Skip to main content

Solutions to a Sticky Problem: Convergence of the Adhesive Systems of Geckos and Anoles (Reptilia: Squamata)

  • Chapter
  • First Online:
Convergent Evolution

Part of the book series: Fascinating Life Sciences ((FLS))

Abstract

The modes and mechanisms of organismal attachment are numerous and diverse. Terrestrial vertebrates, however, achieve robust and releasable attachment to both abiotic and biotic substrata in three chief ways: hook-like anchors, such as claws, permit temporary attachment to surfaces via mechanical interlocking and/or frictional interactions with surface asperities; attachment organs releasing glandular secretions (e.g., the toe pads of hylid frogs, suction cups of disc-winged bats) achieve attachment via wet adhesion and/or suction; subdigital pads of some lineages of lizards possess filamentous outgrowths that induce friction and/or adhesion via molecular interactions. Lizards are the largest organisms to employ fibrillar-based attachment, but only the adhesive subdigital pads of geckos and anoles are sufficiently adhesively competent to support forces in excess of their body mass. The adhesive systems of geckos and anoles have long been considered convergent, but beyond general statements to this effect, convergence has not been rigorously assessed. Here we review what is known of the adhesive apparatus of both gekkotan and anoline lizards within the context of two hierarchically stratified domains: (1) adhesive attachment and the structure of setae and setal fields, and (2) the higher-order anatomical specializations that control the operation of the setae. We employ this information to identify the physical and organismic drivers of convergence of fibrillar adhesive systems, thereby enabling us to assess the particular, rather than superficially general, extent of convergence of the adhesive system of geckos and anoles.

Our synopsis of gekkotan and anoline setae, setal fields, and their adhesive systems reveals numerous physical and organismic constraints, perceived as the drivers of convergent evolution, that have led to similar morphological and functional outcomes. We posit that the setae and setal fields of geckos and anoles are convergent structures that enhance effective attachment to diverse substrata. Setae exhibit deep homology, arising from the convergently evolved spinulate Oberhäutchen of the epidermis. Following the initial exaptation of spinules as van der Waals adhesion-promoting setae, those of geckos and anoles followed somewhat different evolutionary pathways as the setae became organized into integrated setal fields. These pathways are reflective of differences in how the biomechanical control of the setal fields, during their application and release from the substratum, is achieved. Although anoles seemingly exhibit only a single evolutionary origin of the adhesive system, that of geckos has arisen on multiple independent occasions, with a broad range of expression of anatomical configurations that characterize the functional system. A broad survey of such configurations among geckos reveals that some are morphologically (and probably behaviorally) more similar to those of anoles than are others. Our assessment of the extent of convergence of the adhesive apparatuses of geckos and anoles identifies gekkotan taxa with an adhesive apparatus that most closely resembles that of anoles and explores what is minimally necessary to promote reversible attachment via molecular interactions. Our findings should contribute not only to ongoing investigations of the functional morphology of these adhesive systems but also should be informative to those who design biomimetic fibrillar adhesives intended to operate similarly to their natural counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alibardi, L. (2009). Cell biology of adhesive setae in gecko lizards. Zoology, 112(6), 403–424.

    Article  CAS  PubMed  Google Scholar 

  • Alibardi, L., Toni, M., & Dalla Valle, L. (2007). Expression of beta-keratin mRNAs and proline uptake in epidermal cells of growing scales and pad lamellae of gecko lizards. Journal of Anatomy, 211(1), 104–116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alibardi, L., Edward, D. P., Patil, L., Bouhenni, R., Dhinojwala, A., & Niewiarowski, P. H. (2011). Histochemical and ultrastructural analyses of adhesive setae of lizards indicate that they contain lipids in addition to keratins. Journal of Morphology, 272(6), 758–768.

    Article  CAS  PubMed  Google Scholar 

  • Arzt, E., Gorb, S., & Spolenak, R. (2003). From micro to nano contacts in biological attachment devices. Proceedings of the National Academy of Sciences of the United States of America, 100(19), 10603–10606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Autumn, K. (2006). Principles and parameters of the gecko adhesive system. In A. M. Smith & J. A. Calow (Eds.), Biological adhesives (pp. 225–256). Springer.

    Chapter  Google Scholar 

  • Autumn, K., & Hansen, W. (2006). Ultrahydrophobicity indicates a non-adhesive default state in gecko setae. Journal of Comparative Physiology A, 192(11), 1205–1212.

    Article  Google Scholar 

  • Autumn, K., & Peattie, A. M. (2002). Mechanisms of adhesion in geckos. Integrative and Comparative Biology, 42(6), 1081–1090.

