Skip to main content
Log in

Biotechnology of camptothecin production in Nothapodytes nimmoniana, Ophiorrhiza sp. and Camptotheca acuminata

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Cancer is probably the deadliest human disease in recent years. In the past few years, rapid clinical progress has been made in the field of anticancer drug development. Plant secondary metabolites have been noted as extremely efficacious as promising natural source for anticancer therapy for many years. Camptothecin (CPT) is one of the popularly used anti-tumor drugs possessing clinically proven properties against a plethora of human malignancies that include ovarian and colorectal cancers. For the first time, CPT was obtained from the extracts of a Chinese medicinal tree, Camptotheca acuminata Decne. from the family Cornaceae. Subsequently, CPT was also isolated from the bark of Nothapodytes foetida (Wight) Sleumer (Icacinaceae). However, the availability of enough natural sources for obtaining CPT is a major constraint. Due to overexploitation and harvesting, loss of habitat, excessive trading, and unfavorable environmental factors, the natural source of CPT has become extinct or extremely limited and hence they are red listed under endangered species. Conventional propagation has also failed to meet the ever-expanding demand for CPT production. With this, biotechnological toolkits have constantly been used as a boon to produce sustainable source, utilization, and ex situ conservation of medicinal plants. The approaches serve as a supplement to traditional agriculture in the mass production of plant metabolites with potent bioactivities. Non-availability of enough anticancer medicine and the requirement to satisfy current demands need a sustainable source of CPT. With this background, we present a comprehensive review on CPT discovery, its occurrence in the plant kingdom, biosynthesis, phytochemistry, pharmacological properties, clinical studies, patterns of CPT accumulation, and biotechnological aspects of CPT production in three plants, viz., N. nimmoniana, Ophiorrhiza species, and C. acuminata.

Key points

Biotechnological approaches on production of camptothecin from Nothapodytes nimmoniana, Ophiorrhiza species, and Camptotheca acuminata

In vitro propagation of camptothecin-producing plants

Genetic diversity and transgenic research on camptothecin-producing plants

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

  • Abdul Kareem VK, Rajasekharan PE, Mini S, Vasantha Kumar T (2011) Genetic diversity and structure of the threatened anti-cancerous plant Nothapodytes nimmoniana as revealed by ISSR Analysis. Plant Genet Resour Characterisation Util 9(4):506–514

    Google Scholar 

  • Asano T, Watase I, Sudo H, Kitajima M, Takayama H, Aimi N, Yamazaki M, Saito K (2004) Camptothecin production by in vitro cultures of Ophiorrhiza liukiuensis and O. kuroiwai. Plant Biotechnol 21(4):275–81

    CAS  Google Scholar 

  • Asano T, Kobayashi K, Kashihara E, Sudo H, Sasaki R, Iijima Y, Aoki K, Shibata D, Saito K, Yamazaki M (2013) Suppression of camptothecin biosynthetic genes results in metabolic modification of secondary products in hairy roots of Ophiorrhiza pumila. Phytochemistry 91:128–39

    CAS  PubMed  Google Scholar 

  • Ashfaq MK, Abdel-Bakky MS, Maqbool MT, Gul W (2018) ElSohly MA (2018) A preliminary study on combination therapy of artemisinin dimer oxime and topotecan against non small cell lung cancer in mice. World Journal of Traditional Chinese Medicine 4(1):8

    Google Scholar 

  • Bailly C (2019) Irinotecan: 25 years of cancer treatment. Pharmacol Res 48:104398

    Google Scholar 

  • Ciddi V, Shuler ML (2000) Camptothecin from callus cultures of N. foetida. Biotechnol Lett 22:129–132

    CAS  Google Scholar 

  • Chang SH, Tsay JY, Ho CK (2005) Micropropagation and evaluation of the camptothecin content in Camptotheca acuminata. Taiwan J For Sci 20(4):331–40

    CAS  Google Scholar 

  • Chang SH, Tsay JY, Ho CK, Huang CY (2006) Callus culture and camptothecin production of Camptotheca acuminata. Taiwan J Sci 21:513–21

    CAS  Google Scholar 

  • Chang SH, Chen FH, Tsay JY, Chen J, Huang CY, Lu WL, Ho CK (2014) Establishment of hairy root cultures of Nothapodytes nimmoniana to produce camptothecin. Taiwan J For Sci 29(3):193–204

    Google Scholar 

  • Cui L, Ni X, Ji Q, Teng X, Yang Y, Wu C, Zekria D, Zhang D, Kai G (2015) Co-overexpression of geraniol-10-hydroxylase and strictosidine synthase improves anti-cancer drug camptothecin accumulation in Ophiorrhiza pumila. Sci Rep 5.

  • Dandin VS, Murthy HN (2012) Enhanced in vitro multiplication of N. nimmoniana Graham using semisolid and liquid cultures and estimation of camptothecin in the regenerated plants. Acta Physiol Plant 34:1381–1386

    CAS  Google Scholar 

  • Das T, Anand U, Pandey SK, Ashby CR Jr, Assaraf YG, Chen ZS, Dey A (2021) Therapeutic strategies to overcome taxane resistance in cancer. Drug Res Updates 27:100754

    Google Scholar 

  • Deepthi S, Satheeshkumar K (2016) Enhanced camptothecin production induced by elicitors in the cell suspension cultures of Ophiorrhiza mungos Linn. Plant Cell Tissue Organ Cult 124:483–493. https://doi.org/10.1007/s11240-015-0908-y

    Article  CAS  Google Scholar 

  • Deepthi S, Satheeshkumar K (2017) Effects of major nutrients, growth regulators and inoculum size on enhanced growth and camptothecin production in adventitious root cultures of Ophiorrhiza mungos L. Biochem Eng J 117:198–209

    CAS  Google Scholar 

  • Deepthi S, Satheeshkumar K (2017) Cell line selection combined with jasmonic acid elicitation enhance camptothecin production in cell suspension cultures of Ophiorrhiza mungos L. Appl Microbiol Biotechnol 101(2):545–58

    CAS  PubMed  Google Scholar 

  • Demain AL, Vaishnav P (2011) Natural products for cancer chemotherapy. Microb Biotechnol 4(6):687–699

    PubMed  PubMed Central  Google Scholar 

  • Ferlay J, Ervik M, Lam F, Colombet M, Mery L, Piñeros M, Znaor A, Soerjomataram I, Bray F (2018) Global cancer observatory: cancer today. Lyon: International Agency for Research on Cancer.

  • Fulzele DP, Satdive RK, Pol BB (2001) Growth and production of camptothecin by cell suspension cultures of N. foetida. Planta Med 67:150–152

    CAS  PubMed  Google Scholar 

  • Fulzele DP, Satdive RK, Pol BB (2002) Untransformed root cultures of Nothapodytes foetida and production of camptothecin. Plant Cell Tiss Org Cult 69(3):285–8

    CAS  Google Scholar 

  • Fulzele DP, Satdive RK (2003) Somatic embryogenesis, plant regeneration and the evaluation of the camptothecin content in Nothapodytes foetida. In vitro. Cell Dev Biol Plant 39:212–16

    CAS  Google Scholar 

  • Fulzele DP, Satdive R, Kamble S, Singh S, Singh S (2015) Improvement of Anticancer DrugCamptothecin Production by Gamma Irradiation on Callus Cultures of Nothapodytes Foetida. International Journalof Pharmaceutical Research & Allied Sciences, 4(1)

  • Gopalakrishnan R, Shankar B (2014) Multiple shoot cultures of Ophiorrhiza rugosa var. decumbens Deb and Mondal–A viable renewable source for the continuous production of bioactive Camptotheca alkaloids apart from stems of the parent plant of Nothapodytes foetida (Wight) Sleumer. Phytomedicine 21(3):383–9

    CAS  PubMed  Google Scholar 

  • Gunasekera SP, Cordell GA, Farnsworth NR (1979) J Nat Prod 42:687

    Google Scholar 

  • Isah T, Masood S, Umar S (2021) Biomass and camptothecin production in the calcium chloride elicited and liquid medium overlayed Nothapodytes nimmoniana (J. Graham) Mabberly callus cultures. Vegetos 18:1–1

    Google Scholar 

  • Isah T, Mujib A (2015) Camptothecin from Nothapodytes nimmoniana: review on biotechnology applications. Acta Physiologiae Plantarum 37(6):106

    Google Scholar 

  • Kai G, Teng X, Cui L, Li L, Hao X, Shi M, Yan B (2014) Effect of three plant hormone elicitors on the Camptothecin accumulation and gene transcript profiling in Camptotheca acuminata seedlings. Int J of Sci 3:86–95

    Google Scholar 

  • Kamble S, Gopalakrishnan R, Eapen S (2011) Production of camptothecin by hairy roots and regenerated transformed shoots of Ophiorrhiza rugosa var. decumbens. Nat Prod Res 25(18):1762–5

    CAS  PubMed  Google Scholar 

  • Karwasara VS, Nahata A, Dixit VK (2012) A simple, rapid and sensitive spectrofluorimetric method for thedetermination of camptothecin. Oriental Pharmacy and Experimental Medicine 12(2):151–156

    Google Scholar 

  • Karadi RV, Gaviraj EN, Rajasekharan PE (2008) Assessment of callus in different genotypes of N. nimmoniana for camptothecin content. ICFAI Univ J Gen Evol 1(1):57–65

    Google Scholar 

  • Karwasara VS, Dixit VK (2013) Culture medium optimization for camptothecin production in cell suspension cultures of N. nimmoniana (J. Grah.) Mabberley. Plant Biotechnol Rep 7:357–369

    Google Scholar 

  • Kaushik PS, Swamy MK, Balasubramanya S, Anuradha M (2015) Rapid plant regeneration, analysis of genetic fidelity and camptothecin content of micropropagated plants of Ophiorrhiza mungos Linn.—a potent anticancer plant. J Crop Sci Biotechnol 18:1–8

    Google Scholar 

  • Keshavan B, Srinivas NS, Tamizh MM, Vairamani M, Pachaiappan R (2022) In vitro elicitation of Camptothecin by challenging with biotic elicitors in Nothapodytes nimmoniana (J. Graham) Mabb. S Afr J Bot 144:325–31

    Google Scholar 

  • Khan N, Tamboli ET, Sharma VK, Kumar S (2013) Phytochemical and pharmacological aspects of Nothapodytes nimmoniana. An overview. Herba Polonica 59(1):53–66

    CAS  Google Scholar 

  • Krishnan JJ, Gangaprasad A, Satheeshkumar K (2018) Exogenous methyl jasmonate acts as a signal transducer in the enhancement of camptothecin (CPT) production from in vitro cultures of Ophiorrhiza mungos L. var. angustifolia (Thw.) Hook. f. Ind Crops Prod 119:93–101

    CAS  Google Scholar 

  • Kulkarni AV, Patwardhan AA, Lele U, Malpathak NP (2010) Production of camptothecin in cultures ofChonemorpha grandiflora. Pharm Res 2:296–299

    CAS  Google Scholar 

  • Li A, Zhang Z, Cain A, Wang B, Long M, Taylor J (2005) Antifungal activity of camptothecin trifolin and hyperosideisolated from Camptotheca acuminata. J Agric Food Chem 53:32–37

    CAS  PubMed  Google Scholar 

  • Li S, He H, Xi Y, Li L (2018) Chemical constituents and pharmacological effects of the fruits of Camptotheca acuminata: a review of its phytochemistry. Asian Journal of Traditional Medicines, 13(1).

