Skip to main content

The Malformed Eye

  • Chapter
  • First Online:
Lee's Ophthalmic Histopathology
  • 817 Accesses

Abstract

Malformations of the eye, orbit, and adnexa are encountered in three forms. The most common are of a relatively minor nature such as colobomata of the uveal tract and minor malformations of the retina and optic nerve head and do not require treatment. The next group are amenable to surgical intervention and excised tissue may be submitted to the laboratory for investigation. Lastly, there are those in which major or minor degrees of ocular malformation are associated with severe and often lethal systemic disorders (e.g., synophthalmia, anencephaly, and gross chromosomal abnormalities such as the trisomy D group); these abnormalities may be encountered at autopsy. To understand these developmental anomalies an understanding of normal development is required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jakobiec FA, editor. Ocular anatomy, embryology and teratology. Philadelphia: Harper and Row; 1982.

    Google Scholar 

  2. Stromland K, Miller M, Cook C. Ocular teratology. Surv Ophthalmol. 1991;35:429–46.

    Article  CAS  PubMed  Google Scholar 

  3. Musarella MA. Gene mapping of ocular diseases. Surv Ophthalmol. 1992;36:285–312.

    Article  CAS  PubMed  Google Scholar 

  4. Torczynski E. Developmental anomalies of the eye. In: Garner A, Klintworth GK, editors. Pathobiology of ocular disease, a dynamic approach. 2nd ed. New York: Marcel Dekker; 1994. p. 1285–344.

    Google Scholar 

  5. McMenamin PG. Embryology and early development of the eye and adnexa. In: Forrester J, Dick A, McMenamin PG, Lee WR, editors. The eye: basic sciences in practice. 2nd ed. London: Saunders; 2001.

    Google Scholar 

  6. Fuhrmann S. Eye morphogenesis and patterning of the optic vesicle. Curr Top Dev Biol. 2010;93:61–84.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Slavotinek AM. Eye development genes and known syndromes. Mol Genet Metab. 2011;104(4):448–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Slavotinek A. Genetics of anophthalmia and microphthalmia. Part 2: syndromes associated with anophthalmia-microphthalmia. Hum Genet. 2019;138(8-9):831–46.

    Article  CAS  PubMed  Google Scholar 

  9. Plaisancié J, Ceroni F, Holt R, et al. Genetics of anophthalmia and microphthalmia. Part 1: non-syndromic anophthalmia/microphthalmia. Hum Genet. 2019;138(8-9):799–830.

    Article  PubMed  CAS  Google Scholar 

  10. Zhu M, Provis JM, Penfold PL. The human hyaloid system: cellular phenotypes and inter-relationships. Exp Eye Res. 1999;68:553–63.

    Article  CAS  PubMed  Google Scholar 

  11. Zhu M, Madigan MC, van Driel D, Maslim J, Billson FA, Provis JM, et al. The human hyaloid system: cell death and vascular regression. Exp Eye Res. 2000;70:767–76.

    Article  CAS  PubMed  Google Scholar 

  12. Djano J, Griffin B, van Bruggen I, McMenamin PG. Environmental scanning electron microscopic study of macrophages associated with the tunica vasculosa lentis in the developing rat eye. Br J Ophthalmol. 1999;83:1384–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Johnston MC. A radioautographic study of the migration and fate of cranial neural crest cells in the chick embryo. Anat Rec. 1966;156:143–55.

    Article  CAS  PubMed  Google Scholar 

  14. Tripathy BJ, Tripathy RC. Neural crest origin of human trabecular meshwork and its implications for the pathogenesis of glaucoma. Am J Ophthalmol. 1989;107:583–90.

    Article  Google Scholar 

  15. Idrees F, Vaideanu D, Fraser SG, Sowden JC, Khaw PT. A review of anterior segment dysgenesis. Surv Ophthalmol. 2006;51:213–31.

    Article  PubMed  Google Scholar 

  16. Sowden JC. Molecular and developmental mechanisms of anterior segment dysgenesis. Eye. 2007;21:1310–8.

    Article  CAS  PubMed  Google Scholar 

  17. International Clearinghouse for Birth Defects Monitoring Systems. Annual report 2003. Rome: International Centre on Birth Defects; 2003.

    Google Scholar 

  18. Verma AS, Fitzpatrick DR. Anophthalmia and microphthalmia. Orphanet J Rare Dis. 2007;2:47.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kallen B, Robert E, Harris J. The descriptive epidemiology of anophthalmia and microphthalmia. Int J Epidemiol. 1996;25:1009–16.

    Article  CAS  PubMed  Google Scholar 

  20. Shaw GM, Carmichael SL, Yang W, Harris JA, Finnell RH, Lammer EJ. Epidemiologic characteristics of anophthalmia and bilateral microphthalmia among 2.5 million births in California, 1989–1997. Am J Med Genet A. 2005;137:36–40.

    Article  PubMed  Google Scholar 

  21. Danno H, Michiue T, Hitachi K, Yukita A, Ishiura S, Asashima M. Molecular links among the causative genes for ocular malformation: Otx2 and Sox2 coregulate Rax expression. Proc Natl Acad Sci U S A. 2008;105:5408–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kamachi Y, Uchikawa M, Kondoh H. Pairing SOX off: with partners in the regulation of embryonic development. Trends Genet. 2000;16:182–7.

    Article  CAS  PubMed  Google Scholar 

  23. Langer L, Taranova O, Sulik K, Pevny L. SOX2 hypomorphism disrupts development of the prechordal floor and optic cup. Mech Dev. 2012;129:1–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tajima T, Ishizu K, Nakamura A. Molecular and clinical findings in patients with LHX4 and OTX2 mutations. Clin Pediatr Endocrinol. 2013;22:15–23.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hever AM, Williamson KA, van Heyningen V. Developmental malformations of the eye: the role of PAX6, SOX2 and OTX2. Clin Genet. 2006;69:459–70.

    Article  CAS  PubMed  Google Scholar 

  26. Spieler D, Baumer N, Stebler J, Koprunner M, Reichman-Fried M, Teichmann U, et al. Involvement of Pax6 and Otx2 in the forebrain-specific regulation of the vertebrate homeobox gene ANF/Hesx1. Dev Biol. 2004;269:567–9.

    Article  CAS  PubMed  Google Scholar 

  27. Schilter KF, Schneider A, Bardakjian T, Soucy JF, Tyler RC, Reis LM, et al. OTX2 microphthalmia syndrome: four novel mutations and delineation of a phenotype. Clin Genet. 2011;79:158–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dateki S, Kosaka K, Hasegawa K, Tanaka H, Azuma N, Yokoya S, et al. Heterozygous orthodenticle homeobox 2 mutations are associated with variable pituitary phenotype. J Clin Endocrinol Metab. 2010;95:756–64.

    Article  CAS  PubMed  Google Scholar 

  29. Abouzeid H, Youssef MA, ElShakankiri N, Hauser P, Munier FL, Schorderet DF. PAX6 aniridia and interhemispheric brain anomalies. Mol Vis. 2009;15:2074–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Williamson KA, FitzPatrick DR. The genetic architecture of microphthalmia, anophthalmia and coloboma. Eur J Med Genet. 2014;57:369–80.

    Article  PubMed  Google Scholar 

  31. Ullah E, Nadeem Saqib MA, Sajid S, Shah N, Zubair M, Khan MA, et al. Genetic analysis of consanguineous families presenting with congenital ocular defects. Exp Eye Res. 2016;146:163–71.

    Article  CAS  PubMed  Google Scholar 

  32. Reis LM, Tyler RC, Schilter KF, Abdul-Rahman O, Innis JW, Kozel BA, et al. BMP4 loss-of-function mutations in developmental eye disorders including SHORT syndrome. Hum Genet. 2011;130:495–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wyatt AW, Osborne RJ, Stewart H, Ragge NK. Bone morphogenetic protein 7 (BMP7) mutations are associated with variable ocular, brain, ear, palate, and skeletal anomalies. Hum Mutat. 2010;31:781–7.

    Article  CAS  PubMed  Google Scholar 

  34. Rainger J, van Beusekom E, Ramsay JK, McKie L, Al-Gazali L, Pallotta R, et al. Loss of the BMP antagonist, SMOC-1, causes Ophthalmo-acromelic (Waardenburg Anophthalmia) syndrome in humans and mice. PLoS Genet. 2011;7:e1002114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Abouzeid H, Boisset G, Favez T, Youssef M, Marzouk I, Shakankiry N, et al. Mutations in the SPARC-related modular calcium-binding protein 1 gene, SMOC1, cause waardenburg anophthalmia syndrome. Am J Hum Genet. 2011;88:92–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. van Rahden VA, Rau I, Fuchs S, Kosyna FK, de Almeida HL Jr, Fryssira H, et al. Clinical spectrum of femaleas with HCCS mutation: from no clinical signs to a neonatal lethal form of the microphthalmia with linear skin defects (MLS) syndrome. Orphanet J Rare Dis. 2014;9:53.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Indrieri A, van Rahden VA, Tiranti V, Morleo M, Iaconis D, Tammaro R, et al. Mutations in COX7B cause microphthalmia with linear skin lesions, an unconventional mitochondrial disease. Am J Hum Genet. 2012;91:942–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. van Rahden VA, Fernandez-Vizarra E, Alawi M, Brand K, Fellmann F, Horn D, et al. Mutations in NDUFB11, encoding a complex I component of the mitochondrial respiratory chain, cause microphthalmia with linear skin defects syndrome. Am J Hum Genet. 2015;96:640–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Chassaing N, Davis EE, McKnight KL, Niederriter AR, Causse A, David V, et al. Targeted resequencing identifies PTCH1 as a major contributor to ocular developmental anomalies and extends the SOX2 regulatory network. Genome Res. 2016;26:474–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Warburg M. An update on microphthalmos and coloboma. A brief survey of genetic disorders with microphthalmos and coloboma. Ophthalmic Paediatr Genet. 1991;12:57–63.