    Article  PubMed  Google Scholar 

  • Autumn, K., Liang, Y. A., Hsieh, S. T., Zesch, W., Chan, W. P., Kenny, T. W., Fearing, R., & Full, R. J. (2000). Adhesive force of a single gecko foot-hair. Nature, 405(6787), 681–685.

    Article  CAS  PubMed  Google Scholar 

  • Autumn, K., Sitti, M., Liang, Y. A., Peattie, A. M., Hansen, W. R., Sponberg, S., Kenny, T. W., Fearing, R., Israelachvili, J. N., & Full, R. J. (2002). Evidence for van der Waals adhesion in gecko setae. Proceedings of the National Academy of Sciences of the United States of America, 99(19), 12252–12256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Autumn, K., Majidi, C., Groff, R. E., Dittmore, A., & Fearing, R. (2006a). Effective elastic modulus of isolated gecko setal arrays. The Journal of Experimental Biology, 209(18), 3558–3568.

    Article  CAS  PubMed  Google Scholar 

  • Autumn, K., Hsieh, S. T., Dudek, D. M., Chen, J., Chitaphan, C., & Full, R. J. (2006b). Dynamics of geckos running vertically. The Journal of Experimental Biology, 209, 260–272.

    Article  CAS  PubMed  Google Scholar 

  • Autumn, K., Niewiarowski, P. H., & Puthoff, J. B. (2014). Gecko adhesion as a model system for integrative biology, interdisciplinary science, and bioinspired engineering. Annual Review of Ecology, Evolution, and Systematics, 45(1), 445–470.

    Article  Google Scholar 

  • Barnes, W. J. P., Oines, C., & Smith, J. M. (2006). Whole animal measurements of shear and adhesive forces in adult tree frogs: insights into underlying mechanisms of adhesion obtained from studying the effects of size and scale. Journal of Comparative Physiology A, 192, 1179–1191.

    Article  Google Scholar 

  • Bartlett, M. D., Croll, A. B., King, D. R., Paret, B. M., Irschick, D. J., & Crosby, A. J. (2012). Looking beyond fibrillar features to scale gecko-like adhesion. Advanced Materials, 24(8), 1078–1083.

    Article  CAS  PubMed  Google Scholar 

  • Bauer, A. M. (1998). Morphology of the adhesive tail tips of carphodactyline geckos (Reptilia: Diplodactylidae). Journal of Morphology, 235(1), 41–58.

    Article  PubMed  Google Scholar 

  • Bergmann, P. J., & Irschick, D. J. (2005). Effects of temperature on maximum clinging ability in a diurnal gecko: Evidence for a passive clinging mechanism? The Journal of Experimental Zoology A, 303(9), 785–791.

    Article  Google Scholar 

  • Bhushan, B., Peressadko, A. G., & Kim, T.-W. (2006). Adhesion analysis of two-level hierarchical morphology in natural attachment systems for “smart adhesion”. Journal of Adhesion Science and Technology, 20(13), 1475–1491.

    Article  CAS  Google Scholar 

  • Bloch, N., & Irschick, D. J. (2005). Toe-clipping dramatically reduces clinging performance in a pad-bearing lizard (Anolis carolinensis). Journal of Herpetology, 39(2), 288–293.

    Article  Google Scholar 

  • Brinkman, D. B. (1980). Structural correlates of tarsal and metatarsal functioning in Iguana (Lacertilia: Iguanidae) and other lizards. Canadian Journal of Zoology, 58, 277–289.

    Article  Google Scholar 

  • Chen, B., & Gao, H. (2010). An alternative explanation of the effect of humidity in gecko adhesion: Stiffness reduction enhances adhesion on a rough surface. International Journal of Applied Mechanics, 2, 1–9.

    Article  Google Scholar 

  • Delannoy, S. M. (2005). Subdigital setae of the Tokay gecko (Gekko gecko): Variation in form and implications for adhesion. MSc Thesis. Department of Biological Science, University of Calgary.

    Google Scholar 

  • Donihue, C. M., Herrel, A., Fabre, A.-C., Kamath, A., Geneva, A. J., Schoener, T. W., Kolbe, J. J., & Losos, J. B. (2018). Hurricane-induced selection on the morphology of an island lizard. Nature, 560(7716), 88–91.

    Article  CAS  PubMed  Google Scholar 

  • Elstrott, J., & Irschick, D. J. (2004). Evolutionary correlations among morphology, habitat use and clinging performance in Caribbean Anolis lizards. Biological Journal of the Linnean Society, 83(3), 389–398.

    Article  Google Scholar 

  • Ernst, V., & Ruibal, R. (1966). The structure and development of the digital lamellae of lizards. Journal of Morphology, 120(3), 233–265.

    Article  CAS  PubMed  Google Scholar 

  • Federle, W. (2006). Why are so many adhesive pads hairy? The Journal of Experimental Biology, 209, 2611–2621.

    Article  PubMed  Google Scholar 

  • Fuller, K. N. G., & Tabor, D. (1975). The effect of surface roughness on the adhesion of elastic solids. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 345(1642), 327–342.

    Google Scholar 

  • Gamble, T., Greenbaum, E., Jackman, T. R., Russell, A. P., & Bauer, A. M. (2012). Repeated origin and loss of adhesive toepads in geckos. PLoS One, 7, e39429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gamble, T., Greenbaum, E., Jackman, T. R., Russell, A. P., & Bauer, A. M. (2017). Repeated evolution of digital adhesion in geckos: A reply to Harrington and Reeder. Journal of Evolutionary Biology, 30, 1429–1436.

    Article  CAS  PubMed  Google Scholar 

  • Gans, C. (1969). Functional components versus mechanical units in descriptive morphology. Journal of Morphology, 128, 365–368.

    Article  Google Scholar 

  • Garner, A. M., Lopez, S. M., & Niewiarowski, P. H. (2017). Brown anole (Anolis sagrei) adhesive forces remain unaffected by partial claw clipping. Acta Herpetologica, 12, 133–137.

    Google Scholar 

  • Garner, A. M., Wilson, M. C., Russell, A. P., Dhinojwala, A., & Niewiarowski, P. H. (2019a). Going out on a limb: how investigation of the anoline adhesive system can enhance our understanding of fibrillary adhesion. Integrative and Comparative Biology, 59, 61–69.

    Article  PubMed  Google Scholar 

  • Garner, A. M., Buo, C., Piechowski, J. M., Pamfilie, A. M., Stefanovic, S. R., Dhinojwala, A., & Niewiarowski, P. H. (2019b). Digital hyperextension has no influence on the active self-drying of gecko adhesive subdigital pads. Journal of Experimental Zoology Part A, 332, 118–125.

    Google Scholar 

  • Garner, A. M., Wilson, M. C., Wright, C., Russell, A. P., Niewiarowski, P. H., & Dhinojwala, A. (2021). The same but different: setal arrays of anoles and geckos indicate alternative approaches to achieving similar adhesive effectiveness. Journal of Anatomy, 238, 1143–1155.

    Article  PubMed  Google Scholar 

  • Gillies, A. G., Henry, A., Lin, H., Ren, A., Shiuan, K., Fearing, R. S., & Full, R. J. (2014). Gecko toe and lamellar shear adhesion on macroscopic engineered rough surfaces. The Journal of Experimental Biology, 217, 283–289.

    PubMed  Google Scholar 

  • Gorb, S. N. (2008). Biological attachment devices: Exploring nature’s diversity for biomimetics. Philosophical Transactions of the Royal Society A, 366(1870), 1557–1574.

    Article  Google Scholar 

  • Gorb, S. N., & Beutel, R. G. (2001). Evolution of locomotory attachment pads in hexapods. Naturwissenschaften, 88, 530–534.

    Article  CAS  PubMed  Google Scholar 

  • Gould, S. J., & Vrba, E. S. (1982). Exaptation – A missing term in the science of form. Paleobiology, 8, 4–15.

    Article  Google Scholar 

  • Green, D. M. (1981). Adhesion and the toe-pads of tree frogs. Copeia, 1981(4), 790–796.

    Article  Google Scholar 

  • Greiner, C., Spolenak, R., & Arzt, E. (2009). Adhesion design maps for fibrillar adhesives: The effect of shape. Acta Biomaterialia, 5(2), 597–606.

    Article  CAS  PubMed  Google Scholar 

  • Haefner, J. W. (1988). Assembly rules for Greater Antillean Anolis lizards. Oecologia, 74, 551–565.

    Article  CAS  PubMed  Google Scholar 

  • Hagey, T. J. (2013). Mechanics, diversity, and ecology of gecko adhesion. Doctoral dissertation. University of Idaho.

    Google Scholar 

  • Hagey, T. J., Uyeda, J. C., Crandell, K. E., Cheney, J. A., Autumn, K., & Harmon, L. J. (2017). Tempo and mode of performance evolution across multiple independent origins of adhesive toe pads in lizards. Evolution, 71, 2344–2358.

