Skip to main content

Interpretation of Luminescence Centers

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

  • First Online:
Modern Luminescence Spectroscopy of Minerals and Materials

Part of the book series: Springer Mineralogy ((MINERAL))

Abstract

The chapter contains experimental data and theoretical considerations enabling to interpret the luminescence centers in the studied minerals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abritta T, de Souza B (1988) Luminescence and photoacoustic measurements of LiAl5O8:Fe3+. J Lumin 40&41:187–188

    Article  Google Scholar 

  • Agekyan V, Shiryapov I, Oreshnikova L (1974) Exiton-phonon transitions in tin dioxide. FTT 16:2473-2475 (in Russian)

    Google Scholar 

  • Ajo D, Favaro M, Pozza G et al (1997) Near-Infrared photoluminescence in phosphate minerals and related glass-ceramics. J Mater Sci 32:4217–4220

    Article  Google Scholar 

  • Altschuler Z (1980) The bearing of geochemistry on the recovery of uranium and rare earth in phosphorites. Proc 2nd Internat Cong Phosphorus Compounds, Boston, p 605–625

    Google Scholar 

  • Bakhtin A, Gorobets B (1992) Optical spectroscopy of minerals and ores and its use in geology. Kazan University Publishing, Kazan (in Russian)

    Google Scholar 

  • Balda R, Sanz M, Mendioroz A et al (2001) Infrared-to-visible upconversion in Nd3+ doped chalcohalide glasses. Phys Rev B 64:144101–144102

    Article  Google Scholar 

  • Barbarand J, Pagel M (2001) Cathodoluminescence study of apatite crystals. Am Mineral 86:473–485

    Article  Google Scholar 

  • Barbin V, Jouart J-P, D’Almedia T (1996) Cathodoluminescence and laser-excited luminescence spectroscopy of Eu3+ and Eu2+ in synthetic CaF2: a comparative study. Chem Geol 130:77–86

    Article  Google Scholar 

  • Baumer A, Blanc P, Cesbron F, Ohnenstetter D (1997) Cathodoluminescence of synthetic (doped with rare-earth elements) and natural anhydrites. Chem Geol 138:73–80

    Article  Google Scholar 

  • Beletti A, Borromei R, Oleari L (1995) Absorption spectra of zircon crystals doped with Cr(IV): ZrSiO4:Cr4+. Inorg Chim Acta 235:349–362

    Article  Google Scholar 

  • Blanc P, Baumer A, Cesbron F, Ohnenstetter D, Panczer G, Remond G (2000) Systematic cathodoluminescence spectral analysis of synthetic doped minerals: anhydrite, apatite, calcite, fluorite scheelite and zircon. In: Pagel M, Barbin V, Blanc P, Ohnenstetter D (eds) Cathodoluminescence in geosciences. Springer, Berlin/Heidelberg/New-York, pp 127–160

    Chapter  Google Scholar 

  • Blasse G (1980) The luminescence of closed-shell transition-metal-complexes. New developments Struct Bond 42:1–41

    Article  Google Scholar 

  • Blasse G, Aguilar M (1984) Luminescence of natural calcite (CaCO3). J Lumin 29:239–241

    Article  Google Scholar 

  • Blasse G, Grabmaier B (1994) Luminescent materials. Springer, Berlin/Heidelberg/New York

    Book  Google Scholar 

  • Blasse G, Wanmaker J, Vrigt J, Bril A (1968) Fluorescence of Eu2+ activated alkaline-earth aluminates. Philips Res Rpts 23:201–209

    Google Scholar 

  • Blasse G, Dalhoeven G, Choisnet J, Studer F (1981) On the luminescence of titanium activated stannates. J Solid State Chem 39:195–198

    Article  Google Scholar 

  • Blasse G, Meijerink A, Nomes M, Zuidema J (1994) Unusual Bismuth luminescence in Strontium Tetraborate (SrB4O7:Bi). J Phys Chem Solid 55:171–174

    Article  Google Scholar 

  • Bokii G, Bezrykov G, Kliyev Yu et al (1986) Natural and synthetic diamonds. Nauka, Moscow (in Russian)

    Google Scholar 

  • Boulon G (1987) Spectroscopy of post transition metal ions. In: Di Bartolo B (ed) Spectroscopy of solid-state laser-type materials. Plenum Press, New York, pp 223–266

    Chapter  Google Scholar 

  • Boulon G (1997) Broad band centers applied for laser materials: example of tetrahedrally coordinated centers. In: Di Bartolo B (ed) Spectroscopy and dynamics of collective excitations in solids. Plenum Press, London, New York, pp 561–573

    Chapter  Google Scholar 

  • Boulon G (2000) Transition metal ion lasers – Cr3+. In: Webb C, Jones J (eds) Handbook of laser technology and application. Volume II. Laser design and laser systems. CRC Press, London, pp 307–337

    Google Scholar 

  • Broussell I, Fortin E, Kulyuk L, Popov S, Tezlevan V (1997) Luminescence of the Cr3+ ions in spinel-type α-ZnAl2S4: Cr single crystals. J Lumin 72&74:640–644

    Article  Google Scholar 

  • Brunold T, Güdel H (1997) Excited-state absorption and laser potential of Mn6+-doped BaSO4 crystals. J Opt Soc Am B 14:2373–2377

    Article  Google Scholar 

  • Brunold T, Hazenkamp M, Güdel H (1997) Luminescence of CrO4 3− and MnO4 2− in various hosts. J Lumin 72–74:164–165

    Article  Google Scholar 

  • Bryknar Z, Trepakov V, Potůček Z, Jastrabík L (2000) Luminescence spectra of SrTiO3:Mn4+. J Lumin 87–89:605–607

    Article  Google Scholar 

  • Bukin G, Matrosov V, Orekhova V et al (1981) Growth of alexandrite crystals and investigation of their properties. J Cryst Grouse 52:537–541

