Skip to main content

Advertisement

Log in

Formation of coherent BCC/B2 microstructure and mechanical properties of Al–Ti–Zr–Nb–Ta–Cr/Mo light-weight refractory high-entropy alloys

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The present work investigated the formation of coherent body-centered-cubic (BCC)/B2 microstructure in Al–Ti–Zr–Nb–Ta–Cr/Mo refractory high-entropy alloy system, in which three alloys with the composition of Al2Ti6Zr2Nb3Ta2(Cr/Mo)1 were designed. These as-cast alloy ingots were homogenized at 1573 K for 2 h and then aged at different temperatures for 24 h. It is found that the BCC/B2 coherent microstructure with cuboidal BCC nanoprecipitates into the B2 matrix would be formed in 873 K-aged Al2Ti6Zr2Nb3Ta2Cr0.5Mo0.5 alloy with half Cr and half Mo, which is ascribed to a moderate lattice misfit (ε = 0.94%) between BCC and B2 phases. It is due to the special coherent microstructure that results in a prominent mechanical property with the highest compressive yield strength (σYS = 1314 MPa) and good plasticity among these alloys, while coarse Cr2Ti and Zr5Al3 particles are existed in 873 K-aged alloy with Cr1. After 1073 K aging, all these alloys with Cr1, Cr0.5Mo0.5 and Mo1 consist of BCC, B2 and Zr5Al3, in which BCC/B2 coherent microstructure is destabilized. The strengthening mechanism of BCC/B2 coherent microstructure in 873 K-aged alloy with Cr0.5Mo0.5 was also discussed.

Graphical abstract

摘要

本工作研究了Al-Ti-Zr-Nb-Ta-Cr/Mo系列难熔高熵合金中BCC/B2共格组织的形成, 其中, 设计了三个Al2Ti6Zr2Nb3Ta2(Cr/Mo)1合金成分。合金铸锭在经过1573 K/2 h均匀化处理之后在不同温度下进行24 h的时效处理。研究发现, 等比例Cr/Mo添加的Al2Ti6Zr2Nb3Ta2Cr0.5Mo0.5合金经过873 K时效之后获得了立方形BCC纳米粒子析出的BCC/B2共格组织, 这要归因于BCC和B2两相之间的适中的点阵错配 (ε = 0.94%)。正是得益于这种特殊的共格组织, 该合金具有优异的力学性能, 其具有最高的压缩屈服 (σYS = 1314 MPa) 以及良好的压缩塑性。然而Cr1合金在经过873 K时效后却形成了粗大的Cr2Ti和Zr5Al3相。并且由于BCC/B2共格组织的不稳定, 经过1073 K 时效之后, 这些合金由BCC, B2和Zr5Al3三相组成。此外详细讨论了873 K时效后的Cr0.5Mo0.5合金中的BCC/B2共格组织的强化机制。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Senkov ON, Kuhr SJ, Shank JM, Payton EJ, Woodward C. Microstructure and properties of an equiatomic TaTiZr alloy. Mater Sci Eng A. 2021;814:141168.

    Article  CAS  Google Scholar 

  2. Rao SI, Akdim B, Antillon E, Woodward C, Parthasarathy TA, Senkov ON. Modeling solution hardening in BCC refractory complex concentrated: NbTiZr, Nb1.5TiZr0.5 and Nb0.5TiZr1.5. Acta Mater. 2019;168:222.

    Article  CAS  Google Scholar 

  3. Senkov ON, Couzinie JP, Rao SI, Soni V, Banerjee R. Temperature dependent deformation behavior and strengthening mechanisms in a low density refractory high entropy alloy Al10Nb15Ta5Ti30Zr40. Materialia. 2020;9(C):100627.

    Article  CAS  Google Scholar 

  4. Rao SI, Woodward C, Akdim B, Senkov ON, Miracle D. Theory of solid solution strengthening of BCC chemically complex alloys. Acta Mater. 2021;209:116758.

    Article  CAS  Google Scholar 

  5. Lv SS, Zu YF, Chen GQ, Zhao BJ, Fu XS, Zhou WL. A multiple nonmetallic atoms co-doped CrMoNbWTi refractory high-entropy alloy with ultra-high strength and hardness. Mater Sci Eng A. 2020;795(5):140035.

