Skip to main content
Log in

Geometrically nonlinear free vibration of CNTs reinforced sandwich conoidal shell in thermal environment

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Geometrically nonlinear free vibration behavior of functionally graded sandwich conoidal shell under thermal environment is investigated by finite element method considering Green–Lagrange strains and higher-order shear deformation theory. The analysis is carried out using quadratic eight-noded isoparametric elements. The governing equation of motion is derived employing Lagrange’s equation, and eigenvalue solutions are computed employing a direct iterative procedure. After validation of the formulation, a parametric study of the shell is carried out varying the volume fraction of the reinforcing carbon nanotubes, length-to-thickness ratio, core-to-face sheet thickness ratio, ratio of small height to greater height, amplitude factor and temperature with clamped and simply supported boundary conditions. At the end, shifting trend of mode shapes of the shell with respect to amplitude factor is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Chaubey, A., Kumar, A., Fic, S., Barnat-Hunek, D., Sadowska-Buraczewska, B.: Hygrothermal analysis of laminated composite skew conoids. Materials. 12(2), 225 (2019)

    Article  Google Scholar 

  2. Ansari, M.I., Kumar, A., Barnat-Hunek, D., Łagód, G.: Static response of FGM porous rhombic conoidal shell. In IOP Conf. Ser.: Mater. Sci. Eng. 710(1), 012039 (2019)

    Article  Google Scholar 

  3. Ansari, M.I., Kumar, A.: Bending analysis of functionally graded CNT reinforced doubly curved singly ruled truncated rhombic cone. Mech. Based Des. Struct. Mach. 47(1), 67–86 (2019)

    Article  Google Scholar 

  4. Ansari, M.I., Kumar, A.: Flexural analysis of functionally graded CNT-reinforced doubly curved singly ruled composite truncated cone. J. Aerosp. Eng. 32(2), 04018154 (2019)

    Article  Google Scholar 

  5. Chaubey, A.K., Kumar, A., Chakrabarti, A.: Novel shear deformation model for moderately thick and deep laminated composite conoidal shell. Mech. Based Des. Struct. Mach. 46(5), 650–668 (2018)

    Article  Google Scholar 

  6. Kumar, A., Chakrabarti, A., Bhargava, P.: Vibration of laminated composites and sandwich shells based on higher order zigzag theory. Eng. Struct. 56, 880–888 (2013)

    Article  Google Scholar 

  7. Kumar, A., Chakrabarti, A., Bhargava, P.: Accurate dynamic response of laminated composites and sandwich shells using higher order zigzag theory. Thin-Walled Struct. 77, 174–186 (2014)

    Article  Google Scholar 

  8. Wang, Z.X., Shen, H.S.: Nonlinear vibration and bending of sandwich plates with nanotube-reinforced composite face sheets. Compos. B Eng. 43(2), 411–421 (2012)

    Article  Google Scholar 

  9. Wang, Z.X., Shen, H.S.: Nonlinear vibration of sandwich plates with FG-GRC face sheets in thermal environments. Compos. Struct. 192, 642–653 (2018)

    Article  Google Scholar 

  10. Moradi-Dastjerdi, R., Momeni-Khabisi, H.: Vibrational behavior of sandwich plates with functionally graded wavy carbon nanotube-reinforced face sheets resting on Pasternak elastic foundation. J. Vib. Control 24(11), 2327–2343 (2018)

    Article  MathSciNet  Google Scholar 

  11. Moradi-Dastjerdi, R., Malek-Mohammadi, H., Momeni-Khabisi, H.: Free vibration analysis of nanocomposite sandwich plates reinforced with CNT aggregates. ZAMM-J. Appl. Math. Mech/Zeits. für Angew. Math. Mech. 97(11), 1418–1435 (2017)

    MathSciNet  Google Scholar 

  12. Safaei, B., Moradi-Dastjerdi, R., Qin, Z., Chu, F.: Frequency-dependent forced vibration analysis of nanocomposite sandwich plate under thermo-mechanical loads. Compos. B Eng. 161, 44–54 (2019)

    Article  Google Scholar 

  13. Safaei, B., Moradi-Dastjerdi, R., Behdinan, K., Qin, Z., Chu, F.: Thermoelastic behavior of sandwich plates with porous polymeric core and CNT clusters/polymer nanocomposite layers. Compos. Struct. 226, 111209 (2019)

    Article  Google Scholar 

  14. Wang, M., Li, Z.M., Qiao, P.: Vibration analysis of sandwich plates with carbon nanotube-reinforced composite face-sheets. Compos. Struct. 200, 799–809 (2018)

    Article  Google Scholar 

  15. Sankar, A., Natarajan, S., Merzouki, T., Ganapathi, M.: Nonlinear dynamic thermal buckling of sandwich spherical and conical shells with CNT reinforced facesheets. Int. J. Struct. Stab. Dyn. 17(09), 1750100 (2017)

    Article  MathSciNet  Google Scholar 

  16. Mehar, K., Panda, S.K., Mahapatra, T.R.: Thermoelastic nonlinear frequency analysis of CNT reinforced functionally graded sandwich structure. Eur. J. Mech.-A/Solids. 65, 384–396 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mirzaei, M., Kiani, Y.: Nonlinear free vibration of temperature-dependent sandwich beams with carbon nanotube-reinforced face sheets. Acta Mech. 227(7), 1869–1884 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Sahoo, R., Singh, B.N.: A new trigonometric zigzag theory for buckling and free vibration analysis of laminated composite and sandwich plates. Compos. Struct. 117, 316–332 (2014)

    Article  Google Scholar 

  19. Singh, S.D., Sahoo, R.: Static and free vibration analysis of functionally graded CNT reinforced sandwich plates using inverse hyperbolic shear deformation theory. J. Strain Anal. Eng. Des. 56(6), 386–403 (2021)

    Article  Google Scholar 

  20. Singh, S.D., Sahoo, R.: Static and free vibration analysis of functionally graded CNT reinforced composite plates using trigonometric shear deformation theory. In Struct 28, 685–696 (2020)

    Article  Google Scholar 

  21. Singh, S.D., Sahoo, R.: Analytical solution for static and free vibration analysis of functionally graded CNT-reinforced sandwich plates. Arch. Appl. Mech. 91, 1–6 (2021)

    Article  Google Scholar 

  22. Manh, D.T., Anh, V.T., Nguyen, P.D., Duc, N.D.: Nonlinear post-buckling of CNTs reinforced sandwich-structured composite annular spherical shells. Int. J. Struct. Stab. Dyn. 20(02), 2050018 (2020)

    Article  MathSciNet  Google Scholar 

  23. Karimiasl, M., Ebrahimi, F., Mahesh, V.: On nonlinear vibration of sandwiched polymer-CNT/GPL-fiber nanocomposite nanoshells. Thin-Walled Struct. 146, 106431 (2020)

    Article  Google Scholar 

  24. Beni, N.N.: Free vibration analysis of annular sector sandwich plates with FG-CNT reinforced composite face-sheets based on the Carrera’s unified formulation. Compos. Struct. 214, 269–292 (2019)

    Article  Google Scholar 

  25. Pourasghar, A., Chen, Z.: Nonlinear vibration and modal analysis of FG nanocomposite sandwich beams reinforced by aggregated CNTs. Polym. Eng. Sci. 59(7), 1362–1370 (2019)

    Article  Google Scholar 

  26. Rout, M., Karmakar, A.: Free vibration of rotating pretwisted CNTs-reinforced shallow shells in thermal environment. Mech. Adv. Mater. Struct. 26(21), 1808–1820 (2019)

    Article  Google Scholar 

  27. Cook, R.D.: Concepts and Applications of Finite Element Analysis. Wiley, Madison (2007)

    Google Scholar 

  28. Ganapathi, M., Patel, B.P., Makhecha, D.P.: Nonlinear dynamic analysis of thick composite/sandwich laminates using an accurate higher-order theory. Compos. B Eng. 35(4), 345–355 (2004)

    Article  Google Scholar 

  29. Adhikari, B., Dash, P.: Geometrically nonlinear free vibration analysis of laminated composite plates: a finite element assessment of a higher order non-polynomial shear deformation theory. Mech. Adv. Mater. Struct. 28(2), 200–211 (2021)

    Article  Google Scholar 

  30. Liu, C.F., Huang, C.H.: Free vibration of composite laminated plates subjected to temperature changes. Comput. Struct. 60(1), 95–101 (1996)

    Article  MATH  Google Scholar 

  31. Naidu, N.S., Sinha, P.K.: Nonlinear free vibration analysis of laminated composite shells in hygrothermal environments. Compos. Struct. 77(4), 475–483 (2007)

    Article  Google Scholar 

  32. Nayak, A.N., Bandyopadhyay, J.N.: Free vibration analysis of laminated stiffened shells. J. Eng. Mech. 131(1), 100–105 (2005)

    Google Scholar 

  33. Pradyumna, S., Bandyopadhyay, J.N.: Static and free vibration analyses of laminated shells using a higher-order theory. J. Reinf. Plast. Compos. 27(2), 167–186 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mrutyunjay Rout.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The linear mid-plane strains

$$\begin{gathered} \varepsilon_{{{\text{xl}}}}^{0} = \overline{u}_{0,x} ,\;\varepsilon_{{{\text{yl}}}}^{0} = \overline{v}_{0,y} ,\;\gamma_{{{\text{xyl}}}}^{0} = u_{0,y} + v_{0,x} + 2w_{0} /R_{{{\text{xy}}}} ,\;\kappa_{{{\text{xl}}}}^{1} = \theta_{x,x} ,\;\kappa_{{{\text{yl}}}}^{1} = \theta_{y,y} ,\; \hfill \\ \kappa_{{{\text{xyl}}}}^{1} = \theta_{x,y} + \theta_{y,x} ,\;\kappa_{{{\text{xzl}}}}^{1} = - \theta_{x} /R_{x} ,\;\kappa_{{{\text{yzl}}}}^{1} = - \theta_{y} /R_{y} ,\;\kappa_{{{\text{xl}}}}^{3} = \lambda_{x,x} ,\;\kappa_{{{\text{yl}}}}^{3} = \lambda_{y,y} , \hfill \\ \;\kappa_{{{\text{xyl}}}}^{3} = \lambda_{x,y} + \lambda_{y,x} ,\;\kappa_{{{\text{xzl}}}}^{3} = - \lambda_{x} /R{}_{x},\;\kappa_{{{\text{yzl}}}}^{3} = - \lambda_{y} /R{}_{y},\;\kappa_{{{\text{xzl}}}}^{2} = 3\lambda_{x} ,\;\kappa_{{{\text{yzl}}}}^{2} = 3\lambda_{y} , \hfill \\ \gamma_{{{\text{xzl}}}}^{0} = \theta_{x} + w_{0,x} - u_{0} /R_{x} ,\;\gamma_{{{\text{yzl}}}}^{0} = \theta_{y} + w_{0,y} - v_{0} /R_{y} , \hfill \\ \end{gathered}$$

The non-linear mid-plane strain terms are

$$\varepsilon_{{{\text{xnl}}}}^{0} = \left( {\overline{u}_{0,x}^{2} + \overline{v}_{0,x}^{2} + \overline{w}_{0,x}^{2} } \right)$$
$$\varepsilon_{{{\text{ynl}}}}^{0} = \left( {\overline{u}_{0,y}^{2} + \overline{v}_{0,y}^{2} + \overline{w}_{0,y}^{2} } \right)$$
$$\gamma_{{{\text{xynl}}}}^{0} = 2\left( {\overline{u}_{0,x} \overline{u}_{0,y} + \overline{v}_{0,x} \overline{v}_{0,y} + \overline{w}_{0,x} \overline{w}_{0,y} } \right)$$
$$\kappa_{{{\text{xnl}}}}^{1} = 2\left( {\overline{u}_{0,x} \theta_{x,x} + \overline{v}_{0,x} \theta_{y,x} - \overline{w}_{0,x} \theta_{x} /R_{x} } \right)$$
$$\kappa_{{{\text{ynl}}}}^{1} = 2\left( {\overline{u}_{0,y} \theta_{x,y} + \overline{v}_{0,y} \theta_{y,y} - \overline{w}_{0,y} \theta_{y} /R_{y} } \right)$$
$$\kappa_{{{\text{xynl}}}}^{1} = 2\left( {\overline{u}_{0,x} \theta_{x,y} + \overline{u}_{0,y} \theta_{x,x} + \overline{v}_{0,x} \theta_{y,y} + \overline{v}_{0,y} \theta_{y,x} - \overline{w}_{0,x} \theta_{y} /R_{y} - \overline{w}_{0,y} \theta_{x} /R_{x} } \right)$$
$$\kappa_{{{\text{xznl}}}}^{1} = 2\left( {\theta_{x,x} \theta_{x} + \theta_{y,x} \theta_{y} } \right)$$
$$\kappa_{{{\text{yznl}}}}^{1} = 2\left( {\theta_{x,y} \theta_{x} + \theta_{y,y} \theta_{y} } \right)$$
$$\kappa_{{{\text{xnl}}}}^{3} = 2\left( {\overline{u}_{0,x} \lambda_{x,x} + \overline{v}_{0,x} \lambda_{y,x} - \overline{w}_{0,x} \lambda_{x} /R_{x} } \right)$$
$$\kappa_{{{\text{ynl}}}}^{3} = 2\left( {\overline{u}_{0,y} \lambda_{x,y} \lambda_{y,y} - \overline{w}_{0,y} \lambda_{y} /R_{y} } \right)$$
$$\kappa_{{{\text{xynl}}}}^{3} = 2\left( {\overline{u}_{0,x} \lambda_{x,y} + \overline{u}_{0,y} \lambda_{x,x} + \overline{v}_{0,x} \lambda_{y,y} + \overline{v}_{0,y} \lambda_{y,x} - \overline{w}_{0,x} \lambda_{y} /R_{y} - \overline{w}_{0,y} \lambda_{x} /R_{x} } \right)$$
$$\kappa_{{{\text{xznl}}}}^{3} = 2\left( {\theta_{x} \lambda_{x,x} + \theta_{x,x} 3\lambda_{x} + \theta_{y,x} 3\lambda_{y} + \theta_{y} \lambda_{y,x} } \right)$$
$$\kappa_{{{\text{yznl}}}}^{3} = 2\left( {\theta_{x,y} 3\lambda_{x} + \theta_{x} \lambda_{x,y} + \theta_{y} \lambda_{y,y} + \theta_{y,y} 3\lambda_{y} } \right)$$
$$\kappa_{{{\text{xnl}}}}^{2} = \left( {\theta_{x,x}^{2} + \theta_{y,x}^{2} + \theta_{x}^{2} /R_{x}^{2} } \right)$$
$$\kappa_{{{\text{ynl}}}}^{2} = \left( {\theta_{x,y}^{2} + \theta_{y,y}^{2} + \theta_{y}^{2} /R_{y}^{2} } \right)$$
$$\kappa_{{{\text{xynl}}}}^{2} = 2\left( {\theta_{x,x} \theta_{x,y} + \theta_{y,x} \theta_{y,y} + \theta_{x} \theta_{y} /R_{x} R_{y} } \right)$$
$$\kappa_{{{\text{xznl}}}}^{2} = 2\left( {\overline{u}_{0,x} 3\lambda_{x} + \overline{v}_{0,x} 3\lambda_{y} } \right)$$
$$\kappa_{{{\text{yznl}}}}^{2} = 2\left( {\overline{u}_{0,y} 3\lambda_{x} + \overline{v}_{0,y} 3\lambda_{y} } \right)$$
$$\gamma_{{{\text{xznl}}}}^{0} = 2\left( {\overline{u}_{0,x} \theta_{x} + \overline{v}_{0,x} \theta_{y} } \right)$$
$$\gamma_{{{\text{yznl}}}}^{0} = 2\left( {\overline{u}_{0,y} \theta_{x} + \overline{v}_{0,y} \theta_{y} } \right)$$
$$\kappa_{{{\text{xnl}}}}^{4} = 2\left( {\theta_{x,x} \lambda_{x,x} + \theta_{y,x} \lambda_{y,x} + \theta_{x} \lambda_{x} /R_{x}^{2} } \right)$$
$$\kappa_{{{\text{ynl}}}}^{4} = 2\left( {\theta_{x,y} \lambda_{x,y} + \theta_{y,y} \lambda_{y,y} + \theta_{y} \lambda_{y} /R_{y}^{2} } \right)$$
$$\kappa_{{{\text{xynl}}}}^{4} = 2\left( {\theta_{x,x} \lambda_{x,y} + \theta_{x,y} \lambda_{x,x} + \theta_{y,x} \lambda_{y,y} + \theta_{y,y} \lambda_{y,x} + \theta_{x} \lambda_{y} /R_{x} R_{x} + \theta_{y} \lambda_{x} /R_{x} R_{y} } \right)$$
$$\kappa_{{{\text{xznl}}}}^{5} = 2\left( {\lambda_{x,x} 3\lambda_{x} + \lambda_{y,x} 3\lambda_{y} } \right)$$
$$\kappa_{{{\text{yznl}}}}^{5} = 2\left( {\lambda_{x,y} 3\lambda_{x} + \lambda_{y,y} 3\lambda_{y} } \right)$$
$$\kappa_{{{\text{xnl}}}}^{6} = \left( {\lambda_{x,x}^{2} + \lambda_{y,x}^{2} + \lambda_{x}^{2} /R_{x}^{2} } \right)$$
$$\kappa_{{{\text{ynl}}}}^{6} = \left( {\lambda_{x,y}^{2} + \lambda_{y,y}^{2} + \lambda_{y}^{2} /R_{y}^{2} } \right)$$
$$\kappa_{{{\text{xynl}}}}^{6} = 2\left( {\lambda_{x,x} \lambda_{x,y} + \lambda_{y,x} \lambda_{y,y} + \lambda_{x} \lambda_{y} /R_{x} R_{y} } \right)$$

where

$$\begin{aligned} \overline{u}_{0,x} &= u_{0,x} + w_{0} /R_{x} ,\;\overline{v}_{0,x} = v_{0,x} + w_{0} /R_{xy} ,\;\overline{w}_{0,x} = w_{0,x} - u_{0} /R_{x} ,\;\overline{u}_{0,y} = u_{0,y} \\ &\quad+ w_{0} /R_{xy} ,\;\overline{v}_{0,y} = v_{0,y} + w_{0} /R_{y} ,\;\overline{w}_{0,y} = w_{0,y} - v_{0} /R_{y} , \\ \end{aligned}$$

.

The linear thickness coordinate matrix is given by

$$\begin{gathered} \left[ {T_{l} } \right] = \left[ {\begin{array}{lllllllllllllllll} 1 \hfill & 0 \hfill & 0 \hfill & z \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {z^{3} }\hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 1 \hfill & 0 \hfill & 0 \hfill & z \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {z^{3} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 1 \hfill & 0 \hfill & 0 \hfill & z \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {z^{3} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill\\ 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & z \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {z^{3} } \hfill & 0 \hfill & {z^{2}} \hfill & 0 \hfill & 1 \hfill & 0 \hfill\\ 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & z \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {z^{3} } \hfill & 0 \hfill & {z^{2} } \hfill & 0 \hfill & 1 \hfill \\ \end{array} } \right] \hfill \\ \quad \quad \quad \quad \quad \quad \quad \ \\ \end{gathered}$$

The nonlinear thickness coordinate matrix is given by

$$\begin{gathered} \left[ {T_{{nl}} } \right] = \left[ {\begin{array}{llllllllllllllllllllllllllll} 1 \hfill & 0 \hfill & 0 \hfill & z \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {z^{3} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {z^{2} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {z^{4} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {z^{6} } \hfill & 0 \hfill & 0 \hfill\\ 0 \hfill & 1 \hfill & 0 \hfill & 0 \hfill & z \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {z^{3} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {z^{2} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {z^{4} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {z^{6} } \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 1 \hfill & 0 \hfill & 0 \hfill & z \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {z^{3} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {z^{2} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {z^{4} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {z^{6} } \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & z \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {z^{3} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {z^{2} } \hfill & 0 \hfill & 1 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {z^{5} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & z \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {z^{3} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {z^{2} } \hfill & 0 \hfill & 1 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {z^{5} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ \end{array} } \right] \end{gathered}$$

The element of matrix [A] is

$$\begin{gathered} A(1,1) = \overline{u}_{0,x} ,\,A(1,3) = \overline{v}_{0,x} ,\;A(1,5) = \overline{w}_{0,x} ,\;A(2,2) = \overline{u}_{0,y} ,\;A(2,4) = \overline{v}_{0,y} ,\;A(2,6) = \overline{w}_{0,y} ,\;A(3,1) = \overline{u}_{0,y} , \hfill \\ A(3,2) = \overline{u}_{0,x} ,\;A(3,3) = \overline{v}_{0,y} ,\;A(3,4) = \overline{v}_{0,x} ,\;A(3,5) = \overline{w}_{0,y} ,\;A(3,6) = \overline{w}_{0,x} ,\;A(4,1) = \theta_{x,x} ,\;A(4,1) = \theta_{y,x} , \hfill \\ A(4,5) = - \theta_{x} /R{}_{x},\;A(4,7) = \overline{u}_{0,x} ,\;A(4,9) = \overline{v}_{0,x} ,\;A(4,15) = - \overline{w}_{0,x} /R_{x} ,\;A(5,2) = \theta_{y,x} ,\;A(5,4) = \theta_{y,y} , \hfill \\ \end{gathered}$$
$$\begin{gathered} A(5,6) = - \theta_{y} /R_{y} ,\;A(5,8) = \overline{u}_{0,y} ,\;A(5,10) = \overline{v}_{0,y} ,\;A(5,16) = - \overline{w}_{0,y} /R_{y} ,\;A(6,1) = \theta_{x,y} ,\;A(6,2) = \theta_{x,x} , \hfill \\ A(6,3) = \theta_{y,y} ,\;A(6,4) = \theta_{y,x} ,\;A(6,5) = - \theta_{y} /R_{y} ,\;A(6,6) = - \theta_{x} /R{}_{x},\;A(6,7) = \overline{u}_{0,y} ,\;A(6,8) = \overline{u}_{0,x} , \hfill \\ A(6,9) = \overline{v}_{0,y} ,\;A(6,10) = \overline{v}_{0,x} ,\;A(6,15) = - \overline{w}_{0,y} /R_{x} ,\;A(6,16) = - \overline{w}_{0,x} /R_{y} ,\;A(7,7) = \theta_{x} ,\;A(7,9) = \theta_{y} , \hfill \\ \end{gathered}$$
$$\begin{gathered} A(7,15) = \theta_{x,x} ,\;A(7,16) = \theta_{y,x} ,\;A(8,8) = \theta_{x} ,\;A(8,10) = \theta_{y} ,\;A(8,15) = \theta_{x,y} ,\;A(8,16) = \theta_{y,y} ,\;A(9,1) = \lambda_{x,x} , \hfill \\ A(9,3) = \lambda_{y,x} ,\;A(9,5) = - \lambda_{x} /R_{x} ,\;A(9,11) = \overline{u}_{0,x} ,\;A(9,13) = \overline{v}_{0,x} ,\;A(9,17) = - \overline{w}_{0,x} /R_{x} ,\;A(10,2) = \lambda_{x,y} , \hfill \\ A(10,4) = \lambda_{y,y} ,\;A(10,6) = - \lambda_{y} /R_{y} ,\;A(10,12) = \overline{u}_{0,y} ,\;A(10,14) = \overline{v}_{0,y} ,\;A(10,18) = - \overline{w}_{0,y} /R_{y} , \hfill \\ A(11,1) = \lambda_{x,y} ,\;A(11,2) = \lambda_{x,x} ,\;A(11,3) = \lambda_{y,y} ,\,A(11,4) = \lambda_{y,x} ,\;A(11,5) = - \lambda_{y} /R_{y} ,\;A(11,6) = - \lambda_{x} /R_{x} , \hfill \\ A(11,11) = \overline{u}_{0,y} ,\;A(11,12) = \overline{u}_{0,x} ,\;A(11,13) = \overline{v}_{0,y} ,\;A(11,14) = \overline{v}_{0,x} ,\;A(11,17) = - \overline{w}_{0,y} /R_{x} , \hfill \\ A(11,18) = - \overline{w}_{0,x} /R_{y} ,\;A(12,7) = 3\lambda_{x} ,\;A(12,9) = 3\lambda_{y} ,\;A(12,11) = \theta_{x} ,\;A(12,13) = \theta_{y} ,\;A(12,15) = \lambda_{x,x} , \hfill \\ \end{gathered}$$
$$\begin{gathered} A(16,8) = \theta_{x,x} ,\;A(16,9) = \theta_{y,y} ,\;A(16,10) = \theta_{y,x} ,\;A(16,15) = \theta_{y} /(R{}_{x}R{}_{y}),\;A(16,16) = \theta_{x} /(R{}_{x}R{}_{y}), \hfill \\ A(17,1) = 3\lambda_{x} ,\;A(17,3) = 3\lambda_{y} ,\;A(17,17) = 3\overline{u}_{0,x} ,\;A(17,18) = 3\overline{v}_{0,x} ,\;A(18,2) = 3\lambda_{x} ,\;A(18,4) = 3\lambda_{y} , \hfill \\ A(18,17) = 3\overline{u}_{0,y} ,\;A(18,18) = 3\overline{v}_{0,y} ,\;A(19,1) = \theta_{x} ,\;A(19,3) = \theta_{y} ,\;A(19,15) = \overline{u}_{0,x} ,\;A(19,16) = \overline{v}_{0,x} , \hfill \\ \end{gathered}$$
$$\begin{gathered} A(20,2) = \theta_{x} ,\;A(20,4) = \theta_{y} ,\;A(20,15) = \overline{u}_{0,y} ,\;A(20,16) = \overline{v}_{0,y} ,\;A(21,7) = \lambda_{x,x} ,\;A(21,9) = \lambda_{y,x} ,\; \hfill \\ A(21,11) = \theta_{x,x} ,\;A(21,13) = \theta_{y,x} ,\;A(21,15) = \lambda_{x} /R_{x}^{2} ,\;A(21,17) = \theta_{x} /R_{x}^{2} ,\;A(22,8) = \lambda_{x,y} , \hfill \\ A(22,10) = \lambda_{y,y} ,\;A(22,12) = \theta_{x,y} ,\;A(22,14) = \theta_{y,y} ,\;A(22,16) = \lambda_{y} /R_{y}^{2} ,\;A(22,18) = \theta_{y} /R_{y}^{2} , \hfill \\ \end{gathered}$$
$$\begin{gathered} A(23,7) = \lambda_{x,y} ,\;A(23,8) = \lambda_{x,x} ,\;A(23,9) = \lambda_{y,y} ,\;A(23,10) = \lambda_{y,x} ,\;A(23,11) = \theta_{x,y} ,\;A(23,12) = \theta_{x,x} , \hfill \\ A(23,13) = \theta_{y,y} ,\;A(23,14) = \theta_{y,x} ,\;A(23,15) = \lambda_{y} /(R_{x} R_{y} ),\;A(23,16) = \lambda_{x} /(R_{x} R_{y} ), \hfill \\ A(23,17) = \theta_{y} /(R_{x} R_{y} ),\;A(23,18) = \theta_{x} /(R_{x} R_{y} ),\;A(24,10) = 3\lambda_{x} ,\;A(24,13) = 3\lambda_{y} ,\;A(24,17) = 3\lambda_{x,x} , \hfill \\ \end{gathered}$$
$$\begin{gathered} A(24,18) = 3\lambda_{y,x} ,\;A(25,12) = 3\lambda_{x} ,\;A(25,14) = 3\lambda_{y} ,\;A(25,17) = 3\lambda_{x,y} ,\;A(25,18) = 3\lambda_{y,y} , \hfill \\ A(26,11) = \lambda_{x,x} ,\;A(26,13) = \lambda_{y,x} c,\;A(26,17) = \lambda_{x} /R_{x}^{2} ,\;A(27,12) = \lambda_{x,y} ,\;A(27,14) = \lambda_{y,y} , \hfill \\ A(27,18) = \lambda_{y} /R_{y}^{2} ,\;A(28,11) = \lambda_{x,y} ,\;A(28,12) = \lambda_{x,x} ,\;A(28,13) = \lambda_{y,y} ,\;A(28,14) = \lambda_{y,x} , \hfill \\ A(28,17) = \lambda_{y} /(R_{x} R_{y} ),\;A(28,18) = \lambda_{x} /(R_{x} R_{y} ) \hfill \\ \end{gathered}$$

