Skip to main content

Electrochemical Technologies for Environmental Remediation

  • Chapter
  • First Online:
Enhancing Cleanup of Environmental Pollutants

Abstract

Contamination of environmental compartments with a myriad of chemical pollutants is inevitable. Many physical, biological, photolytic, chemical, and electrochemical techniques are in use for the pollutant remediation. Notably, elegant solutions to remediating environmental pollutants have been provided by electrochemical methods. Literature supports the versatility, energy efficiency, environmental compatibility, and cost-effectiveness of electrochemical methods for pollutant remediation. This chapter aims to describe electrochemical methods for remediation of a variety of dilute pollutants, organic contaminants, organic complexes with metals, and recovery of heavy metals. Additionally, effort has also been made to discuss major bioelectrochemical methods for the generation of energy from waste stream as power source.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abou-Shady A, Peng C, Almeria OJ, Xu H (2012) Effect of pH on separation of Pb (II) and NO3 from aqueous solutions using electrodialysis. Desalination 285:46–53

    Article  CAS  Google Scholar 

  • Ai Z, Xiao H, Mei T, Liu J, Zhang L, Deng K, Qiu J (2008) Electro-Fenton degradation of rhodamine B based on a composite cathode of Cu2O nanocubes and carbon nanotubes. Phys Chem C 112:11929–11935

    Article  CAS  Google Scholar 

  • Alaya MN, Rabah MA (2013) Surface acidity and catalytic activity of aged /SnO2 catalyst supported with WO3. J Alloys Compd 575:285–291

    Article  CAS  Google Scholar 

  • Al-Haq MI, Gómez-López VM (2012) Electrolyzed oxidizing water, decontamination of fresh and minimally processed produce. Wiley-Blackwell, New York, pp 135–164

    Book  Google Scholar 

  • Allen HE, Chen PH (1993) Remediation of metal contaminated soil by EDTA incorporating electrochemical recovery of metal and EDTA. Environ Prog 12:284–293

    Article  CAS  Google Scholar 

  • Alyüz B, Veli S (2009) Kinetics and equilibrium studies for the removal of nickel and zinc from aqueous solutions by ion exchange resins. J Hazard Mater 167:482–488

    Article  CAS  Google Scholar 

  • Al-Zoubi H, Ibrahim KA, Abu-Sbeih KA (2015) Removal of heavy metals from wastewater by economical polymeric collectors using dissolved air flotation process. J Water Process Eng 8:19–27

    Article  Google Scholar 

  • Amend JP, Rogers KL, Meyer-Dombard DAR (2004) Microbially mediated sulfur-redox: energetics in marine hydrothermal vent systems. Geol Soc Am Spec Pap 379:17–34

    Google Scholar 

  • Amit Kumar KK, Lens P, Leech D (2012) Does bioelectrochemical cell configuration and anode potential affect biofilm response? Biochem Soc Trans 40:1308–1314

    Article  CAS  Google Scholar 

  • Anotai J, Su C-C, Tsai Y-C, Lu M-C (2010) Effect of hydrogen peroxide on aniline oxidation by electro-Fenton and fluidized-bed Fenton processes. J Hazard Mater 183:888–893

    Article  CAS  Google Scholar 

  • Babauta J, Renslow R, Lewandowski Z, Beyenal H (2012a) Electrochemically active biofilms: facts and fiction. A review. Biofouling 28:789–812

    Article  CAS  Google Scholar 

  • Babauta JT, Nguyen HD, Harrington TD, Renslow R, Beyenal H (2012b) pH, redox potential and local biofilm potential microenvironments within Geobacter sulfurreducens biofilms and their roles in electron transfer. Biotechnol Bioeng 109:2651–2662

    Article  CAS  Google Scholar 

  • Babel S, Kurniawan TA (2003) Low-cost adsorbents for heavy metals uptake from contaminated water: a review. J Hazard Mater 97:219–243

    Article  CAS  Google Scholar 

  • Badalamenti JP, Krajmalnik-Brown R, Torres CI (2013) Generation of high current densities by pure cultures of anode-respiring Geoalkalibacter spp. under alkaline and saline conditions in microbial electrochemical cells. MBio 4(3):e00144–e00113. doi:10.1128/mBio.00144-13

    Article  CAS  Google Scholar 

  • Bajracharya S, ter Heijne A, Dominguez Benetton X, Vanbroekhoven K, Buisman CJN, Strik DPBTB, Pant D (2015) Carbon dioxide reduction by mixed and pure cultures in microbial electrosynthesis using an assembly of graphite felt and stainless steel as a cathode. Bioresour Technol 195:14–24

    Article  CAS  Google Scholar 

  • Barb WG, Baxendale JH, George P, Hargrave KR (1951) Reactions of ferrous and ferric ions with hydrogen peroxide. Part I.-the ferrous ion reaction. Trans Faraday Soc 47:462–500

    Article  CAS  Google Scholar 

  • Baudler A, Schmidt I, Langner M, Greiner A, Schroder U (2015) Does it have to be carbon? Metal anodes in microbial fuel cells and related bioelectrochemical systems. Energy Environ Sci 8:2048–2055

    Article  CAS  Google Scholar 

  • Beltrán Heredia J, Sánchez Martín J (2009) Removing heavy metals from polluted surface water with a tannin-based flocculant agent. J Hazard Mater 165:1215–1218

    Article  CAS  Google Scholar 

  • Bertini I, Gray HB, Lippard SJ, Valentine JS (1994) Bioinorganic chemistry. University Science Books, Mill Valley

    Google Scholar 

  • Borbély G, Nagy E (2009) Removal of zinc and nickel ions by complexation–membrane filtration process from industrial wastewater. Desalination 240:218–226

    Article  CAS  Google Scholar 

  • Bradl H (2005) Heavy metals in the environment: origin interaction and remediation. Academic Press, New York

    Google Scholar 

  • Brillas E, Casado J (2002) Aniline degradation by electro-Fenton® and peroxi-coagulation processes using a flow reactor for wastewater treatment. Chemosphere 47:241–248

    Article  CAS  Google Scholar 

  • Brillas E, Sirés I, Arias C, Cabot PL, Centellas F, Rodríguez RM, Garrido JA (2005) Mineralization of paracetamol in aqueous medium by anodic oxidation with a boron-doped diamond electrode. Chemosphere 58:399–406

    Article  CAS  Google Scholar 

  • Brillas E, Sirés I, Oturan MA (2009) Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chem Rev 109:6570–6631

    Article  CAS  Google Scholar 

  • Calow PP (2009) Handbook of Ecotoxicology Technology & Engineering. Wiley, New York, p 900

    Google Scholar 

  • Carrier M, Perol N, Herrmann J-M, Bordes C, Horikoshi S, Paisse JO, Baudot R, Guillard C (2006) Kinetics and reactional pathway of Imazapyr photocatalytic degradation influence of pH and metallic ions. Appl Catal B Environ 65:11–20

    Article  CAS  Google Scholar 

  • Cha HG, Choi K-S (2015) Combined biomass valorization and hydrogen production in a photoelectrochemical cell. Nat Chem 7:328–333

    Article  CAS  Google Scholar 

  • Chae K-J, Choi M-J, Lee J, Ajayi FF, Kim IS (2008) Biohydrogen production via biocatalyzed electrolysis in acetate-fed bioelectrochemical cells and microbial community analysis. Int J Hydrog Energy 33:5184–5192

    Article  CAS  Google Scholar 

  • Chailapakul O, Popa E, Tai H, Sarada BV, Tryk DA, Fujishima A (2000) The electrooxidation of organic acids at boron-doped diamond electrodes. Electrochem Commun 2:422–426

    Article  CAS  Google Scholar 

  • Charerntanyarak L (1999) Heavy metals removal by chemical coagulation and precipitation. Water Sci Technol 39:135–138

    Article  CAS  Google Scholar 

  • Chaudhary AJ, Donaldson JD, Grimes SM, Yasri NG (2000) Separation of nickel from cobalt using electrodialysis in the presence of EDTA. J Appl Electrochem 30:439–445

    Article  CAS  Google Scholar 

  • Chaudhary AJ, M-u H, Grimes SM (2009) Simultaneous recovery of metals and degradation of organic species: copper and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T). J Hazard Mater 165:825–831

    Article  CAS  Google Scholar 

  • Chauke V, Matemadombo F, Nyokong T (2010) Remarkable sensitivity for detection of bisphenol a on a gold electrode modified with nickel tetraamino phthalocyanine containing Ni–O–Ni bridges. J Hazard Mater 178:180–186

    Article  CAS  Google Scholar 

  • Chen CCG (2010) Electrochemistry for the environment. Springer Science, New York

    Google Scholar 

  • Chen G, Hung YT (2007) Electrochemical wastewater treatment processes. In: Wang LK, Hung Y-T, Shammas NK (eds) Advanced physicochemical treatment technologies. Handbook of environmental engineering. Humana Press Inc., Totowa

    Google Scholar 

  • Cheng S, Logan BE (2007a) Sustainable and efficient biohydrogen production via electrohydrogenesis. Proc Natl Acad Sci U S A 104:18871–18873

    Article  CAS  Google Scholar 

  • Cheng S, Logan BE (2007b) Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells. Electrochem Commun 9:492–496

    Article  CAS  Google Scholar 

  • Cheng S, Logan BE (2011) High hydrogen production rate of microbial electrolysis cell (MEC) with reduced electrode spacing. Bioresour Technol 102:3571–3574

    Article  CAS  Google Scholar 

  • Cheng S, Liu H, Logan BE (2006) Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells. Environ Sci Technol 40:364–369

    Article  CAS  Google Scholar 

  • Chou S, Huang Y-H, Lee S-N, Huang G-H, Huang C (1999) Treatment of high strength hexamine-containing wastewater by electro-Fenton method. Water Res 33:751–759

    Article  CAS  Google Scholar 

  • Clancy M, Bettles CJ, Stuart A, Birbilis N (2013) The influence of alloying elements on the electrochemistry of lead anodes for electrowinning of metals: a review. Hydrometallurgy 131–132:144–157

    Article  CAS  Google Scholar 

  • Commault AS, Lear G, Packer MA, Weld RJ (2013) Influence of anode potentials on selection of Geobacter strains in microbial electrolysis cells. Bioresour Technol 139:226–234

    Article  CAS  Google Scholar 

  • Comninellis CC (2010) Electrochemistry for the environment. Springer, New York, pp 1–563

    Book  Google Scholar 

  • Cong YQ, Wu ZC (2007) Self-regeneration of activated carbon modified with palladium catalyst for electrochemical dechlorination. Chin Chem Lett 18:1013–1016

    Article  CAS  Google Scholar 

  • Crundwell F, Moats M, Ramachandran V, Robinson T, Davenport WG (2011) Extractive metallurgy of nickel cobalt and platinum group metals. Elsevier Ltd, Amsterdam

    Google Scholar 

  • Da̧browski A, Hubicki Z, Podkościelny P, Robens E (2004) Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere 56:91–106

    Article  CAS  Google Scholar 

  • De Laat J, Gallard H (1999) Catalytic decomposition of hydrogen peroxide by Fe(III) in homogeneous aqueous solution: mechanism and kinetic modeling. Environ Sci Technol 33:2726–2732

    Article  CAS  Google Scholar 

  • Deguillaume L, Leriche M, Chaumerliac N (2005) Impact of radical versus non-radical pathway in the Fenton chemistry on the iron redox cycle in clouds. Chemosphere 60:718–724

    Article  CAS  Google Scholar 

  • Dhand V, Rao MV, Prasad JS, Mittal G, Rhee KY, Kim HJ, Jung DH (2014) Carbon nanospheres synthesized via solution combustion method: their application as an anode material and catalyst for hydrogen production. Carbohydr Lett 15:198–202

    Article  Google Scholar 

  • Dialynas E, Diamadopoulos E (2009) Integration of a membrane bioreactor coupled with reverse osmosis for advanced treatment of municipal wastewater. Desalination 238:302–311

    Article  CAS  Google Scholar 

  • Ding Z, Min CW, Hui WQ (1987) A study on the use of bipolar-particles-electrodes in decolorization of dyeing effluents and its principle. Water Sci Technol 19(3-4):391–400

    Google Scholar 

  • Ding H-Y, Feng Y-J, Liu J-F (2007) Preparation and properties of Ti/SnO2–Sb2O5 electrodes by electrodeposition. Mater Lett 61:4920–4923

    Article  CAS  Google Scholar 

  • Do JS, Chen ML (1994) Decolourization of dye-containing solutions by electrocoagulation. J Appl Electrochem 24:785–790

    Article  CAS  Google Scholar 

  • Donaldson JD (2007) The chemistry of bivalent tin, progress in inorganic chemistry. Wiley, New York, pp 287–356

    Google Scholar 

  • Donaldson JD, Grimes SM, Yasri NG, Wheals B, Parrick J, Errington WE (2002) Anodic oxidation of the dye materials methylene blue, acid blue 25, reactive blue 2 and reactive blue 15 and the characterisation of novel intermediate compounds in the anodic oxidation of methylene blue. J Chem Technol Biotechnol 77:756–760

    Article  CAS  Google Scholar 

  • Doulakas L, Novy K, Stucki S, Comninellis C (2000) Recovery of Cu, Pb, Cd and Zn from synthetic mixture by selective electrodeposition in chloride solution. Electrochim Acta 46:349–356

    Article  CAS  Google Scholar 

  • Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240

    Article  CAS  Google Scholar 

  • Edwards PP, Kuznetsov VL, David WIF (2007) Hydrogen energy. Philos Trans Royal Soc London A Math Phy Eng Sci 365:1043–1056

    Article  CAS  Google Scholar 

  • Eloy Isarain-Chávez CR, Martínez-Huitle CA, Peralta-Hernández JM (2013) On-site hydrogen peroxide production at pilot flow plant: application to electro-Fenton process. Int J Electrochem Sci 8:3084–3094

    Google Scholar 

  • Fan Y, Han S-K, Liu H (2012) Improved performance of CEA microbial fuel cells with increased reactor size. Energy Environ Sci 5:8273–8280