    Article  Google Scholar 

  • Burgner R, Scheetz B, White W (1978) Vibrational structure of the S2 luminescence in scapolite. Phys Chem Miner 2:317–324

    Article  Google Scholar 

  • Butler K (1980) Fluorescent lamp phosphors. Pennsylvania State University Press, University Park, p 117

    Google Scholar 

  • Chadwick K, Rossman GR (2009) Orange kyanite from Tanzania. Gems Gemol 45:146–153

    Google Scholar 

  • Champagnon B, Duval E (1977) Emission spectrum of V3+ -αAl2O3. J De Phys 38:L-299–L-301

    Google Scholar 

  • Champagnon B, Duval E (1979) Emission spectrum of V4+- alpha Al2O3: Jahn-Teller effect in the fundamental 2T2g and excited 2Eg states. J Phys C Solid State Phys 12:L-425–L-429

    Article  Google Scholar 

  • Chithambo M, Raymond S, Calderon T, Townsend P (1995) Low temperature luminescence of transition metal-doped beryls. J Afr Earth Sci 20:53–60

    Article  Google Scholar 

  • Czaja M, Bodył-Gajowska S, Mazurak Z (2013) Steady-state luminescence measurement for qualitative identification of rare earth ions in minerals. J Miner Petrol Sci 108:47–54

    Article  Google Scholar 

  • de Boisbaudran L (1885) Sur la fluorescence des terres rares. C R Acad Sci Paris 101:552–588

    Google Scholar 

  • Davies G (1994) Properties and growth of diamonds. Gordon Davies, King’s Colledge, London

    Google Scholar 

  • DeLoach L, Payne S, Kway W et al (1994) Vibrational structure in the emission spectra of Yb3+ -doped apatite crystals. J Lumin 62:85–94

    Article  Google Scholar 

  • DeNeufville J, Kasdan A, Chimenti R (1981) Selective detection of luminescent characteristics of uranyl geologic targets. Appl Opt 20:1279–1296

    Article  Google Scholar 

  • Deren P, Malinowski M, Strek W (1996) Site selection spectroscopy of Cr3+ in MgAl2O4 green spinel. J Lumin 68:91–103

    Article  Google Scholar 

  • Dieke G (1968) Spectra and energy levels of rare earth ions in crystals. Interscience, New York

    Google Scholar 

  • Dimova M, Panczer G, Gaft M (2006) Spectroscopic study of barite (Kremikovtsi deposit, Bulgaria) with implication for its origin. Ann Geol de la Peninsule Balkanique 67:101–108

    Article  Google Scholar 

  • Donker H, Smit W, Blasse G (1989) On the luminescence of some tin-activated alkaline-earth orthophosphates. J Electrochem Soc 136:3130–3135

    Article  Google Scholar 

  • Dorenbos P (2003) Anomalous luminescence of Eu2+ and Yb2+ in inorganic compounds. J Phys Condens Matter 15:2645–2665

    Article  Google Scholar 

  • Durville F, Champagnon B, Duval E, Boulon G (1985) Lase spectroscopy of spinel micro-crystallite in a Cr3+-doped silicate glass. J Phys Chem Solid 46:701–707

    Article  Google Scholar 

  • Erfurt G (2003) Infrared luminescence of Pb+ centres in potassium-rich feldspars. Phys Stat Sol (a) 200:429–438

    Article  Google Scholar 

  • Eyal M (1988) Energy transfer for better efficiency of Nd3+ lasers. Proc SPIE 1182:140–150

    Article  Google Scholar 

  • Fabeni P, Pazzi G, Salvini L (1991) Impurity centers for tunable lasers in the ultraviolet and visible regions. J Phys Chem Solid 52:299–317

    Article  Google Scholar 

  • Fergusson J (1970) Spectroscopy of 3d complexes. Prog Inorg Chem 12:159–294

    Google Scholar 

  • Folkerts H, Hamstra M, Blasse G (1995) The luminescence of Pb2+ in alkaline-earth sulfates. Chem Phys Lett 246:135–138

    Article  Google Scholar 

  • Freed R, Peacor D (1969) Determination and refinement of the crystal structure of margarosanite PbCa2Si309. Zeitschrift fur Kristallographie, Bd 128:213–228

    Article  Google Scholar 

  • Gaft M (1984) Luminescence of vanadium containing centers in natural phosphates. Miner J 4:83–86 (in Russian)

    Google Scholar 

  • Gaft M (1989) Luminescence of minerals under laser excitation. Ministry of Geology, Moscow (in Russian)

    Google Scholar 

  • Gaft M, Gorobets B (1979) Photoluminescence of manganese minerals. J Prikl Spectrosc 6(31):987–990

    Google Scholar 

  • Gaft M, Rudenkova I (1993) Laser-induced luminescence of barite after thermal treatment. J Therm Anal 42:187–195

    Article  Google Scholar 

  • Gaft M, Vorontsova L (1982) Luminescence of cassiterite and the possibilities of its practical use. Miner J 4(5):75–78

    Google Scholar 

  • Gaft M, Gorobets B, Malinko S (1979) Studies of luminescence of boron minerals. Docl Acad Nauk SSSR 244(5):171–174

    Google Scholar 

  • Gaft M, Gorobets B, Homyakov A (1981a) On luminescence nature of titanium and zirconium minerals. Docl Acad Nauk SSSR 263(3):1234–1237

    Google Scholar 

  • Gaft M, Gorobets B, Naumova I (1981b) Relation between luminescent properties and crystallochemistry of manganese minerals. Miner J 3:80–90 (in Russian)

    Google Scholar 

  • Gaft M, Gorobets B, Marshukova N, Pavlovskii A (1982) Tin minerals luminescence and its use in the prospecting of tin ore deposits. Docl Acad Nauk SSSR 266(1):217–220

    Google Scholar 

  • Gaft M, Bershov L, Krasnaya A, Yaskolko V (1985) Luminescence centers in anhydrite, barite, celestite and their synthesized analogs. Phys Chem Miner 11:255–260

