Skip to main content

ARLIF: A Flexible and Efficient Recurrent Neuronal Model for Sequential Tasks

  • Conference paper
  • First Online:
Human Brain and Artificial Intelligence (HBAI 2021)

Abstract

Spiking neural networks (SNNs), stem from neuroscience, are promising for energy-efficient information processing due to the “event-driven” characteristic, whereas, they are inferior to artificial neural networks (ANNs) in real complicated tasks. However, ANNs usually suffer from expensive processing costs and a large number of parameters. Likewise, constrained to convergence speed, stability, complicated training mechanism and preprocessing setting, which is an obstacle for the SNN practitioners to expand its application scope. Inspired by the operation mechanism of human brain neurons, a brain-inspired Adaptive firing threshold Recurrent Leaky Integrate-and-Fire (ARLIF) model proposed. ARLIF and his variant ConvARLIF2D, which fuses the calculation logic of ANNs and bio-dynamic behaviors of SNNs, has a low-power dissipation since its number of weights is far less than SimpleRNN, GRU or LSTM. In this work, we present a Keras-based implementation of the layer of ARLIF and ConvARLIF2D that seamlessly fits in the contemporary deep learning framework without writing complex boilerplate code. The experiments result indicating that our ARLIF performs favorably against the state-of-the-art architectures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bengio, Y., Simard, P., Frasconi, P., et al.: Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw. 5(2), 157–166 (1994)

    Article  Google Scholar 

  2. Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3024, pp. 25–36. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24673-2_3

    Chapter  Google Scholar 

  3. Carreira, J., Zisserman, A.: Quo vadis, action recognition? A new model and the kinetics dataset. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017

    Google Scholar 

  4. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

  5. Chollet, F., et al.: Keras (2015)

    Google Scholar 

  6. Donahue, J., et al.: Long-term recurrent convolutional networks for visual recognition and description. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2015

    Google Scholar 

  7. FitzHugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1(6), 445–466 (1961)

    Article  Google Scholar 

  8. Gerstner, W., Kistler, W.M., Naud, R., Paninski, L.: Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition. Cambridge University Press, Cambridge (2014)

    Book  Google Scholar 

  9. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  10. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117(4), 500–544 (1952)

    Article  Google Scholar 

  11. Izhikevich, E.M.: Simple model of spiking neurons. IEEE Trans. Neural Netw. 14(6), 1569–1572 (2003)

    Article  MathSciNet  Google Scholar 

  12. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images. Technical report, Citeseer (2009)

    Google Scholar 

  13. Lee, C., Sarwar, S.S., Roy, K.: Enabling spike-based backpropagation in state-of-the-art deep neural network architectures. arXiv preprint arXiv:1903.06379 (2019)

  14. Lee, J.H., Delbruck, T., Pfeiffer, M.: Training deep spiking neural networks using backpropagation. Front. Neurosci. 10, 508 (2016)

    Google Scholar 

  15. Liu, C., et al. Beyond pixels: exploring new representations and applications for motion analysis. Ph.D. thesis, Massachusetts Institute of Technology (2009)

    Google Scholar 

  16. Maass, W.: Networks of spiking neurons: the third generation of neural network models. Neural Netw. 10(9), 1659–1671 (1997)

    Article  Google Scholar 

  17. Mishkin, D., Matas, J.: All you need is a good init. arXiv preprint arXiv:1511.06422 (2015)

  18. Nagumo, J., Arimoto, S., Yoshizawa, S.: An active pulse transmission line simulating nerve axon. Proc. IRE 50(10), 2061–2070 (1962)

    Article  Google Scholar 

  19. Rumelhart, D.E., Hinton, G.E., Williams, R.J., et al.: Learning representations by back-propagating errors. Cogn. Model. 5(3), 1 (1988)

    MATH  Google Scholar 

  20. Sengupta, A., Ye, Y., Wang, R., Liu, C., Roy, K.: Going deeper in spiking neural networks: VGG and residual architectures. Front. Neurosci. 13, 95 (2019)

    Article  Google Scholar 

  21. Shi, X., Chen, Z., Hao, W., Yeung, D.Y., Woo, W.C.: Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: International Conference on Neural Information Processing Systems (2015)

    Google Scholar 

  22. Soomro, K., Zamir, A.R, Shah, M.: UCF101: a dataset of 101 human actions classes from videos in the wild. arXiv preprint arXiv:1212.0402 (2012)

  23. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3D convolutional networks. In: The IEEE International Conference on Computer Vision (ICCV), December 2015

    Google Scholar 

  24. Wang, L., et al.: Temporal segment networks: towards good practices for deep action recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 20–36. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_2

    Chapter  Google Scholar 

  25. Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proc. IEEE 78(10), 1550–1560 (1990)

    Article  Google Scholar 

  26. Wu, Y., Deng, L., Li, G., Zhu, J., Shi, L.: Spatio-temporal backpropagation for training high-performance spiking neural networks. Front. Neurosci. 12, 331 (2018)

    Article  Google Scholar 

  27. Wu, Y., Deng, L., Li, G., Zhu, J., Xie, Y., Shi, L.: Direct training for spiking neural networks: faster, larger, better. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1311–1318 (2019)

    Google Scholar 

  28. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenzhi Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gao, D., Wu, Z., Wu, Y., Li, G., Pei, J. (2021). ARLIF: A Flexible and Efficient Recurrent Neuronal Model for Sequential Tasks. In: Wang, Y. (eds) Human Brain and Artificial Intelligence. HBAI 2021. Communications in Computer and Information Science, vol 1369. Springer, Singapore. https://doi.org/10.1007/978-981-16-1288-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1288-6_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1287-9

  • Online ISBN: 978-981-16-1288-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics