
Ann~li di Matematic~ pur~ ed applicat~ 
(IV), Vol. CLVI (1990), pp. 265-321 

C a u c h y  P r o b l e m  for  O v e r d e t e r m i n e d  S y s t e m s  (*). 

~[iu~o ~Aci~owc~ 

S u n t o .  - Si  caratterizzano le nozioni di direzioni caratteristiche, ]ormalmente caratteristiche, di 
iperboIicith e di evoluzio~e i~ una direzioue per sistemi a coe]]icienti costanti, connesse allo 
studio delle soluzioni del pvoble~a di Cauchy in uu semispazio. 

I n t r o d u c t i o n .  

The Cauchy p rob lem is of centra l  impor tance  in the  theory  of p~rt ial  differential 

equations.  I n  the  f l 'amework of over -de termine4 systems with  eonstan$ c o o l  
fieients, a ve ry  na tu ra l  question is the  following: given an ideal ~6 in C[~ ,  ..., $,] 
and  a par t i a l  differential opera tor  

(0.1) _P(D) = D~o ~ -~ ~ p~(D~, ..., D,)D~o 
0 

in IR ~+1 we can ask whether ,  given functions ~Oo, ~o~ ..., ~ _ ~ ,  t h a t  are C ~ on R" and 

s~tisfy 

(0.2) p ( D ~ , . . . , D ~ ) q ) ~ = O  on R ~ V p e J ,  for h =  0 , . . . ~ m - - 1  

is i t  possible to find a C0 funct ion u on 

(0.3) 

such t h a t  

(0.4) 

an4  

(0.5) 

(0.6) 

H -- ((xo, x~, ..., xo) e R~+I: Xo>= 0} 

P ( D ) u = O  on H 

D~ui~ = ~r for j = 0 ,  . . . ,  n -  1 0--0 

p ( D 1 , . . . ~ D ~ ) u = O  on H V p e J .  

(*) Entr~t~ in Red~zione i l  7 l u g l i o  1988 .  
Indirizzo dell'A. : Dip~rtim~nto di 5{~tematic~, Via Buon~rroti 2, 56100 Piss, It~li~. 
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When R n ~  - C ~ and the differential operators associated to a set of generators 
of 2" are the Cauchy-l~iemann ones, we are lead to the Cauchy-Kowalewska problem 
and, in case P if of order m, the question is solved in the aifirmative by the classical 
theorem of Cauchy-Kowalewska. 

Actually, in w 8 we generalize this theorem to the characteristic case, showing 
that, in this instance, the problem (0.4), (0.5), (0.6) has always a solution (not unique 
if P(D) has order larger than m) provided that  the compatibility conditions (0.2) 
are satisfied. This will be used then to prove a general theorem that  implies the 
solvability of (0.4), (0.5), (0.6) when 2" is elliptic, i.e. all solutions of (0.2) are real 
analytic on R n and generalizes the classical conditions of Petrowski when 2" is the 
zero ideal. 

In this paper we shall consider general ttilbert complexes of partial differential 
operators with constant coefficients. As they come from the resolutions of unitary 
left modules of finite type over the ring of polynomials, the results are stated in terms 
of their invariants. This leads to a fair ammount of commutative algebra. Hence 
in w 1 we list the algebraic preliminaries, together with rules to translate algebraic 
jargon into statements about systems of partial differential equations. The~ two 
propositions are proved that  allow to reduce to the simpler case of prime ideals. 
This means to state conditions for the solvability of systems of equations in terms 
of properties of reduced affine algebraic varieties associated to it. 

Here we can make a further remark: these properties are apparently of two kinds. 
Some are (( hereditary )), in the sense that  when they hold for a system, they also 
hold for a system containing additional equations. They can be often expressed by 
pointwise inequalities. Elliptieity, hypoellipticity, as the fact of being non- 
characteristic (5 3), formally non-characteristic (5 4), hyperbolic (5 5) in a given di- 
rection, are examples of (~ hereditary )) properties. 

Examples of (~ non-hereditary ~) properties are provided by analytic convexity 
(cf. [15], [3]) and, as we show in w 7 and w 8, by being of evolution in some direction. 
The concept of evolution that  we adopt in this paper is, for the system (0.4), (0.5), 
(0.6), the requirement of existence of a (non necessarily unique) solution for all data 
satisfying (0.2). The general definition will be given in w 7. This analogy with 
analytic convexity was a reason for searching a condition for evolution modules in 
terms of a Phragmdn-LindelSf principle on the associated zero varieties (5 8). 

After w 2, where the spaces of functions and distributions used in the paper are 
discussed in short, section 3 and 4 are dedicated to the notion of noncharacteristic 
and formally noncharacteristie systems, related to uniqueness and formal well 
posedness questions. While these notions can be traced back to the scalar ease, 
hyperbolicity for systems exhibits some new special features. These ace illustrated 
in w 6 by some examples. We note in particular that  for systems it is no longer true 
that  hyperbolicity with respect to a given direction implies hyperbolicity in the 
opposite direction, as most of the nice properties of hyperbolic polynomials do not 
hold for systems. 

In the last sections we discuss evolution modules. 
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We restr ict  in this research to the categories of C ~ functions and distributions 
and ~o constant  coefficients. There are several interest ing problems, t ha t  are not  
considered here, ~s tha t  of correctedness and well-posedness classes, pa r t ly  in- 
vest igated in [9]; the  *heory developed in this paper  could also be extended to  the 
case of da ta  on an affine subspace of higher codimension and should be a first step 
toward  a comprehensive t r ea tmen t  of the case of variable coefficients. This project  
requires to complement  the  results obtailled here by  a stabil i ty theory  for systems, 
tha t ,  a t  the  moment ,  seems to present  still some difficulties. I hope to t rea t  these 
subjects in some future  papers. 

1. - Algebraic preliminaries and notations.  

A t)rimary geeompositio,~v. 

Let  us denote  by  I the  ring C[~,  ..., $~] of polynomials with complex coefficients 
in the ~ indeterminates  ~ ,  ..., ~ .  Le t  Spee ( l )  be the set of all pr ime ideals of ft. 

Given a un i t a ry  left  if-module M, the  annihilator  of an element  m of M is the  ideal 

(1.1) ~_~n (m) = {p e l :  p . m  = o } .  

The annihilator of M is then  the ideal 

(1.2) Ann (M) = ,q {Am1 (m): m ~ M} .  

The support of M is the subset supp (M) of 8pec ( l )  of prime ideals containing 
Ann(M) .  ~Te have,  Me  denot ing the  local izat ion of M at  I (ef. [7]), 

(1.3) supp (M) - :  {p e Spec ( l ) :  M~ :/: 0}. 

A un i t a ry  left  l -module  M of finite type  is eoprimary if, for every  p e l ,  the  
l -homomorph i sm M ~  m - + p  .m ~ M is ei ther injective or nilpotent .  In  this case 

is a prime ideal and M is said to be O-coprimgry. 
In  general, there  is a uniquely de termined finite set Ass ( M ) =  {Pl~ ..., P~} c 

c Spec ( l )  to  which we can associate submodules 2r ..., ~Y~ of M such tha t  

(i) n Nj  = O, 

(ii) hr/hr~ . is p~-coprimary for ~ = 1, ..., lc, 

(iii) ~ _Vj:/: O for h ---- ~ ~ ..., k. 

We say then  t ha t  N~, ...~ _~ is s primary decomposition of 0 in M. 
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We set V(Oj) for the dosed algebraic affine variety 

(1.4) v(~;) = {~ e c- :  p(O = 0 Vp e ~,} 

of common zeros in C n of polynomials in p;. The disjoint union 

(1.5) 0 V(p;) will be denoted by V(M) 

and will be called the zero variety of M. 
With  these notations we have V(p~)= V(g/pj)----V(M/2Vj) for j----- 1 , . . . ,  k. 

B Asymptotiv and eharavteristie variety. 

Let  us consider the inclusion C"~-> CP n described in homogeneous coordinates by 

(~, ..., ~)  -+ (1, ~'~, ..., ~ ) .  

Given a closed algebraic affine variety V in C n, its closure l y in CP n is a projective 
variety. We write ~(p) and ~(M) for the projective varieties associated to V(p) 
and V(M) respectively: note tha t  IF(M) ---- 0 {IF(P): P e Ass (M)} is a disjoint union. 
Then we can define the asymptotic cone of V by 

(1.6) W =  {r = (r ..., r  (0, r ...7 r e IF} U {0}. 

For p e Spee (if), W(p) denotes the asymptotic  cone of V(p) and 

(1.7) w ( ~ )  = @ {w(~): ~ e Ass (~)} 

is called the asymptotic variety, or lull characteristic variety~ o f  M. 
A eharaeterstio direetio~ ]or M is a vector v e R n -  {0} in W(M). 

C Homologieal algebra. 

Let  M be a uni tary  left if-module. A free resolution of M is an exact sequence 

0.s )  o+-  i + - r o  2 : ~ i  21 F~+-...  

of uni tary  left if-modules and g-homomorphisms where all the F2s  are free. 
The fact tha t  the sequence is exact means tha t  the image of every homomorphism 

equals the kernel of the following one. 
Given another uni tary  left g-module ~r, the groups Ext} (M, 2q) are defined 
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as the eohomology groups of the complex 

(1.9) 0 -+ Hom~ (~o~ N) ~ Hom~ (F1, N) ~1 > Hom~ (~2, •) ---> . . . .  

If R is a unitary right l-module, the groups Tor~ (M, R) are defined as the 
cohomology groups of the complex 

(1.1.0) 0 +- -Fo@, 2 R<-- ~l@a" R<-- ~2@~r R<-- ... 

We will also use the following fact from homological algebra: if 

(1.11) 0 -->~7 -->F -->G -->0 

is a short exact sequence of unitary left (resp. right) l-modules, then for every unitary 
left l-module M we obtain the long exact sequence for the Ext  funetor: 

(1.12) 0 --> Ext} (M, E) -+ Ext~ (M, i~) -+ Ext} (~I, G) -+ 

-~ Ext} (M, E) -~ ~xt}  (M, F) ~ Ext} (~ ,  o) 

. . . . . . . . . . . . . . . . . . . . . . . . .  ~ Ext~ (M, G) -> 

-~ Ext~ +~ ( i ,  ~) -~ n~t~ +~ ( / ,  ~)  -~ nxt~ +~ ( i ,  O) - ~ . . .  

and, respectively~ the long exact sequence for the Tor functor: 

(1.13) 0 ~- Tor~ (~ ,  o) ~- Toro ~ ( i ,  F) ~- Tor~ ( i ,  ~) +- 

~- ~orI ( i ,  e )~ -  Tor~ (M, r ) ~ -  ~or[ ( i ,  Z) ~ - . . -  

. . . . . . . . . . . . . . . . . . . . . . . . .  ~- Tor/(M, ~) ~- 

~- ~or[+~ ( i ,  O)~- ~or[+~ ( ~ ,  ~)  ~- ~or/+l (M, E ) ~ . . .  

D Hilbert resolutions. 

Given a if-module M of finite type, we can find a resolution of M by free modules 
oi finite type, of the form 

Aa-~ ~" i a~ --+ M ~ 0 (i.14) 0 ---> i a~ --~ > ff a~-' -~ ... -+ $ a' ao 

with d =< n. Any such resolution is ca~ed a Hflbert resolution of M. 
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E Di//erential modules. 

I f  ~ is a space of functions or distributions in an open set of R ~, such tha t  

~ / = ~ z j e ~ -  V j = l , . . . , ~ , a n d / ~ Y ,  

then  we shall consider ~- as a left  and right 9,-module let t ing elements of 9, operate 
on ~- as par t ia l  differential operators with constant  coefficients. 

I f  p(~) = ~ a ~  ~ is a polynomial  in 9", we set 

p(D) = 2: ~ D  ~ 

with D = (D~, ..., D~), D ~ =  D~' ... D~ ~ for ~ = (a~, ..., a~)r N ~, being 

1 D 
D~--- i ~xj" 

Then the  action on p($) of ] e ~- is described by  

(1.:t5) p(C) . / =  l.p(~) = p(D)/.  

Given a Hilber t  resolution (1.14) of ~ 9,-module of finite type  M, the maps Aj 
are represented by  ajxa~+~ matrices (A~'~(~))1<~<a~.~<s<a~+. We denote b y  A~(D) 
the  corresponding mat r ix  of linear par t ia l  differential operators with constant  
coefficients: 

A;(D) = (A~'~(D)) . 

We have natura l  isomorphisms 

(1.16) Hom~ (9, J, Y) ~_ ~-~, 

and therefore we obtain the isomorphisms: 

(1.17) 

9, j |  Y ~ :Y~ 

E xt~ (z!, 5) ~ {/e yoo: ~Ao(D)/= 0}, 

~roro ~ ( i ,  y) _~ Y~ 5o~, 

ker  (tAj(D): 5a, _+ 5aj+l) ]~xt~ (_~, ~-) ~ .  for j > 1,  

for j > 1 . 
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These isomorphisms translate statements about the solvability of systems of partial 
differential operators with constant coefficients into statements about invariant 
groups associated to the if-module M. 

For the relationship between a given matrix of partial differential operators with 
constant coefficients and the F-module M in a resolution of Hilbert containing the 
associated matrix of polynomials as a l-homomorphism, we refer to [5]. 

F Injeetive and flat if-modules. 

A unitary left F-module 2 / i s  said to be injective if for every pair of F-modules 
27~ and 27~, given a F-homomrphism a: N-~27~ and ad injective F-homomorphism 
t: 27 -+ 27~, we can find a l-homomorphism fi: hr~ --> 27~ making the diagram 

27 --s 271 

commute. The following equations are euch one equivalent to the fact that  27 is 

injeetive: 

(i) Ext~ (M, 27) = 0 for every unitary left F-module 21I 

(ii) Ext~ (M, 27)= 0 for every unitary left F-module M and every j > 0. 

A unitary right F-module R is said to be fiat if for every short exact sequence of 

left- F-modules: 

0 - + E  ~ / 7  -~ G --> 0 

the sequence 

(1.18) 

is also exact. The following equations are each one equivalent to the fact that  R 

is f l ~ :  

(i) Tor~ (M r R ) ~  0 for every unitary left F-module M; 

(if) Tor~ (if/Pr/~)-~ 0 for every ideal p in F; 

(iii) Tor~ (M r/~)-----0 for every unitary left F-module M and every j > 0. 

We can restate the conditions for injectivity and flatness for a differential mo- 

dule ~- in the following way: 
~- is injective (resp. flat) iff r for every exact sequence 

(1.19) la A(r Fb. ~(~)> F s 
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of free if-modules of finite type  and i -homomorphisms we have, for ] e $~: 

the  condition 

(1.20) ~A(D) ] = 0 (resp. B(D) ] = O) 

is necessary and sufficient ill order t ha t  the equat ion 

(1.21) *B(D) u = ] has a solution u e ~~ 

(resp. A(D)u = ] has a solution u ~ ~-~) . 

G Reduction to prime ideals. 

We give here two algebraic results tha t  permi$ to reduce several vanishing 
theorems for l -modules  M of finite type  to the simpler case in which M = q/O for 

some prime ideal 0 e Spec (i) .  

1)l~OPOSlmlO~ 1.1. - Let E, M be unitary le]t l-modules, with M o] ]inite type. 
Then a necessary and su]]ieient eonditio~ in order that~ ]or a ]ixed integer ~o > 0, 

Ext~ (M, .~) = 0 Vi < io (1.22) 

is that 

(.23) 

(1.24) 

such tha t  

(1.25) 

Ext~ (l/0, E) = 0 Vi ~ jo and V0 ~ Supp (M). 

Pl~ooF. - Sufficiency. We can find a composition series: 

0 = Moc M l c  M ~ c . . . c  M~+I= M 

Mh+I/M~ ~ i/Oh with Oh e Supp (M) for 0 < h < k .  

For  every  h we have the long exact  sequence for the E x t  functor :  

0 -+ nx t~  (Mh+~/Mh, E) -+ nx t~  (Mh+l, E) -+ nx t~  (Mh, E)  -+ 

--> Ext~ (Mh+IIM~, E )  - - > .  . . 

. . . .  + ~xt~ (M~+,IMh, E) ~ ~xt~ (Mh+,, F,) ~ ~xt~ (Mh, E) - +  

"-+ Ext,~ +1 (Mh+~iMh, .E) . -+. . . .  

B y the assumption we have then  

(1.26) :Ext,. ( M h , . E ) ~ : E x t ~  (Mh+x,.E) V j < j o  and l _ < h _ < k ,  
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while all maps 

(1.27) 

are injective. 
:Because 

(1.28) 

it follows that  

(1.29) 

Necessity. 

(1.30) 

bu t  

Ext~ (M~+I, E) -~ Ext~ (M~, E) for Z --< h _< 

E x t ~ , ( _ ~ , , E ) ~ x t ~ ( r  for j----<jo, 

nxt~  (M, E) = n x t ~  (M~+I, E) = 0 for j =< jo. 

We argue by  contradiction, assuming that 

Ext~ (M, E) = 0 for j < jo 

~ x t ~  (9, E) = o .  

47 ~ J/:p 

(1.35) 

a~4 hence 

(1.36) 

We have 

o = Ext~  -~ (N, ~ )  ~ ~ x t ~  (q, E) -~ ~ x t ~  (M, ~ )  = 0 

(1.31) Ext~ (•/p, E) V= 0 for some j =< j0 and p e Supp (M). 

Let jl, with 0 < ]1 < :/o~ be the smallest integer for which we can find. such a p 
ia Supp (M), and let us fix then p e Supp (M) with 

(1.32) Ext~ ('t/p, E) # 0 

maximal with this property, i.e. such that 

(1.33) Ext~ (r E) = 0 if p' e Speo (M) and p' c p �9 r 

This choice is possible because ff is noetherian. 
By Propositioa 20, Ch. II,  w 4 in [7], we can find a submodule Q # 0 of ~'/p and 

an exact sequence 

(1.34) 0 --> N --> M--~Q -+0.  

By the choice of j~ we have Ext.~ (N, E) = 0 for j < j~ by  the sufficiency part of the 
proof. Thus the long exact sequence of Ext  yields: 
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for some ideM J of I with 

Then from the exact sequence 

J ~ p .  
r 

(1.37) 0 --> Q --> l / p  --> i / J  -> 0 

We deduce an exact sequence 

(1.38) . . .  -~ ~,xt~ ( l / J ,  E) -~ Ext~ ( i /p ,  E) -+ Ext~ (Q, E) = 0 .  

Because all p ' e  Supp ( l / J )  properly contain p, by  the choice of p and the sufficiency 
par t  of the proof we have 

which implies t ha t  

giving a contradiction. 

Ext~ ( l / J ,  E) = o ,  

Ext~ (l/p, ~)  = o ,  

PROPOSITION 1.2. -- Zet E,  M be unitary left l-modules, with M o/ finite type. 
Assume that, lot a fixed jo > O, we have 

(1.39) Ext~ (if/p, E) = 0 Vi > jo and Vp e Supp (M).  

Then a necessary and su//ivient condition in order that 

(1.4o) ~xt~ (M, ~) = o 

is that 

(1.41) Ext~ ( i /p ,  E) = 0 /or every p e Ass (M).  

Clearly in this ease 

(1.t2) Ext~ ( i ,  E) = 0 Vi > io. 

P~ooF. - Su//iciency. 

We argue by  descending induction on ]o. Indeed the s ta tement  is trivial if ~o > n. 
We consider then a fixed jo < n and assume the s ta tement  is true for larger ]o. 
Let  us consider first the ease of a p-coprimary M. Then we use again induction 

on the smallest integer k such tha t  

p~M----- 0 .  
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Assume t h a t  k - ~  1, i.e. t h a t  

OM---- 0 .  

Then  we can consider M as a torsion f lee if /p-module and  we can construct  an exact  

sequence 

(1.43) o -+ ~ -+ (~/~)~ -+ Q -+ 0 .  

Then we have  an exact  sequence 

(1.~4) 0 = (Ext~ ($/p, E)) ~ -+ Ex t~  (M, E) -+ Ext~  +1 (Q, E ) .  

The last  group is zero because of the  induct ive  assumpt ion  on jo since 

(1.45) Supp (Q) c supp (~/~) c supp ( M ) .  

Then also Ex t~  (M, E) = 0. 
Assume now tha t ,  for some k > 1, the s t a t emen t  is t rue  for all p -copr imary  

modules _AT for which 

O~iV---- 0 for some h < k .  

L e t  

Mo = {m e M: Om = 0} .  

Then  Mo and M/Mo are bo th  p -copr imary  (1) and  

pMo---- O, p M ( M I M o  ) -= O . 

F r o m  the  exact  sequence 

(1.46) Ex t~  (M/Mo, E) :+ Ext~  (M, E) - ->  Ext~  (Mo, E) 

and  the  induct ive  assumpt ion  we deduce then  t h a t  

~ x t ~  (M, E) = 0 .  

To drop the  assumpt ion  t h a t  M is p-copr imary,  we note  tha t ,  if 9 is any  pa r t  

of Ass (M), we can find a sub:module  iV of M such t h a t  

Ass (37) = ~ ,  Ass (M/3[) = Ass (M) - -  9 .  

(1) If p e ~ - O ,  m E M  and p . m e M o ,  then we have p~ = q(pn~) : 0 for all q e p ,  
and therefore qm : 0 because M is ~-coprimary. But this means that m ~ M0 and hence 
M/M o is ~-coprimary. 
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As we have an exact sequence 

(1.47) ~xt~ (M/N, S) -+ ~xt~ ( i ,  .~) ---> ~xt~ (N, S) ~ ~xt~ +~ (M/N, E) 

the statement for a F-module M for which Ass (M) contains more than one element 
follows from the statement about F-modules M to which is associated a strictly 
lesser number of ideals. 

Necessity. - By the sufficiency part of the proof, we have 

nxt~(Q,~) 0 Vj>io 

for all left F-modules Q of finite type such that  

Supp.(g) c Supp (M). 

If  p E Ass (.3I), then we can find a ff-submodule N of M isomorphic to ff/p. 
l~rom the exact sequence 

Ext~ (M, E) -> Ext~ (iY, E) -+ Ext~ +x (M/N, E) ,  

because Supp (M/N) c Supp (M), we deduce that  

~xt~ (~/V, s)  ~ ~xt~ (i~, s)  = o. 

2. - Spaces o f  funct ions  and distributions. 

Given an open set ~ in R n, we denote by 6(~) the space of complex valued C ~ 
functions on /2, with the Frdchet-Schwartz topology of uniform convergence with 
all derivatives on compact sets. 

If K is a closed subset of/2,  we denote by g~(~2) the closed subspace of g(/2) of 
functions with support contained in K. As this space depends only on the relatively 
closed set K and not on its neighborhood/2, we write simply gK for g,:(zg). When /~ 
is compact, we write also ~)~ instead of 8~. 

If  A is any subset of R~, we define 

.KccA 

with the Schwartz direct limit topology. :Note that  ~ can be identified to the space 
of functions in g(R n) having a compact support contained in A, but the topology 
of ~)~ is stronger than that  induced by 8(R~), unless A is compact. 

When A is open, we write, as customary, ~(A) for ~ .  
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I f / 2  is an open set, we den.ore by  'D'(/2) the  space of distributions in /2 ,  with the 
topology of strong dual  of ~(s9), and by  8'(D) the  strong dual  of 8(/2), t ha t  can be 
identified to the  space of distributions having a compact  support  contained in /2. 

For  a subset A of /2, we denote b y  ~'~(D) (resp. g])the space of distributions 
in /2 (resp. of distributions with compact  support)  with support  contained in A. 

Given a dosed  subset K in /2, let  ~-,<(D) (resp..$-~om,(/2)) denote the subspace 
of g(~) (resp. ~D(/2)) of functions vanishing with all derivatives on K.  

Then  we define the space WK od Whi tney  funct ion on K by  the  exact  se- 
quence 

(2.1) 0 -+  . ~ ( / 2 )  -+  8(/2) -~  W~ --> 0 

and the space W~ ~" of Whi tney  functions on K with compact  support  b y  the exact 
sequence 

(2.2) 0 @ ~"~~ "--> ~D(/2) "--> W ~  ~ --~ O .  

We endow these spaces with the natm'at quot ient  topologies. Note  t h a t  W~ is 
a space of Fr6chet-Schwartz.  

Wi th  F = / 2  ~ K n / 2  we have 

~K(~'~) = ~F a n d  ~-~omp(~-~)= ~D/~ . 

v f  
We also define the space 9 ~  of extendible distributions on K by  the exact  se- 

quence: 

(2.3) 
! v /  

0 --> $)~ -+ ~D'(/2) -+ 9~  -~ 0 

and the space 8~ of extendible distributions with compact  support  in K by  the exact  

sequence 

(2.4) 

Note  tha t  we have natura l  inclusions 

v !  
0 --> ~0~: -+ ~)'(Int K) 

0 --> g~ -~, 

v f  
so that distributions i~1 ~Dr can be considered as those distributions in int  K that 

can be continued beyond the points of ~K (~ K. 
In  this paper,  we will most ly  consider the  case where K is convex. Then the 
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regular i ty  properties are satisfied tha t  guarantee tha t  

I 
g~ is the strong dual of Wx 

fl)~ is the strong dual of W~ mD 

v,  
fl)~ is the strong dual of fl)~ 

8~ is the strong dual of 8~. 

I f  u is ~ distribution, or a C ~ function, with compact  support,  we denote by  
its 1%urier-Laplace t ransform:  

d(~) = <~t, exp [-- i ( . ,  $)])  for ~ e C a . 

I t  will be convenient,  while s tudying the Cauehy problem in a hall  space, to 
consider euclidean spaces R '~+~, where the dimension is wri t ten  as the sum of 1 and 
a positive integer n. We shall denote by  Xo, xl, ..., x .  the  coordinates in R ~+~ and b y  

~ C[$o, ~ ,  ..., ~ ]  the ring of polynomials in n + 1 indeterminates $o, ~ ,  ..., ~ .  

3. - Cauchy proMem with initial data on a hypersurface. Uniqueness. 

For  a fixed vector  v ~ R ~+1- {0}, we denote by  H = H(v) the  half space: 

H = {x e R~+~: <x, ~> > o} 

and by  f /  its symmetrical :  

= {~ ~ Ro+,:  - x e l l }  = {x e R~+I: <~, ~> < o } .  

Let  S = S(v) denote the hypersurface 

s = H (~ ~ = {x e R~+~: <x, r> = O}. 

Let  us consider the exact sequences for functions 

(3.1) 

and for distributions: 

(3.2) 

0 -~ 8~ -+ ~(R "+~) -~ W~ -~ 0 

o ~ ~)~ - ~  ~ ' (R~+~)  ~ 'b}~ -+  o 
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If  M is a uni tary  left if~+~-module of finite type,  we have (el. [18]) 

n~t} (M, ~(no+l}) ~ n~t7 (M, ~ )  = 0 

Ext} ( ~ ,  ~'(a~+~}) m E~t} (M, ~7} = 0 

~xt~ (M, ~ )  = 0 

E~t~ ( i ,  ~ )  = 0 

~or ~_>~ 

for ~ __> 1 

for ~ => 2 

for ~ >__ 2 .  

Therefore, of the long exact sequence of Ext ,  deduced from (3.1) and (3.2), the 
only parts tha t  are no~ zero for all modules M are: 

(3.3) 

and 

(3.~) 

0 -+ Ext~ (M, S.) -~ n~t7 (M, S(R:+')) -+ E~t~ (M, W~) -~ nxt~ (M, ~.) -+ 0 

DEFI~ImlO~. - We say that ~ is non-characteristic ]or M i] v does not belong to W(M) .  

We have:  

T I { n o ~  3.1. - The ]ollowi~g statements ]or a t e]t if-module M o] lignite type and 

a direction v e R ~+1- {0} are equivalent: 

(i) v is no~-eharacteristie ]or M 

(ii) Ext~ (M, ~]~) = 0 

(iii) Ext~ (M, gz) ---- 0. 

P~ooF. - (i) ~ (ii). I f  v 6 W(M), then  Ann (M) contains a polynomial q with 
principal part  qo non vanishing at  v. By  Holmgren's  uniqueness theorem~ we have 

then  

On the other hand there is a stu, jeetive if-homomorphism 

(if/(q))~ -+ i -~ O. 

Indeed, i f  m~, ...~m~ ~re generators of M,  

i f ~  (p~> ...~ p~) -~p~m~ ~ ... -~ pT.~m~e M ,  

by  passing to the quotient,  defines such a homomorphism. 
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This yields an in.jeetion 

and therefore 

o -> (M, G) @xt  (Pl(q), G)) 

because the last group is zero. 

(ii) ~ (iii). 

Ext~ (M, G )  = 0 

This follows from the inclusion 

! 

0 --> 8,~ -->- ~)z 

which implies also the inclusion 

o -~ ~ x ~  (M, G) -+ ~xt~ (M, G ) .  

(iii) ~ (i). We show by  contradiction tha t ,  if v is characteristic,  i.e. v ~ W(M), 
then we can find a non-zero element in Ext~ (M, gs). In  this construction we 
follow [13]. 

I f  v e W(M)~ then we can find a prime ideal p in supp (M) with 

dim c V(O) = 1 and v e W(p) .  

~-ote tha t  W(O) contains only distinct lines. Choosing then real coordinates in 
R "+~ in such a way tha t  v = (1, O, ..., 0), we have a Puiseux series representgtion 
of V(O) close to v~ of the form 

oo 

$j = s ' ~  aj~ s -~/~ 
h = l  

for j = i, ..., q~ 

convergent for [sl/~ I > M. Having  fixed @ with 1 -- l i p  < @ < 1 and defining (is) ~ 
oll the  half plane I m s  < 0 so tha t  it  is real and positive when s is purely imaginary, 
for a fixed branch of s ~/~ on Im  s < O, we set 

+ c ~ - - i v  

u(x) = f e x p  [i(x, ~(sl/~) ) --  (is)~] ds 
- -  r {?; 

for r > ( 2 M p .  

This function defines an element of Ext~ (F/p, 8s) having support  equal to H 
(el. [n]). 

By proposition 1.1 the implication (iii) ~ ( i )  follows. 
We also have (of. [13]) 
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PI~OI'OSI~IO~ 3.2. - i /  v ~ W(p) ]or every p ~ Ass (M), then 

has a dense image. 

The proof, similar to tha t  in [13], is omitted. 
By  the local character of Holmgren's uniqueness theorem, we deduce 

COROLLARY 3.3. - I] M is a le]t 't-module o] finite type and v e R ~+~- {0}, then 
the ]ollowing are equivalent: 

(i) v is non-characteristic ]or M; 

(iv) Ext~ (M, (~ )o )  ---- 0; 

(v) Ex,  ( i ,  = 0 .  

Indeed, the argument  tha t  shows tha t  (i) ~ (if) in the proof of Theorem 3.1 also 
shows the implication (i) ~ (iv). Then (iv) ~ (v) is obvious and (v) ~ (i) is proved 
as the implication (iii) ~ (i). 

Theorem 3.1 has an application to the s tudy  of the Hartogs phenomenon. 
The same proof as in [8] yields: 

Tm~o~E)~ 3.3. - Assume that Ext~ (M, ~) : 0 (i.e. that M is overdetermined). 
Then a necessary and su]ficient condition in order that the natural restriction map 

( i ,  -+ ( z ,  

be an isomorphism for every compact K in R n+l for which ~+~--  K is connected, is 
that M be elliptic, i.e. 

W(p) • R~+lc (0} for every p ~ Ass (M) . 

4. - Nonhomogeneous  Cauchy problem with data on a hyperplane. 

A) W~e first discuss the one-sided Cauchy problem on functions. The notations 
are the same of the previous section. Our start ing point is the exact sequence: 

(4.1) 0 ~ g~ -~W~ - > W s  4 0 .  

For every left ~'-module M of finite type we have: 

Ext~ (M, W~) : Ext~ (M, Wz) : 0 for J ~ 1 ,  
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so that  the exact sequence of Ext  deduced from (4.1) reduces to: 

(4.2) 0 -+ Ext} (M, g,) -> Ext} (M, W,) -+ Ext} (M, Ws) -+ Ext} (M, g,) -+ 0.  

Note that  elements of W. are functions on H that  are smooth up to the 
boundary, while elements of Ws can be thought as formal power series, in a direction 
t transversal to S, with coefficients in the space 8(S) of smooth functions on S. 
Therefore an element of Ws is the collection of all normal derivatives on S of a C ~ 
function defined on a neighborhood of S. 

Identifying by a Hilbert resolution the space Ext~ (M, Wz) to a space of vector 
valued Whitney functions on H satisfying a system of linear partial differential 
equations with constant coefficients, by Theorem 3.1 and the exact sequence (4.2) 
we have: 

Tm~o~E~ 4.1. - A necessary and su]]ieient condition in order that the elements o] 
Ext~ (M~ W,)  be uniquely determined by their normal derivatives on S, is that v be 
non-eharaeteristie ]or M. 

Indeed the m a p  

F, xt~ (M, W,)  -~ Ext~ (M, W~) 

can be considered as defined by the map that  associates to every element of 
Ext~ (M, W,) its formal power series on S in the direction normal to S. 

B) We want to introduce now the notion of formally noneharacteristic direc- 
tion for a unitary left ~'-module M of finite type. 

To simplify the notations, we assume that  v = (1, O, ..., 0). We consider 

as a subring of 

Cn = C[~,, . . . ,  $.] 

= r = C[$o, .. . ,  ~n]- 

Then every g-module M can also be considered as a fin-module by change 
of ring. 

We write (M)~ for the fin-module obtained from a g-module M by change of ring. 
We have in particular a natural identification 

Ws _~ E x t ~  ((r ~(S)) ----- tIomr ((~'L, ~(S)) ~ 8(S){{x0}}. 

Therefore, applying the funetor Hom~ (-, ~(S)) to a Hilbert resolution of M, 
considered as a ff-modlfle, that  can be also considered as a resolution of (M)~ by free 



MALmO NAOI~OWCI:t: Cauehy problem ]or overdetermined systems 283 

9'~-modules, we obta in  an i somorphism:  

Ext~ (M, W~) ~ Ext,~ ((M).: ~(S)). 
Le t  

(4.3) r '~ , > ,-j'a0 ..-> M _ _ > .  0 

be a finite presenta t ion  of M. 

We  say t h a t  (4.3) is ]ormally non eharaeteristie in the direetion v if the  (formal) 
Cauohy prob lem:  

I A(1))u = o 
(4.4) D~ulS = 0 for i _~ h 

for some integer  h => 0 has only the  solution u ~ 0. 

L:~a-M:A 4.2. - Let M be a unitary le]-t P-module o] finite type. Then i] M has a 
]ormally non-eharacteristie presentation: all finite presentations of M are ]ormally non- 
eharaeteristie. 

PR00r .  - Assume t h a t  (4.3) is a formal ly  non-character is t ic  presenta t ion  of M 
and  let  

(4.a,) fib1 ~ fib~ _> M - +  0 

be ano the r  finite presenta t ion  of M. Then  we can find r  

wi th  the  proper t ies :  

'Lo 'Ro ~ Idr : *A *G 

Assume t h a t  (4.4) holds and  let /r be the  m a x i m u m  degree in ~o of polynomials  in 

the  m a t r i x  *Re(t). 
Le t  w e W~ ~ sat isfy 

B ( D ) w  = O 

D~wls = o f o r i A / ~ + ~ .  
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Then, for u = l:4(D)w, we have 

and 

A ( D ) u  -~ A(D)Ro(D)w = RI (D)B(D)w  ----- 0 

D~og[S = D~oRo(D)w[S ~- 0 for j < h .  

Thus, by  the  assumption, 

Bo(D)w = O . 

But  the homotopy  formula yields then:  

w = -~o(D)Ro(D)w-  K ( D ) B ( D ) w  = O, 

i.e. w = 0 and therefore also (4.3') is formally non-characteristic.  
We can give then the 

D]~FINITIOIV. -- A q~nitary left ~-module of finite type M is said to be formally non- 

characteristic in the direction v i f  it admits a finite presentation (4.3) that is formally 
noneharaeteristie in the direction v. 

We assume tha t  v ~ (1, 0, ..., 0). Then we define the (ascending) $o-filtration 
of ~': 

/$ : {p ~ ~: degree of p in ~o < j} , for j ~ g .  

Then ~.~" = {0} for j < 0 and 

or = r = c[C~, . . . ,  C,J. 

A ~o-filtration of a left  ~-module M is a sequence (Ms)j~ z of abelian subgrOtll:)S of 
M with 

and 

M~cMj+~ VjeZ 

~ff. Mj c Mj+~ Vj, h e Z .  

The to-filtration (M~)~e z of M is good if we can find ]o, jl e Z such tha t  

(i) for each j e Z, Mj is a ff~-module of finite type  

(i) M j = 0  for j < j o  

(iii) I~Mj = M~.+I for j > j~. 

l~ote tha t  the last condition implies 

(iii') h t i j  = Mj+h Vj ~ jl,  h ~ 0. 
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We  also r e m a r k  t h a t  (i), (ii) and  (iii) are equ iva len t  to  t he  fac t  t h a t  

gr (M) = Q Mj+,IM; 
jeZ 

is f in i te ly  gene ra t ed  as a modu le  over  the  g raded  r ing 

gr (r  = Q  +la/jr �9 
~eZ 

W e  h a v e  the  fol lowing 

LE~L~A 4.3. -- Every unitary leit a-module M o] ]inite type admits a good ~o-]ittration. 
Two di]ierent good ~o-filtrations (M~)ie z and (M~)~.ez o] the same a-module M are 

eompatible~ in the sense thai we can lind k e Z such that 

Mj c M'  and M~ c M~+~ V je  Z 

(For  t he  proof  of this  l emms ,  of. [6]). 
Le t  (Mj)~.~z be  a good f i l t ra t ion  of M and  let  ]1 sa t is fy  (iii) above.  Then  we have  

Mj+I/Mj _~ M~+~/Mh as a~-modules for  1, h => ] i .  

L e t  us deno te  t h e n  b y  /~r this  a , - m o d u l e  associa ted  to  the  given good filtra- 

t ion  of M.  
W e  have  t he  fol lowing 

Tn:EOlr  4.4. - ~e~ M be a le]~ a-module o] finite type and let v : (1, 0, . . . ,0 ) .  

.Then the ]ollowing statements are equivalent: 

(i) M is ]ormally non-characteristic in the direction v 

(ii) 2~ : 0 

(iii) (M)~ is a a~-module of finite type 

(iv) ~or each O ~ Ass (M) the map 

is ]inite and domir 

PRoo~.  - (i) ~ (ii). Corresponding  to  t he  good f i l t ra t ion (M~)j~ z of M we eaa  

f ind a (( cor rec t  ~) H i lbe r t  resolu t ion  of M(cf .  [4], [6]) 

.,. a ~ --*~ > a ~ '~~ > a ~~ --> M --> 0 . 
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This means the following. For  every non negative integer j there are integers 

such tha t  

A~(~) = ( A ? ~ ( ~ ) ) ~ , ~ , ~ o ~  

with A~. '~ o~ degree in $o less or equal to ~ - -~ j+ l ,~ ;  if we set 

( r ~ =  {(p~, .. . ,po~)e ff~: degree of p~ in ~o < h + ~ }  , 

then 

and M~ is the image of ~r~o: 

M I  t ~ r opal 
~ h  I "~t'O ~  " 

Let  us write the homogeneous part  of degree ~j~--~+~,~ in ~o of A~'~(~) as 

~-~j,-~+~.~3r,s/~- ~ )  
bO -~"-~ ~I~ " " ,  

and set 

Then 

. . . - **~ ,  ' ~ ' ,  , ~ , ~ , - . ~ - ~ 0  

is a t t i lbert  resolution of J~. 
We consider the (descending) filtration of Ws 

defined by  

Ws = Ws(O) ~ Ws(1) _o Ws(2) _o ... 

W~(a) = { u e  W~:ing~tS = 0 for i <  ~} ,  for h e Z .  

Then we set, corresponding to the correct resolution defined above: 

FAh) = {(ul, ..., %) e W~': u~e W~(h + ~ )  for k = 1, ..., as}. 

For every h we obtain a aomplex: 

(F,(h), A,(•))  = {0 -* Fo(~) ~ Fl(h) ~'(~)~ ~,(h) -* . . .}.  
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From the exact sequences 

0 --> Fs(h -4- 1) -->/Tj(h) --~ Fj(h)lxVj+~(h) --> 0 (], h e 7,) 

we obtain long exact  cohomology sequences: 

0 --> Ho(F,(h -4- i) ,  A,(D))  ---> HO(~,(h), A,(D))  ---> Ho(E,(h)IF,(h -4- 1), _/1,(D)) .---> 

--> H~(J',(h -4- 1), A,(D))  --> H~(F,(h), A,(D))  ---> H~(F,(h)IF,(h  -4- 1), A,(D))  --> ... 

where the Aj '(D)s denote the  quotient  maps 

A~: ~ ( h ) / F , ( ~  -4- Z) -> F,+~(h)l~,+~(h -4- 1), 

defining the complex 

(F,(h) /F,(h -4- ~-), d A D ) )  = IO 
( ~o(h -4- ~) F~(h -4- z) F,(h -4- 1) ~ .... j 

When  condition (iii) for the  filtration (M~)~ z holds, we have 

Hs(l~,(h)/l~,(h -4- 1), A,(D))  _~ E x t ~  (M, ~(S)) = 0 for h ~ j, ,  for every s ~ 1 

and therefore 

(4.5) H l ( ~ , ( h  -4- !), A.(D))  --> HI(F.(h) ,  A , (D))  --> 0 

is surjective for every h _>__ j1. 
This condition implies tha t  

(4.6) HI(F,(h) ,  A , (D))  = 0 for h ~ is.  

Indeed let  us fix h--__ ]o and let 

f ~ F~(h) satisfy A~(D)] -~ O. 

B y  (4.5) we can find u~, ~ Fo(h) such tha t  

f - -  Ao(D)ua e ~ ( h  -4- 1) 

I~ecursively we c~n define 

such that 

l - Ao(~,~ + ... -4- u~+,~) e FI(~ -4- k -4- 1) for k----O,l, 2, .... 
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The series 
o o  

@ = ~ @h+k 
b~0 

defines then  an element u in _Fo(h) such tha t  

Ao(D)u = ]. 

This proves tha t  (4.6) holds. 
We have therefore an exact sequence 

(4.7) 0 -+ H~ -[- 1), A,(D)) --+ H~ A,(D)) ~ E x t ~  (2~, ~(S)) -+ 0 

for every h > jo. 
Because 

= = o 

if and only if ~ : 0 (~) the equivalence ( i ) ~  (ii) follows from (4.7). 

(ii) ~ (iii). Indeed the condition ~ = 0 implies tha t  M = Mjl and there- 
fore (M)~ is of finite type  because Mjl is a ff~-module of finite type. 

(iii) ~ (iv) ~ (i). This follows because (iii) and (iv) are both equivalent to the 
fact tha t  Ann (M) contains a polynomial tha t  is monic in ~o. 

To explain the meaning of the notion of formally noncharaoteristic~ we briefly 
rehearse a construction in [2]. Le t  

be a Hilbert  resolution of (M)~ as a P~-module. Then one can define ir~-homo- 
morphisms (trace homomorphisms) 

such tha t  

,~bj __> ~aj 
~Tj : --n 

'Aj_lo ~ = t~j_lO ~Bj for j > 1 ,  

(3) Indee4 the sequence 

is exact if and only if 

is exact (cf. [5]). 

0 -~ ~ao(S) ~o(D)> ~ S )  

0 <-- ~r~. ~ ~ 
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so tha t  the  diagram 

. . . _ ~ _ ' ~ z ~ f f ~ l .  ~176 ). M -+0 

o.. _+ r eb,. *~0~ ebo _+ ( M h  -+0  

commutes.  Then the Cauchy problem 

[ Ao(D)u -~ 0 
(4.4') 

To(D) uL~ = Uo 

has a unique solution in (8(S){{xo}}) ~~ for every Uo ~ 8b~ tha t  satisfies the in- 
tegrabi l i ty  condition 

(4.4") Bo(D~, ..., D,,)Uo = O . 

We can also consider the non-homogeneous Cauohy problem: 

Ao(D)u = ] e  W~ ~ 

(4"4'~') To(D) Ul~o= o ---- uo ~ 8b~ 

The compatibi l i ty  conditions are now 

{ AI(D) ] -~ 0 

(4"4'~) Be(D) uo = TI(D) ] 

on H 

on S 

and again the  assumption tha t  M is formally non-characteristic in the direction 
v = (1, 0, ..., 0) guarantees existence and uniqueness of the  solution in (8(S){{xo}})% 

C) We end this section by  a brief discussion of the  nonhomogeneous Cauchy 
problem for distributions. 

:Prom the exact  sequence 

(4.8) t t v I 

we obtain, for every left if-module M of finite type,  a long exact sequence: 

(4.9) O --~ Ext~ (M, O'z) -~ Ext~ (M, ~ )  --> Ext~ (M, ~)~) 

-+ Ext~ (M, firs) -+ Ext~ (M, ~ )  -+ 0 .  
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The map 

~: Ex,~ {M, ~ )  ~ E~t~ (M, ~'~) 

is the  one tha t  defines (~ Cauchy data  in the  sense of Distributions ~. 
To show tha t  it  generalizes the usual definition, we consider an element 

e Ext~ (M, W,).  By  the  natural  inclusion 

W~ ~* ~ 

this u defines an element of Ext~ (M, ~ ) .  
I f  u has zero Cauchy data  in the  classical sense, it  belongs to the image of the map 

Ext~ (M, 8,) -+ Ext,~ (M, W , ) .  

Bu t  the  inclusion 

defines a map 

and clearly the diagram 

nxt~ (M, ~.) -~ Ext~ (M, ~ )  

E,~t~ (M, ~.) --. Ex,~ (M, W.) 

commutes.  Therefore, still denoting b y  u the image of u in Ext~ (M, v, ~ . ) ,  we have:  

~(u) ----- 0 iff u has zero Cauehy da ta  in the  classical sense.  

The vice versa is t rue  if we assume tha t  M is formally noncharacterist ic in the direc- 
t ion v. Assume indeed tha t  this is the case and let 

0 + -  M<-- ffa +_'~ fib 

be a finite presentat ion of M. Assuming v = (1, O, . . . ,0) ,  then  Ann (M) contains 
a polynomial  i0 monir in ~o. I f  u ~ W~ is such tha t  

A(D)q, = 0 , 

the  condition tha t  

~(~) = o 
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means  tha t ,  for the dis tr ibut ion Uo defined b y  

we have  

u ~ u for xo > 0 

u ~  for x o < O  

A ( D ) u O =  o . 

But  then,  for u = (u1~ ...~ u~), we obta in  

(4.10) p(D)u~ ~ 0 on R ~+~ for i ~ 1, ..., a 

and  hence 

u e S ~  

because solutions of (4.10) smooth ly  depend on x0. 

The a rgumen t  above  also shows t h a t  Ext~  (M, ff)~)= 0 when M is formal ly  

non-character is t ic  in the  direction v. The vice versa  is not  t rue ,  as the  equat ion 

~ u  
~x~t d - u = 0  in R 2, 

which is formal ly  character is t ic  in the  t-direction, hss  no non-tr ivial  distr ibution 

solution wi th  suppor t  conta ined in {t----0}. 
The exact  sequence (4.9) cgn be in te rpre ted  t hen  by :  

(a) The condition that v be nou-vharavteristie for M is necessary a~d su]]ivie~t 
to have uniqueness in the Cauehy problem ]or distributions. 

(b) The condition Ext~  (M~ ~D'~)~-0 is necessary and su]]ieiest is  order that 
every element o] nxt~ (M, ~;s) be the Cauehy data o/ an element u ~ nxt~ (M, ~)~). 

5. - Hyperbo l i c i ty  w i t h  respect  to  a h a l f  space.  

We keep the  notat ions  of the  preceding section. 
We have  the  following 

Tn:EOlC~M 5.1. - Let ~,'[i be a unitary le]t '~-module ol ]inite type and let v e R ~-1 - -  {0}. 

Then the ]ollowing conditions are equivalent: 

(i) The natural map 

(/ ,  (M, 
is a bijection. 
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(ii) We have 

(ii') We have 

Ext~ (M, ~n) = 0 for ~ ~ 0 .  

Ext~ (M, gu) : Ext~ (M, gH) = 0 .  

(iii) ~or every p e Ass (M), we can ]ind a constant 0 < c < 1 such that 

(5.1) -- I m  <~, ~} ~ v}]. IIm ~1 -~ c-1 /or every ~ e V(O). 

(iii') /~or every p e Supp (M), we can lind a constant 0 < c < 1 such that 

-- I m  <~, ~) ~ c]~[-Jim ~] ~- ~1 ]or every $ e V(O). 

DEF. -- When the equivalent conditions above are satisfied, we say tha t  M is 
hyperbolic in the direction v. 

PROOF OF THEOaE~ 5.1. -- From the exact sequence (3.3) we deduce tha t  (i) 
and (ii') are equivalent, while (ii') is equivalent to (ii) because Ext~ (M, ~ , ) =  0 
for every i >----2 and every M. Clearly (iii) is equivalent to (iii'). To show tha t  (i) 
implies (iii)~ we can assume tha t  M = ff/p for a prime ideal p (this is a consequence 
of propositions 1.1 and 1.2). Le t  

... > �9 > ~ - ~ / O  -+0 

be a I t i lbert  resolution of ~/p, where 

~A(~) = (p~(~), . . . ,  po(~)) 

is a set of generators of p. 
By  (ii) the sequence 

~H ~ ~ ~(1))> ... (5.3) 0 -~ s~-  ~ -~ 

is exact and therefore, by  duality,  also the sequence 

(5.4) ... ( ~ ) ~  ~ (s~) ~ ~<~)> s.' - ~ 0  

is exact. This means in particular tha t  for every distribution T with compact sup- 
port  contained in H we ean find distributions /'1, ..., T~ with compact support con- 
tained in H such tha t  

- -  p~(-- D) / ' 1 - - . . .  - -  p~(-- D) To 

has support contained in S. Assume tha t  v---- (1, 0, . . . ,0) .  
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Let  us take  T----- (~(xo--l, x l , . . . .x~) .  Then we have, for some eonstants A, 
C > O and an integer iV ~ 0: 

lexp [-- i~o] -- Pl(-- ~) ~(~)  -- . . . -  20(-- ~)Ta(~)[ ~ V(1 + [~[)~ exp [AlIm (~1, ..., ~.)]] 

and hence, taking - - ~  V(O), we obtain:  

(5.5) -- I m ~ o ~  v + N l o g ( !  + [~1) -t- A[Im(~i ,  -.., ~.)t V~e V(O). 

Let  us show tha t ,  for some constant  C > 0, we have aetually:  

(5.6) - -  I m  $o ~ C(1 + [Ira (;1, ..., r V~ e V(V). 

We consider, for fixed s a R, the semi-algebraic function 

1~(t) = sup { -  Im ~o]$ e V(~), IIm (~, ..., ~)i--< s, t~l-<- t}. 

As we have 

]~(t)_<_~ for t > O ,  

either ]~ is constantly equal to - - ~  or 0, or, for large t, we have the asymptot ic  
expansion 

]~(t) == ~t~(1 + 0(1)) with ~ ve O and ~ e Q .  

F rom (5.5) it  iollows then  tha t  either zr < 0, or q ~ 0. In  both cases we conclude 
tha t  ]~ is bounded fl'om ~bove uniformly on R for every s. Therefore the semi- 
algebraic function 

~(s) = snp ],(t) = s~p { -  I m  ~0: ~ e V(V), IIm ( ~ ,  . . . ,  ~-)1 -<- s} 
teR 

never takes the value + co and therefore, for large s~ it is either constantly equal 
to 0 or --0% or has an asymptotic  expansion 

~(s) = s~(1 + 0(1)) with ~ r 0 and g e Q.  

To prove (5.6) we h~ve to show tha t  we cannot have at  the same t ime A > 0 
and g > l .  

To this aim we consider the semi-algebraic set 

F ---- {(s, t, ~-): $ e VQo), I m  ~o § 9(s) -<- 1, j im (~'1, ..., $~)1 <: s, 1~1 ----< t} .  
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I t  is not  empty  and its projection 

~ = {(s, t): (s, t, ~) e V(p) for some ~ e C ~+~} 

is semi-algebraic and contains all s > 0 sufficiently large. Therefore 

W(s) = inf {t: (s, t) e ~,} 

is a semi-algebraic function tha t  has an asymptotic  expansion 

~(8) = Z.8o'(1 § o(1)) for s -~  oo with Z # 0 and ~'e Q.  

Substituting in (5.5) we obtain 

a.s~(l q- O(l)) ~ e q- N log (1 q- flsr q- 0(1)) q- A .s) for s -+ c~ 

and hence we must  have either ~ < 0 or q ~ 1. The estimate (5.6) follows and it is 
clearly equivalent to (5.1). 

Also in the proof of the implication ( i i i ) ~  (ii) we assume, as we can, tha t  
M =  ff/p for a prime ideal p c ff and tha t  v = (1, 0, ..., 0), so tha t  (5.1) can be 
written in the equivalent form (5.6). 

We are reduced then  to the proof of the exactness of (5.4), and this also reduces 
to the fact tha t  

v !  

U ( D ) :  (~D o - .  G - ~  0 

is onto. The exactness of the sequence (5.4) at  the other steps follows from the 
theorem on division of distributions (we shall consider this point in more details 
later on, in the proof of proposition 7.8). 

I f  T e 8~, then  the Fourier-Laplace transform of T satisfies, for suitable A > 0, 
B > 0, N > 0, e > 0, an estimate of the form: 

I~(r =< C(1 q- [r ~ exp [A' l Im (~1, ..., r q- B( Im $o) +] 

where (Im $0)+ ~ sup (0, I m  ~o). Then we have by (5.6) 

I T ( -  ~)l G e(1 3- I$[) ~ exp [0] exp [(A -}- r ($1, ..., G)0 

and hence, by  the extension theorem (cf. [6]) we can find T~, ..., T~ e 8~ such tha t  

T - - P l ( - - D ) T I - - . . . -  p~(--D)Ta has support contained in S .  

We also have an analogous of Theorem 5.1 for distributions. 
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T ~ O R E ~  5.2. - Let M be a unitary le/t 'S-module o/ / ini te  type. 
direetio~ ~ e R "+1-  (0}, the /olIowing statements are equivale~t: 

(i) M is hyperbolic iqv the direetio~ ~. 

(ii) The natural map 

is a bi]eetion. 

(iii) We have 

(iii') We have 

( M ,  

Ext~ (M, if)H) = 0 for every  ] _>_ 0 .  

( N ,  = = o .  

Then, for a / i xed  

The theorem is still t rue if we subst i tute  distributions of finite type  for general 
distributions in all s ta tements  above. 

PROOF. -- From the long exact sequence for Ext deduced Irom the exact sequence 

(4.8) one easily obtains the equivalence of (ii), (iii) and (iii'). ~oreover ,  bo th  (i) 
and (iii) imply t ha t  M is non-characterist ic  in the direction v. The implication 
(i) ~ (iii) will be then  a consequence of a more general one t h a t  we will prove later  
on ( theorem 7.12). The implication (iii) ~ (i) follows because of s result  or ItCr- 
mender  [11~ vol. I I ,  Corollary 11.3.7, p. 78], because Ann (M) contains a polynomial  
for which the  direction v is non-characterist ic:  an element u e Ext~ (M, ~D'(R~+I)) 
whose restr ict ion to  H is in Ext~ (M, W~) propagates i t s  regular i ty  to all of R "+~ 
and hence condition (ii) above implies condition (i) of Theorem 5.1. 

6. - Algebraic properties of  hyperbolic ~-modules. Propagation cones. 

A) Le t  us introduce,  for any  prime ideal ~ in ~, the semialgebraic sets: 

WR(O) - -  ( I m p :  $ e W(9)} c R "+1 

WR(~0)-~ closure of WR(p) in R-+I 

VR(p) = {Ira r r  V(p)} e n-+l  

~?a(p) : asymptot ic  cone of VR(p). 

A vector  0 e R "+1 belongs to j?R(~) iff we can find sequences {~} in V(p), {e~} in R 

such that 

e~ > 0 and sm -+ 0 for m -+ cx~ 

e,, Im  ~ --> 0 for m -~ c~. 
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Then we have:  

PttOPOSlTION 6.1. - For every prime ideal p, 17R(O) is a closed sons in R .§ and we 

have inclusions: 

Wa(V) c WR(O) c ?R(O). 

A necessary and suJJieient condition in order that a unitary le]t if-module M be hyper- 
bolic in the direction v e R ~+~- {0} is that 

_ ~ r ?R(O) VV e Ass ( M ) .  

P~ool~. - I f  (5.1) is false for some p e Ass (M), then  we can find a sequence {$~} 
in g(p) such tha t  

(6.1) -- ( I ra  $~, v) > (1 -- 2 -~)1~1- lira $~l + 2~ for every m .  

Then,  with e~ = I I m ~ [  -~, we have e~-+ 0 and, passing to a subsequence, we can 
assume tha t  

I v l l l m r 1 6 2  9R(V) for m - +  ~ .  

Passing to the limit in (6.1) we obtain 

IOl : I~1, - <o, ~> ~ I~l'IOl 

f rom which it  follows tha t  0 = -  v and hence - - v  e ~R(p). 
The condition is therefore sufficient. The necessity can be easily derived by  

passing to  the limit in (5.1). 

RE~A~K. When all ideals p in Ass (M) are principal, then  the hyperbolici ty  ia 
the direction v is equivalent  to a seemingly much weaker assumption: 

(6.2) 

(a) ~, r W(p) 

(b) We can find a constant  e > O  such tha t  ( I m ~ , v ) > e  V ~ = ~ d -  

d- i~v e V(p) with ~ e R ~+~, v e R for all p e Ass (M). 

Indeed,  when p is principal, setting v = (1, 0, ..., 0) and considering the pluri- 
subharmonio function 

~(r ..., cn) = sup{--  Im~o: (~0, $1, ..., Sn) e V(p)} 

on C ~, we deduce (5.1) f rom (6.2) by  the Phragm~n-Lindel6f principle. 
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The e~se of principal ideals is very special, ~s also we have, in t ha t  ease: 

FR(~) = WR(~); 

all connected components of R '~+1- WR(p) ~re convex; 

These properties fail to hold for more general if-modules. 
Le t  us illustrate this fact by  discussing some examples. 

ExamPLE 1. - JLet p be the, ideal in ~ = C[$o, $1, $2, $2] generated by  

p ( 0  - -  $o ~ + ~ -  ~2 ~, q(0  = ~ -  (1 + ~)~o. 
Them with 

A1 = {(- 3+V/St, O,O,t):tER} 
2 

A~ t, 0, 0, 3 

= 01 ) ( 0 2 §  01 { o e R ' :  (0~ + 30~ 0~)~==_ ( 0 ~ -  ~ 2 ~ -  ~ -  40o*- 20o02)}, 

A2 = F ~ {01 r 0} ,  

_4, = F c~ { 0 ~  0} ,  

we have 

This example shows tha t  WR(p) is not closed in general and, since (6.2) holds when 
v ~ WR(p), t ha t  this condition is not sufficient to imply hyperbolicity for a general 
system. :Notice tha t  ff/p is hyperbolic in many  directions : for instance in the direc- 

t ion v = (0, 0, 1, 0). 

EXAMPLE 2. - Let  p be the ideal in g' -= C[So, $,, $2] generated by  

3 2 p($) =iSo+ $2, ~($) = ~2-  ~i. 

Then M = ff/p is hyperbolic in the direction (1, 0, 0), but  not  in the direction 

(-- 1, 0, O). 
This in particular contradicts the existence of a polynomial, hyperbolic in the 

direction (1, 0, 0), in the ideal p. The existence of such a polynomial was stated 
in [9], p. 208, bu t  there hyperbolicity was s tated in a slightly different way, requir- 
ing tha t  it  holds both for the direction ~ and for the opposite direction -- ~. 



298 ~Av-~o ]~AC~NOWCI~: Cauehy problem for overdetermined systems 

We note also tha t  the system associated to the ideal p above is also hypoelliptic 
(cf. [14]). A counterexample to the s ta tement  in [9] is contained in the next  example. 

ExA~IPLE 3. - Let  p be the ideal in C[~o, ~ ,  ~ ,  ~] generated by 

p(~) = ~0§ ir q(~) = ~ + $~ + i ~ .  

Then, for v----(1, 0, 0, 0), the module if/p is hyperbolic both in the direction 
and -- v. But  if does not contain any  polynomial which is hyperbolic in the direc- 
t ion ~. Indeed, if if would contain such a polynomial, it  would also contain a hyper- 
bolic homogeneous polynomial P.  This could be taken with real coefficients. Then 

such a polynomial would vanish  on both V(p) and V(p). 

But  V(O) n V(p) = {0} and therefore they  cannot be contained in any  algebraic 
var ie ty  of dimension 3 in C 4. Hence we can not  find such a polynomial P.  

EXAlVlPLE ~. -- I t  is obvious on the other hand tha t  M is hyperbolic in the 
direction ~ if Ann (M) contains a polynomial which is hyperbolic in the direction r. 
Another example is the case in which v---- (1, 0, . . . ,0)  is non-characteristic for M, 
and (M)n, i.e. M considered as a if,--= C[~,  ..., ~]-modul% is elliptic. In  this case 
M itself is elliptic and also hyperbolic in the direction v. This particular case could 
be discussed directly using Cauchy-Kowalewska theorem. 

B) If  the uni tary  left if-module M of finite type is hyperbolic in the direction r, 
then  it is also non-characteristic and hence formally non-characteristic in the di- 
rection ~. Thus by the exact sequence (4.2) and the isomorphism 

we obtain:  

PROPOSITIOI~ 6.2. - I]  M is hyperbolic in the direction v : (1, O, ..., O), then we 
have an isomorphism: 

~xt~ (M, W,) -~  ~xt~ ((M)., ~(S)). 

This isomorphism has to be read in classical terms by saying tha t  the Cauchy 
Problem (4.4") has one and only one solution u e W~' for every choice of the da ta  
] e  W~ and uo e 3b'(S) satisfying the compatibility condition (4.die). 

To improve the s ta tement  above we can also consider propagation cones. 

Tn~o~E~ 6.3. Zet 1~ be an open convex cone contained in R"--  ~R(O) ]or every 
p ~ Ass (M) . .Le t  r ~ F and, denoting by F ~ the polar cone to F: 

F~ = (x e R~§ (x, O} ~: o VO e F}, 
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set: 

K = S ,"3 @ - -  F ~  ./~ = H ~ (v - -  .F~ 

Then the natural restriction map: 

Ext~ (M, W~) -> Ext~ (M, WK) 

is an isomorphism. 

P~oo~. - H we show that,  for 

hA~) = sttp <x, ~>, h~(~) = sup @, ~>, 

we have 

(6.3) hz{(O) = h~(O) V0 e ~R(p), p e Ass (M),  

then the statement will follow with an argument analogous to the implication 
(iii) ~ (i) in Theorem 5.1. 

Let us first show that  

(6.4) 

We have, indeed 

(6.5) h~(~)= sup <v--0,~>. 
O e P  o 

For ~ e IYR(O), since ~ ~ F, we csa find 0o e/ ,o with 

<0o, ~} < o .  

Hence, with 0----[vI~Oo/<Oo, v> in (6.5) we obtain (6.4). 
We note that  K is characterize4 by 

(6.6) <x, v} =: 0 ,  <x, ~> ~ <v, ~> 

For x e / ~ ,  we set 

(6.7) x = y ~ ivI-~<x, v> v.  

Because we have 

(6,8) <x, ~} s @, ~:> V~ e F ,  

we also have, for ~ e  ~R(p): 

V~: e/-'. 

VxeR, 

i - - 2  o (6.9) <x,~> = [vl-2<x,v>'<v,~> -~ <y,~> ~ iv] <x,v>hK(~:) -~ <y,~> 
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Let z e K and let us show that  

w = I~[-~<x, ,>z + y e K .  

Indeed, for ~ e/~ we have 

Therefore, w e K by (6.6) and we have 

I~l-~<x, ~> <z, ~> § <y, ~> =< h~(~) V~ e ?~(~) ,  Vz e K .  

Taking the supremum for z e K we get from (6.9): 

<x, ~>__< h~(~) Vx e ~ ,  V~ e ?a(p) ,  

proving (6.3). 

Theorem 6.3 has an obvious corollary in the non-convex case. If  ~ is an open 
subset of S, we denote by ~ r  the reunion of all convex cones of the form 

(y _ / -o)  n H ,  for (y --/,o) n S c D .  

Then we have 

T~Ol~E~ 6.4. - With the same assumptions oj Theorem 6.3, the natural restric- 
tion map 

Ext~ (M, W~) -~ Ex t , .  ((M)., ~(~)) 

is an isomorphism. 

Note that  Theorem 6.4 also implies that  the Cauchy problem (4.4 '~) has a unique 
solution in W~ for all data ] e W ~  and uoe ~bo(Q) satisfying the compatibility 

conditions (4.4tv). 

7.  - E v o l u t i o n  m o d u l e s .  

A) Let M be a unitary left q-module of finite type and let v e R "+1- {O} be 
fixed. We say that  M is o[ evolution in the direction v if, for H = H(v), any of the 
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following two equivalent  conditions is satisfied: 

(7.1) The natura l  restr ict ion map 

E~t~ (M, ~(R-)) -~ E~t~ (M, W~) 

is o n t o .  

(7.2) Ext~ (M, ~,) = 0 .  

We say tha t  M is o] evolution ]or S)' in the direction v if instead one of the  following 
equivalent  conditions is satisfied: 

(7.1') The na tura l  restr ict ion map 

is o n t o .  

(7.2') Ext~ (M, ~)~) = 0 .  

The two notions are dea r ly  equivalent  for hypoell ipt ie F-modules M, i.e. when 
the map 

Ext~ (M, 8(Rn+l)) ~+ Ext~ (M, ~'(Rn+l)) 

is an isomorphism. 

A hypoelliptio F-module M th a t  is of evolution in the  direction v is said to be 
parabolic in the  direction v. 

When  M is non-characterist ic in the direction v, then  is of evolution if and 
only if is hyperbolic  in the  direction v. 

Another  ve ry  different example of evolution module is given by  the  F-modules M 
obta ined by  syspension f rom a F.-module iv. We have :  

P~oPoslTIO~ 7.1. - .5et v = (1, 0, ...; 0) ~ R ~+1 and let iV be a unitary left F~-module 
o] finite type. J~et us consider the F-modq~Ie 

M = . ~  @~'n F,n+l �9 

Then M is o] evolutio~ in the direction v. 

~ o o F .  - Le t  

F~' '~ > F~ ~ -,'- iV -,'- 0 

be a finite presentat ion of iv. Then 

*A 
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where we consider *A(~) as a matr ix  of polynomials in F independent of $o, is a 

finite presentation of 21/. I f  1 E W~ ~ is a solution of 

A(D) I -= A(D~, ..., D,,) I = 0 ,  

then all coefficients 1~ of the formal power series 

defined by t at  x0 = 0 satisfy 

~ h ( x ,  ..., xn).x~ 
h=O 

A(D~, ..., D.) I~ = 0 .  

Let  Z e  Co(R) be equal to 1 on a neighborhood of 0 in R. For  a sequence {t~} 
of positive real numbers with th S-4-0% the series 

"s h(x,, ..., z,~)~x(t~Xo) 
$=0 

converges in g(R n+l) to a function g such tha t  

A(D)g  = 0 on R "+1 

and I and g coincide with all derivatives on S. Then 

]---= 1 for xo g 0 ,  ] = g for xo > 0 

defines a solution of 

extending 1. 

A ( D ) ] = 0  o n R  ~+1 

Note tha t ,  by  Proposition 6 and the Corollary following Proposition 8 in [18], 
W e  haY6: 

Ext~ (M, g~) -~ 0 for i > 2 

Ext~ ( ~ ,  9") = o for j _> 2 

for every uni tary  left F-module of finite type. Then, by  Proposition 1.2 we have:  

THE0~E~ 7.2. -- A necessary and su]/ieient condition in order that a u~itary left 
F-module M be o] evolution (resp. o] evol~ttion ]or 9 ' )  in the direvtion v is that, ]or every 
p e Ass (M), the module F/O be o1 evolution (resp. o1 evolutio~ 1or ~ ' )  in the direction v. 
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I~,MA~K. -- Proposit ion 7.1 shows at  once tha t  the condition tha t  there is 
subideal p ' c  p such t ha t  ~'/p' be of evolution in the  direction v does not  imply tha t  
~'/p is of evolution in the direction v. 

B) We say tha t  a prime ideal p in 9" is of evolution in ehe direction v if the 
r  ~/p is of evolution in the  direction v. 

Assume tha t  v -~  (1, 0, ..., 0). We have:  

LE~J~A 7.3. - I] p is a prime ideal in ~, then p' ---- p f3 'Y, is a prime ideal in ~ .  

Indeed,  ~" is a flat ring extension of O'~. 

Given a prime ideal p in ~, let us fix a set of generators 

Pl,  ..., Ph,  ql, ..., q~ 

of p with the propert ies:  

(7.3) p~, . . . ,p~ generaCe p ' =  p ~ ff~ in fla. 

For  every  j ---- 1, ..., k, 

mj 
(7.4) q~(~) = ~ q j h ( ~ ,  ..., $,)$~o is irreducible, of degree m~. in ~o 

h=0 

and its discriminant Aj($1, ..., ~.) with respect to $o does not  belortg to p. 

m~ ~ m s ~ . . .  ~ m~, 

m~ = inf {degree of p with respect to ~o: P ~ P -- p'} �9 

(7.5) 

(7.6) 

B y  the choice of m~, we obtain:  
We can find polynomials 

~X~, . . . ,  ( X ~  f i n ,  

such tha t  

(7.7) 

(7.s) 

~(r ..., r - ~J (~)q l (~ )  e ~ '  for  j = 2 ,  ..., ~ ,  

for each j = 2, ..., k, the  polynomials aj and flj have no common factor  and 
do not  belong to p ' .  

This follows by  division in the  Euclidean ring of polynomials in $o having coef- 
ficients t ha t  are rat ional  functions of ~1, . . . ,~ . .  
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L e t  us  p r o v e  n o w :  

L E ~  7.4. - Zet ! e gH satis!y 

(7.9) p,(D~, ..., D,~) ! = 0 

Then we can find g e ~H such that 

(7.1o) [ 

for j : 1, ..., h .  

~(x)l,  ..., D.)  ... ~(D~, ..., D.)g = ! 

pj(D)g = 0 for ] = 1, ..., h .  

(7.11) p l (D)u  = 0 

. , ~  | 1 7 6  

pa(D) u ---- 0 

is solvable with u =~ g(R~+l), i.e. the right hand side satisfies all compatibility conditions. 

P~ooF.  - B y  the  preceding 1emma, we can fin4 g e ~H solving (7.10). 

suvh that the system 

The proof  is complete.  
F r o m  this we deduce 

L E ~  7.5. - Zet f e gH satis!y (7.9) above. Then we van find ! l , . . . , f k  e g~ with 

roCD) ! = 0 .  

P R OOF . -  B y  proposi t ion 7.1, ~/ (g~ , . . . ,~k ,P l , . . . ,P~)  is of evolut ion in the  
direction ~ = (1, 0, .. . ,  0). Therefore we only have  to check t h a t  the  r ight  hand  side 

of (7.10) satisfies the  r ight  compat ib i l i ty  conditions. Le t  7o, ..., 7h e ~ be  such t h a t  

70~2 ... ~k "~- 71Pl -~ "'" -~ 7hPa = 0 . 

Because ~2 ... ~ ~ P',  this  equal i ty  implies t h a t  7o belongs to the  ideal in ~ genera ted 

b y  p '  and  hence 
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We define then  

I 1 =  1 

(7.12) fi = o ~ ( D 1 ,  . . . ,  D~)... ~j-I(D1, ..., D~):cj+I(D,, ..., D~)... ,k(D~, ..., D~)flj(D)g 

for j ---- 2, ..., k .  

Le t  us show now tha t  (7.11) satisfies then  all compatibi l i ty conditions. 
Le t  ~ ,  ..., yh, 71, ..., U~ ~ ~ be such tha t  

~lp~ + .... + ~ p ~  + ~ q l  + ... + ~q,:  = o .  

Denoting by  p'  the  ideal in ff generated by  p', we have 

- (q1~1 § q ~  § ... + q ~ D ' ~  ... ~ ( m o d  ~'); 

but,  since q ~  p' and  p'  is a prime ideal, this implies tha t  

Hence 

~(D)  /~ + . . . -~ ~k(D) /~-~ (~(D)ga(D) ... ~k(D) -~ ~(D)oh(D) ... :r -~ 

-~ ... -~ ~(D)g~(D) ... ~_~(D)fi~(D))g = O . 

The proof is complete. 
We obtain then:  

P~OPOSIT~ON 7.6. -- With the notations i~trodueed above: let ~ de~ote the ideal o/ 'Y 

generated by q~, Pl,  ..., P~. 
The~ a ~eeessary and su//ieie~t condition i~ order that p be o/ evolution in the 

direetio~ ~ ~ (1, 0, ... ~ O) is that the •module f f / J  be o/ evolutio~ i~ the directio~ ~,. 

P~oo~.  - The condition is obviously sufficient because p e Ass ( if /J) .  The neccs- 
~.h+l si ty follows f rom the  previous lemma, because, if the right hand  side (], g~,..., g~) e ~s 

of the system 

q~(D)u = / 

(7.12) p,(D) u -~ g~ 

p~(D)u ~-- g~ 
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satisfies all compat ib i l i ty  relations, then  we can find w ~ 8s such t h a t  

pj (D)w = gj for j = 1, ..., h 

because p~ is of evolut ion in the  direction ~. 

We obta in  a sys tem for v ~ u -  w: 

(7.13) 

q~(D) v = / 

pl(D)v = 0 

p~(D) v = 0 

t h a t  b y  the  previous l e m m a  can be lifted to a sys tem of the  fo rm (7.11). 

Therefore  we have  Ext~  ( ~ / J ,  8z) = 0 when Ext~  (~/p, 8~) = 0 and  therefore  

the proof  is complete.  
Proposi t ion 7.6 gives a classical in te rpre ta t ion  of the  meaning  of the  Cauchy 

p rob lem for overde termined sys tems:  given a scalar par t ia l  differential operator ,  

we t r y  to  solve the  usual  Cauchy p rob lem under  the  addi t ional  condition t h a t  the  
da ta  and  the  solution sat isfy a sys tem of par t ia l  differential equations t angen t  to 

the  ini t ial  hypersurface .  

EXA)~LE. -- I n  R ~+1 we consider the  ideal p genera ted  b y  

m 

1 

Then p is of evolut ion bo th  in the  direction v and  in the  direction - - v ,  for 

v = (1, 0, ..., 0). 
This is a consequence of the  fac t  t h a t  the  solutions u ~ 8(R ~+1) of the  hea t  equa- 

t ion 

~Xo - ~z~ § "'" § ~x~ 

for each fixed Xo ex tend  to entire funct ions of xl, ..., x~ in C ~, of the  fact  t h a t  p also 

contains the  po lynomia l  

and that 

8Xo 

2~  

n + l  

- -  - -  ~ ~ is of evolu t ion  in R "+~ in t he  direct ion v = (1, O, ..., O) 
T cx7 
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~nd 

~Xo .+1 ~x~ 

R" is of evolut ion in R~0 • ............ in the  direct ion - - v  ---- (--1~ 0, . . . , 0 ) .  

(For scalar evolution operators,  of. [11]). 
This example has been discussed with S. SeAG~COLO, in connection with the ques- 

t ion of existence of solutions analytic  in the tangential  variables for the Cauohy 
problem in the scalar case. The discussion above shows how the  general theory  of 
evolution if-modules is a natural  generalization of t ha t  question. 

The following result~ tha t  we quote here for completeness, is a consequence of 

s ta tements  tha t  will be proved in the next  section. 

P~oPOSlTIO~ 7.7. - With the notations o] proposition 7.6: a necessary and su]/i- 
cient condition in order that ~/p be o] evolution ]or ~D' in the direction v is that f f[J 

be o] evolutio~ ]or ~)~ in the direction v. 

EXAMPLE. - I f  an ideal Jr in ff contains a polynomial  p tha t  is hyperbolic in the 
direction v, then  the if-module if/jr is also hyperbolic in the  direction v. In  [11] 
H61C~A~DEI~ characterizes part ial  differential operators with constant  coefficients 
t ha t  are of evolution in the direction v. However,  the fact  tha t  j r  contains such an 
operator  is not  sufficient in order t ha t  if/jr be itself of evolution in the  direction v. 
Indeed,  the  ideal Jr generated by  q(~) ---- i~0 + ~ and p(~) ---- -- $ ~ -  ~ in C[$0, ~1, ~]  
is not  hyperbolic (and hence not  of evolution, being non-characteristic) in the direc- 
t ion v = (1, 0, 0 ) e R  a -  (0), while q(D)-~ ~/~Xo--~/~x~ is an evolution operator.  

C) Zet  M be a ~ i t a r y  left  if-module of finite type.  Le t  

(7.14) . . .  -> ,j.~ 'B ,j.~ 'a ) > 'S" - +  M --+ 0 

be a Hilber t  resolution of M. Then, by  using duality,  we obtain the criterion: 

PROPOSITION 7.8. -. A necessary and su/]icient condition in order that M be o] evo- 
lution in the direction v is that the map 

has a closed image. 

A necessary and su]]ieient condition in order that M be o] evolution ]or ~)' in the 
direction v is that the map 

~A(D): (w~~ b -)~ (W~/~ a 

has a closed image. 
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(7.~5) 

(resp. of the sequence 

(7.16) 

P~oo~. - By duality,  the exactness of the sequence 

a A ( D ) ~  r 

is equivalent, because the last maps of (7.15) and (7.16) have a closed image, to the 

fact that 

(7.17) (~}~_,~c~)~ ( ~ ) ~  ,~(~)~ ( ~ ) o  

(resp. 

(7,18) (w~omD)r tB(D!:~ (w~mP) b CA(D) (W~/omD)a) 

is exact and the last map of (7.17) (resp. (7.18)) has a closed image. 
By  the theorem of division of distributions we know tha t  the maps: 

�9 (M, ~ )  ~ ~Oro ~ (M, 8~) 

and 

~or~ ( ~ ,  ~ )  -~ Toro ~ (M', ~(R-)) 

are injective (the last result is proved iu [18]). 
F rom the exact  sequences 

0 - ~  -> 8R-> ~H-~ 0 

and 

0 -> ff)~ -~ ~)(R'~) -+ W~ ~  -~ 0 

we deduce then the exact sequences of Tot:  

�9 . . - ~  ~or~ ~ (M, ~ )  ~ TorI (M, ~ )  -~ ~oro ~ (M, a~) --~ ~Oro ~ (M, a~) -~ 

-~ TOro ~ (M, g~) -~ o, 

�9 . . - ~  Tor~ ( ( i ,  ff)(R~)) -> TOrl ~ ( i ,  W c~ --~ Toro $ (M, ~D~) --> Toro $ (M, ~)(R')) -~ 

-~ ~or~ (M, w~ ~~ -~ 0 

and then 

�9 o~ (M, ~I = o ~o~ (M, W~~176 
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! 

because g~ and ID(R") are fiat differential if-modules. Thus the only condition to  
be required is t ha t  about  the closedness of the image of the last  maps of (7.15) 

and (7.16). 
A trivial  consequence of this proposit ion is: 

COROLI~AI~u 7.9. -- Every unitary le/t if-module M o/ the ]orm 

M = N | ifn+* 

with N a unitary felt if~-module o] ]icdte type is o/ evolution ]or ~)' in the direction 
v = (1, 0, ..., 0). 

The s ta tement  of Proposi t ion 7.6 holds t rue  when <( of evolution for D',~ sub- 
sti tutes <( of evolution ~>. 

F rom proposit ion 7.8 we also derive the following criterion: 

PROPOSITION 7.10. -- .Let M be a unitary le]t if-module of ]inite type. Then a neves- 
sary and su]/icient eondition in order that M be o/evolution in the direction v e R ~+~- {0} 
is that, /or every ~ e Ass (M), the/ollowing eondition (Ep) holds: 

(EO) i/ T e g'(R ~+~) and <T, u>-= 0 /or every u e Ext~ (M, gx), then we van /ind 
T~ e S~ such that ~ - -  ~ = 0 on VOP). 

A necessary and su]]ieient condition in order that M be of evolution ]or ~D' in the diree- 
ttion v e R ~+~- {0) is that, ]or every p e Ass (M), the following condition (E'O) holds: 

(E'O) i/qD e ff)(R.+*) and <u, q9> = 0 ]or every u e Ext~ (M, g)'H), then we ean find 
u , e  ~ such that d - -  ~= 0 on V(O). 

The s ta tements  are indeed a consequence of Theorem 7.2 and the fact  tha t  the  
image of a continuous linear map is dense in the annihilator  of the  kernel of its 
dual map. 

To prove the nex t  result, connecting the groups Ext, .  (M, gH) and Ext~ (M, ~D~), 
we need a precision of condition (EO) tha t  is a simple consequence of the open map- 
ping theorem on Fr6ehet  spaces: 

L E ~ A  7.11. - Condition (EO) above is equivalent to the ]ollowing: 

($p) For every A > 0 and integer N >= 0, we can find a compact K in [I, an integer 
N~ ~ 0 and a constant B > 0 such that if T e g'(R n+*) satisfies 

Ir < (1 + I~1) ~ exp [AlIm$l] 

<T, u> = 0 Vu e Ext~ ( i ,  g~) 

V~ e C "+1 
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then it also satis]ies: 

12(;)l ___< B(1 + [~l) ~1 exp [H~(Im $)] V~ e V(O). 

I % ~ , ~ .  - Clearly condition ( /~ )  is equivalent to an analogous condition for 

distributions T e 6~: We shall refer to this equivalent condition as (EO). 
Prom this criterion we deduce the following 

THEOR:m~ 7.12. - I /  a unitary let if-module M is o] evolution in the direction v, 
then it is also o/ evolution ]or ~ '  in the direction v. 

P~ooF. - By  Theorem 7.2 we can assume in the proof tha t  M---= $/p for a prime 
ideal p. 

Le t  ~v e ~(R ~+~) be such tha t  

<u, ~o> = 0 for every u e Ext~ (M, 2)~). 

By  PMey-Wiener theorem, the l%urier-Laplace transform r of ~ satisfies: 

Ir < Czr § i~1) -~ exp [d i Im$[ ]  

for some constant  A > 0 and for a sequence {C x} of non-negative real numbers. 
In  particular, because D~q is orthogonal to Ext~ (M~ 6~) for every ~ and 

];~r ~ CI~ 1 exp [AiIm ~]] 

whe have by (/~p): 

I$~r162 c1~1(1 § ]r on V(O) for every a e N  "+~ 

where K is a fixed compact subset of H and m is a fixed integer. 
! 

Hence we have, with a new sequence {Czr } of non-negative real numbers:  

]r < 0~r + [~[)-~ exp [HK(Im;)] V~e V(O) and Vinteger i V >  0 .  

By  Proposition 1 in [18], we can find a continuous plurisubharmonio function V 
on C~ with 

[%v(~1) -- YJ(~,)I----< const, for [~--  ~] < 1 

such that,, for a sequence {e~r of non-negative real numbers, we have 

exp [%v(~)] =< e~(1 § ]~])-~ exp [Hx(Im ~)] V~ e C ~+~ , ViV 
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and 

exp [~(~)] >= ~ ( 1  + I~1) -~ exp [H~(Im ~)] V~ e C ~+~ , V2V. 

Then (cf. [6]) we c~n find an entire function 2~ on C ~+~ such tha t  

F = % on v(~) 

and 

IF(~)I ~ const (1 ~- I~]) ~ exp [~(~)] on C "+~ . 

The function F is the Fourier-Laplace transform of a function g e ~)~. 
The s ta tement  follows then from condition (E'O). 

8 . .  A Phragm~n.LindeliJf principle for evolution modules. 

A) Let  us go back to the notations introduced in the previous section after 
Lemma 7.3. In  particular we shall consider modules M = F/dr for an ideal dr of F 
which is of the form described in Proposition 7.6: 

(8.1) dr n Fn : p' is a prime ideal in F~ 

and dr is generated by p' and a polynomial q(~) of the form 

(8.2) q(~) = ~ q~(~l, ..., ~ . )~ 
h = 0  

irreducible, with 

(8.3) qm(~l, ..., ~)A(~I,  ..., ~ )  ~ p ' ,  

LJ($1, ..., $~) denoting the discriminant of q($) with respect to $o. 
We denote by  8~(p') (resp. ff)~(p')) the space of all / ~ 8,  (resp. / ~ IDa) such tha t  

(8.4) p(D~, ..., D~)/ -~  0 Vp e p ' .  

I t  follows from the proof of Proposition 7.6 tha t  we have: 

L:B~IA 8.1. - A necessary and su]]ioient eondigo~ in, order that M = F/d r be o] 
evolution in the direction v = (1, O, . . . ,0 )  is that the sequence 

(8.5) ~(~')  ~(~)) ~(~')  -> 0 
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be exact. A necessary and suf]icient condition in order that M = ~/~r be o] evolution 
]or 9 '  in the direction ~ ~ (1~ 0, ..., 0) is that the sequence 

(8.6) ~o~(~') ~ ~ ( ~ , )  -+ o 
be exact. 

As we want  to exploit Lemma 8.1 only in some particular cases, in the following 
lemma, where essentially we apply dual i ty  to (8.5) and (8.6), we make additional 
assumptions on the ideal J .  

L E ~  8.2. - Assume that p I is elliptic, i.e. that 

1(r ..., r ~ c(z § l~e (r ..., r 

on V(O~). Then a necessary and su]licient condition in order that ~ / J  be o] evolution 

in  the direction ~, = (1, 0, . . . ,0)  is that, given R > O, we can ]ind constants C > O, 
h r > 0 ,  e > 0  such that 

(8.7) sup (~o~lr o)1(1 + Iol)-~e~p [ - -Nl~mOt]d~og 
o e v ( v ' ) d  

o 

=~ C sup f [q( - -Do, - -0 l~(xo,  O) t exp [ - -R]Im0]]  dxo 
0ev(p') d 

0 

]or every q~ ~ ~(R-+~) with supp ~ c {xo < e}. Here 

~(x~ 0) =f~(xo, x~, ...~ x.) exp [-- i(x~O~ + ... -~ x.O.)] dx~,..., dx.  
Rn 

denotes the partial Fourier-Laplace trans]orm o] ~ with respect to the variables x~, ..., x , .  

PROOF. - The s ta tement  is a consequence of the open mapping theorem and of 
the fact  tha t  the two sides of (8.7) are continuous seminorms in ~rj/ii)~ (~ 9~ 
where 

~, = t -  ~, ~ • ..., x,,)l ~: ~ < ~ }  ~o~ ~ = E -  ~, ~ •  ..., ~o)I ~: %'. < ~ }  
1 1 

respectively, if the suprema are taken over all 0 ~ C'. Then we need to apply the 
fundamenta l  principle of Ehrenpreis to show tha t  (8.7) implies tha t  the equation 

q(D) u = f 

has a solution u ~  ~ ( p ' )  for every given ]~  g~(p'). 
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L E ~ A  8.3. - Let c(a) ~- (1 exp (--  l~e a))/l~e a for a e C, Ice a :/: O, e(a) = 1 

i f  ICe a = O. 
The~  we have: 

1 1 

f lu(t) l at ~ c(a) f iu'(t) - a.u(t) l at 
0 0 

]or every a ~ C and u e ~(R) with u ~- 0 ]or t > 1. 

Le t  q e ~ be a polynomial  monic and of degree m with respect  to  ~o. We ~sst~me 

t h a t  q is irreducible and  of posit ive degree wi th  respect  to ~x, ..., ~.: 

and set 

q(~o, ~,  ..., ~o) = ~Y + ~ q~($, .. . ,  ~.)~ 
j < m  

r = sup {(degree of q3/(m-- j): j = , 0 ,  .. . ,  m - -  1 } .  

The equat ion q = 0 defines an algebraic R iemann  domain  X over  C" 

X-5. C n 

on which holomorphio functions v~, ..., ~ are defined in such a way  t h a t  

q(vj(a), g(a)) = 0 on X for j ----- 1, ..., m 

q(~o,~(o)) = ( ~ o -  ~(~))... (~o- ~(~)) for ~ o ~ c ,  ~ 

sup{l~(o) l :  I~(~)l < t} = o(t ~) f o r  t ~ ~ .  

The project ion a is holomorphic.  

Le t  A -~ A($~, ..., $~) ~ ft. be the  diseriminant  of q wi th  respect  to $o; the  restric- 
t ion of a defines then  an m-fold covering m a p  

Z -  ~- l (F)  __> C ~ _  p ,  

where F =  {($1, ..., ~.) e C'~: A(~I, ..., ~.) = 0} and both  spaces are coauected.  (X can 
be defined as the  normalizat ion of the  analyt ic  subspaee q = 0 of C"+~). 

:LE~vlA 8.4. - With  the notations and assumptions  introduced above: 

W e  van f ind  posit ive constants el, e~ suvh that, setting, for 1 ~_ j < m,  

(8.8) ~j  = { ~ e  ~:  Ice vj(~)< c1(1 + I~(~)I~)~}, 
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/or every plurisubharmon@ function ~ on X such that, ]or some R > O, 

(s.9) 

we have also 

(she) 

sup v'(~') - -~ l= (o ' ) I  < + 
X' 

sup ( v ( ~ ) -  (~ + c~)nl~(~)t) =< sup (w(~) -~e l~(z) l )  �9 

PROOF. -- Note  tha t ,  for r g 1, and e, sufficiently large, we have E~ : Z, so tha t  
the s ta tement  of the lemm~ is trivial. Assume therefore tha t  r > 1. 

A) We consider first the case n = 1. 
I f  e~ is large, then  E~ contains ~-~(D) for a disk D in C containing P in its interior 

purr. One e~n show then  tha t  E~ ~lso eontuins curves y~ , . . . ,~ ,  such tha t  
~(7~), ..., u(y~) ~re rays f rom the origin in C and the ungles 

z(y~)x(7~) , ..., z(y~)~(y~+l), ..., z(y~)z(y~) 

are all acute, while the complement  of E~ in Z is covered b y  the connected, simply 

connected open sets tP~, ..., D, ,  with 

! 
&..9, = y: u ,~, u / , ,  . . . ,  ~#:  = r ,  u ,L u ~'1 

for ~1, ..., ~ connected arcs in z-l(~D) and 7~ ~ yh-- z- l (D)  for h = 1, ..., s. On 
each ~ ,  the  funct ion [~(~)[ is bounded by  an R-linear function ]h of ~(a). Then we 
obtain the thesis by  applying the  Phragm~n-LindelSff max imum principle to the  sub- 

harmonic funct ion 

~ ( ~ ) -  -~h(~(~)) on ~ :  

if  ~ = sup ( ~ ( a ) -  Rl~(a)[), t h en  we have 

and therefore  

But 

~ ( ~ ) -  Rh(~(~)) _-< on ~t2h 

o n  ~ h "  

for some constant  e2 > 0 and then  

W(~) - / ~ ( 1  + c~)[z~(cr)] <__ Z on t2~. 

Repeat ing the argument  for h = 1, ..., s, we obtain the thesis. 
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B) Before discussing the  general  case, let  us consider first the  si tuation in which 
n > l ,  bu t  m = l .  We  have  q =  $ o - - p ( ~ , . . . , $ ~ )  with p e f f ~  of degree d > l ,  so 
t h a t  vl = ~ = p .  We denote  b y  Pc the  principal  par t ,  homogeneous of degree d, 
of p and  let  W =  {~zC~:p0(~)  ---- 0}. Wi th  $ 1 =  { S e C t :  I~ [ - -1} ,  we note  tha t ,  
for every  0 e W t3 S~, we can find a vector  w ---- w(O) e $I and  a real  ~ ---- 7(0) with 
0 < 7 < 1 such t h a t  

{0 + zw: z e C ,  lzl = v} (3 w = 0 .  

Then,  for each 0 e W (3 $1, we can find an open neighborhood U 0 of 0 in C ~ such t ha t  

{ ~ §  zw: z e C ,  [zl = V) n W =  0 

for every  ~ in U o. 
such t h a t  

B y  Borel-Lebesgue's  lemma,  we can  find 01, . . . ,0~ in W(3 $1 

W (3 21 c Uo~ t.) ... U Uo, ~ . 

I t  follows tha t  i t  is possible to  choose e > 0 wi th  the  p roper ty :  

i] ~ ~ $1 and [Po(~)] < s, then there are w = w(~) e S1 and 7 = 7(~) real with 
0 < 7 < 1, such that 

[po(~: + zw)l > ~1~ + zwt ~ /or [zl = 7 . 

On each complex line L o :  {zO: z e C }  with O e $1 and [po(0)] > e, we can argue as 
in the  point  A) of the  proof,  with es t imates  t h a t  come out  uni form with respect  to  0. 

! 

Hence we obta in :  there  are constants  cl and  v~ such tha t ,  if ~ is plur isubharmonie  
on C" a n d  satisfies (8.9) wi th  2: = C~, we have  

where 

~(zO)- (1 + c,')lzl _-< sup ( ~ ( ~ ) -  RI@ 

provided  t h a t  [01 = 1 and  Ipo(0)[ > s. 
Therefore we have  

~,(o) - (1 + c.)RIO] < sup (~,(~) - RIll) 

if  [po(O)l _-> ~[@. 
I f  O e C  ~ is such t h a t  [po(O)j< e[O[ a, t hen  we can find we.S1 and  O <  ~ <  1 

such that 

[pc(0 + zTw)[ > ~[0 + zTw[ ~ for [zl = [01. 
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By the maximum principle we have 

~f(O) =< max  ~(0 -~ z ~ w )  . 

But ,  for [z i = [Oi, we have also 

:Because 

we deduce tha~ 

~(0 + z~w) - (1 + e:)nIO + z~w I <_ sup (~(~) - RI~I) �9 

[o + zvwl <= 2tol for Izl = 10[, 

~ ( o ) -  (1 + e2)i~lO I < sup ( ~ ( ~ ) -  ~l~I) 
E 

with e~ ~ 1 d-2e~, ~nd this iuequali ty now holds for every 0 in C ~. 

C) Let  us turn  now to the general case. Only slight modifieations are needed 
of the arguments of point B). 

For  g e Z - -  ~ - I (F  u {0}), there is a unique irreducible carve /7, in Z contain- 
ing a and contained in z-~((zz(a): z 6 C}). Then we define (a) 

hr : [~(~)I ~.limsup I~(a')l 
.'oz, I~(~')I ~ 

and denote by h*(a) the upper semicontinuous majorant  of h~. Because Z is normal, 
we obtain in this way a plurisubharmonic function defined on Z, whose restrictions 
to the Hnes L is complex homogeneous of degree r. Due to the continuous depend- 
ence of the roots of a polynomial on its coefficients, the function h* is continuous and 
moreover, if we fix s > 0, the restrictions of plarisubharmonic functions ~ satisfying 
(8.9) satisfy (8.10) on L ,  with uniform constants e~ and  e~ (only depending on e), 
provided tha t  h*(a)_> sl~(g)l~ > 0. As in point B) the conclusion comes from the 
fact  tha t  every point ~oe Z is the center on an analytic disc, with radius less or 
equal t o  ]u(a)[, with the boundary  contained in the region where h* (a )~  slz(a)l ~. 
As a streightforward consequence of lemmata  8.2, 8.3 and 8.4 we have:  

Ttl~IORE~ 8.5. - Let p-~P(~o,  ~1, ..., ~ ) ~  ff be moniv with respect to ~o. Zet 
c C[$o, ~1~ ..., ~ ,  ~'~+1~ ..., ~'.] be generated by p and by ~ i$~+~, ..., ~ i~2~. 

Then C[~'o, ...~ ~ ] / J  is o] evolution in the direction ~, = (1, 0, ..., 0, 0, ..., 0 ) e R  ~+~. 

F rom theorem 8.5 we deduce now a s ta tement  for general •modules. 

(s) We introduce here the (~ circled indicator of growth ~> function of Lelong (cf. P. L~- 
LONG - L. G~.U~A~, Entire Functions o] Several Complex Variables, Springer, Berlin, 1986). 
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Firs t  of all let us introduce the  notion of holomorphic suspension in the tangential  
directions. 

Given a un i t a ry  left  if-module M of finite type,  with ff---- ff~+~ ~ C[~o, . . . , ~ ] ,  

let  a be the ideal of ff~+~----C[~o, ...,C~, ~+~, . . . , ~ ]  generated by  

Then we set 

C~ + iC.+~, ..., C. + iC,.. 

The module 2~ is called the holomorphic suspension of M tangential  to the  hypcrplane 

S = (Xo = O} c R~+~. 
We have:  

T]3:EOI~:E~ 8.6. - The holomorphic suspension .ffl of a u~itary felt if-module M o] 
finite type and formally ~on-charaeteristie i~ the direction ~ = (1, 0, ..., 0 ) e R  "+~, 
tangential to the hyperplane S --- (Xo = 0} c ~+~ is a~ evolution module in the direc- 
tion ~ -~ (1, 0, ... ~ 0~ 0~ ..., 0) e ~.+1. 

PROOF. -- I t  is sufficient to consider modules M of the  form M = ff/p for a prime 
ideal p, containing a polynomial  t ha t  is monic with respect to Co. 

Note tha t ,  if the  module $/p is non-characteristic in the direction ~, then  the 
s ta tement  reduces to  the  theorem of Cauchy-Kowalewska. So we can assume tha t  
ff/p is characteristic,  bu t  formally non-characteristic,  in the  direction ~. 

Le t  ~ ' ~  ~ n ff~. By  the preparat ion theorem (el. [3]) we can choose coordinates 
in R ~ =  S in such a way that ,  if d -~ dim c V(p') (by V(p') we denote  the affine 
var ie ty  of common zeros of polynomials of p' in C~), then we have 

(8.11) I(C~, .... , ~.)1 ~ C(1 § [(C~, ..., C~)l) v(C,,  . . . ,  c~) e r ( v ' ) .  

Then there is in p a monic polynomial  q in ~o of the form 

m - - 1  

(8.12) q(C) = f f  § Z q~(~, ..., C~)Ct 

such tha t  p is generated by  q and p'.  

Le t  now ~o, ...,T~-~ be entire functions on C * satisfying 

(8.13) p(D)~a = O Vp e p ' .  

We note  tha t  (ff~/P~)d is a free ff~-module and hence we can find differential oper- 
ators BI, ..., B~ on R ~ such tha t  for every  given h-uple gl, ...,g~ of entire functions 
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on C a there is a unique g entire on C ~ such that 

p ( / ) ) g  = 0 for  eve ry  p e p '  

(8.14) B~(D)gj~+~= .... ~=o  = g~ for  j = 1, ..., h .  

B y  T h e o r e m  8.5 we can  f ind func t ions  t~, ..., ]~ in 8 ( R •  a) t h a t  sa t isfy  

q(.D) i~ = o ,  

(8.15) + i /~- = 0 for  k = 1, ..., n ,  

~/J zo=o,xa+,=..,=~,,=o - -  
- -  B~(D)~I~,+,= . . . . . .  =o for  h = 0, ..., m - - 1 .  

Then we denote by ] the unique function in  8(RxC ~) such that, for each fixed 
XoeR,  g(x~ . . . , x~ ) - - ] (xo ,  x~, . . . ,x~) is t he  solut ion of (8.14) for  g~(x~, . . . , x a ) =  
= ]~(Xo, X~, ...~x~). W e  ob ta in  in this  w a y  a solut ion / ~ g ( R •  n) of t he  C a u c h y  

p rob l e m  

(8.16) 
(O, x~, . . . ,  xD = ~ x ~ ,  ... ,  x~) ,  

The  proof  is complete .  

h = O~ ...~ y~,--1 . 

B) L e t  p be  a p r ime  ideal  in ff = C[~o, $1, ..., ~.]. W e  say  t h a t  V(O) satisfies 

a Phragm~n-~ndel6] principle in the direction ~ = (1, 0, ..., 0) if we van lind s > O 
such that every plurisubharmonie ]unetio~ ~ on C ~+~ that satisfies 

(8.17) ~ ( ~ ) ~  A [ I m ~ ' ]  -]- e s u p ( O , - -  Im$o)  on V(O) for some A ~ O  

(8.18) ~(~) =< A[~'I on v(~) /or some X >= o 

also satisfies 

(8.19) ~ ( ~ ) ~ B ( l I m ~ ' t  + 1  ) oN V(O) ]or some B ~ O ( ~ ) .  

R E ~ K .  - W h e n  r  is fo rmal ly  non-charac te r i s t i c  in the  d i rec t ion  v the  

impl ica t ion  (8.17), (8.18) => (8.19) is equ iva len t  to  the  impl ica t ion  (8.17')~,  

(a) We have set, here r  (r .... , ~n). 
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(8.18) :::> (8.19')~ where 

(8.17')~ 

and 

9(~) =< Al lm  ~'q -[- e sup ( 0 , -  Im~o) + 

+ ~V log (1 + I~l) o~ V(O) ]or some A >= 0 

(8.19')~ q~(~')_<B(llm~"l+l ) + ~ l o g ( l +  I~]) on v(o) ]or some B ~ o .  

Indeed, arguing as in [18] (Proposition 1, p. 217), we can show tha t  one can 
construct, for a > 0 and any  integer M >  0 a plarisubharmonio function ~%.M 
on C ~ with 

--  On-- M l o g  (1 + ](~x, ..., $~)l) + al Im ( ~ ,  . . . ,  ~.)l 

----< ~O,M(~z, "" '  ~ )  ~ CM-- / l o g  (1 + [(~, ..., ~)[) + a l lm ($~, ..., ~.)[ 

for some constant  6 '~>  0. Then (8.17') implies, because ff/p is  formally non- 
characteristic in the direction v, that  

(8.17") qg(~) =< A IIm ~'l + ~ sup ( 0 , -  Im ~'o) + 

+ M log (1 + I(~, ..., ~)1) + ~ on V(~o), 

for an integer M > 0 and a constant  C~ > 0, both depending only on 2V and p. 
Then ~($) = ~($) + ~,~($,, ..., $~) -  C~-- C~ satisfies (8.17) and (8.18) with a 

new constant  A ' >  A.  Then (8.19') is a consequence of (8.19) for ~ and of (8.20). 
The vieeversa is obvious ~s (8.17) is the sume as (8.17')o and (8.19) the same as 
(8.19r)o. 

Then we obtain: 

Theorem 8.7. - Zet M be a unitary left ~-modute o] finite type. We assume that 
]or p ~ Ass (M) either p is generated by p' -~ p ~ cd~, or that p satisfies a _Phragm~n- 
ZindelS] principle in the direction v -~  (1, 0, . . . ,0)  and ~/p is ]ormally non-charac- 
teristic in the direction v. Then M is o] evolution in the direction v. 

PI~OOF.- Assume tha t  ~/p is formally non-characteristic in the direction v. Then, 
by  Theorem 8.6 and the open mapping theorem, i f /~  is a distribution with compact 
support in H (~ {xo < e} and ~ its Fourier-Laplace transform, then, for some con- 
stunt C => 0, the plurisubhamonio function 

0o(~') = log I~'(-- ~ ) [ -  C 
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satisfies (8.17')~ ~nd (8.18) for some integer IV ~ 0 and ~. suitable constant  A ~ 0. 

The implication (8.17')g ~n4 (8.18) ~ (8.19')~ tells us then  tha t  condition (EO) is 
satisfied (of. w 7) and therefore tha t  S/p is of evolution in the direction v. 

The s ta tement  follows by  Proposi t ion 7.1 and Theorem 7.1. 

I~V,~_ARK. -- When  v = (1, 0, ..., 0) is non-characterist ic  for S/p, then  we can choose 

9(~) = s sup ( 0 , -  IMP0) as a plurisubharmonic funct ion on V(p) satisfying (8.17) 
and (8.18) grid then  (8.19) is the  condition of hyperbolici ty.  

For  a principal  ideal p, the fact  t h a t  the  Petrowski  condition 

(s.21) - - I m $ o < 6  for ( $ o , $ ~ , . . . , $ . ) e V ( p ) ,  ( ~ x , . . . , $ ~ ) e R  n 

implies tha t  S/p is of evolution in the  direction v = (1, 0, ..., 0) reduces to the clas- 
sical Phragmbn-Lindel6ff  inequal i ty  for plurisubharmonic functions on C ~. Indeed,  
let 9 be a plurisubharmonic funct ion on C~+~ satisfying (8.17) and (8.18). 

Set 

~ ( ~ ,  . . . ,  ~.) = sup {~O(;o, ~ ,  . . . ,  ~.): (~o, ~,, . . . ,  ~.) e v ( p ) } .  

F r o m  (8.17), (8.18) we have 

W(~x, ..., ~ )  =< eC if (~,  ..., ~ )  E R" 

~ ( r 1 6 2 1 6 2  if (r , ... , r e C" 

~nd these inequalities imply tha t  

W($~, ..., ~.) < eO + A[Im ( ~ , _ _  ... , ~ ) [  on C" , i.e. 

~ ( ~ o , ~ , . . . , $ . ) < _ e r  on V(p).  
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