Skip to main content

Model-Based Brain Tissue Classification

  • Chapter
Handbook of Biomedical Image Analysis

Abstract

Several neuropathologies of the central nervous system such as multiple sclerosis (MS), schizophrenia, epilepsy, Alzheimer, and Creutzfeldt-Jakob disease (CJD) are related to morphological and/or functional changes in the brain. Studying such diseases by objectively measuring these changes instead of assessing the clinical symptoms is of great social and economical importance. These changes can be measured in three dimensions in a noninvasive way using current medical imaging modalities. Magnetic resonance imaging (MRI), in particular, is well suited for studying diseases of the nervous system due to its high spatial resolution and the inherent high soft tissue contrast.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Santago, P. and Gage, H., Quantification of MR brain images by mixture density and partial volume modeling, IEEE Trans. Med. Imaging, Vol. 12, No. 3, pp. 566–574, 1993.

    Article  Google Scholar 

  2. Laidlaw, D. H., Fleischer, K.W., and Barr, A. H., Partial-volume Bayesian classification of material mixtures in MR volume data using voxel histograms, IEEE Trans. Med. Imaging, Vol. 17, No. 1, pp. 74–86, 1998.

    Article  Google Scholar 

  3. Choi, H. S., Haynor, D. R., and Kim, Y., Partial volume tissue classification of multichannel magnetic resonance images—A mixel model, IEEE Trans. Med. Imaging, Vol. 10, No. 3, pp. 395–407, 1991.

    Article  Google Scholar 

  4. Wells, W., III, Grimson, W., Kikinis, R., and Jolesz, F., Adaptive segmentation of MRI data, IEEE Trans. Med. Imaging, Vol. 15, No. 4, pp. 429–442, 1996.

    Article  Google Scholar 

  5. Held, K., Kops, E. R., Krause, B. J., Wells, W. M., III, Kikinis, R., and Müller-Gärtner, H. W., Markov random field segmentation of brain MR images, IEEE Trans. Med. Imaging, Vol. 16, No. 6, pp. 878–886, 1997.

    Article  Google Scholar 

  6. Guillemaud, R. and Brady, M., Estimating the bias field of MR Images, IEEE Trans. Med. Imaging, Vol. 16, No. 3, pp. 238–251, 1997.

    Article  Google Scholar 

  7. Kass, M., Witkin, A., and Terzopoulos, D., Snakes: Active contour models, Int. J. Comput Vision, Vol. 1, No. 4, pp. 321–331, 1988.

    Article  Google Scholar 

  8. McInerney, T. and Terzopoulos, D., Deformable models in medical image analysis: A survey, Med. Image Anal., Vol. 2, No. 1, pp. 1–36, 1996.

    Google Scholar 

  9. Lötjönen, J., Reissman, P.-J., Mangin, I., and Katila, T., Model extraction from magnetic resonance volume data using the deformable pyramid, Med. Image Anal., Vol. 3, No. 4, pp. 387–406, 1999.

    Article  Google Scholar 

  10. Zeng, X., Staib, L., Schultz, R., and Duncan, J., Segmentation and measurement of the cortex from 3D MR images using coupled surfaces propagation, IEEE Trans. Med. Imaging, Vol. 18, No. 10, pp. 927–937, 1999.

    Article  Google Scholar 

  11. González Ballester, M., Zisserman, A., and Brady, M., Segmentation and measurement of brain structures in MRI including confidence bounds, Med. Image Anal., Vol. 4, pp. 189–200, 2000.

    Article  Google Scholar 

  12. Xu, C., Pham, D., Rettmann, M., Yu, D., and Prince, J., Reconstruction of the human cerebral cortex from magnetic resonance images, IEEE Trans. Med. Imaging, Vol. 18, No. 6, pp. 467–480, 1999.

    Article  Google Scholar 

  13. Warfield, S., Kaus, M., Jolesz, F., and Kikinis, R., Adaptive, template moderated, spatially varying statistical classification, Med. Image Anal., Vol. 4, No. 1, pp. 43–55, 2000.

    Article  Google Scholar 

  14. Collins, D. L., Zijdenbos, A. P., Barr, W. F. C., and Evans, A. C., ANIMAL+INSECT: Improved cortical structure segmentation, In: Proceedings of the Annual Symposium on Information Processing in Medical Imaging, Kuba, A., Samal, M., and Todd-Pokropek, A., eds., Lecture Notes in Computer Science, Vol. 1613, Springer, Berlin, pp. 210–223, 1999.

