Skip to main content
Log in

The aromatic fullerene-like silicon cage with 12 Si5 pentagons stabilized by a V3 unit

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Silicon clusters doped with transition-metal (TM) atoms not only can hold stable fullerene-like structures, but also can exhibit unique electronic properties. Multiple TM doped silicon clusters are ideal models for investigating semiconductor nanomaterials and localized effects of condensed states. In this work, the geometrical and electronic properties of three V atoms doped anionic, neutral, and cationic Si20 clusters were investigated using quantum chemical calculations and a DFT-based unbiased search based on the particle swarm optimization (CALYPSO) software. The global minima of anionic, neutral, and cationic V3Si20 clusters were found to all hold a fullerene-like silicon cage with 12 Si5 pentagons stabilized by a V3 unit. The three V atoms exhibit strong interactions based on the bonding length, Wiberg bond orders, electronic charge density surfaces, and MOs. Moreover, the V atoms act as the electron acceptors on the basis of the natural population analysis (NPA), atomic dipole moment corrected Hirshfeld (ADCH) population, and atoms in molecules (AIM) population. Furthermore, V3Si20ˉ, V3Si20, and V3Si20+ show significant aromaticity according to the nucleus-independent chemical shift (NICS), aromatic stabilization energy (ASE), and multicenter bond index calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zutic I, Fabian J, Sarma SD (2004) Rev Mod Phys 76:323

    CAS  Google Scholar 

  2. Zdetsis AD (2007) Phys Rev B 76:075402

    Google Scholar 

  3. Röthlisberger U, Andreoni W, Parrinello M (1994) Phys Rev Lett 72:665

    PubMed  Google Scholar 

  4. Kumar V, Kawazoe Y (2001) Phys Rev Lett 87:045503

    CAS  PubMed  Google Scholar 

  5. Singh AK, Briere TM, Kumar V, Kawazoe Y (2003) Phys Rev Lett 91:146802

    PubMed  Google Scholar 

  6. Kong XY, Xu HG, Zheng WJ (2012) J Chem Phys 137:064307

    PubMed  Google Scholar 

  7. Ma WQ, Chen FY (2013) J Mol Model 19:4555

    CAS  PubMed  Google Scholar 

  8. Robles R, Khanna SN (2009) Phys Rev B 80:115414

    Google Scholar 

  9. Li JR, Wang GH, Yao CH, Mu YW, Wan JG, Han M (2009) J Chem Phys 130:164514

    PubMed  Google Scholar 

  10. Li JR, Yao CH, Mu YW, Wan JG, Han M (2009) J Mol Struct 916:139

    CAS  Google Scholar 

  11. Kumar V (2006) Comput Mater Sci 36:1

    CAS  Google Scholar 

  12. Neukermans S, Wang X, Veldeman N, Janssens E, Silverans RE, Lievens P (2006) Int J Mass Spectrom 252:145

    CAS  Google Scholar 

  13. Koyasu K, Akutsu M, Mitsui M, Nakajima A (2005) J Am Chem Soc 127:4998

    CAS  PubMed  Google Scholar 

  14. Claes P, Janssens E, Ngan VT, Gruene P, Lyon JT, Harding DJ, Fielicke A, Nguyen MT, Lievens P (2011) Phys Rev Lett 107:173401