    Article  CAS  PubMed  Google Scholar 

  41. Dolk H, Busby A, Armstrong BG, Walls PH. Geographical variation in anophthalmia and microphthalmia in England, 1988–94. BMJ. 1998;317:905–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kava MP, Nagarajan L. Microphthalmia and microcornea: in congenital cytomegalovirus. Indian J Ophthalmol. 2009;57:323.

    Article  PubMed  Google Scholar 

  43. Duszak RS. Congenital rubella syndrome—major review. Optometry. 2009;80:36–43.

    Article  PubMed  Google Scholar 

  44. Mastroiacovo P, Botto LD, Cavalcanti DP, Zampino G, Serafini MA. Epidemiological and genetic study of holoprosencephaly in 106 cases observed in the Italian Multicentric Registry 1978–1989. In: Paper presented at proceedings of the first international meeting of the Genetic and Reproductive Epidemiology Research Society (GRERS), Roma; 1992.

    Google Scholar 

  45. Orioli IM, Castilla EE. Clinical epidemiologic study of holoprosencephaly in South America. Am J Med Genet A. 2007;143A:3088–99.

    Article  PubMed  Google Scholar 

  46. Shiota K, Yamada S. Early pathogenesis of holoprosencephaly. Am J Med Genet. 2010;154C:22–8.

    Article  PubMed  Google Scholar 

  47. Roessler E, Hu P, Muenke M. Holoprosencephaly in the genomics era. Am J Med Genet C Semin Med Genet. 2018;178(2):165–74.

    Article  PubMed  Google Scholar 

  48. Velzeboer CM, van der Harten JJ, Koole FD. Ocular pathology in trisomy 18. Ophthalmic Paediatr Genet. 1989;10:263–9.

    Article  CAS  PubMed  Google Scholar 

  49. Kuchle M, Kraus J, Rummelt C, Naumann GOH. Synophthalmia and holoprosencephaly in chromosome 18p deletion defect. Arch Ophthalmol. 1991;109:136–7.

    Article  CAS  PubMed  Google Scholar 

  50. Hausmann N, Stefani FH, Lund OE. Diplophthalmia versus cyclopia and synophthalmia. Mechanisms of doubling of the eye. Doc Ophthalmol. 1992;79:201–19.

    Article  CAS  PubMed  Google Scholar 

  51. Orioli IM, Amar E, Bakker MK, Bermejo-Sánchez E, Bianchi F, Canfield MA, Clementi M, Correa A, et al. Cyclopia: an epidemiologic study in a large dataset from the International Clearinghouse of Birth Defects Surveillance and Research. Am J Med Genet C Semin Med Genet. 2011;157(4):344–57.

    Article  Google Scholar 

  52. Goldberg SH, Farber MG, Bullock JD, Crone KR, Ball WS. Bilateral congenital ocular cysts. Ophthalmic Paediatr Genet. 1991;12:31–8.

    Article  CAS  PubMed  Google Scholar 

  53. Hayashi N, Repka MX, Ueno H, Iliff NT, Green WR. Congenital cystic eye: report of two cases and review of the literature. Surv Ophthalmol. 1999;44:173–9.

    Article  CAS  PubMed  Google Scholar 

  54. Tsitouridis I, Michaelides M, Tsantiridis C, et al. Congenital cystic eye with multiple dermal appendages and intracranial congenital anomalies. Diagn Interv Radiol. 2010;16:116–21.

    PubMed  Google Scholar 

  55. Chaudhry IA, Shamsi FA, Elzaridi E, et al. Congenital cystic eye with intracranial anomalies: a clinicopathologic study. Int Ophthalmol. 2007;27:223–33.

    Article  PubMed  Google Scholar 

  56. Gangadhar JL, Indiradevi B, Prabhakaran VC. Congenital cystic eye with meningocele. J Pediatr Neurosci. 2009;4:136–8.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Gupta R, Seith A, Guglani B, et al. Congenital cystic eye: features on MRI. Br J Radiol. 2007;80:e137–40.

    Article  CAS  PubMed  Google Scholar 

  58. Kavanagh MC, Tam D, Diehn JJ, et al. Detection of a congenital cystic eyeball by prenatal ultrasound in a newborn with Turner’s syndrome. Br J Ophthalmol. 2007;91:559–60.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Holland L, Haridas A, Phillips G, Sullivan T. Congenital cystic eye with optic nerve. BMJ Case Rep. 2015;2015:bcr2015210717. Published 2015 Jul 15.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Gupta P, Malik KP, Goel R. Congenital cystic eye with multiple dermal appendages: a case report. BMC Ophthalmol. 2003;3:7.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Shah SP, Taylor AE, Sowden JC, Ragge NK, Russell-Eggitt I, Rahi JS, et al. Anophthalmos, microphthalmos, and typical coloboma in the United Kingdom: a prospective study of incidence and risk. Invest Ophthalmol Vis Sci. 2011;52:558–64.

    Article  PubMed  Google Scholar 

  62. Moosajee M, Gregory-Evans CY. Advances in the molecular genetics of ocular coloboma. Exp Rev Ophthalmol. 2006;1:209–27.

    Article  CAS  Google Scholar 

  63. Williamson KA, Rainger J, Floyd JA, Ansari M, Meynert A, Aldridge KV, et al. Heterozygous loss-of-function mutations in YAP1 cause both isolated and syndromic optic fissure closure defects. Am J Hum Genet. 2014;94:295–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kelberman D, Islam L, Lakowski J, Bacchelli C, Chanudet E, Lescai F, et al. Mutation of SALL2 causes recessive ocular coloboma in humans and mice. Hum Mol Genet. 2014;23:2511–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Oatts JT, Hull S, Michaelides M, Arno G, Webster AR, Moore AT. Novel heterozygous mutation in YAP1 in a family with isolated ocular colobomas. Ophthalmic Genet. 2017;38:281–3.

    Article  PubMed  Google Scholar 

  66. Holt R, Ceroni F, Bax DA, Broadgate S, Gold Diaz D, Santos C, et al. New variant and expression studies provide further insight into the genotype-phenotype correlation in YAP1-related developmental eye disorders. Sci Rep. 2017;7:7975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Guo H, Dai L, Huang Y, Liao Q, Bai Y. A large novel deletion downstream of PAX6 gene in a Chinese family with ocular coloboma. PLoS One. 2013;8:e83073.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Legendre M, Abadie V, Attie-Bitach T, Philip N, Busa T, Bonneau D, et al. Phenotype and genotype analysis of a French cohort of 119 patients with CHARGE syndrome. Am J Med Genet. 2017;175:417–30.

    Article  CAS  PubMed  Google Scholar 

  69. Schimmenti LA. Renal coloboma syndrome. Eur J Hum Genet. 2011;19:1207–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Schimmenti LA, de la Cruz J, Lewis RA, Karkera JD, Manligas GS, Roessler E, Muenke M. Novel mutation in sonic hedgehog in non-syndromic colobomatous microphthalmia. Am J Med Genet. 2003;116A:215–21.

    Article  PubMed  Google Scholar 

  71. Asai-Coakwell M, French CR, Berry KM, Ye M, Koss R, Somerville M, Mueller R, van Heyningen V, Waskiewicz AJ, Lehmann OJ. GDF6, a novel locus for a spectrum of ocular developmental anomalies. Am J Hum Genet. 2007;80:306–15.

    Article  CAS  PubMed  Google Scholar 

  72. Gongal PA, French CR, Waskiewicz AJ. Aberrant forebrain signaling during early development underlies the generation of holoprosencephaly and coloboma. Biochim Biophys Acta. 2011;1812(3):390–401.

    Article  CAS  PubMed  Google Scholar 

  73. Al Somiry AS, Gregory-Evans CY, Gregory-Evans K. An update on the genetics of ocular coloboma. Hum Genet. 2019;138(8–9):865–80.

    Google Scholar 

  74. Patel A, Sowden JC. Genes and pathways in optic fissure closure. Semin Cell Dev Biol. 2019;91:55–65.

    Article  CAS  PubMed  Google Scholar 

  75. Gopal L, Kini MM, Badrinath SS, Sharma T. Management of retinal detachment with choroidal coloboma. Ophthalmology. 1991;98:1622–7.

    Article  CAS  PubMed  Google Scholar 

  76. Hussain RM, Abbey AM, Shah AR, Drenser KA, Trese MT, Capone A. Chorioretinal coloboma complications: retinal detachment and choroidal neovascular membrane. J Ophthalmic Vis Res. 2017;12:3–10.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Onwochei BC, Simon JW, Bateman JB, Couture KC, Mir E. Ocular colobomata. Surv Ophthalmol. 2000;45:175–94.

    Article  CAS  PubMed  Google Scholar 

  78. Jongmans MC, Admiraal RJ, van der Donk KP, Vissers LE, Baas AF, Kapusta L, van Hagen JM, Donnai D, de Ravel TJ, Veltman JA, Geurts van Kessel A, De Vries BB, Brunner HG, Hoefsloot LH, van Ravenswaaij CM. CHARGE syndrome: the phenotypic spectrum of mutations in the CHD7 gene. J Med Genet. 2006;43(4):306–14.

    Article  CAS  PubMed  Google Scholar 

  79. Russell-Eggit IM, Blake KD, Taylor DSI, Wise RKH. The eye in the CHARGE association. Br J Ophthalmol. 1990;74:421–6.

    Article  Google Scholar 

  80. Alazami MA, Alzahrani F, Alkuraya FS. Expanding the “E” in CHARGE. Am J Med Genet A. 2008;146A(14):1890–2.

    Article  CAS  PubMed  Google Scholar 

  81. Wincent J, Holmberg E, Stromland K, Soller M, Mirzaei L, Djureinovic T, Robinson K, Anderlid B, Schoumans J. CHD7 mutation spectrum in 28 Swedish patients diagnosed with CHARGE syndrome. Clin Genet. 2008;74(1):31–8.

    Article  CAS  PubMed  Google Scholar 

  82. Zentner GE, Layman WS, Martin DM, Scacheri PC. Molecular and phenotypic aspects of CHD7 mutation in CHARGE syndrome. Am J Med Genet A. 2010;152A(3):674–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. van Ravenswaaij-Arts C, Martin DM. New insights and advances in CHARGE syndrome: diagnosis, etiologies, treatments, and research discoveries. Am J Med Genet C Semin Med Genet. 2017;175(4):397–406.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Miller MT, Deutsch TA, Cronin C, Keys CL. Amniotic bands as a cause of ocular anomalies. Am J Ophthalmol. 1987;104:270–9.

    Article  CAS  PubMed  Google Scholar 

  85. Jensen OA, Hagerstrand I, Brun A, Lofgren O. Limb–body wall complex with anophthalmos and choroidal coloboma. Pediatr Pathol. 1993;13:505–17.

    Article  CAS  PubMed  Google Scholar 

  86. Madan S, Chaudhuri Z. Amniotic Band syndrome: a review of 2 cases. Ophthal Plast Reconstr Surg. 2018;34(4):110–3.

    Article  Google Scholar 

  87. Datta H, Datta S. Anterior segment dysgenesis and absent lens caused by amniotic bands. Clin Dysmorphol. 2003;12:69–71.

    Article  PubMed  Google Scholar 

  88. Murata T, Hashimoto S, Ishibashi T, Inomata H, Sueishi K. A case of amniotic band syndrome with bilateral epibulbar choristoma. Br J Ophthalmol. 1992;76:685–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Schramm C, Rohrbach JM, Reinert S, Mau-Holzmann UA, Aisenbrey S, Bartz-Schmidt KU, Besch D. Amniotic bands as a cause of congenital anterior staphyloma. Graefes Arch Clin Exp Ophthalmol. 2013;251(3):959–65.

    Article  PubMed  Google Scholar 

  90. Churchill A, Booth A. Genetics of aniridia and anterior segment dysgenesis. Br J Ophthalmol. 1996;80:669–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Bhandari R, Ferri S, Whittaker B, Liu M, Lazzaro DR. Peters anomaly: review of the literature. Cornea. 2011;30(8):939–44.

    Article  PubMed  Google Scholar 

  92. Maillette de Buy Wenniger-Prick LJ, Hennekam RC. The Peters’ plus syndrome: a review. Ann Genet. 2002;45:97–103.

    Article  PubMed  Google Scholar 

  93. Alkatan HM, Al Dhaheri H, Al HM. Terminology of Peters’ anomaly variants: summary of histopathological findings in 6 corneas and detailed clinicopathological correlation in 2 cases. Saudi J Ophthalmol. 2019;33(3):277–82.

    Article  PubMed  Google Scholar 

  94. Iseri SU, Osborne RJ, Farrall M, Wyatt AW, Mirza G, Nürnberg G, et al. Seeing clearly: the dominant and recessive nature of FOXE3 in eye developmental anomalies. Hum Mutat. 2009;30:1378–86.

    Article  CAS  PubMed  Google Scholar 

  95. Weh E, Reis LM, Happ HC, et al. Whole exome sequence analysis of Peters anomaly. Hum Genet. 2014;133(12):1497–511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hanson IM, Fletcher JM, Jordan T, Brown A, Taylor D, Adams RJ, et al. Mutations at the PAX6 locus are found in heterogeneous anterior segment malformations including Peters’ anomaly. Nat Genet. 1994;6:168–73.

    Article  CAS  PubMed  Google Scholar 

  97. Deml B, Reis LM, Maheshwari M, Griffis C, Bick D, Semina EV. Whole exome analysis identifies dominant COL4A1 mutations in patients with complex ocular phenotypes involving microphthalmia. Clin Genet. 2014;86(5):475–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Honkanen RA, Nishimura DY, Swiderski RE, Bennett SR, Hong S, Kwon YH, Stone EM, Sheffield VC, Alward WL. A family with Axenfeld-Rieger syndrome and Peters anomaly caused by a point mutation (Phe112Ser) in the FOXC1 gene. Am J Ophthalmol. 2003;135:368–75.

    Article  CAS  PubMed  Google Scholar 

  99. Ormestad M, Blixt A, Churchill A, Martinsson T, Enerbäck S, Carlsson P. Foxe3 haploinsufficiency in mice: a model for Peters’ anomaly. Invest Ophthalmol Vis Sci. 2002;43:1350–7.

    PubMed  Google Scholar 

  100. Reis LM, Tyler RC, Volkmann Kloss BA, Schilter KF, Levin AV, Lowry RB, Zwijnenburg PJ, Stroh E, Broeckel U, Murray JC, Semina EV. PITX2 and FOXC1 spectrum of mutations in ocular syndromes. Eur J Hum Genet. 2012;20:1224–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Semina EV, Ferrell RE, Mintz-Hittner HA, Bitoun P, Alward WL, Reiter RS, Funkhauser C, Daack-Hirsch S, Murray JC. A novel homeobox gene PITX3 is mutated in families with autosomal-dominant cataracts and ASMD. Nat Genet. 1998;19:167–70.

    Article  CAS  PubMed  Google Scholar 

  102. Vincent A, Billingsley G, Priston M, Glaser T, Oliver E, Walter M, Ritch R, Levin A, Heon E. Further support of the role of CYP1B1 in patients with Peters anomaly. Mol Vis. 2006;12:506–10.

    CAS  PubMed  Google Scholar 

  103. Reis LM, Semina EV. Genetics of anterior segment dysgenesis disorders. Curr Opin Ophthalmol. 2011;22:314–24.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Lesnik Oberstein SA, Kriek M, White SJ, Kalf ME, Szuhai K, den Dunnen JT, Breuning MH, Hennekam RC. Peters Plus syndrome is caused by mutations in B3GALTL, a putative glycosyltransferase. Am J Hum Genet. 2006;79:562–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Reis LM, Tyler RC, Abdul-Rahman O, Trapane P, Wallerstein R, Broome D, Hoffman J, Khan A, Paradiso C, Ron N, Bergner A, Semina EV. Mutation analysis of B3GALTL in Peters Plus syndrome. Am J Med Genet A. 2008;146A:2603–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Weh E, Reis LM, Tyler RC, Bick D, Rhead WJ, Wallace S, McGregor TL, Dills SK, Chao MC, Murray JC, Semina EV. Novel B3GALTL mutations in classic Peters plus syndrome and lack of mutations in a large cohort of patients with simila phenotypes. Clin Genet. 2014;86:142–8.

    Article  CAS  PubMed  Google Scholar 

  107. Kim T, Cohen EJ, Schnall BM, Affel EL, Eagle RC. Ultrasound biomicroscopy and histopathology of sclerocornea. Cornea. 1998;17:443–5.

    Article  CAS  PubMed  Google Scholar 

  108. Howard RO, Abrahams IW. Sclerocornea. Am J Ophthalmol. 1971;71:1254–8.

    Article  CAS  PubMed  Google Scholar 

  109. Fecarotta CM, Huang WW. Pediatric genetic disease of the cornea. J Pediatr Genet. 2014;3(4):195–207.

    PubMed  PubMed Central  Google Scholar 

  110. Binenbaum G, McDonald-McGinn DM, Zackai EH, Walker BM, Coleman K, Mach AM, et al. Sclerocornea associated with the chromosome 22q11.2 deletion syndrome. Am J Med Genet A. 2008;146A(7):904–9.

    Article  PubMed  Google Scholar 

  111. Migliavacca MP, Sobreira NL, Antonialli GP, Oliveira MM, Melaragno MI, Casteels I, et al. Sclerocornea in a patient with van den Ende-Gupta syndrome homozygous for a SCARF2 microdeletion. Am J Med Genet A. 2014;164A(5):1170–4.

    Article  PubMed  CAS  Google Scholar 

  112. Bedeschi MF, Colombo L, Mari F, Hofmann K, Rauch A, Gentilin B, et al. Unmasking of a recessive SCARF2 mutation by a 22q11.12 de novo deletion in a patient with Van den Ende-Gupta syndrome. Mol Syndromol. 2010;1(5):239–45.

    Article  CAS  PubMed  Google Scholar 

  113. Mackey DA, Buttery RG, Wise GM, Denton MJ. Description of X-linked megalocornea with identification of the gene locus. Arch Ophthalmol. 1991;109:829–33.

    Article  CAS  PubMed  Google Scholar 

  114. Cross HE, Jensen AD. Ocular manifestations in the Marfan syndrome and homocystinuria. Am J Ophthalmol. 1973;75:405–20.

    Article  CAS  PubMed  Google Scholar 

  115. Gutiérrez-Amavizca BE, Juárez-Vázquez CI, Orozco-Castellanos R, Arnaud L, Macias-Gómez NM, Barros-Nunez P. Neuhauser syndrome: a rare association of megalocornea and mental retardation. Review of the literature and further phenotype delineation. Genet Couns. 2013;24(2):185–91.

    PubMed  Google Scholar 

  116. Chen JD, Mackey D, Fuller H, Serravalle S, Olsson J, Denton MJ. X-linked megalocornea: close linkage to DXS87 and DXS94. Hum Genet. 1989;83:292–4.

    Article  CAS  PubMed  Google Scholar 

  117. Davidson AE, Cheong SS, Hysi PG, Venturini C, Plagnol V, Ruddle JB, et al. Association of CHRDL1 mutations and variants with X-linked megalocornea, Neuhauser syndrome and central corneal thickness. PLoS One. 2014;9(8):104163.

    Article  Google Scholar 

  118. Webb TR, Matarin M, Gardner JC, Kelberman D, Hassan H, Ang W, et al. X-linked megalocornea caused by mutations in CHRDL1 identifies an essential role for ventroptin in anterior segment development. Am J Hum Genet. 2012;90(2):247–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Khan AO, Aldahmesh MA, Alkuraya FS. Congenital megalocornea with zonular weakness and childhood lens-related secondary glaucoma—a distinct phenotype caused by recessive LTBP2 mutations. Mol Vis. 2011;17:2570–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Harley R. Abnormalities of corneal size and shape: megalocornea and anterior megalophthalmos. In: Harley R, Nelson LB, editors. Pediatric ophthalmology. Philadelphia: WB Saunders; 1983. p. 468–71.

    Google Scholar 

  121. Ventocilla M, Webster LS. Megalocornea. eMedicine ophthalmology. 2020. https://emedicine.medscape.com/article/1196299-overview. Accessed 21 Sept 2020.

  122. Ozeki H, Shirai S, Ikeda K, Ogura Y. Anomalies associated with Axenfeld-Rieger syndrome. Graefes Arch Clin Exp Ophthalmol. 1999;237:730–4.

    Article  CAS  PubMed  Google Scholar 

  123. O’Dwyer EM, Jones DC. Dental anomalies in Axenfeld-Rieger syndrome. Int J Paediatr Dent. 2005;15(6):459–63.

    Article  PubMed  Google Scholar 

  124. Jena AK, Kharbanda OP. Axenfeld-Rieger syndrome: report on dental and craniofacial findings. J Clin Pediatr Dent. 2005;30(1):83–8.

    Article  PubMed  Google Scholar 

  125. Seifi M, Walter MA. Axenfeld-Rieger syndrome. Clin Genet. 2018;93(6):1123–30.

    Article  CAS  PubMed  Google Scholar 

  126. Alward WLM. Axenfeld-Rieger syndrome in the age of molecular genetics. Am J Ophthalmol. 2000;130(1):107–15.

    Article  CAS  PubMed  Google Scholar 

  127. Chang TC, Summers CG, Schimmenti LA, Grajewski AL. Axenfeld-Rieger syndrome: new perspectives. Br J Ophthalmol. 2012;96(3):318–22. Epub 2011 Dec 23.

    Article  PubMed  Google Scholar 

  128. Gould DB, Mears AJ, Pearce WG, Walter MA. Autosomal dominant Axenfeld-Rieger anomaly maps to 6p25. Am J Hum Genet. 1997;61:765–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Borges AS, Susanna R Jr, Carani JC, Betinjane AJ, Alward WL, Stone EM, et al. Genetic analysis of PITX2 and FOXC1 in Rieger Syndrome patients from Brazil. J Glaucoma. 2002;11:51–6.

    Article  PubMed  Google Scholar 

  130. Lines MA, Kozlowski K, Kulak SC, Allingham RR, Héon E, Ritch R, et al. Characterization and prevalence of PITX2 microdeletions and mutations in Axenfeld-Rieger malformations. Invest Ophthalmol Vis Sci. 2004;45:828–33.

    Article  PubMed  Google Scholar 

  131. Strungaru MH, Dinu I, Walter MA. Genotype-phenotype correlations in Axenfeld-Rieger malformation and glaucoma patients with FOXC1 and PITX2 mutations. Invest Ophthalmol Vis Sci. 2007;48:228–37.

    Article  PubMed  Google Scholar 

  132. Chrystal PW, Walter MA. Aniridia and Axenfeld-Rieger Syndrome: clinical presentations, molecular genetics and current/emerging therapies. Exp Eye Res. 2019;189:107815.

    Article  CAS  PubMed  Google Scholar 

  133. Sibon I, Coupry I, Menegon P, Boucher JP, Gorry P, et al. COL4A1 mutation in Axenfeld-Rieger anomaly with leukoencephalopathy and stroke. Ann Neurol. 2007;62:177–84.

    Article  PubMed  Google Scholar 

  134. Micheal S, Siddiqui SN, Zafar SN, Venselaar H, Qamar R, et al. Whole exome sequencing identifies a heterozygous missense variant in the PRDM5 gene in a family with Axenfeld-Rieger syndrome. Neurogenetics. 2016;17:17–23.

    Article  CAS  PubMed  Google Scholar 

  135. Phillips JC, del Bono EA, Haines JL, Pralea AM, Cohen JS, Greff LJ, et al. A second locus for Rieger syndrome maps to chromosome 13q14. Am J Hum Genet. 1996;59:613–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Prosser J, van Heyningen V. PAX6 mutations reviewed. Hum Mutat. 1998;11:93–108.

    Article  CAS  PubMed  Google Scholar 

  137. Riise R, Storhaug K, Brøndum-Nielsen K. Rieger syndrome is associated with PAX6 deletion. Acta Ophthalmol Scand. 2001;79:201–3.

    Article  CAS  PubMed  Google Scholar 

  138. Tanwar M, Dada T, Dada R. Axenfeld-Rieger syndrome associated with congenital glaucoma and cytochrome P4501B1 gene mutations. Case Rep Med. 2010;2010:212656.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Manning MA, Hoyme HH. Fetal alcohol spectrum disorders: a practical clinical approach to diagnosis. Neurosci Biobehav Rev. 2007;31(2):230–8.

    Article  CAS  PubMed  Google Scholar 

  140. Abdelrahman A, Conn R. Eye abnormalities in fetal alcohol syndrome. Ulster Med J. 2009;78(3):164–5.

    PubMed  PubMed Central  Google Scholar 

  141. Gummel K, Ygge J. Ophthalmologic findings in Russian children with fetal alcohol syndrome. Eur J Ophthalmol. 2013;23(6):823–30.

    Article  PubMed  Google Scholar 

  142. Edward DP, Li J, Sawaguchi S, Sugar J, Yue BYTJ, Tso MOM. Diffuse corneal clouding in siblings with the foetal alcohol syndrome. Am J Ophthalmol. 1993;115:484–93.

    Article  CAS  PubMed  Google Scholar 

  143. Hollander DA, Sarfarazi M, Stoilov I, Wood IS, Fredrick DR, Alvarado JA. Genotype and phenotype correlations in congenital glaucoma: CYP1B1 mutations, goniodysgenesis, and clinical characteristics. Am J Ophthalmol. 2006;142(6):993–1004. Epub 2006 Sep 1.

    Article  CAS  PubMed  Google Scholar 

  144. Sarfarazi M, Akarsu AN, Hossain A, Turacli ME, Aktan SG, Barsoum-Homsy M, et al. Assignment of a locus (GLC3A) for primary congenital glaucoma (buphthalmos) to 2p21 and evidence for genetic heterogeneity. Genomics. 1995;30:171–7.

    Article  CAS  PubMed  Google Scholar 

  145. Akarsu AN, Turacli ME, Aktan SG, Barsoum-Homsy M, Chevrette L, Sayli BS, et al. A second locus (GLC3B) for primary congenital glaucoma (buphthalmos) maps to the 1p36 region. Hum Mol Genet. 1996;5:1199–203.

    Article  CAS  PubMed  Google Scholar 

  146. Sarfarazi M, Stoilov I. Molecular genetics of primary congenital glaucoma. Eye. 2000;14:422–8.

    Article  PubMed  Google Scholar 

  147. Stoilov IR, Sarfarazi M. The third genetic locus (GLC3C) for primary congenital glaucoma (PCG) maps to chromosome 14q24.3. Invest Ophthalmol Vis Sci. 2002;43:3015.

    Google Scholar 

  148. Firasat S, Riazuddin SA, Hejtmancik JF, Riazuddin S. Primary congenital glaucoma localizes to chromosome 14q24.2-24.3 in two consanguineous Pakistani families. Mol Vis. 2008;14:1659–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Mocan MC, Mehta AA, Aref AA. Update in genetics and surgical management of primary congenital glaucoma. Turk J Ophthalmol. 2019;49(6):347–55.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Nelson LB, Spaeth GL, Nowinski TS, Margo CE, Jackson L. Aniridia: a review. Surv Ophthalmol. 1984;28:621–42.

    Article  CAS  PubMed  Google Scholar 

  151. Kokotas H, Petersen MB. Clinical and molecular aspects of aniridia. Clin Genet. 2010;77:409–20.

    Article  CAS  PubMed  Google Scholar 

  152. Lyons LA, Martha A, Mintz-Hittner HA, Saunders GF, Ferrell RE, et al. Resolution of the two loci for autosomal dominant aniridia, AN1 and AN2, to a single locus on chromosome 11p13. Genomics. 1992;13(4):925–30.

    Article  CAS  PubMed  Google Scholar 

  153. Sharan S, Mirzayans F, Footz T, et al. Elliptical anterior iris stromal defects associated with PAX6 gene sequence changes. J AAPOS. 2008;12:340–3.

    Article  PubMed  Google Scholar 

  154. Willcock C, Grigg J, Wilson M, et al. Congenital iris ectropion as an indicator of variant aniridia. Br J Ophthalmol. 2006;90:569–658.

    Article  Google Scholar 

  155. Hingorani M, Williamson KA, Moore AT, van Heyningen V. Detailed ophthalmologic evaluation of 43 individuals with PAX6 mutations. Invest Ophthalmol Vis Sci. 2009;50:2581–90.

    Article  PubMed  Google Scholar 

  156. Lim HT, Kim DH, Kim H. PAX6 aniridia syndrome: clinics, genetics, and therapeutics. Curr Opin Ophthalmol. 2017;28(5):436–47.

    Article  PubMed  Google Scholar 

  157. Lee H, Khan R, O’Keefe M. Aniridia: current pathology and management. Acta Ophthalmol. 2008;86:708–15.

    Article  CAS  PubMed  Google Scholar 

  158. Mayer KL, Nordlund ML, Schwartz GS, Holland EJ. Keratopathy in congenital aniridia. Ocul Surf. 2003;1:74–9.

    Article  PubMed  Google Scholar 

  159. Ihnatko R, Eden U, Fagerholm P, Lagali N. Congenital aniridia and the ocular surface. Ocul Surf. 2016;14:196–206.

    Article  PubMed  Google Scholar 

  160. Nishida K, Kinoshita S, Ohashi Y, Kuwayama Y, Yamamoto S. Ocular surface abnormalities in aniridia. Am J Ophthalmol. 1995;120:368–75.

    Article  CAS  PubMed  Google Scholar 

  161. Gomes JA, Eagle RC, Gomes AK, Rapuano CJ, Cohen EJ, Laibson PR. Recurrent keratopathy after penetrating keratoplasty for aniridia. Cornea. 1996;15:457–62.

    Article  CAS  PubMed  Google Scholar 

  162. Azuma N, Nishina S, Yanagisawa H, et al. PAX6 missense mutation in isolated foveal hypoplasia. Nat Genet. 1996;13:141–2.

    Article  CAS  PubMed  Google Scholar 

  163. Thomas S, Thomas MG, Andrews C, et al. Autosomal-dominant nystagmus, foveal hypoplasia and presenile cataract associated with a novel PAX6 mutation. Eur J Hum Genet. 2014;22:344–9.

    Article  CAS  PubMed  Google Scholar 

  164. McCulley TJ, Mayer K, Dahr SS, et al. Aniridia and optic nerve hypoplasia. Eye. 2005;19:762–4.

    Article  CAS  PubMed  Google Scholar 

  165. Tsai JH, Freeman JM, Chan C-C, et al. A progressive anterior fibrosis syndrome in patients with postsurgical congenital aniridia. Am J Ophthalmol. 2005;140:1075–9.

    Article  PubMed  Google Scholar 

  166. Hoguet A, Ritterband D, Koplin R, et al. Serious ocular complications of cosmetic iris implants in 14 eyes. J Cataract Refract Surg. 2012;38:387–93.

    Article  PubMed  Google Scholar 

  167. Fischbach BV, Trout KL, Lewis J, et al. WAGR syndrome: a clinical review of 54 cases. Pediatrics. 2005;116:984–8.

    Article  PubMed  Google Scholar 

  168. Johnson BL, Cheng KP. Congenital aphakia: a clinicopathologic report of three cases. J Pediatr Ophthalmol Strabismus. 1997;34:35–9.

    Article  CAS  PubMed  Google Scholar 

  169. Saint-Geniez M, D’Amore PA. Development and pathology of the hyaloid, choroidal and retinal vasculature. Int J Dev Biol. 2004;48:1045–58.

    Article  PubMed  Google Scholar 

  170. Ito M, Yoshioka M. Regression of the hyaloid vessels and pupillary membrane of the mouse. Anat Embryol. 1999;200:403–11.

    Article  CAS  Google Scholar 

  171. Goldberg MF. Persistent fetal vasculature (PFV): an integrated interpretation of signs and symptoms associated with persistent hyperplastic primary vitreous (PHPV). Am J Ophthalmol. 1997;124:587–626.

    Article  CAS  PubMed  Google Scholar 

  172. Chen C, Xiao H, Ding X. Persistent fetal vasculature. Asia Pac J Ophthalmol (Phila). 2019;8(1):86–95.

    Google Scholar 

  173. Pollard ZF. Persistent hyperplastic primary vitreous: diagnosis, treatment and results. Trans Am Ophthalmol Soc. 1997;95:487–549.

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Khaliq S, Hameed A, Ismail M, Anwar K, Leroy B, Payne AM, et al. Locus for autosomal recessive nonsyndromic persistent hyperplastic primary vitreous. Invest Ophthalmol Vis Sci. 2001;42:2225–8.

    CAS  PubMed  Google Scholar 

  175. Gala AH, Kotoury AI, Azzab AA. Bilateral persistent hyperplastic primary vitreous: an Egyptian family supporting a rare autosomal dominant inheritance. Genet Couns. 2006;17:441–7.

    Google Scholar 

  176. Shastry BS. Persistent hyperplastic primary vitreous: congenital malformation of the eye. Clin Experiment Ophthalmol. 2009;37(9):884–90.

    Article  PubMed  Google Scholar 

  177. Vasavada AR, Vasavada SA, Bobrova N, et al. Outcomes of pediatric cataract surgery in anterior persistent fetal vasculature. J Cataract Refract Surg. 2012;38:849–57.

    Article  PubMed  Google Scholar 

  178. Khaliq S, Hameed A, Ismail M, et al. Locus for autosomal recessive nonsyndromic persistent hyperplastic primary vitreous. Invest Ophthalmol Vis Sci. 2001;42:2225–8.

    CAS  PubMed  Google Scholar 

  179. Morrison DG, Wilson ME, Trivedi RH, et al. Infant Aphakia Treatment Study: effects of persistent fetal vasculature on outcome at 1 year of age. J AAPOS. 2011;15:427–31.

    Article  PubMed  PubMed Central  Google Scholar 

  180. Dhingra S, Shears DJ, Blake V, Stewart H, Patel CK. Advanced bilateral persistent fetal vasculature associated with a novel mutation in the Norrie gene. Br J Ophthalmol. 2006;90:1324–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Wu W-C, Drenser K, Trese MT, Capone A Jr, Dailey W. Retinal phenotype-genotype correlation of pediatric patients expressing mutations in the Norrie disease gene. Arch Ophthalmol. 2007;125:225–30.

    Article  CAS  PubMed  Google Scholar 

  182. Aponte EP, Pulido JS, Ellison JW, Quiram PA, Mohney BG. A novel NDP mutation in an infant with unilateral persistent fetal vascular and vasculopathy. Ophthalmic Genet. 2009;30:99–102.

    Article  CAS  PubMed  Google Scholar 

  183. Robitaille JM, Wallace K, Zheng B, et al. Phenotypic overlap of familial exudative vitreoretinopathy (FEVR) with persistent fetal vasculature (PFV) caused by FZD4 mutations in two distinct pedigrees. Ophthalmic Genet. 2009;30:23–30.

    Article  CAS  PubMed  Google Scholar 

  184. Sinha D, Klise A, Sergeev Y, Hose S, Bhutto IA, Hackler L Jr, Malpic-Llanos T, Samtani S, Grebe R, Goldberg MF, Hejtmancik JF, Nath A, Zack DJ, Fariss RN, McLeod DS, Sundin O, Broman KW, Lutty GA, Zigler JS Jr. BetaA3/A1-crystallin in astroglial cells regulates retinal vascular remodeling during development. Mol Cell Neurosci. 2008;37:85–95.

    Article  CAS  PubMed  Google Scholar 

  185. Hegde S, Kesterson RA, Srivastava OP. CRYbetaA3/A1-crystallin knockout develops nuclear cataract and causes impaired lysosomal cargo clearance and calpain activation. PLoS One. 2016;11:e0149027.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Son AI, Sheleg M, Cooper MA, Sun Y, Kleiman NJ, Zhou R. Formation of persistent hyperplastic primary vitreous in ephrin-A5−/− mice. Invest Ophthalmol Vis Sci. 2014;55:1594–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Arima M, Yoshida S, Nakama T, Ishikawa K, Nakao S, Yoshimura T, Asato R, Sassa Y, Kita T, Enaida H, Oshima Y, Matsuda A, Kudo A, Ishibashi T. Involvement of periostin in regression of hyaloidvascular system during ocular development. Invest Ophthalmol Vis Sci. 2012;53:6495–503.

    Article  CAS  PubMed  Google Scholar 

  188. Liu C, Nathans J. An essential role for frizzled 5 in mammalian ocular development. Development. 2008;135:3567–76.

    Article  CAS  PubMed  Google Scholar 

  189. Kato M, Patel MS, Levasseur R, Lobov I, Chang BH, Glass DA 2nd, Hartmann C, Li L, Hwang TH, Brayton CF, Lang RA, Karsenty G, Chan L. Cbfa1-independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor. J Cell Biol. 2002;157:303–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Suzuki K, Nakamura M, Amano E, Mokuno K, Shirai S, Terasaki H. Case of chromosome 6p25 terminal deletion associated with Axenfeld-Rieger syndrome and persistent hyperplastic primary vitreous. Am J Med Genet A. 2006;140:503–8.

    Article  PubMed  Google Scholar 

  191. Storimans CW, van Schooneveld MJ. Rieger’s eye anomaly and persistent hyperplastic primary vitreous. Ophthalmic Paediatr Genet. 1989;10:257–62.

    Article  CAS  PubMed  Google Scholar 

  192. Nguyen DQ, Chatterjee S, Bates R. Persistent hyperplastic primary vitreous in association with neurofibromatosis. J Pediatr Ophthalmol Strabismus. 2005;42:247–9.

    Article  PubMed  Google Scholar 

  193. Beby F, Zech C, Touraine R, Guibaud P, Masset H, Trepsat C, et al. Persistent hyperplastic primary vitreous syndrome in a girl with Aicardi syndrome. J Fr Ophtalmol. 2000;23:703–7.

    CAS  PubMed  Google Scholar 

  194. Laghmeri M, Boutimzine N, Chakir N, Daoudi R, Mohcine Z. Persistent hyperplastic primary vitreous and Aicardi syndrome. J Fr Ophtalmol. 2004;27:501–5.

    Article  Google Scholar 

  195. Cennamo G, Liguori G, Pezone A, Iaccarino G. Morning glory syndrome associated with marked persistent hyperplastic primary vitreous and lens colobomas. Br J Ophthalmol. 1989;73:684–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Pendergast SD, Trese MT, Liu X, et al. Study of the Norrie disease gene in 2 patients with bilateral persistent hyperplastic primary vitreous. Arch Ophthalmol. 1998;116:381–2.

    CAS  PubMed  Google Scholar 

  197. Dobyns WB, Pagon RA, Armstrong D, et al. Diagnostic criteria for Walker-Warburg syndrome. Am J Med Genet. 1989;32:195–210.

    Article  CAS  PubMed  Google Scholar 

  198. Steichen-Gersdorf E, Gassner I, Unsinn K, et al. Persistent hyperplastic primary vitreous in a family with osteoporosis-pseudoglioma syndrome. Clin Dysmorphol. 1997;6:171–6.

    Article  CAS  PubMed  Google Scholar 

  199. Traboulsi EI, Vanderveen D, Morrison D, et al. Associated systemic and ocular disorders in patients with congenital unilateral cataracts: the Infant Aphakia Treatment Study experience. Eye (Lond). 2016;30:1170–4.

    Article  CAS  Google Scholar 

  200. Abdel-Hafez G, Wilson ME, Trivedi RH. Progression of a unilateral posterior lentiglobus associated with a persistent fetal vasculature stalk. J AAPOS. 2010;14:81–2.

    Article  PubMed  Google Scholar 

  201. Brown SM, Archer S, Del Monte MA. Stereopsis and binocular vision after surgery for unilateral infantile cataract. J AAPOS. 1999;3:109–13.

    Article  CAS  PubMed  Google Scholar 

  202. Cerón O, Lou PL, Kroll AJ, et al. The vitreo-retinal manifestations of persistent hyperplasic primary vitreous (PHPV) and their management. Int Ophthalmol Clin. 2008;48:53–62.

    Article  PubMed  Google Scholar 

  203. Johnson CP, Keech RV. Prevalence of glaucoma after surgery for PHPV and infantile cataracts. J Pediatr Ophthalmol Strabismus. 1996;33:14–7.

    Article  CAS  PubMed  Google Scholar 

  204. Swamy BN, Billson F, Martin F, et al. Secondary glaucoma after paediatric cataract surgery. Br J Ophthalmol. 2007;91:1627–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Agarwal N, Gupta P, Agarwal A, Pantola C. Retinal dysplasia: a mimic of malignant ocular pathology. J Clin Diagn Res. 2011;5:367–8.

    Google Scholar 

  206. Chan A, Lakshminrusimha S, Heffner R, et al. Histogenesis of retinal dysplasia in trisomy 13. Diagn Pathol. 2007;2:48.

    Article  PubMed  PubMed Central  Google Scholar 

  207. Jalili IK, Smith NJD. A progressive cone-rod dystrophy and amelogenesis imperfecta: a new syndrome. J Med Genet. 1988;25:738–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Tzu JH, Flynn HW Jr, Berrocal AM, Smiddy WE, Murray TG, Fisher YL. Clinical manifestations of optic pit maculopathy as demonstrated by spectral domain optical coherence tomography. Clin Ophthalmol. 2013;7:167–72.

    Article  PubMed  PubMed Central  Google Scholar 

  209. Stefko ST, Campochiaro P, Wang P, et al. Dominant inheritance of optic pits. Am J Ophthalmol. 1994;124:112–3.

    Article  Google Scholar 

  210. Asensio Sanchez VM, Corral Azor A, Bartolome Aragon A, De Paz Garcia M. Renal-coloboma syndrome. Arch Soc Esp Oftalmol. 2002;77:635–8.

    Article  CAS  PubMed  Google Scholar 

  211. Fea A, Grosso A, Rabbione M, Grignolo F. Alagille syndrome and optic pit. Graefes Arch Clin Exp Ophthalmol. 2007;245:315–7.

    Article  PubMed  Google Scholar 

  212. Caprioli J, Lesser R. Basal encephalocele and morning glory syndrome. Br J Ophthalmol. 1983;67:349–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Gregory-Roberts EM, Mateo C, Corcostegui B, et al. Optic disc pit morphology and retinal detachment: optical coherence tomography with intraoperative correlation. Retina. 2013;33:363–70.

    Article  PubMed  Google Scholar 

  214. Georgalas I, Ladas I, Georgopoulos G, Petrou P. Optic disc pit: a review. Graefes Arch Clin Exp Ophthalmol. 2011;249:1113–22.

    Article  PubMed  Google Scholar 

  215. Irvine AR, Crawford JB, Sullivan JH. The pathogenesis of retinal detachment with morning glory disc and optic pit. Retina. 1986;6:146–50.

    Article  CAS  PubMed  Google Scholar 

  216. Ohno-Matsui K, Hirakata A, Inoue M, et al. Evaluation of congenital optic disc pits and optic disc colobomas by swept-source optical coherence tomography. Invest Ophthalmol Vis Sci. 2013;54:7769–78.

    Article  PubMed  Google Scholar 

  217. Akiba J, Kakehashi A, Hikichi T, Trempe CL. Vitreous findings in cases of optic nerve pits and serous macular detachment. Am J Ophthalmol. 1993;116:38–41.

    Article  CAS  PubMed  Google Scholar 

  218. Kalogeropoulos D, Ch'ng SW, Lee R, Elaraoud I, Purohit M, Felicida V, Mathew M, Ajith-Kumar N, Sharma A, Mitra A. Optic disc pit maculopathy: a review. Asia Pac J Ophthalmol (Phila). 2019;8(3):247–55.

    Google Scholar 

  219. Uzel MM, Karacorlu M. Optic disk pits and optic disk pit maculopathy: a review. Surv Ophthalmol. 2019;64(5):595–607.

    Article  PubMed  Google Scholar 

  220. Deb N, Das R, Roy IS. Bilateral morning glory disc anomaly. Indian J Ophthalmol. 2003;51:182–3.

    PubMed  Google Scholar 

  221. Dedhia CJ, Gogri PY, Rani PK. Rare bilateral presentation of morning glory disc anomaly. BMJ Case Rep. 2016;2016:bcr2016215846. PMID: 27571914; PMCID: PMC5015147. https://doi.org/10.1136/bcr-2016-215846.

    Article  PubMed  PubMed Central  Google Scholar 

  222. Lee BJ, Traboulsi EI. Update on the morning glory disc anomaly. Ophthalmic Genet. 2008;29:47–52.

    Article  PubMed  Google Scholar 

  223. Dempster AG, Lee WR, Forrester JV, McCreath GT. “The morning glory syndrome”—a mesodermal defect? Ophthalmologica. 1983;187:222–30.

    Article  CAS  PubMed  Google Scholar 

  224. Manschot WA. Morning glory syndrome: a histopathological study. Br J Ophthalmol. 1990;74:56–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Brodsky MC. Congenital optic disc anomalies. Surv Ophthalmol. 1994;39:89–112.

    Article  CAS  PubMed  Google Scholar 

  226. Sawada Y, Fujiwara T, Yoshitomi T. Morning glory disc anomaly with contractile movements. Graefes Arch Clin Exp Ophthalmol. 2012;250(11):1693–5.

    Article  PubMed  PubMed Central  Google Scholar 

  227. Romano F, Giuffre C, Arrigo A, Corbelli E, Battaglia Parodi M, Bandello F. Case report: optical coherence tomography angiography in morning glory disc anomaly. Optom Vis Sci. 2018;95:550–2.

    Article  PubMed  Google Scholar 

  228. Holmstrom G, Taylor D. Capillary haemangiomas in association with morning glory anomaly. Acta Ophthalmol Scand. 1998;76:613–6.

    Article  CAS  PubMed  Google Scholar 

  229. Haik BG, Greenstein SH, Smith ME, Abramson DH, Ellsworth RM. Retinal detachment in the morning glory anomaly. Ophthalmology. 1984;91:1638–47.

    Article  CAS  PubMed  Google Scholar 

  230. Chang S, Gregory-Roberts E, Chen R. Retinal detachment associated with optic disc colobomas and morning glory syndrome. Eye (Lond). 2012;26(4):494–500.

    Article  CAS  Google Scholar 

  231. Shapiro MJ, Chow CC, Blair MP, Kiernan DF, Kaufman LM. Peripheral nonperfusion and tractional retinal detachment associated with congenital optic nerve anomalies. Ophthalmology. 2013;120(3):607–15.

    Article  PubMed  Google Scholar 

  232. Leitch RJ, Winter RM. Midline craniofacial defects and morning glory disc anomaly. A distinct clinical entity. Acta Ophthalmol Scand Suppl. 1996;219:16–9.

    Google Scholar 

  233. Hodgkins P, Lees M, Lawson J, Reardon W, Leitch J, Thorogood P, et al. Optic disc anomalies and frontonasal dysplasia. Br J Ophthalmol. 1998;82:290–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Morioka M, Marubayashi T, Masumitsu T, Miura M, Ushio Y. Basal encephaloceles with morning glory syndrome, and progressive hormonal and visual disturbances: case report and review of the literature. Brain Dev. 1995;17:196–201.

    Article  CAS  PubMed  Google Scholar 

  235. Komiyama M, Yasui T, Sakamoto H, Fujita K, Sato T, Ota M, et al. Basal meningoencephalocele, anomaly of optic disc and panhypopituitarism in association with moyamoya disease. Pediatr Neurosurg. 2000;33:100–4.

    Article  CAS  PubMed  Google Scholar 

  236. Massaro M, Thorarensen O, Liu GT, Maguire AM, Zimmerman RA, Brodsky MC. Morning glory disc anomaly and moyamoya vessels. Arch Ophthalmol. 1998;116:253–4.

    CAS  PubMed  Google Scholar 

  237. Krishnan C, Roy A, Traboulsi E. Morning glory disk anomaly, choroidal coloboma, and congenital constrictive malformations of the internal carotid arteries (moyamoya disease). Ophthalmic Genet. 2000;21:21–4.

    Article  CAS  PubMed  Google Scholar 

  238. Lenhart PD, Lambert SR, Newman NJ, Biousse V, Atkinson DS Jr, Traboulsi EI, et al. Intracranial vascular anomalies in patients with morning glory disk anomaly. Am J Ophthalmol. 2006;142:644–50.

    Article  PubMed  Google Scholar 

  239. Wang YY, Zhou KY, Ye Y, Song F, Yu J, Chen JC, Yao K. Moyamoya disease associated with morning glory disc anomaly and other ophthalmic findings: a mini-review. Front Neurol. 2020;11:338.

    Article  PubMed  PubMed Central  Google Scholar 

  240. Kushner BJ. Optic nerve decompression. Arch Ophthalmol. 1979;97:1459–61.

    Article  CAS  PubMed  Google Scholar 

  241. Aaby AA, Kushner BJ. Acquired and progressive myelinated nerve fibers. Arch Ophthalmol. 1985;103:542–4.

    Article  CAS  PubMed  Google Scholar 

  242. Parulekar MV, Elston JS. Acquired retinal myelination in neurofibromatosis 1. Arch Ophthalmol. 2002;120:659–5.

    PubMed  Google Scholar 

  243. Ramkumar HL, Verma R, Ferreyra HA, Robbins SL. Myelinated retinal nerve fiber layer (RNFL): a comprehensive review. Int Ophthalmol Clin. 2018;58(4):147–56.

    Article  PubMed  Google Scholar 

  244. Bozkurt B, Yildirim MS, Okka M, et al. GAPO syndrome: four new patients with congenital glaucoma and myelinated retinal nerve fiber layer. Am J Med Genet A. 2013;161:829–34.

    Article  Google Scholar 

  245. De Jong PT, Bistervels B, Cosgrove J, et al. Medullated nerve fibers. A sign of multiple basal cell nevi (Gorlin’s) syndrome. Arch Ophthalmol. 1985;103:1833–6.

    Article  PubMed  Google Scholar 

  246. FitzGibbon T, Nestorovski Z. Morphological consequences of myelination in the human retina. Exp Eye Res. 1997;65:809–19.

    Article  CAS  PubMed  Google Scholar 

  247. Straatsma BR, Foos RY, Heckenlively JR, et al. Myelinated retinal nerve fibers. Am J Ophthalmol. 1981;91:25–38.

    Article  CAS  PubMed  Google Scholar 

  248. Gerber PA, Antal AS, Neumann NJ, Homey B, Matuschek C, Peiper M, Budach W, Bölke E. Neurofibromatosis. Eur J Med Res. 2009;14(3):102–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Kinori M, Hodgson N, Zeid JL. Ophthalmic manifestations in neurofibromatosis type 1. Surv Ophthalmol. 2018;63(4):518–33.

    Article  PubMed  Google Scholar 

  250. Savar A, Cestari DM. Neurofibromatosis type I: genetics and clinical manifestations. Semin Ophthalmol. 2008;23:45–51.

    Article  PubMed  Google Scholar 

  251. Gutmann DH, Collins FS. The neurofibromatosis type 1 gene and its protein product, neurofibromin. Neuron. 1993;10(3):335–43.

    Article  CAS  PubMed  Google Scholar 

  252. Gutmann DH, Parada LF, Silva AJ, Ratner N. Neurofibromatosis type 1: modeling CNS dysfunction. J Neurosci. 2012;32(41):14087–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Lewis RA, Riccardi VM. Von Recklinghausen neurofibromatosis. Incidence of iris hamartoma. Ophthalmology. 1981;88:348–54.

    Article  CAS  PubMed  Google Scholar 

  254. Ragge NK, Falk RE, Cohen WE, Murphree AL. Images of Lisch nodules across the spectrum. Eye. 1993;7:95–101.

    Article  PubMed  Google Scholar 

  255. Williamson TH, Garner A, Moore AT. Structure of Lisch nodules in neurofibromatosis type 1. Ophthalmic Paediatr Genet. 1991;12(1):11–7.

    Article  CAS  PubMed  Google Scholar 

  256. Insler MS, Helm C, Napoli S. Conjunctival hamartoma in neurofibromatosis. Am J Ophthalmol. 1985;99(6):731–3.

    Article  CAS  PubMed  Google Scholar 

  257. Honovar SG, Singh AD, Shields CL, Shields JA, Eagle RC. Iris melanoma in a patient with neurofibromatosis. Surv Ophthalmol. 2000;45:231–6.

    Article  Google Scholar 

  258. Destro M, D’Amico DJ, Gragoudas ES, Brockhurst RJ, Pinnolis MK, Albert DM, et al. Retinal manifestations of neurofibromatosis. Arch Ophthalmol. 1991;109:662–6.

    Article  CAS  PubMed  Google Scholar 

  259. Morales J, Chaudhry IA, Bosley TM. Glaucoma and globe enlargement associated with neurofibromatosis type 1. Ophthalmology. 2009;116(9):1725–30.

    Article  PubMed  Google Scholar 

  260. Avery RA, Katowitz JA, Fisher MJ, et al. Orbital/periorbital plexiform neurofibromas in children with neurofibromatosis type 1: multidisciplinary recommendations for care. Ophthalmology. 2017;124(1):123–32.

    Article  PubMed  Google Scholar 

  261. Ragge NK, Baser ME, Klein J, Nechiporuk A, Sainz J, Pulst SM, et al. Ocular abnormalities in neurofibromatosis 2. Am J Ophthalmol. 1995;120:634–41.

    Article  CAS  PubMed  Google Scholar 

  262. Kreusel K-M. Ophthalmological manifestations in VHL and NF 1: pathological and diagnostic implications. Fam Cancer. 2005;4(1):43–7.

    Article  PubMed  Google Scholar 

  263. Curto M, Cole BK, Lallemand D, Liu CH, McClatchey AI. Contact-dependent inhibition of EGFR signaling by Nf2/Merlin. J Cell Biol. 2007;177:893–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Scoles DR. The merlin interacting proteins reveal multiple targets for NF2 therapy. Biochim Biophys Acta. 2008;1785:32–54.

    CAS  PubMed  Google Scholar 

  265. Evans DG. Neurofibromatosis type 2 (NF2): a clinical and molecular review. Orphanet J Rare Dis. 2009;4:16.

    Article  PubMed  PubMed Central  Google Scholar 

  266. Coy S, Rashid R, Stemmer-Rachamimov A, Santagata S. An update on the CNS manifestations of neurofibromatosis type 2. Acta Neuropathol. 2020;139(4):643–65.

    Article  PubMed  Google Scholar 

  267. Kaye LD, Rothnel AD, Beauchamp GR, Meyers SM, Estes ML. Ocular findings associated with neurofibromatosis type II. Ophthalmology. 1992;99:1424–9.

    Article  CAS  PubMed  Google Scholar 

  268. McLaughlin ME, Pepin SM, Maccollin M, Choopong P, Lessell S. Ocular pathologic findings of neurofibromatosis type 2. Arch Ophthalmol. 2007;125(3):389–94.

    Article  PubMed  Google Scholar 

  269. Rosser T, Panigrahy A, McClintock W. The diverse clinical manifestations of tuberous sclerosis complex: a review. Semin Pediatr Neurol. 2006;13(1):27–36.

    Article  PubMed  Google Scholar 

  270. Curatolo P, Bombardieri R, Jozwiak S. Tuberous sclerosis. Lancet. 2008;372:657–8.

    Article  CAS  PubMed  Google Scholar 

  271. Wataya-Kaneda M, Tanaka M, Hamasaki T, Katayama I. Trends in the prevalence of tuberous sclerosis complex manifestations: an epidemiological study of 166 Japanese patients. PLoS One. 2013;8:e63910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Orlova KA, Crino PB. The tuberous sclerosis complex. Ann N Y Acad Sci. 2010;1184:87–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Uysal SP, Sahin M. Tuberous sclerosis complex: a review of the past, present and future. Turk J Med Sci. 2020;50:1665–76. Epub ahead of print. PMID: 32222129. https://doi.org/10.3906/sag-2002-133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Cheadle JP, Reeve MP, Sampson JR, Kwiatkowski DJ. Molecular genetic advances in tuberous sclerosis. Hum Genet. 2000;107:97–114.

    Article  CAS  PubMed  Google Scholar 

  275. Dabora SL, Jozwiak S, Franz DN, Roberts PS, Nieto A, Chung J, et al. Mutational analysis in a cohort of 224 tuberous sclerosis patients indicates increased severity of TSC2, compared with TSC1, disease in multiple organs. Am J Hum Genet. 2001;68:64–80.

