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Cauchy Problem for Overdetermined Systems (*).

MAURO NACINOVICH

Sunte. — 8¢ caratierizeano le nozioni di dirvezioni caratieristiche, formalmente caratteristiche, di
iperbolicita e di evoluzione in una direzione per sistemi a coefficienti costomti, connesse allo
studio delle soluzioni del problema di Cauchy in un semispazio.

Introduction.

The Cauchy problem is of central importance in the theory of partial differential
equations. In the framework of over-determined systems with constant coei-
ficients, & very natural question is the following: given an ideal . in C[{y, ..., {,]
and a partial differential operator

m—1

(0.1) P(D) =Dy + 3 9D, ..., Da) D}
0

in R#** we can ask whether, given functions @, ¢y; ..., ¢n-, that are € on R* and
satisfy
{0.2) Pp(Dyy ey DpJpr, =90 on Re ¥peJs, for h=10,...,m—1

is it possible to find a O funection % on

(0.3) H = {(#y, 31 ..., ¥,) € R7H1: gy = 0}
such that

(0.4) PDyu=0 on H

and

(0.5) Diul, o=9;, forj=0,..,n—1
(0.6) Dy, D)u=0 on H VYpeJs.

(*) Entrata in Redazione il 7 luglio 1988. )
Indirizzo del’A.: Dipartimento di Matematica, Via Buonarroti 2, 56100 Pisa, Italia.
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When R»”= C* and the differential operators associated to a set of generators
of # are the Cauchy-Riemann ones, we are lead to the Cauchy-Kowalewska problem
and, in case P if of order m, the question is solved in the affirmative by the classical
theorem of Cauchy-Kowalewska.

Actually, in § 8 we generalize this theorem to the characteristic case, showing
that, in this instance, the problem (0.4), (0.5), (0.6) has always a solution. (not unique
if P(D) has order larger than m) provided that the compatibility conditions (0.2)
are satisfied. This will be used then to prove a general theorem that implies the
solvability of (0.4), (0.5), (0.6) when . is elliptic, i.e. all solutions of (0.2) are real
analytic on R" and generalizes the classical conditions of Petrowski when .# is the
zero ideal.

In this paper we shall consider general Hilbert complexes of partial differential
operators with constant coefficients. As they come from the resolutions of unitary
left modules of finite type over the ring of polynomials, the results are stated in terms
of their invariants. This leads to a fair ammount of commutative algebra. Hence
in §1 we list the algebraic preliminaries, together with rules to translate algebraic
jargon into statements about systems of partial differential equations. Then two
propositions are proved that allow to reduce to the simpler case of prime ideals.
This means to state conditions for the solvability of systems of equations in terms
of properties of reduced affine algebraic varieties associated to it.

Here we can make a further remark: these properties are apparently of two kinds.
Some are «hereditary », in the sense that when they hold for a system, they also
hold for a system containing additional equations. They can be often expressed by
pointwise inequalities. Ellipticity, hypoellipticity, as the fact of being non-
characteristic (§3), formally non-characteristic (§ 4), hyperbolic (§ 5) in a given di-
rection, are examples of «hereditary » properties.

Examples of «non-hereditary » properties are provided by analytic convexity
(cf. [151, [3]) and, as we show in § 7 and § 8, by being of evolution in some direction.
The concept of evolution that we adopt in this paper is, for the system (0.4), (0.5),
(0.6), the requirement of existence of a (non necessarily unique) solution for all data
satisfying (0.2). The general definition will be given in §7. This analogy with
analytic eonvexity was a reason for searching a condition for evolution modules in
terms of a Phragmén-Lindelof principle on the associated zero varieties (§ 8).

After § 2, where the spaces of functions and distributions used in the paper are
diseussed in short, section 3 and 4 are dedicated to the notion of noncharacteristic
and formally noncharacteristic systems, related to uniqueness and formal well
posedness questions. While these notions can be traced back to the scalar case,
hyperbolicity for systems exhibits some new special features. These are illustrated
in § 6 by some examples. We note in particular that for systems it is no longer true
that hyperbolicity with respect to a given direction implies hyperbolicity in the
opposite direction, as most of the nice properties of hyperbolic polynomials do not
hold for systems.

In the last sections we discuss evolution modules.
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We resfriet in this research to the categories of C* functions and distributions
and to constant coefficients. There are several interesting problems, that are not
congidered here, as that of correctedness and well-posedness classes, partly in-
vestigated in [9]; the theory developed in this paper could also be extended to the
case of data on an affine subspace of higher codimension and should be a first step
toward a comprehensive treatment of the case of variable coefficients. This project
requires to complement the results obtained here by a stability theory for systems,
that, at the moment, seems to present still some difficulties. T hope to treat these
subjects in some future papers.

1. ~ Algebraic preliminaries and notations.
A Primary decomposition.

Let us denote by J the ring C[{,, ..., {,] of polynomials with complex coefficients
in the » indeterminates i, ..., ,. Let Spec (F) be the set of all prime ideals of 7.
Given a unitary left §-module M, the annihilator of an element m of M is the ideal

(1.1) Ann(m)={peF:p-m=0}.
The annthilator of M is then the ideal
(1.2) Ann (M) = N {Ann (m): me M} .

The support of M is the subset supp (M) of Spec (F) of prime ideals eontaining
Ann (M). We have, Mg denoting the localization of M at T (cf. [7]),

(1.3) supp (M) = {p € Speo (T): Mg+~ 0} .

A unitary left J-module M of finite type is coprimary if, for every pe d, the
J-homomorphism M s m —p-me M is either injective or nilpotent. In this case

p =V Ann (M)

is @ prime ideal and M is said to be p-coprimary.
In general, there is a uniquely determined finite set Ass (M) = {pi,y..., Ps} C

C Bpec (F) to which we can associate submodules ¥,,..., N, of M such that
I
(i) N ¥;=0,

§=1

(ii) N/N; is p,-coprimary for § =1, ..., L,

(ili) N N;=#0 for h=1,..., k.
d#h

We say then that N,, ..., N, is a primary decomposition of 0 in M.
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We set V(p,) for the closed algebraic affine variety
(1.4) Vi) ={{eCrp() =0 Vpep}
of common zeros in C” of polynomials in p,. The disjoint union
(1.5) UJ V(p;) will be denoted by V(M)
and will be called the zero variety of M.
With these notations we have V(p,) = V(F/p,) = V(M|N,;) for j=1,..,k.
B Asymptotic and characteristic variety.
Let us consider the inclusion C»<s CP* described in homogeneous eoordinates by
iy ey 8a) > (1, 8y ey Ga)

Given a closed algebraic affine variety V in C», its closure ¥ in CP» is a projective
variety. We write V(p) and V(M) for the projective varieties associated to V()
and V(M) respectively: note that V(M) = ') {¥(p): p € Ass (M)} is a disjoint union.
Then we can define the asymptotic cone of V by

(1.6) W={C = (Lay s L) €C": (0, L1y ey La) € T} U {0} .
For p e Spec (T), W(p) denotes the asymptotic cone of V(p) and

(1.7) W) = U {W(p): p e Ass (M)}

is called the asymptotic variety, or full characteristic variety, of M.
A characterstic direction for M is a vector » € R*— {0} in W(M).

C Homological algebra.

Let M be a unitary left $-module. A free resolution of M is an exact sequence
(1.8) 0« M« Fy 22 P, 22 Fyem ...
of unitary left 9-modules and $-homomorphisms where all the Fs are free.

The faet that the sequence is exact means that the image of every homomorphism

equals the kernel of the following one.
Given another unitary left F-module N, the groups Ext} (M, N) are defined
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as the cohomology groups of the eomplex
(L.9) 0 — Homy (¥, N) —2>> Homg (Fy, N) —=> Homg (Fy, N) — ... .

If R is a unitary right -module, the groups Torj (M, R) are defined as the
cohomology groups of the complex

(1.10) 0 F Qg B« I, Qg B« FyQg B<— ...
We will also use the following fact from homological algebra: if
(1.11) 0—>HE—-F >G>0

is a short exact sequence of unitary left (resp. right) F-modules, then for every unitary
left §-module M we obtain the long exact sequence for the Ext functor:

(1.12) 0 — Ext§ (M, B) — BExt$ (M, F) - Bxt} (M, ¢) —
- Bxtk (M, E) — Bxty (M, F) — Ext} (M, G) —
......................... _— Ext%- (M, G) —

- Extit (M, B) — Exti (M, F) — Extf™ (M, G) —- -+
and, respectively, the long exact sequence for the Tor functor:

(1.13) 0 < Tord (M, @) < Tor (M, F) <~ Torj (M, B) <
< Torl (M, &) < Tord (M, F) < Tord (M, B) «---
......................... - Tor?‘ (M’ E) P

5
g
Tor?, ,

(M, @) <~ Tor)

i+1

(M, F) < Tory , (M, B)<---

D Hilbert resolutions.

Given a $-module M of finite type, we can find a resolution of M by free modules
of finite type, of the form

(1.14) 0 > G625 gaas g S0y g0y I 5

with d < n. Any such resolution is called a Hilbert resolution of M.
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E Differential modules.

If ¥ is a space of functions or distributions in an open set of R#, such that

of

857‘:%6? Vi=1,...,n and fe &,

then we shall consider & as a left and right $-module letting elements of § operate
on F as partial differential operators with constant coefficients.
If p(¢) = > a,l* is a polynomial in F, we set

lej=m

pD)= 3 a,D*

o
lol=m

with D = (D, ..., D,), D* = D*... D for a = (0, ..., otn) € N7, being

o
Di:‘a—a’;j.

Then the action on p(f) of f€ F is described by
(1.15) () f=Ffpl) =pD)f.

Given a Hilbert resolution (1.14) of a F-module of finite type M, the maps 4,
are represented by a;Xa,i, matrices (A7°(0));<,<4)12024,,,c We denote by A,(D)

the corresponding matrix of linear partial differential operators with constant
coefficients:

4

4,(D) = (4%7%(D)) .

We have natural isomorphisms
(1.16) Homg (F, F) = 57, FRe F= 5!
and therefore we obtain the isomorphisms:

Ext§ (M, F) o= {f € Foo: 14,(D)f = 0},

Tord (M, &) o Fo[4,(D) F,

(1.17) : ker (t_A_ (D): For— 37'11+1)
Exty (M, F) o~ ! P>
xty (M, F) ~image (*4,4(D): Fu1— Fu) for j=1,
Toid (3, F) o S AaD): For > Fe) L

image (4;(D): Far+r— Far)
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These isomorphisms translate statements about the solvability of systems of partial
differential operators with constant coefficients into statements about invariant
groups associated to the F-module M.

For the relationship between a given matrix of partial differential operators with
congtant coefficients and the F-module M in a resolution of Hilbert eontaining the
associated matrix of polynomials as a $-homomorphism, we refer to [5].

F Injective and flat F-modules.

A unitary left $-module N is said to be injective if for every pair of J-modules
N, and N,, given a $-homomrphism «: N — N, and ad injective F-homomorphism
1: N - N, we can find a J-homomorphism f: N, — N, making the diagram

N —— N,
AL
N,

commute. The following equations are each one equivalent to the fact that N is
injeetive:

(i) Exty (M, N) = 0 for every unitary left F-module M

(ii) Ext} (M, N) =0 for every unitary left F-module M and every j> 0.

A unitary right §-module R is said to be flat if for every short exact sequence of
left-F-modules:

0 +>F—>F >G>0

the sequence
(1.18) 0 >ExXeR >FRe R —+~GR3 B0
is also exact. The following equations are each one equivalent to the fact that B
is flab:

(i) Torf (M, R) = 0 for every unitary left F-module M;

(ii) Torflr (F/p, R) = 0 for every ideal p in &;

(iii) Tor? (M, R) = 0 for every unitary left $-module M and every j> 0.

We can restate the conditions for injectivity and flatness for a differential mo-
dule & in the following way:
F is injective (resp. flat) iff, for every exact sequence

(1.19) ga AQ), gp _BEO g0
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of free $-modules of finite type and $-homomorphisms we have, for fe F°:
the condition

(1.20) . YAD)f=0 (resp. B(D)f=0)
is necessary and sufficient in order that the equation
(1.21) B(D)u = f has a solution # e F°
(resp. A(D)w = f has a solution u e 5°) .

G Eeduction to prime ideals.

We give here two algebraic results that permit to reduce several vanishing
theorems for §-modules M of finite type to the simpler case in which M = ¢/p for
some prime ideal p € Spee (7).

ProrostTION 1.1. — Let B, M be unitary left T-modules, with M of finite type.
Then o necessary and. sufficient condition in order that, for a fized integer j,= 0,

(1.22) Exti (M, E) =0 Vj<j,
s that
(.23) Ext} (F/p, B) =0 Vj=<j, and Vp e Supp (M) .

Proor. — Sufficiency. We can find a composition series:

(1.24) 0= Myc Mc Myc...C Mpyy=M
such that
(1.25) Myp My Flp, with p,eSupp (M) for 0<h< k.

Tor every h we have the long exact sequence for the Ext functor:

0 —> BxtQ (My s/ My, B) — Bxth (Mysy, B) - Bxt$ (M, E) —
- Ext} (Mh-)-l/-Mh’ E) —=c e

o> Bxth (M) My, B) — Bxthy (M, B) — Bxth, (M, T) —
> Bxtht (M M, B) =+ -

By the assumption we have then

(1.26) Ext) (My, B) > Bxth (My41, B) Vi<ijoond 1<h<k,
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while all maps

(1.27) Ext}f (M1, B) — Extl (M, B) for 1Sh<Ek
are injective.

Because
(1.28) Ext} (M, B) ~ Exth (F/p,, B) =0  for j =< j,,

it follows that

(1.29) Bxtl (M, B) = Bxt) (M, B) =0 for j<j,.

Necessity. We argue by contradiction, assuming that

(1.30) Bxth (M, H) =0 for j<j,
but
(1.31) Bxty (F/p, B) 0  for some j < j, and p € Supp (M) .

Let j;, with 0 < j; < j,, be the smallest integer for which we can find such a p
in Supp (M), and let us fix then p e Supp (M) with

(1.32) Ext} (T]p, B) 0

maximal with this property, i.e. such that

(1.33) Ext (F/p’, B) =0 if p'eSpec (M) and p’ G p.
This choice is possible because & is noetherian.

By Proposition 20, Ch. II, § 4 in [7], we can find a submodule ¢ = 0 of §/p and
an exact sequence

(1.34) 0 >N—->M—>Q—>0.

By the choice of j, we have Ext} (N, E) = 0 for j < j; by the sufficiency part of the
proof. Thus the long exact sequence of Ext yields:

{1.35) 0= Ex‘uf},%“l (N, B) — Extg% (@, B) — Extf},% (M, E)=0
and hence
(1.36) Exth (Q, B)=0.

We have

Q=~SIp
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for some ideal J of ¥ with
Fop.
#
Then from the exaet sequence
(L.37) 0—>Q—Tp—>7F/F >0
We deduce an exact sequence
(1.38) .+« Extl (3/5, B) — Bxtl (?/p, E) — Bxt} (Q, B) = 0 .

Because all p’e Supp (F/.#) properly contain p, by the choice of p and the sufficiency
part of the proof we have
Ext} (9/4,E) =0,
which implies that
Ext} (§/p, B) =0,
giving a contradiction.

ProPOSITION 1.2. ~ Let H, M be unitary left T-modules, with M of finite type.
Assume that, for a fived j,= 0, we have

(1.39) Exty (F/p, B) =0  Vj>j, and Vp e Supp (M) .

Then a necessary and sufficient condition in order that

(1.40) Extit (M, E) = 0
8 that |
(1.41) Ext} (F/p, B) =0  for every p e Ass (M).

Olearly in this case

(1.42) Exth (M,B) =0 Vj=j,.
Proor. - Sufficiency.

We argue by descending induction on §,. Indeed the statement is trivial if j, > n.

We consider then a fixed j, < » and assume the statement is true for larger j,.

Let us consider first the case of a p-coprimary M. Then we use again induction
on the smallest integer % such thaf

PM=0.
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Agsume that %k = 1, i.e. that
pM=0.

Then we can consider M as a torsion free J/p-module and we can construct an exact
sequence

{1.43) 0= M~ (F/p)—Q —0.

Then we have an exact sequence

(1.44) 0 = (Bxt} (T/p, B))* - Bxtl (M, B) - Exty*™ (@, B) .
The last group is zero because of the inductive assumption on j, gince

(1.45) Supp (@) c supp (F/p) c supp (M) .

Then also Exti (M, H) = 0.
Assume now that, for some k> 1, the statement is true for all p-coprimary
modules N for which

p*N =0 for some h<Tk.
Let
My= {me M: pm = 0} .

Then M, and M/M, are both p-eoprimary (!) and

pMy=0, pYM/M,)=0.

From the exact sequence
(1.46) Ext} (M| M,, B) - Ext} (M, E) — Ext} (M,, B)
and the induective assumption we deduce then that

Ext} (M, B) = 0.

To drop the assumption that M is p-coprimary, we note that, if ¢ is any part
of Ass (M), we can find a sub-module N of M such that

Ass(N) =g, Ass(M/N)=Ass(M)—¢.

) I peF—yp, meM and p-meM,, then we have p-(qgm) = g{pm) = 0 for all g,
and therefore gm = 0 because M is p-coprimary. But this means that m € M, and hence
M/M, is p-coprimary.
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As we have an exact sequence
(1.47)  Exti (M|N, E) - Ext} (M, B) - Exti (N, B) — Exti*! (M [N, B)

the statement for a F-module M for which Ass (M) contains more than one element
follows from the statement about F-modules M to which is associated & strictly
lesser number of ideals.

Necessity. — By the sufficiency part of the proof, we have
Exth (@, By =0 Vj>j,
for all left 9-modules @ of finite type such that

Supp.(@) ¢ Supp (M) -

If p e Ass (M), then we can find a F-submodule N of M isomorphic to F/p.
From the exact sequence

Extl (M, B) — Ext} (N, B) — Ext}™* (M|N, B),
because Supp (M/N) c Supp (M), we deduce that

Extis (§/p, B) =~ Bxtf (N, B) = 0.

2. — Spaces of functions and distributions.

Given an open set £2 in R», we denote by &§(2) the space of complex valued C®
funetions on 2, with the Fréchet-Schwartz topology of uniform convergence with
all derivatives on compact sets.

If K is a closed subset of 2, we denote by 6:(L2) the closed subspace of §(£2) of
functions with support contained in K. As this space depends only on the relatively
closed set K and not on its neighborhood £, we write simply ; for &({2). When K
is eompact, we write also Dy instead of &.

If A is any subset of R», we define

Z)A = '__K%HCQ—A) :DK
with the Schwartz direet limit topology. Note that D, can be identified to the space
of functions in &(R») having a compact support contained in A, but the topology
of D, is stronger than that induced by &(R=), unless A is compact.

When 4 is open, we write, as customary, D(4) for D,.
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If Q is an open set, we denote by D'(£2) the space of distributions in £, with the
topology of strong dual of D(Q), and by &(L2) the strong dual of §(Q), that can be
identified to the space of distributions having a compact support contained in 0.

For a subset 4 of Q, we denote by D(Q) (resp. &, )the space of distributions
in £ (resp. of distributions with compact support) with support contained in A.

Given a closed subset K in 2, let Fx(22) (resp. FL™°(Q)) denote the subspace
of §(Q) (resp. D(L)) of functions vanishing with all derivatives on K.

Then we define the space Wy od Whitney function on K by the exact se-
quence

(2.1) 8 - Fx() > §(Q) - Wz -0

and the space W™ of Whitney functions on K with compact support by the exact
sequence

(2.2) 0 — FLm(Q) — D(Q) - WL™ 0.

We endow these spaces with the natural quotient topologies. Note that Wy is
a space of Fréchet-Schwartz.

With F = 2~ K N 2 we have
Fu() = & and FE™(Q2) = D, .

We also define the space i);z of extendible distributions on K by the exact se-
guence:

(2.3) 0 =D, - D(Q) > D 0

and the space é; of extendible distributions with compact support in K by the exact
sequence

(2.4) 08, > 8&(Q)>8& —0.
Note that we have natural inelusions
0 — D, — D'(Int K)
0 — é; =D,
so that distributions in Dj can be considered as those distributions in int K that

can be continued beyond the points of 0K N K.
In this paper, we will mostly consider the case where K is convex. Then the
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regularity properties are satisfied that guarantee that

&

is the strong dual of Wi
D is the strong dual of Wem»
D! is the strong dual of Dy

§. is the strong dual of & .

If % is a distribution, or a ¢ function, with compact support, we denote by 4
its Fourier-Laplace transform:

L) = {uy exp[— i+, D> for eCn.

It will be eonvenient, while studying the Cauchy problem in a half space, to
consider euclidean spaces R7tl, where the dimension is written as the sum of 1 and
a positive integer n. We shall denote by @z, @, ..., #, the coordinates in R*+* and by
§ = C[Ly,y L4y ..y Cn] the ring of polynomials in # -+ 1 indeterminates &y, &y, ...y &y,

3. — Cauchy problem with initial data on a hypersurface. Uniqueness.
For a fixed vector » € R"1— {0}, we denote by H = H(») the half space:
H = {g e R {z,v) = 0}
and by H its syﬁmetrical:
H={rcR":—gcH} = {peRrti: (s> < 0} .
Let § = 8(») denote the hypersurface
S=HNH= {z e R™1: (o, vy = 0} .
Let us consider the exact sequences for functions

(3.1) 0 -8 = &R") > Wy -0
and for distributions:

(3.2) 0 — Dp — D'(R™1) — Dk — 0
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If M is a unitary left §,.,-module of finite type, we have (cf. [18])

Bxth (M, §(R™1)) ~ Ext} (M, &) = 0 for j=1
Ext} (M, &) = for j=2

(
th (M, D'( R"+1) )) = Exth (M, Dz) =0 for j=1
(
(M, Dy) = for j=2.