The matrix [G] is defined as

$$\left[ G \right] = \left[ {\begin{array}{c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c} {N_{i,x} } & 0 & {N_{i} /R_{x} } & 0 & 0 & 0 & 0 \\ {N_{i,y} } & 0 & {N_{i} /R_{xy} } & 0 & 0 & 0 & 0 \\ 0 & {N_{i,x} } & {N_{i} /R_{xy} } & 0 & 0 & 0 & 0 \\ 0 & {N_{i,y} } & {N_{i} /R_{y} } & 0 & 0 & 0 & 0 \\ { - N_{i} /R_{x} } & 0 & {N_{i,x} } & 0 & 0 & 0 & 0 \\ 0 & { - N_{i} /R_{y} } & {N_{i,y} } & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & {N_{i,x} } & 0 & 0 & 0 \\ 0 & 0 & 0 & {N_{i,y} } & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & {N_{i,x} } & 0 & 0 \\ 0 & 0 & 0 & 0 & {N_{i,y} } & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & {N_{i,x} } & 0 \\ 0 & 0 & 0 & 0 & 0 & {N_{i,y} } & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & {N_{i,x} } \\ 0 & 0 & 0 & 0 & 0 & 0 & {N_{i,y} } \\ 0 & 0 & 0 & {N_{i} } & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & {N_{i} } & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & {N_{i} } & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & {N_{i} } \\ \end{array} } \right]$$

The matrix \(\left[ Z \right]\) is defined as

$$[Z] = \left[ {\begin{array}{c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c} 1 & 0 & 0 & z & 0 & {z^{3} } & 0 \\ 0 & 1 & 0 & 0 & z & 0 & {z^{3} } \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ \end{array} } \right]$$

The matrix \(\left[ S \right]\) is defined as

$$\left[ S \right] = \left[ {\begin{array}{c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c} {N_{x} } & {N_{xy} } & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ {N_{xy} } & {N_{y} } & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & {N_{x} } & {N_{xy} } & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & {N_{xy} } & {N_{y} } & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & {N_{x} } & {N_{xy} } & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & {N_{xy} } & {N_{y} } & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & {\frac{{N_{x} h^{2} }}{12}} & {\frac{{N_{xy} h^{2} }}{12}} & 0 & 0 & {\frac{{N_{x} h^{4} }}{80}} & {\frac{{N_{xy} h^{4} }}{80}} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & {\frac{{N_{xy} h^{2} }}{12}} & {\frac{{N_{y} h^{2} }}{12}} & 0 & 0 & {\frac{{N_{xy} h^{4} }}{80}} & {\frac{{N_{y} h^{4} }}{80}} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & {\frac{{N_{x} h^{2} }}{12}} & {\frac{{N_{xy} h^{2} }}{12}} & 0 & 0 & {\frac{{N_{x} h^{4} }}{80}} & {\frac{{N_{xy} h^{4} }}{80}} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & {\frac{{N_{xy} h^{2} }}{12}} & {\frac{{N_{y} h^{2} }}{12}} & 0 & 0 & {\frac{{N_{xy} h^{4} }}{80}} & {\frac{{N_{y} h^{4} }}{80}} \\ 0 & 0 & 0 & 0 & 0 & 0 & {\frac{{N_{x} h^{4} }}{80}} & {\frac{{N_{xy} h^{4} }}{80}} & 0 & 0 & {\frac{{N_{x} h^{6} }}{448}} & {\frac{{N_{xy} h^{6} }}{448}} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & {\frac{{N_{xy} h^{4} }}{80}} & {\frac{{N_{y} h^{4} }}{80}} & 0 & 0 & {\frac{{N_{xy} h^{6} }}{448}} & {\frac{{N_{y} h^{6} }}{448}} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & {\frac{{N_{x} h^{4} }}{80}} & {\frac{{N_{xy} h^{4} }}{80}} & 0 & 0 & {\frac{{N_{x} h^{6} }}{448}} & {\frac{{N_{xy} h^{6} }}{448}} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & {\frac{{N_{xy} h^{4} }}{80}} & {\frac{{N_{y} h^{4} }}{80}} & 0 & 0 & {\frac{{N_{xy} h^{6} }}{448}} & {\frac{{N_{y} h^{6} }}{448}} \\ \end{array} } \right]$$

where \(N_{x}\), \(N_{y}\) and \(N_{xy}\) are the thermal in-plane stress resultants.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rout, M., Hota, S.S. Geometrically nonlinear free vibration of CNTs reinforced sandwich conoidal shell in thermal environment. Acta Mech 234, 2677–2694 (2023). https://doi.org/10.1007/s00707-023-03508-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03508-3

Navigation