Skip to main content
Log in

Multi-material Bio-inspired Soft Octopus Robot for Underwater Synchronous Swimming

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Inspired by the simple yet amazing morphology of the Octopus, we propose the design, fabrication, and characterization of multi-material bio-inspired soft Octopus robot (Octobot). 3D printed molds for tentacles and head were used. The tentacles of the Octobot were casted using Ecoflex-0030 while head was fabricated using relatively flexible material, i.e., OOMOO-25. The head is attached to the functionally responsive tentacles (each tentacle is of 79.12 mm length and 7 void space diameter), whereas Shape Memory Alloy (SMA) muscle wires of 0.5 mm thickness are used in Octobot tentacles for dual thrust generation and actuation of Octobot. The tentacles were separated in two groups and were synchronously actuated. Each tentacle of the developed Octobot contains a pair of SMA muscles (SMA-α and SMA-β). SMA-α muscles being the main actuator, was powered by 9 V, 350 mA power supply, whereas SMA-β was used to provide back thrust and thus helps to increase the actuation frequency. Simulation work of the proposed model was performed in the SolidWorks environment to verify the vertical velocity using the octopus tentacle actuation. The design morphology of Octobot was optimized using simulation and TRACKER software by analyzing the experimental data of angle, displacement, and velocity of real octopus. The as-developed Octobot can swim at variable frequencies (0.5–2 Hz) with the average speed of 25 mm/s (0.5 BLS). Therefore, the proposed soft Octopus robot showed an excellent capability of mimicking the gait pattern of its natural counterpart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

taken from the synchronous swimming experiment of Octobot; i–v) are showing the actuation of the first four tentacles of the Octobot (Group A) under applied PWM pulse, whereas, vi–x) are similarly showing the actuation of the Group B tentacles when the PWM pulse is stopped to Group A and applied to Group B. The sequential pictures taken at the fixed time step size

Similar content being viewed by others

Data availability statement

Data available on request from the authors.

References

  1. Stilli, A., Grattarola, L., Feldmann, H., Wurdemann, H. A., & Althoefer, K. (2017). Variable stiffness link (VSL): Toward inherently safe robotic manipulators. In Proceedings—IEEE international conference on robotics and automation, Singapore (pp. 4971–4976). https://doi.org/10.1109/ICRA.2017.7989578

  2. Fras, J., Noh, Y., Macias, M., Wurdemann, H., & Althoefer, K. (2019). Bio-inspired octopus robot based on novel soft fluidic actuator. In Proceedings—IEEE international conference on robotics and automation, Brisbane, Australia, 2018 (pp. 1583–1588). https://doi.org/10.1109/ICRA.2018.8460629

  3. Soomro, A. M., Fida, H., Jae-Wook Lee, A., Faheem, K. H., Kim, K. YSu., & Choi, K. H. (2021). Fully 3D printed multi-material soft bio-inspired frog for underwater synchronous swimming. International Journal of Mechanical Sciences. https://doi.org/10.1016/j.ijmecsci.2021.106725

    Article  Google Scholar 

  4. Soomro, A. M., Khalid, M. A. U., Shah, I., Kim, S. W., Kim, Y. S., & Choi, K. H. (2020). Highly stable soft strain sensor based on Gly-KCl filled sinusoidal fluidic channel for wearable and water-proof robotic applications. Smart Materials and Structures, 29, 25001. https://doi.org/10.1088/1361-665X/ab540b

    Article  Google Scholar 

  5. Shintake, J., Cacucciolo, V., Shea, H., & Floreano, D. (2017). Soft biomimetic fish robot made of dielectric elastomer actuators. Soft Robotics, 5(4), 466–474. https://doi.org/10.1089/soro.2017.0062

    Article  Google Scholar 

  6. Sfakiotakis, M., Lane, D. M., & Davies, J. B. C. (1999). Fish swimming techniques. IEEE Journal of Oceanic Engineering, 24(2), 237–252. 0364-9059(99)03032-0.

