Skip to main content

Initial Management of the Trauma Patient in Maxillofacial Surgery

  • Chapter
  • First Online:
Perioperative Assessment of the Maxillofacial Surgery Patient

Abstract

Oral maxillofacial surgeons must be integral members of the trauma team. With the unique skill sets of this specialty, OMFS is a certain critical participant in the initial evaluation and management of patients with multiple injuries, particularly with critical issues such as a difficult airway due to injuries involving the head and neck, massive hemorrhage from these areas, and threatened vision loss. Although definitive repair of injuries within the area of OMFS generally does not occur until several days past the resuscitation of the critically injured, early participation of the oral and maxillofacial surgeon in optimal care of trauma victims promotes a more thorough understanding of the complex pathophysiology that may adversely affect perioperative preparation for these cases. Moreover, familiarity with recent advances in resuscitation of shock following trauma prepares the surgeon for catastrophic bleeding that may occasionally complicate OMFS. Fundamental knowledge of cardiovascular physiology, a detailed understanding of the coagulation system, and appreciation for the intricate pathways and delicate balance of homeostasis provide an arguably necessary scientific foundation for safe and effective surgical practice of any specialty.

“Shock is a rude unhinging of the machinery of life.”

—Samuel Gross. 1871

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    National Association of Emergency Medical Technicians

  2. 2.

    Blood volume for males is 75 mL/kg, for females 65 mL/kg.

  3. 3.

    Expression of clinical data in canonical forms tends to substantially expand the informational content of the raw data, and consequently data in this form are utilized whenever possible during assessment and management of a multiple trauma patient. For example, any one PaO2 value expressed in relation to the fractional amount of oxygen in the gas the patient is inspiring when the PaO2 is drawn, referred to as the P/F ratio, may now indicate one of several different clinical conditions. Thus, a P/F ratio = 100 for a ventilated, critically injured patient with a PaO2 of 100 mmHg on a FiO2 of 1.0 implies severe respiratory failure. This is, of course, a substantially different scenario compared to a healthy individual breathing room air who also has a PaO2 of 100 mmHg (P/F = 100/0.2 = 500).

  4. 4.

    During subsequent phases of management, determination of ScvO2 may be used to uncover risk for reintubation in patients who successfully have met all other criteria for extubation.

References

  1. Rhee P, Joseph B, Pandit V, Aziz H, Vercruysse G, Kulvatunyou N, Friese RS. Increasing trauma deaths in the United States. Ann Surg. 2014;260(1):13–21. https://doi.org/10.1097/SLA.0000000000000600.

    Article  PubMed  Google Scholar 

  2. Center for Disease Control. 2017. https://wisqars.cdc.gov:8443/cdcMapFramework/mapModuleInterface.jsp. Accessed 29 Mar 2017.

  3. Kwon AM, Garbett NC, Kloecker GH. Pooled preventable death rates in trauma patients: meta analysis and systematic review since 1990. Eur J Trauma Emerg Surg. 2014;40(3):279–85. https://doi.org/10.1007/s00068-013-0364-5.

    Article  CAS  PubMed  Google Scholar 

  4. Lynham AJ, Hirst JP, Cosson JA, Chapman PJ, McEniery P. Emergency department management of maxillofacial trauma. EMA. 2004;16(1):7–12.

    PubMed  Google Scholar 

  5. Choonthar MM, Raghothaman A, Prasad R, Pradeep S, Pandya K. Head injury- a maxillofacial surgeon’s perspective. J Clin Diagn Res. 2016;10(1):ZE01–6. https://doi.org/10.7860/JCDR/2016/16112.7122.

  6. Krausz AA, Krausz MM, Picetti E. Maxillofacial and neck trauma: a damage control approach. World J Emerg Surg. 2015;10:31. https://doi.org/10.1186/s13017-015-0022-9.

    Article  PubMed  PubMed Central  Google Scholar 

  7. O’Connor RC, Shakib K, Brennan PA. Recent advances in the management of oral and maxillofacial trauma. Br J Oral Maxillofac Surg. 2015;53(10):913–21. https://doi.org/10.1016/j.bjoms.2015.08.261.

  8. Mast G, Ehrenfeld M, Cornelius CP, Litschel R, Tasman AJ. Maxillofacial fractures: midface and internal orbit-part I: classification and assessment. Facial Plast Surg. 2015;31(4):351–6. https://doi.org/10.1055/s-0035-1563692.

    Article  CAS  PubMed  Google Scholar 

  9. Mast G, Ehrenfeld M, Cornelius CP, Tasman AJ, Litschel R. Maxillofacial fractures: midface and internal orbit-part II: principles and surgical treatment. Facial Plast Surg. 2015;31(4):357–67. https://doi.org/10.1055/s-0035-1563693.

    Article  CAS  PubMed  Google Scholar 

  10. Coppola S, Froio S, Merli G, Chiumello D. Maxillofacial trauma in the emergency department: pearls and pitfalls in airway management. Minerva Anestesiol. 2015;81(12):1346–58.

    CAS  PubMed  Google Scholar 

  11. Tong DC, Breeze J. Damage control surgery and combat-related maxillofacial and cervical injuries: a systematic review. Br J Oral Maxillofac Surg. 2016;54(1):8–12. https://doi.org/10.1016/j.bjoms.2015.10.013.

    Article  PubMed  Google Scholar 

  12. Kuhnel TS, Reichert TE. Trauma of the midface. GMS Curr Top Otorhinolaryngol Head Neck Surg. 2015;14:Doc06. https://doi.org/10.3205/cto000121.

    PubMed  PubMed Central  Google Scholar 

  13. Kieliszak CR, Larson SR, Keller CR, Selinsky CR, Joshi AS. Interrelationship of structure and function in maxillofacial fractures. J Am Osteopath Assoc. 2016;116(2):e8–e12. https://doi.org/10.7556/jaoa.2016.026.

    Article  PubMed  Google Scholar 

  14. Sahni V. Maxillofacial trauma scoring systems. Injury. 2016;47(7):1388–92. https://doi.org/10.1016/j.injury.2016.02.001.

    Article  PubMed  Google Scholar 

  15. Jose A, Nagori SA, Agarwal B, Bhutia O, Roychoudhury A. Management of maxillofacial trauma in emergency: an update of challenges and controversies. J Emerg Trauma Shock. 2016;9(2):73–80. https://doi.org/10.4103/0974-2700.179456.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Powers DB. Classification of mandibular condylar fractures. Atlas Oral Maxillofac Surg Clin North Am. 2017;25(1):1–10. https://doi.org/10.1016/j.cxom.2016.11.001.

    Article  PubMed  Google Scholar 

  17. Azarmehr I, Stokbro K, Bell RB, Thygesen T. Surgical navigation: a systematic review of indications, treatments, and outcomes in oral and maxillofacial surgery. J Oral Maxillofac Surg. 2017;75(9):1987–2005. https://doi.org/10.1016/j.joms.2017.01.004.

    Article  PubMed  Google Scholar 

  18. Noy D, Rachmiel A, Emodi O, Amsalem Y, Israel Y, Nagler RM. Transarterial embolization in maxillofacial intractable potentially life-threatening hemorrhage. J Oral Maxillofac Surg. 2017;75(6):1223–31. https://doi.org/10.1016/j.joms.2017.01.033.

    Article  PubMed  Google Scholar 

  19. Mitchener TA, Chan R, Simecek JW. Oral-maxillofacial injury surveillance of U.S. military personnel in Iraq and Afghanistan, 2001 to 2014. Mil Med. 2017;182(3):e1767–73. https://doi.org/10.7205/MILMED-D-16-00117.

    Article  PubMed  Google Scholar 

  20. Manodh P, Prabhu Shankar D, Pradeep D, Santhosh R, Murugan A. Incidence and patterns of maxillofacial trauma-a retrospective analysis of 3611 patients-an update. Oral Maxillofac Surg. 2016;20(4):377–83. https://doi.org/10.1007/s10006-016-0576-z.