    CAS  PubMed  Google Scholar 

  15. Lu J, Nagase S (2003) Phys Rev Lett 90:115506

    PubMed  Google Scholar 

  16. Wang J, Zhao J, Ma L, Wang G, King RB (2007) Nanotechnology 18:235705

    Google Scholar 

  17. Khanna SN, Rao BK, Jena P (2002) Phys Rev Lett 89:01680301

    Google Scholar 

  18. Janssens E, Lievens P (2011) Adv Nat Sci 2:023001

    Google Scholar 

  19. Kumar V, Kawazoe Y (2002) Phys Rev B 65:073404

    Google Scholar 

  20. Ma L, Zhao J, Wang J, Lu Q, Zhu L, Wang G (2005) Chem Phys Lett 411:279

    CAS  Google Scholar 

  21. Koukaras NE, Garoufalis CS, Zdetsis DA (2006) Phys Rev B 73:235417

    Google Scholar 

  22. Kong LZ, Chelikowsky JR (2008) Phys Rev B 77:073401

    Google Scholar 

  23. Ponce-Vargas M, Muñoz-Castro A (2018) J Phys Chem C 122:12551

    CAS  Google Scholar 

  24. Sen A, Sen P (2017) J Phys Chem C 121:28490

    CAS  Google Scholar 

  25. Shibuta M, Ohta T, Nakaya M, Tsunoyama H, Eguchi T, Nakajima A (2015) J Am Chem Soc 137:14015

    CAS  PubMed  Google Scholar 

  26. Liu Y, Li GL, Gao AM, Chen HY, Finlow D, Li QS (2011) Eur Phys J D 64:27

    CAS  Google Scholar 

  27. Guoa P, Zheng L, Zheng JM, Zhang R, Yang L, Ren Z (2011) Appl Surf Sci 258:705

    Google Scholar 

  28. Zhao R-N, Han J-G, Bai J-T, Liu F-Y, Sheng L-S (2010) Chem Phys 372:89

    CAS  Google Scholar 

  29. Zhao RN, Han JG, Bai JT, Sheng LS (2010) Chem Phys 378:82

    CAS  Google Scholar 

  30. Wang J, Liu Y, Li YC (2010) Phys Lett A 374:2736

    CAS  Google Scholar 

  31. Chuang F, Hsu C, Hsieh Y, Albao M (2010) Chin J Phys 48:82

    CAS  Google Scholar 

  32. Grubisic A, Ko YJ, Wang HP, Bowen KH (2009) J Am Chem Soc 131:10783

    CAS  PubMed  Google Scholar 

  33. Yang AP, Ren Z-Y, Guo P, Wang G-H (2008) J Mol Struct 856:88

    CAS  Google Scholar 

  34. Xia XX, Hermann A, Kuang XY, Jin YY, Lu C, Xing XD (2016) J Phys Chem C 120:677

    CAS  Google Scholar 

  35. Koyasu K, Atobe J, Akutsu M, Mitsui M, Nakajima A (2007) J Phys Chem A 111:42

    CAS  PubMed  Google Scholar 

  36. Ohara M, Koyasu K, Nakajima A, Kaya K (2003) Chem Phys Lett 371:490

    CAS  Google Scholar 

  37. Yang B, Xu X-L, Xu H-G, Farooq U, Zheng W-J (2019) Phys Chem Chem Phys 21:6207

    CAS  PubMed  Google Scholar 

  38. Lu S-J, Xu X, Cao G-J, Xu H-G, Zheng W (2018) J Chem Phys 149:174314

    PubMed  Google Scholar 

  39. Lu S-J, Xu X-L, Feng G, Xu H-G, Zheng W-J (2016) J Phys Chem C 120:25628

    CAS  Google Scholar 

  40. Lu S-J, Cao G-J, Xu X-L, Xu H-G, Zheng W-J (2016) Nanoscale 8:19769

    CAS  PubMed  Google Scholar 

  41. Lu SJ, Hu LR, Xu XL, Xu HG, Chen H, Zheng WJ (2016) Phys Chem Chem Phys 18:20321

    CAS  PubMed  Google Scholar 

  42. Kong XY, Deng XJ, Xu HG, Yang Z, Xu XL, Zheng WJ (2013) J Chem Phys 138:244312

    PubMed  Google Scholar 

  43. Xu HG, Wu MM, Zhang ZG, Yuan JY, Sun Q, Zheng WJ (2012) J Chem Phys 136:104308

    PubMed  Google Scholar 

  44. Xu HG, Wu MM, Zhang ZG, Sun Q, Zheng WJ (2011) Chin Phys B 20:043102

    Google Scholar 

  45. Han JG, Zhao RN, Duan YH (2007) J Phys Chem A 111:2148

    CAS  PubMed  Google Scholar 

  46. Ji W, Luo C (2012) Int J Quantum Chem 112:2525

    CAS  Google Scholar 

  47. Ji W-X, Luo C (2010) Model Simul Mater Sci Eng 18:025011

    Google Scholar 

  48. Lu S-J, Xu H-G, Xu X-L, Zheng W-J (2017) J Phys Chem C 121:11851

    CAS  Google Scholar 

  49. Pham HT, Majumdar D, Leszczynski J, Nguyen MT (2017) Phys Chem Chem Phys 19:3115

    CAS  PubMed  Google Scholar 

  50. Mai NT, Tung NT, Thuy PT, Hue NTM, Cuong NT (2017) Comput Theor Chem 1117:124

    Google Scholar 

  51. Lu S-J, Xu X-L, Xu H-G, Zheng W-J (2018) J Chem Phys 148:244306

    PubMed  Google Scholar 

  52. Yang B, Xu H, Xu X, Zheng W (2018) J Phys Chem A 122:9886

    CAS  PubMed  Google Scholar 

  53. Lu S-J, Wu L-S, Yin B-H, Lin F, Chao M-Y (2019) Mol Phys. https://doi.org/10.1080/00268976.2019.1656350

    Article  Google Scholar 

  54. Lu S-J (2019) Mol Phys. https://doi.org/10.1080/00268976.2019.1682209

    Article  Google Scholar 

  55. Wang J, Liu JH (2008) J Phys Chem A 112:4562

    CAS  PubMed  Google Scholar 

  56. Zhao R-N, Han J-G, Duan Y-H (2014) Thin Solid Films 556:571

    CAS  Google Scholar 

  57. Palagin D, Teufl T, Reuter K (2013) J Phys Chem C 117:16182

    CAS  Google Scholar 

  58. Lu S-J, Wu L-S, Lin F (2018) Chem Phys Lett 709:60

    CAS  Google Scholar 

  59. Lu S-J (2018) Chem Phys Lett 713:58

    CAS  Google Scholar 

  60. Lu S-J, Wu L-S, Lin F (2018) Chem Phys Lett 707:108

    CAS  Google Scholar 

  61. Lu S-J, Wu L-S, Lin F (2019) Theor Chem Acc 138:48

    Google Scholar 

  62. Xu H-G, Zhang Z-G, Feng Y, Yuan J, Zhao Y, Zheng W (2010) Chem Phys Lett 487:204

    CAS  Google Scholar 

  63. Xu HG, Kong XY, Deng XJ, Zhang ZG, Zheng WJ (2014) J Chem Phys 140:024308

    PubMed  Google Scholar 

  64. Huang X, Xu H-G, Lu S, Su Y, King RB, Zhao J, Zheng W (2014) Nanoscale. https://doi.org/10.1039/C4NR03130J

    Article  PubMed  PubMed Central  Google Scholar 

  65. Huang X, Lu S-J, Liang X, Su Y, Sai L, Zhang Z-G, Zhao J, Xu H-G, Zheng W (2015) J Phys Chem C 119:10987

    CAS  Google Scholar 

  66. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich A, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2009) Gaussian 09, Revision B0.1. Gaussian Inc., Wallingford

    Google Scholar 

  67. Mardirossian N, Head-Gordon M (2017) Mol Phys 115:2315

    CAS  Google Scholar 

  68. Goerigk L, Hansen A, Bauer C, Ehrlich S, Najibia A, Grimme S (2017) Phys Chem Chem Phys 19:32184

    CAS  PubMed  Google Scholar 

  69. Becke AD (1993) J Chem Phys 98:1372

    CAS  Google Scholar 

  70. Becke AD (1993) J Chem Phys 98:5648

    CAS  Google Scholar 

  71. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    CAS  Google Scholar 

  72. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623

    CAS  Google Scholar 

  73. Woon DE, Dunning THJ (1993) J Chem Phys 98:1358

    CAS  Google Scholar 

  74. Balabanov NB, Peterson KA (2005) J Chem Phys 123:064107

    Google Scholar 

  75. Lu S-J, Xu X-L, Cao G-J, Xu H-G, Zheng W-J (2018) J Phys Chem C 122:2391

    CAS  Google Scholar 

  76. Lu S-J (2019) J Mol Struct 1183:202

    CAS  Google Scholar 

  77. Lv J, Wang YC, Zhu L, Ma YM (2012) J Chem Phys 137:084104

    PubMed  Google Scholar 

  78. Lu S-J, Wu L-S, Lin F (2018) Comput Theor Chem 1139:102

    CAS  Google Scholar 

  79. Lu S-J, Farooq U, Xu H-G, Xu X-L, Zheng W-J (2019) Chin J Chem Phys 32:229

    CAS  Google Scholar 

  80. Francl MM, Pietro WJ, Hehre WJ (1982) J Chem Phys 77:3654

    CAS  Google Scholar 

  81. Rassolov VA, Pople JA, Ratner MA, Windus TL (1998) J Chem Phys 109:1223

    CAS  Google Scholar 

  82. Purvis GD, Bartlett RJ (1982) J Chem Phys 76:1910

    CAS  Google Scholar 

  83. Scuseria GE, Schaefer HF (1989) J Chem Phys 90:3700

    CAS  Google Scholar 

  84. Lu T, Chen F (2012) J Comput Chem 33:580

    PubMed  Google Scholar 

  85. Reed AE, Weinhold F (1983) J Chem Phys 78:4066

    CAS  Google Scholar 

  86. Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83:735

    CAS  Google Scholar 

  87. Reed AE, Weinhold F (1985) J Chem Phys 83:1736

    CAS  Google Scholar 

  88. Carpenter JE (1978) Extension of lewis structure concepts to open-shell and excited-state molecular species. PhD. Thesis, University of Wisconsin, Madison, WI

  89. Naaman R, Vager Z (1988) In the structure of small molecules and ions. Plenum Press, New York, pp 1115–1118

    Google Scholar 

  90. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899

    CAS  Google Scholar 

  91. Carpenter JE, Weinhold F (1988) J Mol Struct 169:41

    Google Scholar 

  92. Akola J, Manninen M, Hakkinen H, Landman U, Li X, Wang LS (1999) Phys Rev B 60(R11):297

    Google Scholar 

  93. Tozer DJ, Handy NC (1998) J Chem Phys 109:10180

    CAS  Google Scholar 

  94. Langridge-Smith PRR, Morse MD, Hansen GP, Smalley RE (1984) J Chem Phys 80:593

    CAS  Google Scholar 

  95. Wyckoff RWG (1963) Crystal structures. Interscience, New York.

    Google Scholar 

  96. Lu S-J, Wu L-S, Yin B-H, Lin F, Chao M-Y (2019) Phys Chem Chem Phys 21:12241

    CAS  PubMed  Google Scholar 

  97. Peterson KA, Figgen D, Dolg M, Stoll H (2007) J Chem Phys 126:124101

    PubMed  Google Scholar 

  98. Lombardi JR, Davis B (2002) Chem Rev 102:2431

    CAS  PubMed  Google Scholar 

  99. Zhu XL, Zeng XC, Lei YA, Pan B (2004) J Chem Phys 120:8985

    CAS  PubMed  Google Scholar 

  100. Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297

    CAS  PubMed  Google Scholar 

  101. Xu C, Taylor TR, Burton GR, Neumark DM (1998) J Chem Phys 108:1395

    CAS  Google Scholar 

  102. Zubarev DY, Boldyrev AI, Li X, Cui L-F, Wang L-S (2005) J Phys Chem A 109:11385

    CAS  PubMed  Google Scholar 

  103. Peppernick SJ, Gunaratne KDD, Sayres SG, AW C Jr (2010) J Chem Phys 132: 044302

  104. Schleyer PR, Christoph M, Dransfeld A, Jiao H, Hommes NJRE (1996) J Am Chem Soc 118:6317

    CAS  PubMed  Google Scholar 

  105. Schleyer PR, Jiao H, Hommes NJRE, Malkin VG, Malkina OL (1997) J Am Chem Soc 119:12669

    CAS  Google Scholar 

  106. Chen Z, Wannere CS, Corminboeuf C, Puchta R, Schleyer PR (2005) Chem Rev 105:3842

    CAS  PubMed  Google Scholar 

  107. Fallah-Bagher-Shaidaei H, Wannere CS, Corminboeuf C, Puchta R, Schleyer PR (2006) Org Lett 8:863

    CAS  PubMed  Google Scholar 

  108. Lewars E Computational chemistry-introduction to the theory and applications of molecular and quantum mechanics, 2ed, P307.

  109. Giambiagi M, Giambiagi MS, Mundim KC (1990) Struct Chem 1:423

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Natural Science Foundation of Shandong Province, China (Grant No. ZR2018BB040), Open Funds of Beijing National Laboratory for Molecular Sciences (Grant Nos. Z191100007219009 and BNLMS201804), and Research Start-up Funds (Doctoral Science Foundation, Grant No. XY18BS02) of Heze University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng-Jie Lu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

214_2020_2636_MOESM1_ESM.doc

Supplementary material for the Cartesian coordinates of the low-lying isomers of V3Si20ˉ/0/+clusters, theoretical VDEs and ADEs of the low-lying isomers of V3Si20ˉ were calculated at the different levels of theory, and the typical mass spectrum of V1-3Sinˉ clusters at the sample mole ratio 1:1 (DOC 797 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, SJ., Wu, YF. The aromatic fullerene-like silicon cage with 12 Si5 pentagons stabilized by a V3 unit. Theor Chem Acc 139, 116 (2020). https://doi.org/10.1007/s00214-020-02636-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-020-02636-6

Keywords

Navigation