Skip to main content

Advertisement

Log in

Stem Cell-Based Strategies: The Future Direction of Bioartificial Liver Development

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Acute liver failure (ALF) results from severe liver damage or end-stage liver disease. It is extremely fatal and causes serious health and economic burdens worldwide. Once ALF occurs, liver transplantation (LT) is the only definitive and recommended treatment; however, LT is limited by the scarcity of liver grafts. Consequently, the clinical use of bioartificial liver (BAL) has been proposed as a treatment strategy for ALF. Human primary hepatocytes are an ideal cell source for these methods. However, their high demand and superior viability prevent their widespread use. Hence, finding alternatives that meet the seed cell quality and quantity requirements is imperative. Stem cells with self-renewing, immunogenic, and differentiative capacities are potential cell sources. MSCs and its secretomes encompass a spectrum of beneficial properties, such as anti-inflammatory, immunomodulatory, anti-ROS (reactive oxygen species), anti-apoptotic, pro-metabolomic, anti-fibrogenesis, and pro-regenerative attributes. This review focused on the recent status and future directions of stem cell-based strategies in BAL for ALF. Additionally, we discussed the opportunities and challenges associated with promoting such strategies for clinical applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not Applicable.

References

  1. Bernal, W., & McPhail, M. J. (2021). Acute liver failure. Journal of Hepatology, 74, 1489–1490.

    Article  PubMed  Google Scholar 

  2. Arroyo, V., Moreau, R., & Jalan, R. (2020). Acute-on-chronic liver failure. New England Journal of Medicine, 382, 2137–2145.

    Article  CAS  PubMed  Google Scholar 

  3. Tujios, S., Stravitz, R. T., & Lee, W. M. (2022). Management of acute liver failure: Update 2022. Seminars in Liver Disease, 42, 362–378.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sedhom, D., D’Souza, M., John, E., & Rustgi, V. (2018). Viral hepatitis and acute liver failure: Still a problem. Clinics in Liver Disease, 22, 289–300.

    Article  PubMed  Google Scholar 

  5. Olivo, R., Guarrera, J. V., & Pyrsopoulos, N. T. (2018). Liver transplantation for acute liver failure. Clinics in Liver Disease, 22, 409–417.

    Article  PubMed  Google Scholar 

  6. Carpentier, B., Gautier, A., & Legallais, C. (2009). Artificial and bioartificial liver devices: Present and future. Gut, 58, 1690–1702.

    Article  CAS  PubMed  Google Scholar 

  7. Sakiyama, R., Blau, B. J., & Miki, T. (2017). Clinical translation of bioartificial liver support systems with human pluripotent stem cell-derived hepatic cells. World Journal of Gastroenterology, 23, 1974–1979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chamuleau, R. A., Deurholt, T., & Hoekstra, R. (2005). Which are the right cells to be used in a bioartificial liver? Metabolic Brain Disease, 20, 327–335.

    Article  PubMed  Google Scholar 

  9. Shi, M., Zhang, Z., Xu, R., Lin, H., Fu, J., Zou, Z., et al. (2012). Human mesenchymal stem cell transfusion is safe and improves liver function in acute-on-chronic liver failure patients. Stem Cells Translational Medicine, 1, 725–731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. He, Y., Guo, X., Lan, T., Xia, J., Wang, J., Li, B., et al. (2021). Human umbilical cord-derived mesenchymal stem cells improve the function of liver in rats with acute-on-chronic liver failure via downregulating Notch and Stat1/Stat3 signaling. Stem Cell Research & Therapy, 12, 396.

    Article  CAS  Google Scholar 

  11. Wang, J., Ren, H., Liu, Y., Sun, L., Zhang, Z., Zhao, Y., et al. (2021). Bioinspired artificial liver system with hiPSC-derived hepatocytes for acute liver failure treatment. Advanced Healthcare Materials, 10, e2101580.

    Article  PubMed  Google Scholar 

  12. Feng, L., Cai, L., He, G. L., Weng, J., Li, Y., Pan, M. X., et al. (2017). Novel D-galactosamine-induced cynomolgus monkey model of acute liver failure. World Journal of Gastroenterology, 23, 7572–7583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. He, G. L., Feng, L., Cai, L., Zhou, C. J., Cheng, Y., Jiang, Z. S., et al. (2017). Artificial liver support in pigs with acetaminophen-induced acute liver failure. World Journal of Gastroenterology, 23, 3262–3268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cai, L., Weng, J., Feng, L., He, G., Qin, J., Zhang, Z., et al. (2016). Establishment of a novel simplified surgical model of acute liver failure in the cynomolgus monkey. BioMed Research International, 2016, 3518989.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Squires, J. E., McKiernan, P., & Squires, R. H. (2018). Acute liver failure: An update. Clinics in Liver Disease, 22, 773–805.

    Article  PubMed  Google Scholar 

  16. Doggrell, S. A. (2004). Suramin: Potential in acute liver failure. Expert Opinion on Investigational Drugs, 13, 1361–1363.

    Article  CAS  PubMed  Google Scholar 

  17. Jaeschke, H., Akakpo, J. Y., Umbaugh, D. S., & Ramachandran, A. (2020). Novel therapeutic approaches against acetaminophen-induced liver injury and acute liver failure. Toxicological Sciences, 174, 159–167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bunchorntavakul, C., & Reddy, K. R. (2018). Acetaminophen (APAP or N-acetyl-p-aminophenol) and acute liver failure. Clinics in Liver Disease, 22, 325–346.

    Article  PubMed  Google Scholar 

  19. Kwong, S., Meyerson, C., Zheng, W., Kassardjian, A., Stanzione, N., Zhang, K., et al. (2019). Acute hepatitis and acute liver failure: Pathologic diagnosis and differential diagnosis. Seminars in Diagnostic Pathology, 36, 404–414.

    Article  PubMed  Google Scholar 

  20. Engelmann, C., Sheikh, M., Sharma, S., Kondo, T., Loeffler-Wirth, H., Zheng, Y. B., et al. (2020). Toll-like receptor 4 is a therapeutic target for prevention and treatment of liver failure. Journal of Hepatology, 73, 102–112.

    Article  CAS  PubMed  Google Scholar 

  21. Starkey, L. P., Campana, L., Aleksieva, N., Cartwright, J. A., Mackinnon, A., O’Duibhir, E., et al. (2020). Alternatively activated macrophages promote resolution of necrosis following acute liver injury. Journal of Hepatology, 73, 349–360.

    Article  Google Scholar 

  22. Triantafyllou, E., Woollard, K. J., McPhail, M., Antoniades, C. G., & Possamai, L. A. (2018). The role of monocytes and macrophages in acute and acute-on-chronic liver failure. Frontiers in Immunology, 9, 2948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang, Y., Zhou, C., Fu, Y., Zhang, L., Liu, S., Cai, L., et al. (2023). Establishment of acute liver failure model in Tibetan miniature pig and verified by dual plasma molecular adsorption system. The International Journal of Artificial Organs, 46, 141–152.

  24. Tsutsui, H., & Nishiguchi, S. (2014). Importance of Kupffer cells in the development of acute liver injuries in mice. International Journal of Molecular Sciences, 15, 7711–7730.

    Article  PubMed  PubMed Central  Google Scholar 

  25. van der Heide, D., Weiskirchen, R., & Bansal, R. (2019). Therapeutic targeting of hepatic macrophages for the treatment of liver diseases. Frontiers in Immunology, 10, 2852.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Li, T., Fu, Y., Guo, Z., Zhu, H., Liao, H., Niu, X., et al. (2022). A new cell-free therapeutic strategy for liver regeneration: Human placental mesenchymal stem cell-derived extracellular vesicles. Journal of Tissue Engineering, 13, 1768622397.