    Article  CAS  PubMed  Google Scholar 

  276. Hodgson N, Kinori M, Goldbaum MH, Robbins SL. Ophthalmic manifestations of tuberous sclerosis: a review. Clin Experiment Ophthalmol. 2017;45(1):81–6.

    Article  PubMed  Google Scholar 

  277. Eagle RC, Shields JA, Shields CL, Wood MG. Hamartomas of the iris and ciliary epithelium in tuberous sclerosis complex. Arch Ophthalmol. 2000;118:711–5.

    Article  PubMed  Google Scholar 

  278. Rowley SA, O’Callaghan FJO, Osborne JP. Ophthalmic manifestations of tuberous sclerosis: a population based study. Br J Ophthalmol. 2001;85:420–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Northrup H, Krueger DA. International Tuberous Sclerosis Consensus Group. Tuberous sclerosis complex diagnostic criteria update: recommendations of the 2012 International Tuberous Sclerosis Complex Consensus Group. Pediatr Neurol. 2013;49:243–54.

    Article  PubMed  PubMed Central  Google Scholar 

  280. Gossage L, Eisen T, Maher ER. VHL, the story of a tumour suppressor gene. Nat Rev Cancer. 2015;15:55–64.

    Article  CAS  PubMed  Google Scholar 

  281. Karimi S, Arabi A, Shahraki T, Safi S. Von Hippel-Lindau disease and the eye. J Ophthalmic Vis Res. 2020;15(1):78–94.

    PubMed  PubMed Central  Google Scholar 

  282. Grossniklaus HE, Thomas JW, Vigneswaran N, Jarrett WH. Retinal hemangioblastoma. A histologic, immunohistochemical and ultrastructural evaluation. Ophthalmology. 1992;99:140–5.

    Article  CAS  PubMed  Google Scholar 

  283. Singh AD, Nouri M, Shields CL, Shields JA, Perez N. Treatment of retinal capillary hemangioma. Ophthalmology. 2002;109(10):1799–806.

    Article  PubMed  Google Scholar 

  284. Chan CC, Collins AB, Chew EY. Molecular pathology of eyes with von Hippel-Lindau (VHL) Disease: a review. Retina. 2007;27(1):1–7.

    Article  PubMed  PubMed Central  Google Scholar 

  285. Niemelä M, Lemeta S, Sainio M, Rauma S, Pukkala E, Kere J, et al. Haemangioblastoma of the retina: impact of von Hippel-Lindau disease. Invest Ophthalmol Vis Sci. 2000;41:1909–15.

    PubMed  Google Scholar 

  286. Lonser RR, Glenn GM, Walther M, Chew EY, Libutti SK, Linehan WM, et al. von Hippel-Lindau disease. Lancet. 2003;361:2059–67.

    Article  CAS  PubMed  Google Scholar 

  287. Shirley MD, Tang H, Gallione CJ, Baugher JD, Frelin LP, Cohen B, North PE, Marchuk DA, Comi AM, Pevsner J. Sturge-Weber syndrome and port-wine stains caused by somatic mutation in GNAQ. N Engl J Med. 2013;368(21):1971–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Di Rocco C, Tamburrini G. Sturge-Weber syndrome. Childs Nerv Syst. 2006;22:909–21.

    Article  PubMed  Google Scholar 

  289. Zhou J. Sturge-Weber syndrome: a case report and review of literatures. Chin Med J (Engl). 2010;123:117.

    Google Scholar 

  290. Silverstein M, Salvin J. Ocular manifestations of Sturge-Weber syndrome. Curr Opin Ophthalmol. 2019;30(5):301–5.

    Article  PubMed  Google Scholar 

  291. Thomas-Sohl KA, Vaslow DF, Maria BL. Sturge-Weber syndrome: a review. Pediatr Neurol. 2004;30:303–10.

    Article  PubMed  Google Scholar 

  292. Mantelli F, Bruscolini A, Abdolrahimzadeh S, et al. Ocular manifestations of Sturge–Weber syndrome: pathogenesis, diagnosis, and management. Clin Ophthalmol. 2016;10:871–8.

    PubMed  PubMed Central  Google Scholar 

  293. Thavikulwat AT, Edward DP, AlDarrab A, et al. Pathophysiology and management of glaucoma associated with phakomatoses. J Neurosci Res. 2019;97:57–69.

    Article  CAS  PubMed  Google Scholar 

  294. Maraña Pérez AI, Ruiz-Falcó Rojas ML, Puertas Martín V, Domínguez Carral J, Carreras Sáez I, Duat Rodríguez A, Sánchez GV. Analysis of Sturge-Weber syndrome: a retrospective study of multiple associated variables. Neurologia. 2017;32(6):363–70.

    Article  PubMed  Google Scholar 

  295. Plateroti AM, Plateroti R, Mollo R, et al. Sturge–Weber syndrome associated with monolateral ocular melanocytosis, iris mammillations, and diffuse choroidal haemangioma. Case Rep Ophthalmol. 2017;8:375–84.

    Article  PubMed  PubMed Central  Google Scholar 

  296. Moore DB, Reck SD, Chen PP. Angle closure glaucoma associated with ectopia lentis in a patient with Sturge-Weber syndrome. Eye. 2011;25(9):1235–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Damji KF, Allingham RR. Molecular genetics is revolutionizing our understanding of ophthalmic disease. Am J Ophthalmol. 1997;124:530–43.

    Article  CAS  PubMed  Google Scholar 

  298. Haines JL, Sheffield VC. The molecular genetics of eye diseases. Hum Mol Genet. 2017;26(R1):R1. https://doi.org/10.1093/hmg/ddx222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Springett A, Wellesley D, Greenlees R, Loane M, Addor MC, Arriola L, Bergman J, Cavero-Carbonell C, Csaky-Szunyogh M, Draper ES, Garne E, Gatt M, Haeusler M, Khoshnood B, Klungsoyr K, Lynch C, Dias CM, McDonnell R, Nelen V, O’Mahony M, Pierini A, Queisser-Luft A, Rankin J, Rissmann A, Rounding C, Stoianova S, Tuckerz D, Zymak-Zakutnia N, Morris JK. Congenital anomalies associated with trisomy 18 or trisomy 13: a registry-based study in 16 European countries, 2000–2011. Am J Med Genet A. 2015;167A(12):3062–9.

    Article  PubMed  CAS  Google Scholar 

  300. Rasmussen SA, Wong LYC, Yang Q, May KM, Friedman JM. Population-based analyses of mortality in trisomy 13 and trisomy 18. Pediatrics. 2003;111:777–84.

    Article  PubMed  Google Scholar 

  301. Lueder GT. Clinical ocular abnormalities in infants with trisomy 13. Am J Ophthalmol. 2006;141(6):1057–60.

    Article  PubMed  Google Scholar 

  302. Koole FD, Velzeboer CM, van der Harten JJ. Ocular abnormalities in Patau syndrome (chromosome 13 trisomy syndrome). Ophthalmic Paediatr Genet. 1990;11:15–21.

    Article  CAS  PubMed  Google Scholar 

  303. Caba L, Rusu C, Butnariu L, Panzaru M, Braha E, Volosciuc M, Popescu R, Gramescu M, Bujoran C, Martiniuc V, Covic M, Gorduza EV. Phenotypic variability in Patau syndrome. Rev Med Chir Soc Med Nat Iasi. 2013;117(2):321–7.

    PubMed  Google Scholar 

  304. Lim FF, Ng YY, Hu JM, Chen SJ, Su PH, Chen JY. Ocular findings in a case of trisomy 18 with variant of Dandy-Walker syndrome. Pediatr Neonatol. 2010;51(5):292–5.

    Article  PubMed  Google Scholar 

  305. Calderone JP, Chess J, Borodic G, Albert DM. Intraocular pathology of trisomy 18 (Edwards’s syndrome): report of a case and review of the literature. Br J Ophthalmol. 1983;67(3):162–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Acar DE, Acar U, Ozdemir O, Ozen ZT, Cakar ES. Microphthalmia in a case of Edward syndrome. Semin Ophthalmol. 2014;29(2):114–7.

    Article  PubMed  Google Scholar 

  307. Villegas VM, Chang JS, Hess DJ, Berrocal AM. Congenital optic nerve pit in trisomy 18. J Pediatr Ophthalmol Strabismus. 2013;50 Online:e24–6.

    PubMed  Google Scholar 

  308. Mirmohammadsadeghi A, Akbari MR, Malekpoor A. Ocular manifestations in Edward’s syndrome, a case report and literature review. J Curr Ophthalmol. 2017;29(4):329–31.

    Article  PubMed  PubMed Central  Google Scholar 

  309. Catalano RA. Down syndrome. Surv Ophthalmol. 1990;34:385–98.

    Article  CAS  PubMed  Google Scholar 

  310. Liyanage S, Barnes J. 11. The eye and Down’s syndrome. Br J Hosp Med. 2008;69:632–4.

    Article  Google Scholar 

  311. Umfress AC, Hair CD, Donahue SP. Prevalence of ocular pathology on initial screening and incidence of new findings on follow-up examinations in children with Trisomy 21. Am J Ophthalmol. 2019;207:373–7.

    Article  PubMed  Google Scholar 

  312. Sehu KW, Lee WR, editors. Ophthalmic pathology: an illustrated guide for clinicians. Malden: Blackwell; 2008. ISBN 9780727917799.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fiona Roberts .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roberts, F., Thum, C.K. (2021). The Malformed Eye. In: Lee's Ophthalmic Histopathology. Springer, Cham. https://doi.org/10.1007/978-3-030-76525-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-76525-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-76524-8

  • Online ISBN: 978-3-030-76525-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics