Skip to main content

Advertisement

Log in

Long Non-coding RNA ANRIL and Its Role in the Development of Age-Related Diseases

  • Reviews
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

ANRIL is known as a lncRNA that has many linear and circular isoforms and its polymorphisms are observed to be associated with the pathogenesis of many diseases including age-related diseases. Age-related diseases including atherosclerosis, ischemic heart disease, and Alzheimer’s and Parkinson’s disease are the most common cause of mortality in both developed and undeveloped countries and that is why a better understanding of their pathogenesis and underlying mechanisms is necessary for controlling their healthcare burden.

In this review, we aim to gather the data of researches which have investigated the role of ANRIL in aging and its related diseases. The conclusions of this paper might give a new insight for decreasing the mortality rate of these diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Wick G, Jansen-Durr P, Berger P, Blasko I, Grubeck-Loebenstein B (2000) Diseases of aging. Vaccine 18(16):1567–1583

    Article  CAS  PubMed  Google Scholar 

  2. Campisi J, Kapahi P, Lithgow GJ, Melov S, Newman JC, Verdin E (2019) From discoveries in ageing research to therapeutics for healthy ageing. Nature 571(7764):183–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hou Y, Dan X, Babbar M, Wei Y, Hasselbalch SG, Croteau DL et al (2019) Ageing as a risk factor for neurodegenerative disease. Nat Rev Neurol 15(10):565–581

    Article  PubMed  Google Scholar 

  4. Iourov IY, Yurov YB, Vorsanova SG, Kutsev SI (2021) Chromosome instability, aging and brain diseases. Cells. 10:5

    Article  Google Scholar 

  5. Organization WH. The top 10 causes of death 2019 [Available from: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death

  6. Aguilo F, Di Cecilia S, Walsh MJ (2016) Long non-coding RNA ANRIL and polycomb in human cancers and cardiovascular disease. Curr Top Microbiol Immunol 394:29–39

    PubMed  PubMed Central  Google Scholar 

  7. Chen L, Qu H, Guo M, Zhang Y, Cui Y, Yang Q et al (2020) ANRIL and atherosclerosis. J Clin Pharm Ther 45(2):240–248

    Article  PubMed  Google Scholar 

  8. Ghafouri-Fard S, Safari M, Taheri M, Samadian M (2022) Expression of linear and circular lncRNAs in Alzheimer’s disease. J Mol Neurosci 72(2):187–200

    Article  CAS  PubMed  Google Scholar 

  9. Kong Y, Hsieh CH, Alonso LC (2018) ANRIL: a lncRNA at the CDKN2A/B locus with roles in cancer and metabolic disease. Front Endocrinol (Lausanne) 9:405

    Article  PubMed  Google Scholar 

  10. Hombach S, Kretz M (2016) Non-coding RNAs: classification, biology and functioning. Adv Exp Med Biol 937:3–17

    Article  CAS  PubMed  Google Scholar 

  11. Zhang P, Wu W, Chen Q, Chen M (2019) Non-coding RNAs and their integrated networks. J Integr Bioinform 16:3

    Article  Google Scholar 

  12. Saw PE, Xu X, Chen J, Song EW (2021) Non-coding RNAs: the new central dogma of cancer biology. Sci China Life Sci 64(1):22–50

    Article  CAS  PubMed  Google Scholar 

  13. Jarroux J, Morillon A, Pinskaya M (2017) History, Discovery, and classification of lncRNAs. Adv Exp Med Biol 1008:1–46

    Article  CAS  PubMed  Google Scholar 

  14. Pasmant E, Laurendeau I, Héron D, Vidaud M, Vidaud D, Bieche I (2007) Characterization of a germ-line deletion, including the entire INK4/ARF locus, in a melanoma-neural system tumor family: identification of ANRIL, an antisense noncoding RNA whose expression coclusters with ARF. Can Res 67(8):3963–3969

    Article  CAS  Google Scholar 

  15. Williams RT, Sherr CJ (2008) The INK4-ARF (CDKN2A/B) locus in hematopoiesis and BCR-ABL-induced leukemias. Cold Spring Harb Symp Quant Biol 73:461–467

    Article  CAS  PubMed  Google Scholar 

  16. López F, Sampedro T, Llorente JL, Hermsen M, Álvarez-Marcos C (2017) Alterations of p14 ARF, p15 INK4b, and p16 INK4a genes in primary laryngeal squamous cell carcinoma. Pathol Oncol Res 23:63–71

    Article  PubMed  Google Scholar 

  17. Kong Y, Sharma RB, Nwosu BU, Alonso LC (2016) Islet biology, the CDKN2A/B locus and type 2 diabetes risk. Diabetologia 59(8):1579–1593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Folkersen L, Kyriakou T, Goel A, Peden J, Mälarstig A, Paulsson-Berne G et al (2009) Relationship between CAD risk genotype in the chromosome 9p21 locus and gene expression. Identification of eight new ANRIL splice variants. PLoS One 4(11):e7677

    Article  PubMed  PubMed Central  Google Scholar 

  19. Burd CE, Jeck WR, Liu Y, Sanoff HK, Wang Z, Sharpless NE (2010) Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk. PLoS Genet 6(12):e1001233

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sarkar D, Oghabian A, Bodiyabadu PK, Joseph WR, Leung EY, Finlay GJ et al (2017) Multiple isoforms of ANRIL in melanoma cells: structural complexity suggests variations in processing. Int J Mol Sci 18:7

    Article  Google Scholar 

  21. Barrett SP, Salzman J (2016) Circular RNAs: analysis, expression and potential functions. Development 143(11):1838–1847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kennison JA (1995) The polycomb and trithorax group proteins of Drosophila: trans-regulators of homeotic gene function. Annu Rev Genet 29:289–303

    Article  CAS  PubMed  Google Scholar 

  23. Lou N, Liu G, Pan Y (2020) Long noncoding RNA ANRIL as a novel biomarker in human cancer. Future Oncol 16(35):2981–2995

    Article  CAS  PubMed  Google Scholar 

  24. Margueron R, Li G, Sarma K, Blais A, Zavadil J, Woodcock CL et al (2008) Ezh1 and Ezh2 maintain repressive chromatin through different mechanisms. Mol Cell 32(4):503–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shen X, Liu Y, Hsu YJ, Fujiwara Y, Kim J, Mao X et al (2008) EZH1 mediates methylation on histone H3 lysine 27 and complements EZH2 in maintaining stem cell identity and executing pluripotency. Mol Cell 32(4):491–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Whitcomb SJ, Basu A, Allis CD, Bernstein E (2007) Polycomb Group proteins: an evolutionary perspective. Trends Genet 23(10):494–502

    Article  CAS  PubMed  Google Scholar 

  27. Jacobs JJ, Kieboom K, Marino S, DePinho RA, van Lohuizen M (1999) The oncogene and polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature 397(6715):164–168

    Article  CAS  PubMed  Google Scholar 

  28. Itahana K, Zou Y, Itahana Y, Martinez JL, Beausejour C, Jacobs JJ et al (2003) Control of the replicative life span of human fibroblasts by p16 and the polycomb protein Bmi-1. Mol Cell Biol 23(1):389–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Agger K, Cloos PA, Rudkjaer L, Williams K, Andersen G, Christensen J et al (2009) The H3K27me3 demethylase JMJD3 contributes to the activation of the INK4A-ARF locus in response to oncogene- and stress-induced senescence. Genes Dev 23(10):1171–1176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kia SK, Gorski MM, Giannakopoulos S, Verrijzer CP (2008) SWI/SNF mediates polycomb eviction and epigenetic reprogramming of the INK4b-ARF-INK4a locus. Mol Cell Biol 28(10):3457–3464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yap KL, Li S, Muñoz-Cabello AM, Raguz S, Zeng L, Mujtaba S et al (2010) Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol Cell 38(5):662–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Aguilo F, Zhou MM, Walsh MJ (2011) Long noncoding RNA, polycomb, and the ghosts haunting INK4b-ARF-INK4a expression. Cancer Res 71(16):5365–5369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Murray R, Bryant J, Titcombe P, Barton SJ, Inskip H, Harvey NC et al (2016) DNA methylation at birth within the promoter of ANRIL predicts markers of cardiovascular risk at 9 years. Clin Epigenetics 8(1):90