    Article  Google Scholar 

  7. Ulloa, C. C., Terrile, S., & Barrientos, A. (2020). Soft underwater robot actuated by shape-memory alloys ‘jellyrobcib’ for path tracking through fuzzy visual control. Applied Sciences, 10, 7160. https://doi.org/10.3390/app10207160

    Article  Google Scholar 

  8. Wehner, M., Truby, R. L., Fitzgerald, D. J., Mosadegh, B., Whitesides, G. M., Lewis, J. A., & Wood, R. J. (2016). An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature, 536(7617), 451–455. https://doi.org/10.1038/nature19100

    Article  Google Scholar 

  9. Calisti, M., Giorelli, M., Levy, G., Mazzolai, B., Hochner, B., Laschi, C., & Dario, P. (2011). An octopus-bioinspired solution to movement and manipulation for soft robots. Bioinspiration and Biomimetics. https://doi.org/10.1088/1748-3182/6/3/036002

    Article  Google Scholar 

  10. Ramezani, A., Chung, S. J., & Hutchinson, S. (2017). A biomimetic robotic platform to study flight specializations of bats. Science Robotics2 (3), eaal2505. https://doi.org/10.1126/scirobotics.aal2505

    Article  Google Scholar 

  11. Calisti, M., Picardi, G., & Laschi, C. (2017). Fundamentals of soft robot locomotion. Journal of the Royal Society Interface14 (130), 20170101. https://doi.org/10.1098/rsif.2017.0101

    Article  Google Scholar 

  12. Marchese, A. D., Onal, C. D., & Rus, D. (2014). Autonomous soft robotic fish capable of escape maneuvers using fluidic elastomer actuators. Soft Robotics, 1(1), 75–87. https://doi.org/10.1089/soro.2013.0009

    Article  Google Scholar 

  13. Marchese, A. D., Katzschmann, R. K., & Rus, D. (2015). A recipe for soft fluidic elastomer robots. Soft Robotics, 2(1), 7–25. https://doi.org/10.1089/soro.2014.0022

    Article  Google Scholar 

  14. Shintake, J., Rosset, S., Schubert, B., Mintchev, S., Floreano, D., & Shea, H. R. (2015). DEA for soft robotics: 1-gram actuator picks up a 60-gram egg. In Electroactive polymer actuators and devices (EAPAD) (Vol. 9430, p. 94301S). https://doi.org/10.1117/12.2084043

  15. Youn, J. H., Jeong, S. M., Hwang, G., Kim, H., Hyeon, K., Park, J., & Kyung, K. (2020). Dielectric elastomer actuator for soft robotics applications and challenges. Applied Sciences10 (2), 640. https://doi.org/10.3390/app10020640

    Article  Google Scholar 

  16. Shintake, J., Schubert, B., Rosset, S., Shea, H., & Floreano, D. (2015). Variable stiffness actuator for soft robotics using dielectric elastomer and low-melting-point alloy. In IEEE international conference on intelligent robots and systems (Vol. 2015-Decem, pp. 1097–1102). https://doi.org/10.1109/IROS.2015.7353507

  17. Henke, E.-F.M., Schlatter, S., & Anderson, I. A. (2017). Soft dielectric elastomer oscillators driving bioinspired robots. Soft Robotics, 4(4), 353–366. https://doi.org/10.1089/soro.2017.0022

    Article  Google Scholar 

  18. Stokes, A. A., Shepherd, R. F., Morin, S. A., Ilievski, F., & Whitesides, G. M. (2014). A hybrid combining hard and soft robots. Soft Robotics, 1(1), 70–74. https://doi.org/10.1089/soro.2013.0002

    Article  Google Scholar 

  19. Mosadegh, B., Polygerinos, P., Keplinger, C., Wennstedt, S., Shephard, R. F., Gupta, U., Shim, J., Bertoldi, K., Walsh, C. J., & Whitesides, G. M. (2014). Pneumatic networks for soft robotics that actuate rapidly. Advanced Functional Materials, 24(15), 2163–2170. https://doi.org/10.1002/adfm.201303288

    Article  Google Scholar 

  20. Yao, L., Niiyama, R., Ou, J., Follmer, S., Della Silva, C., & Ishii, H. (2013). PneUI: Pneumatically actuated soft composite materials for shape changing interfaces. In UIST 2013—Proceedings of the 26th annual ACM symposium on user interface software and technology, Saint Andrews, Scotland, United Kingdom (pp. 13–22). https://doi.org/10.1145/2501988.2502037

  21. Wang, Z., Hang, G., Li, J., Wang, Y., & Xiao, K. (2008). A micro-robot fish with embedded SMA wire actuated flexible biomimetic fin. Sensors Actuators, A Physics, 144(2), 354–360. https://doi.org/10.1016/j.sna.2008.02.013

    Article  Google Scholar 

  22. Song, G., Kelly, B., & Agrawal, B. N. (2000). Active position control of a shape memory alloy wire actuated composite beam. Smart Materials and Structures, 9(5), 711–716. https://doi.org/10.1088/0964-1726/9/5/316

    Article  Google Scholar 

  23. Vikas, V., Cohen, E., Grassi, R., Sozer, C., & Trimmer, B. (2016). Design and locomotion control of a soft robot using friction manipulation and motor-tendon actuation. IEEE Transactions on Robotics, 32(4), 949–959. https://doi.org/10.1109/TRO.2016.2588888

    Article  Google Scholar 

  24. Asif, A., Park, S. H., Soomro, A. M., Khalid, M. A., Salih, A. R. C., Kang, B., Faheem, A., Kim, K. H., & Choi, K. H. (2021). Microphysiological system with continuous analysis of albumin for hepatotoxicity modeling and drug screening. Journal of Industrial and Engineering Chemistry, 98, 318–326. https://doi.org/10.1016/j.jiec.2021.03.035

    Article  Google Scholar 

  25. Shintake, J., Shea, H., & Floreano, D. (2016). Biomimetic underwater robots based on dielectric elastomer actuators. In IEEE international workshop on intelligent robots and systems (Vol. 2016-Novem, pp. 4957–4962). https://doi.org/10.1109/IROS.2016.7759728

  26. Jeong, J., Hyeon, K., Han, J., Park, C. H., Ahn, S. Y., Bok, S. K., & Kyung, K.-U. (2021). Wrist assisting soft wearable robot with stretchable coolant vessel integrated SMA muscle. IEEE/ASME Transactions on Mechatronics. https://doi.org/10.1109/TMECH.2021.3078472

    Article  Google Scholar 

  27. Christianson, C., Goldberg, N. N., Deheyn, D. D., Cai, S., & Tolley, M. T. (2018). Translucent soft robots driven by frameless fluid electrode dielectric elastomer actuators. Science Robotics, 3(17), 1–9. https://doi.org/10.1126/SCIROBOTICS.AAT1893

    Article  Google Scholar 

  28. Du, T., Hughes, J., Wah, S., Matusik, W., & Rus, D. (2021). Underwater soft robot modeling and control with differentiable simulation. IEEE Robotics Automation Letters, 6(3), 4994–5001. https://doi.org/10.1109/LRA.2021.3070305

    Article  Google Scholar 

  29. Abbaszadeh, S., Leidhold, R., & Hoerner, S. (2022). A design concept and kinematic model for a soft aquatic robot with complex bio-mimicking motion. Journal of Bionic Engineering, 19(1), 16–28. https://doi.org/10.1007/S42235-021-00126-4/FIGURES/7

    Article  Google Scholar 

  30. Zhu, Y. Q., Liu, Y. H., Wang, S. X., Zhang, L. H., & Wang, Y. H. (2021). A bionic flexible-bodied underwater glider with neutral buoyancy. Journal of Bionic Engineering, 18(5), 1073–1085. https://doi.org/10.1007/S42235-021-00087-8/TABLES/4

    Article  Google Scholar 

  31. Witt, W. C., Wen, L., & Lauder, G. V. (2015). Hydrodynamics of C-start escape responses of fish as studied with simple physical models. Integrative and Computational Biology, 55(4), 728–739. https://doi.org/10.1093/icb/icv016

    Article  Google Scholar 

  32. Katzschmann, R. K., DelPreto, J., MacCurdy, R., & Rus, D. (2018). Exploration of underwater life with an acoustically controlled soft robotic fish. Science Robotics, 3(16), 1–13. https://doi.org/10.1126/SCIROBOTICS.AAR3449

    Article  Google Scholar 

  33. Cianchetti, M., Calisti, M., Margheri, L., Kuba, M., & Laschi, C. (2015). Bioinspired locomotion and grasping in water: The soft eight-arm OCTOPUS robot. Bioinspiration and Biomimetics, 10(3), 1–19. https://doi.org/10.1088/1748-3190/10/3/035003

    Article  Google Scholar 

  34. Cianchetti, M., Licofonte, A., Follador, M., Rogai, F., & Laschi, C. (2014). Bioinspired soft actuation system using shape memory alloys. Actuators, 3(3), 226–244. https://doi.org/10.3390/act3030226

    Article  Google Scholar 

  35. “EcoflexTM Series—super soft silicone rubber.

  36. Quintanar-Guzmán, S., Kannan, S., Olivares-Mendez, M. A., & Voos, H. (2016). Lightweight robotic arm actuated by shape memory alloy (SMA) wires. In Proceedings 8th international conference on electronics, computers and artificial intelligence (ECAI), Pitesti, Romanica (pp. 226–244). https://doi.org/10.1109/ECAI.2016.7861065

  37. Joyee, E. B., & Pan, Y. (2019). A fully three-dimensional printed inchworm-inspired soft robot with magnetic actuation. Soft Robotics, 6(3), 333–345. https://doi.org/10.1089/soro.2018.0082

    Article  Google Scholar 

  38. Shah, I., Aziz, S., Soomro, A. M., Kim, K., Kim, S. W., & Choi, K. H. (2020). Numerical and experimental investigation of Y-shaped micromixers with mixing units based on cantor fractal structure for biodiesel applications. Microsystem Technologies, 27(5), 2203–2216. https://doi.org/10.1007/S00542-020-05036-9

    Article  Google Scholar 

  39. Shah, I., Su Jeon, H., Ali, M., Yang, D. H., & Choi, K. H. (2019). Optimal parametric mixing analysis of active and passive micromixers using Taguchi method. Journal of Process Mechanical Engineering, 233(6), 1292–1303. https://doi.org/10.1177/0954408919862997

    Article  Google Scholar 

  40. Kim, K., Shah, I., Ali, M., Aziz, S., Khalid, M. A., Kim, Y. S., & Choi, K. H. (2019). Experimental and numerical analysis of three Y-shaped split and recombination micromixers based on cantor fractal structures. Microsystem Technologies, 26(6), 1783–1796. https://doi.org/10.1007/S00542-019-04724-5

    Article  Google Scholar 

  41. Li, X., Tiong, A. M. H., Cao, L., Lai, W., Phan, P. T., & Phee, S. J. (2019). Deep learning for haptic feedback of flexible endoscopic robot without prior knowledge on sheath configuration. International Journal of Mechanical Sciences, 163, 105129. https://doi.org/10.1016/J.IJMECSCI.2019.105129

    Article  Google Scholar 

  42. Zhong, G. L., Dou, W. Q., Zhang, X. C., & Yi, H. D. (2021). Bending analysis and contact force modeling of soft pneumatic actuators with pleated structures. International Journal of Mechanical Sciences, 193, 106150. https://doi.org/10.1016/J.IJMECSCI.2020.106150

    Article  Google Scholar 

  43. Hošovský, A., Piteľ, J., Židek, K., Tóthová, M., Sárosi, J., & Cveticanin, L. (2016). Dynamic characterization and simulation of two-link soft robot arm with pneumatic muscles. Mechanism and Machine Theory, 103, 98–116. https://doi.org/10.1016/j.mechmachtheory.2016.04.013

    Article  Google Scholar 

  44. Duriez, C., & Bieze, T. (2017). Soft robot modeling, simulation and control in real-time. Biosystems and Biorobotics, 17, 103–109. https://doi.org/10.1007/978-3-319-46460-2_13

    Article  Google Scholar 

  45. Sreekumar, M., Nagarajan, T., Singaperumal, M., Zoppi, M., & Molfino, R. (2007). Critical review of current trends in shape memory alloy actuators for intelligent robots. Industrial Robot, 34(4), 285–294. https://doi.org/10.1108/01439910710749609

    Article  Google Scholar 

  46. Jonnalagadda, K., Kline, G. E., & Sottos, N. R. (1997). Local displacements and load transfer in shape memory alloy composites. Experimental Mechanics, 37(1), 78–86. https://doi.org/10.1007/BF02328753

    Article  Google Scholar 

  47. Llewellyn-Evans, H., Griffiths, C. A., & Fahmy, A. A. (2020). An experimental study into displacement of a shape memory alloy actuated robotic microgripper. Engineering Research. Express, 2(1), 015027. https://doi.org/10.1088/2631-8695/ab6d27

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIT) (NRF-2022R1A2C2004771) and Internal Research Grant by ORIC, Sukkur IBA University 2022.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Waqas, Afaque Manzoor Soomro or Kyung Hyun Choi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1415 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, F., Waqas, M., Shaikh, B. et al. Multi-material Bio-inspired Soft Octopus Robot for Underwater Synchronous Swimming. J Bionic Eng 19, 1229–1241 (2022). https://doi.org/10.1007/s42235-022-00208-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-022-00208-x

Keywords

Navigation