    Article  CAS  PubMed  Google Scholar 

  21. Haq J, Gately F, Bentley R. Implementation of an oral and maxillofacial surgery trauma team in a major trauma centre. Br J Oral Maxillofac Surg. 2017;55(4):396–9. https://doi.org/10.1016/j.bjoms.2016.12.016.

    Article  CAS  PubMed  Google Scholar 

  22. Fonseca RJ, Barber HD, Walker VW, Powers MP, Frost DE. Oral and maxillofacial trauma 2013.

    Google Scholar 

  23. Leigh-Smith S, Harris T. Tension pneumothorax--time for a re-think? Emerg Med J. 2005;22(1):8–16. https://doi.org/10.1136/emj.2003.010421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Orlinsky M, Shoemaker W, Reis ED, Kerstein MD. Current controversies in shock and resuscitation. Surg Clin North Am. 2001;81(6):1217–62.

    Article  CAS  PubMed  Google Scholar 

  25. Cowley RA, Mergner WJ, Fisher RS, Jones RT, Trump BF. The subcellular pathology of shock in trauma patients: studies using the immediate autopsy. Am Surg. 1979;45(4):255–69.

    CAS  PubMed  Google Scholar 

  26. Guan J, Jin DD, Jin LJ, Lu Q. Apoptosis in organs of rats in early stage after polytrauma combined with shock. J Trauma. 2002;52(1):104–11.

    PubMed  Google Scholar 

  27. Mackersie RC. Pitfalls in the evaluation and resuscitation of the trauma patient. Emerg Med Clin North Am. 2010;28(1):1–27. https://doi.org/10.1016/j.emc.2009.10.001.

    Article  PubMed  Google Scholar 

  28. Klabunde RE. Cardiovascular physiology concepts. 2nd ed. Philadelphia: Lippincott Williams & Wilkins; 2012.

    Google Scholar 

  29. Kitzman DW, Little WC, Brubaker PH, Anderson RT, Hundley WG, Marburger CT, Brosnihan B, Morgan TM, Stewart KP. Pathophysiological characterization of isolated diastolic heart failure in comparison to systolic heart failure. JAMA. 2002;288(17):2144–50.

    Article  PubMed  Google Scholar 

  30. Costantini TW, Coimbra R, Holcomb JB, Podbielski JM, Catalano R, Blackburn A, Scalea TM, Stein DM, Williams L, Conflitti J, Keeney S, Suleiman G, Zhou T, Sperry J, Skiada D, Inaba K, Williams BH, Minei JP, Privette A, Mackersie RC, Robinson BR, Moore FO, Group APFS. Current management of hemorrhage from severe pelvic fractures: results of an American Association for the Surgery of Trauma multi-institutional trial. J Trauma Acute Care Surg. 2016;80(5):717–723; discussion 723-715. https://doi.org/10.1097/TA.0000000000001034.

    Article  CAS  PubMed  Google Scholar 

  31. Costantini TW, Coimbra R, Holcomb JB, Podbielski JM, Catalano R, Blackburn A, Scalea TM, Stein DM, Williams L, Conflitti J, Keeney S, Hoey C, Zhou T, Sperry J, Skiada D, Inaba K, Williams BH, Minei JP, Privette A, Mackersie RC, Robinson BR, Moore FO, Group APFS. Pelvic fracture pattern predicts the need for hemorrhage control intervention -- results of a AAST multi-institutional study. J Trauma Acute Care Surg. 2017. https://doi.org/10.1097/TA.0000000000001465.

  32. Wohlauer MV, Moore EE, Droz NM, Harr J, Gonzalez E, Fragoso M, Silliman CC. Hemodilution is not critical in the pathogenesis of the acute coagulopathy of trauma. J Surg Res. 2012;173(1):26–30. https://doi.org/10.1016/j.jss.2011.04.047.

    Article  PubMed  Google Scholar 

  33. Cohen MJ, Christie SA. Coagulopathy of trauma. Crit Care Clin. 2017;33(1):101–18. https://doi.org/10.1016/j.ccc.2016.08.003.

    Article  PubMed  Google Scholar 

  34. Davenport RA, Brohi K. Cause of trauma-induced coagulopathy. Curr Opin Anaesthesiol. 2016;29(2):212–9. https://doi.org/10.1097/ACO.0000000000000295.

    Article  CAS  PubMed  Google Scholar 

  35. Gando S, Wada H, Kim HK, Kurosawa S, Nielsen JD, Thachil J, Toh CH, Scientific, Standardization Committee on DICotI. Comparison of disseminated intravascular coagulation in trauma with coagulopathy of trauma/acute coagulopathy of trauma-shock. J Thromb Haemost. 2012;10(12):2593–5.

    Article  CAS  PubMed  Google Scholar 

  36. Grottke O, Fries D, Nascimento B. Perioperatively acquired disorders of coagulation. Curr Opin Anaesthesiol. 2015;28(2):113–22. https://doi.org/10.1097/ACO.0000000000000176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hayakawa M. Pathophysiology of trauma-induced coagulopathy: disseminated intravascular coagulation with the fibrinolytic phenotype. J Intensive Care. 2017;5:14. https://doi.org/10.1186/s40560-016-0200-1.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Brohi K, Singh J, Heron M, Coats T. Acute traumatic coagulopathy. J Trauma. 2003;54(6):1127–30. https://doi.org/10.1097/01.TA.0000069184.82147.06.

    Article  PubMed  Google Scholar 

  39. Floccard B, Rugeri L, Faure A, Denis MS, Boyle EM, Peguet O, Levrat A, Guillaume C, Marcotte G, Vulliez A, Hautin E, David JS, Négrier C, Allaouchiche B. Early coagulopathy in trauma patients: an on-scene and hospital admission study. Injury. 2012;43(1):26–32. https://doi.org/10.1016/j.injury.2010.11.003.

    Article  PubMed  Google Scholar 

  40. MacLeod JB. Trauma and coagulopathy: a new paradigm to consider. Arch Surg. 2008;143(8):797–801. https://doi.org/10.1001/archsurg.143.8.797.

    Article  PubMed  Google Scholar 

  41. Brohi K. Prediction of acute traumatic coagulopathy and massive transfusion - is this the best we can do? Resuscitation. 2011;82(9):1128–1129. S0300-9572(11)00398-4. https://doi.org/10.1016/j.resuscitation.2011.06.022.

    Article  PubMed  Google Scholar 

  42. Davis PK, Musunuru H, Walsh M, Cassady R, Yount R, Losiniecki A, Moore EE, Wohlauer MV, Howard J, Ploplis VA, Castellino FJ, Thomas SG. Platelet dysfunction is an early marker for traumatic brain injury-induced coagulopathy. Neurocrit Care. 2013;18(2):201–8. https://doi.org/10.1007/s12028-012-9745-6.

    Article  CAS  PubMed  Google Scholar 

  43. Kutcher ME, Redick BJ, McCreery RC, Crane IM, Greenberg MD, Cachola LM, Nelson MF, Cohen MJ. Characterization of platelet dysfunction after trauma. J Trauma Acute Care Surg. 2012;73(1):13–9. https://doi.org/10.1097/TA.0b013e318256deab.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Solomon C, Traintinger S, Ziegler B, Hanke A, Rahe-Meyer N, Voelckel W, Schochl H. Platelet function following trauma. A multiple electrode aggregometry study. Thromb Haemost. 2011;106(2):322–30. https://doi.org/10.1160/TH11-03-0175.

