Table 5.5 compares

stock crises identified by Algorithm 1 with those defined on the CMAX indicator6.

Daily classifications are computed in both the full-sample and test set for each

model. To examine the level of consistency between crises identified on different

samples, Table 5.5 lists the number (Row 3) and percentage (Row 5) of days

that the full-sample crises differ from the test-set crises during the period from

2015/10/08 to 2018/09/18 (724 days in total)7. With six days of deviation in

a period of almost three years and a percentage of 2.07%8, the integrated EWS

produces the most robust crisis classification result in comparison to the CMAX

indicator on a range of parameters λ = 1, 1.5, 2, 2.5.

6The CMAX index is the most widely used crisis indicator in the literature concerning stock
market early warning (Coudert and Gex, 2008; Li et al., 2015; Fu et al., 2019). It defines stock
crashes with an indicator function 1CMAXt<µt−λσt

, where µt and σt are the mean and standard
deviation of CMAXt, and λ is a market-dependent constant (Kaminsky and Reinhart, 1999).

7This is the period when full sample and test set intersect.
8We believe that the percentage deviation of 2.07% could be further reduced with a larger

sample of test set and cross validation. Relevant analyses on this aspect will be conducted in
future study.
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5.2.5 Evaluation in statistical metrics

We now evaluate the crisis predictor based on LSTM in comparison to two other

predictive baselines of BPNN and SVM. The evaluation metrics of the predictive

model include three classes of performance measures that are designed for clas-

sification models, (I) the rand accuracy (Rand, 1971) and binary cross-entropy

loss (Shannon, 1948), (II) the receiver operating curve (ROC) and area under

curve (AUC) (Metz, 1978), and (III) the SAR score (Caruana and Niculescu-

Mizil, 2004). Prior to the performance evaluation, Table 5.6 lists the true or false

positive and negative statistics (also known as the confusion matrix), which will

be used by the ROC, SAR score and accuracy measures.

Table 5.6: Confusion matrix for daily stock early warning.

Actual \ Predicted 1: Crisis 0: Non-crisis
1: Crisis True positive (TP) False negative (FN)
0: Non-crisis False positive (FP) True negative (TN)

In general, true positive/negative corresponds to true predictions of turmoil/tranquility,

whereas false positive/negative corresponds to false predictions. Moreover, the

true positive rate (TPR) and false positive rate (FPR) are defined as the percent-

age of truly predicted crisis signals over the total number of actual crises, and

the percentage of falsely predicted crisis signals over the total number of actual

tranquility, respectively.

TPR =
TP

TP + FN
, FPR =

FP

FP + TN
. (5.3)

Evaluation Metric I: The rand accuracy of a binary classification problem is

defined as the proportion of true results over the total number of cases examined

as Eq. 5.4 defined. The binary cross-entropy loss measures the performance of

classification models in terms of the level that the predicted probability of getting

1 deviates from the true label 0 or 1, and it is expressed as Eq. 5.5,

Accuracy =
TP + TN

TP + TN + FP + FN
. (5.4)

Loss = −
∑n−l+1

i=1 (yilog(ŷi) + (1− yi)log(1− ŷi))
n− l + 1

, (5.5)
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where yi and ŷi denote the true and predicted values of either 0 or 1, n is the

sample size. As we set the label for the crisis True (= 1), an EWS model that

warns all the True crisis despite of the number of False alarms it creates, has zero

loss indicating none of the crisis is lost. A greater level of predictive power is

believed to come along with higher rand accuracy and lower binary cross-entropy

loss.

Evaluation Metric II: As one of the most classic performance measures, ROC

plots the FPR (x-axis) against the TPR (y-axis) for each classifier. As a higher

true positive rate is always more preferable given the level of the false positive

rate, models with more dominating performances are those with ROC bending

closer towards the left-hand side. To offer a quantitative representation of the

graphic information carried by ROC, AUC computes the total area under the

ROC curve and suggests a better model with the greater AUC value.

Evaluation Metric III: Different from the widely-used F1-score, the SAR score

(Caruana and Niculescu-Mizil, 2004) is developed as a more holistic performance

measure due to the uncertainty of the correct evaluation metric. By taking

into account, three distinctive measures, including the accuracy, AUC, and root

mean-squared error (RMSE), models with higher SARs are regarded as better-

performing as they produce overall high accuracy/AUC and low RMSE.

SAR =
1

3
(Accuracy + AUC + (1− RMSE)). (5.6)

To compare the predictive power of LSTM with baseline models of BPNN

and SVM, Table 5.7 preliminary lists the test-set rand accuracy and binary cross-

entropy loss of the three models by following Algorithm 19. Three window sizes

l = 22, 10, 5 are considered to cover both long- and short- term prediction.

As Table 5.7 suggests, LSTM with window size l = 5 produces the optimal cri-

sis prediction that yields the highest accuracy 0.964 and lowest loss 0.165 among

all cases examined. LSTM consistently demonstrates the greatest forecasting

power of stock crises among the three predictive models given different window

sizes. Moreover, it is observed that with the last five days of information, all the

three models achieve the best result (except the accuracy of SVM) in compar-

9To obtain the baseline results, Algorithm 1 is implemented by replacing the LSTM in line
16 by BPNN and SVM.
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Table 5.7: Rand accuracy and binary cross-entropy loss for each model with
varied window sizes on test set.

Model EWS-LSTM EWS-BPNN EWS-SVM

Window size l = 22
Accuracy 0.915 0.863 0.919
Binary cross-entropy loss 0.288 0.465 0.521

Window size l = 10
Accuracy 0.928 0.921 0.931
Binary cross-entropy loss 0.274 0.486 0.442

Window size l = 5
Accuracy 0.964 0.947 0.928
Binary cross-entropy loss 0.165 0.239 0.399

ison to the predictions made with 22 and 10 days information. Therefore, the

remaining evaluation is conducted with a window size 5.

Figure 5.8 further shows ROC and SAR curves for the test set. Particularly,

Panel (a) shows the ROC curves and AUC values generated from the test-set

predictions. As the ROC-oriented metric tells the model’s ability to classify the

binary states, LSTM enhances BPNN and SVM with its outstanding capacity to

distinguish turbulence/tranquility with the optimal ROC curve and AUC value

of 0.996. Panels (b)-(d) display the SAR score against the crisis cutoff for the

three predictive models. The score value at the test-set cutoff line is highlighted

as the blue point in each panel corresponding to the last day cutoff obtained from

the dynamic crisis classifier, whereas the red point is the largest score obtained

by the predictive model regardless of the optimal cutoff.

From the perspective of model scores, LSTM remains its dominating state

with the highest test-set score (blue) of 0.93, whereas BPNN and SVM score

0.89 and 0.71, respectively. Moreover, LSTM appears to be the most insensitive

model to cutoff variations as the scores remain relatively high in a prolonged

range shaped like a flat peak in Panel (b). With a similar shape in Panel (c),

BPNN produces a SAR curve with a reduced test-set score 0.89 and a smaller

peak 0.9. SVM produces the sharpest SAR curve among three models with the

smallest peak of 0.84, which performs a vulnerable instability in predicting as the

cutoff varies.
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(a) ROC (b) LSTM

(c) BPNN (d) SVM

Figure 5.8: Test-set ROC (Panel a) and SAR (Panel b-d) curves of LSTM, BPNN
and SVM.

5.2.6 Forewarned effectiveness on test set

This section examines the integrated EWS in terms of its true “early warning”

power to the actual duration ahead of the correctly alarmed crises. By keeping

BPNN and SVM as baselines, three experiments are implemented, including the

test-set forecasting and cross-validation, hoping to gain a comprehensive under-

standing of the system’s capacity in terms of crisis forecasting power and stability.

Figure 5.9 shows the model predicted signals against their true crisis labels

(1 for crisis and 0 for tranquility). According to the figure, crisis onsets on the

test set mainly occurred in 2016 and 2018 due to the lasting effect of the 2015

stock market crash and the financial instability in China. Overall, the proposed

EWS-LSTM depicts the test-set crises in a relatively precise manner, with the

first alarms (red line) released adequately early before the actual onsets (blue

dashed line). As BPNN replaces the predictive model, the EWS tends to delay

producing the first crisis signal despite its ability to capture ongoing crises. In
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Figure 5.9: Test-set early warning signals

contrast to LSTM and BPNN, SVM appears to suffer from both delayed warnings

and false alarms.

To support the preceding claims with evidence, Table 5.8 summarizes the

numerical results related to the test-set forecasting. The test set consists of 724

days with 201 crisis days (Row 2, Table 5.8) and 5 crisis onsets (Row 6, Table

5.8).

Concerning Table 5.8, EWS-LSTM demonstrates a promising capability of

warning stock turbulence, which dominating results have been fully reflected in
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Table 5.8: Summary of test-set forecasting.

Model EWS-LSTM EWS-BPNN EWS-SVM

Total crises 201 201 201
Correct predictions 200 179 186
% of correct predictionsa 99.5 89.6 92.5

Total onsets 5 5 5
Predicted onsets 5 3 2
% of correct predicted onsetsb 100 60.0 40.0
% of false onset alarms 0.0 0.0 20.0
Avg. days-ahead onsets 2.8 2.2 1.4

a% of correct predictions is the percentage of total crisis signals correctly predicted,
b % of correct predicted onsets is the percentage of correctly forewarned onsets.

the all-around examined. In particular, LSTM-based EWS improves the baselines

with 200 days of correct predictions, which yield a rate of 99.5%. On average, the

model alerts stock turbulence 2.8 days ahead of the actual crises and successfully

warns 100% of the onsets with 0% false alarm. In line with the observations made

from Figure 5.9, the major weakness of the BPNN-based EWS is revealed due to

its delay in generating crisis signals. Though the hit-ratio for correct predictions

is relatively low at 89.6%, its capability to sense the crisis onsets keeps a passable

level of 60%. Besides the delays, the high percentage of 20% false alarms and

the fewest 1.4 forewarned days make SVM the least reliable model for the early

warning task compared to LSTM and BPNN.

Table 5.9: Average rand accuracy and binary cross-entropy loss in the k-fold cross
validation.

Model EWS-LSTM EWS-BPNN EWS-SVM

k = 3
Accuracy (avg.) 0.954 0.887 0.919
Binary cross-entropy loss (avg.) 0.251 0.432 0.639

k = 5
Accuracy (avg.) 0.961 0.902 0.918
Binary cross-entropy loss (avg.) 0.144 0.310 0.566

k = 8
Accuracy (avg.) 0.920 0.901 0.889
Binary cross-entropy loss (avg.) 0.167 0.319 0.508

101



To analyze the stability of the EWS, a k-fold cross validation is further con-

ducted in the test set with varying values k = 3, 5, 8.10 Rand accuracy and

cross-entropy loss are used as the performance measures. According to Table 5.9,

the LSTM-based EWS is proven to be prominently robust in the cross validation,

since LSTM invariably produces the greatest accuracy and lowest loss in compari-

son to the baselines given different k values. In the 5-fold validation, EWS-LSTM

achieves the best test-set accuracy of 96.1% and loss of 14.4%. This predominant

performance keeps a stable consistency on 3-fold validation as well. Even in the

8-fold data splitting test, the LSTM performs a considerable gap with BPNN and

SVM in accuracy and loss.

5.2.7 Retrieving in practice

The constructed EWS is required to be retrieved in practice to investigate its

efficiency to direct the real trading world. Back-testing and reality check are two

standard examination ways to achieve such an aim.

Back-testing

In the study, a simple trading strategy is adopted to the SSEC stock index to

verify the proposed EWS’s effectiveness, given that the information between the

market and the investors (who perform a fair level of risk aversion) is efficiently

symmetric. A market portfolio of SSEC index is constructed and held until the

EWS alerts crises and repurchased as the EWS suggests tranquility. We set the

p as the constructed portfolio. E[Rp] is the expected return rate by adopting the

portfolio p, and σp is the corresponding standard deviation. SharpeRatio is thus

formulated as Sharpe Ratio=
E[Rp]−Rf

σp
, where Rf denotes the risk free interest rate

which is set to be zero11 in our study. Here, we use the simplistic buy-and-hold

strategy, which means we buy one portion of the SSEC index and hold it till

EWS warning emerges (i.e. hold zero portion during warning periods), and then

repurchase it as the warnings end.

10Given the selection of k deals with the trade-off between bias and variance, the cross
validation is conducted up to 8 folds to ensure the size of the test set is large enough to offer
statistically representative of the model’s forecasting power.

11The zero risk-free rate is the theoretical one for the perfect market, while in practice, the
zero risk is not true but adopting the Treasury bond minus the inflation rate.
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Table 5.10 summarizes the expectation and standard deviation of returns to-

gether with Sharp ratios in the full sample and test set. In the absence of early

warning mechanisms, the market portfolio without any EWS access yields ex-

pected returns of 2.5% and −3.9% and standard deviations of 1.495 and 1.197 in

the full sample and the test set, respectively. The corresponding Sharp ratios are

0.017 and−0.033. By exiting the market position for early warned turbulence,

the strategy significantly reduces the systematic risk (indicated by the σp), which

naturally results in a higher level of Sharp ratio regardless of the predictive model.

Table 5.10: Back-testing in the full sample and test set.

E[Rp] σp Sharpe Ratio

panel (a): full
market portfolio 0.025 1.495 0.017
EWS-LSTM 0.033 0.699 0.047
EWS-BPNN 0.025 0.761 0.033
EWS-SVM 0.026 0.734 0.035

panel (b): test
market portfolio -0.039 1.197 -0.033
EWS-LSTM 0.091 0.619 0.147
EWS-BPNN 0.014 0.744 0.019
EWS-SVM 0.045 0.617 0.073

More importantly, back-testing once more verifies that the LSTM-based EWS

outperforms the baselines and holds the greatest effectiveness and stability. Specif-

ically, the effectiveness of LSTM is proven by its dominating Sharp ratios, which

improve the market portfolio by 0.03 and 0.18 in the full sample and test set,

respectively. Meanwhile, its stability is suggested by the monotonous positive

impact on the market portfolio regarding the three portfolio measures in the risk-

return horizon. Albeit the moderate improvements achieved by BPNN (Sharp

ratios of 0.033 and 0.019 in the full sample and test set) and SVM (Sharp ratios

of 0.035 and 0.073), the two models exhibit limitations due to their weaker and

fluctuating results.
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Reality check

To testify whether the proposed EWS model forewarned signals can be compara-

ble in practical application to mitigate the investment risk brought by the drastic

stock market turbulence, the Reality Check test based on White (2000) is thus

applied to release the suspicion of data-snooping12. The test is pervasively recog-

nized to be statistically rigorous and practically reliable and has been generally

used in the market forecasting studies for both econometric models comparison

(Kim and Swanson, 2014; Yang et al., 2010) and trade strategies verification

(Arévalo et al., 2017).

To more comprehensively inspect the proposed EWS superiority to either the

SWARCH crisis detection model or non-model adoption in terms of diminishing

the impact from stock market turbulence, the reality check in our study will

generally follow the procedure proposed by Arévalo et al. (2017) but re-define

the performance series f . Specifically, to make the p-value available for both

positive and negative returns, the holding cash strategy will not be applied as

benchmarks, but the portfolio based on SWAWRCH(2,1) with arbitrary cutoff

0.5 will be exercised without being instructed by any predictive models output.

The realized variance will be hired to calculate the performance series as to

notify the EWS impact on diminishing the market turbulence. Hence we have

fB1
t+1 = RVEWS,t+1 −RVSWARCH,t+1, (5.7)

fB2
t+1 = RVEWS,t+1 −RVt+1, (5.8)

where RVt+1 is the realized variance for stock price returns. B1 denotes the

benchmark model of SWARCH(2,1) with 0.5 cutoff and B2 denotes the market

portfolio returns without any predictive model participation. The bootstrapping

will repeated 10000 times for calculating the mean of f given the null hypothesis

of H0 : E(f) ≥ 0, being explained as the proposed EWS cannot outperform

the benchmark in diminishing the intensity of market turbulence. The specific

implementing process can be referred to Appendix D.1.

Table 5.11 reports the p-values of rejecting the null based on reality check

12In other words, to inspect whether the superior model predicting performance is produced
by chance not a constant result.
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Table 5.11: Bootstrapped reality check p-value for model comparisons.

EWS-LSTM EWS-BPNN EWS-SVM

full sample
p-valueB1 0.001∗∗∗ 0.012∗∗ 0.004∗∗∗

p-valueB2 0.000∗∗∗ 0.000∗∗∗ 0.001∗∗∗

test set
p-valueB1 0.023∗∗ 0.069 0.034∗∗

p-valueB2 0.010∗∗ 0.011∗∗ 0.012∗∗

∗∗∗, ∗∗ denote the null hypothesis is rejected at 1% and 5% significance level, respectively.

as comparing two benchmarks of B1 and B2. The three hybrid EWS models

based on LSTM, BPNN and SVM are separately investigated in the full and test

sets. In the comparison between the SWARCH and EWS models, the null for

B1, i.e. the SWARCH outperforms EWS, is rejected with the significance level

of 1% on the full sample and 5% on the test set. As for the free market portfolio

without considering the alarming scheme, the reality check suggests that all three

EWS models are superior to the benchmarks with remarkable significance levels.

The EWS-LSTM remains most favorable for forecasting crises with the lowest

p-values compared to the other two EWS models. Thus, the proposed EWS

frameworks are believed robust in reducing the portfolio risks, especially during

stock turmoils, to help take early actions in investment.

5.2.8 Concluding remarks

In this chapter, an effective EWS with a dynamic architecture that integrates

the SWARCH model, two-peak thresholding and LSTM is developed to identify

and predict China’s stock market turbulence. According to the models’ perfor-

mance on the ten-year sample of Shanghai Stock Exchange Composite index, the

following concluding remarks emerged.

1. As one of the most powerful models handling sequential data, LSTM re-

mains in its outstanding position in the daily prediction task of stock crises.

To be specific, the reliability of LSTM in this study is not only reflected

by the high accuracy of 99.5% and on average 2.8 days of forewarned pe-

105



riod, but also its stability of outperforming the baselines throughout the

evaluation process in the test-set, cross-validation as well as back-testing.

2. In addition to a high-performing predictive model, a precise and robust

crisis identification mechanism also plays a central role in facilitating the

effectiveness and reliability of an EWS. By adopting the two-peak method to

determine crisis cutoffs, the proposed EWS suggests a constructive alterna-

tive to current existing approaches and yields promising crisis classifications

in China’s stock market compared to the classic indicator function based

on CMAX.

3. Stock market turbulence described by the SWARCH volatility regimes is

proven to be a good crisis indicator in both theory and practice, as the

proposed EWS depicts all the recorded major stock crises in the sample

with significantly improved back-testing results than the market portfolio.

In a nutshell, the proposed integrated EWS is recommended for two means

of application. First, the EWS crisis classifier could be directly used for post-

date crisis identification and characterization based on historical data without

prior assumptions on crisis dates or thresholds. Second, with adequate lengths of

forewarned period and high-degree accuracy, the proposed EWS allows market

participants at all levels to make early decisions to react towards the potential

crisis. Last, the proposed EWS can be used for the more general purpose of

warning financial turbulence/turmoils for other specific markets on a daily basis.

In the following section, the integrated EWS will be applied to China’s bond

market by further discussing the role of improved technique − RCM for SWARCH

based crisis classifier and the stacked layer − attention mechanism for LSTM

based crisis predictor to extend the market-oriented EWS development in terms

of gaining the crisis identification precision and the machine learning model’s

interpretability.
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5.3 EWS for China’s bond market

This section will develop the EWS for China’s bond market by posting technical

variations on both the crisis classifier and crisis predictor. A series of representa-

tive bond indexes published by China Central Depository & Clearing CO., LTD

will be studied to accomplish such variations on the EWS development: a) other

than adopting the two-peak thresholding technique, SWARCH frameworks will

be introduced the RCM selection scheme to directly refine the bond index volatil-

ity levels in more than two regime states to identify the crisis samples13; b) the

predictive model will be substituted in the attention based Bidirectional LSTM

(attn-BiLSTM) to investigate the improved model performance on prediction and

feature selection to make further comparative to other feature-selection-allowed

predictive models.

5.3.1 Crisis identification: RCM based crisis classifier

As mentioned in Chapter 3, there are two essential inferences on observation’s

volatility states in SWARCH frameworks, namely filtering and smooth probabil-

ities. The former probability has been used in the CM development to detect

the turmoil episodes for univariate market assets and the EWS construction for

China’s stock market to identify crisis samples. In this project, the targeted crisis

variable will be defined on smooth probabilities, which is believed to carry the

information from the full length of observations to make the inferred probability

less noisily troubled by the future uncertainty.

The expression of smooth probability for state i is written as follows,

P (st = i|YT ; θ̂) for i ∈ {1, ..., K}, (5.9)

where YT denotes the full observations and θ̂ is the vector of estimated param-

eters. Kim (1994) and Kuan (2002) have provided the full deriving process for

Eq.5.9. The R package ‘MSGARCH’ provides the programming code to infer the

13In practice, two-peak dynamical thresholding technique cannot be simultaneously used with
the RCM determination technique. For example, as the number of determined regimes is greater
than two, crisis samples are hard to be identified since the SWARCH estimated probabilities in
the highest volatility state are too placid to form distinctive twin peaks in histogram.
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smooth probability of SWARCH model.

According to previous experience, for most asset prices and indexes in finan-

cial markets, signals of crashes or crises intuitively result in volatility jumps. The

binary crisis variable between 0 and 1 (1 means the crisis produces) is thus de-

fined on the volatility level distinguishing between the ‘tranquil’ and ‘turbulent’

states in the SWARCH frameworks. The number of regimes for volatility levels in

the SWARCH model is thus generally taken high and low two cases, but it is not

appropriate to fit all market asset price dynamics, especially for the bond. Unlike

other securities whose dynamics can be intuitively classified into two volatility

regimes, the bond does not perform enough dispersion range to be distinctively

clustered into significant-high for ‘turmoils’ and low for ‘quiescence’. Thus, the

appropriate selection for the number of states in the SWARCH model will be

required to effectively characterize different volatility levels to avoid underesti-

mating or overestimating the volatility intensity and further affecting the crisis

definition precision. In other words, the price dynamics which have K latent

volatility states will be mis-specified by SWARCH with K + 1 (overestimated)

or K − 1 (underestimated) regimes if the regime number K is imprecisely deter-

mined.

Ang and Bekaert (2002) propose the regime classification measure (RCM)

to diminish the mis-specification chance in characterizing volatility levels in the

SWARCH model. Eq. 5.10 formulates these numerical metrics as follows.

RCM(K) = 100K2 1

T

T∑
t=1

(
K∏
i=1

pi,t), (5.10)

where pi,t = P (st = i|YT ;θ), the smooth probability. The value range of RCM is

between 0 and 100, where 0 means the regimes are perfectly classified. Thus, the

RCM deviates more from 0, the worse the classification produces14.

The RCM-SWARCH determined crisis variable is defined as following crisis

14In practice, to avoid over-fitting, the number of states will be determined via balancing
between the RCM value and the plot for smoothed probability.
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binary function,

Crisis =

1, P (st = Krcm|Yt;θ) ≥ c,

0, otherwise,

(5.11)

where Krcm is the RCM selected optimal value for regimes’ number, which is

usually the value for highest volatility level in SWARCH frameworks. c is the

threshold for producing appropriate number of warning signals15

5.3.2 Forecasting system: Attention-BiLSTM based crisis

predictor

The hybrid deep neural networks, attention mechanism based Bidirectional LSTM

(Attention-BiLSTM) model, will be hired to predict warning signals for the bond.

First of all, comparing to the single-layer based LSTM deep neural networks,

the bidirectional architecture makes a breakthrough in boosting the deep neural

networks ability to fully utilizing both historical and future information via feed-

ing dual direction of both backward and forward in the streamline of compressing

data from two flow directions into the same network layer. It elegantly solves the

difficulty of mixing two independent neural network layers. It processes all possi-

ble available time-dependent sequences and merges their results into one output

layer. The bidirectional LSTM has been effectively applied and benchmarked

with simpler structured LSTM in the study of evaluating and comparing deep

learning models in the stock market prediction study (Althelaya et al., 2018).

Furthermore, to identify the factors contributing degree to the prediction and

lessen the annoying noise from useless factors (Liu et al., 2017), the attention

layer is essentially included to gain the comparability of our EWS model to re-

gression and indicator-based predictive models. The attention will first assign

initial weights on each factor, and then adaptive optimize the value of weights

based on previous cells output in the training process to ascertain the optimal

combination for the final predicted result. In other words, the attention mecha-

15The warning signals production is sensitive to the selection of classifier threshold. If the
value is too low, warnings will cover the whole time period; and vice versa. Here, we adopt grid
search to determine the threshold value.

109



nism allows to distinguish and leverage the convincing degree of each input factor

by dynamically updating the model learned results in the training process.

Figure 5.10: Networks frame structure of attention-BiLSTM.

The full structure for attention-BiLSTM networks includes four layers from

bottom to top, and as Figure 5.10 shows, they are Input layer, Attention layer,

Bidirectional LSTM layer and Output layer. The arrow directs information flow

from the bottom input layer to the top layer. Each layer is framed in dotted lines.

The dashed arrow means no output will be produced from cells, and N and T

represent the size of features and time steps. Starting from the input layer, each

piece of sample vectors {xt1, ..., xtN} for t = 1, ..., T will enter into the attention

and bidirectional LSTM layers to generate the final prediction of ŷ for time point

T +1. Then, the next sample piece {xt1, ..., xtN} as t = 2..., T +1 will slide forward

for producing the prediction of ŷT+2 till the end of observations16. The samples

will be trained for 64 batches each time, and the training session for full samples

will be repeated in 200 epochs to make the modeling results stable.

The bidirectional LSTM networks include an extra layer than the unidirec-

tional LSTM networks, which allows the connection flows backward to exploit

16This is the sliding window proceeding for time sequence, shuffling is not allowed.
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information from the past, thus in the model training session, it will bring in

higher accuracy than single-layered LSTM for predicted results17. As the dia-

gram (Figure 5.10) shows, the output from the attention layer will enter into two

LSTM cells simultaneously and then generate ht that combines two outputs from

each of the cells. Specifically, in the forward information flow (i.e. the lower

LSTM cells layer), the input sequence will be read as the time sequence from 1

to T and thus the hidden state output
−→
ht will be generated in this sequence. In

contrast, in the backward flow (i.e. the upper LSTM cells layer), the processing

order will is reversed, and the hidden output will denote as
←−
ht . Thus the output

ht for the Bidirectional LSTM layer is the concatenate result from both forward

and backward outcomes, i.e. ht = [
−→
ht ,
←−
ht ].

In our study, the soft (global) attention mechanism (Bahdanau et al., 2014)

is adopted to the Attention layer, where the weight αti that defines how much

of each source should be counted for each output will be aligned to the entire

input space. The attention layer is arranged ahead of all other neural layers to

detect which features will be distributed more attention weights in the predicting

procedure. To implement the soft attention mechanism, there are three separate

steps: scoring, aligning weights and summing up, and functions can be written

as follows

sti = tanh(W · xti + b) (score), (5.12)

αti =
exp(sti)∑N
i′=1 exp(s

t
i′

)
(weight), (5.13)

ct =
N∑
i=1

αtix
t
i (summation), (5.14)

where tanh is the non-linear activation function to transfer value into range (-1,1).

W and b are weight and bias parameters for each given attention, and they both

are initialized from uniform distribution. In the process, input features will be

first activated by score function and then weighted by the weight function. The

final output of Attention layer is ct, the summation of activated and weighted

inputs. It will be further forwarded to the Bidirectional LSTM layer.

17The BiLSTM, however, consumes more time than LSTM for training model considering
the number of neurons doubles.
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Figure 5.11: LSTM cell in bond EWS.

The LSTM cell inner calculation procedure will follow the order of equations

of Eq. 5.15−5.20. The input here in our case is ct, the output from Attention

layer. Γf ,Γu and Γo are sigmoid functions of the forget, update, and output

gate that determine the information to be discarded added and reproduced. The

updated output will be produced by the peehole function C̃t. W denotes the

weight parameter, and b is the bias term. All parameters are initialized at the

start and will be trained in the learning process.

Γf = sigmoid(Wf · [ht−1, input] + bf ) (5.15)

Γu = sigmoid(Wu · [ht−1, input] + bu) (5.16)

C̃t = tanh(WC · [ht−1, input] + bC) (5.17)

Ct = Γf ∗ Ct−1 + Γu ∗ C̃t (5.18)

Γo = sigmoid(Wo · [ht−1, input] + bo) (5.19)

ht = Γo ∗ tanh(Ct) (5.20)

5.3.3 Data

The data for studying China’s bond market will be parted into two components:

for time t, the targeted crisis variable yt for typical bond indices and both of

endogenous and exogenous feature variable vector of xt relating to bond crisis

predictions. The time span covers from 2007/2/28 to 2019/4/30, which is believed

to be adequately long to include abundant turmoil information for generating
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bond crisis signals, such as the 2008-2009 Global financial crisis, 2010 Sovereign

Debt crisis, and the 2016 economic downturn in China. There are thus 2964

observations for each variable18, and 2936 samples19 by taking 2820 time steps

and 23 input factors. Full samples will be split into 65% for the train set and

35% for the test set21, thus the count for each set are 1908 and 1028 respectively22.

Target bond indexes

According to the type of issuers, the bond in China are mainly categorized into

eight genres: government bonds, central bank bills, government-backed institu-

tional bonds, financial bonds, corporate credit bonds, asset-backed securities,

panda bonds and inter-bank certificates of deposit23. Our research objects to the

bonds that are most traded in the secondary market, i.e. government bond and

corporate bond, considering their price indexes are not costly accessed from the

bond custodian agency, and they both share high liquidity and sufficient trading

volume, which makes them entrusted more guiding significance in practice.

The China Central Depository & Clearing CO., LTD. (CCDC) published a

series of bond indexes that can objectively project China’s bond market price

behavior since 2002. The indexes are the weighted average market value price for

counting each bond balance in various screening conditions. The calculation is

formulated as follows.

IT = IT−1 ×
∑
i

(Pi,T + Prii,T
Pi,T−1

×Wi,T−1

)
, (5.21)

where IT is the price index value on T day, Pi,T is the price bond i on T day,

Prii,T is the principal payment of bond i on T day, Wi,T−1 is the price market

cap weight of bond i on T − 1 day. The composed index includes the bonds

18The low-frequency data will be interpolated to daily frequency.
19Number of samples = Count of total observations (N) - Time step (T )
2028 days generally cover the observations in one month and will be used for predicting the

crisis in the future one-day.
21The integer will be taken for each percentage calculation.
22The start date for the test set is 2015/02/09
23In addition to government bonds and corporate credit bonds, a limited amount of financial

bonds and asset-backed securities being traded in the secondary market, the remaining bonds
are only permitted to be traded in the inter-bank market, foreign exchange trading centers
(such as inter-bank certificates of deposit) and overseas markets (such as panda bonds).

113



with one-year and above maturities. The basis point of 100 is the price data on

December 31, 2001.

Figure 5.12: The raw plot for the bond index and the corresponding log returns.

In each subfigure, the upper black curves show the index dynamics and the lines below show
the log returns for each index. Both lines are scaled in the range of (0, 1).

In our study, six typical government bond indexes, the corporate composite

bond, the corporate bonds with AAA rating, AA+ rating, AA rating and AA-

rating levels, are sourced to cover different credit risks. They will be abbreviated

as “Gbond”, “Corp Comp”, “Corp AAA”, “Corp AA+”, “Corp AA” and “Corp

AA-” in following sections. Except for the substantial trading volume, we select

such six bond representatives as considering 1) these index dynamics carry ma-
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jor risks (from the term of structure, liquidity and credit) that affect the bond

yields; and 2) the corporate bonds with different credit rating levels contribute

to examine the forecasting system’s functional universality as the bond underlay

credit risks being diversified.

Figure 5.12 displays raw plots for scaled price indexes and corresponding log

return dynamics. The orange shadow segments highlight the most fluctuated

periods of the log return dynamics at the moments of price indexes abruptly

dropping or rising, and the fluctuating greater, coloring darker. The raw plots

empirically characterize the bonds with different level risks in turmoil patterns

of that 1) the government bond covers minor vibrations in the 2008-2009 global

financial crisis as compared with other corporate bonds even at the right start of

2008, 2) the corporate bonds with lower credit ratings are more intuitively fragile

than Gbond and Corporate AAA bond in crises as they share longer and more

frequent turmoil slots, and 3) at the end of the year 2016, China suffered from

a temporary domestic economic downturn, which “dip” brought a more lasting

effect for lower credit rating corporate bonds than government bond and high

credit rating corporate bonds, till the sign of weak re-coverage emerged in the

middle of 2018.

Exogenous features

The exogenous factors are mainly from following seven risk sources to affect the

turmoil in bond market: A) the China’ stock market that brims with investors

sentiment and acts as the totemic investment for the financial market is accessed

by introducing Shanghai Composite index and Shenzhen Component index; B)

the interest rate spread of SHIBOR/Interbank lending rate/Pledge-style Repo

between different short terms in the monetary market reflect the financial cri-

sis awareness; C) macroeconomic indicators, such as CPI and PPI that reflect

inflation rate in consumption and production, M2 that indicates the degree of

economic prosperity, industrial value added rate and fixed-asset investment gain

rate that mirror the investing levels in economic activities, will sculpt the portrait

of overall national economic development; D) the stability and flexibility of Chi-

nese yuan in the foreign exchange market will be cast in exports/imports ratios,
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foreign exchange loan balance and foreign exchange reserves; E) The discount

rate for China, gross currency liability and GDP index published by the inter-

national monetary fund (IMF) show the Chinese economic development level in

international evaluation standards. Table 5.12 describes the statistical summary

for the raw data of all exogenous features.

Table 5.12: Summary statistcs for exogenous features.

variable Mean S.D. Min. Max. skew. kurtosis

Sha Comp 2926.34 754.87 1706.70 6092.06 1.35 2.38
Shen Comp 1339.17 463.52 404.71 3140.66 0.68 -0.06
Shibor7d 1d 0.54 0.49 -2.44 4.43 2.28 10.65
Shibor1m 7d 0.67 0.57 -1.60 4.10 0.68 1.61
Tongye 0.71 0.50 -1.58 4.61 2.28 9.98
Zhiya 0.62 0.49 -1.83 4.42 2.36 10.38
CPI 102.74 2.05 98.20 108.70 0.65 0.73
PPI 101.14 4.68 91.80 110.06 -0.06 -1.18
M2 14.78 5.09 8.00 29.77 1.09 1.06
INDUSTRIAL gain 10.16 4.87 -2.93 29.20 0.56 0.66
Fixed asset 18.57 8.31 5.30 33.60 -0.16 -1.32
Imp Exp 9.03 16.51 -29.08 48.37 0.03 -0.46
FOREX Loan 15.44 19.12 -16.80 73.77 0.88 0.64
FOREX Reserves 29131.42 7355.51 11573.72 39932.13 -0.74 -0.41
Currency liability 285478.52 64534.67 135591.47 372492.06 -0.68 -0.73
GDP index 100.10 0.79 97.84 101.81 -0.33 0.79
DISCOUNT rate 4.10 1.51 1.00 7.00 0.10 -1.06

Sha Comp and Shen Comp are stock market indexes of Shanghai Composite and Shenzhen
Component. Shibor7d 1d and Shibor1m 7d are the interest spread of SHIBOR between one
week and overnight, and between one omnth and one week, Tongye and Zhiya represent the
interbank lending rate and the pledge-style repo rate, respectively. INDUSTRIAL gain
denotes the industrial value added rate. Fixed asset is the fixed asset gain rate on the
year-on-year basis. Imp Exp is the exports/imports ratio. FOREX Loan and
FOREX Reserves denote the foreign currency loans and reserves respectively.
Currency liability is the IMF gross currency liability for China. GDP index is provided by the
IMF to reflect China’s total GDP level. DISCOUNT rate is the discount rate published by
the People’s Bank of China. The economic factors relating to currency, such as FOREX Loan,
FOREX Reserves, Currency liabilitym use millions of Chinese yuan as the unit.

Table 5.13 summarizes all input features for China’s bond EWS. The condi-

tional volatility, filtered and smoothed probabilities are the inferred results from

SWARCH model for each index. All input data will be normalized in the range

of (0, 1) to eliminate the order of magnitude difference between data of different

dimensions and to avoid the large network prediction error caused by the large
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Table 5.13: Input features.

Variable Frequency Dimensionality Source

Index price (including
first and second differ-
ence)

Daily Endogenous factors

CCDC

conditional volatility,
filtered and smoothed
probabilities

SWARCH

Shanghai Compos-
ite Index, Shenzhen
Component Index

Daily Stock market

WIND

Interest rate spread of
a) SHIBOR between
1 week and overnight,
b) SHIBOR between 1
month and 1 week, c)
Interbank lending rate
between 7 days and
overnight, d) Pledge-
style Repo between 7
days and overnight

Daily Monetary market

CPI, PPI, M2, In-
dustrial value added
rate (year-on-year ba-
sis), Fixed-asset invest-
ment gain rate (cumu-
lative year-on-year ba-
sis)

Monthly Domestic economy

Exports/imports ratio
(year-on-year basis),
Foreign exchange
loan balance, Foreign
exchange reserves

Monthly Foreign market

IMF discount rate for
China (annually), IMF
gross currency liability
for China, GDP index

Monthly External evaluation IMF

order difference between inputs and outputs. Except for the IMF gross currency

liability for China and discount rate for China, data are all accessed from WIND

database.

Figure 5.13 shows the empirical correlogram across exogenous factors, where

117



Figure 5.13: The correlogram for exogenous feature variables.

the lower triangle is the correlation coefficient matrix, and the upper mosaic-like

triangle colorizes the value of the coefficient matrix with (negative correlated) red

and (positive correlated) blue gradient ramp. The p-value for the independence

test at 5% significance level is dropped in the (white) colored block. From the

correlogram, the orthogonality across input exogenous factors can be maximized

since few are tightly correlated with each other24.

5.3.4 RCM-SWARCH identified crises

Following the construction process for the targeted variable in Section 5.3.1, we

first determine the value of K in the SWARCH model to classify the volatility

states. From Table 5.14, the value of RCM will not significantly decrease as K

241) between the short-term Shibor spread (Shibor7d 1d) and the repo pledge rates (Tongye
and Zhiya), 2) between the money supply (M2) and the fixed asset gain (Fixed asset), 3) be-
tween the Shenzhen component stocks index (Shen Comp) and the fixed asset gain (Fixed asset)
and 4) between the gross currency liabilities (Currency liability) and the fixed asset gain
(Fixed asset)
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increases to 4 for all bond indexes. Thus the SWARCH model will take K = 3

for the targeted crisis variable25.

Table 5.14: RCM value for varied K.

Index K = 2 K = 3 K = 4

Gbond 37.239 0.693 0.028
Corp AAA 26.173 2.201 0.326
Corp AA+ 30.118 0.003 0.000∗∗∗

Corp AA 24.709 0.437 0.354
Corp AA- 24.712 1.365 0.046
Corp Comp 17.705 0.078 0.005

∗∗∗ denotes the significant level at 0.01.

Table 5.15: Descriptive statistics of bond price indexes in full, turmoil and tran-
quil periods.

bond index obs. Mean S.D. Min. Max. skew.

panel (a): full period
Gbond 2964 116.73 3.71 108.14 125.08 -0.27
Corp AAA 2964 98.64 3.57 89.23 106.46 -0.36
Corp AA+ 2964 100.20 7.51 86.08 113.43 -0.45
Corp AA 2964 96.82 6.23 83.87 106.02 -0.82
Corp AA- 2964 98.60 6.83 86.31 110.37 -0.35
Corp Comp 2964 95.76 5.27 85.40 104.33 -0.61

panel (b): turmoil period
Gbond 210 117.41 3.77 109.41 123.45 -0.69
Corp AAA 426 97.57 4.11 89.23 104.10 -0.53
Corp AA+ 523 98.49 6.44 86.08 113.43 -0.63
Corp AA 675 95.99 4.78 87.40 106.02 0.96
Corp AA- 490 97.31 6.65 87.29 110.37 0.53
Corp Comp 447 95.48 4.42 85.40 104.33 -0.65

panel (c): tranquil period
Gbond 2754 116.73 3.70 108.14 125.08 -0.24
Corp AAA 2538 98.82 3.44 89.45 106.46 -0.24
Corp AA+ 2441 100.56 7.68 89.33 111.22 -0.28
Corp AA 2289 97.06 6.57 83.87 104.60 -0.06
Corp AA- 2474 98.85 6.83 86.31 109.10 -0.31
Corp Comp 2517 95.82 5.24 87.66 103.41 -0.06

25The best value is 3 not 4 since when K = 4, the smooth probability goes to deteriorate in
distinguishing the hidden turmoils from volatility fluctuations, which thus will produce fewer
signals under this niggling classification.
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Figure 5.14: RCM-SWARCH inferred crisis periods.

The crisis samples will be produced by Eq 5.11 with grid searched threshold

c = 0.4. Figure 5.14 highlights the RCM-SWARCH model identified turmoil

periods in red shades. The gray dashed lines are the scaled log returns for each

index in the range of (0, 1), and the black lines are the smooth probability for

pst=3. The red dashed horizontal line labels the threshold 0.4. Compared with

the scaled log returns, the SWARCH model with three regimes can precisely

identify the turmoil periods and distinguish each bond’s idiosyncratic turbulence

pattern. The precision of detecting crises can be generally embodied by locating

the historical financial crisis events, such as the global financial crisis of 2008

(covers from the end of 2007 to 2009), the European debt crisis (covers from
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the end of 2009 to 2010), the China’s stock market crash of 2015 (starts from

the middle of 2015 and lasts two more months) and the China’s bond liquidity

crisis (at the end of 2016), that the bond index dynamics stumblingly behave.

In addition, the bond turbulence degree seems to be related to the credit level.

Specifically, the government bonds with higher credibility show less detected crisis

turbulence, while the corporate bonds with lower credibility show more.

Table 5.15 summarizes the statistics for bond index observations in full length

of observed periods (panel (a)), classified turmoil periods (panel (b)) and the

rest of tranquil periods (panel (c)). As compared to the values of skewness in

the last column across three panels, the classified turmoil observations for all

bonds perform severer unsymmetrical characteristics than both of the full and

the tranquil, which verifies the effectiveness of RCM-SWARCH in distinguishing

crisis samples.

5.3.5 Forecasting performance evaluation

The model predicting performance will be testified in the following two aspects:

the count of pre-called signaling days before the true crisis onsets appear and

the value of rand accuracy and binary cross-entropy loss in sliding forward cross

validation. To make the proposed EWS more comparative in applications, three

clusters of baseline models of 1) the attention combined single-layered LSTM, 2)

the deep neural networks without attention mechanism (i.e. RNN, LSTM and

BiLSTM), and 3) the ordinary machine learning models and classic regression

(i.e. BPNN, SVR and binary logit regression) will be implemented in terms of

accuracy, loss and ROC statistical metrics.

Table 5.16 summarizes the count of predicted signals that effectively forewarn

the true crisis onsets in advance for each bond index. There proves that the EWS

based on both RCM-SWARCH crisis classifier and attention-BiLSTM predictor

does not produce any delayed signals for both in-sample and out-of-sample sets

with 100% hit ratio for the intraday prediction. For 1-day ahead prediction, the

train and test sets’ hit ratios decrease to 90.5% and 84.6% respectively, remain

effective at a credible level above 80%. As for predicting an earlier time horizon

(including more than 2 days ahead), the hit ratios gradually deteriorate from

121



Table 5.16: Effective count of predicted days in advance of the true crisis onsets
for in-sample and out-of-sample sets.

Days in advance
0 1 2 3 4 5 6 7 8

count of onsets count of predicted onsets
panel (a):
in-sample
Gbond 4 4 4 4 2 1 1 1 1 1
Corp AAA 9 9 9 8 8 7 7 7 7 7
Corp AA+ 12 12 10 5 3 3 2 1 0 0
Corp AA 5 5 4 4 3 2 2 2 2 2
Corp AA- 21 21 21 21 21 21 20 20 19 19
Corp Comp 12 12 9 4 2 0 1 2 1 1
total count 63 57 46 39 34 34 33 33 30 30
hit ratio(%) − 100 90.5 73.0 61.9 54.0 52.4 52.4 47.6 47.6
panel (b):
out-of-sample
Gbond 2 2 2 1 0 0 0 0 0 0
Corp AAA 3 3 3 3 3 3 3 3 3 2
Corp AA+ 6 6 5 2 3 2 2 2 1 1
Corp AA 2 2 2 2 2 2 2 2 2 1
Corp AA- 10 10 8 5 4 4 4 3 2 2
Corp Comp 3 3 2 0 0 0 0 0 0 0
total count 26 26 22 13 12 11 11 10 8 6
hit ratio(%) − 100 84.6 50 46.2 42.3 42.3 38.5 30.8 23.1

The left column ‘count of onsets’ summarizes the count of SWARCH turmoil periods for each
bond index. The columns of count of predicted onsets summarize the early-warning system
successfully captured ones before the real turmoils begin in various ‘Days in advance’
situations. For example, the model succeeds to predict 2 out of 10 entering turmoils signals
for Corp AA- in the situation of 9 days in advance. The bottom panel rows of total count and
hit ratios refer to summing up the numbers true crisis periods for each index and calculating
the percentage of predicted outputs in the total count of true crisis periods.

90.5% to 47.6% for the in-sample set and from 84.6% to 23.1% for the test set.

It thus infers that the designed EWS effectively forewarn in the short term but

becomes reckless to lose the credibility for long-term prediction. The table results

also show the dependence of the model performance on the complexity of the

bond index volatility pattern. Specifically, the government bond and corporate

bond with AA credit level that indexes have aggregated turmoil observations

(in other words, the RCM-SWARCH detected crisis samples are consecutively

distributed) perform a slower deteriorating rate of predicting effectiveness than

corporate bonds with other credit ratings that have scattered and swiftly altered
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turmoil observations.

Table 5.17: Sliding forward cross validation for the Attention-BiLSTM model

count of folds k = 3 k = 4 k = 5 k = 10

index acc. loss acc. loss acc. loss acc. loss

Gbond 0.935 0.030 0.989 0.076 0.984 0.236 0.958 0.277
Corp AAA 0.969 0.147 0.988 0.044 0.983 0.054 0.946 0.242
Corp AA+ 0.984 0.063 0.984 0.061 0.988 0.052 0.943 0.374
Corp AA 0.965 0.095 0.972 0.130 0.946 0.198 0.934 0.506
Corp AA- 0.984 0.044 0.981 0.069 0.982 0.064 0.960 0.223
Corp Comp 0.974 0.064 0.977 0.061 0.979 0.067 0.947 0.240

To test the stability of the EWS predicting performance, the model is cross-

validated by varying the value of data splitting fold k, and display the results of

the average value for accuracy and loss on each test sets in Table 5.17. Either

the 4-fold or the 5-fold cross validations bring the greatest accuracy for most

bond indexes except the bond index of Corp AA-, which performs less accuracy

and greater loss as k = 4 and k = 5. As the fold count continuously gains (till

k = 10), the model performance will become less robust with decreasing accuracy

(below 0.96) and increasing loss (beyond 0.2).

Then, compared with other stylized predictive models that are constantly

hired in the previous studies of forecasting the financial crisis, two levels of exam-

ining measurements are implemented: accuracy and loss on out-of-samples and

the ROC curve with AUC. To make the model comparison reliable, we hold the

following three conditions that 1) the target crisis variable same defined, 2) all

factor variables same included in each predictive model, and 3) the samples are

covered in the same time horizon.

Three groups of models will be compared, as Table 5.18 shows, (1), (2) and

(3) label the comparative models of attention mechanism combined deep neural

networks (Attention-BiLSTM, Attention-LSTM), the pure deep neural networks

(BiLSTM, LSTM, RNN) and the other prominent parametric models (BPNN,

SVR, BL), respectively26.

26The non-parametric model of KLR which approach focuses more on distinguishing the
leading economic factors to forewarn the crisis will not be included here but will be hired as
baseline model in contagion fused EWS project.
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From the accuracy and loss value table results, the attention combined deep

neural networks group is the most effective one among all groups. In particular,

the attention mechanism boosts the prediction accuracy, and the effectiveness

surpasses the bi-directional layer. It is evidently proven as comparing the results

of between attention-LSTM model and BiLSTM model, and the bidirectional

LSTM model produces inferior performance than the attention based single layer

LSTM model.

The bidirectional structure seems to bring improvements for deep neurons.

Comparing models in the group of (1), the Attention-BiLSTM results in greater

accuracy and lower loss than the Attention-LSTM for all bond indices except

for the Corp AA. For the Corp AA bond, the attention-BiLSTM model has an

interior performance than the attention-LSTM with smaller accuracy (0.988 <

0.992) and greater loss (0.038 < 0.045).

While the dual-directional information processing layer will lose its advantage

without combining with the attention, in particular, comparing the results in the

group of (2), the accuracy value for the Corp AAA index is 0.845 in the BiLSTM,

lower than 0.870, the accuracy values brought from the LSTM, even lower than

the value results from the RNN, 0.857.

In summary, deep neural networks with the attention mechanism perform

best. That is, the data idiosyncrasy has the least impact on the model prediction.

In the group of (1), both the accuracy and the loss hold in a stable prominent

level, while neither (2) nor (3) groups can bring stable predicting performance

for different credit rating level bonds.

To clarify how the bond idiosyncratic credit rating level affects the model

predicting performance, the ROC curves and AUC values are obtained for all

model groups predicting results on each bond. As Figure 5.15 shows, all predictive

models perform steadily for the bonds issued by the government and the corporate

bonds with higher credit ratings (generally above AA) with high AUC values and

left upper corner bent ROC curves. The situation deteriorates for the corporate

bond with AA, since the ROC curvature to the upper left sharply lessens, and the

AUC value meanwhile drops. Though the model seems less effective in predicting

corporate bonds with lower credit levels, it is inaccurate to conclude that the
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Figure 5.15: ROC curves for model comparisons.

The colored dotted lines are the curves for each model (group) and their names are texted at
the right blank corner, from top to bottom are Attention-LSTM/BiLSTM, LSTM/BiLSTM,
BPNN, SVR and BL, respectively. The avg.AUC refers to the mean of AUC values for models
in the group of (1) attention combined deep neural networks and (2) pure deep neural
networks.

bonds with higher credit risks will bother the model forecasting power because

the model performance on AA- corporate bond is not worse than that on AA.

It can be explained by the fact that a number of AA corporate bonds are either

being or prepared to be degraded from higher credit levels to lower credit levels

by rating agencies since most AA corporate bonds have been rated artificially

high, which may misdirect the final predictions.
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5.3.6 Attention drawn leading factors

The attention mechanism evaluates the impact of each factor. Figure 5.16 presents

the attention mechanism drawn weights for each input features.

Figure 5.16: Bar chart for the attention vector on input features.

The vertical axis labels the name of factor variables and the horizontal axis scales the value of
weights. A range of colors is used to color the bars with different weights, where red means the
value of weight is high, green/blue implies the medium and yellow/orange indicates the light.

From the figure bars, the RCM-SWARCH estimated smooth probability for

the high-volatility state is regarded as the first leading factor, except the compos-

ite corporate bond index, whose the most leading factor is estimated to be the

national discount rate. In essence, the composite corporate bond index represents

the diversification of credit risks of different credit rating leveled bonds. Thus, it

can serve as a benchmark of de-risk investment in corporate bonds, that is, the

exact role of discount rate in balancing the investment risks in the nationwide

financial markets.

The price index is unlikely to be the key factor in forewarning the bond crisis,

except for the AA- corporate bonds. It may imply either of that 1) the published

price index for the AA- credit rating bonds is more credible to reflect the bond

market turbulence as comparing with other bonds that heavily rely on the leading

technical indicators (such as smooth probability), and 2) the price dynamics of
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lowering credit rating bonds with higher credit risks is sensitively driven by the

market turbulence, which guides the model to account for more weights on the

price itself other than external economic factors.

Among the external economic factors, the GDP index has been assigned with

noticeable weights on predicting credible bonds, such as government bonds and

corporate bonds with credit ratings above AA-. In addition, PPI and industrial

gain also play essential roles for the government bonds, whilst for the corporate

bonds, the stock market factor of Sha comp is more influential. It is in line with

the conclusion of previous studies on the macroeconomic determinants for the

Treasury bond and the corporate bond credit spreads in the U.S. (Liuren et al.,

2008), which concludes the inflation factors, like GPD, CPI and PPI, effect on

both the Treasury bond and all credit rating levels corporate bonds. In contrast,

the market volatility factors, like the stock index S&P 500, have a small impact

on bonds issued by the government but an increasingly strong impact on lower

credit rating classes.

From the perspective of financial return decomposition (Long and Zhao, 2009),

the discount rate component (DR) economic factors that reflect the time-varying

risk aversion, such as GDP and PPI, will help to make forecasting the government

bonds with higher credibility. The cash flows component (CF) economic factors

related to firm fundamentals, such as industrial gain and fixed asset returns, will

contribute more to predict corporate bonds with higher underlying credit risks.

5.3.7 Extra investigation on time steps

In our study, the attention mechanism is being extra used to examine two un-

resolved questions of 1) whether the change of time steps size will affect the

predicting precision, and 2) whether the attention weight will not change its dis-

tribution on the time horizon as the size of time steps is either extended or shrank.

In the experiment, we make the time step size vary from 5 to 10, 28, 50, the most

popular horizon intervals for financial studies27.

From the Table 5.19 shown results, extending the size of time steps generally

275=effective trading week, 10=effective trading twin weeks, 28=one lunar month, 50 =two
effective trading months.
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Table 5.19: Accuracy and loss value as time step varies for predicting on out-of-
sample set.

T=5 T=10 T=28 T=50

panel (a): acc.
Gbond 0.9826 0.9903 0.9950 0.9949
Corp AAA 0.9654 0.9643 0.9624 0.9949
Corp AA+ 0.9913 0.9825 0.9871 0.9858
Corp AA 0.9855 0.9836 0.9789 0.9858
Corp AA- 0.9659 0.9757 0.9871 0.9838
Corp Comp 0.9610 0.9659 0.9723 0.9818

panel (b): loss
Gbond 0.0584 0.0347 0.0233 0.0208
Corp AAA 0.1344 0.1886 0.1527 0.0459
Corp AA+ 0.0247 0.0418 0.0536 0.0661
Corp AA 0.0396 0.0218 0.0564 0.0379
Corp AA- 0.0554 0.0806 0.0476 0.0678
Corp Comp 0.0939 0.0913 0.0804 0.0676

improves the predicting effectiveness on Gbond, Corp Comp, Corp AAA, the bond

with low credit risks, in gaining accuracy and reducing loss as more information

from the past can be included. For the corporate bond of AA+, AA and AA-

ratings with greater credit risks, the best performance will not uniformly appear

on T = 50. The model with T = 5 and T = 28 perform best on Corp AA+ and

Corp AA- respectively. We may illustrate this in two perspectives: on the one

hand, the volatility makes time series inherently less predictable, early warning

systems cannot extract more useful information from data over longer periods of

time, in other words, updating more recent data is most helpful for predictions; on

the other hand, the longer time may include implied default information, which

has no significant influence on the prediction of bonds with high credit rating

but has impacts on forecasting bonds with high credit risks. That is to say, the

reason why the longest past information for the volatile bond indexes cannot

boost the predicting effectiveness is that the default information contributes the

unpredictability to bond indexes with higher credit risks.

Figure 5.17 shows the extracted value for model inferred attention weights on

time steps for each bond index. It suggests three bond indexes of the corporate

composite index, corporate bonds with AAA and AA- ratings, be allocated the
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(a) Gbond (b) Corp Comp

(c) Corp AAA (d) Corp AA+

(e) Corp AA (f) Corp AA-

Figure 5.17: Attention vectors as time step varies.

The horizontal axis is the time steps and the vertical axis is the attention weights, and dark
red colors the high weight bar and the dilute red marks the low ones. In each sub panel of
(a)-(f), the bar plots are arranged from left to right, top to bottom as the size of time steps
T = 5, T = 10, T = 28, T = 50. The red bar labels the greatest value of weights in attention
vectors.

heaviest attention weight on the latest day regardless of the time step changes,

which means the up-to-date information will do the greatest favor on predicting

these three bonds, while the earlier information from the past will not. Then, the

government bond and corporate bond with AA+ rating share a similar weight
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pattern with the aforementioned three bond indexes that their attentions are

subject to the rule of focusing on the latest information, except at T = 10,

where the attention mechanism distributes the weights on the time horizon more

evenly. The attention weights on corporate bond with AA rating are unique since

changing the value of T will re-sketch the attention distribution in an irregular

pattern.

In general, for the bond with high security (government bonds), the corpo-

rate bonds with diversified credit risks (corporate composite), and the corporate

bonds with high credit rating level (corporate with AA+ and above ratings), the

attention distributes even weights on short term information (from 5-10 days).

Introducing long-past information can improve the predicting accuracy for such

bonds since they are relatively stable and have a low probability of default. The

more information is recruited on the timeline, the better the predicting effective-

ness is, especially considering the auxiliary economic factors contained on each

time step. Increased credit risk will weaken the forecasting power by includ-

ing long-term past information. Specifically, the bonds with low credit ratings

have greater default rates, which leads to the persistence of long past experience

increase the uncertainty of our forecasts as no default information is included.

5.3.8 Concluding remarks

In this project, the EWS for China’s bond market is constructed with technical

improvements for the crisis classifier and the predictive model by including the

RCM volatility regime determination metric and the attention mechanism. The

experimented results on a series of bond indexes show that this improved EWS

version produces forewarning signals with prominent versatility and stability. The

regime determination provides more appropriateness to classify the variations on

volatility levels, and the attention mechanism combined deep neural networks is

verified to be the best performed predictive model in terms of statistical metrics,

cross-validations, and model comparisons.

Furthermore, the attention mechanism intuitively pictures the contributing

degree of various economic factors to predictions and laterally shows the rela-

tionship between credit risks and economic factors. For example, high credit risk

131



bonds are significantly more affected by cash flow factors (like industrial gain

and fixed asset) and market volatility than low credit risk bonds. As putting the

attention on the time horizon, we find the long-term information cannot improve

the prediction accuracy for high credit risk bonds since the model does not ac-

count for indicators (for example, the default rate, which may appear in the long

term prediction for bonds with low credit rating) that directly reflect the credit

risk. Such inference provides a comprehensible way to facilitate the governors and

market participants to prevent unexpected loss from the crisis triggering adverse

impacts.

The construction of an effective early warning system for China’s bond market

thus has three layers of guiding significance. First, the national authority should

expand the issuance of government bonds, further promote green bonds, diversify

bond products, and accelerate the circulation of low-risk bonds in the secondary

market. Second, the financial regulators should strengthen the monitoring of cash

flows of corporations and enterprises and provide timely financial support to those

in difficulties. Last but not least, banks and bond trading markets should improve

the credit rating system, unify bond rating standards, update and publish the

newest rating information for corporations and enterprises in time, and eliminate

the asymmetric information among different circulation markets.

5.4 Implications and discussions

In this chapter, the integrated EWS models for China’s stock and bond markets

are designed to alarm their respective asset turbulence driven crises to 1) provide

practical information for market participants to make the decision in investing

activities and 2) offer indicative evidence for the policymakers to assess the market

vulnerability in regulating actions.

These two proposed EWS models share the same prototype as framing the

composed architecture of crisis classifier, crisis predictor, and warning generator.

However, have respective variants in each of the functional zones in the EWS

frame. The EWS for stocks hires the two-peak dynamically thresholding-based

SWARCH with two volatility regimes and the LSTM networks to identify and
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predict stock market turbulence for providing timely practical instructions for

investors. While for bonds, the volatility regimes are RCM determined not being

intuitively given by high- and low- two volatility states anymore, and the LSTM

neurons are stacked with attention mechanism and bidirectional layer to gain

the EWS’s ability in terms of subdividing the volatility degrees and boosting the

forecasting precision.

According to the results of applying the developed EWS on the ten-year sam-

ple of China’s stock index of Shanghai Stock Exchange Composite, we have the

following contributions.

• On the one hand, the crisis indicator function based on SWARCH classifi-

cation method could be directly used for post-date crisis identification in a

dynamic way given no assumptions on crisis dates or thresholds.

• On the other hand, such an integrated EWS module can effectively alarm

stock turbulence with adequate reacting forewarned periods and sufficient

high-degree accuracy. Thus regardless of the market investors’ risk aversion

levels, this EWS can make early decisions to help react towards the potential

market crashes.

By assessing China’s bond market vulnerability, the other improved form of

EWS based on the RCM-SWARCH crisis classifier and the attention combined

bidirectional LSTM deep neural networks is recognized to contribute the literature

in the following aspects.

• For one thing, the extra measure clustered high-volatility state can depict

the turmoil periods for the bond market more precisely since it not only

successfully detects critical events but notifies the credit risks place idiosyn-

cratic influences on the model forecasting power in a disadvantageous way

as well.

• For the other, the policymakers and other market participants can be sen-

sibly instructed by appropriately referring to the attention drawn leading

indicator factors that are proven linked with the level of underlying bond

credit risks. The government bond and high credit rating bonds are more
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likely to be informed by the factor variables relating to the national econ-

omy, while those which are firm personalized or stock market related will

be more persuasive to notify the corporate bonds with lower credit rating.

The current two versions of EWS are proposed as the prototype of a hybrid

combination of the volatility model and the deep neural networks, which is cer-

tainly yet finalized considering that further explorations will be constituted to

adapt diverse research aims and situations.

Model-wise, the leading indicators drawn by the attention is neither compared

with other leading-factor-detected models’ (such as logit regression, KLR indica-

tor approach and classification trees) performance nor examined in statistically

validating metrics. Target-wise, the study of applying the developed integrated

EWS on predicting systematic collapse-related crises, for example, sovereign cri-

sis, is scant. Moreover, contagious factors have not been quantized in the EWS

accepted form to be investigated their impact on predicting the crisis. The fol-

lowing chapter will propose the contagion fused EWS to estimate the probability

of sovereign crises emerging in China to fill the gaps.

134



Chapter 6

Contagion fused early warning
system

6.1 Link the contagion effect to crisis prediction

The initial motivation to merge the contagion effect into the crisis warning system

is two-fold.

From the research topic perspective, numerous studies regard the contagion

as the aftermath of the financial crisis and endeavor to emphasize the transmit-

ting pattern across different financial sectors or regions when the crisis occurs

(Fernández-Rodŕıguez et al., 2015; Kim et al., 2015; Yu, 2017; Bostanci and Yil-

maz, 2020), however, few scholars survey the reverse relationship that indicates

the role of risk transmitting conduction on the crisis prediction (Samitas et al.,

2020), even some recent evidence have supported the fact that specific financial

turbulence is also likely to be the transmitting risks triggered (Ibhagui, 2021; Feng

et al., 2021). As Dawood et al. (2017) puts forward at the end of their study,

the crisis forecast should include contagious factors as well as all macroeconomic

factors within the scope of leading factors.

From the technical model perspective, to infer the propagation directions,

the applicable models that detect risk transmission generally output structured

results (Fink et al., 2016; Tiwari et al., 2019), which cannot contribute to most

EWS frameworks as being directly input time series. Therefore, converting the

risk transmission effects into the acceptable time-series input through appropriate

quantitative methods will greatly save the cost of reconstructing the EWS, which

allows for incorporating the structured risk transmission patterns. As yet, there
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are no known crisis forewarning systems quantifying the contagion information

in an EWS-assimilated way.

6.1.1 Time-varying contagious information input

To make our research consistent with the previous study on contagion detection,

we first examine whether the constructed two hybrid CM in Chapter 4 can be

directly fused in the EWS. It seems not very possible since neither the EVT

nor the Copula can produce time-varying dynamics to reflect the changes in risk

transmission over time. Though the bi-variate SWARCH model can estimate the

probability of two markets simultaneously being in the high volatility state in a

dynamic way, it does not mean that the pairwise generated probability can infer

the change of real-time correlation degree of two assets for the high-and-high

volatility state. In addition, the programming for BiSWARCH currently relies on

the GAUSS platform, which software requires a fee for copyright. Such a non-

free platform will increase the experimenting cost and is less efficient in saving

computing time in practice.

Given the deficiency of existing research methods in contagion information

transformation, the DCC-GARCH model seems to be the preferred choice since

the output of dynamic correlation coefficients (DCC) can reflect the time-varying

change of correlated degree between markets. The model coding has been well

developed by optional packages in R, the free-open programming tool to imple-

ment models, henceforth the dual-requirements on time-varying and computing

efficiency appear to be fulfilled.

As the contagion factor input to the EWS, the sole DCC does not fully provide

the contagion information flow between the contagious source and the target mar-

kets unless the risk transmitting direction can be specified to determine whether

the contagion is taking place. In other words, the sudden increase of the correla-

tion between two markets does not necessarily mirror the occurrence of spillover

effects until the crisis origin can be certain in the turmoil state. Thus, the DCC

will be associated with the univariate SWARCH, which model infers whether the

asset is in the turmoil or tranquil episodes as estimate the switching between

high- and low- volatility states, to ease the embarrassment of using the sole DCC
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caused blur in missing out the risk spreading direction. The newly proposed dy-

namics is called contagious intensity index and will be specified in the following

section of 6.2.1.