    Article  PubMed  Google Scholar 

  • Hansen, W. R., & Autumn, K. (2005). Evidence for self-cleaning in gecko setae. Proceedings of the National Academy of Sciences of the United States of America, 102(2), 385–389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrington, S., & Reeder, T. W. (2017). Rate heterogeneity across Squamata, misleading ancestral state reconstruction and the importance of proper null model specification. Journal of Evolutionary Biology, 30, 313–325.

    Article  CAS  PubMed  Google Scholar 

  • Higham, T. E., Russell, A. P., & Niklas, K. J. (2017a). Leaping lizards landing on leaves: Escape-induced jumps in the rainforest canopy challenge the adhesive limits of geckos. Journal of the Royal Society Interface, 14, 20170156.

    Article  PubMed  PubMed Central  Google Scholar 

  • Higham, T. E., Gamble, T., & Russell, A. P. (2017b). On the origin of frictional adhesion in geckos: small morphological changes lead to a major biomechanical transition in the genus Gonatodes. Biological Journal of the Linnean Society, 120, 503–517.

    Google Scholar 

  • Higham, T. E., Russell, A. P., Niewiarowski, P. H., Wright, A., & Speck, T. (2019). The ecomechanics of gecko adhesion: Natural surface topography, evolution, and biomimetics. Integrative and Comparative Biology, 59(1), 148–167.

    Article  PubMed  Google Scholar 

  • Home, E. (1816). Some account of the feet of those animals whose progressive motion can be carried on in opposition to gravity. Philosophical Transactions of the Royal Society, 106, 149–155 + plates VII and VIII.

    Google Scholar 

  • Hsu, P. Y., Ge, L., Li, X., Stark, A. Y., Wesdemiotis, C., Niewiarowski, P. H., & Dhinojwala, A. (2012). Direct evidence of phospholipids in gecko footprints and spatula-substrate contact interface detected using surface-sensitive spectroscopy. The Journal of the Royal Society Interface, 9(69), 657–664.

    Article  CAS  PubMed  Google Scholar 

  • Hu, S., Lopez, S., Niewiarowski, P. H., & Xia, Z. (2012). Dynamic self-cleaning in gecko setae via digital hyperextension. The Journal of the Royal Society Interface, 9(76), 2781–2790.

    Article  PubMed  Google Scholar 

  • Irschick, D. J., Austin, C. C., Petren, K., Fisher, R. N., Losos, J. B., & Ellers, O. (1996). A comparative analysis of clinging ability among pad-bearing lizards. Biological Journal of the Linnean Society, 59(1), 21–35.

    Article  Google Scholar 

  • Irschick, D. J., Carlisle, E., Elstrott, J., Ramos, M., Buckley, C., Vanhooydonck, B., Meyers, J. A. Y., & Herrel, A. (2005). A comparison of habitat use, morphology, clinging performance and escape behaviour among two divergent green anole lizard (Anolis carolinensis) populations. Biological Journal of the Linnean Society, 85(2), 223–234.

    Article  Google Scholar 

  • Johnson, M. K., & Russell, A. P. (2009). Configuration of the setal fields of Rhoptropus (Gekkota: Gekkonidae): Functional, evolutionary, ecological and phylogenetic implications of observed pattern. Journal of Anatomy, 214(6), 937–955.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kendall, K. (1975). Thin-film peeling-the elastic term. Journal of Physics D: Applied Physics, 8(13), 1449–1452.

    Article  Google Scholar 

  • Khanafer, K., Duprey, A., Schlicht, M., & Berguer, R. (2008). Effects of strain rate, mixing ratio, and stress–strain definition on the mechanical behavior of the polydimethylsiloxane (PDMS) material as related to its biological applications. Biomedical Microdevices, 11(2), 503.

    Article  Google Scholar 

  • Khannoon, E. R., Endlein, T., Russell, A. P., & Autumn, K. (2014). Experimental evidence for friction-enhancing integumentary modifications of chameleons and associated functional and evolutionary implications. Proceedings of the Royal Society of London. Series B, Biological Sciences, 281(1775), 20132334.

    Google Scholar 

  • Kim, T. W., & Bhushan, B. (2007). Adhesion analysis of multi-level hierarchical attachment system contacting with a rough surface. Journal of Adhesion Science and Technology, 21(1), 1–20.

    Article  CAS  Google Scholar 

  • Koppetsch, T., Böhme, W., Büsse, S., & Gorb, S. N. (2020). Comparative epidermal microstructure anatomy and limb and tail osteology of eyelid geckos (Squamata: Eublepharidae): Implications of ecomorphological adaptations. Zoologischer Anzeiger. https://doi.org/10.1016/j.jcz.2020.05.005

  • Kuhn, A., Skipwith, P., & Overcast, I. (2020). Digest: an emerging model system for understanding ecomorphological convergence. Evolution, 74, 696–697.