Eth'

Therefore, of the long exact sequence of Ext, deduced from (3.1) and (3.2), the
only parts that are not zero for all modules M avre:
(3.3) 0 ->Ext (M, &) - Ext} (M, §R")) — Ext§ (M, Wy) - Exty (M, &) ~
and
(3.4) 0 —Ext} (M, D,) - Ext} (M, D'R1)) >
— Bxtd (M, D'(H)) — Bxth (M, Dy) -0

DEFINITION. ~ We say that v is non-characteristic for M if v does not belong to W(M).

We have:

THEOREM 3.1. ~ The following statements for a left F-module M of finite type and
@ direction v € R — {0} are equivalent:

(i) v is non-characteristic for M
(i) Bxtd (M, D) = 0
(iii) Ext§ (M, &) = 0.

PROOF. — (i) = (ii). If v¢ W(M), then Ann (M) contains a polynomial ¢ with
prineipal part ¢, non vanishing at v. By Holmgren’s uniqueness theorem, we have
then

Ext§ (§/(g), Dy) = 0.
On the other hand there is a surjective F-homomorphism
(Fl@) - M —0.
Indeed, if my, ..., m, are generators of M,
FED (Pyy oory D) —> DaMy - ... -+ D e M,

by passing to the quotient, defines such a homomorphism.
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This yields an injection

0 - Ext§ (M, D) — (Bxt§ (P/(g), Dp))*
and therefore
BExt§ (M, D) = 0
because the last group is zero.

(ii) =- (iii). This follows from the inclusion

08, D,

which implies also the inclusion
0 — Bxt% (M, §,) — Bxtd (M, D) .

(iii) = (i). We show by confradiction that, if » is characteristic, i.e. v &€ W(M),
then we can find a non-zero element in Ext} (M, &). In this construction we
follow [13].

If ve W(M), then we can find a prime ideal p in supp (M) with

dim; V() =1 and ve W(p).

Note that W(p) contains only distinet lines. Choosing then real coordinates in
R in such a way that » = (1,0, ...,0), we have a Puiseux series representation
of V(p) close to v, of the form

Lo=3s

¢(81/p): )
é‘j:s-zams“"/” for j=1,...,n
h=1

convergent for [s¥»|> M. Having fixed ¢ with 1 — 1/p < ¢ <1 and defining (is)?
on the half plane Im s < 0 so that it is real and positive when s is purely imaginary,
for a fixed branch of s¥? on Im s < 0, we set

+ co—iT

w(w) = |exp [i{w, p(s¥?)> — (is)e]ds for = > (2HM)~.

— co—iT

This funetion defines an element of Ext§ (5/p, €) having support equal to H
(ef. [11]).

By proposition 1.1 the implication (iii) :>(i) follows.

We also have (cf. [13]) ‘
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PROPOSITION 3.2. — If ve W(p) for every p € Ass (M), then

Ext$ (M, 8) - Bxt) (M, §(H))

has o dense image.

The proof, similar to that in [13], is omitted.
By the local character of Holmgren’s uniqueness theorem, we deduce

COROLLARY 3.3. ~ If M is a left T-module of finite type and v € R*+1— {0}, then
the following ave equivalent:

(i) v is mon-characteristic for M;
(iv) Ext} (M, (D,),) = 0;
(v) Bxt§ (M, (Ex)o) = 0.
Indeed, the argument that shows that (i) =- (ii) in the proof of Theorem 3.1 also
shows the implieation (i) = (iv). Then (iv) =-(v) is obvious and (v) = (i) is proved
ag the implication (iii) = (i).
Theorem 3.1 has an application to the study of the Hartogs phenomenon.
The same proof as in [8] yields:

THEOREM 3.3. ~ Assume that Exty (M, F) = 0 (i.c. that M is overdetermined).
Then a necessary and sufficient condition in order thatl the natural restriction map

EX‘G% (M, 8(Rn+1)) — Extg-. (M, (R — K))

be am tsomorphism for every compact K im Rt for which R1— K is connecled, is
that B be elliptic, i.e.

W(p) N Rr1c {0} for every p e Ass (M) .

4. — Nonhomogeneous Cauchy problem with data on a hyperplane.

A) We first discuss the one-sided Cauchy problem on functions. The notations
are the same of the previous section. Our starting point is the exact sequence:

(4.1) 0—>8g—>Wyg—>Wg—0.
For every left §-module M of finite type we have:

Exth (M, Wy) = Exth (M, W) =0 for j=1,
3 T ’
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so that the exact sequence of Ext deduced from (4.1) reduces to:
(4.2) 0 —Ext} (M, &) — Ext (M, Wg) — Ext (M, Ws) — Extg (M, &) — 0

Note that elements of Wy are functions on H that are smooth up to the
boundary, while elements of Wy can be thought as formal power series, in a direction
t transversal to 8, with coefficients in the space &(8) of smooth functions on S.

Therefore an element of Wy is the collection of all normal derivatives on 8 of a C®
function defined on a neighborhood of 8.

Identifying by a Hilbert resolution the space Extf (M, WH) to a space of vector
valued Whitney functions on H satisfying a system of linear partial differential
equations with constant coefficients, by Theorem 3.1 and the exact sequence (4.2)
we have:

THEOREM 4.1. — A necessary and sufficient condition in order that the elements of
Ext§ (M, Wx) be uniquely determined by their normal derivatives on 8, is that v be
non-characteristic for M.

Indeed the map
Ext (M, Wa) — Extd (M, Wy)

can be considered as defined by the map that associates to every element of
Ext} (M, Wy) its formal power series on § in the direetion normal to S.

B) We want to introduce now the notion of formally noncharacteristic direc-
tion for a unitary left F-module M of finite type.
To simplify the notations, we assume that » = (1,0, ..., 0). We consider

gn: C[Cl, ery Cn]

as a subring of

F = Fppy= Cllo, ey Eal -

Then every T-module M can also be considered as a J,module by change
of ring.

We write (M), for the §,module obtained from a F-module M by change of ring.

We have in particular a natural identifieation

Ws 2 Bxtd, (Furs)n, 6(8)) = Homyg, (7)., 8(8)) 22 8(8){{wo}} -

Therefore, applying the funetor Homg (-, §(8)) to a Hilbert resolution of M,
considered as a T-module, that can be also considered as a resolution of (M), by free
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J,-modules, we obtain an isomorphism:

Bxtg (M, Ws) o Bxth, (M), §(8)) -
Let

(4.3) LAY L T I

be a finite presentation of M.
We say that (4.3) is formally non characteristic in the direction v if the (formal)
Cauchy problem:

AD)u =0
(4.4) DoulS =0 for j<h
| we Wg= §(8){{m}}

for some integer # = 0 has only the solution # = 0.

Levma 4.2, ~ Let M be a unitary left P-module of finite type. Then if M has a
formally non-characieristic presentation, oll finite presentations of M are formally non-
characteristic.

Proor. — Assume that (4.3) is a formally non-characteristic presentation of M
and let

(4.3 §o1 —F> @b s M -5 0
be another finite presentation of M. Then we can find F-homomorphisms
‘L;: §% — % and 'R,: §% — % for j = 1,2 and ‘G: §% — §%, 'K: §% — §h

with the properties:
tLytB = tA'L, ‘tBtR = tR,A
tLg t.Ro — Id‘j‘au = tA tG
‘BytLy— Idg, = 'B!K .
Assume that (4.4) holds and let & be the maximum degree in {, of polynomials in

the matrix Ry(().
Let we Wy satisfy

B(D)w = 0
Diwl8=0 for j=h-+Fk.
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Then, for v = Ry(D)w, we have

AD)u = A(D)By(D)w = By(D)B(D)w = 0

and
DjulS = DiRy(D)w|S =0 for j<h.

Thus, by the assumption,
Ry(D)w = 0.
But the homotopy formula yields then:

w = Ly(D)Ro(D)w — E(D)B(D)w = 0,

i.e. w= 0 and therefore also (4.3’) is formally non-characteristic.
We can give then the

DEFINITION. ~ A unitary left T-module of finite type M is said to be formally non-
characteristic in the dirvection v if it admits a finite presentation (4.3) that is formally
noncharacteristic in the direction .

We agsume that » = (1,0,...,0). Then we define the (ascending) C,-filtration
of §:

&= {pe:degree of p in {,<j}, forjeZ.

Then ,§ = {0} for j <0 and
Q{f = ﬂ‘;,,,= C[Cl’ seey C”] .
A (o-fillration of a left F-module M is a sequence (M;);ez of abelian subgroups of
M with
Mj C -Mj+1 Vj € Z
and
h‘vT'MjCMj.{_h Vj,hez.
The {,-filtration (Mi),.eZ of M is good if we can find j, , j1 € Z such that
(i) for each jeZ, M, is a T,-module of finite type
(i) M;=0 for j<4,
(iil) S M, = My, for j=j,.
Note that the last condition implies
(i) M= M, Vj= g1, h=0.
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We also remark that (i), (ii) and (iii) are equivalent to the fact that

gr (M) = @ MM,
jeZ

is finitely generated as a module over the graded ring

g (F) = @D TLT.
A

‘We have the following

LEMMA 4.3. — Every unitary left $-module M of finite type admits a good Ly-fillration.
Two different good (o-filtrations (M), and (M;),.eZ of the same F-module M are
compatible, in the sense that we can find k € Z such that

M;c M,

itk

and M;c My, VYi€Z.

(For the proof of this lemma, of. [6]).
Let (M);z be a good filtration of M and let j, satisfy (iii) above. Then we have

M| M; > My /M, as T,-modules for j,h=7j;.

Let us denote then by I this &,-module associated to the given good filtra-
tion of M.
We have the following

THEOREM 4.4. — Let M be a left T-module of finite type and let v = (1,0, ..., 0).
Then the following statemenis are equivalent:
(i) M is formally non-characteristic in the direction v
(i) M=o
(iii) (M), is a T,-module of finite type
(iv) For each p = Ass (M) the map

Vp) € (Coy C1y ooy Ln) > (815 oy Cn)Cm
is finite and dominani.