6.1.2 Leading indicators horse race of between contagious

and macroeconomic factors

After quantifying the contagion information into the EWS allowed input form, the

following question considers the competition between leading indicators, specifi-

cally, between the newly recruited contagion factors and the acquainted macro-

economic factors that judge their impacts on producing crisis warning signals.

In practice, both the classic and the stylized EWS models can implement such

comparing functionality. However, as compared with the classic models, the deep

neuron networks are less powerful in terms of validating the convincing degree of

the learned impacting weights on each factor. Such shortage will make the in-

ferred leading factors less persuasive, even though the stylized machine learning

models have been verified to bring a higher precision on crisis forecasting.

To enable our proposed EWS model to be testified whether the inferred leading

factors are significantly credible, we likewise put forward the hypothesis testing on

the attention mechanism learned weight results for each input factors as selecting

appropriate statistics1. In this way, it is believed that the stylized neurons based

EWS models in terms of grasping leading factors and the horse race between

contagious and macroeconomic factors are more convincing to policymakers and

practitioners.

6.2 EWS for China’s sovereign crisis

In the background introduction and literature review (refer to Chapter 1, Sec-

tion 1.1 and Chapter 2, Section 2.4), we have basically depicted the situation

of China’s sovereign crisis and the debate on sovereign crisis definitions of that

1) there is not an explicit chronological list for China’s sovereign crises to be

1In addition, the selection of statistics depends on the sample size and the corresponding
empirical distribution.
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referred2 and 2) due to the complexity of the political and economic system, the

way to directly transplant the definition quantified tools for either developed or

emerging countries to China regardless of the database deficiency is not rigorously

applicable.

The other challenge for the sovereign crisis EWS study is to make a choice

from plentiful leading factors. The traditional way to synthesize a composite

indicator index by thresholding leading factors makes the selecting procedure

overwhelmingly cumbersome. Therefore, to avoid the verbose reckoning for each

factor’s threshold level, constructing a composite signaling index seems not a

good option for us.

Chapter 2, Section 2.4 has discussed the advantages of using the volatility to

define the sovereign crisis and analyzed the methodological techniques to quantify

the contagion information as well as categorized most empirically studied deter-

minant factors for the sovereign crisis. To terminate the debate and liberate the

bear of brunt for uncertainties on definitions and leading factors, the contagion

fused EWS for predicting China’s sovereign crisis is proposed mainly on the ba-

sis of developed EWS for China’s bond market, meanwhile relies on additional

improvements for each functional module of EWS as follows.

1. The crisis variable for sovereign bond market will be quantified by clarify-

ing the representative index’s different volatile status in RCM-determined

SWARCH model with more varied values for the count of regimes K.

2. The contagious information will be quantified in the contagion intensity in-

dex, a time-varying dynamics, by multiplying the DCC-GARCH estimated

dynamic correlation coefficients (between the contagious sources and the

sovereign bond), and the SWARCH inferred filtering probabilities of high

volatile state (for contagious factors).

3. The attention mechanism will be not only applied to estimate contributing

degree of input factors for both fundamental macro-economic and conta-

gious factors but first examined its estimation’s credibility in statistical

hypothesis tests as well.

2As far as we know, there is yet an officially recognized list of sovereign default events for
China
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Hereafter, the formulated models for the RCM-SWARCH crisis classfier3 and

the attention-BiLSTM crisis predictor will not be repeatedly depicted. However,

the variant changes of 1) proposing the contagion intensity index to combine the

correlation linkages with the possibility of crisis originator being in crises, and 2)

designing the hypothesis tests to validate the attention estimated leading factors’

significance for credibility, will be clarified.

6.2.1 Contagious intensity index

Engle (2003) first proposed the dynamic correlation coefficient GARCH model

to gain the flexibility to infer the pairwise time-varying correlated relationship

in a continuous way, where the volatility will be dynamically adjusted and hence

no bias will be brought, being a superior to either the CCC-GARCH Bollerslev

(1990) or the BEKK-GARCH Engle and Kroner (1995) as fitting the multivariate

class over time. The multivariate DCC-GARCH model is formulated as follows,

Yt = H
1
2
t εt, (6.1)

Ht = DtRtDt

Dt = diag{h
1
2
i,t}

Rt = (
√
diag(Qt))

−1Qt(
√
diag(Qt))

−1

, (6.2)

where Yt = {Y1t, Y2t, ..., Ynt} is the vector of n asset returns, Ht is the conditional

variance matrix, εt = {ε1t, ε2t, ..., εnt} is the vector of standardized residuals, Dt

is the diagonal matrix of conditional standardized deviations for returns with

the ith diagonal element of
√
hii,ti={1,...,n} being estimated from the univariate

GARCH for each asset. Rt is the n × n symmetric dynamic correlations matrix

being constructed through exponential smoothing estimators as follows,

Qt = S(1− α− β) + α(εt−1ε
′

t−1) + βQt−1, (6.3)

where Qt = [qij,t] is the n × n time-varying covariance matrix for standardized

residuals and S is the unconditional correlations for standardized residuals. α

3The binary function for crisis variable is same with Eq. 5.11, which has been clarified in 5,
Section 5.3
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and β are (non-negative) scalar parameters constraint by (α+ β) < 1. Appendix

C will display the specific derivation for the dynamic correlation.

Then the time-varying correlation for each pair of assets, i.e. the dynamic

correlation coefficient of ρij,t = [Rt]i,j, can be estimated to display the dynamic

contentedness degree. However, as aforementioned, it is not appropriate enough

to straightly use such correlation as contagious intensity given non-specified con-

tagious sources and non-determined crisis periods. In other words, the contagious

factors should be the deterministic origin of transmitting turbulence to the target

receivers as long as being in crisis or turmoil episodes as least. The problem is

how to ensure such ‘deterministic’ crisis originator role for contagious factors?

The contagious intensity index is thus proposed to resolve the embarrassment

by first hiring the SWARCH to estimate the possibility of contagious factors being

in crisis periods, and then multiplying the estimated pairwise DCCs between the

possible contagious source and the receiver and the SWARCH produced filtering

probabilities for contagious source factors over time. The formulation is written

as follows,

Intensex,yt = ρxy,t · Pr(sx,t = high|Xt−1; θ̂x), (6.4)

where x is the contagious source asset and y is the receiver. ρxy,t denotes the esti-

mated dynamic correlation coefficient between x and y. Pr(sx,t = high|Xt−1; θ̂x)

is the SWARCH model inferred filtering probability for x based on previous ob-

servations4.

6.2.2 Evaluation metrics on attention learnt weights

To make the attention learned weights more comparable to the classic regression

model, which can infer the impacting factor significance for each estimate by

implementing normal/t-test on each parameter, we do three levels of hypothesis

tests on both in-sample and out-of-sample attention vector pieces to verify,

I) “whether they both significantly deviate from zero”,

II) “whether they both have little variations from the full sample set”,

4We do not use the smooth one here to prevent the future information leakage from conta-
gious assets perturbing the crisis prediction.
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III) “whether they perform steadily over time and show little difference with

each other”.

The corresponding hypotheses are aligned as follows

HI
0 : αi = 0 v. HI

1 : αi 6= 0, (6.5)

HII
0 : αi = µi v. HII

1 : αi 6= µi, (6.6)

HIII
0 : αout,i = αin,i v. HIII

1 : αout,i 6= αin,i, (6.7)

where αi denotes the attention weight for each factor of xi (i.e. the estimated

contributing degree for factor of xi). µi denotes the overall attention weight on

the full population for xi
5.

Thus the credibility on attention mechanism inferred factors’ contributing

degree can be testified in three ways: 1) inspecting the significance level for

factors that are counted as non-zero contributors, 2) reviewing the consistency

of attention drawn weights between train/test and the full set, and 3) examining

the effectiveness of attention trained results working on out-of-sample estimations.

The ideal result is to expect that the null I can be significantly rejected and the

rest of the two nulls II and III can be accepted with supportive evidence.

To implement the hypotheses, corresponding test statistics of ZI , ZII and ZIII

are designed as follows conditional on imposed essential assumptions6.

ZI =
ᾱi

S/
√
T − 1

∼ t(T−1), (6.8)

ZII =
ᾱi − µi

S/
√
T − 1

∼ t(T−1), (6.9)

ZIII =
ᾱin,i − ᾱout,i√

1
T1

+ 1
T2
·
√

T1S2
1+T2S2

2

T1+T2−2

∼ t(T1+T2−2), (6.10)

where T denotes the count of observations, and S is the sample corresponding

standard deviation. ᾱi = 1
T

∑
t α̂

t
i are mean values for estimated attention weights

on each factor of xi. The p-values for each factor will be calculated and inspected

5The overall mean of µi will be calculated via bootstrapping the attention extracted weights’
empirical distribution from the full sample set.

6The assumption has to be requested before implementing the hypothesis testing since any
statistic test must be given appropriate distribution. For example, the sample size should be
large enough to allow the normal distribution to be approximated. In practice, the histogram
will be pictured to visualize samples’ normality, and Jarque-Bera statistic will be computed to
check the imposed assumption’s rationality.
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at both 5% and 1% significance levels.

The preliminary condition for implementing the third hypothesis is that train

and test sets share the same standard deviation. In practice, we first do F-test on

the two sample standard deviations, if the test can be passed, then being trans-

ferred to the next step for testing the equivalence of the mean value. Otherwise,

the t-test can not be implemented, and we alter the Scheffé test, which is more

specific to test two different size sample sets with unknown standard deviations.

This testing process will be described in the Appendix D.2.

6.2.3 Diagram the contagion fused EWS

The full implementing process for the contagion fused EWS frameworks is dis-

played in a packed diagram of Figure 6.1.

Step (1): At start, data for the target observations of {yt}t=1,...,T and m

contagious factors of {xjt}t=1,...,T ;j=1,...,m (among all n features) will be put into

the RCM regime selected SWARCH model to get (1) smooth probabilities for y

and (2) filtering probabilities for each xj, at high volatility state. Meanwhile, they

will also input into DCC-GARCH model pairwise as (yt, x
j
t) to get the dynamic

correlation coefficients series of dccy,x
j

t .

Step (2): Then, the first layer output (1) for y can be used to define the crisis

variables of Ct and hence Cf
t as including the post-effect window for one trad-

ing month prediction. The output (2) filtering probabilities for each contagious

factor will be multiplied to dccy,x
j

t by point-to-point to generate the contagious

intensities given the risk transmitting from contagious factors to the target asset.

Step (3): Last, the crisis observations and the intensity features as well

as other macro-fundamental factors will be input into the predictive model,

attention-BiLSTM, which has been structured in Figure 5.10 of last Chapter

5, to draw the prediction of ŷt+1 for probability being a crisis in next twenty

days and the contributing degree of ŵ (that is the estimated value for attention

parameter of α in Figure 5.10) for each input feature.
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Start

Input the target variable {yt} and contagious variables {xjt},
where t = {1, ..., T} and j = {1, ...,m}

RCM-SWARCH DCC-GARCH

Output the smooth probabilities
for yt, Pr(st = high|YT ; θ̂y) and
filtering probabilities for xjt ,
Pr(st = high|X j

t−1; θ̂x
j
)

pairwise dynamic correlation ρy,x
j

t

Pr(st = high|YT ; θ̂y) > 0.5?

Cy
t = 1 Cy

t = 0

Crisis variable Intensejt

Input economic
fundamental factors
{x(n/j)

t }

Predictive model (attention-BiLSTM)

Output predicted results ŷt+1 and
estimated contributing degrees {ŵi}i=1,...,n for
both intense and macroeco variables

End

Yes No

Figure 6.1: The diagram of implementing fused-EWS for sovereign crises.

Note: 1. The input factors are divided into two groups of contagious ones {xjt} and economic

fundamental ones {x(n/j)t }, given j = 1, ...,m contagious factors.

2. Intensejt = Pr(st = high|X j
t−1; θ̂x

j

) · ρy,x
j

t is the quantified contagion intensity being the
product of between filtering probabilities from SWARCH model and dynamic correlation
coefficients from DCC-GARCH model.

6.3 Data

The daily China development bond (CDB) data, issued by the State Develop-

ment Bank and actively traded in the secondary markets, will be hired to define

the crisis for the sovereign bond. Unlike previous studies for the sovereign crises

generally hiring either government bonds, bonds from treasury markets, or credit

default swap (CDS) spreads, this quasi-sovereign bond from policy banks shows

prominence in two aspects. One side, it shares the high credit level on the in-
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ternational stage and has been accredited by the Standard & Poor’s and other

professional rating agencies to keep consistent with China’s sovereign rating. On

the other side, it has outstanding stock volume and high liquidity in the sec-

ondary trading market. According to China’s Central Clearing House report in

2019, the CDB bonds’ stock reached 3.8 trillion yuan, and the trading volume

reached 60.86 trillion yuan.

As for the exogenous factors, four contagious sources are included. They are

C1) seven-day weighted repos7 that tightly correlate to the short-term interest

rate level and investment sentiment in the bond trading market, C2) Shanghai

and Shenzhen Composite Index (SSEC) that displays the Chinese stock market

dynamics and acts as the totemic investment for other Chinese financial mar-

kets, C3) international gold price index and Brent oil price that represent the

commodities in international trading activities, and C4) U.S. currency index and

VIX that are recognized to lead the fluctuation for other countries’ financial mar-

ket turbulence.

In addition, five dimensions of macro-economic factors will instrument as the

explanatory variables8 to be aware of the sovereign crises.

E1) The overall portrait of economic development will be pictured by gross

domestic production (GDP) on the year-on-year basis, macro-economic climate

index, economic growth index, GDP constant prices for real estate cumulative

on the year-on-year basis, capital and financial account balance, real economic

leverage ratio, government sector leverage, financial sector (on debtors and asset

sides) leverage, urban unemployment ratio and Engel’s coefficient (EC) for urban

residents;

E2) domestic production and consumption level will be depicted in industrial

added value, tax revenue9, consumer price index (CPI), consumer confidence

index (CCI), and China investors’ composite sentiment index (CSI)10;

E3) domestic fiscal policy control intensity will target the money supply (M2),

7Repos are the repurchase rates for government bonds.
8We try to include all contributing factors that previous studies have mentioned. However,

the availability for these macro-economic factors in the database confines our options.
9Tax revenue plays the crucial role for adjusting the commodities price and then further

acting on the consumption level.
10The (CI)CSI is published by National School of Development, to depict the sentiment

changes of investors in the financial markets.
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RMB deposit-reserve ratio (RDR), and interest rate on demand deposit, as well

as is synthetically counted into the monetary policy index by 9M Technologies11;

E4) international economic communicating activities will be embodied into

RMB real effective exchange rate, reserve assets and foreign exchange balance,

ratio of total purchased bonds to total sold bonds by foreign investors, trade

balance, and ratio of total imports and exports;

E5) ability to service debts will be marked into the ratio of short-term external

debt to the foreign exchange reserves, portion of short-term debt to the balance

of external debt, portion of total international balance of payments to GDP, debt

service ratio, and debt-to-GDP ratio. All data are accessed from WIND database

and their statistics are described in Table 6.212.

Table 6.2: Statistic descriptions for input factors.

Factors Mean St.D. Skew. Kurtosis Freq. Type

pr idx 100.91 2.27 -0.35 -0.40 daily
log r 0.00 0.00 0.17 23.2 daily endogenous
filt k3 0.17 0.32 1.80 1.53 daily

sev repo 2.75 1.06 1.11 3.18 daily
sev repo chg 0.00 0.04 0.35 15.57 daily
ssec chg 0.00 1.00 -0.34 4.34 daily
gold 10905.4 5405.13 -0.22 -0.07 daily
gold chg 0.00 0.03 0.25 2.46 daily
oil 73.97 25.81 0.44 -0.89 daily
oil chg 0.00 0.02 -0.23 11.21 daily
dxy 86.86 8.01 0.14 -1.21 daily contagious
dxy chg 0.00 0.01 0.40 6.82 daily
vix 18.76 9.37 2.68 9.54 daily
vix chg 0.00 0.08 2.12 16.69 daily
ctg brepo 0.00 0.03 -2.81 54.57 daily
ctg bstk 0.00 0.02 -8.19 92.86 daily
ctg bgold 0.00 0.01 -2.43 27.90 daily
ctg boil 0.00 0.01 -2.46 5.62 daily
ctg bdxy 0.00 0.01 -1.69 18.33 daily
ctg bvix 0.00 0.01 0.61 16.86 daily

gdp 8.73 7.71 -0.38 -0.60 quarterly
macro idx 99.58 3.55 -1.34 2.66 monthly
11The 9M Technologies is a limited company which provides comprehensive analytic solutions

based on the world-class industry experience and advanced quantitative research to serve for
the risk forecasting and portfolio management.

12The factors in Table 6.2 have been abbreviated in Table 6.1.
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eco gr idx 0.44 0.18 0.33 -0.87 monthly
gdp realest 7.98 6.28 2.03 10.66 quarterly
cap fin bal 253.55 426.01 0.56 0.16 quarterly
realeco lev 192.85 39.79 0.28 -1.06 quarterly
gov lev 33.05 6.29 5.01 44.90 quarterly
fin lev 1.37 3.95 11.85 148.44 quarterly
unemploy 1.58 5.14 7.39 73.74 quarterly
ec 34.09 3.57 -0.82 -1.02 annually
indus add 10.60 5.95 -1.08 6.42 monthly
tax 13.4 14.55 0.57 1.45 monthly
cpi 2.74 1.90 0.65 0.93 monthly macro-
cci 109.11 7.21 0.75 -0.13 monthly -economic
csi 36.85 7.71 -0.38 -0.6 monthly
m2 14.68 4.81 0.95 1.16 monthly
rdr 15.38 4.35 -0.63 -0.77 monthly
depos r 0.47 0.17 0.86 -1.12 monthly
mon pol idx 0.15 0.82 -0.18 -1.64 monthly
rmb forex 107.58 15.3 -0.18 -1.39 monthly
res forex bal -433.46 756.7 0.72 0.49 quarterly
buy sell overseas r 1.48 1.39 5.37 45.80 monthly
trade bal 46.69 164.71 3.04 13.19 monthly
imp exp r 11.71 16.52 -0.12 -0.55 monthly
exdebt fores r 22.40 10.86 1.86 6.97 quarterly
short bal exdebt p 63.59 9.34 0.37 2.02 quarterly
intbal pay gdp p 5.69 6.19 2.64 18.05 quarterly
debt ser r 3.41 1.83 0.64 -1.15 annually
debt gdp r 45.74 17.96 0.62 -1.28 annually

Figure 6.2 visualizes the pairwise empirical correlations between input factors

in the heat map. According to the depth of colored dots, we can judge their degree

of orthogonality. The darker colored, the stronger correlated. Some factors will be

suspiciously notified since they perform heavy correlation to more than 3 other

factors. First, almost all contagious factors price indexes and their quantized

intensities are rarely correlated with each other as well as to other macroeconomic

scoped factors, except the U.S. currency index (dxy), which correlates more to the

Engel’s coefficient of urban households (ec), the debt to GDP ratio (debt gdp r)

and the balance of reserve assets and foreign exchange (res forex bal). In contrast,

the situation is quite different since most macroeconomic factors are correlated

with each other more or less. The most noticeable correlations aggregate on

following three groups of factors: i) the monetary policy (mon pol idex), the

industrial gain (indus add), the forex for Chinese yuan (rmb forex), the money

supply (m2), ii) Engel’s coefficient (ec), the debt to GDP ratio (debt gdp r) and
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Figure 6.2: Correlation matrix of input endogenous and exogenous factors.

iii) the leverage ratio for the government sector (gov lev), the (realeco lev), the

leverage ratio for the real economy sector (realeco lev).

We frame sourced data from March 31, 2004 until September 1, 2020, the pe-

riod that allows for covering several critical moments that once kicked in China’s

economic development. The target variable of Cf
t and the feature vector of xt

will be first neaten by their corresponding pre-processing methods (mentioned

in section 6.2.1). By removing all not available values, we have the data frame
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with 3858 rows (time horizon axis) and 50 columns (1 target and 49 features on

variable axis). To make the data frame into the format that attention-BiLSTM

model allows input, the time step is first set, in our case, to be 20, and hence

the data will be converted into 383813 pieces of samples. It is essential to cover

at least one crisis hump in the out-of-sample set for validations. Thus we split

the data into 85% for the train and 15% for the test, specifically 3259 in-sample

and 579 out-of-sample pieces, respectively. The test set spans from 2018/03/19

to 2020/09/01, which covers the most recent pandemic COVID-19 outbreak.

6.4 Preliminary analysis

In this section, two preliminary analyses of 1) the regime count determination

by RCM in SWARCH inferred smooth and filtering probabilities for the target

sovereign bond index and the contagious factors respectively, and 2) the conta-

gious intensity index between the sovereign bond and the appointed crisis origins,

are called before accessing the input for EWS.

6.4.1 RCM optimized K

Table 6.3: RCM values as K varies in SWARCH model frameworks.

K = 2 3 4 5 6 7 8
(a) target:
cdb 50.0 0.000∗∗ 1.56 0.157 0.000∗∗ 0.000∗∗∗ 0.000∗∗∗

(b) ctg sources:
repo 12.8 0.309 0 0.000∗∗∗ 0.000∗∗∗ 0 0
ssec 10.1 0.000∗∗ 0.072 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗

gold 5.22 0.000∗∗ 0.000∗∗∗ 0.000∗∗∗ 0 0 0
oil 10.4 0.000∗∗ 0.000∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗ 0
dxy 13.5 0.057 0.000∗∗ 0 0 0 0
vix 18.1 2.47 0.155 0.000∗∗ 0.000∗∗∗ 0 0

∗∗∗ and ∗∗ denote the significance levels of 1% and 5%, respectively. The values below 0.01%
will be noted as 0. The specific values for zeros with significance levels are shown in the
Appendix.

13number of samples = count of observations - time step length
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Table 6.3 lists the corresponding RCM value under each K14 for the log returns

of (a) target CDB index and (b) price index for each contagious source. From the

table, K = 2 brings high RCM ’s for all indexes (especially 50 for the sovereign

bond index), which, beyond questions, departs from previous studies regularly

used ‘high’ and ‘low’ two classification cases as manifest that simply splitting

two volatility states can afford to clarify volatile states no-whither. Furthermore,

gaining the regime value K in a lengthy way will unnecessarily improve the model

classifying performance in the volatility count testifying since the RCM does not

shrink to zero continuously or steadily. For example, from panel (a), RCM

equals to 0.023 under K = 3, it is smaller than 1.56 and 0.157 under K = 4

and K = 5. Even though the value keeps stepping down thereafter, limiting the

number of regimes is essential in practice since over-refining the volatility level

will blur the distinctive boundary across identified states. In other words, the

greater K is given (especially after K = 4), the weaker susceptibility is performed

in differentiating volatile levels, not to mention the expensive calculating process

brought by assigning large K in SWARCH model estimation)15. To prevent such

advantage-offset effects from overwhelming the contribution as adopt RCM in

K’s determination, K is chosen by obeying at least either two of the following

three rules.

• The RCM value is approaching to but not necessarily be zero;

• The decrease between two adjacent values (from the front to the latter) is

sharp enough to indicate the impact of gaining K;

• The plot for either smooth or filtering probabilities in high volatility state

(among all distinguished volatility regimes) can intuitively differentiate the

‘crisis’ and ‘non-crisis’ samples without being aggregated around the 0.5

cutoff horizontal line or being too drastically distributed to form consecutive

‘crisis’ and ‘non-crisis’ segments.

In short, the RCM is not the dictatorial way to determine the optimal K,

but incorporates other essential references in K’s selection. In our case, the ‘best’

14The regime count of K, in our case, varies from 2 to 8, which range allows us to distinctly
identify different volatility cases for the index dynamics shifting among several turmoil levels.

15In practice, the plot for smoothed probabilities in high-volatility state performs more evenly
as large K is provided, which will not benefit from drawing enough the crisis samples.
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K seems uniform to be 3 for all indexes after screening conditions listed above.

RCM value for VIX at K = 3 is 2.47, though noticeably high compared with

0.155 under K = 4, adorable as observing the high volatility state probability

plot and the dropping steepness across each adjacent pair of increased K’s. Thus

the crisis variable and contagious intensity index are further brought forth after

determining the K.

6.4.2 Identified crisis episodes

China has persistently held a special political control mode in financial markets

for decades, making historical evidence for sovereign default or debt crisis events

difficult for China to search. In this section, we tabulate the RCM-SWARCH

model detected crisis episodes for sovereign bond index and list the critical events’

timeline relating to the bond market as the auxiliary proof to validate the model

detection’s reliability.

Figure 6.3 visualizes the RCM-SWARCH model detected sovereign crisis episodes

as the red shadowed region. There are eight RCM-SWARCH detected crisis seg-

ments unevenly scattering over the recent fifteen years time span. We associate

the detected sovereign crisis episodes to critical events that possibly impact on

the bond market in Table 6.4, where the key turning points have been clarified

to unveil that the RCM-SWARCH detected march with these milestone events

synchronously.

Figure 6.3: Identified sovereign crisis episodes.
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Table 6.4: Chronologically contrast to the critical events.

identified crisis episodes relevant critical events

2004/05/10−2005/09/20; In late April of 2004, the authori-
ties published a number of regula-
tory policies including increasing of
the deposit reserve ratio, and mean-
while the continuous decline of the
market exposed risks hidden by the
previous national debt repurchase
system’s deficiency, which triggered
the average net price of Treasury
bonds fell more than 7.1%.

2005/10/18−2006/04/07; Affected by the prudent fiscal pol-
icy, the capital in the Treasury
bond market was excessive, and
the interest rate fell sharply. The
price of Treasury bonds fluctu-
ated greatly as being influenced
by investment sentiment since mid-
October of 2005, with the overall
index dropping from 112.5 to 110.9
within a month, and then rising
back to 112.3 from November 22 to
the end of the year.

2006/05/22−2006/08/18; From April to July, tight monetary
policies were issued intensively, the
bond index momentum went down
from 114.3 to 113.0 by dropping 1.3
points. From August to October,
however, being supported by the
huge force formed by a large num-
ber of idle funds, the bond market
was continued to be pushed up with
the China Bond Composite Index
rising by 2.8213 points (2.5%) to
115.762 points.
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2008/10/16−2009/03/16; Since the fourth quarter of 2008,
the central bank frequently cut in-
terest rates, the 1-year fixed deposit
rate was lowered by 108bp in Oc-
tober, which made the bond yield
curve sharply and steeply declined.
For instance, the yield curve for
key inter-bank bonds moved down
by 202 basis points (bp) on aver-
age. At the start of 2009, rapid
credit growth triggered a shunt of
bank liquidity and further shook
the bond market financing area
abundance to avert the market risk
appetite to selling bonds buying
stocks. Such actions made the
Treasury yield curve go upward by
20 bp within one month.

2014/10/13−2015/01/15; In the last quarter of 2014, the
downward pressure on the econ-
omy was mounting, even though
the central bank loosened mone-
tary policy in December, it hardly
eased the squeezed market liquid-
ity. Meanwhile, the China Secu-
rities Depository and Clearing Co.
Ltd. (CSDC) suspended the corpo-
rate debt being pledged to the Trea-
sury. The bond market thus ap-
peared frequent shocks till the start
of 2015.

2015/03/23−2015/05/04; China promoted the process of in-
terest rate marketization and in-
troduced the deposit insurance sys-
tem in April 2015, but the finan-
cial market is underdeveloped, the
benchmark interest rate system has
yet been established, which made
the transmission from the interest
rate mechanism and monetary pol-
icy mechanism severely hindered,
forming a “financial accelerator”16.
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2016/11/28−2017/01/23; In the late November of 2016,
the rapid devaluation of RMB in-
creased the outflow of foreign re-
serves, which brought heavy capi-
tal tension. In addition, the cen-
tral bank continued the prudent
monetary policy by locking short
and releasing long in the open mar-
ket to raise the cost of funds. In
December, the burst of credit de-
fault event, the Sealand Securities
fraud incident also deepened the in-
vestor’s distrust in the bond mar-
ket. In the triple effects from
policy, capital and credit crisis,
bond yields accelerated upward,
and credit spreads widened.

2020/05/07−2020/08/17. After the reform of LPR in China,
the interest rate transmission mech-
anism was basically formed. How-
ever, under the impact of COVID-
19, the downward pressure on the
real economy increased since the
first quarter of 2020, and the non-
performing loans of banks accumu-
lated. The one-year LPR was inten-
sively cut by 20 basis points from
February to April to 3.85%, which
caused the bond market turmoils.

6.4.3 Correlated pattern

In this section, the contagious effects are first analyzed by visualizing the dynam-

ics for the DCC-GARCH inferred time-varying correlation coefficients. Then,

the pairwise risk transmission intensity that synthesizes with the SWARCH es-

timated probabilities for contagious source being in the high volatility state are

pictured by displaying how recognized contagious origins effect varies against time

as the transmitting direction is pinned from the sources (contagious factors) to

the receiver (sovereign bond).

24financial accelerator is the principle of the occurrence and transmission of the U.S. 2008
financial crisis.
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Figure 6.4 pattern shows the pure correlated relationship regardless of the

risk transmission direction given the contagious factors being crisis origin. Each

pairwise correlation fluctuates drastically except that between stocks and the

sovereign bond showing significant trend (with little deviated variations) of slowly

crawling up till the year of 2018 (though still hovering around zero) and then

sharply falling to negative within two years. The seven-day repo rate corre-

lates to the sovereign bond most tightly since it performs the greatest correlation

among all pairs for both positive and negative sides. International commodities

of gold and oil and the U.S. currency generally play a heavier negative role than

positive impact on China’s sovereign bond, especially the crude oil almost holds

all values below zero during the inspected episode. The VIX shares a median

level correlation with two sharp bumps. One appears around 2008-2009, the time

of the Global financial crash, and the other locates in 2013, the year of China

sinking into severe money shortage, but no notable turbulence happened for the

VIX.

Figure 6.4: The pairwise dynamic correlation coefficients between the sovereign
bond and each contagious source markets.

In such pure DCC inference, the correlated relationship that goes either pos-

itive or negative can be clarified, but the transmission intensity from specified

contagious sources to the sovereign bond cannot be demonstrated. Without being
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Figure 6.5: The pairwise contagion intensity indexes between the sovereign bond
and each contagious source markets.

From the top left to bottom right, the subplots are aligned for repos, stocks, gold, oil, the US
dollar index and VIX crisis transmitting intensity to the sovereign bond. Red region shadows
the detected sovereign crisis episodes and the purple highlights the probability for each
corresponding contagious factor being in high volatility state above 0.5.

provided the crisis origin or assessing the crisis origin bursting led risk transmis-

sion, it is unlikely to judge the role of contagious factors in the sovereign bond

crises prediction by footing them in a fair place as macro-economic inputs17.

Figure 6.5 shows the scaled contagion intensity index dynamics between the

sovereign bond and the contagious source markets. From the figure, more distinct

implications than the pure dynamic correlation coefficients can be inferred.

First, the combined index filters out some irrelevantly correlated vibrations

from the co-movement dynamics. The product of correlation coefficients and the

filtering probabilities for contagious origins staying in a high-volatility regime will

minimize some inferred non-zero correlations (even high-level correlations) to zero

when the origin is recognized as being in crises with slight possibility.

Second, not all contagious source turbulence will successfully transmit to the

sovereign bond since the overlapping segments between the purple (crisis episodes

for contagious sources) and the red (sovereign crisis episodes) do not perfectly

17The macro-economic factors including the authorities imposed fiscal policies directly inter-
vene in market fluctuations, the impact of risk transmission, however, works on it in a more
obscure and tortuous way.
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equate to the turbulent intensity segments (i.e. the non-zero intensity values).

For example, the sovereign bond and the gold are tightly correlated given the

gold transmitting risks during 2006-2010, while the overlapping regions in that

period are scattered as several slim bars at mid-2006 and mid-2008.

Third, the 2008 worldwide financial shock significantly augments the conta-

gious effects between gold, U.S. currency, China’s stocks, oil, and sovereign bond,

because their abnormal vibrated intensity dynamics coincide with the overlapped

crisis episodes for paired markets in the year of 2008. The COVID-19 impact,

however does not share the same phenomenon even though the intensity index

dynamics appear sharp valleys at the start of 2020.

Last, among six contagious sources, the VIX presents the least crisis obser-

vations and lightest transmission degree. The repo rate, which factor shows the

strongest correlation in the above DCC inference, also shares the minimal over-

lapped crisis shadows even though neither contagious intensity nor detected crisis

samples are weakest.

In a nutshell, we reasonably infer that contagious effects from the domes-

tic repo and the VIX hardly perform as leading factors in sovereign bond crisis

prediction. In contrast, the international commodities of gold and oil, their tur-

bulence probably contribute more to the prediction during global crashes, such

as 2008 financial shocks and 2020 COVID-19 impacts. The U.S. currency and

national stocks’ abnormal vibrations, though they become the impacting factors

for sovereign bond turmoils, they severely lagged in 201518.

6.5 Contagion fused EWS predicting performance

In this section, to evaluate the proposed EWS model performance, it will be put

in contrast with baseline models of 1) (static and dynamic) logit regression19, 2)

KLR indicator approach and 3) random forests20, which three types of predictive

18Oppositely, the sovereign bond turmoils run ahead of the U.S. currency and the stock
market in 2015, which implies the transmission direction perhaps revert.

19The dynamic EWS is first proposed by Candelon et al. (2014) to forewarn the currency
crisis based on the binary logit regression. The dynamic scheme in that study is implemented
either through the lagged crisis variable or through the time index to reinforce the endogenous
indicators’ persistence in prediction.

20Random forest is one of the classification trees aiming for diminishing the bias on the full
set.
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models i) have been accredited in previous EWS model development studies, ii)

can estimate the indicators’ contributing degree, and iii) cover different algorith-

mic routines in distinctive mathematical principles.

Two levels of measurements will be hired to evaluate the EWS forecasting

power.

I. Statistical evaluation metrics of Quadratic probability score (QPS), Log

probability score (LPS), Youden J and SAR, as well as the hit-ratios calcu-

lation on correct predictions, will be applied to test the predicting precision;

II. Forewarned days ahead of true crisis labels will be tabulated to inspect the

forewarning effectiveness in practice.

In level I measurement, the SAR follows the formulation in last Chapter 5,

Section 5.2, Eq. 5.6. The statistical metrics of QPS, LPS and Youden J are

formulated as follows,

QPS =
1

T

T∑
t=1

2(ŷt − yt)2, (6.11)

LPS =
1

T

T∑
t=1

((1− y)log(1− ŷ) + ylog(ŷ)), (6.12)

Youden J = Sensitivity + Specificity − 1, (6.13)

where QPS is the mean square error of comparing the predicted results to the

true crisis labels. LPS is the logarithm of the probability estimate for the actual

outcome. The Youden index measures the percentage of correctly predicted ob-

servations. The perfect model will have 0, 0, and 1 for the QPS, LPS and Youden

J index, respectively.

Table 6.5 compares the four types of models in listing both of the statisti-

cal metrics and the hit ratios. From the table, the attention-BiLSTM, though

it loses the horse race for the in-sample set compared to logit regressions and

random forests, shares the least over-fitting effects among all predictive mod-

els by producing the greatest stable forecasting results between in-sample and

out-of-sample sets.
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Table 6.5: The statistical metrics results for comparative predictive models.

static logit dynamic logit KLR random forest attn-bilstm

(a) in-sample
QPS 0.038 0.038 0.371 0.003 0.065
LPS -0.066 -0.065 −− −− -0.094
Youden J 0.918 0.919 0.237 0.996 0.907
SAR 0.944 0.945 0.678 0.987 0.929

hit ratio(calm)a 0.983 0.984 0.827 1.000 0.952
hit ratio(crisis)a 0.934 0.936 0.410 0.996 0.926
miss-out ratiob 0.014 0.014 0.128 0.001 0.027
false-alarm ratioc 0.012 0.013 0.136 0.00∗ 0.037

(b) out-of-sample
QPS 1.12 1.27 0.265 0.261 0.135
LPS -11.2 -10.4 −− −− -0.326
Youden J -0.525 -0.517 -0.068 0.579 0.851
SAR 0.392 0.405 0.730 0.805 0.894

hit ratio(calm) 0.460 0.463 0.931 0.814 0.924
hit ratio(crisis) 0.015 0.014 0.00 0.765 0.875
miss-out ratio 0.116 0.116 0.118 0.028 0.010
false-alarm ratio 0.477 0.462 0.061 0.164 0.067

∗ denotes the significance level at 0.1%.
a hit ratios for calm and crisis are the percentages of corrected predictions for non-crisis and
crisis samples, respectively.
b miss-out ratio counts the percentage of non-caught crisis signals in all predictions.
c false-alarm ratio is the percentage of generated warning signals in the actual tranquil
periods. It should be notified that the false-alarm ratio does not distinguish the effective true
early warnings (followed by actual crises) from the false alarms. Such ambiguous confusion
will be clarified in Table 6.6.

Specifically, the greatest Youden J (0.996), SAR (0.987), and highest hit ratios

for corrected predictions (100%) are brought by the random forest on the train

data set. Such metrics values (of 0.579, 0.805 and 81.4% respectively) strikingly

decrease to lower than that for attention based Bi-LSTM networks on the test

set, not to mention the logit regression, which models severely lose the predicting

accuracy on out-of-sample data by dropping to almost zero hit ratios (0.015 for

static logit and 0.014 for the dynamic) for calling warning signals.
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Table 6.6: The count of called onsets that effectively forewarned crises.

Days in advancea (called/total)b forewarnedc

0 1 2 3 4 5 6 7 ×100% days

(a) in-sample total = 6d

static logit 2 2 2 2 2 2 2 2 33% 1.17
(2)e (4) (5) (5) (6) (5) (3) (3) (68.8%) (2.41)

dynamic logit 2 2 2 2 2 2 2 2 33% 1.17
(2) (4) (5) (5) (6) (6) (4) (3) (72.9%) (2.70)

KLR 3 3 3 3 3 2 0 0 35.4% 2.59
(3) (4) (4) (4) (4) (3) (2) (0) (50%) (2.79)

random forest 5 5 5 5 5 5 5 5 83.3% 2.92
(5) (6) (6) (6) (6) (6) (6) (6) (97.9%) (3.52)

attn-bilstm 6 6 6 6 6 6 6 6 100% 3.50
(6) (6) (6) (6) (6) (6) (6) (6) (100%) (3.50)

(b) out-of-sample total = 1
static logit 0 0 0 0 0 0 0 0 0% 0

(0) (0) (0) (1) (1) (1) (1) (1) (62.5%) (3.13)
dynamic logit 0 0 0 0 0 0 0 0 0% 0

(0) (0) (0) (1) (1) (1) (1) (1) (62.5%) (3.13)
KLR 0 0 0 0 0 0 0 0 0% 0

(0) (0) (0) (0) (0) (1) (1) (1) (37.5%) (2.25)
random forest 1 1 1 1 1 1 1 1 100% 3.50

(1) (1) (1) (1) (1) (1) (1) (1) (100%) (3.50)
attn-bilstm 1 1 1 1 1 1 1 1 100% 3.50

(1) (1) (1) (1) (1) (1) (1) (1) (100%) (3.50)

a The days in advance denotes the forewarned days before the crisis begins and the filled
numbers count how many crisis onsets are correctly continuously called with specific
forewarned days. For example, 6 crisis onsets are correctly called with 7 continuous days in
advance for attn-bilstm model while only 2 can be called by logit regression.

b The average correct percentage is calculated by

7∑
i=0

(si)

total×8 , where si denotes the count of
continuously predicted onsets in advance of i days.

c The average forewarned days are calculated by

7∑
i=0

(i×si)

7∑
i=0

si

.

d The train set actually contains 7 crisis onsets. We count as 6 since the train set starts with
the ‘crisis’ observations, which cannot be counted as an effective crisis onset in model
comparisons.
e The bracket here denotes the count of singular day, such as the 1st, the 2nd and so on, ahead
of the crisis onsets, which is different from the un-bracket ones that count for the days in
advance continuously.

Table 6.6 verifies the attention-BiLSTM prominence in terms of crisis on-

sets prediction. From the panel (b), out-of-sample statistics say both attention-

BiLSTM and random forests model calling crisis onsets reaches to 100 percent

correct. However, the random forest misses out one crisis onset for the in-sample
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set (see panel (a)) which brings 83.3% correct crisis onset prediction ratio, less

than the attention based BiLSTM model brought 100% correct prediction ratio.

The classic logit regression and KLR poorly perform on the test set with zero cor-

rect prediction rates. From the last column, the average forewarned days ahead

of the true crisis onsets, the attention based model outperforms other contrast

groups with 3.5 forewarned days for both in-sample and out-of-sample sets, which

means it generates the earliest reassuring warning signals before the crisis truly

happens. All in all, the attention mechanism winged deep neuron networks are

verified effectively to predict sovereign crises in terms of gaining the predicting

precision, diminishing the false ratios, and drawing adequate early warnings in

contrast with the classic predictive models of the static/dynamic logit regres-

sions and the KLR indicator approach. The tree model of random forests brings

comparatively prominent results in calling crisis onsets, however, produces more

false alarms on out-of-sample set, making the random forests less persuasive from

practical perspectives daily.

To sense the danger of sovereign crises, both investors and governors need

to inspect the key contributors, which are customarily referred to as leading

indicators. In practice, the operation of a complex EWS model and the access of

EWS generated warning signals are usually pricey for the public. Inspecting the

model suggested leading factors behaviors is the cost-effective way to be aware of

the abnormal quakes for the sovereign bond in advance.

6.6 Leading factors for sovereign crisis in

comparative analysis

The classic EWS models based on regression model Frankel and Rose (1996) and

KLR indicator approach Kaminsky et al. (1998) have pioneered in leading fac-

tors detection and validated the estimated impacting degree for each factor. As

mentioned before, though they have been popularly explored in the EWS devel-

opment, the machine learning models yet achieve such comparative parametric

credibility inspection on factors’ marginal effects. This section will first visualize

the attention mechanism drawn leading factors and then testify these contrib-

160



utors’ significance to gain the machine learning-based EWS model’s cogency in

interpretability.

6.6.1 Attention drawn leading indicators

According to Figure 6.6, the weight vector distributions on the train (upper panel)

and the test (lower panel) share a similar pattern. The leading factors are ranked

in the following order.

1st ranked: The gold price grows to the tallest (both bars above 0.35);

2nd ranked: The constant price for real estate (counted in GDP) stands sec-

ondly (0.188 for the train and 0.258 for the test);

3rd ranked: The oil originated crisis transmission takes the most noticeable

role (0.126 for the train and 0.143 for the test) among all composing contagious

index factors;

4th ranked: The endogenous factor of filtering probabilities gets the equivalent

importance level to the oil contagious index for the train (with 0.142) but performs

weaker for the test (with 0.08);

5th ranked: The CPI, the macro-economic factor that mirrors the inflation

level, seems to provide some reference meaning to forewarn the sovereign ab-

normality with around 0.08 and 0.07 weight values for the train and test sets,

respectively;

6th ranked: The monetary policy index though it gets limited attention weights

of 0.03 and 0.02 for in-sample and out-of-sample data sets, it is worthy of being

noticed as compared with the rest of zero shared factors.

In summary, the endogenous filtering probabilities, the contagious sources

of gold price and oil transmission impacts, and the macro-economic aspects of

inflation level (CPI), real estate price, and monetary policy, play the leading roles

to forewarn sovereign turbulence.

Then, two questions relating to the attention mechanism effectiveness on dis-

cerning the leading factors are explored: (1) can such six attentive indicators come

through the proposed hypothesis tests (refer to Section 6.2.2) to testify their sig-

nificance level of deviating from zero, consistency and stability? (2) whether their

dynamics abnormally behave before and during the sovereign crisis episodes?

161



Figure 6.6: The mean of attention drawn weights for each input factors.
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Table 6.7: Hypothesis tests on attention mechanism drawn weights for each input
feature

hypothesis test
feature est. attention weight pI pII pIII

in: out: in: out: in: out:
filt k3 0.142 0.085 0.000 0.000 0.000 0.000 0.000
log r 0.000∗ 0.000 0.115 0.479 0.004 0.000 0.137
pr idx 0.021 0.019 0.000 0.000 0.278 0.023 0.378
sev repo 0.000∗ 0.000 0.043 0.105 0.000 0.000 0.000
sev repo chg 0.000∗ 0.000 0.016 0.102 0.000 0.000 0.000
ssec chg 0.002 0.001 0.000 0.000 0.000 0.000 0.000
gold 0.375 0.350 0.000 0.000 0.011 0.000 0.014
gold chg 0.001 0.000 0.000 0.126 0.000 0.000 0.000
oil 0.004 0.024 0.000 0.195 0.000 0.000 0.053
oil chg 0.001∗ 0.001 0.007 0.000 0.223 0.000 0.010
dxy 0.000∗ 0.000 0.040 0.236 0.000 0.000 0.000
dxy chg 0.000∗ 0.000 0.025 0.232 0.000 0.000 0.021
vix 0.001 0.001 0.000 0.005 0.119 0.001 0.168
vix chg 0.000∗ 0.000 0.072 0.117 0.000 0.000 0.000
ctg brepo 0.005 0.006 0.000 0.000 0.000 0.000 0.000
ctg bstk 0.001∗ 0.001 0.002 0.041 0.968 0.948 0.977
ctg bgold 0.001 0.001 0.006 0.012 0.000 0.000 0.000
ctg boil 0.126 0.143 0.000 0.000 0.011 0.001 0.177
ctg bdxy 0.000 0.000 0.036 0.301 0.000 0.000 0.001
ctg bvix 0.001 0.000 0.001 0.026 0.016 0.000 0.004
cpi 0.076 0.065 0.000 0.000 0.095 0.000 0.000
macro idx 0.001 0.000 0.005 0.079 0.000 0.000 0.000
cci 0.000 0.000 0.164 0.462 0.000 0.000 0.000
eco gr idx 0.001 0.001 0.001 0.032 0.037 0.000 0.000
mon pol idx 0.026 0.021 0.000 0.000 0.000 0.000 0.000
indus add 0.000 0.000 0.049 0.219 0.000 0.000 0.000
tax 0.000 0.000 0.004 0.118 0.000 0.000 0.000
rmb forex 0.001 0.000 0.006 0.052 0.000 0.000 0.000
rdr 0.007 0.008 0.000 0.000 0.000 0.000 0.001
depos r 0.004 0.002 0.000 0.000 0.000 0.000 0.000
m2 0.001 0.000 0.012 0.048 0.000 0.000 0.000
buy sell overseas r 0.000 0.000 0.014 0.203 0.000 0.000 0.000
trade bal 0.000 0.000 0.052 0.386 0.000 0.000 0.000
imp exp r 0.000 0.000 0.190 0.410 0.000 0.000 0.000
csi 0.000 0.000 0.186 0.351 0.000 0.000 0.000
gdp 0.001 0.000 0.019 0.162 0.000 0.000 0.000
exdebt fores r 0.000 0.001 0.000 0.009 0.277 0.005 0.291
unemploy 0.000 0.000 0.081 0.246 0.000 0.000 0.001
short bal exdebt p 0.002 0.001 0.001 0.009 0.000 0.000 0.000
intbal pay gdp p 0.001 0.000 0.006 0.111 0.000 0.000 0.000
gdp realest 0.188 0.258 0.000 0.000 0.000 0.000 0.000
cap fin bal 0.004 0.003 0.000 0.000 0.004 0.000 0.000
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res forex bal 0.001 0.001 0.000 0.027 0.000 0.000 0.000
realeco lev 0.000 0.000 0.180 0.308 0.000 0.000 0.000
gov lev 0.001 0.000 0.005 0.011 0.000 0.000 0.000
fin lev 0.000 0.000 0.013 0.081 0.000 0.000 0.000
debt ser r 0.000 0.000 0.072 0.321 0.000 0.000 0.000
debt gdp r 0.000 0.000 0.015 0.125 0.000 0.000 0.000
ec 0.000 0.000 0.153 0.359 0.000 0.000 0.000

To answer the two questions, we first refer to the results of the right three

columns in Table 6.7. According to the value for pI , the null hypothesis I can be

readily rejected by zero p’s for the top-ranked leading indicators, which manifests

the attention mechanism inferred contributing degrees are statistically significant

to impact on the final prediction. However, the opt ranked indicators seem hard

to pass through the type II and III hypothesis tests since none of them performs

high p values to accept the nulls. In particular, the gold price is either hardly

consistent with the attention estimated result on full samples (with p-value of

0.011), or unlikely performed the same pattern between the train and the test

data sets (with p-value of 0.014), which both p values are below 0.05 significance

level to reject the nulls of HII
0 for consistency and HIII

0 for stability. Such results

may expose the attention mechanism’s weakness in transplanting inferred weight

parameters with steadiness and compatibility, wildly as the sample varies.

Figure 6.7: The sovereign crisis episodes imprinted leading indicators.
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The second question can be answered by revisiting the dynamics of the lead-

ing factors in the observed periods to inspect whether any abnormalities appear

during the crisis. Figure 6.7 shows the model distinguished the top six leading

factors and imprints them with the sovereign crisis episodes (red segments).

From left panels to the right, we have observed that 1) the large humps of

filtering probability for the most significant volatile state (i.e. filt k3) almost per-

fectly coincides with the sovereign crisis periods, which is not surprising that the

filtering probability shares a high similarity to the smooth one used to classify

the crisis samples, 2) the international gold price and the quantized contagion

information transmitted from the oil price seem to experience sharp falls before

the sovereign bond being exposed to turmoils, which phenomenon is more sig-

nificant during the 2008-09 global crash and the COVID19 outbreak, and 3) the

macroeconomic factors of real estate price, CPI and monetary policy index show

drastic either sharp rises or sudden sinks as to forewarn the sovereign turbulence,

even though such leading effects sometimes are stamped with uncertainty which

is suggested being bred by the distorted relationship between China’s sovereign

bond market volatility and the domestic economic development level as well as

the imposed policy market-involvement degree. Regardless of poor hypothesis

testing results on consistency and stability between the train and the test sam-

ples, the attention drawn leading indicators precede the sovereign turmoils as

behaving exceptional fluctuations or sudden bounces.

6.6.2 Estimated leading factors from baseline models

Baseline models of random forests, KLR indicator approach, and logit regressions

are implemented to be compared with the attention mechanism estimation.

Figure 6.8 bar plots show the random forest drawn feature importance on each

factor. From the bottom panel for MDG, the most important is assigned to the

deposit interest rate, which factor is regularly hired as an adjustment monetary

policy tool to effect the sovereign risk pattern change (Afonso et al., 2018). The

endogenous indicator of filtering probability is ranked second and followed by the

exogenous factor of gold price.

The estimation from KLR approach and logit regression models, however,
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Figure 6.8: The Mean Decrease Accuracy (MDA) and Mean Decrease Gini
(MDG) for Random forest inferred feature importance.

show different patterns on leading indicators. From Figure 6.9, the factors of the

U.S. dollar index and the filtering probability are KLR approach recommended

top two leading impacts21 with the smallest noise-to-signal ratios.

21The red line and blue line are 0.5 and 0.75 cutoffs to threshold the noise-to-ratio value for
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Figure 6.9: The noise-to-signal ratios (NSR) calculated by KLR approach.

According to Table 6.8, the logit regressions emphasize more on macroeco-

nomic fundamentals relating to the fiscal stance, such as the balance of payments

to GDP, real estate constant price in GDP, money supply, the balance between

reserve assets and foreign exchange and financial sector leverage, which stressful

state will gain the sovereign risk sensitivity to financial deficit (Beqiraj et al.,

2021). However, given the ineffective predicted results, both types of contrasting

models detected leading factors are suspicious of implying significant reference

value in practice.

Table 6.8: The static and dynamic logit regression models estimated coefficients
for input factor variables.

static logit dynamic logit

term est. coef. t-stat. p est. coef. t-stat. p
(intercept) -39.2 -4.84 0.00 -35.1 -4.53 0.000
y 20 −− −− −− 0.311 0.654 0.513
filt k3 0.433 1.82 0.068 0.384 1.59 0.111
log r -0.184 -1.36 0.173 -0.191 -1.44 0.151
pr idx 3.26 4.20 0.00 3.45 4.35 0.000
sev repo -1.71 -2.40 0.016 -1.56 -2.22 0.026
sev repo chg -0.196 -0.846 0.398 -0.207 -0.875 0.382
ssec chg -0.051 -0.339 0.735 -0.057 -0.373 0.709

each factor in KLR. Moreover, the lower below the cutoff, the greater significance performs on
leading crisis signals.
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gold -2.19 -2.599 0.009 -2.28 -2.77 0.006
gold chg 0.127 1.09 0.273 0.138 1.18 0.236
oil 8.30 7.62 0.000 8.50 7.83 0.000
oil chg -0.172 -1.337 0.181 -0.171 -1.32 0.188
dxy 1.82 1.67 0.095 1.86 1.75 0.081
dxy chg -0.006 -0.043 0.966 -0.015 -0.112 0.910
vix 4.13 5.35 0.000 4.21 5.42 0.000
vix chg -0.159 -0.938 0.348 -0.166 -0.973 0.331
ctg brepo 0.276 0.742 0.458 0.274 0.725 0.469
ctg bstk 0.671 0.802 0.422 0.806 0.958 0.338
ctg bgold -1.18 -2.26 0.024 -1.25 -2.36 0.018
ctg boil 0.991 1.41 0.158 0.939 1.36 0.174
ctg bdxy -1.67 -2.59 0.009 -1.64 -2.51 0.012
ctg bvix -0.064 -0.142 0.887 -0.023 -0.053 0.958
cpi 3.53 2.50 0.012 3.75 2.77 0.005
macro idx -3.28 -3.09 0.002 -3.60 -3.51 0.000
cci 15.6 5.88 0.000 14.5 5.67 0.000
eco gr idx -8.91 -5.84 0.000 -9.17 -5.95 0.000
mon pol idx 4.12 2.15 0.031 3.60 1.91 0.056
indus add -4.67 -5.15 0.000 -4.96 -5.55 0.000
tax 0.803 0.559 1.44 0.632 1.18 0.236
rmb forex -10.4 -2.91 0.004 -10.4 -3.26 0.001
rdr 5.39 3.19 0.001 4.99 2.98 0.003
depos r 2.81 0.969 0.333 2.02 0.696 0.486
m2 -23.0 -6.85 0.000 -23.2 -6.99 0.000
buy sell overseas r 2.01 4.76 0.000 2.00 5.13 0.000
trade bal -4.37 -5.22 0.000 -4.44 -5.27 0.000
imp exp r 2.04 2.59 0.010 2.25 2.83 0.005
csi -6.38 -4.56 0.000 -6.28 -4.61 0.000
gdp 24.1 6.53 0.000 21.9 6.51 0.000
exdebt fores r -16.1 -3.12 0.002 -15.2 -3.08 0.002
unemploy 13.9 4.37 0.000 13.6 4.45 0.000
short bal exdebt p -21.5 -3.94 0.000 -18.9 -3.71 0.000
intbal pay gdp p 27.8 5.46 0.000 26.6 5.61 0.000
gdp realest -21.2 -4.56 0.000 -18.6 -4.94 0.000
cap fin bal 1.52 1.25 0.211 1.51 1.26 0.206
res forex bal 23.7 6.62 0.000 22.4 7.05 0.000
realeco lev 8.53 1.77 0.077 8.17 1.74 0.082
gov lev 19.8 4.08 0.000 19.7 4.05 0.000
fin lev -24.3 -6.67 0.000 -20.8 -3.25 0.001
debt ser r -10.2 -2.19 0.028 -8.44 -2.03 0.042
debt gdp r -16.1 -5.34 0.000 -14.8 -5.11 0.000
ec -17.9 -3.96 0.000 -16.8 -4.14 0.000
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6.7 Concluding remarks and implications

In this chapter, we propose contagion information fused EWS for predicting

China’s sovereign crises on the high-frequency data basis for the first time to

cook three hot potatoes in terms of both research issue and model improvement:

1) the scant reference for evidence China’s sovereign crises, 2) rare risk spillover

information being included as crisis determinants in the EWS frameworks and 3)

bare significance tests being applied to attention based neurons model to earn the

credibility on feature selections. We contribute the literature by addressing the

three problems via, first of all, hiring the CDB index volatility defined sovereign

crisis in RCM-SWARCH frameworks, second, quantifying the contagious inten-

sity index to depict the risk transmission factors from contagious source, and

last, implementing three hypotheses tests on attention weights vectors to verify

the drawn leading indicators significance and steadiness. In the implementing

procedure, the main findings can be summarized as follows.

1. RCM can effectively gain the crisis detecting precision by pre-determining

the regime count value, and the custom regime number 2 is verified to be

obsolete for both of the target CDB bond index and the contagion sourced

market indexes;

2. The quantified contagious intensity index not only amplifies the spillover

information that is proven to be an essential element in sovereign debt crisis

prediction (Dawood et al., 2017), but specifies the risks transmitting impact

from crisis originators to the sovereign bond market in a more detailed way

as well;

3. As for the attention mechanism and the applied hypothesis tests on at-

tention drawn weights vectors, they are considered to bring breakthroughs

for time-dependent machine learning based predictive models in terms of

interpretability and credibility.

The proposed EWS model’s performance is investigated in contrast with both

classic and stylized machine learning models. On the forecasting effectiveness

side, the warning system based on complex designed deep neurons wins out in
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the horse-race of competing with econometric predictive models of logit regression

and classification tree of random forests on out-of-sample set by performing most

excellent forecasting precision on crisis onset calls and highest hit ratios for both

calm and crisis episodes. On the contributing degree side, the international gold

price dynamics, the risk transmission from the oil, the domestic real estate price,

and the inflation level (that CPI mirrors) are the most crucial indicator variables

to forewarn China’s sovereign crises according to attention mechanism estimation.

It implies that the potential sovereign crises in China are not self-fulfilling but

synthesized by both domestic forward-looking perspective indicators (excluding

the agent rating assessment) and international risk transmissions.

Regarding the previous EWS studies of predicting the sovereign crisis, the

debt exposure variables, banking sector variables, and foreign exchange markets

are leading to the sovereign abnormality for most developed and emerging coun-

tries (Fuertes and Kalotychou, 2006; Savona and Vezzoli, 2015; Dawood et al.,

2017; Ghulam and Derber, 2018). The signaling indicators for ‘Chinese-style’

sovereign crisis, however perform distinctively. First, China faces low exposure

risks on external debts. According to the published China’s national balance

sheet in almost five years, China’s net sovereign assets keep positive to cover

its sovereign liabilities, indicating that the possibility of China being exposed to

heavy external debts is low in the long term. In addition, the banking sector and

the foreign currency market are strictly regulated in China’s special centralized

administrative management. Thus, the imposed financial policies have greatly re-

leased the banking pressure and stabilized exchange rate fluctuations (by pinning

the U.S. dollar) in a timely and effective manner. Our study provides different

leading channels to indicate sovereign turbulence.

Channel 1: The real estate market, one of the pillars in the national economy,

has accumulated many bubbles in China and attracted massive social capital.

Once bubbles burst, involved capitals will face severe devaluation risks and further

make the local government debt condition worrisome.

Channel 2: Being the inflation level barometer, the (continuous) decrease of

CPI also severely impedes production incentives, further restricts the social de-

mand, and inhibits investment enthusiasm. Then, to release the capital liquidity,
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the monetary policy of lowering the interest rate will be imposed and rapidly act

on the CDB bond fluctuations as it is empowered with high liquidity in trading

markets.

Channel 3: The gold price dynamics are unexpectedly revealed as the leading

indicator for the Chinese sovereign bond market, which is rarely found in previous

studies for both emerging and developed countries. The underlying mechanism

can be explained as the gold being the safe-haven passive investment when in-

vestors question the sovereign bond stability for a country, tends to raise its price

sharply.

Channel 4: The other international commodity of oil also shows the leading

impact via its risk transmission intensity, as Figure 6.7 visualizes, the sudden

falls of contagious intensity index of between the oil and CDB bond go ahead of

detected Chinese sovereign turmoils. Like other BRICS countries (Chuffart and

Hooper, 2019), China heavily depends on the crude oil resources import, which

means the oil subsidies take a number of government expenditures, thus without

a robust fiscal framework, mainland China will become fragile to resolve external

shocks from the oil market.

Thus, some enlightened pieces of advice to politicians and investors will be

suggested. On the one hand, to prevent the sovereign crisis in China, the author-

ities should note the excess accumulation of local debts in the real estate market,

formulate reasonable debt risk control standards, and strengthen the supervision

on the capital flows of local financing platforms. To enhance the sensitivity to

the domestic inflation level, it is necessary to consider the impact on the liq-

uidity of the secondary bond market when issuing fiscal policies on adjusting

the interest rate level to avoid the bias of market capitals to highly liquid bonds.

Meanwhile, the impact of international gold price on the domestic sovereign bond

market should be paid more attention to, and the dependence on crude oil im-

ports should be reduced by developing technologies for clean energies. On the

other hand, the domestic investors should avoid being blinded by fanatical infat-

uation for investing the real estate and diversify risks of investing in the sovereign

bond via opting industrial metals (for example, cooper) besides (precious metals

of) golds to safer haven properties (Agyei-Ampomah et al., 2014).
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Chapter 7

Conclusions and discussions

In this chapter, the main works of the PhD journey will be summarized in Section

7.1 and the innovated points and contributions in terms of the modeling explo-

ration and practical significance to the literature will be concluded in Section 7.2.

The study limitations and further exploration works will be discussed in Section

7.3. The enlightenment and some suggestions will be provided in Section 7.4.

7.1 Study review

This thesis mainly explores the tools to prevent the market turbulence-based

financial crisis that brought damage for China by 1) figuring out the underlying

transmission networks across domestic markets and 2) predicting the turmoils

that potentially lead to crushing shocks for principal markets.

With such two aims, the projects of contagion models development and early

warning systems construction are proposed in the context of China, in terms of

solving four research questions - crisis identification, contagion channels detec-

tion, forecasting system design for high-frequency data, and contagion informa-

tion fused crisis forecasting system development. In the persistent research survey,

some existing methodologies are found to provide supportive bases for solvable

ideas to the proposed questions. These methodologies bases are 1) SWARCH

model to label the crises with observations being classified in high volatility state,

2) bi-variate SWARCH model and copulas to infer the contagious effects in terms

of displaying co-movement episodes and structural transmission, respectively, 3)

the time-dependent deep neural networks LSTM to learn warning signals through

high-frequency factors, 4) attention mechanism stacked layer to gain the time-
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dependent neuron networks inference on leading factors, 5) DCC-GARCH model

to quantify the contagion into time-varying correlation dynamics, and 6) statis-

tical hypothesis tests to validate the attention learned factors impacting degree.

On the method basis, we design four task modules (as Figure 1.1 diagrammed),

practically three major projects (i.e. hybrid contagion models development, early

warning system construction, and contagion fused early warning system construc-

tion), to complete the full PhD progress. For each of projects, we conduct the

research sequence of Background analysis ⇒ Theoretical support ⇒ Model con-

struction ⇒ Data analysis ⇒ Empirical study1 to proceed with striving for in-

novations in research methods as well as endeavoring to contribute the practical

significance.

7.2 Innovations and contributions

This thesis’s innovative points and contributing remarks to the literature of fi-

nancial risk transmission and early warning system development are embodied in

aspects of methodological improvement and practical significance.

7.2.1 Methodological improvements

1. The study fills the gap of using dual-purposed CM models for developed and

developing countries to compare risk transmitting mechanisms across princi-

pal domestic markets. In particular, two hybrid models of the BiSWARCH-

EVT and paired SWARCH-EVT-Copula are simultaneously developed to

detect spillover effects across domestic financial markets of stocks, bonds,

the forex, and the real-estate in comparative analysis between China and

the U.S.. On the one hand, it facilitates specifying the contagion periods

given the crisis originator market and, on the other hand, explicating the

transmitting channels without imposing the assumption on the crisis origi-

nator.

2. The study first proposes the prototype of an integrated early warning system

1For the last two projects on EWS construction, the empirical study includes the model
validation.
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to forewarn crises for specific markets. In the EWS frameworks, the research

not only improves the crisis classifier in two aspects of dynamic threshold

selection based on two-peak method and pre-classification of volatility fluc-

tuation levels based on regime classification measurement but also includes

time-dependent deep neural networks of (Bi-)LSTM as the predictive model,

to finally produce the warning signals with practically guiding significance

to the market through precisely learning and analyzing high-frequency data.

The attention mechanism is further stacked with the time-dependent deep

neurons to gain the stylized predictive models’ interpretability on leading

factors detection.

3. As an extended work, an early warning model fused with risk transmis-

sion information is developed to judge the exogenous factors leading to

crisis prediction. The fused model is highlighted in terms of making the

contagion intensity index (i.e. the product of DCC-GARCH model inferred

pairwise time-varying correlation coefficients between the target market and

the contagious sources, and the SWARCH model estimated filtering prob-

abilities for contagious sources) to allow the inter-market spillover effects

being quantified as an acceptable input factor in the EWS frame, and gen-

erating effective early warning signals as well as verifying the significance

of attention mechanism selected crisis leading indicators by designing the

hypothesis tests for inspecting the output credibility and stability.

7.2.2 Practical significance

1. By detecting the internal markets’ linking dynamics during risk transmis-

sion, the different contagion paths and timing of crisis spillover effect in

China (the country with a low degree of financial liberalization) and in

the United States (the country with full financial liberalization) are first

comparatively analyzed. In contrast with the mature markets of developed

countries, the contagion periods of China’s markets are relatively short, and

considering imposed financial policies in China’s special monetary regulat-

ing mode, the risk transmitting paths are meanwhile reshaped during the

crisis. For both the United States and China, the stock market and the
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real estate market are more likely to be the central risk-transmitters to spill

risks over the interest rate market in turbulent episodes.

2. The proposed integrated early warning system offers advisory guidance to

manage investment risks and provides assistant evidence to control mar-

ket vulnerabilities. For China’s stock market, the proposed early warning

system output warning signals have provided a feasible, practical basis for

the risk feasibility assessment by successfully reducing the risks of securities

portfolio being exposed to the stock market turbulent period. Meanwhile,

the early warning system based on attention mechanism plays an essentially

supervisory role in preventing credit risks in China’s bond market. Ac-

cording to the attention inspected results on leading indicators for China’s

bond market turbulence, the key risk prevention channels for the govern-

ment bond and corporate bonds with high credit rating levels should focus

on the discount rate economic factors (of GDP, CPI and PPI). In contrast,

the supervision on lower credit-rated corporate bonds is prone to through

the cash flow factors (of industrial gain, fixed asset investment).

3. This is the first time to reasonably quantify the financial risk transmission

as a co-factor of the early warning system to investigate its preemptive

effects on producing crisis signals for predicting China’s sovereign bond

turmoils. From the results of leading factors detection by attention mech-

anism, the external impact factors of the risk transmitting effects from

the international crude oil market and the global gold price dynamics are

pivotal regulatory objects to forewarn the nation’s exposure to sovereign

crises. Furthermore, the domestic economic factors of real-estate price and

inflation level are the notable channels of the local government monitoring

the underlying risks of sovereign bond anomalous behaviors. The govern-

ment published information relating to fiscal policy adjustment should not

be ignored since it always provides prompt tips to hint at the abnormal

fluctuations in sovereign bonds2.

2There is a significant information asymmetry between the government departments ac-
quired and market participants held, generally speaking, the government’s policy adjustment
is executed in advance once the risks are sensed after collecting all accessible information from
financial sectors, while the market participants’ reaction always lags behind the government

176



In brief, rooted in China’s specific markets, this study mainly explores and

innovates the models for 1) the critical problem of crisis outbreaks, 2) the risk

transmission periods and paths between markets during the crisis, and 3) the

timely warning signals generation for market turbulence. The developed mod-

els are implemented by covering sufficient samples in long enough time intervals

and ensuring the timeliness of research on a daily data basis. The results pro-

vide practical significance for risk transmission path monitoring and crisis burst

blocking.

7.3 Limitations and further works

To clarify the research obstacles that we currently face in the progress, study

limitations will be divided into two aspects: topic extensibility and technical

challenges.

7.3.1 Possible extensions

On one side, our study is progressed and concluded for China’s financial mar-

kets, which results will embody the specificity of China’s economic surroundings

− the limited openness of the financial markets. However, since April 1, 2020,

China officially announced the full opening-up to the outside, the research results

remain to be verified in generalizing the newly opened financial surroundings.

As a matter of fact, both the financial crisis outbreaks and the risk transmis-

sion mechanism are various for different countries during different eras, which

is related to the degree of financial liberalization and affected by the economic

structure steadiness. For example, Thailand realized financial liberalization in

1989. During the subsequent development, the rapidly accumulated market bub-

bles and the strong attacks from international speculative capitals finally led to

the Thai baht’s abandonment of the fixed exchange rate in July 1997. After ex-

periencing a sharp depreciation of over 30% on currency and a series of bubbles

crushing, the fragile financial system collapsed, a total wipe-out that was unex-

pected. However, China has declared the opening up, yet free the exchange rate

department.
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between the mainland currency (Renminbi) and other foreign currencies. Thus,

it is hard to judge whether the open financial market leads to systemic risks if

the Renminbi becomes an international currency in the future and whether the

risk transmission will start from bubble-rich markets, such as real estate and the

stock. These questions need to be testified in the further works of 1) updating

the latest data for China and 2) applying the proposed models to updated data

for China in comparison with other Asian emerging countries to reanalyze the

commonalities and dissimilarities.

On the other side, in our study, the risk transmission has been discussed to

assist the early warning system in making predictions. In practice, the effective-

ness of the early warning system and the availability of its output signals will,

in turn, affect the crisis transmission. We will explain the reversed influence in a

catechetical way.

Question 1: How does the effectiveness of EWS affect crisis trans-

mission?

Signal deliveries and response actions can influence the effectiveness of EWS.

The warning signal delivering effectiveness has been verified in this paper by

counting the confusion table and calculating the accuracy, SAR, and other sta-

tistical metrics. However, in practice, it is full of uncertainties in taking actions

to prevent the crisis: on the one hand, it is uncertain that whether the EWS

produced warning signals can be trusted and adopted; on the other hand, it is

uncertain that whether the financial crisis will be effectively blocked as authori-

ties taking precautionary measures. Given no information gap, after getting crisis

warning signals, the governors will take preventive actions to alleviate the crisis,

while the investors are more likely to have a series of panic behaviors to drive the

crisis to burst reversely. In the combat between two forces, which side performs

stronger, the pressure of the financial crisis will be more likely inclined to that

party. Especially, as the investors’ panics come from their distrust of the gov-

ernment power to prevent crises, the pressure on crisis transmission will sharply

rise and eventually impact other markets and regions through these accumulated

uncertainties.

Question 2: How does the availability of EWS output signal affect
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crisis transmission?

In this paper, the availability of EWS output signals is assumed to be free-

accessed for both governors and all market participants. In practice, there exists

information asymmetry between the government and market participants and

investors from different markets. If the government first obtains effective crisis

signals and then takes risk intervention measures, the financial crisis thus may be

successfully managed in such imposed prevention as long as the investors do not

take any actions (such as adjusting portfolios, flight-to-quality, etc.) to offset the

government’s efforts. However, like what we analyzed in Question 1, investors

usually behave in panics to make the situation counter-run to the crisis burst and

spill over.

Therefore, in subsequent studies, we will further explore how to upgrade the

EWS real-time forecasting capability by including the investors’ behavioral uncer-

tainty impacted financial contagion augmentation or mitigation. The conceptual

model is diagrammed in Figure 7.1 given that 1) the EWS produced warnings

will be freely available for all investors and 2) the government will intervene in

the financial contagion as receiving the forewarned signals. However, achieving

such full progress will bring new challenges (that are labeled as 1○, 2○ and 3○ in

the diagram), which will be further discussed in the following section of 7.3.2.

Figure 7.1: The backflow mechanism to boost the EWS real-time forecasting
power.
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7.3.2 Technical challenges

In the technical approach aspect, dichotomous topics will be discussed relating to

1) the higher requirement to improve the proposed contagion fused EWS model

and 2) technical challenges for the extended projects mentioned above.

Dynamically structural contagion information input

In current progress for the proposed contagion fused EWS frameworks, the DCC-

GARCH model and SWARCH model inferences are combined to quantize the

dynamic contagion information input given the risk transmitting direction. To

make the contagion quantification adaptive to the general case as either the trans-

mitting direction changes or the potential linkage across multiple market assets

varies during the observed periods, the further improvements thus will mainly

focus on tracking the multivariate time-varying structural linkages without pre-

determining the risk transmission direction.

In the progress of CM development (See Chapter 4), the static copula mod-

els’ robustness of inferring the risk transmission paths across multiple financial

markets has been realized in terms of searching for the central transmitters.

The dynamic copula models are thought to be used in further study to make

the time-varying structural dependence simultaneously estimated in the copula

frameworks. The model is proposed and mainly clustered into two types3 of

parametric specified time series model combined time-varying conditional copu-

las (Dias et al., 2004; Patton, 2006), and the non-parametric inferred dependence

time-varying copulas (Hafner and Reznikova, 2010; Vatter and Nagler, 2018). Pat-

ton (2013) and Manner and Reznikova (2012) have comprehensively surveyed the

multivariate time-varying copula-based models and made comparisons therein.

In modern practice, the dynamic copulas are also successfully exploited for high-

frequency data applications (De Lira Salvatierra and Patton, 2015; Acar et al.,

2019). This method, therefore, provides a plausible research basis for our further

explorations.

3There are other types of dynamic copula models but will not be included herein. For exam-
ple the Markov switching model combined copulas (Stöber and Czado, 2014; Fink et al., 2016),
which though implement the time-varying dependence parameter estimations, the copulas are
time-invariant.
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Behavioral uncertainty driven contagion backflow to the EWS

To extend the contagion backflow fed EWS driven by investor behavioral un-

certainties, we mainly have three layers of technical challenges (which have been

labeled in Figure 7.1): 1○ how to evaluate the behavioral uncertainty according to

investors’ varied risk preferential tastes for different markets; 2○ how to estimate

the investors’ behavior influence on contagious effects; and 3○ how to adjust the

warning signal strength according to the dynamically changed contagion effects.

For the first challenge, it is not easy to quantify the investment behavioral

uncertainty by functionally mapping to the investors’ risk aversion level4, espe-

cially as the investing attitudes and sentiments are varied for different market

participants. Based on the scanty literature, the studies relating to the risk aver-

sion and investment uncertainty relationship may provide solving ideas heuristic.

Chronopoulos et al. (2011) confirm that the risk aversion lowers the probability

of investment and increases the likelihood to abandon the project. Particularly,

during the worst time in crisis, as the investor risk tolerance decreases (i.e. risk

aversion gains), substantial swings in trading and risk-taking behavior will be

driven by such risk perception changes (Hoffmann et al., 2013). The recent study

of González-Sánchez et al. (2020) validates the claim that risk aversion amplifies

the effects of uncertainty on real activity exposure. Thus, intuitively, the greater

the risk aversion level, the more uncertainty of investor behaviors, which implies

the investor taking action can be directly proportional to the risk aversion level.

Such proportional relation will be augmented once the crisis warning signals are

obtained.

To solve the second technical problems, behavioral finance studies should be

referred to relating to changing the market price volatile status and gaining the

market correlation during the financial crisis. In the perspective of market volatil-

ity, the irrationality of investor’s behavior and information asymmetry have been

presented to bring significant spikes in returns and volume and gain the correla-

tion of market returns in the highly volatile, theoretically (Gabaix et al., 2006)

and practically (WATANABE, 2008). The most recent work of Bello (2019)

4The risk-preferential tastes though generally include three types of risk-seeking, risk-neutral
and risk-averse, the risk aversion is the most discussed situation for most inefficient markets in
practice.
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proves that the investors’ herding behavior is the main drive for contagious ef-

fects during financial crisis by examining contagion effect on 10 African financial

markets. Moreover, referring to the modeling techniques, markets’ contagious ef-

fect has been analyzed in terms of modeling the investor behavior in the epidemic

model (Shive, 2010) and the epidemic model based information networks (Wang

et al., 2019) considering the similarity between the infection of disease and the

investors’ interaction of spreading information. Wu (2020) designs an artificial

information based model to simulate the relationship between investor behavior

and risk contagion, which finds the contagion coefficient of investors affected by

neighbors’ sentiment plays an important role in risk contagion as new informa-

tion being injected. We can attempt either the epidemic model based topological

networks or the information based artificial models to quantize the contagious

effect changes on the market volatility basis as investors take irrational actions

to produce asymmetric information spreading.

The last technical difficulty is converting the retrieved investors’ behavior-

dependent contagion information into the importable input for EWS to influence

the produced warning signal strength for the future time point. We have not found

any available literature to provide solvable ideas to tackle such a problem, thus

altering to list the challenge points here for open discussion. On the one hand,

the time lag between the contagion dynamics is updating and the EWS signals

generating. For example, considering the simplistic case as time lag equals to 1,

the EWS produced signal for time t will affect the investor’s behavior for t + 1.

The contagion pattern will be accordingly changed at time t + 1, which means

the contagion input is required to be timely updated and recursively accessed to

the EWS input layer for t+ 1. However, in practice, such an ongoing information

updating procedure is hardly implemented for the short time lag. On the other

hand, accessing the EWS output is indeterminate between directly lowering or

gaining the EWS predicted crisis probability or indirectly being contagion input

to make the EWS reproduce warning signals. The former way is more intuitive

to prevent the severe risks from spreading by reinforcing signals to alert for crisis

danger. However, the latter one is not deterministic since updated contagion

input will contribute to the reproduced warning signal in a dichotomous way.
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7.4 Enlightment and prospect

We hope to bring an enlightening guide to the financial supervisory division to

reinforce financial security and emphasize technical innovation through the study.

Domestically, with the rapid development of non-banking financial institu-

tions and gradual enrichment of financial derivatives, the price volatility led risk

transmission channels across markets show a trend of diversification. Thus, it

puts forward higher requirements for China’s financial regulatory authorities to

establish a systematic monitoring scheme for implementing overall supervision on

entire financial surroundings and refine the regulatory functionalities according

to the specific operating modes for different financial industries. In addition, the

financial supervision system should improve the information-sharing mechanism

and extend the compatibility of data interaction between different platforms to

boost monitoring and regulating efficiency.

In the global view, as China’s financial markets have announced to fully open,

the volatile risk transmission will gradually turn from the endogenous mechanism

to the expected impacts of both endogenous factors and external shocks. There-

fore, the markets’ exposure to financial crises will currently be regarded as the

joint result of unstable domestic factors to fluctuated international factors (such

as foreign currencies and trading commodities). The regulatory authorities should

be aware of the financial security problems brought about by the increased market

openness, and then put coping strategies (such as strengthening the supervision

on international short-term capital flows and controlling the high volume of over-

seas investment in the domestic financial security market) to handle with the

external-risk-sensitive situation in an early-adaptive way.

By flexibly using policy tools to prevent financial risks and actively attracting

stable and high-quality funds from abroad, we believe that the balance between

financial openness and risk prevention is attainable. It will ultimately serve the

bilateral promoting pattern between the domestic and international cycles.
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Demirgüç-Kunt, A. and Detragiache, E. (1998). The determinants of bank-
ing crises in developing and developed countries. Staff Papers (International
Monetary Fund), 45(1):81–109.

189



Detragiache, M. E. and Spilimbergo, M. A. (2001). Crises and liquidity: evidence
and interpretation. Number 1-2. International Monetary Fund.

Dias, A., Embrechts, P., et al. (2004). Dynamic copula models for multivariate
high-frequency data in finance.

Dißmann, J., Brechmann, E., Czado, C., and Kurowicka, D. (2013). Select-
ing and estimating regular vine copulae and application to financial returns.
Computational Statistics & Data Analysis, 59:52 – 69.

Dongho, S. (2017). Bond market exposures to macroeconomic and monetary
policy risks. Review of Financial Studies.

Duan, P. and Bajona, C. (2008). China’s vulnerability to currency crisis: A klr
signals approach. China Economic Review, 19(2):138–151.
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Fernández-Rodŕıguez, F., Gómez-Puig, M., and Sosvilla-Rivero, S. (2015).
Volatility spillovers in emu sovereign bond markets. International Review of
Economics & Finance, 39:337–352.

Filippopoulou, C., Galariotis, E., and Spyrou, S. (2020). An early warning sys-
tem for predicting systemic banking crises in the eurozone: A logit regression
approach. Journal of Economic Behavior & Organization, 172:344–363.

Fink, H., Klimova, Y., Czado, C., and Stober, J. (2016). Regime switching vine
copula models for global equity and volatility indices. Econometrics, 5.

Fioramanti, M. (2008). Predicting sovereign debt crises using artificial neural
networks: A comparative approach. Journal of Financial Stability, 4(2):149–
164.

Fischer, T. and Krauss, C. (2018). Deep learning with long short-term memory
networks for financial market predictions. European Journal of Operational
Research, 270(2):654–669.

Fleming, J. (1998). The quality of market volatility forecasts implied by s&p 100
index option prices. Journal of Empirical Finance, 5(4):317–345.

Forbes, K. J. and Rigobon, R. (2002). No Contagion, Only Interdependence:
Measuring Stock Market Comovements. The Journal of Finance, 57(5):2223–
2261.

Frankel, J. and Rose, A. (1996). Currency crashes in emerging markets: An
empirical treatment. Journal of International Economics, 41(3-4):351–366.

Fu, J., Zhou, Q., Liu, Y., and Wu, X. (2019). Predicting stock market crises
using daily stock market valuation and investor sentiment indicators. The
North American Journal of Economics and Finance.

Fuertes, A.-M. and Kalotychou, E. (2006). Early warning systems for sovereign
debt crises: The role of heterogeneity. Computational Statistics & Data
Analysis, 51(2):1420–1441.

Fuertes, A.-M. and Kalotychou, E. (2007). Optimal design of early warning sys-
tems for sovereign debt crises. International Journal of Forecasting, 23(1):85–
100.

Gabaix, X., Gopikrishnan, P., Plerou, V., and Stanley, H. E. (2006). Institutional
investors and stock market volatility*. The Quarterly Journal of Economics,
121(2):461–504.

Genberg, H. and Sulstarova, A. (2008). Macroeconomic volatility, debt dynam-
ics, and sovereign interest rate spreads. Journal of International Money and
Finance, 27(1):26–39.

Gennaioli, N., Martin, A., and Rossi, S. (2014). Banks, government bonds, and
default; what do the data say? IMF Working Papers.

191



Georgoutsos, D. and Moratis, G. (2017). Bank-sovereign contagion in the eu-
rozone: A panel var approach. Journal of International Financial Markets,
Institutions and Money, 48:146–159.

Gerali, A., Locarno, A., Notarpietro, A., and Pisani, M. (2017). The sovereign
crisis and italy’s potential output. Journal of Policy Modeling, 40(2).

Ghosh, A. R. and Basurto, G. (2006). The interest rate-exchange rate nexus in
the asian crisis countries. Imf Working Papers, 00(19).

Ghulam, Y. and Derber, J. (2018). Determinants of sovereign defaults. The
Quarterly Review of Economics and Finance, 69:43–55.

Giovanis, E. (2012). Study of discrete choice models and adaptive neuro-fuzzy
inference system in the prediction of economic crisis periods in usa. Economic
Analysis and Policy, 42(1):79–96.

Gomez-Gonzalez, J. E. and Rojas-Espinosa, W. (2019). Detecting contagion in
asian exchange rate markets using asymmetric dcc-garch and r-vine copulas.
Economic Systems, 43(3):100717.
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Institut Statistique de I’Université de Paris, 8.
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Appendix A

Filtering and smooth probability
derivation in SWARCH model

A.1 Calculation for Smooth and Filtering prob-

abilities

The formula of computing filtering probabilities

P (st = i|Yt;θ) =
P (st = i|Yt−1;θ)f(yt|st = i,Yt−1;θ)

f(yt|Yt−1;θ)

And the prediction probability for the next time point t+ 1 can be calculated

with the following relationship with the filtering probability

P (st+1 = i|Yt;θ) =
K∑
j=1

pkiP (st = j|Yt;θ) (A.1)

Kim (1994) derived the computing procedure1for the smooth probability that

inferred from full-sample observations as

P (st = i|YT ;θ) =
K∑
j=1

P (st+1 = j|YT ;θ)P (st = i|st+1 = j,YT ;θ) (A.2)

=
K∑
j=1

P (st+1 = j|YT ;θ)P (st = i|st+1 = j,Yt;θ) (A.3)

=
K∑
j=1

P (st+1 = j|YT ;θ)× pijP (st = i|Yt;θ)

P (st+1 = j|Yt;θ)
(A.4)

= P (st = i|Yt;θ)×
( K∑
j=1

pijP (st+1 = j|YT ;θ)

P (st+1 = j|Yt;θ)

)
(A.5)
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A.2 Transition Matrix for Intermediate Variable

s∗t

There are four primitive states for V AR(1)− SWARCH(2, 1, 2) model

st = 1 : sr,t = 1, so,t = 1

st = 2 : sr,t = 1, so,t = 2

st = 3 : sr,t = 2, so,t = 1

st = 4 : sr,t = 2, so,t = 2

where st denotes the primitive state for bivariate case, sr,t and so,t represent the

state at time t for the real-estate and the other asset respectively. 2

The primitive transition probability matrix for st is

P =


p11 p21 p31 p41

p12 p22 p32 p42

p13 p23 p33 p43

p14 p24 p34 p44

 (A.6)

We introduce the intermediate state varible s∗t to include the state at time

t− 1

s∗t =



1, st = 1, st−1 = 1

2, st = 2, st−1 = 1

3, st = 3, st−1 = 1

. . . , . . . . . .

15, st = 3, st−1 = 4

16, st = 4, st−1 = 4

(A.7)

1The recursive calculation is backward with initial value of filtered probability at time T ,
P (sT = i|YT ;θ).

2state 1 means low and 2 means high.
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Hence the transition matrix for s∗t can be written as

P∗ =



p11 0 0 0 . . . p11 0 0 0

p12 0 0 0 . . . p12 0 0 0

p13 0 0 0 . . . p13 0 0 0

p14 0 0 0 . . . p14 0 0 0

0 p21 0 0 . . . 0 p21 0 0

0 p22 0 0 . . . 0 p22 0 0

0 p23 0 0 . . . 0 p23 0 0

0 p24 0 0 . . . 0 p24 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 p43 . . . 0 0 0 p43

0 0 0 p44 . . . 0 0 0 p44


16×16

(A.8)

In the calculations of filtered and smoothed probabilities, we need to sum up

corresponding cases, for instance, the filtering probability for st = 1 is

Pr[st = 1|Yt; θ̂] = Pr[s∗t = 1|Yt; θ̂] + Pr[s∗t = 5|Yt; θ̂] + Pr[s∗t = 9|Yt; θ̂] + Pr[s∗t = 13|Yt; θ̂].

