Skip to main content
Log in

Ion exchange separation of strontium and rubidium on Dowex 50W-X8, using the complexation properties of EDTA and DCTA

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A chromatographic method for separation of strontium from rubidium, using the unique alkaline-earth metal complexation ability of the carboxylic acids EDTA and DCTA is proposed. The method was developed in order to improve the effectiveness of 87Sr/86Sr isotope studies with ICP–QMS. Due to the isobaric overlap of 87Rb with 87Sr, strontium needs to be separated from rubidium prior to sample analysis with ICP–QMS. The method involves the retention of strontium, calcium, magnesium, and rubidium on Dowex 50W-X8 resin in its NH4 + form, followed by elution of the divalent cations as metal EDTA or DCTA complexes. Because divalent cations have different EDTA and DCTA complex formation constants, it is possible to separate them under the correct conditions. Neither EDTA nor DCTA form complexes with alkali metals, thus rubidium remains retained by the column and is later eluted using HNO3. Both EDTA and DCTA elution methods were tested with different concentrations of the elements to determine the effect of increased concentration on separation efficiency. The EDTA elution procedure was proved to be effective in separating strontium from both calcium and rubidium, while the DCTA method was found to be even more effective, because strontium is separated from all the elements involved in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Almeida CMR, Vasconcelos MTSD (2001) J Anal At Spectrom 16:607–611

    Article  CAS  Google Scholar 

  2. Almeida CMR, Vasconcelos MTSD (2004) Food Chem 85:7–12

    Article  CAS  Google Scholar 

  3. Horn P, Schaaf P, Holbach B, Holzl S, Eschenauer H (1993) Z Lebensm Unters Forsch 196:407–409

    Article  CAS  Google Scholar 

  4. Barbaste M, Robinson K, Guilfoyle S, Medina B, Lobinski R (2002) J Anal At Spectrom 2:135–137

    Article  Google Scholar 

  5. Kawasaki A, Oda HW, Hirata T (2002) Soil Sci Plant Nutr 48:635–640

    CAS  Google Scholar 

  6. Dufour E, Holmden C, Van Neer W, Zazzo A, Patterson WP, Degryse P, Keppens E (2006) J Archeol Sci 2:1–14

    Google Scholar 

  7. Crittenden RG, Andrew AS, Lefournour M, Young MD, Middleton H, Stockmann R (2007) Int Dairy J 17:421–428

    Article  CAS  Google Scholar 

  8. Vanhaecke F, De Wannemacker G, Moens L, Hertogen J (1999) J Anal At Spectrom 14:1691–1696

    Article  CAS  Google Scholar 

  9. Chassery S, Grousset FE, Lavaux G, Quetel CR (1998) Fresenius J Anal Chem 360:230–234

    Article  CAS  Google Scholar 

  10. Burton GR, Morgan VI, Boutron CF, Rosman KJR (2002) Anal Chim Acta 469:225–233

    Article  CAS  Google Scholar 

  11. Latkoczy C, Prohaska T, Stingeder G, Teschler-Nicola M (1998) J Anal At Spectrom 13:561–566

    Article  CAS  Google Scholar 

  12. Pin C, Briot D, Bassin C, Poitrasson F (1994) Anal Chim Acta 298:209–217

    Article  CAS  Google Scholar 

  13. Banerjee S, Mukhopadhyay K, Lahiri S (2002) J Radioanal Nucl Chem 252:157–160

    Article  CAS  Google Scholar 

  14. Garcia-Ruiz S, Moldovan M, Alonso IG (2007) J Chromatogr A 1149:274–281

    Article  CAS  Google Scholar 

  15. Strelow FWE, Weinert CHSW (1970) Talanta 17:1–12

    Article  CAS  Google Scholar 

  16. Skoog DA (2004) Complexation reactions and titrations. In: West DM, Holler FJ, Crouch SR (eds) Fundamentals of analytical chemistry. Thomson Brooks Cole, CA, USA

    Google Scholar 

  17. Pribil R (1972) Analytical applications of EDTA and related compounds. Pergamon Press, Germany

    Google Scholar 

  18. Dash BC, Tripathy PK, Kanungo BK (1991) Monatsh Chem 122:341–348

    Article  CAS  Google Scholar 

  19. Almeida CMR, Vasconcelos MTSD (1999) J Anal At Spectrom 14:1815–1821

    Article  CAS  Google Scholar 

  20. Montaser A (1998) Inductively coupled plasma mass spectrometry. Wiley, New York

    Google Scholar 

  21. Ringbom A (1963) Complexation in analytical chemistry. Interscience, New York

    Google Scholar 

  22. Coetzee PP, Steffens FE, Eiselen RJ, Augustyn OP, Balcaen L, Vanhaecke F (2005) J Agric Food Chem 53:5060–5066

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. P. Coetzee.

About this article

Cite this article

Vorster, C., van der Walt, T.N. & Coetzee, P.P. Ion exchange separation of strontium and rubidium on Dowex 50W-X8, using the complexation properties of EDTA and DCTA. Anal Bioanal Chem 392, 287–296 (2008). https://doi.org/10.1007/s00216-008-2260-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2260-0

Keywords

Navigation