    Article  Google Scholar 

  27. Wendon, J., Cordoba, J., Dhawan, A., Larsen, F. S., Manns, M., Samuel, D., et al. (2017). EASL clinical practical guidelines on the management of acute (fulminant) liver failure. Journal of Hepatology, 66, 1047–1081.

    Article  PubMed  Google Scholar 

  28. Nanchal, R., Subramanian, R., Karvellas, C. J., Hollenberg, S. M., Peppard, W. J., Singbartl, K., et al. (2020). Guidelines for the Management of Adult Acute and Acute-on-Chronic Liver Failure in the ICU: Cardiovascular, endocrine, hematologic, pulmonary, and renal considerations. Critical Care Medicine, 48, e173–e191.

    Article  PubMed  Google Scholar 

  29. Feng, L., Wang, Y., Liu, S., He, G., Cai, L., Qin, J., et al. (2022). In vitro safety and efficacy evaluation of a novel hybrid bioartificial liver system with simulated liver failure serum. International Journal of Artificial Organs, 45, 523–532.

    Article  CAS  PubMed  Google Scholar 

  30. Feng, L., He, G., Cai, L., Fu, C., Li, Y., Weng, J., et al. (2018). Artificial liver and renal support system for cynomolgus monkeys with surgery-induced acute renal failure: A preclinical study. BioMed Research International, 2018, 7456898.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bañares, R., Catalina, M. V., & Vaquero, J. (2014). Molecular adsorbent recirculating system and bioartificial devices for liver failure. Clinics in Liver Disease, 18, 945–956.

    Article  PubMed  Google Scholar 

  32. Weng, J., Han, X., Zeng, F., Zhang, Y., Feng, L., Cai, L., et al. (2021). Fiber scaffold bioartificial liver therapy relieves acute liver failure and extrahepatic organ injury in pigs. Theranostics, 11, 7620–7639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. McKenzie, T. J., Lillegard, J. B., & Nyberg, S. L. (2008). Artificial and bioartificial liver support. Seminars in Liver Disease, 28, 210–217.

    Article  PubMed  Google Scholar 

  34. He, G. L., Feng, L., Duan, C. Y., Hu, X., Zhou, C. J., Cheng, Y., et al. (2015). Meta-analysis of survival with the molecular adsorbent recirculating system for liver failure. International Journal of Clinical and Experimental Medicine, 8, 17046–17054.

    PubMed  PubMed Central  Google Scholar 

  35. Wang, Y. H., Wu, D. B., Chen, B., Chen, E. Q., & Tang, H. (2018). Progress in mesenchymal stem cell-based therapy for acute liver failure. Stem Cell Research & Therapy, 9, 227.

    Article  CAS  Google Scholar 

  36. Gazdic, M., Volarevic, V., Arsenijevic, N., & Stojkovic, M. (2015). Mesenchymal stem cells: A friend or foe in immune-mediated diseases. Stem Cell Reviews and Reports, 11, 280–287.

    Article  CAS  PubMed  Google Scholar 

  37. Qu, M., Yuan, X., Liu, D., Ma, Y., Zhu, J., Cui, J., et al. (2017). Bone marrow-derived mesenchymal stem cells attenuate immune-mediated liver injury and compromise virus control during acute hepatitis B virus infection in mice. Stem Cells Dev., 26, 818–827.

    Article  CAS  PubMed  Google Scholar 

  38. Zhang, Y., Cai, W., Huang, Q., Gu, Y., Shi, Y., Huang, J., et al. (2014). Mesenchymal stem cells alleviate bacteria-induced liver injury in mice by inducing regulatory dendritic cells. Hepatology, 59, 671–682.

    Article  CAS  PubMed  Google Scholar 

  39. Gazdic, M., Simovic, M. B., Vucicevic, L., Nikolic, T., Djonov, V., Arsenijevic, N., et al. (2018). Mesenchymal stem cells protect from acute liver injury by attenuating hepatotoxicity of liver natural killer T cells in an inducible nitric oxide synthase- and indoleamine 2,3-dioxygenase-dependent manner. Journal of Tissue Engineering and Regenerative Medicine, 12, e1173–e1185.

    Article  CAS  PubMed  Google Scholar 

  40. Aggarwal, S., & Pittenger, M. F. (2005). Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood, 105, 1815–1822.

    Article  CAS  PubMed  Google Scholar 

  41. Svobodova, E., Krulova, M., Zajicova, A., Pokorna, K., Prochazkova, J., Trosan, P., et al. (2012). The role of mouse mesenchymal stem cells in differentiation of naive T-cells into anti-inflammatory regulatory T-cell or proinflammatory helper T-cell 17 population. Stem Cells and Development, 21, 901–910.

    Article  CAS  PubMed  Google Scholar 

  42. Hu, C., Wu, Z., & Li, L. (2020). Mesenchymal stromal cells promote liver regeneration through regulation of immune cells. International Journal of Biological Sciences, 16, 893–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Forbes, S., Vig, P., Poulsom, R., Thomas, H., & Alison, M. (2002). Hepatic stem cells. The Journal of Pathology, 197, 510–518.

    Article  PubMed  Google Scholar 

  44. Alison, M. (2002). Hepatic stem cells. Transcultural Psychiatry, 34, 2702–5.

  45. Hu, C., & Li, L. (2015). In vitro culture of isolated primary hepatocytes and stem cell-derived hepatocyte-like cells for liver regeneration. Protein & Cell, 6, 562–574.

    Article  CAS  Google Scholar 

  46. Suzuki, A., Zheng, Y. W., Kaneko, S., Onodera, M., Fukao, K., Nakauchi, H., et al. (2002). Clonal identification and characterization of self-renewing pluripotent stem cells in the developing liver. Journal of Cell Biology, 156, 173–184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Suzuki, A., Nakauchi, H., & Taniguchi, H. (2003). In vitro production of functionally mature hepatocytes from prospectively isolated hepatic stem cells. Cell Transplantation, 12, 469–473.

    Article  PubMed  Google Scholar 

  48. Herrera, M. B., Bruno, S., Buttiglieri, S., Tetta, C., Gatti, S., Deregibus, M. C., et al. (2006). Isolation and characterization of a stem cell population from adult human liver. Stem Cells, 24, 2840–2850.

    Article  CAS  PubMed  Google Scholar 

  49. Fonsato, V., Herrera, M. B., Buttiglieri, S., Gatti, S., Camussi, G., & Tetta, C. (2010). Use of a rotary bioartificial liver in the differentiation of human liver stem cells. Tissue Engineering. Part C, Methods, 16, 123–132.

    Article  CAS  PubMed  Google Scholar 

  50. Carraro, A., Flaibani, M., Cillo, U., Michelotto, L., Magrofuoco, E., Buggio, M., et al. (2010). A combining method to enhance the in vitro differentiation of hepatic precursor cells. Tissue Engineering. Part C, Methods, 16, 1543–1551.

    Article  CAS  PubMed  Google Scholar 

  51. Imamura, T., Cui, L., Teng, R., Johkura, K., Okouchi, Y., Asanuma, K., et al. (2004). Embryonic stem cell-derived embryoid bodies in three-dimensional culture system form hepatocyte-like cells in vitro and in vivo. Tissue Engineering, 10, 1716–1724.

    Article  CAS  PubMed  Google Scholar 

  52. Evans, M. J., & Kaufman, M. H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature, 292, 154–156.

    Article  CAS  PubMed  Google Scholar 

  53. Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., et al. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282, 1145–1147.

    Article  CAS  PubMed  Google Scholar 

  54. Jing, G., Li, K., Sun, F., Niu, J., Zhu, R., Qian, Y., et al. (2021). Layer-number-dependent effects of graphene oxide on the pluripotency of mouse embryonic stem cells through the regulation of the interaction between the extracellular matrix and integrins. International Journal of Nanomedicine, 16, 3819–3832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Akutsu, H., Nasu, M., Morinaga, S., Motoyama, T., Homma, N., Machida, M., et al. (2016). In vivo maturation of human embryonic stem cell-derived teratoma over time. Regenerative Therapy, 5, 31–39.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Stachelscheid, H., Wulf-Goldenberg, A., Eckert, K., Jensen, J., Edsbagge, J., Björquist, P., et al. (2013). Teratoma formation of human embryonic stem cells in three-dimensional perfusion culture bioreactors. Journal of Tissue Engineering and Regenerative Medicine, 7, 729–741.

    Article  CAS  PubMed  Google Scholar 

  57. Freed, C. R., Greene, P. E., Breeze, R. E., Tsai, W. Y., DuMouchel, W., Kao, R., et al. (2001). Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. New England Journal of Medicine, 344, 710–719.

    Article  CAS  PubMed  Google Scholar 

  58. Golchin, A., Chatziparasidou, A., Ranjbarvan, P., Niknam, Z., & Ardeshirylajimi, A. (2021). Embryonic stem cells in clinical trials: Current overview of developments and challenges. Advances in Experimental Medicine and Biology, 1312, 19–37.

    Article  CAS  PubMed  Google Scholar 

  59. Reubinoff, B. E., Pera, M. F., Fong, C. Y., Trounson, A., & Bongso, A. (2000). Embryonic stem cell lines from human blastocysts: Somatic differentiation in vitro. Nature Biotechnology, 18, 399–404.

    Article  CAS  PubMed  Google Scholar 

  60. Zhang, X., Stojkovic, P., Przyborski, S., Cooke, M., Armstrong, L., Lako, M., et al. (2006). Derivation of human embryonic stem cells from developing and arrested embryos. Stem Cells, 24, 2669–2676.

    Article  CAS  PubMed  Google Scholar 

  61. Revazova, E. S., Turovets, N. A., Kochetkova, O. D., Kindarova, L. B., Kuzmichev, L. N., Janus, J. D., et al. (2007). Patient-specific stem cell lines derived from human parthenogenetic blastocysts. Cloning and Stem Cells, 9, 432–449.

    Article  CAS  PubMed  Google Scholar 

  62. Chung, Y., Klimanskaya, I., Becker, S., Li, T., Maserati, M., Lu, S. J., et al. (2008). Human embryonic stem cell lines generated without embryo destruction. Cell Stem Cell, 2, 113–117.

    Article  CAS  PubMed  Google Scholar 

  63. Ilic, D., & Ogilvie, C. (2017). Concise review: Human embryonic stem cells-what have we done? what are we doing? Where are we going? Stem Cells, 35, 17–25.

    Article  CAS  PubMed  Google Scholar 

  64. Tasnim, F., Phan, D., Toh, Y. C., & Yu, H. (2015). Cost-effective differentiation of hepatocyte-like cells from human pluripotent stem cells using small molecules. Biomaterials, 70, 115–125.

    Article  CAS  PubMed  Google Scholar 

  65. Wang, S., Wang, X., Tan, Z., Su, Y., Liu, J., Chang, M., et al. (2019). Human ESC-derived expandable hepatic organoids enable therapeutic liver repopulation and pathophysiological modeling of alcoholic liver injury. Cell Research, 29, 1009–1026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Basma, H., Soto-Gutiérrez, A., Yannam, G. R., Liu, L., Ito, R., Yamamoto, T., et al. (2009). Differentiation and transplantation of human embryonic stem cell-derived hepatocytes. Gastroenterology, 136, 990–999.

    Article  CAS  PubMed  Google Scholar 

  67. Miki, T., Ring, A., & Gerlach, J. (2011). Hepatic differentiation of human embryonic stem cells is promoted by three-dimensional dynamic perfusion culture conditions. Tissue Engineering. Part C, Methods, 17, 557–568.

    Article  PubMed  Google Scholar 

  68. Rambhatla, L., Chiu, C. P., Kundu, P., Peng, Y., & Carpenter, M. K. (2003). Generation of hepatocyte-like cells from human embryonic stem cells. Cell Transplantation, 12, 1–11.

    Article  PubMed  Google Scholar 

  69. Chinzei, R., Tanaka, Y., Shimizu-Saito, K., Hara, Y., Kakinuma, S., Watanabe, M., et al. (2002). Embryoid-body cells derived from a mouse embryonic stem cell line show differentiation into functional hepatocytes. Hepatology, 36, 22–29.

    Article  PubMed  Google Scholar 

  70. Jones, E. A., Tosh, D., Wilson, D. I., Lindsay, S., & Forrester, L. M. (2002). Hepatic differentiation of murine embryonic stem cells. Experimental Cell Research, 272, 15–22.

    Article  CAS  PubMed  Google Scholar 

  71. Kumashiro, Y., Asahina, K., Ozeki, R., Shimizu-Saito, K., Tanaka, Y., Kida, Y., et al. (2005). Enrichment of hepatocytes differentiated from mouse embryonic stem cells as a transplantable source. Transplantation, 79, 550–557.

    Article  PubMed  Google Scholar 

  72. Murry, C. E., & Keller, G. (2008). Differentiation of embryonic stem cells to clinically relevant populations: Lessons from embryonic development. Cell, 132, 661–680.

    Article  CAS  PubMed  Google Scholar 

  73. Cai, J., Zhao, Y., Liu, Y., Ye, F., Song, Z., Qin, H., et al. (2007). Directed differentiation of human embryonic stem cells into functional hepatic cells. Hepatology, 45, 1229–1239.

    Article  CAS  PubMed  Google Scholar 

  74. Loh, K. M., Ang, L. T., Zhang, J., Kumar, V., Ang, J., Auyeong, J. Q., et al. (2014). Efficient endoderm induction from human pluripotent stem cells by logically directing signals controlling lineage bifurcations. Cell Stem Cell, 14, 237–252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Li, F., Liu, P., Liu, C., Xiang, D., Deng, L., Li, W., et al. (2010). Hepatoblast-like progenitor cells derived from embryonic stem cells can repopulate livers of mice. Gastroenterology, 139, 2158–2169.

    Article  CAS  PubMed  Google Scholar 

  76. Zhao, D., Chen, S., Cai, J., Guo, Y., Song, Z., Che, J., et al. (2009). Derivation and characterization of hepatic progenitor cells from human embryonic stem cells. PLoS ONE, 4, e6468.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Borowiak, M., Maehr, R., Chen, S., Chen, A. E., Tang, W., Fox, J. L., et al. (2009). Small molecules efficiently direct endodermal differentiation of mouse and human embryonic stem cells. Cell Stem Cell, 4, 348–358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Bogacheva, M. S., Khan, S., Kanninen, L. K., Yliperttula, M., Leung, A. W., & Lou, Y. R. (2018). Differences in definitive endoderm induction approaches using growth factors and small molecules. Journal of Cellular Physiology, 233, 3578–3589.

    Article  CAS  PubMed  Google Scholar 

  79. Singh, A. M., Reynolds, D., Cliff, T., Ohtsuka, S., Mattheyses, A. L., Sun, Y., et al. (2012). Signaling network crosstalk in human pluripotent cells: A Smad2/3-regulated switch that controls the balance between self-renewal and differentiation. Cell Stem Cell, 10, 312–326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yadav, S., Garrido, A., Hernández, M. C., Oliveros, J. C., Pérez-García, V., Fraga, M. F., et al. (2022). PI3Kβ-regulated β-catenin mediates EZH2 removal from promoters controlling primed human ESC stemness and primitive streak gene expression. Stem Cell Reports, 17, 2239–2255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Woo, D. H., Kim, S. K., Lim, H. J., Heo, J., Park, H. S., Kang, G. Y., et al. (2012). Direct and indirect contribution of human embryonic stem cell-derived hepatocyte-like cells to liver repair in mice. Gastroenterology, 142, 602–611.