    Google Scholar 

  15. Liang, Z., MacFall, J. R., and Harrington, D. P., Parameter estimation and tissue segmentation from multispectral MR images, IEEE Trans. Med. Imaging, Vol. 13, No. 3, pp. 441–449, 1994.

    Article  Google Scholar 

  16. Schroeter, P., Vesin, J.-M., Langenberger, T., and Meuli, R., Robust parameter estimation of intensity distributions for brain magnetic resonance images, IEEE Trans. Med. Imaging, Vol. 17, No. 2, pp. 172–186, 1998.

    Article  Google Scholar 

  17. Wilson, D. and Noble, J., An adaptive segmentation algorithm for time-of-flight MRA data, IEEE Trans. Med. Imaging, Vol. 18, No. 10, pp. 938–945, 1999.

    Article  Google Scholar 

  18. Dempster, A. P., Laird, N. M., and Rubin, D. B., Maximum likelihood from incomplete data via the EM algorithm, J. R. Stat. Soc., Vol. 39, pp. 1–38, 1977.

    MATH  MathSciNet  Google Scholar 

  19. Wu, Z., Chung, H.-W., and Wehrli, F., A Bayesian approach to subvoxel tissue classification in NMR microscopic images of trabecular bone, MRM, Vol. 31, pp. 302–308, 1994.

    Google Scholar 

  20. Evans, A., Collins, D., Mills, S., Brown, E., Kelly, R., and Peters, T., 3D statistical neuroanatomical models from 305 MRI volumes, In: Proceeding of the IEEE Nuclear Science Symposium and Medical Imaging Conference, pp. 1813–1817, 1993.

    Google Scholar 

  21. Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., and Suetens, P., Multi-modality image registration by maximization of mutual information, IEEE Trans. Med. Imaging, Vol. 16, No. 2, pp. 187–198, 1997.

    Article  Google Scholar 

  22. Maes, F., Vandermeulen, D., and Suetens, P., Medical image registration using mutual information, Proc. IEEE, Vol. 91, No. 10, pp. 1699–1722, 2003.

    Article  Google Scholar 

  23. Van Leemput, K., Maes, F., Vandermeulen, D., and Suetens, P., Automated model-based bias field correction of MR images of the brain, IEEE Trans. Med. Imaging, Vol. 18, No. 10, pp. 885–896, 1999.

    Article  Google Scholar 

  24. D’Agostino, E., Maes, F., Vandermeulen, D., and Suetens, P., A viscous fluid model for multimodal non-rigid image registration using mutual information, Med. Image Anal., Vol. 7, No. 4, pp. 565–575, 2003.

    Article  Google Scholar 

  25. Simmons, A., Tofts, P., Barker, G., and Arridge, S., Sources of intensity nonuniformity in spin echo images at 1.5 T, Magn. Reson. Med., Vol. 32, pp. 121–128, 1994.

    Article  Google Scholar 

  26. Sled, J. G. and Pike, G. B., Understanding Intensity Non-Uniformity in MRI, In: Proceedings of Medical Image Computing and Computer-Assisted Intervention, MICCAI’98, Lecture Notes in Computer Science, Vol. 1496, Springer, Berlin, pp. 614–622, 1998.

    Chapter  Google Scholar 

  27. Van Leemput, K., Maes, F., Vandermeulen, D., and Suetens, P., A unifying framework for partial volume segmentation of brain MR images, IEEE Trans. Med. Imaging, Vol. 22, No. 1, pp. 105–119, 2003.

    Article  Google Scholar 

  28. Tincher, M., Meyer, C., Gupta, R., and Williams, D., Polynomial modeling and reduction of RF body coil spatial inhomogeneity in MRI, IEEE Trans. Med. Imaging, Vol. 12, No. 2, pp. 361–365, 1993.

    Article  Google Scholar 

  29. Moyher, S. E., Vigneron, D. B., and Nelson, S. J., Surface coil MR imaging of the human brain with an analytic reception profile correction, J. Magn. Reson. Imaging, Vol. 5, No. 2, pp. 139–144, 1995.

    Article  Google Scholar 

  30. González Ballester, M. A., Morphometric Analysis of Brain Structures in MRI, Ph.D. Thesis, Department of Engineering Science, University of Oxford, 1999.

    Google Scholar 

  31. Dawant, B. M., Zijdenbos, A. P., and Margolin, R., Correction of intensity variations in MR images for computer-aided tissue classification, IEEE Trans. Med. Imaging, Vol. 12, No. 4, pp. 770–781, 1993.

    Article  Google Scholar 

  32. Meyer, C., Bland, P., and Pipe, J., Retrospective correction of MRI amplitude inhomogeneities, In: Proceedings of the First International Conference on Computer Vision, Virtual Reality, and Robotics in Medicine, CVRMED’95, Ayache, N., ed., Lecture Notes in Computer Science, Vol. 905, Springer, Nice, France, pp. 513–522, 1995.

    Chapter  Google Scholar 

  33. Brechbühler, C., Gerig, G., and Székely, G., Compensation of spatial inhomogeneity in MRI based on a parametric bias estimate, In: Proceedings of Visualization in Biomedical Computing, VBC’96, Lecture Notes in Computer Science, Vol. 1131, Springer, Berlin, pp. 141–146, 1996.

    Chapter  Google Scholar 

  34. Sled, J. G., Zijdenbos, A. P., and Evans, A. C., A comparison of retrospective intensity non-uniformity correction methods for MRI, In: Proceedings of XVth International Conference on Information Processing in Medical Imaging, IPMI’97, Lecture Notes in Computer Science, Vol. 1230, Springer, Berlin, pp. 459–464, 1997.

    Google Scholar 

  35. Styner, M., Brechbühler, C., Székely, G., and Gerig, G., Parametric estimate of intensity inhomogeneities applied to MRI, IEEE Trans. Med. Imaging, Vol. 19, No. 3, pp. 153–165, 2000.

    Article  Google Scholar 

  36. Sled, J. G., Zijdenbos, A. P., and Evans, A. C., A Nonparametric method for automatic correction of intensity nonuniformity in MRI Data, IEEE Trans. Med. Imaging, Vol. 17, No. 1, pp. 87–97, 1998.

    Article  Google Scholar 

  37. Mangin, J.-F., Entropy minimization for automatic correction of intensity nonuniformity, In: Proceedings of IEEE Workshop on Mathematical Methods in Biomedical Image Analysis, MMBIA’00, pp. 162–169, 2000.

    Google Scholar 

  38. Likar, B., Viergever, M., and Pernus, F., Retrospective correction of MR intensity inhomogeneity by information minimization, In: Proceedings of Medical Image Computing and Computer-Assisted Intervention, MICCAI 2000, Lecture Notes in Computer Science, Vol. 1935, Springer, Berlin, pp. 375–384, 2000.

    Google Scholar 

  39. Van Leemput, K., Maes, F., Vandermeulen, D., and Suetens, P., Automated model-based tissue classification of MR images of the brain, IEEE Trans. Med. Imaging, Vol. 18, No. 10, pp. 897–908, 1999.

    Article  Google Scholar 

  40. Li, S., Markov Random Field Modeling in Computer Vision, Computer Science Workbench Series, Springer, Berlin, 1995.

    Google Scholar 

  41. Ising, E., Beitrag zur theorie des ferromagnetismus, Zeitschrift für Physik, Vol. 31, pp. 253–258, 1925.

    Article  Google Scholar 

  42. Descombes, X., Mangin, J.-F., Pechersky, E., and Sigelle, M., Fine structure preserving markov model for image processing, In: Proceedings of the 9th Scandinavian Conference on Image Analysis, SCIA’95, pp. 349–356, 1995.

    Google Scholar 

  43. Zhang, J., The mean-field theory in EM procedures for Markov random fields, IEEE Trans. Signal Process., Vol. 40, No. 10, pp. 2570–2583, 1992.

    Article  MATH  Google Scholar 

  44. Langan, D. A., Molnar, K. J., Modestino, J. W., and Zhang, J., Use of the mean-field approximation in an EM-based approach to unsupervised stochastic model-based image segmentation, In: Proceedings of ICASSP’92, San Fransisco, CA, March 1992, Vol. 3, pp. 57–60.

    Google Scholar 

  45. Kwan, R. K.-S., Evans, A. C., and Pike, G. B., MRI simulation-based evaluation of image-processing and classification methods, IEEE Trans. Med. Imaging, Vol. 18, No. 11, pp. 1085–1097, 1999. Available at http://www.bic.mni.mcgill.ca/brainweb/.

    Article  Google Scholar 

  46. Dice, L. R., Measures of the amount of ecologic association between species, Ecology, Vol. 26, No. 3, pp. 297–302, 1945.

    Article  Google Scholar 

  47. Zijdenbos, A. P., Dawant, B. M., and Margolin, R. A., Intensity correction and its effect on measurement variability in the computer-aided analysis of MRI, In: Proceedings of 9th International Symposium and Exhibition on Computer Assisted Radiology, CAR’95, Springer, Berlin, pp. 216–221, June 1995.

    Google Scholar 

  48. Park, J., Gerig, G., Chakos, M., Vandermeulen, D., and Lieberman, J., Neuroimaging of psychiatry disease: Reliable and efficient automatic brain tissue segmentation for increased sensitivity, Schizophrenia Res., Vol. 49, p. 163, 1994.

    Google Scholar 

  49. Rajapakse, J. and Krugge, F., Segmentation of MR images with intensity inhomogeneities, Image Vision Comput., Vol. 16, pp. 165–180, 1998.

    Article  Google Scholar 

  50. Marroquin, J. L., Vemuri, B. C., Botello, S., Calderon, F., and Fernandez-Bouzas, A., An accurate and efficient Bayesian method for automatic segmentation of brain MRI, IEEE Trans. Med. Imaging, Vol. 21, No. 8, pp. 934–945, 2002.

    Article  Google Scholar 

  51. Niessen, W., Vincken, K., Weickert, J., ter Haar Romeny, B., and Viergever, M., Multiscale segmentation of three-dimensional MR brain images, Int. J. Comput. Vision, Vol. 31, No. 2/3, pp. 185–202, 1999.

    Article  Google Scholar 

  52. Van Leemput, K., Maes, F., Vandermeulen, D., Colchester, A., and Suetens, P., Automated segmentation of multiple sclerosis lesions by model outlier detection, IEEE Trans. Med. Imaging, Vol. 20, No. 8, pp. 677–688, 2001.

    Article  Google Scholar 

  53. Huber, P., Robust Statistics, Wiley series in Probability and Mathematical Statistics, Wiley, New York, 1981.

    Google Scholar 

  54. Zhuang, X., Huang, Y., Palaniappan, K., and Zhao, Y., Gaussian mixture density modeling, decomposition, and applications, IEEE Trans. Image Process., Vol. 5, No. 9, pp. 1293–1302, 1996.

    Article  Google Scholar 

  55. Chung, A. and Noble, J., Statistical 3D vessel segmentation using a rician distribution, In: Proceedings of Medical Image Computing and Computer-Assisted Intervention, MICCAI’99, Lecture Notes in Computer Science, Vol. 1679, Springer, Berlin, pp. 82–89, 1999.

    Chapter  Google Scholar 

  56. Hoaglin, D., Mosteller, F., and Tukey, J., eds., Understanding Robust and Explanatory Data Analysis, Wiley series in Probability and Mathematical Statistics, Wiley, New York, 1983.

    Google Scholar 

  57. European project on Brain Morphometry, BIOMORPH, EU-BIOMED2 Project No. BMH4-CT96-0845, 1996–1998.

    Google Scholar 

  58. Udupa, J., Wei, L., Samarasekera, S., Miki, Y., van Buchem, M., and Grossman, R., Multiple sclerosis lesion quantification using fuzzy-connectedness principles, IEEE Trans. Med. Imaging, Vol. 16, No. 5, pp. 598–609, 1997.

    Article  Google Scholar 

  59. Johnston, B., Atkins, M., Mackiewich, B., and Anderson, M., Segmentation of multiple sclerosis lesions in intensity corrected multispectral MRI, IEEE Trans. Med. Imaging, Vol. 15, No. 2, pp. 154–169, 1996.

    Article  Google Scholar 

  60. Zijdenbos, A., Dawant, B. M., Margolin, R. A., and Palmer, A. C., Morphometric analysis of white matter lesions in MR images: Method and validation, IEEE Trans. Med. Imaging, Vol. 13, No. 4, pp. 716–724, 1994.

    Article  Google Scholar 

  61. Kamber, M., Shinghal, R., Collins, D., Francis, G., and Evans, A., Modelbased 3-D segmentation of multiple sclerosis lesions in magnetic resonance brain images, IEEE Trans. Med. Imaging, Vol. 14, No. 3, pp. 442–453, 1995.

    Article  Google Scholar 

  62. Kikinis, R., Guttmann, C., Metcalf, D., Wells, W., III, Ettinger, G., Weiner, H., and Jolesz, F., Quantitative follow-up of patients with multiple sclerosis using MRI: Technical aspects, J. Magn. Reson. Imaging, Vol. 9, No. 4, pp. 519–530, 1999.

    Article  Google Scholar 

  63. Warfield, S., Dengler, J., Zaers, J., Guttmann, C., Wells, W., III, Ettinger, G., Hiller, J., and Kikinis, R., Automatic identification of grey matter structures from MRI to improve the segmentation of white matter lesions, J. Image Guided Surg., Vol. 1, No. 6, pp. 326–338, 1995.

    Article  Google Scholar 

  64. Zijdenbos, A., Evans, A., Riahi, F., Sled, J., Chui, J., and Kollokian, V., Automatic quantification of multiple sclerosis lesion volume using stereotaxic space, In: Proceedings of Visualization in Biomedical Computing, VBC’96, Lecture Notes in Computer Science, Springer, Berlin, Vol. 1131, pp. 439–448, 1996.

    Chapter  Google Scholar 

  65. Zijdenbos, A., Forghani, R., and Evans, A., Automatic quantification of MSlesions in 3D MRI brain data sets: Validation of INSECT, In: Proceedings of Medical Image Computing and Computer-Assisted Intervention, MICCAI’98, Lecture Notes in Computer Science, Vol. 1496, Springer, Berlin, pp. 439–448, 1998.

    Chapter  Google Scholar 

  66. Guttmann, C., Kikinis, R., Anderson, M., Jakab, M., Warfield, S., Killiany, R., Weiner, H., and Jolesz, F., Quantitative follow-up of patients with multiple sclerosis using MRI: Reproducibility, J. Magn. Reson. Imaging, Vol. 9, No. 4, pp. 509–518, 1999.

    Article  Google Scholar 

  67. Evans, A., Frank, J., Antel, J., and Miller, D., The role of MRI in clinical trials of multiple sclerosis: Comparison of image processing techniques, Ann. Neurol., Vol. 41, No. 1, pp. 125–132, 1997.

    Article  Google Scholar 

  68. Filippi, M., Horsfield, M., Tofts, P., Barkhof, F., Thompson, A., and Miller, D., Quantitative assessment of MRI lesion load in monitoring the evolution of multiple sclerosis, Brain, Vol. 118, pp. 1601–1612, 1995.

    Article  Google Scholar 

  69. Antel, S. B., Bernasconi, A., Bernasconi, N., Collins, D. L., Kearney, R. E., Shinghal, R., and Arnold, D. L., Computational models of MRI characteristics of focal cortical dyaplasia improve lesion detection, Neuro Image, Vol. 17, No. 4, pp. 1755–1760, 2002.

    Google Scholar 

  70. Antel, S. B., Collins, D. L., Bernasconi, N., Andermann, F., Shinghal, R., Kearney, R. E., Arnold, D. L., and Bernasconi, A., Automated detection of focal cortical dysplasia lesions using computational models of their MRI characteristics and texture analysis, Neuro Image, Vol. 19, No. 4, pp. 1784–1759, 2003.

    Google Scholar 

  71. Ashburner, J., Friston, K., Holmes, A., and Poline, J.-B., Statistical Parametric Mapping, The Wellcome Department of Cognitive Neurology, University College London, London. Available at http://www.fil.ion.ucl.ac.uk/spm/.

    Google Scholar 

  72. Srivastava, S., Vandermeulen, D., Maes, F., Dupont, P., van Paesschen, W., and Suetens, P., An automated 3D algorithm for neo-cortical thickness measurement, In: Proceedings of Medical Image Computing and Computer-Assisted Intervention, MICCAI’03, Lecture Notes in Computer Science, Springer, Berlin, Vol. 2879, pp. 488–495.

    Google Scholar 

  73. DeLisi, L., Tew, W., Shu-Hong, X., Hoff, A. L., Sakuma, M., Kushner, M., Lee, G., Shedlack, K., Smith, A. M., and Grimson, R., A prospective follow-up study of brain morphology and cognition in first-epsiode schizophrenic patients: Preliminary findings, Biol. Psychiatry, Vol. 38, No. 2, pp. 349–360, 1995.

    Article  Google Scholar 

  74. Crow, T., Ball, J., Bloom, S., Brown, R., Bruton, C. J., Colter, N., Firth, C. D., Johnstone, E. C., Owens, D. E., and Roberts, G. W., Schizophrenia as an anomaly of development of cerebral asymmetry, Arch. Gen. Psychiatry, Vol. 46, pp. 1145–1150, 1989.

    Google Scholar 

  75. Maes, F., Van Leemput, K., DeLisi, L. E., Vandermeulen, D., and Suetens, P., Quantification of cerebral grey and white matter asymmetry from MRI, In: Proceedings of Medical Image Computing and Computer-Assisted Intervention, MICCAI’99, Lecture Notes in Computer Science, Vol. 1679, Springer, Berlin, pp. 348–357, 1999.

    Chapter  Google Scholar 

  76. Marais, P., Guillemaud, R., Sakuma, M., Zisserman, A., and Brady, M., Visualising cerebral asymmetry, In: Visualization in Biomedical Computing, Vol. 1131 of Lecture Notes in Computer Science, Höhne, K. H. and Kikinis, R. eds., Homburg, Germany, Springer, pp. 411–416, 1999.

    Google Scholar 

  77. Liu, Y., Collins, R. T., Rothfus, W. E., Automatic Bilateral symmetry (midsagittal) plane extraction from pathological 3D neuroradiological images, In: Medical Imaging 1998: Image Processing, Vol. 3338 of Proc. SPIE, Hanson, K. M. ed., San Diego, CA, USA, pp. 1528–1539, 1998.

    Google Scholar 

  78. Prima, S., Thirion, J.-P., Subsol, G., and Roberts, N., Automatic analysis of normal brain dissymmetry of males and females in MR images, In: Medical Image Computing and Computer-Assisted Intervention (MICCAI’98), Vol. 1496 of Lecture Notes in Computer Science, Wells, W. M., Colchester, A., and Delp, S., eds., Cambridge, MA, USA, Springer, pp. 770–779, 1998.

    Chapter  Google Scholar 

  79. Ashburner, J. and Friston, K., Voxel-based morphometry—The methods, Neuro Image, Vol. 11, No. 6, pp. 805–821, 2000.

    Google Scholar 

  80. Pohl, K. M., Wells, W. M., III, Guimond, A., Kasai, K., Shenton, M. E., Kikinis, R., Grimson, W. E. L., and Warfield, S. K., Incorporating nonrigid registration into expectation maximization algorithm to segment MR images, In: Proceedings of the 5th International Conference on Medical Image Computing and Computer-Assisted Intervention, Part I, Springer-Verlag, Berlin, pp. 564–571, 2002.

    Google Scholar 

  81. Wyatt, P. P. and Noble, J. A., MAP MRF joint segmentation and registration of medical images, Med. Image Anal., Vol. 7, No. 4, pp. 539–552, 2003.

    Article  Google Scholar 

  82. D’Agostino, E., Maes, F., Vandermeulen, D., and Suetens, P., An information theoretic approach for non-rigid image registration using voxel class probabilities, In: Proceedings of the Second International Workshop on Biomedical Image Registration, WBIR 2003, Lecture Notes in Computer Science, Vol. 2717, pp. 122–131, Springer, 2003.

    Google Scholar 

  83. Holmes, C., Hoge, R., Collins, L., Woods, R., Toga, A., and Evans, A., Enhancement of MR images using registration for signal averaging, J. Comput Tomography, Vol. 22, 1998.

    Google Scholar 

  84. Kochunov, P., Lancaster, J., Thompson, P., Toga, A., Brewer, P., Hardies, J., and Fox, P., An optimized individual target brain in the Talairach coordinate system, Neuro Image, Vol. 17, 2002.

    Google Scholar 

  85. Vandermeulen, D., Descombes, X., Suetens, P., and Marchal, G., Unsupervised regularized classification of multi-spectral MRI, Technical Report KUL/ESAT/MI2/9608, Katholieke Universiteit Leuven, Feb. 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Kluwer Academic/Plenum Publishers, New York

About this chapter

Cite this chapter

Van Leemput, K., Vandermeulen, D., Maes, F., Srivastava, S., D’Agostino, E., Suetens, P. (2005). Model-Based Brain Tissue Classification. In: Suri, J.S., Wilson, D.L., Laxminarayan, S. (eds) Handbook of Biomedical Image Analysis. Topics in Biomedical Engineering International Book Series. Springer, Boston, MA. https://doi.org/10.1007/0-306-48606-7_1

Download citation

  • DOI: https://doi.org/10.1007/0-306-48606-7_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-48605-0

  • Online ISBN: 978-0-306-48606-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics