Skip to main content
Log in

2D MoSi2N4 as electrode material of Li-air battery — A DFT study

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Li-air batteries are one of the most promising next-generation batteries. The development of 2D layered materials enriches the materials for Li-air batteries. In this work, a DFT study of the configuration and energetics of Li atoms on 2D MoSi2N4 is presented. We propose 2D MoSi2N4 as a suitable material for both anode and cathode materials of Li-air batteries. The high Li ion conductivity of 2D MoSi2N4 brings advantages for it to be an anode, and the low barrier for Li2O2 growth on 2D MoSi2N4 brings advantages for it to be a cathode material. The maximum capacity of Li-loaded MoSi2N4 is predicted to be 129 mAh/g. For Li-loaded MoSi2N4, the anode potential is stable (~ -0.2 V relative to Li bulk) in a wide range of Li loading (Li% = 12 ~ 75%). As the cathode, the open-circuit cathode potential is stable (~ 2.8 V relative to Li bulk) during the growth of Li2O2 slab. Our work reveals the possibility of 2D MAX phases (M is transition metal, A is Al or Si, and X is C, N, or both) as metal-air battery materials.

Graphical Abstract

MoSi2N4 as electrode material of Li-air battery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data that supports the findings of this study are available within the article and the supplementary.

References

  1. Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM (2012) Li-O2 and Li-S batteries with high energy storage. Nat Mater 11:19

    Article  CAS  Google Scholar 

  2. Luntz AC, Mccloskey BD (2014) Nonaqueous Li-air batteries: a status report. Chem Rev 114:11721

    Article  CAS  Google Scholar 

  3. Wang ZL, Xu D, Xu JJ, Zhang XB (2013) Oxygen electrocatalysts in metal–air batteries: from aqueous to nonaqueous electrolytes. Chem Soc Rev 43:7746

    Article  Google Scholar 

  4. Xu K, von Cresce A (2011) Interfacing electrolytes with electrodes in Li ion batteries. J Mater Chem 21:9849

    Article  CAS  Google Scholar 

  5. Chen K-S, Balla I, Luu NS, Hersam MC (2017) Emerging Opportunities for Two-Dimensional Materials in Lithium-Ion Batteries. ACS Energy Lett 2:2026

    Article  CAS  Google Scholar 

  6. Mao J, Zhou T, Zheng Y, Gao H, Liu HK, Guo Z (2018) Two-dimensional nanostructures for sodium-ion battery anodes. Journal of Materials Chemistry A 6:3284

    Article  CAS  Google Scholar 

  7. Mei J, Liao T, Sun Z (2018) Two-dimensional metal oxide nanosheets for rechargeable batteries. J Energy Chem 27:117

    Article  Google Scholar 

  8. Peng L, Zhu Y, Chen D, Ruoff RS, Yu G (2016) Two-Dimensional Materials for Beyond-Lithium-Ion Batteries. Adv Energy Mater 6:1600025

    Article  Google Scholar 

  9. Rojaee R, Shahbazian-Yassar R (2020) Two-Dimensional Materials to Address the Lithium Battery Challenges. ACS Nano 14:2628

    Article  CAS  Google Scholar 

  10. Shao Q, Wu Z-S, Chen J (2019) Two-dimensional materials for advanced Li-S batteries. Energy Storage Materials 22:284

    Article  Google Scholar 

  11. Zhang C, Cui L, Abdolhosseinzadeh S, Heier J (2020) Two-dimensional MXenes for lithium-sulfur batteries. Infomat 2:613

    Article  CAS  Google Scholar 

  12. Ma G, Shao H, Xu J, Liu Y, Huang Q, Taberna P-L et al (2021) Li-ion storage properties of two-dimensional titanium-carbide synthesized via fast one-pot method in air atmosphere. Nat Commun 12:5085

    Article  CAS  Google Scholar 

  13. Naguib M, Come J, Dyatkin B, Presser V, Taberna P-L, Simon P et al (2012) MXene: a promising transition metal carbide anode for lithium-ion batteries. Electrochem Commun 16:61

    Article  CAS  Google Scholar 

  14. Nyamdelger S, Ochirkhuyag T, Sangaa D, Odkhuu D (2020) First-principles prediction of a two-dimensional vanadium carbide (mxene) as the anode for lithium ion batteries. Phys Chem Chem Phys 22:5807

    Article  Google Scholar 

  15. Lukatskaya MR, Kota S, Lin Z, Zhao M-Q, Shpigel N, Levi MD et al (2017) Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat Energy 2:17105

    Article  CAS  Google Scholar 

  16. Hong Y-L, Liu Z, Wang L, Zhou T, Ma W, Xu C et al (2020) Chemical vapor deposition of layered two-dimensional MoSi2N4 materials. Science 369:670

    Article  CAS  Google Scholar 

  17. Zang Y, Wu Q, Du W, Dai Y, Huang B, Ma Y (2021) Activating electrocatalytic hydrogen evolution performance of two-dimensional MSi2N4(M = Mo, W): A theoretical prediction. Physical Review Materials 5:045801

    Article  CAS  Google Scholar 

  18. Yu J, Zhou J, Wan X, Li Q (2021) High intrinsic lattice thermal conductivity in monolayer MoSi2N4. New J Phys 23:033005

  19. Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B: Condens Matter Mater Phys 47:558

    Article  CAS  Google Scholar 

  20. Kresse G, Hafner J (1994) Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys Rev B: Condens Matter Mater Phys. 49:14251

    Article  CAS  Google Scholar 

  21. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B: Condens Matter Mater Phys 54:11169

    Article  CAS  Google Scholar 

  22. Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a planewave basis set. Comp Mater Sci 6:15

    Article  CAS  Google Scholar 

  23. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B: Condens Matter Mater Phys 50:17953

    Article  Google Scholar 

  24. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B: Condens Matter Mater Phys 59:1758

    Article  CAS  Google Scholar 

  25. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  26. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104

    Article  Google Scholar 

  27. Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 32:1456

    Article  CAS  Google Scholar 

  28. Lin Z-Z (2014) Theoretical investigation of thermodynamic balance between cluster isomers and statistical model for predicting isomerization rate. J Nanopart Res 16:2201

    Article  Google Scholar 

  29. Lin Z-Z, Chen X (2013) Predicting the chemical stability of monatomic chains. EPL 101:48002

    Article  Google Scholar 

  30. Lin Z-Z, Yu W-F, Wang Y, Ning X-J (2011) Predicting the stability of nanodevices. EPL 94:40002

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Natural Science Basic Research Program of Shaanxi (Nos. 2021JM-117 & 2021JQ-185), the Fundamental Research Funds for the Central Universities (No. XJS200503), and the Postdoctoral Research Project of Shaanxi Province (No. 2018BSHEDZZ68).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zheng-Zhe Lin or Xi Chen.

Ethics declarations

Competing interests

The authors declare that they have no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, LR., Lin, ZZ., Li, XM. et al. 2D MoSi2N4 as electrode material of Li-air battery — A DFT study. J Nanopart Res 25, 55 (2023). https://doi.org/10.1007/s11051-023-05699-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-023-05699-1

Keywords

Navigation