    Article  CAS  PubMed  Google Scholar 

  82. Liu, J., Yuan, Z., & Wang, Q. (2022). Pluripotent stem cell-derived strategies to treat acute liver failure: current status and future directions. Journal of Clinical and Translational Hepatology, 10, 692–699.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Ashtiani, M. K., Zandi, M., Barzin, J., Tahamtani, Y., Ghanian, M. H., Moradmand, A., et al. (2016). Substrate-mediated commitment of human embryonic stem cells for hepatic differentiation. Journal of Biomedical Materials Research. Part A, 104, 2861–2872.

    Article  CAS  PubMed  Google Scholar 

  84. Pan, T., Wang, N., Zhang, J., Yang, F., Chen, Y., Zhuang, Y., et al. (2022). Efficiently generate functional hepatic cells from human pluripotent stem cells by complete small-molecule strategy. Stem Cell Research & Therapy, 13, 159.

    Article  CAS  Google Scholar 

  85. Siller, R., Greenhough, S., Naumovska, E., & Sullivan, G. J. (2015). Small-molecule-driven hepatocyte differentiation of human pluripotent stem cells. Stem Cell Reports, 4, 939–952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Discher, D. E., Mooney, D. J., & Zandstra, P. W. (2009). Growth factors, matrices, and forces combine and control stem cells. Science, 324, 1673–1677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Rashidi, H., Alhaque, S., Szkolnicka, D., Flint, O., & Hay, D. C. (2016). Fluid shear stress modulation of hepatocyte-like cell function. Archives of Toxicology, 90, 1757–1761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kim, J. H., Jang, Y. J., An, S. Y., Son, J., Lee, J., Lee, G., et al. (2015). Enhanced metabolizing activity of human ES cell-derived hepatocytes using a 3D culture system with repeated exposures to xenobiotics. Toxicological Sciences, 147, 190–206.

    Article  CAS  PubMed  Google Scholar 

  89. Sivertsson, L., Synnergren, J., Jensen, J., Björquist, P., & Ingelman-Sundberg, M. (2013). Hepatic differentiation and maturation of human embryonic stem cells cultured in a perfused three-dimensional bioreactor. Stem Cells and Development, 22, 581–594.

    Article  CAS  PubMed  Google Scholar 

  90. Farzaneh, Z., Pournasr, B., Ebrahimi, M., Aghdami, N., & Baharvand, H. (2010). Enhanced functions of human embryonic stem cell-derived hepatocyte-like cells on three-dimensional nanofibrillar surfaces. Stem Cell Reviews and Reports, 6, 601–610.

    Article  CAS  PubMed  Google Scholar 

  91. Yao, R., Wang, J., Li, X., Jung, J. D., Qi, H., Kee, K. K., et al. (2014). Hepatic differentiation of human embryonic stem cells as microscaled multilayered colonies leading to enhanced homogeneity and maturation. Small (Weinheim an der Bergstrasse, Germany), 10, 4311–4323.

    Article  CAS  PubMed  Google Scholar 

  92. Xie, X., Zhou, X., Liu, T., Zhong, Z., Zhou, Q., Iqbal, W., et al. (2022) Direct differentiation of human embryonic stem cells to 3D functional hepatocyte-like cells in alginate microencapsulation sphere. Cells-Basel, 11.

  93. Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–676.

    Article  CAS  PubMed  Google Scholar 

  94. Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131, 861–872.

    Article  CAS  PubMed  Google Scholar 

  95. Rao, I., Crisafulli, L., Paulis, M., Ficara, F. (2022). Hematopoietic cells from pluripotent stem cells: Hope and promise for the treatment of inherited blood disorders. Cells-Basel, 11.

  96. Wang, R., Xu, H., Tan, B., Yi, Q., Sun, Y., Xiang, H., et al. (2023). SIRT3 promotes metabolic maturation of human iPSC-derived cardiomyocytes via OPA1-controlled mitochondrial dynamics. Free Radical Biology & Medicine, 195, 270–282.

    Article  CAS  Google Scholar 

  97. Akter, M., Ding, B. (2022) Modeling movement disorders via generation of hiPSC-derived motor neurons. Cells-Basel, 11.

  98. Olgasi, C., Cucci, A., Follenzi, A. (2020) iPSC-derived liver organoids: A journey from drug screening, to disease modeling, arriving to regenerative medicine. International Journal of Molecular Sciences, 21.

  99. Zhao, T., Zhang, Z. N., Rong, Z., & Xu, Y. (2011). Immunogenicity of induced pluripotent stem cells. Nature, 474, 212–215.

    Article  CAS  PubMed  Google Scholar 

  100. Fu, X. (2014). The immunogenicity of cells derived from induced pluripotent stem cells. Cellular & Molecular Immunology, 11, 14–16.

    Article  CAS  Google Scholar 

  101. de Almeida, P. E., Meyer, E. H., Kooreman, N. G., Diecke, S., Dey, D., Sanchez-Freire, V., et al. (2014). Transplanted terminally differentiated induced pluripotent stem cells are accepted by immune mechanisms similar to self-tolerance. Nature Communications, 5, 3903.

    Article  PubMed  Google Scholar 

  102. Taylor, C. J., Peacock, S., Chaudhry, A. N., Bradley, J. A., & Bolton, E. M. (2012). Generating an iPSC bank for HLA-matched tissue transplantation based on known donor and recipient HLA types. Cell Stem Cell, 11, 147–152.

    Article  CAS  PubMed  Google Scholar 

  103. Huang, C. Y., Liu, C. L., Ting, C. Y., Chiu, Y. T., Cheng, Y. C., Nicholson, M. W., et al. (2019). Human iPSC banking: Barriers and opportunities. Journal of Biomedical Science, 26, 87.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Deuse, T., Hu, X., Gravina, A., Wang, D., Tediashvili, G., De, C., et al. (2019). Hypoimmunogenic derivatives of induced pluripotent stem cells evade immune rejection in fully immunocompetent allogeneic recipients. Nature Biotechnology, 37, 252–258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Norbnop, P., Ingrungruanglert, P., Israsena, N., Suphapeetiporn, K., & Shotelersuk, V. (2020). Generation and characterization of HLA-universal platelets derived from induced pluripotent stem cells. Science Reports-UK, 10, 8472.

    Article  CAS  Google Scholar 

  106. Nakagawa, M., Takizawa, N., Narita, M., Ichisaka, T., & Yamanaka, S. (2010). Promotion of direct reprogramming by transformation-deficient Myc. Proceedings of the National Academy of Sciences of the United States of America, 107, 14152–14157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Song, Z., Cai, J., Liu, Y., Zhao, D., Yong, J., Duo, S., et al. (2009). Efficient generation of hepatocyte-like cells from human induced pluripotent stem cells. Cell Research, 19, 1233–1242.

    Article  PubMed  Google Scholar 

  108. Wang, B., Wu, L., Li, D., Liu, Y., Guo, J., Li, C., et al. (2019). Induction of pluripotent stem cells from mouse embryonic fibroblasts by Jdp2-Jhdm1b-Mkk6-Glis1-nanog-essrb-Sall4. Cell Reports, 27, 3473–3485.

    Article  CAS  PubMed  Google Scholar 

  109. Buganim, Y., Markoulaki, S., van Wietmarschen, N., Hoke, H., Wu, T., Ganz, K., et al. (2014). The developmental potential of iPSCs is greatly influenced by reprogramming factor selection. Cell Stem Cell, 15, 295–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zhong, C., Liu, M., Pan, X., Zhu, H. (2022). Tumorigenicity risk of iPSCs in vivo: nip it in the bud. Precision Clinical Medicine, 5, pbac004.

  111. Ban, H., Nishishita, N., Fusaki, N., Tabata, T., Saeki, K., Shikamura, M., et al. (2011). Efficient generation of transgene-free human induced pluripotent stem cells (iPSCs) by temperature-sensitive Sendai virus vectors. Proceedings of the National Academy of Sciences of the United States of America, 108, 14234–14239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Nemes, C., Varga, E., Polgar, Z., Klincumhom, N., Pirity, M. K., & Dinnyes, A. (2014). Generation of mouse induced pluripotent stem cells by protein transduction. Tissue Engineering. Part C, Methods, 20, 383–392.

    Article  CAS  PubMed  Google Scholar 

  113. Zhou, H., Wu, S., Joo, J. Y., Zhu, S., Han, D. W., Lin, T., et al. (2009). Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell, 4, 381–384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Warren, L., Manos, P. D., Ahfeldt, T., Loh, Y. H., Li, H., Lau, F., et al. (2010). Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell, 7, 618–630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Tavernier, G., Wolfrum, K., Demeester, J., De Smedt, S. C., Adjaye, J., & Rejman, J. (2012). Activation of pluripotency-associated genes in mouse embryonic fibroblasts by non-viral transfection with in vitro-derived mRNAs encoding Oct4, Sox2, Klf4 and cMyc. Biomaterials, 33, 412–417.

    Article  CAS  PubMed  Google Scholar 

  116. Miyoshi, N., Ishii, H., Nagano, H., Haraguchi, N., Dewi, D. L., Kano, Y., et al. (2011). Reprogramming of mouse and human cells to pluripotency using mature microRNAs. Cell Stem Cell, 8, 633–638.

    Article  CAS  PubMed  Google Scholar 

  117. Huangfu, D., Osafune, K., Maehr, R., Guo, W., Eijkelenboom, A., Chen, S., et al. (2008). Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nature Biotechnology, 26, 1269–1275.

    Article  CAS  PubMed  Google Scholar 

  118. Shi, Y., Desponts, C., Do, J. T., Hahm, H. S., Schöler, H. R., & Ding, S. (2008). Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds. Cell Stem Cell, 3, 568–574.

    Article  CAS  PubMed  Google Scholar 

  119. Hou, P., Li, Y., Zhang, X., Liu, C., Guan, J., Li, H., et al. (2013). Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science, 341, 651–654.

    Article  CAS  PubMed  Google Scholar 

  120. Zhang, Y., Li, W., Laurent, T., & Ding, S. (2012). Small molecules, big roles – the chemical manipulation of stem cell fate and somatic cell reprogramming. Journal of Cell Science, 125, 5609–5620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Streckfuss-Bömeke, K., Wolf, F., Azizian, A., Stauske, M., Tiburcy, M., Wagner, S., et al. (2013). Comparative study of human-induced pluripotent stem cells derived from bone marrow cells, hair keratinocytes, and skin fibroblasts. European Heart Journal, 34, 2618–2629.

    Article  PubMed  Google Scholar 

  122. Raab, S., Klingenstein, M., Liebau, S., & Linta, L. (2014). A comparative view on human somatic cell sources for iPSC generation. Stem Cells International, 2014, 768391.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Wüstner, L. S., Klingenstein, M., Frey, K. G., Nikbin, M. R., Milazzo, A., Kleger, A., et al. (2022) Generating iPSCs with a high-efficient, non-invasive method-An improved way to cultivate keratinocytes from plucked hair for reprogramming. Cells-Basel, 11.

  124. Okumura, T., Horie, Y., Lai, C. Y., Lin, H. T., Shoda, H., Natsumoto, B., et al. (2019). Robust and highly efficient hiPSC generation from patient non-mobilized peripheral blood-derived CD34(+) cells using the auto-erasable Sendai virus vector. Stem Cell Research & Therapy, 10, 185.

    Article  Google Scholar 

  125. Ye, L., Muench, M. O., Fusaki, N., Beyer, A. I., Wang, J., Qi, Z., et al. (2013). Blood cell-derived induced pluripotent stem cells free of reprogramming factors generated by Sendai viral vectors. Stem Cells Translational Medicine, 2, 558–566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Baliña-Sánchez, C., Aguilera, Y., Adán, N., Sierra-Párraga, J. M., Olmedo-Moreno, L., Panadero-Morón, C., et al. (2023). Generation of mesenchymal stromal cells from urine-derived iPSCs of pediatric brain tumor patients. Frontiers in Immunology, 14, 1022676.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Kajiwara, K., Tanemoto, T., Wada, S., Karibe, J., Ihara, N., Ikemoto, Y., et al. (2017). Fetal therapy model of myelomeningocele with three-dimensional skin using amniotic fluid cell-derived induced pluripotent stem cells. Stem Cell Reports, 8, 1701–1713.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Shamsian, A., Sahebnasagh, R., Norouzy, A., Hussein, S. H., Ghahremani, M. H., & Azizi, Z. (2022). Cancer cells as a new source of induced pluripotent stem cells. Stem Cell Research & Therapy, 13, 459.

    Article  Google Scholar 

  129. Takayama, K., Morisaki, Y., Kuno, S., Nagamoto, Y., Harada, K., Furukawa, N., et al. (2014). Prediction of interindividual differences in hepatic functions and drug sensitivity by using human iPS-derived hepatocytes. Proceedings of the National Academy of Sciences of the United States of America, 111, 16772–16777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Wu, F., Wu, D., Ren, Y., Huang, Y., Feng, B., Zhao, N., et al. (2019). Generation of hepatobiliary organoids from human induced pluripotent stem cells. Journal of Hepatology, 70, 1145–1158.

    Article  PubMed  Google Scholar 

  131. Asgari, S., Moslem, M., Bagheri-Lankarani, K., Pournasr, B., Miryounesi, M., & Baharvand, H. (2013). Differentiation and transplantation of human induced pluripotent stem cell-derived hepatocyte-like cells. Stem Cell Reviews and Reports, 9, 493–504.

    Article  CAS  PubMed  Google Scholar 

  132. Si-Tayeb, K., Noto, F. K., Nagaoka, M., Li, J., Battle, M. A., Duris, C., et al. (2010). Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells. Hepatology, 51, 297–305.

    Article  CAS  PubMed  Google Scholar 

  133. Shi, Y., Deng, J., Sang, X., Wang, Y., He, F., Chen, X., et al. (2022). Generation of hepatocytes and nonparenchymal cell codifferentiation system from human-induced pluripotent stem cells. Stem Cells International, 2022, 3222427.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Chen, Y. F., Tseng, C. Y., Wang, H. W., Kuo, H. C., Yang, V. W., & Lee, O. K. (2012). Rapid generation of mature hepatocyte-like cells from human induced pluripotent stem cells by an efficient three-step protocol. Hepatology, 55, 1193–1203.

    Article  CAS  PubMed  Google Scholar 

  135. Luo, S., Ai, Y., Xiao, S., Wang, B., & Wang, Y. (2021). Functional hit 1 (FH1)-based rapid and efficient generation of functional hepatocytes from human mesenchymal stem cells: A novel strategy for hepatic differentiation. Annals of Translational Medicine, 9, 1087.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Mobarra, N., Raji, S., Najafi, S., Kafi, F. K., Ferns, G. A., & Pakzad, R. (2021). Hypoxia-induced miR-210 overexpression promotes the differentiation of human-induced pluripotent stem cells to hepatocyte-like cells on random nanofiber poly-L-lactic acid/poly (ε-Caprolactone) scaffolds. Oxidative Medicine and Cellular Longevity, 2021, 4229721.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Jaafarpour, Z., Soleimani, M., Hosseinkhani, S., Geramizadeh, B., Yaghmaei, P., Mobarra, N., et al. (2020). Overexpression of microRNA-375 and microRNA-122 promotes the differentiation of human induced pluripotent stem cells into hepatocyte-like cells. Biologicals, 63, 24–32.

    Article  CAS  PubMed  Google Scholar 

  138. Berger, D. R., Ware, B. R., Davidson, M. D., Allsup, S. R., & Khetani, S. R. (2015). Enhancing the functional maturity of induced pluripotent stem cell-derived human hepatocytes by controlled presentation of cell-cell interactions in vitro. Hepatology, 61, 1370–1381.

    Article  CAS  PubMed  Google Scholar 

  139. Ware, B. R., Berger, D. R., & Khetani, S. R. (2015). Prediction of drug-induced liver injury in micropatterned co-cultures containing iPSC-derived human hepatocytes. Toxicological Sciences, 145, 252–262.

    Article  CAS  PubMed  Google Scholar 

  140. Lee, G., Kim, H., Park, J. Y., Kim, G., Han, J., Chung, S., et al. (2021). Generation of uniform liver spheroids from human pluripotent stem cells for imaging-based drug toxicity analysis. Biomaterials, 269, 120529.

    Article  CAS  PubMed  Google Scholar 

  141. Ardalani, H., Sengupta, S., Harms, V., Vickerman, V., Thomson, J. A., & Murphy, W. L. (2019). 3-D culture and endothelial cells improve maturity of human pluripotent stem cell-derived hepatocytes. Acta Biomaterialia, 95, 371–381.

    Article  CAS  PubMed  Google Scholar 

  142. Nie, Y. Z., Zheng, Y. W., Miyakawa, K., Murata, S., Zhang, R. R., Sekine, K., et al. (2018). Recapitulation of hepatitis B virus-host interactions in liver organoids from human induced pluripotent stem cells. eBioMedicine, 35, 114–123.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Amimoto, N., Mizumoto, H., Nakazawa, K., Ijima, H., Funatsu, K., & Kajiwara, T. (2011). Hepatic differentiation of mouse embryonic stem cells and induced pluripotent stem cells during organoid formation in hollow fibers. Tissue Engineering Part A, 17, 2071–2078.

    Article  CAS  PubMed  Google Scholar 

  144. Torizal, F. G., Utami, T., Lau, Q. Y., Inamura, K., Nishikawa, M., & Sakai, Y. (2022). Dialysis based-culture medium conditioning improved the generation of human induced pluripotent stem cell derived-liver organoid in a high cell density. Science Reports-UK, 12, 20774.

    Article  CAS  Google Scholar 

  145. Freyer, N., Knöspel, F., Strahl, N., Amini, L., Schrade, P., Bachmann, S., et al. (2016). Hepatic differentiation of human induced pluripotent stem cells in a perfused three-dimensional multicompartment bioreactor. BioResearch Open Access, 5, 235–248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Abecasis, B., Aguiar, T., Arnault, É., Costa, R., Gomes-Alves, P., Aspegren, A., et al. (2017). Expansion of 3D human induced pluripotent stem cell aggregates in bioreactors: Bioprocess intensification and scaling-up approaches. Journal of Biotechnology, 246, 81–93.

    Article  CAS  PubMed  Google Scholar 

  147. Bircsak, K. M., DeBiasio, R., Miedel, M., Alsebahi, A., Reddinger, R., Saleh, A., et al. (2021). A 3D microfluidic liver model for high throughput compound toxicity screening in the OrganoPlate®. Toxicology, 450, 152667.

    Article  CAS  PubMed  Google Scholar 

  148. Ma, X., Qu, X., Zhu, W., Li, Y. S., Yuan, S., Zhang, H., et al. (2016). Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting. Proceedings of the National Academy of Sciences of the United States of America, 113, 2206–2211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Wang, B., Jakus, A. E., Baptista, P. M., Soker, S., Soto-Gutierrez, A., Abecassis, M. M., et al. (2016). Functional maturation of induced pluripotent stem cell hepatocytes in extracellular matrix-a comparative analysis of bioartificial liver microenvironments. Stem Cells Translational Medicine, 5, 1257–1267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Sun, Y., Liu, G., Zhang, K., Cao, Q., Liu, T., & Li, J. (2021). Mesenchymal stem cells-derived exosomes for drug delivery. Stem Cell Research & Therapy, 12, 561.

    Article  CAS  Google Scholar 

  151. Pan, X. P., & Li, L. J. (2012). Advances in cell sources of hepatocytes for bioartificial liver. Hepatobiliary & Pancreatic Diseases International, 11, 594–605.

    Article  CAS  Google Scholar 

  152. Fu, Y., Wang, Y., Liang, L., Gu, M., Gao, Y., & Feng, L. (2023). Mesenchymal stem cell utilization for in vitro donor liver machine perfusion preservation: Current status and future directions. Stem Cells Translational Medicine, 12, 665–675.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Yi, X., Chen, F., Liu, F., Peng, Q., Li, Y., Li, S., et al. (2020). Comparative separation methods and biological characteristics of human placental and umbilical cord mesenchymal stem cells in serum-free culture conditions. Stem Cell Research & Therapy, 11, 183.

    Article  CAS  Google Scholar 

  154. Psaraki, A., Ntari, L., Karakostas, C., Korrou-Karava, D., & Roubelakis, M. G. (2022). Extracellular vesicles derived from mesenchymal stem/stromal cells: The regenerative impact in liver diseases. Hepatology, 75, 1590–1603.

    Article  CAS  PubMed  Google Scholar 

  155. Li, W., Liu, S. N., Luo, D. D., Zhao, L., Zeng, L. L., Zhang, S. L., et al. (2006). Differentiation of hepatocytoid cell induced from whole-bone-marrow method isolated rat myeloid mesenchymal stem cells. World Journal of Gastroenterology, 12, 4866–4869.

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Lee, J. S., Yoon, H., Yoon, D., Kim, G. H., Yang, H. T., & Chun, W. (2017). Development of hepatic blocks using human adipose tissue-derived stem cells through three-dimensional cell printing techniques. J Mater Chem B., 5, 1098–1107.

    Article  CAS  PubMed  Google Scholar 

  157. Zhou, X., Cui, L., Zhou, X., Yang, Q., Wang, L., Guo, G., et al. (2017). Induction of hepatocyte-like cells from human umbilical cord-derived mesenchymal stem cells by defined microRNAs. Journal of Cellular and Molecular Medicine, 21, 881–893.

    Article  CAS  PubMed  Google Scholar 

  158. Lue, J., Lin, G., Ning, H., Xiong, A., Lin, C. S., & Glenn, J. S. (2010). Transdifferentiation of adipose-derived stem cells into hepatocytes: A new approach. Liver International, 30, 913–922.

    Article  CAS  PubMed  Google Scholar 

  159. Ishii, K., Yoshida, Y., Akechi, Y., Sakabe, T., Nishio, R., Ikeda, R., et al. (2008). Hepatic differentiation of human bone marrow-derived mesenchymal stem cells by tetracycline-regulated hepatocyte nuclear factor 3beta. Hepatology, 48, 597–606.

    Article  CAS  PubMed  Google Scholar 

  160. Yin, Y., Hu, Z., Guan, Z., Lv, S., Wang, Y., Su, W., et al. (2022). Immunological characteristics of human umbilical cord mesenchymal stem cells after hepatogenic differentiation. Bio-Medical Materials and Engineering.

  161. Lin, N., Lin, J., Bo, L., Weidong, P., Chen, S., & Xu, R. (2010). Differentiation of bone marrow-derived mesenchymal stem cells into hepatocyte-like cells in an alginate scaffold. Cell Proliferation, 43, 427–434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Wang, M., Pei, H., Zhang, L., Guan, L., Zhang, R., Jia, Y., et al. (2010). Hepatogenesis of adipose-derived stem cells on poly-lactide-co-glycolide scaffolds: In vitro and in vivo studies. Tissue Engineering. Part C, Methods, 16, 1041–1050.

    Article  PubMed  Google Scholar 

  163. Kazemnejad, S., Allameh, A., Seoleimani, M., Gharehbaghian, A., Mohammadi, Y., Amirizadeh, N., et al. (2008). Functional hepatocyte-like cells derived from human bone marrow mesenchymal stem cells on a novel 3-dimensional biocompatible nanofibrous scaffold. International Journal of Artificial Organs, 31, 500–507.

    Article  CAS  PubMed  Google Scholar 

  164. Ghaedi, M., Soleimani, M., Shabani, I., Duan, Y., & Lotfi, A. S. (2012). Hepatic differentiation from human mesenchymal stem cells on a novel nanofiber scaffold. Cellular & Molecular Biology Letters, 17, 89–106.

    Article  CAS  Google Scholar 

  165. Kazemnejad, S., Allameh, A., Soleimani, M., Gharehbaghian, A., Mohammadi, Y., Amirizadeh, N., et al. (2009). Biochemical and molecular characterization of hepatocyte-like cells derived from human bone marrow mesenchymal stem cells on a novel three-dimensional biocompatible nanofibrous scaffold. Journal of Gastroenterology and Hepatology, 24, 278–287.

    Article  CAS  PubMed  Google Scholar 

  166. Seo, M. J., Suh, S. Y., Bae, Y. C., & Jung, J. S. (2005). Differentiation of human adipose stromal cells into hepatic lineage in vitro and in vivo. Biochemical and Biophysical Research Communications, 328, 258–264.

    Article  CAS  PubMed  Google Scholar 

  167. Gu, J., Shi, X., Chu, X., Zhang, Y., & Ding, Y. (2009). Contribution of bone marrow mesenchymal stem cells to porcine hepatocyte culture in vitro. Biochemistry and Cell Biology, 87, 595–604.

    Article  CAS  PubMed  Google Scholar 

  168. Liu, Z. C., & Chang, T. M. (2002). Increased viability of transplanted hepatocytes when hepatocytes are co-encapsulated with bone marrow stem cells using a novel method. Artificial Cells, Blood Substitutes, and Immobilization Biotechnology, 30, 99–112.

    Article  CAS  PubMed  Google Scholar 

  169. Liu, Z. C., & Chang, T. M. (2003). Coencapsulation of hepatocytes and bone marrow stem cells: In vitro conversion of ammonia and in vivo lowering of bilirubin in hyperbilirubemia Gunn rats. International Journal of Artificial Organs, 26, 491–497.

    Article  CAS  PubMed  Google Scholar 

  170. Qihao, Z., Xigu, C., Guanghui, C., & Weiwei, Z. (2007). Spheroid formation and differentiation into hepatocyte-like cells of rat mesenchymal stem cell induced by co-culture with liver cells. DNA and Cell Biology, 26, 497–503.

    Article  PubMed  Google Scholar 

  171. Gu, J., Shi, X., Zhang, Y., Chu, X., Hang, H., & Ding, Y. (2009). Establishment of a three-dimensional co-culture system by porcine hepatocytes and bone marrow mesenchymal stem cells in vitro. Hepatology Research, 39, 398–407.

    Article  CAS  PubMed  Google Scholar 

  172. No, D. Y., Lee, S. A., Choi, Y. Y., Park, D., Jang, J. Y., Kim, D. S., et al. (2012). Functional 3D human primary hepatocyte spheroids made by co-culturing hepatocytes from partial hepatectomy specimens and human adipose-derived stem cells. PLoS ONE, 7, e50723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Gu, C., Du, W., Chai, M., Jin, Z., Zhou, Y., Guo, P., et al. (2022). Human umbilical cord-derived mesenchymal stem cells affect urea synthesis and the cell apoptosis of human induced hepatocytes by secreting IL-6 in a serum-free co-culture system. Biotechnology Journal, 17, e2100096.

    Article  PubMed  Google Scholar 

  174. Ichikawa, A., Neo, S., Nukui, R., Yamada, Y., Nitta, S., Iwaki, H., et al. (2022). Establishment of large canine hepatocyte spheroids by mixing vascular endothelial cells and canine adipose-derived mesenchymal stem cells. Regenerative Therapy, 19, 1–8.

    Article  CAS  PubMed  Google Scholar 

  175. Tilles, A. W., Berthiaume, F., Yarmush, M. L., & Toner, M. (2002). Critical issues in bioartificial liver development. Technology and Health Care, 10, 177–186.

    Article  CAS  PubMed  Google Scholar 

  176. Tuerxun, K., He, J., Ibrahim, I., Yusupu, Z., Yasheng, A., Xu, Q., et al. (2022). Bioartificial livers: a review of their design and manufacture. Biofabrication.

  177. Zhang, K., Zhang, L., Liu, W., Ma, X., Cen, J., Sun, Z., et al. (2018). In vitro expansion of primary human hepatocytes with efficient liver repopulation capacity. Cell Stem Cell, 23, 806–819.

    Article  CAS  PubMed  Google Scholar 

  178. Sakiyama, R., Hamada, H., Blau, B., Freyer, N., Zeilinger, K., Schubert, F., et al. (2018). Evaluation of the mass transfer rate using computer simulation in a three-dimensional interwoven hollow fiber-type bioartificial liver. Biotechnology Letters, 40, 1567–1578.

    Article  CAS  PubMed  Google Scholar 

  179. Wung, N., Acott, S. M., Tosh, D., & Ellis, M. J. (2014). Hollow fibre membrane bioreactors for tissue engineering applications. Biotechnology Letters, 36, 2357–2366.

    Article  CAS  PubMed  Google Scholar 

  180. Verma, S. K., Modi, A., Dravid, A., & Bellare, J. (2018). Lactobionic acid-functionalized polyethersulfone hollow fiber membranes promote HepG2 attachment and function. RSC Advances, 8, 29078–29088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Verma, S. K., Modi, A., & Bellare, J. (2019). Polyethersulfone-carbon nanotubes composite hollow fiber membranes with improved biocompatibility for bioartificial liver. Colloid Surface B, 181, 890–895.

    Article  CAS  Google Scholar 

  182. Verma, S. K., Modi, A., & Bellare, J. (2018). Three-dimensional multiscale fiber matrices: Development and characterization for increased HepG2 functional maintenance for bio-artificial liver application. Biomaterial Science-UK, 6, 280–291.

    Article  CAS  Google Scholar 

  183. Lu, T., Li, Y., & Chen, T. (2013). Techniques for fabrication and construction of three-dimensional scaffolds for tissue engineering. International Journal of Nanomedicine, 8, 337–350.

    Article  PubMed  PubMed Central  Google Scholar 

  184. Janani, G., & Mandal, B. B. (2021). Mimicking physiologically relevant hepatocyte zonation using immunomodulatory silk liver extracellular matrix scaffolds toward a bioartificial liver platform. ACS Applied Materials & Interfaces, 13, 24401–24421.