    Article  CAS  Google Scholar 

  6. Senkov ON, Wilks GB, Miracle DB, Chuang CP, Liaw PK. Refractory high-entropy alloys. Intermetallics. 2010;18(9):1758.

    Article  CAS  Google Scholar 

  7. Senkov ON, Wilks GB, Scott JM, Miracle DB. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics. 2011;19(5):698.

    Article  CAS  Google Scholar 

  8. Senkov ON, Senkova SV, Miracle DB, Woodward C. Mechanical properties of low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system. Mater Sci Eng A. 2013;565:51.

    Article  CAS  Google Scholar 

  9. Guo NN, Wang L, Luo LS, Li XZ, Chen RR, Su YQ, Guo JJ, Fu HZ. Microstructure and mechanical properties of refractory high entropy (Mo0.5NbHf0.5ZrTi) BCC/M5Si3 in-situ compound. J Alloys Compd. 2016;660:197.

    Article  CAS  Google Scholar 

  10. Zhang RY, Meng JH, Han JS, Tulugan KLM, Zhang R. Oxidation resistance properties of refractory high-entropy alloys with varied AlxCrTiMo content. J Mater Sci. 2021;56(4):3551.

    Article  CAS  Google Scholar 

  11. Juan CC, Tseng KK, Hsu WL, Tsai MH, Tsai CW, Lin CM, Chen SK, Lin SJ, Yeh JW. Solution strengthening of ductile refractory HfMoxNbTaTiZr high-entropy alloys. Mater Lett. 2016;175:284.

    Article  CAS  Google Scholar 

  12. Wu YD, Cai YH, Chen XH, Wang T, Si JJ, Wang L, Wang YD, Hui XD. Phase composition and solid solution strengthening effect in TiZrNbMoV high-entropy alloys. Mater Des. 2015;83:651.

    Article  CAS  Google Scholar 

  13. Wang Q, Han JC, Liu YF, Zhang ZW, Dong C, Liaw PK. Coherent precipitation and stability of cuboidal nanoparticles in body-centered-cubic Al0.4Nb0.5Ta0.5TiZr0.8 refractory high entropy alloy. Scr Mater. 2021;190:40.

    Article  CAS  Google Scholar 

  14. Senkov ON, Woodward C, Miracle DB. Microstructure and properties of aluminum-containing refractory high-entropy alloys. JOM. 2014;66(10):2030.

    Article  CAS  Google Scholar 

  15. Sonib V, Gwalanib B, Senkov ON, Viswanathan B, Viswanathan B, Viswanathan B, Banerjee R. Phase stability as a function of temperature in a refractory high entropy alloy. J Mater Res. 2018;33(19):3235.

    Article  CAS  Google Scholar 

  16. Senkov ON, Rao SI, Chaput KJ, Woodward C. Compositional effect on microstructure and properties of NbTiZr-based complex concentrated alloys. Acta Mater. 2018;151:201.

    Article  CAS  Google Scholar 

  17. Jensen JK, Welk BA, Williams REA, Sosa JM, Huber DE, Senkov ON, Viswanathan GB, Fraser HL. Characterization of the microstructure of the compositionally complex alloy Al1Mo0.5Nb1Ta0.5Ti1Zr1. Scr Mater. 2016;121:1.

    Article  CAS  Google Scholar 

  18. Senkov ON, Isheim D, Seidman DN, Pilchak AL. Development of a refractory high entropy superalloy. Entropy. 2016;18(3):102.

    Article  CAS  Google Scholar 

  19. Senkov ON, Jensenb JK, Pilchaka AL, Miracle DB, Fraser HL. Compositional variation effects on the microstructure and properties of a refractory high-entropy superalloy AlMo0.5NbTa0.5TiZr. Mater Des. 2018;139:498.

    Article  CAS  Google Scholar 

  20. Senkov ON, Miracle DB, Chaput KJ, Couzinie JP. Development and exploration of refractory high entropy alloys: a review. J Mater Res. 2018;33(19):3092.

    Article  CAS  Google Scholar 

  21. Li CL, Ma Y, Hao JM, Wang Q, Pang SJ, Dong C, Liaw PK. Effect of Ti substitution for Al on the cuboidal nanoprecipitates in Al0.7NiCoFeCr2 high-entropy alloys. J Mater Res. 2018;33(19):3266.

