Skip to main content
Log in

Properties of the La0.6Sr0.4Co0.8Fe0.2O3 – δ–Ce0.73Gd0.27O2 – δ Composite Cathode Formed from Nanopowders

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The La0.6Sr0.4Co0.8Fe0.2O3 – δ–Ce0.73Gd0.27O2 – δ composite cathodes (LSCF–GDC) formed from nanopowders by a standard method of mixing precursors followed by their sintering have been investigated. The optimal sintering temperature is found to be 1100°С. No secondary phases are formed in the LSCF and GDC mixture (1 : 1) even at 1400°С. The characteristics of the LSCF–GDC cathodes are found to degrade with the increase in the GDC fraction. The addition of the GDC nanopowder to the composite is shown to accelerate the sintering process, which results in the formation of the denser cathodic structure and, as a consequence, increases the polarization resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Jiang, S.P., Development of lanthanum strontium cobalt ferrite perovskite electrodes of solid oxide fuel cells—A review, Int. J. Hydrogen Energy, 2019, vol. 44, p. 7448.

    Article  CAS  Google Scholar 

  2. Stevenson, J.W., Armstrong, I.R., Carneim, R.D., et al., Electrochemical properties of mixed conducting perovskites La1 – xMxCo1 – yFeyO3 – δ (M = Sr, Ba, Ca), J. Electrochem. Soc., 1996, vol. 143, p. 2722.

    Article  CAS  Google Scholar 

  3. Ananyev, M.V., Kurumchin, E.Kh., and Porotnikova, N.M., Effect of oxygen nonstoichiometry on kinetics of oxygen exchange and diffusion in lanthanum–strontium cobaltites, Russ. J. Electrochem., 2010, vol. 46, p. 789.

    Article  CAS  Google Scholar 

  4. Wang, Z., Peng, R., Zhang, W., et al., Oxygen reduction and transport on the La1 – xSrxCo1 – yFeyO3 – δ cathode in solid oxide fuel cells: a first-principles study, J. Mater. Chem. A, 2013, vol. 1(41), p. 12932.

    Article  CAS  Google Scholar 

  5. Aziz, A.J.A., Baharuddin, N.A., Somalu, M.R., and Muchtar, A., Review of composite cathodes for intermediate-temperature solid oxide fuel cell applications, Ceram. Int., 2020, vol. 46, p. 23314.

    Article  CAS  Google Scholar 

  6. Dusastre, V. and Kilner, J.A., Optimisation of composite cathodes for intermediate temperature SOFC applications, Solid State Ionics, 1999, vol. 126, p. 163.

    Article  CAS  Google Scholar 

  7. Murray, E.P., Sever, M.J., and Barnett, S.A., Electrochemical performance of (La,Sr)(Co,Fe)O3–(Ce,Gd)O2 composite cathodes, Solid State Ionics, 2002, vol. 148, p. 27.

    Article  Google Scholar 

  8. Qiang, F., Sun, K.N., Zhang, N.Q., Zhu, X.D., et al., Characterization of electrical properties of GDC doped A-site deficient LSCF based composite cathode using impedance spectroscopy, J. Power Sources, 2007, vol. 168, p. 338.

    Article  CAS  Google Scholar 

  9. Leng, Y., Chan, S.H., and Liu, Q., Development of LSCF–GDC composite cathodes for low-temperature solid oxide fuel cells with thin film GDC electrolyte, Int. J. Hydrogen Energy, 2008, vol. 33, p. 3808.

    Article  CAS  Google Scholar 

  10. Baharuddin, N.A., Rahman, H.A., Muchtar, A., et al., Development of lanthanum strontium cobalt ferrite composite cathodes for intermediate- to low-temperature solid oxide fuel cells, J. Zhejiang Univ.- Sci. A (Appl. Phys. & Eng.), 2013, vol. 14, p. 11.

    Google Scholar 

  11. Chen, X.J., Chan, S.H., and Khor, K.A., Simulation of a composite cathode in solid oxide fuel cells, Electrochim. Acta, 2004, vol. 49, p. 1851.

    Article  CAS  Google Scholar 

  12. Sun, C., Hui, R., and Roller, J., Cathode materials for solid oxide fuel cells: a review, J. Solid State Electrochem., 2010, vol. 14, p. 1125.

    Article  CAS  Google Scholar 

  13. Zhao, E., Jia, Z., Zhao, L., Xiong, Y., et al., One dimensional La0.8Sr0.2Co0.2Fe0.8O3 – δ/Ce0.8Gd0.2O1.9 nanocomposite cathodes for intermediate temperature solid oxide fuel cells, J. Power Sources, 2012, vol. 219, p. 133.

    Article  CAS  Google Scholar 

  14. Burye, T.E. and Nicholas, J.D., Improving La0.6Sr0.4Co0.8Fe0.2O3 – δ infiltrated solid oxide fuel cell cathode performance through precursor solution desiccation, J. Power Sources, 2015, vol. 276, p. 54.

    Article  CAS  Google Scholar 

  15. Sindirac, C., Buyukaksoy, A., and Akkurt, S., Electrochemical performance of La0.6Sr0.4Co0.2Fe0.8O3–Ce0.9Gd0.1O2 – δ composite SOFC cathodes fabricated by electrocatalyst and/or electrocatalyst-ionic conductor infiltration, J. Sol–Gel Sci. Technol., 2019, vol. 92, p. 45.

    Article  CAS  Google Scholar 

  16. Ivanov, M., Osipov, V., Kotov, Yu., et al., Laser synthesis of oxide nanopowders, Adv. Sci. Technol., 2006, vol. 45, p. 291.

    Article  CAS  Google Scholar 

  17. Wang, S., Kato, T., Nagata, S., et al., Performance of a La0.6Sr0.4Co0.8Fe0.2O3–Ce0.8Gd0.2O1.9–Ag cathode for ceria electrolyte SOFCs, Solid State Ionics, 2002, vol. 146, p. 203.

    Article  CAS  Google Scholar 

  18. Khan, M.Z., Song, R.-H., Mehran, M.T., Lee, S.-B., and Lim, T.-H., Controlling cation migration and inter-diffusion across cathode/interlayer/electrolyte interfaces of solid oxide fuel cells: A review, Ceram. Int., 2021, vol. 47, p. 5839.

    Article  CAS  Google Scholar 

  19. Sakai, N., Kishimoto, H., Yamaji, K., et al., Degradation behavior at interface of LSCF cathodes and rare earth doped ceria, ECS Trans., 2007, vol. 7, p. 389.

    Article  Google Scholar 

  20. Tai, L.-W., Nasrallah, M.M., Anderson, H.U., et al., Structure and electrical properties of La1 – xSrxCo1 – yFeyO3. Part 2. The system La1 – xSrxCo0.2Fe0.8O3, Solid State Ionics, 1995, vol. 76, p. 273.

    Article  CAS  Google Scholar 

  21. Mineshige, A., Izutsu, J., Nakamura, M., Nigaki, K., et al., Electrical property, crystal structure and oxygen nonstoichiometry of La1 – xSrxCo0.2Fe0.8O3 – δ, Electrochemistry, 2000, vol. 68, p. 515.

    Article  CAS  Google Scholar 

  22. Wang, S., Katsuki, M., Dokiya, M., and Hashimoto, T., High temperature properties of La0.6Sr0.4Co0.8Fe0.2O3 – δ phase structure and electrical conductivity, Solid State Ionics, 2003, vol. 159, p. 71.

    Article  CAS  Google Scholar 

  23. Xu, Q., Huang, D., Chen, W., Zhang, F., and Wang, B., Structure, electrical conducting and thermal expansion properties of Ln0.6Sr0.4Co0.2Fe0.8O3 (Ln = La, Pr, Nd, Sm) perovskite-type complex oxides, J. Alloy Compd., 2007, vol. 429, p. 34.

    Article  CAS  Google Scholar 

  24. Orikasa, Y., Ina, T., Nakao, T., Mineshige, A., et al., An X-ray absorption spectroscopic study on mixed conductive La0.6Sr0.4Co0.8Fe0.2O3 – δ cathodes. I. Electrical conductivity and electronic structure, Phys. Chem. Chem. Phys., 2011, vol. 13, p. 16637.

    Article  CAS  PubMed  Google Scholar 

  25. Araki, W., Arai, Y., and Malzbender, J., Transitions of Ba0.5Sr0.5Co0.8Fe0.2O3 – δ and La0.58Sr0.4Co0.2Fe0.8O3 – δ, Mater. Lett., 2014, vol. 132, p. 295.

    Article  CAS  Google Scholar 

  26. Ali, S.A.M., Anwar, M., Ashikin, N., et al., Influence of oxygen ion enrichment on optical, mechanical, and electrical properties of LSCF perovskite nanocomposite, Ceram. Int., 2018, vol. 44, p. 10433.

    Article  CAS  Google Scholar 

  27. Strauffer, D. and Aharony, A., Introduction to Percolation Theory, London: Taylor & Francis, 1994.

    Google Scholar 

  28. Dees, D.W., Claar, T.D., Easier, T.E., Fee, D.C., and Vlrazek, F.C., Conductivity of porous Ni/ZrO2–Y2O3 cermets, J. Electrochem. Soc., 1987, vol. 134, p. 2141.

    Article  CAS  Google Scholar 

  29. Spirin, A.V., Nikonov, A.V., Lipilin, A.S., et al., Effect of structural parameters of Ni-ScSZ cermet components on the SOFC anodes characteristics, Russ. J. Electrochem., 2016, vol. 52, p. 613.

    Article  CAS  Google Scholar 

  30. Santos-Gómez, L., Porras-Vázquez, J.M., Losilla, E.R., et al., LSCF-CGO nanocomposite cathodes deposited in a single step by spray pyrolysis, J. Eur. Ceram. Soc., 2018, vol. 38, p. 1647.

    Article  CAS  Google Scholar 

  31. Chen, Y., Bu, Y., Zhang, Y., Yan, R., Ding, D., et al., A highly efficient and robust nanofiber cathode for solid oxide fuel cells, Adv. Energy Mater., 2017, vol. 7(6), p. 1601890.

    Article  CAS  Google Scholar 

  32. Kim, J.-D., Kim, G.-D., Moon, J.-W., Park, Y., et al., Characterization of LSM–YSZ composite electrode by ac impedance spectroscopy, Solid State Ionics, 2001, vol. 143, p. 379.

    Article  CAS  Google Scholar 

  33. Wu, L., Jiang, Z., Wang, S., and Xia, C., (La,Sr)MnO3–(Y,Bi)2O3 composite cathodes for intermediate-temperature solid oxide fuel cells, Int. J. Hydrogen Energy, 2013, vol. 38, p. 2398.

    Article  CAS  Google Scholar 

  34. Santos-Gómez, L., Losilla, E.R., Martin, F., et al., Novel microstructural strategies to enhance the electrochemical performance of La0.8Sr0.2MnO3 – δ cathodes, ACS Appl. Mater. Interfaces, 2015, vol. 7, p. 7197.

    Article  PubMed  CAS  Google Scholar 

  35. Dumaisnil, K., Fasquelle, D., Mascot, M., Rolle, A., et al., Synthesis and characterization of La0.6Sr0.4Co0.8Fe0.2O3 films for solid oxide fuel cell cathodes, Thin Solid Films, 2014, vol. 553, p. 89.

    Article  CAS  Google Scholar 

  36. Mosialek, M., Kędra, A., Krzan, M., et al., Ba0.5Sr0.5Co0.8Fe0.2O3 – δ–La0.6Sr0.4Co0.8Fe0.2O3 – δ composite cathode for solid oxide fuel cell, Arch. Metall. Mater., 2016, vol. 61(3), p. 1483.

    Article  CAS  Google Scholar 

  37. Matera, A., Fasquelle, D., Kahlaoui, M., et al., Synthesis, characterization, and electrochemical properties of bilayered cathode films deposited on co-doped ceria, Chin. J. Phys., 2017, vol. 55, p. 2577.

    Article  CAS  Google Scholar 

  38. Wang, H., Zhang, X., Zhang, W., Wei, Z., et al., Enhancing catalysis activity of La0.6Sr0.4Co0.8Fe0.2O3 – δ cathode for solid oxide fuel cell by a facile and efficient impregnation process, Int. J. Hydrogen Energy, 2019, vol. 44, p. 13757.

    Article  CAS  Google Scholar 

  39. Sindirac, C. and Akkurt, S., Microstructural investigation of the effect of electrospraying parameters on LSCF films, Int. J. Hydrogen Energy, 2020, vol. 45, p. 35139.

    Article  CAS  Google Scholar 

  40. Joh, D.W., Cha, A., Park, J.H., Kim, K.J., et al., In situ synthesized La0.6Sr0.4Co0.2Fe0.8O3 – δ–Gd0.1Ce0.9O1.95 nanocomposite cathodes via a modified sol–gel process for intermediate temperature solid oxide fuel cells, ACS Appl. Nano Mater., 2018, vol. 1(6), p. 2934.

    Article  CAS  Google Scholar 

  41. Shimada, H., Sumi, H., Yamaguchi, Y., and Fujishiro, Y., High-performance Gd0.5Sr0.5CoO3 – δ and Ce0.8Gd0.2O1.9 nanocomposite cathode for achieving high power density in solid oxide fuel cells, Electrochim. Acta, 2021, vol. 368, p. 137679.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to A.A. Bokov for performing the microscopic investigations.

Funding

The study was supported by the Russian Foundation for Basic Research and by the Sverdlov obtast (grant no. 20-43-660018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Nikonov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by T. Safonova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikonov, A.V., Pavzderin, N.B. & Khrustov, V.R. Properties of the La0.6Sr0.4Co0.8Fe0.2O3 – δ–Ce0.73Gd0.27O2 – δ Composite Cathode Formed from Nanopowders. Russ J Electrochem 58, 311–320 (2022). https://doi.org/10.1134/S1023193522040103

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193522040103

Keywords:

Navigation