    Article  CAS  Google Scholar 

  185. Deng, F., Chen, L., Zhang, Y., Zhao, S., Wang, Y., Li, N., et al. (2015). Development of a bioreactor based on magnetically stabilized fluidized bed for bioartificial liver. Bioprocess and Biosystems Engineering, 38, 2369–2377.

    Article  CAS  PubMed  Google Scholar 

  186. Chen, H. S., Joo, D. J., Shaheen, M., Li, Y., Wang, Y., Yang, J., et al. (2019). Randomized trial of spheroid reservoir bioartificial liver in porcine model of posthepatectomy liver failure. Hepatology, 69, 329–342.

    Article  CAS  PubMed  Google Scholar 

  187. Ishii, Y., Saito, R., Marushima, H., Ito, R., Sakamoto, T., & Yanaga, K. (2008). Hepatic reconstruction from fetal porcine liver cells using a radial flow bioreactor. World Journal of Gastroenterology, 14, 2740–2747.

    Article  PubMed  PubMed Central  Google Scholar 

  188. Park, J., Li, Y., Berthiaume, F., Toner, M., Yarmush, M. L., & Tilles, A. W. (2008). Radial flow hepatocyte bioreactor using stacked microfabricated grooved substrates. Biotechnology and Bioengineering, 99, 455–467.

    Article  CAS  PubMed  Google Scholar 

  189. Chu, X. H., Shi, X. L., Feng, Z. Q., Gu, J. Y., Xu, H. Y., Zhang, Y., et al. (2009). In vitro evaluation of a multi-layer radial-flow bioreactor based on galactosylated chitosan nanofiber scaffolds. Biomaterials, 30, 4533–4538.

    Article  CAS  PubMed  Google Scholar 

  190. Ehrlich, A., Duche, D., Ouedraogo, G., & Nahmias, Y. (2019). Challenges and opportunities in the Design of Liver-on-Chip Microdevices. Annual Review of Biomedical Engineering, 21, 219–239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Klak, M., Bryniarski, T., Kowalska, P., Gomolka, M., Tymicki, G., Kosowska, K., et al. (2020). Novel strategies in artificial organ development: What is the future of medicine? Micromachines-Basel, 11.

  192. de Hoyos-Vega, J. M., Hong, H. J., Stybayeva, G., & Revzin, A. (2021). Hepatocyte cultures: From collagen gel sandwiches to microfluidic devices with integrated biosensors. APL Bioengineering, 5, 41504.

    Article  Google Scholar 

  193. Chen, Z., & Ding, Y. T. (2006). Functional evaluation of a new bioartificial liver system in vitro and in vitro. World Journal of Gastroenterology, 12, 1312–1316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Lu, J., Zhang, X., Li, J., Yu, L., Chen, E., Zhu, D., et al. (2016). A new fluidized bed bioreactor based on diversion-type microcapsule suspension for bioartificial liver systems. PLoS ONE, 11, e0147376.

    Article  PubMed  PubMed Central  Google Scholar 

  195. Xia, L., Arooz, T., Zhang, S., Tuo, X., Xiao, G., Susanto, T. A., et al. (2012). Hepatocyte function within a stacked double sandwich culture plate cylindrical bioreactor for bioartificial liver system. Biomaterials, 33, 7925–7932.

    Article  CAS  PubMed  Google Scholar 

  196. Li, Y., Wu, Q., Wang, Y., Weng, C., He, Y., Gao, M., et al. (2018). Novel spheroid reservoir bioartificial liver improves survival of nonhuman primates in a toxin-induced model of acute liver failure. Theranostics., 8, 5562–5574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Shi, X. L., Gao, Y., Yan, Y., Ma, H., Sun, L., Huang, P., et al. (2016). Improved survival of porcine acute liver failure by a bioartificial liver device implanted with induced human functional hepatocytes. Cell Research, 26, 206–216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Zhu, Z. H., Qiu, Y. D., Shi, X. L., & Xie, T. (2010). Ding YT [Construction of a novel bioreactor of bioartificial liver system with human bone marrow mesenchymal stem cells]. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue, 22, 719–722.

    PubMed  Google Scholar 

  199. Shi, X. L., Chu, X. H., Zhang, Y., Han, B., Gu, J. Y., Xiao, J. Q., et al. (2011). The efficacy research of multi-layer flat-plate bioartificial liver on acute liver failure. Zhonghua Wai Ke Za Zhi, 49, 1026–30.

  200. Han, B., Shi, X. L., Zhang, Y., Chu, X. H., Gu, J. Y., Xiao, J. Q., et al. (2012). Microbiological safety of a novel bio-artificial liver support system based on porcine hepatocytes: A experimental study. European Journal of Medical Research, 17, 13.

    Article  PubMed  PubMed Central  Google Scholar 

  201. Han, B., Shi, X. L., Zhang, Y., Gu, Z. Z., Yuan, X. W., Ren, H. Z., et al. (2015). No transmission of porcine endogenous retrovirus in an acute liver failure model treated by a novel hybrid bioartificial liver containing porcine hepatocytes. Hepatobiliary & Pancreatic Diseases International, 14, 492–501.

    Article  CAS  Google Scholar 

  202. Yang, Y., Li, J., Pan, X., Zhou, P., Yu, X., Cao, H., et al. (2013). Co-culture with mesenchymal stem cells enhances metabolic functions of liver cells in bioartificial liver system. Biotechnology and Bioengineering, 110, 958–968.

    Article  CAS  PubMed  Google Scholar 

  203. Zhang, Y., Shi, X. L., Han, B., Gu, J. Y., Chu, X. H., Xiao, J. Q., et al. (2012). Immunosafety evaluation of a multilayer flat-plate bioartificial liver. American Journal of the Medical Sciences, 343, 429–434.

    Article  PubMed  Google Scholar 

  204. Chen, S., Wang, J., Ren, H., Liu, Y., Xiang, C., Li, C., et al. (2020). Hepatic spheroids derived from human induced pluripotent stem cells in bio-artificial liver rescue porcine acute liver failure. Cell Research, 30, 95–97.

    Article  PubMed  Google Scholar 

  205. Feng, L., Wang, Y., Fu, Y., Yimamu, A., Guo, Z., Zhou, C., et al. (2023). A simple and efficient strategy for cell-based and cell-free-based therapies in acute liver failure: HUCMSCs bioartificial liver. Bioengineering & Translational Medicine, 8, e10552.

    Article  CAS  Google Scholar 

  206. Starokozhko, V., & Groothuis, G. (2018). Challenges on the road to a multicellular bioartificial liver. Journal of Tissue Engineering and Regenerative Medicine, 12, e227–e236.

    Article  CAS  PubMed  Google Scholar 

  207. Strain, A. J., & Neuberger, J. M. (2002). A bioartificial liver–state of the art. Science, 295, 1005–1009.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all those who contributed to this manuscript.

Funding

This work was supported by the National Natural Science Foundation of China (82200702 and 82200959), Guangdong Basic and Applied Basic Research Foundation (2020A1515111111), and Medical Research Foundation of Guangdong Province (B2022086).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conception and design of this study. The study was designed by G.L.H and L.F. L.F, Y.W, Y.F, and T.L collected and analyzed the data. L.F, G.L.H, and Y.W wrote the first draft of the manuscript. L.F, G.L.H, and T.L revised the manuscript. All authors have read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Lei Feng, Ting Li or Guolin He.

Ethics declarations

Ethics Approval and Consent to Participate

Not Applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, L., Wang, Y., Fu, Y. et al. Stem Cell-Based Strategies: The Future Direction of Bioartificial Liver Development. Stem Cell Rev and Rep 20, 601–616 (2024). https://doi.org/10.1007/s12015-023-10672-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-023-10672-5

Keywords

Navigation