    Article  Google Scholar 

  • Gaft M, Rassulov V, Zukova V, Rakov L (1986) Nature of zircon photoluminescence. Miner J 8(3):74–78 (in Russian)

    Google Scholar 

  • Gaft M, Scorobogatova N, Rassulov V, Moroshkin V (1989) The use of natural silver halogens luminescence for mineral prospecting. Miner J 11:58–64 (in Russian)

    Google Scholar 

  • Gaft M, Reisfeld R, Panczer G et al (1996) Luminescence of Eu3+, Pr3+ and Sm3+ in carbonate- fluor-apatite. Acta Phys Pol A 90:267–274

    Article  Google Scholar 

  • Gaft M, Reisfeld R, Panczer G et al (1997a) Accommodation of REE and Mn by apatite. Opt Mater 8:149–156

    Article  Google Scholar 

  • Gaft M, Reisfeld R, Panczer G et al (1997b) Luminescence of Eu3+ in high symmetry Ca position in apatite structure. J Lumin 72–74:572–574

    Article  Google Scholar 

  • Gaft M, Reisfeld R, Panczer G, Champagnon B (1997c) Reabsorption lines of molecular oxygen and water in natural apatite. Opt Mater 8(1–2):143–149

    Article  Google Scholar 

  • Gaft M, Trabjerg I, Reisfeld R, Panczer G (1998) Absorption of molecular oxygen and water in apatite by photoacoustic spectroscopy. Spectrochim Acta A 54:1721–1724

    Article  Google Scholar 

  • Gaft M, Reisfeld R, Panczer G et al (1999) Luminescence of Pr3+ in minerals luminescence of Pr3+ in minerals. Opt Mater 13:71–79

    Article  Google Scholar 

  • Gaft M, Panczer G, Reisfeld R, Shinno I (2000a) Laser-induced luminescence of rare-earth elements in natural zircon. J Alloys Comp 300–301:267–274

    Article  Google Scholar 

  • Gaft M, Boulon G, Panczer G et al (2000b) Unexpected luminescence of Cr-doped zircon crystals ZrSiO4. J Lumin 87–88:1118–1121

    Article  Google Scholar 

  • Gaft M, Panczer G, Reisfeld R, Shinno I (2000c) Three centers of Eu3+ luminescence in zircon ZrSiO4. J Lumin 87–89:1032–1035

    Article  Google Scholar 

  • Gaft M, Reisfeld R, Panczer G et al (2001a) The nature of orange luminescence of mineral barite. Opt Mater 16(1–2):279–290

    Article  Google Scholar 

  • Gaft M, Reisfeld R, Panczer G et al (2001b) Laser-induced time-resolved luminescence as a means for discrimination of oxidation states of Eu in minerals. J Alloys Comp 323–324:842–848

    Article  Google Scholar 

  • Gaft M, Panczer G, Reisfeld R, Uspensky E (2001c) Laser-induced time-resolved luminescence as a tool for rare-earth elements identification in minerals. Phys Chem Miner 28:347–363

    Article  Google Scholar 

  • Gaft M, Seigel H, Panczer G, Reisfeld R (2002a) Laser-induced time-resolved luminescence of lead Pb2+ in Franklin, NJ, minerals. Eur J Miner 14:1041–1048

    Article  Google Scholar 

  • Gaft M, Panczer G, Reisfeld R et al (2002b) Laser-induced time-resolved spectroscopy of broad luminescence bands in zircon ZrSiO4. Miner Petrol 76:235–246

    Article  Google Scholar 

  • Gaft M, Nagli L, Reisfeld R, Panczer G, Brestel M (2003a) Time-resolved luminescence of Cr3+ in topaz Al2SiO4(OH, F)2. J Lumin 102–103:349–356

    Article  Google Scholar 

  • Gaft M, Nagli L, Reisfeld R, Panczer G (2003b) Laser-induced time-resolved luminescence of titanite. Opt Mater 24:231–241

    Article  Google Scholar 

  • Gaft M, Nagli L, Waychunas G (2004) The nature of blue luminescence of natural benitoite BaTiSi3O9. Phys Chem Miner 31:365–373

    Article  Google Scholar 

  • Gaft M, Reisfeld R, Panczer G (2005) Modern luminescence spectroscopy of minerals and materials. Springer, Berlin/New York

    Google Scholar 

  • Gaft M, Nagli L, Panczer G et al (2008a) The nature of unusual luminescence of natural calcite CaCO3. Am Miner 93:158–167

    Article  Google Scholar 

  • Gaft M, Reisfeld R, Panczer G, Dimova M (2008b) UV-Visible luminescence of Nd3+ in minerals. Alloys Comp 451:56–61

    Article  Google Scholar 

  • Gaft M, Nagli L, Panczer G, Yeates H (2009) Laser-induced time resolved luminescence of tugtupite, sodalite and hackmanite. Phys Chem Miner 36:127–141

    Article  Google Scholar 

  • Gaft M, Nagli L, Panczer G et al (2011) Laser-induced time-resolved luminescence of orange kyanite Al2SiO5. Opt Mater 23:1476–1480

    Article  Google Scholar 

  • Gaft M, Strek W, Nagli L et al (2012) Laser-induced time-resolved luminescence of natural sillimanite Al2SiO5 and artificial Al2SiO5 activated by Cr. J Lumin 132:2855–2862

    Article  Google Scholar 

  • Gaft M, Nagli L, Panczer G, Yeates H (2013a) Laser-induced time resolved luminescence of natural margarosanite Pb(Ca, Mn)2Si3O9, swedenborgite NaBe4SbO7 and walstromite BaCa2Si3O9. Eur J Miner 25:71–77

    Article  Google Scholar 

  • Gaft M, Yeates H, Nagli L, Panczer G (2013b) Laser-induced time resolved luminescence of natural grossular Ca3Al2(SiO4)3. J Lumin 137:43–53

    Article  Google Scholar 

  • Gaft M, Nagli L, Panczer G, Rossman G (2013c) Long-lived laser induced time-resolved luminescence of Cr3+ in kyanite Al2SiO5. J Spectrosc Dyn 3:22–29

    Google Scholar 

  • Gedanken A, Reisfeld R, Sominski E et al (2000) Sonochemical preparation and characterization of europium oxide doped in and coated on ZrO2 and ISZ. J Phys Chem B 104:7057–7065

    Article  Google Scholar 

  • Geiger C, Stahl A, Rossman GR (1999) Raspberry red grossular from Mexico. Eur J Miner 11:1109–1113

    Article  Google Scholar 

  • Geipel G (2006) Laser-induced fluorescence spectroscopy. In: Vij D (ed) Handbook of applied solid state spectroscopy. Springer, New York, pp 577–593

    Chapter  Google Scholar 

  • GIA Gem Database (2010) Edward J. Gübelin Collection, 34991

    Google Scholar 

  • Geschwind S, Kisluk P, Klein M et al (1962) Sharp-line fluorescence, electron paramagnetic resonance, and thermoluminescence of Mn4+ in α-Al2O3. Phys Rev 126:1684–1686

    Article  Google Scholar 

  • Gilinskaya L, Mashkovtsev R (1995) Blue and green centers in natural apatites by ERS and optical spectroscopy data. J Struct Chem 36:89–101 (in Russian)

    Article  Google Scholar 

  • Glynn T, Imbusch C, Walker G (1991) Luminescence from Cr3+ centers in forsterite Mg2SiO4. J Lumin 48&49:541–544

    Article  Google Scholar 

  • Gorobets B (1968) On the luminescence of fluorapatite doped with rare earth elements. Opt Spectrosc 25:292–294 (in Russian)

    Google Scholar 

  • Gorobets B (1975) Reabsorption of luminescence emission in minerals because of neodymium impurities. Zap Vses Mineral Ob-va 3:357–359 (in Russian)

    Google Scholar 

  • Gorobets B, Kudrina M (1976) Typomorphic features of scheelite as revealed by their rare-earth elements luminescence spectra. Const Svoy Miner, Kiev, Naukova Dumka 10:82–88 (in Russian)

    Google Scholar 

  • Gorobets B, Gaft M, Laverova L (1978) Photoluminescence of manganese minerals. J Prickl Spectr 28:1100–1102

    Google Scholar 

  • Gorobets B, Rogojine A (2001) Luminescent spectra of minerals. Handbook. RPC VIMS, Moscow

    Google Scholar 

  • Gorobets B, Sidorenko G (1974) Luminescence of secondary uranium minerals at low temperature. At Energy 36:6–13

    Article  Google Scholar 

  • Gorobets B, Novozhilov A, Samoilovich M (1968) Monovalent europium in NaCl-Eu and KCl-Eu. DAN SSSR 180:1351–1354

    Google Scholar 

  • Götze J (2000) Cathodoluminescence microscopy and spectroscopy in applied mineralogy. Technische Universität Bergakademie Freiberg, Freiberg

    Google Scholar 

  • Grimm J, Wenger O, Güdel H (2003) Broadband green upconversion luminescence of Ni2+ in KZnF3. J Lumin 102–103:380–385

    Article  Google Scholar 

  • Grinberg M, Barzovska J, Shen Y et al (2002) High pressure photoluminescence characterization of the LiSc(WO4) crystal doped with chromium. International conference on luminescence and optical spectroscopy of condensed matter, Budapest, Abstracts, p 31

    Google Scholar 

  • Güdel H, Brunold T, Hazenkamp M et al (1998) Luminescence of transition metal ions in unusual oxidation states. Electrochem Soc Proc 29:225–234

    Google Scholar 

  • Guguschev C, Götze J, Göbbels M (2010) Cathodoluminescence microscopy and spectroscopy of synthetic ruby crystals grown by the optical floating zone technique. Am Miner 95:449–455

    Article  Google Scholar 

  • Gutzov S, Bredol M, Wasgestian F (1998) Cathodoluminescence study of europium doped zirconia and cassiterite powders. J Phys Chem Solid 59:69–74

    Article  Google Scholar 

  • Greenblatt M (1980) Electron spin resonance of tetrahedral transition oxyanions (MO4 n-) in solids. J Chem Educ 57:546–551

    Article  Google Scholar 

  • Haberland H, Köhler A (1939) Uber die blaue Fluoreszen: von naturlichen Silikaten in UV lichte und iib er syntetischen verzeiche an silikatschmelzen mit eingebautem zweiwertigem. Naturwiss 27:275–281 (In German)

    Article  Google Scholar 

  • Haberland H, Karlik B, Przibram K (1934) Zur Fluoreszen: des Fluoriten II. Sitzber Akad Wiss Wien, Abt Iia 143:151–161 (in German)

    Google Scholar 

  • Haberman D, Neuser R, Richter D (1996) Low limit of Mn2+ activated cathodoluminescence of calcite: state of the art. Sed Geol 101:1–7

    Article  Google Scholar 

  • Hall M, Ribber P (1971) An electron microprobe study of luminescence centers in cassiterire. Am Miner 56:31–45

    Google Scholar 

  • Hamstra M, Follkerts H, Blasse G (1994) Materials chemistry communications. Red bismuth emission in alkaline-earth-metal sulfates. J Mater Chem 4:1349–1350

    Article  Google Scholar 

  • Hayashi M, Shinno I, Taguchi S, Sugihara S (1990) ESR signals of zircon irradiated with thermal neutrons and gamma-rays. Min Pet Econ Geol 85:27–33

    Article  Google Scholar 

  • Hazenkamp M, Güdel H (1996) Luminescence properties of chromium(V) doped into various host lattices. J Lumin 69:235–244

    Article  Google Scholar 

  • Hessman W, Fiscima F (1991) The lifetime of the excited O2 , S2 , Se2 and Te2 centers. Phys Stat Sol 167:679–685

    Article  Google Scholar 

  • Huntley D, Gofrey-Smith D, Thewalt M (1985) Optical dating of sediments. Nature 313:105–107

    Article  Google Scholar 

  • Inokuti M, Hirayama F (1965) Influence of energy transfer by the exchange mechanism on donor luminescence. J Chem Phys 43:1978–1983

    Article  Google Scholar 

  • Ishii T, Ogasawara K, Adachi H (2002) First-principles analysis for the multiplet structures of tetrahedrally and octahedrally oxo-coordinated 3d2 and 3d3 transition metals. J Chem Phys 116:471–479

    Google Scholar 

  • Jagannathan R, Kottaisamy M (1995) Eu3+ luminescence: a spectral probe in M5(PO4)3X apatites (M = Ca or Sr; X = F, Cl, Br or OH). J Phys Cond Matt 7:8453–8460

    Article  Google Scholar 

  • Jastrablk L, Kudyk B, Kapphan S et al (2002) Luminescence of Ba0.77Ca0.23TiO3:Cr. International conference on luminescence and optical spectroscopy of condensed matter, Budapest, Abstracts, p 84

    Google Scholar 

  • Jajasankar C, Babu P (2000) Optical properties of Sm3+ ions in lithium borate abd kithium glasses. J Alloy Comp 307:82–95

    Article  Google Scholar 

  • Jasinevicius R (2009) Characterization of vibrational and electronic features in the Raman spectra of gemstones. MSc thesis, Department of Geosciences, University of Arizona, Tucson, 147 p

    Google Scholar 

  • Jia W, Liu H, Jaffe S, Yen W (1991) Spectroscopy of Cr3+ and Cr4+ ions in forsterite. Phys Rev B 43:5234–5242

    Article  Google Scholar 

  • Jørgensen C, Judd B (1964) Hypersensitive pseudo-quadrupole transitions in lanthanides. Mol Phys 8:281–290

    Article  Google Scholar 

  • Kaminskii A (1996) Crystalline lasers: physical processes and operating schemes. CRS Press, Boca Raton

    Google Scholar 

  • Kasyanenko E, Matveeva O (1987) Ультрафиолетовое поглощение и люминесценция исландского шпата. J Prikladn Spectrosc 46:943–949

    Google Scholar 

  • Kingsley J, Prener J, Segall B (1965) Spectroscopy of MnO4 3− in calcium halophosphates. Phys Rev 137:A189–A202

    Article  Google Scholar 

  • Kobayashi S, Sidike A, Yamashita N (2011) Luminescence spectra of chabazite-Ca, a zeolite mineral. Phys Chem Miner 39:465–470

    Article  Google Scholar 

  • Konijnendijk W (1981) Luminescence of BaSnSi3O9:Ti4+ compared to BaZrSi3O9:Ti4+. Inorg Nucl Chem Lett 17:129–132

    Article  Google Scholar 

  • Kottaisamy M, Jagannathan R, Jeyagopal P et al (1994) Eu2+ luminescence in M5(PO4)3X apatites, where M is Ca2+, Sr2+, and Ba2+, and X is F, Cl,Br and OH. J Phys (D) Appl Phys 27:2210–2215

    Article  Google Scholar 

  • Koziarsca B, Godlewski M, Suchoki A et al (1994) Optical properties of zoisite. Phys Rev B 50:12297–12300

    Article  Google Scholar 

  • Krasilschikova O, Tarashchan A, Platonov A (1986) Color and luminescence of natural fluorite. Naukova Dumka, Kiev (in Russian)

    Google Scholar 

  • Krasnobaev A, Votyakov S, Krohalev V (1988) Problems of the applied spectroscopy of minerals. Nauka, Ekaterinburg (in Russian)

    Google Scholar 

  • Kroger F, Overbeek J, Goorissen J (1949) Bismuth as activator in fluorescent solids. J Electrochem Soc 96:132–138

    Article  Google Scholar 

  • Kuck S, Hartung S, Hurling S et al (1998) Emission of octahedrally coordinated Mn3+ in garnets. Spectrochim Acta A 54:1741–1749

    Article  Google Scholar 

  • Kuze A, Chance K (1994) Analysis of cloud top height and cloud coverage from satellites using the O2 A and B bands. J Geophys Res 99:481–496

    Article  Google Scholar 

  • Laurs B, Rohtert W, Gray M (1997) Benitoite from the New Idria District, San Benito County, California. Gems Gemol 33:166–187

    Article  Google Scholar 

  • Lenz C, Nasdala L (2015) A photoluminescence study of REE3+ emissions in radiation-damaged zircon. Am Miner 100:1123–1133

    Article  Google Scholar 

  • Lenz C, Talla D, Ruschel K et al (2013) Factors affecting the Nd3+ (REE3+) luminescence of minerals. Miner Petrol 107:415–428

    Article  Google Scholar 

  • Lizzo S, Mejernic A, Blasse G (1994) Luminescence of divalent ytterbium in alkaline earth sulphates. J Lumin 59:185–194

    Article  Google Scholar 

  • Mao H, Xu J, Bell P (1986) Calibration of the ruby pressure gauge to 800 kbar under quazi-hydrostatic conditions. J Geophys Res 91:4673–4676

    Article  Google Scholar 

  • Marech J, Jacquier B, Pedrini C, Boulon G (1989) Selective one-photon and two stepwise excitations of Nd3+ -YAG and visible fluorescence in Nd-YAG. Mater Chem Phys 21:237–259

    Article  Google Scholar 

  • Marfunin A (1979a) Physics of minerals and inorganic materials. Springer, Berlin/Heidelberg/New York

    Book  Google Scholar 

  • Marfunin A (1979b) Spectroscopy, luminescence and radiation centers in minerals. Springer, Berlin/Heidelberg/New York

    Book  Google Scholar 

  • Margueron S, Clarke D (2007) Effect of polarization and uniaxial stress on R-line luminescence of single crystal sapphire. J Appl Phys 101:7–11

    Google Scholar 

  • Marques C, Santos L, Falcão A et al (2000) Luminescence studies in colour centers produced in natural topaz. J Lumin 87–89:583–585

    Article  Google Scholar 

  • Mazurak Z, Czaja M (1996) Optical properties of tsavorite Ca3Al2(SiO4)3:Cr3+, V3+ from Kenya. J Lumin 65:335–340

    Article  Google Scholar 

  • McNicol B, Pott G (1973) Luminescence of Mn ions in ordered and disordered LiAl5O8. J Lumin 6:320–334

    Article  Google Scholar 

  • Measures R (1985) Laser remote sensing: fundamentals and applications. Wiley, New York

    Google Scholar 

  • Min’ko O, Bahtin A, Shepelev Yu (1978) Luminescence spectra of wollastonite as typomorphic feature of wollastonite rocks origin. Abstracts of USSR conference, Tallinn, pp 81–83 (in Russian)

    Google Scholar 

  • Mironova N, Ulmanis U (1988) Radiation defects and iron group ions in oxides. Zinatne, Riga (in Rusian)

    Google Scholar 

  • Mironova N, Skvortsova V, Smirnov A et al (1993) Optical spectra and electron spin resonance of 3d-ions in magnesium aluminium spinel. Miner Zhurn 15:36–45 (in Russian)

    Google Scholar 

  • Mohler R, White W (1994) Influence of structural order on the luminescence of oxide spinels: manganese activated spinels. Mater Res Bull 29:1109–1116

    Article  Google Scholar 

  • Moine B, Pedrini C, Duloisy E et al (1991) Fluorescence properties of Cu + ion in borate and phosphate glasses. J De Phys IV 1:C7-289–C7-292

    Google Scholar 

  • Moncorge R, Cormier G, Simkon D, Capobianco J (1991) Fluorescence analysis of chromium doped forsterite (Mg2SiO4). IEEE J Quantum Electron 27:114–120

    Article  Google Scholar 

  • Moncorgé R, Manaa H, Boulon G (1994) Cr 4+ and Mn 5+ active centers for new solid state laser materials. Opt Mater 4:139–144

    Article  Google Scholar 

  • Moncorgé R, Bettinelli M, Gyot Y et al (1999) Luminescence of Ni2+ and Cr3+ centers in MgSiO3 enstatite crystals. J Phys Condens Matter 11:6831–6841

    Article  Google Scholar 

  • Monteil A, Boulon G, Garapon C (1988) Optical spectroscopy of a Cr3+ doped gadolinium calcium magnesium zirconium oxide (Gd, Ca)3(Ga, Mg, Zr)2Ga3O12 garnet. J Lumin 39:1367–1373

    Article  Google Scholar 

  • Moroshkin V, Gorobets B, Bushev A (1987) Luminescence of microcline and plagioclases from mica p egmatites as their exploration and genetic guides. Izvestiya Acad Nauk SSSR (Geol) 10:87–91 (in Russian)

    Google Scholar 

  • Morozov A, Morozova L, Trefilov A, Feofilov P (1970) Spectral and luminescent characteristics of fluorapatite single crystals activated by rare earth ions. Opt Spectrosc 29:590–596

    Google Scholar 

  • Nasdala L, Grambole D, Götze J et al (2011) Helium irradiation study on zircon. Contrib Miner Petrol 161:777–789

    Article  Google Scholar 

  • Nasdala L, Grambole D, Ruschel K (2013) Review of effects of radiation damage on the luminescence emission of minerals, and the example of He irradiated CePO4. Miner Petrol 107:441–454

    Article  Google Scholar 

  • Nasdala L, Stoyanova-Lyubenova T, Gaft M et al (2014) Photoluminescence of synthetic titanite-group pigments: a novel quenching effect. Chem Erde-Geochem 74:419–424

    Article  Google Scholar 

  • Ogryzlo E (1965) Why liquid oxygen is blue. J Chem Educ 42:647–652

    Article  Google Scholar 

  • Oomen E, Smit W, Blasse G (1988) Jahn-Teller effect in the Sb3+ emission in zircon-structured phosphates. Phys Rev 37:18–26

    Article  Google Scholar 

  • Panczer G, Gaft M, Reisfeld R et al (1998) Luminescence of uranium in natural apatites. J Alloys Comp 275–277:269–272

    Article  Google Scholar 

  • Panczer G, Gaft M, Marfunin A (2000) Systems of interacting luminescence centers in natural diamonds: laser-induced time-resolved luminescence and cathodoluminescence spectroscopy. In: Pagel M, Barbin V, Blanc P, Ohnenstetter D (eds) Cathodoluminescence in geosciences. Springer, Berlin/Heidenberg/New York, pp 359–373

    Chapter  Google Scholar 

  • Panczer G, Gaft M, de Ligny D, Champagnon B (2010) Luminescence characteristics of the Cs bearing “beryl”, pezzottaite Cs(Be2, Li)Al2(SiO3)6H2O. Eur Miner J 22:605–612

    Article  Google Scholar 

  • Payne S (1988) Optical properties of Cr3+ in fluoride hosts. J Lumin 40–41:305–306

    Article  Google Scholar 

  • Peixoto J, Oort A (1992) Physics of climate. Springer, Berlin

    Google Scholar 

  • Pereira E, Monteiro T (1990) Non-radiative processes in deep centers of diamonds. J Lumin 45:443–446

    Article  Google Scholar 

  • Pereira E, Monteiro T (1991) Delayed luminescence of the H3 center in diamond. J Lumin 48–49:814–818

    Article  Google Scholar 

  • Pereira E, Santos L (1993) The 2.96 eV centre in diamond. Phys B 185:222–227

    Article  Google Scholar 

  • Pereira E, Santos L (1994) Dynamical processes of the 2,818 eV centre in diamond. Diamond Relat Mater 4:26–32

    Article  Google Scholar 

  • Pillonnet A, Garapon C, Champeaux C et al (2000) Fluorescence of Cr3+ doped alumina optical waveguides prepared by pulsed laser deposition and sol–gel method. J Lumin 87–89:1087–1089

    Article  Google Scholar 

  • Piriou B, Fahmi D, Dexter J (1987) Unusual fluorescence properties of Eu3+ in oxyapatites. J Lumin 39:97–102

    Article  Google Scholar 

  • Piriou B, Elfakir A, Quarton M (2001) Site-selective spectroscopy of Eu3+−doped sodium lead phosphate apatite. J Lumin 93:17–26

    Article  Google Scholar 

  • Platonov A (1979) Color of minerals. Naukova Dumka, Kiev (in Russian)

    Google Scholar 

  • Platonov A, Taran M, Balizkii B (1984) The natures of semi-precious stones color. Nedra, Moscow (in Russian)

    Google Scholar 

  • Platonov A, Tarashchan A, Langer K et al (1998) Electronic absorption and luminescence spectroscopic studies of kyanite single crystals: differentiation between excitation of FeTi charge transfer and Cr3+ dd transitions. Phys Chem Miner 25:203–212

    Article  Google Scholar 

  • Porto S, Giordmaine J, Damen T (1956) Depolarization of Raman scattering in calcite. Phys Rev 147:607–614

    Google Scholar 

  • Powell R, Blasse G (1980) Energy transfer in concentrated systems. Struct Bond 42:43–85

    Article  Google Scholar 

  • Powell R, DiBartolo B, Birang B, Naiman C (1967) Fluorescence studies of energy transfer between single and pair Cr3+ systems in Al2O3. Phys Rev 155:296–308

    Article  Google Scholar 

  • Powell R, Xi L, Gang Xu, Quarles G (1985) Spectroscopic properties of alexandrite crystals. Phys Rev B 32:2788–2797

    Article  Google Scholar 

  • Prokic M (1979) Mechanics of thermoluminescence in natural barites. J Phys Chem Sol 40:405–412

    Article  Google Scholar 

  • Prokofiev I, Gorobets B, Gaft M, Lurie Yu (1982) Rare earth luminescence centers in leucophane, shortite, meionite and monacite. Miner Sborn Lvov State Univer Vyshchaya Shkola 36:76–79 (in Russian)

    Google Scholar 

  • Rappoport W, Khattak C (1988) Titanium sapphire laser characteristics. Appl Opt 27:2677–2684

    Article  Google Scholar 

  • Reiche I, Vignand C, Champagnon B, Panczer G et al (2001) From mastodon ivory to gemstone: the origin of turquoise color in odontolite. Amer Miner 86:1519–1524

    Article  Google Scholar 

  • Reisfeld R (1973) Spectra and energy transfer of rare earths in inorganic glasses. Struct Bond 13:53–98

    Article  Google Scholar 

  • Reisfeld R (2015) Optical properties of rare earths in condensed phase, theory and applications. AIMS Materials Science 2, 2, 37–60

    Google Scholar 

  • Reisfeld R, Jörgensen K (1977) Lasers and excited states of rare earths. Springer, Berlin/Heidelberg/New York

    Book  Google Scholar 

  • Reisfeld R, Gaft M, Boulon G et al (1996) Laser-induced luminescence of REE in natural fluor- apatite. J Lumin 9:343–351

    Article  Google Scholar 

  • Reisfeld R, Gaft M, Saridarov TS et al (2000) Nanoparticles of CdS with Eu and Tb in zirconia films having intensified luminescence. Mater Lett 45:154–156

    Article  Google Scholar 

  • Reisfeld R, Zigansky E, Gaft M (2004) Europium probe for determination of site symmetry in glass films, glasses and crystals. Mol Phys 102:1319–1330

    Article  Google Scholar 

  • Rey C, Combes C, Drouet C, Glimcher MJ (2009) Bone mineral: an update on chemical composition and structure. Osteoporos Int 20:1013–1021

    Article  Google Scholar 

  • Rosenzweig A (1990) Photoacoustic and photoacoustic spectroscopy. Kriger, Florida, 309 pp

    Google Scholar 

  • Rossman GR, Grew E, Dollase W (1982) The colors of sillimanite. Am Miner 67:749–757

    Google Scholar 

  • Rotman S, Hartman F (1988) Non-radiative energy transfer in doubly-doped solid-state laser materials. SPIE 1182:151–161

    Google Scholar 

  • Ryan F, Ohlmann R, Murphy J et al (1970) Optical properties of divalent manganese in calcium fluorophosphate. Phys Rev B 2:2341–2352

    Article  Google Scholar 

  • Schepler K (1984) “Fluorescence of inversion site Cr” ions in alexandrite. J Appl Phys 56:1314–1318

    Article  Google Scholar 

  • Schlaich H, Lindner G, Feldman J et al (2000) Optical properties of Se2 and Se2 color centers in red selenium ultramarine with the sodalite structure. Inorg Chem 39:2740–2746

    Article  Google Scholar 

  • Schott S, Rager H, Schurmann K, Taran M (2003) Spectroscopic study of natural gem quality “Imperial” – topazes from Ouro Preto, Brasil. Eur J Miner 15:701–706

    Article  Google Scholar 

  • Scott M, Henderon B, Gallagher H, Han T (1997) Optical spectroscopy of (MnO4)3 and (VO4)5 in Sr10(VO4)F2. J Phys Condens Matter 9:9893–9897

    Article  Google Scholar 

  • Shionoya S, Yen W (1999) Phosphor handbook. CRC Press, Boca Raton

    Google Scholar 

  • Sidike A, Kusachi I, Yamashita N (2002) Energy transfer from Pb2+ to Mn2+ in fluorescent halite from Salton Sea, California. J Miner Petrol Sci 6:278–284

    Article  Google Scholar 

  • Sidike A, Kusachi I, Yamashita N (2006) Yellow fluorescence from baghdadite and synthetic Ca3(Zr, Ti)Si2O9. Phys Chem Miner 32:665–669

    Article  Google Scholar 

  • Sidike A, Sawuti A, Wang X-M et al (2007) Fine structure in photoluminescence spectrum of S2 center in sodalite. Phys Chem Miner 34:477–484

    Article  Google Scholar 

  • Sidike A, Kusachi I, Kobayashi I et al (2008) Photoluminescence spectra of S2 center in natural and heat treated scapolites. Phys Chem Miner 35:137–149

    Article  Google Scholar 

  • Sidike A, Jilili N, Kobayashi S et al (2010a) Photoluminescence properties of anthophyllite. Phys Chem Miner 37:83–89

    Article  Google Scholar 

  • Sidike A, Kobayashi S, Zhu H-J, Yamashita N (2010b) Photoluminescence of baratovite and katayamalite. Phys Chem Miner 10:705–710

    Article  Google Scholar 

  • Sidorenko G, Gorobets B, Dubinchuk V (1986) Contemporary methods of mineralogical analysis of uranium bering rocks. Energoatomizdat, Moscow (in Russian)

    Google Scholar 

  • Siletti D, Brokus S, Earlywine E et al (2012) Radiation-induced cathodoluminescent signatures in calcite. Radiat Meas 47:195–200

    Article  Google Scholar 

  • Srivastava A (1998) Luminescence of divalent bismuth in M2+ BPO5 (M2+ = Ba2+, Sr2+ and Ca2+). J Lumin 78:239–243

    Article  Google Scholar 

  • Stade J, Hahn D, Dittmann R (1974) New aspects of the luminescence of magnesium titanate part II: activation with manganese. J Lumin 8:318–325

    Article  Google Scholar 

  • Stepanov I, Feofilov P (1956) On two types of luminescence spectra in artificial fluorite crystals. Docl Acad Nauk SSSR 108:615–618

    Google Scholar 

  • Suchoki A, Biernacki A, Arizmendi L (2002) Nephelauxetic effect in luminescence of Cr3+ doped lithium niobate and garnet. International conference on luminescence and optical spectroscopy of condensed matter, Budapest, Abstracts, p 35

    Google Scholar 

  • Suchoki A, Biernacki S, Boulon G et al (2004) Enhanced Zeeman effect in GGG:Mn 4+, Ca crystals. Chem Phys 298:267–272

    Article  Google Scholar 

  • Tanaka K, Yano T, Shibata S et al (1994) Cu+ -doped CaO-P2O5 glasses for lasers. J Non-Cryst Solid 178:9–14

    Article  Google Scholar 

  • Tarashchan A (1978) Luminescence of minerals. Naukova Dumka, Kiev (in Russian)

    Google Scholar 

  • Tolstoy N, Shinfue L (1960) Kinetick of emission of chromium luminophores. Opt Spectrosc 9:415–419

    Google Scholar 

  • Vacek K (1971) Some remarks on photoluminescence of AgCl crystals excited by laser or after deformation. Czech J Phys B21:303–308

    Article  Google Scholar 

  • Van Doorn C, Schipper D (1971) Luminescence of O2 , Mn2+ and Fe3+ in sodalite. Phys Let A 34:139–140

    Article  Google Scholar 

  • Voronko K, Maksimova G, Sobol A (1991) Anisotropic luminescence centers of TR3+ ions in fluorapatite crystals. Opt Spectrosc 70:203–206 (in Russian)

    Google Scholar 

  • Votyakov S, Krasnobaev A, Krohalev V (1993) Problems of applied spectroscopy of minerals. Nauka, Ekaterinburg, 233 p (in Russian)

    Google Scholar 

  • Wallace L, Hunten D (1968) Dayglow of the oxygen A band. J Geophys Res 3:4813–4833

    Article  Google Scholar 

  • Waychunas G (1987) Synchrotron radiation XANES spectroscopy of Ti in minerals: effects of Ti bonding distances, Ti valence and site geometry on absorption edge structure. Am Miner 72:89–95

    Google Scholar 

  • Waychunas G (1989) Luminescence, X-Ray emission and new spectroscopies. In: Hawthorne FC (ed) Spectroscopic methods in mineralogy and geology. Rev Mineral. Mineralogical Society of America, Washington, DC, pp 638–698

    Google Scholar 

  • White W (1990) Photoluminescence, candoluminescence, and radical recombination luminescence of minerals. In: Coyne L, McKeever W, Blake D (eds) Spectroscopic characterization of minerals and their surfaces. American Chemical Society, Washington, DC, pp 118–134

    Chapter  Google Scholar 

  • White W, Masako M, Linnehan et al (1986) Absorption and luminescence of Fe3+ in single-crystal orthoclase. Am Miner 71:1415–1419

    Google Scholar 

  • Wojtowicz A (1991) Luminescence of Cr3+ in kyanite. J Lumin 50:221–230

    Article  Google Scholar 

  • Wojtowicz A, Lempicki (1988) Luminescence of Cr3+ in sillimanite. Phys Rev B 39:8695–8701

    Article  Google Scholar 

  • Yamaga M, Yosida T, Henderson B et al (1992) Electro paramagnetic resonance and optical spectra of Ti3+-doped YAlO3. J Phys Condens Matter 4:7285–7294

    Article  Google Scholar 

  • Yang C (1995) Ionoluminescence techniques for geological applications. Department of Nuclear Physics, Lund Institute of Technology, Lund

    Google Scholar 

  • Yauri J, Cano N, Watanabe S (2008) TL, EPR and optical absorption in natural grossular crystal. J Lumin 128:1731–1737

    Article  Google Scholar 

  • Zaitsev A (2005) Optical properties of diamond. Springer, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gaft, M., Reisfeld, R., Panczer, G. (2015). Interpretation of Luminescence Centers. In: Modern Luminescence Spectroscopy of Minerals and Materials. Springer Mineralogy. Springer, Cham. https://doi.org/10.1007/978-3-319-24765-6_5

Download citation

Publish with us

Policies and ethics