    Article  PubMed  Google Scholar 

  • Labonte, D., Clemente, C. J., Dittrich, A., Kuo, C. Y., Crosby, A. J., Irschick, D. J., & Federle, W. (2016). Extreme positive allometry of animal adhesive pads and the size limits of adhesion-based climbing. Proceedings of the National Academy of Sciences of the United States of America, 113(5), 1297–1302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lange, B. (1931). Integument der Sauropsiden. In L. Bolk, E. Göppert, E. Kallius, & W. Lubosch (Eds.), Handbuch der vergleichenden Anatomie der Wirbeltiere (pp. 375–448). Urban und Schwarzenberg.

    Google Scholar 

  • Langowski, J. K., Dodou, D., Kamperman, M., & van Leeuwen, J. L. (2018). Tree frog attachment: Mechanisms, challenges, and perspectives. Frontiers in Zoology, 15(1), 32.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lauff, R. F., Russell, A. P., & Bauer, A. M. (1993). Topography of the digital cutaneous sensilla of the Tokay gecko, Gekko gecko (Reptilia, Gekkonidae), and their potential role in locomotion. Canadian Journal of Zoology, 71, 2462–2472.

    Article  Google Scholar 

  • Lillywhite, H. B., & Maderson, P. F. A. (1968). Histological changes in the epidermis of the subdigital lamellae of Anolis carolinensis during the shedding cycle. Journal of Morphology, 125, 379–401.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y., Zhou, Q., Wang, Y., Luo, L., Yang, J., Yang, L., Liu, M., Li, Y., Quian, T., Zheng, Y., Li, M., Li, J., Gu, Y., Han, Z., Man, X., Wang, Y., Zhu, C., Yu, B., Yang, Y., Ding, F., Jiang, J., Yang, H., & Gu, X. (2015). Gekko japonicus genome reveals evolution of adhesive toe pads and tail regeneration. Nature Communications, 6, 10033.

    Article  CAS  PubMed  Google Scholar 

  • Losos, J. B. (2011). Lizards in an evolutionary tree: Ecology and adaptive radiation of anoles. University of California Press.

    Google Scholar 

  • Macrini, T. E., Irschick, D. J., & Losos, J. B. (2003). Ecomorphological differences in toepad characteristics between mainland and island anoles. Journal of Herpetology, 37(1), 52–58.

    Article  Google Scholar 

  • Maddin, H. C., Eckhart, L., Jaeger, K., Russell, A. P., & Ghannadan, M. (2009). The anatomy and development of the claws of Xenopus laevis (Amphibia: Anura) reveal alternate pathways of structural evolution of the integument in tetrapods. Journal of Anatomy, 214, 607–619.

    Article  PubMed  PubMed Central  Google Scholar 

  • Maderson, P. F. A. (1970). Lizard glands and lizard hands: Models for evolutionary study. Forma et Functio, 3, 179–204.

    Google Scholar 

  • Maderson, P. F. A., Zucker, A. H., & Roth, S. I. (1978). Epidermal regeneration and percutaneous water loss following cellophane stripping of reptile epidermis. The Journal of Experimental Zoology, 204, 11–32.

    Article  CAS  PubMed  Google Scholar 

  • Murphy, M. P., Kim, S., & Sitti, M. (2009). Enhanced adhesion by gecko-inspired hierarchical fibrillar adhesives. ACS Applied Materials and Interfaces, 1(4), 849–855.

    Article  CAS  PubMed  Google Scholar 

  • Nachtigall, W. (1974). Biological mechanisms of attachment: The comparative morphology and bioengineering of organs for linkage, suction and adhesion. Springer.

    Book  Google Scholar 

  • Naylor, E. R., & Higham, T. E. (2019). Attachment beyond the adhesive system: The contribution of claws to gecko clinging and locomotion. Integrative and Comparative Biology, 58, 168–181.

    Article  Google Scholar 

  • Niewiarowski, P. H., Stark, A. Y., & Dhinojwala, A. (2016). Sticking to the story: Outstanding challenges in gecko-inspired adhesives. The Journal of Experimental Biology, 219(7), 912–919.

    Article  PubMed  Google Scholar 

  • Niewiarowski, P. H., Stark, A. Y., & Dhinojwala, A. (2017). A bibliometric analysis of gecko adhesion: A view of its origins and current directions. In L. Heepe, L. Xue, & S. N. Gorb (Eds.), Bio-inspired structured adhesives (pp. 1–19). Springer.

    Google Scholar 

  • Niewiarowski, P. H., Dhinojwala, A., & Garner, A. M. (2019). A physical model approach to gecko adhesion opportunity and constraint: How rough could it be? Integrative and Comparative Biology, 59(1), 203–213.

    Article  CAS  PubMed  Google Scholar 

  • Peattie, A. M., & Full, R. J. (2007). Phylogenetic analysis of the scaling of wet and dry biological fibrillar adhesives. Proceedings of the National Academy of Sciences of the United States of America, 104(47), 18595–18600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peressadko, A., & Gorb, S. N. (2004). When less is more: Experimental evidence for tenacity enhancement by division of contact area. The Journal of Adhesion, 80, 247–261.

    Article  CAS  Google Scholar 

  • Persson, B. N. J. (2003). On the mechanism of adhesion in biological systems. The Journal of Chemical Physics, 118(16), 7614–7621.

    Article  CAS  Google Scholar 

  • Pesika, N. S., Zeng, H., Kristiansen, K., Zhao, B., Tian, Y., Autumn, K., & Israelachvili, J. (2009). Gecko adhesion pad: A smart surface? Journal of Physics. Condensed Matter, 21(46), 464132.

    Article  PubMed  Google Scholar 

  • Peterson, J. A. (1983a). The evolution of the subdigital pad in Anolis. I. Comparisons among the anoline genera. In Advances in herpetology and evolutionary biology: Essays in honor of Ernest E. Williams. Museum of Comparative Zoology, Harvard University.

    Google Scholar 

  • Peterson, J. A. (1983b). The evolution of the subdigital pad of Anolis 2. Comparisons among the iguanid genera related to the anolines and a view from outside the radiation. Journal of Herpetology, 371–397.

    Google Scholar 

  • Peterson, J. A., & Williams, E. E. (1981). A case history in retrograde evolution: the onca lineage in anoline lizards: II. Subdigital fine structure. Bulletin of the Museum of Comparative Zoology at Harvard College, 149, 215–268.

    Google Scholar 

  • Pinto, B., Colli, G., Higham, T., Russell, A. P., Scantlebury, D., Vitt, L., & Gamble, T. (2018). Population genetic structure and species delimitation of a widespread, Neotropical dwarf gecko. Molecular Phylogenetics and Evolution, 133, 54–66.

    Article  PubMed  Google Scholar 

  • Prowse, M. S., Wilkinson, M., Puthoff, J. B., Mayer, G., & Autumn, K. (2011). Effects of humidity on the mechanical properties of gecko setae. Acta Biomaterialia, 7, 733–738.

    Article  PubMed  Google Scholar 

  • Puthoff, J. B., Prowse, M. S., Wilkinson, M., & Autumn, K. (2010). Changes in materials properties explain the effects of humidity on gecko adhesion. The Journal of Experimental Biology, 213, 3699–3704.

    Article  PubMed  Google Scholar 

  • Rewcastle, S. C. (1980). Form and function of the lacertilian knee and mesotarsal joints – A contribution to the analysis of sprawling locomotion. Journal of Zoology, 191, 147–170.

    Article  Google Scholar 

  • Rewcastle, S. C. (1983). Fundamental adaptations in the lacertilian hind limb: A partial analysis of the sprawling limb posture and gait. Copeia, 1983, 476–487.

    Article  Google Scholar 

  • Riskin, D. K., & Fenton, M. B. (2001). Sticking ability in Spix’s disc-winged bat, Thryroptera tricolor (Microchiroptera: Thryropteridae). Canadian Journal of Zoology, 79, 2261–2267.

    Article  Google Scholar 

  • Roach, M. (2003). Stiff: The curious lives of human cadavers. W.W. Norton and Company.

    Google Scholar 

  • Rosenberg, H. I., & Rose, R. (1999). Volar adhesive pads of the feathertail glider, Acrobates pygmaeus (Marsupialia; Acrobatidae). Canadian Journal of Zoology, 77, 233–248.

    Article  Google Scholar 

  • Ruibal, R. (1968). The ultrastructure of the surface of lizard scales. Copeia, 1968(4), 698–703.

    Article  Google Scholar 

  • Ruibal, R., & Ernst, V. (1965). The structure of the digital setae of lizards. Journal of Morphology, 117(3), 271–293.

    Article  CAS  PubMed  Google Scholar 

  • Russell, A. P. (1975). A contribution to the functional analysis of the foot of the Tokay, Gekko gecko (Reptilia: Gekkonidae). Journal of Zoology, 176(4), 437–476.

    Article  Google Scholar 

  • Russell, A. P. (1976). Some comments concerning interrelationships amongst gekkonine geckos. In Bellairs, A.d’A., Cox, C.B. (Eds.) Morphology and biology of reptiles. Linnean Symposium Series No. 3 (pp. 217–244). Academic.

    Google Scholar 

  • Russell, A. P. (1981). Descriptive and functional anatomy of the digital vascular system of the Tokay, Gekko gecko. Journal of Morphology, 169, 293–323.

    Article  PubMed  Google Scholar 

  • Russell, A. P. (1986). The morphological basis of weight-bearing in the scansors of the Tokay gecko (Gekko gecko). Canadian Journal of Zoology, 64, 948–955.

    Article  Google Scholar 

  • Russell, A. P. (2002). Integrative functional morphology of the gekkotan adhesive system (Reptilia: Gekkota). Integrative and Comparative Biology, 42(6), 1154–1163.

    Article  PubMed  Google Scholar 

  • Russell, A. P. (2016). The structure of anoline (Reptilia: Dactyloidae: Anolis) toe pads in relation to substratum conformity. Acta Zoologica, 98, 300–309.

    Article  Google Scholar 

  • Russell, A. P., & Bauer, A. M. (1988). Paraphalangeal elements of gekkonid lizards: a comparative survey. Journal of Morphology, 197, 221–240.

    Article  PubMed  Google Scholar 

  • Russell, A. P., & Bauer, A. M. (1990). Digit I in pad-bearing gekkonine geckos: Alternate designs and the potential constraints of phalangeal number. Memoirs of the Queensland Museum, 29, 453–472.

    Google Scholar 

  • Russell, A. P., & Bauer, A. M. (2008). The appendicular locomotor apparatus of Sphenodon and normal-limbed squamates. In C. Gans, A. S. Gaunt, & K. Adler (Eds.), Biology of the Reptilia (Vol. 1, pp. 1–466). Society for the Study of Amphibians and Reptiles.

    Google Scholar 

  • Russell, A. P., & Bels, V. (2001). Digital hyperextension in Anolis sagrei. Herpetologica, 57(1), 58–65.

    Google Scholar 

  • Russell, A. P., & Johnson, M. K. (2007). Real-world challenges to, and capabilities of, the gekkotan adhesive system: contrasting the rough and the smooth. Canadian Journal of Zoology, 85, 1228–1238.

    Article  Google Scholar 

  • Russell, A. P., & Delaugerre, M.-J. (2017). Left in the dust: Differential effectiveness of the two adhesive pad configurations in geckos (Reptilia: Gekkota). Journal of Zoology, 301, 61–68.

    Article  Google Scholar 

  • Russell, A. P., & Eslinger, A. (2017). A whole lamella perspective on the origin of the epidermal free margin of Anolis (Reptilia: Dactyloidae) toe pads. Journal of Morphology, 278(3), 360–368.

    Article  PubMed  Google Scholar 

  • Russell, A. P., & Gamble, T. (2019). Evolution of the gekkotan adhesive system: Does digit anatomy point to one or more origins? Integrative and Comparative Biology, 59, 131–147.

    Article  PubMed  Google Scholar 

  • Russell, A. P., & Johnson, M. K. (2014). Between a rock and a soft place: Microtopography of the locomotor substrate and morphology of the setal fields of Namibian day geckos (Gekkota: Gekkonidae: Rhoptropus). Acta Zoologica, 95, 299–318.

    Article  Google Scholar 

  • Russell, A. P., & Oetelaar, G. S. (2016). Limb and digit orientation during vertical clinging in Bibron’s gecko, Chondrodactylus bibronii (A. Smith, 1846) and its bearing on the adhesive capabilities of geckos. Acta Zoologica, 97, 345–360.

    Article  Google Scholar 

  • Russell, A. P., Bauer, A. M., & Laroiya, R. (1997). Morphological correlates of the secondarily symmetrical pes of gekkotan lizards. Journal of Zoology, 241, 767–790.

    Article  Google Scholar 

  • Russell, A. P., Johnson, M. K., & Delannoy, S. M. (2007). Insights from studies of gecko-inspired adhesion and their impact on our understanding of the evolution of the gekkotan adhesive system. Journal of Adhesion Science and Technology, 21(12–13), 1119–1143.

    Article  CAS  Google Scholar 

  • Russell, A. P., Baskerville, J., Gamble, T., & Higham, T. E. (2015). The evolution of digit form in Gonatodes (Gekkota: Sphaerodactylidae) and its bearing on the transition from frictional to adhesive contact in gekkotans. Journal of Morphology, 276, 1311–1332.