PROOF. ~ (i) <> (ii). Corresponding to the good filtration (M,);; of M we can
find a «correct » Hilbert resolution of M(cf. [4], [61)

g By N I T2 7 N



286 Mavro NaciNovicH: Cauchy problem for overdetermined systems

This means the following. For every non negative integer j there are integers

Gjry evy Kig,
such that
A;8) = (A;’S(C))léréajﬂ,lsséa;

with A}* of degree in {, less or equal to a;,— &;4,; if we set

T4 = {(P1y s Pa,) € T¥: degree of p, in o<+ o},
then
t4,(0) T3 c Y
and M, is the image of Fj°:

'Mh - gz“/‘Aogzl .
Let us write the homogeneous part of degree o, — a;4, in g, of A}*(() as

g 03y L, )
and set
| = A1y oo 8) = A7 Gty voos Eo)isrsasmnizosan
Then
e G g g2 s T > 0

is a Hilbert resolution of 7.
We consider the (descending) filtration of Wy

WS = Ws(o) D Ws(l) o] Ws(2) D...
defined by

Ws(h) = {uwec Wg:[DiulS = 0 for j< b}, for heZ.
Then we set, corresponding to the correct resolution defined above:
Fi(h) = {(W1y ...y ) € W € Wy(h + o) for E=1,...,a;} .
For every h we obtain a complex:

(Fa(h), A(D)) = {0 — Fy(h) 2D ,(h) 22> B(h) ...} .
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From the exact sequences

0 = Fi(h + 1) —F;(h) — Fyh)[Fya(h) -0  (j, heZ)

we obtain long exact cohomology sequences:

0 > H(Fy(h + 1), A4(D)) ~ HY(Fy(k), A4(D)) ~ H(F ()| Fo(h + 1), A,(D)) —

—> HY(Fy(h + 1), Ax(D)) — HYF 4 (h), A:(D)) — HY(F4(h)|Fy(h - 1), A*(D)) - ...

where the 4,’(D)s denote the quotient maps
Aﬁ F(R)F;(h + 1) — Fiy(B)[F (b +- 1),

defining the complex

Fo<h) AolD) Fl(k) A

(Fu(l)[Fy(h +1), A(D)) = {0 T F(h+1) Fy(h +1)

‘When condition (iii) for the filtration (M,),.; holds, we have

Fyh+1)

Hs(Fy(h)|Fy(h + 1), A(D)) = Bxty (M, §(8)) =0 for h =4, for every s=1

and therefore

(4.5) HYFy(h + 1), 4,(D)) > H(Fy(h), 4,(D)) 0

is surjective for every A = j;-
This condition implies that

(4.6) HYFy(h), Ax(D)) =0 for h=j,.
Indeed let us fix b= j, and leb

fe Fy(h) satisfy 4,(D)f=90.
By (4.5) we can find u, € Fo(h) such that

f— Ao(D)up € Fy(h + 1)
Recursively we can define

Upy Untay -y Undiy oor

such that

f— Ao(up+ oo + ) € Fy(h + k1) for E=0,1,2,....
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The series

[=e)

= 2 Un+x
k=0

defines then an element % in Fy(k) such that

A D)yu = f.
This proves that (4.6) holds.
We have therefore an exact sequence

(4.7) 0 > H(Fy(h + 1), A (D)) — H(F(h), A(D)) — Bxt§ (M, 8(8)) -0

for every kb= j,.
Because
Ext$ (M, §(8)) = Bxt§, (M, §R") =0

it and only if M = 0 (3) the equivalence (i) <> (ii) follows from (4.7).

(ii) = (iii). Indeed the condition M = 0 implies that M = M, and there-
fore (M), is of finite type because M; is a §,-module of finite type.

(iii) => (iv) = (i). This follows because (iii) and (iv) are both equivalent to the
fact that Ann (M) contains a polynomial that is monic in &,.

To explain the meaning of the notion of formally noncharacteristic, we briefly
rehearse a construction in [2]. Let

e Gl B b By g — (M), -0

be a Hilbert resolution of (M), as a P,-module. Then one can define &,-homo-
morphisms (trace homomorphisms)

b, G — g
such that

tA; 40t =7, ,0'B;, forj=1,

() Indeed the sequence

0 — §ao(8) 222y Earg)
is exact if and only if
0« Floe- G

is exact (of. [5]).
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so that the diagram

o G g g I 50
Yz too Mg |

s gl By gt Bey g o (31) o0
commutes. Then the Cauchy problem

A(D)u = 0

4.4’
(4) 7o(D) u|

o= U € &"(S)

2=

has a unique solution in (&(8){{mo}})* for every w,ec &»(S) that satisfies the in-
tegrability condition

(4.47) Bo(Dyy ..., Dpyttg= 0.

We can also consider the non-homogeneous Cauchy problem:

{ AfD)u = fe W&
(4'4”!)

To(D) ulmo=0 = uy € 8%(8)
The compatibility conditions are now

(4.47)

A(D)f=10 on H
By(D)uy = w(D)f on 8

and again the assumption that 3 is formally non-characteristic in the direction
» = (1,0, ..., 0) guarantees existence and uniqueness of the solution in (&(S){{ze}})*.

0) We end this section by a brief discussion of the nonhomogeneous Cauchy
problem for distributions.
From the exact sequence

(4.8) 0 — D> Dy — Dy —0
we obtain, for every left §-module M of finite type, a long exact sequence:

(4.9) 0 — Ext) (M, D) — Extd (M, D) — Ext (M, D)

— Ext} (M, D) - Exty (M, D) 0.
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The map
7: Bxtd (M, D) — Bxth (M, D)

is the one that defines « Cauchy data in the sense of Distributions ».
To show that it generalizes the usual definition, we consider an element
% € Ext§ (M, Wy). By the natural inclusion

Wa > Dy

this u defines an element of Ext} (M, D).
If w has zero Cauchy data in the classical sense, it belongs to the image of the map

Ext] (M, &) — BExt (M, Wy) .
But the inclusion
&> Dy
defines a map

Bxt§ (M, §,) — Ext} (M, D,)
and clearly the diagram
Ext§ (M, &) — Ext} (M, Wg)
\ v
Bxt} (M, D) — Bxtd (M, D)
commutes. Therefore, still denoting by u the image of u in Ext} (M, f:D;), we have:

7(u) =0 iff 4 has zero Cauchy data in the classical sense.

The vice versa is true if we assume that M is formally noncharacteristic in the direc-
tion ». Assume indeed that this is the case and let

0« M« go gt

be a finite presentation of M. Assuming » = (1,0, ..., 0), then Ann (M) contains
& polynomial p monic in J,. If u e Wy is such that

the condition that
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means that, for the distribution u, defined by

w=u for 2,=0,

=10 for ,<0,
we have
A(D)ut =0,

But then, for # = (u,, ..., w,), we obtain

(4.10) ' pD)u =0 on R for j=1,..,a
and hence

o
u € 8

because solutions of (4.10) smoothly depend on z,.
The argument above also shows that Ext§ (M, ‘ZD;) = 0 when M is formally
non-characteristic in the direction ». The vice versa is not true, as the equation

0%

._...—7 ;o i 2
8x8t+u 0 in R?,

which is formally characferistic in the i-direction, has no non-trivial distribution
solution with support contained in {t = 0}.
The exact sequence (4.9) can be interpreted then by:

(@) The condition that v be non-characteristic for M is wnecessary and sufficient
to have uniqueness in the Cauchy problem for distributions.

(b) The condition Bxth (M, D) = 0 is necessary and sufficient in order that
every element of Bxty (M, ﬂ);) be the Cauchy data of an element u e Exty (M, 5);).

5. — Hyperbolicity with respect to a half space.

We keep the notations of the preceding section.
We have the following

THEOREM 5.1. — Let M be a unitary left $-module of finite type and let v € R — {0}.
Then the following conditions are equivalent:

(i) The natural map

Ext} (M, 8(R*Y) — Bxtd (M, W) .

s a bijection,
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(if) We have
Exth (M, 85) =0 for j=0.
(ii") We have
Ext) (M, &) = Bxth (M, &) = 0.

(ili) For every p € Ass (M), we can find a constant 0 << ¢ << 1 such that
(5.1) —Im<, )y S ep|-[Iml|+ ¢t for every L€ V(p).
(iii") For every p € Supp (M), we can find a constant 0 < ¢ <1 such that
—Imd{,v><ecp|-Im{| 4+ ¢ for every L€ V(p).

Drr. — When the equivalent conditions above are satisfied, we say that M is
hyperbolic in the direction ».

Proor or THEOREM 5.1. — From the exact sequence (3.3) we deduce that (i)
and (ii’) are equivalent, while (ii’) is equivalent to (ii) because Ext} (M, &) =0
for every j = 2 and every M. Clearly (iii) is equivalent to (iii’). To show that (i)
implies (iii), we can assume that M = §/p for a prime ideal p (this is a consequence
of propositions 1.1 and 1.2). Let

(5.2) P Es gL L ln >0
be a Hilbert resolution of ¥/p, where

tA(L) = (Pu(0)y -y al0))
is a set of generators of p.
By (ii) the sequence

(5.3) 08,20 go KD

is exact and therefore, by duality, also the sequence

tB(D), tA(D)

(5.4) e (8g)

> & —0

(8)"

is exact. This means in particular that for every distribution 7 with compact sup-
port contained in H we can find distributions 7, ..., T, with compact support con-
tained in H such that

T—pi(— D)y — ... — po(— D) T,

has support contained in 8. Assume that » = (1,0, ..., 0).
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Let us take T = d(x;— 1, 4y, ..., #,). Then we have, for some constants A4,
¢ >0 and an integer ¥ = 0:

lexp [— io] — pal— O) To(8) — v — ul— O TWQ)| = C(1 + [2)* exp [A[Im (&, ..., Ta)l]
and hence, taking — £ e V(p), we obtain:
(5.5)  —Iml< o+ Nlog(l+ [2]) + AIm (&, .., &) Ve V(p).
Let us show that, for some constant ¢ > 0, we have actually:
(5.6) —~Im,< O 4+ [Im Gy, ..y 8))  VEe V(D).
We consider, for fixed s € R, the semi-algebraic funcfion

fi(t) = sup {— Im G|l € V(p), Im (&g, .y L) S 8, IS 8}

As we have

i<t fori>o0,

either f, is constantly equal to — oo or 0, or, for large ¢, we have the asymptotic
expansion

fo#) = at*(L - 0(1)) with x50 and ¢eQ.

From (5.5) it follows then that either « < 0, or ¢ < 0. In both cases we conclude
that f, is bounded from above uniformly on R for every s. Therefore the semi-
algebraic function

p(s) = sup f,(t) = sup {—Tm {y: L e V(p), [Im (L1, ..oy L) = 8

never takes the value -- co and therefore, for large s, it is either constantly equal
to 0 or — oo, or has an asymptotic expansion

p(s) = s(L + O0(1)) with a0 and ¢ge Q.
To prove (5.6) we have to show that we cannot have at the same time 4> 0
and g > 1.

To this aim we consider the semi-algebraic set

F={s4t0:eV®),Ini+ o =1, Im(l, .., L) S8 C]=1.
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It is not empty and its projection
Fy={(s,1): (5,1, () € V(p) for some e Cr+1}
is semi-algebraic and contains all s> 0 sufficiently large. Therefore
p(s) = inf {t: (s, 1) € Fy}
is a semi-algebraic funetion that has an asymptotic expansion
p(s) = B-s"(1L 4+ O(1)) for s — oo with f 0 and ¢'€Q.
Substituting in (5.5) we obtain
as'(1 4 O(1)) < ¢ + N log (1 4 Bs%(1 + O(1)) + As)  for s > oo

and hence we must have either & << 0 or ¢ < 1. The estimate (5.6) follows and it is
clearly equivalent to (5.1).

Also in the proof of the implication (iii) =~ (ii) we assume, as we can, that
M = T[p for a prime ideal pc ¢ and that » = (1,0,...,0), so that (5.1) can be
written in the equivalent form (5.6).

We are reduced then to the proof of the exactness of (5.4), and this also reduces
to the fact that

tA(D): (§,)* — &, —0
is onto. The exactness of the sequence (5.4) at the other steps follows from the
theorem on division of distributions (we shall consider this point in more details
Iater on, in the proof of proposition 7.8).

IfTe 8;, then the Fourier-Laplace transform of 7' satisfies, for suitable 4 > 0,
B>0, N>0, ¢>0, an estimate of the form:

IO = O(L + [2)7 exp[A'[Im (G, ..., &)} + B{ImE,)+]
where (Im {,)* = sup (0, Im¢{,). Then we have by (5.6)
(= )| < oL + [£])” exp [CTexp [(4 + O)|Im (&, ..., )]
and hence, by the extension theorem (cf. [6]) we can find Ty, ..., T, € &, such that
T — py(— D)T,~ ... — p,(— D) T, has support contained in § .

We also have an analogous of Theorem 5.1 for distributions.
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THEOREM 5.2. — Let M be o unitary left T-module of finite type. Then, for o fized
direction v € R7t1— {0}, the following statements are equivalent:

(i) M 4s hyperbolic in the direction v.
(ii) The natural map
Ext} (M, D'(R*+1)) > Bxtd (M, D)
i8 a bijection.
(iii) We have
BExty (M, Dy) =0  for every j=0.
(iii") We have
Bxt} (N, D) = Exth (M, Dy) =0.

The theorem is still true if we substitute distributions of finite type for general
distributions in all statements above.

Proor. — From the long exact sequence for Ext deduced from the exact sequence
(4.8) one eagily obtains the equivalence of (ii), (iii) and (iii’). Moreover, both (i)
and (iii) imply that M is non-characteristic in the direction ». The implication
(i} = (iii) will be then a consequence of a more general one that we will prove later
on (theorem 7.12). The implieation (iii) => (i) follows because of & result or Hor-
mander [11, vol. I, Corollary 11.3.7, p. 78], because Ann (M) contains a polynomial
for which the direction v is non-characteristic: an element u € Ext§ (M, D'(R"+1))
whose restriction to H is in Ext (M, W) propagates its. regularity to all of R+
and hence condition (ii) above implies condition (i) of Theorem 5.1.

6. — Algebraic propertiies of hyperbolic §-meodules. Propagation cones.
A) Let us introduce, for any prime ideal p in &, the semialgebraic sets:

WR(p) = {Im{: L e W(p)} c Rr+
WR(p) = closure of WR(p) in Re+
VR(p) = {Im¢: Le V(p)} € Reit
7R(p) = asymptotic cone of VE(p).

A vector e R*+* belongs to V®(p) iff we ean find sequences {{™} in V(p), {e.} in R
such that

en>0 and g,—>0 for m — oo

enImim—>§ for m — oo,
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Then we have:

PROPOSITION 6.1. — For every prime ideal p, VR(p) is a closed cone in R+ and we
have inclusions:

WR(p)c WR(p)c PR(p) .

A necessary and sufficient condition in order that & unitary left T-module M be hyper-
bolic im the direction v € R1— {0} is that

—ve¢ VR(p)  VpeAss (M).

Proor. - If (5.1) is false for some p € Ass (M), then we can find a sequence {{™}
in V(p) such that

(6.1) — {Imim vy = (1— 27")p|-[Im{m| -} 2= for every m.

Then, with &, = [{Im{»|-, we have ¢, — 0 and, passing to a subsequence, we can
assume that

plIm {1 Im ém — 0 e TR(p)  for m — oo.

Passing to the limit in (6.1) we obtain
[0l = lpl, —<6,%>= |6}

from which it follows that 6 = — » and hence — » € VR(p).

The condition is therefore sufficient. The necessity can be easily derived by
passing to the limit in (5.1).

REMARK. When all ideals p in Ass (M) are principal, then the hyperbolicity in
the direction » is equivalent to a seemingly much weaker assumption:

(@) vé& W(p)
(6.2) (b) We can find a constant ¢>0 such that (Im{,v>=e¢ V=& +
+ iy e V(p) with £e R, 7R for all p e Ass (M).

Indeed, when p is principal, setting v = (1,0, ..., 0) and considering the pluri-
subharmonie funection

W1y oery £) = sUP {"‘ Im &z (Loy 8ayeeny La) € V(p)}

on C» we deduce (5.1) from (6.2) by the Phragmén-Lindelsf principle.
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The case of principal ideals is very special, as also we have, in that case:
VR (p) = WE(p);
all connected components of R++t— WR(p) are convex;
VR(p) = — 7R(p) .

These properties fail to hold for more general TF-modules.
Let us illustrate this fact by discussing some examples.

ExampLE 1. — Lef p be the ideal in § = C[{,, {1, (s, (5] generated by

pQ) =04 0—-0-0, add)=8G— 1+ ).
Then with

a={(=2500,0,0):eer},

A42={(t,0,0,~3—l"_z‘/gt):teR},

= {B e R: (02 4 30,0, + 02)2= (02— 0%)(0% -+ 62 — 07 — 467 — 20,8,)} ,
A;=F N {6, 0},
A = Fn {0, 0},

we have
WR(p) = 4, U 4, U 4,U A, WR(p) = TR(p) = F.

This example shows that WR(p) is not closed in general and, sinee (6.2) holds when
v ¢ WR(p), that this condition is not sufficient to imply hyperbolicity for a general
system. Notice that §/p is hyperbolic in many directions: for instance in the direc-
tion v = (0, 0, 1, 0).

ExAMPLE 2. — Let p be the ideal in § = C[{,, {,, {,] generated by

(C) ILC —!_ > 9 Q(C) == CZ_ Ci ¢

Then M = F/p is hyperbolic in the direction (1, 0,0), but not in the direction
(—1,0,0).

This in particular contradicts the existence of a polynomial, hyperbolic in the
direction (1,0, 0), in the ideal p. The existence of such a polynomial was stated
in [9], p. 208, but there hyperbolicity was stated in a slightly different way, requir-
ing that it holds both for the direction » and for the opposite direction — .
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We note also that the system associated to the ideal p above is also hypoelliptic
(ef. [14]). A counterexample to the statement in [9] is contained in the next example.

ExAmpLE 3. — Let p be the ideal in C[f,, {y, {5, £3] generated by
) =&+ iy, 40 =&+ G+

Then, for » = (1,0, 0, 0), the module §/p is hyperbolic both in the direction »
and — ». But § does not contain any polynomial which is hyperboli¢ in the direc-
tion ». Indeed, if § would contain such a polynomial, it would also contain a hyper-
bolic homogeneous polynomial P. This could be taken with real coefficients. Then
such a polynomial would vanish on both V(p) and V(p).

But V(p) N V(p) = {0} and therefore they cannot be contained in any algebraic
variety of dimension 3 in C®. Hence we can not find such a polynomial P.

ExAmpLE 4. — It is obvious on the other hand that M is hyperbolic in the
direction » if Ann (M) contains a polynomial which is hyperbolic in the direction ».
Another example is the case in which » = (1,0, ..., 0) is non-characteristic for M,
and (M),, i.e. M considered as a &,= C[{, ..., {,]-module, is elliptic. In this case
M itself is elliptic and also hyperbolic in the direction ». This particular case could
be discussed direetly using Cauchy-Kowalewska theorem.

B) 1f the unitary left T-module M of finite type is hyperbolic in the direction »,
then it is also non-characteristic and hence formally non-characteristic in the di-
rection v. Thus by the exact sequence (4.2) and the isomorphism

Ext$ (M, W) ~ Ext} (M),, §(8))

we obtain:

PrOPOSITION 6.2. — If M s hyperbolic in the direction v = (1,0, ..., 0), then we
have aw isomorphism:

Ext§ (M, W) = Ext§ ((M),, &(8)) .
This isomorphism has to be read in classical terms by saying that the Cauchy
Problem (4.4”) has one and only one solution u € W9 for every choice of the data
fe W% and u, € §*(S) satisfying the compatibility condition (4.4™).

To improve the statement above we can also congider propagation econes.

THEOREM 6.3. Let I' be an open comvew cone containmed in R»— VR(p) for every
p € Ass (M). Let vel and, denoting by I'® the polar cone to I':

I'= {zeR*: (0,00 =0 VoI,
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set:
E=8n@wp—-I%, K=Hn{@p—1Iv.

Then the natural restriction mop:

Ext} (M, Wz) — Ext§ (M, W)

18 an isomorphism.
Proor. — If we show that, for

hK<§) == sup <'7J7 & 9 hi{(é‘) = sup <z, & ’
x b4
we have
(6.3) he(8) = hz(0) VOe VR(p), pedAss(M),
then the statement will follow with an argument analogous to the implication

(iii) = (i) in Theorem 5.1.
Let us first show that

(6.4) &) S ha(8)  VEe TR(p).
We have, indeed
(6.5) he(€) = sup r—0,&.
{]3= 8,7

For &e VR(p), since & ¢ I, we can find f,e I with
0o, E>=0.

Hence, with 6 = [»|26,/<0,,¥> in (6.5) we obtain (6.4).
‘We note that K is characterized by

(6.6) () =0, <wEH=mE VYéel.
For » € K, we set

(6.7) © =1y -+ Ko, v)>v.

Because we have

(6.8) (@ Ey< v, & Veel, Vzek,

we also have, for &e VR(p):

(6.9) (my B = lrw, vy <, &) + <y, & = P[7X@, 0 ha(§) + <9, £ -
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Let ze K and let us show that
w= XKz, e t+yeckK.
Indeed, for £eI” we have
{w, &) = P|"x@, 1) & + <y, 5 =
= Ppla, vy v, & 4 (z, &) — 2@y ) vy &) = (2, &) = 0, &) .

Therefore, w € K by (6.6) and we have

[v[~%w, ) <2, &) 4 {y, &) S he(§) VEe VR(@) y VzeK.
Taking the supremum for 2 € K we get from (6.9):

@& =h(d) VoeK, Yie PRy),

proving (6.3).
Theorem 6.3 has an obvious corollary in the non-convex case. If Q is an open
subset of §, we denote by £, the reunion of all convex cones of the form

—IYNnH, for (y—I)NnS8c.

Then we have

THEOREM 6.4. — With the same assumptions of Theorem 6.3, the natural restric-
tion map

Bxt§ (M, Wp,) — Ext§ ((M)., §(2))
i8 an isomorphism.
Note that Theorem 6.4 also implies that the Cauchy problem (4.4”) has a unique

solution in Wj‘-;r for all data fe ng and u, € §(0) satisfying the compatibility
conditions (4.4').

7. — Evolution modules.

4) Let M be a unitary left -module of finite type and let » € R**1— {0} be
fixed. We say that M is of evolution in the direction v if, for H = H(»), any of the
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following two equivalent conditions is satisfied:

(7.1) The natural restriction map
Ext§ (M, §(R*)) — Ext (M, W)
is onto .
(1.2) Ext{ (M, &) =0.
We say that M is of evolution for D' in the direction v if instead one of the following
equivalent conditions is satisfied:
(1) The natural restriction map
Ext} (M, D'(R*+1)) — Bxt$ (M, D)
is onto .
(7.2") Exth (M, D) =0.

The two notions are clearly equivalent for hypoelliptic F-modules 3, i.e. when
the map

Ext§ (M, §(R™*1)) — Bxt§ (M, D' (R71))

iz an isomorphism.

A hypoelliptic T-module M that is of evolution in the direction » ig said to be
parabolic in the direction ».

When M is non-characteristic in the direction », then is of evolution if and
only if is hyperbolic in the direction ».

Another very different example of evolution module is given by the F-modules M
obtained by syspension from & T,-module N. We have:

Proposition 7.1. - Let v = (1, 0, ..., 0) € R**! and let N be o unitary left §,-module
of finite type. Let us consider the T-module

M - N ®§Tn ‘(f'n—l‘l .
Then M is of evolution in the direction v.

PrOOF. — Let

g1 —2Ls g0 5 N >0
be a finite presentation of N. Then

t4
gu—Lo g0 s M >0,
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where we congider ‘A({) as a matrix of polynomials in & independent of ¢, is a
finite presentation of M. If fe W is a solution of

A(D)f = A(Du ey Dn)f =0,

then all coefficients f, of the formal power series

fal@yy evy @) a5

IMe

h
defined by f at x,= 0 satisfy
ADyy ...; D)= 0.

Let ye Oy (R) be equal to 1 on a neighborhood of 0 in R. For a sequence {t,}
of positive real numbers with ¢, 7 4 oo, the series

z fh(wly reey mn)mgX(thxo)
i=0

converges in §(R»+') to a function g such that
AD)g=0 on R+
and f and g coincide with all derivatives on S. Then

f=f for#,=<0, f=g fora=0

defines a solution of
AD)f=0 on Ret

extending f.
Note that, by Proposition 6 and the Corollary following Proposition 8 in [18],

we have:

Ext} (M, &) =0 forj=2

Bxth (M, D) =0 for j=2
for every unitary left §-module of finite type. Then, by Proposition 1.2 we have:
THEOREM T7.2. — 4 necessary and sufficient condition in order that o uwitary left

T-module M be of evolution (vesp. of evolution for D') in the direction v is that, for every
p € Ass (M), the module T/p be of evolution (resp. of evolution for D' in the direction .



Mavro NaciNvovicH: Cauchy problem for overdetermined systems 303

REMARK. — Proposition 7.1 shows at onee that the condition that there is a
subideal p’c p such that F/p’ be of evolution in the direction » does not imply that
F/p is of evolution in the direction ».

B) We say that a prime ideal p in § is of evolution in the direction » if the
F-module F/p is of evolution in the direction ».
Assume that » = (1,0, ...,0). We have:
LemMMA 7.3. - If p is a prime ideal in T, then ' = p N T, is a prime ideal in T,.

Indeed, ¥ is a flat ring extension of 7,.
Given a prime ideal p in &, let us fix a set of generators

DPiyosPry Quyerey Qe
of p with the properties:

(7.3) Py .oy Py generate p'=pN 4T, in 7,.

For every j=1,..., &,
mi .

(7.4) 6(0) = 3 qilCay -y £2) 8 is irreducible, of degree m; in g,
h=0

and its diseriminant A,(Cy, ..., {,) With respect to {, does not belorg to p.
(7.5) M=M= .. .= my,

(7.6) m, = inf {degree of p with respect to {,: pep— p'}.

By the choice of m,;, we obtain:
‘We can find polynomials

0oy oery €Ty,  fPayeeey JrE€F

such that

(1.7 (e ooy 8 (0 — B D) (Cy ey’ for j=2,..,k,

(7.8) for each j = 2, ..., k, the polynomials «; and §; have no common factor and
do not belong to p’.

This follows by division in the FEuelidean ring of polynomials in , having coef-
ficients that are rational functions of {4, ..., {,.
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Let us prove now:

LevmMa 7.4, — Let fe 6y satisfy
{7.9) DDy ey Dy)f=0 for j=1,...,h.
Then we can find g € &5 such that

oa(Dyy ooy Di) oo 0y(Dyy ooy Di)g = f

(7.10)
p(D)g=0 for j=1,..,h.

Proor. — By proposition 7.1, F/(cay ..., %, P1s -y Pn) I8 of evolution in the
direction » = (1, 0, ..., 0). Therefore we only have to check that the right hand side
of (7.10) satisfies the right compatibility conditions. Let yq, ..., y, € § be such that

Vole «vx Sy Y1P1+ - + YaPn=0.

Because o ... a; ¢ p’, this equality implies that y, belongs to the ideal in § generated
by p’ and hence
'}’o(-D)f =0.
The proof is eomplete.
From this we deduce

LEMMA 7.5. — Let e & satisfy (7.9) above. Then we can find fi, ..., fr € 65 with

hi=7f
such that the system
B(D)u = f
D)u
(7.11). % fe
p(D)u
pu{D)u =10

is solvable with u € §(R™+1), i.e. the right hand side satisfies all compatibility conditions.

PrOOF. — By the preceding lemma, we can find ge &4 solving (7.10).
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We define then

h=f
(7.12) fi=oa(Dyy ey Da) oo €5y (Dyy ooy Dy)otjpa(Dyy ovy D) oov 0p(Day ooy Dy) Bi(D) g
for §=2,...,k.

Let us show now that (7.11) satisfies then all compatibility conditions.
Let pyy ooy Yuy My ooy € § be such that

YD1t e T VPt MGt e+ =0

Denoting by p’ the ideal in § generated by p’, we have

ql(nl(xz oes ak"i" Na0lg es (xkﬂz—l— e + Ny oss ak_lﬂk_l) =
= (@t Gt oo+ Ge)0a .o “k(mOdBI)i

but, since g, ¢ p’ and p’ is & prime ideal, this implies that

N0 ove “k+ Nallg o akﬁg—l“ e + Nillg oo “k—lﬂke ap’ .

Hence

MD) i+ o + D) fe= (M(D)aa(D) .. ox(D) + 7e(D) s(D) ... (D) o D) +
+ oo D an(D) ... ak—I(D)ﬁk(D))g =0.

The proof is ecomplete.
‘We obtain then:

PROPOSITION 7.6. -- With the notations introduced above: let S denote the ideal of &

gemerated by gy, Pyy ey Di-
Then a mecessary and sufficient condition in order that b be of evolution in the
direction v = (1, 0, ..., 0) is that the F-module F|F be of evolution in the direction v.

ProoF. ~ The condition is obviously sufficient because p € Ass (§/.#). The neces-
sity follows from the previous lemma, because, if the right hand side (f, g1, ..., ¢) € &1
of the system

a(D)u = f
(1.12) ?’1(1))“ =0

D)y = g,
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satisfies all compatibility relations, then we can find w e 8y such that
p(Dyw=g, forj=1,..,k

because b’ is of evolution in the direction ».
We obtain & system for v = % — w:

G(D)y =f
(D)o = 0

(7.13) PP}
mu(D)v =0

that by the previous lemma can be lifted to a system of the form (7.11).

Therefore we have Extj (§/.7, &) = 0 when Ext} (F/p, §x) = 0 and therefore
the proof is complete.

Proposition 7.6 gives a classical interpretation of the meaning of the Cauchy
problem for overdefermined systems: given a scalar partial differential operator,
we try to solve the usual Cauchy problem under the additional eondition that the
data and the solution satisfy & system of partial differential equations tangent to

the initial hypersurface.

Exawrre, — In R+ we consider the ideal p generated by

Lo 283 Lot W8ty vony St 9an -
1

Then p is of evolution both in the direction » and in the direction — », for
r=1(1,9,..,0)

This is a consequence of the faet that the solutions u € &(R»+!) of the heat equa-
tion

du 0% 02u
for each fixed w, extend to entire functions of @, ..., @, in €7, of the fact that p also
contains the polynomial
. n
Lot 1 z &3
#+1

and that

noo92
;;—0—— EE}? is of evolution in R»#! in the direction » = (1,0, ..., 0)
0 1 ‘§
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and
a 2n 82
-a—wo +n§1 a—w?

is of evolution in R} xR; . in the direction —v = (—1,0,..., 0}.
(For scalar evolution operators, cf. [11]).

This example has been discussed with S.SPAGNOLO, in connection with the ques-
tion of existence of solutions analytic in the tangential variables for the Cauchy
problem in the sealar case. The discussion above shows how the general theory of
evolution J-modules is a natural generalization of that question.

The following result, that we quote here for completeness, is & consequence of

statements that will be proved in the next section.

PROPOSITION 7.7. — With the motations of proposition 7.6: a necessary and suffi-
cient condition in order that F[p be of evolution for D' in the direction v is that /S
be of evolution for D' in the direction v.

ExAMPLE. — If an ideal .# in & contains a polynomial p that is hyperbolic in the
direction », then the T-module §/# is also hyperbolic in the direetion ». In [11]
HORMANDER characterizes partial differential operators with constant coefficients
that are of evolution in the direetion v. However, the fact that # contains such an
operator is not sufficient in order that 7/ be itself of evolution in the direction ».
Indeed, the ideal .# generated by (&) = i{, + {3 and p() = — L, — {1 in €[y, {1,y Lol
is not hyperbolic (and hence not of evolution, being non-characteristic) in the direc-
tion » = (1, 0, 0) e R* — {0}, while ¢(D) = 00w, — 0?/0x] is an evolution operator.

0) Let M be a unitary left F-module of finite type. Let

(7.14) "'—>g°£_*@b‘i*g“+M+0

be a Hilbert resolution of M. Then, by using duality, we obtain the criterion:

PROPOSITION 7.8. — A mnecessary and sufficient condition in order that M be of evo-
lution in the direction v is that the map

af

‘A(D): (80— (&)
has a closed image.

A mecessary and sufficient condition in order that M be of evolution for D' in the
direction v is that the map

{A(D): (Wmo) — (Wegmo)e
has o closed image.
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Proor. ~ By duality, the exactness of the sequence

(7.15) go A2 g B, o
(resp. of the sequence

1\ _4AD) 7 (D), I e
(7.16) (D) 22> (D) 2> (D))

is equivalent, beeause the last maps of (7.15) and (7.16) have a closed image, to the
fact that

(7.17) (é;;)c *B(D) (é;g)b f4(D), (é;z)a
(resp.
(7.18) (ngv)c_'_’ﬂ (Wg)mn)bii(’;), (Weome))

is exact and the last map of (7.17) (resp. (7.18)) has a closed image.
By the theorem of division of distributions we know that the maps:

Tord (M, &) — Tord (M, &)
and

Tor} (M, Dy) — Tory (M; D(R~))

are injective (the last result is proved in [18]).
From the exact sequences

O~—>8;—>8;,—>é;z—>0
and

0 - Dz - DR") - WZ™ -0
we deduce then the exact sequences of Tor:

« o> Tord (M, &) — Tor¥ (M, &) — Tord (M, &) — Tory (M, &) —
- Tord (M, §;) -0,
++ = Tor? (M, D(R) - Tord (M, WP™?) — Tor] (M, Dz) — Tory (M, DR") —

—> Tor) (M, WE™) —0
and then

Torf (M, &) =0 Tor! (M, Wg™) =0
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because 8}1 and D(R") are flat differential §F-modules. Thus the only eondition to
be required is that about the closedness of the image of the last maps of (7.15)
and (7.16).

A trivial consequence of this proposition is:

COROLLARY 7.9. — Every unitary left $-module M of the form
M= N®y, Tuns

with N a unitary left §,-module of finite type is of evolution for D' in the direction
v = (1,0,...,0).

The statement of Proposition 7.6 holds true when «of evolution for 9D’ » sub-
stitutes « of evolution ».

From proposition 7.8 we also derive the following criterion:

ProPOSITION 7.10. — Let M be a unitary left T-module of finite type. Then a neces-
sary and sufficient condition in order that M be of evolution im the direction v € Rv+1— {0}
1§ that, for every p € Ass (M), the following condition (Ep) holds: '

(Bp) if Te&RY) and {T,uy =0 for every uecExt (M, &), then we can find
T,€ 85 such that T — Ty =0 on V(p).

A necessary and sufficient condition in order that M be of evolution for D' in the direc-
ttion v € Rvt1— {0} is that, for every p € Ass (M), the following condition (H'p) holds:

(B'p) if pe DR and {u, p) =0 for every uec Extd (M, ‘;D;I), then we can find
u, € Dy such that 4 — 4,= 0 on V(p).

The statements are indeed a consequence of Theorem 7.2 and the fact that the
image of a continuous linear map is dense in the annihilator of the kernel of its
dual map.

To prove the next result, connecting the groups Ext§ (M, §;) and Ext} (M, ‘:D},),
we need a precision of eondition (Ep) that is a simple consequence of the open map-
ping theorem on Fréchet spaces:

LeMMA 7.11. - Condition (Ep) above is equivalent to the following:

(Ep) For every A > 0 and integer N = 0, we can find o compact K in " , an integer
N,=0 and a constant B > 0 such that if T € & (R™) satisfies

[TE)< (L + [¢))Y exp [ATm ] Ve Cri
Tyuy =0 VYueBxti (M, &)
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thew it also satisfies:
1T < B(1 + ()™ exp [He(Im{)] Ve V(p).

ReMARK. — Clearly condition (Ep) is equivalent to an analogous condition for

distributions 7 € §,: We shall refer to this equivalent condition as (74743).
From. this criterion we deduce the following

THEOREM 7.12. ~ If a uwitary let F-module M 1is of evolution in the direction v,
then it is also of evolution for D' im the direction v.

PROOF. — By Theorem 7.2 we can assume in the proof that M = §/p for a prime
ideal p.
Let ¢ € D(R"?) be such that
{u, > =0  for every we Ext} (M, Dy) .
By Paley-Wiener theorem, the Fourier-Laplace transform ¢ of ¢ satisfies:

IB(0)] = Oy(1 + [£)™ exp [A[Im {[]

for some constant 4 =0 and for a sequence {0"} of non-negative real numbers.
In particular, beecause D*¢ is orthogonal to Ext§ (M, &) for every « and

(*¢()| = O exp [A[Im L[]
whe have by (£p):

1L @) = c{a](l - ié’{)m exp [Hx(Im{)] on V(p) for every oe N»t+!

where K is a fixed compact subset of H and m is a fixed integer.
Hence we have, with a new sequence {Cy} of non-negative real numbers:

P(2)| < (L -+ 12l ™ esp [Hx(Im)]  VZe V(p) and Vinteger N = 0.

By Proposition 1 in[18], we can find a continuous plurisubharmonic function yp
on C», with

[9(Cy) — p(a)] < const. for [§— & <1

such that, for a sequence {c;,} of non-negative real numbers, we have

exp [y(0)]= Gz”v(l -+ |C])‘N exp [Hx(Im )] VYieCrl, YN
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and

exp [p(0)] = ay(1 + [2]) ™ exp [Hx(Im{)]  VCeCri, VN,
Then (cf. [6]) we can find an entire function 7 on Cr*! such that

F=¢ on Vip)
and

[F(¢)] < eonst (1 + |Z])” exp [p(()] on Cri1,

The function F is the Fourier-Laplace fransform of a function ge Dj;.
The statement follows then from condition (E'p).

8. — A Phragmén-Lindel6f principle for evolution modules.

A) Let us go back to the notations introduced in the previous section after
Lemma 7.3. In particular we shall consider modules M = §/# for an ideal ./ of
which is of the form described in Proposition 7.6:

(8.1) FNF,=9p" is a prime ideal in §,

and .# is generated by p’ and a polynomial g(¢) of the form

m

(8.2) 18) = 3 aulley oy £a)Ch

h=0
irreducible, with

(8.3) Qm(é},~-‘,CW)A(C17"'7Cn)¢’p’7

ALy ..., L,) denoting the discriminant of ¢(¢) with respect to ¢,.
We denote by 8x(p’) (resp. D, (b)) the space of all fe &, (resp. fe D,) such that

(8.4) PDyy .y D)f=0 Vpeyp'.
It follows from the proof of Proposition 7.6 that we have:

LeMma 8.1. — A necessary and sufficient condition in order that M = $/.f be of
evolution in the direction v = (1,0, ...,0) is that the sequence

(8.5) 8ulp) ~> £4(p") 0
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be exact. A mnecessary and sufficient condition in order that M = F|# be of evolution
for D' in the direction v = (1,0, ..., 0} is that the sequence

a(D)

(8.6) Dy(p’) == Dy(p’) — 0

be exact.

As we want to exploit Lemma 8.1 only in some particular cases, in the following
lemma, where essentially we apply duality to (8.5) and (8.6), we make additional
assumptions on the ideal 7.

LemMa 8.2. — Assume that p' is elliptie, i.e. that

(Casves E)| S oL 4 [Re (L -y £a)])

on V(p'). Then a necessary and sufficient condition in order that §]7 be of evolution
in the direction v = (1,0, ...,0) is that, given B> 0, we can find constants C >0,
N >0, ¢> 0 such that

£

B0 s f 281550, 0)](1 + |6])~% xp [— N |Tm 0[] darp <
vy’
0

=0 esg(p)f[q(—— Dy, — 0) @2y, 0)] exp [— R|Im 0]] daz,
eV({p’
0

for every @ € D(R™) with supp ¢ C {w,< &}. Here

(0, 0) :f(p(a;(,,wl, coe) @) OXD [— i(210y 4 oo - 2,0,)]dty, ..., dat,
Rn

denotes the partial Fourier-Laplace transform of @ with respect to the variables xy, ..., %,.

Proor. - The statement is a consequence of the open mapping theorem and of
the fact that the two sides of (8.7) are continuous seminorms in D, /D, N Dy
where

K, = [~ ¢ e]x{(ml, RY §x2 < Nz} and K,=[— & ¢] x{(a:l, ey Tn)] %mfg Rz}
1 1

respectively, if the suprema are taken over all § € C». Then we need to apply the
fundamental prineiple of Ehrenpreis to show that (8.7) implies that the equation

g(Dyu = |

has a solution e fl);(p’) for every given fe &x(p’).
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Lemma 8.3. — Let ¢(a) = (1 — exp (— Rea))/Rea for aeC, Rea=0, ¢a) =1
if Rea = 0.
Then we have:

1 1
f lu(t)| @ < o(a) f () — a-ut)| dt

for every a € C and u € &(R) with w = 0 for ¢ > 1.

Let g € T be a polynomial monic and of degree m with respect to {,. We assume
that ¢ is irreducible and of positive degree with respect to (i, ..., Ca:

q(Cos C1y ey Go) = {3 -+ ZQi(Cl’ wes En) 6o

i<m
and set

r = sup {(degree of ¢;)/(m — j): j =0,...,m —1}.

The equation ¢ = 0 defines an algebraic Riemann domain X over C»

T

2 -—Cr
on which holomorphie functions 1y, ..., 7,, are defined in such a way that
9(7i(0), ®(o)) =0 on X for j=1,..,m

4(Loy 7(0)) = (Co— 7u(0)) ... ((o— Tulo)) for L,eC, ceX
sup {|z;(0)|: |w(0)| £ t} = O(t") for t — oo.

The projection s is holomorphie.
Let A4 = A(ly, ..., L,) € T, be the diseriminant of ¢ with respect to £,; the restric-
tion of & defines then an m-fold covering map

S—ay[)>C—T,

where I'= {({1, ..., {a) € C*: A(Gyy ...y £) = 0} and both spaces are connected. (X can
be defined as the normalization of the analytic subspace g = 0 of Cr+1),

LeMMA 8.4. — With the notations and assumptions introduced above:

We can find positive constants c,, ¢, such that, setting, for 1< j< m,

(8.8) E; = {oe Z: Re1,(0)< (1 + |n(0)|®)}},
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for every plurisubharmonic function v on X such that, for some R >0,

(8.9) s?wm—ﬂmwv«+w
we have also

(8.10) gmww—u+%mmmoégmww—Rmmy

Proor. — Note that, for » < 1, and ¢, sufficiently large, we have F, = 2%, so that
the statement of the lemma is trivial. Assume therefore that » > 1.

A) We congider first the case n = 1.
If ¢, is large, then E, contains #~*(D) for a disk D in C containing I in its interior
part. One can show then that I, also contains curves 4,,..,y, such that
7(y1)y .ory wly,) are rays from the origin in C and the angles

P N —NN
TV TE(Ye)s veey TV s12)y -0y (P )T(Y1)

are all acute, while the complement of ¥, in 2 is covered by the connected, simply
connected open sets O, ..., £2,, with

5.91:7;\-} 61Uy;,..,,89;=y3U53Uy;

for 6,,..., 0, connected ares in z-*(0D) and y, = y,— YD) for h=1,...,5 On
each £,, the function |x(c)| is bounded by an R-linear function f, of m(c). Then we
obtain the thesis by applying the Phragmeén-Lindeloff maximum principle to the sub-
harmonic funection

¥(0) — Rfa(nlo)) on £y
if A = sup (y(o) — R|n(o)|), then we have
E;

(o) — Rfs(n(o)) £ A on 06

and therefore

But
filn(e)) < (1 + &)a(e)] on &,
for some constant ¢, > 0 and then
p(o) — R(1 + e)|n(e)| <4 on £,.

