Skip to main content

Advertisement

Log in

Crystallographic structure and electrical properties of LiF modified Li29Zr9Nb3O40 for electrolyte of solid-state batteries

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Lithium-ion batteries (LIBs) based on solid-state electrolytes have attracted much attention for their high safety and energy density. Li29Zr9Nb3O40 (LZNO), as a new kind of Li-ion conductor, has great potential in applications of solid-state LIBs. In this work, various contents of LiF are selected to modify LZNO Li-ion conductor, and the optimal content of LiF is 5 wt% (weight%). The phase component, crystal structure, ionic conductivity, and electrochemical performance are investigated. The refinement of crystallographic information based on the bond valence site energy theory is induced to reveal the possible lithium-ion migration channel. The results show that modification with LiF enhanced the 3D migration pathways and conductivity of LZNO-based electrolytes. The 5 wt% LiF modified LZNO presents total conductivity of 0.943 × 10−4 S cm−1 at ambient temperature and has low activation energy of conduction (0.16 eV). The cycle performance of the lithium symmetric cell characterizes the cycle of 140 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. L. Li, Y. Deng, G. Chen, Status and prospect of garnet/polymer solid composite electrolytes for all-solid-state lithium batteries. J. Energy Chem. 50, 154–177 (2020)

    Article  CAS  Google Scholar 

  2. J. Ma, Y. Li, N.S. Grundish, J.B. Goodenough, Y. Chen, L. Guo, Z. Peng, X. Qi, F. Yang, L. Qie, C.-A. Wang, B. Huang, Z. Huang, L. Chen, D. Su, G. Wang, X. Peng, Z. Chen, J. Yang, S. He, X. Zhang, H. Yu, C. Fu, M. Jiang, W. Deng, C.-F. Sun, Q. Pan, Y. Tang, X. Li, X. Ji, F. Wan, Z. Niu, F. Lian, C. Wang, G.G. Wallace, M. Fan, Q. Meng, S. Xin, Y.-G. Guo, L.-J. Wan, The 2021 battery technology roadmap. J. Phys. D: Appl. Phys. 54, 183001 (2021)

    Article  CAS  Google Scholar 

  3. G.V. Alexander, I.M. S, R. Murugan, Review on the critical issues for the realization of all-solid-state lithium metal batteries with garnet electrolyte: interfacial chemistry, dendrite growth, and critical current densities. Ionics 27, 4105–4126 (2021)

    Article  CAS  Google Scholar 

  4. F. Wu, J. Maier, Y. Yu, Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem. Soc. Rev. 49, 1569–1614 (2020)

    Article  CAS  Google Scholar 

  5. L. Xu, J. Li, H. Shuai, Z. Luo, B. Wang, S. Fang, G. Zou, H. Hou, H. Peng, X. Ji, Recent advances of composite electrolytes for solid-state Li batteries. J. Energy Chem. 67, 524–548 (2022)

    Article  CAS  Google Scholar 

  6. J.C. Bachman, S. Muy, A. Grimaud, H.H. Chang, N. Pour, S.F. Lux, O. Paschos, F. Maglia, S. Lupart, P. Lamp, L. Giordano, Y. Shao-Horn, Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem. Rev. 116, 140–162 (2016)

    Article  CAS  Google Scholar 

  7. N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato, S. Hama, K. Kawamoto, A. Mitsui, A lithium superionic conductor. Nat. Mater. 10, 682–686 (2011)

    Article  CAS  Google Scholar 

  8. B. Tao, C. Ren, H. Li, B. Liu, X. Jia, X. Dong, S. Zhang, H. Chang, Thio-/LISICON and LGPS-type solid electrolytes for all-solid-state lithium-ion batteries. Adv. Funct. Mater. 32, 2203551 (2022)

    Article  CAS  Google Scholar 

  9. S. Kundu, A. Kraytsberg, Y. Ein-Eli, Recent development in the field of ceramics solid-state electrolytes: I-oxide ceramic solid-state electrolytes. J. Solid State Electrochem. (2022). https://doi.org/10.1007/s10008-022-05206-x

    Article  Google Scholar 

  10. X. Lu, F. Zhang, J. Li, The influence of lithium sources on properties of perovskite-type lithium ion conductor. J. Alloys Compd. 875, 159887 (2021)

    Article  CAS  Google Scholar 

  11. X. Song, T. Zhang, T.D. Christopher, Y. Guo, S. Huang, Y. Liu, T. Söhnel, P. Cao, Achieving enhanced densification and superior ionic conductivity of garnet electrolytes via a co-doping strategy coupled with pressureless sintering. J. Eur. Ceram. Soc 42, 5023–5028 (2022)

    Article  CAS  Google Scholar 

  12. H. Huo, X. Li, Y. Sun, X. Lin, K. Doyle-Davis, J. Liang, X. Gao, R. Li, H. Huang, X. Guo, X. Sun, Li2CO3 effects: new insights into polymer/garnet electrolytes for dendrite-free solid lithium batteries. Nano Energy 73, 104836 (2020)

    Article  CAS  Google Scholar 

  13. P. Lightfoot, J.B. Thomson, F.J. Little, P.G. Bruce, Ab initio determination of crystal structures by X-ray powder diffraction: structure of Li29Zr9Nb3O40. J. Mater. Chem. 4, 167–169 (1994)

    Article  CAS  Google Scholar 

  14. J. Shao, Z. Li, Y. Zeng, S. Chen, L. Yang, H. Zhang, Li29Zr9Nb3O40 based Li-ionic conductors as a new system of solid-state electrolytes. J. Alloys Compd. 816, 152517 (2020)

    Article  CAS  Google Scholar 

  15. J. Chen, H. Zhang, L. Yang, H. Chen, J. Shao, Z. Li, High Li-ionic conductivity of Li29Zr9Nb3O40 ceramic sintered in oxygen-deficient atmosphere. J. Alloys Compd. 896, 163082 (2022)

    Article  CAS  Google Scholar 

  16. G.G. Amatucci, N. Pereira, Fluoride based electrode materials for advanced energy storage devices. J. Fluor. Chem 128, 243–262 (2007)

    Article  CAS  Google Scholar 

  17. J. Ko, Y.S. Yoon, Recent progress in LiF materials for safe lithium metal anode of rechargeable batteries: is LiF the key to commercializing Li metal batteries? Ceram. Int 45, 30–49 (2019)

    Article  CAS  Google Scholar 

  18. Y. Liu, R. Tao, S. Chen, K. Wu, Z. Zhong, J. Tu, P. Guo, H. Liu, S. Tang, J. Liang, Y.-C. Cao, A novel polyurethane-LiF artificial interface protective membrane as a promising solution towards high-performance lithium metal batteries. J. Power Sources 477, 228694 (2020)

    Article  CAS  Google Scholar 

  19. J. Ko, Y.S. Yoon, Lithium fluoride layer formed by thermal evaporation for stable lithium metal anode in rechargeable batteries. Thin Solid Films 673, 119–125 (2019)

    Article  CAS  Google Scholar 

  20. K. Lee, S. Han, J. Lee, S. Lee, J. Kim, Y. Ko, S. Kim, K. Yoon, J.-H. Song, J.H. Noh, K. Kang, Multifunctional interface for high-rate and long-durable garnet-type solid electrolyte in lithium metal batteries. ACS Energy Lett. 7, 381–389 (2021)

    Article  Google Scholar 

  21. Y. Ruan, Y. Lu, Y. Li, C. Zheng, J. Su, J. Jin, T. Xiu, Z. Song, M.E. Badding, Z. Wen, A 3D cross-linking lithiophilic and electronically insulating interfacial engineering for garnet‐type solid‐state lithium batteries. Adv. Funct. Mater. 31, 2007815 (2020)

    Article  Google Scholar 

  22. L. Xiong, Z. Ren, Y. Xu, S. Mao, P. Lei, M. Sun, LiF assisted synthesis of LiTi2(PO4)3 solid electrolyte with enhanced ionic conductivity. Solid State Ionics 309, 22–26 (2017)

    Article  CAS  Google Scholar 

  23. Z. Yao, K. Zhu, J. Zhang, J. Li, X. Li, J. Wang, K. Yan, J. Liu, LiF-assisted synthesis of perovskite-type Li0.35La0.55TiO3 solid electrolyte for rechargeable lithium-metal batteries. J. Electron. Mater. 51, 736–744 (2021)

    Article  Google Scholar 

  24. T. Lei, L. Xue, Y. Li, Y. Chen, J. Zhu, S. Deng, X. Lian, G. Cao, W. Li, Enhanced electrochemical performances via introducing LiF electrolyte additive for lithium ion batteries. Ceram. Int. 45, 18106–18110 (2019)

    Article  CAS  Google Scholar 

  25. Y. Lu, X. Meng, J.A. Alonso, M.T. Fernandez-Diaz, C. Sun, Effects of fluorine doping on structural and electrochemical properties of Li6.25Ga0.25La3Zr2O12 as electrolytes for solid-state lithium batteries. ACS Appl. Mater. Interfaces 11, 2042–2049 (2019)

    Article  CAS  Google Scholar 

  26. R.U.I. Kun, W.E.N. Zhao-Yin, L.I.U. Cai, High ion conductivity in garnet-type F-doped Li7La3Zr2O12. J. Inorg. Mater. 30, 995–1001 (2015)

    Google Scholar 

  27. X. Ma, Y. Xu, Efficient anion fluoride-doping strategy to enhance the performance in garnet-type solid electrolyte Li7La3Zr2O12. ACS Appl. Mater. Interfaces 14, 2939–2948 (2022)

    Article  CAS  Google Scholar 

  28. S.R. Yeandel, B.J. Chapman, P.R. Slater, P. Goddard, Structure and lithium-ion dynamics in fluoride-doped cubic Li7La3Zr2O12 (LLZO) garnet for Li solid-state battery applications. J. Phys. Chem. C 122, 27811–27819 (2018)

    Article  CAS  Google Scholar 

  29. L. Yang, Z. Li, C. Gao, S. Gong, J. Chen, H. Chen, H. Zhang, Li2ZrO3 based Li-ion conductors doped with halide ions & sintered in oxygen-deficient atmosphere. Ceram. Int. 47, 31907–31914 (2021)

    Article  CAS  Google Scholar 

  30. B.H. Toby, R.B. Von Dreele, GSAS-II: the genesis of a modern open-source all purpose crystallography software package. J. Appl. Crystallogr. 46, 544–549 (2013)

    Article  CAS  Google Scholar 

  31. L.L. Wong, K.C. Phuah, R. Dai, H. Chen, W.S. Chew, S. Adams, Bond valence pathway analyzer—an automatic rapid screening tool for fast ion conductors within softBV. Chem. Mater 33, 625–641 (2021)

    Article  CAS  Google Scholar 

  32. K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011)

    Article  CAS  Google Scholar 

  33. J. Wang, Z. Zhang, H. Ying, G. Han, W.-Q. Han, In-situ formation of LiF-rich composite interlayer for dendrite-free all-solid-state lithium batteries. Chem. Eng. J. 411, 128534 (2021)

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by the research funds from the National Natural Science Foundation of China (No. 51767021) and Development Funds of Hunan Wedid Materials Technology Co., Ltd., China (No. 738010241).

Author information

Authors and Affiliations

Authors

Contributions

ZL, HZ, and HC contributed to the study conception and design. Material preparation, data collection, and analysis were performed by HC, JC, EX, and YW. The first draft of the manuscript was written by HC, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hong Zhang.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 28.9 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Li, Z., Chen, J. et al. Crystallographic structure and electrical properties of LiF modified Li29Zr9Nb3O40 for electrolyte of solid-state batteries. J Mater Sci: Mater Electron 33, 26775–26787 (2022). https://doi.org/10.1007/s10854-022-09343-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09343-x

Navigation