    Article  CAS  Google Scholar 

  • Faouzi AM, Nasr B, Abdellatif G (2007) Electrochemical degradation of anthraquinone dye alizarin red S by anodic oxidation on boron-doped diamond. Dyes Pigments 73:86–89

    Article  CAS  Google Scholar 

  • Fernandes A, Morao A, Magrinho M, Lopes A, Goncalves I (2004) Electrochemical degradation of C. I. Acid Orange 7. Dyes Pigments 61:287–296

    Article  CAS  Google Scholar 

  • Ferreira BK (2008) Three dimensional electrodes for the removal of metals from dilute solutions: a review. Miner Process Extr Metall Rev 29:330–371

    Article  CAS  Google Scholar 

  • Fitzgerald LA, Petersen ER, Leary D, Biffinger JC (2013) Shewanella frigidimarina microbial fuel cells and the influence of divalent cations on current output. Biosens Bioelectron 40:102–109

    Article  CAS  Google Scholar 

  • Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manag 92:407–418

    Article  CAS  Google Scholar 

  • Fuchigami T, Atobe M, Inagi S (2014) Fundamentals and applications of organic electrochemistry: synthesis, materials, devices. Wiley, Chichester, p 240

    Google Scholar 

  • Gandini D, Mahé E, Michaud PA, Haenni W, Perret A, Comninellis C (2000) Oxidation of carboxylic acids at boron-doped diamond electrodes for wastewater treatment. J Appl Electrochem 30:1345–1350

    Article  CAS  Google Scholar 

  • Gao J, Sun S-P, Zhu W-P, Chung T-S (2014) Chelating polymer modified P84 nanofiltration (NF) hollow fiber membranes for high efficient heavy metal removal. Water Res 63:252–261

    Article  CAS  Google Scholar 

  • Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    Article  CAS  Google Scholar 

  • Ghasemi M, Daud WRW, Hassan SHA, Oh S-E, Ismail M, Rahimnejad M, Jahim JM (2013) Nano-structured carbon as electrode material in microbial fuel cells: a comprehensive review. J Alloys Compd 580:245–255

    Article  CAS  Google Scholar 

  • Gnana kumar G, Kirubaharan CJ, Udhayakumar S, Karthikeyan C, Nahm KS (2014) Conductive polymer/graphene supported platinum nanoparticles as anode catalysts for the extended power generation of microbial fuel cells. Ind Eng Chem Res 53:16883–16893

    Article  CAS  Google Scholar 

  • Grimes SM, Yasri NG, Chaudhary AJ (2017) Recovery of critical metals from dilute leach solutions – Separation of indium from tin and lead. Inorg Chim Acta 461:161–166

    Article  CAS  Google Scholar 

  • Grimm J, Bessarabov D, Sanderson R (1998) Review of electro-assisted methods for water purification. Desalination 115:285–294

    Article  CAS  Google Scholar 

  • Grimshaw P, Calo JM, Hradil G (2011) Cyclic electrowinning/precipitation (CEP) system for the removal of heavy metal mixtures from aqueous solutions. Chem Eng J 175:103–109

    Article  CAS  Google Scholar 

  • Gunasekaran SM, Yasri N (2016) Method to remediate effluents containing metals complexed with organic and/or inorganic species. Wisconsin Alumni Research Foundation, Madison

    Google Scholar 

  • Guo M, Qiu G, Song W (2010) Poultry litter-based activated carbon for removing heavy metal ions in water. Waste Manag 30:308–315

    Article  CAS  Google Scholar 

  • Guven G, Perendeci A, Tanyolac A (2008) Electrochemical treatment of deproteinated whey wastewater and optimization of treatment conditions with response surface methodology. J Hazard Mater 157:69–78

    Article  CAS  Google Scholar 

  • Harnisch F, Rosa LFM, Kracke F, Virdis B, Krömer JO (2015) Electrifying white biotechnology: engineering and economic potential of electricity-driven bio-production. Chem Sus Chem 8:758–766

    Article  CAS  Google Scholar 

  • He Y, Liu Z, X-h X, Li B, Zhang Y, Shen R, Zhu Z, Duan N (2015) Carbon nanotubes simultaneously as the anode and microbial carrier for up-flow fixed-bed microbial fuel cell. Biochem Eng J 94:39–44

    Article  CAS  Google Scholar 

  • Hou Y, Zhang B, Wen Z, Cui S, Guo X, He Z, Chen J (2014) A 3D hybrid of layered MoS2/nitrogen-doped graphene nanosheet aerogels: an effective catalyst for hydrogen evolution in microbial electrolysis cells. J Mater Chem A 2:13795–13800

    Article  CAS  Google Scholar 

  • Houghton RW, Kuhn AT (1974) Mass-transport problems and some design concepts of electrochemical reactors. J Appl Electrochem 4:173–190

    Article  CAS  Google Scholar 

  • Hu C-Y, Lo S-L, Kuan W-H, Lee Y-D (2008) Treatment of high fluoride-content wastewater by continuous electrocoagulation–flotation system with bipolar aluminum electrodes. Sep Purif Technol 60:1–5

    Article  CAS  Google Scholar 

  • Huang CP, Dong C, Tang Z (1993) Advanced chemical oxidation: its present role and potential future in hazardous waste treatment. Waste Manag 13:361–377

    Article  CAS  Google Scholar 

  • Iniesta J, Michaud PA, Panizza M, Cerisola G, Aldaz A, Comninellis C (2001) Electrochemical oxidation of phenol at boron-doped diamond electrode. Electrochim Acta 46:3573–3578

    Article  CAS  Google Scholar 

  • Israilides CJ, Vlyssides AG, Mourafeti VN, Karvouni G (1997) Olive oil wastewater treatment with the use of an electrolysis system. Bioresour Technol 61:163–170

    Article  CAS  Google Scholar 

  • Issabayeva G, Aroua MK, Sulaiman NM (2006) Electrodeposition of copper and lead on palm shell activated carbon in a flow-through electrolytic cell. Desalination 194:192–201

    Article  CAS  Google Scholar 

  • Ivanov I, Ren L, Siegert M, Logan BE (2013) A quantitative method to evaluate microbial electrolysis cell effectiveness for energy recovery and wastewater treatment. Int J Hydrog Energy 38:13135–13142

    Article  CAS  Google Scholar 

  • Janssen LJJ, Koene L (2002) The role of electrochemistry and electrochemical technology in environmental protection. Chem Eng J 85:137–146

    Article  CAS  Google Scholar 

  • Jeong J-Y, Kim H-K, Kim J-H, Park J-Y (2012) Electrochemical removal of nitrate using ZVI packed bed bipolar electrolytic cell. Chemosphere 89:172–178

    Article  CAS  Google Scholar 

  • Jiang C-C, Zhang J-F (2007) Progress and prospect in electro-Fenton process for wastewater treatment. J Zhejiang Univ Sci A 8:1118–1125

    Article  CAS  Google Scholar 

  • Jiao S, Jin J, Wang L (2014) Tannic acid functionalized N-doped graphene modified glassy carbon electrode for the determination of bisphenol a in food package. Talanta 122:140–144

    Article  CAS  Google Scholar 

  • Kadier A, Simayi Y, Kalil MS, Abdeshahian P, Hamid AA (2014) A review of the substrates used in microbial electrolysis cells (MECs) for producing sustainable and clean hydrogen gas. Renew Energy 71:466–472

    Article  CAS  Google Scholar 

  • Kammel R (1984) Metal recovery from dilute aqueous solutions by various electrochemical reactors. In: Bautista R (ed) Hydrometallurgical process fundamentals, NATO conference series. Springer, New York, pp 617–646

    Chapter  Google Scholar 

  • Kang YL, Ibrahim S, Pichiah S (2015) Synergetic effect of conductive polymer poly(3,4-ethylenedioxythiophene) with different structural configuration of anode for microbial fuel cell application. Bioresour Technol 189:364–369

    Article  CAS  Google Scholar 

  • Kato Marcus A, Torres CI, Rittmann BE (2007) Conduction-based modeling of the biofilm anode of a microbial fuel cell. Biotechnol Bioeng 98:1171–1182

    Article  CAS  Google Scholar 

  • Kato S, Hashimoto K, Watanabe K (2012) Microbial interspecies electron transfer via electric currents through conductive minerals. Proc Natl Acad Sci U S A 109:10042–10046

    Article  CAS  Google Scholar 

  • Katoh S (1986) Method of treating liquid wastes containing heavy metal chelate compounds. Google Patents

    Google Scholar 

  • Khandegar V, Saroha AK (2013) Electrocoagulation for the treatment of textile industry effluent – a review. J Environ Manag 128:949–963

    Article  CAS  Google Scholar 

  • Kim S, Jeung S, Moon H (1998) Removal and recovery of heavy metal ions in fixed and semi-fluidized beds. Korean J Chem Eng 15:637–643

    Article  CAS  Google Scholar 

  • Kim HJ, Park HS, Hyun MS, Chang IS, Kim M, Kim BH (2002a) A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzym Microb Technol 30:145–152

    Article  CAS  Google Scholar 

  • Kim TH, Park C, Lee J, Shin EB, Kim S (2002b) Pilot scale treatment of textile wastewater by combined process (fluidized biofilm process-chemical coagulation-electrochemical oxidation). Water Res 36:3979–3988

    Article  CAS  Google Scholar 

  • Kocaoba S, Akcin G (2005) Removal of chromium (III) and cadmium (II) from aqueous solutions. Desalination 180:151–156

    Article  CAS  Google Scholar 

  • Konsowa AH (2010) Intensification of the rate of heavy metal removal from wastewater by cementation in a jet reactor. Desalination 254:29–34

    Article  CAS  Google Scholar 

  • Kulandaisamy S, Rethinaraj JP, Chockalingam SC, Visvanathan S, Venkateswaran KV, Ramachandran P, Nandakumar V (1997) Performance of catalytically activated anodes in the electrowinning of metals. J Appl Electrochem 27:579–583

    Article  CAS  Google Scholar 

  • Kundu A, Sahu JN, Redzwan G, Hashim MA (2013) An overview of cathode material and catalysts suitable for generating hydrogen in microbial electrolysis cell. Int J Hydrog Energy 38:1745–1757

    Article  CAS  Google Scholar 

  • Kurniawan TA, Chan GYS, Lo W-H, Babel S (2006) Physico–chemical treatment techniques for wastewater laden with heavy metals. Chem Eng J 118:83–98

    Article  CAS  Google Scholar 

  • Lacroix R, Silva SD, Gaig MV, Rousseau R, Delia M-L, Bergel A (2014) Modelling potential/current distribution in microbial electrochemical systems shows how the optimal bioanode architecture depends on electrolyte conductivity. Phys Chem Chem Phys 16:22892–22902

    Article  CAS  Google Scholar 

  • Landaburu-Aguirre J, Pongrácz E, Perämäki P, Keiski RL (2010) Micellar-enhanced ultrafiltration for the removal of cadmium and zinc: use of response surface methodology to improve understanding of process performance and optimisation. J Hazard Mater 180:524–534

    Article  CAS  Google Scholar 

  • Lapinsonnière L, Picot M, Barrière F (2012) Enzymatic versus microbial bio-catalyzed electrodes in bio-electrochemical systems. Chem Sus Chem 5:995–1005

    Article  CAS  Google Scholar 

  • Le TXH, Bechelany M, Champavert J, Cretin M (2015) A highly active based graphene cathode for the electro-Fenton reaction. RSC Adv 5:42536–42539

    Article  CAS  Google Scholar 

  • Lee H-S, Parameswaran P, Kato-Marcus A, Torres CI, Rittmann BE (2008) Evaluation of energy-conversion efficiencies in microbial fuel cells (MFCs) utilizing fermentable and non-fermentable substrates. Water Res 42:1501–1510

    Article  CAS  Google Scholar 

  • Lee H-S, Vermaas WFJ, Rittmann BE (2010) Biological hydrogen production: prospects and challenges. Trends Biotechnol 28:262–271

    Article  CAS  Google Scholar 

  • Lee KM, Min K, Choi O, Kim K-Y, Woo HM, Kim Y, Han SO, Um Y (2015) Electrochemical detoxification of phenolic compounds in lignocellulosic hydrolysate for Clostridium fermentation. Bioresour Technol 187:228–234

    Article  CAS  Google Scholar 

  • Li Y-H, Ding J, Luan Z, Di Z, Zhu Y, Xu C, Wu D, Wei B (2003) Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon 41:2787–2792

    Article  CAS  Google Scholar 

  • Li J, Ai Z, Zhang L (2009) Design of a neutral electro-Fenton system with Fe@Fe2O3/ACF composite cathode for wastewater treatment. J Hazard Mater 164:18–25

    Article  CAS  Google Scholar 

  • Li Q, Li H, Du G-F, Xu Z-H (2010) Electrochemical detection of bisphenol a mediated by [Ru(bpy)3]2+ on an ITO electrode. J Hazard Mater 180:703–709

    Article  CAS  Google Scholar 

  • Li C, Zhang L, Ding L, Ren H, Cui H (2011) Effect of conductive polymers coated anode on the performance of microbial fuel cells (MFCs) and its biodiversity analysis. Biosens Bioelectron 26:4169–4176

    Article  CAS  Google Scholar 

  • Li X-H, Liang D-W, Bai Y-X, Fan Y-T, Hou H-W (2014) Enhanced H2 production from corn stalk by integrating dark fermentation and single chamber microbial electrolysis cells with double anode arrangement. Int J Hydrog Energy 39:8977–8982

    Article  CAS  Google Scholar 

  • Liang D-W, Peng S-K, Lu S-F, Liu Y-Y, Lan F, Xiang Y (2011) Enhancement of hydrogen production in a single chamber microbial electrolysis cell through anode arrangement optimization. Bioresour Technol 102:10881–10885

    Article  CAS  Google Scholar 

  • Liang J, Jiao Y, Jaroniec M, Qiao SZ (2012) Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angew Chem Int Ed 51:11496–11500

    Article  CAS  Google Scholar 

  • Lim H, Lee JS, Shin H-J, Shin HS, Choi HC (2010) Spatially resolved spontaneous reactivity of diazonium salt on edge and basal plane of graphene without surfactant and its doping effect. Langmuir 26:12278–12284

    Article  CAS  Google Scholar 

  • Liu H, Grot S, Logan BE (2005) Electrochemically assisted microbial production of hydrogen from acetate. Environ Sci Technol 39:4317–4320

    Article  CAS  Google Scholar 

  • Liu H, Li XZ, Leng YJ, Wang C (2007a) Kinetic modeling of electro-Fenton reaction in aqueous solution. Water Res 41:1161–1167

    Article  CAS  Google Scholar 

  • Liu W-Z, Wang A-J, Ren N-Q, Zhao X-Y, Liu L-H, Yu Z-G, Lee D-J (2007b) Electrochemically assisted biohydrogen production from acetate. Energy Fuel 22:159–163

    Article  CAS  Google Scholar 

  • Liu X, Wu W, Gu Z (2015) Poly (3,4-ethylenedioxythiophene) promotes direct electron transfer at the interface between Shewanella loihica and the anode in a microbial fuel cell. J Power Sources 277:110–115

    Article  CAS  Google Scholar 

  • Logan BE (2008) Microbial fuel cells. Wiley, Hoboken

    Google Scholar 

  • Logan BE (2009a) Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Microbiol 7:375–381

    Article  CAS  Google Scholar 

  • Logan BE (2009b) Scaling up microbial fuel cells and other bioelectrochemical systems. Appl Microbiol Biotechnol 85:1665–1671

    Article  CAS  Google Scholar 

  • Logan B (2010) Scaling up microbial fuel cells and other bioelectrochemical systems. Appl Microbiol Biotechnol 85:1665–1671

    Article  CAS  Google Scholar 

  • Logan BE, Call D, Cheng S, Hamelers HVM, Sleutels THJA, Jeremiasse AW, Rozendal RA (2008) Microbial electrolysis cells for high yield hydrogen gas production from organic matter. Environ Sci Technol 42:8630–8640

    Article  CAS  Google Scholar 

  • Lovley DR (2008) The microbe electric: conversion of organic matter to electricity. Curr Opin Biotechnol 19:564–571

    Article  CAS  Google Scholar 

  • Lovley DR, Phillips EJP (1986) Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Appl Environ Microbiol 51:683–689

    CAS  Google Scholar 

  • Luckarift HR, Sizemore SR, Farrington KE, Roy J, Lau C, Atanassov PB, Johnson GR (2012) Facile fabrication of scalable, hierarchically structured polymer/carbon architectures for bioelectrodes. ACS Appl Mater Interfaces 4:2082–2087

    Article  CAS  Google Scholar 

  • Marsili E, Rollefson JB, Baron DB, Hozalski RM, Bond DR (2008) Microbial biofilm voltammetry: direct electrochemical characterization of catalytic electrode-attached biofilms. Appl Environ Microbiol 74:7329–7337

    Article  CAS  Google Scholar 

  • Martinez-Huitle CA, Ferro S (2006) Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. Chem Soc Rev 35:1324–1340

    Article  CAS  Google Scholar 

  • Mollah MYA, Schennach R, Parga JR, Cocke DL (2001) Electrocoagulation (EC)- science and applications. J Hazard Mater 84:29–41

    Article  CAS  Google Scholar 

  • Montilla F, Michaud PA, Morallón E, Vázquez JL, Comninellis C (2002) Electrochemical oxidation of benzoic acid at boron-doped diamond electrodes. Electrochim Acta 47:3509–3513

    Article  CAS  Google Scholar 

  • Morão A, Lopes A, Pessoa de Amorim MT, Gonçalves IC (2004) Degradation of mixtures of phenols using boron doped diamond electrodes for wastewater treatment. Electrochim Acta 49:1587–1595

    Article  Google Scholar 

  • Morkovsky PE, Kaspar DD, Petru JM (1999) Process and apparatus for electrocoagulative treatment of industrial waste water. US Patents

    Google Scholar 

  • Munoz LD, Erable B, Etcheverry L, Riess J, Basséguy R, Bergel A (2010) Combining phosphate species and stainless steel cathode to enhance hydrogen evolution in microbial electrolysis cell (MEC). Electrochem Commun 12:183–186

    Article  CAS  Google Scholar 

  • Murugananthan M, Yoshihara S, Rakuma T, Shirakashi T (2008) Mineralization of bisphenol a (BPA) by anodic oxidation with boron-doped diamond (BDD) electrode. J Hazard Mater 154:213–220

    Article  CAS  Google Scholar 

  • Murugananthan M, Latha SS, Bhaskar Raju G, Yoshihara S (2010) Anodic oxidation of ketoprofen - an anti-inflammatory drug using boron doped diamond and platinum electrodes. J Hazard Mater 180:753–758

    Article  CAS  Google Scholar 

  • Nabi SA, Naushad M, Khan AM (2006) Sorption studies of metal ions on napthol blue–black modified Amberlite IR-400 anion exchange resin: separation and determination of metal ion contents of pharmaceutical preparation. Colloids Surfaces A Physicochem Eng Aspects 280:66–70

    Article  CAS  Google Scholar 

  • Najafi M, Khalilzadeh MA, Karimi-Maleh H (2014) A new strategy for determination of bisphenol a in the presence of Sudan I using a ZnO/CNTs/ionic liquid paste electrode in food samples. Food Chem 158:125–131

    Article  CAS  Google Scholar 

  • Naumczyk J, Szpyrkowicz L, Zilio-Grandi F (1996) Electrochemical treatment of textile wastewater. Water Sci Technol 34:17–24

    Article  CAS  Google Scholar 

  • Nevin KP, Richter H, Covalla SF, Johnson JP, Woodard TL, Orloff AL, Jia H, Zhang M, Lovley DR (2008) Power output and columbic efficiencies from biofilms of Geobacter sulfurreducens comparable to mixed community microbial fuel cells. Environ Microbiol 10:2505–2514

    Article  CAS  Google Scholar 

  • Neyens E, Baeyens J (2003) A review of classic Fenton’s peroxidation as an advanced oxidation technique. J Hazard Mater 98:33–50

    Article  CAS  Google Scholar 

  • Nidheesh PV, Gandhimathi R (2012) Trends in electro-Fenton process for water and wastewater treatment: an overview. Desalination 299:1–15

    Article  CAS  Google Scholar 

  • Öğütveren ÜB, Koparal S (1992) Electrochemical treatment of water containing dye-stuffs: anodic oxidation of Congo red and xiron blau 2RHD. Int J Environ Stud 42:41–52

    Article  Google Scholar 

  • Ota K-I, Kreysa G, Savinell RF (2014) Encyclopedia of applied electrochemistry. Springer, New York

    Google Scholar 

  • Oturan MA, Oturan N, Edelahi MC, Podvorica FI, Kacemi KE (2011) Oxidative degradation of herbicide diuron in aqueous medium by Fenton's reaction based advanced oxidation processes. Chem Eng J 171:127–135

    Article  CAS  Google Scholar 

  • Özcan A, Şahin Y, Savaş Koparal A, Oturan MA (2008) Carbon sponge as a new cathode material for the electro-Fenton process: comparison with carbon felt cathode and application to degradation of synthetic dye basic blue 3 in aqueous medium. J Electroanal Chem 616:71–78

    Article  CAS  Google Scholar 

  • Özverdi A, Erdem M (2006) Cu2+, Cd2+ and Pb2+ adsorption from aqueous solutions by pyrite and synthetic iron sulphide. J Hazard Mater 137:626–632

    Article  CAS  Google Scholar 

  • Panizza M, Cerisola G (2009) Direct and mediated anodic oxidation of organic pollutants. Chem Rev 109:6541–6569

    Article  CAS  Google Scholar 

  • Panizza M, Delucchi M, Cerisola G (2005) Electrochemical degradation of anionic surfactants. J Appl Electrochem 35:357–361

    Article  CAS  Google Scholar 

  • Parameswaran P, Zhang H, Torres CI, Rittmann BE, Krajmalnik-Brown R (2010) Microbial community structure in a biofilm anode fed with a fermentable substrate: the significance of hydrogen scavengers. Biotechnol Bioeng 105:69–78

    Article  CAS  Google Scholar 

  • Park H, Vecitis CD, Hoffmann MR (2009) Electrochemical water splitting coupled with organic compound oxidation: the role of active chlorine species. J Phys Chem C 113:7935–7945

    Article  CAS  Google Scholar 

  • Pedersen AJ, Ottosen LM, Villumsen A (2005) Electrodialytic removal of heavy metals from municipal solid waste incineration fly ash using ammonium citrate as assisting agent. J Hazard Mater 122:103–109

    Article  CAS  Google Scholar 

  • Peng L, Dong S, Xie H, Gu G, He Z, Lu J, Huang T (2014) Sensitive simultaneous determination of diethylstilbestrol and bisphenol a based on Bi2WO6 nanoplates modified carbon paste electrode. J Electroanal Chem 726:15–20

    Article  CAS  Google Scholar 

  • Pérez RM, Cabrera G, Gómez JM, Ábalos A, Cantero D (2010) Combined strategy for the precipitation of heavy metals and biodegradation of petroleum in industrial wastewaters. J Hazard Mater 182:896–902

    Article  CAS  Google Scholar 

  • Picot M, Lapinsonnière L, Rothballer M, Barrière F (2011) Graphite anode surface modification with controlled reduction of specific aryl diazonium salts for improved microbial fuel cells power output. Biosens Bioelectron 28:181–188

    Article  CAS  Google Scholar 

  • Pimentel M, Oturan N, Dezotti M, Oturan MA (2008) Phenol degradation by advanced electrochemical oxidation process electro-Fenton using a carbon felt cathode. Appl Catal B Environ 83:140–149

    Article  CAS  Google Scholar 

  • Prairie MR, Evans LR, Stange BM, Martinez SL (1993) An investigation of titanium dioxide photocatalysis for the treatment of water contaminated with metals and organic chemicals. Environ Sci Technol 27:1776–1782

    Article  CAS  Google Scholar 

  • Qiang Z, Chang J-H, Huang C-P (2002) Electrochemical generation of hydrogen peroxide from dissolved oxygen in acidic solutions. Water Res 36:85–94

    Article  CAS  Google Scholar 

  • Quivet E, Faure R, Georges J, Paisse JO, Herbreteau B, Lanteri P (2006) Photochemical degradation of imazamox in aqueous solution: influence of metal ions and anionic species on the ultraviolet photolysis. J Agric Food Chem 54:3641–3645

    Article  CAS  Google Scholar 

  • Rajkumar D, Palanivelu K (2004) Electrochemical treatment of industrial wastewater. J Hazard Mater 113:123–129

    Article  CAS  Google Scholar 

  • Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR (2005) Extracellular electron transfer via microbial nanowires. Nature 435:1098–1101

    Article  CAS  Google Scholar 

  • Richter H, Nevin KP, Jia H, Lowy DA, Lovley DR, Tender LM (2009) Cyclic voltammetry of biofilms of wild type and mutant Geobacter sulfurreducens on fuel cell anodes indicates possible roles of OmcB, OmcZ, type IV pili, and protons in extracellular electron transfer. Energy Environ Sci 2:506–516

    Article  CAS  Google Scholar 

  • Rittmann BE (2008) Opportunities for renewable bioenergy using microorganisms. Biotechnol Bioeng 100:203–212

    Article  CAS  Google Scholar 

  • Robertson PM, Ibl N (1977) Electrolytic recovery of metals from waste waters with the ‘Swiss-roll’ cell. J Appl Electrochem 7:323–330

    Article  CAS  Google Scholar 

  • Rosales E, Pazos M, Longo MA, Sanromán MA (2009) Electro-Fenton decoloration of dyes in a continuous reactor: a promising technology in colored wastewater treatment. Chem Eng J 155:62–67

    Article  CAS  Google Scholar 

  • Rosales E, Iglesias O, Pazos M, Sanromán MA (2012) Decolourisation of dyes under electro-Fenton process using Fe alginate gel beads. J Hazard Mater 213–214:369–377

    Article  CAS  Google Scholar 

  • Rousseau R, Dominguez-Benetton X, Délia M-L, Bergel A (2013) Microbial bioanodes with high salinity tolerance for microbial fuel cells and microbial electrolysis cells. Electrochem Commun 33:1–4

    Article  CAS  Google Scholar 

  • Rozendal RA, Hamelers HVM, Molenkamp RJ, Buisman CJN (2007) Performance of single chamber biocatalyzed electrolysis with different types of ion exchange membranes. Water Res 41:1984–1994

    Article  CAS  Google Scholar 

  • Rozendal RA, Jeremiasse AW, Hamelers HVM, Buisman CJN (2008) Hydrogen production with a microbial biocathode. Environ Sci Technol 42:629–634

    Article  CAS  Google Scholar 

  • Ruoff RS, Lorents DC (1995) Mechanical and thermal properties of carbon nanotubes. Carbon 33:925–930

    Article  CAS  Google Scholar 

  • Sadrzadeh M, Mohammadi T, Ivakpour J, Kasiri N (2008) Separation of lead ions from wastewater using electrodialysis: comparing mathematical and neural network modeling. Chem Eng J 144:431–441

    Article  CAS  Google Scholar 

  • Sahu O, Mazumdar B, Chaudhari PK (2014) Treatment of wastewater by electrocoagulation: a review. Environ Sci Pollut Res 21:2397–2413

    Article  CAS  Google Scholar 

  • Scarsbrook GA, Martineau PM, Twitchen DJ, Whitehead AJ, Cooper MA, Dorn BSC (2007) Boron doped diamond, US7160617 B2. Google Patents

    Google Scholar 

  • Schippers A (2004) Biogeochemistry of metal sulfide oxidation in mining environments, sediments, and soils. Geol Soc Am Spec Pap 379:49–62

    Google Scholar 

  • Schlesinger M, Paunovic M (2014) Modern electroplating. Wiley, Hoboken

    Google Scholar 

  • Schroder U (2007) Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Phys Chem Chem Phys 9:2619–2629

    Article  Google Scholar 

  • Segundo JEDV, Salazar-Banda GR, Feitoza ACO, Vilar EO, Cavalcanti EB (2012) Cadmium and lead removal from aqueous synthetic wastes utilizing Chemelec electrochemical reactor: study of the operating conditions. Sep Purif Technol 88:107–115

    Article  CAS  Google Scholar 

  • Sleutels THJA, Lodder R, Hamelers HVM, Buisman CJN (2009) Improved performance of porous bio-anodes in microbial electrolysis cells by enhancing mass and charge transport. Int J Hydrog Energy 34:9655–9661

    Article  CAS  Google Scholar 

  • Sleutels THJA, Hamelers HVM, Buisman CJN (2011) Effect of mass and charge transport speed and direction in porous anodes on microbial electrolysis cell performance. Bioresour Technol 102:399–403

    Article  CAS  Google Scholar 

  • Smara A, Delimi R, Chainet E, Sandeaux J (2007) Removal of heavy metals from diluted mixtures by a hybrid ion-exchange/electrodialysis process. Sep Purif Technol 57:103–110

    Article  CAS  Google Scholar 

  • Soderquist TJ, Chesniak OM, Witt MR, Paramo A, Keeling VA, Keleher JJ (2012) Evaluation of the catalytic decomposition of H2O2 through use of organo-metallic complexes--a potential link to the luminol presumptive blood test. Forensic Sci Int 219:101–105

    Article  CAS  Google Scholar 

  • Stucki S, Kötz R, Carcer B, Suter W (1991) Electrochemical waste water treatment using high overvoltage anodes part II: anode performance and applications. J Appl Electrochem 21:99–104

    Article  CAS  Google Scholar 

  • Suanon F, Sun Q, Dimon B, Mama D, Yu C-P (2016) Heavy metal removal from sludge with organic chelators: comparative study of N, N-bis(carboxymethyl) glutamic acid and citric acid. J Environ Manag 166:341–347

    Article  CAS  Google Scholar 

  • Sudoh M, Kitaguchi H, Koide K (1985) Electrochemical production of hydrogen peroxide by reduction of oxygen. J Chem Eng Japan 18:409–414

    Article  CAS  Google Scholar 

  • Sulaymon AH, Yousif SA, Al-Faize MM (2014) Competitive biosorption of lead mercury chromium and arsenic ions onto activated sludge in fixed bed adsorber. J Taiwan Inst Chem Eng 45(2):325–337

    Article  CAS  Google Scholar 

  • Sun J-H, Sun S-P, Wang G-L, Qiao L-P (2007) Degradation of azo dye Amido black 10B in aqueous solution by Fenton oxidation process. Dyes Pigments 74:647–652

    Article  CAS  Google Scholar 

  • Tang X, Li H, Du Z, Wang W, Ng HY (2015) Conductive polypyrrole hydrogels and carbon nanotubes composite as an anode for microbial fuel cells. RSC Adv 5:50968–50974

    Article  CAS  Google Scholar 

  • Tao H-C, Lei T, Shi G, Sun X-N, Wei X-Y, Zhang L-J, Wu W-M (2014) Removal of heavy metals from fly ash leachate using combined bioelectrochemical systems and electrolysis. J Hazard Mater 264:1–7

    Article  CAS  Google Scholar 

  • Tenca A, Cusick RD, Schievano A, Oberti R, Logan BE (2013) Evaluation of low cost cathode materials for treatment of industrial and food processing wastewater using microbial electrolysis cells. Int J Hydrog Energy 38:1859–1865

    Article  CAS  Google Scholar 

  • Thilakavathi R, Balasubramanian N, Srinivasakannan C, Shoaibi AA (2012) Modeling particulate bed electrode for metal recovery. Int J Electrochem Sci 7:1371–1385

    CAS  Google Scholar 

  • Ting W-P, Lu M-C, Huang Y-H (2009) Kinetics of 2,6-dimethylaniline degradation by electro-Fenton process. J Hazard Mater 161:1484–1490

    Article  CAS  Google Scholar 

  • Torres CI, Marcus AK, Parameswaran P, Rittmann BE (2008) Kinetic experiments for evaluating the Nernst−Monod model for anode-respiring bacteria (ARB) in a biofilm anode. Environ Sci Technol 42:6593–6597

    Article  CAS  Google Scholar 

  • Torres CI, Marcus AK, Lee H-S, Parameswaran P, Krajmalnik-Brown R, Rittmann BE (2010) A kinetic perspective on extracellular electron transfer by anode-respiring bacteria. FEMS Microbiol Rev 34:3–17

    Article  CAS  Google Scholar 

  • Ujang Z, Hamdzah M, Ozaki H (2010) A method for treating wastewater containing heavy metals. Google Patents

    Google Scholar 

  • Umar M, Aziz HA, Yusoff MS (2010) Trends in the use of Fenton, electro-Fenton and photo-Fenton for the treatment of landfill leachate. Waste Manag 30:2113–2121

    Article  CAS  Google Scholar 

  • Verea L, Savadogo O, Verde A, Campos J, Ginez F, Sebastian PJ (2014) Performance of a microbial electrolysis cell (MEC) for hydrogen production with a new process for the biofilm formation. Int J Hydrog Energy 39:8938–8946

    Article  CAS  Google Scholar 

  • Visnja O, Nenad M, Denis P (2013) Process and device for electrochemical treatment of industrial wastewater and drinking water. Google Patents

    Google Scholar 

  • Wagner RC, Porter-Gill S, Logan BE (2012) Immobilization of anode-attached microbes in a microbial fuel cell. AMB Express 2(1):1

    Article  CAS  Google Scholar 

  • Walling C (1975) Fenton's reagent revisited. Acc Chem Res 8:125–131

    Article  CAS  Google Scholar 

  • Wang Q, Lemley AT (2001) Kinetic model and optimization of 2,4-D degradation by anodic Fenton treatment. Environ Sci Technol 35:4509–4514

    Article  CAS  Google Scholar 

  • Wang H, Ren ZJ (2013) A comprehensive review of microbial electrochemical systems as a platform technology. Biotechnol Adv 31:1796–1807

    Article  CAS  Google Scholar 

  • Wang JL, Xu LJ (2011) Advanced oxidation processes for wastewater treatment: formation of hydroxyl radical and application. Crit Rev Environ Sci Technol 42:251–325

    Article  CAS  Google Scholar 

  • Wang C-T, Hu J-L, Chou W-L, Kuo Y-M (2008) Removal of color from real dyeing wastewater by electro-Fenton technology using a three-dimensional graphite cathode. J Hazard Mater 152:601–606

    Article  CAS  Google Scholar 

  • Wang A, Liu W, Ren N, Cheng H, Lee D-J (2010a) Reduced internal resistance of microbial electrolysis cell (MEC) as factors of configuration and stuffing with granular activated carbon. Int J Hydrog Energy 35:13488–13492

    Article  CAS  Google Scholar 

  • Wang LK, Ivanov V, Tay J-H, Hung Y-T (2010b) Environmental biotechnology, 10. Springer Science & Business Media, New York

    Book  Google Scholar 

  • Wang A, Liu W, Ren N, Zhou J, Cheng S (2010c) Key factors affecting microbial anode potential in a microbial electrolysis cell for H2 production. Int J Hydrog Energy 35:13481–13487

    Article  CAS  Google Scholar 

  • Wang Y, Shao Y, Matson DW, Li J, Lin Y (2010d) Nitrogen-doped graphene and its application in electrochemical biosensing. ACS Nano 4:1790–1798

    Article  CAS  Google Scholar 

  • Wang C-T, Chou W-L, Chung M-H, Kuo Y-M (2010e) COD removal from real dyeing wastewater by electro-Fenton technology using an activated carbon fiber cathode. Desalination 253:129–134

    Article  CAS  Google Scholar 

  • Weber KA, Achenbach LA, Coates JD (2006) Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nat Rev Microbiol 4:752–764

    Article  CAS  Google Scholar 

  • Wu W, Huang Z-H, Lim T-T (2014) Recent development of mixed metal oxide anodes for electrochemical oxidation of organic pollutants in water. Appl Catal A General 480:58–78

    Article  CAS  Google Scholar 

  • Xu ST, Liu H, Fan YZ, Schaller R, Jiao J, Chaplen F (2012) Enhanced performance and mechanism study of microbial electrolysis cells using Fe nanoparticle-decorated anodes. Appl Microbiol Biotechnol 93:871–880

    Article  CAS  Google Scholar 

  • Yang N, Hafez H, Nakhla G (2015) Impact of volatile fatty acids on microbial electrolysis cell performance. Bioresour Technol 193:449–455

    Article  CAS  Google Scholar 

  • Yasri NG (2001) Developments of electrochemistry in Environmental Technology. Brunel University, p 304

    Google Scholar 

  • Yasri NG, Nakhla G (2016) Electrochemical behavior of anode-respiring bacteria on doped carbon electrodes. ACS Appl Mater Interfaces 8:35150–35162. doi:10.1021/acsami.6b09907

    Article  CAS  Google Scholar 

  • Yasri NG, Nakhla G (2017) The performance of 3-D graphite doped anodes in microbial electrolysis cells. J Power Sources 342:579–588

    Article  CAS  Google Scholar 

  • Yasri NG, Sundramoorthy AK, Chang W-J, Gunasekaran S (2014) Highly selective mercury detection at partially oxidized graphene/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) nanocomposite film modified electrode. Front Math 1:33

    Google Scholar 

  • Yasri NG, Sundramoorthy AK, Gunasekaran S (2015a) Azo dye functionalized graphene nanoplatelets for selective detection of bisphenol a and hydrogen peroxide. RSC Adv 5:87295–87305

    Article  CAS  Google Scholar 

  • Yasri NG, Yaghmour A, Gunasekaran S (2015b) Effective removal of organics from corn wet milling steepwater effluent by electrochemical oxidation and adsorption on 3-D granulated graphite electrode. J Environ Chem Eng 3:930–937

    Article  CAS  Google Scholar 

  • Yin H-S, Zhou Y-L, Ai S-Y (2009) Preparation and characteristic of cobalt phthalocyanine modified carbon paste electrode for bisphenol a detection. J Electroanal Chem 626:80–88

    Article  CAS  Google Scholar 

  • Yin H, Cui L, Chen Q, Shi W, Ai S, Zhu L, Lu L (2011) Amperometric determination of bisphenol a in milk using PAMAM–Fe3O4 modified glassy carbon electrode. Food Chem 125:1097–1103

    Article  CAS  Google Scholar 

  • Yoho RA, Popat SC, Torres CI (2014) Dynamic potential-dependent electron transport pathway shifts in anode biofilms of Geobacter sulfurreducens. Chem Sustain Chem 7:3413–3419

    Article  CAS  Google Scholar 

  • Yoho RA, Popat SC, Rago L, Guisasola A, Torres CI (2015) Anode biofilms of Geoalkalibacter ferrihydriticus exhibit electrochemical signatures of multiple electron transport pathways. Langmuir 31:12552–12559

    Article  CAS  Google Scholar 

  • Yoshihara S, Murugananthan M (2009) Decomposition of various endocrine-disrupting chemicals at boron-doped diamond electrode. Electrochim Acta 54:2031–2038

    Article  CAS  Google Scholar 

  • Zhang H, Zhang D, Zhou J (2006) Removal of COD from landfill leachate by electro-Fenton method. J Hazard Mater 135:106–111

    Article  CAS  Google Scholar 

  • Zhang H, Fei C, Zhang D, Tang F (2007) Degradation of 4-nitrophenol in aqueous medium by electro-Fenton method. J Hazard Mater 145:227–232

    Article  CAS  Google Scholar 

  • Zhang C, Jiang Y, Li Y, Hu Z, Zhou L, Zhou M (2013) Three-dimensional electrochemical process for wastewater treatment: a general review. Chem Eng J 228:455–467

    Article  CAS  Google Scholar 

  • Zhang B, Wen Z, Ci S, Chen J, He Z (2014a) Nitrogen-doped activated carbon as a metal free catalyst for hydrogen production in microbial electrolysis cells. RSC Adv 4:49161–49164

    Article  CAS  Google Scholar 

  • Zhang J, Li J, Ye D, Zhu X, Liao Q, Zhang B (2014b) Enhanced performances of microbial fuel cells using surface-modified carbon cloth anodes: a comparative study. Int J Hydrog Energy 39:19148–19155

    Article  CAS  Google Scholar 

  • Zhao Y, Watanabe K, Nakamura R, Mori S, Liu H, Ishii K, Hashimoto K (2010) Three-dimensional conductive nanowire networks for maximizing anode performance in microbial fuel cells. Chem Eur J 16:4982–4985

    Article  CAS  Google Scholar 

  • Zheng Y, Jiao Y, Li LH, Xing T, Chen Y, Jaroniec M, Qiao SZ (2014) Toward design of synergistically active carbon-based catalysts for electrocatalytic hydrogen evolution. ACS Nano 8:5290–5296

    Article  CAS  Google Scholar 

  • Zhu X, Ni J, Lai P (2009) Advanced treatment of biologically pretreated coking wastewater by electrochemical oxidation using boron-doped diamond electrodes. Water Res 43:4347–4355

    Article  CAS  Google Scholar 

  • Zhu X, Yates MD, Hatzell MC, Ananda Rao H, Saikaly PE, Logan BE (2014) Microbial community composition is unaffected by anode potential. Environ Sci Technol 48:1352–1358

    Article  CAS  Google Scholar 

  • Zoski C (2006) Handbook of electrochemistry. Elsevier, Boston

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nael G. Yasri or Sundaram Gunasekaran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Yasri, N.G., Gunasekaran, S. (2017). Electrochemical Technologies for Environmental Remediation. In: Anjum, N., Gill, S., Tuteja, N. (eds) Enhancing Cleanup of Environmental Pollutants. Springer, Cham. https://doi.org/10.1007/978-3-319-55423-5_2

Download citation

Publish with us

Policies and ethics