(A.9)
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Appendix B

Comparative predictive models
adopted in EWS

B.1 Logit regression

The logistic regression is one of most toiling parametric models that is empir-

ically used to construct EWS for predicting curency crisis (Eichengreen et al.,

1995; Frankel and Rose, 1996; Bussiere and Fratzscher, 2006), debt crisis (Da-

wood et al., 2017) and financial crisis based on market index and option (Li

et al., 2015). The advantage of logit regression model sticks two benefits: the

latent assupmtion that the dependent variable is linearly linked to other explana-

tory variables by adding a logistically distributed error, can distinctly convey the

relationship among variables and explain the model uncertainty; on the other

side, coefficients (with p-value of t-test) magnify the model interpretability and

reliability in discovering influential factors.

The logit regression for modeling the probability of binary crisis variable yt

at time t ∈ {1, ..., T} can be formulated as follows,

Pr(yt = 1) =
extβ

1 + extβ
,

where the xt is the vector of explanatory variables at time t, β is the vector of

coefficients. Coefficients will be obtained by maximum likelihood estimation and

the joint log likelihood function is written as

logL =
T∑
t=1

(ytlog(Pr(yt = 1)) + (1− yt)log(1− Pr(yt = 1))).
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To mitigate the curse of dimensionality in regressing large explanatory vari-

ables on one dependent variable, we adopt the stepwise regression to extract and

retain the effective combination of variables that maximally explain the depen-

dent variable variation. As mentioned in Beutel et al. (2019), the fixed effect

will be removed from the regression since it should be more comparable to other

predictive models without extra terms.

In the stepwise backward algorithm, assumed m is the dimension of parameter

vector, following steps will be attempted to search for the optimal model.

1. Establish the regression model between y and all explanatory variables of

x = {x1, x2, ..., xm}, and do F−test for each x, take the minimum as Fl1 =

min{F1, F2, ..., Fm}.

2. If Fl1 > Fα(1, T − m + 1), no variable will be eliminated, the regression

model is the optimal one. Otherwise, we elminate xl1 and denote the rest

of variables as x−l1 = {x1
1, x

1
2, ..., x

1
m−1}.

3. Establish the regression model between y and x−l1 , again do the F−test

for each x and take the minimum as Fl2 = min{F 1
1 , F

1
2 , ..., F

1
m−1}.

4. If Fl2 > Fα(1, (T −m+ 1)− 1), no variable will be eliminated. Otherwise,

we elminate xl2 and repeat the steps of F−test, comparing minimum with

the margin and elimination, till not further variable is eliminated from the

regression.

In general, the backward stepwise first put all variables into the model, and

then attempt to remove one variable to examine whether significant change ap-

pears after the elimination. If there is no significant change, this elimination

will be retained until all factors that lead significant change to the model are

left. Thus, explanatory variables will be eliminated in turn and finally reordered

according to their contribution degree to the model from small to large.

B.2 KLR signal extraction

KLR indicator approach is introduced in Kaminsky and Reinhart (1999) on the

basis of nonparametric methodology, which also stands out in the EWS developing
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realm as this signal extraction approach not only directly assesses the abnormality

of single variable behaviour before or during the crisis period without the linearity

assumption constraint, but provides a more comprehensive way to policy mak-

ers without training background of econometric and statistical modelling as well

(Kaminsky, 1998; Lestano et al., 2004; Davis and Karim, 2008; Peng and Bajona,

2008), even though in the EWS model comparison study of Berg and Pattillo

(1999) and Davis and Karim (2008), the improved logit regression1 is proven to

perform better than the signal extraction approach for predicting currency and

banking crises. The approach monitors economic variables in a specified period

and detects the ones deviates from the noise-to-signal ratio (NSR) minimized

threshold as leading factors. The factors that are detected to anticipate the cri-

sis will be counted into constructing the composite indicator by weighing each

variable by their respective inverse of NSR (Kaminsky and Reinhart, 1999; Davis

and Karim, 2008).

Table B.1: Confusing table for calculating the noise-to-signal ratio for each cutoff.

Crisis No crisis
Signal was issued A B
No signal was issued C D

The implementing process of KLR methodology is presented as a flowchart

diagram, i.e. Figure B.1, to simplify words described steps in a more concise way.

In the diagram, we first take 80% to 90% percentile of observations for each

variable and gradient search the optimal cutoff by producing the confusing ma-

trix, as Table B.1 shows, calculating (adjusted) noise-to-signal ratio (NSR) of

B/(B+D)
A/(A+C)

, and searching for the minimal NSR corresponding cutoff value. Then,

factor variables will be sifted by the extracted minimal NSR of NSRj
min and the

optimized cutoff of cutoffjopt for variable Xj. As green blocks label in the diagram,

two decision conditions are (1) whether the variable value is greater than the opti-

mized cutoff and (2) whether the noise-to-signal ratio is smaller than 0.752. Then

condition filtered m out of n factor variables will be synthesized by assigning the

1Both study adopt the multivariate logit regression.
2The significant level could be varied for specific markets according to the range of NSR

values. Some studies (Davis and Karim, 2008) use 0.5 but find the strict value lead none of
factors can be drawn as leading factors.
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Figure B.1: KLR implementing diagram.

corresponding inverse of NSRmin as their weights to compose the final output,

normalized crisis indicator of Ict .

B.3 Support Vector Machine

The support vector machine (SVM) is a statistical learning model to mainly

solve the binary classification problem based on Vapnik (1999) proposed theory.

The basic model is a linear classifier that seeks for the maximal separation of

hyperplanes in the feature space. Its superioty of sloving nonlinear classification

problems has made it speedily promoted in financial crisis predictions. Ahn et al.

(2011) extend Oh et al. (2006) study on exploring the EWS for financial crisis

and proved the SVM’s effeciency in predicting long-term deterioration of economic

fundamentals. Samitas et al. (2020) combine the traditional econometric model of

GJR-GARCH and SVM to investigate the possible contagion risks across stocks,

bond and CDS as the early indicator for financial crises, and show that the SVM
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model makes extremely accurate predictions with 98.8% precision.

To precisely separate the samples of one class from those of the other class,

the best hyperplane should be searched to make the largest margin between two

classes. In our case, two classes are given as the “crisis” and “non-crisis”, which is

assigned to the our target variable of yt = {−1, 1}. Along with the target, feature

input vector3 of Xt ∈ RN will be paired to form the sample set of {(Xt, yt), t =

1, 2, ..., T}. The hyperplane to seperate the sample set will be expressed in the

function of w′X + b = 0, where b is a constant number and w is the parameter

vector sharing the same dimension with the feature vector of X. Thus, the

separating hyperplane is constraint by following boundary condition,

yt(w
′Xt + b) ≥ 1. (B.1)

The maximal distance between two planes of w′X + b = 1 and w′X + b = −1 is

2
||w|| . To find the best hyperplane, the parameter optimization is thus converted

to minimize the norm of ||w||,

min
b,w

1

2
||w||2 (B.2)

with the constraint condition of Eq. B.1. To solve such quadratic programming

problem, Lagrangian function is constructed including both objective function

and corresponding constraints in assistance with Lagrange multipliers of α’s.

min
b,w

L = min
b,w
{1

2
||w||2 −

∑
t

αt[yt(w
′Xt + b)− 1]} (B.3)

where αt ≥ 0 are Lagrange multipliers. To reach the optimal point, the saddle

point equations will be differentiated by w and b respectively.

∂L

∂w
= w −

T∑
t=1

(αtytXt) = 0 (B.4)

∂L

∂b
=

T∑
t=1

(αtyt) = 0 (B.5)

3N denotes the count of input features, also the dimension of the input feature vector at
time t.
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Put Eq. B.5 into B.3, we will have the dual quadratic optimization as follows,

maxLD = max(−1

2

T∑
t=1

T∑
s=1

αtαsytysX
′
tXs +

T∑
t=1

αt) (B.6)

with constraints of
T∑
t=1

(αtyt) = 0 and αt ≥ 0 for all t.

Such functional optimization, however, is not feasible to the non-separable

cases with errors. Thus, the concept of ‘soft margin’ loss funciton is proposed

by adding the slack variables of ξt and penalty term of C. The Eq. B.2 will be

changed to

min
b,w,ξ

1

2
||w||2 + C

∑
t

ξt (B.7)

with the constraint condition of yt(w
′Xt+b) ≥ 1−ξt and ξt ≥ 0 for all t. Furthre-

more, considering the strong non-linearity embedded in most real-life cases, the

kernel function is further introduced to make the separating plane more flexible.

Denoting the function that allows for mapping the samples of Xt from current

space to the higher dimensional space as Φ: Rd → Rd+1, then applying the ker-

nel function k(·) to the mapped samples, i.e. k(Xt,Xs) := (Φ(X′t),Φ(Xs)), the

Lagrange transformation for Eq. B.7 will be restated as the following quadratic

optimization problem,

maxLD = max(−1

2

T∑
t=1

T∑
s=1

αtαsytysk(Xt,Xs) +
T∑
t=1

αt) (B.8)

with constraints of
T∑
t=1

(αtyt) = 0 and αt ∈ [0, C] for all t.

The decision function for the separating hyperplane will be written as follows,

f(X) = sign(
T∑
t=1

T∑
s=1

αtytk(Xt,Xs) + b) (B.9)

We summarize the full progress of using SVM to make classification as follows.

1. Determine the input samples and corresponding kernels.

2. Transform the objective optimization function into Lagrange function with
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constraint conditions and calculate the Lagrange multipliers of α’s to max-

imize the dual quadratic target function.

3. Put all optimized α’s into expression for parameter vector of ŵ′ =
T∑
t=1

α̂tytΦ(Xt).

4. Put the value of ŵ′ into yt = w′Φ(Xt) + b to get b̂.

5. Get the final expressions for the separating hyperplane of ŵ′Φ(Xt) + b̂ = 0

and decision function for classification of f̂(X) = sign(ŵ′Φ(Xt) + b̂).

B.4 Random Forest and Gradient Boosting Tree

Both random forest and gradient boosting tree are tree-based model on the en-

semble learning base. The core idea for decision tree is to continuously partition

data into homogeneous clusters by refining the selection rules as either building or

pruning tree branches to get the optimal tree structure. The tree-based model can

naturally visualize the catergorizing rules and extract the variable importance,

the model interpretability is thus more remarkable than other machine learn-

ing techniques. Koyuncugil and Ozgulbas (2012) and Tanaka et al. (2016) use

the tree-based model construct EWS for predicting risk pressure for small enter-

prises and nationwide bank failures, which alters the practitioners’ perspective in

nonparametric models’ predicting power. We thus put two advanced tree-based

models in the stylish ensemble learning technique, random forest and gradient

boosting tree, into model contrasts.

Split1

Model6

rule 1-b

Model1, Split2

Model3, Split3

Model5

rule 3-b

Model4
rule 3-a

rule 2-b

Model2
rule 2-a

rule 1-a

Figure B.2: An example of tree model structure with three clustering rules, three
splits and six regression models.

Gradient boosting machines make the tree-based model algorithm more adap-

tive. It shares the similarity of random forest that the final prediction is produced
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on an ensemble of tree models, but its constructing way is substantially differ-

ent. Trees in random forests are built independently and each one will reach the

maximum depth, while in gradient boosting, the trees are dependent on previous

fitted trees by allowing the minimum depth. The computation steps are listed as

follows.

1. Initialize D and M to be the tree depth and number of iterations. Compute

the average of response ȳ as the initial predicted value.

2. Start from the first iteration 1, calculate the residual, the difference between

predicted value and observed value, and fit a D depth tree by setting the

residuals as response.

3. Produce new predictions by using the fitted tree.

4. The predicted value will thus be updated by recursively implementing the

step 2 and 3 and adding up the previous predicted value from past iterations.

Similarly, D and M are the tuning parameters for the gradient boosting ma-

chine. In the study, we across validateD = {1, 2, ..., 5} andM = {50, 100, 150, ..., 500},

find the combination of D = 3 and M = 100 performs best by maximizing the

AUC value for binary classification4. The time cost of implementing the gradient

boosting machine is more pricey than random forest since the random forest con-

structs independent trees in parallel, the gradient boosting, though restricts the

tree grown depth, aggregates previous results in an adaptive recurring process.

4R package of ‘xgboost’ helps to fit the gradient boosting model.
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Appendix C

Dynamic correlation derivation
in DCC-GARCH model

C.1 Derivation for dynamic correlation coeffi-

cient

For the multivariate DCC-GARCH model, the variance-covariance matrix Ht is

Ht = DtRtDt (C.1)

where Dt = diag{
√
hi,t} and Rt is the correlation matrix which can be expressed

in the exponential smoother as a geometrically weighted average of standardized

residuals.

[Rt]i,j = ρij,t =

t−1∑
s=1

λsεi,t−sεj,t−s√
(
t−1∑
s=1

λsε2i,t−s)(
t−1∑
s=1

λsε2j,t−s)

(C.2)

where λ’s are scalar parameter and ε’s 1 are standardized residuals.

Then, in a more simplistic way, the correlation can be written through the

exponential smoothing as

ρi,j,t =
qij,t√
qii,tqjj,t

(C.3)

qij,t = (1− λ)(εi,t−lεj,t−l) + λ(qij,t−l), 1 ≤ l ≤ t− 1 (C.4)

1ε’s have been denoted in Chapter 4, Eq. 6.2.
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GARCH(1,1) model suggests a natural alternative to express qij,t as following

recursive equation,

qij,t = ρ̄ij + α(εi,t−1εj,t−1 − ρ̄ij) + β(qij,t−1 − ρ̄ij)

= ρ̄ij + αεi,t−1εj,t−1 − αρ̄ij + βqij,t−1 − βρ̄ij

= (1− α− β)ρ̄ij + αεi,t−1εj,t−1 + βqij,t−1 (C.5)

= (1− α− β)ρ̄ij + αεi,t−1εj,t−1 + β((1− α− β)ρ̄ij + αεi,t−2εj,t−2 + βqij,t−2)

= (1− α− β)(1 + β)ρ̄ij + α(εi,t−1εj,t−1 + βεi,t−2εj,t−2) + β2qij,t−2

= [recursively expansion on qij,t−l]

=
1− α− β

1− β
ρ̄ij + α

∞∑
s=1

βsεi,t−sεj,t−s

where ρ̄ij is the unconditional expectation of the cross product, thus for the

variance ρ̄ii = 1.

The matrix forms of estimators C.4 and C.5 will be written as follows,

bqij,tc = Qt = (1− λ)(εt−lε
′

t−l) + λQt−l (C.6)

Qt = S(1− α− β) + α(εt−lε
′

t−l) + βQt−l (C.7)

where S is the unconditional correlation matrix of ε’s.

C.2 Estimation

The multivariate DCC-GARCH model can be statistically specified as

rt|It−1 ∼ N(0, Ht) (C.8)

Ht = DtRtDt

εt = D−1
t rt

Dt = diag(h
1/2
11,t, h

1/2
22,t, ..., h

1/2
nn,t)

Qt = S(1− α− β) + α(εt−lε
′

t−l) + βQt−l

Rt = (diag(Qt))
−1/2Qt(diag(Qt))

−1/2

(C.9)

Given the assumption of normality, the parameters will be estimated by max-
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imum likelihood2. The log likelihood can be written as

L = −1

2

T∑
t=1

(nlog(2π) + log|Ht|+ r′tH
−1
t rt)

= −1

2

T∑
t=1

(nlog(2π) + log|DtRtDt|+ r′tD
−1
t R−1

t D−1
t rt)

= −1

2

T∑
t=1

(nlog(2π) + 2log|Dt|+ log|Rt|+ ε′tR
−1
t εt)

= −1

2

T∑
t=1

(nlog(2π) + 2log|Dt|+ log|Rt|+ ε′tR
−1
t εt + ε′tεt − ε′tεt)

= −1

2

T∑
t=1

(nlog(2π) + 2log|Dt|+ log|Rt|+ ε′tR
−1
t εt + r′tD

−1
t D−1

t rt − ε′tεt)

= −1

2

T∑
t=1

(nlog(2π) + 2log|Dt|+ r′tD
−2
t rt + log|Rt|+ ε′tR

−1
t εt − ε′tεt)

= −1

2

T∑
t=1

(nlog(2π) + 2log|Dt|+ r′tD
−2
t rt)−

1

2

T∑
t=1

(log|Rt|+ ε′tR
−1
t εt − ε′tεt)

= LV (θ) + LC(θ, φ)

where LV (θ) and LC(θ, φ) denote the likehood for volatility and correlation parts3

respectively. θ is the parameters in D and φ is the parameters for R. The

parameters will be estimated in two separate steps of

(1): θ̂ = arg max{LV (θ)},

(2): φ̂ = arg max{LC(θ̂, φ)}.

2If the Gaussian assumption is not satisfied, Quasi-Maximum Likelihood (QML) still works.

3LV (θ) = − 1
2

T∑
t=1

(nlog(2π)+2log|Dt|+r′tD
−2
t rt) denotes the volatility term, and LC(θ, φ) =

− 1
2

T∑
t=1

(log|Rt|+ ε′tR
−1
t εt − ε′tεt) denotes the correlation term.
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Appendix D

Hypothesis test

D.1 Reality check with revised benchmarks

The null for reality check can be written as

H0 : E(f) ≥ 0 (D.1)

where f is the performance series of the difference between two portfolios’ realized

variances based on the EWS and the benchmark model.

On day of t+ 1, the performance series is produced by following

ft+1 = RVEWS,t+1 −RVbenchmark,t+1, (D.2)

where RVEWS,t+1 and RVbenchmark,t+1 are the realized variance of the price returns

produced for the EWS model and the benchmarks respectively. Their specific

calculating formulae are

RVEWS,t+1 = r2
t+1IEWS,t+1, (D.3)

RVbenchmark,t+1 = r2
t+1Ibenchmark,t+1. (D.4)

where rt+1 = ln(Pt+1

Pt
) denotes the log return of price index, and It+1 is the indi-

cator function for non-crisis observations that are complementary to forewarned

signals for the EWS model, detected crises for SWARCH benchmark and always

equal to one for market portfolio benchmark. As the performance statistic is the

sample mean f̄ , boostrap samples f̄ ∗k,{k=1,...,10000} will be generated by applying
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stationary bootstrap technique to calculate the p-values. The statistics of V̄ will

be set to compare with the quantile of simulated V̄ ∗k for rejecting the null as

follows,

V̄ =
√
n(f̄), (D.5)

V̄ ∗k =
√
n(f̄ ∗k − f̄), (D.6)

where n is the sample size for performance series f .

D.2 Scheffé test on attention mechanism

The third hypothesis test in Chapter 6, Section 6.2.2 on equivalence between

train and test sets inferred attention weights will be implemented as follows.

Step 1: Construct F-test on the standard deviations of train and test attention

weight vectors. The null and the F-test statistic are

H0 : σin,i = σout,i v. H1 : σin,i 6= σout,i

F-test: F =
max{(S∗in,i)2, (S∗out,i)

2}
min{(S∗in,i)2, (S∗out,i)

2}
∼ F(num, denom)

where σ’s denote the standard deviation for train and test two sets and S∗’s for

in and out are sample unbiased standard deviations being defined as (S∗in,i)
2 =

T1S
2
in,i/(T1−1) and (S∗out,i)

2 = T2S
2
out,i/(T2−1), respectively. The freedom degrees

for F distribution are respective sizes of the numerator and denominator sets in F

statistic, which depends on the maximum and minimum value for sample standard

deviations.

Step 2: If the null in F-test can not be rejected with significant evidence, we

construct t-test as HIII
0 and ZIII (in Section 6.2.2) described. While, if the null

is rejected, we alter to the Scheffé statistic as follows,

Zt
i = αtout,i −

√
T2

T1

αtin,i +
1√
T1T2

T2∑
l=1

αlin,i −
1

T1

T1∑
l=1

αlin,i, for t={1,2,...,T2},i={1,2,...,n} ,

where all notations follow as defined in Section 6.2.2, T1 and T2 are the sample size

for train and test sets respectively, n is the number of features. After pairing in
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this way, a series of new samples of Z’s will be generated with following adorable

statistic summaries,

E(Zt
i ) = αout,i −

√
T2

T1

αin,i +
1√
T1T2

T2αin,i −
1

T1

· T1αin,i

= αout,i − αin,i, and

V ar(Zt
i ) = σ2

out +
T2

T1

σ2
in,

then, given large size, Z’s are assumed to be normally distributed as

Zi ∼ N(αout,i − αin,i,
√
σ2
out,i +

T2

T1

σ2
in,i )

Step 3: The original hypothesis thus can be transformed as the equivalent one

to test the normality of Z’s. Thus, the converted hypothesis and t-test can be

constructed as follows,

H0 : αz = αout,i − αin,i = 0 v. H1 : αz = αout,i − αin,i 6= 0

T-test : Z =
ᾱout,i − ᾱin,i
SZ/
√
T2 − 1

∼ t(T2−1)

where S2
Z is the sample variance being formulated as SZ = S2

2 + T2
T1
S2

1 − 2
√

T2
T1
S12,

with the sample variance for test set S2
2 = 1

T2

T2∑
t=1

(αtout− ᾱout)2, the truncated (till

T2) sample variance for train set S2
1 = 1

T2

T2∑
t=1

(αtin − ᾱinT2 )2 and the co-variance

term S12 = 1
T2

T2∑
t=1

(αtout − ᾱout)(αtin − ᾱinT2 ).

Step 4: Calculated the p-value and the null will be rejected at 5%1 level if the

p-value is significantly smaller than it.

1Double-side hypothesis will take half of significance level value in calculation.
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