    Article  CAS  PubMed  Google Scholar 

  45. Windelov NA, Sorensen AM, Perner A, Wanscher M, Larsen CF, Ostrowski SR, Johansson PI, Rasmussen LS. Platelet aggregation following trauma: a prospective study. Blood Coagul Fibrinolysis. 2014;25(1):67–73. https://doi.org/10.1097/MBC.0b013e328364c2da.

    Article  PubMed  Google Scholar 

  46. Johansson P, Stensballe J, Ostrowski S. Shock induced endotheliopathy (SHINE) in acute critical illness - a unifying pathophysiologic mechanism. Crit Care. 2017;21(1):25. https://doi.org/10.1186/s13054-017-1605-5.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Frith D, Brohi K. The pathophysiology of trauma-induced coagulopathy. Curr Opin Crit Care. 2012;18(6):631–6. https://doi.org/10.1097/MCC.0b013e3283599ab9.

    Article  PubMed  Google Scholar 

  48. Frith D, Davenport R, Brohi K. Acute traumatic coagulopathy. Curr Opin Anaesthesiol. 2012;25(2):229–34. https://doi.org/10.1097/ACO.0b013e3283509675.

    Article  PubMed  Google Scholar 

  49. Gando S, Sawamura A, Hayakawa M. Trauma, shock, and disseminated intravascular coagulation: lessons from the classical literature. Ann Surg. 2011;254(1):10–9. https://doi.org/10.1097/SLA.0b013e31821221b1.

    Article  PubMed  Google Scholar 

  50. Selby R, Geerts W, Ofosu FA, Craven S, Dewar L, Phillips A, Szalai JP. Hypercoagulability after trauma: hemostatic changes and relationship to venous thromboembolism. Thromb Res. 2009;124(3):281–7. https://doi.org/10.1016/j.thromres.2008.10.002.

    Article  CAS  PubMed  Google Scholar 

  51. Wohlauer MV, Moore EE, Thomas S, Sauaia A, Evans E, Harr J, Silliman CC, Ploplis V, Castellino FJ, Walsh M. Early platelet dysfunction: an unrecognized role in the acute coagulopathy of trauma. J Am Coll Surg. 2012;214(5):739–46. https://doi.org/10.1016/j.jamcollsurg.2012.01.050.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Johansson PI, SØRensen AM, Perner A, Welling KL, Wanscher M, Larsen CF, Ostrowski SR. High sCD40L levels early after trauma are associated with enhanced shock, sympathoadrenal activation, tissue and endothelial damage, coagulopathy and mortality. J Thromb Haemost. 2012;10(2):207–16. https://doi.org/10.1111/j.1538-7836.2011.04589.x.

    Article  CAS  PubMed  Google Scholar 

  53. Johansson PI, Stensballe J, Rasmussen LS, Ostrowski SR. A high admission syndecan-1 level, a marker of endothelial glycocalyx degradation, is associated with inflammation, protein C depletion, fibrinolysis, and increased mortality in trauma patients. Ann Surg. 2011;254(2):194–200. https://doi.org/10.1097/SLA.0b013e318226113d.

    Article  PubMed  Google Scholar 

  54. Johansson PI, Stensballe J, Rasmussen LS, Ostrowski SR. High circulating adrenaline levels at admission predict increased mortality after trauma. J Trauma Acute Care Surg. 2012;72(2):428–36.

    Article  CAS  PubMed  Google Scholar 

  55. Ostrowski SR, Johansson PI. Endothelial glycocalyx degradation induces endogenous heparinization in patients with severe injury and early traumatic coagulopathy. J Trauma Acute Care Surg. 2012;73(1):60–6. https://doi.org/10.1097/TA.0b013e31825b5c10.

    Article  CAS  PubMed  Google Scholar 

  56. Senzolo M, Coppell J, Cholongitas E, Riddell A, Triantos CK, Perry D, Burroughs AK. The effects of glycosaminoglycans on coagulation: a thromboelastographic study. Blood Coagul Fibrinolysis. 2007;18(3):227–36. https://doi.org/10.1097/MBC.0b013e328010bd3d.

    Article  CAS  PubMed  Google Scholar 

  57. Johansson PI, Stensballe J, Oliveri R, Wade CE, Ostrowski SR, Holcomb JB. How I treat patients with massive hemorrhage. Blood. 2014. https://doi.org/10.1182/blood-2014-05-575340.

  58. Johansson PI, Sorensen AM, Perner A, Welling KL, Wanscher M, Larsen CF, Ostrowski SR. Disseminated intravascular coagulation or acute coagulopathy of trauma shock early after trauma? An observational study. Crit Care. 2011;15(6):R272. https://doi.org/10.1186/cc10553.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Johansson PI, Stensballe J, Ostrowski SR. Current management of massive hemorrhage in trauma. Scand J Trauma Resusc Emerg Med. 2012;20:47. https://doi.org/10.1186/1757-7241-20-47.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Tennent GA, Brennan SO, Stangou AJ, O’Grady J, Hawkins PN, Pepys MB. Human plasma fibrinogen is synthesized in the liver. Blood. 2007;109(5):1971–4. https://doi.org/10.1182/blood-2006-08-040956.

  61. Kornblith LZ, Kutcher ME, Redick BJ, Calfee CS, Vilardi RF, Cohen MJ. Fibrinogen and platelet contributions to clot formation: implications for trauma resuscitation and thromboprophylaxis. J Trauma Acute Care Surg. 2014;76(2):255–63. https://doi.org/10.1097/TA.0000000000000108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gando S, Otomo Y. Local hemostasis, immunothrombosis, and systemic disseminated intravascular coagulation in trauma and traumatic shock. Crit Care. 2015;19:72. https://doi.org/10.1186/s13054-015-0735-x.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Hess JR, Brohi K, Dutton RP, Hauser CJ, Holcomb JB, Kluger Y, Mackway-Jones K, Parr MJ, Rizoli SB, Yukioka T, Hoyt DB, Bouillon B. The coagulopathy of trauma: a review of mechanisms. J Trauma. 2008;65(4):748–54. https://doi.org/10.1097/TA.0b013e3181877a9c.

    Article  CAS  PubMed  Google Scholar 

  64. Hess JR, Lawson JH. The coagulopathy of trauma versus disseminated intravascular coagulation. J Trauma. 2006;60(6 Suppl):S12–9. https://doi.org/10.1097/01.ta.0000199545.06536.22.

    Article  PubMed  Google Scholar 

  65. Levi M. Disseminated intravascular coagulation. In: Hoffman R, Benz EJ, Silberstein LE, Heslop HE, Weitz JI, Anastasi J, editors. Hematology: basic principles and practice. 6th ed. Philadelphia: Saunders; 2013. p. 2001–12.

    Google Scholar 

  66. Wood JP, Ellery PE, Maroney SA, Mast AE. Biology of tissue factor pathway inhibitor. Blood. 2014;123(19):2934–43. https://doi.org/10.1182/blood-2013-11-512764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Levi M, Toh CH, Thachil J, Watson HG. Guidelines for the diagnosis and management of disseminated intravascular coagulation. Br J Haematol. 2009;145(1):24–33. https://doi.org/10.1111/j.1365-2141.2009.07600.x.

    Article  CAS  PubMed  Google Scholar 

  68. Muench MV, Canterino JC. Trauma in pregnancy. Obstet Gynecol Clin N Am. 2007;34(3):555–83. https://doi.org/10.1016/j.ogc.2007.06.001.

    Article  Google Scholar 

  69. McLintock C, James AH. Obstetric hemorrhage. J Thromb Haemost. 2011;9(8):1441–51. https://doi.org/10.1111/j.1538-7836.2011.04398.x.

    Article  CAS  PubMed  Google Scholar 

  70. Davenport R. Pathogenesis of acute traumatic coagulopathy. Transfusion. 2013;53(Suppl 1):23S–7S. https://doi.org/10.1111/trf.12032.