  • Liu Z, Cui Y (2007) Study on hairy root cultures of Camptotheca acuminata (Nyssaceae) and the camptothecin (CPT) from medium. Ecol Environ 4:1266–1270

    Google Scholar 

  • Lorence A, Medina-Bolivar F, Nessler CL (2004) Camptothecin and 10-hydroxycamptothecin from Camptotheca acuminata hairy roots. Plant Cell Rep 22(6):437–41

    CAS  PubMed  Google Scholar 

  • Lu Y, Wang H, Wang W, Qian Z, Li L (2009) Molecular characterization and expression analysis of a new cDNA encoding strictosidine synthase from Ophiorrhiza japonica. Mol Biol Rep 36:1845–1852

    CAS  PubMed  Google Scholar 

  • Martino E, Della Volpe S, Terribile E, Benetti E, Sakaj M, Centamore A, Sala A, Collina S (2017) Thelong story of camptothecin: From traditional medicine to drugs. Bioorganic & Medicinal Chemistry Letters 27(4):701–707

    CAS  Google Scholar 

  • Namdeo AG, Sharma A, Sathiyanarayanan L, Fulzele D, Mahadik KR (2010) HPTLC densitometric evaluation of tissue culture extracts of Nothapodytes foetida compared to conventional extracts for camptothecin content and antimicrobial activity. Planta Med 76:474–480

    CAS  PubMed  Google Scholar 

  • Namdeo AG, Priya T, Bhosale BB (2012) Micropropagation and production of camptothecin form in vitro plants of Ophiorrhiza mungos. Asian Pac J Trop Biomed 2(2):S662–S666

    Google Scholar 

  • Nandy S, Singh J, Pandey DK, Dey A (2020) Hemidesmus indicus L. Br.: critical assessment of in vitro biotechnological advancements and perspectives. Applied Microbiol Biotech 10:1–32

    Google Scholar 

  • Nirmala MJ, Samundeeswari A, Sankar PD (2011) Natural plant resources in anti-cancer therapy-A review. Res Plant Biol 1(3).

  • Ni X, Wen S, Wang W, Wang X, Xu H, Kai G (2011) Enhancement of camptothecin production in Camptotheca acuminata hairy roots by overexpressing ORCA3 gene. J App Pharm Sci 01(08):85–88

    Google Scholar 

  • Pan XW, Xu HH, Gao X (2004) Improvement of growth and camptothecin yield by altering nitrogen source supply in cell suspension cultures of Camptotheca acuminata. Biotechnol lett 26(22):1745–8

    CAS  PubMed  Google Scholar 

  • Pandey DK, Konjengbam M, Dwivedi P, Kaur P, Kumar V, Ray D, Ray P, Nazir R, Kaur H, Parida S, Dey A (2021) Biotechnological interventions of in vitro propagation and production of valuable secondary metabolites in Stevia rebaudiana. Applied Microbiol Biotech 28:1–22

    Google Scholar 

  • Pantaziz P, Han Z, Chatterjee D, Wyche J (1999) Water-insoluble camptothecin analogues as potential antiviral drugs. J Biomed Sci 6:1–7

    Google Scholar 

  • Pi Y, Jiang K, Hou R, Gong Y, Lin J, Sun X, Tang K (2010) Examination of camptothecin and 10-hydroxycamptothecin in Camptotheca acuminata plant and cell culture, and the affected yields under several cell culture treatments. Biocell 34(3):139–43

    PubMed  Google Scholar 

  • Pisitpaibool S, Sukrong S, Kanjanaprapakul K, Phisalaphong M (2021) Effects of Preharvest Methyl Jasmonate Elicitation and Electrical Stimulation on Camptothecin Production by In Vitro Plants of Ophiorrhiza ridleyana Craib. Appl Sci 11(10):4555

    CAS  Google Scholar 

  • Prakash L, Middha SK, Mohanty SK, Swamy MK (2016) Micropropagation and validation of genetic and biochemical fidelity among regenerants of Nothapodytes nimmoniana (Graham) Mabb. employing ISSR markers and HPLC. 3 Biotech 6(2):171

    PubMed  PubMed Central  Google Scholar 

  • Razaq M, Heikrujam M, Chetri SK, Agrawal V (2013) In vitro Clonal Propagation and Genetic Fidelity of the Regenerants of Spilanthes calva DC. Using RAPD and ISSR Marker. Physiol Mol Biol Plants 19(2):251–260

    CAS  PubMed  Google Scholar 

  • Roja G, Heble MR (1994) The quinoline alkaloids camptothecin and 9-methoxycamptothecin from tissue cultures and mature trees of Nothapodytes foetida. Phytochemistry 36(1):65–6

    CAS  Google Scholar 

  • Roja G (2008) Micropropagation and production of camptothecin from in vitro plants of Ophiorrhiza rugosa var. decumbens. Nat Prod Res 22(12):1017–23

    CAS  PubMed  Google Scholar 

  • Saito K, Sudo H, Yamazaki M, Nakamura MK, Kitajima M, Takayama H, Aimi N (2001) Feasible production of camptothecin by hairy root culture of Ophiorrhiza pumila. Plant Cell Rep. 20:267–271

    CAS  Google Scholar 

  • Sakato K, Tanaka H, Mukai N, Misawa M (1974) Isolation and identification of camptothecin from cells of Camptotheca acuminata suspension cultures. Agr Biol Chem 38:217–218

    CAS  Google Scholar 

  • Sankar-Thomas YD, Lieberei R (2011) Camptothecin accumulation in various organ cultures of Camptotheca acuminata Decne grown in different culture systems. Plant Cell Tiss Org Cult 106(3):445–54

    CAS  Google Scholar 

  • Sankar TYD (2010) In vitro culture of Camptotheca acuminata (Decaisne) in temporary immersion system (TIS): growth, development and production of secondary metabolites. PhD thesis, University Hamburg, Germany.

  • Singh SK, Rai MK, Sahoo L (2012) An improved and efficient micropropagation of Eclipta alba through transverse thin cell layer culture and assessment of clonal fidelity using RAPD analysis. Ind Crop Prod 37:328–333R

  • Singh SR, Dalal S, Singh R, Dhawan AK, Kalia RK (2013) Evaluation of Genetic Fidelity of in vitro Raised Plants of Dendrocalamus asper (Schult. & Schult. F.) Backer Ex K. Heyne Using DNA-Based Markers. Acta Physiol Plant 35(2):419–430

    CAS  Google Scholar 

  • Song SH, Byun SY (1998) Elicitation of Camptothecin Production in Cell Cultures of Camptotheca acuminata. BiotechnolBioprocess Eng. 3:91–95. https://doi.org/10.1007/BF02932509

    Article  Google Scholar 

  • Sudo H, Yamakawa T, Yamazaki M, Aimi N, Saito K (2002) Bioreactor production of camptothecin by hairy root cultures of Ophiorrhiza pumila. Biotechnol Lett 24(5):359–63

    CAS  Google Scholar 

  • Sundravelan R, Desireddy B, Ciddi V (2004) Production of camptothecines from callus cultures ofNothapodytes foetida (Wight) Sleumer

  • Tafur S, Nelson JD, Delong DC, Svoboda GH (1979) Antiviral components of Ophiorrhiza mungos. Isolation ofcamptothecin and 10-methoxycamptothecin. Lloydia 39:261–262

    Google Scholar 

  • Taher M, Shaari SS, Susanti D, Arbain D, Zakaria ZA (2020) Genus Ophiorrhiza: A review of its distribution, traditional Uses, phytochemistry, biological activities and propagation. Molecules 25(11):2611

    CAS  PubMed Central  Google Scholar 

  • Thomas CJ, Rahier NJ, Hecht SM (2004) Camptothecin: current perspectives. Bioorg Med Chem 12(7):1585–1604

    CAS  PubMed  Google Scholar 

  • van Hengel AJ, Harkes MP, Wichers HJ, Hesselink PG, Buitelaar RM (1992) Characterization of callus formation and camptothecin production by cell lines of Camptotheca acuminata. Plant Cell Tissue Org Cult 28:11–18

    Google Scholar 

  • van Hengel AJ, Buitelaar RM, Wichers HJ (1994) Camptotheca acuminate Decne: in vitro culture and the production of camptothecin. In: Bajaj YPS (ed) Biotechnology in Agriculture and Forestry, Vol 28, Medicinal and Aromatic Plants VII. Springer-Verlag, Berlin Heidelber, pp 98–112

    Google Scholar 

  • Veeresham C, Shuler ML (2000) Camptothecine from callus cultures of Nothapodytes foetida. Biotechnol Lett 22:129–132

    Google Scholar 

  • Viraporn V, Yamazaki M, Saito K, Denduangboripant J, Chayamarit K, Chuanasa T, Sukrong S (2011) Correlation of camptothecin-producing a relationship in the genus Ophiorrhiza. Planta Med 77(7):759–764

    CAS  PubMed  Google Scholar 

  • Wall ME, Wani MC, Cook CE, Palmer KH, McPhail AT, Sim GA (1966) J Am Chem Soc 88:3888

    CAS  Google Scholar 

  • Wang Y, Clack B, Li S (2015) Genetic Diversity in Camptotheca Decaisne. Pharm Crop 5(1):120–134

    Google Scholar 

  • Watase I, Sudo H, Yamazaki M, Saito K (2004) Regeneration of transformed Ophiorrhiza pumila plants producing camptothecin. Plant Biotechnol 21:337–342

    CAS  Google Scholar 

  • Wiedenfeld H, Furmanowa M, Roeder E, Guzewska J, Gustowski H (1997) Camptothecin and 10-hydroxycamptothecin in callus and plantlets of Camptotheca acuminata. Plant Cell Tiss Org Cult 49:213–218

    CAS  Google Scholar 

  • Wu KX, Chu JJH (2017) Antiviral screen identifies EV71 inhibitors and reveals camptothecin-target, DNAtopoisomerase 1 as a novel EV71 host factor. Antiviral research 143:122–133

    CAS  PubMed  Google Scholar 

  • Ya-ut P, Chareonsap P, Sukrong S (2011) Micropropagation and hairy root culture of Ophiorrhiza alata Craib for camptothecin production. Biotechnol Lett 33(12):2519–26

    CAS  PubMed  Google Scholar 

  • Yamazaki M, Mochida K, Asano T, Nakabayashi R, Chiba M, Udomson N, Yamazaki Y, Goodenowe DB, Sankawa U, Yoshida T, Toyoda A (2013) Coupling deep transcriptome analysis with untargeted metabolic profiling in Ophiorrhiza pumila to further the understanding of the biosynthesis of the anti-cancer alkaloid camptothecin and anthraquinones. Plant Cell Physiol 54(5):686–96

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamazaki Y, Sudo H, Yamazaki M, Aimi N, Saito K (2003) Camptothecin biosynthetic genes in hairy roots of Ophiorrhiza pumila: cloning, characterization and differential expression in tissues and by stress compounds. Plant Cell Physiol 44(4):395–403

    CAS  PubMed  Google Scholar 

  • Zhang Y, Jiang K, Qing D, Huang B, Jiang J, Wang S, Yan C (2017) Accumulation of camptothecin and 10-hydroxycamptothecin and the transcriptional expression of camptothecin biosynthetic genes in Camptotheca acuminata cambial meristematic and dedifferentiated cells. RSC Adv 7(20):12185–93

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

MKS prepared the primary draft. SN and SP revised it and designed the figures. NKJ and BP prepared the tables and contributed to the discussion part. KCR edited the figures and wrote the discussion part and AD edited and supervised the entire work. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Mallappa Kumara Swamy or Abhijit Dey.

Ethics declarations

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swamy, M.K., Nath, S., Paul, S. et al. Biotechnology of camptothecin production in Nothapodytes nimmoniana, Ophiorrhiza sp. and Camptotheca acuminata. Appl Microbiol Biotechnol 105, 9089–9102 (2021). https://doi.org/10.1007/s00253-021-11700-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-021-11700-5

Keywords

Navigation