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lillycrop K, Murray R, Cheong C, Teh AL, Clarke-Harris R, Barton S et al (2017) ANRIL Promoter DNA methylation: a perinatal marker for later adiposity. EBioMedicine 19:60–72

    Article  PubMed  PubMed Central  Google Scholar 

  35. Harismendy O, Notani D, Song X, Rahim NG, Tanasa B, Heintzman N et al (2011) 9p21 DNA variants associated with coronary artery disease impair interferon-γ signalling response. Nature 470(7333):264–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cunnington MS, SantibanezKoref M, Mayosi BM, Burn J, Keavney B (2010) Chromosome 9p21 SNPs associated with multiple disease phenotypes correlate with ANRIL expression. PLoS Genet 6(4):e1000899

    Article  PubMed  PubMed Central  Google Scholar 

  37. Broadbent HM, Peden JF, Lorkowski S, Goel A, Ongen H, Green F et al (2008) Susceptibility to coronary artery disease and diabetes is encoded by distinct, tightly linked SNPs in the ANRIL locus on chromosome 9p. Hum Mol Genet 17(6):806–814

    Article  CAS  PubMed  Google Scholar 

  38. Holdt LM, Stahringer A, Sass K, Pichler G, Kulak NA, Wilfert W et al (2016) Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans. Nat Commun 7:12429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Huang T, Zhao HY, Zhang XB, Gao XL, Peng WP, Zhou Y et al (2020) LncRNA ANRIL regulates cell proliferation and migration via sponging miR-339-5p and regulating FRS2 expression in atherosclerosis. Eur Rev Med Pharmacol Sci 24(4):1956–1969

    CAS  PubMed  Google Scholar 

  40. Kniazkova PV, Harbuzova VY, Pokhmura VV (2022) The link between ANRIL gene RS4977574 polymorphism and common atherosclerosis cardiovascular complications: a hospital-based case-control study in Ukrainian population. Biomed Res Int 2022:8468202

    Article  PubMed  PubMed Central  Google Scholar 

  41. Deng L, Guo Y, Liu J, Chen S, Wang X, Zhao H et al (2021) Long noncoding RNA ANRIL knockdown attenuates neuroinflammation following ischemic stroke via suppressing the expression of NF-κB in vitro and in vivo. Neurol Res 43(9):767–777

    Article  CAS  PubMed  Google Scholar 

  42. Liu B, Cao W, Xue J (2019) LncRNA ANRIL protects against oxygen and glucose deprivation (OGD)-induced injury in PC-12 cells: potential role in ischaemic stroke. Artif Cells Nanomed Biotechnol 47(1):1384–1395

    Article  CAS  PubMed  Google Scholar 

  43. Fathy N, Kortam MA, Shaker OG, Sayed NH (2021) Long noncoding RNAs MALAT1 and ANRIL gene variants and the risk of cerebral ischemic stroke: an association study. ACS Chem Neurosci 12(8):1351–1362

    Article  CAS  PubMed  Google Scholar 

  44. Yang J, Gu L, Guo X, Huang J, Chen Z, Huang G et al (2018) LncRNA ANRIL expression and ANRIL gene polymorphisms contribute to the risk of ischemic stroke in the Chinese Han population. Cell Mol Neurobiol 38(6):1253–1269

    Article  CAS  PubMed  Google Scholar 

  45. Zhu Y, Dai L, Yu X, Chen X, Li Z, Sun Y et al (2022) Circulating expression and clinical significance of LncRNA ANRIL in diabetic kidney disease. Mol Biol Rep 49(11):10521–10529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cai R, Jiang J (2020) LncRNA ANRIL silencing alleviates high glucose-induced inflammation, oxidative stress, and apoptosis via upregulation of MME in podocytes. Inflammation 43(6):2147–2155