    Article  PubMed  Google Scholar 

  • Russell, A. P., Stark, A. Y., & Higham, T. E. (2019). The integrative biology of gecko adhesion: historical review, current understanding and grand challenges. Integrative and Comparative Biology, 59, 101–116.

    Article  CAS  PubMed  Google Scholar 

  • Sawyer, R. H., Glenn, T., French, J. O., Mays, B., Shames, R. B., Barnes, G. L., Jr., Rhodes, W., & Ishikawa, Y. (2000). The expression of beta (β) keratins in the epidermal appendages of reptiles and birds. American Zoologist, 40, 530–539.

    CAS  Google Scholar 

  • Song, Y., Dai, Z., Wang, Z., & Full, R. J. (2020). Role of multiple, adjustable toes in distributed control shown by sideways wall-running in geckos. Proceedings of the Royal Society B, 287(1926), 20200123.

    Article  PubMed  PubMed Central  Google Scholar 

  • Spinner, M., Westhoff, G., & Gorb, S. N. (2014). Subdigital setae of chameleon feet: friction-enhancing microstructures for a wide range of substrate roughness. Scientific Reports, 4, 5481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stark, A. Y., & Mitchell, C. T. (2019). Stick or slip: Adhesive performance of geckos and gecko-inspired synthetics in wet environments. Integrative and Comparative Biology, 59, 214–226.

    Article  CAS  PubMed  Google Scholar 

  • Stark, A. Y., Sullivan, T. W., & Niewiarowski, P. H. (2012). The effect of surface water and wetting on gecko adhesion. The Journal of Experimental Biology, 215(17), 3080–3086.

    Article  PubMed  Google Scholar 

  • Stark, A. Y., Badge, I., Wucinich, N. A., Sullivan, T. W., Niewiarowski, P. H., & Dhinojwala, A. (2013). Surface wettability plays a significant role in gecko adhesion underwater. Proceedings of the National Academy of Sciences of the United States of America, 110(16), 6340–6345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stark, A. Y., Wucinich, N. A., Paoloni, E. L., Niewiarowski, P. H., & Dhinojwala, A. (2014). Self-drying: A gecko’s innate ability to remove water from wet toe pads. PLoS One, 9(7), e101885.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stark, A. Y., Klittich, M. R., Sitti, M., Niewiarowski, P. H., & Dhinojwala, A. (2016). The effect of temperature and humidity on adhesion of gecko-inspired adhesives: implications for the natural system. Scientific Reports, 6, 30936.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stewart, G. R., & Daniel, R. S. (1972). Scales of the lizard Gekko gecko: surface structure examined with the scanning electron microscope. Copeia, 1972, 252–257.

    Article  Google Scholar 

  • Tornier, G. (1899). Ein Eidechsenschwanz mit Saugscheibe. Biologisches Zentralblatt, 19, 549–552.

    Google Scholar 

  • Vogel, S. (1988). Life’s devices: The physical world of animals and plants. Princeton University Press.

    Google Scholar 

  • Webster, N. B., Johnson, M. K., & Russell, A. P. (2009). Ontogenetic scaling of scansorial surface area and setal dimensions of Chondrodactlus bibronii (Gekkota: Gekkonidae): Testing predictions derived from cross-species comparisons of gekkotans. Acta Zoologica, 90, 18–29.

    Article  Google Scholar 

  • Williams, E. E., & Peterson, J. A. (1982). Convergent and alternative designs in the digital adhesive pads of scincid lizards. Science, 215(4539), 1509–1511.

    Article  CAS  PubMed  Google Scholar 

  • Wimsatt, W. A., & Villa-R, B. (1970). Locomotor adaptations of the disc-winged bat Thryroptera tricolor. I. Functional organization of the adhesive discs. The American Journal of Anatomy, 129, 89–120.

    Article  CAS  PubMed  Google Scholar 

  • Yao, H., & Gao, H. (2006). Mechanics of robust and releasable adhesion in biology: Bottom-up designed hierarchical structures of gecko. Journal of the Mechanics and Physics of Solids, 54(6), 1120–1146.

    Article  Google Scholar 

  • Zweers, G. A. (1979). Explanation of structure by optimization and systemization. Netherlands Journal of Zoology, 29, 418–440.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony P. Russell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Russell, A.P., Garner, A.M. (2023). Solutions to a Sticky Problem: Convergence of the Adhesive Systems of Geckos and Anoles (Reptilia: Squamata). In: Bels, V.L., Russell, A.P. (eds) Convergent Evolution. Fascinating Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-031-11441-0_9

Download citation

Publish with us

Policies and ethics