Repeating the argument for 2 =1, ..., s, we obtain the thesis.
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B) Before discussing the general case, let us consider first the situation in which
n>1, but m =1. We have ¢ = {,— p({i, ..., {,) with pe T, of degree d > 1, so
that 7, = v = p. We denote by p, the principal part, homogeneous of degree d,
of p and let W= {§ € Cn: py(é) = 0}. With §,= {£eC": [{| =1}, we note that,
for every € W N 8, we can find a vector w = w(f) € 8; and & real 4 = 5(f) with
0 <7 <1 such that

{0 +aw:2eC, o= N W=20.
Then, for each 6 e W N 8, we can find an open neighborhood U, of 0 in C* such that
{f+aw:2eCel=gNnW=20

for every & in U,. By Borel-Lebesgue’s lemma, we can find 6,,...,0y in WN 8§,
such that

WNn8clU, V.0, .
It follows that it is possible to choose £ > 0 with the property:

if €8, and |py(8)| <e, then there are w = w(f)e 8, and n = y(&) real with
0 <9 <<1, such that

[po& + 2w)| = &l + 2w|®  for [¢] =17 .

On each complex line L,= {20: 2 C} with 6 €8, and |p,(f)| = &, we can argue as
 in the point A) of the proof, with estimates that come out uniform with respect to 0.
Hence we obtain: there are constants ¢, and ¢, such that, if v is plurisubharmonic
on C» and satisfies (8.9) with X = C» we have

P(20) — (1 + e)|o| < sup (p(&) — R|&])
where

B = {Ee C*: Rep(8) < a1l + |§|2)*}

provided that |0] =1 and [p,(0)] = e.
Therefore we have

P(0) — (1 + ¢)R|f| < sup (p(&) — RJE])

it [po(0)| = €lB)*.
It 6eCr is such that |p(0)] < |6’y then we can find we.l8, and <<l
such that

[2o(0 + enw)| = el0 + enwf®  for |o] = [6].
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By the maximum principle we have
w(0) = max (0 + zpw) .
Jef=16]

But, for [z| = 0], we have also

PO + anw) — (1 + e) B|O + 2nw| < sup (w(&) — RIE]) .
Because
0+ eqw| =< 2{6]  for |2| = |6],
we deduce that
p(0) — (1 4 )R] = sup (9(&) — RI&[)

with ¢,= 1 -+~ 2¢;, and this inequality now holds for every 0 in C»,

{) Let us turn now to the general case. Only slight modifications are needed
of the arguments of point B).
For o0 X— n~(I"U {0}), there is a unique irreducible curve [ in X contain-
ing ¢ and contained in n~'({zm(c): 2€ C}). Then we define (%)

. |T5(0")]
h - T
(0) = lnlo) - Limsup 7o
|n(6’)|—>c0

and denote by A¥(c) the upper semicontinuous majorant of »,. Because X is normal,
we obtain in this way & plurisubharmonie funetion defined on X, whose regtrictions
to the lines EG is complex homogeneous of degree . Due to the continuous depend-
ence of the roots of a polynomial on its coefficients, the funetion A* is continuous and
moreover, if we fix ¢ > 0, the restrictions of plurisubharmonic funetions y satisfying
(8.9) satisfy (8.10) on Z,, with uniform constants ¢, and ¢, (only depending on ),
provided that h*(s) = elm(o)|” > 0. As in point B) the conclusion comes from the
fact that every point ¢,€ 2 is the center on an analytie dise, with radius less or
equal fo |z(o)|, with the boundary contained in the region where h¥(o) = &|n(o)]".
As a streightforward consequence of lemmata 8.2, 8.3 and 8.4 we have:

THEOREM 8.5. — Let p == p(lo, {1y ..., Ln) €T be monic with respect to (. Let
FCClloybiyeers Cuy Cntry ey Enl be gemerated by p and by &3+ intay ey Ent #ons
Then C[lyy ..., LanllF is of evolution in the direction v = (1,0,...,0,0,...,0)c Rantt,

From theorem 8.5 we deduce now a statement for general -modules.

(®) We introduce here the «ecircled indicator of growth » function of Lelong (cf. P. Lz-
LONG - L. GRUMAN, BEntire Functions of Several Complex Variables, Springer, Berlin, 1986).
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First of all let us introduce the notion of holomorphic suspension in the fangential
directions.

Given a unitary left T-module M of finite type, with § = $,, =C[&y, ..., L],
let a be the ideal of Fypiy == C[Coy ees Cny Cntay <oy Lan] generated by

Cl"l" iCn+1’ cery Cm"l“ iCzn .

Then we seb
M= M Rg Tontafa .

The module J is called the holomorphic suspension of M tangential to the hyperplane
8 = {w, = 0} c R+,
We have:

THEOREM 8.6. — The holomorphic suspension I of a uwitary left T-module M of
finite type and formally won-characteristic in the direction v = (1,0, ...,0) € R,
tangential to the hyperplame 8 = {&,= 0} C R* is an evolution module in the direc-
tion ¥ = (1, 0,...,0,0, ..., 0) € R+,

Proor. - It is sufficient to consider modules M of the form M = ¢/p for a prime
ideal p, containing a polynomial that is monic with respeet to Z,.

Note that, if the module §/p is non-characteristic in the direction v, then the
statement reduces to the theorem of Cauchy-Kowalewska., So we can assume that
¥[p is characteristic, but formally non-characteristie, in the direction ».

Let p'= p N F,. By the preparation theorem (cf. [3]) we can choose coordinates
in R*= 8§ in such a way that, if d = dim,V(p') (by V(p’) we denote the affine
variety of common zeros of polynomials of p’ in C»), then we have

(8.11) [Coy ooy E) S O(X + [(Cay ooy E)  Y(Gas ey C) € V(R .

Then there is in  a monie polynomial ¢ in £, of the form

m—1
(8.12) @8) = &5 + 2 @:llsy -y Ca) C
=0
such that p is generated by ¢ and p’.
Let now g, ..., p,.—; be entire functions on C» satisfying
(8.13) D=0 Vpeyp'.

We note that (f,/p'); is a free T,module and hence we can find differential oper-
ators By, ..., B, on R" sueh that for every given Z-uple g, ..., g, of entire functions



318 Mauro NaciNovicH: Cauchy problem for overdetermined systems

on C? there is a unique ¢ entire on C» such that

p(D)g=0 for every pep’
(8.14)

B:‘(D)glmd+1=...=mn=0: g; dforj=1,..,h.
By Theorem 8.5 we can find funetions fy, ..., f, in §(RXC?) that satisfy

Q(-D>fi:0,

(a 4L )f,-:() for h=1,..,m,

(8.15) 00 @
0
—j_‘;j. = Bi{(D)@ulugyi=r.mzy—0  TOT B =0, .., m—1.
a‘/l’o 29=0,2d41 =0, =2n=0

Then we denote by f the unique funetion in &R xCv} such that, for each fixed
2R, gl@y, ..., @) = fl@y, #, ..., %,) i3 the solution of (8.14) for g,(xy, ..., ws) =
= [y, 1y ..., #;). We obtain in this way a solution fe &R XC") of the Cauchy
problem

fe Ext§, ., (I, §RXC),
(8.16) ot f

b (0, 1y coey ) = @@y 000y T0)y, B =0,...,m—1.

The proof is complete.

B) Let p be a prime ideal in § = C[{y, &y, ..., Ca). We say that V(p) satisfies
a Phragmén-Lindelof principle in the direction v = (1,0, ..., 0) if we can find ¢> 0
such that every plurisubharmonic function ¢ on C* that satisfies
(8.17) p(l) S AIm | + esup (0,— Iml,) om V(p) for some 4 =0
(8.18) p(L) S AL on V(p) for some A =0

also satisfies

(8.19) p(l) < B(Im¢'{+1) on V(p) for some B=0 ().

REMARK. — When [p is formally non-characteristic in the direction » the
implication (8.17), (8.18) = (8.19) is equivalent to the implication (8.17)y,

{(*) We have seb here ¢'= ({4, ..., 5,).
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(8.18) = (8.19')y where

©17)y  @(2) = AIm | + esup (0, — Im Go) +

+ Nlog (L4 [Z]) om V(p) for some A =0
and

(8.19)y @) =<B(Im¢'|+1) -+ Nlog(1 4 [L]) om V(p) for some B=0.

Indeed, arguing as in [18] (Proposition 1, p. 217), we can show that one can
construct, for 6> 0 and any integer M >0 a plurisubharmonic function g,
on C* with

— Oy— Mlog (L4 |(Cry ooy Cal]) + OIM (G oy La)| =

< @sarry ooy Ea) S On— Mog (L 4 [(G1y ovy Lal) + OIm (G vy Ea)

for some constant Cp,>0. Then (8.17') implies, because ¥/p iy’ formally non-
characteristic in the direction v, that

(817") () < AIm | + s sup (0, — Tm{,) -+

- Mlog (1 + |(Gey ooy Ea)l) + €y 0n V(D),

for an integer M > 0 and a constant O, > 0, both depending only on N and p.
Then () = @(C) + @us(lis vy Cn) — Cu— O, satisfies (8.17) and (8.18) with a
new constant 4’ > A. Then (8.19') is a consequence of (8.19) for ¢ and of (8.20).
The viceversa is obvious as (8.17) is the same as (8.17'), and (8.19) the same a8
(8.19'),.
Then we obtain:

Theorem 8.7. ~ Let M be o unitary left $-module of finite type. We assume that
for p € Ass (M) either b is generated by p' = p O F,, or that b satisfies & Phragmeén-
Lindelof primciple in the direction v = (1,0, ...,0) and F/p is formally non-charac-
teristic in the direction v. Then M is of evolution in the direction v.

PRrOOF. ~ Assume that §/p is formally non-characteristic in the direction y. Then,
by Theorem 8.6 and the open mapping theorem, if 7T is a distribution with compact
support in H N {w,< &} and T its Fourier-Laplace transform, then, for some con-
stant C = 0, the plurisubhamonie funection

p(t) =log [T(— ¢)|— €
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satisfies (8.17')y and (8.18) for some integer N = 0 and a suitable constant 4 = 0.
The implication (8.17')y and (8.18) = (8.19')y tells us then that condition (E’p) is
satisfied (ef. § 7) and therefore that F/p is of evolution in the direction .

The statement follows by Proposition 7.1 and Theorem 7.1.

REMARK. — When v = (1, 0, ..., 0) is non-characteristic for §/p, then we can choose
@(f) = esup (0, — Im{,) as a plurisubharmonic function on V(p) satisfying (8.17)
and (8.18) and then (8.19) is the condition of hyperbolicity.

For a principal ideal p, the fact that the Petrowski eondition

{8.21) —Im{= 0 for (Goyliyy ) E VD), (Lryeoey La)ER®

implies that §/p is of evolution in the direction » = (1, 0, ..., 0) reduces to the clas-
sieal Phragmén-Lindelsff inequality for plurisubharmonie funetions on C» Indeed,
let @ be a plurisubharmonic function on Cr+! satisfying (8.17) and (8.18).

Set

P(as oy Ca) = sup {@(Goy L1y ooy L)t oy Luy ooy ) € V(D))

From (8.17), (8.18) we have

iy oy En) = eC if (&,...,&)eR"
w(é.17 LRER ] Cn) é A|(C1; arey Cn)l lf (Cly vecy Z‘n) € Cn

and these inequalities imply that

W(as ooy Cn) = €0 - AIm (&, ..., $a)] on Cr, ie.
(P(CCUCI’=--3Cn)§8C+AIIm(Cly"';Cn)l on V(—'P)
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