    Article  CAS  PubMed  Google Scholar 

  47. Fang X, Hu J, Zhou H (2022) Knock-down of long non-coding RNA ANRIL suppresses mouse mesangial cell proliferation, fibrosis, inflammation via regulating Wnt/β-catenin and MEK/ERK pathways in diabetic nephropathy. Exp Clin Endocrinol Diabetes 130(1):30–6

    Article  CAS  PubMed  Google Scholar 

  48. Wang J, Zhao SM (2021) LncRNA-antisense non-coding RNA in the INK4 locus promotes pyroptosis via miR-497/thioredoxin-interacting protein axis in diabetic nephropathy. Life Sci 264:118728

    Article  CAS  PubMed  Google Scholar 

  49. Hu X, Lou T, Yuan C, Wang Y, Tu X, Wang Y et al (2021) Effects of lncRNA ANRIL-knockdown on the proliferation, apoptosis and cell cycle of gastric cancer cells. Oncol Lett 22(2):621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhao B, Lu YL, Yang Y, Hu LB, Bai Y, Li RQ et al (2018) Overexpression of lncRNA ANRIL promoted the proliferation and migration of prostate cancer cells via regulating let-7a/TGF-β1/ Smad signaling pathway. Cancer Biomarkers 21(3):613–620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sun Y, Zheng ZP, Li H, Zhang HQ, Ma FQ (2016) ANRIL is associated with the survival rate of patients with colorectal cancer, and affects cell migration and invasion in vitro. Mol Med Rep 14(2):1714–1720

    Article  CAS  PubMed  Google Scholar 

  52. Zhao JJ, Hao S, Wang LL, Hu CY, Zhang S, Guo LJ et al (2016) Long non-coding RNA ANRIL promotes the invasion and metastasis of thyroid cancer cells through TGF-β/Smad signaling pathway. Oncotarget 7(36):57903–57918

    Article  PubMed  PubMed Central  Google Scholar 

  53. Alzheimer’s Association (2016) 2016 Alzheimer’s disease facts and figures. Alzheimers Dement 12(4):459–509. https://doi.org/10.1016/j.jalz.2016.03.001

  54. Zhou B, Li L, Qiu X, Wu J, Xu L, Shao W (2020) Long non-coding RNA ANRIL knockdown suppresses apoptosis and pro-inflammatory cytokines while enhancing neurite outgrowth via binding microRNA-125a in a cellular model of Alzheimer’s disease. Mol Med Rep 22(2):1489–1497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jones RW, Romeo R, Trigg R, Knapp M, Sato A, King D et al (2015) Dependence in Alzheimer’s disease and service use costs, quality of life, and caregiver burden: the DADE study. Alzheimers Dement 11(3):280–290

    Article  PubMed  Google Scholar 

  56. Atri A (2019) The Alzheimer’s Disease clinical spectrum: diagnosis and management. Med Clin North Am 103(2):263–293

    Article  PubMed  Google Scholar 

  57. Zou C, Wang J, Huang X, Jian C, Zou D, Li X (2019) Analysis of transcription factor- and ncRNA-mediated potential pathogenic gene modules in Alzheimer’s disease. Aging (Albany NY) 11(16):6109–6119

    Article  CAS  PubMed  Google Scholar 

  58. Zhao MY, Wang GQ, Wang NN, Yu QY, Liu RL, Shi WQ (2019) The long-non-coding RNA NEAT1 is a novel target for Alzheimer’s disease progression via miR-124/BACE1 axis. Neurol Res 41(6):489–497

    Article  PubMed  Google Scholar 

  59. Ge J, Geng S, Jiang H (2019) Long noncoding RNAs antisense noncoding RNA in the INK4 locus (ANRIL) correlates with lower acute exacerbation risk, decreased inflammatory cytokines, and mild GOLD stage in patients with chronic obstructive pulmonary disease. J Clin Lab Anal 33(2):e22678

    Article  PubMed  Google Scholar 

  60. Wei JC, Shi YL, Wang Q (2019) LncRNA ANRIL knockdown ameliorates retinopathy in diabetic rats by inhibiting the NF-κB pathway. Eur Rev Med Pharmacol Sci 23(18):7732–7739

    PubMed  Google Scholar 

  61. Kalia LV, Lang AE (2015) Parkinson’s disease. Lancet 386(9996):896–912

    Article  CAS  PubMed  Google Scholar 

  62. Ascherio A, Schwarzschild MA (2016) The epidemiology of Parkinson’s disease: risk factors and prevention. Lancet Neurol 15(12):1257–1272

    Article  PubMed  Google Scholar 

  63. Jankovic J (2008) Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry 79(4):368–376

    Article  CAS  PubMed  Google Scholar 

  64. Schapira AHV, Chaudhuri KR, Jenner P (2017) Non-motor features of Parkinson disease. Nat Rev Neurosci 18(7):435–450

    Article  CAS  PubMed  Google Scholar 

  65. Pfeiffer RF (2016) Non-motor symptoms in Parkinson’s disease. Parkinsonism Relat Disord 22(Suppl 1):S119–S122

    Article  PubMed  Google Scholar 

  66. Connolly BS, Lang AE (2014) Pharmacological treatment of Parkinson disease: a review. JAMA 311(16):1670–1683

    Article  PubMed  Google Scholar 

  67. Raza C, Anjum R, Shakeel NUA (2019) Parkinson’s disease: mechanisms, translational models and management strategies. Life Sci 226:77–90

    Article  CAS  PubMed  Google Scholar 

  68. Lotankar S, Prabhavalkar KS, Bhatt LK (2017) Biomarkers for Parkinson’s disease: recent advancement. Neurosci Bull 33(5):585–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Parnetti L, Gaetani L, Eusebi P, Paciotti S, Hansson O, El-Agnaf O et al (2019) CSF and blood biomarkers for Parkinson’s disease. Lancet Neurol 18(6):573–586

    Article  CAS  PubMed  Google Scholar 

  70. Dai W, Tian C, Jin S (2018) Effect of lncRNA ANRIL silencing on anoikis and cell cycle in human glioma via microRNA-203a. Onco Targets Ther 11:5103–5109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Che J (2017) Molecular mechanisms of the intracranial aneurysms and their association with the long noncoding ribonucleic acid ANRIL - a review of literature. Neurol India 65(4):718–728

    Article  PubMed  Google Scholar 

  72. Dong X, Jin Z, Chen Y, Xu H, Ma C, Hong X et al (2018) Knockdown of long non-coding RNA ANRIL inhibits proliferation, migration, and invasion but promotes apoptosis of human glioma cells by upregulation of miR-34a. J Cell Biochem 119(3):2708–2718

    Article  CAS  PubMed  Google Scholar 

  73. Lecca D, Marangon D, Coppolino GT, Méndez AM, Finardi A, Costa GD et al (2016) MiR-125a-3p timely inhibits oligodendroglial maturation and is pathologically up-regulated in human multiple sclerosis. Sci Rep 6:34503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Long HC, Wu R, Liu CF, Xiong FL, Xu Z, He D et al (2020) MiR-125a-5p regulates vitamin D receptor expression in a mouse model of experimental autoimmune encephalomyelitis. Neurosci Bull 36(2):110–120

    Article  CAS  PubMed  Google Scholar 

  75. Sarkar S, Jun S, Rellick S, Quintana DD, Cavendish JZ, Simpkins JW (2016) Expression of microRNA-34a in Alzheimer’s disease brain targets genes linked to synaptic plasticity, energy metabolism, and resting state network activity. Brain Res 1646:139–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Jia L, Chopp M, Wang L, Lu X, Zhang Y, Szalad A et al (2018) MiR-34a regulates axonal growth of dorsal root ganglia neurons by targeting FOXP2 and VAT1 in postnatal and adult mouse. Mol Neurobiol 55(12):9089–9099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yang P, Lin G, Wang M, Chen X, Huang J (2022) Long non-coding RNA ANRIL interacts with microRNA-34a and microRNA-125a, and they all correlate with disease risk and severity of Parkinson’s disease. J Clin Lab Anal 36(1):e24037

    Article  CAS  PubMed  Google Scholar 

  78. Zhang B, Wang D, Ji TF, Shi L, Yu JL (2017) Overexpression of lncRNA ANRIL up-regulates VEGF expression and promotes angiogenesis of diabetes mellitus combined with cerebral infarction by activating NF-κB signaling pathway in a rat model. Oncotarget 8(10):17347–17359

    Article  PubMed  Google Scholar 

  79. Cao Y (2009) Positive and negative modulation of angiogenesis by VEGFR1 ligands. Sci Signal 2(59):re1

    Article  MathSciNet  PubMed  Google Scholar 

  80. Smith EM, Gregg M, Hashemi F, Schott L, Hughes TK (2006) Corticotropin releasing factor (CRF) activation of NF-kappaB-directed transcription in leukocytes. Cell Mol Neurobiol 26(4–6):1021–1036

    CAS  PubMed  Google Scholar 

  81. Stilo R, Leonardi A, Formisano L, Di Jeso B, Vito P, Liguoro D (2002) TUCAN/CARDINAL and DRAL participate in a common pathway for modulation of NF-kappaB activation. FEBS Lett 521(1–3):165–169

    Article  CAS  PubMed  Google Scholar 

  82. Ben Hamad M, Cornelis F, Marzouk S, Chabchoub G, Bahloul Z, Rebai A et al (2012) Association study of CARD8 (p.C10X) and NLRP3 (p.Q705K) variants with rheumatoid arthritis in French and Tunisian populations. Int J Immunogenet. 39(2):131–6

    Article  CAS  PubMed  Google Scholar 

  83. Bai Y, Nie S, Jiang G, Zhou Y, Zhou M, Zhao Y et al (2014) Regulation of CARD8 expression by ANRIL and association of CARD8 single nucleotide polymorphism rs2043211 (p.C10X) with ischemic stroke. Stroke 45(2):383–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Bao MH, Szeto V, Yang BB, Zhu SZ, Sun HS, Feng ZP (2018) Long non-coding RNAs in ischemic stroke. Cell Death Dis 9(3):281

    Article  PubMed  PubMed Central  Google Scholar 

  85. He ZY, Wei TH, Zhang PH, Zhou J, Huang XY (2019) Long noncoding RNA-antisense noncoding RNA in the INK4 locus accelerates wound healing in diabetes by promoting lymphangiogenesis via regulating miR-181a/Prox1 axis. J Cell Physiol 234(4):4627–4640

    Article  CAS  PubMed  Google Scholar 

  86. Wan J, Bao Y, Hou LJ, Li GJ, Du LJ, Ma ZH et al (2023) lncRNA ANRIL accelerates wound healing in diabetic foot ulcers via modulating HIF1A/VEGFA signaling through interacting with FUS. J Gene Med 25(2):e3462

    Article  CAS  PubMed  Google Scholar 

  87. Rahimi E, Ahmadi A, Boroumand MA, Mohammad Soltani B, Behmanesh M (2018) Association of ANRIL expression with coronary artery disease in type 2 diabetic patients. Cell J 20(1):41–45

    PubMed  PubMed Central  Google Scholar 

  88. Sooshtari P, Feng B, Biswas S, Levy M, Lin H, Su Z et al (2022) ANRIL regulates multiple molecules of pathogenetic significance in diabetic nephropathy. PLoS ONE 17(8):e0270287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

2018 Science and Technology Plan of Shaoxing City, Zhejiang Province (Medical and Health) (2018C30064)

Author information

Authors and Affiliations

Authors

Contributions

FS and GL contributed to manuscript drafting and data collection. All authors approved the final paper. MM oversaw the study.

Corresponding authors

Correspondence to Gang Li or Mohammadamin Morshedi.

Ethics declarations

Ethics Approval

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shou, F., Li, G. & Morshedi, M. Long Non-coding RNA ANRIL and Its Role in the Development of Age-Related Diseases. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-04074-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-04074-y

Keywords

Navigation