    Article  PubMed  Google Scholar 

  71. Raza I, Davenport R, Rourke C, Platton S, Manson J, Spoors C, Khan S, De’ath HD, Allard S, Hart DP, Pasi KJ, Hunt BJ, Stanworth S, MacCallum PK, Brohi K. The incidence and magnitude of fibrinolytic activation in trauma patients. J Thromb Haemost. 2013;11(2):307–14. https://doi.org/10.1111/jth.12078.

  72. Schochl H, Voelckel W, Maegele M, Solomon C. Trauma-associated hyperfibrinolysis. Hamostaseologie. 2012;32(1):22–7. https://doi.org/10.5482/ha-1178.

    Article  CAS  PubMed  Google Scholar 

  73. Cardenas JC, Wade CE, Holcomb JB. Mechanisms of trauma-induced coagulopathy. Curr Opin Hematol. 2014;21(5):404–9. https://doi.org/10.1097/MOH.0000000000000063.

    Article  PubMed  Google Scholar 

  74. Cotton BA, Harvin JA, Kostousouv V, Minei KM, Radwan ZA, Schochl H, Wade CE, Holcomb JB, Matijevic N. Hyperfibrinolysis at admission is an uncommon but highly lethal event associated with shock and prehospital fluid administration. J Trauma Acute Care Surg. 2012;73(2):365–70. https://doi.org/10.1097/TA.0b013e31825c1234.

    Article  CAS  PubMed  Google Scholar 

  75. Bolliger D, Szlam F, Levy JH, Molinaro RJ, Tanaka KA. Haemodilution-induced profibrinolytic state is mitigated by fresh-frozen plasma: implications for early haemostatic intervention in massive haemorrhage. Br J Anaesth. 2010;104(3):318–25. https://doi.org/10.1093/bja/aeq001.

    Article  CAS  PubMed  Google Scholar 

  76. Schochl H, Frietsch T, Pavelka M, Jambor C. Hyperfibrinolysis after major trauma: differential diagnosis of lysis patterns and prognostic value of thrombelastometry. J Trauma. 2009;67(1):125–31. https://doi.org/10.1097/TA.0b013e31818b2483. 00005373-200907000-00022 [pii]

    Article  PubMed  Google Scholar 

  77. Hunt BJ, Segal H. Hyperfibrinolysis. J Clin Pathol. 1996;49(12):958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Stachurska J, Latallo Z, Kopec M. Inhibition of platelet aggregation by dialysable fibrinogen degradation products (FDP). Thromb Diath Haemorrh. 1970;23(1):91–8.

    CAS  PubMed  Google Scholar 

  79. Kushimoto S, Shibata Y, Yamamoto Y. Implications of fibrinogenolysis in patients with closed head injury. J Neurotrauma. 2003;20(4):357–63. https://doi.org/10.1089/089771503765172318.

    Article  PubMed  Google Scholar 

  80. Riskin DJ, Tsai TC, Riskin L, Hernandez-Boussard T, Purtill M, Maggio PM, Spain DA, Brundage SI. Massive transfusion protocols: the role of aggressive resuscitation versus product ratio in mortality reduction. J Am Coll Surg. 2009;209(2):198–205. https://doi.org/10.1016/j.jamcollsurg.2009.04.016.

    Article  PubMed  Google Scholar 

  81. Spinella PC, Perkins JG, Grathwohl KW, Beekley AC, Holcomb JB. Warm fresh whole blood is independently associated with improved survival for patients with combat-related traumatic injuries. J Trauma. 2009;66(4 Suppl):S69–76. https://doi.org/10.1097/TA.0b013e31819d85fb.

    Article  PubMed  PubMed Central  Google Scholar 

  82. McCarron DA, Elliott WC, Rose JS, Bennett WM. Severe mixed metabolic acidosis secondary to rhabdomyolysis. Am J Med. 1979;67(5):905–8.

    Article  CAS  PubMed  Google Scholar 

  83. Kraut JA, Madias NE. Serum anion gap: its uses and limitations in clinical medicine. CJASN. 2007;2(1):162–74. https://doi.org/10.2215/CJN.03020906.

    Article  CAS  PubMed  Google Scholar 

  84. Murthi SB, Stansbury LG, Dutton RP, Edelman BB, Scalea TM, Hess JR. Transfusion medicine in trauma patients: an update. Expert Rev Hematol. 2011;4(5):527–37. https://doi.org/10.1586/ehm.11.49.

    Article  PubMed  Google Scholar 

  85. Kermode JC, Zheng Q, Milner EP. Marked temperature dependence of the platelet calcium signal induced by human von Willebrand factor. Blood. 1999;94(1):199–207.

    CAS  PubMed  Google Scholar 

  86. Hardy JF, de Moerloose P, Samama CM. The coagulopathy of massive transfusion. Vox Sang. 2005;89(3):123–7. https://doi.org/10.1111/j.1423-0410.2005.00678.x.

    Article  PubMed  Google Scholar 

  87. Watts DD, Trask A, Soeken K, Perdue P, Dols S, Kaufmann C. Hypothermic coagulopathy in trauma: effect of varying levels of hypothermia on enzyme speed, platelet function, and fibrinolytic activity. J Trauma. 1998;44(5):846–54.

    Article  CAS  PubMed  Google Scholar 

  88. Peng RY, Bongard FS. Hypothermia in trauma patients. J Am Coll Surg. 1999;188(6):685–96.

    Article  CAS  PubMed  Google Scholar 

  89. Gentilello LM, Moujaes S. Treatment of hypothermia in trauma victims: thermodynamic considerations. J Intensive Care Med. 1995;10(1):5–14.

    Article  CAS  PubMed  Google Scholar 

  90. Barthel ER, Pierce JR. Steady-state and time-dependent thermodynamic modeling of the effect of intravenous infusion of warm and cold fluids. J Trauma Acute Care Surg. 2012;72(6):1590–600. https://doi.org/10.1097/TA.0b013e31824a7943.

    Article  PubMed  Google Scholar 

  91. Gentilello LM, Pierson DJ. Trauma critical care. Am J Respir Crit Care Med. 2001;163(3 Pt 1):604–7.

    Article  CAS  PubMed  Google Scholar 

  92. Davis TM, Singh B, Choo KE, Ibrahim J, Spencer JL, St John A. Dynamic assessment of the electrocardiographic QT interval during citrate infusion in healthy volunteers. Br Heart J. 1995;73(6):523–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kramer L, Bauer E, Joukhadar C, Strobl W, Gendo A, Madl C, Gangl A. Citrate pharmacokinetics and metabolism in cirrhotic and noncirrhotic critically ill patients. Crit Care Med. 2003;31(10):2450–5. https://doi.org/10.1097/01.CCM.0000084871.76568.E6.

    Article  CAS  PubMed  Google Scholar 

  94. Passman R, Kadish A. Polymorphic ventricular tachycardia, long Q-T syndrome, and torsades de pointes. Med Clin North Am. 2001;85(2):321–41.

    Article  CAS  PubMed  Google Scholar 

  95. Mayberry JC, Trunkey DD. The fractured rib in chest wall trauma. Chest Surg Clin N Am. 1997;7(2):239–61.

    CAS  PubMed  Google Scholar 

  96. Pacagnella RC, Souza JP, Durocher J, Perel P, Blum J, Winikoff B, Gulmezoglu AM. A systematic review of the relationship between blood loss and clinical signs. PLoS One. 2013;8(3):e57594. https://doi.org/10.1371/journal.pone.0057594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Dunser MW, Takala J, Brunauer A, Bakker J. Re-thinking resuscitation: leaving blood pressure cosmetics behind and moving forward to permissive hypotension and a tissue perfusion-based approach. Crit Care. 2013;17(5):326. https://doi.org/10.1186/cc12727.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Wilson M, Davis DP, Coimbra R. Diagnosis and monitoring of hemorrhagic shock during the initial resuscitation of multiple trauma patients: a review. J Emerg Med. 2003;24(4):413–22.

    Article  PubMed  Google Scholar 

  99. Cannon CM, Braxton CC, Kling-Smith M, Mahnken JD, Carlton E, Moncure M. Utility of the shock index in predicting mortality in traumatically injured patients. J Trauma. 2009;67(6):1426–30. https://doi.org/10.1097/TA.0b013e3181bbf728.

    Article  PubMed  Google Scholar 

  100. Vandromme MJ, Griffin RL, Kerby JD, McGwin G Jr, Rue LW 3rd, Weinberg JA. Identifying risk for massive transfusion in the relatively normotensive patient: utility of the prehospital shock index. J Trauma. 2011;70(2):384–8. https://doi.org/10.1097/TA.0b013e3182095a0a. 00005373-201102000-00020 [pii]

    Article  PubMed  Google Scholar 

  101. Birkhahn RH, Gaeta TJ, Terry D, Bove JJ, Tloczkowski J. Shock index in diagnosing early acute hypovolemia. Am J Emerg Med. 2005;23(3):323–6.

    Article  PubMed  Google Scholar 

  102. Mutschler M, Nienaber U, Munzberg M, Wolfl C, Schoechl H, Paffrath T, Bouillon B, Maegele M, The TraumaRegister DGU. The shock index revisited - a fast guide to transfusion requirement? A retrospective analysis on 21,853 patients derived from the TraumaRegister DGU(R). Crit Care. 2013;17(4):R172. https://doi.org/10.1186/cc12851.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Zarzaur BL, Croce MA, Magnotti LJ, Fabian TC. Identifying life-threatening shock in the older injured patient: an analysis of the National Trauma Data Bank. J Trauma. 2010;68(5):1134–8. https://doi.org/10.1097/TA.0b013e3181d87488.

    Article  PubMed  Google Scholar 

  104. Ardagh MW, Hodgson T, Shaw L, Turner D. Pulse rate over pressure evaluation (ROPE) is useful in the assessment of compensated haemorrhagic shock. Emerg Med (Fremantle). 2001;13(1):43–6.

    Article  CAS  Google Scholar 

  105. Campbell R, Ardagh MW, Than M. Validation of the pulse rate over pressure evaluation index as a detector of early occult hemorrhage: a prospective observational study. J Trauma Acute Care Surg. 2012;73(1):286–8. https://doi.org/10.1097/TA.0b013e318253b52e.

    Article  PubMed  Google Scholar 

  106. Funk DJ, Kumar A. If the central venous pressure is [x], call me ... Maybe. Crit Care Med. 2013;41(7):1823–4. https://doi.org/10.1097/CCM.0b013e3182913685.

    Article  PubMed  Google Scholar 

  107. Marik PE, Baram M, Vahid B. Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest. 2008;134(1):172–8. https://doi.org/10.1378/chest.07-2331.

    Article  PubMed  Google Scholar 

  108. Marik PE, Cavallazzi R. Does the central venous pressure predict fluid responsiveness? An updated meta-analysis and a plea for some common sense. Crit Care Med. 2013;41(7):1774–81. https://doi.org/10.1097/CCM.0b013e31828a25fd.

    Article  PubMed  Google Scholar 

  109. Jubran A. Pulse oximetry. Crit Care. 2015;19:272. https://doi.org/10.1186/s13054-015-0984-8.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Clayton DG, Webb RK, Ralston AC, Duthie D, Runciman WB. Pulse oximeter probes. A comparison between finger, nose, ear and forehead probes under conditions of poor perfusion. Anaesthesia. 1991;46(4):260–5.

    Article  CAS  PubMed  Google Scholar 

  111. Schallom L, Sona C, McSweeney M, Mazuski J. Comparison of forehead and digit oximetry in surgical/trauma patients at risk for decreased peripheral perfusion. Heart Lung. 2007;36(3):188–94. https://doi.org/10.1016/j.hrtlng.2006.07.007.

    Article  PubMed  Google Scholar 

  112. Nesseler N, Frenel JV, Launey Y, Morcet J, Malledant Y, Seguin P. Pulse oximetry and high-dose vasopressors: a comparison between forehead reflectance and finger transmission sensors. Intensive Care Med. 2012;38(10):1718–22. https://doi.org/10.1007/s00134-012-2659-0.

    Article  CAS  PubMed  Google Scholar 

  113. Walley KR. Use of central venous oxygen saturation to guide therapy. Am J Respir Crit Care Med. 2011;184(5):514–20. https://doi.org/10.1164/rccm.201010-1584CI.

    Article  PubMed  Google Scholar 

  114. Hampton DA, Schreiber MA. Near infrared spectroscopy: clinical and research uses. Transfusion. 2013;53(Suppl 1):52S–8S. https://doi.org/10.1111/trf.12036.

    Article  PubMed  Google Scholar 

  115. Cohn SM, Nathens AB, Moore FA, Rhee P, Puyana JC, Moore EE, Beilman GJ, St OTPTI. Tissue oxygen saturation predicts the development of organ dysfunction during traumatic shock resuscitation. J Trauma. 2007;62(1):44–54. https://doi.org/10.1097/TA.0b013e31802eb817.

    Article  PubMed  Google Scholar 

  116. Gomez H, Torres A, Polanco P, Kim HK, Zenker S, Puyana JC, Pinsky MR. Use of non-invasive NIRS during a vascular occlusion test to assess dynamic tissue O(2) saturation response. Intensive Care Med. 2008;34(9):1600–7. https://doi.org/10.1007/s00134-008-1145-1.

    Article  PubMed  Google Scholar 

  117. Odom SR, Howell MD, Silva GS, Nielsen VM, Gupta A, Shapiro NI, Talmor D. Lactate clearance as a predictor of mortality in trauma patients. J Trauma Acute Care Surg. 2013;74(4):999–1004. https://doi.org/10.1097/TA.0b013e3182858a3e.

    Article  CAS  PubMed  Google Scholar 

  118. Bursa F, Pleva L. Anaerobic metabolism associated with traumatic hemorrhagic shock monitored by microdialysis of muscle tissue is dependent on the levels of hemoglobin and central venous oxygen saturation: a prospective, observational study. Scand J Trauma Resusc Emerg Med. 2014;22:11. https://doi.org/10.1186/1757-7241-22-11.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Lavery RF, Livingston DH, Tortella BJ, Sambol JT, Slomovitz BM, Siegel JH. The utility of venous lactate to triage injured patients in the trauma center. J Am Coll Surg. 2000;190(6):656–64.

    Article  CAS  PubMed  Google Scholar 

  120. Vincent JL, Quintairos ESA, Couto L Jr, Taccone FS. The value of blood lactate kinetics in critically ill patients: a systematic review. Crit Care. 2016;20(1):257. https://doi.org/10.1186/s13054-016-1403-5.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Futier E, Robin E, Jabaudon M, Guerin R, Petit A, Bazin JE, Constantin JM, Vallet B. Central venous O(2) saturation and venous-to-arterial CO(2) difference as complementary tools for goal-directed therapy during high-risk surgery. Crit Care. 2010;14(5):R193. https://doi.org/10.1186/cc9310.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Mallat J, Lazkani A, Lemyze M, Pepy F, Meddour M, Gasan G, Temime J, Vangrunderbeeck N, Tronchon L, Thevenin D. Repeatability of blood gas parameters, PCO2 gap, and PCO2 gap to arterial-to-venous oxygen content difference in critically ill adult patients. Medicine. 2015;94(3):e415. https://doi.org/10.1097/MD.0000000000000415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Monnet X, Julien F, Ait-Hamou N, Lequoy M, Gosset C, Jozwiak M, Persichini R, Anguel N, Richard C, Teboul JL. Lactate and venoarterial carbon dioxide difference/arterial-venous oxygen difference ratio, but not central venous oxygen saturation, predict increase in oxygen consumption in fluid responders. Crit Care Med. 2013;41(6):1412–20. https://doi.org/10.1097/CCM.0b013e318275cece.