    Article  CAS  Google Scholar 

  22. Wang ZH, Jin DM, Han JC, Wang Q, Zhang ZW, Dong C. Microstructures and mechanical properties of Al–Ti–Zr–Nb–Ta–Mo–V refractory high-entropy alloys with coherent B2 nanoprecipitation. Curr Comput Aided Drug Des. 2021;11(7):833.

    CAS  Google Scholar 

  23. Li CL, Ma Y, Hao JM, Yan Y, Wang Q, Dong C, Liaw PK. Microstructures and mechanical properties of body-centered-cubic (Al, Ti)0.7(Ni Co, Fe, Cr)5 high entropy alloys with coherent B2/L21 nanoprecipitation. Mater Sci Eng A. 2018;737:286.

    Article  CAS  Google Scholar 

  24. Ma Y, Wang Q, Jiang BB, Li CL, Hao JM, Li XN, Dong C, Nieh TG. Controlled formation of coherent cuboidal nanoprecipitates in body-centered cubic high-entropy alloys based on Al2(Ni Co, Fe, Cr)14 compositions. Acta Mater. 2018;147:213.

    Article  CAS  Google Scholar 

  25. Niu SZ, Kou HC, Wang J, Li JS. Improved tensile properties of Al0.5CoCrFeNi high-entropy alloy by tailoring microstructures. Rare Met. 2021;40(9):2508.

    Article  CAS  Google Scholar 

  26. Wang Q, Ma Y, Jiang BB, Li XN, Shi Y, Dong C, Liaw PK. A cuboidal B2 nanoprecipitation-enhanced body-centered-cubic alloy Al0.7CoCrFe2Ni with prominent tensile properties. Scr Mater. 2016;120:85.

    Article  CAS  Google Scholar 

  27. Thompson ME, Su CS, Voorhees PW. The equilibrium shape of a misfitting precipitate. Acta Metall. 1994;42(6):2107.

    Article  CAS  Google Scholar 

  28. Wang ZH, Wang Q, Niu B, Dong C, Zhang HW, Zhang HF, Liaw PK. Coherent precipitation and stability of cuboidal B2 nanoparticles in a ferritic Fe–Cr–Ni–Al superalloy. Mater Res Lett. 2021;9(11):458.

    Article  CAS  Google Scholar 

  29. Wang YP, Li BS, Ren MX, Yang C, Fu HZ. Microstructure and compressive properties of AlCrFeCoNi high entropy alloy. Mater Sci Eng A. 2008;491(1):154.

    Article  CAS  Google Scholar 

  30. Kao YF, Chen TJ, Chen SK, Yeh JW. Microstructure and mechanical property of as-cast, -homogenized, and -deformed AlxCoCrFeNi (0 ≤ x ≤ 2) high-entropy alloys. J Alloys Compd. 2009;488(1):57.

    Article  CAS  Google Scholar 

  31. Wang WR, Wang WL, Yeh JW. Phases, microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloys at elevated temperatures. J Alloys Compd. 2014;589:143.

    Article  CAS  Google Scholar 

  32. Ghorbani M, Irajizad A, Dolati A, Ghasempour R. The effect of the Cr and Mo on the physical properties of electrodeposited Ni–Fe alloy films. J Alloys Compd. 2005;386(1):43.

    Article  CAS  Google Scholar 

  33. Yun DW, Seo HS, Jun JH, Lee JM, Kim KY. Molybdenum effect on oxidation resistance and electric conduction of ferritic stainless steel for SOFC interconnect. Int J Hydrog Energy. 2012;37(13):10328.

    Article  CAS  Google Scholar 

  34. Sheikh S, Gan L, Ikeda A, Murakami H, Guo S. Alloying effect on the oxidation behavior of a ductile Al0.5Cr0.25Nb0.5Ta0.5Ti1.5 refractory high-entropy alloy. Mater Today Adv. 2020;7:100104.

    Article  Google Scholar 

  35. Stepanov ND, Yurchenko NY, Panina ES, Tikhonovsky MA, Zherebtsov SV. Precipitation-strengthened refractory Al0.5CrNbTi2V0.5 high entropy alloy. Mater Lett. 2017;188:162.

    Article  CAS  Google Scholar 

  36. Müller F, Gorr B, Christ HJ, Chen H, Kauffmann A, Laube S, Heilmaier M. Formation of complex intermetallic phases in novel refractory high-entropy alloys NbMoCrTiAl and TaMoCrTiAl: thermodynamic assessment and experimental validation. J Alloys Compd. 2020;842:155726.

    Article  CAS  Google Scholar 

  37. Yurchenko NY, Stepanov ND, Gridneva AO, Mishunin MV, Salishchev GA, Zherebtsov SV. Effect of Cr and Zr on phase stability of refractory Al–Cr–Nb–Ti–V–Zr high-entropy alloys. J Alloys Compd. 2018;757:403.

    Article  CAS  Google Scholar 

  38. Fazakas É, Zadorozhnyy V, Varga LK, Inoue A, Luzgin DVL, Tian FY, Vitos L. Experimental and theoretical study of Ti20Zr20Hf20Nb20X20 (X = V or Cr) refractory high-entropy alloys. Int J Refract Met Hard Mater. 2014;47:131.

    Article  CAS  Google Scholar 

  39. Sosa JM, Jensen JK, Huber DE, Viswanathan GB, Gibson MA, Fraser HL. Three-dimensional characterization of the microstructure of an high entropy alloy using STEM/HAADF tomography. J Mater Sci Technol. 2015;31(10):1250.

    Article  CAS  Google Scholar 

  40. Wang YQ, Li A, Wei SJ, Wu Y, Wang C. Effect of Cr on microstructures and properties of AlTiVZr0.2Crx light weight high entropy alloys. J Phys. 2021;1820(1):012096.

  41. Müller F, Gorr B, Christ HJ, Chen H, Kauffmanm A, Heilmaierb M. Effect of microalloying with silicon on high temperature oxidation resistance of novel refractory high-entropy alloy Ta–Mo–Cr–Ti–Al. Mater High Temp. 2018;35(1–3):168.

    Article  CAS  Google Scholar 

  42. Waseem OA, Ryu HJ. Combinatorial synthesis and analysis of AlxTayVz–Cr20Mo20Nb20Ti20Zr10 and Al10CrMoxNbTiZr10 refractory high entropy alloys: oxidation behavior. J Alloys Compd. 2020;828(C):154427.

    Article  CAS  Google Scholar 

  43. Takemoto S, Nitta H, Iijima Y, Yamazaki Y. Diffusion of tungsten in α-iron. Philos Mag. 2007;87(11):1619.

    Article  CAS  Google Scholar 

  44. Mannesson K, Jeppsson J, Borgenstam A, John G. Carbide grain growth in cemented carbides. Acta Mater. 2011;59(5):1912.

    Article  CAS  Google Scholar 

  45. Shaikh QA. Interdiffusion measurement of niobium and tantalum in iron base alloys. J Mater Sci Technol. 1990;6(12):1177.

    Article  CAS  Google Scholar 

  46. Lee KJ, Jung YJ, Han JH, Hong SH, Kim K, Liaw PK, Lee CH, Song G. Development of precipitation-strengthened Al0.8NbTiVM (M = Co, Ni) light-weight refractory high-entropy alloys. Materials. 2021;14(8):2085.

    Article  CAS  Google Scholar 

  47. Hosford WF. Mechanical Behavior of Materials. 1st ed. New York: Cambridge University Press; 2005. 1.

    Google Scholar 

  48. Wang LN, Hou SJ, Liang DW. First-principles investigations on the phase stability, elastic and thermodynamic properties of Zr–Al alloys. Int J Mod Phys C. 2015;26(12):1550143.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 52171152) and the Key Discipline and Major Project of Dalian Science and Technology Innovation Foundation (No. 2020JJ25CY004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Wang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, DM., Wang, ZH., Li, JF. et al. Formation of coherent BCC/B2 microstructure and mechanical properties of Al–Ti–Zr–Nb–Ta–Cr/Mo light-weight refractory high-entropy alloys. Rare Met. 41, 2886–2893 (2022). https://doi.org/10.1007/s12598-022-01971-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-01971-w

Keywords

Navigation