    Article  CAS  PubMed  Google Scholar 

  124. Maani CV, DeSocio PA, Holcomb JB. Coagulopathy in trauma patients: what are the main influence factors? Curr Opin Anaesthesiol. 2009;22(2):255–60. https://doi.org/10.1097/ACO.0b013e32832922be.

    Article  PubMed  Google Scholar 

  125. Besser MW, MacDonald SG. Acquired hypofibrinogenemia: current perspectives. J Blood Med. 2016;7:217–25. https://doi.org/10.2147/JBM.S90693.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Miesbach W, Schenk J, Alesci S, Lindhoff-Last E. Comparison of the fibrinogen Clauss assay and the fibrinogen PT derived method in patients with dysfibrinogenemia. Thromb Res. 2010;126(6):e428–33. https://doi.org/10.1016/j.thromres.2010.09.004.

    Article  CAS  PubMed  Google Scholar 

  127. Chowdary P, Saayman AG, Paulus U, Findlay GP, Collins PW. Efficacy of standard dose and 30 ml/kg fresh frozen plasma in correcting laboratory parameters of haemostasis in critically ill patients. Br J Haematol. 2004;125(1):69–73.

    Article  PubMed  Google Scholar 

  128. Martini WZ, Cortez DS, Dubick MA, Park MS, Holcomb JB. Thrombelastography is better than PT, aPTT, and activated clotting time in detecting clinically relevant clotting abnormalities after hypothermia, hemorrhagic shock and resuscitation in pigs. J Trauma. 2008;65(3):535–43. https://doi.org/10.1097/TA.0b013e31818379a6. 00005373-200809000-00005 [pii]

    Article  PubMed  Google Scholar 

  129. Meyer AS, Meyer MA, Sorensen AM, Rasmussen LS, Hansen MB, Holcomb JB, Cotton BA, Wade CE, Ostrowski SR, Johansson PI. Thrombelastography and rotational thromboelastometry early amplitudes in 182 trauma patients with clinical suspicion of severe injury. J Trauma Acute Care Surg. 2014;76(3):682–90. https://doi.org/10.1097/TA.0000000000000134.

    Article  PubMed  Google Scholar 

  130. Park MS, Martini WZ, Dubick MA, Salinas J, Butenas S, Kheirabadi BS, Pusateri AE, Vos JA, Guymon CH, Wolf SE, Mann KG, Holcomb JB. Thromboelastography as a better indicator of hypercoagulable state after injury than prothrombin time or activated partial thromboplastin time. J Trauma. 2009;67(2):266–275; discussion 275-266. https://doi.org/10.1097/TA.0b013e3181ae6f1c.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Weeder PD, Porte RJ, Lisman T. Hemostasis in liver disease: implications of new concepts for peri-operative management. Transfus Med Rev. 2014;28(3):107–13.

    Article  PubMed  Google Scholar 

  132. Johansson PI. Coagulation monitoring of the bleeding traumatized patient. Curr Opin Anaesthesiol. 2012;25(2):235–41. https://doi.org/10.1097/ACO.0b013e32834fab76.

    Article  PubMed  Google Scholar 

  133. Curnow JL, Morel-Kopp MC, Roddie C, Aboud M, Ward CM. Reduced fibrinolysis and increased fibrin generation can be detected in hypercoagulable patients using the overall hemostatic potential assay. J Thromb Haemost. 2007;5(3):528–34. https://doi.org/10.1111/j.1538-7836.2006.02362.x.

    Article  CAS  PubMed  Google Scholar 

  134. Johansson PI, Svendsen MS, Salado J, Bochsen L, Kristensen AT. Investigation of the thrombin-generating capacity, evaluated by thrombogram, and clot formation evaluated by thrombelastography of platelets stored in the blood bank for up to 7 days. Vox Sang. 2008;94(2):113–8. https://doi.org/10.1111/j.1423-0410.2007.01011.x.

    Article  CAS  PubMed  Google Scholar 

  135. Kawasaki J, Katori N, Kodaka M, Miyao H, Tanaka KA. Electron microscopic evaluations of clot morphology during thrombelastography. Anesth Analg. 2004;99(5):1440–4. https://doi.org/10.1213/01.ANE.0000134805.30532.59.

    Article  PubMed  Google Scholar 

  136. Rivard GE, Brummel-Ziedins KE, Mann KG, Fan L, Hofer A, Cohen E. Evaluation of the profile of thrombin generation during the process of whole blood clotting as assessed by thrombelastography. J Thromb Haemost. 2005;3(9):2039–43. https://doi.org/10.1111/j.1538-7836.2005.01513.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Jeger V, Zimmermann H, Exadaktylos AK. Can RapidTEG accelerate the search for coagulopathies in the patient with multiple injuries? J Trauma. 2009;66(4):1253–7. https://doi.org/10.1097/TA.0b013e31819d3caf.

    Article  CAS  PubMed  Google Scholar 

  138. Callum JL, Rizoli S. Plasma transfusion for patients with severe hemorrhage: what is the evidence? Transfusion. 2012;52(Suppl 1):30S–7S. https://doi.org/10.1111/j.1537-2995.2012.03621.x.

    Article  PubMed  Google Scholar 

  139. Callum JL, Rizoli S. Assessment and management of massive bleeding: coagulation assessment, pharmacologic strategies, and transfusion management. Hematology Am Soc Hematol Educ Program. 2012;2012:522–8. https://doi.org/10.1182/asheducation-2012.1.522.

    PubMed  Google Scholar 

  140. Harr JN, Moore EE, Ghasabyan A, Chin TL, Sauaia A, Banerjee A, Silliman CC. Functional fibrinogen assay indicates that fibrinogen is critical in correcting abnormal clot strength following trauma. Shock. 2013;39(1):45–9. https://doi.org/10.1097/SHK.0b013e3182787122.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Jeger V, Willi S, Liu T, Yeh DD, De Moya M, Zimmermann H, Exadaktylos AK. The rapid TEG a-angle may be a sensitive predictor of transfusion in moderately injured blunt trauma patients. Sci World J. 2012;2012:821794. https://doi.org/10.1100/2012/821794.

    Article  Google Scholar 

  142. Schlimp CJ, Solomon C, Ranucci M, Hochleitner G, Redl H, Schochl H. The effectiveness of different functional fibrinogen polymerization assays in eliminating platelet contribution to clot strength in thromboelastometry. Anesth Analg. 2014;118(2):269–76. https://doi.org/10.1213/ANE.0000000000000058.

    Article  CAS  PubMed  Google Scholar 

  143. Schlimp CJ, Voelckel W, Inaba K, Maegele M, Ponschab M, Schochl H. Estimation of plasma fibrinogen levels based on hemoglobin, base excess and injury severity score upon emergency room admission. Crit Care. 2013;17(4):R137. https://doi.org/10.1186/cc12816.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Kashuk JL, Moore EE, Sawyer M, Wohlauer M, Pezold M, Barnett C, Biffl WL, Burlew CC, Johnson JL, Sauaia A. Primary fibrinolysis is integral in the pathogenesis of the acute coagulopathy of trauma. Ann Surg. 2010;252(3):434–42. https://doi.org/10.1097/SLA.0b013e3181f09191.

    PubMed  Google Scholar 

  145. Kashuk JL, Moore EE, Wohlauer M, Johnson JL, Pezold M, Lawrence J, Biffl WL, Burlew CC, Barnett C, Sawyer M, Sauaia A. Initial experiences with point-of-care rapid thrombelastography for management of life-threatening postinjury coagulopathy. Transfusion. 2012;52(1):23–33. https://doi.org/10.1111/j.1537-2995.2011.03264.x.

    Article  PubMed  Google Scholar 

  146. Ellis TC, Nielsen VG, Marques MB, Kirklin JK. Thrombelastographic measures of clot propagation: a comparison of alpha with the maximum rate of thrombus generation. Blood Coagul Fibrinolysis. 2007;18(1):45–8. https://doi.org/10.1097/MBC.0b013e3280111a8e.

    Article  PubMed  Google Scholar 

  147. Kellman RM, Losquadro WD. Comprehensive airway management of patients with maxillofacial trauma. Craniomaxillofac Trauma Reconstr. 2008;1(1):39–47. https://doi.org/10.1055/s-0028-1098962.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Hackl W, Hausberger K, Sailer R, Ulmer H, Gassner R. Prevalence of cervical spine injuries in patients with facial trauma. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2001;92(4):370–6. https://doi.org/10.1067/moe.2001.116894.

    Article  CAS  PubMed  Google Scholar 

  149. Mosier JM, Joshi R, Hypes C, Pacheco G, Valenzuela T, Sakles JC. The physiologically difficult airway. West J Emerg Med. 2015;16(7):1109–17. https://doi.org/10.5811/westjem.2015.8.27467.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Karmy-Jones R, Jurkovich GJ. Blunt chest trauma. Curr Probl Surg. 2004;41(3):223–380. https://doi.org/10.1016/j.cpsurg.2003.12.004.

    Article  Google Scholar 

  151. D’Alessandro A, Kriebardis AG, Rinalducci S, Antonelou MH, Hansen KC, Papassideri IS, Zolla L. An update on red blood cell storage lesions, as gleaned through biochemistry and omics technologies. Transfusion. 2015;55(1):205–19. https://doi.org/10.1111/trf.12804.

  152. Almac E, Bezemer R, Hilarius-Stokman PM, Goedhart P, de Korte D, Verhoeven AJ, Ince C. Red blood cell storage increases hypoxia-induced nitric oxide bioavailability and methemoglobin formation in vitro and in vivo. Transfusion. 2014;54(12):3178–85. https://doi.org/10.1111/trf.12738.

    Article  CAS  PubMed  Google Scholar 

  153. Watkins GM, Rabelo A, Pizak LF, Sheldon GF. The left shifted oxyhemoglobin curve in sepsis: a preventable defect. Ann Surg. 1974;180(2):213–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Young JA, Lichtman MA, Cohen J. Reduced red cell 2,3-diphosphoglycerate and adenosine triphosphate, hypophosphatemia, and increased hemoglobin-oxygen affinity after cardiac surgery. Circulation. 1973;47(6):1313–8.

    Article  CAS  PubMed  Google Scholar 

  155. Ekeloef NP, Eriksen J, Kancir CB. Evaluation of two methods to calculate p50 from a single blood sample. Acta Anaesthesiol Scand. 2001;45(5):550–2.

    Article  CAS  PubMed  Google Scholar 

  156. Raat NJ, Hilarius PM, Johannes T, de Korte D, Ince C, Verhoeven AJ. Rejuvenation of stored human red blood cells reverses the renal microvascular oxygenation deficit in an isovolemic transfusion model in rats. Transfusion. 2009;49(3):427–4. https://doi.org/10.1111/j.1537-2995.2008.02002.x.

    Article  PubMed  Google Scholar 

  157. Middelburg RA, Borkent B, Jansen M, van de Watering LM, Wiersum-Osselton JC, Schipperus MR, Beckers EA, Briet E, van der Bom JG. Storage time of blood products and transfusion-related acute lung injury. Transfusion. 2012;52(3):658–67. https://doi.org/10.1111/j.1537-2995.2011.03352.x.

    Article  PubMed  Google Scholar 

  158. Hampton DA, Wiles C, Fabricant LJ, Kiraly L, Differding J, Underwood S, Le D, Watters J, Schreiber MA. Cryopreserved red blood cells are superior to standard liquid red blood cells. J Trauma Acute Care Surg. 2014;77(1):20–7. https://doi.org/10.1097/TA.0000000000000268.

    Article  CAS  PubMed  Google Scholar 

  159. Carden DL, Granger DN. Pathophysiology of ischaemia-reperfusion injury. J Pathol. 2000;190(3):255–66.

    Article  CAS  PubMed  Google Scholar 

  160. Hirsiger S, Simmen HP, Werner CM, Wanner GA, Rittirsch D. Danger signals activating the immune response after trauma. Mediat Inflamm. 2012;2012:315941. https://doi.org/10.1155/2012/315941.

    Article  CAS  Google Scholar 

  161. Magna M, Pisetsky DS. The role of HMGB1 in the pathogenesis of inflammatory and autoimmune diseases. Mol Med. 2014. https://doi.org/10.2119/molmed.2013.00164.

  162. Moussion C, Ortega N, Girard JP. The IL-1-like cytokine IL-33 is constitutively expressed in the nucleus of endothelial cells and epithelial cells in vivo: a novel ‘alarmin. PLoS One. 2008;3(10):e3331. https://doi.org/10.1371/journal.pone.0003331.

  163. Bae JS, Rezaie AR. Activated protein C inhibits high mobility group box 1 signaling in endothelial cells. Blood. 2011;118(14):3952–3959. blood-2011-06-360701 [pii]. https://doi.org/10.1182/blood-2011-06-360701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Neal MD, Raval JS, Triulzi DJ, Simmons RL. Innate immune activation after transfusion of stored red blood cells. Transfus Med Rev. 2013;27(2):113–8. https://doi.org/10.1016/j.tmrv.2013.01.001.

    Article  PubMed  Google Scholar 

  165. De Waele JJ, De Laet I, Kirkpatrick AW, Hoste E. Intra-abdominal hypertension and abdominal compartment syndrome. Am J Kidney Dis. 2011;57(1):159–69. https://doi.org/10.1053/j.ajkd.2010.08.034.

    Article  PubMed  Google Scholar 

  166. Buchta C, Felfernig M, Hocker P, Macher M, Kormoczi GF, Quehenberger P, Heinzl H, Knobl P. Stability of coagulation factors in thawed, solvent/detergent-treated plasma during storage at 4 degrees C for 6 days. Vox Sang. 2004;87(3):182–6. https://doi.org/10.1111/j.1423-0410.2004.00552.x.

    Article  CAS  PubMed  Google Scholar 

  167. Hess JR, Holcomb JB. Resuscitating PROPPRly. Transfusion. 2015. https://doi.org/10.1111/trf.13118.

  168. Chhibber V, Greene M, Vauthrin M, Bailey J, Weinstein R. Is group a thawed plasma suitable as the first option for emergency release transfusion? (CME). Transfusion. 2014;54(7):1751–5. https://doi.org/10.1111/trf.12537.

    Article  PubMed  Google Scholar 

  169. Cooling L. Going from a to B: the safety of incompatible group a plasma for emergency release in trauma and massive transfusion patients. Transfusion. 2014;54(7):1695–7. https://doi.org/10.1111/trf.12730.

    Article  PubMed  Google Scholar 

  170. Mehr CR, Gupta R, von Recklinghausen FM, Szczepiorkowski ZM, Dunbar NM. Balancing risk and benefit: maintenance of a thawed group a plasma inventory for trauma patients requiring massive transfusion. J Trauma Acute Care Surg. 2013;74(6):1425–31. https://doi.org/10.1097/TA.0b013e31828b813e.

    Article  PubMed  Google Scholar 

  171. Agarwal V, Talens S, Grandits AM, Blom AM. A novel interaction between complement inhibitor C4b-binding protein and plasminogen that enhances plasminogen activation. J Biol Chem. 2015;290(30):18333–42. https://doi.org/10.1074/jbc.M114.619494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Stenflo J. A new vitamin K-dependent protein. Purification from bovine plasma and preliminary characterization. J Biol Chem. 1976;251(2):355–63.

    CAS  PubMed  Google Scholar 

  173. Schuliga M. The inflammatory actions of coagulant and fibrinolytic proteases in disease. Mediat Inflamm. 2015;2015:437695. https://doi.org/10.1155/2015/437695.

    Article  CAS  Google Scholar 

  174. Ermert D, Blom AM. C4b-binding protein: the good, the bad and the deadly. Novel functions of an old friend. Immunol Lett. 2016;169:82–92. https://doi.org/10.1016/j.imlet.2015.11.014.

    Article  CAS  PubMed  Google Scholar 

  175. Martini WZ, Holcomb JB. Acidosis and coagulopathy: the differential effects on fibrinogen synthesis and breakdown in pigs. Ann Surg. 2007;246(5):831–5. https://doi.org/10.1097/SLA.0b013e3180cc2e94.

    Article  PubMed  Google Scholar 

  176. Marietta M, Franchini M, Bindi ML, Picardi F, Ruggeri M, De Silvestro G. Is solvent/detergent plasma better than standard fresh-frozen plasma? A systematic review and an expert consensus document. Blood Transfus. 2016;14(4):277–86. https://doi.org/10.2450/2016.0168-15.

    PubMed  PubMed Central  Google Scholar 

  177. Pitkanen H, Jouppila A, Mowinckel MC, Lemponen M, Patiwael S, Sandset PM, Lassila R, Brinkman HJ. Enhanced thrombin generation and reduced intact protein S in processed solvent detergent plasma. Thromb Res. 2015;135(1):167–74. https://doi.org/10.1016/j.thromres.2014.10.020.

    Article  CAS  PubMed  Google Scholar 

  178. Brown LM, Call MS, Margaret Knudson M, Cohen MJ, Trauma Outcomes G, Holcomb JB, Wade CE, Brasel KJ, Vercruysse G, MacLeod J, Dutton RP, Hess JR, Duchesne JC, McSwain NE, Muskat P, Johannigamn J, Cryer HM, Tillou A, Pittet JF, De Moya MA, Schreiber MA, Tieu B, Brundage S, Napolitano LM, Brunsvold M, Brunsvold M, Beilman G, Peitzman AB, Zenait MS, Sperry J, Alarcon L, Croce MA, Minei JP, Kozar R, Gonzalez EA, Stewart RM, Cohn SM, Mickalek JE, Bulger EM, Cotton BA, Nunez TC, Ivatury R, Meredith JW, Miller P, Pomper GJ, Marin B. A normal platelet count may not be enough: the impact of admission platelet count on mortality and transfusion in severely injured trauma patients. J Trauma. 2011;71(2 Suppl 3):S337–42. https://doi.org/10.1097/TA.0b013e318227f67c.

    Article  PubMed  PubMed Central  Google Scholar 

  179. Heddle NM, Arnold DM, Boye D, Webert KE, Resz I, Dumont LJ. Comparing the efficacy and safety of apheresis and whole blood-derived platelet transfusions: a systematic review. Transfusion. 2008;48(7):1447–58. https://doi.org/10.1111/j.1537-2995.2008.01731.x.

    Article  PubMed  Google Scholar 

  180. Vamvakas EC. Relative safety of pooled whole blood-derived versus single-donor (apheresis) platelets in the United States: a systematic review of disparate risks. Transfusion. 2009;49(12):2743–58. https://doi.org/10.1111/j.1537-2995.2009.02338.x.

    Article  PubMed  Google Scholar 

  181. Sorensen B, Fries D. Emerging treatment strategies for trauma-induced coagulopathy. Br J Surg. 2012;99(Suppl 1):40–50. https://doi.org/10.1002/bjs.7770.

    Article  PubMed  Google Scholar 

  182. Ahmed S, Harrity C, Johnson S, Varadkar S, McMorrow S, Fanning R, Flynn CM, OR JM, Byrne BM. The efficacy of fibrinogen concentrate compared with cryoprecipitate in major obstetric haemorrhage--an observational study. Transfus Med. 2012;22(5):344–9. https://doi.org/10.1111/j.1365-3148.2012.01178.x.

    Article  CAS  PubMed  Google Scholar 

  183. Ng C, Silliman CC, Pearl G, Smith W, Manco-Johnson M, Wang M. Treatment of refractory hemorrhage with factor XIII in a patient with hemophilia a with inhibitor. Pediatr Blood Cancer. 2013;60(7):E23–5. https://doi.org/10.1002/pbc.24478.

    Article  PubMed  Google Scholar 

  184. Lusher J, Pipe SW, Alexander S, Nugent D. Prophylactic therapy with Fibrogammin P is associated with a decreased incidence of bleeding episodes: a retrospective study. Haemophilia. 2010;16(2):316–21. https://doi.org/10.1111/j.1365-2516.2009.02123.x.

    Article  CAS  PubMed  Google Scholar 

  185. Key NS, Negrier C. Coagulation factor concentrates: past, present, and future. Lancet. 2007;370(9585):439–48. https://doi.org/10.1016/S0140-6736(07)61199-4.

    Article  CAS  PubMed  Google Scholar 

  186. Hauser CJ, Boffard K, Dutton R, Bernard GR, Croce MA, Holcomb JB, Leppaniemi A, Parr M, Vincent JL, Tortella BJ, Dimsits J, Bouillon B, Group CS. Results of the CONTROL trial: efficacy and safety of recombinant activated factor VII in the management of refractory traumatic hemorrhage. J Trauma. 2010;69(3):489–500. https://doi.org/10.1097/TA.0b013e3181edf36e.

    Article  CAS  PubMed  Google Scholar 

  187. Kozek-Langenecker S, Sorensen B, Hess JR, Spahn DR. Clinical effectiveness of fresh frozen plasma compared with fibrinogen concentrate: a systematic review. Crit Care. 2011;15(5):R239. https://doi.org/10.1186/cc10488.

    Article  PubMed  PubMed Central  Google Scholar 

  188. Young PP, Cotton BA, Goodnough LT. Massive transfusion protocols for patients with substantial hemorrhage. Transfus Med Rev. 2011;25(4):293–303. https://doi.org/10.1016/j.tmrv.2011.04.002.

    Article  PubMed  PubMed Central  Google Scholar 

  189. Levy JH, Greenberg C. Biology of factor XIII and clinical manifestations of factor XIII deficiency. Transfusion. 2013;53(5):1120–31. https://doi.org/10.1111/j.1537-2995.2012.03865.x.

    Article  CAS  PubMed  Google Scholar 

  190. Schuster V, Hugle B, Tefs K. Plasminogen deficiency. J Thromb Haemost. 2007;5(12):2315–22. https://doi.org/10.1111/j.1538-7836.2007.02776.x.

    Article  CAS  PubMed  Google Scholar 

  191. Sartori MT, Danesin C, Saggiorato G, Tormene D, Simioni P, Spiezia L, Patrassi GM, Girolami A. The PAI-1 gene 4G/5G polymorphism and deep vein thrombosis in patients with inherited thrombophilia. Clin Appl Thromb Hemost. 2003;9(4):299–307.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge many helpful discussions with Jill Castor, R.N., T.C.R.N., and Tracy Spitzer, M.S.N., R.N., C.C.R.N., T.C.R.N., during preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy H. Pohlman M.D., F.A.C.S. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pohlman, T.H., Gossett, W., Kornilow, J.R. (2018). Initial Management of the Trauma Patient in Maxillofacial Surgery. In: Ferneini, E., Bennett, J. (eds) Perioperative Assessment of the Maxillofacial Surgery Patient. Springer, Cham. https://doi.org/10.1007/978-3-319-58868-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58868-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58867-4

  • Online ISBN: 978-3-319-58868-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics