
Going AIPS:
A Programmer’s Guide to the NRAO

Astronomical Image Processing System
Version 15 April 90

VOLUME 1

ABSTRACT

This manual is designed for persons wishing to write programs using the NRAO Astronomical
Image Processing System (AIPS). It should be useful for a wide range of applications, from making
minor changes in existing programs to writing major new applications routines. All basic aspects
of AIPS programming are dealt with in some detail.

AIPS programmers:
Image construction and applications routines
Spectroscopy
Polarization and VLBI
TVs and AIPS
UNIX and Cray COS implementations
Data formats
VLBI
Imaging
I^Tjjpt conversion

Bill Cotton —
Phil Diamond —
Chris Flatters —
Eric Greisen —
Kerry Hilldrup —
Gareth Hunt —
Bill Junor —
Glen Langston —
Nancy Maddalena —

C ontents
1 In tro d u c tio n 1-1

1.1 Scope .. 1-1
1.2 Hey You, Read T h i s .. 1-1
1.3 Philosophy .. 1-2
1.4 An Overview of the AIPS S ystem ..1-2

1.4.1 T a s k s ... 1-3
1.4.2 V e r b s ... 1-3
1.4.3 D ata F ile s ...1-3
1.4.4 I/O .. 1-3

1.5 S ty le ... 1-4
1.5.1 Precursor C om m ents... 1-4
1.5.2 Body C o m m en ts ..1-5
1.5.3 In d e n ta tio n ..1-5
1.5.4 CONTINUE S ta tem en ts... 1-6
1.5.5 Statement N u m b e rs ..1-6
1.5.6 B lan k s... 1-6
1.5.7 Modular Code ... 1-6
1.5.8 Portability ..1-6

1.6 L a n g u a g e ... 1-7
1.6.1 F O R T R A N ..1-7
1.6.2 Statement O r d e r ..1-8
1.6.3 IN CLU D ES..1-8
1.6.4 Dimension D eclaration.. 1-9
1.6.5 SAVE Statements ...1-9

1.7 D ocum entation ..1-9
1.7.1 User Documentation .. 1-9
1.7.2 Programmer Documentation ..1-10

2 S kele ton Tasks 2—1
2.1 Data Modification Tasks — FUDGE and T A F F Y ... 2-1

2.1.1 F U D G E ..2-2
2.1.2 T A F F Y .. 2-4

2.2 Data Entry Tasks (UVFIL and CANDY) ..2-7
2.2.1 UVFIL .. 2-8

2.2.2 C A N D Y .. 2-11
2.3 Modifying a Skeleton T a sk ...2-13

3 G e ttin g S ta r te d — Tasks 3—1
3.1 Overview ... 3-1
3.2 The Cost of Machine Independence...3-2

3.2.1 Character S trings..3-2
3.3 Task Name C onventions..3-3

i

3.4 Getting the P a ra m e te rs ...3-3
3.4.1 In AIPS (Help f ile) ..3-3
3.4.2 At Task Startup (G T P A R M)...3-5
3.4.3 While a Task is Running (G T T E L L)..3-5

3.5 Restarting A I P S ..3-6
3.6 INCLUDE f i le s ...3-6
3.7 Initializing Commons... 3-7

3.7.1 Device Characteristics Common .. 3-7
3.7.2 Catalog Pointer C o m m o n ... 3-8
3.7.3 History C om m on...3-9
3.7.4 TV C o m m o n ... 3-9
3.7.5 UV data pointer co m m o n ... 3-9
3.7.6 Files common, D F IL .IN C ... 3-9

3.8 Input and Output File N am es... 3-10
3.9 Copying Extension F i le s ...3-10

3.9.1 H is to r y ...3-10
3.9.2 Extension tables (ALLTAB, TABCOP) ..3-11

3.10 Communication with the u s e r ... 3-11
3.10.1 Writing m essages... 3-11
3.10.2 Turning off system messages ...3-12
3.10.3 Writing to the line p r in te r ... 3-12
3.10.4 Writing to the Terminal (ZTTYIO) .. 3-13

3.11 Scratch F i l e s .. 3-14
3.12 Terminating the P ro g ra m ..3-15
3.13 Batch Jobs ... 3-16
3.14 Installing a New Task .. 3-16
3.15 IN C LU D ES... 3-16

3.15.1 D D C H .IN C ...3-16
3.15.2 D FIL .IN C ..3-17
3.15.3 D M SG .IN C ...3-17
3.15.4 D U V H .IN C ...3-17
3.15.5 P U V D .IN C ...3-18

3.16 R outines..3-18
3.16.1 ALLTAB ..3-18
3.16.2 C H C O P Y ..3-19
3.16.3 C H C O M P..3-19
3.16.4 C H FIL L ...3-19
3.16.5 C H L T O U ..3-20
3.16.6 CH M A TC..3-20
3.16.7 C H R 2 H ... 3-20
3.16.8 C H W M A T ...3-20
3.16.9 D I E ... 3-21
3.16.10 D IETSK ...3-21
3.16.11 E X T C O P ..3-21
3.16.12GTPARM ..3-22

3 .16 .13G T T E L L .. 3-22
3.16.14H IA D D ...3-23
3.16.15H IA D D N ..3-23
3.16.16HIAD80... 3-23
3.16.17HICLOS... 3-23
3 .16 .18H IIN IT ... 3-24
3.16.19H IM ER G ..3-24
3 .16 .20H IR E A D ..3-25
3.16.21 H ISC O P... 3-25

l i

3.16.22H 2C H R ..3-25
3.16.23MAKOUT ... 3-26
3.16.24PRTLIN..3-26
3.16.25 P S F O R M ...3-27
3 .16 .26R E L P O P ...3-27
3.16 .27SC R E A T ...3-27
3.16.28TA B C O P...3-28
3.16.29U V PG ET...3-28
3.16.30ZDCHIN ...3-29
3.16.31 ZTTYIO ...3-30

4 T h e A IP S P ro g ra m 4-1
4.1 Overview ... 4-1
4.2 Structure of the AIPS P ro g ra m ... 4-1

4.2.1 The POPS processor..4-2
4.2.2 POPS c o m m o n s ..4-4
4.2.3 TAG and T Y P E ..4-7
4.2.4 Error H an d lin g ... 4-8
4.2.5 Memory Files ...4-9
4.2.6 Special m odes.. 4-9

4.3 Example of the POPS processor... 4-10
4.3.1 The C om piler.. 4-10
4.3.2 The In te rp re te r...4-13

4.4 Installing new V E R B S ... 4-14
4.5 Installing new A D V E R B S...4-16

4.6 P O P S G N ... 4-16
4.6.1 Function..4-16
4.6.2 P O P S D A T .H L P ..4-17

4.7 IN C L U D E S.. 4-28
4.7.1 D A P L .IN C ..4-28
4.7.2 D B A T .IN C ... 4-30
4.7.3 D B W T.IN C ... 4-30
4.7.4 D C O N .IN C ... 4-31
4.7.5 D E R R .IN C ... 4-31
4.7.6 D IO .IN C ...4-31
4.7.7 D P O P .IN C ... 4-31
4.7.8 D S M S .IN C ..4-31

5 C ata logs 5-1
5.1 Overview ... 5-1
5.2 Public and Private c a ta lo g s ..5-1

5.3 File N a m e s .. 5-1
5.4 Data C a ta lo g ... 5-2

5.4.1 Catalog Directory ...5-2
5.4.2 Header b lo c k .. 5-2
5.4.3 Directory S ection .. 5-2
5.4.4 Directory Usage ..5-3
5.4.5 Structure of The Catalog Header R ecord.. 5-3
5.4.6 Routines to Access the Data C ata log ...5-7
5.4.7 Routines to Interpret the Catalog H e a d e r ... 5-7
5.4.8 Catalog S t a t u s ... 5-8

5.5 Image Catalog ..5-8
5.5.1 O v e rv ie w ...5-8
5.5.2 Data S tructures... 5-8

iii

5.5.3 Usage n o te s ...5-9
5.5.4 S ubroutines...5-9
5.5.5 Image Catalog C o m m o n s ..5-9

5.6 Coordinate Systems ..5-10
5.6.1 Velocity and F re q u e n c y ...5-10
5.6.2 Celestial P o s it io n s .. 5-10
5.6.3 R o ta tio n s .. 5-13

5.7 Text of INCLUDE files.. 5-13
5.7.1 D C A T .IN C ...5-13
5.7.2 D H D R .IN C ... 5-13
5.7.3 D L O C .IN C ...5-14
5.7.4 D T V C .IN C ...5-14

5.8 R outines.. 5-15
5.8.1 A X E F N D .. 5-15
5.8.2 C A T D IR .. 5-15
5.8.3 C A T K E Y .. 5-16
5.8.4 C A T I O ... 5-17
5.8.5 C O O R D T .. 5-17
5.8.6 F N D X ...5-18
5.8.7 F N D Y .. 5-18
5.8.8 M A P C L S .. 5-18
5.8.9 M A PO PN .. 5-19
5.8.10 R O T F N D .. 5-19
5.8.11 S E T L O C .. 5-20
5.8.12 TVFIND .. 5-20
5.8.13 U V P G E T .. 5-20
5.8.14 X Y P I X ... 5-21
5.8.15 X Y V A L ... 5-21
5.8.16 Y C IN IT ... 5-22
5.8.17 Y C O V E R .. 5-22
5.8.18 Y C W R IT .. 5-22
5.8.19 Y C R E A D .. 5-23

6 D isk files 6—1
6.1 Overview ...6-1

6.2 Types of F ile s .. 6-1
6.3 File M anagem ent.. 6-2

6.3.1 Creating F iles ..6-2
6.3.2 Example Using Z C R E A T ..6-2
6.3.3 Destruction Routines... 6-3
6.3.4 Expansion and Contraction of F iles..6-3

6.4 I/O to Disk F i le s .. 6-3
6.4.1 Upper Level I/O R outines..6-4
6.4.2 Logical unit numbers ..6-5
6.4.3 Contents of the Device Characteristics Commons ... 6-5
6.4.4 Image F i l e s ... 6-6
6.4.5 Image File Manipulation R o u tin e s ..6-10
6.4.6 UV Data F i l e s ...6-11
6.4.7 UV Data A c c e s s ..6-15
6.4.8 Single Dish D a t a ..6-19
6.4.9 Extension files ...6-21
6.4.10 Text files .. 6-21

6.5 Bottom Level I/O R o u tin e s ... 6-23
6.5.1 ZMIO and Z W A IT .. 6-23

iv

6.5.2 ZFIO ... 6-24
6.6 Text of INCLUDE files... 6-24

6.6.1 D D C H .IN C 6-24
6.6.2 DSEL.INC ..6-24
6.6.3 D U V H .IN C ... 6-27

6.7 R outines...6-27
6.7.1 c a l c o p ..! ! ! ! ! ! ! ! ! 6-27

6.7.2 C H N D A T ...6-28
6.7.3 C O M O F F ...6-28
6.7.4 D G G E T .. 6-29
6.7.5 D G IN IT ..6-29
6.7.6 E X T IN I..6-30
6.7.7 E X T I O .. 6-31

6.7.8 G ETV IS... 6-32
6.7.9 GET1VS .. 6-32
6.7.10 K E Y IN ... 6-33

6.7.11 M APSIZ.. 6-33
6.7.12 M A P C L S ... 6-33
6.7.13 M A PO PN .. 6-34
6.7.14 M C R E A T ... ’ ’ 6-34
6.7.15 M D E S T R .. 6-35
6.7.16 M D IS K ... 6-35
6.7.17 MINIT .. ’ ’ * 6-36
6.7.18 M IN S K .. ’ 6-37
6.7.19 M S K I P ... ’ ’ 6-37
6.7.20 P L N G E T ... ’ ’ ' 6-38

6.7.21 P L N P U T ...6-39
6.7.22 S C R E A T ... 6-39

6.7.23 S D G E T ..6-40
6.7.24 S E L IN I .. 6-41
6.7.25 S E T V IS ..6-42
6.7.26 SET1V S..6-43
6.7.27 T A B IN I..6-43
6.7.28 TABIO ..6-45
6.7.29 U V C R E A ...6-46
6.7.30 UVDISK ...6-47
6.7.31 U V G E T ..$-47
6.7.32 U V IN IT .. 6-50
6.7.33 U V P G E T ...6-51
6.7.34 ZCLOSE ...6-52
6.7.35 Z C M P R S ...6-52
6.7.36 Z C R E A T ...6-53
6.7.37 Z D E S T R ...6-53
6.7.38 Z E X P N D ...6-53
6.7.39 ZFIO ... 6-54
6.7.40 Z M IO ... 6-54
6.7.41 Z O P E N ..6-54
6.7.42 Z P H F IL 6-55
6.7.43 ZTCLOS ...6-55
6.7.44 Z T O P E N ...6-56
6.7.45 Z T R E A D ...6-56
6.7.46 Z U V P A K ...6-56
6.7.47 Z U V X PN ...6-57
6.7.48 ZTXCLS ...6-57

v

6.7.49 ZTXIO ... 6-57
6.7.50 Z T X O P N .. 6-58
6.7.51 Z U V P A K .. 6-58
6.7.52 Z U V X P N .. 6-58
6.7.53 Z W A IT ... 6-59

7 H igh Level U tility R o u tin es 7-1
7.1 Overview ...7-1
7.2 File Specification.. 7-1
7.3 Data Calibration and Reformatting R o u tin e s ... 7-1
7.4 Operations on I m a g e s .. 7-1
7.5 UV Model C a lc u la tio n s ... 7-2
7.6 Image F o rm atio n .. 7-2
7.7 IN C LU D ES..7-2

7.7.1 P U V D .IN C ... 7-2
7.7.2 D FIL .IN C .. 7-3
7.7.3 D G D S .IN C ... 7-3
7.7.4 D M PR .IN C ...7-4
7.7.5 DSEL.INC ... 7-4
7.7.6 D U V H .IN C ... 7-7

7.8 R outines.. 7-7
7.8.1 A P C O N V .. 7-7
7.8.2 C A L C O P .. 7-8
7.8.3 D S K F F T .. 7-9
7.8.4 G R D C O R .. 7-9
7.8.5 MAKMAP ... 7-10
7.8.6 U V G E T ... 7-15
7.8.7 U V M D IV .. 7-17
7.8.8 UV M SU B.. 7-18

8 W aW a (“E asy”) I /O 8-1
8.1 Overview ... 8-1
8.2 Salient Features of the WaWa I/O package .. 8-1
8.3 Nam estrings..8-1
8.4 S ubrou tines..8-2

8.5 Things WaWa Can’t Do Well or At A ll..8-3
8.5.1 Non-map f ile s ..8-3
8.5.2 UV data f i l e s ..8-3
8.5.3 P lo tt in g ... 8-3
8.5.4 H is to r y ..8-3
8.5.5 More than 5 I/O Streams at a T i m e .. 8-3
8.5.6 I/O to T a p e s ..8-3

8.6 Additional goodies and “helpful” h in t s ..8-4
8.6.1 Use of L U N s ..8-4
8.6.2 WaWa co m m o n s... 8-4
8.6.3 Error return c o d e s .. 8-6

8.7 IN C LU D ES..8-6
8.7.1 D B U F .IN C ... 8-6
8.7.2 D C A T .IN C ... 8-7
8.7.3 D FIL .IN C .. 8-7
8.7.4 DITB.INC ... 8-7

8.8 Detailed Descriptions of the Subroutines...8-7
8.8.1 A2WAWA.. 8-7
8.8.2 C L E N U P .. 8-8

vi

8.8.3 F IL C L S ..8-8
8.8.4 FIL C R ... 8-8
8.8.5 F IL D E S ..8-9
8.8.6 F IL IO ... 8-9
8.8.7 F IL N U M ...8-9
8.8.8 FIL O PN ..8-10
8.8.9 G E T H D R ...8-10
8.8.10 HDRINF ...8-10
8.8.11 H2WAWA...8-11
8.8.12 IO S E T ...8-11
8.8.13 M A PC R ..8-11
8.8.14 M A P IO ..8-12
8.8.15 MAPMAX ... 8-12
8.8.16 M A PW IN ...8-12
8.8.17 M A PX Y ..8-13

8.8.18 O P E N C F 8-13
8.8.19 S A V H D R ...8-13
8.8.20 T S K B E G ...8-14
8.8.21 T S K E N D ...8-14
8.8.22 U N S C R ..8-14
8.8.23 WAWA2A...8-14

A A IP S D ire c to ry S tru c tu re a n d S oftw are M an ag em en t A - l
A .l In troduction.. A -l
A.2 Directory S tru c tu re ... A -l

A.2.1 Design Guidelines ...A -l
A.2.2 Directory Structure ..A-2
A.2.3 Mnemonics - A R E A S.D A T ...A-8

A.3 File Names For D a ta .. A-14
A.4 VMS Details ...A-15

A.4.1 Object lib raries...A-15
A.5 A-Tutorial for Programmers Using V M S ... A-16

A.5.1 Initialization and Startup Procedures ..A-16
A.5.2 Compiling and Linking.. A-16
A.5.3 Miscellaneous ro u tin e s .. A - l8
A.5.4 Compiling and Linking: An Exam ple...A -18
A.5.5 Debugging under V M S .. A-20
A.5.6 Check out system ..A-20

A.6 Unix D etails.. A-21
A.6.1 M nem onics... A-21
A.6.2 Object L ib ra r ie s ..A-21

A.7 A Tutorial for Programmers Using U n ix ... A-27
A.7.1 Initialization And Startup P ro ced u res ..A-27
A.7.2 Miscellaneous Routines ... A-35
A.7.3 Compiling and linking, an exam ple ..A-35
A.7.4 Non-standard INCLUDE f ile s ..A-39
A.7.5 Running Tasks from Private D irec to ries.. A-39
A.7.6 Debugging under U n ix .. A-39
A.7.7 Check out system ...A-39

vii

B S hopp ing lis ts B - l
B.l Introduction... B -l

B.1.1 A P -A P P L ..B-3
B .l.2 A P -F F T ... B-5
B.1.3 A P -U T IL ..B-5
B .l.4 B A T C H ... B-5
B .l.5 BINARY ..B-6
B.1.6 C A L IB R A T IO N ... B-6
B .l.7 C A T A L O G ...B-8
B .l.8 C H A R A C T E R .. B-8
B.1.9 COORDINATES... B-9
B .l. 10 E X T -A P P L ...B-9
B .l.11 E X T -U T IL ...B-10
B .l.12 F IT S ... B - l l
B .l.13 G RA PH ICS...B-12
B .l.14 H E A D E R ..B-13
B .l.15 HISTORY..B-13
B .l.16 IO -A P P L ..B-14
B.l. 17 IO-BASIC..B-14
B .l.18 IO -T V .. B-15
B .l.19 IO-UTIL ..B-15
B .l.20 IO-WAWA ...b -16
B.1.21 MAP .. b -17
B.1.22 M A P-U T IL ...B-18
B .l.23 M ATH.. B-18
B .l.24 MESSAGES ... B-20
B.1.25 M O D E L IN G ..B-20
B.1.26 PA RSIN G ..B-20
B .l.27 P L O T -A P P L ... B-21
B .l.28 P L O T -U T IL ... B-21
B.1.29 P O P S -A P P L ..B-22
B.1.30 PO PS-LA N G ..B-23
B .l.31 POPS-UTIL ..B-23
B .l.32 PRINTER ...B-23
B .l.33 SD ISH .. B-24
B .l.34 SE R V IC E ..B-24
B .l.35 S L IC E .. B-24
B.1.36 S O R T .. B-25
B .l.37 SPECTRAL ..B-25
B .l.38 S Y S T E M ..B-25
B.1.39 T A P E .. B-26
B .l.40 TERMINAL ..B-27
B .l.41 T E X T .. B-27
B .l.42 T V ...B-27
B.1.43 T V -A P P L ..B-27
B.1.44 T V -B A S IC ...B-28
B .l.45 T V -IO .. B-28
B .l.46 T V -U T IL ..B-29
B .l.47 U T IL IT Y ..B-30
B.1.48 U V ...B-31
B.1.49 U V -U T IL .. B-33
B .l.50 V L A ... B-33
B.1.51 Y 0 ...B-33
B .l.52 Y 1 ...B-33

viii

B.1.53 Y2
B.1.54 Y3
B.1.55 Z
B.1.56 Z2

X

C hapter 1
Introduction
1.1 Scope
This document is intended for programmers who are familiar with general programming practices and FOR­
TRAN in particular and who are familiar with the common techniques for manipulating astronomical data.
This manual is intended to be of use to casual as well as serious programmers wishing to program using the
AIPS system. Going A IP S is not intended to be an exhaustive description of the functions and subroutines
available in AIPS, but rather to illustrate general techniques.

1.2 H ey You, Read This
This manual is designed for a wide variety of users, ranging from those wishing to add 1 line of code to an
existing task to the poor soul who has to assume the care and feeding of AIPS in the case all the current
AIPS programmers are hit by a truck. While the weight of this manual would tend to bring on attacks of
massive depression or homicidal mania in the lighter users from the above mentioned range, it should be
noted that, for many purposes, only a small fraction of the material in this manual is necessary in order to
program in the AIPS system. The following table suggests courses of action for various situations.

• “I want to get my data into AIPS.”
There are a number of skeleton tasks which make this relatively straightforward — frequently requiring
several hours of effort. See the chapter on the skeleton tasks and ignore the rest of this manual unless
you run into problems.

• “I just want to do something simple to my data.”
See the chapter on skeleton tasks. There are two tasks, FUDGE and TAFFY, which read uv data or
an image, pass the data to a user-provided subroutine and write what comes back into a new file. All
of the messy stuff is already taken care of.

• “I have this idea.”
This requires a bit more understanding about how AIPS works. Read the rest of this chapter, the
chapter on the skeleton tasks, the chapter on tasks, and the chapter on disk I/O . Depending on the
application, several other chapters may be relevant. Then find an existing task that is closest to your
need and start from there. For a great many purposes the skeleton tasks are a good place to start.
There is also a chapter describing various high-level utility routines such as making images from uv
data or subtracting model values from uv data.

• “I have lots of ideas.”
Find a comfortable chair, open a six pack of beer and start reading.

1-1

1-2 CHAPTER 1. INTRODUCTION

• “We just bought the Whizbang 8000 computer and want to run AIPS on it.”
Read all of this manual especially chapters 10 and 15 and Appendix A, then give us a call.

• “Why didn’t you %#&(*&! see that #&*@!% truck.”
Read it all, then write the parts left out. Lots of luck.

1.3 Philosophy
The NRAO Astronomical Image Processing System (AIPS) is designed to give the astronomer an integrated
system of flexible tools with which to manipulate a wide variety of astronomical data. To be of maximum
benefit to the general astronomical community and to increase the useful lifetime of the software, the AIPS
system has gone to great lengths to isolate the effects of the particular computer and installation on which
it is run. Needless to say, this portability requirement makes the programmer’s life more difficult.

The routines which depend on the host machine or operating system are denoted by using a “Z” as the
first character of the name; these are referred to as the “Z routines” . No other “standard” routines should
depend on the host machine or operating system to work properly. Routines which depend on the particular
television display device Me denoted with names beginning with a “Y” ; these are the “Y routines” . Routines
which depend on the computing hardware (e.g., array processors, vector processors, or lack thereof) have
names beginning with a “Q” .

It has been argued that it is not worth the additional effort to isolate the machine dependencies. We are
all aware of usable packages that have died because they were strongly tied to a particular computer. VAXes
sure currently losing their position of dominance in the astronomical computing community and those with
a sufficiently long memory will recall that IBM 360s and 370s and CDC Cybers had a similar stranglehold
during the 60s and early 70s. By not tying ourselves to a particular computer or even vendor, we have the
freedom to buy hardware from the vendor who offers the most cost-effective models. This strategy should
allow the AIPS system to last longer than previous systems, so we can spend more time investigating new
algorithms and less time patching or recoding old programs every time we change computer.

In addition to isolating machine dependencies, we advocate modular program structure. By this we mean
that the main program should be relatively short and should basically call routines each of which has a well
defined and limited function. Modular coding is especially important for machines on which most programs
must be overlaid (a dying species), but it also makes the code easier to debug, easier to maintain, and very
importantly, easier from which to steal pieces. Routines which may be of use in other applications should
be coded in as general a form as possible and placed in the appropriate AIPS subroutine library. This may
take longer in the short run, but should pay off in the long run.

Another philosophical feature of AIPS is that the programs should run as quickly as possible without
making the code too difficult to maintain. This is frequently a m atter of judgment, but, in general, tricks
and excessive cleverness should be avoided.

Since many of the most expensive AIPS tasks are I/O limited, the AIPS I/O system has been designed
for maximum performance. In general, this means that I/O is done in a double-buffered mode, in as large
blocks as possible, with fixed logical record size and programs work directly out of the I/O buffers. This
makes many of the features of the I/O system, which zu*e normally hidden from the programmer, much more
obvious and allows the I/O to run as fast as the computer can manage.

The AIPS philosophy has always been that it should always be possible to determine what has been
done to a data set. For this purpose, every permanent cataloged data file has an associated history file in
which a permanent record is kept of the processing done to the data in that file. It is the responsibility of
the programmer to insure the integrity of the history. In addition to the history files, most communications
between the user and AIPS or tasks are logged in a file which can be printed.

1.4 An Overview of the AIPS System
The AIPS system consists of several distinct parts. First and most obvious to users is the program called
AIPS. This program, based around the People Oriented Parsing System (POPS), interacts with the user,

1.4. AN OVERVIEW OF THE AIPS SYSTEM 1-3

performs many of the display functions, does some manipulation of data and initiates other programs which
run asynchronously from AIPS. Functions built into AIPS are called verbs, the asynchronous programs are
called tasks, and both axe controlled by the values of parameters in the POPS processor known as adverbs.
A third type of program in the AIPS system is the stand-alone utility program which is mostly of interest
to the AIPS system manager.

1.4.1 Tasks
Communication between the AIPS program and the tasks it spawns is fairly limited. When a task is initiated
from AIPS, an external file is read which specifies the number and order of adverbs whose values are sent
to the task. These values, along with some “hidden” values, are written into a disk (TD) file. AIPS then
initiates the requested task and begins looping, waiting for the task to either disappear or put a return
code into the TD file. The task reads the TD file and depending on the value of a logical “hidden” adverb
(DOWAIT in AIPS and RQUICK in the task) may immediately restart AIPS by returning the return code.
The task then does the requested operation and before stopping, sends AIPS the return code if this was not
done previously.

AIPS may communicate with a task after it has started running via the task communication (TC) file.
A list of adverbs which are to be sent to the task is defined in the inputs file; in addition, other instructions
such as “quit” may be sent. The task must read the TC file at relevant points. It is the responsibility of the
programmer to check the TC file and take appropriate actions.

Tasks are used for operations which either require much computer memory or CPU time or both, whereas
verbs are used for operations which take no longer than a few seconds to finish. Since the tasks run
asynchronously from AIPS, the user may do other things while one or more tasks are running. Since there
is a minimal interaction between AIPS and tasks, programming tasks is much simpler than programming
verbs; AIPS does not need to be modified to install a new task. Tasks may communicate directly with the
user.

1.4.2 Verbs
Verbs are the functions built into the AIPS program itself. Many of these involve the display of images
and most of the interactive features of the AIPS system. POPS is a programming language itself, and
complicated combinations of tasks and verbs may be assembled into POPS procedures. Verbs, but not tasks,
may change the value of POPS adverbs.

The AIPS program is very modular and most verbs are implemented via a branch table contained in an
external file. Most of the verbs are called from subroutines with names like AU1, AU2, AU5C etc. A table
read from an external text file determines the subroutine and a function number for each function. The
values of adverbs are contained in a common.

1.4.3 Data Files
Data is kept in files which are cataloged in AIPS. At present we have two kinds of data (more are possible):
images and uv data. The internal structure is much like that of a FITS format tape. Associated with each
main data file may be up to 20 types of auxiliary information files with up to 255 versions of each type. The
basic information about the main data file and the existence of the auxiliary files (called extension files) is
kept in a catalog file. Bookkeeping and other information is kept in the first record of most of the extension
files. One example of the extension file is the History file in which a record of the processing of the data is
automatically logged by the AIPS tasks.

1.4.4 I/O
The AIPS system has three basic types of files and three types of I/O to access them. The main data files
which are assumed to contain the bulk of the data are accessed in a double buffered mode with large blocks
being transferred. The extension files are read by single buffered transfers of 256 integers. Both types are
intrinsically random access; however, in practice the main data file access is sequential, but the extension

1-4 CHAPTER 1. INTRODUCTION

file access is frequently random. For the main data file, I/O tasks usually work directly from the I/O buffer.
The third type of file is the text file. More details about the I/O routines can be found in the chapter on
I/O.

1.5 Style
Since AIPS is a rather large package maintained by numerous people it is important that all of the software
be written in a consistent style. The following sections describe the style in which AIPS software is to be
written.

1.5.1 Precursor Comments
Precursor comments are the principal form of detailed programmer documentation in the AIPS system. These
Me comments placed immediately following the PROGRAM, SUBROUTINE, or FUNCTION statement
which explain the purpose and methods of the routine, the input and output arguments, any use of variables
in commons, and any special coding techniques or limitations in the transportability of the routine. Precursor
comments do not need to be verbose, but they must explain most things which a programmer must know
about calling the routine. Routines must have acceptable prologue comments before they will be accepted
into the AIPS system.

The precursor section should begin with two coded comment lines which give the use of the routine and
placing it in one of a number of categories. The first of these is a one line description of the function of the
routine; this line begins with a comment delimiter followed by a “!” . The second line lists the categories in
which the routine fits; this line begins with a comment delimiter followed by a “# ” . These two lines allow
the automatic generation of software documentation.

Following the coded routine description lines is a user agreement notice which is intented to discourage
anyone from selling the AIPS software. Precursor comments describing the functionality of a routine should
be indented three columns except for the indentation of new paragraphs. Sections describing input or output
call arguments or major common variables should be set off by an “Inputs:” or “Outputs:” etc. line also
indented three columns. Descriptions of individual variables should be indented 6 columns and consist of
three parts: 1) variable name, 2) type and dimensionality and 3) function, units etc. These parts should be
arrainged into columns. The declarations of the call arguments should be separated from the declarations of
the local variables by a single (mostly blank) comment line.

As a simple example, consider:
SUBROUTINE COPY (*, KFROM, KTO)

C---
C! copies integer words Iron one array to another
C# Utility
C This software is the subject of a User agreement and is confidential
C in nature. It shall not be sold or otherwise made available or
C disclosed to third parties.

COPY transfers N integer words from KFROM to KTO
Inputs:

I I number of words to be copied
KFROM I(N) input array

Outputs:
KTO I(N) output array

INTEGER I, KFROM(*), KTO(*)
C

INTEGER I
C---------------------------------

IF (N.LE.O) GO TO 999

1.5. STYLE 1-5

DO 10 I = 1,1
KTO(I) = KFROM(I)

10 CONTINUE
C
999 RETURN

END

1.5.2 Body Commertts
“Body” comments are placed at strategic locations throughout the body of the code. They act as sign posts
to alert the reader to each logical block of code and also to clarify any difficult portions. Ideal places for
body comments are prior to DO loops and IF clauses. Body comments within a routine must all begin in
the same column and that column should be near column 41. Body comments (and precursor comments)
should be typed in lower case letters. This helps to separate visually the comments from the program text
(which must be all in upper case!!!).

1.5.3 Indentation
Another powerful tool to illustrate to the reader the logical structure of a routine is indentation. By indenting
statements to indicate that they belong together, one can enhance greatly the readability of one’s programs.
Each step of indentation shall be three (3) spaces, beginning in column 7. Numbered CONTINUE statements
should be employed to enhance the indentation pattern. DO loops and IF clauses should be indented. The
final CONTINUE and END IF statements should be indented the same as the bulk of the loop or IF block.
ELSE or ELSE IF statements should be indented the same as the corresponding IF statement. As an
example, consider:
C Multiply by transform matrix

DO 20 I = 1,3
VEC(I) = 0.0
DO 10 J = 1,3

VEC(I) = VEC(I) + TMATX(I,J)*VEC0(J)
10 CONTINUE
20 CONTINUE

C Unit vector to polar
C Case at pole

IF ((X.EQ.0.0) .AND. (Y.EQ.0.0)) THEN
ALPHA =0.0
DELTA =0.0

ELSE
ALPHA = ATAN (X, Y)
DELTA = SQRT (X*X + Y*Y)
END IF

PDIST = ATAN2 (Z, DELTA)
C Swap to increasing order

IF (A.GE.B) THEN
C = A
A = B
B = C
END IF

Z = Z ** (B-A)

1-6 CHAPTER 1. INTRODUCTION

1.5.4 CONTINUE Statem ents
All DO loops end with CONTINUE statements rather than some executable statement. This enhances
legibility as well as preventing compilation errors on those statements which are not allowed, by some
compilers, to be the last statement in a DO loop.

1.5.5 Statem ent Numbers
The use of GO TO statements is the cause of most logic errors in programming. Use of IF-THEN-ELSE
constructions can frequently simplify the logic of a routine. Statement numbers must increase through the
routine and should be integer multiples of 5 or 10. They should not exceed 999. Format numbers should
have 4 digits with the low order 3 giving the nearest preceding statement number to the first statement using
that format. All statement numbers are left justified beginning in column 2.

Statement numbers can help to clarify the logical structure of a routine. Let us consider the common
example of a routine which begins with some setup operations (e.g., file opening), then does operation set
A or B or C or D, and then does some close down operations (e.g., file closing) before returning. Where
possible, such a routine should use statement numbers 5-95 for the setup, 100-195 for set A, 200-295 for set
B, 300-395 for set C, 400-495 for set D, and 900-995 for the close down. All FORTRAN routines should
end with a RETURN or STOP (main programs only) statment labeled 999.

1.5.6 Blanks
Blank spaces can improve the readability of the routine as can parentheses. Blanks should surround equals
signs and separate multiple word statements. Parentheses are a great help in compound logical expressions.
For example,

A = B
DO 10 I = 1,10
GO TO 999
CALL KPACK (IX, IY)
IF ((A.GT.B) .AID. (C.LE.D)) THEM

1.5.7 M odular Code
Modularity in program design is a very important asset for many reasons. Complicated tasks become
clearer, to coder and reader alike, when constructed from a logical sequence of smaller operations performed
by subroutine call. Such well-ordered tasks are far easier to design, to understand, and to make work
correctly than vast monolithic single programs. Furthermore, the small operation subroutines will often
turn out to be fairly general and useful to many other tasks as well. Programmers will have to remember
that their tasks will have to run not only in the “unlimited” address space of 32-bit virtual computers, but
also in the very limited address space of older computers. Although many modern computers have large (>
Mbyte) memories, these memories are often divided amongst many users. Also many older AIPS computers
have limited memories. Therefore, programmers must remember that excessive page faulting is extremely
expensive on most virtual memory computers.

1.5.8 Portability
The code of AIPS is intended to achieve a very high degree of portability between computers. The machine
independent portion of the AIPS software must strictly conform, after preprocessing, to FORTRAN 77 rules.
Vendor extensions to the language are not allowed. Extensions to FORTRAN allowed by the FORTRAN
preprocessor are described later in the section on FORTRAN. In particular CHARACTER and numeric data
are not to be equivalenced or mixed in a common.

All of the things mentioned in this chapter should be used in moderation. One can bury good code in a
plethora of inane comments. One can inundate statements with parentheses or spread them out with blanks
until they are no longer legible. Vastly elaborate indentation and numbering schemes can confuse rather

1.6. LANGUAGE 1-7

than aid the reader. The creation of large numbers of very short, special purpose subroutines will overburden
linkage editors and AIPS’s bookkeeping schemes. (In this regard, AIPS already contains a wide range of
useful utility subroutines. Programmers should check to see if a function is already available before creating
additional subroutines.) Basically, programmers should use good common sense in applying the standards
described in this chapter.

1.6 Language
The magnitude of the AIPS project and the desire to achieve portability of the software require a high
degree of standardization in the programming language and style. One must code in a language which can
be compiled on all machines. One must follow strict rules in statement ordering and location so that simple
preprocessors may, when necessary, locate and modify the standard code. Everyone must type code in the
same way so that all programmers will be able to read it with as little effort and confusion as possible. All
experienced programmers develop a personal typing style which they prefer. To them, the rules given in
this chapter may seem arbitrary, capricious, and unworkable. Nonetheless, they are the rules to be followed
when coding for the AIPS system. Routines which do not meet these standards will not be accepted. This
project is too important and too large to allow compromise at this level. Also, we have found these rules to
be fairly comfortable — after we got used to them.

1.6.1 FORTRAN
The programming language will be ANSI standard FORTRAN 77, except for the addition of INCLUDE,
LOCAL INCLUDES, and HOLLERITH declarations and the use of a minimum number of local assembly
language (or C) Z routines when absolutely required. The extensions to FORTRAN 77 will be translated
by the preprocessor to standard FORTRAN 77. The preprocessor will include the text of INCLUDE files,
allowing the definition of “local INCLUDES” in the file and translate HOLLERITH declarations to a numeric
data type.

Hollerith data is characters coded into a numeric type variable. The use of Hollerith data is required
in some circumstances by the prohibition in FORTRAN of mixing CHARACTER and numeric data in a
common or of EQUIVALENCEing them in any way. Since the length of a character string in terms of
numeric data types is not defined character type data and numeric data may not be mixed in fixed length
records.

Due to these restrictions on the use of CHARACTERS in FORTRAN, AIPS uses data type HOLLERITH
in a limited set of circumstances, most notably in file catalog headers which are data structures containing
numeric and character data. All translation between HOLLERITH and CHARACTER data types is done
in the routines CHR2H and H2CHR which are described in Chapter 3. The only operation allowed for
HOLLERITH type data is the assignment to another HOLLERITH variable. HOLLERITH variables must
NEVER appear in DATA or W RITE statments.

AIPS FORTRAN requires that all variables be declared. This requirement, when enforced by the com­
piler, is a valuable tool for finding typos and related bugs.

A review of the entire language is inappropriate here, but programmers are urged to reread a basic
reference. (Do not read your local VAX FORTRAN manual. Use a fundamental reference such as IBM’s
FORTRAN Language manual.) In particular, programmers are reminded that the names of commons,
variables, functions, and subroutines must begin with a letter and contain no more than six (6) characters.
In AIPS, program names may have no more than five characters because of the need to append the value
of NPOPS. Comments are introduced by placing the capital letter C in column 1 of the card. No in-line
comments are allowed. Continuation statements are formed by placing a non-blank character in column 6
of the card. In AIPS, this character shall be an asterisk (*). There may be no more than 19 continuations
of a single statement. Only card columns 1-72 are used, even in comments. Executable statements at the
first level of indentation begin in column 7. TAB characters must not be left in the code after it is typed
and edited. The three non-standard statements have the forms:

1. INCLUDE ’INCS:<name> ’

1-8 CHAPTER 1. INTRODUCTION

where INCLUDE begins in column 7, the first single quote is in column 15, the <nam e> is a left justified
character string, and the second single quote follows <nam e> with no blanks. The conventions for
<nam e> will be described later. The statement causes the file called <nam e> to be inserted in the
routine in place of the INCLUDE statement. The INCS: indicates the standard include area or search
path and should be omitted for “files” given by LOCAL INCLUDES. Only a single level in INCLUDE
is allowed.

2. LOCAL INCLUDE ’<nam e> ’
where LOCAL starts in column 1 tells the preprocessor that the text following, up to the next “LOCAL
END” also starting in column 1, is to be included when a “INCLUDE ’<nam e> ’ ” line is encountered.
LOCAL INCLUDES are normally defined at the beginning of the file containing a task and should only
contain text relevant to that task, e.g. defining it’s internal commons.

3. HOLLERITH <list>
where < list> gives the list of variables to be declared as type HOLLERITH. The AIPS usage of
HOLLERITH is that 4 characters may be stored in each element.

1.6.2 Statem ent Order
Statements must be ordered as follows. The PROGRAM, FUNCTION, or SUBROUTINE statement must
occupy the first line and must begin in column 7. Then come the precursor comments, the declaration
statements, the body of the program, the format statements, and the END statement. Each of these segments
will be separated by a comment delimiter line (i.e., C followed by 71 minus signs). The last delimiters are
omitted if there are no FORMATs. The last line of the body of the routine must have the statement number
999 and be a STOP (for programs) or RETURN (for functions and subroutines) statement. There must be
no other STOP or RETURN statement in the routine.

Many computer systems allow declaration statements to occur in almost any order. However, FORTRAN
and some of the simpler compilers do not. Therefore, in AIPS, we will use the following order:

1. Data type and dimension statements: HOLLERITH, INTEGER, LOGICAL, REAL, DOUBLE PRE­
CISION and COMPLEX in any order. We prohibit DIMENSION and data types not allowed by FOR­
TRAN 77 (excluding HOLLERITH), and any use of these statements for data initialization. Note: the
use of COMPLEX arithmetic is discouraged as many compilers do not correctly compile statements
involving complex arithmetic. PARAMETER statements should be included with (usually before) the
declaration statements. Declaration, EQUIVALENCE and COMMON statments may be mixed.
We prohibit use of the COMMON statement to give the types and dimensions of variables. Use of
blank common must be reserved for cases where dynamic memory allocation is needed and the blank
common can be changed in size.

2. Data initialization statements: DATA. We prohibit the use of DATA statements to initialize variables
in commons (as do the FORTRAN standards and many compilers). The use of octal and hexadecimal
numbers in data statements is forbidden.

3. Function definitions.

1.6.3 INCLUDES
INCLUDE statements are used in AIPS primarily to provide a fixed and uniform set of declarations for
commons and data structures. The naming conventions for such INCLUDES is ’INCS:accc.INC’, where INCS:
is a logical directory name (which must be dealt with by the preprocessor), ’a ’ is P, D, or V for PARAMETER
INCLUDES (include files defining PARAMETERS), Declaration/EQUIVALENCE/COMMON includes and
includes containing DATA statments. These INCLUDES must be named in this order.

INCLUDE ' INCS:DBWT.INC'
causes the text:

1.7. DOCUMENTATION 1-9

C Include DBWT.
INTEGER BWTHUM, BWTLUM, BWTIMD, BWTREC, BWTDAT(256)
LOGICAL VASERR
CHARACTER BWTNAM*48
COMMON /BWTCHC/ BWTIAM
COMMON /BWTCH/ BWTDAT, BWTHUM, BWTLUN, BVTIND, BWTREC, WASERR

C End DBWT.

to be inserted. Note that CHARACTER variables are in a separate common from numeric variables.

1.6.4 Dim ension Declaration
The declaration of the dimensionality of arrays should be done as accurately as possible. When arrays are
passed as call arguments and the leading dimension is not passed, declare tha array “(*)” and never as “(1)” .
Arrays which are declared and equivalenced to other variables should be declared as accurately as possible.

1.6.5 SAVE Statem ents
If the value of a local variable in & subroutine or function is to be preserved between calls, it should be
mentioned in a SAVE statement. Some but, not all, compilers do this automatically but it is not required
by the definition of FORTRAN.

1.7 D ocum entation
Proper documentation for both users and programmers is vital to the success of any software system. In
the AIPS system, this documentation is primarily the responsibility of the programmer. In the following
sections the various categories of AIPS documentation are discussed.

1.7.1 User Docum entation
HELP files

The primary source of user documentation is the HELP file. This information is available to the user on-line
from the AIPS program. There are several types of help files: (1) task help files, (2) general help files, and
(3) adverb help files. The general help files aid the user in finding the name of the task or verbs for a given
operation. These entries consist of the name and a one line description of a task or verb. New tasks should
be entered into the appropriate general help files. Task help files are the primary user documentation for a
task or verb.

There are three parts of the task HELP file separated by a line of 64 - ’s. Details about the format of the
HELP file we found in the chapter on tasks.

1. INPUTS
The INPUTS section of the help file is required for any task to run. AIPS uses this section to determine
the number and order of adverbs to be sent to the task and can check on limits on the values. The
INPUTS section also contains a short description of the use of the task and of each of the adverbs. A
listing of the INPUTS section of the help file is displayed on the user’s terminal showing the current
values of the named adverbs when the user types “INPUT” to AIPS. The INPUTS section is also used
to specify any adverbs which may be send to the task during its execution through the TC file.

2. HELP
The HELP section of the help file gives a more detailed description of the function of the task and
a more complete description of the meaning of each of the adverbs than the INPUTS section. This
section should also explain the default values of the adverbs. The HELP section of the HELP file is
listed on the users terminal when the user types “HELP name” .

1-10 CHAPTER 1. INTRODUCTION

3. EXPLAIN
The EXPLAIN section of the help file should describe the techniques for properly using the task; hints
about reasonable values of the adverbs can be given here. A discussion of the interaction of the given
task with other tasks is also appropriate. It is best if someone other than the programmer writes the
EXPLAIN section of the help file. The HELP and EXPLAIN sections of the help file are written on
the line printer when the user types “EXPLAIN name” to AIPS.

A IP S Cookbook
The AIPS Cookbook is the main User documentation for AIPS. However, many users are unaware of the
existence of any feature in AIPS not advertised in the Cookbook and unfortunately, the Cookbook only covers
the most elementary portions of the AIPS system.

1.7.2 Program m er Docum entation
P re c u rso r C om m ents
The most fundamental source of detailed programmer documentation in the AIPS system are comments
in the source code, especially the precursor comments. The precursor comments for all routines should
describe the use of the routine as well as the meaning, units, etc., of all call arguments. Many of the detailed
descriptions of call sequences in this manual are essentially the precursor comments of the routines.

Shopp ing L ists
The precursor comments of routines contain one line descriptions of the routines. These are used to generate
the shopping lists found in Appendix B.

C H A N G E .D O C
Once source code, text files, etc. are entered into the AIPS libraries all changes should be documented in the
CHANGE.DOC file. Installations outside of the main AIPS programming group are encouraged to adopt
this system. The CHANGE.DOC file contains entries giving the date, name of the routine, and the name
of the person making the change, with a short description of the changes. If a bug is being corrected, its
symptoms should be described.

T h e C heckou t S ystem
The AIPS group has instituted a check-out system for the text files in the master version of the AIPS system
(including CHANGE.DOC). The purpose of this check out system is to prevent different programmers from
destroying each others changes to code by trying to work on the same routines at the same time. There
are occasionally changes made in AIPS which require changes in most or all tasks; frequently the original
programmer of a task will be unaware of these changes. For these reasons, modifications or additions to the
the master version of AIPS should (are required to):

1. Check out the relevant files. A detailed description of the current check-out routines may be found in
DOCTXT:CHKOUT.RNO.

2. Modify the files.
3. Check the files back in.
4. Document the changes in CHANGE.DOC (which must itself be checked out).

C hapter 2
Skeleton Tasks
By far the easiest way to write a new task is to find an old one that does something similar to what is desired
and change it. W ith this thought in mind, we have written tasks whose sole purpose is to be changed into
something useful. These tasks take care of most of the bookkeeping chores and make certain limited classes
of operations quite simple. The source code for these tasks is heavily commented to aid the user in making
the necessary modifications. The names and functions of these tasks are given in the following list.

• FUDGED This task modifies an existing uv data base and writes a new one.
• TAFFY This task modifies an existing image file and writes a new one.
• UVFIL This task creates, catalogs and fills a new uv data file.
• CANDY This task creates, catalogs and fills a new image file.
• PRPLn These tasks (PRPL1, PRPL2, PRPL3) are used to generate plots and are discussed in detail

in the chapter on plotting.
Note: for many purposes task FETCH is adequate for reading an image into AIPS without modification.

FETCH reads an image from a text file containing a description of the image. See the HELP file for FETCH
for details.

Since these tasks contain most of the startup, shutdown, cataloging, etc. chores, they are a good place
to start writing a new task. Many of the standard AIPS tasks are cloned from FUDGE or TAFFY. No one
in the AIPS programming group has written a task from scratch in years. If the modified version of one of
these tasks is to be of more than temporary use, the name of the task should be changed to avoid confusion.
This chapter will describe in some detail the structure and use of the skeleton tasks.

2.1 D ata M odification Tasks — FUDG E and TAFFY
There are two data modification tasks for the two types of data files, uv data (FUDGE) and images (TAFFY).
The basic structure of these two tasks is very similar. The main routine in these tasks is very short and calls
routines to do the basic functions:

1. Startup (FUDGIN in FUDGE, TAFIN in TAFFY)
• initialize commons
• get adverb values
• restart AIPS (if DOWAIT is FALSE)
• find input file in catalog
• create and catalog output file

2. Process data (SENDUV in FUDGE, SENDMA in TAFFY)
2-1

2-2 CHAPTER 2. SKELETON TASKS

3. write history (FUGHIS in FUDGE, TAFHIS called from OUTMA in TAFFY)
4. Shut down (DIE)

• unmark catalog file statuses
• restart AIPS if not done previously

Both FUDGE and TAFFY send one logical record (a visibility record in uv data or a row of an image) at a
time to a user supplied subroutine. This subroutine can do some operation on the logical record and return
the result. The result is then written to an output file. When all of the data has been processed, a final call
is made to the user routine. In this call, the routine can record any entries to be made in the history file. In
the history routine, the old history file is copied to the new file and some standard history entries are made.
Then any user supplied entries are added. More detailed descriptions of FUDGE and TAFFY can be found
in the following sections

2.1.1 FUDGE
FUDGE sends uv data records to a user supplied routine one at a time. The user routine performs some
operation on the record and returns the record with a flag which says whether the result is to be kept
or ignored. Many operations which require operating on several data records can be done by sorting the
data with UVSRT so that records which are to be combined are adjacent in the data file. The structure of
visibility records is described in detail in the chapter on disk I/O (Chapter 6).

If the size of the visibility record is unchanged, the only changes needed in FUDGE for most simple
operations are in the user supplied routine DIDDLE. If the record size is changed, there must be changes
made in FUDGIN so that the output file created has the correct size and catalog header information.
SENDUV must also be modified so that it writes correct size records to the output file.

The source code for DIDDLE contains precursor comments explaining the use of the routine; these
comments are reproduced below.

SUBROUTINE DIDDLE (NUMVIS, U, V, V, T, IA1. IA2, VIS, RPARM,
* INCX, IRET)

C---
C This is & skeleton version of subroutine DIDDLE which allows the
C user to modify & UV data base. Visibilities are sent one at a time
C and when returned are written on the output file if so specified.
C
C Up to 10 history entries can be written by using VRITE to
C record up to 64 characters per entry into array HISCRD. Format:
C VRITE (HISCRD(entry #),format) history information
C The history is written after the last call to DIDDLE.
C
C Messages can be written to the monitor/logfile by encoding
C the message (up to 80 char) into array MSGTXT in INCLUDE DMSG.INC
C and then issuing a call:
C CALL MSGWRT (priority #)
C
C If IRET > 0, then the output file will be destroyed iff
C it was created in the current execution.
C
C If the size of the vis record is to be changed, appropriate
C modifications should be made to CATBLK in FUDGIN before the call
C to UVCREA said LRECO in SENDUV should reflect the correct size of
C the output record.
C
C See the precursor comments for UVPGET for a description

O
Cl

2.1. DATA MODIFICATION TASKS — FUDGE AND TAFFY 2-3

C of the contents of COMMOI /UVHDR/ which allows easy access to
C much of the information front the catalog header (CATBLK) and
C which describes the order in which the data is given.
C
C After all data has been processed a final call will be made to
C DIDDLE with IUMVIS = -1. This is to allow for the completion of
C pending operations, i.e. preparation of History cards.
C
C LUI's 16 and 17 are open and not available to DIDDLE.
C
C The current contents of CATBLK will be written back to the
C catalog after the last call to DIDDLE.
C
C Inputs:
C IUMVIS I Visibility number, -1 s> final call, no data
C passed but allows any operations to be completed.
C U R U in wavelengths
C V R V in wavelengths
C V R V in wavelengths
C T R Time in days since 0 IAT on the first day for
C which there is data, the julian day corresponding
C to this day can be obtained in D form by:
C CALL JULDAY (CATH(KHDOB),XDAY) where XDAY will
C be the Julian day number.
C IA1 I First antenna number
C IA2 I Second antenna number
C RPARM R(*) Random parameter array which includes U,V,V etc
C but also any other random parameters.
C VIS R(IVCX,*) Visibilities in order reed, imaginary, weight
C (Jy, Jy, unitless). Weight <* 0 => flagged.*
C IOTE: IVCX may be any value .GE. 2
C Inputs from COMMOI:
C IAME2 C*12 lame of the aux. file
C CLAS2 C*6 Class of the aux. file.
C SEQ2 I Sequence number of the aux. file.
C DISK2 I Volumn number of the aux. file.
C APARM(IO) R(10) User array.
C BPARM(IO) R(10) User array.
C B0X(4,10) R(4,10) User array.
C RA D Right ascension (1950) of phase center, (deg)
C DEC D Declination (1950) of phase center, (deg)
C FREQ D Frequency of observation (Hz)
C 1RPARM I # random parameters.
C ICOR I # correlators
C CATBLK 1(256) Catalog header record.
C
C Output:
C U R U in wavelengths
C V R V in wavelengths
C V R W in wavelengths
C T R Time in same units as input.

RPARM R Modified random parameter array. I.B. U,V,W,
time, baseline should not be modified in RPARM

C VIS R Visibilities

2-4 CHAPTER 2. SKELETON TASKS

C IRET I Return code -1 => don’t write
C 0 => OK
C >0 => error, terminate.
C
C Output in COMMON:
C VUMHIS I # history entries (max. 10)
C HISCRD C(NUMHIS) History records
C CATBLK I Catalog header block
C---

There are a number of adverbs already included in FUDGE to pass user information to the user routine;
these are specifications for a second input file and the arrays CPARM, DPARM and BOX. More or different
adverbs are readily added.

FUDGE will automatically compress the output file if the number of visibility records in the file is
reduced. The source code for FUDGE can be found in the standard program source area; this is usually
assigned the logical name “APLPGM:” whose value is AIPS_VERSION:[APL.PGM] on VMS systems.

2.1.2 TAFFY
TAFFY reads a selected subset (or all) of an image, sends the image one row at a time to a user supplied
routine (DIDDLE) which operates on the row. The user routine sends back the result which may be of
arbitrary length; in particular the input row may be reduced to a single value. The values sent back from the
user supplied routine are written into the new cataloged file. DIDDLE can defer returning the next row; this
allows the use of scrolling buffer. TAFFY can handle multi-dimensional, blanked images. The task TRANS
may be used before a TAFFY clone to transpose which ever axis is necessary to the first axis. The returned
value of a row may be deferred for those cases when a scrolling buffer of the input is needed.

If the size or format of the output file is to be different from the input file, or if it is necessary to check
that the proper axis occurs first in the data array, or if there are several possible operations to be specified
by the adverb OPCODE, then the routine NEWHED needs to be modified. The main purpose of NEWHED
is to form the catalog header record for the output file. For many purposes the only modifications needed to
NEWHED are to modify the values in DATA statements from the default values supplied. The beginning
portion of NEWHED is reproduced below.

SUBROUTINE NEWHED (IRET)
C---
C NEWHED is a routine in which the user performs several operations
C associated with beginning the task. For many purposes simply
C changing some of the values in the DATA statments will be all that
C is necessary. The following functions are/can be performed
C in NEWHED:
C 1) Modifying the catalog header block to represent the
C output file. The MINIMUM modifications required here are those
C required to define the size of the output file; ie.
C CATBLK(KIDIM) = the number of axes,
C CATBLK(KINAX+i) = the dimension of each axis, and
C Other changes can be made either here or in DIDDLE; the
C catalog block will be updated when the history file is
C written.
C 2) Checking the input image and/or input parameters.
C For example, if a given first axis type such as
C Frequency/Velocity is required this should be checked. The
C routine currently does this and all that is required to
C implement this is to modify the DATA statments.
C A returned value of IRET .NE. 0 will cause the task to terminate.

2.1. DATA MODIFICATION TASKS — FUDGE AND TAFFY 2-5

C A message to the user via MSGVRT about the reason lor the
C termination would be friendly. This can be done by encoding
C the message into MSGTXT, setting IRET to a non-zero value
C and issuing a GO TO 990.
C 3) Default values of some of the input parameters
C (OUTVAME, OUTCLASS, OUTSEQ, OUTDISK, TRC and BLC defaults are
C set elsewhere). As currently set the default OPCODE is the
C first value in the array CODES which is set in a data statment.
C
C Input in common:c CATBLK 1(256) Output catalog header, also CATR, CATDc CATOLD 1(256) Input catalog header, also 0LD4, 0LD8c Output:c CATBLK 1(256) Modified output catalog header.c IRET I Return error code, 0->0K, otherwise abort

INTEGER IRET

CHARACTER ATYPES(10)*8, FCHARS(3)*4, BLANK*8, CODES(10)*4,
* UIITS(10)*8, CTEMP*8
HOLLERITH 0LD4(256)
DOUBLE PRECISIOH 0LD8(128)
IVTEGER NCODE, ITYPES, IOFF, IERR, IIDXI, IIC, IIDEX,

* ICHTYP(IO), LIMIT, I, FIRSTI, FIRSTO
LOGICAL LDR0P1
INCLUDE ’IICS:DDCH.ISC'
INCLUDE 4INCS:DMSG.INC4
INCLUDE ’INCS:DHDR.INC'
INCLUDE 'TAFFY.INC*
INCLUDE *INCS:DCAT.INC *
EQUIVALENCE (CATOLD, 0LD4, OLD8)
DATA FCHARS /*FREQ *,*VELO*f * FELO*/
DATA BLANK /> V

DATA NCODE /0/
DATA CODES /10*» »/

DATA UNITS /*UNDEFINE *,9**

DATA NTYPES /0/
DATA ATYPES /10*’
DATA NCHTYP /10*4/

DATA LDR0P1 /.FALSE./

User definable values
and value of OPCODES

Output units for each OPCODE.

Allowed number of axis types
and types.

If LDR0P1 is .TRUE, then the
first axis will be dropped,
(ie, one value results from
the operation on each row.)

The data modification routine in TAFFY is DIDDLE which contains numerous precursor comments
describing its use; these precursor comments follow.

SUBROUTINE DIDDLE (IPOS, DATA, RESULT, IRET)

2-6 CHAPTER 2. SKELETON TASKS

C---
C This is a skeleton version of subroutine DIDDLE which allows
C operations on an image one row at a time (1st dimension).
C Input and output data may be blanked. The calling routine keeps
C track of max., min. and the occurence of blanking. If DR0P1 is
C .TRUE., the calling routine expects 1 value returned per call;
C otherwise, CATBLK(KINAX) values per call are expected returned.
C VOTE: blanked values are denoted by the value of the common variable
C FBLAVK.
C DIDDLE may accumulate a scrolling buffer by returning a negative
C value of IRET. This tells the calling routine to defer writing the
C next row. If rows are deferred then an equal number of calls to
C DIDDLE will be made with no input data; this allows reading out any
C rows left in DIDDLEs internal buffers. Such a "no input call" is
C indicated by a value of IP0S(1) of *-1. The writing of the returned
C values of these "no input calls" may IOT be deferred.
C Up to 10 history entries can be written to
C record up to 64 characters per entry into array HISCRD. Ex:
C WRITE (HISCRD(entry #), format) list
C TRC, BLC and OPCODE are already taken care of.
C The history is written after the last call to DIDDLE.
C Messages can be written to the monitor/logfile by encoding
C the message (up to 80 char) into array MSGTXT in COMMOI /MSGCOM/
C and then issuing a cedi:
C CALL MSGWRT (priority #)
C
C If IRET .GT. 0 then the output file will be destroyed.
C
C After all data have been processed a final call will be made to
C DIDDLE with IP0S(l)=-2. This is to allow for the completion of
C pending operations, i.e. preparation of History cards.
C
C AIPS LUI’s 16-18 are open and not available to DIDDLE.
C
C The current contents of CATBLK will be written back to the
C catalog after the last call to DIDDLE.
C
C Inputs:
C IPOS 1(7) BLC (input image) of first value in DATA
C IP0S(1) * -1 -> no input data this call.
C IPOS(2) - -2 => last call (no input data).
C DATA R(*) Input row, magic value blanked.
C Values from commons:
C ICODE I Opcode number from list in IEWHED.
C FBLAIK R Value of blanked pixel.
C CPARM R(10) Input adverb array.
C DPARM R(10) Input adverb array.
C CATBLK I Output catalog header (also CATR, CATD)
C CATOLD I Input catalog header (also 0LD4, 0LD8)
C DR0P1 L True if one output value per call.
C Output:
C RESULT R(*) Output row.
C IRET I Return code 0 => OK
C >0 => error, terminate.

2.2. DATA E N TRY TASKS (UVFIL AND CANDY) 2-7

C Output in COMMON:
C VUMHIS I # history entries (max. 10)
C HISCRD C(ffUMHIS) History records
C CATBLK I Catalog header block
C---

In addition to the adverb OPCODE to specify the desired operation and the adverbs BLC and TRC to
specify the window in the input map, there are several user defined adverbs sent to TAFFY. These are the
arrays CPARM and DPARM; more and/or other adverbs can be added.

More details about TAFFY can be found in the comments in the source version of the program. The
source code for TAFFY can be found in the standard program source area; this is usually assigned the logical
name “APLPGM:” whose value is AIPS.VERSION:[APL.PGM] on VMS systems.

2.2 Data Entry Tasks (UVFIL and CAN D Y)
There is a pair of skeleton tasks for entering data into AIPS, UVFIL for uv data and CANDY for images.
These tasks are used to enter either observational or model data into the AIPS system. CANDY especially
has been used a number of times and usually takes a couple of hours to produce a working program. (Use
of task FETCH is useful in many cases for entering an image into AIPS).

These tasks each have two subroutines which may need to be supplied or modified. The first routine is
the one to create the new header record and, for UVFIL, to enter information about the antennas. Most of
the modifications required are changes to DATA statements from the supplied default values. The beginning
portion of these routines will be given with the detailed descriptions of UVFIL and CANDY. Details about
the catalog header record are given in the chapter on catalogs.

The second routine, to be supplied by the user, generates the data to be written to the output file. This
may be done by reading an external disk or tape file or by any other means.

The basic structure of UVFIL and CANDY are very similar. The main routine in these tasks is very
short and calls routines to do the basic functions:

1. Startup (UVFILN in UVFIL, CANIN in CANDY)
• initialize commons
• get adverb values
• restart AIPS (If DOWAIT is FALSE)

2. Create new catalog header record (NEWHED)
• create and catalog output file
• Enter antenna information (In UVFIL only)

3. Read/generate data (FIDDLE in UVFIL, MAKMAP in CANDY)
4. Write history (and antenna file) (FILHIS in UVFIL, CANHIS in CANDY)
5. Shut down (DIE)

• Unmark catalog file statuses
e Restart AIPS if not done previously

2-8 CHAPTER 2. SKELETON TASKS

2.2.1 UVFIL
UVFIL creates, catalogs and fills an AIPS uv data file. It can be used either to translate uv data from
another format or generate model data.

UVFIL comes with specific example code reading a file. The first routine, NEWHED, which the user
may need to modify is used to enter information required to create the catalog header block and to enter
information about the antennas. The beginning portion of this routine follows:

SUBROUTINE MEWHED (IRET)
C---
C IEVHED is a routine in which the catalog header is constructed.
C Necessary values can be read in in the areas markes "USER CODE
C GOES HERE".
C
C VOTE: the AIPS convention lor the coordinate reference value
C for the STOKES axis is that 1,2,3,4 represent I, Q, U, V
C stokes* parameters and -1,-2,-3,-4 represent RR, LL, RL and
C LR correlator values. Currently set for R and L polarization
C ie Ref. value = -1 and increment = -1.
C
C The MINIMUM information required here is that
C required to define the size of the output file; ie.
C CATBLK(KIGCN) = lumber of visibility records
C CATBLK(KIPCH) = lumber of random parameters.
C CATBLK(KIDIM) = lumber of axes,
C CATBLK(KIVAX+i) - the dimension of each axis.
C Other changes can be made either here or in FIDDLE; the
C catalog block will be updated when the history file is
C written.
C The antenna information can also be entered in this
C routine. It is possible to put much more information in the
C AVtenna file.
C
C Input in common:
C CATBLK(256) I Output catalog header, also CATR, CATH, CATD
C The 0UT1AME, OUTCLASS, OUTSEQ are entered
C elsewhere.
C Output in common:
C CATBLK(256) I Modified output catalog header.
C IRET I Return error code, 0=>0K, otherwise abort.
C Also the antenna information can be filled into a common.
C---

INTEGER IRET
C

CHARACTER RTYPES(7)*8, TYPES(7)*8, UNITS*8, TELE*8, 0BSR*8,
* INSTR*8, 0BSDAT*8, LINE*80
INTEGER I, NAXIS, NRAN, NCHAN, NPOLN, NDIM(7), INDEX, XCOUNT,

* LUN, FIND
LOGICAL APPEND
REAL CRINC(7), CRPIX(7), EPOCH, BANDV
DOUBLE PRECISION CRVAL(7)
INCLUDE 'UVFIL.INC'
INCLUDE *INCS:DCAT.INC'
INCLUDE 'INCS:DMSG.INC1
INCLUDE 'INCS:DHDR.INC'

2.2. DATA EN TRY TASKS (UVFIL AND CANDY) 2-9

INCLUDE 'IICS:DUVH.INC’
C User definable values
C Random parameters.
C No. random parameters.

DATA NRAN /5/
C Rand. parm. names.

DATA RTYPES / ’UU-L-SIN»,»W-L-SIN', ’WW-L-SIN',
♦ 'TIMEl \'BASELINE',2*’ '/

C Uniform axes.
C No. axes.

DATA NAXIS /5/
C Axes names.

DATA TYPES /* COMPLEX *,' STOKES *,'FREQ
* 'RA ','DEC ',2*' '/c
DATA NDIM /3,1,1,1.1,0,0/

Axis dimensions

c Reference values
DATA CRVAL /1.0D0, -1.0D0, 5*0.0D0/c
DATA CRPIX /7*1.0/

Reference pixel.

c Coordinate increment.
DATA CRINC /1.0, -1.0, 0.0 , 0.0, 0.0, 2*0.0/c
DATA EPOCH /1950.0/

Epoch of position.

c
c— DATA UNITS /'JY »/

Units

The user supplied routine FIDDLE returns visibility records which are written into the cataloged output
file. The precursor comments describing the use of FIDDLE follow.

SUBROUTINE FIDDLE (NUMVIS, U, V, V. T, IAi, IA2, VIS, RPARM, IRET)
C---
C This is a skeleton version of subroutine FIDDLE which allows the
C user to create a UV data base. Visibilities are returned one at
C a time and are written on the output file.
C
C Up to 10 history entries can be written by using WRITE to
C record up to 64 characters per entry into array HISCRD. Ex:
C WRITE (HISCRD(entry #),format #) list
C The history is written after the last call to FIDDLE.
C
C Messages can be written to the monitor/logfile by writing
C the message (up to 80 char) into array MSGTXT in INCLUDE DMSG.INC
C and then issuing a call:
C CALL MSGWRT (priority #)
C
C If IRET .GT. 0 then the output file will be destroyed.
C A value of IRET .It. 0 indicates the end of the data.
C
C See the precursor comments for UVPGET for a description
C of the contents of COMMON /UVHDR/ which allows easy access to
C much of the information from the catalog header (CATBLK) and
C which describes the order in which the data is being written.

2-10 CHAPTER 2. SKELETON TASKS

C Alter all data has been processed a linal call will be made to
C FIDDLE with IUMVIS = -1. This is to allow for the completion of
C pending operations, i.e. preparation of History cards.
C
C AIPS I/O LUH 16 is open and not available to FIDDLE.
C FORTRAN unit numbers greater than 50 will probably not get the
C AIPS routines confused. (Any unit numbers other than 1, 5, 6 said 12
C vill probably also work.)cc The current contents of CATBLK vill be written back to thec
c

catalog after the last call to FIDDLE.
Ktc Inputs:c IUMVIS I Visibility number, -1 => final call, no datac
c

passed but allows any operations to be completed.
Vc Inputs from COMMON:c II2FIL C*48 Name of the auz. filec APARM R(10) User array.c BPARM R(10) User array.c RA D Right ascension (1950) of phase center, (deg)c DEC D Declination (1950) of phase center, (deg)c FREQ D Frequency of observation (Hz)c IRPARM I # random parameters.c NCOR I # correlatorsc
f

CATBLK(256)I Catalog header record. See Going AIPS for details.

c Output:c U R U in wavelengths at the reference frequency.c V R V in wavelengthsc V R V in wavelengthsc T R Time in days since the midnight at the start ofc the reference date.c IA1 I Antenna number of the first antenna.c IA2 I Antenna number of the second antenna.c NOTE: IA2 MUST be greater that IA1c RPARM R Modified random parameter array. NB U,V,V,c time and baseline should not be modified in RPARMc VIS R(3,*)i Visibilities. The first dimension is the COMPLEXc axis in the order Reeil part. Imaginary part.c weight. The order of the following visibilities isc defined by variables in C0MM0M /UVHDR/ (originallyc specified in NEWHED). The order number for Stokesc parameters is JLOCS and the order number forc frequency is given by JLOCF. The lower orderc number increases faster in the array.c See precursor comments in UVPGET for more details.c IRET I Return code -1 => End of data.c 0 => OKc >0 => error, terminate.
Isc Output in COMMON:c IUMHIS I # history entries (max. 10)

2.2. DATA EN TRY TASKS (UVFIL AND CANDY) 2-11

C HISCRD C(NUMHIS) History records
C CATBLK I Catalog header block
C---

The user defined array adverbs APARM and BPARM are sent to UVFIL; more and/or other adverbs can
easily be added. The source code for UVFIL can be found in the non-standard program source area; this
is usually assigned the logical name “APGNOT:” whose value is AIPS_VERSION:[APL.PGM.NOTST] on
VMS machines.

2.2.2 CANDY
CANDY is similar to TAFFY except there is no AIPS input data file. This is a good routine to use to
generate an AIPS image from either a model or an external data file. CANDY has example code (mostly
commented out) in the text which gives an example of reading a formatted disk file. (Note this function is
also done in a general way in routine FETCH).

The routine in CANDY in which the values necessary for the catalog header must be entered is named
NEWHED. The beginning, heavily commented, portion of NEWHED follows.

SUBROUTIIE VEVHED (IRET)
C---
C VEVHED is a routine in vhich the user performs several operations
C associated with beginning the task. For many purposes simply
C changing some of the values in the DATA statments will be all that
C is necessary. The following functions are/can be preformed
C in VEVHED:
C 1) Creating the catalog header block to represent the
C output file. The MIVIMUM information required here is that
C required to define the size of the output file; ie.
C CATBLK(KIDIM)= the number of axes,
C CATBLK(KIlAX+i) = the dimension of each axis.
C Other changes can be made either here or in MAKMAP; the
C catalog block will be updated when the history file is
C written.
C 2) Setting default values of some of the input parameters
C As currently set the default OPCODE is the first value in thec
c

array CODES which is set in a data statment.

c Input:c CATBLK 1(256) Output catalog header, also CATR, CATDc The OUTVAME, OUTCLASS, OUTSEQ are enteredc elsewhere.c Output:c CATBLK 1(256) Modified output catalog header.c IRET I Return error code, 0=>0K, otherwise abort

c INTEGER IRET

CHARACTER FCHARS(3)*4, BLAIK*8, C0DES(10)*4, UNITS(10)*8,
* ATYPES(7)*8, LIVE*80
IVTEGER I, VAXIS, IROUVD, VCODE, IERR, VX, VY, INDEX
IVCLUDE 'CANDY.INC'
INCLUDE »INCS:DCAT.INC'
INCLUDE *INCS:DDCH.INC'
INCLUDE 'INCS:DMSG.INC'

2-12 CHAPTER 2. SKELETON TASKS

INCLUDE *INCS:DHDR.INC'
DATA FCHARS /»FREQ',»VELO',»FELO1/
DATA BLANK /’ V

DATA NCODE /0/
DATA CODES /10*’ V

DATA UNITS /’UNDEFINE',9*’

User definable values
and value of OPCODES

Output units for each OPCODE.
V
Number of axes and types.
(Set for two axes = Ra, Dec.)

DATA NAXIS /2/
DATA ATYPES /'RA-- SII\ ’DEC— SII»,
♦ ’STOKES », 'FREQ \ 3*» '/

The user supplied routine that reads or generates the image is MAKMAP. This routine returns the image
one row at a time. The precursor comments describing the use of this routine follow.

SUBROUTINE MAKMAP (IPOS, RESULT, IRET)
C---
C This is a skeleton version of subroutine MAKMAP which allows
C the user to create an image, one row at a time.
C Output values may be blanked.
C The calling routine keeps of max., min. and to occurence of blanking.
C CATBLK(KINAX) values per call are expected returned.
C NOTE: blanked values are denoted by the value of the common variable
C FBLAIK
C
C Up to 10 history entries can be written by using VRITE to
C record up to 64 characters per entry into array HISCRD. Ex:
C VRITE (HISCRD(entry *),format *,) list
C TRC, BLC and OPCODE are already taken care of.
C The history is written after the last cedi to MAKMAP.
C
C Messages can be written to the monitor/logfile by writing
C the message (up to 80 char) into array MSGTXT in COMMON /MSGCOM/
C and then issuing a call:
C CALL MSGVRT (priority #)
C
C If IRET .GT. 0 then the output file will be destroyed.
C
C After all data has been processed a final call will be made to
C MAKMAP with IP0S(1)=-1. This is to allow for the completion of
C pending operations, i.e. preparation of History cards.
C
C LUN’s 16-18 are open and not available to MAKMAP.
C
C The current contents of CATBLK will be written back to the
C catalog after the last call to MAKMAP.
C
C Inputs:
C IPOS 1(7) BLC (input image) of first value in DATA
C Values from commons:

2.3. MODIFYING A SKELETON TASK 2-13

c ICODE I Opcode number from list in IEVHED.c FBLAIK R Value of blanked pixel.c CPARM R(10) Input adverb array.c DPARM R(10) Input adverb array.c CATBLK 1(256) Output catalog header (also CATR, CATD)c Output:c RESULT R(*) Output row.c IRET I Return code 0 => OKc >0 => error, terminate.
C Output in COMMON:
C IUMHIS I # history entries (max. 10)
C HISCRD C(IUMHIS) History records
C CATBLK I Catalog header block
C---

Pixel blanking is supported through magic value blanking, i.e., the value of FBLANK is recognized to mean
no value is associated with the pixel. The source code for CANDY is fairly heavily commented and can
be found in the non-standard program source area; this is usually assigned the logical name “APGNOT:”
whose value is AIPS_VERSION:[APL.PGM.NOTST] on VMS systems.

2.3 M odifying a Skeleton Task
To make a modified version of one of the skeleton tasks, first copy the source code and the help file to the
area in which you intend to work on the task. Then rename the task to avoid confusion (only five characters
are allowed in an AIPS task name). In addition to changing the name of the files, it is crucial to change the
name of the task entered in a DATA statement in the main program. You should also change the task name
referenced in the help file. (If there is a chance that your new task will become part of the standard AIPS
package, and we welcome contributions, rename the names of the subroutines as well.)

The next step is to modify the source code to taste. If the adverbs which the task uses are changed, the
help file should also be changed to reflect this. If the task is to be of more than temporary use, then it is
friendly to put sufficient documentation into the help file to assist other users in understanding the use of
the input adverbs; besides, you will also forget just what it is that BPARM(3) does. Once the source code
is modified, see Appendix A for details about compiling, linking and debugging a task

2-14 C H APTER 2. SK ELETO N TASK S

C hapter 3
G etting Started — Tasks
3.1 Overview
This chapter will describe both the general structure of AIPS tasks and the operations which are needed for
the smooth startup and shutdown of most tasks. Following chapters will describe in detail other aspects of
AIPS tasks. The principal steps of a “typical” task we illustrated in the following. The names of relevant
AIPS utility subroutines are given in parentheses.

1. Startup
• initialize commons (ZDCHIN, VHDRIN etc.)
• get adverb values (GTPARM)
• restart AIPS (RELPOP)

2. Setup data files
• find input file in catalog (MAPOPN, CATDIR, CATIO)
• create and catalog output file (MCREAT, UVCREA)
• create scratch files (SCREAT)

3. Process data
• Check task communication (TC) file for any further instructions (GTTELL)

4. Write history (HISCOP, HIADD, HICLOS)
5. Shut down (DIETSK, DIE)

• destroy scratch files
• unmark catalog file statuses
• restart AIPS if not done previously

The programmer specifies the adverbs to be used for a task in the first section of the help file. The AIPS
user specifies the values of the adverbs used to control a task and AIPS writes these values into a disk file
(TD). The task must read these values from the TD file. After AIPS has started up a task, it suspends
itself until either, (1) the task returns a return code in the TD file, or (2) the task disappears. It is the
responsibility of the task to restart AIPS. This is usually done either at the beginning or at the end of the
task, depending on the value of the adverb DO WAIT (usually called RQUICK in tasks).

After a task has started, the user may send further instructions — mainly changed adverb values or
instructions to quit. This communication is through the task communication (TC) file; the task reads this
file using the routine GTTELL. The adverb values to be sent to the task are indicated in the INPUTS section
of the help file.

3-1

3-2 CHAPTER 3. GETTING STARTED — TASKS

AIPS tasks use commons extensively to keep various system and control information. Since many of
these commons are in many hundreds of routines, their declarations are kept in INCLUDE files. This allows
relatively simple system-wide changes in these basic commons.

Most of the details of the installation on which a task is running is kept in a disk text file. These details
include, how many tape drives, how many disk drives, etc. The parameters characterizing the system are
kept in a common which must be initialized by a call to the routine ZDCHIN. Several other commons may
be used in a given task, and many of these need to be initialized at the beginning of the program.

There is an accounting file which keeps track of various bookkeeping details of tasks. Calls to the
accounting routines are hidden from the programmer of the standard startup and shutdown routines.

Data in the AIPS system are kept in cataloged disk files. Information about the main data file is kept
in a catalog header record and only data values Me kept in the main data file. Auxiliary data may be kept
in one or more “extension” files associated with a cataloged file. Many AIPS tasks modify a data file and
write the results into a new cataloged file, although the user is frequently allowed to specify the input file as
the output file.

Each cataloged AIPS data file should have an associated History extension file in which as complete as
possible a record of the processing is kept. It is the responsibility of the programmer of a task to copy old
history files to a new file, if necessary, and to update the history information. In general, the values of the
adverbs after defaults have been filled in are kept in the history file. There are usually other extension files
which should also be copied if a new output file is being generated. These include ANtenna files for UV data
and CLEAN components (CC) files for images. These may be convienently copied using routine ALLTAB.

Most communication between the user and AIPS or tasks is done through a single routine (MSGWRT)
which logs most of the communications in a disk file which can be printed. A major difference between
the message file and history files is that history files are permanent, whereas message files are not. User
interaction with a task is allowed; see the section below on communicating with the user via ZTTYIO.

The simplest way to write a program is to find a program that is close to the one desired and make the
necessary changes. In this spirit, there are two tasks available which read data, send it to a routine, and
write the result back to a new cataloged disk file. Two others will create and catalog a new disk file and
fill it with data generated in a subroutine. These routines (FUDGE, CANDY, TAFFY, and UVFIL) allow
the simplest access to the AIPS data files, and even for fairly complicated tasks, one of these programs is a
good place to start (a great many AIPS uv tasks were cloned from FUDGE). The chapter on skeleton tasks
describes these tasks in more detail. Three skeleton tasks for plotting (PFPL1, PFPL2, and PFPL3) axe
described in the plotting chapter.

3.2 The Cost of Machine Independence
There are a number of general programming aspects which are seriously affected by the requirement of
machine independence. Most of these problems are alleviated by strict adherence to the standards of Fortran
77. The most serious problem is due to inadequate definition of CHARACTER variables in the Fortran 77
standards; this issue is discussed below. When the specifics of the machine/OS on which the software is
running MUST be taken into account this dependency must be isolated into an explicitly machine dependent
routine (“Z” , “Y** or “Q” routines).

3.2.1 Character Strings
The definition of CHARACTER type variables in Fortran 77 does not explicitly give the relationship of the
size of a given CHARACTER variable to that of numeric variables. The result of this is that CHARACTER
and numeric data cannot be EQUIVALENCEd in any way or mixed in binary records of known length.
For this reason there are two types of variables in AIPS which contain character information. These are:
CHARACTER and HOLLERITH. CHARACTER variables are the standard Fortran 77 data type and
are used in AIPS wherever possible. In some circumstances character information cannot be stored in
CHARACTER variables and in these cases the data is declared type HOLLERITH which the preprocessor
redeclares as a numeric data type. AIPS HOLLERITH variables are defined to contain 4 characters per
element.

3.3. TASK NAME CONVENTIONS 3-3

HOLLERITH data in AIPS is never to be initialized using DATA statements and is never to be used in
READ or W RITE statements. All conversion between HOLLERITH and CHARACTER type variables is
through the routines H2CHR and CHR2H. This allows the use of data structures such as the AIPS catalog
header without violation of the Fortran 77 rules. The cases in which HOLLERITH data is used is summarized
in the following:

1. any file containing mixed numeric and character data in binary form,
2. the I/O buffer used to read or write a file with mixed numeric and character data in binary form,
3. character data in the POPS processor,
4. AIPS string adverb values passed via GTPARM,
5. the catalog header records (CATBLK),
6. any other data structures containing mixed numeric and character data.
There are a number of AIPS utility routines for dealing with CHARACTER and HOLLERITH strings.

These are briefly described in the following and are described in detail at the end of this chapter.
• CHCOPY moves characters from one HOLLERITH string to another
• CHCOMP compares two HOLLERITH strings
• CHFILL fills portion of HOLLERITH string with a specified character
• CHLTOU converts a CHARACTER string to all upper case letters
• CHMATC searches one HOLLERITH string for the occurrence of another
• CHR2H converts a Fortran CHARACTER variable to am AIPS HOLLERITH string
• CHWMAT matches a pattern string containing “wild-card” characters with a test string. The wild­

cards for any number and “?” for exactly one of any character are supported.
• H2CHR convert AIPS Hollerith string to Fortran CHARACTER variable

3.3 Task Nam e Conventions
The number of characters allowed in task names is limited in many operating systems to six characters. AIPS
uses the last character of the name to indicate the AIPS number of the initiating process, in hexadecimal,
leaving five characters for a task name. It is most helpful to the bewildered user looking through the mass
of AIPS tasks if the name is at least vaguely mnemonic. For example, most tasks whose principal output is
to the line printer are named ’PRT..’; many tasks manipulating uv data are named ’UV...’ etc.

3.4 G etting the Param eters
3.4.1 In AIPS (Help file)
The adverbs to be used by a task are defined by the programmer in the beginning portion of the help file.
This portion of the HELP file lists the adverbs in order, can give limits on the range of acceptable values,
and gives a short description of the use of the adverb. If the limit fields for an adverb are left blank, then
no limits are enforced. When AIPS receives the GO command, it reads the associated help file for the list of
adverbs and places the current values of these adverbs as well as a few “hidden” adverbs into the task data
(TD) file. Entries with a “?” in column 10 are ignored by GO. AIPS then starts the requested task. An
example, the help file for PRTIM follows:

3-4 CHAPTER 3. GETTING STARTED — TASKS

PRTIM

! Task displays a map on line-printer or terminal
* TASK PRIMTER
This software is the subject of a User agreement and is
confidential in nature. It shall not be sold or otherwise
made available or disclosed to third parties.

PRTIM LLLLLLLLLLLLUUUUUUUUUUUU CCCCCCCCCCCCCCCCCCCCCCCCCCCCC
PRTIM: Task to print the image intensities in digital form
USERID -32000.0 32000.0 User ID. 0 => current user,

32000 => any user.
IVVAME Image name(name).
IICLASS Image name(class).
IISEQ 0.0 9999.0 Image name(seq. #). 0 => high
IVDISK 0.0 9.0 Disk drive #. 0 => any
BLC 0.0 4096.0 Bottom left corner of image

0 => entire image
TRC 0.0 4096.0 Top right corner of image

0 => entire image
IDIG 0.0 7.0 Digits in display. 0 => 1
FACTOR -99999.0 999999.0 Multiplication factor. 0 => 1
XIIC 0.0 100.0 Display every XIIC col. 0=> 1
YIIC 0.0 100.0 Display every YIIC rows. 0=>1
D0CRT -1.0 132.0 >0 -> use CRT, else printer

>72 => CRT width in chars

PRTIM
Type: Task
Use: PRTIM displays an image on the line printer or the user’s

terminal. The input parameters specify (1) any
rectangular solid in the image, (2) the number of digits
used for the display, (3) the skipping of pixels and (4)
the multiplication of the display after normalization,
formalization is done using the larger of Datamax and
-10.0*Datamin rounded up to the next higher power of 10.
For IDIG=1, Datamin is used instead of 10 * Datamin. This
default scaling (FACTOR » 1) causes the numbers to be
printed in "natural" units (e.g. Jy/beam) scaled by some
power of 10. The output shows the scaling (e.g. 1000 =
1.0 Jy/beam on IDIG = 3).

Adverbs:
USERID.....User ID of owner of image. 0 => current user,

32000 => any user.
IIHAME.....Image name(name). Standard defaults.
IICLASS....Image name(class). Standard defaults.
IISEQ......Image name(seq. #) . 0 => highest.
IIDISK.....Disk drive # of image. 0 -> any.
BLC........The Bottom Left-hand pixel of the subarray of

the map to be displayed. The value (0,0) means
start at the bottom left of the entire image.

TRC........The Top Right-hand pixel of the subarray of
the map to be displayed. The value (0,0) means
go to the top right of the entire image.

3.4. GETTING THE PARAMETERS 3-5

VDIG.......The number of digits in the display. If IDIG <=
0, an IDIG of 1 is used.

FACTOR.....The multiplication factor for the display. If
FACTOR <= 0.0, a FACTOR of 1.0 is used.

XIIC.......Display every XIIC column(s) in the display.
If XIIC <= 0, an XIIC of 1 is used.

YIIC.......Display every YIIC row(s) in the display.
If YIIC <= 0, a YIIC of 1 is used.

D0CRT......True (> 0.0) means to use the terminal, otherwise
use the line printer. If 72 < D0CRT <= 132, the
task will assume that the terminal is D0CRT
characters wide.

The first few lines of the HELP file are precursor comment lines that give the classification and a description
of the function of the item described in the HELP file and a statement designed to discourage the sale of
AIPS to third parties. On the first line after the precursor lines, the name of the task is given. The “L” ,
“U” and “C” are guides showing the fields for the lower and upper limit for the value of the adverb and for
the comment field. These symbols mark fields in columns 11-22 (lower limit, if any), 23-34 (upper limit,
if any) and 36-64 (comment). No text should extend beyond column 64. The next line gives the name of
the task and a short explanation of the task. Following this is the list of adverbs, their limits and a short
description the use of each. The descriptions should be in lower case.

Column 10 in the first line of an adverb in the inputs section is used to indicate when the adverb is to
be used. If column 10 is blank or then the adverb is used by the adverb GO and is written into the TD
file. If column 10 is or “?” then the adverb will be used by the verb TELL and written into the TC file.

Following the inputs section of the HELP file and separated by a line of 64 signs comes the help
section. This is the text which is displayed on the users terminal when he types “HELP name” to AIPS.
This section gives more details about the use of the task and its adverbs. The HELPs section should have
the format shown in the example above; explanations should be in lower case, where appropriate, and text
should not extend beyond column 64.

Following the helps section of the HELP file and separated from it by a line of 64 is the explain
section. This text, preceded by the help section, is printed when the user types EXPLAIN . . . to AIPS. This
section, which is unfortunately absent from the example above, describes in detail how to use the task and
its relation to other tasks. The general method the task uses should be described in the explain section.

3.4.2 At Task Startup (GTPARM)
When the task comes alive it must read the Task Data (TD) file to get the values of the adverbs. This is
done via a call to GTPARM. (Details of the call sequence to GTPARM can be found at the end of this
chapter).

A convenient way to access the values returned by GTPARM is to declare a common in a task LOCAL
INCLUDE which hew the variables in order and pass the name of the first variable in place of RPARM.
The values can then be obtained by name. Note that all values are as REAL or HOLLERITH variables.
Characters are in HOLLERITH strings and require (NCHAR+3)/4 storage elements and, in general, these
HOLLERITH variables need to be converted to CHARACTER variables using H2CHR before use.

3.4.3 While a Task is Running (GTTELL)
While a task is running in an interactive (non-batch) mode the user may send further instructions to the
task. This is done using verb TELL which writes instructions in the task communications (TC) file. The task
may read its instructions in the TC file using routine GTTELL. (Details of the call sequence to GTTELL
are given at the end of this chapter.)

3-6 CHAPTER 3. GETTING STARTED — TASKS

3.5 Restarting AIPS
When AIPS starts a task, it suspends itself until either (1) the task returns a return code in the TD file or
(2) the task disappears. It is therefore the responsibility of the task to restart AIPS. The timing of this is
determined by the value of RQUICK returned by GTPARM (set by the user as the AIPS adverb DOWAIT).
If RQUICK is true, then AIPS should be restarted as soon as possible (after perhaps some error checking
on the inputs). This is done by the routine RELPOP (the call sequence is given at the end of this chapter).
If the task has an interactive portion, it should be completed before restarting AIPS; this will keep the task
and AIPS from trying to talk to the user terminal at the same time.

RELPOP returns to AIPS a return error code RETCOD. A non-zero value of RETCOD indicates that
the task failed, in which case AIPS will terminate the current line of instructions, procedure or RUN file. If
RQUICK is false, then AIPS is not to be restarted until the task terminates. In this case RELPOP is called
by either DIETSK or DIE and the programmer only has to be sure the correct value of RQUICK is sent to
DIETSK.

3.6 INCLUDE files
AIPS tasks make extensive use of commons to keep system constants and to communicate between subrou­
tines. Many of these commons are in hundreds of routines. To make these commons manageable, they are
declared in INCLUDE files which are filled into the source code by the AIPS preprocessor.

The INCLUDE filea names have the form nxxx.INC where n indicates the type of include file: P indicates
that PARAMETER statements are included, D indicates that type declarations and/or COMMONs and/or
EQUIVALENCES are included, V indicates that DATA statements are included, Z indicates that machine
dependent declarations are included. In general, the ordering of the includes is in order Pxxx.INC, Dxxx.INC
then Vxxx.INC. Fortran specifies that all declarations come before any executable statements and DATA
statements are considered executable. The directory containing the INCLUDE files is specified via a logical
name. The word INCLUDE must start in column 7 and the entire name of the file must be bracketed in
single quotes. An example:

IICLUDE ’IICS:DDCH.IHC*
In current VMS and UNIX implementations INCS: is a search path specifying a list of directories to search.
These directories are ordered from the most machine specific to the most general. For development and test
purposes, it is possible to modify the search path to search the programmer’s directory first. This is done
with an

$ASSIGV (search path) IHCS
in VMS and by assigning a search path to the environment variable INCS in UNIX:

Xsetenv IICS "/mnt/mydir $IICXXX $INCIOT $IIC"
where /m nt/m ydir is the directory to be added and SINCXXX should be replaced with the include directory
specific to the local machine (e.g. SINCVEX for Convexes).

Many tasks also have their own includes; this greatly reduces the problems in developing and maintain­
ing tasks. In order to facilitate task INCLUDES the AIPS preprocessor allows the defination of LOCAL
INCLUDES. These are segments of text which are defined in the file in which they are to be INCLUDEd.
By convention these are given at the beginning of the file and have the syntax illustrated in the following
example:
LOCAL IICLUDE 'MYTASK.IIC*
C Local include lor MYTASK

HOLLERITH XSTR1, XSTR2
REAL X, Y, Z
INTEGER I, J, K
CHARACTER STR1*8, STR2*4

3.7. INITIALIZING COMMONS 3-7

COMMON /MYCOM/ XSTR, XSTR2, X, Y, Z, I, J, K
COMMOI /MYCHR/ STR1, STR2

LOCAL EID
The text segment defined in this example can then be INCLUDEd by the preprocessor with a statement
INCLUDE ’MYTASK.INC’ beginning in column 7.

3.7 Initializing Commons
In order for the commons mentioned in the previous section to be of use, their values must be filled in. For
this purpose there are a number of common initialization routines. These commons and their initialization
are discussed in the following sections.

3.7.1 Device Characteristics Com mon
4

The most important commons are the Device Characteristics Commons; these are obtained from the IN­
CLUDE file DDCH.INC. The text of this INCLUDE is to be found at the end of this chapter. The contents
of the Device Characteristics commons are initialized by a call to ZDCHIN. Details of the call sequence can
be found at the end of this chapter. Many of the values in the Device Characteristics common are read from
a disk file. The values in this file can be read and changed using the stand-alone utility program SETPAR.
The constants kept in this common are described in the following:

SYSVAM C*20 System name
VERXAM C*4 Version ID
RLSVAM C*8 Release name
DEVIAM C(10)*48 lames of files using non-FTAB I/O currently open
IOIIAM C(8)*48 lames of files using non-map I/O currently open.
MAPVAM C(12)*48 lames of files using nap I/O currently open.
SYSTYP C*4 system type: 'VMS ’ or ’UNIX' or ???
SYSVER C*8 system version: '4.5', ’BSD 4.2', 'SYS 5’, ...
XPRDMM R Printer points per millimeter
XTKDMM R Graphics points per millimeter
TIMEDA R(15) Min. TIMDEST time for each disk (days)
TIMESG R Min. TIMDEST time for SAVE/GET files (days)
TIMEMS R Min. automatic destruction time for messages
TIMESC R Min. automatic destruction time for scratch
TIMECA R Min. destruction time for empty catalogs.
TIMEBA R(4) Times during which AP Batch jobs cannot start.

1, 2 start, stop times (hrs) on weekends
3, 4 start, stop times (hrs) on weekdays

TIMBAP R(3) 1 => time between rolls (min)
2,3 polynomial terms for determining how long
a job must wait before grabbing the AP.

FBLAVK R REAL value used to indicate blanking
DBLAVK D DOUBLE PRECISION value used to indicate blanking
HBLAHK H HOLLERITH blank string (4 char)
RFILIT R(14) Spare
I VOL I Number of disk drives available to AIPS
VBPS I Number of bytes per disk sector
NSPG I Number of disk sectors per allocation granule
NBTB1 I Number bytes in FTAB / non-FTAB device
NTAB1 I Max number of non-FTAB devices open at once
NBTB2 I Number bytes in FTAB / slow I/O device
ITAB2 I Max number of slow I/O devices open at once

3-8 CHAPTER 3. GETTING STARTED — TASKS

IBTB3
ITAB3
■TAPED
CRTMAX
PRTMAX
IBATQS
MAXXPR
CSIZPR
VIVTRV
KAPVRD
VVDPDP
IBITVD
IVDLII
ICHLIK
ITVDEV
VTKDEV
BLAVKV
ITVACC
VTKACC
UTCSIZ
BYTFLP
USELIM
IBITCH
ICHPRT
KAP2VD
MAXXTK
CSIZTK
DASSGI

VSHORT
TTYCAR

I
I
I
I
I
I
1(2)
1(2)
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1(2)
1(2)
1(8,15)

SPFRMT I

DPFRMT I

DEVTAB 1(50)
FTAB I(*)

lumber bytes in FTAB / fast I/O device
Max number of fast I/O devices open at once
lumber of tape drives available to AIPS
Humber lines / CRT terminal page
Humber lines / printer page
Humber batch AIPSs in system
Humber of plotter dots / page in X, Y
Humber of plotter dots / character in X, Y
Maximum # simultaneous interactive AIPSs
1024s of words of array processor memory
words / double-precision floating point
bits / word
words in a POPS input line
characters in a POPS input line
television display devices available
graphics display devices available
Integer magic value => blanked pixel
Humber POPS programs allowed access to TV devices
Humber POPS programs allowed access to graphics
Private catalog size (0=>public)
Byte flip, 0=none, l=bytes, 2=words, 3=both
Maximum user number
bit8 per character
Vidth of line printer in characters.
1024s words of secondary AP memory.
Graphics screen size x,y
Graphics character size x,y
Lists of allowed users, 8 per disk for up to 15
disks.
Single precision floating-point format code
0 => OTHER
1 => IEEE
2 => VAX F
3 => VAX G
4 => IBM (not supported yet)
Double precision floating-point format code
(see codes for SPFRMT)
Shortest vector length to vectorize
1 => TTY i/o uses carriage control characters.
Device type code numbers
I/O driving tables

3.7.2 Catalog Pointer Com mon
The catalog header record for an AIPS data file is a data structure containing characters, integers, and
single and double precision reals. The size of the record is fixed at 512 bytes where a byte is defined as
half an integer. Values in the catalog header record are accessed from a number of arrays of different data
types equivalenced together. Since different computers have different sizes for different data types, we use
pointers in these equivalenced arrays. These pointers are kept in a common invoked with the INCLUDE
DHDR.INC and are initialized by a call to VHDRIN. VHDRIN has no arguments, but should be called after
ZDCHIN. For more details, see the chapter on the catalog header. The catalog header can contain arbitrary
keyword/value pairs to allow storage of information not currently allocated space in the header. Access to
these key word/value pairs is throught routine CATKEY.

3.7. INITIALIZING COMMONS 3-9

3.7.3 History Com m on
The routines that write History files carry information in pointers in commons invoked with the INCLUDE
DHIS.INC and are initialized by a call to HIINIT; the details of the call sequence are given at the end of
this chapter.

3.7.4 TV Com m on
The routines that talk to the television display use information from the commons obtained by the INCLUDES
DTVC.INC and DTVD.INC. If a task uses the TV, there must be an initializing call to YTVCIN which has
no call arguments.

YTVCIN initializes the common which describes the characteristics of the interactive display devices and
the common which has the current status parameters of the TV. The values set are default values only. They
are reset to the current true values by a call to TVOPEN. YTVCIN resets the common values of TVZOOM
and TVscroll, but does not call the TV routines to force these to be true. See the chapter on the television
devices for more details.

3.7.5 U V data pointer com m on
The format in which uv data is stored is relatively flexible and is described in the chapter on disk I/O . Since
it is rather flexible, the location in a logical record of a given value must be determined from the catalog
header. In order to make it easier to find values in a uv data record, we use a common containing pointers;
this common is obtained by using the INCLUDE DUVH.INC. This common is filled in by a call to UVPGET
which analyzes the current catalog header in common /M APHDR/ (In INCLUDE DCAT.INC). Details of
the call arguments and the pointers etc. set are found at the end of this chapter.

3.7.6 Files com m on, DFIL.INC
Many tasks open a number of cataloged files and create several scratch files. The status of the cataloged files
are marked ’READ’ or ’W RIT’ in the catalog directory and need to be cleared by the end of the program.
Scratch files must be destroyed by the end of the program. Since an error might terminate the program at any
stage, the program must be prepared to clear catalog files and destroy scratch files under any circumstances
in which it controls its death.

Many tasks accomplish these functions through use of the common obtained from the INCLUDE DFIL.INC
and use of the termination routine DIE (which will be discussed in a later section). The contents of DFIL.INC
is found at the end of this chapter.

In this common, NSCR is the number of scratch files that have been created, SCRCNO contains the
catalog numbers of the scratch files, and SCRVOL contains the disk numbers of the scratch files.

NCFILE tells how many catalog files are marked, FVOL contains the disk numbers of the cataloged files
marked, FCNO contains the catalog slot numbers of the marked files, and FRW contains flags for each of
the marked catalog files (0 = ’READ’, 1= ’W RIT’, 2 = ’W RIT’ but destroy if the task fails).

IBAD is an array to contain the disk drive numbers on which not to put scratch files; IBAD is used by the
scratch file creation routine SCREAT. RQUICK is also carried along in this common so that AIPS can be
restarted by the shutdown routines if necessary. If the information in this common is kept current, catalog
file status words will be cleared and scratch files deleted by the shutdown routine DIE. If the DFIL.INC
common is being used, it should be initialized with the following statements before use:

ISCR = 0
MCFILE = o

and by initializing the array IBAD to zeroes or the values of BADDISK sent by AIPS.

3-10 CHAPTER 3. GETTING STARTED — TASKS

3.8 Input and Output File Nam es
The input and output file name, class, sequence etc. passed to a task are subject to a number of default and
wild-card conventions in the case that they are not completely specified. For the most part, these conventions
we incorporated into the standard utility routines. For some tasks, there are logical default values which are
not the standard defaults and which must be handled by the task. An example of this is the output class
for APCLN. If the input class is IMAP and the output class is not specified (all blanks), then APCLN uses
ICLN for the output class.

The standard defaults for input names are as follows: If the disk is not specified, all disks are searched
in order starting with disk 1. If the name and/or class is not specified, then the catalog (or catalogs) are
searched until a file satisfying all specified criteria is found. If the sequence number is not specified, then
the file with the highest sequence number meeting all specified criteria is picked. In addition to the default
conventions, AIPS also supports two types of wild-cards; means any number, including none, of any
character will be accepted, “?” means exactly one character of any type will be accepted as a match. The
standard defaults and wild-cards are fully supported by the standard catalog routines. The standard default
for the output name is the input name; the standard default for the output class is the name of the task, and
the standard default for the output sequence is 1 higher than the highest sequence number on any disk for
any file with the same name and class; if there are no other matching files, the sequence number is 1. The
default output disk is the highest numbered disk oi) which space is available. Wild-cards are supported in the
output name; basically a wild-card in the output name and class means to use the corresponding character
(or characters) from the input name or class. Only one is allowed in an output name or class; others
are ignored. These defaults and wild-card conventions are implemented in the utility MAKOUT. MAKOUT
must be called by all tasks which may create an output file. The details of the call sequence of MAKOUT
are given at the end of this chapter.

3.9 Copying Extension Files
Each cataloged file may (and usually does) have auxiliary files containing information related to the cataloged
file; these files are called extension files. There are usually several of these extension files that a task must
copy if it is creating a new output file. The most important of these is the history file (file type “HI”) which
should be updated as well as copied. For uv data files, the ANtenna tables (type “AN”), FreQuency tables
(type “FQ”) and any relevant calibration tables should be copied and for images any CLEAN components
tables (type “CC”) should be copied. Other extension file types may also have to be copied. The following
sections describe how to copy and/or update these files.

3.9.1 History
Information describing the processing history of a data set is kept in an extension file to each main data
file. These files consist of 72 character records using the FITS convention for history records. Each task
writes into the history file records which begin with the name of the task and contain information about how
data was processed by that task. This is usually in the form “adverb nam e=” followed by the actual value
used. These records should be able to be parsed in the same manner as FITS header records. Comments
are preceded by a “/ ” .

There are a number of utility routines to simplify handling history files. A short description of each
follows and the details of the call sequences can be found at the end of this chapter.

• HIINIT initializes the history common.
• HISCOP creates and catalogs a new history file, opens it, opens an old history file and copies it to the

new history file, and leaves the old history file closed and the new file open.
• HIADD adds a history card to an open history file.
• HIADDN adds a history card to number of open history files.
• HIAD80 adds an 80-character card image into an open history file.

3.10. COMMUNICATION WITH THE USER 3-11

• HICLOS closes a history file, flushing the buffer if requested.
• HIMERG creates several history files by merging several old files.
• HIREAD reads the next history card from an open history file.

Once the history file is open, entries can be made in it by first WRITEing the message (up to 72 characters)
into a CHARACTER array dimensioned to be at least 72 characters and calling HIADD. We wish to
encourage the convention of using the name “HILINE” for this CHARACTER variable. An example:

CHARACTER HILINE*72
INCLUDE ’INCS:DNS6.INC '

WRITE (HILIHE.2000) TSKHAM, FACTOR
2000 FORMAT (A6,‘ FACTOR**,F5.2,* / CORRECTION FACTOR')

CALL HIADD (HLUH, HILIIE, BUFFER, IERR)

Once all new entries have been made to the history file, the buffer is flushed and the file closed by a call to
HICLOS. (HICLOS should normally be called with UPDATE=.TRUE. for a history file being written)

It should be noted that HISCOP will also work properly if the old and new history files are actually the
same file. In this case, it simply opens the new file to add new entries. Several other history utilities, which
may occasionally be useful, are HICREA which creates a history file, HIOPEN which opens a history file and
HICOPY which copies the contents of one history file onto the end of another history file. The functions of
these routines are incorporated into the routines described above so they are normally not of great interest
to the programmer.

3.9.2 Extension tables (ALLTAB, TABCOP)
All tables extension files may be copied with a single call to ALLTAB. ALLTAB also accepts a list of table
types not to be copied. Certain nontable extension file types are excluded from being copied by ALLTAB,
these being history files (type “H P) and plot files (type “PL”). A description of the call sequence to ALLTAB
is given at the end of this chapter. Routine TABCOP can be used to copy tables of a given type.

An older form of extension file was managed by the pair of routines EXTINI and EXTIO. Files of this
type can be copied by the routine EXTCOP.

3.10 Communication w ith the user
3.10.1 Writing messages
Most of the important communications between a user and AIPS and its tasks are sent to both a monitor
terminal, which may be the users own terminal, and to a disk log file. This logged information is primarily of
use to the user, but is frequently of great use in debugging a program. The basic way a task communicates
to the user is through the utility routine MSGWRT. A message of up to 80 characters (< 64 is best) is
first written into array MSGTXT in the message common, which is invoked by the include DMSG.INC. By
convention, error messages should be all in upper case and warning or informative messages should be mixed
case.

A call is made to the routine MSGWRT with a single INTEGER argument which is the priority level to
write the message. The meaning of the priority is as follows:

Priority Use
0 Write to log file only
1 Write to monitor terminal only
2 Low interest normal messages

3-12 CHAPTER 3. GETTING STARTED — TASKS

3-4 Normal message
5 High interest normal message.
6-8 Error message
9-10 Severe error messages

An example of the use of MSGWRT follows:
INCLUDE *INCS:DMSG.INC'

VRITE (HSGTXT,1000) IERR
CALL MSGVRT (6)

1000 FORMAT ('ENCOUNTERED ERROR ’,13)

3.10.2 Turning off system messages
Many of the AIPS utility routines give messages which may or may not indicate a problem such as the “FILE
ALREADY EXISTS” message from ZCREAT. Most of the messages are written a t priority level 6 or 7 and
may be turned off by setting the variable MSGSUP in INCLUDE DMSG.INC (the same one MSGTXT lives
in) to 32000. This variable should be restored as soon as possible to a value of 0 to enable level 6 and 7
messages.

3.10.3 Writing to the line printer
The standard Fortran logical unit number for the line printer in the AIPS system is unit 1. Writing to the
line printer can be done with normal formatted Fortran writes. Before writing to the line printer it should be
opened with a call to ZOPEN and a header page prepared for batch jobs with a call to BATPRT. When the
task is finished writing to the printer, a second call to BATPRT will write a trailer page, a call to ZENDPG
will eject a page (very important on electrostatic printers), and a call to ZCLOSE will close the file and send
it to the printer spooler. An example follows:

INTEGER LPLUN, LPIND, BUFFER(256), IPCNT
LOGICAL T,F
REAL VALUE1, VALUE2
CHARACTER LPNAME*48
PARAMETER (T = .TRUE.)
PARAMETER (F = .FALSE.)
PARAMETER (LPLUN = 1)
PARAMETER (LPNAME = ' . »)
INCLUDE *INCS:DDCH.INC'

C Open the printer.
CALL ZOPEN (LPLUN, LPFIND, 1, LPNAME, F, T, T, IERR)

(handle error condition if detected)
C Header page if batch

CALL BATPRT (1, BUFFER)
IPCNT = 0

3.10. COMMUNICATION W ITH THE USER 3-13

C Increment line count
IPCVT = IPCMT + 1

C Check if page full.
IF (IPCHT .LT. PRTMAX) GO TO 100

C Write new page header

ICPIT = 0
! Write to printer
100 WRITE (LPLUV,1000) VALUE1, VALUE2

C Trailer page if batch
CALL BATPRT (2, BUFFER)

C Eject a page
CALL ZEKDPG (IPCHT)

C Close printer and send to
C spooler.

CALL ZCLOSE (LPLUV, LPIVD, IERR)

1000 FORMAT (» VALUE1 =\F10.5, » VALUE2 =\1PE12.6)

The number of lines per page on the line printer is obtained, as shown in the example, by the variable
PRTMAX in the device characteristics common (DDCH.INC). In the example above, ZOPEN recognized
the unit number (LPLUN) value of 1 as meaning the line printer, so most of the arguments to ZOPEN are
dummy in this case.

In the real world, the use of line printers is more complicated than this. For example, line printers
have not only a variable number of lines per page, but also a variable number of characters across a page
(NCHPRT in DDCH.INC). Line printers are often located at some distance from the user’s terminal. As a
result, all AIPS printing tasks allow the user the DOCRT option, which specifies that the terminal, rather
than the printer, is to be used. DOCRT may also be used to specify the width of the terminal (see PRTIM
help file earlier in the chapter). Thus, standard AIPS print programs must handle variable width formats,
pagination, alternate output devices, pausing on page full for terminal output, etc. The subroutine PRTLIN
will provide many of these services. A description of the call sequence of PRTLIN is given at the end of this
chapter. Read the code of the task PRTUV to see a good example of the full AIPS handling of a print job.

3.10.4 Writing to the Terminal (ZTTYIO)
Many mainframe computers are batch oriented and discourage programs from talking directly to a terminal.
To get around this problem, AIPS has a “Z” routine for this purpose. ZTTYIO, rather than Fortran reads
and writes to units 5 and 6, is used to communicate with the terminal.

If a task is going to talk to the user terminal, it should not call RELPOP until after communication with
the user terminal is complete. If AIPS is restarted too soon, both AIPS and the task will be trying to talk
to the terminal at the same time; this will probably confuse the user.

Before calling ZTTYIO, the device must be opened by a call to ZOPEN, and after the task is through
talking to the terminal, it should be closed with a call to ZCLOSE. Use a value of 5 for the LUN. In the
call to ZOPEN, the file name and disk number are dummy parameters since ZOPEN recognizes LUN=5 as
a Fortran device. Write messages to be sent into an array and send the array to ZTTYIO. Lines read from
the terminal will be returned by ZTTYIO as a CHARACTER string. An example of the use of ZTTYIO is
the following:

3-14 CHAPTER 3. GETTING STARTED — TASKS

IITEGER TTYLUM, TTYIID, IRET
LOGICAL T, F
PARAMETER (TTYLUI = 5)
PARAMETER (T = .TRUE.)
PARAMETER (F = .FALSE.)
CHARACTER LIIE*72

C Open the terminal
CALL ZOPEI (TTYLUI, TTYIID. 1, LIIE, F. T, T, IERR)

C Error if IERR .IE. 0

C Write message lor terminal
VRITE (LIIE,1000)

C Send to terminal
C Set here to read and write
C up to 72 characters per
C transmission.

CALL ZTTYIO ('VRIT', TTYLUI, TTYIID, 72, LIIE, IERR)
C Error if IERR .IE. 0

C Read from terminal.
C Up to 72 characters.

CALL ZTTYIO (*READ’, TTYLUI, TTYIID, 72, LIIE. IERR)
C Error if IERR .IE. 0

C Close terain&l
CALL ZCLOSE (TTYLUI. TTYIID, IERR)

1000 FORMAT (' Hi there')

3.11 Scratch Files
Many tasks require the use of scratch files which must be created at the beginning of the task and destroyed
at the end of the task. Since the task may detect an error condition and decide to quit at an arbitrary place
in the program, some provision must be made to destroy the scratch files under all conditions for which the
task controls its death. Scratch files are cataloged as type ’SC’ so that the user can directly delete them.
The DFIL.INC commons described in a previous section are designed for this purpose.

A simple way to create scratch files is to use the common /C FILES/ and the routine SCREAT. SCREAT
will try to scatter the scratch files among as many disk drives as possible, will try all of the disks if necessary
to find space for a scratch file, and can be prohibited from putting scratch files on certain disks by use of
the array IBAD (adverb array BADDISK in AIPS). Details of the call sequence for SCREAT can be found
at the end of this chapter.

An example of the use of SCREAT is the following:
IITEGER IRET, IX, IY, IP(2), BUFF(512), SIZE
IICLUDE »IHCS:DFIL.IIC'
IICLUDE »IICS:DDCH.IIC'

3.12. TERMINATING THE PROGRAM 3-15

C NX, NY are the size of an
C image. Make a scratch file
C big enough for a copy of the
C image.
C
C Compute the size.

NP(1) = NX
NP(2) = NY

C Compute size needed
CALL MAPSIZ (2, NP, SIZE)

C Create scratch file.
CALL SCRRAT (SIZE, BUFF, IRET)

C Test for errors...

In the above example, the scratch file created will be entered in the DFIL.INC common as number NSCR
(which was incremented). The disk and catalog slot numbers are thus SCRVOL(NSCR) and SCRCNO(NSCR).
This scratch file can be opened as follows:

INTEGER LUN, IND
CHARACTER FILE*48
INCLUDE ‘INCS:DFIL.INC'

C ISCR = DFIL.INC slot number.
CALL ZPHFIL ('SC', SCRVOL(ISCR), SCRCNO(ISCR), 1, FILE, IRET)
CALL ZOPEN (LUN, IND, SCRVOL(ISCR), FILE, .TRUE., .TRUE.,
* .TRUE., IRET)

Once opened, these files can be initialized and read or written in the same way as permanent cataloged data
files.

Since scratch files are cataloged, they have an associated catalog header record. SCREAT fills in nominal
values, but, if the scratch file contains data in the same form as an image or uv data, the appropriate
information can be placed in the header to describe the data. This allows using the header record to specify
the contents of a file in utility routines, simplifies the interface to the routine, and allows the routine to work
equally well on permanent or scratch files. This technique is used in a number of utility routines such as
VISDFT.

3.12 Terminating the Program
Most tasks create scratch files or open cataloged files which have status words marked in the catalog directory.
These scratch files should always be destroyed by the end of the program, and the catalog files should be
unmarked. Also AIPS may have to be restarted at the end of the program. For these and other reasons, we
strongly advise that when error conditions are detected that the routine finding the error set the appropriate
error code and return; all the way back to the main routine. Then a call to one of the shutdown routines
can be followed by a Fortran STOP statement. There should be no other STO P statements tn the program.

In the section describing initialization of the DFIL.INC common, there is a discussion of using it to carry
information about scratch and cataloged files. If this common is used, the shutdown routine DIE will take
care of deleting all scratch files, unmarking catalog files, and restarting AIPS if necessary. If the DFIL.INC
common is not used, the routine DIETSK will restart AIPS and take care of the other shutdown functions.
(DIE calls DIETSK). Both of these routines accept a return code which is sent to AIPS if it is restarted at
that time; a nonzero value of the return code indicates that the program failed. Descriptions of DIE and
DIETSK can be found at the end of this chapter.

3-16 CHAPTER 3. GETTING STARTED — TASKS

3.13 Batch Jobs
AIPS has a capability to run tasks in the batch mode. It usually makes little difference to a task if it is
being run in batch or interactive mode, but use of some devices is forbidden to batch tasks. These devices
sire the tape drive, the graphics device, and the television. After the calls to GTPARM and ZDCHIN, a task
can determine if it is running as a batch task by comparing the value of NINTRN (number of interactive
AIPS allowed) from the device characteristics common (DDCH.INC) with NPOPS (the AIPS number of the
initiating task) from the message common (DMSG.INC). If NPOPS is greater than NINTRN, then the task
is running as a batch task and use of the devices mentioned above is disallowed. A new, better way to make
this determination is to test the value of ISBTCH in the device characteristics common. If ISBTCH = 32000,
the task is to act as a batch job, no matter what its value of NPOPS. The user can set this condition into
an apparently interactive AIPS session with the pseudoverb statement ISBATCH TRUE. Batch jobs always
run with RQUICK (DOWAIT in AIPS) true and thus do not restart AIPS until they are done. GTPARM
enforces this on the RQUICK parameter.

3.14 Installing a N ew Task
The procedure to install a task depends a great deal on the host computer and operating system. Appendix
A at the end of this volume describes how to test and install new software and describes the directory
structure.

3.15 INCLUDES
There are several types of INCLUDE files which are distinguished by the first character of their name.
Different INCLUDE file types contain different types of Fortran declaration statements as described in the
following list.

• Pxxx.INC. These INCLUDE files contain declarations for parameters and the PARAMETER state­
ments.

• Dxxx.INC. These INCLUDE files contain Fortran type (with dimension) declarations, COMMON and
EQUIVALENCE statements.

• Vxxx.INC. These contain Fortran DATA statements.
• Zxxx.INC. These INCLUDE files contain declarations which may change from one computer or instal­

lation to another.

3.15.1 DDCH.INC
C Include DDCH.
C AIPS system parameters

CHARACTER SYSNAM*20, VERNAM*4, RLSNAM*8, DEVIAM(10)*48,
* I0IVAM(8)*48, MAPNAM(12)*48, SYSTYP*4, SYSVER*8
HOLLERITH HBLAIK
DOUBLE PRECISION DBLAVK
REAL XPRDMM, XTKDMM, TIMEDA(IS), TIMESG, TIMEMS, TIMESC, TIMECA,
* TIMEBA(4), TIMEAP(3), FBLANK, RFILIT(14)
INTEGER NVOL, NBPS, NSPG, NBTB1, NTAB1, NBTB2, NTAB2, NBTB3,

* MTAB3, NTAPED, CRTMAX, PRTMAX, NBATQS, NAXXPR(2), CSIZPR(2),
* NINTRN, KAPVRD, NVDPDP, NBITVD, NCHLIN, NTVDEV, NTKDEV, BLANKV,
* NTVACC, NTKACC, UCTSIZ, BYTFLP, USELIM, NBITCH, NCHPRT,
* KAP2VD, MAXXTK(2), CSIZTK(2), DASSGN(8,15), SPFRMT, DPFRMT,
* NSHORT, TTYCAR, DEVTAB(SO), FTAB(1024)
COMMON /DCHCHM/ SYSNAM, VERNAM, SYSTYP, SYSVER, RLSNAM,

3.15. INCLUDES 3-17

* DEVIAM, IOIIAM, MAPVAM
COMMOI /DCHCOM/ DBLAHK, XPRDMM, XTKDMM, TIMEDA, TIMESG, TIMEMS,
* TIMESC, TIMECA, TIMEBA, TIMEAP, FBLAIK, RFILIT, HBLAIK,
* IVOL, IBPS, ISPG, IBTB1, ITAB1, IBTB2, ITAB2, IBTB3, ITAB3,
* ITAPED, CRTMAX, PRTMAX, IBATQS, MAXXPR, CSIZPR, IIITRI,
* KAPVRD, IVDPDP, IBITVD, ICHLII, ITVDEV, ITKDEV, BLAIKV,
* ITVACC, ITKACC, UCTSIZ, BYTFLP, USELIM, IBITCH, ICHPRT,
* KAP2VD, MAXXTK, CSIZTK, DASSGI, DEVTAB, SPFRMT, DPFRMT,
* ISHORT, TTYCAR
COMMOI /FTABCM/ FTAB

C End DDCH.

3.15.2 DFIL.INC
C Include DFIL.
C AIPS system catalog and scratch

IITEGER ISCR, SCRV0L(128), SCRCI0(128), IBAD(10), LUIS(IO),
* ICFILE, FV0L(128), FCI0(128), FRW(128), CCIO
LOGICAL RQUICK
COMMOI /CFILES/ RQUICK, ISCR, SCRVOL, SCRCIO, ICFILE, FVOL, FCIO,
* FRV, CCIO, IBAD, LUIS

C End DFIL.

3.15.3 DM SG .INC
C Include DMSG.
C AIPS system message common

IITEGER MSGCIT, IPOPS, ILUSER, IACOUI, MSGSUP, MSGREC,
♦ MSGKIL, ISBTCH, DBGAIP, MSGDM1, MSGDM2, MSGDM3
CHARACTER MSGTXT*80, TSKIAM*6
COMMOI /MSGCOM/ MSGCIT, IPOPS, ILUSER, IACOUI, MSGSUP, MSGREC,
* MSGKIL, ISBTCH, DBGAIP, MSGDM1, MSGDM2, MSGDM3
COMMOI /MSGCHR/ MSGTXT, TSKIAM

C End DMSG.

3.15.4 D U VH .INC
C Include DUVH.
C If you change this include you
C must also change common
C /CATHDR/ in DBCOI
C Include for uv header info

IITEGER IVIS
IITEGER ILOCU, ILOCV, ILOCV, ILOCT, ILOCB, ILOCSU, ILOCFQ,

* JLOCC, JLOCS, JLOCF, JLOCR, JLOCD, JLOCIF, IRPARM, LREC,
* KCOR, IHCS, IMCF, IICIF, ICORO, TYPUVD
CHARACTER SOURCES, ISORT*2
DOUBLE PRECISION FREQ, RA, DEC
COMMON /UVHDR/ FREQ, RA, DEC, HVIS, ILOCU, ILOCV, ILOCW, ILOCT,
* ILOCB, ILOCSU, ILOCFQ, JLOCC, JLOCS, JLOCF, JLOCR, JLOCD,
* JLOCIF, INCS, IICF, IICIF, ICORO, IRPARM, LREC, ICOR, TYPUVD

3-18 CHAPTER 3. GETTING STARTED — TASKS

COMMOI /UVHCHR/ SOURCE, ISORT
C End DUVH.

3.15.5 PUV D .IN C
c Include PUVDc Parameters for uv data

IVTEGER MAXAIT, MXBASE, MAXIF, MAXFLG, MAXFLD, MAXCHAc
PARAMETER (MAXANT-45)

MAXAIT = Max. no. antennas.

c MXBASE = max. no. baselines
PARAMETER (MXBASE- ((MAXAIT*(MAXAIT+1))/2))c
PARAMETER (MAXIF=15)

MAXIF=max• no. IFs.

c
PARAMETER (MAXFLG=1000)

MAXFLG= max. no. flags active

c
PARAMETER (MAXFLD=16)

MAXFLD=max. no fields

c
PARAMETER (MAXCHA=512)

MAXCHA=max. no. freq. channels.

c Parameters for tables
INTEGER MAXCLC, MAXSIC, MAXAIC, MAXFGC, NAXIXC, MAXSUC,
* NAXBPC, MAXBLC, MAXFQC

C
PARAMETER (MAXCLC=41)

MAXCLC=max no. cols in CL table

C
PARAMETER (MAXSIC-20)

MAXSIC-max no. cols in SI table

C
PARAMETER (MAXAIC=12)

MAXAIC-max no. cols in AI table

C
PARAMETER (MAXFGC=8)

MAXFGC=max no. cols in FG table

C
PARAMETER (MAXIXC=7)

MAXIXC=max no. cols in IX table

C
PARAMETER (MAXSUC=21)

MAXSUC^max no. cols in SU table

C
PARAMETER (MAXBPC=14)

MAXBPC>max no. cols in BP table

C
PARAMETER (MAXBLC=14)

MAXBLC=max no. cols in BL table

C MAXFQC-max no. cols in FQ table
PARAMETER (MAXFQC=5)

C End PUVD.

3 .1 6 R o u t in e s
3.16.1 ALLTAB
ALLTAB copies all Table extension file(s). The output files must be new - old ones cannot be rewritten.
The output file must be opened WRIT in the catalog and will have its CATBLK updated on disk.

ALLTAB (IONOT, IOTTYP, LUIOLD, LUNNEW, VOLOLD, VOLNEV,
* CIOOLD, CIOIEW, CATIEV, BUFFI, BUFF2, IRET)

3.16. ROUTINES 3-19

Inputs:
IOIOT I
IOTTYP(*) C*2

LUIOLD I
LUIIEV I
VOLOLD I
VOLIEV I
CIOOLD I
CIOIEV I
In/out:
CATIEV(256)I
Output:
BUFFI(1024)i I
BUFP2(1024)i I
IRET I

lumber of "Forbidden" types to copy.
Table types to ignore (2 char meaningful, blank
filled)
LUV for old file
LUV for new file
Disk number for old file.
Disk number for new file.
Catalog slot number for old file
Catalog slot number for new file

Catalog header for new file.

Work buffer
Vork buffer
Return error code 0 => ok, otherwise TABCOP

or 10*CATI0 error.

3.16.2 CHCOPY
CHCOPY moves characters from one HOLLERITH string to another

CHCOPY (ICHAR, IP1, STR1, IP2, STR2)
Inputs:

ICHAR I lumber of characters to move
IP1 I Start char position in input string
STR1 H(*) Input string
IP2 I Start char position in output string

Output:
STR2 H(*) Output string

3.16.3 CHCOMP
CHCOMP compares two HOLLERITH strings

CHCOMP (ICHAR, KP1, STR1, KP2, STR2, EQUAL)
Inputs:

ICHAR I # characters to compare
KP1 I starting character in string 1
STR1 H(*) string 1
KP2 I starting character in string 2
STR2 H(*) string 2

Output:
EQUAL L T => strings are same

3.16.4 CHFILL
CHFILL fills a HOLLERITH string with a character

CHFILL (ICHAR, CHAR, IBP, STRIIG)
Inputs:

ICHAR I lumber of char positions to fill
CHAR H Chax in char position 1
■BP I Start char position to fill

Output:
STRIIG H(*) Filled string

3-20 CHAPTER 3. GETTING STARTED — TASKS

3.16.5 CHLTOU
CHLTOU converts any lower case characters in a CHARACTER string to upper case.

CHLTOU (I. STRIIG)
Inputs:

V I lumber of characters
In/out:

STRIIG C*(*) String to be converted.

3.16.6 CHMATC
searches one HOLLERITH string for the occurrence of another string.

CHMATC (IAf JA. CA, IB. JB, CB, IP)
Inputs:

KA I lumber of characters in CA (start at JA)
JA I Start at char position JA in CA
CA H(*) Packed substring to be found in CB
IB I lumber of characters in CB (n.b. TOTAL)
JB I Start search at offset in CB
CB H(*) Packed string.

Output:
IF I start position in CB of CA, 0 if none,

v.r.t. start of string

3.16.7 CHR2H
Convert a Fortran CHARACTER variable to an AIPS HOLLERITH string. IF NCH > LEN (ISTR) then
blank fill the rest.

CHR2H (ICH, ISTR, OUTPIT, OSTR)
Inputs:

ICH I lumber of characters
ISTR C*(*) Input CHARACTER string
OUTPIT I Start position in output string

Output:
OSTR H(*) Output AIPS string

3.16.8 CHWMAT
CHWMAT matches a pattern string containing “wild-card” characters with a test string. The wild cards **’
for any number and ‘?’ for exactly 1 of any character are supported.

CHWMAT (IPM, PS, IPT, ITS, TS, EQUAL)
Inputs:

IPM I Length of test string (not incl ITS-1
characters)

PS c*(*) Pattern string
IPT I(IPM) Pattern array prepared by PSFORM
ITS I Start char position in TS for testing
TS c*(*) Test string

Output:
EQUAL L T => they match

3.16. ROUTINES 3-21

3.16.9 DIE
DIE does the housekeeping necessary for an orderly death of the task. Primarily clearing catalog flags and
destroying scratch files. It also calls RELPOP if RQUICK is false.

DIB (ICODE, BUFF)
Inputs:

ICODE I Return code: 0 => good, other => bad end
BUFF 1(266) Work buffer

Locations in catalog are communicated by COMMOI /CFILES/:
ICFILE
FVOL
FCIO
FEW

ISCR
SCRVOL
SCRCIO

lumber of files marked in catalog.
Volume numbers of the maps.
Slot numbers of the maps.
1 0 if READ , 1 if WRITE clear desired,
a 2 if a new file with Write, destroy on ICODE
bad; other values => file already closed,
lumber of scratch files to be destroyed
Scratch file volume numbers
Scratch- file catalog numbers.

3.16.10 DIETSK
DIETSK must be called a t the end of each task as the last real statement before the final RETURNs and
STOP statement. It- issues a closing message, terminates the accounting, and, if RQUICK is false, restarts
the initiating AIPS program.

DIETSK (IRET, RQUICK, IBUF)
Inputs:

IRET I 0 => ok, else bad end
RQUICK L T => initiator already resumed

Output:
IBUF 1(256) Scratch buffer

3.16.11 EXTCOP
EXTCOP copies an extension file(s) of the EXTINI-EXTIO variety.

EXTCOP (TYPE, IIVER, OUTVER, LUIOLD, LUIIEW, VOLOLD,
* VOLIEW, CIOOLD, CIOIEW. CATIEW, BUFFI, BUFF2, BUFF3, IRET)

Inputs:
TYPE C*2 Extension file type eg 'CC'.'AI'
IIVER I Version number to copy, 0=>copy all.
OUTVER I Version number on output file, if more than one

copied (IIVER-0) this vill be the # of the first
file. If 0UTVER=0 the EXTIII defaults are used.

I LUI for old file
I LUI for new file
I Disk number for old file.
I Disk number for nev file.
I Catalog slot number for old file
I Catalog slot number for nev file
1(256) Catalog header for nev file.

LUIOLD
LUIIEW
VOLOLD
VOLIEW
CIOOLD
CIOIEW
CATIEW

In/out:
BUFFI

BUFF2
I(>512) Work buffer: 256 vords + n * 256 vords (enough

to hold at least one logical record)
I(>512) Work buffer: as BUFFI

3-22 CHAPTER 3. GETTING STARTED — TASKS

BUFF3 I(*) Buffer large enough to hold one logical record
Output:

IRET I Return error code 0 => ok
1 => files the same, no copy
2 => no input files exist
3 => failed
4 => no output files created

3.16.12 GTPARM
GTPARM obtains the activator task number, obtains the transmitted parameters, initializes the message
common, and outputs the message ‘task NAME begins’. It also handles startup accounting.

GTPARM (IAKE, IPARKS, RQUICK, RPARM, SCRTCH, IERR)
Inputs:

■AMS C*6 Task name
IPARKS I lumber of real variables wanted

Outputs:
RQUICK L T => release POPs as soon as possible

F => wait until you have finished
RPARM R(IPARMS) Parameters received
SCRTCH 1(256) Scratch buffer
IERR I Error code: 0 -> ok

1 -> initiator (AIPS) not found
2 -> disk troubles
3 -> initiator zeroed

3.16.13 GTTELL
GTTELL gets any parameters sent to the current task by AIPS verb TELL. All entries for the task in the
TC file are cleared and the most recent is returned to the calling routine.

GTTELL (IPARMS, OPTELL, PARKS, SCRTCH, IERR)
Inputs:

IPARMS
Output:

OPTELL
PARKS
SCRTCH
IERR

lumber REAL parameters

C*4
R(*)
1(266)
I

lote:

Opcode from TELL
Returned parameters
Scratch buffer
0 => okay (no parms)
1 => okay (got parms)
2 => TELL orders quit
3 => TELL orders abort

if GTTELL encounters an internal error, i.e. file open, read,
etc. failure, it returns IERR = 0 after emitting a message.

3.16.14 HIADD
HIADD adds a history card to a history file. I/O takes place only if necessary. Thus UPDATE = .TRUE,
on HICLOS is required.

HIADD (HLUI, CARD, BUFFER, IERR)
Inputs:

HLUI I LUI of HI file (must be open!!)
CARD C*72 new card

In/out:

3.16. ROUTINES 3-23

BUFFER 1(256) HI work buffer
Output:

IERR I Error return: 0 => ok, other set by HIIO

3.16.15 H IAD D N
HIADDN is used by HIMERG for output to avoid large numbers of loops.

HIADDI (LUI, I, HILIIE, BUF, CHK, IERR)
Inputs:

LUV 1(1) Input LUIs.
CHK 1(1) Only write if CHK(I) = 0.
I lumber of files (including "dummies").
HILIIE String to add.

In/Out:
BUF 1(256,1) Vorking buffers
IERR I Error code * max error code generated by HIADD

3.16.16 HIAD80
HIAD80 puts an 80-character card image into a history file. It actually puts 0 (CARD a l l), 1 (< 72 chars),
or 2 cards in the file.

HIAD80 (HLUI, 1ST, CARO, HBLK, IERR)
Inputs:

HLUI I LUI of open history file
1ST I Start character position in card
CARD C*80 80-character "card"

In/out:
HBLK 1(256) HI I/O buffer

Output:
IERR I Error code of HIADD

3.16.17 HICLOS
HICLOS closes a history file updating it if requested.

HICLOS (HLUI, UPDATE, BUFFER, IERR)
Inputs:

HLUI I file LUI (already open!!)
UPDATE L T -> write last record k update pointers

In/out:
BUFFER 1(266) HI work buffer

Output:
IERR I error code : 0 - ok

1 - LUI not open
2-6 - ZFI0 errors

3.16.18 H IINIT
HIINIT initializes the history common area /HICOM /

HIIIIT (IFILES)
Inputs:

IFILES I number of HI files open at once (max)
at least 20 are available via DHIS.IIC

3-24 CHAPTER 3. GETTING STARTED — TASKS

3.16.19 HIMERG
HIMERG merges NOLD history files an copies them to NNEW new history files. The merged history file
consists of the whole of the "master” history file, followed by the other history files starting from the first line
at which each differs from the master. The history files are separated by comment lines noting the number
of lines omitted. If any of the input files is unreadable, it is omitted from the input list and a comment is
inserted in the merged history. If there is trouble writing to any of the output files, copying to that file is
stopped. If one of the output files is also one of the (readable) input files, that file is designated the master.
If more that one of the output files is in the input list, the last such duplicate is the master; no history copy
is attempted for the earlier duplicate files and the program returns an error code of 2. If none of the output
files is in the input list, the master file is the first (readable) input file. If a read error is encountered while
copying, the output HI files are reset to their pristine state, i.e. empty for new files and with the original
contents for old files. The task name, date, and time are entered on the new files. This is a generalised
version of HISCOP/HICOPY.

HIMERG (LUIOLD, LUIIEW, VOLOLD, VOLIEW, CHOOLD,
♦ CIOIEW, IOLD, HEW, CATBLK. BUFER1, BUFER2, I ERR)

Inputs:
LUIOLD I(IOLD)
LUIIEW I (HEW)
VOLOLD I(IOLD)
VOLIEW I(IIEW)
CIOOLD I(IOLD)
CIOIEW I (HEW)
IOLD I
H EW I

In/Out:
CATBLK
BUFER1
BUFER2

Output:
IERR

LUIs for old history file.
LUI for nev history file.
Vol. number for old history file.
Vol. number for nev history file.
Catalog slot number of old history file.
Catalog slot number of nev history file,
lumber of old history files,
lumber of nev history files.

I(256,IIEW) Catalog header of map for nev file.
1(256,IOLD) Work buffer, used for old files.
1(256,HEW) Work buffer, nev file; must be used

in further HIADD calls until file
is closed.

I Return error code: 0 => OK.
1 => could not open old history file.
2 => could not copy old history file.
3 => could not vrite time on nev file
4 => could not create/open nev HI file.
5 => Tvo or more output files the same.
6 => Wrong number of input files.

IOTE: IERR < 3 is a varning only, = 3 serious, = 4 a real problem.
Calling programs should ignore IERR < 3, branch to HICLOS of the
nev HI file on IERR = 3, and skip over all HI stuff on IERR = 4.
Errors 5 and 6 should not occur in vorking programs.

3.16.20 HIREAD
HIADD reads next history card from a history file. 10 takes place only if necessary.

HIREAD (HLUI, HIREC, CARD, BUFFER, IERR)
Inputs: HLUI I lun of HI file (must be open!!)

HIREC I logical rec no to read
II/out: BUFFER 1(256) HI vork buffer
Output: IERR I 0 => ok, other set by HIIO

HIREC+1 I lrecno incremented for next read
CARD I(*) card

3.16. ROUTINES 3-25

3.16.21 HISCOP
HISCOP copies one history file to another. If the new history file already exists the only action is to open
it. At finish the old history file is closed; the new history file is open. The task name, date, and time are
entered on the new file.

HISCOP (LUHOLD, LUHHEW, VOLOLD, VOLHEW, CNOOLD,
* CHOVEV, CATBLK, BUFER1, BUFER2, IERR)

Inputs:
I LUH lor old history lile.
I LUH lor nev history lile.
I Vol. number lor old history lile.
I Vol. number lor nev history lile.
I Catalog slot number ol old history lile.
I Catalog slot number ol nev history lile.

LUHOLD
LUHHEV
VOLOLD
VOLHEV
CHOOLD
CHOHEV

In/Out:
CATBLK
BUFER1
BUFER2

Output:
IERR

1(256) Catalog header ol map lor nev lile.
1(256) Vork buller, used lor old lile.
1(256) Vork buller, nev lile; must be used in

lurther HIADD calls until lile is closed.

I Return error code: 0 => OK.
1 => could not open old history lile.
2 ~> could not copy old history lile.
3 => could not vrite time on nev lile
4 => could not create/open nev HI lile.

HOTE: IERR < 3 is a varning only, = 3 serious, = 4 a real problem.
Calling programs should ignore IERR < 3, branch to HICLOS ol the
nev HI lile on IERR - 3, and skip over all HI stull on IERR = 4.

3.16.22 H2CHR
Convert an AIPS HOLLERITH string to a Fortran CHARACTER variable. Blank fills the full OSTR
variable.

H2CHR (HCH, IHPHT, ISTR, OSTR)
Inputs:

HCH I Humber ol characters
IHPHT I Start position in input string
ISTR H(*) Input AIPS string

Output:
OSTR C*(*) Output CHARACTER string

3.16.23 M AKOUT
MAKOUT applies the wild card standards to complete the preparation of the output file name parameters.
Namely:

OUTS <= -1
OUTH = ’ »

» y y * Z Z

OUTCL =
* y y * Z Z

becomes OUTS = INSEQ
becomes OUTN = IHN
becomes OUTH = IHH vith lirst n characters
replaced by yy and last m chars vith zz - il
yy or zz contain ?'s don't replace those char
positions
becomes OUTCL= DEFCLS
becomes OUTCL= DEFCLS vith same as OUTH

3-26 CHAPTER 3. GETTING STARTED — TASKS

If the 1st character of OUTCL is a then the default
is replaced with INCL and the remaining 5 chairacters of
OUTCL are used as normal.

MAKOUT (III, IMCL, INS, DEFCLS, OUTN, OUTCL, OUTS)
Inputs:

INN C*12 Input file name
INCL C*6 Input file class
INS I Input file sequence number
DEFCLS C*6 Default output file class 6 packed chars

if = 1 * , use task name
In/Out:

OUTN C*12 User-supplied OUTNAME adverb
OUTCL C*6 User-supplied OUTCLASS adverb
OUTS I User-supplied OUTSEQ adverb in integer

NOTE: the actual Input file name parameters must be supplied, not
the user adverbs (which can themselves contain wild cards, pure
blank fields, zeros, and the like.

3.16.24 PRTLIN
PRTLIN handles actual printing on the line printer or CRT for tasks. For the CRT, it also handles page-full
user communication.

PRTLIN (OUTLUN, OUTIND, DOCRT, NC, Tl, T2, LINE, NLINE,
♦ IPAGE, SCRTCH, IERR)

Inputs:
I LUN for print device (open)
I FTAB pointer for print device
R > 0. => use CRT, else line printer
I Number characters in line
C*132 Page title line 1
C*132 Page title line 2
C*132 Text line

OUTLUN
OUTIND
DOCRT
NC
Tl
T2
LINE

In/out:
NLINE

IPAGE

Output:
SCRTCH
IERR

C*(*)
I

Number lines so far on page
> 1000 => just ask about continuing
= 999 => just start new page

Current page number
= 0 => just start new page

Scratch core > 132
Error code: 0 => OK, -1 user asks to quit

3.16.25 PSFORM
PSFORM prepares a string pattern array for use by CHWMAT (the wild card matching subroutine).

PSFORM (NC, PS, IPT)
Inputs:

NC I Number characters in pattern possible
PS C*(*) Pattern string

Output:
IPT I(NC) Coded array:

value = -2 => position is *

3.16. ROUTINES 3-27

value = -1 => position is ?
value = 0 => position is a blank
value > 0 => there are IPT(i) real chars

including the present following

3.16.26 RELPOP
RELPOP places the specified return code in the appropriate location of the first record of the Task Data
(TD) file. This will allow the calling program (AIPS, AIPSC, AIPSB, BATER) to resume normal operations.

RELPOP (RETCOD, SCRTCH, IERR)
Inputs:

RETCOD I return code number
Outputs:

SCRTCH 1(256) scratch buffer
IERR I error number: 0 -> ok

1,2 -> task not resumed
3 -> IPOPS out of range
4 -> parameter not passed

3.16.27 SCREAT
SCREAT is intended to replace all previous scratch file creation routines in AIPS (beginning on February
11, 1985). It uses the Common included via DFIL.INC and returns the scratch file disk and catalog number
in variables SCRVOL(NSCR) and SCRCNO(NSCR), where NSCR is updated on successful creation. It
attem pts to avoid the disk used for the previously created scratch file.

SCREAT (SIZE, WBUFF, IERR)
Input:

ISIZE
Output:

WBUFF
IERR

1(512)
I

Desired size in AIPS bytes

Scratch buffer (MOTE 512 integers)
error: 0 => ok

1 => catalog error in setting name
2 => catalog error on open
3 => CATIO error writing header to catlg
4 -> lo allowed disk with room

Commons:
/MAPHDR/ m scratch file image header - contents mostly

ignored
/CFILES/ in/out file info

lote: this common uses IBAD to specify BADDISKs which are avoided,

3.16.28 TABCOP
TABCOP copies Table extension file(s). The output file must be a new extension - old ones cannot be
rewritten. The output file must be opened WRIT in the catalog and will have its CATBLK updated on disk.

TABCOP (TYPE, INVER, OUTVER, LUNOLD, LUNNEW, VOLOLD,
* VOLIEW, CIOOLD, CIOIEW, CATIEW, BUFFI, BUFF2, IRET)

Inputs:
TYPE C*2 Extension file type (e.g. 'CC'.'AI*)
IIVER I Version number to copy, 0 => copy all.
OUTVER I Version number on output file, if more them one

copied (IIVER=0) this will be the number of the
first file. If OUTVER = 0, it will be taken as

3-28 CHAPTER 3. GETTING STARTED — TASKS

LUVOLD
LUUNEW
VOLOLD
VOLIEW
CVOOLD
CKOIEV

In/out:
CATMEW

Output:
BUFFI
BUFF2
IRET

1 higher than the previous highest version.
I LUH lor old lile
I LUH lor new file
I Disk number for old file.
I Disk number lor new lile.
I Catalog slot number lor old lile
I Catalog slot number lor new lile

1(256) Catalog header lor new lile.

1(256) Work buller
1(256) Work buller
I Return error code 0 => ok

1 => files the same, no copy.
2 *> no input liles exist
3 => failed
4 => no output liles created.
5 => failed to update CATVEW
6 -> output file exists

3.16.29 U V P GET
U V P G E T determines pointers and other information from a U V CATBLK. The address relative to the start
of a vis record for the real part for a given spectral channel (CHAN) and stokes parameter (ICOR) is given
by NRPARM+(CHAN-1)*INCF+ABS(ICOR-ICORO)*INCS+(IF-1)*INCIF

Single dish data, i.e. randomly sampled data in the image plane, is also recognized and ILOCU and
ILOCV point to the longitude like and latitude like random parameters. Also a “B E A M ” random parameter
may be substitued for the “BASELINE” random parameter. The data type present may be determined from
the common variable TYPUVD.

UVPGET (IERR)
Inputs: From common /MAPHDR/ (DCAT.IHC)

CATBLK 1(256) Catalog block
CATH H(256) same as CATBLK
CATR R(256) same as CATBLK
CATD D(128) same as CATBLK
tput: In common /UVHDR/ (DUVH.IHC)
SOURCE C*8 Source name.
ILOCU I Ollset Irom beginning ol vis record ol U

or longitude lor single dish lormat data.
ILOCV I Ollset Irom beginning ol vis record ol V

or longitude lor single dish lormat data.
ILOCW I Ollset Irom beginning ol vis record ol W.
ILOCT I Time
ILOCB I " Baseline

(or beam)
ILOCSU I " Source id.
ILOCFQ I " Freq id.
JLOCC I O-rel. order in data ol complex values
JLOCS I Order in data ol Stokes' parameters.
JLOCF I Order in data ol Frequency.
JLOCR I Order in data ol RA
JLOCD I Order in data ol dec.
JLOCIF I Order in data ol IF.

3.16. ROUTINES 3-29

IICS I Increment in data for stokes (see above)
IICF I Increment in data for freq. (see above)
IICIF I Increment in data for IF.
ICORO I Stokes value of first value.
IRPARM I lumber of random parameters
LREC I Length in values of a vis record.
■VIS I lumber of visibilities
FREQ D Frequency (Hz)
RA D Right ascension (1950) deg.
DEC D Declination (1950) deg.
ICOR I lumber of correlators (Stokes* parm.)
ISORT 0 2 Sort order 1st 2 char meaningful.
TYPUVD I UV data type, 0=interferometer,

l=single dish unprojected,
2=8ingle dish projected RA and Dec.

IERR I Return error code: Os>OK,
1, 2, 5. 7 : not all normal rand parms
2, 3, 6, 7 : not all normal axes
4, 5, 6, 7 : wrong bytes/value

3.16.30 ZDCHIN
Initialize the device characteristics common and the FCB’s (file control blocks) in FTAB(*) for the maximum
number of different file types that can be open a t the same time. Initialize also other machine-dependent
commons and the message common. Note that the task name is not set here.

ZDCHIN starts with hard-coded values. Then, if DODISK is true, resets those contained in the system
parameter file. The utility program SETPAR is used to alter the system parameter file values.

Critical system constants (all ’’words” are local integers, all ”bytes” are AlPS-bytes, i.e., 1/2 a local
integer and on 64 bit architectures, double precision contructs should be preprocessed into their single
precision counterparts):

ZDCH1V (DODISK, JOBLK)
Inputs:

DODISK L Get SETPAR-controlled parameters from disk
Inputs from common: DMSG.IIC

TSKIAN C*6 Task name if known - else * * (used in ABORT
handler mostly to separate standalones and
tasks)

Output:
JOBLK 1(256) I/O block - no longer used

Output in commons: DDCH.IVC DMSG.INC
all __ All values set to init except TSKHAM

3.16.31 ZTTYIO
Perform I/O to a terminal.

ZTTYIO (OPER, LUH, FIID, ICHARS, BUFF, IERR)
Inputs:

OPER C*4 Operation code 'READ* or ’WRIT'
LUI I Logical unit number
FIID I Index in FTAB to lile control block lor LUI
ICHARS I # characters to transfer (<- 132)

In/out:

3-30 CHAPTER 3. GETTING STARTED — TASKS

BUFF C*(*) I/O buffer containing characters (1-256)
Output:

IERR I Error return code: 0 => no error
1 => file not open
2 => input error
3 => I/O error
4 => end of file

C hapter 4
T he A IP S Program
4.1 Overview
The AIPS program is the portion of the AIPS system with which the user normally interacts. The major
functions of the AIPS program are: (1) prepare the parameters for and initiate the tasks which do most of
the computations, (2) allow interactive use of TV and graphics devices, (3) provide limited direct analysis
capability and (4) provide a high level of control logic to allow simple functions to be grouped into more
complex functions (i.e., a programming language).

The basis of the AIPS program is the POPS (People Oriented Parsing Service) language processor. POPS
is an interpretive language processor which can either accept statements for immediate execution or in the
form of programs, called procedures, which are compiled and stored for later execution. Operations on data,
images etc. are performed by means of “verbs” and “tasks” . Verbs are operations which are done directly
by the AIPS program and tasks are programs which are run asynchronously from AIPS. Both verbs and
tasks are controlled by a set of global parameters called “adverbs” . Verbs may change the values of adverbs
whereas tasks cannot.

This chapter will attem pt to describe the basic methods of the POPS processor and explain how to add
new verbs and adverbs. The AIPS program does not know directly about tasks, so adding tasks requires no
modifications to the AIPS program.

Other documentation about POPS processors may be found in a report by Jerome A. Hudson entitled
“POPS People-Oriented Parsing Service Language Description and Program Documentation” and POPS An
Interacitve Termtnal Language wtih Applications in Radio Astronomy by A. Sume, 1978, Internal Report no.
115, Research Laboratory of Electronics and Onsala Space Observatory, Chalmers University of Technology,
Gothenburg, Sweden.

4.2 Structure of the AIPS Program
The basis of the AIPS program is a POPS processor which interprets user instructions and calls the relevant
applications routines and spawns the desired tasks. Input to the POPS processor is in the form of statements
which may do one of the following:

1. Modify an adverb value. This may be either by specifying a literal constant or an arithmetic, logical
or character string expression.

2. Invoke an applications verb. These are the verbs which are specific to a given data analysis problem,
such as displaying an image on the TV, rather than general control verbs such as loop control or sine
functions etc.

3. Logic flow control. These statements control the execution of other statements, e.g., loop control, IF,
THEN, ELSE etc.

4-1

4-2 CHAPTER 4. THE AIPS PROGRAM

4. Spawn tasks. Tasks are programs which take relatively long times to run and are executed asyn­
chronously from AIPS. Communication between AIPS and tasks is primarily by disk files.

5. Prepare and edit procedures. POPS programs called procedures may be entered and compiled for later
execution. These procedures may later be edited.

6. Prepare batch files. AIPS can run in a batch mode. To do this, the user enters and/or edits a list of
commands in a batch file for later execution. This can be done either in the normal AIPS or a special
batch version of AIPS named BATER.

7. Store the current environment including all current procedures via the STORE or SAVE command.
This environment is restored via the RESTORE or GET command.

4.2.1 The POPS processor
POPS uses an “inverse POLISH” stack to store operands and operation codes. Symbolics such as verb,
awl verb or procedure names are stored in a symbol table and each is identified by a type (TYPE) and a
number (TAG). The initial entries in the symbol table and initial values of the adverbs are read from an
external disk file which is prepared by the stand alone utility routine POPSGN. The various tables and stack
pointers etc. are carried in common and the tables are equivalenced into an array known as the “K array” .

Multiple statements, separated by semicolons, may be entered in a single line. There are a number of
special verbs known as “pseudo” verbs which are executed as soon as they are encountered, causing any
other instructions on the same line to be parsed in special fashions, ignored, or handled normally depending
on the pseudoverb.

The basic structure of the AIPS program is very hierarchal. The main routine calls a startup routine,
AIPBEG, a shutdown and error routine, AIPERR and a single routine GTLINE which controls the bulk of
the processing. The structure of the basic routines in the POPS processor is shown in the following figure:

Structure of POPS

2. STR U C TU R E OF TH E A IP S P R O G R A M 4-3

More details of each of these routines is given in the following:
• G TLIN E is the main POPS routine. It causes lines to be read by PREAD, parsed and compiled or

executed (in the case of pseudo verbs) by POLISH, and finally executed by INTERP. GTLINE returns
only on error or requested termination of the program.

• OERROR displays an error message on the user terminal and resets POPS.
• IN T E R P causes POPS code to be executed by placing operands on the V and STACK stacks and

calling VERBS and KWICK for verbs.
• VERBS calls the relevant applications verb routines based on the verb number. Functions are grouped

together in routines named AUn. The appropriate routine is called with a branch code as an argument.
This branch code in the verb number minus the first verb number in that AU routine plus one. The verb
numbers are defined in an external file but VERBS must also know which verb numbers correspond to
which AU routine.

• K W IC K executes the basic POPS control verbs. These are the verbs which don’t depend particularly
on a given application but are frequently encountered.

• POLISH parses the character string entered by the user and translates it to Polish postfix notation.
The result is a string of integers representing code for the POPS interpreter. Negative tokens are
operand pointers while positive tokens are operator codes. The array A, which is equivalenced to
STACK, holds the list of tokens; AP points to the most recent entry and SP points to the next entry.
The operand pointers are to the location of the adverb or temporary variable in the K array.

• COMPIL does the actual interpretation of instructions and adds them to the stacks. COMPIL exits
when a pseudo-verb or end-of-line is encountered.

• PSEUDO handles procedure and adverb declarations, sets up for the runtime operators IF, THEN,
ELSE, WHILE (which require forward references and an additional cleanup pass) and the FINISH
operator.

• ED ITO R performs the operations required to begin and stop editing an existing procedure.
• STO R E S stores either the procedure source code, procedure object code, or handles the procedure

source code.
• HELPS handles the user assistance facilities HELP, INPUT, EXPLAIN and RUN and other functions

which require access to external text files. HELP lists symbols by type or lists a text file whose member
name matches a user name. RUN sets the input to a specified member of a text file. This allows users
to have personal strings of commands (e.g., procs, verbs, adverb settings). INPUTS lists the adverbs
and their current values and brief descriptions on the terminal. Subroutine HELPS simply parses the
user input in a more friendly fashion and places appropriate verb numbers and strings on the stacks.

• GETFLD finds the next non-blank character in the input buffer, KARBUF, and determines whether
the token begun with that character is symbolic (1st char is A-Z), numeric (1st char is 0-9 or .),
or hollerith (1st char is ’). After the field length is found, appropriate calls are made to the symbol
processing routine, number scanning routine, etc. Communication back to POLISH is via TYPE and
TAG parameters determined by the processors SYMBOL, GETNUM, LTSTOR...

• LTSTO R searches the list of literals in the K array. If a matching literal is found, the TAG is returned.
If not, a new one is generated and linked to the literal list. Note: a “literal” is a constant having either
a numeric, character, or logical value.

• SYM BO L finds a symbol in the symbol list. The result is returned as TYPE and TAG through a
common. If the routine is in the variable declaration mode, a new entry will be made in the symbol
table if it does not already exist.

• GETNUM converts a character string into a DOUBLE PRECISION value.
• G E TSTR obtains a character string from a buffer.

4-4 CHAPTER 4. THE AIPS PROGRAM

4.2.2 POPS commons
Most of the communication between POPS subroutines is by means of commons. As with most commons
in the AIPS system, these commons are obtained by use of include files. The contents and uses of these
commons are described in the following. The text of the include files is given at the end of this chapter.

D C O N . I N C
This common contains the basic POPS “memory” or K array, i.e., the symbol tables, adverb values, pro­
cedures etc. This common consists of equivalenced, INTEGER (K), REAL (C) and HOLLERITH (CH)
arrays. Included in the latter part of this array are the adverb values. The variables used for the installed
(predefined) adverbs are declared in the include DAPL.INC and follow a shortened declaration of the K
array in DCON.INC. They specify the adverbs as equivalences to the K array beginning at K(KXORG+10).

User defined adverbs as well as as procedures and temporary literal values are stored beginning at K(301).
The names of all symbolics (adverbs, verbs and procedures) are kept in a symbol table which is a linked list
of symbol names containing the symbol type (TYPE), location in the K array (TAG) and the location of the
array or string descriptor entries if appropriate. The first entry in the symbol table is pointed to by K(l)
and a zero link indicates the last entry in the table. More details are given in later sections.

Literals (constants) sure kept in a literal table which is also a linked list in the K array. The first entry
is pointed to by K(4) and the last entry is pointed to by K(10). The literal table entry contains the type,
length, and value of the literal.

The current compiled version of procedures is also kept in the K array. Each procedure may be divided
into several blocks in the K array; the blocks are connected by forward links. A pointer is kept to the first
location of the source version of the procedure in the LISTF array kept in the working memory file (kept on
disk). The first block of a procedure is pointed to by the symbol table.

The different portions of the K array are used as follows:
K(l) Symbol table link, points to first entry in the symbol table.
K(2) Program link, points to first program (Procedure)
K(3) lext free cell in K array to be allocated.
K(4) Constants (literal) link, points to first entry in the

literal table.
K(5) lumber of cells allocat&ble. Currently 14760.
K(6) KTEMP, pointer to KKT (temporary value) area.
K(7) Symbol protect limit. lames with TAGs greater than this

value may be changed. This is used to protect
procedures compiled by POPSGN.

K(8) KXORG, pointer to KX array (data area). Currently 14761.

K(9) Last symbol pointer.
K(10) Last literal pointer
K(ll-50) Mot used

KKT area, temporary storage for M0DE=0

K(51) Not used
K(52) Program link
K(53) Next free cell
K(54) Constants link
K(56) lumber of cells allocatable
K(56-59) not used
K(60) Last constant pointer.

K(301...) Used for program storage, constants, symbols etc. for the
remainder of the program position of the K array.

4.2. STRUCTURE OF THE AIPS PROGRAM 4-5

KX area, data storage

K(KX0RG+0) Hot used
K(KX0RG+1) not used
K(KX0RG+2) lezt free cell
K(KX0RG+4) Humber of cells allocatable
K(KX0RG+5) not used
K(KX0RG+6) Highest adverb address in K not changeable by user.
K(KX0RG+7->+9) not used
K(KX0RG+10...) data storage.

Vord 1:
2:
3:
4:

5
6
7

Symbol table entries.

Link to next symbol table entry. Zero if end of list
bits 2**0 to 2**3 = type.
bits 2**4 to 2**15 = number of words in symbol
TAG (location in core where the data is kept)
Array data block counter if symbol is an array name,
string, or procedure.
Bytes 1 and 2 of the name.
Bytes 3 and 4 of symbol name,
etc.

Array data blocks, define arrays
(pointed to by symbol table)

Word 1
2
3
4
5
6

Total array size
lumber of dimensions
Initial index for first index
first dimension
Initial index for second dimension
etc.

Strings and string arrays
(pointed to by symbol table)

Word Total array size
lumber of dimensions
1
no. floating point words in each element,
initial index for first subscript, if any
first subscript range, if any
etc.

Literal table entries

Word 1:
2 :

Pointer to next literal table entry, zero if last entry.
Bits 2**0 to 2**3 = type, the types are ll=>floating point

real (2 integer words), 14=>character string, 15=>
logical constant (TRUE or FALSE)

Bits 2**4 to 2**15 length of literal in integers.
First integer word in literal,
etc.

4-6 CHAPTER 4. THE AIPS PROGRAM

Procedure storage (compiled code)
(pointed to by symbol table)

Word 1: Link to next program block, zero if last.
2: Pointer to text array for purposes of listing.
3: first interpreter instruction.
4: etc.

V: 1 An opcode of 1 terminates a block. If the link to the
next block is zero the procedure terminates.

/P O P S /
This common carries the various stacks, stack pointers and other values. This common is obtained from
include DPOP.INC. The contents of this common are described in the following:
V(60) R Operand stack for REAL variables.
XX R Intermediate REAL value
KT I Starting location in K array of KKT (temporary) area.
LPGM I Start address of an entry in the K array. Used vhile

allocating storage.
LLIT I Not used
LAST I Last token (opcode); if zero, finished vith line.

Used by COMPIL.
IDEBUG I A debug flag used in various places. If true

(.GE.O) then debug info about POPS is given.
MODE I The current mode of the POPS processor.

0 => immediate execution of an input line
1 => compile a procedure
2 => finishing a procedure
3 => editing a procedure
69 => adding a nev symbol to symbol table

IFFLAG I = 1 if an operator has been found in the current
instruction; 0 otherwise.

LIVK I A link (pointer in K array)
L I Another link (pointer in K array)
HAMEP I Pointer in K array to a name in the symbol table.
IP I Pointer in K array
LP I Pointer in K array
SLIM I Maximum alloved index in the stacks (currently 60)
AP I Pointer to last entry in STACK
BP I Pointer to last entry in CSTACK
ONE I Pointer in C to value of 1.0
ZERO I Pointer in C to value of 0.0
TRUE I Pointer in C to value .TRUE.
FALSE I Pointer in C to value .FALSE.
STACK(60) I Instruction stack
CSTACK(60) I Second (temporary) instruction stack
SP I Pointer in STACK
CP I Pointer in CSTACK
SPO I Another pointer in STACK
MPAGE I Number of pages (512 bytes) in the Memory file.

4.2. STRUCTURE OF THE AIPS PROGRAM 4-7

(LISTF + K array)
LPAGE I Humber of pages (512 bytes) of the memory file

which contain LISTF (procedure source code)

D S M S . I N C
This common contain various important values passed between routines. The contents of this common are
described in the following.
KPAK(5) H Temporary array for storing a symbol name.
MKAR I The number of characters in KPAK
KBPTR I A character pointer in KARBUF, the input line buffer
MEVCOD I Tag given by SYMBOL vhen allocating space for a nev

adverb.
TYPE I Symbol type. See section on TAG and TYPE.
SKEL R Mot used.
TAG I Symbol number. See section on TAG and TYPE.
LEVEL I Precedence level bias.
LX I Mumber of integer vords in character string X.
MEXTP I Precedence level of next item on A-stack.
X(25) R Temporary storage for character strings.
LOCSYM I Location in symbol or literal table of current

symbol.

DIO.INC
This common contains short I/O buffers and related information. The contents of this common are described
in the following.
IPT O l
MBYTES I

KARBUF C*80
JBUFF 080
KARLIN I
IUMIT I

HOLDUF 080

Prompt character
Mumber of valid characters in KARBUF, number of last
non-blank character.
A buffer containing the current input line.
Buffer used to read user input.
Mumber of characters in KARBUF
Input unit number for PREAD; 1=> user terminal, 2=>
text editor, 3=>batch input file 4=>text entered
during screen hold.
Buffer for storing text entered during screen hold by
SCHOLD.

4.2.3 TAG and TYPE
Adverbs, verbs, procedures etc. are all represented by symbolic names to the user. Internally, POPS identifies
symbolics by TYPE and TAG. TYPE determines the type of symbolic (e.g., scalar, character string, verb
etc.) and TAG is a label for the particular symbolic (e.g., a verb number). The TYPE of all symbols and
the TAG of verbs are specified to POPSGN in the POPSDAT.HLP file. The TAG of an adverb is computed
by POPS and is the start address of the value field.

The current list of symbolic types is given in the following list.
TYPE = 1 REAL scalar.

2 REAL array.

4-8 CHAPTER 4. THE AIPS PROGRAM

3 Procedure name.
4 Verb name
5 Pseudo verb name.
6 Quit (used by POPSGM)
7 Character string
8 Element of character string
9 substring of a character string
10 not used
11 Numeric constant
14 Character constant
15 Logical constant.

4.2.4 Error Handling
If a subroutine determines that an error condition exists, it sets the variable ERRNUM in INCLUDE
DERR.INC to an error code known to the routine OERROR, increments ERRLEV in DERR.INC, and, if
ERRLEV .LE. 5, copies the name of the subroutine into DERR.INC array PNAME. Following this, the
subroutine returns. Thus, after each cadi to another AIPS subroutine, a subroutine should check ERRNUM
and, if it is not zero, then that subroutine should increment ERRLEV, add its name to PNAME and exit. If
GTLINE determines that an error has occurred, it returns to to the main AIPS routine which calls AIPERR
which calls OERROR. This provides a traceback capability which can be exercised setting the AIPS adverb
DEBUG to 1.0.

The messages displayed to the user corresponding to the defined values of ERRNUM are shown in the
following:
ERRNUM Message ERRNUM Message

1 ’BLEW CORE! ’ 33 ’CTLG PROBLEM
2 ’SYMBOL? ’ 34 ’HISTORY FILE
3 ’BAD (OR) ’ 35 ’FIT FAILS
4 ’LINE SIZE ’ 36 ’NO PR0C MODE
5 ’SYMBOL SIZE!’ 37 ’TEKS IN USE
6 ’ARRAY LIMITS’ 38 ’VERS TOO NEW
7 ’STACK LIMITS’ 39 ’NOT YES / NO
8 ’SYNTAX! ’ 40 ’BATCH ERROR
9 ’CHARACTER? ’ 41 ’NO RET CODE
10 ’PRINT ’ 42 ’TASK ACTIVE
11 ’NO PROGRAM ’ 43 ’NOT TASK
12 ’ARG LIST? ’ 44 ’SYNC. FAILS
13 ’STRING SIZE ’ 45 ’FILE MISSING
14 ’ALREADY DF ’ 46 ’NO DESTROY
15 ’CONTROL ’ 47 ’INVALID TAPE
16 ’LOGIC EXP? ’ 48 ’TAPE PROBLEM
17 ’FOR— END? ’ 49 ’TV PROBLEM
18 ’INF LOOP? ’ 50 ’DISK PROBLEM
19 ’NO OPERATOR!’ 51 ’TV UNAVAILAB
20 ’DIVIDE BY 0 ’ 52 ’OPEN FILE?
21 ’IF OR LOOP! ’ 53 ’NOT IN RUN
22 ’READ ’ 54 ’NOT INPUTS
23 ’DATA TYPE? ’ 55 ’CREATE FILE?’
24 ’USING WHAT? ’ 56 ’CLOSE FILE? ’
25 ’PROTECTED! ’ 57 ’PRINTER ERR.’
26 ’SQRT NEGTIVE’ 58 ’FILE NOT 0PN’
27 ’NUMBER SIZE ’ 59 ’TEXT READER ’
28 ’RUN IN A RUN’ 60 ’NOT IN BATCH’

4.2. STRUCTURE OF THE AIPS PROGRAM 4-9

29 ’LOG NEGATIVE'
30 'VERS TOO OLD'
31 'UNAVAILABLE!'
32 'BOUNDARY LIH'

100 'ABORT!!!

61 'DISK PROBLEM'
62 'BAD EXPONENT'
70 'ONLY IN PROC'
71 'NOT IN PROC '

4.2.5 M emory Files
The contents of the K array and LISTF, the source code for procedures, are initially obtained by AIPS from
a memory file (type “ME”). The user may save the contents of LISTF and the K array by the pseudo verbs
STORE or SAVE. The contents of these arrays can be recovered by the pseudo verbs RESTORE and GET.
The working version of LISTF is stored at the beginning of the memory file.

The structure of the memory file is illustrated in the following. The size of the LISTF is given in pages
(512 bytes) by variable LPAGE in common /P O P S / and the combined number of pages used by the LISTF
and the K array are given by MPAGE in the same common. The current values of LPAGE and MPAGE are
16 and 90, respectively.

I Lv I KO I LO | K1 I LI I K2 I L2 I ...

where Lv = working version ol LISTF
KO = startup version ol the K array

initialized by POPSGN.
LO = startup version ol the LISTF

initialized by POPSGN.
K1 = user STORE area 1 lor K array.
LI = user STORE area 1 lor LISTF.
K2 = user STORE area 2 lor K array.
L2 = user STORE area 2 lor LISTF.
etc.

4.2.6 Special modes
In the normal mode in which AIPS operates, the user types in instructions which are executed immediately.
There are several alternate modes in which AIPS can operate. These modes are described briefly in the
following sections.

RUN files
AIPS can be directed to read input from a disk text file which can be prepared with the local source
editor. The instructions in such a file will be treated in the same fashion as if they were typed in through
the terminal. RUN files are used mostly for permanent storage of complex procedures or other fixed data
processing schemes. In AIPS, if IUNIT=3 in common /IO /, instructions are read from the RUN file until
an end-of-file or an error is encountered.

Batch
AIPS can also be made to run in batch mode at a lower priority. To run AIPS batch, the user edits a file of
instructions which are the same as would be given to an interactive AIPS. The major difference is that all
tasks are run with DOWAIT=TRUE. This causes AIPS to suspend itself until the task is finished. Another
difference is that tape drives, TVs, and graphics devices are not allowed for batch jobs.

The batch file can be created either by an interactive AIPS or a special version of AIPS, called BATER,
for this purpose. Once the file is created, the SUBMIT verb sends it to AIPSC which checks the syntax.

4-10 CHAPTER 4. THE AIPS PROGRAM

One of several possible AIPSBs, the batch AIPSs, is scheduled to execute the batch file. Each of the three
versions of AIPS (AIPS, the interactive program; AIPSC, the batch checker; and AIPSB, the batch AIPS)
has a separate version of the subroutine VERBS called VERBS, VERBSC and VERBSB, respectively.

Procedures

POPS programs, called procedures, can be entered into the K array or edited by the user with the editor in
the POPS processor. Alternately, procedures can be entered by POPSGN when creating the POPS memory
files. As a procedure is entered, it is compiled line by line and the final compiled code is stored in the K
array. Editing or modifying a procedure will cause the procedure to be recompiled and replaced in the K
array.

The source version of the procedures is stored in an array called LISTF which is kept on disk in the
current working memory file. All access to the source code causes this file to be read and/or written.

When procedures are recompiled and stored in the K array, the space for the old instructions is not
recovered. The verb, COMPRESS, which was to recover this unused space, has never been implemented.

4.3 Example of the POPS processor

The following discussion of the POPS compiler and an example of its action is lifted (with some updates)
from the 1978 Sume report.

4.3.1 The Compiler

POPS compiles expressions into reverse polish stacks, which can then be executed by the interpreter. Op­
erators are translated into integers 1, 2, 3,... and operands into negative integers. The magnitudes of the
negative integers are the addresses within the K array of the operands. Arithmetic operators carry a prece­
dence which is used in converting expressions into polish sequences. Some operators, such as (and ; are used
only at compile time to signal the elevation of precedence of operators, the end of a statement, etc.

The following table lists POPS operators and their precedence level.

4.3. EXAMPLE OF THE POPS PROCESSOR 4-11

Symbol Meaning Precedence

Store 1
Or 2
And 2
Hot 2
Equal (as 3
opposed to store)

> Greater than 3
< Less than 3
<= Greater or equal 3
>= Less or equal 3
<> Not equal 3

TO Loop control 4
: Loop control 4
BY Loop control 4
; ; String concatenation 4
+ Add 5
- Subtract 5
SUBSTR String extraction,

insertion 5
* Multiply 6
/ Divide 6
** Exponentiate 7

- Unary - 8
+ Unary + 0
Verbs ;,FOR,END,READ,TYPE,PRINT,

RETURN, AND DUMP 0
All other verbs 9

Translation to polish form takes place in the routines POLISH and COMPIL as follows: Three push-down
stacks, A, B, and BPR, hold operands, operators, and operator precedents respectively, while an expression
is scanned from left to right. The expression is contained in the array KARBUF and the tokens are obtained
from KARBUF by the subroutine GETFLD (in POLISH) called from COMPIL. Operands are placed on the
A stack in order of appearance. Operators are placed on the B stack if their precedence (NEXTP) exceeds
the precedence of the last operator on the stack, or if the B stack is empty. Using the BCLEAN subroutine,
operators are taken off the B stack and pushed onto A if their precedence is equal to or greater than the
precedence of the operator currently being scanned. This takes place until the top operator on the B stack
has precedence lower than the one being scanned, or the B stack is emptied, whence the new operator is
pushed onto the B stack, and its precedence onto the BPR stack at the corresponding position. If the “(”
operator is encountered, the precedence of every subsequent operator is raised by an amount MAXLEV
(=10) while “)” lowers the level by MAXLEV. The end of a statement “operator” , the operator, and
others with which arithmetic expressions may be associated, such as TO, BY, THEN, ELSE, etc. are taken
to have lowest possible precedence, so that they have the effect of emptying the B stack. We are then left
with the polish sequence of operators and operands in the A stack. For example, the expression.

Y = A*(B*X + C);

would be translated with the following steps:

4-12

Step Token

(1) Y

(2)
(3) A

(4) *

(5) (

(6) B

(7) *

(8) X

(9) + 5+MAXLEV

(10) C

(11)) decrement

(12) ; 0

(13) Final result

Prec(token)

3

6

raise level

6+MAXLEV

C H APTER 4. TH E A IP S PRO G RAM

A-stack B-stack BPR-stack

(empty) (empty) (empty)

Y (empty) (empty)

Y = 3

Y = 3
A

Y = 3
A * 6

-------- SAME ---------

Y = 3
A * 6
B

Y = 3
A * 6
B * 6+MAXLEV

Y = 3
A * 6
B * 6+MAXLEV
X

Y = 3
A * 6
B + 5+MAXLEV
X
*

Y = 3
A * 6
B + 5+MAXLEV
X
*
c

----------- SAME

Y (empty) (empty)
A
B
X*
c
+
*

4.3. EXAMPLE OF THE POPS PROCESSOR 4-13

4.3.2 The Interpreter
The POPS interpreter executes polish postfix code left by the POPS compiler. To do so requires 3 run-time
stacks: the main stack (STACK), the control stack (CSTACK) and a value stack (V).

The main stack holds operand addresses (tags). Corresponding to each operand, the appropriate position
in the value stack is loaded with a floating point number, found in core at the stack address. This number
may or may not be meaningful, depending on the type of data kept at that address. Operators will make
use of the address or value depending on which is appropriate.

The control stack is used to save the run-time location counter (L) and the program chunk link (LINK),
together with saved stack pointers, etc. While the main stack could be so used, it was felt that greater
reliability would ensue if the control stack were kept separate, guarding from user-caused stack errors (such
as leaving garbage on the main stack). Operations using the control stack require an authentication code to
appear on the top of the stack before they are activated.

The interpreter expects all operands to be negative integers; all operators, save 0 to be positive (0 is
considered a legitimate operand). Operands will be pushed onto the main stack. The value stack, described
above, holds intermediate results of computations, as well as the contents of memory when the stack was
loaded.

An example, using the arithmetic expression described in the polish compile segment:
Source code: Y = A * (B * X + C)

Compiled code

(1) -addr. of Y
(2) -addr. oi A
(3) -addr. of B
(4) -addr. of X
(5) +TAG of ♦ operator
(6) -addr. of c
(7) ♦TAG of + operator
(8) +TAG of * operator
(9) +TAG of = operator

Suppose A = 1.5, B = 2.5, C =

Token being
Step executed stack V

(1) Y (empty) (empty)

(2) A Y ********

(3) B Y ********
A 1.5

(4) X Y ********
A 1.5
B 2.5

(5) * Y ********

4-14 CHAPTER 4. THE AIPS PROGRAM

A 1.5
B 2.5
X 10.0

(6) C Y ********
A 1.5

********* 25.0

(7) + Y ********
A 1.5

********* 25.0
C 3.5

(8) * Y *********
A 1.5

********** 28.5

(9) = Y *********
********** 42.75

(10) finish (empty) (empty)

4.4 Installing new VERBS
To install a new verb in AIPS several actions are required.

1. Enter the new verb in POPSDAT.HLP and run POPSGN. The new verb will probably be TYPE 4
and should be assigned a verb number (TAG) greater than 100; making sure the verb number is not
already used. It should be noted that contiguous groups of verb numbers will use the same AU routine.
If the new verb is similar to existing verbs it should be put in the same AU routine if possible.

2. Create or modify an AU routine to perform the desired function. If there are available verb numbers
in the range available to the relevant AU routine, then the function can be added to that AU routine.
If not, then a new AU routine is required. Note that the branch code sent to the AU routine is the
verb number (one) relative to the first verb number in that AU routine. If the verb requires more than
a few lines of Fortran, the AU routine should call a subroutine to do the work.

3. Modify VERBS, if necessary, to call the necessary AU routine when it is given the new verb number
(J in VERBS). The range of verb numbers in each routine is defined in the arrays IAB and IAE. If
new AU routines are added the dimensions of IAB and IAE should be changed and the upper limit on
the DO loop index for the loop terminating at statement label 5 should be changed. The computed
GO TO in this loop should be modified to include the new AU routine. New AU routines should be
added at the end of the list for simplicity. Note that there are three versions of VERBS (VERBS,
VERBSC, and VERBSB) for the interactive AIPS, the batch AIPS checker program, and batch AIPS
respectively. All three must have corresponding changes although an error return may be desired for
the two batch versions in the implementation of a new verb.

4. Compile the necessary subroutines and add them to the AIPS program subroutine library.
5. Recompile and link edit AIPS.
6. Create a HELP file for the verb in the same manner as for a task. Verbs will work without a HELP

file, but it is much friendlier to write one.

4.4. INSTALLING NEW VERBS 4-15

As a convenience for developing new verbs, nine temporary verbs are available, T1VERB, T2VERB, ...,
and T9VERB (verb numbers 900-908) These are accessible through the routine AUT. To use one of these
verbs all that is necessary is to modify AUT, recompile it, replace it in the AIPS program subroutine library
(COMRPL), and recompile AIPS and relink it. Once verbs are tested, they should be moved to a more
permanent AU routine if they meet AIPS’ portability standards.

The branch code sent to the AU routine is (one) relative to the first verb number in that AU routine.
If the verb has one or more arguments, they will be found in the value stack V in common /P O P S / in
the reverse of the order in which they were specified. Real values can then be obtained as in the following
example:

SUBROUTINE TESTXX

: Routine to average the top two numbers on the V stack.
1 This routine is designed to be run from VERBS rather them KUICK,

that is, it should be called from an AU routine.

REAL VI, V2, RESULT
INTEGER POTERR
CHARACTER PRGNAM*6
PARAMETER (PRGNAM = ’TESTXX’)
INCLUDE ’INCS:DP0P.INC’
INCLUDE ’INCS:DERR.INC’

POTERR = 7

IF (SP.GE.2) THEN

VI = V(SP-l)
V2 = V(SP)

RESULT = (VI + V2) / 2.0

SP = SP - 1
STACK(SP) = 0

V(SP) = RESULT

ELSE
ERRNUM = POTERR

ERRLEV = ERRLEV + 1
IF (ERRLEV.LE.5) PNAME(ERRLEV)
END IF

Set potential error number,
7 = ’ STACK LIMIT*

Check that stack not
exhausted.

Get values from stack.

Average.

For two operands change SP and,
STACK, for one don’t change
SP or STACK.

If the verb returns a value,
RESULT, do the following.

Set error code

Fill in /ERRORS/.

= PRGNAM

Return
999 RETURN

END

4-16 CHAPTER 4. THE AIPS PROGRAM

The stack contents are as follows when a verb is called with an immediate argument:
1. For a real scalar including a subscripted real array adverb,

SP = 1 STACK(SP) = TAG V(SP) = C(TAG) (=value)

2. For an array adverb,

SP = 1 STACK(SP) = TYPE V(SP) may be ignored
2 V
3 TAG
4 2

where lor TYPE =2,7 I = K array pointer to array
descriptor block,

14 = number ol characters,
9 = 100 * character ollset +

characters

Adverbs may be accessed by name using the name as defined in the include DAPL.INC. Note that the order
of adverbs is really defined in the POPSDAT.HLP file and the order in DAPL.INC must correspond exactly.
Also, all adverbs are of Fortran data type REAL, although they may contain character strings. Note that
character strings are stored as HOLLERITH which are allocated storage space as (NCHAR+3)/4 REAL
locations.

4.5 Installing new ADVERBS
New, temporary, adverbs can be created in an executing AIPS task by SCALAR, ARRAY or STRING
statements in a procedure. Permanent installation of an adverb requires entering it in POPSDAT.HLP,
running POPSGN to update the memory files, and adding a variable into the declarations in common
/C O R E / in the include DAPL.INC. The new adverbs should be entered in the same relative location among
the other adverbs in common as in the POPSDAT file. At the end is, of course, best. The adverb value will
be kept in this variable and is, therefore, directly available to verbs. A HELP file should be written for any
permanent adverb.

4.6 PO PSG N
The initial contents of the POPS memory files, and hence the LISTF and K arrays, are set by the stand
alone utility program POPSGN. This program takes as input the file POPSDAT.HLP.

4.6.1 Function
The function of POPSGN is to initialize the contents of LISTF (the source code for procedures) and the
K array when AIPS starts up by storing the contents in the POPS memory (“ME”) files. This program is
normally found in the same place as the AIPS program itself and asks for instructions directly from the key
board. When the program begins it asks:
EHTER NPOPS1,NPQPS2,IDEBUG,MNAME,VERSION
The response is in free format (blanks between entries) and should be as follows:

4.6. POPSGN 4-17

NP0PS1 The lowest POPS number for this run of POPSGN, this
is normally 1.

NP0PS2 The highest POPS number for this run of POPSGN, this
is normally the highest POPS number run = No.
interactive POPS + number of batch queues + 1.

IDEBUG If not 0, POPSGN will give lots of debug messages.
Use 0.

MNAME The name of the file in the HELP area that contains
the input file for POPSGN. This is normally
POPSDAT.HLP; type only 'POPSDAT'.

VERSION This specifies the version of AIPS to have the
memory files updated. Normally this is blank
which will update the 'TST' axea; 'NEW' and 'OLD
are also understood by POPSGN.

After POPSGN has digested POPSDAT.HLP it will return a “> ” prompt. Type a blank line to terminate
the input and POPSGN will update the memory files.

4.6.2 POPSDAT.HLP
The bulk of the definitions of verbs, adverbs, and standard procedures are defined in the POPSDAT file.
A “C-” in columns one and two indicate a comment line. A “/ ” character conventionally indicates the
beginning of an end-of-line comment which must begin after column 44. The names of symbols begin in
column 1 with no embedded blanks and may have no more than 8 characters. The POPSDAT file is read
with a (A8,1X,I3,1X,I3,1X,I4,1X,I4,2(1X,F7.2)) format.

The first portion of the POPSDAT file defines the POPS verbs. Most of these verbs and pseudo verbs
with verb numbers (TAG) less than 100 reside in the AIPS routine KWICK. Verb numbers greater than
100 are all in AU routines called by VERBS. The values following the symbol name are (1) the number of
characters in the symbol name, (2) the symbol type (4 or 5 for verbs and pseudo verbs) and (3) the TAG, in
this case the verb number. The end-of-line comments for verbs with numbers (TAG) greater than 100 tell
the AU routine in which that verb is found.

Following the verbs come the adverb definitions. The values following the symbol name are: (1) the
number of characters in the symbol name, (2) the symbol type (see the section of TYPEs and TAGs). For
scalar, real adverbs (TYPE 1) the next two integer fields are blank and the following REAL field (F7.0) is
taken to be the initial value of that scalar.

For real arrays (TYPE 2), the first value past the TYPE field is the number of dimensions (1 or 2), the
next integer field is blank and the following one or two REAL (F7.1) fields give the number of positions in
each of the one or two dimensions.

For character string variables (TYPE 7) the first integer field past the TYPE is the number of dimen­
sions; where the characters in the each string constitute the first dimension. Thus there can only be single
dimensional character string array adverbs. The next integer field is blank and the next REAL (F7.0) field
is the number of characters in the string. For character string arrays the following REAL (F7.0) field is the
second dimension, i.e., the number of elements in the array.

An adverb named QUIT with TYPE = 6 tells POPSGN that all verb and adverb definitions have been
read. Following this, normal POPS commands may be entered and the definitions of the standard procedures
are normally entered here. A in column 1 indicates a POPS comment line. The end of file terminates
the input.

The current contents of POPSDAT is shown in the following:

4-18 CHAPTER 4. THE AIPS PROGRAM

POPSDAT

! lists all POPS symbols, used to create them in MEmory files
List POPS
This software is the subject of a User agreement and is
confidential in nature. It shall not be sold or otherwise
made available or disclosed to third parties.

POPSDAT LLLLLLLLLLLLUUUUUUUUUUUU CCCCCCCCCCCCCCCCCCCCCCCCCCCCC

c-
t 1 4 1
(1 4 2
) 1 4 3
= 1 4 4
+ 1 4 5
- 1 4 6
* 1 4 7
/ 1 4 8
** 4 9
> 1 4 10
< 1 4 11
+ i 4 12
- 1 4 13
“ 1 4 14
TO 2 4 15
: 2 4 15
BY 2 16
= 1 4 17
; 1 4 18
ft 1 4 19
* 1 4 20
FOR 3 4 21
END 3 4 22
READ 4 4 23
TYPE 4 4 24
PRINT 5 4 24
RETURN 6 25
LENGTH 6 4 26
c-
C-RUN 3 4

27
28

C-EXIT 4 4 29
C-RESTART 7 4 30
LOG 3 4 31
LN 2 32
NOD 3 33
MODULUS 7 4 34
ATAN2 5 35
SIN 3 4 36
COS 3 37
TAN 3 4 38
ATAN 4 4 39
SQRT 4 4 40
DUMP 4 4 41

This module is POPSDAT.

subtract

unary

logical

res array equates

4.6. POPSGN 4-19
<=
>=
<>
EXP
SUBSTRi ;
CHAR
VALUE
MSGKILL
PROCEDURE
PROC
ARRAY
ELSE
THEV
FIIISH
DEBUG
IF
STRING
WHILE
SCALAR

EDIT
ENDEDIT
MODIFY
C-storecode
STORE
RESTORE
SAVE
GET
LIST
CORE
SCRATCH
COMPRESS
C-endmodify
SHOW
TELL
ISBATCH
ERASE
RUV
HELP
IIP
INPUTS
GO
TGET
SGDESTR
ABORTASK
TPUT
WAITTASK
EXPLAIN
CEIL
FLOOR
ABS
MAX
MIN

2 4 42
2 4 43
2 4 44
3 4 45
6 4 46
2 4 47
4 4 48
5 4 49
7 5 50
9 5 51
4 6 51
5 5 52
4 5 53
4 5 54
6 5 55
5 5 56
2 5 57
6 5 58
5 5 59
6 5 60

4 5 61
7 5 62
6 5 63

64
5 5 65
7 5 66
4 5 67
3 5 68
4 5 69
4 5 70
7 5 71
8 5 72

73
4 5 76
4 5 77
7 5 78
5 5 79
3 5 80
4 5 81
3 5 82
6 5 83
2 5 84
4 5 85
7 5 86
8 5 87
4 5 88
8 5 89
7 5 90
4 4 91
5 4 92
3 4 93
3 4 94
3 4 95

PSEUDO

EDITOR

reserved

— STORES

reserved
-- HELPS
— HELPS
— PSEUDO
— EDITOR
— HELPS

4-20 CHAPTER 4. THE AIPS PROGRAM

c- 96
c- 97
c- 98
c- 99

PRTMSG 6 4 100
EXIT 4 4 101
RESTART 7 4 102
CLRMSG 6 4 103
C-HELP 110
C-INP 111
C-INPUTS 112
C-EXPLAIN 113
C-SHOW 114
C-GO 2 4 120
SPY 3 4 121
C-WAITTASK 122
C-ABORTASK 8 123
C-TPUT 4 4 124
C-TELL 4 4 125
STQUEUE 7 4 126
SETDEBUG 8 4 127
C-TGET 130
C-SGDESTR 131
TGINDEX 7 4 132
SGINDEX 7 4 133
CATALOG 7 4 150
MCAT 4 151
IMHEADER 8 4 152
ZAP 3 4 153
UCAT 4 4 154
QHEADER 7 155
PCAT 4 4 156
FREESPAC 8 4 160
ALLDEST 7 4 161
TIMDEST 7 4 162
SAVDEST 7 4 163
SCRDEST 7 4 164
RENUMBER 8 170
RECAT 5 171
TPHEAD 6 4 180
AVFILE 6 4 181
AVMAP 5 4 182
REWIND 6 4 183
AVEOT 5 4 184
MOUNT 5 4 185
DISMOUNT 8 4 186
TVINIT 6 4 200
TVCLEAR 7 4 201
GRCLEAR 7 4 202
TVON 4 4 203
TVOFF 5 4 204
GRON 4 4 205
GROFF 5 4 206

I res: END
res: WHILE
res: SUBS
res: NOP

I AU1

AU1A

AU2

I AU2A

AU3

AU3A

AU3B

AU4

AU5

4.6. POPSGN 4-21

TV3C0L0R 8 4 207
TVPOS 5 4 208
IMXY 4 4 209
IMPOS 5 4 210
TVNAME 6 4 211
CURBLINK 8 4 212
TVLOD 5 4 220 1 AU5A
TVROAM 6 4 221
SETROAM 7 4 222
REROAM 6 4 223
TVLABEL 7 4 240 1 AU5B
TVWLABEL 8 4 241
TVAIOT 6 4 242
T WEDGE 7 4 250 1 AU5C
IMVEDGE 7 4 251
VEDERASE 8 4 252
IMERASE 7 4 253
TVWINDOW 8 4 254
TVBOX 5 4 255
TVSLICE 7 4 256
REBOX 5 4 257

TVMOVIE 7 4 260 1 AU5D
REMOVIE 7 4 261
TVCUBE 6 4 262
OFFPSEUD 8 4 280 1 AU6
OFFZOOM 7 4 281
OFFSCROL 8 4 282
TVZOOM 6 4 283
TVSCROL 7 4 284
TVPSEUDO 8 4 285
TVHUEIIT 8 4 286
OFFTRA* 7 4 290 1 AU6A
TVTRAISF 8 4 291
TVBLIIK 7 4 292
TVMBLINK 8 4 293
TVLUT 5 4 294
TVMLUT 6 4 295
TVSPLIT 7 4 296
CURVALUE 8 4 300 1 AU6B
C-TVALL 5 4 305 1 AU6C
TVFIDDLE 8 4 306
TVSTAT 6 4 310 1 AU6D
IMSTAT 6 4 311
PRTHI 5 4 330 1 AU7
RENAME 6 4 331
RESCALE 7 4 332
CLRSTAT 7 4 333
AXDEFINE 8 4 334
ALTDEF 6 4 335
ALTSWTCH 8 4 336
CELGAL 6 4 337
ADDBEAM 7 4 340 1 AU7A
PUTHEAD 7 4 341

4-22 CHAPTER 4. THE AIPS PROGRAM

GETHEAD 7 4 342
PUTVALUE 8 4 343
CLRMAME 7 4 360
GETSAME 7 4 361
GET2IANE 8 4 362
GET3VAME 8 4 363
EXTDEST 7 4 364
CLR2IAME 8 4 365
CLR3VAME 8 4 366
EGETIANE 8 4 367
GETOIAME 8 4 368
CLROVANE 8 4 369
EXTLIST 7 4 370
MAXFIT 6 4 390
IMVAL 5 4 391
QIKVAL 6 4 392
TKPOS 5 4 400
TKVAL 8 4 401
TKXY 4 4 402
TKSLICE 7 4 410
TKASLICE 8 4 411
TKMODEL 7 4 412
TKAMODEL 8 4 413
TKRESID 7 4 414
TKARESID 8 4 415
TKGUESS 7 4 416
TKAGUESS 8 4 417
TKSET 5 4 420
TK1SET 6 4 421
SUBMIT 6 4 440
BATCH 5 4 441
BATEDIT 7 4 442
UVQUE 5 4 443
BATCLEAR 8 4 444
BATLIST 7 4 445
QUEUES 6 4 446
JOBLIST 7 4 447
BAMODIFY 8 4 448
GRIPE 5 4 460
GRIWDEX 7 4 461
GRLIST 6 4 462
PASSWORD 8 4 463
GRDROP 6 4 464
T1VERB 6 4 900
T2VERB 6 4 901
T3VERB 6 4 902
T4VERB 6 4 903
T6VERB 6 4 904
T6VERB 6 4 905
T7VERB 6 4 906
T8VERB 6 4 907
T9VERB 6 4 908

I AU8

AU8A
AU9

AU9A

I AU9B

AU9C

AUA
AUB

I AUC

AUT

USERID 6 1 0.00

4.6. POPSGN 4-23

IIVAME 6 7 1 12.00
IVCLASS 7 7 1 6.00
IISEQ 5 1 0.00
IYDISK 6 1 0.00
IfTYPE 6 7 1 2.00
II2IAME 7 7 1 12.00
IV2CLASS 8 7 1 6.00
II2SEQ 6 1 0.00
IS2DISK 7 1 0.00
II2TYPE 7 7 1 2.00
IV3VAME 7 7 1 12.00
IV3CLASS 8 7 1 6.00
II3SEQ 6 1 0.00
II3DISK 7 1 0.00
II3TYPE 7 7 1 2.00
OUTVANE 7 7 1 12.00
OUTCLASS 8 7 1 6.00
OUTSEq 6 1 0.00
OUTDISK 7 1 1.00
0UT2VAKE 8 7 1 12.00
0UT2CLAS 8 7 1 6.00
0UT2SEQ 7 1 0.00
0UT2DISK 8 1 1.00
IVEXT 5 7 1 2.00
IV2EXT 6 7 1 2.00
IV3EXT 6 7 1 2.00
IVVERS 6 1 0.00
IV2VERS 7 1 0.00
IV3VERS 7 1 0.00
BADDISK 7 1 10.00
IVTAPE 6 1 1.00
OUTTAPE 7 1 1.00
VFILES 6 1 0.00
VMAPS 5 1 0.00
TASK 4 7 1 8.00
DOVAIT 6 1 -1.00
PRIORITY 8 1 0.00
BLC 3 1 7.00
TRC 3 1 7.00
XIIC 4 1 1.00
YIIC 4 1 1.00
PIXXY 5 1 7.00
PIXVAL 6 1 0.00
PIXRAIGE 8 1 2.00
FACTOR 6 1 0.00
OFFSET 6 1 0.00
TVBUT 5 1 0.00
XTYPE 5 1 5.00

XPARM 5 2 1 10.00
YTYPE 5 1 5.00
YPARM 5 2 1 10.00
OPCODE 6 7 1 4.00
FUICTYPE 8 7 1 2.00

4-24

ROTATE 6 1 0.00
GAI1 4 1 0.10
MITER 5 1 0.00
FLUX 4 1 0.00
OBJECT 6 7 1 8.00
QUAL 4 1 -1.00
STOKES 6 7 1 4.00
BAVD 4 7 1 4.00
TVCHAI 6 1 1.00
6RCHAI 6 1 0.00
TVLEVS 6 1 256.00
TVCORV 6 1 2.00
COLORS 6 1 0.00
TVXY 4 1 2.00
DOTV 4 1 -1.00
BATQUE 6 1 2.00
BATFLIVE 8 1 0.00
BATILIIE 8 1 0.00
JOBVUN 6 1 0.00
LTYPE 5 1 3.00
PLEV 4 1 0.00
CLEV 4 1 0.00
LEVS 4 1 30.00
XYRATIO 7 1 0.00
DOIVVERS 8 1 -1.00
DOCEITER 8 1 1.00
ZXRATIO 7 1 0.25
SKEV 4 1 45.00
DOCOHT 6 1 1.00
DOVECT 6 1 1.00
ICUT 4 1 0.10
PCUT 4 1 0.10
DIST 4 1 3.00
IMSIZE 6 2 1 2.00
CELLSIZE 8 2 1 2.00
SHIFT 5 2 1 2.00
SORT 4 7 1 2.00
UVTAPER 7 2 1 2.00
UVRAVGE 7 2 1 2.00
UVWTFI 6 7 1 2.00
UVBOX 5 1 0.00
DOGRIDCR 8 1 1.00
ZEROSP 6 1 5.00
BITER 5 1 0.00
BMAJ 4 1 0.00
BMIS 4 1 0.00
B?A 3 1 0.00
VBOXES 6 1 0.00
BOX 3 2 4.00
DOEOF 5 1 1.00
IDIG 4 1 0.00
DOCAT 5 1 1.00
DOHIST 6 1 o0H1

BDROP 5 1 0.00

CHAPTER 4. THE AIPS PROGRAM

7
6
8
5
5
5
5
6
7
7
7
6
6
5
7
5
5
7
7
6
5
5
6
4
4
7
5
8
6
7
4
5
5
5
8
6
7

4-25

1 0.00
1 0.00
1 51.00
2 1 10.00
2 1 10.00
2 2 2.00
2 1 4.00
2 2 3.00
2 2 2.00
2 1 4.00
2 2 3.00

0.00
1 14.00

1.00
3.00
0.00

1 2.00
1 8.00

1.00
-1.00
-1.00

0.00
0.00
-1.00

0.00
1 10.00
1 10.00

1.00
1.00
0.00
-1.00

1.00
1.00

1 7.00
1 7.00
1 48.00

1.00
-1.00

0.00
-1.00

1.00
1.00
1.00
0.00

1 2.00
1 48.00
1 48.00
1 48.00

1600.00
1 8.00
1 2.00
1 16.00

1.00

4.00

4.00
4.00

4.00

4-26 CHAPTER 4. THE AIPS PROGRAM

ECOUIT 6 1 0.00
VCOUNT 6 1 0.00
DOTABLE 7 1 1.00
DOTVO 5 1 -1.00
COPIES 6 1 1.00
PRVUMBER 8 1 0.00
PRTIME 6 1 0.00
PRTASK 6 7 1 5.00
CTYPE 5 1 4.00
PIXAVG 6 1 0.00
PIXSTD 6 1 0.00
DOCIRCLE 8 1 -1.00
CHIVC 6 1 1.00
VFIELD 6 1 1.00
FLDSIZE 7 2 2 2.00
RASHIFT 7 2 1 16.00
DECSHIFT 8 2 1 16.00
PHAT 4 1 0.00
GAI1ERR 7 2 1 30.00
TIMSMO 6 2 1 30.00
DOOUTPUT 8 1 -1.00
DOCOICAT 8 1 -1.00
DOIEVTAB 8 1 1.00
DOCOIFRM 8 1 -1.00
DOALPHA 7 1 -1.00
ERROR 5 1 -1.00
GRXAME 6 7 1 20.00
GRADDRES 8 7 1 48.00
GRPHOVE 7 7 1 16.00
SLOT 4 1 1.00
VLAOBS 6 7 1 6.00
VLAMODE 7 7 1 2.00
CNETHOO 7 7 1 4.00
CHODEL 6 7 1 4.00
BCONP 5 1 16.00
VCOMP 5 1 16.00
LPEI 4 1 3.00
PRSTART 7 1 1.00
OPTYPE 6 7 1 4.00
DOVEOGE 7 1 1.00
SOURCES 7 7 2 16.00
CALSOUR 7 7 2 16.00
TIMERAIG 8 1 8.00
SUBARRAY 8 1 1.00
BIF 3 1 0.00
EIF 3 1 0.00
AHTENMAS 8 1 50.00
BASELIVE 8 1 50.00
DOCALIB 7 1 1.00
IITERPOL 8 7 1 4.00
SMOTYPE 7 7 1 4.00
IITPARM 7 1 3.00
FLAGVER 7 1 0.00
GAINVER 7 1 0.00

4.6. POPSGN 4-27

GAIMUSE 7 1
REASOV 6 7 1
SAMPTYPE 8 7 1
CODETYPE 8 7 1
I0ISE 5 2 1
PBSIZE 6 2 1
OUTVERS 7 1
DOCELL 6 1
PIX2XY 6 2 1
PIX2VAL 7 1

STFACTOR 8 1
CUTOFF 6 1
OPTELL 6 7 1
FORMAT 6 1
BLVER 5 1
BPVER 5 1
AITVT 5 2 1
SOLIIT 6 1
CALCODE 7 7 1
REFAIT 6 1
SMODEL 6 2 1
SOLTYPE 7 7 1
SOLMODE 7 7 1
SOLCOV 6 1
VTUV 4 1
DODELAY 7 1
SYSVEL 6 1
VELDEF 6 7 1
VELTYP 6 7 1
RESTFREQ 8 2 1
DOHMS 5 1
BLOCKIMG 8 1
PMODEL 6 2 1
DOPOL 5 1
DOBAID 6 1
SMOOTH 6 2 1
DOUVCOMP 8 1
REVEIGHT 8 2 1
REFDATE 7 7 1
SELBAND 7 1
SELFREQ 7 1
FREQID 6 1
CHAVSEL 7 2 2
FQTOL 5 1
C- Adverbs below axe dununys
STRA1 5 7 1
STRA2 5 7 1
STRA3 5 7 1
STRB1 5 7 1
STRB2 5 7 1
STRB3 5 7 1
STRC1 5 7 1
STRC2 5 7 l

0.00
24.00
4.00
4.00
64.00
64.00
0.00
1.00
7.00
0.00

0.00
0.00
4.00
0.00

-1 .0 0
-1 .0 0
30.00

0.00
4.00
0.00
7.00
4.00
4.00
0.00
0.00
-1.00
0.00
8.00
8.00
2.00

-1.00
1.00
7.00
-1.00
-1.00
3.00
-1.00
2.00

8.00
-1.00
-1.00
-1.00
3.00 10.00
-1.00
for testing.
4.00
8.00

12.00
4.00
8.00

12.00
4.00
8 . 0 0

4-28 CHAPTER 4. THE AIPS PROGRAM

STRC3 5 7 1 12.00
ARRAY1 6 2 1 10.00
ARRAY2 6 2 2 20.00
ARRAY3 6 2 1 3.00
SCALR1 6 1 1.00
SCALR2 6 1 0.00
SCALR3 6 1 0.00
C- Quit tells POPSGI *end of adverbs
QUIT 4 6

*
VERSIOI - } 9 • 9 OPTELL = 'CHAI >
DOPOS = 1 ; DOMAX = 1 ; DOWIDTH = 1 ;
*
PROC TSTDUM
SCALAR X, Y, I , J , DELTAX , DELTAY
FIIISH
♦
PROC SETXWII(DELTAX,DELTAY);IMXY;BLC(1)=PIXXY(1)-DELTAX/2
TRC(l)=BLC(1)+DELTAX;BLC(2)=PIXXY(2)-DELTAY/2;
TRC(2)-BLC(2)+DELTAY;RETURI;FIIISH
♦
PROC OFFROAM;I=TVCHAI;J=GRCHAI;TVCHAI=1234;GRCHAI=1234;
OFFSCROL;TVOFF;GRCHAI=J;TVCHAI=I;TVOI;RETURI;FIIISH
*
PROC OFFHUIIT; I=ABS(TVCHAI); IF I < 12 THEI 1=12; EID
J=MOD(1/10,10);I=MOD(1,10);TVOFF(1234);OFFPS;TVCH=I;OFFTR;
TVCH=J;OFFTR;TVOI;RETURI
FIIISH
*
PROC TKWII;TKXY;BLC=PIXXY;TKXY;TRC=PIXXY;
RETURI;FIIISH
*
PROC TKBOX(I); TKXY;B0X(1,I)=PIXXY(1);B0X(2,I)=PIXXY(2)
TKXY;BOX(3,I)=PIXXY(1);BOX(4,I)=PIXXY(2);RETURI;FIIISH
*
PROC TKIBOXS(IBOXES); FOR J=1:IB0XES;
TYPE 'SET BOX IUMBER\J,» : * ;TKBOX(J) ;EID;RETURI
FIIISH
*

PROC TVRESET; C0L0R=0;TVOFF(12345);TVOI(TVCH); OFFZ; OFFSC;
OFFPS; GRCH=0;GRCLEAR; OFFTR;RETURI; FIIISH
*
PROC TVALL; TV0FF(1234);OFFZOOM;TVOI(TVCH);GR0FF(1234);J=GRCH;
GRCH=24;GRCL;GRCH=J;TVCL;TVLOD;TVWED(16);TVWLAB;TVFID;RETURI
FIIISH

4.7 INCLUDES
4.7.1 DAPL.INC
c
c

Include DAPL.
length before adverb values

INCLUDES

INTEGER K(14770)
lull length

REAL C(18944)
HOLLERITH CH(18944)

character strings
HOLLERITH INNAM(3), IHCLS(2), INTYP, IN2NAM(3), IN2CLS(2), IN2TYP
* IN3NAM(3), IN3CLS(2), IN3TYP, 0UTNAM(3), 0UTCLS(2), 0U2NAM(3),
* 0U2CLS(2), INEXT, IN2EXT, IN3EXT, TASK(2), OPCODE, FUNTYP,
* 0BJECTC2), STOKES, BAND, SORT, UVWTFN, TRANSC(4), AXTYPE(2),
* VERSON(12), INFLL(12), IN2FLL(12), 0UTFLL(12), KEYWRD(2),
* KEYSTR(4), PRTASK(2), GRNAME(S), GRADDR(12), GRPH0N(4),
* VLA0BS(2), VLAMOD, CMETHX, CMODXX, OPTYPE, CS0URS(4,30),
* CCALS(4,30), CINTPL, CSMOTY, CREAS0(6), SMPTYP, CDETYP, OPTELL
* VELDEF(2), VELTYP(2), XREFDA(2),
* STRA1, STRA2(2), STRA3(3), STRB1, STRB2(2), STRB3(3),
* STRC1, STRC2(2), STRC3(3)

numeric variables
REAL XTRUE, XFALSE, USERID. INSEQ, INDSK, IN2SEQ, IN2DSK,
* IN3SEQ, IN3DSK, OUTSEQ, OUTDSK, 0U2SEQ, 0U2DSK, INVER, IN2VER,
* IN3VER, BADDSK(IO), INTAPE, OUTTAP, NFILES, NMAPS, DOWAIT,
* PRIOTY, BLC0RN(7), TRC0RN(7), XINC, YINC, PIXXY(7), PIXVAL,
* PXRANG(2), FACTOR, OFFSET, TVBUTT, XTYPE, XPARM(IO), YTYPE,
* YPARM(IO), ROTATE, GAIN, NITER, FLUX, qUAL, TVCHAN, GRCHAN,
* TVLEVS, TVC0RN(2), COLORS, TVXY(2), DOTV, BATQUE, BTFLIN,
* BTNLIN, JOBNUM, LTYPE, PLEV, CLEV, LEVS(30), XYRATO, DOINVR,
* DOCENT, ZXRATO, SKEW, DOCONT, DOVECT, ICUT, PCUT, DIST,
* IMSIZE(2)
REAL CELSIZ(2), SHIFT(2), UVTAPR(2), UVRANG(2), UVBOX, DOGRDC,
* ZER0SP(5), BITER, CBKAJ, CBMIN, CBPA, NBOXES, B0X(4,10), DOEOF
* NDIG, DOCAT, DOHIST, BDROP, EDROP, ASPMM, MPTCH, APARMS(IO),
* BPARMS(IO), GP0S(2,4), GMAX(4), GWIDTH(3,4), ERRP0S(2,4),
* ERRMAX(4), ERRWTH(3,4), NGAUSS, AXREF, NAXIS, RAXINC, AXVAL(2)
* DOSLIC, DOMODL, DORESI, ROMODE, DETIME, DOCRT, CHANNL,
* CPARM(IO), DPARM(IO), DOALIN, NPONTS, AX2REF, DOALL, TVXINC,
* TVYINC, TVBLC0(7), TVTRC0(7), DOEOT, DOSTOK, LEVPRT, DORRAY,
* ZINC, TVZINC, BECHAN, ENCHAN, RESTFR(2), DENSTY, KEYVAL(2)
REAL BEGCNT, ENDCNT, NUMCNT, DOTABL, DOTWO, COPIES, PRNUMB,
* PRTIME, CTYPES(4), PIXAVG, PIXRMS, DOCIRC, XCHINC, XNFIEL,
* XFLDSZ(2,16), XRASHF(16), XDCSHF(16), XPHAT, XGNERR(30),
* XTMSM0(30), DOOUTP, DOCNCT, DONEW, DOCONF, DOALPH, ERRORA,
* SLOTAD, XBCOMP(16), XNC0MP(16), QMSPEN, PRSTRT, DOWDGE,
* XTIMR(8), XSUBAR, XBIF, XEIF, XANTS(50), XBASLN(50), XDOCAL,
* XINTPR(3), XFLGVE, XGAVER, XGAUSE, AN0ISE(64), PBSIZE(64),
* OUTVER, DOCELL, PIX2XY(7), PIX2VL, STFCTR, CUTOFF, TAMROF,
* XBLV, XBPV, XANTWT(30), XSOLIN, XCALCO, XREFA, XSM0DE(7)
REAL XSOLTY, XSOLMO, XSOLCO, XWTUV, XDODEL, XSYSVL, DOHMS,
* BLOCKD, XPMDL(7), XDOPOL, XDOBND, XSM0TH(3), XDOUVC, XXREWT(2)
* XSELBN, XSELFQ, XFQID, CHNSEL(3,10), XFQTOL,
* ARRAYl(lO), ARRAY2(20,2), ARRAY3(3), SCALR1, SCALR2,
* SCALR3
COMMON /CORE/ K, XTRUE, XFALSE, USERID, INNAM, INCLS, INSEQ,
* INDSK, INTYP, IN2NAM, IN2CLS, IN2SEq, IN2DSK, IN2TYP, IN3HAM,
* IN3CLS, IN3SEq, IN3DSK, IN3TYP, OUTNAM, OUTCLS, OUTSEQ, OUTDSK
* 0U2NAM, 0U2CLS, 0U2SEq, 0U2DSK, INEXT, IN2EXT, IN3EXT, INVER,

4-30 CHAPTER 4. THE AIPS PROGRAM

4.7.2
c

c

4.7.3
c

II2VER, II3VER, BADDSK, IITAPE, OUTTAP, IFILES, IMAPS, TASK,
DOWAIT, PRIOTY, BLCORI, TRCORM, XIIC, YIIC, PIXXY, PIXVAL,
PXRAIG, FACTOR, OFFSET, TVBUTT, XTYPE, XPARM, YTYPE, YPARM,
OPCODE, FUITYP, ROTATE, GAII, IITER, FLUX. OBJECT, QUAL,
STOKES, BAID, TVCHAI, GRCHAI, TVLEVS, TVCORI, COLORS, TVXY,
DOTV, BATQUE, BTFLII, BTILII, JOBIUM, LTYPE, PLEV, CLEV, LEVS,
XYRATO, DOIIVR, DOCEIT, ZXRATO, SKEW, DOCOIT, DOVECT, ICUT,
PCUT, DIST, IMSIZE

COMMOI /CORE/ CELSIZ, SHIFT, SORT, UVTAPR, UVRAIG, UVWTFI, UVBOX,
DOGRDC, ZEROSP, BITER, CBMAJ, CBMII, CBPA, IBOXES, BOX, DOEOF,
IDIG, DOCAT, DOHIST, BDROP, EDROP, ASPMM, MPTCH, APARMS,
BPARMS, GPOS, GMAX, GVIDTH, ERRPOS, ERRMAX, ERRVTH, IGAUSS,
TRAISC, AXREF, IAXIS, RAXIIC, AXVAL, AXTYPE, DOSLIC, DOMODL,
DORESI, ROMODE, DETIME, DOCRT, CHAIIL, CPARM, DPARM, DOALIV,
IPOITS, AX2REF, DOALL, TVXIIC, TVYIIC, TVBLCO, TVTRCO, VERSOI,
DOEOT, DOSTOK, LEVPRT, DORRAY, ZIVC, TVZIVC. BECHAI. EICHAV.
RESTFR, IIFLL. II2FLL, OUTFLL, DEISTY, KEYVRD, KEYVAL, KEYSTR,
BEGCIT, EIDCIT, IUMCIT, DOTABL, DOTWO, COPIES, PRIUMB, PRTIME,
PRTASK, CTYPES, PIXAVG, PIXRMS, DOCIRC, XCHIIC, XIFIEL, XFLDSZ

COMMOI /CORE/ XRASHF, XDCSHF, XPHAT, XGIERR, XTMSMO, DOOUTP,
DOCICT, DOIEV, DOCOIF, DOALPH, ERRORA, GRIAME, GRADDR, GRPHOI,
SLOTAD, VLAOBS, VLAMOD, CMETHX, CMODXX, XBCOMP, XICOMP* QMSPEI,
PRSTRT, OPTYPE, DOVDGE, CSOURS, CCALS, XTIMR, XSUBAR, XBIF,
XEIF, XAITS, XBASLI, XDOCAL, CIITPL, CSMOTY, XIITPR, XFLGVE,
XGAVER, XGAUSE, CREASO, SMPTYP, CDETYP, AIOISE, PBSIZE, OUTVER,
DOCELL, PIX2XY, PIX2VL, STFCTR, CUTOFF, OPTELL, TAMROF, XBLV,
XBPV, XAITWT, XSOLII, XCALCO, XREFA, XSMODE, XSOLTY, XSOLMO,
XSOLCO, XWTUV, XDODEL, XSYSVL, VELDEF, VELTYP, DOHMS, BLOCKD,
XPMDL, XDOPOL, XDOBID, XSMOTH, XDOUVC, XXREWT, XREFDA, XSELBI,
XSELFQ, XFQID, CHISEL, XFQTOL,

STRA1, STRA2, STRA3, STRB1, STRB2, STRB3, STRC1, STRC2,
STRC3, ARRAY1, ARRAY2, ARRAY3, SCALR1, SCALR2, SCALR3

EQUIVALEICE (K(l), C(l), CH(1))
End DAPL.

DBAT.INC
Include DBAT.

IITEGER BATLUI, BATIID, BATREC, BATDUM, BATDAT(256)
COMMOI /BATCH/ BATLUI, BATIID, BATREC, BATDUM, BATDAT

End DBAT.

DBW T.IN C
Include DBWT.

IITEGER BVTIUM, BWTLUI, BWTIID, BWTREC, BWTDAT(2S6)
LOGICAL WASERR
CHARACTER BWTIAM*48
COMMOI /BWTCHC/ BWTIAM
COMMOI /BWTCH/ BWTDAT, BWTIUM, BWTLUI, BWTIID, BWTREC, WASERR

End DBWT.

4.7. INCLUDES 4-31

4.7.4 DCO N.INC
C Include DCOH.

INTEGER K(18944), KXORG
REAL C(18944)
HOLLERITH CH(18944)
COMMON /CORE/ K
EQUIVALENCE (K(l), C(l), CH(1)), (K(8), KXORG)

C End DCON.

4.7.5 DERR.INC
C Include DERR.
C POPS error handling for OERROR

INTEGER ERRNUM, IERROR(IO), ERRLEV
CHARACTER PNAME(10)*6
COMMOI /ERRORS/ ERRNUM, IERROR, ERRLEV
COMMON /ERRORC/ PNAME

C End DERR.

4.7.6 DIO.INC
C Include DIO.

INTEGER MBYTES, KARLIM, IUNIT
CHARACTER KARBUF+80, JBUFF*80, H0LDUF«-80, IPT*1
COMMON /POPSIO/ NBYTES, KARLIM, IUNIT
COMMON /POPCIO/ KARBUF, JBUFF, HOLDUF, IPT

C End DIO.

4.7.7 DPO P.INC
C Include DPOP,

INTEGER KT, LPGM, LLIT, LAST, IDEBUG, MODE, IFFLAG, LINK,
* L, NAMEP, IP, LP, SLIM, AP, BP, ONE, ZERO, TRUE, FALSE,
* STACK(100), CSTACK(IOO), SP, CP, SPO, MPAGE, LPAGE
REAL V(100), XX
COMMON /POPS/ V, XX, KT, LPGM, LLIT, LAST, IDEBUG, MODE, IFFLAG,
* LINK, L, NAMEP, IP, LP, SLIM, AP, BP, ONE, ZERO, TRUE, FALSE,
* STACK, CSTACK, SP, CP, SPO, MPAGE, LPAGE

C End DPOP.

4.7.8 DSM S.INC
C Include DSMS.

INTEGER NKAR, KBPTR, NEWCOD, TYPE, TAG, LEVEL, LX, NEXTP, LOCSYM
REAL SKEL, X(25)
HOLLERITH KPAK(5)
COMMON /SMSTUF/ KPAK, X, SKEL, NKAR, KBPTR, NEWCOD, TYPE,
* TAG, LEVEL, LX, NEXTP, LOCSYM

C End DSMS.

4-32 C H APTER 4. TH E A IP S PRO G RAM

C hapter 5
C atalogs
5.1 Overview
AIPS keeps a catalog with a directory which contains an entry for each data file and its associated extension
files. The catalog header record is used to keep various pieces of information about the data in the main
data file and keeps track of the number and types of extension files associated with the main data file. These
catalog header records sure kept in individual files. The intent of this chapter is to describe the contents of
the catalog header and to describe the use of the routines that access the catalog header record.

The information in the catalog header record is patterned after the FITS format tape header, although it
is not as flexible. The catalog header describes the order and amount of data and maximum and minimum
values, etc.

AIPS data files have a structure very similar to the structure of data of FITS format tapes. An image
consists of a rectangular array of up to 7 dimensions. Pixel locations must be evenly spaced along each axis,
although a proper redefinition of the axis can usually make this possible. The header record contains the
number of pixels along each axis, a label for each axis, the number of the reference pixel (may be a fractional
pixel and need not be in the portion of the axis covered), the coordinate at the reference pixel, the coordinate
increment between pixels and the coordinate rotation. The sixes of images may be in any order.

The AIPS format for uv data is also similar to the FITS convention. Each data point has a number of
“random parameters” , usually “u” , “v” , time, baseline number etc., followed by a rectangular array similar
to, but usually smaller than, an image data array. Up to 14 random parameters have labels kept in the
catalog header. More than 14 random parameters can be used, but the labels for the fifteenth and following
are lost.

Most tasks read an old data file, do some operation on the data and write a new data file. In this case,
the task simply takes the old catalog header record and modifies it to describe the data in the new file.

AIPS also keeps a catalog of the images displayed on all display devices. This image catalog allows
AIPS interactive verbs to use the display devices without having to find and read the original catalog header
record.

5.2 Public and Private catalogs
AIPS catalogs may be either public, i.e., all files on a given disk are in the same catalog, or private, i.e.,
each user has a separate catalog on each disk. The stand-alone utility program, SETPAR, is used to specify
which type is currently in use. The distinction is completely transparent to the programmer; all distinctions
between the two types are hidden in ZPHFIL and the catalog routines.

5.3 File Nam es
AIPS data files, especially cataloged files, are referenced in a number of different ways. The following list
summarizes the three basic ways of specifying AIPS data files:

5-1

5-2 CHAPTER 5. CATALOGS

1. AIPS logical names. The full AIPS logical file specification is given by disk number, file name, file class,
file sequence number, file physical type, user number, and, for extension files, the version number. This
is the fundamental way an AIPS user specifies a file; although some of these, such as physical type
and user number, may not have to be specified directly. In a task, these values are used by CATDIR
(which may be called by a higher level routine such as MAPOPN) to locate the desired file in the AIPS
catalog using various default and wild-card conventions.

2. Disk and catalog number. Just as the AIPS user frequently uses the disk and catalog numbers to
specify files using the verb GETNAME, programs usually keep track of cataloged files by means of the
disk and catalog numbers, file types, and version numbers for extension files.

3. Physical name. The host operating system needs a name for the file for its own catalog. The allowed
physical file specifications depends on the host operating system, so AIPS tasks use the Z routine
ZPHFIL to create the physical name from the disk and catalog numbers, the file type and version, and
the user number for systems with private catalogs. These physical names may be up to 48 characters
long.
An example from a VAX system with private catalogs is “DAOn:ttrcccvv.uuu” , where n is the zero-
relative disk drive number, DAOn: is a logical variable which is assigned to a directory, t t is a two
character file type (e.g., “MA”), r is a data format version number (see Appendix A), ccc is the catalog
slot number, vv is the version (01 for “MA” , “SC” and “UV” files), and uuu is the user’s number. All
numbers are expressed in hexadecimal notation.

5.4 D ata Catalog
The data catalog actually consists of many separate files. There is one directory file (type “CA”) per user
for private catalogs per disk drive. Each cataloged file has its own catalog header file (“CB”).

5.4.1 Catalog Directory
Each catalog directory contains a one block (256-word) header and a number of catalog directory blocks.
The header block contains principally the number of catalog blocks in the file; this is set when the file is
initialized or expanded. The directory blocks contain a 32-byte reference to each catalog header record. The
directory is used to speed catalog searches and also contains the map status words that register map file
activity.

5.4.2 Header block
The format of the Header Block is as follows:
OFFSET TYPE DESCRIPTION

0 I Volume number of disk containing this catalog
1 I Unused
2 I Number of catalog blocks in this file

5.4.3 Directory Section
The Mth directory block contains NLPR entries, each NWPL words, indexing the NLPR*(M-1)+1 to the
NLPR*M-1 catalog records. The first directory block is the 2nd block in the file. The parameters are given
by NWPL = 11 and NLPR = 256/NWPL.

The description of a directory entry is as follows:
OFFSET LENGTH TYPE DESCRIPTION

0 I I User ID number; or -1 if slot is empty
1 I I Map file activity status

5.4. DATA CATALOG 5-3

2 2 H(2)
4 1 I
5 3 H(3)
8 2 H(2)
10 1 H

Date/Time lile was cataloged
User delined sequence number 1 to 9999
User delined map name, 12 characters
User delined map class, 6 characters
Map type, 2 characters

5.4.4 Directory Usage
Map name and class are user defined character strings of 12 and 6 characters that can be used to identify
and locate a specific map. The strings are stored as HOLLERITH strings together with the 2-character
HOLLERITH string which identifies the “physical” map type, in their slots in the directory. The sequence
number is similarly an arbitrary integer reference number.

The Map Status is an integer registering the activity of the map file itself.
STATUS = 0 => no programs are accessing the map lile

= n>0 => n programs are reading the map
= -1 => one program is writing into the lile
= n<0 => 1 + n programs are reading the map, one

program is writing into the lile.

Maintaining the integrity of the catalog entries is essential to ensure reliable access to the cataloged files.
Thus certain rules should be followed when using the catalog. These rules are coded in to the utility routines
described below; these routines should be used when at all possible to access the catalog.

Rules:
1. Take exclusive use of the catalog whenever you access it. The required operation should be done quickly

and then the catalog file should be closed and released.
2. The status word must be monitored to see if an intended catalog or map operation will disturb an

(asynchronous) operation already in progress.
Specifically: Do not modify a catalog block, nor write into a map file which is not in a rest state (STATUS
= 0).

If you intend to write into a map and STATUS = 0, change the status to “W RITE” (STATUS = -1)
before releasing exclusive use of the catalog.

If you intend to read a map file or catalog block, check to see if someone else is writing on it (STATUS
< 0). If so, decide whether this is acceptable to your program. If so, modify the status to “READ” :

STATUS = 1 + STATUS il STATUS > 0
STATUS =-1 + STATUS il STATUS < 0.

Clear status when you have finished your operation. If you were reading, reverse the process just described.
If you were writing, STATUS = - (1 + STATUS).

5.4.5 Structure of The Catalog Header Record
The catalog header block is a fixed format data structure 512 bytes long (one byte is defined in AIPS as half
an integer). The catalog header block contains double and single precision floating point numbers, integers,
and hollerith strings. The catalog header record is accessed by equivalencing integer, hollerith, real and
double precision arrays, and obtaining the information from the array of the appropriate data type. Since
the structure of the catalog header is subject to change we use pointers for the different arrays that are
computed by VHDRIN. These pointers are kept in a common invoked with the INCLUDE DHDR.INC.

5-4 CHAPTER 5. CATALOGS

The uses of the pointers are given in the following table. In this table, the term “random parameters”
refers to the portion of a uv data record that contain u, v, w, time, baseline etc.; the term “indeterminate”
pixel means a pixel whose value is not given.

TYPE POINTER DESCRIPTION

H(2) KHOBJ Source name
H(2) KHTEL Telescope, i.e., 'VLA*
H(2) KHINS e.g., receiver or correlator
H(2) KHOBS Observer name
H(2) KHDOB Observation date in lormat 'DD/MM/YY*
H(2) KHDNP Date map created in lormat 'DD/MM/YY'
H(2) KHBUN Map units, i.e., 'JY/BEAM ’
H(2)(14)KHPTP Random Parameter types

KIPTPN= 14 Max. number ol labeled random paramaters
H(2)(7) KHCTP Coordinate type, i.e., *RA-- SIN'

KICTPN= 7 Max. number ol axes
D(7) KDCRV Coordinate value at relerence pixel
R(7) KRCIC Coordinate value increment along axis
R(7) KRCRP Coordinate Relerence Pixel
R(7) KRCRT Coordinate Rotation Angles
R KREPO Epoch ol coordinates (years)
R KRDHX Real value ol data maximum
R KRDMN Real value ol data minimum
R KRBLK Value ol indeterminate pixel (real

maps only)
I KIGCN Number ol random par. groups.

This is the number ol uv data
records.

I KIPCN Number ol random parameters
I KIDIM Number ol coordinate axes
1(7) KINAX Number ol pixels on each axis
I KIIMS Image sequence no.
H(3) KHIMN Image name (12 characters)

KHIMMO= 1 Character ollset in HOLLERITH string
H(2) KHIMC Image class (6 characters)

KHIMCO- 13 Character ollset in HOLLERITH string
H KHPTY Map physical type (i.e., 'MA'.'UV') (2 char)

KHPTYO= 19 Character ollset in HOLLERITH
I KIIMU Image user ID number
I KINIT # clean iterations
R KRBMJ Beam major axis in degrees
R KRBMN Beam minor axis in degrees
R KRBPA Beam position angle in degrees
I KITYP Clean map type: 1-4 => normal,

components, residual, points.
For uv data this word contains a
two character sort order code.

I KIALT Velocity relerence Irame: 1-3
=> LSR, Helio, Observer +
256 il radio delinition.

D KDORA Antenna pointing Right Ascension
D KDODE Antenna pointing Declination
D KDRST Rest Irequency ol line (Hz)

5.4. DATA CATALOG 5-5

D KDARV Alternate ref pixel value
(frequency or velocity)

R KRARP Alternate ref pixel location
(frequency or velocity)

R KRXSH Offset in X (rotated RA) of phase center
R KRYSH Offset in Y (rotated Dec) from tangent pt
H(20) KHEXT lames of extension file types (2 char)

KHEXTI= 20 Max number of extension files
1(20) KIVER lumber of versions of corresponding

extension file.

The actual values of the pointers depend on the size of the various data types and are computed in the
routine VHDRIN. Note that VHDRIN should be called after ZDCHIN is called because it uses values set by
ZDCHIN. VHDRIN has no call arguments.

The name of the pointer tells which data type array the data is to be read from: KInnn indicates the
integer array, KHnnn indicates the hollerith array, KRnnn indicates the real array, and KDnnn indicates the
double precision array. Conversion of HOLLERITH data to and from CHARACTER variables is done using
routines H2CHR and CHR2H. The Name, class, and physical type are contained in HOLLERITH strings as
are the labels of the regular and random axes. This is best explained by an example:

IITEGER IDIM1, IIDEX
REAL CRPIX2
CHARACTER CLASS*6, ALAB!
DOUBLE PRECISIOI CRVAL3

C
IICLUDE *IICS:DHDR.IIC*

C
C

IICLUDE 1IICS:DCAT.IIC*

C
C

IDIM1 = CATBLK(KIIAX)
C
C

CRPIX2 * CATR(KRCRP+1)
C
C

CRVAL3 = CATD(KDCRV+2)
C
C

IIDEX = KHPTP + 2 * 2
CALL H2CHR (8, 1, CATH(IIDEX), ALABE2)

C Copy image class.
CALL H2CHR (6, KHIMCO, CATH(KHIMC), CLASS)

In the example above the catalog header block is obtained from a common defined in INCLUDE DCAT.INC.
Many AIPS utility routines get the catalog header record from this common, so it is a good place to store it.

Include for header pointers

Include for catalog header
common

Get the dimension of
the first axis (I)

Get reference pixel
of second axis (R)

Get coordinate at reference
pixel on third axis. (R)

Copy axis label for third
axis (H array).

5-6 CHAPTER 5. CATALOGS

K eyw ord-V alue P a irs
Arbitrary sets of keyword value pairs can be stored in an extension of the catalog header using routine
CATKEY. The values may be of the following types: DOUBLE PRECISION, REAL, HOLLERITH (up to
8 char), INTEGER and LOGICAL. A description of CATKEY is given at the end of this chapter.
Im age F iles
An image consists of a single multidimensional (up to 7), rectangular array of pixel values. The structure of
this array is defined by the catalog header record, which contains the number of dimensions (KIDIM) and
the number of pixels on each axis (KINAX). All images are stored as REAL values.

The label for each axis is in a HOLLERITH string array pointed to by KHCTP. The coordinate increment
between pixels must be a constant on each axis, and the array of axis increments is obtained using the pointer
KRCIC. The array of coordinate reference pixels (the pixel at which the coordinate value is that pointed to
by KDCRV) is pointed to by KRCRP; the reference pixel need not be either an integral pixel or in the range
covered by the data. The coordinate values at the reference pixels are pointed to by KDCRV.

Each axis also has an associated rotation angle, but the only rotation currently supported is tha t on the
plane of the sky. This rotation value is kept on the declination/Galactic latitude/Ecliptic latitude/Y axis
and is the rotation of the coordinate system from north toward east.

Since there is no explicit provision made in the catalog header for such important parameters as position,
frequency, and polarization, these are always declared as axes even if that axis contains only one pixel. This
allows a place in the header record for these parameters.

Since the Stokes’ axis is not inherently an ordered set, we use the following definitions for the values
along the stokes’ axis.

0 => beam 5 => P ercen t p o la r iz a t io n
1 => I 6 => F ra c tio n a l p o la r iz a t io n
2 «> Q 7 -> P o la r iz a tio n p o s i t io n angle
3 => U 8 => S p e c tra l index
4 => V 9 => O p tica l depth

Pixel values may be blanked using “magic value” blanking. The magic (stored) value for images is given by
KRBLK (always ’INDE’).

Each row of an image (first dimension) starts on a disk sector boundary (as defined on the local system)
unless several rows may fit in a sector. In the latter case, as many rows as possible are put in a sector, but
a row is not allowed to cross a sector boundary. Each plane in the image (dimension 3 and higher) starts on
a sector boundary.

All angles in the header record are in degrees.

U v D a ta F iles
Uv data files consist of a sequence of interferometer visibility records each of which contains all data measured
on a given baseline (pair of antennas) in a given integration period. The number of visibility records is given
in the catalog header record by the integer value pointed to by KIGCN. The order of the visibility records
are given by the two character code pointed to by KITYP. (More details of the sort order can be found in
the chapter on disk I/O). All values are in floating point (except for compressed data).

E ach v isib ility record consists o f a num ber (K IP C N) o f “ran d o m ” p a ram e te rs , followed by a d a ta array
similar to a miniature image. Any number of random parameters are allowed, but only the labels of 14
(KIPTPN) can be kept in the header. These labels are kept in Hollerith strings pointed to by KHPTP. The
random parameters are used for values which vary “randomly” from visibility to visibility (i.e., u, v, w, time,
baseline). The data array is described by the catalog header record in the same ways as for an image file.

The tangent point of the data (position for which the u, v, and w are computed) is kept as the RA and
Dec axis in the data array. The offset in x and y (RA and dec after rotation) are pointed to by KRXSH and
KRYSH. All angles in the catalog header record are in degrees.

5.4. DATA CATALOG 5-7

Uv data may contain correlator based polarization or true Stokes’ parameters. In the former case, the
following Stokes’ values are defined:

-1 => RR
-2 => LL
-3 => RL
-4 => LR
-5 => XX Orientation
-6 => YY AH table
-7 => XY
-8 => YX

X and Y axe defin ed in th e

Visibility records jure allowed to span disk sector boundaries. More details about the uv data file format are
given in the chapter on disk I/O .
S ingle D ish D a ta F iles
Randomly sampled sky brightness measurments may be stored in data files which are similar to uv data
files (the file “type” of the files is “UV”). The random parameters use for this type of data give the celestial
position and beam or feed number rather than the location in the uv plane or a baseline. This type of data
is described in more detail in next chapter.

5.4.6 Routines to Access the Data Catalog
M A P O P N a n d M A P C L S
There are a number of utility routines to access the catalog header record. In many cases, most of the catalog
operations can be taken care of by the pair of routines MAPOPN and MAPCLS. MAPOPN will locate the
correct catalog entry from a given name, class, disk, sequence and physical type following all default and
wild-card conventions. MAPOPN then reads the catalog header record, opens the main data file and marks
the catalog status word. Following a call to an initialization routine, the file can be read from or written
to. After all I/O to the file is complete, MAPCLS will close the file, update the catalog header record if
requested and clear the catalog status word for the file. A description of the call sequence of MAPOPN and
MAPCLS is given at the end of this chapter.

C A T D IR an d C A TIO
If MAPOPN and MAPCLS are not appropriate, then the use of more specialized routines is necessary.
First the desired file must be located in the catalog directory. The routine CATDIR is the basic method of
accessing the catalog directory. This routine will find the desired file given the name, class, etc. following the
usual default and wild-card conventions. CATDIR returns the disk number and catalog slot number. Given
a disk number and catalog slot number, CATIO can read or write a catalog header record and/or change
the status word. Detailed descriptions of CATDIR and CATIO can be found at the end of this chapter.

5.4.7 Routines to Interpret the Catalog Header
There are a number of specialized routines which obtain information from the catalog header record. The
following list gives a short description of each and detailed descriptions of the call sequence are found at the
end of this chapter.

• AXEFND will return the axis number of a given type of random or regular axis.
• ROTFND returns the angle of rotation on the sky of either an image or uv data file.
• UVPGET obtains a number of pointers and other pieces of information which simplify accessing uv

data.

5-8 CHAPTER 5. CATALOGS

5.4.8 Catalog Status
The AIPS catalog directory keeps a status word for each cataloged file. This status word is used to help
prevent conflicting use of the file. The status may be marked as either “READ” or “W RIT” ; the status of
each file can be seen in AIPS by listing the catalog. A file can be marked “READ” multiple times, but a
file marked “WRIT” cannot be marked “READ” or “WRIT” again, and a file marked “READ” cannot be
marked “WRIT” .

The use of the status word can complicate updating of the catalog header with CATIO. If the status of
a file has been marked as “WRIT” , then the opcode in the call to CATIO must be “UPDT” . If the status
is not marked, the opcode must be “W RIT” to update the catalog header block.

5.5 Image Catalog
5.5.1 Overview
The image catalog contains data for images stored on the TV device that identify the images, refer them
back to their original map files, and specify scaling of the X-Y and intensity coordinates. There is a separate
image catalog which performs the same functions for graphics devices (e.g., TEK4012 storage screens).

There is one image catalog file for each television device, whose physical name corresponds to ICvOOOOn,
where v = version code and n = the device number (0 for graphics, 1 to n for TVs). They reside on disk 1
and must be created at AIPS installation, usually by FILAIP.

5.5.2 Data Structures
General: For each gray-scale image plane of the TV device, the IC contains N 1-block (256-word) records
for cataloging up to N subimages, plus a (N -l)/51+ l block directory. The directory immediately precedes
the catalog blocks for each image plane. For each TV graphics overlay plane there is one catalog block with
no directory. These blocks follow immediately after the last gray-scale block.

The IC for pure graphics devices (called TK devices) has one image catalog block for each device in the
system including all “local” TK devices followed by all remote-entry devices. Record number n in this file is
associated with TK device number n (NTKDEV in /DCHCOM / from include DDCH.INC).

The image catalog blocks themselves are essentially duplicates of the map catalog blocks except that
scaling information replaces the extension file index of the map catalog.

The following is a description of the format of the directory block and the portions of the image catalog
block which is different from the normal catalog header block.

Directory Block (Gray-scale inage)

OFFSET TYPE DESCRIPTION
0 I Sequence number of last sub-image cataloged

on this plane
1 I Seq. no. of sub-image in slot 1; 0 if slot empty
2 1(4) TV pixel positions of corners of 1st sub-image,

xl,yl,x2,y2
6 I Seq. no. of sub-image in slot 2; 0 if empty
7 1(4) TV pixel positions of corners of 2nd sub-image

Catalog Block for each image or subimage:
Most of the Image Catalog block is identical to the map CAtalog block of the source of the image. (See

section on CB files.) The information on antenna pointing, alternate frequency/velocity axis descriptions, and

5.5. IMAGE CATALOG 5-9

extension files (KIALT, KDORA, KDODE, KDRST, KDARV, KRARP, KHEXT and KIVER) is replaced
in the IC by:
TYPE POUTER DESCRIPTION

R(2) IRRAN Map values displayed as min ft max brightness. I IIVOL
Disk volume from which map came I IICNO Catalog slot number ol orig.
map 1(4) IIWIN Map pixel positions ol corners ol displayed image (rel.
to orig. map) 1(5) IIDEP Depth ol displayed image in 7 - dimensional
map (axes 3 - 7) 1(4) IICOR TV pixel positions ol corners ol image on
screen I IHTRA 2-char code lor transfer lunction used to compute TV
brightness Irom map intensity values. I IIPLT Code lor type ol plot.
I(3i)II0TH Misc. plot type dependent info, (at the moment no more
than 20 used)

The standard pointer values are computed by VHDRIN and are available through the common /HDRVAL/
via include DHDR.INC. They are machine-dependent and are used in the same way as the normal catalog
pointers.

5.5.3 Usage notes
We assume that single images only are stored on graphics planes; there is no directory.

When a gray-image plane is cleared, its directory is zeroed. As images are added to the plane, their
coordinates are written into an open directory slot for that plane, along with the current value of the plane
sequence number. The sequence number is then incremented. If an old image is completely overwritten by
a new one, its directory slot is cleared. For partially overlapping images, the sequence # allows the user to
select the one most recently loaded into a given part of the plane.

5.5.4 Subroutines
There are a number of routines to manipulate the image catalog. The following is a short description of
each; detailed descriptions of the call sequences is given at the end of this chapter.

• YCINIT clears the Image Catalog for a given plane.
• YCOVER asks if there are any overlapped images in each quadrant visible.
• YCWRIT adds a new block to the catalog.
• YCREAD returns the block corresponding to a given TV pixel.
• TVFIND determines desired image, asks user if > 1 visible.

These routines expect the “plane number” as an argument. TV gray scale planes are numbered 1-NGRAY,
TV graphics overlay planes are numbered (NGRAY-t-l)-(NGRAY-f-NGRAPH), and TK devices are refer­
enced by any plane number greater than NGRAY+NGRAPH.

5.5.5 Image Catalog Commons
The COMMON /TV CH A R/ referenced by INCLUDE ’DTVC.INC’ contains TV device characteristics such
as:

NGRAY # of gray-scale planes on this device
NGRAPH # of graphics planes
MAXXTV(2) Maximum number of pixels in x,y directions in image

5-10 CHAPTER 5. CATALOGS

The listing of DTVC.INC is given at the end of this chapter.
The common /DCHCOM / (from DDCH.INC) contains two important parameters in this regard: NTVDEV

and NTKDEV. The subroutine ZDCHIN sets these to the actual number of such devices present locally.
Then, the routines ZWHOMI (in AIPS only) and GTPARM (in all tasks) reset them to the device number
assigned to the current user. ZWHOMI determines these assignments.

5.6 Coordinate System s
Astronomical images are usually represented as projections onto a plane causing the true position on the sky
of a pixel to be a nonlinear function of the pixel location. In a similar fashion, most spectral observations
are done with evenly spaced frequency channels which results in a nonlinear relation between the velocity
of a channel and the channel number. AIPS Memos Nos. 27 and 46 describe in great detail the approach
AIPS uses to these problems. Much of the following sections is taken from these memos.

5.6.1 Velocity and Frequency
The physically meaningful measure in a spectrum is the radial velocity of a feature; unfortunately, observa­
tions are normally made using a uniform spacing in frequency (and may contain Doppler tracking to remove
the effects of the earth’s motion). Thus it is necessary to convert between frequency and velocity. The
details of the conversion are in AIPS Memo No. 27 and will not be reproduced here. Conversion can be
done using the routines described in the section on celestial positions. The following sections describe the
naming conventions and the way in which the necessary information is stored in the catalog header block.

Axis L abels
The AIPS convention is to use the axis label to denote the axis type with the first four characters and the
inertial reference system with the last four characters. The axis types currently supported are ‘FREQ...’
which is regularly gridded in frequency, ‘VELO...’ which is regularly gridded in velocity, and ‘FELO...’
which is regularly gridded in frequency, but expressed in velocity units in the optical convention.

The inertial reference systems currently supported are ‘-LSR’, ‘-HEL’, and ‘-OBS’ indicating Local Stan­
dard of Rest, heliocentric, and geocentric. Others may be added if necessary.

C ata log In fo rm a tio n
In addition to the normal axis coordinate information carried in the catalog header, described previously in
this chapter, the catalog header record has provision for storing an alternate frequency axis type. The AIPS
verb ALTDEF allows the user to switch the two axis definitions. The pointers for these values are given in
the following:

KDRST Rest frequency (Hz)
KRARP Alternate reference pixel
KDARV Alternate reference value
KIALT axis type code. 1=>LSR, 2=>HEL, 3=>0BS

(plus 256 if radio convention).
0 implies no alternate axis.

5.6.2 Celestial Positions
The following sections will describe the AIPS conventions and routines for determining positions from images
with different projections.

5.6. COORDINATE SYSTEM S 5-11

A xis L abels
The AIPS convention is to use the first four characters of the axis type and the second four characters to
denote the projection. The standard nonlinear axis types are given in the following:

• RA— denotes Right ascension
• DEC— denotes declination
• GLON denotes galactic longitude
• GLAT denotes galactic latitude
• ELON denotes Ecliptic longitude
• ELAT denotes Ecliptic latitude

The geometry used for the projection is given in the axis label using the codes given in the following list:
• —TAN denotes tangent projection. This projection is commonly used in optical astronomy.
• —SIN denotes sine projection. This projection is commonly used in radio aperture synthesis images.
• —ARC denotes arc projection. In this geometry, angular distances are preserved and it is commonly

used for Schmidt telescopes and for single dish radio telescopes.
• —NCP denotes a projection to a plane perpendicular to the North Celestial Pole. This geometry is

used by Westerbork.
• —STG denotes stereographic projection. This is the tangent projection from the opposite side of the

celestial sphere.
• —AIT denotes Aitoff projection. This is used for very large fields.
• —GLS denotes Global sinusoidal projection. This is also used for very large fields.
• — MER denotes Mercator projection.

D e te rm in in g P o sitio n s
There are a number of AIPS utility routines which help determine the position of a given location in an
image. These routines use values in thelNCLUDE DLOC.INC. A listing of this include can be found at the
end of this chapter.

P o s itio n R o u tin es The upper level position determination routines are briefly described in the following;
details of the call sequences are given at the end of this chapter.

• SETLOC initializes the DLOC.INC INCLUDE based on the current catalog header block in the
DCAT.INC (CATBLK) common.

• XYPIX determines the pixel location corresponding to a specified coordinate value.
• XYVAL determines the coordinate value (X,Y,Z) corresponding to a given pixel location.
• FNDX returns the X axis coordinate value of a point given the Y axis coordinate value and the X axis

pixel position of a point. Does rotations and non linear axes.
• FNDY returns the Y axis coordinate value of a point given the X axis coordinate value and the Y axis

pixel position of a point. Does rotations and non linear axes.
• COORDT converts between celestial, galactic and ecliptic coordinates.

5-12 CHAPTER 5. CATALOGS

In c lu d e D L O C .IN C The commons in INCLUDE DLOC.INC are used by the position routines and the
plot labeling routines to keep constants needed for the coordinate transformation. The contents of these
commons is described in the following:

RPVAL D(4) Reference pixel values
C0HD2R D Degrees to radians multiplier = pi/180
AXDEHU D delta(nu) / nu(x) when a FELO axis is

present.
GE0MD1 D Storage for parameter needed for geometry
GE0MD2 D H
GE0MD3 D H
GE0MD4 D H
RPLOC R(4) Reference pixel locations
AXIVC R(4) Axis increments
CTYP C(4)*20 Axis types
CPREF C(2)*5 x,y axis prefixes for labeling
ROT R Rotation angle of position axes
SAXLAB C(2)*20 Labels for axes 3 and 4 values
ZDEPTH 1(5) Value of Idepth from SETLOC call
ZAXIS I 1 relative number of z axis
AXTYP I Position axis code
CORTYP I Which position is which
LABTYP I Special x,y label request
SGVROT I Extra sign to apply to rotation
AXFUHC 1(7) Kind of axis code
KLOCL I O-rel axis number-longitude axis
KLOCM I O-rel axis number-latitude axis
KLOCF I O-rel axis number-frequency axis
KLOCS I O-rel axis number-stokes axis
KLOCA I O-rel axis number-"primary axis" 3
KLOCB I O-rel axis number-"primary axis" 4
VCHLAB 1(2) lumber of characters in SAXLAB

Several of the above values need further explanation:
AXTYP value =

CORTYP value =

0 no position-axis pair
1 x-y are position pair
2 x-z are position pair
3 y-z are position pair
4 2 z axes form a pair
0 linear x,y axes

= 1 X is longitude, y is latitude
= 2 y is longitude, X is latitude
= 3 X is longitude, z is latitude
= 4 z is longitude, X is latitude
= 5 y is longitude, z is latitude
= 6 z is longitude, y is latitude

value = 10 * ycode + xcode
code = 0 use CPREF, CTYP

1 use Ecliptic longitude
2 use Ecliptic latitude
3 use Galactic longitude
4 use Galactic latitude
5 use Right Ascension

5.7. T E X T OF INCLUDE FILES 5-13

= 6 use declination
AXFUNC value = -1 no axis

= 0 linear axis
= 1 FELO axis
= 2 SIM projection
= 3 TAN projection
= 4 ARC projection
= 5 NCP projection
= 6 GLS projection
= 7 HER projection
= 8 AIT projection
= 9 STG projection

The KLOCx parameters have a value of -1 if the corresponding axis does not exist. If AXTYP is 2 or 3, the
pointer KLOCA will always point at the z axis. In this case, SETLOC does not have enough information to
prepare SAXLAB. The string must be computed later when an appropriate x,y position is specified.

5.6.3 Rotations
The use of one rotation angle per axis, as provided in the AIPS catalog header, is obviously not enough to
completely describe an arbitrary rotation of the coordinate system. In practice, the only rotation currently
used in AIPS is the rotation in the sky plane (projected RA and dec, galactic latitude and longitude, or
ecliptic latitude and longitude). The rotation angle in this plane of the actual coordinate system of the
image, in the usual astronomical north through east convention, is given on the axis corresponding to the
declination, galactic latitude, or ecliptic latitude as appropriate.

Another convention followed in AIPS involving rotations is related to precession. As the earth precesses,
the north-south line in a field will rotate; this causes a rotation in an image made of a given field on the
sky. This “differential precession” will cause problems determining positions away from the field center and
comparing images made at different epochs. To avoid this problem, the coordinate system used for the u-v
data is rotated to the orientation as of the mean epoch (1950 or 2000).

5.7 Text of INCLUDE files
5.7.1 DCAT.INC
C Include DCAT.
C catalog header common

INTEGER CATBLK(256)
REAL CATR(256)
HOLLERITH CATH(256)
DOUBLE PRECISION CATD(128)
COMMON /MAPHDR/ CATBLK
EQUIVALENCE (CATBLK, CATR, CATH, CATD)

C End DCAT.

5.7.2 D H DR.INC
C Include DHDR.

INTEGER KHOBJ, KHTEL, KHINS, KHOBS, KHDOB, KHDMP, KHBUN,
* KHPTP, KHCTP, KRCIC, KRCRP, KRCRT, KREPO, KRDMX, KRDMN, KRBLK,
* KHIMN, KHIMC, KHPTY, KRBMJ, KRBMN, KRBPA, KRARP, KRXSH, KRYSH,

5-14 CHAPTER 5. CATALOGS

* KHIMNO, KHIMCO, KHPTYO,
* KDCRV, KDORA, KDODE, KDRST, KDARV,
* KIGCH, KINIT,
* KIPTPH, KICTPN, KIEXTH,

KIPCI, KIDIM, KIIAX, KIIMS, KIIMU, KITYP, KIALT, KHEXT, KIVER
IRRAI, IIVOL, IICIO, IIWII, IIDEP, IICOR, IITRA, IIPLT, IIOTH
KIRES, KIRESI

COMMOI /HDRVAL/ KHOBJ, KHTEL, KHIIS, KHOBS, KHDOB, KHDMP, KHBUN
KHPTP, KHCTP, KRCIC, KRCRP, KRCRT, KREPO, KRDMX, KRDMN, KRBLK
KHIMI, KHIMC, KHPTY, KRBMJ, KRBMI, KRBPA, KRARP, KRXSH, KRYSH
KHIMIO , KHIMCO, KHPTYO,
KDCRV, KDORA, KDODE, KDRST, KDARV,
KIGCI, KIIIT,
KIPTPI , KICTPI, KIEXTI,
KIPCI, KIDIM, KIIAX, KIIMS, KIIMU, KITYP, KIALT, KHEXT, KIVER
IRRAI, IIVOL, IICIO, IIWII, IIDEP, IICOR, IITRA, IIPLT, IIOTH
KIRES, KIRESI

End DHDR.

5.7.3 DLOC.INC
C Include DLOC.
C Position labeling common

DOUBLE PRECISION RPVAL(4), C0ND2R, AXDEHU, GE0MD1, GE0MD2, GE0MD3,
* GE0MD4
CHARACTER CTYP(4)*20, CPREF(2)*5, SAXLAB(2)*20
REAL RPL0C(4), AXIMC(4), ROT
IITEGER ZDEPTH(5), ZAXIS, AXTYP, CORTYP, LABTYP, SGNROT,
♦ AXFUHC(7), KLOCL, KLOCM, KLOCF, KLOCS, KLOCA, KLOCB,
♦ VCHLAB(2)
COMMOI /LOCATC/ CTYP, CPREF, SAXLAB
COMMOI /LOCATI/ RPVAL, C0ID2R, AXDEIU, GEOMD1, GE0MD2, GE0MD3,
* GE0MD4, RPLOC, AXINC, ROT, ZDEPTH,
* ZAXIS, AXTYP, CORTYP, LABTYP, SGIROT, AXFUIC, KLOCL, KLOCM,
♦ KLOCF, KLOCS, KLOCA, KLOCB, ICHLAB

C End DLOC.

5.7.4 DTVC.INC
C Include DTVC.

IITEGER IGRAY, IGRAPH, IIMAGE, MAXXTV(2), MAXINT, LUTOUT,
* OFMIIP, OFMOUT, SCXIIC, SCYINC, MXZOOM, CSIZTV(2), TYPSPL,
* TVALUS, TVXMOD, TVYMOD, ISUNUM,
* TVDUMS(IO),
* TVZ00M(3), TVSCRX(16), TVSCRY(16), TVLIMG(4), TVSPLT(2),
* TVSPLM, TVSPLC, TYPM0V(16), YBUFF(168)
COMMOI /TVCHAR/ IGRAY, IGRAPH, IIMAGE, MAXXTV, MAXIIT, LUTOUT,
* OFMIIP, OFMOUT, SCXIIC, SCYIIC, MXZOOM, CSIZTV, TYPSPL,
* TVALUS, TVXMOD, TVYMOD, ISUNUM, TVDUMS,
* TVZOOM, TVSCRX, TVSCRY, TVLIMG, TVSPLT, TVSPLM, TVSPLC,
* TYPMOV, YBUFF

C End DTVC.

5.8. ROUTINES 5-15

5.8 Routines
5.8.1 AXEFND
AXEFND determines the order number of an axis whose name is in the character string TYPE. It will work
for either regular or random axes.

AXEFHD (HCHC, TYPE, HAXIS, AXES, IOFF, IERR)
Inputs:

ICHC I Compare only first HCHC characters of axis type
TYPE C*8 Axis type.
VAXIS I the number of axes to search,

for uniform axes use: CATBLK(KIDIM) or KICTPN
for random axes use: CATBLK(KIPCH) or KIPTPH

AXES(*) H Catalog axis name list,
for uniform axes use: CATH(KHCTP)
for random axes use : CATH(KHPTP)

Output:
IOFF
IERR

I Axis offset (zero relative axis number)
I Return error code, 0=>0K, l=>could not find.

5.8.2 CATDIR
CATDIR manipulates catalog directory.

CATDIR (OP,
* STAT,

Inputs:
OP

IVOL, CNO, CHAME,
BUFF, IERR)

CCLASS, SEQ, PTYPE, USID,

C*4

IVOL I

CHO I

CHAME C*12
CCLASS C*6
SEQ I
PTYPE C*2
USID I
STAT C*4

Outputs:
CHO I
IVOL I
CHAME C*12

searches find entry with specified data:
'SRCH' high seq # (if SEQ 0), return things
'SRHH' high seq # (if SEQ 0), MOT return things
'SRCH' next match, return things
’SRNH* next match, HOT return things
’OPEH* = create a new slot (and init header file)
'CLOS' = destroy a slot
'IHFO* = return contents of a slot
'CSTA* = modify status of a slot
Disk volume containing catalog
0 => all on searches, OPEH
Slot number to begin: SRCH, SRHI, OPEH
Ignored if IVOL = 0 : searches, OPEH
Slot number to examine (solely): CLOS, IHFO, CSTA
Map name: searches, OPEH, CLOS
Map type: searches, OPEH, CLOS
Map sequence number: searches, OPEH, CLOS
Map physical type (2 chairs): searches, OPEH, CLOS
User identification #: searches, OPEH, CLOS
Status (0P=CSTA): READ, WRIT, CLRD, or CLWR

Slot number found: searches, OPEH
If 0 on input, value actually used: searches, OPEH
Map name: SRCH, SRCH, IHFO

5-16 CHAPTER 5. CATALOGS

CCLASS C*6 Map type: SRCH, SRCH, INFO
SEQ I Map sequence number: SRCH, SRCN, INFO
PTYPE 0 2 Map physical lile type: SRCH, SRCN, INFO
USIO I User identification #: SRCH, SRCN, INFO
STAT C*4 Status: INFO
BUFF 1(256) Working buffer
IERR I Error return

1 => can’t open cat file or header file
2 => input error
3 => can’t read catalog or header file
4 => CLOSE blocked by non-REST status
5 => end of catalog on OPEN or SRCH i.e.

no open slots or slot not found
6 => on INFO requested slot not open
7 => can’t use WRIT status because now READ
8 => on CLOSE the ID’s don’t match
9 => Warning: read status added on a file

being written
10 => Clear read/write when didn’t exist warning

5.8.3 CATKEY
Reads or writes KEYWORDS from or to an AIPS image (or uv) header. The order of the keywords is
arbitrary. Uses LUN 15, so any CA or CB files must be closed before calling this routine.

CATKEY (OPCODE, IVOL,
* BUFFER, IERR)

Inputs:
OPCODE C*4

IVOL
CNO

In/out:
KEYWRD
NUMKEY

LOCS

VALUES

I
I
C(*)*8
I

I(NUMKEY)

KEYTYP I(NUMKEY)

CNO, KEYWRD, NUMKEY, LOCS, VALUES, KEYTYP,

Operation desired, ’READ’, ’WRIT’,
’ALL ’ => Read all.
’REED’ => no error msg if some missing

File disk number
File catalog block number

Keywords to read/write: output on ALL
Number of keywords to read/write.

Input on OPCODE=’ALL’ - max. to read.
Output on OPCODE*’ALL’ = no. read.

The word offset of first short integer
word of keyword value in array VALUES.
Output on READ, input on WRIT.
On READ this value will be -1 for keywords
not found.
The array of keyword values; due to word
alignment problems on some machines values
longer than a short integer should be copied,
eg. if the 5th keyword (XXX) is a R*8:

IPOINT = L0CS(5)
CALL COPY (NWDPDP, VALUES(IPOINT), XXX)

Output on READ, input on WRIT
The type code of the keywords:

1 = Double precision floating
2 = Single precision floating
3 = Character string (8 HOLLERITH chars)
4 = integer

5.8. ROUTINES 5-17

Output:
BUFFER 1(256)
IERR I

5 = Logical

Scratch buffer
Return code, 0=>0K,

1-10 => ZFIO error
19 => unrecognized data type.
20 => bad OPCODE
20+n => n keywords not found on READ.

This produces messages at level 6
suppress them w MSGSUP if needed

5.8.4 CATIO
CATIO reads or writes blocks in the map catalog header file.

CATIO (OP, IVOL, CNO, CATBLK, STAT, BUFF, IERR)
Inputs:

OP C*4 ’READ* => get block into CATBLK
’WRIT1 => put CATBLK onto disk catalog
»UPDT* => as WRIT but for use when the calling

program has previously set the
status to WRITE

IVOL I Disk volume containing catalog (1 rel)
CKO I Slot number of interest
CATBLK 1(256) Array to be written on disk: WRIT, UPDT
STAT C*4 Status desired for slot after operation

'READ*,'WRIT','REST' where REST => no
change of status is desired

Outputs:
CATBLK
BUFF
IERR

1(256) Array read from disk: READ
1(256) Working buffer
I Error code: 0 => ok

1 => cannot open catalog file
2 => input parameter error
3 => cannot read catalog file
4 ~> cannot WRIT/UPDT: file is busy
5 => did READ/UPDT, cannot add STAT = WRIT
6 => Warning on READ, file writing
7 => As 6, also added STAT=READ
8 => As 6, STAT inconsistent or wrong
9 => Warning: STAT inconsistent/wrong

The requested OP is performed unless IERR = 1 through 4. The
final status requested is not set if IERR = 1 - 5, 8 - 9. The
latter are probably unimportant.

5.8.5 COORDT
COORDT translates between types of coordinates:

COORDT (ITI, ITO, LOSGI, LATI, EPOK, LONGO. LATO, IERR)
Inputs:

ITI I Input type (1 Ra, Dec; 2 gal, 3 ecliptic)
ITO I Output type
LONGI D Input longitude
LATI D Input latitude

5-18 CHAPTER 5. CATALOGS

EPOK

Output:
LOHGO D
LATI D
IERR I

Epoch of positions (used very simply with
ecliptic coords only)
1950 assumed in Galactic conversions!!!!!!!!!

Output longitude
Output latitude
error: 0 ok, 1 input error, 2 conversion fails

5.8.6 FNDX
FNDX returns the X axis coordinate value of a point given the Y axis coordinate value and the X axis pixel
position of the point. Needed for rotations and non-linear axes (L-M).

FNDX (XPIX, YVAL, XVAL, IERR)
Inputs:

XPIX R X pixel position
YVAL D Y coordinate value

Output:
XVAL D X coordinate value
IERR I 0 ok, 1 out of range, 2 bad type, 3 undefined

Common:
Pos. parms in DLOC.IHC must have been set up by SETLOC

5.8.7 FND Y
FNDY returns the Y axis coordinate value of a point given the X axis coordinate value and the Y axis pixel
position of the point. Needed for rotations and non-linear axes (L-M).

FNDY (YPIX, XVAL, YVAL, IERR)
Inputs:

YPIX R Y pixel position
XVAL D X coordinate value

Output:
YVAL D Y coordinate value
IERR I 0 ok, 1 out of range, 2 bad type, 3 undefined

Common:
Pos. parms in DLOC.IHC must have been set up by SETLOC

5.8.8 MAPCLS
closes a cataloged file, updates header on disk, clears catalog status.

MAPCLS (OP, IVOL, CKO, LUH, IHD, CATBLK, CATUP, WBUFF, IERR)
Inputs:

OP
IVOL
CHO
LUH
I N D
CATBLK

CATUP

Outputs:
IERR

C*4 OPcode used by MAPOPH to open this file
I Disk volume containing map file
I ' Catalog slot number of file
I Logical unit # used for file
I F T A B p o i n t e r f o r L U H
1(256) New catalog header which can optionally

be written into header if 0P=WRIT or IHIT
D u m m y a r g u e m e n t if O P - R E A D

L If TRUE, write CATBLK into catalog,
ignored if OP = READ

I 0 = O.K.

5.8. ROUTINES 5-19

1 = CATDIR couldn’t access catalog
5 = illegal OP code

5.8.9 M A PO PN
MAPOPN opens a map file marking the catalog entry for the desired type of operation.

MAPOPI (OP, IVOL, IAMEII, CLASH, SEQII, TYPII, USID,
* LUI, IHD, CIO, CATBLK, WBUFF, IERR)

Inputs:
OP C*4 Operation: READ, WRIT, or IVIT where HIT is for

known creation processes (it ignores current file
status k leaves it unchanged). Also: HDVR for
use when the header is being changed, but the
data are to be read only.

LUI I Logical unit # to use
In/out:

IAMEII C*12 Image name (name)
CLASH C*6 Image name (class)
SEQII I Image name (seq.#)
USID I User identification #
IVOL I Input disk unit
TYPII C*2 Physical type of file

Outputs:
I ID I FTAB pointer
CIO I Catalog slot containing map
CATBLK 1(256) Buffer containing current catalog block
WBUFF 1(256) Working buffer for CATIO and CATDIR
IERR I Error output: 0 = OK

2 = Can’t open WRIT because file busy
or can’t READ because file marked VRITE

3 = File not found
4 = Catalog i/o error
5 = Illegal OP code
6 = Can’t open file

5.8.10 ROTFND
ROTFND finds the map rotation angle from a given catalog block.

ROTFID (CATR, ROT, IERR)
Inputs:

CATR(*) R Map catalog header
Outputs:

ROT R Map rotation angle (degrees)
IERR I Error code. 0=>0K, l=>couldn’t find axis.

5.8.11 SETLOC
SETLOC uses the catalog header to build the values of the position commons in INCLUDE DLOC.INC for
use by position finding and axis labeling routines (at least).

S E T L O C (D E P T H , S W A P O K)
Inputs:

DEPTH 1(5) Position of map plane sixes 3 - 7
SWAPOK L T => okay to swap axes if rotation near 90

5-20 CHAPTER 5. CATALOGS

Common:
DCAT.INC catalog block (not modified)
DLOC.INC position parms - filled in here

5.8.12 TVFIN D
TVFIND determines which of the visible TV images the user wishes to select. If there is more than one
visible image, it requires the user to point at it with the cursor. The TV must already be open.

TVFIND (MAXPL, TYPE, IPL, UNIQUE, CATBLK, SCRTCH, IERR)
Inputs:

MAXPL

TYPE
Output:

IPL
UNIQUE

CATBLK
SCRTCH
IERR

I Highest plane number allowed (i.e. do graphics
planes count?)

C*2 2-char image type to restrict search

I Plane number found
L T => only one image visible now

(all types except zeroed ones (*ZZ’))
1(256) Image catalog block found
1(256) Scratch buffer
I Error code: 0 => ok

1 => no image
2 => 10 error in image catalog
3 => TV error

5.8.13 UVPG ET
UVPGET determines pointers and other information from a UV CATBLK in the common in INCLUDE
DCAT.INC. The address relative to the start of a vis record for the real part for a given spectral channel
(CHAN) and stokes parameter (ICOR) is given by NRPARM+(CHAN-1)*INCF+ABS(ICOR-ICORO)*INCS
+ (IF-1)*INCIF

Single dish data, i.e. randomly sampled data in the image plane, is also recognized and ILOCU and
ILOCV point to the longitude like and latitude like random parameters. Also a ”BEAM” random parameter
may be substitued for the ’’BASELINE” random parameter. The data type present may be determined from
the common variable TYPUVD. Two types of single dish data are recognized:

TYPUVD=1 = unprojected RA and Dec and
TYPUVD=2 = projected RA and Dec (ready for GRIDR)
UVPGET (IERR)
Inputs: From common /MAPHDR/ (DCAT.INC)

CATBLK 1(256) Catalog block
CATH H(256) same as CATBLK
CATR R(256) same as CATBLK
CATD D(128) same as CATBLK

Output: In common /UVHDR/ (DUVH.INC)
SOURCE C*8 Source name.
ILOCU I Offset from beginning of vis record of U

or longitude for single dish format data.
ILOCV I Offset from beginning of vis record of V

or longitude for single dish format data.
ILOCU I Offset from beginning of vis record of V.
ILOCT I " Time
ILOCB I " Baseline

(or beam)
ILOCSU I " Source id.

5.8. ROUTINES 5-21

ILOCFQ I Freq id
JLOCC I O-rel. order in data of complex values
JLOCS I Order in data of Stokes* parameters.
JLOCF I Order in data of Frequency.
JLOCR I Order in data of RA
JLOCD I Order in data of dec.
JLOCIF I Order in data of IF.
IICS I Increment in data for stokes (see above)
IMCF I Increment in data for freq. (see above)
IWCIF I Increment in data for IF.
ICORO I Stokes value of first value.
■RPARM I ■umber of random parameters
LREC I Length in values of a vis record.
■VIS I ■umber of visibilities
FREQ D Frequency (Hz)
RA D Right ascension (1950) deg.
DEC D Declination (1950) deg.
■COR I ■umber of correlators (Stokes' parm.)
ISORT C*2 Sort order 1st 2 char meaningful.
TYPUVD I UV data type, O=interferometer,

l-single dish unprojected,
2=single dish projected RA and Dec.

IERR I Return error code: 0->0K,
1, 2, 5, 7 : not all normal rand parms
2, 3, 6, 7 : not all normal axes

5.8.14 XY PIX
XYPIX determines the pixel location corresponding to a specified coordinate value. The pixel location is
not necessarily an integer. The position parms are provided by the commons in DLOC.INC which requires
a previous call to SETLOC.

XYPIX (X, Y, XPIX, YPIX, IERR)
Inputs:

X D X-coordinate value (header units)
Y D Y-coordinate value (header units)

Output:
XPIX R x-coordinate pixel location
YPIX R y-coordinate pixel location
IERR I 0 ok, 1 out ol range, 2 bad type, 3 undefined

5.8.15 XYVAL
XYVAL determines the coordinate value (X,Y,Z) corresponding to the pixel location (XPIX,YPIX). The
pixel values need not be integers. The necessary map header data is passed via commons in DLOC.INC
requiring a previous call to SETLOC. This program is the inverse of XYPIX.

XYVAL (XPIX, YPIX, X, Y, Z, IERR)
Input8:

XPIX R Pixel location, x-coordinate
YPIX R Pixel location, y-coordinate

Outputs:
X D X-coordinate value at pixel location
Y D Y-coordinate value at pixel location
Z D Z-coordinate value (if part of a position

5-22 CHAPTER 5. CATALOGS

pair with either X or Y)
IERR I 0 ok, 1 out of range, 2 bad type, 3 undefined

Common inputs:
DLOC.IIC position parms deduced from the map header by

subroutine SETLOC.
Units are as in the mapheader: degrees for position coords

5.8.16 YCINIT
Initialize image catalog for plane IPLANE - TK now done with TKCATL

YCIIIT (IPLAIE, BUFF)
Input:

IPLAIE I Image plane to initialize
Output:

BUFF 1(256) Working buffer

5.8.17 YCOVER
YCOVER checks to see if there are partially replaced images in any of the TV planes currently visible by
quadrant.

YCOVER (OVER, BUF, IERR)
Outputs:

OVER L(4) T => there are in quadr. I
BUF 1(512) scratch
IERR I Error code: 0 => ok, other catlg 10 error

5.8.18 Y C W RIT
Write image catalog block in CATBLK into image catalog.

YCWRIT (IPLAIE, IMAWII, CATBLK, BUFF, IERR)
Inputs:

IPLAIE
IMAWII
CATBLK

Outputs:
BUFF
IERR

I image plane involved
1(4) Corners of image on screen
1(256) Image catalog block

1(256) working buffer
I error code: 0 => ok

1 => no room in catalog
2 *> 10 problems

5.8.19 YCREAD
Read image catalog block into CATBLK - TV only (TK in TKCATL).

YCREAD (IPLAIE, IX, IY, CATBLK ,IERR)
Inputs:

IPLAIE I plane containing image whose block is wanted
IX I X pixel coordinate of a point within image
IY I Y pixel coordinate of point within image

Outputs:

5.8. ROUTINES 5-23

CATBLK
IERR

1(256) Image catalog block
I error codes: 0 => ok

1 => IX, IY lies outside image
2 => Catalog i/o errors
3 => refers to TK device

C H A P T E R S . CATALOGS

C hapter 6
D isk files
6.1 Overview
Most images, uv data sets, scratch files, and other information in the AIPS system are kept in cataloged
disk files. The purpose of this chapter is to describe the general techniques for accessing data in disk files.

Associated with each image or uv data file may be a number of auxiliary files known as “extension”
files containing information about the main file. Examples of extension files are the history file, CLEAN
components files and antenna files. Details of the structure of the various files used in AIPS programs are
described in Appendix C. Except for the image and uv data files, the details of the file structure will not be
described here.

The amount of data in the image and uv data files can be rather large, so it is important that the routines
accessing them be relatively efficient. This efficiency comes at the cost of increased complexity. There are a
number of features of AIPS I/O routines for handling large amounts of data which are designed for efficiency.

1. Fixed record length. All files internal to AIPS have a fixed logical record length. This allows the I/O
routines to block disk transfers into a number of logical records.

2. Large double buffered transfers. The upper level I/O routines automatically make data transfers as
large as possible and when possible double buffer the transfers.

3. Visible I/O buffers. To avoid an in-core transfer of all data, most AIPS routines work directly from
the I/O buffer.

Extension files are handled somewhat differently. Since the amount of data in these files is rather small,
friendlier, but less efficient, techniques are used. Logical records have a fixed length, but the basic I/O
routine (TABIO) returns the data in an array which allows implementation of data structures.

This chapter discusses the various aspects of disk files — creating, destroying, reading, writing, etc. The
cataloging of these files has been covered in a previous chapter. A typical programmer will not need to
understand all of the material in this chapter to program effectively in AIPS. The detailed descriptions of
the major routines discussed will be given at the end of the chapter.

6.2 Types of Files
AIPS has two logically different types of files, which on some machines are also physically different. The
first type, known as regular disk files, is used mainly for extension files. I/O to this type of file is done in
512-AIPS byte blocks. The second type of file, known as “map” files, is used for image and uv data files. I/O
to this type of file is usually done in the double buffered mode with large size transfers. (Double buffering is
when the program works out of one half of a buffer, while the other half is being read from, or written to,
the external device.) Both of these types of files may be expanded or contracted.

The principle distinction between the two types of files are the file creation and opening routines. Many
of the higher level creation and file open routines hide this distinction from the programmer. These routines
will be discussed later in this chapter.

6-1

6-2 CHAPTER 6. DISK FILES

6.3 File M anagement
AIPS has a set of utility routines for creating and managing disk files. The four functions covered in this
section are file creation, destruction, extension and contraction.

6.3.1 Creating Files
There are several higher level file creation routines, one for each of several applications. These applications
are image files, UV data files, scratch files, general extension files and history files. The basic file creation
routine is ZCREAT.

• MCREAT creates and catalogs an image file (type “MA”) using the description of the file contained in
a catalog header record passed to MCREAT via the common /M APHDR/ (INCLUDE DCAT.INC).
All information in the header defining the size and name of the file must be filled in before calling
MCREAT. The catalog header record is described in detail in another chapter.

• UVCREA creates and catalogs a uv data file (type “UV”) using the description of the file contained in
the catalog header record passed to UVCREA in the common /M APHDR/ (INCLUDE DCAT.INC).
The catalog header record must be sufficiently complete to determine the name, class, etc. and size of
the required file.

• SCREAT will create scratch files using the /CFILES/ (INCLUDE DFIL.INC) common system; thus
the scratch files will be automatically deleted when the task calls the shutdown routine DIE. Scratch
files are cataloged as type “SC” files. Use of SCREAT is described in more detail in the chapter
describing tasks.

• TABINI. The creation of most tables extension files is hidden from the casual programmer in the
create/open/initialize routine TABINI. TABINI will be discussed in more detail in the chapter on
tables.

• HICREA. The creation of history files is normally hidden in the upper level routine HISCOP. The use
of HISCOP and HICREA are described in more detail in the chapter on writing tasks.

• ZCREAT. The basic file creation routine is ZCREAT. If none of the other file creation routines are
applicable, then use ZCREAT. ZCREAT needs the physical name of the file and the size of the file in
bytes. ZCREAT does not catalog the file created.

6.3.2 Example Using ZCREAT
The use of ZCREAT is demonstrated in the following:

IITEGER IRET, IX, IY, IP(2), IBYTE, IVOL, CIO, IVER, IERR
CHARACTER PHIAME+48
LOGICAL NAP
PARAMETER (HAP = .TRUE.)
IICLUDE 'IICS:DDCH.IIC*

C
MP(1) = IX
IP(2) = IY
CALL NAPSIZ (2, IP, IBYTE)

IX, IY are the size of am
image. Determine file size.

Size now in IBYTE

6.4. I/O TO DISK FILES 6-3

C Make physical name.
C IVOL = disk number
C CHO = catalog slot number
C IVER = extension file
C version number.
C 1 for main cataloged files

CALL ZPHFIL ('MA\ IVOL, CHO, IVER, PHNAME, IERR)
C filename now in PHHAME.
C (error if IERR not 0)
C Create file of type 'MA*

CALL ZCREAT (IVOL, PHHAME, HBYTE, MAP, IERR)
C Test for errors...

In the example above, a map file was created large enough to hold a NX by NY image using the routine
MAPSIZ to compute the correct size for the file. To catalog this file a catalog header record should be
constructed and calls made to CATDIR and CATIO before the call to ZPHFIL to get the catalog slot
number needed to form the physical name of the file. A detailed description of the calling sequence for
ZCREAT can be found at the end of this chapter. (In practice, one would use MCREAT to catalog and
create the file shown in the example above.)

6.3.3 Destruction Routines
There are a number of special purpose file destruction routines; the basic file destruction routine is ZDESTR.
A brief description is given here of these utility routines; a description of the call sequence is given at the
end of this chapter.

• MDESTR will delete a catalog entry for a file, delete all extension files for that file, and then delete
the file. The file must be in the REST state. Since catalog files can be marked “W RITE — Destroy if
task fails” which will cause the shutdown routine DIE to destroy the file there is seldom a need to call
MDESTR directly. MDESTR will destroy either cataloged image or uv data files.

• SNDY will destroy scratch files described in the /C FILES/ common (INCLUDE DFIL.INC). SNDY is
called by the shutdown utility DIE so tasks do not have to call it separately.

• ZDESTR is the basic file destruction routine. ZDESTR will not uncatalog the file destroyed. CATDIR
should be used to uncatalog a cataloged file destroyed.

6.3.4 Expansion and Contraction of Files
All files can be both expanded and compressed. Since most extension file access is by TABIO, the expansion
of extension files is hidden from the programmer. Expansion of files is done with routine ZEXPND and
compression is done using routine ZCMPRS. Details of the call sequences of these routines are given at the
end of this chapter.

6.4 I/O to Disk Files
There are a number of steps necessary in order to access a disk file. Normal Fortran I/O hides a number of
these steps but they are all visible in at least some AIPS applications. This increased complexity of the I/O
system gives the programmer a high degree of control over how the I/O is actually done. One or more of
the steps in accessing a file may be performed with a single call. In general, access of a disk file is as follows:

6-4 CHAPTER 6. DISK FILES

1. Forming the physical name of the file. The AIPS utility ZPHFIL is always used for this purpose.
The name is derived from file type, the disk number, catalog slot number, version number and user
ID number. Also a revision code is usually included in the physical name of the file so that versions
of AIPS with incompatable file formats can coexist in the same directories. The file type of image
files is “MA” , of uv data files is “UV” and of scratch files is “SC” . The disk number and catalog slot
number for cataloged files may have to be obtained from the AIPS utility routine CATDIR before
calling ZPHFIL. This step is incorporated in a number of routines such as SCREAT, TABINI and
MAPOPN.

2. Opening the file. This is done with routine ZOPEN for binary files and ZTOPEN or ZTXOPN for
text files. In either case, the file must be given a logical unit number (LUN) and the opening routine
returns a pointer to the AIPS I/O table (FTAB) which, with the LUN, must be used in all subsequent
calls. This step is incorporated in the routines TABINI and MAPOPN.

3. Initializing the transfers. The AIPS higher level I/O routines need to be told a number of parameters
about the data transfers, such as whether a read or write is desired, the size and number of logical
records, and the location and size of the buffer to be used. In several cases the range of data desired
can also be specified. This step is usually done in one of the specialized routines to be described later.

4. Data transfers. This is when the data is transferred from the disk to the specified buffer or vice versa.
Actual data transfers are done by Direct Memory Access (DMA) and are usually in large blocks for
“map” files and in 512-byte blocks for non-map (extension) files. Since the transfers usually consist of
a number of logical records, the programmer is unaware of when transfers actually take place. Because
the programs frequently work directly from the I/O buffer, many of the I/O routines return a pointer
to the first word in the buffer of the next logical record.

5. Flushing the buffer (writing only). When all calls to disk write routines are complete, there may still
be data in the buffer which has not been written. In this case, a call must be made to the appropriate
I/O routine telling it to flush the buffer to disk.

6. Closing the file. When all operations on a file are complete the file needs to be closed. This is usually
done with an explicit call to the appropriate close routine.

6.4.1 Upper Level I /O Routines
There are a number of AIPS upper level I/O routines which do most of the bookkeeping. The following is a
short description of the more commonly used of these; detailed descriptions of the call sequences are found
at the end of the chapter. The use of many of these routines is discussed later in this chapter.

• TABINI opens and initializes an table extension file, will create and catalog the extension file if neces­
sary. See the chapter on tables for more details.

• TABIO does random access mixed reads and writes to extension tables. TABIO deals with one logical
record at a time in an array which can be used as a data structure. TABIO takes care of file expansion
and other bookkeeping chores. Requires initialization by TABINI.

• MAPOPN finds a cataloged image or uv data file in the catalog, opens it and returns the catalog
header and marks the catalog status.

• MINIT initializes I/O for image files; can specify a subimage for reads.
• MDISK does double buffered I/O for image files; requires initialization by MINIT.
• UVINIT initializes I/O for uv data files; can specify a starting visibility record number.
• UVDISK does double buffered I/O for uv data files; requires initialization by UVINIT.
• MAPCLS closes a cataloged image or uv data file, updates the catalog header block if requested and

clears the catalog status.

6.4. I/O TO DISK FILES 6-5

6.4.2 Logical unit numbers
Many logical unit numbers in AIPS have special meanings which indicate to the I/O routines what kind of
device or file is involved. The information about which LUN corresponds to which device is contained in a
table (DEVTAB) in the device characteristics common (INCLUDE DDCH.INC). AIPS has 50 defined LUN
values, i.e., DEVTAB has 50 entries, and the type of device or file type for each LUN is given in DEVTAB
with the following codes:

DEVTAB(LUM) = 0 LUM is lor disk file requiring I/O control area in
FTAB. Multi-record I/O is possible.

DEVTAB(LUK) = 1 Device not requiring I/O control area in FTAB.
I/O done by Fortran (terminals, printer/plotter).

DEVTAB(LUM) = 2 LUI is for device requiring I/O control area in
FTAB. Multi-record I/O not allowed (e.g., tapes)

DEVTAB(LUM) = 3 Similar to 1. VAX uses this code to defer opens
from ZOPEH to ZTOPEM for text files.

DEVTAB(LUM) = 4 LUM is for TV device requiring special I/O routine
and normal I/O control area in FTAB.

In addition, many LUNs have predefined values as shown in the following table.

LUM Use
1 Line printer
2 Plotter
3 Reserved
4 Input to batch processors
5 Input CRT
6 Output CRT
7 Graphics CRT
8 Array Processor (roller)
9 TV device
10 POPS "run" files
11 POPS "help" files
12 Log/error file (used by MSGVRT).
13 Task communication file.
14 POPS "memory" file
15 Catalog files.

16 - 25 Map (image or uv data) files.
26 Graphics files

27 - 30 General (non-map) disk files.
31 - 3? Magnetic tape drives (31 - 30+HTAPED)

6.4.3 Contents of the Device Characteristics Com m ons
The device Characteristics commons, obtained from the INCLUDE DDCH.INC contains a number of useful
parameters about the host system.

6-6 CHAPTER 6. DISK FILES

6.4.4 Image Files
A disk image file contains an ordered, binary sequence of pixel values with logical records consisting of single
“rows” of the image. The pixel values are arranged in the order defined in the catalog header block, the first
axis going the fastest. Blanking of pixels is allowed by use of a special value (magic value blanking) specified
by the header. For more information about the catalog header and the typical axes used, see the chapter on
the catalog.

Image files are stored on the disk with each row beginning on a block boundary. An exception to this is
when multiple rows will fit into a single block, in which case multiple rows can be in a given disk block. In
this latter case, rows are not allowed to span block boundaries.

Opening Image Files
The simplest way to find, open and close a cataloged image file is with the routines MAPOPN and MAPCLS.
These routines and the alternate ways to find an image in the catalog are discussed in the chapter on the
catalog and details of the call sequence are found at the end of this chapter.

If the use of MAPOPN and MAPCLS is not appropriate to open and close the image file, then the
routines ZPHFIL, ZOPEN and ZCLOSE are to be used to (1) form the physical name of the file, (2) open
the file, both in the AIPS and system tables, and (3) close the file when done. The details of these routines
are given at the end of this chapter. These operations Me demonstrated in the following example.

IITEGER IRET, CIO, IVOL, IVER, LUI, IID
LOGICAL MAP, EXCL, WAIT
CHARACTER PHIAME*48
PARAMETER (MAP = .TRUE.)
PARAMETER (EXCL = .TRUE.)
PARAMETER (WAIT = .TRUE.)
PARAMETER (LUI - 16)

DATA IVER /l/

C Make physical name.
C 'MA' = lile type
C IVOL = disk number
C CIO = catalog slot number
C (arbitrary lor
C uncataloged liles).
C IVER = extension lile
C version number.
C 1 lor main cataloged
C liles. Arbitrary
C otherwise.

CALL ZPHFIL (’MA\ IVOL, CNO, IVER, PHNAME, IRET)
C filename now in PHNAME.
C (error il IRET not 0)
C Open lile

CALL ZOPEI (LUI, IID, IVOL, PHIAME, MAP, EXCL, WAIT, IRET)
C Test lor errors (IRET not 0)

(I/O to lile)

6.4. I/O TO DISK FILES 6-7

C Close file.
CALL ZCLOSE (LUH, IND, IRET)

MINIT and MDISK
Once the image file is opened, I/O is normally initialized by a call to MINIT; I/O is done by calls to MDISK,
with a final call to MDISK to flush the buffer, if necessary. MINIT sets up the bookkeeping for one plane of
an image at a time; if multiple planes are to be read, multiple calls to MINIT must be made. A rectangular
window in a given plane can be specified to MINIT, and it can be instructed to read or write the rows in
reverse order by reversing the values of WIN(2) and WIN(4). A subimage cannot be specified for write.

Due to the use of buffer pointers, MDISK must be called for WRITE before placing data into the buffer.
This produces a rather strange logic flow, but is necessary. Details of the call sequences to MINIT and
MDISK are given at the end of this chapter.

Multi-plane Images (COMOFF)
If the image has more than two dimensions, planes parallel to the first plane can be accessed using the block
offset argument to MINIT. The subroutine COMOFF is to be used to compute the block offset. The block
offset is an integer whose value for the first plane is 1. COMOFF returns a value which is to be added to
the block offset for the first plane.

An example of the use of COMOFF to compute the block offset:

IITEGER BLKOF, PLARR(5), IERR
IICLUDE ’DHDR.IHC'
IICLUDE 'DDCH.INC'
IICLUDE 'DCAT.INC'

Get second plane on third
axis, first pixel on
the remaining sixes.

PLARR(l)
PLARR(2)
PLARR(3)
PLARR(4)
PLARR(5)

PLARR specifies desired plane
Use header block from DCAT.INC

CALL COMOFF (CATBLK(K2DIM), CATBLK(K2NAX), PLARR, BLKOF, IERR)
Add block offset for first
plane.

BLKOF = BLKOF + 1
BLKOF now contains the value
to send to MINIT to get the
specified plane.

A detailed description of the call sequence for COMOFF is given at the end of this chapter.

6-8 CHAPTER 6. DISK FILES

Example of MINIT and MDISK
In the following is an example in which two files are read, the pixel values are added and a third file is
written.

SUBROUTINE FLADD (NX, MY, ISCR1, ISCR2, ISCR3, IERR)
C---
C FLADD adds the values in the scratch liles in the /CFILES/ common
C (include DFIL.INC) number ISCR1 and ISCR2 and writes them in the
C /CFILES/ scratch lile number ISCR3
C Inputs:
C NX, NY I lumber ol pixels per row and number ol rows
C ISCR1 I /CFILES/ scratch lile number ol lirst input lile
C ISCR2 I /CFILES/ scratch lile number ol second input lile
C ISCR3 I /CFILES/ scratch lile number ol output lile
C Output:
C IERR I Return code, 0=>0K, otherwise error.
C---

IITEGER IX, IY, ISCR1, ISCR2, ISCR3, IERR
C

IITEGER FIID1, FIID2, FIID3, BIID1, BIID2, BIND3, BO,
* VII(4), BUFSZ1, BUFSZ2, BUFSZ3, LUI1, LUI2, LUI3
LOGICAL T, F
CHARACTER FILE*48
REAL BUFFI(4096), BUFF2(4096), BUFF3(4096)
PARAMETER (T = .TRUE.)
PARAMETER (F = .FALSE.)
IICLUDE 'IICS:DMSG.INC'
IICLUDE »IICS:DFIL.IIC»
DATA BO, VII /l, 4*0/

C Use LUI8 16, 17, 18
DATA LUI1, LUI2, LUI3 /16,17,18/

C---
C Set buller sizes

BUFSZ1 = 4096 * 2
BUFSZ2 = 4096 * 2
BUFSZ3 = 4096 * 2

C Open and init ISCR1
CALL ZPHFIL (’SC\ SCRVOL(ISCRl), SCRCIO(ISCRl), 1, FILE, IERR)
CALL ZOPEI (LUI1, FIID1, SCRVOL(ISCRl), FILE, T, F, T, IERR)

C Check lor error
IF (IERR.IE.0) THEI

WRITE (MSGTXT,1000) IERR, 'READ', 1
GO TO 990
EID IF

CALL MINIT ('READ', LUN1, FIND1, NX, NY, WIN, BUFFI, BUFSZ1, BO,
* IERR)

C Check lor error
IF (IERR.NE.O) THEN

WRITE (MSGTXT,1010) IERR, * READ’, 1
GO TO 990
END IF

C Open and init ISCR2
CALL ZPHFIL (’SC\ SCRV0L(ISCR2), SCRCN0(ISCR2), 1, FILE, IERR)
CALL ZOPEN (LUN2, FIND2, SCRV0L(ISCR2), FILE, T, F, T, IERR)

I/O TO DISK FILES

Check for error
IF (IERR.IE.0) THEM

WRITE (MSGTXT,1000) IERR, ' READ', 1
GO TO 990
END IF

CALL MIIIT (* READ *, LUI2, FIID2, IX, IY, WII, BUFF2, BUFSZ2, BO
* IERR)

Check for error
IF (IERR.IE.0) THEI

WRITE (MSGTXT,1010) IERR. 'READ',2
GO TO 990
EID IF

Open and init ISCR3
CALL ZPHFIL ('SC', SCRV0L(ISCR3), SCRCI0(ISCR3), 1, FILE, IERR)
CALL ZOPEI (LUI3, FIID3, SCRV0L(ISCR3), FILE, T, F, T, IERR)

Check for error
IF (IERR.IE.0) THEI

WRITE (MSGTXT,1000) IERR, ’WRIT'
GO TO 990
EID IF

CALL MIIIT ('WRIT', LUI3, FIID3, IX, IY, WII, BUFF3, BUFSZ3, BO
♦ IERR)

Check for error
IF (IERR.IE.0) THEI

WRITE (MSGTXT,1010) IERR, 'WRIT'
GO TO 990
EID IF

Loop, adding rows.
DO 110 I = 1,IY

Read ISCR1
CALL MDISK ('READ', LUI1, FIID1, BUFFI, BIID1, IERR)

Check for error
IF (IERR.IE.0) THEI

WRITE (MSGTXT,1060) IERR, 'READ', 1
GO TO 990
EID IF

Read ISCR2
CALL MDISK ('READ', LUI2, FIID2, BUFF2, BIID2, IERR)

Check for error
IF (IERR.IE.0) THEI

WRITE (MSGTXT,1060) IERR, 'READ',2
GO TO 990
EID IF

Write ISCR3
CALL MDISK ('WRIT', LUI3, FIID3, BUFF3, BIID3, IERR)

Check for error
IF (IERR.IE.0) THEI

WRITE (MSGTXT,1060) IERR, 'WRIT'
GO TO 990
EID IF

Add row.
DO 100 J = 1,IX

lote: buffer pointer is to
first element so need zero

6-10 CHAPTER 6. DISK FILES

C relative index lor each pixel.

100
110

J1 = J - 1
BUFF3(BIID3+J1) = BUFFI(BIID1+J1) + BUFF2(BIID2+J1)
COITIIUE

COITIVUE
C Flush buller.

CALL MDISK (’Fill’, LUI3, FIID3, BUFF3, BIID3, IERR)
C Check lor error

IF (IERR.HE.0) THEM
WRITE (MSGTXT,1060) IERR, 'Fill*
GO TO 990
EYD IF

C Close liles.
CALL ZCLOSE (LUV1, FIID1, IERR)
IF (IERR.IE.0) THEI

WRITE (MSGTXT, 1060) IERR, ’CL0S\ 1
GO TO 990
EID IF

CALL ZCLOSE (LUI2, FIID2, IERR)
IF (IERR.IE.0) THEI

WRITE (MSGTXT,1060) IERR. ’CL0S\ 2
GO TO 990
EID IF

CALL ZCLOSE (LUI3. FIID3, IERR)
IF (IERR.IE.0) THEI

WRITE (MSGTXT, 1060) IERR, ’CLOS’, 3
GO TO 990
EID IF

C Finished OK.
GO TO 999

C An error has occurred - send
C message
990 CALL MSGWRT (8)
C
999 RETURI

C---
1000 FORMAT (’FLADD: ERROR’,13.» OPEI FOR ’.A4.’ FILE’,12)
1010 FORMAT (’FLADD: ERROR \ 13.» HIT FOR »,A4,’ FILE’,12)
1060 FORMAT (’FLADD: ERROR’,13.1X.A4,’IIG FILE’.12)

EID

MINSK and MSKIP
There are some operations, such as transposing images, in which it is convenient to read every n ’th row of
an image. The pair of routines MINSK and MSKIP will do this operation. Descriptions of these routines
can be found at the end of this chapter.

6.4.5 Image File Manipulation Routines
There are a number of AIPS utility routines available to operate on files. Many of these involve copying
data from catalog files to scratch files or vice versa. Details of the call sequences to these routines are given
at the end of this chapter.

6.4. I/O TO DISK FILES 6-11

• PLNGET reads a selected portion of a selected plane from a cataloged file and writes it into a specified
scratch file. The output file will be zero padded and a shift of the center may be specified.

• PLNPUT writes a subregion of a scratch file image into a cataloged image.

6.4.6 U V D ata Files
Interferometers take samples of the visibility (also called coherence) function of a wavefront at random
locations so these data must be stored differently from images. Also, this data may be in a variety of forms,
calibrated or raw, one source per file or many. The following sections describe these uv data files.

S ing le-source F iles
The simplest form of a uv data file is the single source file which contains data from a single celestial source
and is usually assumed to be calibrated and edited. A given visibility record consists of all data taken on a
given baseline (with a pair of antennas) at a given time. Thus, this record may contain data for a number
of frequencies and/or polarizations. Each measurment consists of a triplet of values giving the real part,
the imaginary part and the weight of a given visibility sample. (This may be modified for compressed data;
see the section on compressed data). The visibility records in this type of file may be in an arbitrary order
depending on the application.

Each uv data file needs one or more antenna (AN) tables to describe the locations and other properties
of the antennas used. The visibility data contains, in a coded form, the numbers of the antennas involved in
each baseline. The antenna numbers refer to entries in the Antenna table.

There are occasions where data is sampled at a number of relatively arbitrary frequencies. For these cases
we have introduced a frequency-like axis called IF. The offset of the frequency of the reference pixel in each
IF group of data from the file reference frequency is given in the FQ table. Since these sets of frequencies
may change in a given file (e.g. bandwidth synthesis or rotation measure studies) a random parameter in
the data file labeled (’FQID’) points to a given entry in the FQ table. In general, a single source file will
contain only a single FQ id.

M u lti-so u rce F iles
In order to allow the use of calibration and editing software, multi-source files contain data from more than
one source. In addition, the data are in relatively raw form and have associated calibration and editing
tables which must be applied before the data are used. This type of file has an index and must be in strict
time-baseline order. The structure of multi-source data files is very similar to the single source file. The use
of multi-source files is described in detail in the chapter on Calibration and Editing in Volume 2.

The principal difference between the single-source files and the multi-source files is the addition, in the
latter, of a source number random parameter and a number of associated tables. Several of these tables are
described in the following:

• SU table. This table contains the information specific to a given source (e.g., position)
• NX table. This table contains an index for the file, telling when each source was observed.
• CL tables. These tables contain the information necessary to calibrate the data.
• FG tables. These tables contain the information necessary to flag bawl data.

Read access to multi-source files is through the routines UVGET and CALCOP. UVGET selects, reformats,
flags and calibrates data as specified and returns one visibility per call after setup. CALCOP will copy all
selected records after setup by UVGET. The details of the call sequences of these routines are given at the
end of this chapter. These routines handle all of the I/O chores described in this chapter and will also work
for single source data files.

6-12 CHAPTER 6. DISK FILES

Compressed Data
AIPS supports a “Compressed” format for uv data. In this form there is a single “Weight” and scaling
random parameter in each visibility record and the real and imaginary parts of the correlation values are
packed into a single REAL value with magic value blanking. The details of the packing is machine dependent
and is implemented via the “Z” routines ZUVPAK and ZUVXPN. Compressed data can be identified by a
dimension of 1 on the “COMPLEX” (first) axis of the data array. The calibration package (UVGET) will
automatically unpack visibility data.

Subarray 8
Since uv data sets frequently contain data from physically separate arrays, AIPS uv data sets can contain
“sub arrays” . This is necessary so that the physical identity of each antenna in a visibility record can be
uniquely established. Each subarray has its own antenna file, which contains the true frequency and date of
observation and the locations and other information about each antenna.

When uv data sets are concatenated, the u, v and w terms of each subsequent data set are converted to
wavelengths at the reference frequency defined by the first data set. The subarray number is encoded into
the baseline number in each visibility record. The older practice of offsetting times by (subarray-1) * 5 days
is being phased out, but still appears in some applications.

Visibility record structure
AIPS uv data is organized in the data file in the same way that similar data is organized on a FITS random
groups format tape. Each logical record consists of all data on a given baseline for a given integration period;
that is, all polarizations, frequencies, and IFs are contained in a given logical record. The first portion of a
logical record is a list of the “random” parameters such as u, v, time, etc. Following the random parameters
comes a regular array of data, which is very similar to a small image file. The length and structure of the
visibility logical record is fixed in a given data base, but may vary from one data base to another. Records
may span disk sector boundaries.

The random parameters can be in any order, but the names of only the first 14 are kept in the catalog
header record; this list defines the order in which the values occur. The labels for the normal u, v and w
random parameters are “UU-L-SIN” , “VV-L-SIN” , “WW-L-SIN” indicating that the coordinates correspond
to the tangent point of the data computed using sine projection and the units are wavelengths at the reference
frequency. The label for the time random parameter is “TIME1” for historical reasons and the label for
the baseline parameter is “BASELINE” . The label for the source number random parameter is “SOURCE” ;
the source number points to an entry in the source (SU) table. Other “standard” but optional random
parameters are “FQID” for the FQ table identifier and “WEIGHT” and “SCALE” for compressed data.

The regular portion of the array is like an image array in that the order of the axes is arbitrary. In
practice for uncompressed data, the first axis should be the COMPLEX axis (real, imaginary, weight). As
in image files, the RA, Dec and frequency (for continuum data) are dummy axes which provide a place to
store the values for these parameters.

A “regular” axis, which is not intrinsically regular, is what will be referred to as IFs. These are the
results of separate receivers (either at RF or IF) which are randomly spaced, but have one or more regularly
spaced frequency channels. The pixel number of these IFs points to an entry in the FQ table which gives the
frequency offset from the reference frequency for that IF. The FQ table is accessed by the routine CHNDAT,
whose call sequence is given at the end of this chapter. The values of the frequency offsets are allowed to be
variable inside of a given data set and the set of frequencies and bandwidths used in a given visibility record
is specified by an optional FQ identifier random parameter labeled “FQID” . One entry is made in the FQ
table for each set of frequencies and/or bandwidths.

The structure of a typical VLA data record from a single source file with a single IF is shown in the
following figure.

I u, v, w, t, bl Rl, II, Wl, R2, 12, W2, R3, 13, W3, R4, 14, W4|
r a n d o m R R L L R L L R

parameters rectangular data array

6.4. I/O TO DISK FILES 6-13

The symbols in the above are:
• u = u coordinate in wavelengths at the reference frequency
• v = v coordinate
• w = w coordinate
• t = time in days since reference date given in antenna file for this subarray. (The time may be offset

by 5 x (subarray no. - 1))
• b = baseline code; 256 x antenna 1 no. + antenna 2 no. -1- 0.01 x (subarray no. - 1). (see later section

for more details)
• Rn = the real part of a correlator value in Jy.
• In = the imaginary part of a correlator value.
• Wn = the weight assigned to the correlator value. In general, it is arbitrary. Data with Wn < 0 are

“flagged” (to be ignored).
AIPS uv data sets may contain data in either true Stokes’ parameters or correlator based values for circularly
polarized IFs. Since Stokes’ parameters are not an inherently ordered set, we have adopted the following
convention for the values along the Stokes’ axis:

correlator) parameter Value

I 1
Q 2
U 3
V 4
RR -1
LL -2
RL -3
LR -4
XX -5
YY -6
XY -7
YX -8

The orientations of the “X and “Y” linearly polarized feeds are defined in the antenna (AN) table.
The order of the visibility records in a single source file may be changed; this is usually done with the

task UVSRT. Sorting is done using a two key sort and the current sort order is described in the catalog
header record (CATBLK(KITYP)) as a two-character HOLLERITH string. The codes currently defined for
the sort order are given in the following table, the first key in the sort order varies more slowly.

B => baseline number
T => time order
U => u spatial freq. coordinate
V => v spatial freq. coordinate
V => w spatial freq. coordinate
R => baseline length.
P => baseline position angle.

6-14 CHAPTER 6. DISK FILES

X => descending ABS(u)
Y => descending ABS(v)
Z => ascending ABS(u)
M => ascending ABS(v)
* => not sorted

As examples of the use of the sort order, the older mapping routines require “XY” sorted data (actually
they are happy as long as the first key is “X”), self calibration tasks require “TB” order, etc.

Data Order, UVPGET
The position in the record of the standard random parameters (u,v,w,t,b) and the order of the regular axes
can be obtained using the routine UVPGET. UVPGET determines pointers and other information from a
uv data file catalog header record in common /M APHDR/ from include DCAT.INC. These pointers are
placed in commons which are obtained by the DUVH.INC INCLUDE. The address relative to the start of a
vis record for the real part for a given spectral channel (CHAN), IF (NIF) and Stokes parameter (ICOR) is
given by:

IRPARM + (CHAI-1) * IICF + (IIF-1) IICIF + ABS (ICOR-ICORO) ♦ IICS

Antenna and Subarray Numbers
Antenna and subarray numbers are coded into a single floating word. Some care must be used in decoding
these values. The following example shows how to extract these values from a buffer BUFF with UVDISK
pointer IBIND and baseline offset ILOCB from DUVH.INC.

IITEGER IBASE, BIID, AIT1, AIT2, SUBAR
REAL BUFFC+), BASE

C
BASE = BUFF(BIID+ILOCB)

C
AIT1 = (BASE / 256.0) + 0.1

C
AIT2 = (BASE - ANTI * 256.0) +
IBASE = BASE +0.1

C
SUBAR = (BASE - IBASE) * 100.0

Data Reformatting Routines
The variety of different uv data formats, especially different polarization types, allowed in AIPS uv data
bases complicates handling of uv data. If a routine is to read and write uv data, it must be prepared to
handle any allowed data type. If the routine is only reading the data, reformatting the data to a standard
form is practical. There are a number of reformatting routines available.

Efficient reformatting requires two routines, one to setup arrays of pointers and factors and the second
to reformat each record. The following list describes several such pairs; detailed descriptions of the call
sequence to the routines can be found at the end of this chapter.

• SET1VS, GET1VS return a single visibility value in true Stokes’ parameter (I, Q, U, V) or circular
polarization (RCP, LCP). They may be requested to work on multiple frequency channels. Does not
allow specification of IF at present; defaults to the first.

• SETVIS, GETVIS return several visibility values in the form of true Stokes’ parameter (I, Q, U, V) or
circular polarization (RCP, LCP). They may be requested to work on multiple frequency channels. A
single IF may be specified.

Extract from buffer

First antenna number

Second antenna number
0. 1

Subarray number
+ 1 . 1

6.4. I/O TO DISK FILES 6-15

• DGINIT, DGGET are the most general data selection/Stokes’ translation routines.
• UVGET sets up, selects, reformats, calibrates, edits either single- or multi-source data files. After set

up by UVGET, CALCOP can be used to copy the contents of a file to another file.

6.4.7 UV Data Access
The following is a discussion of the routines to access UV data.

UVGET and CALCOP
Routine UVGET allows relatively easy access to all kinds of AIPS interferometer uv data from both single-
and multi-source files, in either normal or compressed format and can optionally select, calibrate, edit and
convert the stokes parameter of the data selected. After an initialization call UVGET returns one visibility
at a time. UVGET can apply SN, BL or BP calibration tables and/or make polarization corrections as
specified in the AN table to single source files. Most of the communication with UVGET is through the
commons in INCLUDE file DSEL.INC which are described in the description of UVGET at the end of this
chapter. These values may be initialized using routine SELINI whose description appears at the end of this
chapter.

If it is more convienent to operate on a uv data scratch file than on one visibility at a time (e.g. multiple
passes throught the data are required) then CALCOP can be used to produce a file containing the selected
data with any calibration etc. operations done on them. CALCOP will optionally create the scratch file. A
description of CALCOP is given at the end of this chapter.

UVINIT and UVDISK
UV data files may be located and opened using routine MAPOPN.Data are read or written using UVINIT
and UVDISK in much the same manner in which image files are read with MINIT and MDISK. One
significant difference between UVDISK and MDISK is that UVDISK can be requested to process multiple
logical records (NPIO) in a single call. If NPIO is 0, then the largest value consistent with double buffering
will be used; if NPIO is too large for the buffer provided, it will be reduced to the largest value consistent
with single buffering. This is useful when large amounts of data are to be sent to a sorting routine or to the
array processor or to reduce the overhead of many subroutine calls.

Another difference between MINIT and UVINIT is that, unlike MINIT, UVINIT returns the buffer
pointer for the first call so the output buffer can be written into before the first call to UVDISK.

UVINIT sets up the bookkeeping for UVDISK which does double buffered (if possible) quick-return I/O .
UVDISK will run much more efficiently if, on disk, the requested transfer (logical record length x the number
of records per call) is an integral number of disk blocks. Otherwise, partial writes or oversize reads will have
to be done. Minimum disk I/O is one block.

The buffer size for UVDISK should include an extra NBPS bytes for each buffer for reads, if NPIO records
does not correspond to an integral number of disk sectors (NBPS bytes). 2+NBPS extra bytes required for
each (single or double) buffer for writes. More details about the call sequence to UVINIT and the use of the
FTAB are given at the end of this chapter.

UVDISK reads and writes records of arbitrary length, especially uv visibility data. There are three
operations which can be invoked: READ, WRITE and FLUSH (OPcodes “READ” , “W RIT” and “FLSH”).

If the requested transfers are too large to double buffer with the given buffer size, then UVDISK will
single buffer the I/O . If it is possible to do double buffered physical transfers of some multiple of the requested
number of records, then this is done.

OPcode = “READ” reads the next sequential block of data as specified to UVINIT and returns the actual
number of visibilities, NIO, and the pointer, BIND, to the first word of this data in the buffer.

OPcode=“W RIT” collects data in a buffer half until it is full. Then, as many full blocks as possible are
written to the disk with the remainder left for the next disk write. For writes, left-over data is transferred
to the beginning of the next buffer half to be filled. The value of NIO in the call is the number of visibility
records to be added to the buffer and may be fewer than the number specified to UVINIT. On return, NIO

6-16 CHAPTER 6. DISK FILES

is the maximum number which may be sent next time. On return, BIND is the pointer in BUFFER to begin
filling new data.

OPcode=“FLSH” writes integral numbers of blocks and moves any data left over to the beginning of
buffer 1. One exception to this is when NIO < 0, in which case the entire remaining data in the buffer is
written (if NIO < 0 then ABS (NIO) visibilities are to be written). After the call, BIND is the pointer in
BUFFER for new data. The principal difference between FLSH and WRIT is that FLSH always forces an
I/O transfer. This may cause trouble if a transfer of less than 1 block is requested. A call with a nonpositive
value of NIO should be the last call and corresponds to a call to MDISK with opcode “FINI” .

The input/output argument to UVDISK, NIO, can be very useful for controlling the loop reading and/or
writing uv data. The value of NIO for reads is the number of values in the buffer that are available. When
the file has been completely read, the value of NIO returned by UVDISK on the next call is 0; this value
can be used to determine when all of the data has been read. The example in the following section uses this
feature in UVDISK. More details about the call sequence can be found at the end of this chapter.

Example using UVINIT and UVDISK
SUBROUTINE UVCONJ (ISCR1, ISCR2, LUN1, LUN2, BUFFI, BUFF2,

* BUFSZ1, BUFSZ2, IERR)
C---
C UVCONJ takes the complex conjugate of the values in a uv data set
C in a scratch file in the /CFILES/ common (INCLUDE DFIL.INC) number
C ISCR1 and writes them in the /CFILES/ scratch file number ISCR2.
C The current values in the /UVHDR/ commons (INCLUDE DUVH.INC) axec assumed to describe the uv data files.c Inputs:c ISCR1 I /CFILES/ scratch file number of input filec ISCR2 I /CFILES/ scratch file number of output filec LUN1 I Logical unit number to use for file 1c LUN 2 I Logical unit number to use for file 2c BUFFI R(*) I/O buffer to use for file 1c BUFF2 R(*) I/O buffer to use for file 2c BUFSZ1 I Size of BUFFI in AIPS bytes (2*no. words)c BUFSZ2 I Size of BUFF2 in AIPS bytesc Inputs from common /UVHDR/ (DUVH.INC)c NVIS I Number of visibility recordsc LREC I logical record length.c NRPARM I number of random parameters.c ICORO I (signed) value of first Stokes' parameter.c JLOCF I zero relative order of the frequency axis inc the data array.c JLOCS I relative order of the Stokes1 axis.c JLOCIF I relative order of the IF axis.c INCF I word increment in the data array betweenc successive frequencies at the same location onc all other axes.c INCS I word increment in the data air ray betweenc successive Stokes' values.c INCS I word increment in the data array betweenc successive IF values.c Inputs from common /MAPHDR/ (DCAT.INC)c CATBLK 1(256]1 Catalog header recordc Output:cc— IERR I Return code, 0=>0K, otherwise error.

6.4. I/O TO DISK FILES 6-17

IITEGER ISCR1, ISCR2, LUI1, LUN2, BUFSZ1, BUFSZ2, IERR
REAL BUFFI(*), BUFF2(*)

C
IITEGER FIND1, FIND2, BIID1, BIND2, IFREQ, ISTOKE, IIF, I, IV,

* IFQ, 1ST, IIF, IIOII, IIOUT, INDEX, JCORO, NILIM, BO, VO
LOGICAL T, F
CHARACTER FILE+48
PARAMETER (T = .TRUE.)
PARAMETER (F = .FALSE.)

C Listings of the standard
C INCLUDE files axe at the end
C of the chapter on tasks.

INCLUDE ’INCS:DMSG.INC'
IICLUDE ’IICS:DUVH.INC’
INCLUDE ’INCS:DHDR.INC’
INCLUDE ’INCS:DCAT.INC’
DATA VO, BO /0,1/

C---
C Take absolute value of first
C Stokes’ value.

JCORO = ABS (ICORO)
C Find dimension of freq
C and Stokes axes.

NFREQ = CATBLK(KINAX+JLOCF)
NSTOKE = CATBLK(KINAX+JLOCS)

C May not have IF axis
NIF = 1
IF (JLOCIF.GT.O) NIF = CATBLK(KINAX+JLOCIF)

C Open and init ISCR1
CALL ZPHFIL (’SC’, SCRVOL(ISCRl), SCRCNO(ISCRl), 1, FILE, IERR)
CALL ZOPEN (LUN1, FIND1, SCRVOL(ISCRl), FILE, T, F, T, IERR)

C Check for error
IF (IERR.NE.O) THEN

WRITE (MSGTXT,1000) IERR, ’READ’, 1
GO TO 990
END IF

C Let UVINIT determine #/call
NIOIN = 0
CALL UVINIT (’READ’, LUN1, FIND1, NVIS, VO, LREC, NIOIN,
* BUFSZ1, BUFFI, BO, BIND1, IERR)

C Check for error
IF (IERR.NE.O) THEN

WRITE (MSGTXT,1010) IERR, ’READ’, 1
GO TO 990
END IF

C Open and init ISCR2
CALL ZPHFIL (’SC’, SCRV0L(ISCR2), SCRCN0(ISCR2), 1, FILE, IERR)
CALL ZOPEN (LUN2, FIND2, SCRV0L(ISCR2), FILE, T, F, T, IERR)

C Check for error
IF (IERR.NE.O) THEN

WRITE (MSGTXT,1000) IERR, ’WRIT’, 2
GO TO 990
END IF

NIOUT = 0

6-18 CHAPTER 6. DISK FILES

CALL UVINIT ('WRIT', LUN2, FIND2, NVIS, VO, LREC, NIOUT,
* BUFSZ2, BUFF2, BO, BIND2, IERR)
NILIM = HIOUT
NIOUT = 0

C Check lor error
IF (IERR.HE.0) THEN

WRITE (MSGTXT,1010) IERR, 'WRIT', 2
GO TO 990
EHD IF

C Loop through data lile.
C Read input lile

CALL UVDISK ('READ', LUN1, FIND1, BUFFI, NIOIN, BINDl, IERR)
C Check lor error

IF (IERR.HE.0) THEH
WRITE (MSGTXT,1060) IERR, 'READ', 1
GO TO 990
END IF

C Check il data all read.
IF (HIOIN.LE.O) GO TO 120

C Loop through records
DO 100 IV = 1,NI0IN

C Loop through IF
DO 90 IIF = 1,NIF

C Loop through Stokes' axis
DO 80 1ST = l.NSTOKE

C Loop through Irequency axis
DO 80 IFQ = l.NFREQ

C Compute pointer in the
C buller to imag. part

INDEX = NRPARM + (IFQ-1) * INCF + (IIF-1) * INCIF
+ (IST-JCORO) ♦ INCS + 1 + (BIND1 - 1)

C Conjugate visibility
BUFFI(INDEX) = - BUFFI(INDEX)

80 CONTINUE
90 CONTINUE

C Copy record to output buller
CALL RCOPY (LREC, BUFFI(BINDl), BUFF2(BIND2))

C Update buller pointers
BINDl = BINDl + LREC
BIND2 = BIND2 + LREC
NIOUT = NIOUT + 1

C Write output when necessary
IF (NIOUT.GE.NILIM) THEN

CALL UVDISK ('WRIT', LUN2, FIND2, BUFF2, BIND2,
NIOUT, IERR)

NILIM = NIOUT
NIOUT = 0

C Check lor error
IF (IERR.NE.O) THEN

WRITE (MSGTXT,1060) IERR, 'WRIT', 2
GO TO 990
END IF

END IF
100 CONTINUE

6.4. I/O TO DISK FILES 6-19

C Loop back lor more data
110 GO TO 60

C Finished, flush buller.
C No more output records.
120 NIOUT = -NI0UT

CALL UVDISK ('FLSH ', LUN2, FIND2, BUFF2, BIND2, NIOUT, IERR)
C Check lor error

IF (IERR.NE.O) THEN
WRITE (MSGTXT,1060) IERR, 'FLSH1, 2
GO TO 990
END IF

C Close liles.
130 CALL ZCLOSE (LUN1, FIND1, IERR)

C Check lor error
IF (IERR.NE.O) THEN

WRITE (MSGTXT,1060) IERR, 'CLOS', 1
GO TO 990
END IF

CALL ZCLOSE (LUN2, FIND2, IERR)
C Check lor error

IF (IERR.NE.O) THEN
WRITE (MSGTXT,1060) IERR, 'CLOS', 2
GO TO 990
END IF

IERR = 0
GO TO 999

C Error.
990 CALL MSGWRT (8)
999 RETURN

C--
1000 FORMAT ('UVCONJ: ERROR',13,' OPEN FOR ’,A4,' FILE',12)
1010 FORMAT ('UVCONJ: ERROR',13,' INIT FOR »,A4,' FILE',12)
1060 FORMAT ('UVCONJ: ERROR',13,1X.A4,'ING FILE',12)

END

6.4.8 Single Dish Data
AIPS has a limited capacity to handle single dish data; that is measurments of sky brightness at random
locations on the sky. The format of single dish data is much like that of interferometer data so that many of
the utility routines will work for both. The “COMPLEX” axis still has 3 values (except for the compressed
form) which are: the measured sky brightness, any baseline or other offset removed and a weight. In place
of the U and V random parameters are sky positions which may be either absolute or in a specified tangent
plane projection. The structure of Single dish data is described in the following.

Single d ish ra n d o m p a ra m e te rs
The single dish random parameter types are described in the following:

1. ‘RA’ and ‘DEC’: These random parameters are the Right Ascension and Declination of the observation
in degrees. If the coordinates have been projected onto the tangent plane then the RA and Declination
types become ‘RA-xxxx’ and ‘DEC-xxxx’ where xxxx is the projection code. See the chapter on AIPS
catalog headers and/or AIPS memoes 27 and 46 for details of the projection codes. These random
parameter these are required but the order is arbitrary.

6-20 CHAPTER 6. DISK FILES

2. ‘TIME1’: The time tags for the data are kept in days since the reference day.
3. ‘BEAM’: This random parameter gives the beam number 4- 256. The beam offset makes the data look

more like uv data and more of the the AIPS uv data tasks will work for this data.
4. ‘SCAN’: This random parameter gives the scan number. This random parameter is optional.
5. ‘SAMPLE’: This random parameter gives the sample number in the scan. This random parameter is

optional.
Single dish regular axis coordinates
The units of the regular axis coordinates are defined by convention; the conventions used by AIPS for the
regular axis types are the following:

1. ‘COMPLEX’: the “complex” axis consists of the measured brightness, subtracted baseline, and (op­
tional) weight. Magic value blanking is supported. This axis is required.

2. ‘STOKES’: this axis is used to describe which Stokes’ parameters are given; the conventions are the
same as used for uv data. This axis is required.

3. ‘FREQ’: the frequency axis coordinates are in Hz. This axis is required.
4. ‘IF ’: The IF axis is a construct which allows irregularly spaced groups of frequency channels. The IF

number specifies an entry in the FQ table which must be present if this axis is present. This axis is
optional.

5. ‘RA’ and ‘DEC’: the celestial coordinates are given in degrees. The values associated with these
axes are irrelevant (although they should be present) for unprojected data. For data with projected
coordinates the coordinate values of these axes should be the tangent point, i.e. the position on the
sky at which the plane onto which the coordinates are projected is tangent to the celestial sphere and
these axes should become ‘RA------- ccc’ and ‘DEC— ccc’ where ccc is the projection code. These axes
are required.

Weights and flagging are handled the same as for visibility data. Sort order is the same as for visibility data
except that the sort codes for sorting by u and v become:

U => ordered by RA
V => ordered by Declination
X => descending ABS (RA)
Y => descending ABS (Declination)
Z => ascending ABS (RA)
N => ascending ABS (Declination)

UVPGET and Single Dish Data
The routine UVPGET that interpretes uv data catalog headers also understands single dish data. The values
passed in INCLUDE DUVH.INC which differ for single dish and interferometer data are described in the
following:

• TYPUVD. This integer has a value of 1 for unprojected and 2 for projected sky coordinates. (0
indicates interferometer data).

• ILOCU. This integer gives the 0-rel offset from the beginning of the record of the longitude like celestial
coordinate random parameter.

• ILOCV. This integer gives the 0-rel offset from the beginning of the record of the latitude like celestial
coordinate random parameter.

• ILOCB. This integer gives the 0-rel offset from the beginning of the record of the beam number random
parameter if present; -1 if absent.

6.4. I/O TO DISK FILES 6-21

Access to and Calibration of Single Dish Data
Single dish data may be read with UVINIT/UVDISK in the same manner as interferometer data. There is
a calibration system for single dish data that parallels the interferometer system. Access to this system is
through the routine SDGET which is the single dish analog to UVGET for interferometer data with most
of the control parameters being passsed through the commons in DSEL.INC. SDGET can optionally apply
calibration information from the CS table and flagging from the FG table. A detailed description of SDGET
is given at the end of this chapter. A more complete description of the calibration system is given in Volume
2.

6.4.9 Extension files
Extension files contain a great variety of different types of data, but usually are small compared to the data
files. Thus, for extension file I/O , the routines are friendlier, but less efficient. In many cases, the data
stored in extension files consist of logical records which contain different data types and are, in fact, data
structures.

One type of extension file is the table. This type of file contains a self-describing header and is useful for
most types of data which can be forced into a tabular structure. The principal advantage of tables is that
generalized table manipulating routines, including writing to, and reading from, FITS files automatically are
available.

TABINI and TABIO
The routines TABINI and TABIO do I/O to extension tables. A single call to TABINI will create an
extension table if necessary, catalog it, open the file, and initialize the I/O . TABIO then allows random
access, with mixed reads and write allowed, to the extension file. TABINI returns a set of pointers which
can be used to access data in a record. In practice, another level of specific routines for each table type is
useful to access tables. Use of tables in AIPS is dealt with in more detail in another chapter in this manual.

EXTINI and EXTIO
NOTE: TABINI and TABIO are strongly preferred over EXTINI and EXTIO as EXTINI/EXTIO files are
not copied to FITS format files.

The routines EXTINI and EXTIO make I/O to extension files much simpler than the image and uv data
routines. A single call to EXTINI will create an extension file if necessary, catalog it, open the file, and
initialize the I/O . EXTIO then allows random access, with mixed reads and write allowed, to the extension
file. EXTIO copies the data into a specified array so that a data structure can be formed by means of a
Fortran equivalence, either an explicit EQUIVALENCE statement or through the use of a common.

The structure of the extension file is a header record of 512 bytes, some of which are used by EXTINI
and EXTIO for bookkeeping, but many of which are available for use. Following the header record come
the fixed length logical records which are physically blocked in 512 byte blocks. A single logical record may
use several physical blocks or several logical records may be in a given 512 byte block. Details of the call
sequences for EXTINI and EXTIO and a description of the file header record are given at the end of this
chapter.

Simple copies of any and/or all EXTINI-EXTIO files of a given type may be copied with a single call to
EXTCOP. A description of the call sequence for EXTCOP is given at the end of the chapter on tasks.

6.4.10 Text files
AIPS uses a number of text files, such as the HELP and RUN files; in addition, there is the capability to
read an d w rite a rb itra ry te x t files. T h e re are several ro u tin es which allow access to te x t files: Z T X O P N ,
ZTXIO, ZTXCLS, ZTOPEN, ZTREAD, ZTCLOS, and KEYIN.

• Z T X O P N opens a te x t file for read o r w rite .
• ZTXIO reads/writes a line from /to a text file opened by ZTXOPN.

6-22 CHAPTER 6. DISK FILES

• ZTXCLS closes a text file opened via ZTXOPN.
• ZTOPEN opens a text file. It is similar to ZOPEN except that it has an additional input argument

(MNAME) which gives the name of the desired file or member.
• ZTREAD returns one 80-character line of text from a file opened by ZTOPEN.
• ZTCLOS closes the text file.
• KEYIN is the AIPS version of the Cal Tech VLBI parsing routine. This a very flexible routine for

obtaining values from external text files.
ZTREAD has a number of standard places that it cam find text files. These include the RUN file area, the
HELP file area, and various source code areas. To access files in the “RUN” area, a file name (PNAME)
should be constructed with ZPHFIL with type “RU” ; other inputs are dummy. ZTOPEN should then be
called with LUN=10 and this value of PNAME.

Arbitrary text files can be reawl or written using ZTXIO which needs ZTXOPN to open a file and ZTXCLS
to close it. Detauls of the call sequences are given at the end of this chapter and am example of their use
follows. In this example a text file whose name is in the CHARACTER variable FILNAM is read. This file
contadns lines of text no longer than 80 characters.

INTEGER LUV, FIID, IERR
LOGICAL F
CHARACTER FILHAM*48, LIIE+80
PARAMETER (F - .FALSE.)
PARAMETER (LUI = 10)
IICLUDE *IICS:DMSG.IIC*

C Open lile
CALL ZTXOPI (’READ *, LUI, FIID, FILIAM, F. IERR)

C Check error
IF (IERR.IE.0) THEI

WRITE (MSGTXT,1000) IERR, ’OPENING’
GO TO 990
EID IF

C Loop over file.
C Read next line
100 CALL ZTXIO (* READ’, LUI, FIID, LIIE, IERR)

C EOF
IF (IERR.EQ.2) GO TO 700

C Check error
IF (IERR.IE.0) THEM

WRITE (MSGTXT,1000) IERR, ’READING*
GO TO 990
END IF

C Process LIME

C Loop for next LIME
GO TO 100

C Close file
700 CALL ZTXCLS (LUM, FIND, IERR)

C Check error
IF (IERR.NE.O) THEN

WRITE (MSGTXT,1000) IERR, ’CLOSING'

6.5. BOTTOM LEVEL I/O ROUTINES 6-23

GO TO 990
EID IF

GO TO 999
C Error
990 CALL KSGVRT (8)

C
999 RETURI

C---
1000 FORMAT (* ERROR ',13,IX,A,» TEXT FILE')

EID

In the example above, calls to KEYIN could have replaced the calls to ZTXIO.
The file name passed to ZTXOPN should contain a logical pointing to the directory containing the file.

In VMS this may be a complete specification of the directory but in Unix an environment must be set outside
of AIPS.

Examples:
FILIAM='DISK$RES: [USERIAME]CAL.DAT' (VMS)
FILIAM='MYAREA:CAL.DAT' (Unix)

where MYAREA is an environment variable set before
starting AIPS:
Xsetenv MYAREA /mnt/username

6.5 B ottom Level I /O Routines
The routines described so far in this chapter have been relatively high level routines which have hidden a
great deal of bookkeeping. In addition, the image and uv data I/O routines work basically sequentially with
some data selection ability. Beneath the higher level routines there are, of course, lower level routines. These
routines have a great deal more flexibility than the higher level routines, but usually at a cost of a great deal
of bookkeeping.

The basic AIPS I/O routines are intrinsically random access, although a data transfer must start on a
disk block boundary. “Map” type files (image and uv data) are read with a pair of routines ZMIO and
ZWAIT. Non-map (extension) files are read with ZFIO.

6.5.1 ZMIO and ZWAIT
ZMIO initiates a data transfer to or from one of two possible buffer halves and returns without waiting
for the operation to complete. ZWAIT is a timing routine which suspends the task until the specified I/O
operation is complete. In this manner, I/O and computation can be overlapped.

The I/O commons (INCLUDE DDCH.INC) contain an array, FTAB, which contains AIPS and host
system I/O tables. ZOPEN returns a pointer in FTAB to the area to use for a given file. The first 16 integer
words of this area are available for AIPS program use, the remainder of an FTAB entry is used for the host
system I/O tables. These 16 words are normally used for bookkeeping information (the first always contains
the value of the LUN). Examples of the use of the FTAB are found in MINIT, MDISK, MINSK, MSKIP,
UVINIT and UVDISK which use ZMIO and ZWAIT. Descriptions of the way these routines use the FTAB
are to be found at the end of this chapter. A description of the call arguments to ZMIO and ZWAIT are
also found at the end of this chapter.

6.5.2 ZFIO
Extension file I/O and single buffer non-disk I/O is usually done with the routine ZFIO. For disk files, ZFIO
reads a 512 byte block from a specified offset in the file. This block size is independent of the true physical
block size on the disks being used. The I/O transfer is complete when ZFIO returns.

6-24 CHAPTER 6. DISK FILES

Details of the call sequence for ZFIO are found at the end of this chapter. An example of the use of
ZFIO may be found in the source code for TABINI and TABIO.

6.6 Text of INCLUDE files
6.6.1 DDCH.INC
C Include DDCH.
C AIPS system parameters

CHARACTER SYSIAM+20, VERIAM*4, RLSIAM*8, DEV1AM(10)*48,
* I0IIAM(8)*48, MAPIAM(12)*48, SYSTYP*4, SYSVER*8
HOLLERITH HBLANK
DOUBLE PRECISION DBLANK
REAL XPRDMM, XTKDMM, TIMEDA(15), TIMESG, TIMEMS, TIMESC, TIMECA,
* TIMEBA(4), TIMEAP(3), FBLANK, RFILIT(14)
IITEGER IVOL, IBPS, ISPG, IBTB1, ITAB1, IBTB2, ITAB2, IBTB3,

* ITAB3, ITAPED, CRTMAX, PRTMAX, IBATQS, MAXXPR(2), CSIZPR(2),
* IIITRI, KAPVRD, IVDPDP, IBITVD, ICHLII, ITVDEV, ITKDEV, BLAIKV,
* ITVACC, ITKACC, UCTSIZ, BYTFLP, USELIM, IBITCH, ICHPRT,
* KAP2WD, MAXXTKC2), CSIZTK(2), DASSGI(8,15), SPFRMT, DPFRMT,
* ISHORT, TTYCAR, DEVTAB(50), FTAB(1024)
COMMOI /DCHCHM/ SYSIAM, VERIAM, SYSTYP, SYSVER, RLSIAM,

* DEVNAM, IONNAM, MAPNAM
COMMON /DCHCOM/ DBLANK, XPRDMM, XTKDMM, TIMEDA, TIMESG, TIMEMS,

* TIMESC, TIMECA, TIMEBA, TIMEAP, FBLAIK, RFILIT, HBLAIK,
* IVOL, IBPS, ISPG, IBTB1, ITAB1, IBTB2, ITAB2, IBTB3, ITAB3,
* ITAPED, CRTMAX, PRTMAX, IBATQS, MAXXPR, CSIZPR, IIITRI,
* KAPVRD, IVDPDP, IBITVD, ICHLII, ITVDEV, ITKDEV, BLAIKV,
* ITVACC, ITKACC, UCTSIZ, BYTFLP, USELIM, IBITCH, ICHPRT,
* KAP2VD, MAXXTK, CSIZTK, DASSGI, DEVTAB, SPFRMT, DPFRMT,
* ISHORT, TTYCAR
COMMOI /FTABCM/ FTAB

C End DDCH.

6.6.2 DSEL.INC
C Include DSEL.
C Commons for UVGET use

IITEGER XCTBSZ, XBTBSZ, XPTBSZ, XSTBSZ, XTTSZ, XBPSZ,

XCTBSZ=internal gain table size

XBTBSZ=ba8eline table size

XPTBSZ=polar. corr. table size

XSTBSZ=Source no. table size

XTTSZ=Pol. trans. table size

XBPSZ=max. no. BP time entries

XBPBUF=internal BP I/O buffer

c
* XBPBUF

PARAMETER (XCTBSZ=2500)
c

PARAMETER (XBTBSZ=3500)
c

PARAMETER (XPTBSZ=16384)
c

PARAMETER (XSTBSZ=500)
c

PARAMETER (XTTSZ=MAXIF*MAXCHA*2)
c

PARAMETER (XBPSZ=50)
c

PARAMETER (XBPBUF=65536)

T E X T OF INCLUDE FILES

Data selection and control
IITEGER AITEIS(50), IAITSL, ISOUVD, SOUWAI(XSTBSZ), S0UVTN(30),

* ICALVD, CALVAN(XSTBSZ), CALWTH(30), SUBARR, SMOTYP, CURSOU,
* IXKOLS(MAXNXC), NXNUMV(MAXNXC), MVIS, JADR(2,XTTSZ), PMODE,
* LRECIM, UBUFSZ, BCHAN, ECHAH, BIF, EIF, IPRMIH, KLOCSU, KLOCFQ
* SELQUA, SMDIV, SM00TH(3), KLOCIF, KLOCFY, KLOCWT, KLOCSC,
* IDECMP, DECMP(2,MAXIF*4), BOHANS, ECHANS, FRQSEL, FSTRED,
* FQKOLS(MAXFQC), FQNUMV(MAXFQC)
LOGICAL DOSWNT, DOCVNT, DOAWNT, ALLVT, TRANSL, DOSMTH, ISCMP,
* DOXCOR, DOACOR, DOVTCL, DOrQSL
INTEGER INXRHO, NINDEX, FSTVIS, LSTVIS, IFQRNO
REAL TIMRNG(8), UVRIG(2), IITPRM(3), UVRA(2), TSTART, TEND,

* SELFAC(2,XTTSZ), SMTAB(2500), SUPRAD, SELBAN
CHARACTER S0URCS(30)*16, CALS0U(30)*16, ST0KES*4, INTFN*4,

* SELCOD+4
DOUBLE PRECISION UVFREQ, SELFRQ

Flag table info
REAL TMFLST, FLGTND(NAXFLG)
IITEGER IFGRNO
LOGICAL DOFLAG, FLGP0L(4,MAXFLG)
IITEGER FGVER, IUNFLG, FGKOLS(MAXFGC), FGIUMV(MAXFGC),

* KICOR, KICF, KICIF, KICS,
* FLGSOU(MAXFLG), FLGANT(MAXFLG), FLGBAS(MAXFLG), FLGSUB(MAXFLG)
* FLGBIF(MAXFLG), FLGEIF(MAXFLG), FLGBCH(MAXFLG), FLGECH(MAXFLG)

CAL table info
REAL GMMOD, CURCAL(XCTBSZ), LCALTM, CALTAB(XCTBSZ,2),
* CALTIM(3), RATFAC(MAXIF), DELFAC(MAXIF), DXTIME, DXFREQ,
* LAMSQ(MAXCHA, MAXIF), IFRTAB(MAXANT, 2), IFR(MAXANT)
INTEGER ICLRNO, ICLIIR, MAXCLR, CITREC(2,3)
LOGICAL DOCAL, DOAPPL
IITEGER CLVER, CLUSE, IUMAIT, IUMPOL, IUMIF, CIDS0U(2),

* CLKOLS(MAXCLC), CLIUMV(MAXCLC), LCLTAB, LCUCAL, ICALP1, ICALP2
* P0L0FF(4,2)

Baseline table info
REAL LBLTM, BLTAB(XBTBSZ,2), BLFAC(XBTBSZ), BLTIM(3)
IITEGER IBLRNO, NBLINR
LOGICAL DOBL
IITEGER BLVER, BLKOLS(MAXBLC), BLNUMV(MAXBLC), IBLP1, IBLP2

Polarization table.
REAL P0LCAL(2,XPTBSZ), PARAGL(2,MAXANT), PARTIM
INTEGER PARSOU
LOGICAL DOPOL

Bandpass table
DOUBLE PRECISION BPFREQ(MAXIF)
REAL PBUFF(XBPBUF), TIMENT(XBPSZ), BPTIM(3), LBPTIM, CHNBND
CHARACTER BPNAME*48
INTEGER IBPRNO, NBPINR, ANTPNT(2), NVISM, NVISS, NVIST
INTEGER BPVER, BPKOLS(MAXBPC), BPNUMV(MAXBPC), NANTBP, NPOLBP,

* IIFBP, ICHNBP, BCHNBP, DOBAND, ANTENT(XBPSZ.MAXANT),
* BPDSK, BPVOL, BPCNO, USEDAN(MAXANT), BPG0T(2),
* KSNCF, KSNCIF, KSNCS, MXANUM

Cheumel 0 stuff
INTEGER FSTVS3, LREC3, LSTVS3, NREAD3, FSTRD3, KL0CW3,

* KL0CS3, NDECM3, DECM3(2,MAXIF*4), BIND3, RECN03, LENBU3

6-26 CHAPTER 6. DISK FILES

LOGICAL ISCMP3, DOUVIM
C File specification.

IITEGER IUDISK, IUSEQ, IUCIO, IULUI, IUFIID, ICLUI, IFLUI,
* IXLUI, IBLUI, IPLUI, IQLUI, LUISBP, BPFIID, CATUV(256),
* CATBLK(256)
REAL USEQ, UDISK
CHARACTER UIAME*12, UCLAS*6, UFILE*48

C I/O buffers
IITEGER CLBUFF(1024), FGBUFF(S12), IXBUFF(512), BLBUFF(512),

* BPBUFF(32767), FQBUFF(512)
REAL UBUFF(8192)

C Character common
COMMOI /SELCHR/ SOURCS, CALSOU, STOKES, IITFI, SELCOD, UIAME,
* UCLAS, UFILE, BPIAME

C Common for UVGET use
C Data selection and control

COMMOI /SELCAL/ UVFREQ, SELFRQ,
* USEQ, UDISK, TIMRIG, UVRIG, IITPRM, UVRA, TSTART, TEID, UBUFF,
* SELFAC, SMTAB, SUPRAD, SELBAI,
* IIXRIO, IIIDEX, FSTVIS, LSTVIS, IFQRIO,
* DOSWIT, DOCVIT, DOAWIT, ALLVT, TRAISL, DOSMTH, ISCMP, DOXCOR,
* DOACOR, DOVTCL, DOFQSL,
* CLBUFF, FGBUFF, IXBUFF, BLBUFF, BPBUFF, FQBUFF,
* IUDISK, IUSEQ, IUCIO, IULUI, IUFIID, ICLUI, IFLUI, IXLUI,
* IBLUI, IPLUI, IQLUI, LUISBP, BPFIID, CATUV, AITEIS, IAITSL,
* ISOUVD, SOUVAI, SOUVTI, ICALVD, CALVAI, CALVTI,
* SUBARR, SMOTYP, CURSOU, IXKOLS, IXIUMV, FQKOLS, FQIUMV,
* MVIS, JADR, PMODE,
* LRECII, UBUFSZ, BCHAI, ECHAI, BIF, EIF, IPRMII, KLOCSU,
* KLOCFQ, SELQUA, SMDIV, SMOOTH, KLOCIF, KLOCFY, KLOCWT,
* KLOCSC, IDECMP, DECMP, BCHAIS, ECHAIS, FRQSEL, FSTRED

C FLAG table info
COMMOI /CFMIIF/ TMFLST, FLGTID, IFGRIO, DOFLAG, FLGPOL,

* FGVER, IUMFLG, FGKOLS, FGIUMV, KICOR, KICF, KICIF, KICS,
* FLGSOU, FLGAIT, FLGBAS, FLGSUB, FLGBIF, FLGEIF, FLGBCH, FLGECH

C CAL table info
COMMOI /CGIIIF/ GMMOD, CURCAL, LCALTM, CALTAB, CALTIM, RATFAC,
* DELFAC, DXTIME, DXFREQ,
* ICLRIO, ICLIIR, MAXCLR, CITREC,
* DOCAL, DOAPPL,
* CLVER, CLUSE, IUMAIT, IUMPOL, IUMIF, CIDSOU, CLKOLS, CLIUMV,
* LCLTAB, LCUCAL, ICALP1, ICALP2, POLOFF,
* LAMSQ, IFRTAB, IFR

C BL table info
COMMOI /CBLIIF/ LBLTM, BLTAB, BLTIM, BLFAC,
* IBLRHO, NBLINR,
* DOBL,
* BLVER, BLKOLS, BLIUMV, IBLP1, IBLP2

C Pol. table
COMMOI /CPLIIF/ POLCAL, PARAGL, PARTIM, PARSOU, DOPOL

C BP table
COMMOI /CBPIIF/ BPFREQ,

* PBUFF, TIMENT, BPTIM, LBPTIM, CHIBID,
* IBPRIO, IBPIIR, AITPIT, IVISM, IVISS, IVIST,

6.7. ROUTINES 6-27

* BPVER, BPKOLS, BPIUMV, NANTBP, IPOLBP, IIFBP, ICHIBP, BCHHBP,
* DOBAID, AHTENT, BPDSK, BPVOL, BPCIO, USEDAN, BPGOT,
* KSICF, KSICIF, KSNCS, MXARUM

C Channel 0 common
COMMOI /CHIZ/ FSTVS3, LREC3, LSTVS3, IREAD3, FSTRD3, KL0CV3,
* KL0CS3, NDECM3, DECM3, BIND3, RECN03, LEIBU3,
* ISCMP3, DOUVII

C
COMMOI /MAPHDR/ CATBLK

C End DSEL.

6.6.3 DU VH .INC
C Include DUVH.
C If you change this include you
C must also change common
C /CATHDR/ in DBCOI
C Include for uv header info

IITEGER IVIS
IITEGER ILOCU, ILOCV, ILOCV, ILOCT, ILOCB, ILOCSU, ILOCFQ,

* JLOCC, JLOCS, JLOCF, JLOCR, JLOCD, JLOCIF, IRPARM, LREC,
* ICOR, IICS, IICF, IICIF. ICORO, TYPUVD
CHARACTER S0URCE*8, IS0RT*2
DOUBLE PRECISIOI FREQ, RA, DEC
COMMOI /UVHDR/ FREQ, RA, DEC, IVIS, ILOCU, ILOCV, ILOCV, ILOCT,

* ILOCB, ILOCSU, ILOCFQ, JLOCC, JLOCS, JLOCF, JLOCR, JLOCD,
* JLOCIF, IICS, IICF, IICIF, ICORO, IRPARM, LREC, ICOR, TYPUVD
COMMOI /UVHCHR/ SOURCE, ISORT

C End DUVH.

6.7 Routines
6.7.1 CALCOP
Routine to copy selected data from one data file to another optionally applying calibration and editing
information. The input file should have been opened with UVGET. Both files will be closed on return from
CALCOP. Note: UVGET returns the information necessary to catalog the output file. The output file will
be compressed if necessary at completion of CALCOP.

CALCOP (DISK, CIOSCR, BUFFER, BUFSZ, IRET)
Inputs:

DISK I Disk number for catalogd output file.
If .LE. 0 then the output file is a /CFILES/
scratch file.

BUFFER R(*) Vork buffer for writing.
BUFSZ I Size of BUFFER in bytes.

Input via common:
LREC I (/UVHDR/) length of vis. record in R words.
IRPARM I (/UVHDR/) number of R random parameters.

In/out:
CIOSCR I Catalog slot number for if cataloged file;

/CFILES/ scratch file number if a scratch file,
IF DISK=CI0SCR-0 then the scratch is created.
On output = Scratch file number if created.

6-28 CHAPTER 6. DISK FILES

In/out via common:
CATBLK 1(256) Catalog header block from UVGET

on output with actual no. records
IVIS I (/UVHDR/) lumber of vis. records.

Output:
IRET I Error code: 0 => OK,

> 0 => failed, abort process.
Usage notes:
(1) UVGET with OPCODE^IIIT' MUST be called before CALCOP to setup

for calibration, editing and data translation. If an output
cataloged file is to be created this should be done after the
call to UVGET.

(2) Uses AIPS LUV 24

6.7.2 CHNDAT
Routine to create/fill/read CH/FQ extension tables. We are phasing out CH tables, so this routine will read
them, but will only write FQ tables.

CHIDAT (OPCODE, BUFFER, DISK, CHO, VER, CATBLK, LUI,
* IIF, FOFF, ISBAID, FREQID, IERR)

Inputs:
Operation code:
'WRIT* * create/init for write or read
'READ' = open for read only
I/O buffer and related storage, also defines
file if open.
Disk to use.
Catalog slot number
Catalog header block.
Logical unit number to use
Frequnecy ID #, if FQ tables exists

OPCODE C*4

BUFFER 1(512)

DISK
CIO
CATBLK
LUI
FREQID

I
I
1(256)
I
I

Input/Output:
VER
■IF
FOFF

I
I
D(*)

ISBAID I(*)

Output:
IERR

CH file version
lumber of IFs.
Frequency offset in Hz from ref. freq.

True = reference + offset.
Sideband of each IF.
-1 => 0 video freq. is high freq. end
1 => 0 video freq. is low freq. end

Return error code, 0=>0K, else TABIII or TABIO
error, -1 => tried to create/write an FQ table

6.7.3 COMOFF
Compute the block offset of a 2-D map plane in a NDIM-dimensional map from the beginning of the map.

COMOFF (IDIM, IAX, DEPTH, BLKOF, IERR)
Inputs:

IDIM I lumber of axes in map
IAX(7) I limber of pixels on each axis
DEPTH(5) I Depth of required plane along other axes

Outputs:
BLKOF I Block offset

6.7. ROUTINES 6-29

IERR Error return 0 = OK, 1= error in IDIM

6.7.4 DGGET
Gets requested data from visibility record, reformatting if needed. REQUIRES setup by DGINIT to set
values of MVIS, JADR, SELFAC and ALLWT.

VISII
I ID
MVIS

R(IID,*)
I
I

DGGET (VISII. IID, MVIS. JADR, SELFAC, ALLWT, VISOUT, DROP)
Inputs:

Input visibility array
First dimension ol VISII (CATBLK(KIIAX))
lumber ol visibilities in requested output
lormat.
Pointers to the lirst and second visibility
input records to be used in the output record.
II JADR(l,n) is negative use IABS (JADR(l,n))
and multiply the visibility by i (=SQRT(-1))
Factors to be multiplied by the lirst and
second input vis’s to make the output vis.
Flag, s .TRUE, il all visibilities must have
positive weight.

JADR 1(2,*)

SELFAC R(2,*)

ALLWT

Output:
VISOUT
DROP

R(3,*) Output visibility record
L .TRUE, il all data in record llaged.

6.7.5 DG IN IT
Sets up tables for selecting data from vis. record. Checks if requested data in data base. Requires catalog
header record from include DCAT.INC and setup of commons in INCLUDE DUVH.INC by UVPGET before
call.

Note: STOKES=’HALF’ will work if only partial information (i.e. 1 polarization) is available in the
data.

DGIIIT (STOKES, BCHAI, ECHAI, BIF, EIF, MVIS, JADR, SELFAC, ALLWT,
* PMODE, IERR)

Inputs:
STOKES C*4 Desired output data lormat: ’I’,’V ’,’Q*,’U ’,

IQU’,»IQUV»,’IV’,’RR’,’LL’,’RL’,’LR
’HALF' (=parallel pol.), ’FULL’ (=RR,LL,RL,LR)
First channel desired.
Last channel desired.
First IF desired.
Last IF desired.

Input Irom common /MAPHDR/
CATBLK 1(256) Catalog header record.

Output:
MVIS I

BCHAI
ECHAI
BIF
EIF

JADR 1(2 ,*)

SELFAC R(2,*)

ALLWT

lumber ol visibilities in requested output
lormat.
Pointers to the lirst and second visibility
input records to be used in the output record.
II JADR(l,n) is negative use IABS (JADR(l,n))
and multiply the visibility by i (=SQRT(-1))
Factors to be multiplied by the lirst and
second input vis’s to make the output vis.
Flag, * .TRUE, il all visibilities must have

6-30 CHAPTER 6. DISK FILES

PNODE

IERR

positive weight.
Polarization mode:

1 = 1 , 2 = V, 3 = Q
4 = U, 5 = IQU, 6 = IQUV
7 * IV, 8 = RR, 9 = LL
10 = RL, 11 = LR, 12 = parallel (RR.LL)
13 = (RR,LL,RL,LR)

Error flag. 0 => ok, 1 = unrecognized stokes,
2 = data unavailable.

6.7.6 EXTINI
EXTINI creates/opens an extension file. If a file is created it is cataloged by a call to CATIO which saves
the updated CATBLK.

EXTIII (OPCODE, PTYP, VOL, CIO, VER, CATBLK, LUI, IID,
* LREC, IREC, BUFFER, IERR)

Inputs:
OPCODE C*4 Operation code, ’READ* => read only,

’WRIT* => read/write
PTYP C*2 Physical extension type (eg. 'CC')
VOL I Volume number
CIO I Catalog slot number
LUI I Logical unit number to use.
IREC I lumber of logical rec. for create/extend

In/out:
VER I in: Version number: (<= 0 => write a new one,

read the latest one)
out: Version number used.

CATBLK 1(256) Catalog block of cataloged file, ext info is
updated if necessary.

LREC I in: Record length in units of REALs (write new)
out: Logical record length (in units of REALs)

for read/write old files
BUFFER I(*) Work buffer, at least 1024 bytes in size,

more if logical record longer than 512 bytes
out: Header info, for EXTIO

Output:
IID I FTAB pointer.
IERR I Return error code. 0 => OK

1 => bad input.
2 => could not find or open
3 => create/I/O problem.

Useage notes:
For sequential access, EXTIII leaves pointers for EXTIO such that
if IRIO .le. 0 reads will begin at the start of the file and writes
will begin after the last previous record.
File should be marked ’WRIT’ if the file is to be created.

Header record:
Each extension file using this system must have the first physical
(512 bytes) record containing necessary information. In addition
space in this first record not reserved can be used for other
purposes. The header record contains the following:

6.7. ROUTINES 6-31

I word(s) description
1 # 512-byte records in the existing lile
2 # logical records to extend the lile when req.
3 max. # ol logical records
4 current number ol logical records
5 # bytes per value
6 # values per logical record.
7 # ol logical records per physical record, il neg then

the # ol physical records per logical record.
8 - 1 0 Creation task name (6 Hollerith characters)
1 1 - 1 6 Creation date, time
17 - 28 File name (48 Hollerith characters)

29 Volume number on which lile resides.
30 - 32 Last write-access task (6 Hollerith characters)
33 - 38 Last vrite-access time,date
39 - 56 reserved. (53-66 used by EXTIO:

53 s # I words per logical record.
54 - I0P sent to EXTIII
55 = current physical record no.

(doesn’t include header rec.)
56 s current logical rec. no.

57 -256 Available lor use.

6.7.7 EXTIO
EXTIO does random access I/O to an extension files. Mixed reads and writes are allowed if EXTINI
called with ’W RIT’.

EXTIO (OPCODE, LUH, IID, IRIO, RECORD, BUFFER, IERR)
Inputs:

OPCODE C*4 Opcode 'READ*,'WRIT*,'CLOS'
LUI I Logical unit number
IID I FTAB pointer
IRIO I Logical record no. 0=> next.
REC0RD(*) I Array containing record to be written
BUFFER(*) I Work buller = 512 bytes + enough 512 byte

blocks lor at least one lull logical record.
Output:

RECORD(*)
BUFFER(*)
IERR

I Array containing record read.
I buller.
I Return error code 0 => OK

1 => lile not open
2 => input error
3 => I/O error
4 => attempt to read past end ol data

or write past log. or phys.
record 32766.

IMPORTAIT NOTE: the contents ol BUFFER should not be changed
except by EXTIO between the tine EXTIII is called until the lile
is closed. The exception is that the user portion ol the header
record is available.

was

6.7.8 GETVIS
GETVIS gets and reformats uv data. Requires setup by SETVIS.

6-32 CHAPTER 6. DISK FILES

GETVIS (MODE, MVIS, JADR, SFACT, ALLWT, DATA, WT,
* VIS, IERR)

Inputs:
MODE I Operation number (see SETVIS).

When MODE = 2 or 3 and RL and LR i
the U visibility is multiplied by

MVIS I lumber of visibilities wanted.
JADR(2,MVIS) I Pointers set by SETVIS.
SFACT(2,MVIS) R Factors set by SETVIS.
ALLWT L Flag set by SETVIS, if .TRUE, all

weights must be positive.
DATA(3,*) R Visibility portion of input data.

Outputs:
WT R Average weight.
VIS(MVIS) CMPX Visibilities.
IERR I Error code, 0=>0K,

1 .

1 => bad weights.(data flagged).
2 = bad input.

6.7.9 G ETIVS
GETIVS gets and reformats uv data. Returns one Stokes’ type per frequency channel. Requires setup by
SET1VS.

GETIVS (MODE, MVIS, JADR, JIIC, SFACT, ALLWT, STOKES,
* DATA, WT, VIS, IRET)

Inputs:
MODE I Operation number (see SET1VS).

MVIS I

When MODE = 3 and RL and LR are given
the U visibility is multiplied by i.
lumber of visibilities wanted.

JADR(2) I Pointers set by SET1VS.
JIIC I Increment between vis.
SFACT(2) R Factors set by SET1VS.
ALLWT L If true all vis are required.
STOKES L True if input data true Stokes’.

DATA(3,*) R
Used for UPOL only.
Visibility portion of input data.

Output8:
WT R Average weight.
VIS(MVIS) CMPX Visibilities.
IRET I Error code, 0=>0K,

1 => bad weights.(data flagged).
2 = bad input.

6.7.10 KEYIN
S ta n d a rd F o rtran version o f th e C IT V LBI K eyin su brou tines. T hese su b ro u tin e s read keyed p a ram e te rs
on cards images. The text file should be opened via a call to ZTXOPN before the first call to KEYIN and
closed via a call to ZTXCLS after the last call. (HINT: use LUN = 10) Note: in this version time like entries
in the form hh:mm:ss will be returned in hours.

KEYII (KEYS, VALUES, VALCHR, I, ENDMRK, MODE, LUI,
* FIND, IERR)

Inputs:

6.7. ROUTINES 6-33

KEYS(I)

I
EIDMRK
MODE

LUI
FIID

Input/Output:
VALUES(I)

VALCHR(I) C*8

Outputs:
I
IERR

C*8 Array of parameter names .
Array names should have the last characters
indicate the element number. Should all be
in upper case characters.

I number of parameters (dimension of keys, values)
C*8 special keyword to indicate end of input
I 1 = turn on reflection, 0 = turn off

2 = interactive mode (prompts for input,
no reflection, no limit on errors)

3 = Pass values until EIDMRK, File should not
contain keywords,

lote: currently only reads from a file.
I LUI to read from (used in call to ZTXOPI)
I FTAB pointer for input, (from ZTXOPI)

D array to receive numeric values or defaults,
each value corresponds to a KEY.
array to receive character values or defaults,
each value corresponds to a KEY.

I (M0DE=3 only) number of values found
I error code, 0=>0K, 1=>E0F found, 2=>Error

6.7.11 MAPSIZ
MAPSIZ computes the correct number of bytes to request from ZCREAT for a file using map I/O methods.

MAPSIZ (IAX, IP, ISIZE)
Inputs:

IAX I * axes
IP I(IAX) lumber of points on each axis

Output.:
ISIZE I File size in AIPS bytes

6.7.12 MAPCLS
closes a cataloged file, updates header on disk, clears catalog status.

MAPCLS (OP, IVOL, CIO, LUI, IID, CATBLK, CATUP, WBUFF, IERR)
Inputs:

OP
IVOL
CIO
LUI
IID
CATBLK

CATUP

Outputs:
IERR

C*4 OPcode used by MAPOPI to open this file
I Disk volume containing map file
I Catalog slot number of file
I Logical unit # used for file
I FTAB pointer for LUI
1(256) lew catalog header which can optionally

be written into header if OP=WRIT or IIIT
Dummy arguement if OP=READ

L If TRUE, write CATBLK into catalog,
ignored if OP = READ

I 0 = O.K.
1 = CATDIR couldn’t access catalog
5 = illegal OP code

6-34 CHAPTER 6. DISK FILES

6.7.13 M APO PN
MAPOPN opens a map file marking the catalog entry for the desired type of operation.

MAPOPI (OP, IVOL, IAMEII, CLASH, SEQII, TYPIV, USID,
* LUI, IID, CIO, CATBLK, WBUFF, IERR)

Inputs:
OP C*4 Operation: READ, WRIT, or IIIT where IIIT is lor

known creation processes (it ignores current lile
status Jk leaves it unchanged). Also: HDWR lor
use when the header is being changed, but the
data are to be read only.

LUI I Logical unit # to use
In/out:

IAMEII C*12 Image name (name)
CLASH C*6 Image name (class)
SEQII I Image name (seq.#)
USID I User identilication #
IVOL I Input disk unit
TYPII C*2 Physical type ol lile

Output8:
IID I FTAB pointer
CIO I Catalog slot containing map
CATBLK 1(256) Buller containing current catalog block
WBUFF 1(256) Working buller lor CATIO and CATDIR
IERR I Error output: 0 = OK

2 = Can’t open WRIT because lile busy
or can't READ because lile marked WRITE

3 = File not lound
4 = Catalog i/o error
5 = Illegal OP code
6 = Can't open lile

6.7.14 MCREAT
Subroutine to create a map file using the parameters in a CATBLK. The file will be cataloged and marked
with WRITE status. The image name parameters incl. physical type must be filled in. A blank physical type
is converted to ’M A\ The OUTSEQ default is applied (0 = highest matching-f 1). The name must be unique
ignoring the physical type. The extension file areas of the CATBLK are cleared and the ’’DATE-MAP” string
is filled in.

MCREAT (IVOL , CIO, WBUFF, IERR)
In/Outs:

IVOL I Volume # on which to put lile: 0 => ALL
on output has volume used

WBUFF 1(256) Working buller
Outputs:

C H O I C a t a l o g s l o t number
IERR I Error code; 0 => o.k.

1 => couldnt create,no room
2 => no create, duplicate name
3 => no room in catalog
4 => i/o problem on catalog
5 => Other Create errors
6 => no catalog lile

6.7. ROUTINES 6-35

Common: (in/out)
CATBLK 1(256) Catalog block (via common MAPHDR)
CATB4 R(256) Catalog block (equivalenced to CATBLK)

6.7.15 M DESTR
MDESTR will delete a catalog entry for a file, delete all extension files for that file, and then delete the file.
The file must be in the REST state.

MDESTR (IVOL, ISLOT, CATBLK, IVBLK, IJTDEST, IERR)
Inputs:

IVOL I
ISLOT I

In/out:
IIDEST I

Output:
CATBLK 1(256)
IVBLK 1(256)
IERR I

6.7.16 MDISK
MDISK reawls or writes a row of an image. MDISK is called only after a call to MINIT and you should read
the precursor remarks of MINIT. MDISK actually sets an array index (BIND) to the start of the next line
wanted. Actual 10 is done only when needed and a row is written not on “its” call to MDISK but on some
subsequent call (or the FINI call).

MDISK (OP, LUI, FIID, BUFF, BIID, IERR)
Inputs:

OP C*4 Opcode * WRIT *, * READ *, »FIII» (Hush write buffers)
LUI I logical unit number
FIID I Pointer to FTAB returned by ZOPEI

Input and output:
BUFF R(*) Buffer holding data

Output:
BIID I Pointer to position in buffer of first pixel in

window in the present line
IERR I Error return: 0 s> ok

1 => file not open
2 => input error
3 => I/O error
4 => end of file
5 => beginning of medium
6 => end of medium

6.7.17 M INIT
MINIT sets up a special section of FTAB for quick-return, double buffered I/O . N.B. This routine is designed
to read/write images one plane at a time.

MIIIT (OP, LUH, IHD, LX, LY, WIH, BUFF, BFSZ, BLKOF, IERR)
Inputs:

disk volume number of the file,
catalog slot number.

number of extension files destroyed.
(if = -32000 on in, suppress normal msg)

the header block for this file.
work buffer.
error code: 0 no error

1 - disk error
2 = map too busy
3 = destroy failed somehow

6-36 CHAPTER 6. DISK FILES

OP C*4 Operation code character string: 'READ*,’WRIT’,'UPDT'
LUI I logical unit number
IID I pointer to FTAB, returned by ZOPEI
LX I lumber of pixels per line in X-direction for whole

map
LY I lumber of lines in whole plane
VII 1(4) Xmin,Ymin,Xmax,Ymax defining desired subrectsingle in

the current plane
BFSZ I Size of total available buffer in AIPS bytes
BLKOF I block number, 1 relative, of first map pixel in this

plane of the image
Outputs:

IERR I Error return: 0 => ok
1 -> file not open
2 => input error
7 => Buffer too small
3 => i/o error on initialize
4 => end of file
5 => beginning of medium
6 => end of medium

Usage notes: For map i/o the first 16 vords in each FTAB entry
contain a user table to handle double buffer i/o, the rest
contain system-dependent 10 tables. A "major line" is 1 row or
1 sector if more than 1 line fits in a sector. FTAB user table
entries, with offsets from the FIID pointer are:

FTAB + 0 => LUI using this entry
1 => lo. of major lines transfered per i/o op
2 => lo. of major times a buffer has been acessed’
3 => lo. of major lines remaining on disk
4 => Output index for first pixel in window
5 => lo. pixels to increment for next major line
6 => Vhich buffer to use for i/o; -1 => single buffer
7 => Block offset in file for next operation
8 =>
9 => Block increment in file for each operation
10 => lo. of bytes transferred
11 => I/O op code
12 => sum of any buffer numbers needing to be waited upon
13 => # rows / major line (>= 1)
14 => # times this major line has been accessed
15 => # pixels to increment for next row (= LX)

6.7.18 MINSK
MINSK initializes the use of MSKIP to read noncontigious but evenly spaced rows in a map. Read is double
buffered if possible; in which case MINSK initiates the first read. Single buffering is used if the desired data
cannot be double buffered. If more data is required than will fit in the buffer, multiple (NBUF) equally filled
buffers are obtained by NBUF calls to MSKIP.

MIISK (LUI, FIID, LROW, IROV, ISTRT, ISKIP, BUFF, BUFSZ, BO, IBUF,
* IERR)

Input8:
LUI I Logical unit number.
FIID I pointer to FTAB returned by ZOPEI.
LROW I Length of a row in pixels.

6.7. ROUTINES 6-37

IROU
ISTRT
MSKIP
BUFF
BUFSZ
BO
IBUF

OUTPUT:
IBUF

IERR

I Total number of rows this plane.
I First row for read.
I lumber of rows to skip.
R(*) Output buffer.
I Buffer size in AIPS bytes.
I Block offset
I factor times which LROV is multiplied normally = 1.

I number of buffer fulls to complete read of row.
MSKIP must be called this number of times to
complete the read.

I Error code: 0 = OK
1 = file not open
2 = input error
4 = tried to read past end of

10+ = 10 + ZMIO or ZVAIT error.
map.

FTAB assigments:
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

= LUI

= BO block offset

= length of row / [5] in bytes
= multiplier of [4]
= next record number.
= record increment+1 (total increment)
= # calls per record.
= record call # (when MSKIP is called)
= bytes / call
= buffer flag, -1= single, l=>current buffer is 1
2=>current buffer=2 (buffer already read)

= buffer size in pixels (1/2 for double buffering)
= IROV (the number of rows to read)
= BTYOFF the byte offset when double buffering.

6.7.19 M SKIP
MSKIP reads rows in a map file which are evenly spaced. The reads are double, single buffered or partial
buffers if the row size 1) is < BUFSZ/2, 2) between BUFSZ/2 and BUFSZ or 3).GT.BUFSZ. For case 3)
multiple calls (NBUF from MINSK) are required to read each row. Each call returns LROW*2/NBUF bytes
and I/O is single buffered. IFIN = 0 indicates a row is completed. See MINSK for more details.

MSKIP (LUI, FIID, BUFF, BIID, IFII, IERR)
Input:

LUI I Logical unit number.
FIID I pointer for FTAB
BUFF R(*) Buffer

Output:
BIID I Pointer for BUFF
IFII I 0 if row complete, 1 otherwise
IERR I error code: 0 = OK

1 = file not open
2 = attempt to read past end of map.
10+= I/O error = 10 + ZWAIT error.

6-38 CHAPTER 6. DISK FILES

6.7.20 PLNGET
PLNGET reads a selected portion of a selected plane parallel to the front and writes it into a specified
scratch file. The output file will be zero padded and a shift of the center may be specified. If the input
window is unspecified (O’s) and the output file is smaller than the input file, the NX x NY region about
position (MX/2+1-OFFX, MY/2+1-OFFY) in the input map will be used where MX,MY is the size of the
input map. NOTE: If both XOFF and/or YOFF and a window (JWIN) which does not contain the whole
map, XOFF and YOFF will still be used to end-around rotate the region inside the window. The image
header is taken from the disk catalog AND explicitly will not handle blanked images.

PLIGET (IDISK, ICNO, CORK, JWII, XOFF, YOFF, I0SCR,
* IX, IY, BUFFI, BUFF2, BUFSZ1, BUFSZ2, LUI1, LUI2, IRET)

Inputs:
IDISK I Input image disk number.
ICIO I Input image catalog slot number.
CORI 1(7) BLC in input image (1 ft 2 ignored)
JVII 1(4) Window in plane.
XOFF I ollset in cells in lirst dimension ol the center

YOFF I
Irom MX/2+1 (MX 1st dim. ol input win.)
ollset in cells in second dimension ol the center

I0SCR I
Irom MY/2+1 (MY 2nd dim. ol input win.)
Scratch lile number in common /CFILES/ lor outpu.

IX I Dimension ol output lile in X
IY I Dimension ol output lile in Y
BUFFI R(*) Work buller
BUFF 2 R(*) Work buller.
BUFSZ1 I Size in AIPS bytes ol BUFFI
BUFSZ2 I Size in AIPS bytes ol BUFF2
LUI1 I Logical unit number lor input lile
LUI2 I Logical unit number to use lor output

Output:
IRET I Return error code, 0 => OK,

1 = couldn't copy input CATBLK
2 = wrong number ol bits/pixel in input map.
3 = input map has inhibit bits.
4 = couldn't open output map lile.
5 = couldn't init input map.
6 = couldn't init output map.
7 = read error input map.
8 = write error output map.
9 = error computing block ollset
10 = output lile too small.

Common:
DCAT.IIC CATBLK is set to the input lile CATBLK.

6.7.21 PLNPU T
PLNPUT writes a subregion of a scratch file image into a cataloged image.

PLIPUT (IDISK, ICIO, CORI, JWII, I0SCR, IX, IY, BUFFI,
* BUFF2, BUFSZ1, BUFSZ2, LUI1, LUI2, IRET)

Input:
IDISK I Output image disk number.
ICIO I Output image catalog slot number.
CORI 1(7) BLC in Output image (1 ft 2 ignored)

6.7. ROUTINES 6-39

JWIV 1(4) Window in plane in input image.
I0SCR I Scratch file number in common /CFILES/ for

input scratch file.
IX I X-dimension of input file.
IY I Y-dimension of input file.
BUFFI R(*) Work buffer
BUFF2 R(*) Work buffer.
BUFSZ1 I Size in bytes of BUFFI.
BUFSZ2 I Size in bytes of BUFF2
LUI1 I Logical unit number to use.
LUI 2 I Second loical unit number to use.
:put:
IRET I Return error code: 0 => OK

1 = couldn't read output CATBLK.
2 = Output bits/pixel not allowed.
3 = Output and input windows not same.
4 = couldn’t open input map file.
5 = couldn't init output map.
6 = couldn't init input map.
7 = read error input map.
8 = write error output map.
9 = error writing header to catalog
10 = error computing block offset.

Commons:
CATBLK in /MAPHDR/ is used as the map header.

Of particular importance is the data max/min values
which must apply to the map. As this is read from the
catalog it must be updated by a call to CATIO etc.
before calling this routine.

6.7.22 SCREAT
SCREAT creates scratch files. It uses the Common included via the DFIL.INC INCLUDE and returns the
scratch file disk and catalog number in variables SCRVOL(NSCR) and SCRCNO(NSCR), where NSCR is
updated on successful creation. It attem pts to avoid the disk used for the previously created scratch file.
All files have physical name SCvcccOl where v is the revision code and ccc is the catalog slot number. Their
logical names are determined from the routine BLDSNM.

SCREAT (SIZE, WBUFF, IERR)
Input:

ISIZE
Output:

WBUFF
IERR

1(512)
I

Commons:
/MAPHDR/

/CFILES/

m

Desired size in AIPS bytes

Scratch buffer (VOTE 512 integers)
error: 0 => ok

1 => catalog error in setting name
2 => catalog error on open
3 => CATIO error writing header to catlg
4 => Vo allowed disk with room

scratch file image header - contents mostly
ignored

in/out file info
lote: this common uses IBAD to specify BADDISKs which are avoided.

6-40 CHAPTER 6. DISK FILES

0.7.23 SDGET
Subroutine to obtain data from a single dish data base with optional application of flaging and/or calibration
and/or pointing information. Reads data with a large variety of selection criteria and will reformat the data
as necessary. Does many of the startup operations, finds Single dish uv like data file etc., reads CATBLK
and updates the /UVHDR/ commons (INCLUDE DUVH.INC) to reflect the output rather than input data.

SDGET (OPCODE, RPARM, VIS, IERR)
In p u t:

OPCODE C*4 Opcode -
'IMIT' - > Open files Initialize I/O.
'READ' => Read next specified record.
’CLOS' ~ > Close files.

Inputs via common /SELCAL/ (Include DSEL.IIC)
UIAME C*12 AIPS name of input file.

C*6 AIPS class of input file.
R AIPS disk of input file.
R AIPS sequence of input file.
C(30)*16 lames of up to 30 sources, => all

First character of name '-' => all except those
specified.

R(8) Start day, hour, min, sec, end day, hour,
min, sec. 0's => all.

R(2) Range of RA (1) and dec (2) in degrees about
the value in CATBLK at time of READ call to
SDGET. 0=>all.

STOKES C*4 Stokes types wanted.
' I ' , 'Q ' , »U', 'V ', 'R*, 'L ' , 'IQ U ', 'IQUV'
' '=> Leave data in same form as in input.

BCHAI I First channel number selected, 1 rel. to first
channel in data base. 0 => all

ECHAI I Last channel selected. 0 => all
BIF I First IF number selected, 1 rel. to first

IF in data base. 0 => all
EIF I Last IF selected. 0 => all
DOCAL L If true apply calibration, else not.
SUBARR I Subarray desired, 0 => all
FGVER I FLAG file version number, if < 0 then

10 flagging is applied. 0 => use highest
numbered table.
Cal (CS) file version number to apply.

UCLAS
UDISK
USEQ
SOURCS

TIMRIG

UVRA

CLUSE
Output:

RPARM
VIS
IERR

R(*) Random parameter array of datum.
R(3,*) Regular portion of data array.
I Error code: 0 ~ > OK,

-1 => end of data
>0 => failed, abort process.

Output in common /SELCAL/: The default values vill be filled in
if null values were specified.

CATBLK 1(256) Catalog header block, describes the output
data rather than input.

IPRMII I lumber or random parameters in the input data.
TRAISL L If true translate data to requested Stokes'
CITREC 1(2,3) Record counts:

(1*2,1) Previously flagged (partly, fully)

6.7. ROUTINES 6-41

(1&2,2) Flagged due to gains (part, lull)
(1*2,3) Good selected (part, lull)

Usage notes:
1) Include DSEL.IHC should be declared in the main

program or at a level that they will not be overlaid while
SDGET is in use (ie. between the 'IIIT* and 'CLOS* calls)

2) II no sorting is done SDGET uses AIPS luns 25, 28, 29 and 30
(1 map, 3 non map liles). II sorting is done (usually possible)
then 8 map and 3 non map liles are used (mostly on 0PC0DE='IIIT')
and LUIs 16,17,18,19,20,21,22,23,24,25, 28,29,30.

3) OPCODE = 'IIIT' does the lollowing:
- The cataloged data lile is located and the catalog header

record is read.
- The index lile (il any) is initialized.
- The llag lile (il any) is initialized and sorted il necessary

(Must be in time order).
- The CS table (il any) is initialized.
- I/O to the input lile is initialized.

The lollowing LUVs may be used but will be closed on
return: 16, 17, 18, 19, 20, 21, 22, 23, 24

The lollowing LUIs may be used but will be open on
return: 25 (uv data), 28 (IX table), 29 (CS table),

30 (FG table).
10 data are returned Irom this call.

4) OPCODE s 'READ' reads one record properly selected,
translormed (e.g. I pol.), calibrated and edited as requested
in the call with OPCODE = 'IIIT'

5) OPCODE = 'CLOS' closes all liles used by SDGET which are still
open. lo data are returned.

6) II D0CAL is true then the common array CITREC will contain the
counts ol records which are good or lully or partly llagged
both previously and due to llagged gain solutions.

6.7.24 SELINI
Subroutine to initialize the control values for UVGET in commons in DSEL.INC.

SELIII
Outputs via common /SELCAL/ (Include DSEL.IIC)

UIANE C*12 AIPS name ol input lile. (blank)
UCLAS C*6 AIPS class ol input lile. (blank)
UDISK R AIPS disk ol input lile. (0.0)
USEQ R AIPS sequence ol input lile. (0.0)
S0URCS C(30)*16 lames ol up to 30 sources, (blank)
SELQUA I Qualilier wanted (-1 => all)
SELC0D C*4 Cad code (' ')
TIMRHG R(8) Timerange (0s => all)
UVRIG R(2) Baseline range (0s => all)
STOKES C*4 Stokes types wamted. (blank)
BCHAI I First channel number selected, (1)
ECHAI I Last channel selected. (0=>all)
BIF I First IF number selected. (1)
EIF I Last IF selected. (0=>all)
D0CAL L 11 true apply calibration, (lalse)
D0P0L L 11 true then correct polarization (lalse)

6-42 CHAPTER 6. DISK FILES

D0AC0R L
D0XC0R L
D0WTCL L
D0FQSL L
FRQSEL I
SELBAN R
SELFRQ D
D0BAND I
BPNAME C*48
D0SMTH L
SMOOTH R(3)
DXTIME R
AITENS I(S0)
SUBARR I
FGVER I
CLUSE I
BLVER I
BPVER I

True if autocorrelations wanted (false)
True if cross-correlations wanted (true)
True if weight calibration wanted, (false)
True if FREQSEL random parm present (false)
Default FQ table entry to select (-1)
Bandwidth (Hz) to select (-1.0)
Frequency (Hz) to select (-1.0)
>0 if bandpass calibration. (-1)
lame of scratch file set up for BP’s.
True if smoothing requested, (false)
Smoothing parameters (0.0s)
Integration time (days). (1 sec)
List of antennas selected. (0=>all)
Subarray desired. (0=>all)
FLAG file version number. (0)
Cal (CL or SV) file version number (0)
BL Table to apply (-1)
BP table to apply (-1)

6.7.25 SETVIS
SETVIS setup the arrays JADR, SFACT and the flag ALLWT for reformatting uv data as specified by
MODE. There is also a check to make sure the desired data is available. Calls to GETVIS will reformat the
data. Needs values set by UVPGET and VHDRIN. Only 1 IF will be processed.

SETVIS (MODE, NCH,
Inputs:

MODE I

VCH
IFIUM

Output:
MVIS

JADR

SFACT

ALLWT

I
I
I
1(2 ,*)
R(2,*)

L

IERR I
Common (input):

DCAT.INC must
DUVH.INC must

IFNUM, MVIS, JADR, SFACT, ALLWT, IERR)

Desired output data format:
1 => I
2 => IQU
3 => IQUV
4 => IV
5 => R (right hand circular)
6 => L
7 => RL
8 => straight correlators (used in UVFND)
10+n => n I pol. line maps, (n .le. 8)
20+n => n R pol. line maps.
30+n => n L pol. line maps.

First line channel desired.
IF number wanted.

Number of visibilities in requested output
format.
Pointers to the first and second visibility
input records to be used in the output record.
Factors to be multiplied by the first and
second input vis’s to make the output vis.
Flag, = .TRUE, if all visibilities must have
positive weight.
Error flag. 0 =>0K, otherwise data unavailable,

have uv header
be initialized by UVPGET

6.7. ROUTINES 6-43

6.7.26 SET1VS
SET1VS setup the arrays JADR, SFACT and the flag ALLWT for reformatting uv data as specified by
MODE. One visibility per frequency channel will be returned by GETIVS. There is also a check to make
sure the desired data is available. Cadis to GETIVS will reformat the data. Needs values set by UVPGET.

SET1VS (NODE,
Inputs:

MODE

VCH
Output:

JADR(2)

SFACT(2)

ALLVT
JIVC
IRET

VCH, JADR, SFACT, ALLWT, JIVC, IRET)

I Desired output data format:
1 => I
2 => Q
3 => U
4 => V
5 => RCP
6 => LCP

I First line channel desired.

I Pointers to the first and second visibility
input records to be used in the output record.

R Factors to be multiplied by the first amd
second input vis’s to madce the output vis.

L If true no flagged data is allowed.
I Visibility increment.
I Error flag. 0 =>0K, otherwise data unavailable,

6.7.27 TABINI
TABINI creates/opens a table extension file. If a file is created, it is cataloged by a call to CATIO which
saves the updated CATBLK.

TABIVI (OPCODE, PTYP, VOL, CVO, VER, CATBLK, LUV, VKEY,
* VREC, VCOL, DATP, VBUF, BUFFER, IERR)

Input:
OPCODE

PTYP
VOL
CVO
CATBLK
LUV
VREC
VBUF

In/out:
VER

VKEY

VCOL

DATP

C*4

IC*2
I
I
1(256)
I
I
I

1(128, 2)

BUFFER I(*)

Operation code, 'READ* => read only,
’WRIT’ => read/write

Physical extension type (eg. ’CC')
Disk volume number
Catalog slot number
Catalog block of cataloged file.
Logical unit number to use.
Vumber of logical rec. for create/extend
lumber I words in BUFFER

Version number: (<= 0 => write a new one,
read the latest one), returns one used.
Maaimum number of keyword/value pairs
input: used in create, checked on write old
(0 => any); output: actuad.
Vumber of logical columns (does not include
selection column). Input: used in create,
checked on write old (0=>any); output: actual
DATP(*,1) address pointers (output only)
D A T P (*,2) c o l u m n d a t a t y p e c o d e s . I n p u t :
used in create only; output: actual.
Work buffer, at least 1024 bytes in size,

6-44 CHAPTER 6. DISK FILES

more il logical record longer than S12 bytes
Output: control inlo, lookup table, ...

Output:
IERR I Return error code. 0 => OK

-1 => OK, created new lile
1 => bad input.
2 => could not lind or open
3 => I/O problem.
4 => create problem.
5 => not a table lile

Usage notes:
For sequential access, TABIVI leaves pointers lor TABIO such that,
il IRIO <= 0, reads will begin at the start ol the lile and writes
will begin alter the last previous record. Cataloged lile should
be marked 'WRIT* il the lile is to be created.

Header record:
Each extension lile using this system must have the lirst physical
(512 bytes) record containing necessary inlormation. The lull table
lile lormat is described in Going AIPS. The user must read this
section to understand lully how to use such liles. The header
record contains the lollowing:

I word(s) Description
1
o

lumber 512-byte records now in lile

3
A

Max number rows allowed in current lile

5
6
7

Number rows (logical records) now in lile

lumber ol bytes/value (2 lor TA liles)
8 lumber values / logical (# Is / row lor TA)
9 > 0 => number rows / physical record

< 0 => number physical records / row
10 lumber logical columns / row
11 - 16 Creation date: ZDATE(ll), ZTIME(14)
17 - 28 H Physical lile name (set on each TABIII call)
29 -
31

30 H Creation task name

32 Disk number
33 - 38 Last access date: ZDATE(33), ZTIME(36)
39 - 40 H Last access task name
42 lumber logical records to extend lile il needed
43 Sort order: logical column # ol primary sorting
44 Sort order: logical column # ol secondary sorting

0 => unknown, < 0 => descending order
45 Disk record number lor column data pointers (2)
46 Disk record number lor row selection strings (3)
47 Disk record number lor 1st record ol titles (5)
48 Disk record number for 1st record ol units
49 Disk record number lor 1st record ol keywords
50 Disk record number lor 1st record ol table data
51 DATPTR (row selection column)
52 Maximum number ol keyword/value pairs allowed

6.7. ROUTINES 6-45

53
54 - 56
57 - 59
60
61
62
63
64
65
66
67
68
69
70
********** for
71
72
73
74
75
76
77
78
79
80
81
82

83 -100

101 -128 H
129 -256

Current number of keyword/value pairs in file
"*AIPS TABLE*" packed string to verify that table.

If 1 then then table cannot be written as FITS ASCII
Humber of selection strings now in file
lext available R address for a selection string
First R address of selection string 1
First R address of selection string 2
First R address of selection string 3
First R address of selection string 4
First R address of selection string 5
First R address of selection string 6
First R address of selection string 7
First R address of selection string 8

TABI0 / TABIII use only **********
I0P : 1 => read, 2 => writ
lumber I words per logical record
Current table row physical record in BUFFER

Current table row logical record in BUFFER

Type of current record in BUFFER
Current control physical record number in BUFFER
Current control logical record number in BUFFER
Type of current control record in BUFFER
LUV
FTAB pointer of open file

Reserved

Table title
lookup table as C0LPTRClogical column) = phys column

6.7.28 TABIO
TABIO does random access I/O to Tables extension files. Mixed reads and writes are allowed if TABINI
was called ’W RIT’. Files opened for WRITe are updated and compressed on CLOS.

TABIO (OPCODE, IRC0DE, IRIO, RECORD, BUFFER, IERR)
Inputs:

OPCODE C*4 Opcode * READ *,'CLOS *
’WRIT’ : write data as selected
'FLAG' : write data as de-selected

IRC0DE I Type of information
0 => Table row
1 => DATPTR/DATYPE record
2 => data selection string
3 => title
4 => units
5 => keyword/value pair

IRNO I Logical record number. 0 => next (can work
with row data and latest IRCODE > 0 only)

IRIO is row number (IRCODE = 0)
IRIO is ignored (IRCODE = 1)
IRIO is string number (IRCODE = 2)

6-46 CHAPTER 6. DISK FILES

RECORD
BUFFER

Output:
RECORD
BUFFER
IERR

IMPORTAVT
except by
is closed
record is

IRVO ie column, number (IRCODE = 3)
IRVO is column number (IRCODE = 4)
IRVO is keyword number (IRCODE = S)

I(*) Array containing record to be written
I(*) Work buffer = 512 bytes + enough 512 byte

blocks for at least one full logical record.
Must be the same one given TABIVI.

I(*) Array containing record read.
I(*) buffer.
I Return error code 0 => OK

-1 => on READ: row read is flagged
1 => file not open
2 => input error
3 => I/O error
4 => attempt to read past end of data

or write past end of data + 1
5 => error on expanding the file

VOTE: the contents of BUFFER should not be changed
TABIO between the time TABIVI is called until the file
The exception is that the user portion of the header

available.

6.7.29 UVCREA
Subroutine to create a uv file using the parameters in a CATBLK. The file will be cataloged and marked with
WRITE status. The image name parameters must be filled in except that the physical type is converted to
’UV’. The OUTSEQ default is applied (0 = highest matching+1). The name must be unique ignoring the
physical type. The extension file areas of the CATBLK are cleared and the “DATE-MAP” string is filled in.

UVCREA (IVOL, CVO, WBUFF, IERR)
In/Out8:

IVOL

Outputs:
WBUFF
CVO
IERR

1(256)
I

Volume # on which to put file. 0 => any
on output is volume used (IERR = 0)

Working buffer
Catalog slot number
Error code; 0 => o.k.

1 => couldnt create.no room
2 => no create, duplicate name
3 => no room in catalog
4 => i/o problem on catalog
5 => Other Create errors
6 => Vo catalog file on disk

COMMOV: /MAPHDR/ catalog block used a lot, final seq # on output

6.7.30 UVDISK
UVDISK reads and writes records of arbitrary length especially UV visibility data. Operation is faster if
blocks of data are integral numbers of disk blocks. There are three operations which can be invoked: READ,
WRITE and FLUSH (OPcodes ’READ’, ’W RIT’ and ’FLSH’).

’READ’ reads the next sequential block of data as specified to UVINIT and returns the number of
visibilities in NIO and sets the pointer in BUFFER to the first word of this data.

’W RIT’ arranges data in a buffer until it is full. Then as many full blocks as possible are written to the
disk with the remainder left for the next disk write. For writes, left-over data is transfered to the beginning

6.7. ROUTINES 6-47

of buffer 1 if that is the next buffer to be filled. The value of NIO in the call is the number of vis. rec.
to be added to the buffer and may be fewer than the number specified to UVINIT. On return NIO is the
maximum number which may be sent next time. On return BIND is the pointer in BUFFER to begin filling
new data.

’FLSH’ writes integral numbers of blocks and moves any data left over to the beginning of buffer 1. One
exception to this is when NIO < 0, in which case the entire remaining data in the buffer is written (if NIO
> 0 then ABS (NIO) visibilities are to be written). After the call BIND is the pointer in BUFFER for new
data. The principal difference between ’FLSH’ and ’W RIT’ is that FLSH always forces an I/O transfer.
This may cause trouble if a transfer of less than 1 block is requested. A call with a nonpositive value of NIO
should be the last call and corresponds to a call to MDISK with opcode ’FINI’.

NOTE: A call to UVINIT is REQUIRED prior to calling UVDISK.
UVDISK (OP, LUH, FIND, BUFFER, 110, BIID, IERR)
Inputs:

OP C*4 Opcode 'READ ',' WRIT ',* FLSH ' are legal
LUI I Logical unit number
FIID I FTAB pointer returned by ZOPEI
BUFFER K*) Buller lor I/O
110 I lo. additional visibilities to write.

Output:
110 I lo. visibilities read.

Max. no. vis. lor next write.
BIID I Pointer to start ol data in buller
IERR I Return error code: 0 => OK

1 => lile not open in FTAB
2 => input error
3 => I/O error
4 => end ol lile
7 => attempt to write more vis than specilied

to UVIKIT or will lit in buller.

6.7.31 UVGET
Subroutine to obtain data from a data base with optional application of fiaging and/or calibration infor­
mation. Reads data with a large variety of selection criteria and will reformat the data as necessary. Does
many of the startup operations, finds uv data file etc, reads CATBLK and updates the DUVH.INC com­
mons to reflect the output rather than input data. Most of the input to UVGET is through the commons
in DSEL.INC; the initial (default) values of these may be set using routine SELINI.

UVGET (OPCODE, RPARM, VIS, IERR)
Input:

OPCODE C*4 Opcode:
'IIIT* => Open 1iles Initialize I/O.
'READ' => Read next specilied record.
'CLOS' => Close liles.

Inputs via common (Include DSEL.IIC)
UIAME C*12 AIPS name ol input lile.
UCLAS C*6 AIPS class ol input lile.
UDISK R AIPS disk ol input lile.
USEQ R AIPS sequence ol input lile.
SOURCS C(30)*16 lames ol up to 30 sources, *=>all

First character ol name '-' => all except
those specilied.

TIMRNG R(8) Start day, hour, min, sec, end day, hour,
min, sec. 0's => all

6-48 CHAPTER 6. DISK FILES

UVRIG R(2)

STOKES C*4

BCHAI I

ECHAM I
BIF I

EIF I
DOCAL L
DOPOL L

DOSMTH L
DOACOR L
DOVTCL L
DOFQSL L
FRQSEL I
SELBAV R
SELFRQ D
DOBAHD I
BPVAME 048
DOSMTH L
SMOOTH R(3)
DXTIME R

AITEMS 1(50)

SUBARR I
FGVER I

CLUSE
BLVER
BPVER

Output:
RPARM
VIS
IERR

Minimum said maximum baseline lengths in
1000*8 wavelengths. 0*8 => all
Stokes types wanted.
*I,f*Q*t,U,,,V,1,R,,,L*,' IQU*,'IQUV*
* *-> Leave data in same form as in input.
First channel number selected, 1 rel. to first
channel in data base. 0 => all
Last channel selected. 0=>all
First IF number selected, 1 rel. to first
IF in data base. 0 => all
Last IF selected. 0=>all
If true apply calibration, else not.
If true then correct for feed polarization
based on antenna file info.
True if smoothing requested.
True if autocorrelations are requested.
True if weight calibration wanted.
True if FREQSEL random parm present (false)
Default FQ table entry to select (-1)
Bandwidth (Hz) to select (-1.0)
Frequency (Hz) to select (-1.0)
>0 if bandpass calibration. (-1)
lame of scratch file set up for BP1s.
True if smoothing requested, (false)
Smoothing parameters (0.0s)
Integration time (days). Used when applying
delay corrections to correct for delay error.
List of antennas selected, 0=>all,
any negative => all except those specified
Subarray desired, 0=>all
FLAG file version number, if < 0 then
10 flagging is applied. 0 => use highest
numbered table.
Cal (CL or SM) file version number to apply.
BL Table to apply .le. 0 => none
BP table to apply .le. 0 => none

R(*) Random parameter array of datum.
R(3,*) Regular portion of visibility data.
I Error code: 0 s> OK,

-1 => end of data
>0 => failed, abort process.

Output in commons in DSEL.IIC: The default values will be filled in
if null values were specified.

UVFREQ
CATBLK

MPRMIN
TRAISL
CITREC

ISCMP

D Frequency corresponding to u,v,w
1(256) Catalog header block, describes the output

data rather than input.
I Mumber or random parameters in the input data.
L If true translate data to requested Stokes’
1(2,3) Record counts:

(1*2,1) Previously flagged (partly, fully)
(1*2,2) Flagged due to gains (part, full)
(1*2,3) Good selected (part, full)

L True if input data is compressed.

6.7. ROUTINES 6-49

KL0CSU I 0-rel
file.

random parm. pointer for sourcei in input

KL0CFQ I 0-rel
file.

random parm. pointer for FQ id in input

KL0CIF I 0-rel
file.

random psmn. pointer for IF in input

KL0CFY I 0-rel
file.

random parm. pointer for freq. in input

KL0CVT I 0-rel
input

random
file.

parm. pointer for weight in

KL0CSC I 0-rel
input

random
file.

parm. pointer for scale in

Usage notes:
1) Include DSEL.IIC should be declared in the main program or at a

level that they vill not be overlaid while UVGET is in use (ie.
between the 'IIIT' and ’CLOS’ calls). SELIII cam be used to
initialize the control variables in these commons.

2) If no sorting is done UVGET uses AIPS luns 25, 28, 29 and 30
(1 map, 3 non map files). If sorting is done (usually possible)
then 8 map and 3 non map files are used (mostly on 0PC0DE='IIIT')
and LUVs 16,17,18,19,20,21,22,23,24,25, 28,29,30,40,42,43,44,45.

3) OPCODE = 'IIIT* does the following:
- The catalgue data file is located said the catalog header
record is read.

- The source file (if any) is read.
- The index file (if any) is initialized.
- The flag file (if any) is initialized and sorted if necessary

(Must be in time order).
- The gain table (if°any) is initialized.
- The bandpass table (if any) is initialized
- The smoothing convolution table (if any) is initialized
- I/O to the input file is initialized.

The following LUIs may be used but will be closed on
return: 16, 17, 18, 19, 20, 21, 22, 23, 24

The following LUIs may be used but will be open on
return: 25 (uv data), 28 (IX table), 29 (CL or SI table),

30 (FG table), 40 (BL table), 41 (BP table).
10 data sure returned from this call.

4) OPCODE = 'READ' reads one visibility record properly selected,
transformed (e.g. I pol.), calibrated and edited as requested
in the call with OPCODE * 'IIIT'

5) OPCODE = 'CLOS' closes sd.1 files used by UVGET which are still
open. lo data sure returned.

6) If D0CAL is true then the common array CITREC will contain the
counts of records which are good or fully or partly flagged
both previously and due to flagged gain solutions.

7) Only one subsurray can be calibrated at a time if D0P0L is true.
This is because the polsurization information for only one
subsurray is kept at a time.

6.7.32 UV INIT
UVINIT sets up bookkeeping for the UV data I/O routine UVDISK. I/O for these routines is double buffered
(if possible) quick return I/O . UVDISK will run much more efficiently if on disk LREC*NPIO is an integral

6-50 CHAPTER 6. DISK FILES

number of blocks. Otherwise, partial writes or oversize reads will have to be done. Minimum disk I/O is one
block. Smaller calls to UVINIT may be made as long as the buffer is large enough. The buffer size should
include an extra NBPS bytes for each buffer for read if NPIO records does not correspond to an integral
number of disk sectors (NBPS bytes). 2*NBPS extra bytes required for each buffer for write. NPIO will be
adjusted to the maximum allowed for double buffering if the input value is .LE. 0, or the maximum allowed
single buffering value if NPIO is too large. If it is positive and useable it is used.

UVIIIT (OP, LUI, FIID, IVIS, VISOFF, LREC, IPIO, BUFSZ,
* BUFFER, BO , BIID, IERR)

Inputs:
OP C*4 OP code, 'READ* or 'WRIT' for desired operation
LUI I Logical unit number of file.
FI ID I FTAB pointer for file returned by ZOPEI.
IVIS I lumber of visibilities to be transfered.
VISOFF I Offset in vis. rec. of first vis. rec. from BO.
LREC I lumber of values in a visibility record.
IPIO I lumber of visibilities per call to UVDISK.

Determines block size for tape I/O
0 => decide (see note above)

BUFSZ I Size in bytes of the buffer.
BUFFER R(*) Buffer
BO I Block offset to begin transfer from (1-relative]

Output:
IPIO I The max. number of visibilities which can be

be written or will be read per call.
BIID I Pointer in BUFFER for WRITE operations.
IERR I Return error code:

0 => OK
1 => lile not open in FTAB
2 => invalid input parameter.
3 => I/O error
4 => End of file.
7 => buffer too small

Vote: VISOFF and BO are additive.
UVIIIT sets and UVDISK ases values in the FTAB:

FTAB(FIID+0) = LUI
1 = # Bytes per I/O
2 = # vis. records left to transfer. For double buffer

read, 1 more I/O will have been done them shown
3 =
4 = Block offset for next I/O.
5 =
6 = byte offset of next I/O
7 =
8 = Current buffer #, -1 => single buffering
9 = OPcode 1 = read, 2 = write.
10 = Values per visibility record.
11 = # vis. records per UVDISK call
12 = max. # vis. per buffer.
13 = # vis. processed in this buffer.
14 = Buffer pointer for start of current buffer

(in values). Used for WRIT only; includes any
data carried over from the last write.

15 = Buffer pointer for call (values)

6.7. ROUTINES 6-51

6.7.33 UV PG ET
UVPGET determines pointers and other information from a UV CATBLK. The address relative to the
start of a vis record for the real part for a given spectral channel (CHAN) and stokes parameter (ICOR)
is given by NRPARM+(CHAN-1)*INCF+ABS(ICOR-ICORO)*INCS+(IF-1)*INCIF Single dish data, i.e.
randomly sampled data in the image plane, is also recognized and ILOCU and ILOCV point to the longitude
like and latitude like random parameters. Also a “BEAM” random parameter may be substitued for the
“BASELINE” random parameter. The data type present may be determined from the common variable
TYPUVD. Two types of single dish data are recognized:

TYPUVD=1 = > unprojected RA and Dec and
TYPUVD=2 = > projected RA and Dec (ready for GRIDR)
UVPGET (IERR)
Inputs: From common /MAPHDR/ (DCAT.IIC or DSEL.IIC)

CATBLK 1(256) Catalog block
CATH H(256) same as CATBLK
CATR R(256) same as CATBLK
CATD D(128) same as CATBLK
tput: In common ,/UVHDR/ (DUVH.IIC)
SOURCE C*8 Source name.
ILOCU I Offset from beginning of vis record of U

or longitude for single dish format data.
ILOCV I Offset from beginning of vis record of V

or longitude for single dish format data.
ILOCW I Offset from beginning of vis record of V.
ILOCT I Time
ILOCB I M Baseline

(or beam)
ILOCSU I " Source id.
ILOCFQ I Freq id.
JLOCC I 0-rel. order in data of complex values
JLOCS I Order in data of Stokes1 parameters.
JLOCF I Order in data of Frequency.
JLOCR I Order in data of RA
JLOCD I Order in data of dec.
JLOCIF I Order in data of IF.
IVCS I Increment in data for stokes (see above)
IICF I Increment in data for freq. (see above)
IICIF I Increment in data for IF.
ICORO I Stokes value of first value.
IRPARM I lumber of random parameters
LREC I Length in values of a vis record.
IVIS I lumber of visibilities
FREQ D Frequency (Hz)
RA D Right ascension (1950) deg.
DEC D Declination (1950) deg.
ICOR I lumber of correlators (Stokes* parm.)
I SORT C*2 Sort order 1st 2 char meaningful.
TYPUVD I UV data type, 0=interferometer,

l=single dish unprojected,
2=single dish projected RA and Dec.

IERR I Return error code: 0=>0K,
1, 2, 5, 7 : not all normal rand parms
2, 3, 6, 7 : not all normal axes
4, 5, 6, 7 : wrong bytes/value

6-52 CHAPTER 6. DISK FILES

6.7.34 ZCLOSE
Close the file associated with LUN removing any exclusive use state and clear the FTAB entry for the LUN.

ZCLOSE (LUH, FIND, IERR)
Inputs:

LUI
FIID

Output:
IERR

Logical unit number
Index in FTAB to lile control block for LUN

Error return code: 0 => no error
1 => close error
2 »> file already closed in FTAB
3 => both errors
4 => erroneous LUI

6.7.35 ZCMPRS
ZCMPRS releases unused disk space from the end of an open disk file. AIPS “Byte” is defined as 1/2 of a
integer.

ZCMPRS (IVOL, PNAME, LUN, LSIZE, SCRTCH, IERR)
Inputs:

IVOL I
PNAME C*48
LUN I

In/Out:
LSIZE I

Outputs:
SCRTCH 1(256)
IERR I

volume number
physical file name
logical unit number under which file is open.

(In) desired final size in AIPS bytes
(Out) actual final size in AIPS bytes

scratch buffer (not used under UNIX).
error code: 0 => ok

1 => input data error
2 => compress error

6.7.36 ZCREAT
Create a disk file of a specified name and size reserving the disk space.

ZCREAT (IVOL, PNAME, RSIZE, MAP, ASIZE, SCRTCH, IERR)
Inputs:

IVOL I Disk volume containing file
PNAME C*48 Physical file name
RSIZE I Requested size of the file in AlPS-bytes (1/2

of a local integer)
L Is this a "map" file?MAP

Output:
ASIZE
SCRTCH
IERR

I Actual size of file in AlPS-bytes
1(256) Scratch buffer
I Error return code: 0 => no error

1 => file already exists
2 => volume not found
3 => insufficient space
4 => other
5 => forbidden (reserved)

6.7. ROUTINES 6-53

6.7.37 ZDESTR
Destroy (i.e., delete) a file. The file should already be closed.

ZDESTR (IVOL, PHAME, IERR)
Inputs:

I
C*48

IVOL
PVAME

Output:
IERR

Disk volume containing lile, 1,2,3,
Physical file name (left justified)

Error return code: 0 => no error
1 => file not found (no message)
2 => device not found
3 => file in use
4 => other

6.7.38 ZEXPND
Increase the size of a disk file — it must be open.

ZEXPID (LUH, IVOL, PHAME, HREC, IERR)
Inputs:

LUH I LUH of file open file
IVOL I Disk volume containing file, 1,2,3,...
PHAME C*48 Physical file name

In/Out:
HREC I # 256-integer records requested/received

Output:
IERR I Error return code: 0 => no error

1 => input error
2 => expansion error
3 => ZEXIST error

6.7.39 ZFIO
Transfer one logical record between an I/O buffer and device LUN. For disk devices, the record length is
always 256 local small integers and NREC is the random access record number. For non-disk devices, NREC
is the number of 8-bit bytes.

ZFIO (OPER, LUH, FIHD, HREC, BUFF, IERR)
Input8:

OPER C*4
LUH I
FIHD I
HREC I

BUFF
Output:

IERR

1(256)

Operation code 'READ* or ’WRIT'
Logical unit number
Index in FTAB to file control block for LUH
Random access record number (1-relative) for
disk transfers or number of 8-bit bytes for
sequential device transfers (e.g., Tektronix
terminals)
I/O buffer

Error return code: 0 => no error
1 => file not open
2 => input error
3 => I/O error
4 => end of file

6-54 CHAPTER 6. DISK FILES

6.7.40 ZMIO
Low level random access, large block, double buffered device I/O .

ZMIO (OPER, LUH, FIHD, BLKHO, HBYTES, BUFF, IBUFF,
* IERR)

Inputs:
OPER C*4 Operation code 'READ' or ’WRIT'
LUH I Logical unit number
FIHD I Index in FTAB to file control block for LUH
BLKHO I Beginning virtual block number (1-relative).

Block size is given by HBPS in /DCHCOM/.
HBYTES I Number of AlPS-bytes to transfer (am AlPS-byte

1/2 a local integer).
I BUFF I Buffer number to use (1 or 2)

In/out:
BUFF K*) I/O buffer

Output:
IERR I Error return code: 0 => no error

1 => file not open
2 => input error
3 => I/O error
4 => end of file

6.7.41 ZOPEN
Open a binary disk file, line printer or tty. Message files, text files, tape devices, Tektronix devices and
TV devices are NOT opened using this routine (see ZMSGOP for message files, ZTOPEN for text files,
ZTPOPN for tape devices, ZTKOPN for Tektronix devices and the device specific routine for TV devices,
e.g., ZM700P).

ZOPEM (LUH, FIHD, IVOL, PHAME, MAP, EXCL, WAIT, IERR)
Inputs:

LUH I Logical unit number
IVOL I Disk volume containing file, 1,2,3,...
PHAME C*48 Physical file name (from ZPHFIL)
MAP L Is this a "map" file?
EXCL L Exclusive use requested?
WAIT L Wait for exclusive use?

Output:
FIHD I Index in FTAB to file control block for LUN
IERR I Error return code: 0 => no error

1 => LUH already in use
2 => file not found
3 => volume/logical not found
4 => exclusive use denied
5 => no room for LUH in FTAB
6 => other open errors

6.7.42 ZPHFIL
Construct a physical file name in PNAM from TYPE, IVOL, NSEQ, and IVER - either for public data files
or user-specific files.

ZPHFIL (TYPE, IVOL, NSEQ, IVER, PNAM, IERR)
Inputs:

6.7. ROUTINES 6-55

TYPE C*2
IV0L I
NSEQ I
IVER I

Outputs:
PNAM C*48
IERR I

Example: If TYPE1

Type of file: e.g. ’MA* for map file
Number of the disk volume to be used (1-15)
Sequence number (000-4095)
Version number (00-255)

physical file name, left justified
Error return code: 0 = good return. 1 = error.

MA', IV0L=7, AIPSVER=C, NSEQ=321, IVER=99,
NLUSER=762 then

PNAME=,DA07:MAC14163;1’ for public data or
PNAME=,DA07:MAC14163.2FA;1' for private data

where 321 = 141 base 16, 99 = 63 base 16, 762 = 2FA base 16

TYPE = 'MT* leads to special name for tapes
TYPE = 'TX* leads to special name for TEK4012 plotter CRT
TYPE = ’TV* leads to special name for TV device
TYPE * ’ME’ leads to special logical for POPS memory files

6.7.43 ZTCLOS
Close the text file and clear the FTAB entry associated with LUN.

ZTCLOS (LUN, FIND, IERR)
Inputs:

LUN I Logical unit number
FIND I Index in FTAB for LUN

Output:
IERR I Error return code: 0 => no error

1 => close error
2 => file already closed in FTAB
3 => both errors
4 => erroneous LUN

6.7.44 ZTOPEN
Open a text file - logical area, version, member name as arguments

ZTOPEN (LUN, FIND, IV0L, PNAME, MNAME, VERSON, WAIT, IERR)
Inputs:

LUN I Logical unit number
IV0L I Disk volume containing file, (not used)
PNANE C*48 Physical file name, only used to determine file

type or logical area
MNAME C*8 Text file name
VERSON C*48 Logical name for directory or version of

directory to search (for file-specific
directories)

L T => wait until file is available (not used)WAIT
Outputs:

FIND
IERR

I Index in FTAB for LUN
I Error return code: 0 => no error

1 => LUN already in use
2 => file not found

6-56 CHAPTER 6. DISK FILES

3 => volume not found
4 => file locked
5 => no room for LUI in FTAB
6 => other open errors

6.7.45 ZTREAD
Read the next sequential 80-character card image from a text file.

ZTREAD (LUI, FIHD, RBUFF, IERR)
Inputs:

LUH I Logical unit number
FIHD I Index in FTAB for LUH

Output:
RBUFF C*80 I/O buffer for card image
IERR I Error return code: 0 => no

1 => file not open
2 => end of file
4 => other I/O error

6.7.46 ZUVPAK
Routine to pack uv data with magic value blanking. One AIPS logical uv data record is processed at a time.

ZUVPAK (ICORR, VISII, WTSCL, VISOUT)
Inputs:

ICORR I Humber of correlator values in data
VISII R(3,*) Unpacked uv data as real, imag and weight per

correlator.
Output:

VTSCL R(2) "Weight" and "scale" random parameters for the
packed record.

VISOUT R(*) Packed visibility data with local magic value
blanking.

6.7.47 ZUVXPN
Routine to expand packed uv data to unpacked form. One AIPS logical uv data record is processed at a
time.

ZUVXPI (ICORR, VISIH, WTSCL, VISOUT)
Inputs:
HCORR I Number of correlator values in data
VISIH R(*) Packed visibility data with local magic value

blanking.
WTSCL R(*) "Weight" and "scale" random parameters for the

packed record.
Output:
VISOUT R(3,*) Unpacked uv data as real, imag and weight per

correlator.

6.7.48 ZTXCLS
Close the text file and clear the FTAB entry associated with LUN.

6.7. ROUTINES 6-57

ZTXCLS (LUH, FIND, IERR)
Inputs:

LUN I Logical unit number
FIND I Index in FTAB lor LUN

Output:
IERR I Error return code: 0 => no error

1 => close error
2 => lile already closed in FTAB
3 => both errors
4 => inputs error

6.7.49 ZTXIO
Read/write the next sequential line from /to a text file.

ZTXIO (OPER, LUI,
Inputs:

OPER C*4
LUI I
FIVD I

Input/output:
LIIE C*(*)

Output:
IERR I

FIID, LIIE, IERR)

Operation code (’READ’ or
Logical unit number
Index in FTAB lor LUI

’WRIT*)

Line ol text. For VRIT, ZTXIO writes the lull
string including any trailing blanks. Use ITRIM
and substring notation in the call il you desire
only up to the last non-blank (which is usually
prelerable!). On READ, adequate size must be
declared in calling routine.

Error return code: 0 => no error
1 => lile not open
2 => end ol lile
3 => input error
4 => other I/O error

6.7.50 ZTXOPN
Open a text file.

ZTXOPI (OPCODE, LUN, FIND, OUTFIL, APPEND, IERR)
Inputs:

OPCODE
LUN
OUTFIL
APPEND

Outputs:
FIND
IERR

0 4 Open 1 or * READ' or ’WRIT'
I Logical unit number
048 Physical lile name
L II true append new text to end ol old lile.

(OPCODES’WRIT' only).

I Index in FTAB lor LUN
I Error return code: 0 => no error

1 => error in inputs
2 => LUH already in use
3 => no room lor LUN in FTAB
4 => trouble translating logical
5 => lile already exists
6 => open error

6-58 CHAPTER 6. DISK FILES

6.7.51 ZUVPAK
Routine to pack uv data with magic value blanking. One AIPS logical uv data record is processed at a time.

ZUVPAK (ICORR, VISII, WTSCL, VISOUT)
Inputs:

ICORR I lumber of correlator values in data
VISII R(3,*) Unpacked uv data as real, imag and weight per

correlator.
Output:

WTSCL R(2) "Weight" and "scale" random parameters for the
packed record.

VISOUT R(*) Packed visibility data with local magic value
blanking.

6.7.52 ZUVXPN
Routine to expand packed uv data to unpacked form. One AIPS logical uv data record is processed at a
time.

ZUVXPI (ICORR, VISII, WTSCL, VISOUT)
Input8:

ICORR I lumber of correlator values in data
VISII R(*) Packed visibility data with local magic value

blanking.
WTSCL R(*) "Weight" and "scale" random parameters for the

packed record.
Output:

VISOUT R(3,*) Unpacked uv data as real, imag and weight per
correlator.

6.7.53 ZWAIT
Wait until an asynchronous I/O operation completes.

ZWAIT (LUI, FIID, IBUFF, IERR)
Inputs:

LUI I Logical unit number
FIID I Index in FTAB to file control block
IBUFF I Buffer # to wait for (1 or 2)

Output:
IERR I Error return code: 0 => no error

1 => LUI not open in FTAB
2 => error in inputs
3 => I/O error
4 => end of file
7 => wait service error

C hapter 7
H igh Level U tility R outines
7.1 Overview
There are a number of high level AIPS utility routines which merit special attention. Many of these routines
do complex, but. common, operations on data or image files, such as gridding uv data or doing 2-D FFTs.
Since many of the routines do a great deal of computation, most use the array processor.

Many of these routines make heavy use of commons or the values in catalog header records for control
and internal communication. A number of these routines will create scratch and/or output files if necessary.
Several general and somewhat overlapping categories of routines are discussed below.

7.2 File Specification
The routines described in this chapter use several methods to specify the input, output, and scratch files.
For cataloged files the file is usually specified by a disk number and a catalog slot number. For scratch files
an index in arrays SCRVOL and SCRCNO in the common from include DFIL.INC is passed. The indicated
values from SCRVOL and SCRCNO are the disk and catalog slot numbers of the scratch files. These values
are filled in by SCREAT when the files are created.

A common convention for the routines described in this chapter is that a disk and “catalog slot” number
are passed as call arguments and if the disk number is zero and the “catalog slot” number is positive then
the file is a scratch file and the “catalog slot” number is the index in SCRVOL and SCRCNO. Several of the
routines in this chapter also allow optional creation of output and/or scratch files.

7.3 Data Calibration and Reform atting Routines
The variety of different uv data formats, especially different polarization types, allowed in AIPS uv data
bases complicates handling of uv data. In addition, uncalibrated multi-source uv data files need to have
calibration, editing and selection criteria applied. A pair of routines allows simplified read access to either
single- or multi-source uv data files. A short description is given here and the details of the subroutine calls
are given at the end of this chapter. These routines do not use the array processor.

• UVGET sets up, selects, reformats, calibrates, edits either single- or multi-source data files.
• CALCOP. After set up by UVGET, CALCOP can be used to process the entire selected contents of a

file to another file.

7.4 Operations on Images
These operations are those performed on entire image files. A short description is given here and the details
of the subroutine calls and interface COMMONs are given at the end of this chapter.

7-1

7-2 CHAPTER 7. HIGH LEVEL UTILITY ROUTINES

• DSKFFT is a disk-based, two dimensional FFT.
• GRDCOR normalizes and corrects an image for the gridding convolution used to grid the image. Used

in conjunction with UVGRID and DSKFFT.
• APCONV convolves two images.

7.5 UV M odel Calculations
A system of routines is available to compute the Fourier transform of a model, given as either CLEAN or
Gaussian components or an image, at the u,v and w locations of the data in a uv data file and to either
subtract the model values from the observed values or divide the model values into the observed values.
These routines make heavy use of COMMONS. A short description is given here and the details of the
subroutine calls and interface COMMONs are given at the end of this chapter.

• UVMDIV divides model visibilities derived from CLEAN or Gaussian components or images into a uv
data set.

• UVMSUB subtracts model visibilities derived from CLEAN or Gaussian components or images from
a uv data set.

7.6 Image Formation
Routine MAKMAP makes an image or a dirty beam given a uv data set. The data may be either calibrated or
uncalibrated (raw) data and calibration and various selection criteria may be (optionally) applied. MAKMAP
makes heavy use of COMMONs and the array processor. The details of the call sequence and interface
COMMONs are given at the end of this chapter.

7.7 INCLUDES
There are several types of INCLUDE file which are distinguished by the first character of their name.
Different INCLUDE file types contain different types of Fortran declaration statements as described in the
following list.

• Pxxx.INC. These INCLUDE files contain declarations for parameters and the PARAMETER state­
ments.

• Dxxx.INC. These INCLUDE files contain Fortran type (with dimension) declarations, COMMON and
EQUIVALENCE statments.

• Vxxx.INC. These contain Fortran DATA statements.
• Zxxx.INC. These INCLUDE files contain declarations which may change from one computer or instal­

lation to another.

7.7.1 PU V D .INC
C Include PUVD
C Parameters lor uv data

IITEGER MAXAIT, MXBASE, MAXIF, MAXFLG, MAXFLD, MAXCHA
C MAXAIT = Max. no. antennas.

PARAMETER (MAXAHT=45)
C MXBASE - max. no. baselines

PARAMETER (MXBASE= ((MAXAIT*(MAXAIT+1))/2))
C MAXIF=max. no. IFs.

7.7. INCLUDES 7-3

PARAMETER (MAXIF=15)
c MAXFLG= max. no. llags active

PARAMETER (MAXFLG=1000)
c

PARAMETER (MAXFLD=16)
MAXFLD=max. no lields

c MAXCHA=max. no . Ireq. channels.
PARAMETER (MAXCHA=512)

c Parameters lor tables
IITEGER MAXCLC, MAXSIC, MAXAIC, MAXFGC, MAXIXC, MAXSUC,

* MAXBPC, MAXBLC, MAXFQC
c

PARAMETER (MAXCLC=41)
MAXCLC=max no. cols in CL table

c
PARAMETER (MAXSIC=20)

MAXSIC=max no. cols in SI table

c
PARAMETER (MAXARC=12)

MAXAIC=max no. cols in AI table

c
PARAMETER (MAXFGC=8)

MAXFGC=max no. cols in FG table

c
PARAMETER (MAXIXC=7)

MAXIXC=max no. cols in IX table

c
PARAMETER (MAXSUC=21)

MAXSUC=max no. cols in su table

c
PARAMETER (MAXBPC=14)

MAXBPC=max no. cols in BP table

c
PARAMETER (MAXBLC=14)

MAXBLC=max no. cols in BL table

c
PARAMETER (MAXFQC=5)

MAXFQC=max no. cols in FQ table

c End PUVD.

7.7.2 DFIL.INC
C Include DFIL.
C AIPS system catalog and scratch

IITEGER ISCR, SCRV0L(128), SCRCI0(128), IBAD(IO), LUIS(IO),
* ICFILE, FV0L(128), FCI0(128), FRV(128), CCIO
LOGICAL RQUICK
COMMOI /CFILES/ RQUICK, ISCR, SCRVOL, SCRCIO, ICFILE, FVOL, FCHO,
♦ FRV, CCIO, IBAD, LUIS

C End DFIL.

7.7.3 DG D S.INC
C Include DGDS.
C include lor uv modeling

IITEGER SCRBLK(256), KLIBLK(256), MFIELD, FLDSZ(2,MAXFLD),
* CCDISK(MAXFLD), CCCHO(MAXFLD), CCVER(MAXFLD), CNOBEM,
♦ BEMVOL, KSTOK, SCTYPE, VOFF, HSTOK, VCHAHG
LOGICAL DOFFT, MOHEG, DOPTMD, HGRDAT
IITEGER MSUBG(MAXFLD), MCLNG(MAXFLD)
REAL CELLSG(2), FLUXG(MAXFLD), TFLUXG, SSROT, CCROT,

7-4 CHAPTER 7. HIGH LEVEL UTILITY ROUTINES

* XPOFF(MAXFLD), YPOFF(MAXFLD), SCLUG(MAXFLD), SCLVG(NAXFLO),
* SCLUG(NAXFLD), SCLUM, SCLVM, FACGRD, DXCG(MAXFLD),
* DYCG(MAXFLD), DZCG(MAXFLD), OSFX, OSFY,
* PTFLX, PTRAOF, PTDCOF, PARM0D(6)
DOUBLE PRECISION FREQG(MAXCHA)
COMMOI /MAPDES/ FREQG, SCRBLK, KLIBLK,
* CELLSG, SCLUG, SCLVG, SCLWG, SCLUM, SCLVM,
* DXCG, DYCG, DZCG, FLUXG, TFLUXG, XPOFF, YPOFF, SSROT, CCROT,
* FACGRD, OSFX, OSFY, PTFLX, PTRAOF, PTDCOF, PARMOD,
* ICLIG, ISUBG, DOFFT, IOIEG, DOPTMD, IGRDAT,
* MFIELD, FLDSZ, CCDISK, CCCIO, CCVER, CIOBEM, BEMVOL,
* KSTOK, SCTYPE, VOFF, ISTOK, ICHAIG

C End DGDS.

7.7.4 DM PR.INC
C Include DMPR.
C include lor gridding
C and correction routines.
C IOTE: uses PARAMETER in DGDS.IIC

IITEGER IXBEM, IYBEM, IXUIF, IYUIF, IXMAX, IYMAX,
* ICITRX(MAXFLD), ICITRY(MAXFLD), CTYPX, CTYPY, IUVCH, CHUV1,
* ICHAVG, UIFBOX, TVFLD, BORES(MAXFLD), BOBEM, MDISKI, MSEQ
LOGICAL DOZERO, DOTAPE, DOUIIF
REAL XFLD(MAXFLD), YFLD(MAXFLD), XPARM(IO), YPARM(IO),
* TAPERU, TAPERV, ZEROSP(S), BMMAX, BMMII,
* FLDMAX(MAXFLD), FLDMII(MAXFLD), BEMMAX,
* XSHIFT(MAXFLD), YSHIFT(MAXFLD), BLMAX, BLMII
CHARACTER MIAME+12, MCLASS*6
DOUBLE PRECISIOI FREQUV
COMMOI /GRDCOM/ FREQUV,
* XFLD, YFLD, XPARM, YPARM, TAPERU, TAPERV, ZEROSP,
* BMMAX. BMMII, FLDMAX, FLDMII,
* BEMMAX, XSHIFT, YSHIFT, BLMAX, BLMII,
* DOZERO, DOTAPE, DOUIIF,
* IXBEM, IYBEM, IXUIF, IYUIF, IXMAX, IYMAX, ICITRX, ICITRY,
* CTYPX, CTYPY, IUVCH, CHUV1, ICHAVG, UIFBOX,
* TVFLD, BORES, BOBEM, MDISKI, MSEQ
COMMOI /GRDCHR/ MIAME, MCLASS

C End DMPR.

7.7.5 DSEL.INC
C Include DSEL.
C Commons lor UVGET use

IITEGER XCTBSZ, XBTBSZ, XPTBSZ, XSTBSZ, XTTSZ, XBPSZ,
* XBPBUF

C XCTBSZ=intemal gain table size
PARAMETER (XCTBSZ=2500)

C XBTBSZ=baseline table size

7.7. INCLUDES 7-5

PARAMETER (XBTBSZ=3500)
c

PARAMETER (XPTBSZ=16384)
XPTBSZ=polar. corr. table size

c
PARAMETER (XSTBSZ-500)

XSTBSZ=Source no. table size

c XTTSZ=Pol. trams, table size
PARAMETER (XTTSZ=MAXIF*MAXCHA*2)

c
PARAMETER (XBPSZ=50)

XBPSZ=max. no. BP time entries

c
PARAMETER (XBPBUF=65536)

XBPBUF-internal BP I/O buffer

c Data selection and control
IITEGER AITEIS(50), IAITSL, ISOUVD, SOUVAI(XSTBSZ), S0UVTI(30),

* ICALVD, CALVAI(XSTBSZ), CALWTI(30), SUBARR, SMOTYP, CURSOU,
* IXKOLS(MAXIXC), IXMUMV(MAXMXC), MVIS, JADR(2,XTTSZ), PMODE,
* LRECII, UBUFSZ, BCHAI, ECHAI, BIF, EIF, IPRMII, KLOCSU, KLOCFQ,
* SELQUA, SMDIV, SM00TH(3), KLOCIF, KLOCFY, KLOCWT, KLOCSC,
* IDECMP, DECMP(2,MAXIF*4), BCHAIS, ECHAIS, FRQSEL, FSTRED,
* FQKOLS(MAXFQC), FQIUMV(MAXFQC)
LOGICAL DOSWIT, DOCVIT, DOAWIT, ALLVT, TRAISL, DOSMTH, ISCMP,
* DOXCOR, DOACOR, DOWTCL, DOFQSL
IITEGER IIXRIO, IIIDEX, FSTVIS, LSTVIS, IFQRIO
REAL TIMRIG(8), UVRIG(2), IITPRM(3), UVRA(2), TSTART, TEID,
* SELFAC(2,XTTSZ), SMTAB(2500), SUPRAD, SELBAI
CHARACTER S0URCS(30)*16, CALS0U(30)*16, ST0KES*4, IITFI*4,
* SELC0D*4
DOUBLE PRECISIOI UVFREQ, SELFRQ

C Flag table info
REAL TMFLST, FLGTID(MAXFLG)
IITEGER IFGRIO
LOGICAL DOFLAG, FLGP0L(4,MAXFLG)
IITEGER FGVER, IUMFLG, FGKOLS(MAXFGC), FGIUMV(MAXFGC),
* KICOR, KICF, KICIF, KICS,
* FLGSOU(MAXFLG), FLGAIT(MAXFLG), FLGBAS(MAXFLG), FLGSUB(MAXFLG),
* FLGBIF(MAXFLG), FLGEIF(MAXFLG), FLGBCH(MAXFLG), FLGECH(MAXFLG)

C CAL table info
REAL GMMOD, CURCAL(XCTBSZ), LCALTM, CALTAB(XCTBSZ,2),
* CALTIM(3), RATFAC(MAXIF), DELFAC(MAXIF), DXTIME, DXFREQ,
* LAMSQ(MAXCHA, MAXIF), IFRTAB(MAXAIT, 2), IFR(MAXAIT)
IITEGER ICLRIO, ICLIIR, MAXCLR, CITREC(2,3)
LOGICAL DOCAL, DOAPPL
IITEGER CLVER, CLUSE, IUMAIT, IUMPOL, IUMIF, CIDS0U(2),

* CLKOLS(MAXCLC), CLIUMV(MAXCLC), LCLTAB, LCUCAL, ICALP1, ICALP2,
* P0L0FF(4,2)

C Baseline table info
REAL LBLTM, BLTAB(XBTBSZ,2), BLFAC(XBTBSZ), BLTIM(3)
IITEGER IBLRIO, IBLIIR
LOGICAL DOBL
IITEGER BLVER, BLKOLS(MAXBLC), BLIUMV(MAXBLC), IBLP1, IBLP2

C Polarization table.
REAL P0LCAL(2,XPTBSZ), PARAGL(2,MAXAIT), PARTIM
IITEGER PARSOU
LOGICAL DOPOL

C Bandpass table

7-6 CHAPTER 7. HIGH LEVEL UTILITY ROUTINES

DOUBLE PRECISION BPFREQ(MAXIF)
REAL PBUFF(XBPBUF), TIMEIT(XBPSZ), BPTIM(3), LBPTIM, CHIBHD
CHARACTER BPIAME*48
IITEGER IBPRIO, IBPIIR, AITPIT(2), IVISM, IVISS, HVIST
IITEGER BPVER, BPKOLS(MAXBPC), BPIUMV(MAXBPC), IAITBP, IPOLBP,

* IIFBP, ICHIBP, BCHIBP, DOBAID, AITEIT(XBPSZ.NAXAIT),
* BPDSK, BPVOL, BPCIO, USEDAI(MAXAIT), BPG0T(2),
* KSICF, KSICIF, KSICS, MXAIUM

C Channel 0 stuff
IITEGER FSTVS3, LREC3, LSTVS3, IREAD3, FSTRD3, KL0CW3,
* KL0CS3, IDECN3, DECM3(2,MAXIF*4), BIID3, RECI03, LEIBU3
LOGICAL ISCMP3, DOUVII

C File specification.
IITEGER IUDISK, IUSEQ, IUCIO, IULUI, IUFIID, ICLUI, IFLUI,

* IXLUI, IBLUI, IPLUI, IQLUI, LUISBP, BPFIID, CATUV(256),
* CATBLK(256)
REAL USEQ, UDISK
CHARACTER UIAME*12, UCLAS*6, UFILE*48

C I/O buffers
IITEGER CLBUFF(1024), FGBUFF(512), IXBUFF(512), BLBUFF(512),

* BPBUFF(32767), FQBUFF(512)
REAL UBUFF(8192)

C Character common
COMMOI /SELCHR/ SOURCS, CALSOU, STOKES, IITFI, SELCOD, UIAME,
* UCLAS, UFILE, BPIAME

C Common for UVGET use
C Data selection and control

COMMOI /SELCAL/ UVFREQ, SELFRQ,
* USEQ, UDISK, TIMRIG, UVRIG, IITPRM, UVRA, TSTART, TEKD, UBUFF,
* SELFAC, SMTAB, SUPRAD, SELBAI,
* IIXRIO, IIIDEX, FSTVIS, LSTVIS, IFQRIO,
* DOSWIT, DOCWIT, DOAWIT, ALLWT, TRAISL, DOSMTH, ISCMP, DOXCOR,
* DOACOR, DOVTCL, DOFQSL,
* CLBUFF, FGBUFF, IXBUFF, BLBUFF, BPBUFF, FQBUFF,
* IUDISK, IUSEQ, IUCIO, IULUI, IUFIID, ICLUI, IFLUI, IXLUI,
* IBLUI, IPLUI, IQLUI, LUISBP, BPFIID, CATUV, ANTENS, IAHTSL,
* ISOUVD, SOUVAI, SOUVTI, ICALVD, CALVAI, CALVTI,
* SUBARR, SMOTYP, CURSOU, IXKOLS, IXIUMV, FQKOLS, FQHUMV,
* MVIS, JADR, PMODE,
* LRECII, UBUFSZ, BCHAI, ECHAI, BIF, EIF, IPRMIH, KLOCSU,
* KLOCFQ, SELQUA, SMDIV, SMOOTH, KLOCIF, KLOCFY, KLOCWT,
* KLOCSC, IDECMP, DECMP, BCHAIS, ECHAIS, FRQSEL, FSTRED

C FLAG table info
COMMOI /CFMIIF/ TMFLST, FLGTID, IFGRIO, DOFLAG, FLGPOL,

* FGVER, IUMFLG, FGKOLS, FGIUMV, KICOR, KICF, KHCIF, KHCS,
* FLGSOU, FLGANT, FLGBAS, FLGSUB, FLGBIF, FLGEIF, FLGBCH, FLGECH

C CAL table info
COMMOI /CGIIHF/ GMMOD, CURCAL, LCALTM, CALTAB, CALTIM, RATFAC,
* DELFAC, DXTIME, DXFREQ,
* ICLRIO, ICLIMR, MAXCLR, CITREC,
* DOCAL, DOAPPL,
* CLVER, CLUSE, IUMAIT, IUMPOL, NUMIF, CIDSOU, CLKOLS, CLIUMV,
* LCLTAB, LCUCAL, ICALP1, ICALP2, POLOFF,
* LAMSQ, IFRTAB, IFR

7.8. ROUTINES 7-7

C BL table info
COMMOI /CBLIIF/ LBLTM, BLTAB, BLTIM, BLFAC,
* IBLRIO, IBLIIR,
* DOBL,
* BLVER, BLKOLS, BLIUMV, IBLP1, IBLP2

C Pol. table
COMMOI /CPLIIF/ POLCAL, PARAGL, PARTIM, PARSOU, DOPOL

C BP table
COMMOI /CBPIIF/ BPFREQ,

* PBUFF, TIMEIT, BPTIM, LBPTIM, CHIBID,
* IBPRIO, IBPIIR, AITPIT, IVISM, IVISS, IVIST,
* BPVER, BPKOLS, BPIUMV, IAITBP, IPOLBP, IIFBP, ICHIBP, BCHIBP,
* DOBAID, AITEIT, BPDSK, BPVOL, BPCIO, USEDAI, BPGOT,
* KSICF, KSICIF, KSICS, MIAIUM

C Channel 0 common
COMMOI /CHIZ/ FSTVS3, LREC3, LSTVS3, IREAD3, FSTRD3, KL0CV3,

* KL0CS3, IDECM3, DECM3, BIID3, RECH03, LEIBU3,
* ISCMP3, DOUVII

C
COMMOI /MAPHDR/ CATBLK

C End DSEL.

7.7.6 D U V H .IN C
C Include DUVH.
C If you change this include you
C must also change common
C /CATHDR/ in DBCOI
C Include for uv header info

IITEGER IVIS
IITEGER ILOCU, ILOCV, ILOCV, ILOCT, ILOCB, ILOCSU, ILOCFQ,

♦ JLOCC, JLOCS, JLOCF, JLOCR, JLOCD, JLOCIF, IRPARM, LREC,
* ICOR, IICS, IICF, IICIF, ICORO, TYPUVD
CHARACTER S0URCE*8, IS0RT*2
DOUBLE PRECISIOI FREQ, RA, DEC
COMMOI /UVHDR/ FREQ, RA, DEC, IVIS, ILOCU, ILOCV, ILOCW, ILOCT,
* ILOCB, ILOCSU, ILOCFQ, JLOCC, JLOCS, JLOCF, JLOCR, JLOCD,
♦ JLOCIF, IICS, IICF, IICIF, ICORO, IRPARM, LREC, ICOR, TYPUVD
COMMOI /UVHCHR/ SOURCE, ISORT

C End DUVH.

7.8 Routines
7.8.1 APC O NV
APCONV is a disk based, two dimensional convolution routine. The image to be convolved and the FFT of
the convolving function are passed to APCONV along with two scratch files. All are specified as pointers to
the arrays in the common (/C FILES/) from INCLUDE DFIL.INC. NOTE: Uses AIPS LUNs 18, 23, 24, 25.

A P C O N V (M X , M Y , L I , L W 1 , L W 2 , L O , L C , F A C T O R , J B U F S Z , B U F F I , B U F F 2 ,

7-8 CHAPTER 7. HIGH LEVEL UTILITY ROUTINES

* BUFF3, SMAX, SMIN, IERR)
Inputs:

MX I The number ol columns in the input image (must be
a pover ol 2).

MY I The number ol rovs in the input image.
LI I File number in /CFILES/ ol input.
LV1 I File number in /CFILES/ ol vork lile no. 1

size = (4*HX x NY+2).
LV2 I File number in /CFILES/ ol vork lile no. 1

size = (4*NX x NY+2).
LO I File number in /CFILES/ ol output.
LC I File number in /CFILES/ ol FFT ol convolving In.

size = (4*MX x MY+2).
FACTOR R Normalization lactor lor convolving lunction; i.e

is multiplied by the translom ol the convolving
lunction

JBUFSZ I Size ol BUFFI,2,3 in AIPS bytes. Should be
large, at least 8192 vords.

Output:
BUFFI R(*) Working buller
BUFF2 R(*) Working buller
BUFF3 R(*) Working buller
SMAX R Maximum value in the output lile.
SMIN R Minimum value in the output lile.
IERR I Return error code, 0 => OK, othervise error.

7.8.2 CALCOP
Routine to copy selected data from one data file to another optionally applying calibration and editing
information. The input file should have been opened with UVGET. Both files will be closed on return from
CALCOP. Note: UVGET returns the information necessary to catalog the output file. The output file will
be reduced in size if necessary at completion of CALCOP. Makes heavy use of common /C FILES/ from
INCLUDE DFIL.INC.

CALCOP (DISK, CNOSCR, BUFFER, BUFSZ, IRET)
Inputs:

I Disk number lor cataloged output lile.
II .LE. 0 then the output lile is a /CFILES/
scratch lile.

R(*) Vork buller lor vriting.
I Size ol BUFFER in bytes.

Input via common: (DUVH.IIC)
length ol vis. record in R vords.

DISK

BUFFER
BUFSZ

LREC
NRPARM

In/out:
CNOSCR

In/out via common:
CATBLK 1(256)

MVIS I
Output:

number ol R random parameters.

Catalog slot number lor il cataloged lile;
(DFIL.INC) scratch lile number il a scratch
lile,
IF DISK=CN0SCR=0 then the scratch is created.
On output - Scratch lile number il created.

Catalog header block Irom UVGET
on output vith actual no. records
(DUVH.IIC) Mumber of vis. records.

7.8. ROUTINES 7-9

IRET I Error code: 0 => OK,
> 0 => failed, abort process.

Usage notes:
(1) UVGET with OPCODEs’IHIT’ MUST be called before CALCOP to setup

for calibration, editing and data translation. If an output
cataloged file is to be created this should be done after the
call to UVGET.

(2) Uses AIPS LUH 24

7.8.3 DSKFFT
DSKFFT is a disk based, two dimensional FFT. If the FFT all fits in AP memory then the intermediate
result is not written to disk. Input or output images in the sky plane are in the usual form (i.e. center at
the center, X the first axis). Input or output images in the uv plane are transposed (v the first axis) and
the center-at-the-edges convention with the first element of the array the center pixel. NOTE: Uses AIPS
LUNs 23, 24, 25. Makes use of commons in INCLUDE DFIL.INC.

DSKFFT (HR, HC, IDIR, HERM, LI, LW, LO, JBUFSZ, BUFFI,
* BUFF2, SMAX, SMIH, IERR)

Inputs:
HR I The number of rows in input array (# columns in

output). Vhen HERM is TRUE and IDIR=-1, HR is
twice the number of complex rows in the input file

HC I The number of columns in input array (# rows in
output).

IDIR I 1 for forward (+i) transform, -1 for inverse (-i)
transform.
If HERM = .TRUE, the follwing axe recognized:

IDIR=1 keep real part only.
IDIR=2 keep amplitudes only.
IDIR=3 keep full complex (half plane)

HERM L Vhen HERM = .FALSE., this routine does a complex to
complex transform.
Vhen HERM = .TRUE, and IDIR = -1, it does a
complex to real transform. Vhen HERM = .TRUE, and
IDIR = 1, it does real to complex.

LI I File number in (DFIL.IHC) of input.
LV I File number in (DFIL.IHC) of work file (may equal LI)
LO I File number in (DFIL.IHC) of output.
JBUFSZ I Size of BUFFI, BUFF2 in bytes. Should be large

at least 4096 R words.
Output:

BUFFI
BUFF2
SMAX
SMIH
IERR

R(*) Working buffer
R(*) Vorking buffer
R For HERM-.TRUE, the maximum value in output file.
R For HERM=.TRUE. the minimum value in output file.
I Return error code, 0 => okay, otherwise error.

7.8.4 GRDCOR
GRDCOR normalizes and corrects for the gridding convolution function used in gridding uv data to make
the image. Uses AIPS LUNs 18 and 19

GRDCOR (IFIELD, DOGCOR, DISKI, CHOSCI, DISKO, CMOSCO,
* MAPMAX, MAPMIN, JBUFSZ, BUFFI, BUFF2, BUFF3, IRET)

7-10 CHAPTER 7. HIGH LEVEL UTILITY ROUTINES

Input:
IFIELD I The subfield number, if = 1 the histogram is

zero filled first.
If IFIELD = 0 the input is assumed to be
a beam.

DOGCOR L If TRUE, do gridding convolution correction.
DISKI I Input file disk number for catalogd files,

.LE. 0 => /CFILES/ scratch file.
CHOSCI I Input file catalog slot number or /CFILES/

scratch file number.
DISKO I Output file disk number for catalogd files,

.LE. 0 => /CFILES/ scratch file.
CIOSCO I Output file catalog slot number or /CFILES/

scratch file number.
JBUFSZ I Size in bytes of buffers. Dimension of

BUFFI,2,3 must be at least 4096 words.
From commons: (Includes DGDS, DNPR, DUVH)

BEMMAX R Sum of the weights used in gridding, used
to normalize images.

CTYPX.CTYPY I Convolving function types for RA and Dec
XPARN(lO) R Convolving function parameters for RA

XPARM(l) = support half width.
YPARM(IO) R Convolving function parameters for Dec.
B0RES(16) I Block offset desired in output file for

an image, 1 per field. (1 rel.)
BOBEM I Block offset desired in output file for

am beam. (1 rel.)
IGRDAT L If FALSE get map size, scaling etc. parms

from the model map cat. header. If TRUE
then the values filled in by GRDAT must
already be filled into the common.

The following must be provided if IGRDAT is .TRUE.
FLDSZ(2,*) I Dimension of map in RA, Dec (cells)
ICITRX,ICITRY(*) I The center pixel in X and Y for each

field.
Output:

MAPMAX R The maximum value in the resultant image.
KAPMII R The minimum value in the resultant image.
BUFFI R Vorking buffer
BUFF2 R Working buffer
BUFF3 R Vorking buffer
IRET I Return error code. 0= V o * error otherwise

7.8.5 M AKM AP
MAKMAP makes a image or a dirty beam given a uv data set. The data may either calibrated or uncalibrated
(raw) d a ta an d ca lib ra tio n an d various selection c rite ria m ay be (o p tio n a lly) app lied . D a ta in an a rb itra ry
sort order can be processed although only “TB” ordered data can be calibrated or edited.

The weights of the data may (optionally) have the uniform weighting correction made.
The visibilities are convolved onto the grid using the convolving function specified by CTYPX, CTYPY,

XPARM, YPARM. The defaults for these values are filled in by a call to GRDFLT. The gridded data is
phase rotated so that the map center comes out at location ICNTRX, ICNTRY. If requested, a uv taper
is applied to the visibility weights before gridding. If necessary, a three dimension phase reference position
shift is done.

7.8. ROUTINES 7-11

Multiple channels may be gridded onto the same grid; a technique calles bandwidth synthesis. This
bandwidth synthesis (BS) process may use the SCRWRK file. For bandwidth synthesis both the CNOSCO
and SCRWRK files should be big enough for an extra m rows, where m is the half width of the X convolving
function. Zero spacing flux densities are gridded if provided.

The final image will be normalized and (optionally) corrected for the effects of the gridding convolution
function.

The input and output files are specified by either disk number and catalog number or as pointers in
the /CFILES/ common from INCLUDE DFIL.INC. Input uv data file in UV file CNOSCI, DISKI. Output
image file in image fije CNOSCO, DISKO and may optionally be created as a scratch file.

Communication is through commons in INCLUDES DSEL.INC, DGDS.INC and DMPR.INC.
Uses buffer UBUFF from the UVGET commons (include DSEL.INC)
MAKMAP (IFIELD, DISKI, CNOSCI, DISKO, CVOSCO, SCRGRD, SCRWRK,

* CHANUV, CHANIM, DOCREA, DOIHIT, DOBEAM, DOSEL, DOGCOR,
BUFFER, IRET)* JBUFSZ,

Inputs:
IFIELD
DISKI

CHOSCI

DISKO

CNOSCO

SCRGRD

SCRWRK

CHANUV

CHAIIM
DOCREA
DOIIIT

DOBEAM

DOSEL

DOGCOR

JBUFSZ

From commons:
MFIELD

FLDSZ(2,*)

I Field number to map, if 0 then make a beam.
I Input file disk number for cataloged files,

.LE. 0 => /CFILES/ scratch file.
I Input file catalog slot number or /CFILES/

scratch file number.
I Output file disk number for cataloged files,

.LE. 0 => /CFILES/ scratch file.
I Output file catalog slot number or /CFILES/

scratch file number. If DOCREA is FALSE and
DISK0=0 and CN0SC0=0 a scratch file is created.

I Grid scratch file number, will be set if the
file is created, (DOINIT=TRUE)

I Work scratch file number, will be set if the
file is created, (DOINIT=TRUE)

I Channel number to grid. If DOSEL=TRUE
then this is 1-rel wrt the selected data.

I Channel number of output image.
L If TRUE, Create/catalog output image file.
L If TRUE, initialize scratch files, set defaults

for convolving functions. Should
be TRUE on first call, and FALSE there after.

L If TRUE a grid the beam before gridding the
field. See useage notes.

L If true, data need to be reformatted to a
single Stokes' type. If TRUE, the cataloged
file NAME, CLASS etc should be filled into
UNAME, UCLAS, UDISK, USEQ in common /SELCAL/

L If TRUE, correct image for gridding
convolution correction function.
(Normally .TRUE.)

I Size in bytes of buffers. Dimension of
BUFFER must be at least 4096 R.

(Includes DGDS and DMPR)
I The number of fields vhich are going to

to be imaged (excluding any beam).
MUST be filled in.

I Dimension of map in RA, Dec (cells) of each
field. MUST be completely filled in before the
D0INIT=TRUE call if the output file (either

12 CHAPTER 7. HIGH LEVEL UTILITY ROUTINES

DOUHIF

HCHAVG

UNFBOX
CTYPX,CTYPY
XPARM(IO)

YPARM(IO)
UVRHG(2)

XSHIFT(16)

YSHIFT(16) R

C*4

L
R

image or scratch) is to be created or zeroed
if the files already exist.
If TRUE, apply Uniform weighting. Should be
TRUE on only the first call, otherwise it will
be applied again.
Humber of channels to grid together for
bandwidth synthesis.
Half width of unif. wt. counting box size.
Convolving function types for RA and Dec
Convolving function parameters for RA
XPARM(l) = support half width.
Convolving function parameters for Dec.
Minimum and maximum baseline lengths in
1000's wavelengths. 0*8 => all
Shift in X (after rotation) in asec.
in projected coordinates. 1 per field.
Shift in Y (after rotation) in asec.
in projected coordinates. 1 per field.
Stokes types wanted.
'I’.’Q'.’U'.’V'.’R’.'L'
If true then do zero spacing flux.
Zero spacing flux, l->flux density (Jy)
5 -> weight to use.
polarization.
The total flux density removed from the data,
this will be subtracted from the zero spacing
flux before gridding.
True if taper requested.
TAPER (to 30'/,) in u and v (kilolamda)
Dimension (cells) of the map in RA and Dec
to be used to set uniform weighting.
(should be min. of FLDSZ)

The following must be provided if D0SEL is .FALSE.:
CATBLK(256) I Catalog header for uv data input file.

(only used on D0IHIT=TRUE call)
The following must be provided if D0CREA is .TRUE, (includes DMPR,
DGDS)
MHAME C*12 Output image name.
MCLASS C*6 Output image class.

(If more than 1 field the last 2 char
sure used to encode the field number)

I Desired image file output disk
I Desired image file output sequence no.

The following must be provided if the output file is to be created;
either by setting D0CREA=TRUE or DISK0=CH0SC0=0.

STOKES

D0ZER0
ZEROSP(B)

TFLUXG

D0TAPE L
TAPERU.TAPERV R
HXUHF,HYUHF I

MDISK
MSEQ

FLDSZ(2,*)
HXBEM.HYBEM
CELLSG(2)
XSHIFT(16)
YSHIFT(16)

ICHTRX,ICHTRY(*) I

Dimension of map in RA, Dec (cells)
Dimension (cells) of beam.
The cell spacing in X and Y in axcseconds.
Shift in X (after rotation) in asec.
in projected coordinates. 1 per field.
Shift in Y (after rotation) in asec.
in projected coordinates. 1 per field.
The center pixel in X and Y for each
field. 0 values cause the default.

7.8. ROUTINES 7-13

The following must be provided il DOCREA is FALSE and output
liles already exist. (Includes DGDS).

CCDISK(16) I Disk numbers ol the output images.
(Must be zeroed il not lilled in.)

CCCH0(16) I Catalog slot numbers ol output images.
(Must be zeroed il not lilled in.)

The folloving must be provided il DOSEL is .TRUE.
(Includes DSEL.INC)

UNAME C*12 AIPS name ol input lile.
UCLAS C*6 AIPS class ol input lile.
UDISK R AIPS disk ol input lile.
USEQ R AIPS sequence ol input lile.
FGVER I FLAG lile version number, il .le. 0 then

VO flagging is applied.
SOURCS(l) C*16 Hame ol desired source.
TIMRIG(8) R Start day, hour, min, sec, end day, hour,

min,sec. 0's => all
STOKES C*4 Stokes types vanted.

*I,,,Q,,,U,,*V,,*R,,,L*
BCHAK I First channel number selected, 1 rel. to lirst

channel in data base. 0 => all
ECHAH I Last channel selected. 0=>all
BIF I First IF number selected, 1 rel. to lirst

IF in data base. 0 => all
EIF I Last IF selected. 0=>all
DOCAL L 11 true apply calibration, else not.

The lolloving must be provided il DOCAL is TRUE.
AITENS(SO) I List ol antennas selected, 0=>all,

any negative => all except those specilied
GAUSE I GAII (CL or SH) lile version number to use.

Output:
DISKI I UV data lile disk il data relormatted.
CHOSCI I Reformatted uv data scratch lile number

to be used in subsequent calls.
DISKO I Output image lile disk number il output lile.

created and/or cataloged (DOCREA=TRUE
or input DISKO-O and CI0SC0=0).

CMOSCO I Output image lile catalog slot number
or scratch lile number il output lile created.

SCRGRD I Grid scratch lile number, vill be set il the
lile is created, (DOINIT=TRUE)

SCRVRK I Vork scratch lile number, vill be set il the
lile is created, (DOIHIT=TRUE)

DOSEL L Set to FALSE il data relormatted.
DOBEAN L Set to FALSE.
DOIHIT L Set to FALSE.
BUFFERS) R Vorking buller
IRET I Return error code. 0=>0K, error otherwise.

Output in Common: (1

DOUMIF L Set to FALSE il unilorm veighting applied.
UBUFSZ I Buffer size for UBUFF (UVGET buffer)
MHAME C*12 Output image name, (defaults applied)
MCLASS C*6 Output image class (defaults applied)
MDISK I Desired image file output disk

14 CHAPTER 7. HIGH LEVEL UTILITY ROUTINES

(defaults applied)
MSEQ I Desired image lile output sequence no.

(defaults applied)
FLDMAX(*) R Maximum pixel value in field.
FLDMII(*) R Minimum pixel value in field.

The following are filled in if a output file is created:
CCDISK(16) I Disk numbers of the output images.
CCCN0(16) I Catalog slot numbers of output images.

Useage Votes:
1) The input uvdata file is, with one exception, assumed to be
accurately described by the contents of CATR and the common
/UVHDR/ (include DUVH). The exception is that the u, v and
w may refer to a different frequency. The reference frequency for
the u,v and w terms is taken from the input CATBLK in the DOIVIT
TRUE cedi unless the data is reformatted (DOSEL=TRUE).
In this latter case this frequency is obtained from UVGET call.
If DOSEL = TRUE the input value of CATBLK is ignored.

2) Information about the output image is obtained from the
catalog header for the relevant file. If MAKMAP makes the
output file this information is filled in. If MAKMAP does not
make the output image file then this information must be filled
in before hand. Routine IMCREA will help do this. Vote: even
scratch files sure cataloged and thus have a catalog header.
If MAKMAP does not create the output files, CCDISK(IFIELD) and
CCCVO(IFIELD) should give their disk and catalog slot number
before the call to MAKMAP.
3) only one polarization can be processed and the input data
to the gridding routine is assumed to be in the desired Stokes'
type (i.e. I, Q, U, V etc.).

If DOSEL = TRUE the input data will be selected, calibrated
and reformatted as specified in common (include DSEL).
Only Stokes' types I,Q,U,V,R,L should be used.

Multiple channels may be gridded together a la bandwidth
synthesis by specifying VCHAVG > 1. One channel of several
channels may be gridded specified by CHAVUV.

4) If DOSEL=FALSE on the first call (i.e. the data is not
reformatted), the random parameters in the data should include,
in order, u, v, w, weight (optional), time (optional) and baseline
(optional). While the last are optional and not used, the last
words of random parameters are used as work space and, if they
are missing, u, v, and w may be clobbered. The weights are
required but may be passed either as random parameters or as
part of the regular data array, CATR should tell which.
If DOSEL=TRUE is used these conditions will be satisfied.

5) The necessary image normalization constant for proper
normalization of the FFTed image is produced only by gridding the
beam. If a beam is to be made, it should be done first; in this
case DOBEAM should be FALSE in all calls. If a beam is not
desired then the first call to MAKMAP should have DOBEAM TRUE and
FALSE on subsequent calls. Vote MAKMAP sets DOBEAM to FALSE.
6) Much of the control information used by MAKMAP is passed to and
stored in commons. The calling routine should have the following
includes:
DHDR.IVC, DUVH.INC, DFIL.IVC, DMPR.IVC, DGDS.IVC, DSEL.INC

7.8. ROUTINES 7-15

IOTE: care should be taken that the contents ol these commons
not be clobbered by overlaying.
7) II calibration is applied then up to 8 map and 3 non map liles
will be open at once; this should be rellected in the call to
ZDCHII and the dimension ol FTAB in the main routine ol the
calling program. MAKMAP may use AIPS LUHs 16, 17, 18, 19,
20, 21, 22, 23, 24, 25, 28, 29, 30.

7.8.6 UVGET
Subroutine to obtain data from a data base with optional application of flaging and/or calibration infor­
mation. Reads data with a large variety of selection criteria and will reformat the data as necessary. Does
many of the startup operations, finds uv data file etc, reads CATBLK and updates the DUVH.INC com­
mons to reflect the output rather than input data. Most of the input to UVGET is through the commons
in DSEL.INC; the initial (default) values of these may be set using routine SELINI.

UVGET (OPCODE, RPARM, VIS, IERR)
Input:

OPCODE C*4 Opcode:
’IIIT1 => Open liles Initialize I/O.
'READ' -> Read next specilied record.
'CLOS* => Close liles.

Inputs via common /SELCAL/ (Include DSEL.IKC)
AIPS name ol input lile.
AIPS class ol input lile.
AIPS disk ol input lile.
AIPS sequence ol input lile.
Hames ol up to 30 sources, *=>all
First character ol name *-* => all except
those specilied.
Start day, hour, min, sec, end day, hour,
min, sec. 0’s => all
Minimum and maximum baseline lengths in
1000’s wavelengths. 0*8 => all
Stokes types wanted.
’I'.’Q’.'U'.'V'.’R'.'L'.’iqu'.’iquv’
* ’=> Leave data in same lorm as in input.
First channel number selected, 1 rel. to lirst
channel in data base. 0 -> all
Last channel selected. 0=>all
First IF number selected, 1 rel. to lirst
IF in data base. 0 => all
Last IF selected. 0=>all
II true apply calibration, else not.
II true then correct lor leed polarization
based on antenna lile inlo.
True il smoothing requested.
True il autocorrelations are requested.
True il weight calibration wanted.
True il FREQSEL random parm present (lalse)
Delault FQ table entry to select (-1)
Bandwidth (Hz) to select (-1.0)
Frequency (Hz) to select (-1.0)
>0 il bandpass calibration. (-1)
Hame ol scratch lile set up lor BP1s.

UIAME C+12
UCLAS C*6
UDISK R
USEQ R
S0URCS C(30)*16

TIMRIG R(8)

UVRIG R(2)

STOKES C*4

BCHAH I

ECHAV I
BIF I

EIF I
D0CAL L
D0P0L L

D0SMTH L
D0AC0R L
D0VTCL L
D0FQSL L
FRQSEL I
SELBAH R
SELFRQ D
D0BAVD I
BPHAME C*48

16 CHAPTER 7. HIGH LEVEL UTILITY ROUTINES

L True if smoothing requested, (false)
R(3) Smoothing parameters (0.0s)
R Integration time (days). Used when applying

delay corrections to correct for delay error.
1(50) List of antennas selected, 0=>all,

any negative => all except those specified
I Subarray desired, 0=>all
I FLAG file version number, if < 0 then

HO flagging is applied. 0 => use highest
numbered table.

I Cal (CL or SN) file version number to apply.
I BL Table to apply .le. 0 => none
I BP table to apply .le. 0 => none

R(*) Random parameter array of datum.
R(3,*) Regular portion of visibility data.
I Error code: 0 => OK,

-1 => end of data
>0 -> failed, abort process.

Output in commons in DSEL.IVC: The default values will be filled in
if null values were specified.

UVFREQ D Frequency corresponding to u,v,w
CATBLK 1(256) Catalog header block, describes the output

data rather than input.
NPRMIN I Mumber or random parameters in the input data.
TRANSL L If true translate data to requested Stokes'
CITREC 1(2,3) Record counts:

(1*2,1) Previously flagged (partly, fully)
(1*2,2) Flagged due to gains (part, full)
(1*2,3) Good selected (psurt, full)

ISCMP L True if input data is compressed.
KL0CSU I 0-rel

file.
random parm. pointer for source in input

KL0CFQ I 0-rel
file.

random parm. pointer for FQ id in input

KL0CIF I 0-rel
file.

random parm. pointer for IF in input

KL0CFY I 0-rel
file.

random parm. pointer for freq. in input

KLOCWT I 0-rel
input

random
file.

parm. pointer for weight in

KLOCSC I 0-rel random parm. pointer for scale in
input file.

Usage notes:
1) Include DSEL.INC should be declared in the main program or at a

level that they will not be overlaid while UVGET is in use (ie.
between the 'INIT' and 'CLOS' calls). SELINI cam be used to
initialize the control variables in these commons.

2) If no sorting is done UVGET uses AIPS luns 25, 28, 29 and 30
(1 map, 3 non map files). If sorting is done (usually possible)
then 8 map and 3 non map files sure used (mostly on 0PC0DE='INIT')
and LUNs 16,17,18,19,20,21,22,23,24,25, 28,29,30,40,42,43,44,45.

3) OPCODE = 'INIT' does the following:
- The catalgue data file is located and the catalog header

DOSMTH
SMOOTH
DXTIME

ANTENS

SUBARR
FGVER

CLUSE
BLVER
BPVER

Output:
RPARM
VIS
IERR

7.8. ROUTINES 7-17

record is read.
- The source lile (il any) is read.
- The index lile (il any) is initialized.
- The llag lile (il any) is initialized and sorted il necessary

(Must be in time order).
- The gain table (il any) is initialized.
- The bandpass table (il any) is initialized
- The smoothing convolution table (il any) is initialized
- I/O to the input lile is initialized.

The lolloving LUVs may be used but vill be closed on
return: 16, 17, 18, 19, 20, 21, 22, 23, 24

The lolloving LUVs may be used but vill be open on
return: 25 (uv data), 28 (VX table), 29 (CL or SN table),

30 (FG table), 40 (BL table), 41 (BP table).
VO data are returned lrom this call.

4) OPCODE = ’READ' reads one visibility record properly selected,
translormed (e.g. I pol.), calibrated and edited as requested
in the call vith OPCODE * 'IVIT'

5) OPCODE = 'CLOS' closes all liles used by UVGET vhich are still
open. Vo data are returned.

6) II DOCAL is true then the common array CVTREC vill contain the
counts ol records vhich are good or lully or partly llagged
both previously and due to llagged gain solutions.

7) Only one subaxray can be calibrated at a time il DOPOL is true.
This is because the polarization inlormation lor only one
subarray is kept at a time.

7.8.7 UV M D IV
UVMDIV divides model visibilities derived from CLEAN or Gaussian components or images into a uv data
set. The weights of the data returned will be the input values multiplied by the model amplitude.

A variety of model computation methods are available; if a single pass through VISDFT, the DFT routine,
is not sufficient then the data is copied to a scratch file which has space for a second copy of the data, the
model values are computed and summed in these locations and finally then model is divided into the data
and written to the output file.

Extensive use is made of commons to communicate with UVMDIV, in particular /M APDES/ (include
DGDS.INC) contains most of the critical information about the model components files or images to be
used. Common /U V H D R/ (DUVH.INC filled in by UVPGET) is presumed to describe the uv data files.

If the data is not sorted ’X*’ and MODEL=l then UVMSUB will use the DFT irregardless of the value
of METHOD.

Also fills in frequency table (NCHANG, FREQG) in INCLUDE DGDS.INC
UVMDIV (DISKI,

* VCHAV, C
Input8:
DISKI

CVOSCI

DISKO

CV0SC0

MODEL

CNOSCI, DISKO, CV0SC0, MODEL, METHOD, DOMSG, CHANEL,
TBLK, JBUFSZ, FREQID, BUFFI, BUFF2, BUFF3, IRET)

Input disk number, il .LE. 0 then input is a
scratch lile.
Input lile catalog slot number or /CFILES/
scratch lile number.
Output disk number, il .LE. 0 then output is a
scratch lile.
Output lile catalog slot number or /CFILES/
scratch lile number. II .LE. 0 then one ol the
internal scratch liles vill be used.
1=> clean components, 2=>image.

7-18 CHAPTER 7. HIGH LEVEL UTILITY ROUTINES

METHOD
DOMSG
CHAHEL
HCHAH
CATBLK(256)
JBUFSZ

FREQID I
BUFFI,2,3 R
>uts from C0MM0H
MFIELD I
HSUBG(*) I
HCLHG(*) I
CCDISK(*) I
CCCH0(*) I
CCVER(*) I
FACGRD R

SCTYPE C*2
HOHEG L

DOPTMD L

PTFLX R
PTRAOF R

PTDCOF R
>ut from C0MM0H
LREC I
HVIS I
HRPARM I

Output:
CIOSCO

IRET

l=>gridded, -1=>DFT, 0=>chose.
If true give percent done messages lor DFT.
First uv data channel to subtract.
Humber of frequency channels to subtract.
Uv data catalog header record.
Size of BUFFI,2,3 in bytes, must be at least 4096
words.
Freq ID number, if it exists.
Vork buffers.
/MAPDES/:
Humber of fields
Humber of components already sub.
Humber of components per field.
Disk numbers for CC files
Catalog slot numbers for CC files.
CC file version number for each field.
Value to multiply clean component fluxes
by before subtraction (negative for sum).
Scratch file type to create, (eg. ’SC')
Stop reading comps, from a file past the first
negative component. (DFT modeling OHLY)
Use the point model specified by PTFLX, PTRAOF,
PTDCOF (DFT modeling OHLY)
Point model flux density (Jy) (I pol. only)
■Point model RA offset from uv phase center
(asec)
Point model Dec. offset from uv phase center
UVHDR/:
Length of visibility record.
Humber of visibility records.
"Random" parameters before data, cam be used
to skip observed values vhen computing model.

Output file catalog slot number or /CFILES/
scratch file number. Value returned if not
specified in call.
Return error code. 0=>0K, otherwise failed.

7.8.8 UVM SUB
UVMSUB subtracts a CLEAN or Gaussian model or an image from a set of uv data. Extensive use is
made of commons to communicate with UVMSUB, in particular /M APDES/ (include DGDS.INC) contains
most of the critical information about the model components files or images to be subtracted. Common
/UVHDR/ (filled in by UVPGET) is presumed to describe the uv data files.

If the data is not sorted ’X*’ and MODEL=l then UVMSUB will use the DFT irregardless of the value
of METHOD.

Also fills in frequency table (NCHANG, FREQG) in INCLUDE DGDS.INC
UVMSUB (DISKI, CHOSCI, DISKO, CH0SC0, MODEL, METHOD, CHANEL, HCHAH,

* DOSUM, DOMSG, CATBLK, JBUFSZ, FREQID, BUFFI, BUFF2, BUFF3,
♦ IRET)
Inputs:
DISKI I Input disk number, if .LE. 0 then input is a

scratch file.
CHOSCI I Input file catalog slot number or /CFILES/

8. ROUTINES

DISKO

CIOSCO

MODEL
METHOD
CHAIEL
HCHAH
DOSUM

DOMSG
CATBLK(256)
JBUFSZ

FREQID

scratch file number.
Output disk number, if .LE. 0 then output is a
scratch file.
Output file catalog slot number or /CFILES/
scratch file number.
1=> clean components, 2=>image.
l=>gridded, -1=>DFT, 0=>chose.
First uv data channel to subtract.
Humber of frequency channels to subtract.
If true then sum component fluxes in FLUXG,
TFLUXG.
If true give percent done messages for DFT.

Uv data catalog header record.
Size of BUFFI,2,3 in bytes, must be at least 4096
vords.
Freq ID number, if it exists.

Inputs from C0MM0H /MAPDES/:
MFIELD I lumber of fields
ISUBG(*) I lumber of components already sub.
ICLHG(*) I lumber of components per field.
CCDISK(*) I Disk numbers for CC files
CCCV0(*) I Catalog slot numbers for CC files.
CCVER(*) I CC file version number for each field.
FACGRD R Value to multiply clean component fluxes

by before subtraction (negative for sum).
HOVEG L Stop reading comps, from a file past the first

negative component. (DFT modeling OHLY)
DOPTMD L Use the point model specified by PTFLX, PTRAOF,

PTDCOF (DFT modeling OHLY)
PTFLX R Point model flux density (Jy) (I pol. only)
PTRAOF R Point model RA offset from uv phase center

(asec)
PTDCOF R Point model Dec. offset from uv phase center

Input from C0MM0H /UVHDR/ (DUVH.IHC):
LREC
HVIS
HRPARM

BUFFI,2,3
Output:

IRET

I Length of visibility record.
I Humber of visibility records.
I "Random" parameters before data, can be used

to skip observed values vhen computing model.
I Vork buffers.

Return error code. 0=>0K, otherwise failed.

C H APTER 7. HIGH LEVEL U T IL IT Y ROUTINES

C hapter 8
W aW a (“E asy”) I /O
8.1 Overview
There is a fairrly coherent set of routines which attem pt to hide many of the nasty details mentioned in the
previous chapters. They perform most catalog file operations for the programmer and hide the details of
calls to COMOFF, MINIT, MDISK, ZCREAT, et al. In many cases these cost memory and/or speed, but
for computation-bound algorithms these are probably not important.

Any task which uses the WaWa package and creates scratch files should include the /C FILES/ common
given in the INCLUDE DFIL.INC. The values of IBAD should be filled in using the contents of AIPS adverb
BADDISK. This allows the scratch file creation routine to avoid putting files on user selectable disks.

8.2 Salient Features of the WaWa I/O package
1. Each main task calls a single setup routine; a maximum of 5 simultaneously open image files is allowed.
2. All the parameters needed to specify a cataloged file are gathered into a single array, called a namestring.
3. The WaWa package hides the interface between the parameter passing subroutines (e.g., GTPARM)

and the I/O routines.
4. Many subroutine calls are combined so that e.g., ZPHFIL, CATDIR, CATIO, and MINIT, more or

less disappear from sight.
5. A general clean-up subroutine for closing files and destroying scratch files is provided.
6. “Hidden” buffers large enough to hold a 2048-point image row are provided. These make double

buffered I/O look more like FORTRAN I/O on the large mainframes.

8.3 Nam estrings
In order to reduce the many arguments required for the fundamental AIPS I/O routines needed to specify the
desired file the WaWa package uses a namestring. With a namestring it is possible to refer to any cataloged
file by a character string. The name string used for WAWA I/O is a CHARACTER string of length 36 of
the following form:

1:12 C*12 Name
13:18 0 6 Class
19:20 0 2 Physical type
21:27 17 Sequence number
28:29 12 Disk number
30:36 17 User id number

8-1

8.5. THINGS WAWA CAN’T DO WELL OR A T ALL 8-3

• MAPMAX - Find MAX & MIN of a map and enter into catalog.
• FILNUM - Find WaWa pointers to open file (used for history).
• GETHDR - Retrieve catalog header for an open cataloged file.
• SAVHDR - Save header in catalog for an open cataloged file.
• HDRINF - Retrieve specified items from map header.
• TSKBEG - Combination of IOSET and some task startup chores.
• TSKEND - Some task cleanup chores.

8.5 Things WaWa Can’t Do W ell or At A ll
There are several applications for which the WaWa routines are inadequate. The non-map I/O routines are
much inferior to the other AIPS non-map I/O routines. Other applications, such as uv data handling and
plotting, are not provided for at all. History files may be written in tasks using WaWa I/O , but it requires
digging in the the WaWa commons. The following sections suggest possible courses of action.

8.5.1 Non-m ap files
The WaWa package is not overly useful for non-map I/O at the moment. The user will want to consult the
chapter on disk I/O and the routines TABINI and TABIO for more useful software.

8.5.2 U V data files
No help here. See the chapter on disk I/O .

8.5.3 Plotting
The WaWa package has no plotting capability. See the chapter in this manual on plotting.

8.5.4 History
The WaWa package has no capacity to copy or write into history files. See the chapter on tasks and
in particular the routines HISCOP and HIADD. In addition, you will need to determine the catalog slot
numbers of the relevant files from the /WAWAIO/ common variable FILTAB(POCAT,*) (file must be open
to do so). Use FILNUM. The task HGEOM provides a useful example of history writing within the WaWA
I/O system.

8.5.5 More than 5 1 /0 Stream s at a Tim e
If a task may need to have more than 5 map or non-map I/O streams open at the same time, then serious
restructuring of the WaWa commons is needed. You are better off ignoring WaWa I/O and using the standard
I/O described in the chapter on disk I/O .

8.5.6 I/O to Tapes
No help here. See the chapter on device I/O .

8-4 CHAPTER 8. WAWA (uEASY”) I/O

8.6 Additional goodies and “helpful” hints
A number of features have been added to the WaWa package to increase it usefulness. These will be discussed
in the following sections. Also on occasion the programmer will have to find some of the things the WaWa
package has hidden; a discussion of where WaWa hides useful information is also given in the following
sections.

8.6.1 Use o f LUNs
The LUN used does convey meaning. Legal values range from 9 through 30. However, values 16 through 25
convey an implication that the file is a map file, value 9 is reserved for the TV, and values 10 through 15
may get you into trouble. Use 26-30 for non-maps.

8.6.2 WaWa com m ons
The WaWa package hides many things in several commons. Frequently the programmer needs to know the
contents of these commons. The following sections describe the contents of the commons.

Information common
The primary common in the WaWa package is obtained by the INCLUDE DITB.INC.. The text of this and
other relevant includes are shown at the end of this chapter. The name of the primary WaWa I/O common
is /WAWAIO/ and its contents are as follows:

WRIT C*4 'WRIT* I/O control strings
REED C*4 ’READ’
CLVR C*4 »CLVR’ Catalog control strings
CLRD C*4 *CLRD’
REST C*4 ’REST*
OPEN C*4 »0PEI»
CLOS C*4 'CLOS*
SRCH C*4 * SRCH'
INFO C*4 ’IIFO*
UPDT C*4 »UPDT»
Fill C*4 'Fill * 1/0 control string
CSTA C*4 * CSTA * Catalog control string
INDEF R *IIDE' Blanked floating point pixel

SUBIAM C*6(8) Subroutine names: CATDIR, CATIO, MIIIT,
MDISK, ZCLOSE, ZCREAT, ZDESTR, ZOPEI

LIVT I Number integer values in one 10 buffer
LREAL I Number real values in one 10 buffer
NFIL I Number simultaneous open map files
EFIL I Size of FILTAB (5 ♦ NFIL) - number of

simultaneous files of all types
QUACK I 0 => restart AIPS at end, 1 => already done

POLUN I FILTAB pointer for LUI value (1)
POFIN I FILTAB pointer for I/O table pointer value(2)
P0V0L I FILTAB pointer for disk number value (3)
POCAT I FILTAB pointer for cat location value (4)
P0I0P I FILTAB pointer for opcode number (5):

values 1 => write, 2=> read, <0 => new win

8.6. ADDITIONAL GOODIES AND “HELPFUL” HINTS 8-5

POASS

POBPX
PODIN
POIAX

POBLC
POTRC
PODEP

POBL

I FILTAB pointer for is it associated file
(6): 1 => assoc, 0 => main lile

I FILTAB pointer lor bytes/pixel code (7)
I FILTAB pointer for # axes (8)
I FILTAB pointer for # points on each of 7

axes (9)
I FILTAB pointer for Bottom left corner (16)
I FILTAB pointer for Top right corner (23)
I FILTAB pointer for current depth in I/O on

axes 2 - 7 (30), Area (36) used for integer
map (input) blanking code.

I FILTAB pointer for block offset start I/O
in the current plane (37)

FILTAB(38,EFIL) I Table to hold all the values pointed
at by the PO... pointers above: (e.g.,
the cat number is = FILTAB (POCAT, n)
where n is found by finding that
FILTAB (POLUV, n) which - desired LUV
(Only for open files!!)

Catalog and Buffer Commons
There are 2 other commons which Me used heavily. They are /M APHDR/ which is a work area for map
headers containing the equivalenced arrays CATBLK, CATH, CATR, and CATD. The contents of this
common are changed frequently by the basic WaWa I/O routines, but it can be used, for example, to get the
catalog header record after a call to FILOPN or OPENCF. This common may be obtained by the include
DCAT.INC. The other common, called /WAWABU/ from INCLUDE DBUF.INC, contains:

RMAX R(10) 1-5 used by MAPIO for scale factor
RMIN R(10) 1-5 used by MAPIO for offset
WBUFF 1(256) scratch buffer for catalog access
RBUF R(*) I/O buffers for map I/O.

The areas RMAX and RMIN for subscripts 6 through 10 could be used by a programmer, for example, to
keep track of max/m in. If no map file is currently open, RBUF is a large and useful scratch area of core.

Declaration of Commons
If a WaWa I/O task (or any other task for that matter) is to be overlaid on some computers, then all
commons must be declared in the main program. For the WaWa system, this may be done by the following
list of includes:

INCLUDE ’INCS:DBUF.INC’
INCLUDE ’INCS:DITB.INC’
INCLUDE ’INCS:DDCH.INC’
INCLUDE ’INCS:DHDR.INC’
INCLUDE ’INCS:DMSG.INC’
INCLUDE ’INCS:DCAT.INC’
INCLUDE ’INCS-.DFIL.INC’

WaWa buffer/table sizes
WaWa I/O common
System parms
Header pointers
Messages, POPS #, ...
Catalog header
Gives BADDISK

8-6 CHAPTER 8. WAWA (“EASY”) I/O

8.6.3 Error return codes
A uniform system of error code numbers has been adopted in the WaWa I/O package. These codes are
consistent with the error codes used by many I/O routines, but not with the other error codes in the
multitudinous collection of AIPS routines. They are:

1 => File not open
2 => Input parameter error
3 => I/O error ("other")
4 => End of file (hardware generated, see 9)
5 => Beginning of medium
6 => End of medium
7 => buffer too small
8 => Illegal data type
9 => Logical end of file (software generated, not hardware)
10 => Catalog operation error
11 => Catalog status error
12 => Map not in catalog
13 => EXT file not in catalog
14 => lo room in header/catalog
16 => Illegal window specification
17 => Illegal window specification for writing a file
21 => Create: file already exists
22 => Create: volume unavailable
23 => Create: space unavailable
24 => Create: "other"
25 => Destroy: "other"
26 => Open: "other"

8.7 INCLUDES
There we several types of INCLUDE file which are distinguished by the first character of their name.
Different INCLUDE file types contain different types of Fortran declaration statements as described in the
following list.

• Pxxx.INC. These INCLUDE files contain declarations for parameters and the PARAMETER state­
ments.

• Dxxx.INC. These INCLUDE files contain Fortran type (with dimension) declarations, COMMON and
EQUIVALENCE statments.

• Vxxx.INC. These contain Fortran DATA statements.
• Zxxx.INC. These INCLUDE files contain declarations which may change from one computer or instal­

lation to another.

8.7.1 D BUF.INC
C Include DBUF.

REAL RBUF(20480), RMAX(IO), RMIN(IO)
IITEGER WBUFF(256), IBUF(l)
COMMOI /VAVABU/ RMAX, RMII, WBUFF, RBUF
EQUIVALENCE (RBUF(l), IBUF(l))

C End DBUF.

8.8. DETAILED DESCRIPTIONS OF THE SUBROUTINES 8-7

8.7.2 DCAT.INC
C Include DCAT.
C catalog header conunon

IITEGER CATBLK(256)
REAL CATR(256)
HOLLERITH CATH(256)
DOUBLE PRECISIOI CATD(128)
COMMOI /MAPHDR/ CATBLK
EQUIVALEICE (CATBLK, CATR, CATH, CATD)

C End DCAT.

8.7.3 DFIL.INC
C Include DFIL.
C AIPS system catalog and scratch

IITEGER ISCR, SCRV0L(128), SCRCI0(128), IBAD(IO), LUIS(IO),
* ICFILE, FV0L(128), FCI0(128), FRW(128), CCIO
LOGICAL RQUICK
COMMOI /CFILES/ RQUICK, ISCR, SCRVOL, SCRCIO, ICFILE, FVOL, FCIO,
* FRV, CCIO, IBAD, LUIS

C End DFIL.

8.7.4 DITB.IN C
C Include DITB,
C Vava I/O common

REAL IIDEF
CHARACTER VRIT*4, REED*4, CLWR*4, CLRD*4, REST*4, 0PEI*4, CL0S*4,
* SRCH*4, IIF0*4, UPDT*4, FIII*4, CSTA*4, SUBIAM(8)*6
IITEGER LIIT, LREAL, IFIL, EFIL, QUACK,

* POLUI, POFII, POVOL, POCAT, P0I0P, POASS, POBPX,
* PODIM, POIAX, POBLC, POTRC, PODEP, POBL,•FILTAB(38,10)
COMMOI /VAVCHR/ VRIT, REED, CLVR, CLRD, REST, OPEI, CLOS,
* SRCH, IIFO, UPDT, Fill, CSTA, SUBIAM
COMMOI /VAVAIO/ IIDEF, LIIT, LREAL, IFIL, EFIL, QUACK,
* POLUI, POFII, POVOL, POCAT, POIOP, POASS, POBPX,
* PODIM, POIAX, POBLC, POTRC, PODEP, POBL, FILTAB

C End DITB.

8.8 D etailed Descriptions of the Subroutines
8.8.1 A2WAWA
WaWa 10 system: Packs Wawa-IO Namestring having format A12, A6, A2, 17, 12, 17 for NAME, CLASS,
PTYPE, SEQ, VOL, USID from its component parts

A2VAVA (IAME, CLASS, SEQ, PTYPE, VOL, USID, IAMEST)
Inputs:

8-8 C H APTER 8. WAWA (“E A S Y ”) I /O

IAME C*12 lile name
CLASS C*6 lile class (6 chars)
SEQ I lile sequence number
PTYPE C*2 lile physical type (2 chars)
VOL I lile disk number
USID I user number

Outut:
IANEST C*36 VaVa lamestring

8.8.2 CLENUP
WaWa 10 system: Close all files opened with FILOPN. Destroy scratch files.

CLEIUP
no arguments

8.8.3 FILCLS
WaWa IO system: Close a file opened by FILOPN, taking care of catalog bookkeeping and flush last write
buffers if any.

FILCLS (LUI)
Inputs:

LUI I Logical unit no. ol lile to close

8.8.4 FILCR
WaWa 10 system: Create an associated or scratch non-map file

FILCR (IAKS, TYPE, IBLOCK, VER, ERROR)
Inputs:

IANS

TYPE

In/out:
IBLOCK

Outputs:
VER
ERROR

C*36 IAMESTRI1G specifying catalog block to which
lile is associated: IAME,CLASS,CATTYPE,SEQ,VOL,
USID. IANE,CLASS,USID ignored lor scratch liles.

C*2 Associated lile type lor non-scratch liles
Ignored lor scratch liles

I lumber ol 512-type blocks in lile: in requested,
out actual

I Version number ol lile created
I Error code: 0 => ok

10 => catalog error
12 => map not in catalog
14 => no room lor another ext. type
21 => ZCREAT: lile already exists
22 => ZCREAT: volume unavailable
23 => Disk space unavailable
24 => Other create errors

Common: /MAPHDR/ modiiiied extensively lor scratch lile create
a little lor associated lile

8.8. DETAILED DESCRIPTIONS OF THE SUBROUTINES 8-9

8.8.5 FILDES
WaWa 10 system: Destroy the file specified by NAMS, TYPE, VER

FILDES (HAMS, ASSOC, TYPE, VER. ERROR)

C*36 VAMESTRIVG specifying catalog block to which
file is associated: VAME,CLASS,CATTYPE.SEQ.VOL.
USID. IAME,CLASS,USID ignored for scratch files.

L File is an associated file,i.e. not cataloged
ASSOC will be taken as FALSE if IAMS(8)='SCxx>

0 2 Associated file type; ignored if ASSOC is false
I Associated file version; ignored if ASSOC is fal

I Error code: 0 => o.k.
10 => catalog error
11 => *ap too busy to destroy
12 => map not found in catalog
13 => extension file not in catalog
25 => other destroy errors

8.8.6 FILIO
WaWa 10 system: Read or Write a single record from /to a non-map file which has been opened with FILOPN
(256 integers). Adds a ’READ’ status to catlg on first call.

FILIO (OP, LUV , REC, DATA, ERROR)
Inputs:

OP 0 4 READ or VRIT
LUV I File Logical Unit Vumber
REC I Vhich record out of file (1-relative)

In/Out:
DATA(256) I Data record to input or output

Output:
ERROR I Error return from ZFI3

0 => o.k.
1 => file not open
2 => input error e.g. file not opened for

desired operation
3 => i/o error
4 => end of file
5 => beginning of medium
6 => end of medium (from 10 system)
10 => catalog error

8.8.7 FILNUM
WaWa 10 system: find the FILTAB entry for a file

F I U T U M (L U H , I F I L , E R R O R)
Inputs:

LUV I Logical unit number of file
Outputs:

IFIL I Entry number (2nd subscript to FILTAB)

Inputs:
VAMS

ASSOC

TYPE
VER

Outputs:
ERROR

8-10 CHAPTER 8. WAWA (“EASY”) I/O

ERROR I Error code: 0 => ok, 1 => lile not open

8.8.8 FILOPN
WaWa 10 system: Open the file specified by NAMS and associate it with Logical Unit number LUN.

FILOPI (LUH, HAMS, ASSOC, TYPE, VER, ERROR)
Inputs:

LUH I Logical Unit Humber
ASSOC L Fils is an associated lile,i.e. not cataloged

ASSOC will be taken as FALSE il IAMS(8)='SCxx’
TYPE C*2 Associated lile type; ignored il ASSOC is lalse
VER I Associated lile version; ignored il ASSOC is lal

In/Out:
HAMS C*36 HAMESTRIH6 specilying catalog block to which

lile is associated: HAME,CLASS,CATTYPE.SEQ,VOL,
USID. HAME,CLASS,USID ignored lor scratch liles.

Outputs:
ERROR I Error code: 0 => o.k.

2 => input error: bad or in use LUI
10 => catalog error
12 => map not lound
13 => extension lile not in catalog
14 => no room in FILTAB
22 => volume not available
26 => open error

8.8.9 G ETH DR
WaWa 10 system: Retrieve the catalog header block for a file that is already open (via FILOPN or OPENCF)

GETHDR (LUI, CAT, ERROR)
Inputs:

LUI I Logical Unit lo. ol lile
Outputs:

CAT(256) I Returned Header block
ERROR I Error code: 0 => ok

1 => lile not open
10 => catlg error

8.8.10 H DRINF
WaWa IO system: Return a number of items from the header block of an open, cataloged file.

HDRIIF (LUI, WTYPE, SITEM, IITEM, OUTPUT, ERROR)
Inputs:

LUH I Logical Unit Ho. of file
WTYPE I Data type: 1 = 1 , 2 = R 3 = D 6 = C*8
SITEM I Index # ol 1st item wanted, indexed in a

system appropriate to WTYPE (R lor C*8)
IITEM I lumber ol items requested

Outputs:
0UTPUT(*) ??? Array into which items go
ERROR I Error code: 0 => ok

8.8. DETAILED D ESCRIPTIO N S OF TH E SU BRO U TIN ES 8-11

1 => file not open
2 => nonsense input parms
10 => catlg read error

Common /MAPHDR/ receives the header read from catlg file

8.8.11 H2WAWA
WaWa 10 system: packs AIPS adverb values (Holleriths, floating points) into a WaWa 10 Namestring having
format A12, A6, A2, 17, 12, 17 for NAME, CLASS, PTYPE, SEQ, VOL, USID

H2VAVA (VAME, CLASS, SEQ, PTYPE, VOL, USID, HAMEST)
Inputs:

IAME H(3) file name
CLASS H(2) file class (6 chars)
SEQ R file sequence number
PTYPE H file physical type (2 chars)
VOL R file disk number
USID R user number

Output:
VAMEST C*36 VaVa lamestring

8.8.12 IOSET
This routine initializes the I/O tables; calls ZDCHIN; allocates buffer space for map I/O to 5 files adequate
for 2048 real or 1024 complex pixels per line.

IOSET

no calling arguments

8.8.13 M APCR
WaWa IO system: Create and catalog a map whose catalog description is defined by the namestring NAMS,
and whose size is specified by the KIDIM and KIN AX parameters in the Header.

MAPCR (01AMS, IAMS,
Inputs:

HDR, ERROR)

01AMS C*36

In/Out:
I AMS

Outputs:
ERROR

C*36

HDR 1(256)

lamestring of related "input" file - must be
complete and correct; used to complete defaults
in VANS (typically the input file namestring).

Hamestring *AME:CLASS:TYPE:SEQ:VOL:USID of map to
be created; can contain blanks, wildcards...
Catalog header for map, containing enough info to
define size. The updated header is returned for
real images, not SC files

Error code: 0 => ok
10 => catalog error
14 => no room in catalog
21 => file already exists
23 => create error

8-12 CHAPTER 8. WAWA (“E A SY”) I/O

8.8.14 MAPIO
WaWa 10 system: Do I/O from a file opened using FILOPN to area DATA

MAPIO (OP, LUI, DATA, ERROR)
Inputs:

OP C*4 'READ* or ’WRIT *
LUI I File logical unit no

Input/output:
DATA(*) R Data in or out

Output:
ERROR I Error code: 0 => ok

1 => lile not open
2 => bad input pans

3-6 => 10 errors
8 => Bad data type (ie vrite integers)
9 => 10 is complete (soltvare

generated EOF)
10 => catalog read/vrite error
11 => Catalog status error

8.8.15 M APM AX
W aW alO system: Determine max and min of a map opened by FILOPN and update CAT block accordingly

MAPMAX (LUI, XMAX, XMII, ERROR)
Inputs:

I Logical Unit lo. ol mapLUI
Outputs:

XMAX
XMII
ERROR

R Maximum in map
R Minimum
I Error codes: 0 => ok

1 => lile not open
2 => input parms error

3-6 => 10 errors
10 => catalog read/... error

8.8.16 M APW IN
WaWaIO system: Set or reset parameters for a window on MAP I/O File must be opened first with FILOPN.

MAPVII (LUI, BLC, TRC, ERROR)

Logical Unit Vo. ol lile (must be open)
Lover bounds ol map subrectangle
Upper bounds ol map subrectangle

Error codes: 0 => ok
1 => lile not open
10 => catalog error
16 => bad vindov specilication

Inputs:
LUI I
BLC R(7)
TRC R(7)

Outputs:
ERROR I

17 => partial rov specified on vrite.

8.8. DETAILED D ESCRIPTIO N S OF THE SUBROUTINES 8-13

8.8.17 M APX Y
WaWa IO system: Set windows so that MAPIO returns a subrectangle of the top plane of a map

MAPXY (LUI, VII, ERROR)
Inputs:

LUI I Logical Unit lo. ol an open map
VII R(4) Corners ol rectangle. II VII(1)=0.0, whole top

plane is taken.
Output:

ERROR I As returned by MAPVII

8.8.18 OPENCF
WaWa IO system: Open a MAIN (i.e. Cataloged) file and associate it with Logical Unit Number LUN.

OPEICF (LUI, IAMS, ERROR)
Inputs:

LUI I Logical Unit lo.
In/out:

IAMS C*36 Catalog identilication IAMESTRIIG:
IAME:CLASS:PTYPE:SEQII:VOL:USID
IAME, CLASS, ft USID ignored il PTYPE = 'SC'.

OUTPUTS:
ERROR I Error codes: 0 => o.k.

Otherwise as returned by FILOPI

8.8.19 SAVHDR
WaWa IO system: Save the catalog header block for a file that is already open (via FILOPN or OPENCF)

SAVHDR (LUI, CATBLK, ERROR)
Inputs:

LUI I Logical Unit lo. ol lile
CATBLK 1(256) Saved Header block

Outputs:
ERROR I Error code: 0 => ok

1 => lile not open
10 => catlg error

8.8.20 TSKBEG
WaWa IO system: Do most of the operations necessary to begin a task: Calls IOSET, calls GTPARM to
get parameters, and, if appropriate, calls RELPOP. For < 5 simultaneously open map files. You should end
with TSKEND.

TSKBEG (PRGIAM, IPARM, RPARM, ERROR)
Inputs:

PRGIAM
IPARM

OUTPUTS:
RPARM
ERROR

C*6 Task name
I lo. ol real parameters passed by AIPS

R(*) Array to receive passed parameters
I Error return: 0 => Okay

0 < ERROR <10 => Error return Irom GTPARM

8-14 CHAPTER 8. WAWA (“EASY”) I/O

8.8.21 TSKEND
WaWa 10 system: Terminate a task, including calls to CLENUP and RELPOP if appropriate. Also close
down messages.

TSKEID (IRET)
Inputs:

IRET I A return code passed to AIPS if task was run
in wait mode: 0 => ok, else => failure.

8.8.22 UNSCR
WaWa 10 system: Destroy all scratch files created by this task.

UISCR
no arguments

8.8.23 WAWA2A
WaWa 10 system: unpacks Wawa-IO Namestring having format A12, A6, A2, 17, 12, 17 for NAME, CLASS,
PTYPE, SEQ, VOL, USID into component parts

VAWA2A (VANEST, VAME, CLASS, SEQ, PTYPE, VOL, USID)
Input:

VaVa lamestringIAMEST 036
Outputs:

IAME 012
CLASS 0 6
SEQ I
PTYPE 0 2
VOL I
USID I

file name
file class
file sequence number
file physical type
file disk number
user number

A ppendix A
A IP S D irectory Structure and
Software M anagem ent
A .l Introduction
This appendix is based on AIPS Memo Number 39. The purpose of Memo 39 was to propose shareable
images for AIPS under VMS. To this end, the authors proposed a revision of the directory structure and
software management tools. This revision has been implemented, whereas shareable load modules in VMS
have not. The model presented for the directory structure has also been adopted for Unix.

This appendix describes the directory structure and the software management tools that a programmer
will need to work in a VMS or Unix environment. The original discussion of shareable load modules has been
dropped, and the other discussion updated to reflect the current realities, especially the Unix implementation.

A .2 Directory Structure
A .2.1 Design Guidelines
The following are some of the guidelines used in devising this scheme.

1. Separate source code from all other system-specific files. This source code directory tree should con­
tain no system-specific object libraries, command procedures etc., as these may well be implemented
differently on different machines.

2. The source code areas should be clearly organized into standard AIPS areas and particular operating-
system or device-specific areas. It is also convenient to allow the existence of a few generic areas for
routines that are not standard, but are useful in various environments.

3. Clarify routine hierarchy to allow shareable images to be sensibly defined and to clearly reflect linking
sequences.

4. The subroutine and program hierarchy should be independent of any object libraries or shareable
images used on a particular system. The source code directories may be assembled into object libraries
etc. in any manner convenient for the system being used.

5. Preserve non-standard areas so that we can keep track of programs which are, or use, non-standard
code.

6. Define search paths to pick up the most suitable version of a routine automatically. For example, the
search should begin with any device-specific routine, then with a generic routine, and finally with a
standard routine. The first one found should be used. This ensures that the most efficient is used,
while allowing less efficient, more general ones to be available.

7. Try to make the structure as logical and consistent as possible.

A -l

A-2 APPENDIX A. AIPS DIRECTORY STRUCTURE AND SOFTWARE MANAGEMENT

A .2.2 Directory Structure
The directory structure requires a hierarchical file system on the host computer. Given this restriction, it
should be easy to implement on various operating systems. It attem pts to divide up the files along the
following lines.

1. Routine hierarchy — i.e., whether a routine makes use of the AP (or vector routines) or TV.

2. Routine type — whether a routine is a general library routine or specific to a single application program.

3. Routine version — whether a routine is standard and works with all implementations, generic and
works with some, or specific and only works with one implementation.

The proposed directory structure uses the first of the above as the primary division of source code. All source
code is contained in five top level areas i.e., areas one level below the AIPS version node (e.g., 150CT85).
These areas are labelled as follows:

1. APL — general utility routines

2. Q — AP (Vector) routines

3. Y — TV routines

4. QY — AP and TV routines (at present only application programs)

5. AIPS — POPS utility routines (may use TV also)

There are a few obvious omissions from this list, such as no attem pt to formalize various graphics, terminal
or network devices. These may also benefit from such a division, but at present AIPS has no suitably general
model available. These may be added later.

These top level areas are each divided in an identical manner into three, although the third is omitted
from the QY and AIPS areas:

1. Programs — application programs. Lower level areas are present for any device-specific programs. A
non-standard area is also provided.

2. Utility routines — library subroutines that may call device-specific routines, but are themselves device
independent. A non-standard area is also provided.

3. Device routines — library subroutines that are device specific. Various generic areas are also included.

In addition to these five source code areas, there are several other top level directory areas. All of these are
now described in more detail. In this discussion, only three operating system branches are shown, but more
can easily be added. Some of these low level areas may be further sub-divided, for example, to allow for
different flavors/vendors of Unix systems.

APL

This area is for utility routines and programs that make no reference to an AP or TV device.

A.2. DIRECTORY STRUCTURE A-3

APL Directories

The DEV branch is for the standard set of Z routines. Many of these have now been made generic for
some operating systems, and these are in the DEV area itself. The lower levels are for true system-specific
versions. The SUB branch is for routines that are in principle system independent. There is a NOTST area
for those which, while not fully following AIPS coding standards, stand a good chance of working on many
systems. The system-specific areas on this branch are for peculiar non-standard routines that are not part of
standard AIPS. The PGM branch is for task programs. It too has non-standard and system-specific areas.

Q

This area is for routines and programs that make use of the AP.

A-4 APPENDIX A. AIPS DIRECTORY STRUCTURE AND SOFTWARE MANAGEMENT

Q Directories

The DEV branch is for the various versions of the Q routines. The DEV area itself is for the most
general version of these, i.e., the PSAP or “Pseudo AP” code. The lower level branches support a variety of
different AP devices and vector hardware, in some cases with generic areas. Note that, because of the search
path mechanism, these low level areas need not contain a full set of Q routines, generic ones from higher
up the tree can be substituted. The SUB branch is for routines which make use of the Q routines, but are
themselves device independent. This includes a non-standard area, but no system-specific ones. The PGM
branch is for tasks which use the “Q” routines.

Y
This area is for routines and programs that make use of the TV.

Y Directories

A.2. DIRECTORY STRUCTURE A-5

This tree is very similar to the Q tree. The only difference is in the device-specific DEV branch. The
generic DEV area is for Y routines that really are implemented in device independent-ways. Note that there
is a difference here between the Q and Y trees — all systems have some kind of “AP” , while some systems do
not have a TV. We therefore need to be able to distinguish generic routines from stubbed routines substituted
when no TV is present. This is the purpose of the STUB area. Y routines for which no generic version is
possible have stubbed versions in the generic DEV area. Those that do have generic versions have stubbed
versions in the STUB area.

QY

This area is for routines and programs that make use of the both the AP and TV. At present, this only
occurs at the program level, so this tree is very simple.

QY Directories

AIPS

This area is for the POPS-level programs and related routines. Several of these make use of the TV device,
but, as they are routines not accessible to tasks, they reside here. The stand-alone service programs are also
stored in this area.

AIPS Directories

Notice that at present, there are no non-standard subroutines and no device- or system-specific subrou­
tines.

A-6 APPENDIX A. AIPS DIRECTORY STRUCTURE AND SOFTWARE MANAGEMENT

Include

This area is for the various include files needed by routines in all the above trees.

Include Directories

The system-specific areas allow array sizes to change between systems, and also permit system-specific
options, such as dependency directives needed by vectorizing compilers.

Help
The HELP tree is very simple, as all help files are in a standard format. This tree consists of a single area.

Load

This area is for load modules, i.e., fully linked programs in a form ready to be run. This is split into a
standard LOAD area and a few alternative areas immediately below (e.g., LOAD.ALT1). These alternate
areas could, for example, be used to keep pseudo-AP versions of programs or versions linked for a second
model of TV display.

Library

This area (LIBR) is for the various subroutine libraries used to build AIPS programs. Note that these have
been moved out of the system-independent source code areas. We may in the future wish to include several
libraries not of AIPS origin along with AIPS. These would enable AIPS programs to make use of some useful
code that is available in the public domain. Such libraries will be included in this area.

Documentation

The DOC area is used to store documentation files (this manual, other coding descriptions) in DOCTXT.
The directory structure is simple:

A.2. DIRECTORY STRUCTURE A-7

DOC

TXT

Documentation Directories

Text files

There are a number of directories which reside above the version specific portion of the AIPS directory tree.
These include AIPSPUBL containing the Cookbook text, AIPSGRIP containing the AIPS gripe system, AIP-
SIONS containing ionospheric monotoring data and AIPSWHO containing mailing lists etc. The directory
structure is shown in the following:

Text Directories

System

This area is used to store the various system-specific tools needed for programming, maintenance and exe­
cution of AIPS.

System Directories

A-8 APPENDIX A. AIPS DIRECTORY STRUCTURE AND SOFTWARE MANAGEMENT

The Unix, and V M S areas are for procedures and files describing system structures and link edit paths.
The L O C A L areas are for local variants (site dependent) on the standard files. INSTALL areas are for
source code shipping/installation procedures and U P D A T E areas are for automatic update procedures (the
so-called “midnight job”).

A .2.3 M nemonics — AREAS.DAT
Programmers always refer to the AIPS directory areas by means of mnemonics. These need to be im­
plemented on various operating systems and it is convenient to store a list of them, complete with their
associated areas, in a file which can be used by the operating system. Below is a copy of this file from
SYSAIPS. It can be used to assign the appropriate mnemonics, or to create a complete directory tree.

| __ _ ______________ _________________________ _______________ __ __________ _ M

! " AREAS.DAT
| _____ __ _ _ _ _ _ _ _ _ _ ______ _ _ _ _ _ _ _ ______ _ _ _ _____ _______t _ | l

! " This file defines the entire AIPS directory structure (relative to M
! " a 'version' directory node) plus the 'logical' associated with "
! " each 'area' (i.e., directory). "
| H »f

! " Unix: The script $SYSUHIX/AREAS uses SSYSAIPS/AREAS.DAT to create "
! " SSYSLOCAL/AREAS.CSH and $SYSLOCAL/AREAS.SH, which contain C shell "
! " and Bourne/Korn shell syntax, respectively, to define the area "
! " logicals in terns of environment variables. The definitions are "
! " toggled between different versions of AIPS by executing $CDOLD, "
! " $CDHEW or $CDTST, which are defined $AIPS_ROOT/LOGIH.CSH and/or
! " $AIPS_ROOT/LOGIN.SH. The AREAS.* environment variables are HOT "
! " required for the execution of AIPS programs, just for AIPS "
! " programming. In fact, having all the area logicals defined takes "
! " up such a large fraction of the available environment space on "
! " some systems that the execution of AIPS programs, Unix commands, "
! " AIPS programming tools and system debuggers cam be impaired. To 11
! " avoid this, it may be necessary to comment out some or all of the M
! " definitions that don't apply to the host implementation. "| M H
! " VMS: AIPS.PROC:ASSHLOCAL.COM uses this file more or less directly "
! " to establish the definitions of area logicals. The definitions "
! " are toggled between different versions of AIPS by executing the "
! " AIPS defined 'VERSI0H' command (see AIPS.PROC:AIPSUSER.COM), e.g., M
! " 'VERSI0H HEW'.

! " Top level directories of source code areas M
I _______ _____________________ _ _ _ __________________ __________ ________

AIP
APL
Q
QY
Y

AIPS
APL
Q
QY
Y

AIPS program areas

'Standard programs"

AIPPGM AIPS.PGM
! "Hon-standard programs"
AIPIOT AIPS.PGM.HOTST
! "Unix non-standard programs"
AIPGUHIX AIPS.PGM.HOTST.UHIX
! "VMS non-standard programs"
AIPGVMS AIPS.PGM.NOTST.VMSi
| I*___________________________ — — —___________________________.__________ ___II
! " AIP subroutine areas - only referenced by AIP* programs "
I _ _ _ _ _ _ _ _ _ _ _ _ _ ____
I
AIPSUB AIPS.SUB;

! " APL program areas - these reference only APL* routines "
| N ______
I
! "Standard programs"
APLPGM APL.PGM
! "Hon-standard programs"
APGHOT APL.PGM.HOTST
! "Unix programs"
APGUHIX APL.PGM.HOTST.UHIX
! "VMS programs"
APGVMS APL.PGM.HOTST.VMSi

! " APL subroutine areas - nothing here references Q or Y-routines "

j
! "Standard routines"
APLSUB APL.SUB
! "Hon-standard routines"
APLHOT APL.SUB.HOTST
! "VMS non-standard routines"
APLHVMS APL.SUB.HOTST.VMS;
• " Z-routine areas "
| _______ _________ _ __________ _________________________________ __ _______________________________________ __ ______________________________ _ _ _ _ » <

I
! "Generic"
APLGEH APL.DEV
! "Generic Unix"
APLUHIX APL.DEV.UNIX
! "Bell Unix"
APLBELL APL.DEV.UHIX.BELL
! "Cray Research Inc"
APLCRI APL.DEV.UNIX.BELL.CRI
! "Masscomp"
APLMASC APL.DEV.UHIX.BELL.MASC
! "Berkeley Unix"

A.2. DIRECTORY STRUCTURE A-9

APLBERK APL.DEV.UNIX.BERK
! "Alliant"
APLALLN APL.DEV.UNIX.BERK.ALLN
! "Convex"
APLCVEX APL.DEV.UNIX.BERK.CVEX
! "NRAQ-VLA Convex local"
APLVLAC1 APL.DEV.UNIX.BERK.CVEX.VLAC1
! "NRAO-CV Convex local"
APLNRA01 APL.DEV.UNIX.BERK.CVEX.NRA01
! "Sun"
APLSUN APL.DEV.UNIX.BERK.SUN
! "VAX"
APLVAX APL.DEV.UNIX.BERK.VAX
• "Generic VMS"
APLVMS APL.DEV.VMS ;
| • __ _____ ____
! " Documentation areas "| • _______ ________________ ____________ ______M
I
DOC DOC
DOCTXT DOC.TEXTi

! " Core dump area "
| I I _ ____ __ _____________________________________ _ _ _____________ __________________________ _________________ _ _ _ _____ _________________ _ _ __________ _____________________ II

J
ERRORS ERRORSI
| _____ ________—______ _ _ _ ______ ________________ M
! " HELP lile area
| I I ____________ ___________ _ _ _ _ _ _ _ _ _ _ _ _ _ _____ _ _ _ _ _ _ _ _________ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ______ _ _ __________ _ ________________ I I

j
HLPFIL HELP;
| I I __
! " History area "
| H _ l *

J
HIST HIST;
| I I ______________________________ __________ __________ __________________ _ _ _ _ _ _ _____________ _ _ _ _ _ ____________ _________________ _______________________ . __________ n

! " INCLUDE lile areasI » » _ _ _ _ ____________ __________ __________________ ______ ______________ _______ _ l l

!
! "Standard INCLUDES"
INC INC
! "Non-standard INCLUDES"
INCNOT INC.NOTST
! "Local"
INCLOC INC.LOCAL
! "Alliant"
INCALN INC.NOTST.ALLN

A-10 APPENDIX A. AIPS DIRECTORY STRUCTURE AND SOFTWARE MANAGEMENT

A.2. DIRECTORY STRUCTURE A -ll

« "Cray Research Inc"
IMCCRI IHC.HOTST.CRI
! "Convex"
IMCVEX INC.NOTST.CVEX
! "VMS"
IICVMS IHC.NOTST.VMS
;

i M__ "
! " Object module areas "
| I I __ ________________________________ __________ __ H

I
» "Subroutine object libraries"
LIBR LIBR
• "Executable modules"
LOAD LOAD
! "Alternate executable modules"
! "Pseudo AP w/wo TV 1"
L0AD1 LOAD.ALT1
! "TV 2 w/wo real AP"
L0AD2 LOAD.ALT2
, "TV 2 w Pseudo AP"
L0AD3 LOAD.ALT3
i

| H__H

! " POPS memory lile area "
i M__ ___ __________________________ ______ ______ ________ ___ __ ___H
i

MEMORY MEMORY
i

i n_______________________ ________________ __________________________ H
! " Q-routine areas (real and pseudo array processor) "i H____________________________ ___ ii
i

! "Generic"
QDEV Q.DEV
» "Generic FPS"
QFPS q.DEV.FPS
! "16 bit FPS"
qFPSie q.d e v.f p s .16B
! "Model 120B FPS"
Q120B q.DEV.FPS.16B.120B
! "Models 5105, 5205 ... FPS"
Q5000 q.DEV.FPS.16B.5000
! "32 bit FPS"
qFPS32 q.DEV.FPS.32B
! "Model 190 FPS"
qi90 q.DEV.FPS.32B.190
» "Generic pseudo AP"
QPSAP q.DEV.PSAP
! "Alliant pseudo AP"
qALH q.DEV.PSAP.ALLH
! "Cray Research Inc pseudo AP"
qCRI q.DEV.PSAP.CRI

A-12 APPENDIX A. AIPS DIRECTORY STRUCTURE AND SOFTWARE MANAGEMENT

"Convex pseudo AP"
QVEX Q.DEV.PSAP.CVEX
;
QVMS Q.DEV.PSAP.VMS
i

"VMS pseudo AP"

! " Programs that reference Q-routines

;
i
QPGM Q.PGM
i
QPGIOT q.PGM.HOTST
;
qPGVMS q.PGM.HOTST.VMS
i

"Standard programs"

"Hon-standard programs"

"VMS programs"

! " Subroutines that relerence Q-routines
;
i
QSUB q . SUB
;
qiOT q.SUB.HOTST
i

"Standard routines"

"Hon-standard routines"

! " Programs that relerence both q-routines and Y-routines
i
i
qYPGM qY.PGM
i
qYPGHOT qY.PGM.HOTST
;
qYPGVMS qY.PGM.HOTST.VMS
i

"Standard programs"

"Hon-standard programs"

"VMS programs"

! " System RUH lile area - uselul procedures lor everyone

I
RUHSYS RUH
;

! " System manager areas
i
;
UPDATE UPDATE
i
SYSAIPS SYSTEM
!
SYSUHIX SYSTEM.UNIX
i

"Midnight job data area"
"Generic"

"Generic Unix"

"Alliant"

A.2. DIRECTORY STRUCTURE A-13

SYSALLI SYSTEM.UNIX.ALLS
! "Cray Research Inc"
SYSCRI SYSTEM.UNIX.CRI
! "Convex"
SYSCVEX SYSTEM.UNIX.CVEX
! "NRAO-VLA Convex local"
SYSVLAC1 SYSTEM.UNIX.CVEX.VLAC1
! "NRAO-CV Convex local"
SYSNRA01 SYSTEM.UNIX.CVEX.NRA01
! "Sun"
SYSSUN SYSTEM.UNIX.SUN
! "UNIX installation"
INSUNIX SYSTEM.UNIX.INSTALL
! "Unix midnight and quarterly"
! "update"
UPDUNIX SYSTEM.UNIX.UPDATE
! "NRAO-CV Convex midnight and"
! "quarterly update"
UPDNRAOl SYSTEM.UNIX.UPDATE.NRA01
! "NRAO-VLA Convex midnight and"
! "quarterly update"
UPDVLAC1 SYSTEM.UNIX.UPDATE.VLAC1
! "Generic VMS"
SYSVMS SYSTEM.VMS
! "Local VMS"
SYSLVAX SYSTEM.VMS.LOCAL
! "VMS installation"
INSVMS SYSTEM.VMS.INSTALL
! "VMS midnight and quarterly"
! "update"
UPDVMS SYSTEM.VMS.UPDATE
! "NRAO-VLA VAXn midnight and"
! "quarterly update"
UPDVLA SYSTEM.VMS.UPDATE.VLAi

! " Y-routine areas
I " --
i
! "Generic"
YGEN Y.DEV
! "ARGS pipe from M70"
YARGS Y.DEV.ARGS
! "Deanza"
YDEA Y.DEV.DEA
! "IIS generic"
YIIS Y.DEV.IIS
! "IIS Model IVAS"
YIVAS Y.DEV.IVAS
! "IIS Model 70"
YM70 Y.DEV.IIS.M70
! "IIS Model 75"
YM75 Y.DEV.IIS.M75

A-14 APPENDIX A. AIPS DIRECTORY STRUCTURE AND SOFTWARE MANAGEMENT

; "Lexidata"
YLEX
i

Y.DEV.LEX
"Lexidata C code"

YLEXC
i

Y.DEV.LEX.LEXC
"SUN Screen Server"

YSSS
;

Y.DEV.SSS
"SSS - SunView *.C"

YSVU
i

Y.DEV.SSS.SVU
"Stubbed"

YSTUB
;

Y.DEV.STUB
"Comtal Vision 1/20

YV20
i

Y.DEV.V20
"Virtual TV"

YVTV Y.DEV.VTV
i

! " Programs that reference Y-routines II

YPGM Y.PGM
"Standard programs"

i
YPGVDEV Y.PGM.VDEV

"Virtual TV program"

j
YPGHOT Y.PGM.NOTST

"Hon-standard programs"
1
YPGVMS
;

Y .PGM.HOTST.VMS
"VMS programs"

! " Subroutines that reference Y-routines M
| _

! "Standard routines"
YSUB Y .SUB
! "Hon-standard routines"
YHOT Y.SUB.HOTST

A .3 File Nam es For Data
As of the 15APR86 version of AIPS, the disk volume field for data files was replaced by a data format version
code in the form of a letter. The letter used for 15APR86 was “A” and this changed to “B” for the 15JAN87
release. It should be quite sometime before we get to “Z” . As an example, the 150CT85 format map file
MA201501.221;1 was renamed to MAA01501.221;1 in the 15APR86 release. As of the 150CT89 release the
revision code has been “C” .

The change has a number of advantages:
1. Data backed up by system utilities (e.g., tar under Unix, BACKUP under VMS) can be restored to a

different disk.
2. Multiple dismountable disk drives are now supported better. Previously, a disk written as AIPS disk

2 and then dismounted always had to be re-mounted as AIPS disk 2.
3. Data from different releases of AIPS with different data formats can coexist peacefully during data-

format transitions. Data with different formats can be distinguished easily by filename.

A.4. VMS DETAILS A-15

4. An intelligent data file format update program (UPDAT) has been written. It can recognize what
version of input data it is being fed and convert the format to the current version.

Files that are shared among users (and between different versions), such as system-parameter files, accounting
files, batch files, etc. are found in the directory pointed to by logical device name DAOO and have a “1” in
the AIPS version letter field (the “1” doesn’t signify anything).

Memory files are stored in the version-specific area, $AIPS_VERSION/MEMORY under Unix and
AIPS-VERSION: [MEMORY] under VMS. These also have a “1” in the AIPS version letter field.

A .4 VM S D etails
The previous sections described the directories that are visible in all versions of AIPS. This section details
the specifics of the VMS implementation.

A.4.1 Object libraries
With the source code directory structure, it is possible for AIPS to use different object library structures with
different operating systems, as is convenient. Below is a list of object libraries suitable for VMS, together
with a list of areas from which they are built. Note that the object library file names have been deliberately
lengthened with the LIB string. This is to prevent any name conflicts with the directory-area mnemonics,
which are listed below in search-path order.

1. APLSUBLIB.OLB from APLSUB
2. APLNOTLIB.OLB from APLNVMS, APLNOT
3. APLVMSLIB.OLB from APLVMS, APLGEN
4. QSUBLIB.OLB from QSUB
5. QNOTLIB.OLB from QNOT
6. QVMSLIB.OLB from QVMS, QPSAP
7. Q120BLIB.OLB from Q120B, QFPS16, QFPS
8. Q5OOOLIB.OLB from Q5000, QFPS16, QFPS
9. Q190LIB.OLB from Q190, QFPS32, QFPS

10. YSUBLIB.OLB from YSUB
11. YNOTLIB.OLB from YNOT
12. YSTUBLIB.OLB from YSTUB, YGEN
13. YM70LIB.OLB from YM70, YIIS, YGEN
14. YM75LIB.OLB from YM75, YIIS, YGEN
15. YDEALIB.OLB from YDEA, YGEN
16. YV20LIB.OLB from YV20, YGEN
17. YIVASLIB.OLB from YIVAS, YGEN
18. AIPSUBLIB.OLB from AIPSUB

A-16 APPENDIX A. AIPS DIRECTORY STRUCTURE AND SOFTWARE MANAGEMENT

When routines are modified, these object libraries are updated by means of a COMRPL procedure. There
are a large number of directories; this means that programmers need to know precisely where a routine
resides. It may be possible to reduce the impact of this by setting up logical names to implement search
paths to find a particular routine. However, initially we have not done this, so as to help ensure that the
programmers are aware of which version of a routine they are modifying, and any consequences it may have.
Second, some routines find their way into more that one object library. This is done deliberately to simplify
linking procedures while still maintaining a single copy of the ultimate source. The necessary intelligence
to replace a routine in multiple libraries has been built into the COMRPL procedure, together with the
intelligence to avoid replacing a device-specific routine in the library with a generic one. Appendix B is
useful in determining in which directory a routine resides.

These object libraries serve two purposes. They can be used directly by a COMTST procedure for
programs to link with directly. This is not the normal mode of operation, but is available for testing
purposes. Normally the object libraries are used to build load modules with the COMLNK procedure.
These procedures are described in detail in section 6.

A .5 A Tutorial for Programmers Using VMS
A .5.1 Initialization and Startup Procedures
LOGIN.PRG
The logical names and symbols needed to program in AIPS can be obtained by executing command procedure
LOGIN.PRG. A programmer should put the following line (substituting the disk used for AIPS at his site
for “AIPS_DISK_NAME”) in his LOGIN.COM file:

$ CAIPS_PROC:LOGIN.PRG
where the logical is defined as

$ DEF AIPS.PROC AIPS_Disk_Name: [AIPS.date.SYSTEM.VMS]

At NRAO, this procedure makes TST the default AIPS-VERSION. Other sites may only have one AIPS-VERSION
(NEW) and may have things set up differently.

AIPS “Version” “Option”
This procedure starts up a given version of AIPS. On NRAO Vaxes, “Version” can be one of OLD, NEW,
or TST. One can also start up AIPS with the following options:
REMOTE - Used to rim AIPS from a TEK graphics terminal.
DEBUG - Run AIPS with the debugger.
LOCAL - Run a private AIPS found in the current default directory.

The DEBUG option works only if the standard AIPS is linked with debug, or if you use the LOCAL option
and you have an AIPS linked with debug in your current default directory.

A .5.2 Compiling and Linking
COMRPL “SubroutineSpec” “Option”
This procedure will preprocess, compile and replace a subroutine or set of subroutines in the proper AIPS
libraries. The “Option” field, if present, MUST follow the “Subroutine Spec” field, rather than precede it.
The parameter “SubroutineSpec” can be a single logical name and subroutine such as APLSUB:CTICS, or
it can be a list of subroutines such as APLSUB.CTICS,COPY,APLNOT:CHKTAB, or it can be a wild-card
such as APLSUB'.CH*.*, or it can be a file containing a list or routines such as @MYLIST.TXT (the

A.5. A TUTORIAL FOR PROGRAMMERS USING VMS A-17

signifies a file). Note that, to specify the directory of the subroutine, you MUST use a logical name, such
as APLSUB, rather than the full directory specification, such as [AIPS.15APR86.APL.SUB]. The procedure
uses the standard AIPS defaults for the compile (FORTRAN) command. You may use any of the valid
FORTRAN options listed at the end of this section. If you want to use more than one option, separate them
with at least one blank. For example, the following command will compile subroutine CHCOPY, replace
it in the standard AIPS library area, produce a listing, and produce no warning messages for undeclared
variables, tabs, and lower case code (the highly deprecated DIRTY option).
$ COMRPL APLSUB:CHCOPY LIST DIRTY

The following examples show how multiple files can be compiled.
$ COMRPL APLSUB:MSGWRT,APLHOT:MXTFLG
$ COMRPL APLSUB:MP2*.FOR

$ COMRPL CMYLIST.TXT

Compile MSGWRT and HXTFLG.
Compile every routine whose
name begins with MP2.
Compile every routine listed
in MYLIST.TXT

COMLNK “ProgramSpec” “Option”
This procedure will preprocess, compile and link a program or set of programs and put them in the AIPS
“LOAD” area. If any alternate areas are set up, such as the pseudo AP area, then modules linked with
alternate libraries will be put in the alternate areas. The “ProgramSpec” may be a list of programs, a
wild-card, or a file containing a list of programs as described in the COMRPL explanation. The “Option”
may be any of the list of options at the end of this section.
COMTST “ProgramSpec” “Option”
This is a version of COMLNK designed for preprocessing, compiling and linking experimental AIPS pro­
grams in a programmer’s own area. This procedure will compile and link a program or set of programs and
put the executable module in the current default directory. This routine also uses an option file “Program-
Name” .OPT, if it exists, or LOCAL.OPT, if it does not. One of these option files MUST be found in the
default directory. Option files are used to specify which libraries and routines to link with a program. A
programmer will usually copy the appropriate COMLNK option file to his own area for use with COMTST.
COMLNK finds its option files in AIPS-PROC by following this rule: If a program is found in a directory
XYZ, then its option file is AIPS_PROC:XYZOPT.OPT. If an alternate LOAD area exists for a program,
such as the pseudo AP area, then COMLNK also uses AIPS_PROC:XYZOPTn.OPT (n = 1 to 6) to link the
alternate executable module(s). A programmer working with MX (which is found in QYPGNOT) will copy
AIPS_PROC:QYPGNOTOPT.OPT to his own area and rename it LOCAL.OPT or MX.OPT. If a program­
mer wants to use the pseudo AP libraries instead, then he will copy AIPS.PROCrQYPGNOTOPTl.OPT
to his area and rename it LOCAL.OPT or MX.OPT. These option files can also be used as a means of
specifying experimental subroutines or libraries. For instance, a programmer working on MX may copy
AIPS_PROC:QYPGNOTOPT.OPT into MX.OPT and then put the names of any experimental subrou­
tines or libraries in MX.OPT. A full example is given in the section “COMPILING AND LINKING, AN
EXAMPLE” .

Options
The following options can be used with the compile and link procedures:

Option Minimum
Abbreviation Comments

DEBUG DE LINK with DEBUG (compile is always debug)

A-18 APPENDIX A. AIPS DIRECTORY STRUCTURE AND SOFTWARE MANAGEMENT

HODEBUG NODE LINK without DEBUG (Default)
LIST LI produce compiler listing
IOLIST NOLI no listing (Default)
MAP MA produce LINKER map.
I0MAP NOMA no linker map (Default)
OPTIMIZE OP compile optimized and NODEBUG.
IOOPTIMIZE NOOP compile no-optimized (Default)
DIRTY DI no warnings for undeclared variables, tabs
NODIRTY NODI warnings for undeclared var, tabs (Default)
PURGE PU purge executable after link (Default)
MOPURGE NOPU do not purge executable

A.5.3 Miscellaneous routines
VERSION “Version”
This command will set the default version (release) to “Version” , i.e., all logicals will point to the “Version”
version of the directories. “Version” can be either OLD, NEW or TST. The version will stay in effect until
the programmer changes it, or logs off. Note that, when starting up the AIPS program, this command is
executed to select the version of AIPS to be used. This procedure should be used (with “Version” NEW)
before checking out programs from NEW, or compiling and linking NEW routines. To again use the TST
version, use the procedure with “Version” set to TST.

FORK “command”
FORK is useful for running things, such as links and compiles, as a subprocess. It is defined to be

SPAWN/NOWAIT/NOTIFY/INPUT=NLAO:/OUTPUT=FORK.LOG"

The following example shows how to compile and link IMLOD in a subprocess:
$ FORK COMLNK IMLOD

FLOG
This command is defined to be “TYPE FORK.LOG” and will type the latest FORK log file in the current
directory.

A .5.4 Compiling and Linking: An Example
This example shows how we can compile and link an experimental version of program MX with experimental
versions of subroutines GRDAT and DSKFFT, and keep the executable image in our own directory.

First, we set our default to some work directory and copy the current versions of MX, DSKFFT, and
GRDAT from QYPGNOT an d APLNOT. NRAO pro g ram m ers should copy the rou tines using th e code
checkout system .

Next, we need an option file to tell the linker what subroutines and libraries to use. MX is found in
Q Y P G N O T , so we copy over th e o p tio n file for th e Q Y P G N O T p ro g ram s an d renam e it to L O C A L .O P T
or MX.O P T . T h is can be done using th e follow ing com m and:
$ COPY AIPS_PR0C:QYPGNOTOPT.OPT LOCAL.OPT

A.5. A TUTORIAL FOR PROGRAMMERS USING VMS A-19

QYPGNOTOPT not only works for MX, but, since it has every library (except for the POPS language
processor stuff) in it, it can also be used to link any task with the standard AIPS subroutines.

To link MX with our experimental version of GRDAT and DSKFFT, we can use the text editor to change
LOCAL.OPT which looks like this:

LIBR:QIOTLIB/LIB,LIBR:APLHOTLIB/LIB,-
LIBR:QSUBLIB/LIB,-
LIBR:Q120BLIB/LIB,-
LIBR:YSUBLIB/LIB,LIBR:YM70LIB/LIB,-
LIBR:APLSUBLIB/LIB,LIBR:APLVMSLIB/LIB,LIBR:APLSUBLIB/LIB,-
FPS:HSRLIB/LIB,FPS:FPSLIB/LIB

to make it look like this:
GRDAT,DSKFFT,-
LIBR:QIOTLIB/LIB,LIBR:APLHOTLIB/LIB,-
LIBR:QSUBLIB/LIB,-
LIBR:Q120BLIB/LIB,-
LIBR:YSUBLIB/LIB,LIBR:YM70LIB/LIB,-
LIBR:APLSUBLIB/LIB,LIBR:APLVMSLIB/LIB,LIBR:APLSUBLIB/LIB,-
FPS:HSRLIB/LIB,FPS:FPSLIB/LIB

The is the line continuation indicator in option files.
To preprocess and compile subroutines in a private directory use the following procedure:
COMPILE.COM

Use:
©COMPILE subroutine.name option
DIRTY or nothing
Only does a compile, leaves .OBJ

option equals LIST or CROSS or

Determine if LIST option.
$ OPTIOI := "/HOLIST"
$ IF (P2.EQS."LIST") THEI OPTIOI := "/LIST"
$ IF (P2.EQS."CROSS") THEI OPTIOI := ”/LIST/CROSS/SHOW=IHCLUDE"
$ 0PT1 := "/STAHDARD=(SYITAX,SOURCE_FORM)/WARHIHGS=(DECLARATIONS)"
$ IF (P2.EQS."DIRTY") THEI 0PT1 := ""
$ 0PT2 := "/DEBUG/HOOPTIMIZE"
$ OH ERROR THEH GOTO FIHI
$! Preprocess
$ WRITE SYS$OUTPUT " Preprocess "'PI*".FOR to "'PI'".1"
$ «AIPS_PROC:PP 'PI'.FOR 'Pl'.f
$! Compile subroutine
$ WRITE SYS$OUTPUT "compile in ",F$DIRECTORY(),":"'PI»".1"
$ FOR '0PT1' '0PT2' 'OPTION' 'Pl'.f
* PURGE 'PI'.OBJ
$ PURGE 'PI'.1
$ Fill:
$ EXIT

A-20 APPENDIX A. AIPS DIRECTORY STRUCTURE AND SOFTWARE MANAGEMENT

Now we make the changes to GRDAT, DSKFFT and MX. Then we compile and link them with the
following commands (the DEBUG on the COMTST command is optional):
$CC0MPILE GRDAT
$«C0MPILE DSKFFT
$ COMTST MX DEBUG

Suppose we want to link MX with debug and have the link run as a subprocess. Then we can type in
t FORK COMTST MX DEBUG

We will be notified when COMTST finishes (or aborts!). We should type FORK.LOG (we can use the FLOG
command) to make sure our task compiled and linked correctly.

A.5.5 Debugging under VMS
To run the VMS debugger the task and any relevant routines should have been compiled and link edited
with the DEBUG option. Use of the debugger on optimized code can be confusing so is best avoided.

If a private directory is to be used during the debugging phase then the .EXE and the .HLP file should
be in the same directory. Then inside AIPS set adverb VERSION to point to this directory, e.g:
> VERSION = ’mydisk:[mydir.aips]’
and INPUTS, HELP and GO will use the right versions of the files. To cause a task to be run under the
debugger in AIPS use pseudo verb SETDEBUG, e.g.:
> setdebug = 20

Using a value of 0 turns off initiating tasks under the debugger. It is also useful to type “WAIT” after
“GO” to AIPS to prevent both AIPS and the debugger from trying to talk to the terminal at the same time.

A .5.6 Check out system
The AIPS group has instituted a check-out system for the text files in the master version of the AIPS system
(including CHANGE.DOC). The purpose of this check out system is to prevent different programmers from
destroying each others changes to code by trying to work on the same routines at the same time. There
are occasionally changes made in AIPS which require changes in most or all tasks; frequently the original
programmer of a task will be unaware of these changes. For these reasons, modifications or additions to the
the master version of AIPS should (are required to):

1. Check out the relevant files. A brief description of the checkout system is given in a later section; a
detailed description of the check-out system may be found in DOCTXT.CHKOUT.RNO.

2. Modify the files.
3. Check the files back in.
4. Document the changes in CHANGE.DOC (which must itself be checked out).
All d irectories should be specified using the logical nam es instead of th e full d irec tory nam es. T h e

programmer must make sure that AIPS-VERSION is set correctly. AIPS-VERSION will be TST after a
p ro g ram m er executes L O G IN .P R G , b u t A IP S-V E R S IO N can be set to N E W if th e p ro g ram m er ru n s the
N E W version o f A IP S or sets th e version to N E W using th e V E R S IO N com m an d .

To check things out of NEW, the programmer should use the command
$ VERSIOV HEW

A.6. UNIX DETAILS A-21

to set the programmer’s current working version to NEW. The version can be reset to TST with the
command
$ VERSION TST

A file that is still checked out of NEW cannot be checked out of TST, or vice versa.
A brief description of the functions of the checkout system is given in the following:
• CHKOUT < file name > Allows a programmer to checkout a file. A copy of the file will be written into

the current default directory. The file name must include the logical defining the directory. CHKOUT
will ask for a one line reason for checking out the file. Example: CHKOUT APLPGM.IMEAN.FOR.

• PUTBCK < file name > Returns a modified file to the appropriate directory; the file must reside in the
default directory. The file name must include the logical defining the directory. Example: PUTBCK
APLPGM:IMEAN.FOR.

• REMOVE < file name > Deletes all versions of a file. The file name must include the logical defining
the directory. Example: REMOVE APGVMS:VBAD.FOR.

• FORGET < file name > Cancels the CHKOUT of a file. The file name must include the logical defining
the directory. Example: FORGET APLSUB:MDISK.FOR.

• NAMCHK < file name > Reserves a name for a routine being developed. The file name must include
the logical defining the directory. Example: NAMCHK APLPGM:HMEAN.FOR.

• CPURGE < file name > Purges files in the standard AIPS source code directories matching file name.
Executing a VMS PURGE command will not be allowed to delete these files.

• OUTPRT Prints a list of files currently checked out.
• HISPRT Prints the checkout history.

A .6 U nix Details
This section describes the details the for the Unix implementation. In many cases, the Unix implementation
is the same as for VMS.

A.6.1 M nemonics
Programmers always refer to the AIPS directory areas by means of mnemonics. These need to be im­
plemented on various operating systems and it is convenient to store a list of them, complete with their
associated areas in a file which can be used by the operating system. A copy of this file appears in section
A.2.3 above. It can be used to assign the appropriate mnemonics and/or to create a complete directory tree.

A .6.2 Object Libraries
With the source code directory structure shown above, it is possible for AIPS to use different parts of the
directory infrastructure with different operating systems and peripherals. Under Unix, the mapping of source
code area search paths, the mapping of subroutine source code area to object libraries, and the mapping of
object library link lists to program source code areas are all maintained in a single file called LIBR.DAT.
The paraform LIBR.DAT provided in the generic Unix system area (i.e., SSYSUNIX) is listed below. This
paraform should be copied to SSYSLOCAL and modified to reflect the host implementation. Note that the
object library file names are always SUBLIB and that they are each stored in a subdirectory of $LIBR, the
name of which reflects the source code area from which the object code is derived. In the case of libraries
generated from multiple source code areas, the name reflects the most vendor/model/version specific area
used (e.g., YIVAS, APLCVEX). Under Unix, the mechanics of adding/replacing object code in an object

A-22 APPENDIX A. AIPS DIRECTORY STRUCTURE AND SOFTWARE MANAGEMENT

library are rather expensive. For this reason, object libraries are maintained in separate subdirectories of
$LIBR so that new object modules may be staged there. These are added/replaced en masse whenever the
target object library is included as part of a link operation (see COMLNK below).

-- Begin $SYSUMIX/LIBR.DAT ---
AIPS subroutine source code search paths and object libraries:

$LIBR/AIPSUB/SUBLIB:0:$AIPSUB

APL subroutine source code search paths and object libraries:

Standard routines

ILIBR/APLSUB/SUBLIB:0:SAPLSUB

Ion-standard and routines

$LIBR/APLIOT/SUBLIB:0:$APLNUHIX
ILIBR/APLVOT/SUBLIB:0:$APLKOT

Z-routines

$LIBR/APLALLI/SUBLIB:0:-- Your local Z-routine directory goes here--
$LIBR/APLALLH/SUBLIB:0:$APLALLM-- For example--
$LIBR/APLALLI/SUBLIB:0:$APLBERK-- For example--
SLIBR/APLALLI/SUBLIB:0:$APLUBIX
SLIBR/APLALLM/SUBLIB:0:$APLGEK

Q subroutine source code search paths and object libraries:

Standard routines

$LIBR/QSUB/SUBLIB:0:$QSUB

Hon-standard routines

SLIBR/QMOT/SUBLIB:0:$QN0T

Q-routines

SLIBR/QVEX/SUBLIB:0:$QVEX-- For example--
SLIBR/QVEX/SUBLIB: 0: $QPSAP-- For example—
$LIBR/QVEX/SUBLIB:0:$QDEV

Y subroutine source code search paths and object libraries:

Standard routines

SLIBR/YSUB/SUBLIB:0:$YSUB

Son-standard routines

$LIBR/YIOT/SUBLIB:0:$YNOT

A.6. UNIX D ETAILS A-23

Y-routines

$LIBR/YSTUB/SUBLIB:0:$YSTUB-- For example--
$LIBR/YSTUB/SUBLIB:0:$YGEN

AIPS stand alone program source code search paths and link libraries:

AIPGUHIX => Unix specific stand alone programs

$LIBR/AIPSUB/SUBLIB:0:$AIPGUNIX
SLIBR/APLALLH/SUBLIB-- For example-- :0:SAIPGUHIX
SLIBR/APLSUB/SUBLIB:0:SAIPGUHIX
SLIBR/APLALLI/SUBLIB-- For example-- :0:SAIPGUIIX
SLIBR/APLSUB/SUBLIB:0:$AIPGUMIX
$LIBR/APLALLI/SUBLIB-- For example-- :0:SAIPGUIIX

AIPPGM => Standard stand alone programs

SLIBR/AIPSUB/SUBLIB:0:SAIPPGM
SLIBR/APLALLI/SUBLIB-- For example-- :0:$AIPPGM
SLIBR/YSUB/SUBLIB:0:$AIPPGM
$LIBR/YSTUB/SUBLIB-- For example-- :0:$AIPPGM
SLIBR/APLSUB/SUBLIB:0:$AIPPGM
SLIBR/APLALLI/SUBLIB-- For example-- :0:SAIPPGM
SLIBR/APLSUB/SUBLIB:0:SAIPPGM
SLIBR/APLALLI/SUBLIB-- For example-- :0:SAIPPGM

YVTVPGM => TV by wire control program

SLIBR/AIPSUB/SUBLIB:0:SYVTVPGM
SLIBR/APLALLI/SUBLIB-- For example-- :0:SYVTVPGM
SLIBR/YSUB/SUBLIB:0:SYVTVPGM
SLIBR/YSSS/SUBLIB-- For example— : 0: SYVTVPGM
SLIBR/APLSUB/SUBLIB:0:SYVTVPGM
SLIBR/APLALLI/SUBLIB-- For example— : 0: SYVTVPGM
SLIBR/APLSUB/SUBLIB:0:SYVTVPGM
SLIBR/APLALLI/SUBLIB— For example— : 0: SYVTVPGM

APL-task source code search paths and link libraries:

APGUHIX => Unix specific tasks that call neither Q nor Y-routines

SLIBR/APLHOT/SUBLIB:0:SAPGUHIX
SLIBR/APLSUB/SUBLIB:0:SAPGUIIX
SLIBR/APLALLI/SUBLIB-- For example— : 0: SAPGUHIX
SLIBR/APLSUB/SUBLIB:0:SAPGUHIX

APGHOT => Hon-standard tasks that call neither Q nor Y-routines

SLIBR/APLHOT/SUBLIB:0:SAPGHOT
SLIBR/APLSUB/SUBLIB:0:SAPGHOT
SLIBR/APLALLH/SUBLIB-- For example-- :0:SAPGNOT
SLIBR/APLSUB/SUBLIB:0:SAPGHOT
SLIBR/APLHOT/SUBLIB:0:SAPGHOT

A-24 APPENDIX A. AIPS DIRECTORY STRUCTURE AND SOFTWARE MANAGEMENT

$LIBR/APLALLN/SUBLIB-- For example-- :0:$APGNOT

APLPGM => Standard tasks that call neither Q nor Y-routines

SLIBR/APLSUB/SUBLIB:0:$APLPGM
SLIBR/APLALLH/SUBLIB-- For example-- :0:$APLPGM
$LIBR/APLSUB/SUBLIB:0:$APLPGM

Q-task source code search paths and link libraries:

QPGUHIX => Unix specific tasks that call Q-routines but not Y-routines

$LIBR/QIOT/SUBLIB:0:$QPGUHIX
SLIBR/APLHOT/SUBLIB:0:SQPGUHIX
SLIBR/QSUB/SUBLIB:0:$QPGUNIX
$LIBR/QVEX/SUBLIB-- For example-- :0:SqPGUHIX
$LIBR/APLSUB/SUBLIB:0:SQPGUHIX
SLIBR/APLALLH/SUBLIB-- For example-- :0:$QPGUHIX
SLIBR/APLSUB/SUBLIB:0:SQPGUHIX

QPGHOT => Ion-standard tasks that call Q-routines but not Y-routines

$LIBR/QIOT/SUBLIB:0:$QPGH0T
SLIBR/APLHOT/SUBLIB:0:$QPGH0T
SLIBR/QSUB/SUBLIB:0:$QPGIOT
$LIBR/QVEX/SUBLIB-- For example-- :0:$QPGNOT
$LIBR/APLSUB/SUBLIB:0:SQPGHOT
SLIBR/APLALLH/SUBLIB-- For example— : 0: SQPGHOT
SLIBR/APLSUB/SUBLIB:0:SQPGHOT

QPGM => Standard tasks that call Q-routines but not Y-routines

SLIBR/QSUB/SUBLIB:0:SQPGM
SLIBR/QVEX/SUBLIB-- For example-- :0:SQPGM
SLIBR/APLSUB/SUBLIB:0:SQPGM
SLIBR/APLALLI/SUBLIB-- For example-- :0:SQPGM
SLIBR/APLSUB/SUBLIB:0:SQPGM

Y-task source code search paths and link libraries:

YPGUHIX => Unix specific tasks that call Y-routines but not Q-routines

SLIBR/YHOT/SUBLIB:0:SYPGUNIX
SLIBR/APLIOT/SUBLIB:0:SYPGUHIX
SLIBR/YSUB/SUBLIB:0:SYPGUNIX
SLIBR/YSTUB/SUBLIB— For example— : 0: SYPGUNIX
SLIBR/APLSUB/SUBLIB:0:SYPGUNIX
SLIBR/APLALLN/SUBLIB-- For example— : 0: SYPGUNIX
SLIBR/APLSUB/SUBLIB:0:SYPGUNIX

YPGNOT => Hon-standard tasks that call Y-routines but not Q-routines

SLIBR/YHOT/SUBLIB:0:SYPGNOT
SLIBR/APLNOT/SUBLIB:0:SYPGNOT

A.6. UNIX D ETAILS A-25

SLIBR/YSUB/SUBLIB:0:$YPGNOT
$LIBR/YSTUB/SUBLIB-- For example-- :0:$YPGNOT
SLIBR/APLSUB/SUBLIB:0:SYPGHOT
$LIBR/APLALLN/SUBLIB-- For example-- :0:$YPGNOT
$LIBR/APLSUB/SUBLIB:0:$YPGHOT

YPGM => Standard tasks that call Y-routines but not Q-routines

SLIBR/YSUB/SUBLIB:0:$YPGM
SLIBR/YSTUB/SUBLIB-- For example-- :0:$YPGM
$LIBR/APLSUB/SUBLIB:0:$YPGM
SLIBR/APLALLH/SUBLIB-- For example-- :0:$YPGM
SLIBR/APLSUB/SUBLIB:0:SYPGM

QY-task source code search paths and link libraries:

QYPGUIIX => Unix specific tasks that call both Q-routines and Y-routines

SLIBR/QHOT/SUBLIB:0:SQYPGUHIX
SLIBR/APLITOT/SUBLIB: 0: SQYPGUHIX
SLIBR/QSUB/SUBLIB:0:SQYPGUHIX
SLIBR/QVEX/SUBLIB-- For example-- :0:SQYPGUHIX
SLIBR/YSUB/SUBLIB:0:SQYPGUHIX
SLIBR/YSTUB/SUBLIB-- For example-- :0:SQYPGUHIX
SLIBR/APLSUB/SUBLIB:0:SQYPGUHIX
SLIBR/APLALLH/SUBLIB-- For example-- :0:SQYPGUHIX
SLIBR/APLSUB/SUBLIB:0:SQYPGUHIX

QYPGHOT => Hon-standard tasks that call both Q-routines and Y-routines

SLIBR/QHOT/SUBLIB:0:SQYPGHOT
SLIBR/APLHOT/SUBLIB:0:SQYPGHOT
SLIBR/QHOT/SUBLIB:0:SQYPGHOT
SLIBR/QSUB/SUBLIB:0:SQYPGHOT
SLIBR/QVEX/SUBLIB— For example-- : 0: SQYPGNOT
SLIBR/YSUB/SUBLIB:0:SQYPGHOT
SLIBR/YSTUB/SUBLIB-- For example-- :0:SQYPGHOT
SLIBR/APLSUB/SUBLIB:0:SQYPGHOT
SLIBR/APLALLH/SUBLIB-- For example-- :0:SQYPGHOT
SLIBR/APLSUB/SUBLIB:0:SQYPGHOT

QYPGM -> Standard tasks that call both Q-routines and Y-routines

SLIBR/QSUB/SUBLIB:0:$QYPGM
SLIBR/QVEX/SUBLIB-- For example-- :0:SQYPGM
SLIBR/YSUB/SUBLIB:0:SQYPGM
SLIBR/YSTUB/SUBLIB— For example— : 0: SQYPGM
SLIBR/APLSUB/SUBLIB:0:SQYPGM
SLIBR/APLALLH/SUBLIB-- For example-- :0:SQYPGM
SLIBR/APLSUB/SUBLIB:0:SQYPGM

-- End SSYSUHIX/LIBR.DAT ---

A-26 APPENDIX A. AIPS DIRECTORY STRUCTURE AND SOFTWARE MANAGEMENT

There are two major procedures called COMRPL and COMLNK used in the programming of AIPS under
Unix.

COMRPL, given the name of an AIPS subroutine and a reasonable starting point, will search the directory
structure for the version of the source code most appropriate to the host implementation, preprocess it (if
necessary), compile it (if necessary) and stage the resulting object module for replacement in the proper
object library or libraries.

Under some implementations, it is necessary that the object module from a given routine be stored in
more than one object library. For example, if a system has the luxury of two TV display devices that are
not of the same make and model (e.g., IIS model 70 and IIS model M75), it is possible that the object
module generated from a given subroutine source code area (e.g., $YIIS) is the same for both devices. In
this case, a copy of the object module is staged for replacement in each of the object libraries appropriate
to the different devices (e.g., SLIBR/YM70/SUBLIB and SLIBR/YM75/SUBLIB).

COMLNK, given the name of an AIPS program and a reasonable starting point, will search the directory
structure for the version of the source code most appropriate to the host implementation, preprocess it
(if necessary), compile it (if necessary), determine from SSYSLOCAL/LIBR.DAT the appropriate object
libraries to include in its link list, perform the link and move the resulting executable to the appropriate
load library.

Similar to the case of COMRPL, under some implementations, it is necessary that the object module
from a given program be linked with more than one list of object libraries. Each link produces a distinct
executable module. For example, given the same hypothetical system described above, where there are two
TV display devices that are not of the same make and model (e.g., IIS model 70 and IIS model M75), the
object module generated from a given TV oriented program source code area (e.g., $YPGM) needs to be
linked once with the object library list including the library appropriate for one of the devices and then
again with the object library list appropriate for the other device. The resulting executables are moved to
the appropriate load libraries (e.g., SLOAD and SLOAD2). In multiple TV device environments, the desired
TV must be selected by the user at the beginning of an AIPS session. The AIPS startup procedure will
query the user for this, if a definition for the environment variable TVDEV2 exists.

Unlike the programming environment for AIPS under VMS, the procedure COMTST does not exist.
The Unix version of COMLNK has been designed to detect whether the directory of the specified program
module is one of the official AIPS source code areas. If not, it moves the resulting executable module to the
current working directory (if necessary) instead of the official AIPS load library. This also requires that the
user provide a filename with the extension “.OPT” (or “.opt”) containing a suitable object module/library
link list. Similarly, if such a link list is provided and the program module resides in one of the official
AIPS source code areas, COMLNK will assume that this is a non-standard link and will simply move
the resulting executable to the current working directory (if necessary). All of these intended protections
against corruptions of the official load library can be easily circumvented. They are mostly intended to
protect against inadvertent corruptions. Such link list files are specified as command line arguments to the
COMLNK procedure, e.g.,
COMLHK SAPLPGM/UVSRT APLPGM.OPT

A utility exists called LIBS that will display the required link list for the programs which reside in a given
AIPS source code area. For example,
LIBS SQYPGHOT > F0 0 .0PT

would generate the object library link list required for all programs that reside in the source code area defined
as SQYPGNOT (i.e., non-standard programs that depend on both Q-routines and Y-routines) and redirect
the list to FOO.OPT, i.e.,
SLIBR/QHOT/SUBLIB
SLIBR/APLHOT/SUBLIB
SLIBR/QSUB/SUBLIB

A. 7. A TUTORIAL FOR PROGRAMMERS USING UNIX A-27

$LIBR/QVEX/SUBLIB
$LIBR/YSUB/SUBLIB
SLIBR/YM70/SUBLIB
SLIBR/APLSUB/SUBLIB
SLIBR/APLCVEX/SUBLIB
$LIBR/APLSUB/SUBLIB

FOO.OPT could then be used as is, or edited to include non-standard object code as full pathnames of
either object libraries or individual object modules. The pathnames can contain any combination of literals,
wild-carding and environment variables (i.e., whatever you can keep straight). For example,
$MYAREA/mymod.o
Smyarea/[a-z]*.o
/aippgmr/khilldru/DEBUG/ZSUBLIB
$KCHJUIK/[X-Z]*/ZQ*
$MYLIBS/*.LIB
SLIBR/QIOT/SUBLIB
$LIBR/APLIOT/SUBLIB
SLIBR/QSUB/SUBLIB
SLIBR/QVEX/SUBLIB
SLIBR/YSUB/SUBLIB
SLIBR/YM70/SUBLIB
SLIBR/APLSUB/SUBLIB
SLIBR/APLCVEX/SUBLIB
SLIBR/APLSUB/SUBLIB

The contents of the “.OPT” files are be evaluated at link time.
The search process as executed by COMRPL and COMLNK is designed to substitute the most appro­

priate version and form of the routine specified, regardless of what the user types. The appropriate version
is determined by the search path as defined in SSYSLOCAL/LIBR.DAT. Actually, for the sake of speed,
the environment variable definitions of SSYSLOCAL/LIBR.DAT are evaluated and stored as pathnames
in SSYSLOCAL/SEARCH.DAT and this file is used instead. SSYSLOCAL/SEARCH.DAT is regenerated
whenever any of the programming tools which depend on it detect that SSYSLOCAL/LIBR.DAT is newer.
Concomitant to the search process for the most appropriate version of a given module for the host implemen­
tation (e.g., Unix versus VMS Z-routine) is a search process for the most up to date “form” of the module
(e.g., unpreprocessed, preprocessed or object module). This is determined by the most recent modification
date of the various extant forms. In the case of Fortran oriented modules, this also includes the modification
dates of any included source text (i.e., source text stored in different modules but “included” as part of the
preprocessing step).

A .7 A Tutorial for Programmers Using Unix
A .7.1 Initialization And Startup Procedures
LOGIN.CSH or LOGIN.SH
The logical names and symbols needed to program in AIPS (and to run AIPS) can be obtained by executing
the script LOGIN.CSH for those whose default login shell is the C shell or LOGIN.SH for those whose
default login shell is either the Bourne (System V only) or Korn shell. Very early in the AIPS installation
process, the LOGIN.* files that come on the installation tape should be moved to the home directory of the
login designated as the repository for the AIPS system. Those who want to program in AIPS should add
the execution of the appropriate LOGIN.* file to their private login procedures. Those programmers whose
default login shell is the C shell should add the line

A-28 APPENDIX A. AIPS DIRECTORY STRUCTURE AND SOFTWARE MANAGEMENT

source AIPS_account_home_directory/LOGIN.CSH

and those programmers whose default login shell is either the Bourne or Korn shell should add the line
AIPS_account_home_directory/LOGIN.CSH

substituting the local pathname for the “AIPS_account_home_directory” . At NRAO this procedure defaults
$AIPS_VERSION to $TST. The versions of the LOGIN.* files that come on the installation tape default
$AIPS_VERSION to $NEW. The LOGIN.* files only define the means by which the AIPS programming
“logicals” (i.e., environment variables) can be defined and toggled between the SOLD, SNEW and $TST
versions. Unlike VMS, redefining the programming logicals entails redefining all of the individual logicals,
not just AIPS-VERSION. Also, since child processes cannot change the environment of their parent, this
cannot be done via a procedure. There is the notion of aliases under the C shell and functions under the
Bourne and perhaps Korn shells (System V Unix only). However, the only universal solution seems to be the
notion of an “executable” environment variable. This is something we have never seen used anywhere else,
or even discussed in the Unix literature, but it works. The LOGIN.* files define three environment variables
named CDOLD, CDNEW and CDTST. These will redefine AIPS-VERSION as SOLD, $NEW or STST,
respectively and execute the commands in SAIPS-VERSION/SYSTEM/UNIX/LOCAL/AREAS.CSH via
the “source” command or SAIPS-VERSION/SYSTEM/UNIX/LOCAL/AREAS.SH via the command
depending on whether LOGIN.CSH or LOGIN.SH was used to define the CD* environment variables. To
define or redefine the AIPS programming logicals, the user need only type:
SCDOLD (or $CDNEW, or $CDTST)

This is not required for the execution of AIPS, but is crucial for the AIPS programming tools to work.
Programmers may prefer to include the execution of one of SCDOLD, SCDNEW or SCDTST to their login
procedure as well. However, their execution will substantially slow down the login process.
AIPS “Version” “Option”
This procedure is used to start up an interactive AIPS session. The following text is taken from the comments
found at the beginning of the AIPS start-up procedure as stored in SSYSUNIX:

Usage: AIPS [MEW, OLD or TST] [REMOTE] [DEBUG] [LOCAL]

Procedure to start up an AIPS session with process name AlPSn,
then disappear (i.e., exec without fork).

Input8:
OLD,
NEW or
TST to select version of AIPS to run (default is NEW)
REMOTE to indicate a remote terminal i.e., no TV and TEK output

is directed to the user's terminal (i.e., it better be
a Tektronix 4010/4012 compatible terminal if any TK*
verbs or tasks are executed)

DEBUG to run with debugger
LOCAL to run a local version of AIPS (assumes AIPS. EXE is in

current working directory)

Generic Unix version.

A.7. A TUTORIAL FOR PROGRAMMERS USING UNIX A-29

BATER “Version” “Option”
This procedure is used to start up an interactive BATER session. BATER can be used to prepare and submit
jobs to the AIPS batch queue. The following text is taken from the comments found at the beginning of the
BATER start-up procedure as stored in SSYSUNIX:

Usage: BATER [NEW, OLD or TST] [DEBUG] [LOCAL]

Procedure to start up an BATER session with process name BATERn, "
then disappear (i.e., exec without fork). ”»«
Inputs: "

OLD,
NEW or
TST to select version of BATER to run (default is NEW) "
DEBUG to run with debugger "
LOCAL to run a local version of BATER (assumes BATER.EXE is in "

current working directory) "
H

Generic Unix version. "

RUN “Program”
This is a general purpose startup procedure for any of the stand-alone utility programs in AIPS (e.g.,
SETPAR, RECAT, etc.). This is normally only used by the local AIPS manager(s). The following text is
taken from the comments found at the beginning of the RUN procedure as stored in SSYSUNIX:

" Usage: RUN program

A script to facilitate the execution of AIPS stand-alone programs
(e.g., FILAI*, SETPAR, POPSGN, RECAT, SETTVP, etc.). AIPS and
BATER sessions should be initiated via the procedures AIPS and
BATER (what else?). The version of the program started is
determined by $AIPS_VERSION as set upon login or by the execution
of $CDOLD, $CDNEW or $CDTST (or manually, of course).

Generic Unix version.

COMRPL
This procedure will preprocess (if necessary) and/or compile (if necessary) subroutines, then stage the
resulting object modules for replacement in the proper object module library or libraries (if any). It takes
a variety of options which are described below. Arguments to COMRPL can appear in any order and in
any combination. At least one subroutine should be specified. However, if it is invoked with no argum ents,
or otherwise incorrectly, it will display a terse synopsis of its usage. The following text is taken from the
comments found at the beginning of the COMRPL procedure as stored in SSYSUNIX:

,»«

A-30 APPENDIX A. AIPS DIRECTORY STRUCTURE AND SOFTWARE MANAGEMENT

Usage: COMRPL [directory-path/][G] routine [.FOR,.f,.C,.c,.S,.s,.o]
[AlPS-style-options] [Unix-style-options] [file.LOG]

Drives the preprocessing of, and/or compilation of, and/or library
replacement of AIPS routines. Any source code generated as the
result of preprocessing is left in the same directory as the
un-preprocessed source code. Object modules that are the result
of the compilation of source code vhich resides in a subdirectory
of $AIPS_VERSION are moved to the proper $LIBR subdirectory as
defined in $SYSLOCAL/LIBR.DAT (unless HORE[PLACE] is specified).

Inputs (can appear in any order):

1) [directory-path/][C]rout ine[.FOR,.f,.C,.c,.S,.s,.o]

At least one (uppercase) routine module name vith or vithout
an extension. If not a pathname, the current vorking
directory is assumed and prepended. Pathnames can be given
either literally or using environment variables defined as
directory paths (e.g., $APLSUB/[®]routine[.FOR,.f,.C,.c,.S,
.s,.o]). The special character ’€’, if prepended to the
filename, denotes the name of a file containing a list of
such routine module pathnames. If extensions sure given vith
simple filenames, (i.e., ’no directory-path/’ prefix), it
speeds up the command line parsing somevhat. This is
because filename versus AlPS-style option ambiguities are
resolved by first testing for AlPS-style option recognition
then assuming the argument is a simple filename. In any
case, the extension is effectively ignored since SEARCH
strips it and tries to determine the fastest up-to-date
module form. SEARCH vill also search "directory-path/" and
belov for the existence of a routine module more appropriate
to the host implementation and, if necessary, substitute the
proper ’directory-path/’ and/or filename extension. In the
case vhere the starting ’directory-path/’ is not a
subdirectory of $AIPS_VERSIOV, the search is restricted to
that directory. Othervise, the directory search path is
determined from $SYSLOCAL/SEARCH.DAT.

2) [AlPS-style-options]

Recognizable AlPS-style options. These are translated into
local syntax based on the definitions in the host specific
$SYSLOCAL/*OPTS.SH files invoked by the appropriate compiler
procedure (i.e., FC, CC, or AS). Recognized AlPS-style
options include:

(H0)DE[BUG] - generate code suitable for execution under
host debugger(s).

(HO)DI[RTY] - compile letting declarations default (not
recommended)

(NO)LI[ST] - generate line numbered listing of source
code as part of compilation process (if no
compilation is necessary, no listing is

A. 7. A TUTORIAL FOR PROGRAMMERS USING UNIX A-31

" generated)
" (HO)MAP - generate link map
" (I0)0PTn - optimization level (n = 0 to 9)
" (HO)PR[OFILE] - generate code suitable for profiling
" (IO)PU[RGE] - delete preprocessed source code after
M successful compilation and delete
" automatically generated log files if all
" goes veil
" (HO)RE[PLACE] - move object module to proper $LIBR
" subdirectory (procedure LIHK does any
" necessaury replacements in and randomizations
M of $LIBR/.../SUBLIB's prior to linking)
II

" where
" (HO) = alternate form (e.g., HODEBUG is the opposite of

DEBUG)
" [...]= additional letters of option not required but
" recognizedM
" 3) [Unix-style-options]
II

" Unix-style options which are passed on to the local compiler
" involved.M

4) [file.LOG]
tl

" Optional log filename of the form '♦.LOG'. If not given,
" log files axe automatically generated (or appended to) for
" each routine being processed. If purging is enabled either
" by default or by specifying PURGE on the command line and
" all goes well, these automatic log files as well as
" preprocessed forms of the routine involved sore deleted. If
" the user specifies a '.LOG* file on the command line, it is
" either generated or appended to but never deleted.
II
" Generic Unix version.

For example, the following command will preprocess (if necessary) the subroutine SAPLSUB/CHCOPY.FOR,
compile the preprocessed source code using the default compiler options as defined in the corresponding
$SYSLOCAL/*OPTS.SH compiler options files, and stage the resulting object module for replacement in
the object library appropriate for subroutines from SAPLSUB.
COMRPL $APLSUB/CHCOPY

The following examples show how multiple files can be compiled.
Process the subroutines MSGWRT and NXTFLG:

COMRPL $APLSUB/MSGWRT $APLHOT/HXTFLG

Process all routines in SAPLSUB whose name begins with MP2:

A-32 APPENDIX A. AIPS DIRECTORY STRUCTURE AND SOFTWARE MANAGEMENT

COMRPL $APLSUB/MP2*.FOR

Process every routine pathname listed in FOO.LIST:
COMRPL CFOO.LIST

Simply for the purpose of illustration, the next example does everything above, but with the debug compiler
option enabled, the replacement option disabled (i.e., object modules will be left in the same directory as
the source code) and with a ’’.LOG” file specified in which all actions are to be recorded (i.e., as well as
displaying them on the terminal):
COMRPL $APLSUB/MSGWRT DeBug $APLIOT/HXTFLG WIERD.LOG $APLSUB/MP2*.FOR \
CFOO.LIST lORepLACe

COMLNK “ProgramSpec” “Option”
This procedure will preprocess (if necessary) and/or compile (if necessary) a program or set of programs
and/or link them with an appropriate object library link list. The resulting executable modules are moved
to the proper AIPS load libraries (if any). Any necessary replacements of object modules in object libraries
are performed prior to any links that include such libraries. Recall that COMRPL does not actually replace
object modules in object libraries, it only stages them for replacement. This way, the price of replacements
and the subsequent required “randomizations” of object libraries is only paid at link time rather than in
each COMRPL. Like COMRPL, COMLNK takes a variety of options which are described below. Arguments
to COMLNK can appear in any order and in any combination. At least one program should be specified.
However, if it is invoked with no arguments, or otherwise incorrectly, it will display a terse synopsis of its
usage. The following text is taken from the comments found at the beginning of the COMRPL procedure
as stored in SSYSUNIX:

• I __ . . . ___ ____________ H

" Usage: COMLHK [directory-path/][®]program[.FOR,.f,.C,.c,.S,.s,.o] "
" [AlPS-style-options] [Unix-style-options] "

[file.OPT] [file.LOG]
H _____. . . . _______ _____ ____________________________ __ _____________________________ __ _____________________________________ M

" Drives the preprocessing of and/or compilation of and/or linking of"
" AIPS programs. Object modules that are the result of compilations "
" are left in the same directory as the source code. Executable "
" modules that axe the result of linking modules vhich all reside in "
" subdirectories of $AIPS_VERSION are moved to $LOAD (unless "
" MORE [PLACE] is specified, in vhich case, the executable module is "
" left in the same directory as the source code). Othervise, "
" executable modules sire moved to or left in the current vorking "
" directory. "
I I I I

" Inputs (can appear in any order): "
I* H

" 1) [directory-path/][C]program[.FOR,.f,.C,.c,.S,.s,.o] "
i« I I

" At least one (uppercase) program module name vith or without "
" an extension. If not a pathname, the current vorking "
" directory is assumed and prepended. Pathnames can be given "
" either literally or using environment variables defined as "
" directory paths (e.g., $APLPGM/[«]program[.FOR,.f,.C,.c,.S, "

A. 7. A TUTORIAL FOR PROGRAMMERS USING UNIX A-33

.8,.o]). The special character '®', if prepended to the
filename, denotes the name of a file containing a list of
such program module pathnames. If extensions are given with
simple filenames, (i.e., 'no directory-path/' prefix), it
speeds up the command line parsing somewhat. This is
because filename versus AlPS-style option ambiguities are
resolved by first testing for AlPS-style option recognition
then assuming the argument is a simple filename. In any
case, the extension is effectively ignored since SEARCH
strips it and tries to determine the fastest up-to-date
module form. SEARCH will also search "directory-path/" and
below for the existence of a program module more appropriate
to the host implementation and, if necessary, substitute the
proper 'directory-path/' and/or filename extension. In the
case where the starting 'directory-path/' is not a
subdirectory of $AIPS_VERSION, the search is restricted to
that directory. Otherwise, the directory search path is
determined from SSYSLOCAL/SEARCH.DAT.

2) [AlPS-style-options]

Recognizable AlPS-style options. These are translated into
local syntax based on the definitions in the host specific
SSYSLOCAL/*OPTS.SH files invoked by the respective steps
(i.e., FC, CC, or AS and LINK). Recognized AlPS-style
options include:

(NO)DE[BUG]

(NO)DI[RTY]

(NO)LI[ST]

(NO)MAP
(NO)OPTn
(H0)PR[0FILE]
(NO)PU[RGE]

(NO)RE[PLACE] -

generate code suitable for execution under
host debugger(s).
compile letting declarations default (not
recommended)
generate line numbered listing of source
code as part of compilation process (if no
compilation is necessary, no listing is
generated)
generate link map
optimization level (n - 0 to 9)
generate code suitable for profiling
delete preprocessed source code after
successful compilation and delete
automatically generated log files if all
goes well
move executable module to SAIPS.VERSION/LOAD
if appropriate

where
(NO) = alternate form (e.g., NODEBUG is the opposite of

DEBUG)
[. . .] = additional letters of option not required but

recognized

3) [Unix-style-options]

Unix-style options which are passed on to the local compiler

A-34 APPENDIX A. AIPS DIRECTORY STRUCTURE AND SOFTWARE MANAGEMENT

involved (the compiler is also invoked for the linking step
rather than invoking the loader directly).

4) [file.OPT]

Semi-optional link list file of the form '*.OPT'. If not
given and the program object module passed to LINK resides
in a subdirectory of $AIPS_VERSION, the procedure LINK will
try to determine the default link list from the definitions
in $SYSLOCAL/LIBR.DAT. Otherwise, a ’♦.OPT’ file must be
specified. The routine LIBS, given the pathname of an AIPS
program area will print out the default link list (e.g.,
LIBS $APLPGM will print out the default link list for all
$APLPGM programs). Its output can be redirected to a
'file.OPT* to simplify the construction of these files.

5) [file.LOG]

Optional log filename of the form '*.LOG'. If not given,
log files are automatically generated (or appended to) for
each program being processed. If purging is enabled either
by default or by specifying PURGE on the command line and
all goes well, these automatic log files as well as
preprocessed forms of the program involved sure deleted. If
the user specifies a '.LOG' file on the command line, it is
either generated or appended to but never deleted.

Generic Unix version.

COMTST
Use COMLNK.

Options
The following AlPS-style options can be used with the compile and link procedures:

Option Minimum
Abbreviation Comments

DEBUG DE Compile or link with debug option enabled
NODEBUG NODE Compile or link without debug option enabled
LIST LI Produce a line numbered source code listing
NOLIST NOLI No line numbered source code listing
MAP MA Produce a link map
NOMAP NOMA No link map
OPTn OPTn Compile with optimization level n = 0 to 9
NOOPTn NOOPTn Disable optimization level n = 0 to 9
DIRTY DI Let declarations default
NODIRTY NODI Treat undeclared items as fatal errors
PURGE PU Delete preprocessed source code and

auto-logs if all goes well (also program

A.7. A TUTORIAL FOR PROGRAMMERS USING UNIX A-35

object module after successful links)
HOPURGE NOPU Ho deletion

Unix-style options are passed on to the compiler involved. The local
definitions of the AlPS-style options and the default modes are setup
in ASOPTS.SH (assembler), CCOPTS.SH (C compiler), FCOPTS.SH (Fortran
compiler) and LDOPTS.SH (linker). These files are stored in _$SYSLOCAL.

A .7.2 Miscellaneous Routines
VERSION “Version”
See SCDOLD, SCDNEW and SCDTST under “LOGIN.CSH or LOGIN.SH” above.

FORK
The FORK procedure makes no sense under Unix (use &). The following example shows how to compile
and link AIPS as a background process:
COMLHK $AIPPGM/AIPS ft

FLOG
The FLOG procedure makes no sense under Unix. Log files can be specified on the command line. Otherwise
they are automatically generated for each module as it is processed. In either case, the user can examine
the log files at any time using any number of different Unix commands.

A .7.3 Compiling and linking, an example
This example shows how we can link a private, experimental version of the program MX with private copies
of the subroutines GRDAT.FOR and DSKFFT.FOR. We will use the standard version of MX.FOR as found
in SQYPGNOT.

First, we change to some work directory and copy the current versions of DSKFFT.FOR and GR­
DAT.FOR from SAPLNOT. Now we make any changes as desired to GRDAT.FOR and DSKFFT.FOR and
COMRPL them with the following command:
COMRPL DSKFFT GRDAT

COMRPL will recognize that DSKFFT and GRDAT reside in the current working directory (which is
presumably not an AIPS directory defined in SSYSLOCAL/LIBR.DAT). In this case, COMRPL will go
through all its normal actions, but will make no attem pt to stage the resulting object modules for replacement
in an AIPS object library. Instead, the object modules will be left in the same directory as the source code.

For example, if we executed the COMRPL command line above on the NRAO-CV Convex with $AIPS_VERSIOIS'
defined as /AIPS/15APR87 and did this from the directory /aippgm r/khilldru where DSKFFT.FOR and
GRDAT.FOR had been copied, COMRPL would display the following on the user’s terminal:
COMRPL : Date Fri Feb 13 04:16:53 EST 1987
COMRPL : Substitute /aippgmr/khilldru/DSKFFT.FOR
COMRPL : for /aippgmr/khilldru/DSKFFT
PP : Preprocess /aippgmr/khilldru/DSKFFT.FOR
PP : into /aippgmr/khilldru/DSKFFT.f
FC : Date Fri Feb 13 04:17:26 EST 1987

A-36 APPENDIX A. AIPS DIRECTORY STRUCTURE AND SOFTWARE MANAGEMENT

FC : Interpret FC \
FC /aippgmr/khilldru/DSKFFT.f
FC : as LIST=FALSE PURGE=TRUE
FC : plus fc -V -c -00 \
FC : /aippgmr/khilldru/DSKFFT.i
CONVEX FPP VERSION V2.2
CONVEX FSKEL VERSION V2.2
CONVEX FC VERSION V2.2
FC : Compile of /aippgmr/khilldru/DSKFFT.f
FC : ends successfully.
FC : Delete /aippgmr/khilldru/DSKFFT.f
COMRPL : Module /aippgmr/khilldru/DSKFFT.o
COMRPL : not /AIPS/15APR87/...
COMRPL : Not replaced!
COMRPL : Date Fri Feb 13 04:17:47 EST 1987
COMRPL : Substitute /aippgmr/khilldru/GRDAT.FOR
COMRPL : for /aippgmr/khilldru/GRDAT
PP : Preprocess /aippgmr/khilldru/GRDAT.FOR
PP : into /aippgmr/khilldru/GRDAT.f
FC : Date Fri Feb 13 04:18:21 EST 1987
FC : Interpret FC \
FC /aippgmr/khilldru/GRDAT.f
FC : as LIST=FALSE PURGE=TRUE
FC : plus fc -V -c -00 \
FC /aippgmr/khilldru/GRDAT.f
CONVEX FPP VERSION V2.2
CONVEX FSKEL VERSION V2.2
CONVEX FC VERSION V2.2
FC : Compile of /aippgmr/khilldru/GRDAT.f
FC : ends successfully.
FC : Delete /aippgmr/khilldru/GRDAT.f
COMRPL : Module /aippgmr/khilldru/GRDAT.o
COMRPL : not /AIPS/16APR87/...
COMRPL : Not replaced!
COMRPL : Ends successfully

As you can see, COMRPL is rather verbose and didactic. It invokes various subordinate procedures to
accomplish its mission. The procedure responsible for each action is listed in the left margin. Each of these
is designed so that it can be used stand-alone, if so desired. A description of their usage can be found at
the beginning of the text of each. Most are stored in SSYSUNIX, but a few are system specific and reside
in SSYSLOCAL. However, using COMRPL affords the best protection against foul ups.

Next, we need an option file to tell the linker what object modules and object libraries to use. The
name of the options file can be anything that you please, except it must have an extension of “.OPT” (or
“.opt”). We can use the procedure LIBS to create an initial version of an options file for programs found in
SQYPGNOT (like MX). To do this, we type:
L I B S S Q Y P G N O T > M Y M X .O P T

This will extract the normal library link list from SSYSLOCAL/LIBR.DAT for programs that reside in
SQYPGNOT and store this list in MYMX.OPT. To link our private versions of GRDAT and DSKFFT with
SQYPGNOT/MX, we need to use a text editor to change this version of MXMY.OPT from:

A. 7. A TUTORIAL FOR PROGRAMMERS USING UNIX A-37

$LIBR/QNOT/SUBLIB
$LIBR/APLHOT/SUBLIB
$LIBR/QSUB/SUBLIB
$LIBR/QVEX/SUBLIB
$LIBR/YSUB/SUBLIB
$LIBR/YM70/SUBLIB
SLIBR/APLSUB/SUBLIB
$LIBR/APLCVEX/SUBLIB
SLIBR/APLSUB/SUBLIB

to:
DSKFFT. o
GRDAT.o
SLIBR/QNOT/SUBLIB
Slib r/a pl ho t/sublib
SLIBR/QSUB/SUBLIB
SLIBR/QVEX/SUBLIB
SLIBR/YSUB/SUBLIB
SLIBR/YM70/SUBLIB
SLIBR/APLSUB/SUBLIB
SLIBR/APLCVEX/SUBLIB
SLIBR/APLSUB/SUBLIB

With a suitable “.OPT” file prepared, we are ready to create our private version of an MX executable. To
do this, we need only type:
COMLNK SQYPGMOT/MX.FOR MYMX.OPT

For example, if we executed the COMLNK command line above on the NRAO-CV Convex with $ AIPS. VERSION
defined as /AIPS/15APR87 and did this from the directory /aippgm r/khilldru where our private DSKFFT.o
and GRDAT.o reside, COMLNK would display the following on the user’s terminal:
COMLNK Date Fri Feb 13 05:12:59 EST 1987
COMLNK Substitute /AIPS/15APR87/QY/PGM/N0TST/MX.o
COMLNK for /AIPS/15APR87/QY/PGM/N0TST/MX.FOR
LINK Date Fri Feb 13 05:15:10 EST 1987
LINK Interpret LINK MYMX.OPT \
LINK /AIPS/15APR87/QY/PGM/N0TST/MX.o
LINK as PURGE=FALSE REPLACE=TRUE
LINK plus /usr/convex/fc -V -g \
LINK /AIPS/15APR87/QY/PGM/N0TST/MX.o \
LINK DSKFFT.o \
LINK GRDAT.o \
LINK /AIPS/15APR87/LIBR/QN0T/SUBLIB \
LINK /AIPS/15APR87/LIBR/APLN0T/SUBLIB \
LINK /AIPS/15APR87/LIBR/QSUB/SUBLIB \
LINK /AIPS/15APR87/LIBR/QVEX/SUBLIB \
LINK /AIPS/15APR87/LIBR/YSUB/SUBLIB \
LINK /AIPS/15APR87/LIBR/YM70/SUBLIB \
LINK /AIPS/15APR87/LIBR/APLSUB/SUBLIB \
LINK /AIPS/15APR87/LIBR/APLCVEX/SUBLIB \
LINK /AIPS/15APR87/LIBR/APLSUB/SUBLIB \

A-38 APPENDIX A. AIPS DIRECTORY STRUCTURE AND SOFTWARE MANAGEMENT

LINK : -o /AIPS/15APR87/QY/PGM/N0TST/MX.EXE
CONVEX FC VERSION V2..2
LINK : Moved /AIPS/15APR87/QY/PGM/N0TST/MX.EXE
LINK : to /aippgmr/khilldru/MX.EXE
LINK : Link of /AIPS/15APR87/QY/PGM/N0TST/MX.o
LINK : ends successfully.
COMLNK : Delete /AIPS/15APR87/QY/PGM/N0TST/MX.LOG
COMLNK : Ends successfully

Note that, in this case, no preprocessing or compiling was performed. Despite the fact that the command line
specified SQYPGNOT/MX.FOR, the search process found an extant version of $QYPGNOT/MX.o (i.e., the
MX program object module) which it determined was up to date. It therefore substituted $QYPGNOT/MX.o
for $QYPGNOT/MX.FOR and COMLNK dutifully proceeded directly to the link step. If we had known this
a priori, we could have instead invoked the procedure LINK via “LINK $QYPGNOT/MX.o MYMX.OPT” .
However, this can be dangerous since LINK makes no attem pt to determine whether the specified object
module is up to date. In any case, it has become the preferred practice to leave program object modules
around, since it is much faster than preprocessing and compiling the the same source code again. The object
modules occupy about the same disk space as a second copy of the unpreprocessed source code and, as long
care is taken (e.g., using COMLNK with its search process), the practice is safe. Also note that, whereas
the executable module was originally generated in the SQYPGNOT directory, it was ultimately moved to
the current working directory.

Suppose we wanted to compile and/or link SQYPGNOT/MX with execution profiling enabled and have
the link run as a background process. For this, we type:

COMLNK $QYPGNOT/MX PROFILE ft

In the above, we used the AlPS-style option to enable execution profiling. Alternatively, we could have
specified the local compiler option for execution profiling explicitly, for example:

COMLNK $QYPGNOT/MX -p ft

The “-p” would have been passed on to the compiler assuming that it had some meaning. Once this is
known, this is the practice that most knowledgeable Unix users will probably adopt. The AlPS-style options
are merely preserved for those who don’t know any better.

The actions of COMLNK will be displayed on the terminal as well as recorded in a log file whose name
defaults to MX.LOG (unless otherwise specified). If all goes well, MX.LOG will be deleted. If not, it will
be available for post mortem examination. If we really want to, we can redirect the terminal output from
COMLNK to the “bit bucket” by typing:

COMLNK $QYPGNOT/MX > /dev/null ft

In any case, unless we logout and login again, the shell will notify us when any of our background processes
finish, successful or not. If we’ve redirected our COMLNK output to /dev/null, the existence of MX.LOG
will also tell us that the COMLNK failed. This is not true if the user specifies a log file on the COMLNK
command line. If a log file is specified, COMLNK assumes that the user must want this information for
some reason and will leave it around. Furthermore, if the user-specified log file already exists, new text is
simply appended.

A.7. A TUTORIAL FOR PROGRAMMERS USING UNIX A-39

A .7.4 Non-standard INCLUDE files
The source code preprocessor must naturally have a mechanism for handling included source text in Fortran
modules. These are used exclusively in AIPS code to insert variable declarations, COMMON definitions,
EQUIVALENCE statements, DATA initialization statements, PARAMETER statements and special com­
piler directives. Since there is no industry standard for such included text, the AIPS coding practice is to
use VMS-style INCLUDE statements. These take the following form:

INCLUDE 'INCS:filename’

The “INCS:” portion refers to an AIPS programming logical. In Unix, this takes the form of an environment
variable defined as a search path. This search path consists of a blank-separated list of directory pathnames.
If another directory is to be added to the search path (e.g. /m nt/m ynam e/aips) then define INCS:
% setenv INCS “/m nt/m ydir SINCXXX SINCNOT $INC”
Note: you must use double quotes in defining SINCS. The actual value of SINCXXX should be depends of the
type of computer you are using. Determine the one to use from examining the listing of AREAS.DAT earlier
in this chapter. Usually for developing new routines only SINC of the AIPS standard INCLUDE libraries
are needed. If SINCS is undefined the preprocessor will set it to a standard value for your installation.

A .7.5 Running Tasks from Private Directories
If a private directory is to be used then the .EXE and the .HLP file should be in the same directory. To use
the executables in a private directory during a session with AIPS it is first necessary to define an environment
variable to point to this directory, e.g.:
setenv MYVAR /m nt/m ynam e/aips (C shell)
or
MYVAR=/mnt/myname/aips (Bourne or Korn shell)
export MYVAR

Then, inside AIPS set adverb VERSION to point to this directory, e.g:
> VERSION = ’MYDIR’
and INPUTS, HELP and GO will use the right versions of the files.

A .7.6 Debugging under Unix
To run the debugger the task and any relevant routines should have been compiled and link edited with the
DEBUG option. Use of the debugger on optimized code can be confusing so is best avoided. If you are using
executables in a private directory see the previous section.

DEBUG must be specified on the command line when starting AIPS:
The startup procedure will then ask you which debugger (e.g., dbx, csd, adb) and if you wish to run
AIPS itself under the debugger. To cause a task to be run under the debugger in AIPS use pseudo verb
SETDEBUG, e.g.:
> setdebug = 20
Using a value of 0 turns off initiating tasks under the debugger. AIPS will not resume until after the task
has completed.

A .7.7 Check out system
Programmers at NRAO must use the checkout procedures on CVAX to change AIPS code. Please remember
to specify directories using their logical names instead of the full directory names. Otherwise, the automatic
procedures for updating other NRAO machines each night will fail.

A-40 APPEND IX A. A IPS DIRECTO RY STR U C TU R E AN D S O F TW A R E M AN AG EM EN T

A ppendix B
Shopping lists
B .l Introduction
This appendix contains the one line descriptions of each of the AIPS system subroutines that may be called
from applications software arrainged by category (a given routine may have several entries). Not all of the
subroutines described in the following lists may be called for all applications software. In particular, routines
in directory AIPSUB may only be called from program AIPS or other tasks in the AIPPGM directory. Z2
and Y3 routines *nay only be called from other “Z” or “Y” routines.

This list should simplify finding the appropriate routine inside the AIPS system. Each routine name is
prefixed with the logical name of the directory in which it resides. A summary of the categories is given
below.

• AP-APPL These are routines that use “Array Processor” routines for a particular operation.
• AP-FFT These are routines that use “Array Processor” routines for FFT (Fast Fourier Transform)

operation.
• AP-UTIL These are utility routines that use “Array Processor” routines.
• BATCH These routines are related to AIPS batch functions.
• BINARY These routines process external binary format data.
• CALIBRATION These routines are related to the calibration package of routines.
• CATALOG These routines are related to the AIPS catalog.
• CHARACTER There routines are AIPS character manipulating functions.
• COORDINATES These routines manipulate astronomical coordinate systems.
• EXT-APPL These are applications routines for extension files; generally tables.
• EXT-UTIL These are utility routines for extension files.
• FITS These routine are for processing data in FITS files.
• GRAPHICS These are the AIPS graphics routines.
• HEADER These routines process AIPS catalog header records.
• HISTORY These routines process AIPS history files or records.
• IO-APPL These are applications routines for the AIPS I/O system.
• IO-BASIC These are the basic routines for the AIPS I/O system.

B-l

B-2 APPENDIX B. SHOPPING LISTS

• IO-TV These are the routines that communicate with the image display.
• IO-UTIL These are utility routines for the AIPS I/O system.
• IO-WAWA These are the “WAWA” or “Easy IO” package of routines.
• MAP These routines deal with images.
• MAP-UTIL These are utility routines dealing with images.
• MATH These are basic mathematical routines.
• MESSAGES These routines deal with sending messages to the user.
• MODELING These routine involve model fitting or calculation.
• PARSING These routine involve parsing information from character strings.
• PLOT-APPL These are applications plotting routines.
• PLOT-UTIL These are utility plotting routines.
• POPS-AP PL These are POPS applications routines (verbs).
• POPS-LANG These are parts of the POPS language processor.
• POPS-UTIL These are POPS utility routines.
• PRINTER These are routines related to printers.
• SDISH These are routines for processing single dish data.
• SERVICE These are various service routines.
• SLICE These are routines that deal with slices through images.
• SORT These are sorting routines.
• SPECTRAL These are routine related to spectroscopy.
• SYSTEM These are AIPS system functions.
• TAPE These are routines related to reading tape or other external binary files.
• TERMINAL These are routines for I/O to user terminals
• TEXT These are routines related to text files.
• TV These are routines related to the image display.
• TV-APPL These are applications routines related to the image display.
• TV-BASIC These are basic image display routines.
• TV-10 These are I/O applications routines related to the image display.
• T V -U T IL T hese are u tility rou tines related to the im age display.
• UTILITY These are general utility routines.
• UV These routines deal with uv (interferometer) data.
• UV-UTIL These utility routines deal with uv (interferometer) data.
• VLA These are routines that are specific to the VLA (NRAO Very Large Array)

B.l. INTRODUCTION B-3

• YO These are the main top level TV (image display) routines.
• Y1 These are the second level TV routines.
• Y2 These are the IIS specific TV routines; these are unlikely to be supported on othe displays.
• Y3 These are “Y” routines that can only be called from other “Y” routines.
• Z These are routines which may contain system dependent functions.
• Z-2 These are routines which may contain system dependent functions but may only be called from

other “Z” routines.

B.1.1 AP-A PPL
QHOT:ALGSUB.FOR Interpolates model visibility grom a grid and subtracts from uv data
QHOT:APCONV.FOR Disk based 2-D convolution using FFTs.
QHOT:COHV.FOR ♦TESS routine: Convolve a map vith a beam.
QHOT:DISPTV.FOR *TESS routine: Display an image on a TV
QPSAP:Q1FIM.FOR Finish gridding a rov of uv data.
QPSAP:Q1GRD.F0R Grid a uv data.
QPSAP:QBAKSU.FOR Back substitution.
QPSAP:QB0XSU.FOR Boxcar sum of a vector.
QPSAP:QCLHSU.FOR Lov level Clark CLEAH routine.
QPSAP:QCRVMU.FOR Complex-real vector multiply.
QPSAP:QCSQTR.FOR inplace transpose of square, complex matrix.
QPSAP:QCTLUT.FOR Initialize cosine lookup table etc.
QPSAP:QCVCMU.FOR Scalar complex times conjugate of vector to real.
QPSAP:QCVC0H.FOR Complex conjugate of a vector.
QPSAP:QCVEXP.FOR Vector complex exponential.
QPSAP:QCV J AD.FOR Complex vector conjugate of vector add.
QPSAP:QCVMAG.FOR Complex vector magnitude squared.
QPSAP:QCVMMA.FOR Max. square of modulus of complex vector.
QPSAP:QCVMOV.FOR Complex vector move.
QPSAP:QCVMUL.FOR Complex vector multiply.
QPSAP:QCVSDI.FOR Divide veighted complex vector by complex scalar.
QPSAP:QCVSMS.FOR Subtract real vector*complex scalar from vector.
QPSAP:QDIRAD.FOR Directed vector add.
QPSAP:QFIHGR.FOR Finish gridding rov of uv data.
QPSAP:QGADIV.FOR Divide Gaus. model vis. into uv data.
QPSAP:QGASUB.FOR Subtract Gaus. model vis. from uv data.
QPSAP:QGET.FOR Move data from pseudo-AP memory to "host".
QPSAP:QGRD1.FOR Convolves visibility data onto a grid.
QPSAP:QGRD2.FOR Convolves linear polarization data onto a grid.
QPSAP:QGRD3.FOR Convolve visibility data onto a grid.
QPSAP:QGRD4.FOR Convolves visibility data onto a grid.
QPSAP:QGRDCC.FOR Grid and FT Clean components.
QPSAP:QGRDFI.FOR Finish griding a row of uv data.
QPSAP:QGRDMI.FOR Combined complex vector in gridding uv data.
QPSAP:QGRID.FOR Grid uv data into rov.
QPSAP:QGRIDA.FOR Grid visibility data.
QPSAP:QHIST.FOR Make histogram of a vector.
QPSAP:QINT.FOR Interpolates model visibilities from a grid.
QPSAP:QINTP.FOR Interpolates model visibilities from a grid.
QPSAP:QLVGT.FOR Vector logical greater than.
QPSAP:QMAKMS.FOR Make mask depending on vector, scalar comparison.

B-4 APPENDIX B. SHOPPING LISTS

QPSAP:QMAXMI.FOR Find maximum and minimum ol a vector.
QPSAP:QMAXV.FOR Find maximum value element ol a vector.
QPSAP:QMCALC.FOR Compute model visibility Irom point model.
QPSAP:QMEHT.FOR MEM routine
QPSAP:QMIHV.FOR Find minimum value element ol a vector
QPSAP:QMTRAN.FOR matrix transpose.
QPSAP:QMTYP.FOR Chose DFT or gridded interpolation method.
QPSAP:QMULCL.FOR High level Clark CLEAN routine
QPSAP:QPHSRO.FOR Add phase gradient to a complex array.
QPSAP:QPOLAR.FOR Vector rectangular-to-polar conversion.
QPSAP:QPTDIV.FOR Divide point model visibility into uv data.
QPSAP:QPTFAZ.FOR Compute phase in model visibilities.
QPSAP:QPTSUB.FOR Subtract point model visibility Irom uv data.
QPSAP:QRECT.FOR Vector polar-to-rectangular conversion.
QPSAP:QRFT.FOR Does real, inverse FT with arbitrary spacing.
QPSAP:QSEARC.FOR VLBI Iringe search with FFT.
QPSAP.‘QSPDIV.FOR Divide Gaussian model visibility into uv data.
QPSAP:QSPSUB.FOR Subtract Gaussian model visibility Irom uv data.
QPSAP:QSVE.FOR Sum the elements ol a vector.
QPSAP:QSVESQ.FOR Sum the squares ol the elements ol a vector.
QPSAP:QUVIH.FOR Interpolate visibility model Irom a grid.
QPSAP:QUVINT.FOR Interpolate model visibility Irom grid.
QPSAP:QVABS.FOR Vector absolute value.
QPSAP:QVADD.FOR Vector add.
QPSAP:QVCLIP.FOR Vector clip.
QPSAP:QVCLR.FOR Vector zero.
QPSAP:QVCOS.FOR Vector cosine.
QPSAP:QVDIV.FOR Vector divide.
QPSAP:QVEXP.FOR Vector exponentiate.
QPSAP:QVFILL.FOR Vector lill.
QPSAP:QVFIX.FOR Vector lix.
QPSAP:QVFLT.FOR Vector float.
QPSAP:QVIDIV.FOR Divide a vector by the product ol two integers
QPSAP:qVINDE.FOR Vector index (gather)
QPSAP:QVLN.FOR Vector natural logrithm
QPSAP:QVMA.FOR Vector multiply and vector add.
QPSAP:QVMOV.FOR Vector move.
QPSAP:QVMUL.FOR Vector multiply.
QPSAP:QVNEG.FOR Negate the elements ol a vector.
QPSAP:qVRVRS.FOR Reverse the elements ol a vector.
QPSAP:QVSADD.FOR Vector scalar add.
QPSAP:QVSIN.FOR Vector sine.
QPSAP:QVSMA.FOR Vector scalar multiply and vector add.
QPSAPrQVSMAF.FOR Scalar multiply and and round.
QPSAP:QVSMSA.FOR Vector scalar multiply and scalar add.
QPSAP:QVSMUL.FOR Vector scalar multiply.
QPSAP:QVSQ.FOR Square vector.
QPSAP:QVSQRT.FOR Vector square root.
QPSAP:QVSUB.FOR Vector subtract.
QPSAP:QVSWAP.FOR Vector swap.
QPSAP:QVTRAN.FOR Inplace transpose ol a matrix ol vectors.
QPSAP:QVTSMU.FOR Vector table scalar* multiply.
QPSAP:QXXPTS.FOR Subtract point model visibility Irom uv data.
QNOT:VISDFT.FOR Compute DFT ol model and subtract/divide Irom/into uv data.

B.l. INTRODUCTION B-5

B .l .2 A P-FFT
APLSUB:AP2SIZ.FOR
QSUB:APXPOS.FOR
QHOT:COHV1.FOR
QHOT:C0HV2.FOR
QHOT:C0HV3.FOR
QHOT:C0HV4.FOR
APLHOT:DSKFFT.FOR
APLHOT:EMPTY1.FOR
APLHOT:EMPTY2.FOR
QHOT:FFTIM.FOR
APLHOT:FILL1.FOR
APLHOT:FILL2.FOR
QHOT’.MAKMAP. FOR
APLSUB:MIHSK.FOR
APLSUB:MSKIP.FOR
QSUB:PASS1.FOR
QSUB:PASS2.FOR
QPSAP:QCFFT.FOR
QPSAP:QRFFT.FOR

B .l .3 AP-UTIL
QHOT:APIO.FOR
QSUB:APROLL.FOR
QHOTrCCSGRD.FOR
QHOT:COHVFH.FOR
QHOT:GRDCOR.FOR
QHOT:GRDCRM.FOR
QHOT:GRDSUB.FOR
QHOT:GRDTAB.FOR
QHOT:IHTPFH.FOR
QHOT:MAKMAP.FOR
QPSAP:QGSP.FOR
QPSAP:QIHIT.FOR
QPSAP:QPUT.FOR
QPSAP:QRLSE.FOR
QSUB:QROLL.FOR
QPSAP:QVAIT.FOR
QPSAP:QVD.FOR
QPSAP:qWR.FOR
QHOT:UVGRID.FOR
QHOT:UVMDIV.FOR
QHOT:UVMSUB.FOR
QHOT:UVMTYP.FOR
QHOT:UVTBGD.FOR
QHOT:UVTBUH.FOR
QHOT:UVUHIF.FOR

B .l .4 BATCH
AIPSUB:AUA.FOR
AIPSUB:AUB.FOR
APLSUB:BATPRT.FOR

returns largest power of 2 not exceeding 1024 times first argument
In place transpose of complex array.
First of four routines to convolve two real images.
Second of four routines to convolve two real images.
Third of four routines to convolve two real images.
Fourth of four routines to convolve two real images.
2-D disk based FFT using AP.
DSKFFT utility routine
DSKFFT utility routine
FFTs an image for uv interpolation.
DSKFFT utility routine
DSKFFT utility routine.
Makes image or beam from uv data set.
Inits use of MSKIP to read noncontiguous, evenly spaced rows in a map
Reads noncontiguous, but evenly spaced rows in a map (see also MIHSK)
First of two routines to FFT an image file.
Second of two routines to FFT sin image file.
Complex 1-D FFT.
Real-half plane complex FFT

Copies image-like data between disk and "AP memory".
Copies AP "memory" to disk, gives up AP then reloads AP
Transforms CLEAN components to a grid.
Computes convolving fn. kernels and stores them in "AP memory"
Hormalizes and corrects image for gridding convolution fn.
Loads CLEAH components into AP for uv model computation.
Subtracts transform of CLEAH components from uv data.
Computes Fourier transform of gridding convolution function.
Computes interpolation kernals and put them into "AP memory".
Makes image or beam from uv data set.
Read "S-pad" register
Initialize "AP".
Move data from "host" to "AP" memory.
Release "AP".
Determines if time to roll AP, if so calls APROLL.
Suspend host until AP done.
Suspend host until AP data transfer done.
Suspend host until AP computations complete.
Grids uv data to be FFTed.
Divides a uv data set by the Fourier transform of a model.
Subtracts the Fourier transform of a model from a uv data set.
Determines relative CPU times for DFT or gridded interpolation.
Grids uv data in arbitrary sort order to be FFTed.
Determines and applies uniform weighting to uv data in arb. order.
Determines and applies uniform weighting to a uv data set.

verb to submit batch jobs to AIPSC and the QMHGR queues
verbs to prepare, edit, and review batch jobs and queues
prints header/trailer messages for printer tasks when run in batch

B-6 APPENDIX B. SHOPPING LISTS

APLSUB:BATQ.FOR
AIPSUB:BBUILD.FOR

performs operations on batch queue control file such as OPEN RUN CLOS
reads input lines and adds them to the text file for a batch job

B.1.5 BINARY
APLGEN
APLGEN
APLGEN
APLGEN
APLGEN
APLGEN
APLGEN
APLGEN
APLGEN
APLGEN
APLGEN
APLGEN
APLGEN
APLGEN
APLGEN
APLGEN
APLGEN
APLGEN
APLGEN
APLGEN
APLGEN
APLGEN

:ZBYMOV.FOR
:ZBYTFL.FOR
:ZC8CL.F0R
:ZCLC8.F0R
:ZDHPRL.FOR
:ZGETCH.FOR
:ZI16IL.FOR
:ZI32IL.F0R
:ZI8IL.F0R
:ZILI16.F0R
:ZILI32.F0R
:ZPUTCH.FOR
:ZR32RL.FOR
:ZR64RL.FOR
:ZR8P4.FOR
:ZRDMF.FOR
:ZRHPRL.FOR
:ZRLR32.FOR
:ZRLR64.FOR
:ZRM2RL.F0R
:ZUVPAK.FOR
:ZUVXPN.FOR

move 8-bit bytes from in-buffer to out-buffer
interchange bytes in buffer if needed to go between local k standard
convert packed ASCII buffer to local character string
convert local character string to packed ASCII buffer
convert 64-bit HP floating buffer to local DOUBLE PRECISION values
get a character from a REAL word
convert FITS-standard 16-bit integers to local integers
convert FITS-standard 32-bit integers from buffer into local integers
convert 8-bit unsigned integers in buffer to local integers
convert local integers to 16-bit FITS integers in a buffer
convert local integer into FITS-standard 32-bit integers
inserts 8-bit "character" into a word
convert 32-bit IEEE floating buffer to local REAL values
convert 64-bit IEEE floating-point buffer to local "DOUBLE PRECISION"
converts pseudo 1*4 to double precision - for tape handling only
convert DEC Magtape Format (36 bits data in 40 bits) to 2 integers
convert 32-bit HP floating buffer to local REAL values
converts buffer of local REAL values to IEEE 32-bit floating-point
convert buffer of local double precision values to IEEE 64-bit float.
convert Modcomp to local single precision floating point
Pack visibility data, 1 correlator per real with magic value blank.
Expands packed visibility data and adds weight

B.1.6 CALIBRATION
APLNOT:BLGET.FOR Sets up for interpolation in baseline (BL) table
APLNOT:BLINI.FOR Create/open/init I/O to BL table
APLNOT:BLREFM.FOR Checks existence of BL table, changes format if necessary
APLNOT:BLSET.FOR Fills current baseline calibration table
APLNOT:BPASET.FOR Sets up the bandpass table array for use by DATBND.
APLNOT:BPGET.FOR Sets bandpass correction arrays in common
APLNOT:BPINI.FOR Create/open/initialize bandpass (BP) table
APLNOT:BPREFM.FOR Checks existence of BP table, changes format if necessary
APLNOT:CALADJ.FOR Adjusts solution (SN) table phases to a common reference antenna.
APLNOT:CALC0P.FOR Copies selected uv data with calibration and editing
APLNOT:CALINI.FOR Creates/opens/initializes calibration (CL) table
APLNOT:CALREF.FOR Adjusts the reference antenna in an SN table.
APLNOT:CGASET.FOR Maintains calibration values in an array in common
APLNOT:CHNC0P.FOR Copies selected portions of the IF table
APLNOT:CHNDAT.FOR Creates/Opens/Reads/Writes/Closes an IF table.
APLNOT:CLREFM.FOR Checks existence of CL table, changes format if necessary
APLNOT:CLUPDA.FOR Concatenates, rereferences, smooths SN tables and applies it to CL.
APLNOT:CMPARM.FOR Determines blocks of data in a vis. record to decompress
APLNOT:CSINI.FOR Create/Open/Init Single dish calibration (CS) table
APLNOT:CSLGET.FOR Reads CL (or SN) table and sets up for interpolation.
APLNOT:DATBND.FOR Applies the bandpass correction to data.
APLNOT:DATCAL.FOR Applies calibration to data
APLNOT:DATFLG.FOR Flags data specified in flagging table
APLNOT:DATGET.FOR Reads, selects, calibrates and edits data.

B.l. INTRODUCTION B-7

APLHOT:DATPOL.FOR Apply polarization corrections to data.
APLHOT:DCALSD.FOR Apply Single dish calibration to data.
APLHOT:DGETSD.FOR Reads, selects single dish data, calibrates said edits.
APLHOT:DGGET.FOR Selects uv data and changes Stokes
APLHOTrDGHEAD.FOR Fills output CATBLK lor UVGET
APLHOT:DGIHIT.FOR Sets arrays lor selecting data and changing Stokes
APLHOT:FLAGUP.FOR Updates the Flag (FG) table.
APLHOTrFLGIHI.FOR Create/Open/Init Flag (FG) table.
APLHOT: FLGSTK. FOR Set Stokes Hag lor uv llagging.
APLHOT:FHDSOU.FOR Find source numbers lor a list ol sources.
APLHOT:FQIHI.FOR Create/open/initialize Irequency (FQ) table
APLHOT:FQMATC.FOR Check il selection criteria match FQ table entries.
APLHOT:GACSIH.FOR Initializes CS lile, and prepares table to be applied.
APLHOT:GAIHI.FOR Creates and initializes gain (GA) extension tables.
APLHOT:GAIHIH.FOR Initializes calibration table lor application.
APLHOT:GETFQ.FOR Find inlo on a given Irequency id.
APLHOT:GETSOU.FOR Find inlo on a given source id.
APLHOT:IHDXIH.FOR Initializes index (HX) lile, linds lirst scan selected.
APLHOT:IOBSRC.FOR Search lor antennas in the current bandpass buller.
APLHOT:LXYPOL.FOR Fills polarization correction table lor AT like linear polarization.
APLHOT:MULSDB.FOR Determines il a uv lile is multi- or single- source.
APLHOT:HDXIHI.FOR Create/open/init index (HX) table
APLHOT:HXTFLG.FOR Manages llagging inlo in tables in common.
APLHOT:PARAHG.FOR Computes antenna parallactic singles
APLHOT:POLSET.FOR Fills polarization correction table Irom inlo in AH table.
APLHOT:SCIHTP.FOR Interpolates bandpass tables in time.
APLHOT:SCLOAD.FOR Copies part ol one bandpass scratch lile to another lor elliciency.
APLHOT:SDCGET.FOR Sets up to interpolate in Single dish calibration (CS) table.
APLHOT:SDCSET.FOR Interpolates single dish calibration data lor current time.
APLHOT:SDGET.FOR Reads single dish data with optional calibration and llagging
APLHOT:SELIHI.FOR Initialize data selection and control in commons in DSEL.IHC
APLHOT:SELSMG.FOR Selects calibrator data, smooths solutions.
APLHOT:SET1VS.FOR Sets up pointer and weights arrays lor selecting uv data.
APLHOT:SETSM.FOR Determines type ol spectral smoothing and sets up look up table.
APLHOT:SETSTK.FOR Sets STOKES parameters correctly lor plotting routines
APLHOT:SMOSP.FOR Convolves a spectrum vith a tabulated lunction.
APLHOT:SH2CL.FOR Apply an SH to a CL table.
APLHOT:SHAPP.FOR Append SH tables and keep track ol relerence antennas.
APLHOT:SHIHI.FOR Create/open/initialize solution (SH) tables.
APLHOT:SHREFM.FOR Checks existence ol SH table, changes lormat il necessary
APLHOT:SHSMO.FOR Smooths solution (SH) tables
APLHOT:SOUELV.FOR Computes source hour angles and elevations
APLHOT:SOUFIL.FOR Fills in arrays ol source numbers to be included or excluded.
APLHOT:SOURHU.FOR Look up source numbers lor a list ol names.
APLHOT:TABBL.FOR Do 10 to Baseline (BL) table alter setup by BLIHI.
APLHOT:TABBP.FOR Does I/O to bandpass (BP) table opened by BPINI
APLHOT:TABCAL.FOR Does I/O to Calibration (CL) table opened by CALINI
APLHOT:TABCS.FOR Does I/O to single dish calibration (CS) table opened by CSINI
APLHOT:TABFLG.FOR Does I/O to Flag (FG) table opened by FLGIHI
APLHOT:TABFQ.FOR Does I/O to Irequency (FQ) table opened by FQIHI
APLHOT:TABGA.FOR Does I/O to GAIN (GA) table opened by GAINI
APLHOT:TABHDX.FOR Does I/O to Index (HX) table opened by HDXIHI
APLHOT:TABSH.FOR Does I/O to Solution (SH) table opened by SNINI
APLHOT:TABSOU.FOR Does I/O to Source (SU) table opened by SOUIHI

B-8 APPENDIX B. SHOPPING LISTS

APLIOT:TABTY.FOR Does I/O to Tsys (TY) table opened by TYINI
APLHOT:TYIHI.FOR Create/open/initialize Tsys (TY) table
APLIOT:UVGET.FOR Read UV data with optional calibration, editing, selection, etc.
APLHOT:VISCHT.FOR Determines number of visibility records requested of UVGET

B .l .7 CATALOG
AIPSUB:AU3.F0R Verbs to display contents ol catalogs and headers: CATA, IMHE ...
AIPSUB:AU7.F0R Verbs to print history, rescale image, alter axis descriptions
AIPSUB:AU8.FOR Verbs to get or clear name adverbs, destroy extension files
AIPSUB:CATCR.FOR Create and initialize catalog (CA) files
APLSUB:CATDIR.FOR Manipulates the catalog directory: OPEH, CLOS, various SRCHs, ...
APLSUB:CATIME.FOR Stores current, or recovers previous, date and time in packed format
APLSUB:CATIO.FOR Reads/writes header blocks in the catalog file
APLSUB:CATKEY.FOR Reads/writes the Keyword section of an AIPS header file
AIPSUB:CATLST.FOR List the contents of the catalog directory file
APLSUB:CATOPH.FOR Opens the catalog directory file and returns its size
APLSUB:CHSTAT.FOR Changes numeric code used to record the status of the catalog entry
APLSUB:CHVMAT.FOR Matches a pattern string having wild-card chars with a test string
AIPSUB:DESCR.FOR Destroys all scratch files for tasks which are no longer active
APLSUB:HDRBUF.FOR Translates AIPS header to/from FITS-standard integer form
APLSUB:ICOPEH.FOR Opens image catalog for the specified image plane (call from Y only)
APLSUB:IMA2MP.FOR Converts pixel numbers in a TV-image into real image pixels
APLSUB:MADDEX.FOR Adds extension file to catalog header
APLSUB:MAKOUT.FOR Convert input and output names to actual output names in standard way
APLSUB:MAPCLR.FOR Clears status flags in catalog and deletes lists of files
APLSUB:MAPCLS.FOR Closes cataloged file, updating header and catalog status if needed
APLSUB:MAPOPH.FOR Open file pointed to by catalog entry and mark the entry busy
APLSUB:MCREAT.FOR Create and catalog a map file
APLSUB:MDESTR.FOR Deletes a catalog entry and all files assocated with it
APLSUB:MP2IMA.FOR Convert image pixel positions to TV pixel positions
APLSUB:HXTMAP.FOR Opens next catalog entry matching the input parameters
APLSUB:PSFORM.FOR Analyses a wild-card string, preparing an array for pattern matching
AIPSUB:REHUMB.FOR Renumbers an entry in the catalog (CA) file
APLSUB:STXT.FOR Translates catalog status code into a character string
APLSUB:TKCATL.FOR Performs operations on the Graphics image catalog
APLSUB:UVCREA.FOR Create and catalog a uv data base file

B.1.8 CHARACTER
APLSUB:CH2HUM.FOR converts string containing an integer in ASCII form into the integer
APLSUB:CHBLHK.FOR returns position of first non-blank character in portion of string
APLSUB:CHCOMP.FOR compares two HOLLERITH strings
APLSUB:CHCOPY.FOR moves characters from one HELLERITH string to another
APLSUB:CHFILL.FOR fills portion of HOLLERITH string with a specified character
APLSUB:CHLTOU.FOR converts a CHARACTER string to all upper case letters
APLSUB:CHMATC.FOR searches one HOLLERITH string for the occurrence of another
APLSUB:CHR2H.FOR converts a Fortran CHARACTER variable to an AIPS HOLLERITH string
APLSUB:CHWMAT.FOR matches a pattern string having wild-card chars with a test string
APLSUB:FILZCH.FOR replaces blank characters with
APLSUB:H2CHR.FOR convert AIPS Hollerith string to Fortran CHARACTER variable
APLSUB:IFPC.FOR returns the number of HOLLERITH locations needed to hold H characters
APLSUB:ITRIM.FOR returns length of CHARACTER variable to last non-blank
APLSUB:JTRIM.FOR clears nulls, returns length of CHARACTER variable to last non-blank

B.l. INTRODUCTION B-9

APLSUB:HAMEST.FOR
APLSUB:PSFORM.FOR
APLSUB:SPFIL.FOR
APLSUB:STLTOU.FOR
APLSUB:TRIM.FOR
APLSUB:UNPACK.FOR

packs image name in string with leading and trailing blanks removed
analyses a wild-card string, preparing an array lor pattern matching
lills HOLLERITH string with blanks beginning at lirst null
converts any characters beween single quotes to upper case
removes leading and trailing blanks, returns actual length ol string
converts a packed character buller into one with 1 character/integer

B .l .9 COORDINATES
APLNOT:ATFPNT.FOR Routine to calculate X-Y coords Irom galactic coords
AIPSUB:AU7.F0R verbs to print history, rescale image, alter axis descriptions
APLSUB:AXSTRN.FOR encodes axis type and value in a string
APLNOT:BDN.FOR Computes Besselian day numbers ol Julian date.
APLSUB:COORDD.FOR converts angles between degrees and sexagesimal lormat
APLSUB:COORDT.FOR translates between celestial, galactic, and eccliptic coordinates
APLNOT:DA13.FOR Computes arguments Al, A2 and A3 ol the mean motion ol the sun.
APLNOT:DA46.FOR Computes arguments A4, A5 and A6 ol the mean motion ol the moon
APLNOT:DAPM.FOR Converts apparent to mean positions.
APLSUB:DIRCOS.FOR determines direction cosines between rel position and test position
APLSUB:DIRDEC.FOR linds longitude pixel and latitude given latitude pixel and longitude
APLSUB:DIRRA.FOR linds latitude pixel and longitude given longitude pixel euid latitude
APLNOT:DMAP.FOR Compute apparent position Irom mean position
APLSUB:FNDX.FOR returns X-axis coordinate value given X pixel and Y coordinate value
APLSUB:FNDY.FOR returns Y-axis coordinate value given Y pixel and X coordinate value
APLNOT:GRD.FOR Compute the general relativity displacements in RA and DEC.
APLSUB:JABER.FOR Compute vectors needed lor J2000 aberation and GR light bending.
APLSUB:JNUT.FOR Computes nutation Irom IAU 1980 series
APLSUB:JPOLAR.FOR Correct rectangular position lor polar motion.
APLSUB:JPRECS.FOR Process between apparent and J2000 epoch positions.
APLSUB:JPRENU.FOR Compute rotation matrix lor precession and nutation IAU 1980 series.
APLSUB:LABINI.FOR initializes commons lor labeling ol plots (calls SETLOC)
APLSUB:LMPIX.FOR returns pixel location corresponding to specilied coordinates
APLSUB:METSCA.FOR scale a value to the range 1-999 and provide a metric prelix to match
APLSUB:MP2SKY.FOR calls SETLOC, XYVAL to convert image pixel to physical coordinates
APLSUB:NEVPOS.FOR returns astronomical coordinates given direction cosines, projection
APLNOT:NUT2.FOR Computes nutation in longitude and obliquity lor a Julian date.
APLNOT:NUT4.FOR Computes nutation using a non ridgid earth model
APLNOT .’PARANG. FOR Computes antenna parallactic singles
APLNOT:PRECES.FOR Convert between mean and apparent positions (B1950 only)
APLSUB:SETLOC.FOR sets location common lor coordinate computations and display
APLSUB:SKY2MP.FOR calls SETLOC, XYPIX to convert sky coordinates to map pixel locations
APLSUB:SKYFRM.FOR returns string with character representation ol a corrdinate
APLSUB:SLAEVP.FOR Earth position and motion ephemeris (J2000)
APLSUB:SLBINI.FOR initializes labeling lor slice plots
APLNOT:SOUELV.FOR Computes source hour singles and elevations
APLSUB:XYPIX.FOR returns pixel position corresponding to given coordinates
APLSUB:XYVAL.FOR returns coordinate values corresponding to specilied pixel position

B . l .10 EXT-APPL
APLSUB:ANTDAT.FOR
APLSUB:ANTINI.FOR
APLNOT:BLINI.FOR
APLNOT:BLREFM.FOR

Returns the reference date and frequency for each axray in uv dataset
creates and intializes antenna tables
Create/open/init I/O to BL table
Checks existence of BL table, changes format if necessary

B-10 APPENDIX B. SHOPPING LISTS

APLHOT:BLSET.FOR
APLHOT:BPASET.FOR
APLHOT:BPREFM.FOR
APLHOT:CALADJ.FOR
APLHOT:CALIHI.FOR
APLSUB:CCIHI.FOR
APLHOT:CCMERG.FOR
APLHOT:CLREFM.FOR
APLHOT:CLUPDA.FOR
APLHOT:CSLGET.FOR
APLSUB:EXTHIS.FOR
APLSUB:EXTREQ.FOR
APLHOT:FLAGUP.FOR
APLHOT:FHDSOU.FOR
APLHOT:GACSIH.FOR
APLHOT:GAIHIH.FOR
APLHOT:GETAHT.FOR
APLHOT:GETFQ.FOR
APLHOT:GETSOU.FOR
APLHOT:GHFSMO.FOR
APLHOT:GHSMO.FOR
APLHOT:GRDAT.FOR
QHOT:GRDCRM.FOR
APLHOT:IHDXIH.FOR
APLHOT:ITBSRT.FOR
APLHOT:LXYPOL.FOR
APLHOT:MULSDB.FOR
APLHOT:HXTFLG.FOR
APLHOT:OTBSRT.FOR
APLHOT:POLSET.FOR
APLHOT:SDCGET.FOR
APLHOT:SELSMG.FOR
APLHOT:SETSTK.FOR
APLHOT:SH2CL.FOR
APLHOT:SHAPP.FOR
APLHOT:SHREFM.FOR
APLHOT:SHSMO.FOR
APLHOT:SOUFIL.FOR
APLHOT:SOURHU.FOR
APLHOT:SUMARY.FOR
APLSUB:TABAH.FOR
APLHOT:TABAXI.FOR
APLSUB:TABLIH.FOR
APLHOT:TYIHI.FOR
APLHOT:VISCHT.FOR

Fills current baseline calibration table
Sets up the bandpass table array for use by DATBHD.
Checks existence of BP table, changes format if necessary
Adjusts solution (SH) table phases to a common reference antenna.
Creates/opens/initializes calibration (CL) table
creates and/or opens a CC (components) extension table
Compresses a CLEAH component (CC) table
Checks existence of CL table, changes format if necessary
Concatenates, rereferences, smooths SH tables said applies it to CL.
Reads CL (or SH) table and sets up for interpolation,
adds to history file for contents of FITS extension file being read
parse FITS tape record for required extension file FITS keywords
Updates the Flag (FG) table.
Find source numbers for a list of sources.
Initializes CS file, and prepares table to be applied.
Initializes calibration table for application.
Reads AH table and stores the info in common.
Find info on a given frequency id.
Find info on a given source id.
Boxcar smooths and ASCAL solution (GA) file.
Optimized spline smoothing of amplitudes in ASCAL (GH) file.
Getn info about CLEAH components for GRDSUB.
Loads CLEAH components into AP for uv model computation.
Initializes index (HX) file, finds first scan selected.
Read a table and write a scratch file to be sorted.
Fills polarization correction table for AT like linear polarization.
Determines if a uv file is multi- or single- source.
Manages flagging info in tables in common.
Copies sorted table from scratch file to table form
Fills polarization correction table from info in AH table.
Sets up to interpolate in Single dish calibration (CS) table.
Selects calibrator data, smooths solutions.
Sets STOKES parameters correctly for plotting routines
Apply am SH to a CL table.
Append SH tables and keep track of reference antennas.
Checks existence of SH table, changes format if necessary
Smooths solution (SH) tables
Fills in arrays of source numbers to be included or excluded.
Look up source numbers for a list of names.
Accumulates and lists CLEAH components
I/O to antenna tables (following initialization by AHTIHI)
parse FITS tape record for required extension file FITS keywords
reads a line from the data portion of a FITS extension of type TABLE
Create/open/initialize Tsys (TY) table
Determines number of visibility records requested of UVGET

B .l .11 EXT-UTIL
APLSUB:ALLTAB.FOR
AIPSUB:AU8.FOR
APLHOT:BPIHI.FOR
APLHOT:CHHCOP.FOR
APLHOT:CHHDAT.FOR
APLHOT:CSIHI.FOR

Copies all table extension files from one catalog slot to another
verbs to get or clear name adverbs, destroy extension files
Create/open/initialize bandpass (BP) table
Copies selected portions of the IF table
Creates/Opens/Reads/Vrites/Closes an IF table.
Create/Open/Init Single dish calibration (CS) table

B.l. INTRODUCTION B -ll

APLSUB:DELEXT.FOR removes an extension file from the header in the catalog file
APLSUB:EXTCOP.FOR copies extension file of the EXTINI/EXTIO variety
APLSUB:EXTIHI.FOR creates and/or opens am extension file of the EXTIHI/EXTIO type
APLSUB:EXTIO.FOR does random access 10 to extension files of the EXTINI/EXTIO type
APLHOT:FLGIII.FOR Create/Open/Init Flag (FG) table.
APLSUB:FHDCOL.FOR locvates logical column numbers for given titles in a Table
APLSUB:FHDEXT.FOR returns latest version number of specified extension file type
APLHOT:FQIHI.FOR Create/open/initialize frequency (FQ) table
APLHOT:GAIHI.FOR Creates and initializes gain (GA) extension tables.
APLSUB:GETCOL.FOR returns value and type found at specified column and row in a table
APLSUB:GETHUT.FOR returns column titles, units, types, lengths in logical column order
APLHOT:GETHAH.FOR Find number of antennas and subaxrays from AH tables.
APLHOT:GTPAIR.FOR Returns specified Keyvord-value pair from am open AIPS table
APLSUB:ISTAB.FOR finds if an extension file exists and whether it is a standard table
APLSUB:MADDEX.FOR adds extension file to catalog header
APLHOT:NAKTAB.FOR Create and initialize table from data in common /TABHDR/ (FITS)
APLVOT:HDXIHI.FOR Create/open/init index (HX) table
APLSUB:OPEXT.FOR opens a specified extension file
APLSUB:PUTCOL.FOR returns value and type found at specified column and row in a table
APLHOT:R3DTAB.FOR Read data from FITS 3-D table and write AIPS table.
APLSUB:RESCSL.FOR Rescale flux-like data in any SLice files.
APLHOT:RWTAB.FOR Read FITS ASCII table data and write AIPS table file.
APLHOT:SDTCRD.FOR Parse "SIHGLDSH" FITS table headers, get some keywords.
APLSUB:SELSTR.FOR builds string displaying the functions applied to columns of table
APLHOT:SHIHI.FOR Create/open/initialize solution (SH) tables.
APLHOT:S0UIHI.FOR Create/initialize/open source (SU) table
APLHOT:TABAPP.FOR Appends one table to the end of a similar table.
APLHOT:TABBL.FOR Do 10 to Baseline (BL) table after setup by BLIHI.
APLHOT:TABBP.FOR Does I/O to bandpass (BP) table opened by BPIHI
APLHOT:TABCAL.FOR Does I/O to Calibration (CL) table opened by CALIHI
APLSUB:TABCOP.FOR copies one or all tables extension files of specified type
APLHOT:TABCS.FOR Does I/O to single dish calibration (CS) table opened by CSIHI
APLHOT:TABF3D.FOR Determines repeat count and data type for FITS 3-D tables entries.
APLHOT:TABFLG.FOR Does I/O to Flag (FG) table opened by FLGIHI
APLHOT:TABFQ.FOR Does I/O to frequency (FQ) table opened by FQIHI
APLHOT:TABFRM.FOR Pairses format for FITS ASCI table entries.
APLHOT:TABGA.FOR Does I/O to GAIH (GA) table opened by GAIHI
APLHOT:TABHDK.FOR Reads a FITS table header.
APLHOT:TABHDR.FOR Reads a FITS table header.
APLSUB:TABIHI.FOR create/open a table extension file
APLSUB:TABIO.FOR reads/writes tables extension files
APLSUB:TABKEY.FOR reads/writes the Keyword section of am AIPS table file
APLSUB:TABMRG.FOR merges rows of am an input table file
APLHOT:TABHDX.FOR Does I/O to Index (HX) table opened by NDXIHI
APLHOT:TABSH.FOR Does I/O to Solution (SH) table opened by SHIHI
APLHOT:TABS0U.FOR Does I/O to Source (SU) table opened by SOUIHI
APLHOT:TABSPC.FOR Determines repeat count amd data type for FITS 3-D tables entries.
APLHOT:TABSRT.FOR Sorts the entries in am AIPS table.
APLHOT:TABTY.FOR Does I/O to Tsys (TY) table opened by TYIHI

B .l .12 FITS
APLHOT:ATC0HV.FOR
APLSUB:CHAVRT.FOR

Fix AIPS FITS tables
converts between local HOLL amd local INT binary forms for transport

B-12 APPENDIX B. SHOPPING LISTS

APLHOT:
APLSUB:
APLSUB:
APLSUB:
AIPSUB:
APLSUB:
APLSUB:
APLSUB:
APLSUB:
APLSUB:
APLSUB:
APLSUB:
APLSUB:
APLIOT:
AIPSUB:
APLIOT:
APLIOT:
APLSUB:
APLIOT:
APLIOT:
APLSUB:
APLSUB:
APLSUB:
APLSUB:
APLIOT:
APLIOT:
APLIOT
APLIOT
APLIOT
APLSUB
APLIOT
APLIOT
APLGEI
APLGEI
APLGEI
APLGEI
APLGEI
APLGEI
APLGEI

CHKTAB.FOR
EXTHIS.FOR
EXTREQ.FOR
FPARSE.FOR
FVRITE.FOR
GETCRD.FOR
GETLOG.FOR
GETIUM.FOR
:GETSTR.FOR
:GETSYM.FOR
:GTVCRD.FOR
:IDWCRD.FOR
:JULDAY.FOR
:MAKTAB.FOR
:MSGHDR.FOR
:PTF3D.FOR
:R3DTAB.FOR
:REAVRT.FOR
:RVTAB.FOR
:SDTCRD.FOR
:SETBSC.FOR
:SETDEF.FOR
:SKPBLK.FOR
:SKPEXT.FOR
:TABAXI.FOR
:TABF3D.F0R
:TABFRM.FOR
:TABHDK.FOR
:TABHDR.FOR
:TABLII.FOR
:TABSPC.FOR
:TPIOHD.FOR
:ZBYTF2.FOR
:ZBYTFL.FOR
:ZTPMID.FOR
:ZTPOPD.FOR
:ZTPVAD.FOR
:ZX8XL.F0R
:ZXLX8.FOR

Check fields of known FITS table types.
adds to history file for contents of FITS extension file being read
parse FITS tape record for required extension file FITS keywords
interprets card image from FITS header into AIPS header format
converts FITS header to AIPS header and displays it with MSGWRT
parses card image from FITS header, returns recognized keyword
returns value of logical variable from character buffer
returns numeric field from character buffer
returns a string value (was enclosed by quotes) from character buffer
returns next symbol in character-form card image
returns allowed keyword from FITS header card image
returns allowed keyword from FITS header card image
converts a character**encoded calendar date to Julian day number
Create and initialize table from data in common /TABHDR/ (FITS)
lists header contents for standard header plus random parameters
Copies 8-bit bytes to tape.
Read data from FITS 3-D table and write AIPS table.
converts between local REAL and local IIT binary forms for transport
Read FITS ASCII table data and write AIPS table file.
Parse "SIIGLDSH" FITS table headers, get some keywords,
determines scaling/offset parameters to convert image to integer
fills FITS reader area for table-file extensions with defaults
find next non-blank card image in a FITS header, read tape if needed
finishes reading FITS extension header, skips the extension data
parse FITS tape record for required extension file FITS keywords
Determines repeat count and data type for FITS 3-D tables entries.
Parses format for FITS ASCI table entries.
Reads a FITS table header.
Reads a FITS table header.
reads a line from the data portion of a FITS extension of type TABLE
Determines repeat count and data type for FITS 3-D tables entries.
Reads tape header and tests if FITS, tape labels etc.
interchange bytes in buffer if needed to go between local k standard
interchange bytes in buffer if needed to go between local k standard
pseudo-tape disk read/write for 2880-bytes records
open a pseudo-tape, sequential disk file for FITS
"wait" for 10 operation to complete on pseudo-tape disk file (ZTPMID)
convert FITS table bit array to AIPS bit array
convert AIPS bit array to FITS binary table bit array

B .l .13 GRAPHICS
AIPSUB:AU9A.FOR verbs to read TEK cursor and display pixel, sky, image values
AIPSUB:AU9B.FOR verbs to plot slices and models on graphics
AIPSUB:AU9C.FOR verbs to set initial guesses for slice model fits using TEK graphics
AIPSUB:SET1DG.FOR sets initial guess parameters with the TEK for fitting slices
APLHOT:SETSTK.FOR Sets STOKES parameters correctly for plotting routines
AIPSUB:SL0CIH.FOR initialize location common for slice (on the TEK) model fitting
APLSUB:TEKFLS.FOR writes any remaining buffer to the TK graphics device, zeros buffer
APLSUB:TEKVEC.FOR write bright or dark, scaled or unsealed vector to TK graphics device
APLSUB:TKCATL.FOR performs operations on the Graphics image catalog
APLSUB:TKCHAR.FOR writes characters to a TK graphics device
APLSUB:TKCLR.FOR clears the TK graphics screen
APLSUB:TKCURS.FOR turns on, reads, turns off the TK graphics cursor

B.l. INTRODUCTION B-13

APLSUB:TKDVEC.FOR converts vector command to TK graphics commands
AIPSUB:TKGGPL.FOR plots model slice on Graphics
AIPSUB:TKGMPL.FOR plot model fit to slice on the graphics terminal
APLSUB:TKLAB.FOR labels axes on plot directly to a TK graphics device, draw ticks
AIPSUB:TKRSPL.FOR plots residuals between slice and its model on Graphics device
AIPSUB:TKSLAC.FOR activates and reads TEK cursor, converts result to image coordinates
APLSUB:TKSLIN.FOR initialize parameters for plotting a slice directly on a TK graphics
AIPSUB:TKSLPL.FOR plot a slice on graphics device
APLSUB:TKTICS.FOR writes tick marks and labels directly to TK graphics device
APLGEN:ZTKBUF.FOR flush TK buffer if needed, then store 8-bit byte in buffer
APLGEV:ZTKCL2.FOR close a Tektronix device
APLGEI:ZTKCLS.FOR close the TK device
APLGEN:ZTKFI2.FOR read/write from/to a Tektronix device
APLGEI:ZTK0P2.FOR read/write from/to a Tektronix device
APLGEI:ZTKOPI.FOR open a TK device

B .l .14 HEADER
AIPSUB:AU3.FOR verbs to display contents of catalogs and headers: CATA, INHE ...
AIPSUB:AU7.FOR verbs to print history, rescale image, alter axis descriptions
AIPSUB:AU7A.FOR verbs to put/get header values, to put values into images
APLSUB:AXEFND.FOR finds axis number for specified axis type
APLSUB:BLDSIM.FOR builds a name for a scratch file
APLSUB:CATIO.FOR reads/writes header blocks in the catalog file
APLSUB:CATKEY.FOR reads/writes the Keyword section of an AIPS header file
APLIOT:COIIC.FOR Checks if two maps sire exactly coincident.
APLIOT:DGHEAD.FOR Fills output CATBLK for UVGET
APLIOT:FRQTAB.FOR Fill Frequency table in common for IFs and channels
APLIOT:GETCTL.FOR Determine Stokes* type of Clean map and other modeling info.
APLIOT:INCREA.FOR Fills catalog header for an image and optionally creates and catalogs
APLSUB:JULDAY.FOR converts a character-encoded calendar date to Julian day number
AIPSUB:KVIKHD.FOR list header contents in abbreviated, image centered form
APLSUB:LMPIX.FOR returns pixel location corresponding to specified coordinates
APLSUB:LSTHDR.FOR lists header contents in standard form with NSGVRT
AIPSUB:MSGHDR.FOR lists header contents for standard header plus random parameters
APLSUB:IAMEST.FOR packs image name in string with leading and trailing blanks removed
APLSUB:ROTFID.FOR find the coordinate rotation angle from the catalog header
APLSUB:SUBHDR.FOR changes input to output header correcting for subimaging
APLSUB:SWAPAX.FOR swaps the values for two axes
APLSUB:UVPGET.FOR determines pointers to UV data from the header
APLSUB:VHDRII.FOR computes pointers (subscripts) to address components of the header

B .l .15 HISTORY
AIPSUB:AU7.FOR verbs to print history, rescale image, alter axis descriptions
APLSUB:EXTHIS.FOR adds to history file for contents of FITS extension file being read
APLSUB:HENC01.FOR Adds INNAME, INCLASS, INSEQ, INDISK to an open history file
APLSUB:HENC02.FOR Adds IN2NAME, IN2CLASS, IN2SEQ, IN2DISK to an open history file
APLSUB:HEIC03.FOR Adds II3IAME, IN3CLASS, II3SEQ, IN3DISK to an open history file
APLSUB:HEICOO.FOR adds OUTNAME, OUTCLASS, OUTSEQ, OUTDISK to an open history file
APLSUB:HIAD80.FOR puts an 80-character card image into a history file as required
APLSUB:HIADD.FOR adds a history record ("card" = 72 characters) to a history file
APLSUB:HIADDN.FOR Writes one history line to several history files
APLSUB:HICLOS.FOR closes a history file, flushing the buffer if desired

B-14 APPENDIX B. SHOPPING LISTS

APLSUB:HICOPY.FOR copies one history lile to the end ol a second
APLSUB:HICREA.FOR open a history lile, creating one il needed
APLSUB:HIIHIT.FOR initializes the history common area - must be called belore history
APLSUB:HII0.FOR does 10 and lile expansion (il needed) on HI liles
APLSUB:HILOCT.FOR manipulates the history table, opening, closing, located am entry
APLSUB:HIMERG.FOR creates several new history liles by merging several old ones.
APLSUB:HI0PEV.FOR opens a history lile, preparing common pointers and reading record 1
APLSUB:HIPL0T.FOR places a record in the history lile concerning a plot file creation
APLHOT:HIREAD.FOR Reads next history card Irom a history lile
APLSUB:HISCOP.FOR creates nev history lile amd copies an old one to it

B .l .16 IO-APPL
APLIOT:FQMATC.FOR
APLIOT:MAKGAU.FOR
APLHOT:MLTMAP.FOR
APLHOT:PLHPUT.FOR
APLHOT:RESID.FOR
APLHOT:SDGET.FOR
APLHOT:SDTCRD.FOR
APLHOT:STEP.FOR
APLHOT:SUBMAP.FOR
APLHOT:TVF0AD.FOR
APLHOT:UVD0UT.FOR
APLHOT:UVDPAD.FOR
APLHOT:UVGET.FOR

B .l .17 IO-BASIC
APLSUB:FSERCH.FOR determines type and number ol entries in the common lile table (FTAB)
APLSUB:IAMOK.FOR decides il a disk lile type is allowed lor the user on a disk
APLSUB:LSERCH.FOR opens, locates, closes entries in the common lile table (FTAB)
APLSUB:MDISK.FOR reads or writes a rov Irom an image
APLSUB:MIHIT.FOR intializes 10 and pointers lor quick-retum image 10 via MDISK
APLSUB:UVDISK.FOR reads/vrites records ol arbitrary length, esp UV data, see UVINIT
APLSUB:UVIHIT.FOR initializes 10 lor airbitraLry length records via UVDISK, esp UV data
APLGEH:ZCLOSE.FOR closes open devices: disk, line printer, terminal.
APLGEH:ZCMPR2.FOR truncate a disk lile, returning blocks to the system
APLGEH:ZCMPRS.FOR release space Irom the end ol an open disk lile
APLGEH:ZCREA2.FOR create the specilied disk lile
APLGEH:ZCREAT.FOR creates a disk lile
APLGEH:ZDACLS.FOR close a disk lile
APLGEH:ZDAOPH.FOR open the specilied disk lile
APLGEH:ZDEST2.FOR destroy a closed disk lile
APLGEH:ZDESTR.FOR destroy a closed disk lile
APLGEH:ZEXIS2.FOR return size ol disk file and if it exists
APLGEN:ZEXIST.FOR return file size and, consequently, whether file exists
APLGEH:ZEXPH2.FOR expand an open disk lile
APLGEH:ZEXPHD.FOR expand an open disk file — either map or non-map nov allowed
APLGEH:ZFI2.FOR read/write one 256-integer record from/to a non-map disk file
APLGEH:ZFIO.FOR reads amd writes single 256-integer records to non-map disk files
APLGEH:ZFRE2.FOR return AIPS data disk free space information
APLGEH:ZMI2.FOR read/write large blocks of data from/to disk, quick return
APLGEH:ZMI0.FOR random-access, quick return (double buffer) disk 10 for large blocks

Check if selection criteria match FQ table entries.
*TESS routine: Make a Gaussian convolution function.
*TESS routine: multiplies am image by a value, writes another.
Copies a subregion of a scratch file image to a cataloged image.
*TESS routine: Computes residual image.
Reads single dish data with optional calibration amd flagging
Paurse "SIHGLDSH" FITS table headers, get some keywords.
*TESS routine: adds a fraction of one image to amother.
♦TESS Routine: Subtract two images.
TVFLG routine to load and image with smoothing converting to display.
Divides uv model in one half of a record into other, writes result.
Reformat UV data record, doubling size amd zero extra words.
Read UV data with optional calibration, editing, selection, etc.

B.l. INTRODUCTION B-15

APLGEI: ZMKTMP.FOR convert a "temporary" lile name into a unique name
APLGEI:ZNSGCL.FOR close Message file or terminal
APLGEI:ZMSGDK.FOR disk 10 to message file
APLGEI:ZMSGOP.FOR open a message file or message terminal
APLGEI:ZMSGXP.FOR expand the message file
APLGEI:ZOPEI.FOR open binary disk files and line printer and TTY devices
APLGEI:ZPATH.FOR convert a file name
APLGEI:ZPHFIL.FOR construct a physical file or device name from AIPS logical parameters
APLGEI:ZPHOLV.FOR construct a physical file - version for UPDAT
APLGEI:ZREIA2.FOR rename a file
APLGEI:ZTFILL.FOR zero-fill, initialize a file 10 table (FTAB) entry
APLGEI:ZTP0P2.FOR open a tape device for double-buffer, asynchronous 10
APLGEI:ZTPUA2.FOR wait for read/write from/to a tape device
APLGEI:ZVAI2.FOR wait for read/write large blocks of data from/to disk
APLGEI:ZVAIT.FOR wait for asynchronous ("MAP") 10 to finish

B .l .18 IO-TV
APLGEI:ZARGC2.FOR close an ARGS TV device
APLGEI .-ZARGCL. FOR close an ARGS TV device
APLGEI:ZARGMC.FOR issues a master clear to an ARGS TV
APLGEI:ZARG02.FOR open ARGS TV device
APLGEI:ZARG0P.FOR open ARGS TV device
APLGEI:ZIPACK.FOR pack/unpack long integers into short integer buffer
APLGEI:ZM70CL.FOR close an IIS Model 70 TV device, flushing any buffer
APLGEI:ZM70M2.FOR issues a master clear to an IIS Model 70 TV
APLGEI:ZM70MC.FOR issues a master clear to an IIS Model 70 TV
APLGEI:ZM700P.FOR open IIS Model 70 TV device
APLGEI:ZM70XF.FOR read/write data to IIS Model 70 TV with buffering
APLGEI:ZV20CL.FOR close a Comtal Vision 1/20 TV device
APLGEI:ZV200P.FOR open Comtal Vision 1/20 TV device
APLGEI:ZV20XF.FOR read/write data to Comtal Vision 1/20 TV device

B .l .19 IO-UTIL
APLIOT:AKCESS.FOR
APLIOT:AKCL0S.FOR
APLIOTrAKOPEI.FOR
QIOT:APIO.FOR
APLIOT:APPLPB.FOR
QSUB:APROLL.FOR
APLIOT:BGT0SM.FOR
APLSUB:COMOFF.FOR
APLIOT:C0PMAP.FOR
APLSUBrDBIIIT.FOR
APLSUB:DIE.FOR
APLHOT:DIVMAP.FOR
APLIOT:FILSWP.FOR
APLIOT:FLAT.FOR
APLSUB:FSWTCH.FOR
APLHOT:GETR0W.FOR
APLHOT:GTBWRT.FOR
APLHOT:GTF3D.FOR
APLHOT:HIREAD.FOR

*TESS routine to read or write files
*TESS routine to close files
♦TESS I/O routine to open files.
Copies image-like data between disk and "AP memory".
*TESS routine to apply a taper to an image
Copies AP "memory" to disk, gives up AP then reloads AP
♦TESS routine to copy a subset of a large image to a small one
determines start block number of a plane in an H-dimensional image
*TESS routine to copy an image.
checks map window and initializes for map double buffer 10
closes down tasks which use DFIL.INC to maintain status of files
Tim Corwell routine: Divide one image by another.
*TESS routine: switch file info
*TESS routine: initialize an image to a value,
switches names and addresses of two files
Read row of am image opened with IHTMIO
Routine used by GRIDTB to vrite buffers.
Copies real-world bytes from a tape buffer, reading if necessary.
Reads next history card from a history file

B-16 APPENDIX B. SHOPPING LISTS

APLIOT:IITMIO.FOR Open an image lile lor use with GETROW
APLIOT:LIII0.FOR Reads/writes line to/lrom an image.
APLIOT:MAKCVM.FOR *TESS routine: Make image with residuals added.
APLSUB:MAPCLS.FOR closes cataloged lile, updating header and catalog status il needed
APLSUB:MAPOPI.FOR open lile pointed to by catalog entry amd mark the entry busy
APLSUB:MDESTR.FOR deletes a catalog entry and all liles assocated with it
APLIOT:REIMIO.FOR Reinitialize lor image I/O using IITMIO
APLIOT:SCIITP.FOR Interpolates bandpass tables in time.
APLIOT:SCLOAD.FOR Copies part ol one bandpass scratch lile to smother lor elliciency.
APLSUB:SCREAT.FOR create am AlPS-standard scratch lile w common DFIL.INC, ...
APLIOT:SMTOBG.FOR *TESS routine: Copies small image to a large one.
APLSUB:SIDY.FOR closes all liles, then deletes all scratch liles
APLIOT:TABSRT.FOR Sorts the entries in an AIPS table.
APLIOT:TPIOHD.FOR Reads tape header and tests il FITS, tape labels etc.
APLIOT:VECVII.FOR Interpretes BLC amd TRC into useable values as a vector.
APLGEI:ZDIR.FOR build a lull path nauae to liles in AlPS-standaurd areas (HE, RU, ...)
APLGEI:ZFULLI.FOR convert lile name to lull pathname with no logicals
APLGEI:ZREIAM.FOR rename a disk lile

B.1.20 IO-WAWA
APLSUB:A2VAVA.FOR packs VaVa 10 lameString Irom its components
APLSUB:CLEIUP.FOR closes ad.1 open liles and deletes all scratch liles lor this task
APLSUB:FILCLS.FOR close lile opened by FILOPI, Hushing write bullers, clearing catalog
APLSUB:FILCR.FOR create associated or scratch non-map lile
APLIOT: FILDEF. FOR Fills in delault vatlues in VAVA namestring
APLSUB:FILDES.FOR destroy the specilied lile or associated lile
APLSUB:FILIO.FOR reads/writes 256-integer record to non-map lile opened by FILOPN
APLSUB:FILIUM.FOR finds the FILTABle entry number lor an open lile
APLSUB:FILOPI.FOR open image, associated, or scratch lile (VaVa system)
APLSUB:GETHDR.FOR get the catalog header lor an open lile (VaVa)
APLIOT:GETVII.FOR Get current window ol lile open in VAVA 10 system.
APLIOT:GTIAME.FOR VAVA 10 routine to lill in a namestring lor am open lile
APLSUB:H2VAVA.FOR packs AIPS adverb values into VaVa 10 lameString
APLSUB:HDRIIF.FOR returns consecutivew items ol specilied type Irom header for VaVa
APLSUB:HDRVII.FOR sets image corners via VIIDOV, revises header to that of output
APLIOT:IMOPEI.FOR Open the TV under the system set up by IOSET
APLIOT:IMVII.FOR Set up window on TV device
APLSUB:IOSET.FOR initialize tables and set buffer space for VaVa 10
APLIOT:MADD.FOR Routine to add windows of open images.
APLIOT:MAKIAM.FOR Constructs VAVA namestring (low use H2VAVA or A2VAVA)
APLSUB:MAPCOP.FOR Copy a map
APLSUB:MAPCR.FOR create amd catalog am image in the VaVa package
APLSUB:MAPIO.FOR reads or writes a file opened by FILOPI (VaVa 10)
APLSUB:MAPMAX.FOR determine extrema of image opened by FILOPI and update header
APLSUB:MAPVII.FOR set/reset the window parameters for an open file (in VaVa)
APLSUB:MAPXY.FOR sets VaVa windows for a window in the top plame of am image
APLIOT:MC0PY.FOR Copies a window in one image to another.
APLIOT:MFILL.FOR Fill a window in am image with a given value.
APLSUB:OPENCF.FOR opens a cataloged lile (main lile only), simplilies call to FILOPN
APLSUB:PREIAM.FOR checks name-string lor VaVa 10 package - fills in some delaults
APLIOT:PRTERR.FOR Prints stamdaurd VaVa error message amd naimestring ol lile.
APLSUB:PRTIAM.FOR prints the contents ol a VaVa-IO lile Namestring
APLNOT:SAVHDR.FOR Save catalog header lor am open lile.

B.l. INTRODUCTION B-17

APLSUB:SCRHAM.FOR
APLSUB:TSKBEG.FOR
APLSUB:TSKEHD.FOR
APLSUB:UHSCR.FOR
APLSUB:WAWA2A.FOR

build scratch file name string in the WaWa form
task start up operations (common inits, GTPARM, RELPOP) lor WaWa
closes down a task and its files in the WaWa system
delete all scratch files belonging to this tasl
unpacks WaWa 10 HameString into its components

B .l .21 M AP
QHOT:APC0HV.FOR
QNOT:APIO.FOR
AIPSUB:AU9.F0R
APLHOT:BMSHP.FOR
QHOT:CCSGRD.FOR
APLIOT:C0IHC.FOR
APLHOT:C0MCLR.FOR
QHOT:C0IV.FOR
QIOT:COIV1.FOR
QIOT:C0IV2.FOR
QIOT:C0IV3.FOR
QIOT:C0IV4.FOR
APLIOT:C0PMAP.FOR
QIOT:DISPTV.FOR
APLIOTtDSKFFT.FOR
QIOT:FFTIM.FOR
APLIOT:GETCTL.FOR
APLIOT:GETR0W.FOR
QIOT:GRDC0R.FOR
QIOT:GRDCRM.FOR
APLIOT:GRDFLT.FOR
QIOT:GRDSUB.FOR
QIOT:GRDTAB.FOR
APLIOT:GRIDTB.FOR
APLHOT:IMCREA.FOR
APLIOT:IITMIO.FOR
QIOT:IITPFI.FOR
APLIOT:LIIIO.FOR
APLIOT:NADD.FOR
APLHOT:MAKCVM.FOR
APLIOT:NAKGAU.FOR
QIOT:MAKMAP.FOR
APLIOT:MCOPY.FOR
APLIOT:MFILL.FOR
APLIOT:MLTMAP.FOR
QSUB:PASS1.FOR
QSUB:PASS2.FOR
APLHOT:PLHPUT.FOR
APLHOT:REIMIO.FOR
APLHOT:RESID.FOR
APLIOT:SAVHDR.FOR
APLIOT:SMTOBG.FOR
APLHOT:SUBMAP.FOR
APLIOT:SUMARY.FOR
QHOT:UVMDIV.FOR
QHOT:UVMSUB.FOR

Disk based 2-D convolution using FFTs.
Copies image-like data between disk and "AP memory".
verbs to fit or interpolate the image intensity (MAXFIT, IMVAL)
♦TESS routine to fit an elliptical Gaussian to a dirty beam
Transforms CLEAH components to a grid.
Checks if two maps are exactly coincident.
Scale and map complex array into RBG space, amp=inten. phase=hue.
♦TESS routine: Convolve a map with a beam.
First of four routines to convolve two real images.
Second of four routines to convolve two real images.
Third of four routines to convolve two real images.
Fourth of four routines to convolve two real images.
♦TESS routine to copy an image.
♦TESS routine: Display an image on a TV
2-D disk based FFT using AP.
FFTs an image for uv interpolation.
Determine Stokes' type of Clean map -and other modeling info.
Read row of an image opened with IHTMIO
normalizes and corrects image for gridding convolution fn.
Loads CLEAH components into AP for uv model computation.
Sets default gridding convolution functions.
Subtracts transform of CLEAH components from uv data.
Computes Fourier transform of gridding convolution function.
Makes a gridded image of the UV data in TB order.
Fills catalog header for an image and optionally creates and catalogs
Open an image file for use with GETROW
Computes interpolation keraals and put them into "AP memory".
Reads/writes line to/from an image.
Routine to add windows of open images.
♦TESS routine: Make image with residuals added.
♦TESS routine: Make a Gaussian convolution function.
Makes image or beam from uv data set.
Copies a window in one image to another.
Fill a window in an image with a given value.
♦TESS routine: multiplies an image by a value, writes smother.
First of two routines to FFT am image file.
Second of two routines to FFT an image file.
Copies a subregion of a scratch file image to a cataloged image.
Reinitialize for image I/O using IHTMIO
♦TESS routine: Computes residual image.
Save catalog header for an open file.
♦TESS routine: Copies small image to a large one.
♦TESS Routine: Subtract two images.
Accumulates and lists CLEAH components
Divides a uv data set by the Fourier transform of a model.
Subtracts the Fourier transform of a model from a uv data set.

B-18 APPENDIX B. SHOPPING LISTS

APLHOT:VECWIM.FOR Interpretes BLC and TRC into useable values as a vector.
QHOT:VISDFT.FOR Compute DFT of model and subtract/divide from/into uv data.
APLHOT:VMBLKD.FOR *TESS Routine: Initialize constants in common.
APLHOT:VTTELL.FOR *TESS Routine: checks TELL file.

B .l .22 M AP-UTIL
APLHOT:ADDMAP.FOR *TESS routine to add images
APLHOT.-APLPBI.FOR *TESS routine to apply a taper to an image. VLA only!
APLSUB:BLTGLE.FOR returns angle from A through a test position to B
APLSUB:BLTLIS.FOR lists any segments of current row which fall inside blotch regions
APLSUB:COMOFF.FOR determines start block number of a plane in an H-dimensional image
AIPSUB:CUBIHT.FOR does 2-dimensional cubic interpolation of array values to position
APLSUB:DBIHIT.FOR checks map window and initializes for map double buffer 10
APLSUB:HDRWIH.FOR sets image corners via VIHDOV, revises header to that of output
APLSUB:MAPSIZ.FOR returns the file size needed to hold the specified image in AIPS
APLSUB:MAPSIC.FOR creates a scratch image file of specified dimensionality
APLSUBrMCREAT.FOR create and catalog a map file
APLSUB:MDISK.FOR reads or writes a row from an image
APLSUB:MIIIT.FOR intializes 10 and pointers for quick-retum image 10 via MDISK
APLSUB:MIISK.FOR inits use of MSKIP to read noncontiguous, evenly spaced rows in a map
APLSUB:MSKIP.FOR reads noncontiguous, but evenly spaced rows in a map (see also MIHSK)
APLSUB:PEAKFH.FOR returns location of maximum within 5 pixels of image plane center
APLSUB:PLHGET.FOR reads subimage of a plane and writes it to scratch file with shifts
APLSUB:RESCAL.FOR Scales and offsets a cataloged image, updates CATBLK
APLSUB:SETBSC.FOR determines scaling/offset parameters to convert image to integer
APLSUB:SHRVAL.FOR substitutes specified value for magic blank value in a buffer
APLSUB:SUBHDR.FOR changes input to output header correcting for subimaging
APLSUB:VIHDOV.FOR translates user BLC, TRC parameters into usable window arrays
APLSUB:VRBLHK.FOR write blanked pixels at all pixels corresponding to specified pixel
APLSUB:VRPLAH.FOR copies an H dimensional plane to a H or H+l dimensional image

B .l .23 MATH
APLHOT:APPLPB.FOR
APLHOT:B0XBSM.FOR
APLHOT:B0XSM0.FOR
APLHOT:BSC.FOR
APLHOT:CALRES.FOR
APLHOT:CAXPY.FOR
APLHOT:CD.FOR
APLHOT:CGEDI.FOR
APLHOT:CGEFA.FOR
APLHOT:CLD.FOR
QHOT:C0HV.FOR
QHOT:C0HV1.FOR
QHOT:C0HV2.FOR
qHOT:COHV3.FOR
QHOT:C0HV4.FOR
QHOT:C0HVFH.FOR
APLSUB:C0VAR.FOR
APLHOT:CSCAL.FOR
APLHOT:CSVAP.FOR
AIPSUB:CUBIHT.FOR

♦TESS routine to apply a taper to an image
Box car smoothing of an irregularly spaced array with blanking
Does boxcar smoothing of an irregularly spaced array.
Computes Besselian star constants
♦TESS routine to calculate the residuals of an image.
Linpack routine: Complex constant times a vector plus a vector
Computes Besselian day numbers C and D for aberration
Linpack routine: Determinant and inverse of a complex matrix
Linpack routine: Factors complex matrix by Gaussian Elimination
Converts Julian date to civil date
♦TESS routine: Convolve a map with a beam.
First of four routines to convolve two real images.
Second of four routines to convolve two real images.
Third ol four routines to convolve two real images.
Fourth of four routines to convolve two real images.
Computes convolving fn. kernels and stores them in MAP memory"
Determines the covariance matrix of an M x H matrix
Linpack routine: Complex constant times vector
Linpack routine: Swaps two complex vectors
does 2-dimensional cubic interpolation of axray values to position

B.l. INTRODUCTION B-19

APLIOT:DA13.FOR
APLIOT:DA46.FOR
APLIOT:DAPM.FOR
APLIOT:DCUV.FOR
APLIOT:DDOT.FOR
APLIOT:DERF.FOR
APLIOT:DIVMAP.FOR
APLIOT:DMACH.FOR
APLIOT:DMAP.FOR
APLIOT:DIRM2.FOR
APLSUB:DPMPAR.FOR
APLIOT:DPRE.FOR
APLIOT:DTRC.FOR
APLIOT:DUVC.FOR
APLIOT:DVDMII.FOR
APLSUB:EIORM.FOR
APLIOT:EPS.FOR
APLIOT:ERF.FOR
APLIOT:FIDVAR.FOR
APLIOT:FOURG.FOR
APLIOT:FOURYF.FOR
APLIOT:GIFSMO.FOR
APLIOT:GISMO.FOR
APLIOT:GRO.FOR
QIOT:GRDCOR.FOR
APLIOT:GRDFLT.FOR
QIOT:GRDTAB.FOR
APLIOT:GSTROT.FOR
APLIOT:ICAMAX.FOR
APLIOT:ICSORT.FOR
APLSUB:JABER.FOR
APLSUB:JIUT.FOR
APLSUB:JPOLAR.FOR
APLSUB:JPRECS.FOR
APLSUB:JPREIU.FOR
APLIOT:LI.FOR
APLIOT:LG2BIT.FOR
APLSUB:LMDER.FOR
APLSUB:LMDER1.FOR
APLSUB:LMSTR.FOR
APLSUB:LMSTR1.FOR
APLIOT:MACHII.FOR
APLHOT:MAKGAU.FOR
APLSUB:MATVMU.FOR
APLIOT:MLTMAP.FOR
APLIOT:IULB.FOR
APLIOT:IUT2.FOR
APLHOT:IUT4.FOR
APLHOT:PARAHG.FOR
QSUB:PASS1.FOR
QSUB:PASS2.FOR
APLSUB:PERMAT.FOR
APLHOT:PRECES.FOR
APLHOT:QKSORT.FOR

Computes arguments Al, A2 amd A3 ol the mean motion ol the sun.
Computes arguments A4, A5 amd A6 ol the mean motion ol the moon
Converts apparent to mean positions.
Computes unit vector lor a given celestial position.
Linpack routine: Form dot product ol two vectors (DOUBLE)
Double precision erl 1unction
Tim Cornell routine: Divide one image by another.
Linpack? routine: Sets machine precision parameters. (DOUBLE)
Compute apparent position Irom mean position
Compute Euclidean norm ol H-Vector
returns machine precision or smallest or largest magnitude
Compute General precession matrix
Translorms spherical, coordinates given translorm matrix.
Converts unit vector to celestial coordinates.
Davidon
computes the Euclidean norm ol a H-vector
Computes mean obliquity ol the Ecliptic lor a Julian date.
error lunction.
♦TESS routine: Convert errors in Jy/beam to Jy per cell
Cooley-Tukey last lourier translorm.
Fast Fourier translorm by V. Hewman - vectorizes.
Boxcar smooths and ASCAL solution (GA) lile.
Optimized spline smoothing ol amplitudes in ASCAL (GI) lile.
Compute the general relativity displacements in RA and DEC.
formalizes and corrects image lor gridding convolution In.
Sets delault gridding convolution lunctions.
Computes Fourier translorm ol gridding convolution lunction.
Computes GST at UT=0 amd eaurth rotation rate.
Linpack routine: Index ol complex element vith majc. abs. value
Tvo key in memory sort by one ol several methods
Compute vectors needed lor J2000 aberation amd GR light bending.
Computes nutation Irom IAU 1980 series
Correct rectamgular position lor polair motion.
Process betveen apparent and J2000 epoch positions.
Compute rotation matrix lor precession amd nutation IAU 1980 series
Compute LI solution to an overdetermined system ol lineaur equations
Converts betveen bit aurrays amd logical arrays
minimize the sum ol squares ol M nonlinear lunctions in I variables
minimize the sum ol squares ol M nonlinear lunctions in H variables
minimize sum ol squaires ol M nonlinear lunctions in H variables
minimize sum ol squares ol M nonlineaur lunctions in H variables
Returns the smallest positive value that added to 1.0 is .gt. 1.0.
♦TESS routine: Make a Gaussian convolution lunction.
multiplies a matrix amd a vector
♦TESS routine: multiplies am image by a value, writes amother.
Finds a root ol a function in an interval.
Computes nutation in longitude amd obliquity for a Juliam date.
Computes nutation using a non ridgid earth model
Computes antenna paurallactic angles
First ol two routines to FFT an image lile.
Second of two routines to FFT an image file.
permutes rows or columns of matrix according to permutation vector
Convert between mean amd apparent positions (B1950 only)
Two key "quick" sort routine to sort aurrays.

B-20 APPENDIX B. SHOPPING LISTS

APLSUB:QRFAC.FOR computes a QR factorization of am Mxl matrix
APLSUB:QRSOLV.FOR completes the least squares matrix solution
APLSUB:RAIDII.FOR initializes tables for random number routine RAIDUM
APLSUB:RAIDUM.FOR generates random number between 0 and 1; initialized by RAIDII
APLIOT:RESID.FOR *TESS routine: Computes residual image.
APLIOT:RFFTF.FOR Vectorizable, table lookup Fast Fourier transform (non-AP)
APLSUB:RVUPDT.FOR computes the QR decomposition of am upper triangular matrix + a row
APLSUB:SLAEVP.FOR Earth position and motion ephemeris (J2000)
APLIOT:SOUELV.FOR Computes source hour angles and elevations
APLIOT:SPHFI.FOR Evaluate rational approx. to selected spheriodial functions.
APLIOT:STEP.FOR *TESS routine: adds a fraction of one image to another.
APLIOT:SUBMAP.FOR *TESS Routine: Subtract two images.

B.1.24 MESSAGES
APLGEI:ZMSGCL.FOR close Message file or terminal

B .l .25 MODELING
qiOT:ALGSUB.FOR
APLIOT:BMSHP.FOR
QIOT:CCSGRD.FOR
APLSUB:COVAR.FOR
APLSUB:DECOIV.FOR
QIOT:FFTIM.FOR
APLIOT:FRQTAB.FOR
APLSUB:GETERR.FOR
APLIOT:GRDAT.FOR
QIOT:GRDCRM.FOR
APLIOT:GRDSET.FOR
QIOTrGRDSUB.FOR
QIOT:IITPFI.FOR
APLSUB:LMDER.FOR
APLSUB:LMDER1.FOR
APLSUB:LMPAR.FOR
APLSUB:LMSTR.FOR
APLSUB:LMSTR1.FOR
APLSUB:MOM.FOR
AIPSUB:PFIT.FOR
APLSUB:QRFAC.FOR
APLSUB:QRSOLV.FOR
APLSUB:RVUPDT.FOR
APLIOT:SETGDS.FOR
APLIOT:UVDOUT.FOR
APLIOT:UVDPAD.FOR
QIOT:UVMDIV.FOR
QHOT:UVMSUB.FOR
QIOT:VISDFT.FOR

Interpolates model visibility grom a grid and subtracts from uv data.
♦TESS routine to fit an elliptical Gaussian to a dirty beam
Transforms CLEAI components to a grid.
Determines the covariance matrix of an M x I matrix
deconvolves two gaussians
FFTs an image for uv interpolation.
Fill Frequency table in common for IFs and channels
calculates the errors on the fitted parameters
Getn info about CLEAI components for GRDSUB.
Loads CLEAI components into AP for uv model computation.
Creates scratch files and sets up for GRDSUB
Subtracts transform of CLEAI components from uv data.
Computes interpolation kernals and put them into "AP memory".
minimize the sum of squares of M nonlinear functions in N variables
minimize the sum of squares of M nonlinear functions in I variables
completes solution of the Mxl matrix least squares problem
minimize sum of squares of M nonlinear functions in I variables
minimize sum of squares of M nonlinear functions in I variables
calculates moments in a 16x16 data array
parabolic fit to 3x3 matrix
computes a QR factorization of an Mxl matrix
completes the least squares matrix solution
computes the QR decomposition of am upper triangular matrix + a row
Sets up for UV model computation, fills common in DGDS.INC
Divides uv model in one half of a record into other, writes result.
Reformat UV data record, doubling size and zero extra words.
Divides a uv data set by the Fourier transform of a model.
S u b t r a c t s t h e F o u r i e r t r a n s f o r m o f a m o d e l f r o m a u v d a t a s e t .
C o m p u t e D F T o f m o d e l a n d s u b t r a c t / d i v i d e f r o m / i n t o u v d a t a .

B .l .26 PARSING
APLSUB:CH2IUM.FOR
APLSUB:CHLTOU.FOR
APLHOT:CITC2D.FOR

converts string containing an integer in ASCII form into the integer
converts a CHARACTER string to all upper case letters
KEYIH routine: parses Double precision value from a character string

B.l. INTRODUCTION B-21

APLNOT:CITC2I.FOR KEYIN routine: parse an integer from a character string.
APLNOT:CITC2R.FOR KEYIN routine: parses a floating value from a character string
APLNOT:CITCPR.FOR KEYIN routine: character compare vith wild cards.
APLNOT:CITEXP.FOR KEYIN routine: evaluate an expression in a character string
APLNOT:CITSKP.FOR KEYIN routine: Find next non blank chairacter in a string.
APLNOT:DCODEF.FOR Decodes data from a character string using a format.
APLSUB:FPARSE.FOR interprets card image from FITS header into AIPS header format
APLSUB:GETCRD.FOR parses card image from FITS header, returns recognized keyword
APLNOT:GETKEY.FOR Parses symbol = value from a character string.
APLSUB:GETLOG.FOR returns value of logical variable from character buffer
APLSUB:GETNUM.FOR returns numeric field from character buffer
APLSUB:GETSTR.FOR returns a string value (was enclosed by quotes) from character buffer
APLSUB:GETSYM.FOR returns next s y m b o l in character-form card image
APLSUB:GTVCRD.FOR returns allowed keyword from FITS header card image
APLSUB:IDVCRD.FOR returns allowed keyword from FITS header card image
APLNOT:KEYIN.FOR AIPS version of CIT parsing routine
APLNOT:SDTCRD.FOR Parse "SINGLDSH" FITS table headers, get some keywords.
APLNOT:TABF3D.FOR Determines repeat count and data type for FITS 3-D tables entries.
APLNOT:TABFRM.FOR Parses format for FITS ASCI table entries.
APLNOT:TABSPC.FOR Determines repeat count and data type for FITS 3-D tables entries.

B .l .27 PLOT-APPL
APLNOT:AITOFF.FOR
AIPSUB:AU8A.FOR
APLNOT:COMCLR.FOR

writes vectors for Aitoff projection grid to plot file
verb EXTLIST to list contents of plot files and other extension files
Scale and map complex array intp RBG space, amp=inten. phase=hue.

B .l .28 PLOT-UTIL
APLSUB:AXSTRN.FOR encodes axis type and value in a string
APLSUB:CHNTIC.FOR counts characters to the left of a plot (for labeling vertical axis)
APLSUB:CLAB1.FOR puts axis labels in plot file and calls CTICS to draw and label ticks
APLSUB:CLAB2.FOR puts axis labels in plot file and calls CTICS to draw and label ticks
APLSUB:COMLAB.FOR initializes line drawing and labels plot with text, contour levels
APLSUB:CONDRV.FOR writes contour plot to a plot file
APLSUB:CTICS.FOR writes tick marks and tick labels to a plot file
APLSUB:GCHAR.FOR writes a draw character string command record into a plot file
APLSUB:GFINIS.FOR writes the end of plot record into a plot file and closes it down
APLSUB:GINIT.FOR creates, opens, initializes plot file (does not catalog it)
APLSUB:GINITG.FOR writes an initialize-for-grey-scale record into a plot file
APLSUB:GINITL.FOR writes an initialize-for-line-drawing command into a plot file
APLSUB:GMCAT.FOR writes a copy-misc-image-catalog-info records into a plot file
APLSUB:GPHVRT.FOR write plot buffer to file, prepares buffer for more commands
APLSUB:GPOS.FOR write a position-"pen" command into a plot file
APLSUB:GRAYPX.FOR writes an array of grey values into a plot file
APLSUB:GVEC.FOR writes a move-pen-down (or write vector) command in a plot file
APLSUB:HIPLOT.FOR places a record in the history file concerning a plot file creation
APLSUB:INTEDG.FOR returns intersections of a line with the edges of a box
APLSUB:ISCALE.FOR scale a buffer by various functions to an integer buffer (ie for TV)
APLSUB:LABINI.FOR initializes commons for labeling of plots (calls SETLOC)
APLSUB:LABNO.FOR write a tick mark numeric label in a plot file
APLSUB:LINLIM.FOR clips X,Y values at edges of rectangular area with interpolation
APLNOT:PLEND.FOR End-of-plot clean-up functions: Gary plot package.
APLSUB:PLGRY.FOR draws grey scale commands in the plot file: Gary plot package

B-22 APPENDIX B. SHOPPING LISTS

APLIOT:PLMAKE.FOR creates t opens plot lile, puts into map header, writes lirst record
APLSUB:PLPOS.FOR puts a position vector command in a plot lile: Gary plot package
APLSUB:PLVEC.FOR puts a draw vector command in a plot lile: Gary plot package
APLSUB:RHGSET.FOR set plat intensity range Irom image header and user parameters
APLSUB:SETLOC.FOR sets location common lor coordinate computations and display
APLSUB:SCALMM.FOR computes plot scaling lactors and plot scale in arc sec per mm
APLSUB:SLBIII.FOR initializes labeling lor slice plots
APLSUB:STARPL.FOR adds to plot plus signs at coordinates given in an ST (star) lile
APLSUB:TICCOR.FOR correct tick lengths Irom increments in dir cosines to coordinates
APLSUB:TICIIC.FOR determines tick mark lengths said increments lor CTICS, ...
APLSUB:TKLAB.FOR labels axes on plot directly to a TK graphics device, draw ticks
APLSUB:TKSLII.FOR initialize parameters lor plotting a slice directly on a TK graphics
APLSUB:TKTICS.FOR writes tick marks and labels directly to TK graphics device
APLGEI:ZDOPRT.FOR reads bit lile and causes it to be plotted on printer/plotter
APLGEI:ZLASC2.FOR spool a closed laser printer print/plot lile
APLGEI:ZLASCL.FOR close and spool a laser printer print/plot lile
APLGEI:ZLAS10.FOR open, write to, close and spool a laser printer print/plot lile
APLGEI:ZLASOP.FOR open a laser printer print/plot lile
APLGEI:ZLVI0.FOR open, write to, close and spool a PostScript print/plot lile
APLGEI:ZLVOP.FOR open a PostScript (LaserWriter) print/plot lile

B.1.29 PO PS-A PPL
AIPSUB:AU1.FOR prints and clears the message lile, sets up lor EXIT and RESTART
AIPSUB:AU1A.FOR does parameter display: IIPUTS, SHOV, HELP, EXPLAII
AIPSUB:AU2.FOR handles task-related activities: GO, TELL, WAIT, ABORT, SPY, TPUT
AIPSUB:AU2A.FOR verb lunctions on task save and Save/Get liles: TGET, SGdestr, index
AIPSUB:AU3.FOR verbs to display contents ol catalogs and headers: CATA, IMHE ...
AIPSUB:AU3A.FOR verbs lor disk management: FREE, ALLDEST, TIMDEST, etc.
AIPSUB:AU3B.FOR verbs to rearrange the entries in the catalog lile: RECAT, REHUMBER
AIPSUB:AU4.FOR verbs to handle basic tape operations: TPHEAD, MOUIT, AVFILE, ...
AIPSUB:AU5.FOR basic TV verbs to do on/oll, read cursor position, init the TV, ...
AIPSUB:AU5A.FOR verbs to load images to the TV including ROAM
AIPSUB:AU5B.FOR verbs to anotate TV images
AIPSUB:AU5C.FOR verbs to draw wedges on TV, erase images, set comers with TV cursor
AIPSUB:AU5D.FOR verbs to load and run TV movie sequences
AIPSUB:AU6.FOR verbs to manipulate TV scroll, zoom, color tables, and TVHUEIIT
AIPSUB:AUGA.FOR verbs to set the TV blank and white LUT linearly and to blink planes
AIPSUB:AU6B.FOR verb to display image value at pixel indicated by TV cursor (CURVAL)
AIPSUB:AU6C.FOR verb to alter zoom and enhance image in standard way: TVFIDDLE
AIPSUB:AU6D.FOR verbs to do image statistics in blotch regions: TVSTAT, IMSTAT
AIPSUB:AU7.FOR verbs to print history, rescale image, alter axis descriptions
AIPSUB:AU7A.FOR verbs to put/get header values, to put values into images
AIPSUB:AU8.FOR verbs to get or clear name adverbs, destroy extension liles
AIPSUB:AU8A.FOR verb EXTLIST to list contents ol plot liles amd other extension liles
AIPSUB:AU9.FOR verbs to lit or interpolate the image intensity (MAXFIT, IMVAL)
AIPSUB:AU9A.FOR verbs to read TEK cursor and display pixel, sky, image values
AIPSUB:AU9B.FOR verbs to plot slices and models on graphics
AIPSUB:AU9C.FOR verbs to set initial guesses lor slice model lits using TEK graphics
AIPSUB:AUA.FOR verb to submit batch jobs to AIPSC and the QMIGR queues
AIPSUB:AUB.FOR verbs to prepare, edit, and review batch jobs and queues
AIPSUB:AUC.FOR verbs to enter, list, drop gripes, enter password
AIPSUB:AUT.FOR site-specilic test verbs
AIPSUB:PRTALI.FOR prints line on CRT orprinter, handles page lull AND POPS type-ahead

B.l. INTRODUCTION B-23

AIPSUB:TASKWT.FOR waits for tasks to begin, send resumption signal, and/or terminate

B.1.30 POPS-LANG
AIPSUB:BCLEAH.FOR Pops items from B-stack to A-stack until BPR-stack precedence < NEXTP
AIPSUB:CHUNT.FOR searches symbol table lor character string accepting min match
AIPSUB:COMPIL.FOR parses line ol input with GETFLD, builds stacks lor execution
AIPSUB:CONCAT.FOR creates temporary literal on stack = concatanation ol 2 strings
AIPSUB:EDITOR.FOR does operations needed at start and end ol editing existing procedure
AIPSUB:EQUIV.FOR checks whether two variables are logically equivalent
AIPSUB:GETFLD.FOR linds the next symbol in KARBUF and determines its pointers
AIPSUB:GETNNE.FOR gets the next name in the input character buller
AIPSUB:HELPS.FOR executes "pseudoverb name" -> hidden verb w name on stack (INP, RUN)
AIPSUB:HUNT.FOR searches a linked list lor words to be matched
AIPSUB:HIT.FOR initializes symbol, procedure text tables, and commons lor POPS
AIPSUB:KVICK.FOR verbs: math, assignment, comparison, looping, branching, proc calls
AIPSUB:LLOCAT.FOR allocates space in linked-list array and handles link pointers
AIPSUB:LTSTOR.FOR allocate storage lor literal il needed, return pointer in any case
AIPSUB:MASSGN.FOR handles array = value(s) constructs
AIPSUB:OERROR.FOR gives user error message, resets parameters to read next input line
AIPSUB:POLISH.FOR parses the input text buller, building stacks; executes pseudoverbs
AIPSUB:POP.FOR pops item Irom stack
AIPSUB:PREAD.FOR reads an input line Irom current input source (CRT, RUN lile, batch)
AIPSUB:PSEUDO.FOR compiles pseudoverbs: PROC, declarations, IF, THEN, WHILE, FINISH, ..
AIPSUB:PUSH.FOR pushes item onto stack advancing the stack pointer
AIPSUB:RLOCAT.FOR allocates space in linked-list array and handles link pointers
AIPSUB:SETTYP.FOR replaces the symbol type code in the data description structure
APLSUB:STLTOU.FOR converts any characters beween single quotes to upper case
AIPSUB:STORES.FOR stores proc code; pseudoverbs: SAVE, GET, RESTORE, STORE, LIST, ...
AIPSUB:SUBS.FOR converts variable with subscript to the appropriate scalar
AIPSUB:SYMBOL.FOR obtains symbol identilication Irom symbol table; creates new symbols
AIPSUB:VERBS.FOR calls verbs subroutines (AUnc) by verb number - interactive version
AIPSUB:VERBSB.FOR calls verbs subroutines (AUnc) by verb number - batch version
AIPSUB:VERBSC.FOR calls verbs subroutines (AUnc) by verb number - Checker version

B.1.31 POPS-UTIL
AIPSUB:ASSGN.FOR perlorms the assignment lunctions ol scalar/vector = scalar/vector
AIPSUB:CONFRM.FOR asks user to respond yes or no to some question
APLSUB:GETNUM.FOR returns numeric lield Irom character buller
APLSUB:GETSTR.FOR returns a string value (was enclosed by quotes) Irom character buller
AIPSUB:PRTMSG.FOR prints and deletes messages Irom the MS lile
AIPSUB:RDUSER.FOR reads the user number Irom the terminal
AIPSUB:SCHOLD.FOR wait lor user input on screen lull, allows type ahead, quit, continue
AIPSUB:SGLAST.FOR does a SAVE or GET ol the K array cataloged as LASTEXIT.
AIPSUB:SGLOCA.FOR locates a Save/Get lile by name in catalog ol SG files
AIPSUB:UINIT.FOR general, non-language initialization routine; only calls VHDRIN

B.1.32 PR IN TER
APLSUB:BATPRT.FOR
APLSUB:DATDAT.FOR
AIPSUB:PRTALN.FOR
APLSUB:PRTLIN.FOR

prints header/trailer messages lor printer tasks when run in batch
converts "DD/MM/YY" form of date to "dd-mmm-yyyy" lor printing
prints line on CRT orprinter, handles page lull AND POPS type-ahead
prints line on printer or terminal with page-lull handling, headers

B-24 APPENDIX B. SHOPPING LISTS

APLGEIrZDOPRT.FOR
APLGEI:ZEIDPG.FOR
APLGEI:ZLASC2.FOR
APLGEI:ZLASCL.FOR
APLGEI:ZLASIO.FOR
APLGEI:ZLASOP.FOR
APLGEI:ZLPCL2.FOR
APLGEI:ZLPCLS.FOR
APLGEI:ZLP0P2.FOR
APLGEI:ZLPOPI.FOR
APLGEI:ZLVIO.FOR
APLGEI:ZLWOP.FOR

B .l .33 SDISH
APLIOT:CSIII.FOR
APLIOT:DCALSD.FOR
APLIOT:DGETSD.FOR
APLIOT:GACSII.FOR
APLIOT:SDCGET.FOR
APLIOT:SDCSET.FOR
APLIOT:SDGET.FOR
APLIOT:SDTCRD.FOR
APLIOT:TABCS.FOR

B .l .34 SERVICE
AIPSUB:AIPIII.FOR
AIPSUB:DESCR.FOR
APLSUB:IIQFLT.FOR
APLSUB:IIQGEI.FOR
APLSUB:IIQIIT.FOR
APLSUB:IIQSTR.FOR
APLGEI:ZADDR.FOR
APLGEI:ZDELA2.FOR
APLGEI:ZDELAY.FOR
APLGEI:ZERR02.FOR
APLGEI:ZGTBIT.FOR
APLGEI:ZHEX.FOR
APLGEI:ZKDUMP.FOR
APLGEI:ZMSGWR.FOR
APLGEI:ZMYVER.FOR
APLGEI:ZPTBIT.FOR
APLGEI:ZTIME.FOR

B .l .35 SLICE
AIPSUB:AU9B.FOR
AIPSUB:AU9C.FOR
AIPSUB:SETIDG.FOR
AIPSUB:SLOCII.FOR
AIPSUB:TKGGPL.FOR
AIPSUB:TKGMPL.FOR
AIPSUB:TKRSPL.FOR

reads bit file and causes it to be plotted on printer/plotter
advance printer if needed to avoid electrostatic-printer "burn-out"
spool a closed laser printer print/plot file
close and spool a laser printer print/plot file
open, vrite to, close and spool a laser printer print/plot file
open a laser printer print/plot file
queue a file to the line printer and delete
close an open printer device
open a line-printer text file - actual OPEI call
open a line-printer text file
open, vrite to, close and spool a PostScript print/plot file
open a PostScript (LaserWriter) print/plot file

Create/Open/Init Single dish calibration (CS) table
Apply Single dish calibration to data.
Reads, selects single dish data, calibrates and edits.
Initializes CS file, and prepares table to be applied.
Sets up to interpolate in Single dish calibration (CS) table.
Interpolates single dish calibration data for current time.
Reads single dish data vith optional calibration and flagging
Parse "SIIGLDSH" FITS table headers, get some keyvords.
Does I/O to single dish calibration (CS) table opened by CSIII

does all AIPS initializations for a stand-alone program
destroys all scratch files for tasks vhich are no longer active
inquire of the user for specified number of floating-point values
inquire of user for specified list of integer, float, k char values
inquire of user for specified number of integer values
request character string from user (1st I characters of line)
determine if 2 addresses inside computer are the same
delay current process a specified interval
delay current process a specified interval
return system error message for given system error code
get array of bits from a vord
encode an integer into hexadecimal characters
display portions of an array in various Fortran formats
call MSGVRT based on call arguments - for C routines to call NSGURT
returns OLD, IEV, or TST based on translation of logical AIPS.VERSION
put array of bits into a vord
return the local time of day

verbs to plot slices and models on graphics
verbs to set initial guesses for slice model fits using TEK graphics
sets initial guess parameters vith the TEK for fitting slices
initialize location common for slice (on the TEK) model fitting
plots model slice on Graphics
plot model fit to slice on the graphics terminal
plots residuals betveen slice and its model on Graphics device

B.l. INTRODUCTION B-25

APLSUB:TKSLIN.FOR
AIPSUB:TKSLPL.FOR

initialize parameters lor plotting a slice directly on a TK graphics
plot a slice on graphics device

B.1.36 SORT
APLSUB:LS0RT.FOR
APLSUB:MERGE.FOR
APLSUB:0S0RT.FOR
APLSUB:PERMAT.FOR
APLSUB:SHS0RT.FOR

sort a data buller minimizing number times records sure switched
sorts by merging previously sorted blocks ol records
does quick sort on array ol vectors, then reorders by calling PERMAT
permutes rows or columns ol matrix according to permutation vector
Shell sort ol an array or records on two keys

B.1.37 SPECTRAL
APLIOT:DATBND.FOR Applies the bandpass correction to data.
APLNOT:FQHATC.FOR Check il selection criteria match FQ table entries.
APLIOT:FRQTAB.FOR Fill Frequency table in common lor IFs and channels
APLIOT:IOBSRC.FOR Search lor antennas in the current bandpass buller.
APLIOT:SCIITP.FOR Interpolates bandpass tables in time.
APLIOT:SCLOAD.FOR Copies part ol one bandpass scratch lile to smother lor elliciency.
APLIOT:SETSM.FOR Determines type ol spectral smoothing and sets up look up table.
APLIOT:SMOSP.FOR Convolves a spectrum with a tabulated lunction.
APLIOT:TABBP.FOR Does I/O to bandpass (BP) table opened by BPIII
APLIOT:UVGET.FOR Read UV data with optional calibration, editing, selection, etc.

B.1.38 SYSTEM
APLSUB:ACOUIT.FOR Writes beginning and linal entries in the AIPS accounting lile
AIPSUB:AIPIII.FOR does all AIPS initializations lor a stand-alone program
APLSUB:BATQ.FOR perlorms operations on batch queue control lile such as OPEI RUH CLOS
APLSUB:DIE.FOR closes down tasks which use DFIL.IIC to maintain status ol liles
APLSUB:DIETSK.FOR closes a task: restarting AIPS, settling the accounting, issuing msg
APLSUB:PASEIC.FOR encrypts a 12-character password into 3 Holleriths
APLSUB:PASWRD.FOR prompts lor and checks password il the user has a non-blank PW entry
APLSUB:RELPOP.FOR places a return code in the task data lile, thereby resuming AIPS
APLSUB:WHOAMI.FOR given root task nsune, gets actual task name and linds NPOPS number
APLGEI:ZAB0R2.FOR establishes or caurries out (when appropriate) abort hsmdling
APLGEI:ZABORT.FOR establishes or carries out (when appropriate) abort handling
APLGEI:ZACTV8.FOR activate the requested program, returning process ID inlormation
APLGEI:ZCPU.FOR return current process CPU time amd 10 count
APLGEI:ZDATE.FOR return the local date
APLGEI:ZDCHI2.FOR initialize device amd Z-routine characteristics commons - local vals
APLGEI:ZDCHIC.FOR set more system parameters; maLke them available to C routines
APLGEI:ZDCHII.FOR initialize message, device amd Z-routine chauracteristics commons
APLGEI:ZFREE.FOR display available disk space
APLGEI :ZGIAME. FOR get nsune ol current process
APLGEI:ZPRI2.FOR raise or lower the process priority
APLGEI:ZPRI0.FOR raise or lower the process priority
APLGEI:ZPRPAS.FOR prompt user and read 12-chaoracter password (invisible) Irom CRT
APLGEI:ZSETUP.FOR perlorms system-level operations alter VERIAM, TSKIAM, NPOPS known
APLGEI:ZSTAI2.FOR does any system cleanup needed at the end ol interactive AIPS session
APLGEN:ZSTAIP.FOR does amy system cleamup needed at the end ol interactive AIPS session
APLGEN:ZTACT2.FOR inquires il a task is currently active on the local computer
APLGEI:ZTACTQ.FOR inquires il a task is currently active on the local computer
APLGEN:ZTKILL.FOR deletes (or kills) the specilied process

B-26 APPENDIX B. SHOPPING LISTS

APLGEI:ZTQSP2.FOR
APLGEI:ZTQSPY.FOR
APLGEI:ZTRLOG.FOR
APLGEI:ZVHOMI.FOR

display AIPS account or all processes running on the system
display AIPS account or all processes running on the system
translate a logical name
determines AlPSxn task name; sets IPOPS, assigns TV and TK devices

B.1.39 TAPE
APLSUB:DWRITE.FOR translate "DEC" format map header said display parameters
APLSUB:EXTHIS.FOR adds to history file for contents of FITS extension file being read
APLSUB:EXTREQ.FOR parse FITS tape record for required extension file FITS keywords
APLSUB:FIDEOT.FOR advances tape to logical end of information (2 consecutive EOFs)
AIPSUB:FWRITE.FOR converts FITS header to AIPS header and displays it with MSGVRT
APLIOT:GTF3D.FOR Copies real-world bytes from a tape buffer, reading if necessary.
APLSUB:MLREOF.FOR advances tape to end of file and reports records read in TAPIO system
APLIOT:PTF3D.FOR Copies 8-bit bytes to tape.
APLIOT:R3DTAB.FOR Read data from FITS 3-D table and write AIPS table.
APLIOT:RUTAB.FOR Read FITS ASCII table data and write AIPS table file.
APLIOT:SDTCRD.FOR Parse "SIIGLDSH" FITS table headers, get some keywords.
APLSUB:SKPBLK.FOR find next non-blank card image in a FITS header, read tape if needed
APLSUB:SKPEXT.FOR finishes reading FITS extension header, skips the extension data
APLIOT:TABAXI.FOR parse FITS tape record for required extension file FITS keywords
APLIOT:TABF3D.FOR Determines repeat count and data type for FITS 3-D tables entries.
APLIOT:TABFRM.FOR Parses format for FITS ASCI table entries.
APLSUB:TABLII.FOR reads a line from the data portion of a FITS extension of type TABLE
APLIOT:TABSPC.FOR Determines repeat count and data type for FITS 3-D tables entries.
APLSUB:TAP10.FOR read/writes tape and FITS disk files
APLSUB:TPHEAD.FOR reads a tape record, advances over label file, decides if it
APLIOT:TPI0HD.FOR Reads tape header and tests if FITS, tape labels etc.
AIPSUB:UWRITE.FOR writes summary of UV Export-format tape
APLSUB:VBOUT.FOR writes variable length, blocked records of 16-bit integers to tape
APLGEI:ZBKLD1.FOR initialize environment for BAKLD
APLGEI:ZBKLD2.FOR does BACKUP operation: load images from tape to directory
APLGEI:ZBKLD3.FOR clean up system things for BAKLD ending
APLGEI:ZBKTP1.FOR initialize BACKUP to tape operation for BAKTP
APLGEI:ZBKTP2.FOR write a cataloged file plus extensions to BACKUP tape in BAKTP
APLGEI:ZBKTP3.FOR clean up host environment at end of BAKTP
APLGEI:ZBYTF2.FOR interchange bytes in buffer if needed to go between local Jt standard
APLGEI:ZBYTFL.FOR interchange bytes in buffer if needed to go between local ft standard
APLGEI:ZMCACL.FOR convert Modcomp compressed ASCII to Hollerith characters (for FILLR)
APLGEI:ZN0UI2.FOR mount or dismount magnetic tape device
APLGEI:ZMOUIT.FOR mount or dismount magnetic tape device
APLGEI:ZR8P4.FOR converts pseudo 1*4 to double precision - for tape handling only
APLGEI:ZRDHF.FOR convert DEC Magtape Format (36 bits data in 40 bits) to 2 integers
APLGEI:ZRM2RL.FOR convert Modcomp to local single precision floating point
APLGEI:ZTAP2.FOR position (forward/back record/file), write EOF, etc. for tapes
APLGEI:ZTAPE.FOR mount, dismount, position, write EOF, etc. for tapes
A P L G E H :Z T A P I O .F O R t a p e o p e r a t i o n s f o r I M P F I T (c o m p r e s s e d F I T S t r a n s p o r t t a p e)
APLGEI:ZTPCL2.FOR close a tape device
APLGEI:ZTPCLD.FOR close pseudo-tape disk file
APLGEI:ZTPCLS.FOR closes a tape device (real or pseudo-tape disk)
APLGEI:ZTPMI2.FOR tape read/write
APLGEI:ZTPMID.FOR pseudo-tape disk read/write for 2880-bytes records
APLGEI:ZTPMIO.FOR read/write tape devices with quick return 10 methods
APLGEI:ZTP0P2.FOR open a tape device for double-buffer, asymchronous 10

B.l. INTRODUCTION B-27

APLGEI:ZTPOPD.FOR
APLGEI:ZTPOPI.FOR
APLGEI:ZTPWA2.FOR
APLGEI:ZTPVAD.FOR
APLGEI:ZTPWAT.FOR

open a pseudo-tape, sequential disk file for FITS
open tape or pseudo-tape device
wait for read/write from/to a tape device
"wait" for 10 operation to complete on pseudo-tape disk file (ZTPMID)
wait for asynchronous 10 to finish on tape or pseudo-tape disk

B .l .40 TERM INAL
APLGEI:ZPRMPT.FOR
APLGEI:ZPRPAS.FOR
APLGEI:ZTTBUF.FOR
APLGEI:ZTTCLS.FOR
APLGEI:ZTT0P2.FOR
APLGEI:ZTT0PI.FOR
APLGEI .'ZTTYIO. FOR

prompt user and read 80-characters from CRT screen
prompt user and read 12-character password (invisible) from CRT
reads terminal input with no prompt or wait - simulates TV trackball
close a terminal device
open a message terminal
open a terminal device
read/write buffer to terminal

B.1.41 TEXT
APLSUB:TXTMAT.FOR min match handling for text files (calls ZTXMAT, does messages)
APLSUB:VERMAT.FOR min match handling for text file names incl sequence of directories
APLGEI:ZDIR.FOR build a full path name to files in AlPS-standard areas (HE, RU, ...)
APLGEI:ZTCLOS.FOR close text file opened with ZTOPEI
APLGEI:ZT0PE2.FOR open text file for ZTOPEI
APLGEI:ZTOPEI.FOR open text file - logical area, version, member name as arguments
APLGEI:ZTREAD.FOR read next 80-character record in sequential text file (ZTOPEI type)
APLGEI:ZTXCLS.FOR clos text file opened via ZTXOPI
APLGEI:ZTXIO.FOR read/write a line to a text file
APLGEI:ZTXMA2.FOR find all file names matching a given wildcard specification
APLGEI:ZTXMAT.FOR return list of files in specified area beginning with specified chairs
APLGEI:ZTX0P2.FOR translate the file name and open a text file
APLGEI:ZTXOPI.FOR open a text file for read or write

B.1.42 TV
APLIOT:IMWII.FOR Set up window on TV device

B.1.43 TV-APPL
AIPSUB:AU5.FOR
AIPSUB:AU5A.FOR
AIPSUB:AU5B.FOR
AIPSUB:AU5C.FOR
AIPSUB:AU5D.FOR
AIPSUB:AU6.FOR
AIPSUB:AU6A.FOR
AIPSUB:AU6B.FOR
AIPSUB:AU6C.FOR
AIPSUB:AU6D.FOR
QIOT:DISPTV.FOR
YSUB:GRBOXS.FOR
AIPSUB:GRLUTS.FOR
AIPSUB:HIEHH.FOR
AIPSUB:HILUT.FOR
YSUB:IAXIS1.FOR

basic TV verbs to do on/off, read cursor position, init the TV, ...
verbs to load images to the TV including ROAM
verbs to anotate TV images
verbs to draw wedges on TV, erase images, set corners with TV cursor
verbs to load and run TV movie sequences
verbs to manipulate TV scroll, zoom, color tables, and TVHUEINT
verbs to set the TV blank and white LUT linearly and to blink planes
verb to display image value at pixel indicated by TV cursor (CURVAL)
verb to alter zoom and enhance image in standard way: TVFIDDLE
verbs to do image statistics in blotch regions: TVSTAT, IMSTAT
♦TESS routine: Display an image on a TV
sets rectangular boxes or diagonal line with TV cursor and graphics
interactive piecewise linear LUT using graphic plane and cursor
interactive linear e n h a n c e m e n t of 2-image hue-intensity TV display
calculates new LUTs for hue-intensity display said sends them to TV
draws axis labels and tick marks (via ITICS) on TV

B-28 APPENDIX B. SHOPPING LISTS

APLIOT:IMOPEI.FOR
YSUB:ITICS.FOR
AIPSUB:TVBLIK.FOR
APLIOT:TVFOAD.FOR
AIPSUBtTVMOVI.FOR
AIPSUB:TVROAM.FOR
YGEI:YCUCOR.FOR
YGEI:YISDRM.FOR
YGEI:YISDSC.FOR
YGEI:YISJMP.FOR
YGEIrYISLOD.FOR
YGEI:YISMPM.FOR
YGEI:YMKCUR.FOR

Open the TV under the system set up by IOSET
draws tick marks and labels on TV
blinks two TV channels, cursor controls rate
TVFLG routine to load amd image with smoothing converting to display.
runs movie algorithm on pre-loaded images, with interactions
does interactive multi-channel "ROAM" display on pre-loaded images
correct cursor position for scroll; return image coordinates, header
read/write data memory of IRAO-ISU device
read/write micro-processor memory of IRAO-ISU device
cause microprocessor jump toaddress in HRAO-ISU device
loads/unloads program memory of IRAO-ISU device
reads/writes microprocessor memory of the IRAO-ISU device
selects the form of the cursor to be displayed

B.1.44 TV-BASIC
YGEI:YALUCT.FOR drives the TV arithmetic logic unit - not to be used much
YGEI:YCOIST.FOR controls the constant registers added to the TV picture - not used
YGEI:YCRCTL.FOR controls the TV cursor visibility, position; reads trackball buttons
YGEI:YFDBCK.FOR causes a feedback operation in the TV
YGEI -.YGGRAM.FOR controls the TV graphics color assignments
YGEI:YGRAFE.FOR controls the graphics control register (IIS function)
YGEI:YGRAPH.FOR turns TV graphics planes on and off
YGEI:YIFM.FOR read/write TV Input look-up-table
YGEI:YIMGIO.FOR read/write data to the TV grey and graphics memories
YGEI:YIIIT.FOR initialize everything about the TV
YGEI:YLUT.FOR read/write channel-based look-up-table
YGEI:YMIMAX.FOR read 3 min/mauc values from TV data paths (IIS only, not used)
YGEI:YOFM.FOR read/write all-channel look-up-table ("output function memory")
YGEI:YRHIST.FOR read the histogram of the selected TV output color
YGEI:YSCROL.FOR write the scroll registers (shift location of 1 or more TV chamnels)
YGEI:YSHIFT.FOR read/write the shift (bias) registers of the TV (IIS M70, not used)
YGEI:YSPLIT.FOR set channel selection by split-screen quadrant
YGEI:YSTCUR.FOR reads/writes the cursor pattern array
YGEI:YTVCII.FOR initialize TV chauracteristics common (not needed much - see TVOPEI)
YGEI:YTVCLS.FOR close the TV, including TV device and TV control/paurameter disk file
YGEI:YTVOPI.FOR open the TV device and the TV disk control/parameter file.
YGEI:YZOOMC.FOR set the TV zoom magnification amd center

B.1.45 TV-IO
YGEI:YTVCL2.FOR
YGEI:YTVMC.FOR
YGEI:YTV0P2.FOR
APLGEH:ZARGS.FOR
APLGEI:ZARGXF.FOR
APLGEN:ZDEAC2.FOR
APLGEI:ZDEACL.FOR
APLGEI:ZDEAMC.FOR
APLGEI:ZDEA02.FOR
APLGEI:ZDEAOP.FOR
APLGEI:ZDEAX2.FOR
APLGEI:ZDEAXF.FOR
APLGEI:ZIVSOP.FOR

close actual. TV device (called by YTVCLS)
issue a master cleaur to reinitialize 10 to the TV
open actuail TV device (called by YTVOPI)
sends commamd to/from the ARGS TV device
translates IIS Model 70 commands into calls to ZARGS for ARGS TV
close DeAnza TV device
close DeAnza TV device
issue a master cleaur to the TV - for DeAnzas this is a No-Op
opens DeAnza TV device
opens DeAnza TV device
do actual read/write from/to DeAnza device
do IO to DeAnza TV
opens IVAS TV device - using the IIS package

B.l. INTRODUCTION B-29

APLGEH:ZM70C2.FOR close IIS Model 70/75 TV device
APLGEI:ZM7002.FOR opens IIS Model 70.75 TV device
APLGEI:ZM70X2.FOR read/write from/to IIS Model 70/75 device
APLGEI:ZTTBUF.FOR reads terminal input with no prompt or wait - simulates TV trackball
APLGEI:ZV20C2.FOR close Comtal Vision 1/20 TV device
APLGEI:ZV20MC.FOR issue a master clear to the TV - lor Comtal this is a lo-Op
APLGEI:ZV2002.FOR opens Comtal Vision 1/20 TV device
APLGEI:ZV20X2.FOR does I/O to Comtal Vision 1/20 TV device
APLGEI:ZVTVC2.FOR close virtual TV connection to remote, real-TV computer
APLGEI:ZVTVC3.FOR close connection in real-TV computer to client, virtual-TV computer
APLGEI:ZVTVCL.FOR close connection in client (virtual-TV) to server (remote, real-TV)
APLGEI:ZVTVGC.FOR close k reopen connection in server (real-TV) to client (virtual-tv)
APLGEI:ZVTV03.FOR open connection in server (real-TV) to client (virtual-TV)
APLGEI:ZVTVOP.FOR opens connection Irom client (virtual-TV) to server (real-TV)
APLGEI:ZVTVRC.FOR closes channel in server (real-TV) to client (virtual-TV)
APLGEI:ZVTVRO.FOR open socket in server (real-TV) to any client (virtual-TV)
APLGEI:ZVTVRX.FOR does 10 lor server (real TV) to client (Virtual-TV) incl close/reopen
APLGEI:ZVTVX2.FOR writes/reads to/lrom server lor the client (virtual TV) machine
APLGEI:ZVTVX3.FOR reads/writes Irom/to client (virtual TV) lor the server (real TV)
APLGEI:ZVTVXF.FOR sends data Irom the client (virtual TV) to server (real TV)

B.1.46 TV-UTIL
YSUB:BLTFIL.FOR
APLSUB:CHAVRT.FOR
APLSUB:DECBIT.FOR
YSUB:DLIITR.FOR
AIPSUB:GRP0LY.FOR
APLSUB:HDRBUF.FOR
YSUB:IEIHIS.FOR
YSUB:ILICLR.FOR
APLSUB:IMA2MP.FOR
YSUB:IMAIOT.FOR
YSUB:IMCCLR.FOR
YSUB:IMCHAR.FOR
YSUB:IMLCLR.FOR
YSUB:IMPCLR.FOR
YSUB:IMVECT.FOR
APLSUB:ISCALE.FOR
APLSUB:MKYBUF.FOR
APLSUB:MOVIST.FOR
APLSUB:MP2IMA.FOR
APLSUB:REAL0G.FOR
APLSUB:REAVRT.FOR
YSUB:TVCL0S.FOR
YSUB:TVFIDL.FOR
AIPSUB:TVFIID.FOR
YSUB:TVLOAD.FOR
YSUB:TV0PEI.FOR
YSUB:TVWHER.FOR
APLSUB: TWIHD. FOR
APLSUB:UIYBUF.FOR
YGEI:YCHRW.FOR
YGEH:YCIHIT.FOR

lills in closed polygons on a tv "blotch" plane
converts between local HOLL amd local. IIT binary lorms lor transport
converts decimal coded number to bit coded (e.g. 13 -> 0000101)
interactive delays, cursor tests, prevent wraparound
uses TV graphics to let user develop polygonal blotch regions
translates AIPS header to/lrom FITS-stamdard integer lorm
interactive linear enhancement ol TV black k white LUTs
computes amd loads a piecewise linear OFM to the TV
converts pixel numbers in a TV-image into real image pixels
draws a character string with black background to graphics
write color contour OFM to TV Irom standard sets
writes character string to TV
continuous colors lom blue thru green to red (or rotations thereol)
writes OFM with color contour helix in lightness-hue-saturation space
draws connected line segments on TV
scale a buller by various lunctions to an integer buller (ie lor TV)
packages a command line into machine-independent lorm
sets/resets the movie status parameters in the TV common
convert image pixel positions to TV pixel positions
converts numbers between lloating and an integer version ol their log
converts between local REAL amd local IIT binary lorms lor transport
does error checks on device open, then closes the TV via YTVCLS
standard, simple interactive B&W LUT amd color enhancements, zooming
determines which ol the visibile images on the TV the user desires
load image to a TV memory Irom open MA lile
sets LUIs, calls YTVOPI to open the TV device, does error messages
turns on cursor, waits lor button, returns quadrant, position, button
determines image windows lor TV, including lor interpolation k Roam
unpacks a machine-independent integer buller into local commamd line
writes characters into image and graphics plames
initialize image catalog lor specified TV memory plane

B-30 APPENDIX B. SHOPPING LISTS

YGEN:YCHECT.FOR
YGEV:YCOVER.FOR
YGEI:YCREAD.FOR
YGEI:YCURSE.FOR
YGEI:YCWRIT.FOR
YGEI:YFILL.FOR
YGEI:YFIID.FOR
YGEI:YGYHDR.FOR
YGEI:YLOCAT.FOR
YGEI:YLOWOH.FOR
YGEI:YMAGIC.FOR
YGEI:YMKHDR.FOR
YGEI:YSLECT.FOR
YGEI:YTCOMP.FOR
YGEI:YZERO.FOR
APLGEI:ZVTV02.FOR

vrite line segment between 2 points on TV
checks for overlapped images on the TV by quadrant
read the image catalog, return image header for TV only
read and control TV cursor
write image header to image catalog, update image catalog directory
fill rectangle ol TV memory with a constant value
determines the unique TV image ol desired type, returns catalog block
builds basic TV 10 header to write gray scale data
return TV positions lor set ol image positions
select least on bit in a bit mask integer
initialize graphics, zoom, scroll units lor IIS Model 75 (level 3)
builds standard TV-10 header, used for IIS Models 70 and 75
turn gray and graphics planes on and oil
decide il a parameter has changed
lill a TV memory plane with zeros
open connection in client (virtual-TV) to server (remote, real-TV)

B.1.47 UTILITY
APLSUB:AP2SIZ.FOR returns largest power ol 2 not exceeding 1024 times lirst argument
APLSUB:BLDSIM.FOR builds a name lor a scratch lile
APLSUB:BLDTIM.FOR constructs lull task name by appending IPOPS to task root name
APLSUB:BLTGLE.FOR returns angle Irom A through a test position to B
APLSUB:BOUIDS.FOR prints message il 1 or 2 values are outside a specilied range
APLSUB:CATIME.FOR stores current, or recovers previous, date and time in packed lormat
APLSUB:COMPAR.FOR compares two integer arrays and returns .TRUE, il they are equal
APLSUB:COORDD.FOR converts angles between degrees and sexagesimal lormat
APLSUB:COPY.FOR copies integer words Irom one array to smother
APLSUB:DAT2JD.FOR converts date smd time to a Julian date
APLSUB:DATDAT.FOR converts "DD/MM/YY" lorm ol date to "dd-mmm-yyyy" lor printing
APLSUB:DTIIIT.FOR inits parameters lor displaying elapsed CPU smd real time w DTTIME
APLSUB:DTTIME. FOR displays elapsed CPU and read. times since last csd.1 to DTIIIT
APLSUB:FILL.FOR lills an integer array with an integer constsmt
APLSUB:FMATCH.FOR returns pointer to location ol small array in a bigger sirray
APLSUB:FRMT.FOR encode lloating number removing trailing zeros, ad.ter accuracy il nec
APLSUB:GETRLS.FOR returns the name ol the current release (edited each quaurter in CV)
APLSUB:GREG.FOR converts Julian day number to date in character lorm
APLSUB:GTPARM.FOR staurts tasks, getting parameters and task ID number, does accounting
APLSUB:GTTELL.FOR gets any parameters sent to task by AIPS verb TELL
APLSUB:H2CHR.FOR convert AIPS Hollerith string to Fortrsm CHARACTER variable
APLSUB:IROUID.FOR rounds a REAL to the nearest IITEGER
APLSUB:ITRIM.FOR returns length ol CHARACTER variable to last non-blank
APLSUB: JD2DAT.FOR converts Julism day number to calendar date and time
APLSUB:JTRIM.FOR clears nulls, returns length ol CHARACTER variable to last non-blank
APLSUB:JULDAY.FOR converts a character-encoded calendar date to Julian day number
APLSUB:LIITER.FOR does linear interpolation ol a 1-D INTEGER sirray
APLSUB:LSORT.FOR sort a data buller minimizing number times records are switched
APLSUB:METSCA.FOR scale a value to the rsmge 1-999 and provide a metric prefix to match
APLSUB:MSGWRT.FOR writes messages to log lile smd/or terminal. - a fundamental routine!
APLSUB: NAMEST. FOR packs image naune in string with leading smd trailing blanks removed
APLSUB:NMATCC.FOR returns next character in a string not matching a specified constsmt
APLSUB:NMATCH.FOR returns next word in INTEGER array not matching a specified constsmt
APLSUB: RCOPY. FOR copies one real srray into another
APLSUB:REALOG.FOR converts numbers between floating smd sm integer version of their log

B.L INTRODUCTION B-31

APLSUB:RFILL.FOR
APLSUB:SETUP.FOR
APLSUB:STRLII.FOR
APLSUB:TIMDAT.FOR
APLGEV:ZERROR.FOR
APLGEI:ZMSGER.FOR

B.1.48 UV
QIOT:ALGSUB.FOR
APLIOT:CALREF.FOR
QHOT:CCSGRD.FOR
APLIOT:DGGET.FOR
APLIOT:DGHEAD.FOR
APLIOTrDGIIIT.FOR
QIOT:FFTIM.FOR
APLIOT:FQMATC.FOR
APLHOT:GAIHII.FOR
APLIOT:GET1VS.FOR
APLIOT:GETAIT.FOR
APLIOT:GETCTL.FOR
APLIOT:GETFQ.FOR
APLIOT:GETSOU.FOR
APLIOT:GETSTI.FOR
APLIOT:GIFSMO.FOR
APLIOT:GISMO.FOR
QHOT:GRDCRM.FOR
APLIOT:GRDFLT.FOR
APLIOT:GRDSET.FOR
QIOT:GRDSUB.FOR
APLIOT:GRIDTB.FOR
APLIOT:IIDXII.FOR
QHOT:IHTPFH.FOR
APLHOT:IOBSRC.FOR
APLHOT:LXYPOL.FOR
qiOT:MAKMAP.FOR
APLHOT:MULSDB.FOR
APLHOT:HDXIHI.FOR
APLHOT .'HXTFLG. FOR
APLHOT:PARAHG.FOR
APLHOT:POLSET.FOR
QPSAP:Q1FIH.FOR
QPSAP:Q1GRD.FOR
QPSAP:QFIHGR.FOR
QPSAP:QGADIV.FOR
QPSAP:QGASUB.FOR
QPSAP:QGR01.FOR
QPSAP:QGRD2.FOR
QPSAP:QGRD3.FOR
QPSAP:QGRD4.FOR
QPSAP:QGRDFI.FOR
QPSAP:QGRDMI.FOR
QPSAP:qGRID.FOR
qPSAP:QGRIDA.FOR

fills a real array with a constant
does several task start up chores for non-interactive tasks
computes integer array as linear interpolation betveen tvo points
convert integer time amd date to character form for display
prints strings associated vith system error codes for Z routines
prints strings associated vith system error codes for ZMSG routines

Interpolates model visibility grom a grid and subtracts from uv data.
Adjusts the reference antenna in am SH table.
Transforms CLEAH components to a grid.
Selects uv data and changes Stokes
Fills output CATBLK for UVGET
Sets arrays for selecting data and changing Stokes
FFTs an image for uv interpolation.
Check if selection criteria match FQ table entries.
Initializes calibration table for application.
Extract desired uv data, 1 value per freq. channel.
Reads AH table and stores the info in common.
Determine Stokes* type of Clean map and other modeling info.
Find info on a given frequency id.
Find info on a given source id.
Reads the VLB station list opened in VBLIH and VBCIT
Boxcar smooths and ASCAL solution (GA) file.
Optimized spline smoothing of amplitudes in ASCAL (GH) file.
Loads CLEAH components into AP for uv model computation.
Sets default gridding convolution functions.
Creates scratch files and sets up for GRDSUB
Subtracts transform of CLEAH components from uv data.
Makes a gridded image of the UV data in TB order.
Initializes index (HX) file, finds first scan selected.
Computes interpolation keraals amd put them into "AP memory".
Search for antennas in the current bandpass buffer.
Fills polarization correction table for AT like linear polarization.
Makes image or beam from uv data set.
Determines if a uv file is multi- or single- source.
Create/open/init index (HX) table
Manages flagging info in tables in common.
Computes antenna parallactic angles
Fills polarization correction table from info in AI table.
Finish gridding a rov of uv data.
Grid a uv data.
Finish gridding rov of uv data.
Divide Gaus. model vis. into uv data.
Subtract Gaus. model vis. from uv data.
Convolves visibility data onto a grid.
Convolves linear polarization data onto a grid.
Convolve visibility data onto a grid.
Convolves visibility data onto a grid.
Finish griding a rov of uv data.
Combined complex vector in gridding uv data.
Grid uv data into rov.
Grid visibility data.

B-32 APPENDIX B. SHOPPING LISTS

QPSAP:QI«T.FOR
QPSAP:QIITP.FOR
QPSAP:QMCALC.FOR
QPSAP:QPTDIV.FOR
QPSAP:QPTFAZ.FOR
QPSAPtqPTSUB.FOR
QPSAP:QSPDIV.FOR
QPSAP:QSPSUB.FOR
QPSAP:QUVIM.FOR
QPSAP:QUVIIT.FOR
QPSAP:QXXPTS.FOR
APLIOT:SCIITP.FOR
APLIOT:SCLOAD.FOR
APLIOT:SELIII.FOR
APLIOTtSELSMG.FOR
APLIOT:SET1VS.FOR
APLIOT:SETGDS.FOR
APLIOT:SETGRD.FOR
APLIOT:SETSM.FOR
APLIOT:SETSTK.FOR
APLIOT:SMOSP.FOR
APLIOT:SI2CL.FOR
APLIOT:SIAPP.FOR
APLIOT:SIIII.FOR
APLIOT:SISNO.FOR
APLIOT:SOUELV.FOR
APLIOT:SOUFIL.FOR
APLIOT:SOURIU.FOR
APLIOT:TABBL.FOR
APLIOT:TABBP.FOR
APLIOT:TABCAL.FOR
APLIOT:TABCS.FOR
APLIOT:TABFLG.FOR
APLIOT:TABFQ.FOR
APLIOT:TABGA.FOR
APLIOT:TABIDX.FOR
APLIOT:TABS!.FOR
APLIOT:TABSOU.FOR
APLIOT:TABTY.FOR
APLIOT:TYIII.FOR
APLIOT:UVDOUT.FOR
APLIOT:UVDPAD.FOR
APLIOT:UVGET.FOR
QIOT:UVGRID.FOR
QIOT:UVMDIV.FOR
QIOT:UVMSUB.FOR
QHOT:UVTBGD.FOR
QHOT:UVTBU*.FOR
QIOT:UVUIIF.FOR
APLIOT:VISCIT.FOR
QIOT:VISDFT.FOR

Interpolates model visibilityes from a grid.
Interpolates model visibilities from a grid.
Compute model visibility from point model.
Divide point model visibility into uv data.
zCompute phase in model visibilities.
Subtract point model visibility from uv data.
Divide Gaussian model visibility into uv data.
Subtract Gaussian model visibility from uv data.
Interpolate visibility model from a grid.
Interpolate model visibility from grid.
Subtract point model visibility from uv data.
Interpolates bandpass tables in time.
Copies part of one bandpass scratch file to another for efficiency.
Initialize data selection and control in commons in DSEL.IIC
Selects calibrator data, smooths solutions.
Sets up pointer and weights arrays for selecting uv data.
Sets up for UV model computation, fills common in DGDS.IIC
Sets up for gridding uv data.
Determines type of spectral smoothing and sets up look up table.
Sets STOKES parameters correctly for plotting routines
Convolves a spectrum with a tabulated function.
Apply an SI to a CL table.
Append SI tables amd keep track of reference antennas.
Create/open/initialize solution (SI) tables.
Smooths solution (SI) tables
Computes source hour angles and elevations
Fills in arrays of source numbers to be included or excluded.
Look up source numbers for a list of names.
Do 10 to Baseline (BL) table after setup by BLIII.
Does I/O to bandpass (BP) table opened by BPIII
Does I/O to Calibration (CL) table opened by CALIII
Does I/O to single dish calibration (CS) table opened by CSIII
Does I/O to Flag (FG) table opened by FLGIII
Does I/O to frequency (FQ) table opened by FQIII
Does I/O to GAII (GA) table opened by GAIII
Does I/O to Index (IX) table opened by IDXIII
Does I/O to Solution (SI) table opened by SIIII
Does I/O to Source (SU) table opened by SOUIII
Does I/O to Tsys (TY) table opened by TYIII
Create/open/initialize Tsys (TY) table
Divides uv model in one half of a record into other, writes result.
Reformat UV data record, doubling size and zero extra words.
Read UV data with optional calibration, editing, selection, etc.
Grids uv data to be FFTed.
Divides a uv data set by the Fourier transform of a model.
Subtracts the Fourier transform of a model from a uv data set.
Grids uv data in arbitrary sort order to be FFTed.
Determines amd applies uniform weighting to uv data in arb. order.
Determines and applies uniform weighting to a uv data set.
Determines number of visibility records requested of UVGET
Compute DFT of model and subtract/divide from/into uv data.

B.l. INTRODUCTION B-33

B .l .49 UV-UTIL
APLHOT:AH10RS.FOR
APLSUB:AHTDAT.FOR
APLHOT:CALCOP.FOR
APLSUB:GETVIS.FOR
APLSUB:MERGE.FOR
APLSUB:OSORT.FOR
APLSUB:REQBAS.FOR
APLSUB:SETVIS.FOR
APLSUB:SHSORT.FOR
APLSUB:UVCREA.FOR
APLSUB:UVDISK.FOR
APLSUB:UVIHIT.FOR
APLSUB:UVPGET.FOR
AIPSUB:UVRITE.FOR
APLSUB:VISCHK.FOR

B .l .50 VLA
APLHOT:APLPBI.FOR
APLHOT:APPLPB.FOR

B .l .51 YO
YGEI:YCIHIT.FOR
YGEI:YCIECT.FOR
YGEI:YCOVER.FOR
YGEI:YCREAD.FOR
YGEI:YCUCOR.FOR
YGEI:YCURSE.FOR
YGEI:YCWRIT.FOR
YGEI:YFILL.FOR
YGEI:YFIID.FOR
YGEI:YLOCAT.FOR
YGEI:YLOWOI.FOR
YGEI:YSLECT.FOR
YGEI:YTCOMP.FOR

B .l .52 Y l
YGEI:YCRCTL.FOR
YGEI:YGRAPH.FOR
YGEI:YIMGIO.FOR
YGEI:YIIIT.FOR
YGEI:YLUT.FOR
YGEI:YOFM.FOR
YGEI:YSCROL.FOR
YGEI:YSPLIT.FOR
YGEI:YTVCII.FOR
YGEI:YTVCLS.FOR
YGEI:YTVMC.FOR
YGEI:YTVOPH.FOR
YGEH:YZERO.FOR
YGEH:YZOOMC.FOR

Determines a list of antenna pairs from adverbs AHTAHHA, BASELIHE
Returns the reference date and frequency for each array in uv dataset
Copies selected uv data vith calibration and editing
uses setup from SETVIS to get and reformat a visibility sample
sorts by merging previously sorted blocks of records
does quick sort on array of vectors, then reorders by calling PERMAT
Apply AHTEHHA and BASELIHE selection adverbs to a baseline
initializes pointers to select/convert uv data to desired form
Shell sort of an array or records on tvo keys
create and catalog a uv data base file
reads/vrites records of arbitrary length, esp UV data, see UVINIT
initializes 10 for arbitrary length records via UVDISK, esp UV data
determines pointers to UV data from the header
vrites summary of UV Export-format tape
checks if UV data sample is desired, returns it in RR, LL, RL, LR

♦TESS routine to apply a taper to an image. VLA only!
♦TESS routine to apply a taper to an image

initialize image catalog for specified TV memory plane
vrite line segment betveen 2 points on TV
checks for overlapped images on the TV by quadrant
read the image catalog, return image header for TV only
correct cursor position for scroll; return image coordinates, header
read and control TV cursor
vrite image header to image catalog, update image catalog directory
fill rectangle of TV memory vith a constant value
determines the unique TV image of desired type, returns catalog block
return TV positions for set of image positions
select least on bit in a bit mask integer
turn gray and graphics planes on and off
decide if a parameter has changed

controls the TV cursor visibility, position; reads trackball buttons
turns TV graphics planes on and off
read/vrite data to the TV grey and graphics memories
initialize everything about the TV
read/vrite channel-based look-up-table
read/vrite all-channel look-up-table ("output function memory")
write the scroll registers (shift location of 1 or more TV channels)
set channel selection by split-screen quadrant
initialize TV characteristics common (not needed much - see TVOPEH)
close the TV, including TV device and TV control/parameter disk file
issue a master clear to reinitialize 10 to the TV
open the TV device and the TV disk control/parameter file.
fill a TV memory plane vith zeros
set the TV zoom magnification said center

B-34 APPENDIX B. SHOPPING LISTS

B .l .53 Y2
YGEI:YALUCT.FOR
YGEI:YCOIST.FOR
YGEI:YFDBCK.FOR
YGEI:YIFM.FOR
YGEI:YMIMAX.FOR
YGEI:YRHIST.FOR
YGEI:YSHIFT.FOR

B .l .54 Y3
YGEI:YGGRAM.FOR
YGEI:YGRAFE.FOR
YGEI:YGYHDR.FOR
YGEI:YISDRM.FOR
YGEI:YISDSC.FOR
YGEI:YISJMP.FOR
YGEI:YISLOD.FOR
YGEI:YISMPM.FOR
YGEI:YMAGIC.FOR
YGEItYMKCUR.FOR
YGEI:YMKHDR.FOR
YGEI:YSTCUR.FOR
YGEI:YTVCL2.FOR
YGEI:YTV0P2.FOR

B .l .55 Z
APLGEI:ZABORT.FOR
APLGEI:ZACTV8.FOR
APLGEI:ZADDR.FOR
APLGEI:ZARGCL.FOR
APLGEI:ZARGMC.FOR
APLGEI:ZARGOP.FOR
APLGEI:ZARGXF.FOR
APLGEI:ZBKLD1.FOR
APLGEI:ZBKLD2.FOR
APLGEI:ZBKLD3.FOR
APLGEI:ZBKTP1.FOR
APLGEI:ZBKTP2.FOR
APLGEI:ZBKTP3.FOR
APLGEI:ZBYMOV.FOR
APLGEI:ZBYTFL.FOR
APLGEI:ZC8CL.FOR
APLGEI:ZCLC8.FOR
APLGEI:ZCLOSE.FOR
APLGEI:ZCMPRS.FOR
APLGEI:ZCPU.FOR
APLGEI:ZCREAT.FOR
APLGEI:ZDATE.FOR
APLGEI:ZDCHII.FOR
APLGEM:ZDEACL.FOR
APLGEH:ZDEAOP.FOR
APLGEI:ZDEAXF.FOR

drives the TV arithmetic logic unit - not to be used much
controls the constant registers added to the TV picture - not used
causes a feedback operation in the TV
read/write TV Input look-up-table
read 3 min/max values from TV data paths (IIS only, not used)
read the histogram of the selected TV output color
read/write the shift (bias) registers of the TV (IIS M70, not used)

controls the TV graphics color assignments
controls the graphics control register (IIS function)
builds basic TV 10 header to write gray scale data
read/write data memory of IRAO-ISU device
read/write micro-processor memory of IRAO-ISU device
cause microprocessor jump toaddress in IRAO-ISU device
loads/unloads program memory of IRAO-ISU device
reads/writes microprocessor memory of the IRAO-ISU device
initialize graphics, zoom, scroll units for IIS Model 75 (level 3)
selects the form of the cursor to be displayed
builds standard TV-10 header, used for IIS Models 70 and 75
reads/writes the cursor pattern array
close actual TV device (called by YTVCLS)
open actual TV device (called by YTVOPI)

establishes or carries out (when appropriate) abort handling
activate the requested program, returning process ID information
determine if 2 addresses inside computer are the same
close an ARGS TV device
issues a master clear to an ARGS TV
open ARGS TV device
translates IIS Model 70 commands into calls to ZARGS for ARGS TV
initialize environment for BAKLD
does BACKUP operation: load images from tape to directory
clean up system things for BAKLD ending
initialize BACKUP to tape operation for BAKTP
write a cataloged file plus extensions to BACKUP tape in BAKTP
cleam up host environment at end of BAKTP
move 8-bit bytes from in-buffer to out-buffer
interchange bytes in buffer if needed to go between local ft standard
convert packed ASCII buffer to local character string
convert local character string to packed ASCII buffer
closes open devices: disk, line printer, terminal
release space from the end of an open disk file
return current process CPU time and 10 count
creates a disk file
return the local date
initialize message, device amd Z-routine characteristics commons
close DeAnza TV device
opens DeAnza TV device
do 10 to DeAnza TV

B.L INTRODUCTION B-35

APLGEH:ZDELAY.FOR delay current process a specified interval
APLGEH:ZDESTR.FOR destroy a closed disk file
APLGEH:ZDHPRL.FOR convert 64-bit HP floating buffer to local DOUBLE PRECISIOH values
APLGEH:ZDN2DL.FOR convert Modcomp REAL*6 and REAL*8 to local double precision
APLGEH:ZEHDPG.FOR advance printer if needed to avoid electrostatic-printer "burn-out"
APLGEH:ZERROR.FOR prints strings associated vith system error codes for Z routines
APLGEH:ZEXIST.FOR return file size and, consequently, vhether file exists
APLGEH:ZEXPHD.FOR expand an open disk file --- either map or non-map nov allowed
APLGEH:ZFIO.FOR reads and vrites single 256-integer records to non-map disk files
APLGEH:ZFREE.FOR display available disk space
APLGEH:ZGETCH.FOR get a character from a REAL vord
APLGEH:ZGHAME.FOR get name of current process
APLGEH:ZGTBIT.FOR get array of bits from a word
APLGEH: ZHEX. FOR encode aui integer into hexadecimal, characters
APLGEH:ZIPACK.FOR pack/unpack long integers into short integer buffer
APLGEH:ZKDUMP.FOR display portions of am array in various Fortran formats
APLGEH:ZLASIO.FOR open, vrite to, close and spool a laser printer print/plot file
APLGEH:ZLPCLS.FOR close an open printer device
APLGEH:ZLPOPH.FOR open a line-printer text file
APLGEH:ZLVIO.FOR open, vrite to, close and spool a PostScript print/plot file
APLGEH:ZM70MC.FOR issues a master clear to am IIS Model 70 TV
APLGEH:ZM700P.FOR open IIS Model 70 TV device
APLGEH:ZM70XF.FOR read/vrite data to IIS Model 70 TV vith buffering
APLGEH:ZMIO.FOR random-access, quick return (double buffer) disk 10 for large blocks
APLGEH:ZMKTMP.FOR convert a "temporary" file name into a unique name
APLGEH:ZMOUHT.FOR mount or dismount magnetic tape device
APLGEH:ZMSGCL.FOR close Message file or terminal
APLGEH:ZMSGDK.FOR disk 10 to message file
APLGEH:ZMSGER.FOR prints strings associated vith system error codes for ZMSG routines
APLGEH:ZMSGOP.FOR open a message file or message terminal
APLGEH: ZMSGXP.FOR expauid the message file
APLGEH:ZOPEH.FOR open binary disk files and line printer and TTY devices
APLGEH:ZPHFIL.FOR construct a physical file or device name from AIPS logical parameters
APLGEH:ZPHOLV.FOR construct a physical file - version for UPDAT
APLGEH:ZPRI0.FOR raise or lover the process priority
APLGEH:ZPRMPT.FOR prompt user amd read 80-characters from CRT screen
APLGEH:ZPRPAS.FOR prompt user and read 12-character passvord (invisible) from CRT
APLGEH:ZPTBIT.FOR put array of bits into a vord
APLGEH:ZPUTCH.FOR inserts 8-bit "character" into a vord
APLGEH:ZRDMF.FOR convert DEC Magtape Format (36 bits data in 40 bits) to 2 integers
APLGEH:ZREHAM.FOR rename a disk file
APLGEH:ZRLR64.FOR convert buffer of local double precision values to IEEE 64-bit float.
APLGEH:ZRM2RL.FOR convert Modcomp to local single precision floating point
APLGEH:ZSTAIP.FOR does amy system cleanup needed at the end of interactive AIPS session
APLGEH:ZTACTQ.FOR inquires if a task is currently active on the local computer
APLGEH:ZTAPE.FOR mount, dismount, position, vrite EOF, etc. for tapes
APLGEH:ZTAPI0.FOR tape operations for IMPFIT (compressed FITS transport tape)
APLGEH:ZTIME.FOR return the local time of day
APLGEH:ZTOPEH.FOR open text file - logical area, version, member name as arguments
APLGEH:ZTPVAT.FOR vait for asynchronous 10 to finish on tape or pseudo-tape disk
APLGEH:ZTQSPY.FOR display AIPS account or all processes running on the system
APLGEH:ZTTBUF.FOR reads terminal input vith no prompt or vait - simulates TV trackball
APLGEH:ZTXCLS.FOR clos text file opened via ZTXOPN
APLGEH:ZTXI0.FOR read/vrite a line to a text file

B-36 APPENDIX B. SHOPPING LISTS

APLGEI:ZTXMAT.FOR return list ol liles in specilied area beginning vith specilied chars
APLGEI:ZTXOPI.FOR open a text lile lor read or vrite
APLGEI:ZV20CL.FOR close a Comtad. Vision 1/20 TV device
APLGEI:ZV20MC.FOR issue a master clear to the TV - lor Comtal this is a lo-Op
APLGEI:ZV200P.FOR open Comtal Vision 1/20 TV device
APLGEI:ZV20XF.FOR read/vrite data to Comtal Vision 1/20 TV device
APLGEI:ZWHOMI.FOR determines AlPSxn task name; sets HPOPS, assigns TV and TK devices

B .l .56 Z2
APLGEI:ZAB0R2.FOR establishes or carries out (vhen appropriate) abort handling
APLGEI:ZARGC2.FOR close an ARGS TV device
APLGEI:ZARG02.FOR open ARGS TV device
APLGEI:ZARGS.FOR sends command to/lrom the ARGS TV device
APLGEI:ZBYTF2.FOR interchange bytes in buller il needed to go betveen local ft standard
APLGEI:ZCMPR2.FOR truncate a disk lile, returning blocks to the system
APLGEI:ZCREA2.FOR create the specilied disk lile
APLGEI:ZDACLS.FOR close a disk lile
APLGEI:ZDAOPI.FOR open the specilied disk lile
APLGEI:ZDCHI2.FOR initialize device and Z-routine characteristics commons - local vals
APLGEIrZDCHIC.FOR set more system parameters; make them available to C routines
APLGEI:ZDEAC2.FOR close OeAnza TV device
APLGEI:ZDEA02.FOR opens DeAnza TV device
APLGEI:ZDELA2.FOR delay current process a specilied interval.
APLGEI:ZDEST2.FOR destroy a closed disk lile
APLGEI:ZDIR.FOR build a lull path name to liles in AlPS-stamdard areas (HE, RU, . ..)
APLGEI:ZERR02.FOR return system error message lor given system error code
APLGEI:ZEXIS2.FOR return size ol disk lile amd il it exists
APLGEI:ZEXPI2.FOR expand an open disk lile
APLGEI:ZFI2.FOR read/vrite one 256-integer record Irom/to a non-map disk lile
APLGEI:ZFRE2.FOR return AIPS data disk Iree space inlormation
APLGEI:ZLASC2.FOR spool a closed laser printer print/plot lile
APLGEI:ZLASCL.FOR close auid spool a laser printer print/plot lile
APLGEI:ZLASOP.FOR open a laser printer print/plot lile
APLGEI:ZLPCL2.FOR queue a lile to the line printer and delete
APLGEI:ZLP0P2.FOR open a line-printer text lile - actual OPEI call
APLGEI:ZM70C2.FOR close IIS Model 70/75 TV device
APLGEI:ZM7002.FOR opens IIS Model 70.75 TV device
APLGEI:ZMI2.FOR read/vrite large blocks ol data Irom/to disk, quick return
APLGEI:ZM0UI2.FOR mount or dismount magnetic tape device
APLGEI:ZMSGWR.FOR call MSGVRT based on call arguments - lor C routines to call MSGURT
APLGEI:ZPATH.FOR convert a lile name
APLGEI:ZPRI2.FOR raise or lover the process priority
APLGEI:ZREIA2.FOR rename a lile
APLGEI:ZSTAI2.FOR does any system cleanup needed at the end ol interactive AIPS session
APLGEI:ZTACT2.FOR inquires il a task is currently active on the local computer
APLGEI:ZTAP2.FOR position (lorvard/back record/lile), write EOF, etc. lor tapes
APLGEI:ZTKCL2.FOR close a Tektronix device
APLGEI:ZTK0P2.FOR read/vrite Irom/to a Tektronix device
APLGEI:ZT0PE2.FOR open text lile lor ZTOPEI
APLGEI:ZTPCL2.FOR close a tape device
APLGEI:ZTPMI2.FOR tape read/vrite
APLGEI:ZTPMID.FOR pseudo-tape disk read/vrite lor 2880-bytes records
APLGEI:ZTP0P2.FOR open a tape device lor double-buller, asynchronous 10

B.L INTRODUCTION B-37

APLGEI:ZTPOPD.FOR open a pseudo-tape, sequential disk file for FITS
APLGEI:ZTPWA2.FOR wait for read/write from/to a tape device
APLGEI:ZTQSP2.FOR display AIPS account or all processes running on the system
APLGEI:ZTTCLS.FOR close a terminal device
APLGEI:ZTT0P2.FOR open a message terminal
APLGEI:ZTTOPI.FOR open a terminal device
APLGEI:ZTXMA2.FOR find all file names matching a given wildcard specification
APLGEI:ZTX0P2.FOR translate the file name amd open a text file
APLGEI:ZV20C2.FOR close Comtal Vision 1/20 TV device
APLGEI:ZV2002.FOR opens Comtal Vision 1/20 TV device
APLGEI:ZV20X2.FOR does I/O to Comtal Vision 1/20 TV device
APLGEI:ZVAI2.FOR wait for read/write large blocks of data from/to disk

xxxviii

Index
-A IT 5-11
-A R C 5-11
—GLS 5-11
-M E R 5-11
—NCP 5-11
-SIN 5-11
-S T G 5-11
-TA N 5-11
A2WAWA 8-2, 8-7
AIPS batch 3-15, 4-2, 4-9, 4-10, 4-14
ALLTAB 3-2, 3-11, 3-18
AN table 3-10, 6-11, 6-13, 6-15
APCONV 7-1, 7-7
AXEFND 5-15, 5-7
BADDISK 3-14
BATPRT 3-12
BL table 6-15
BP table 6-15
CALCOP 6-11, 6-15, 6-27, 7-1, 7-8
calibration 6-15
CANDY 2-1, 2-7, 2-11, 2-13, 3-2
catalog 3-8, 3-9, 5-1, 5-3, 5-7, 6-12, 8-1
CATDIR 5-2, 5-7, 5-15, 6-3, 6-4, 8-1
CATIO 5-7, 5-17, 6-3, 8-1
CATKEY 3-8, 5-6, 5-16
CC table 3-10
CHCOMP 3-3, 3-19
CHCOPY 3-3, 3-19
CHFILL 3-3, 3-19
CHLTOU 3-3, 3-20
CHMATC 3-3, 3-20
CHNDAT 6-12, 6-28
CHR2H 3-2, 3-3, 3-20
CHWMAT 3-3, 3-20
CL table 6-11
CLENUP 8-2, 8-8
COMOFF 6-7, 6-28
Compressed data 6-12
COORDT 5-11, 5-17
CS table 6-21
DAPL.INC 4-4, 4-28
data structures 1-6
DBAT.INC 4-30
DBUF.INC 8-5, 8-6
D B W T .IN C 4 -3 0

DCAT.INC 3-9, 5-5, 5-13, 6-2, 6-14, 6-29, 8-5,
8-7

DCON.INC 4-4, 4-31
DDCH.INC 3-7, 3-13, 3-16, 5-10, 5-8, 6-5, 6-23,

6-24
D E C - 5-11
DERR.INC 4-8, 4-31
DEVTAB 6-5
DFIL.INC 3-9, 3-14, 3-15, 3-17, 6-3, 7-1, 7-3,

7-7, 7-8, 7-9, 7-10, 7-17, 7-18, 8-1, 8-7
DGDS.INC 7-3
DGGET 6-14, 6-29
DGINIT 6-14, 6-29
DHDR.INC 3-8, 5-3, 5-9, 5-13
DHIS.INC 3-8
DIE 3-1, 3-6, 3-9, 3-15, 3-21, 6-2, 6-3
DIETSK 3-1, 3-6, 3-15, 3-21
differential precession 5-13
DIO.INC 4-7, 4-31
DITB.INC 8-4, 8-7
DLOC.INC 5-11, 5-14, 5-19
DMPR.INC 7-4
DMSG.INC 3-11, 3-16, 3-17
DOCRT 3-13
DOWAIT 1-3
DPOP.INC 4-31
DSEL.INC 6-15, 6-21, 6-24, 6-41, 6-47, 7-4, 7-15
DSKFFT 7-1, 7-9
DSMS.INC 4-31, 4-7
DTVC.INC 3-9, 5-9, 5-14
DTVD.INC 3-9
DUVH.INC 3-9, 3-17, 6-14, 6-20, 6-27, 6-29, 6-

40, 6-51, 7-7
ELAT 5-11
ELON 5-11
EXTCOP 3-11, 3-21, 6-21
EXTINI 3-11, 6-21, 6-30
EXTIO 3-11, 6-21, 6-31
FETCH 2-1, 2-7
FG table 6-11, 6-21
FILAIP 5-8
FILCLS 8-2, 8-8
FILCR 8-2, 8-8
FILDES 8-2, 8-8
F IL IO 8 -2 , 8 -9

INDEX-1

FILNUM 8-3, 8-9
FILOPN 8-2, 8-10
FITS 1-3, 5-1, 6-12
FNDX 5-11, 5-18
FNDY 5-11, 5-18
FQ 6-11
FQ table 3-10, 6-11, 6-12
FUDGE 2-1, 2-4, 3-2
GET1VS 6-14, 6-32
GETHDR 8-3, 8-10
GETVIS 6-14, 6-32
GLAT 5-11
GLON 5-11
GRDCOR 7-1, 7-9
GTPARM 3-1, 3-3, 3-6, 3-16, 3-22, 8-1
GTTELL 3-1, 3-22
H2CHR 3-2, 3-3, 3-5, 3-25
H2WAWA 8-11, 8-2
HAIDD 3-1
HDRINF 8-3, 8-10
HIAD80 3-10, 3-23
HIADD 3-10, 3-11, 3-22, 8-3
HIADDN 3-10, 3-23
HICLOS 3-1, 3-11, 3-23
HICOPY 3-11
HICREA 6-2
HIINIT 3-10, 3-24
HIMERG 3-11, 3-24
HIOPEN 3-11
HIREAD 3-11, 3-25
HISCOP 3-1, 3-10, 3-11, 3-25, 6-2, 8-3
history 3-2, 3-10
HOLLERITH 3-2, 3-5
IF 6-12
image catalog 5-1, 5-8
INCLUDE 3-2, 3-8, 3-9
IOSET 8-2
KEYIN 6-21, 6-23, 6-32
LOCAL INCLUDE 3-7
logical unit number 6-4, 6-5, 8-4
LUNs assignments of 6-5
MAKMAP 7-2, 7-10
MAKOUT 3-10, 3-26
MAPCLS 5-7, 5-18, 6-4, 6-6, 6-33
MAPCR 8-2, 8-11
MAPHDR 6-2
M A PIO 8 -2 , 8 -12
MAPMAX 8-3, 8-12
MAPOPN 5-7, 5-19, 6-4, 6-6, 6-34
MAPSIZ 6-3, 6-33
M A P W IN 8 -2 , 8 -1 2
M A PX Y 8 -2 , 8 -13
MCREAT 3-1, 6-2, 6-34
MDESTR 6-3, 6-35

MDISK 6-4, 6-7, 6-15, 6-35
MINIT 6-4, 6-7, 6-15, 6-36, 8-1
MINSK 6-10, 6-36
MSGWRT 3-2, 3-11
MSKIP 6-10, 6-37
multi-source files 6-11
NX table 6-11
OPENCF 8-2, 8-13
pain 3-2
PFPL 3-2
PLNGET 6-11, 6-38
PLNPUT 6-11, 6-39
polarization 6-13
POPS 1-3
POPSDAT 4-17
POPSGN 4-2, 4-7, 4-16
precession 5-13
Preprocessor 3-7
PRPLn 2-1
PRTLIN 3-13, 3-26
PSFORM 3-27
PUVD.INC 3-18, 7-2
Quiche-eaters 8-1
RA— 5-11
random parameters 6-12
RELPOP 3-1, 3-6, 3-13, 3-27
rotation 5-13
ROTFND 5-75-19
SAVHDR 8-3, 8-13
scratch files 3-14, 8-2
SCREAT 3-1,-3-14, 3-27, 6-2, 6-4, 6-39, 7-1'
SDGET 6-21, 6-40
SELINI 6-15, 6-41
SET1VS 6-14, 6-43
SETLOC 5-11, 5-19
SETPAR 3-8, 3-29, 5-1
SETVIS 6-14, 6-42
Single dish 6-19, 6-20
SN table 6-15
SNDY 6-3
sort order 6-13
source number 6-12
STOP 3-15
SU table 6-11, 6-12
TABCOP 3-11, 3-28
TABINI 6-2, 6-4, 6-21, 6-43, 8-3
T A B IO 6 -1 , 6 -4 , 6 -2 1 , 6 -45 , 8 -3
TAFFY 2-1, 3-2
TC file 1-3, 3-1, 3-5
TD file 1-3, 3-1, 3-5
T S K B E G 8 -3 , 8 -13
T S K E N D 8 -3 , 8 -14
TVFIND 5-9, 5-20
UNSCR 8-2, 8-14

INDEX-2

UVCREA 3-1, 6-2, 6-46
UVDISK 6-4, 6-15, 6-16, 6-21, 6-47
UVFIL 2-1, 2-7, 2-8, 2-11, 3-2
UVGET 6-11, 6-15, 6-47, 7-1, 7-15
UVGRID 7-1
UVHDR 6-16
UVINIT 6-4, 6-15, 6-21, 6-50
UVMDIV 7-2, 7-17
UVMSUB 7-2, 7-18
UVPGET 3-28, 5-7, 5-20, 6-14, 6-20, 6-51
VERBS 4-10, 4-14
VERBSB 4-10, 4-14
VERBSC 4-10, 4-14
VHDRIN 3-1, 5-3, 5-5, 5-9
WAWA2A 8-2, 8-14
XYPIX 5-11, 5-21
XYVAL 5-11, 5-21
YCINIT 5-9, 5-22
YCOVER 5-22
YCREAD 5-9, 5-22
YCWRIT 5-9, 5-22
ZCLOSE 3-12, 6-6, 6-52
ZCMPRS 6-3, 6-52
ZCREAT 6-2, 6-3, 6-53
ZDCHIN 3-1, 3-2, 3-7, 3-16, 3-29, 5-5
ZDESTR 6-3, 6-53
ZENDPG 3-12
ZEXPND 6-3, 6-53
ZFIO 6-24, 6-53
ZMIO 6-23, 6-54
ZOPEN 3-12, 3-15, 6-4, 6-6, 6-22, 6-54
ZPHFIL 3-15, 5-1, 5-2, 6-3, 6-4, 6-6, 6-55, 8-1
ZTCLOS 6-21, 6-22, 6-55
ZTOPEN 6-4, 6-21, 6-22, 6-56
ZTREAD 6-21, 6-22, 6-56
ZTTYIO 3-2, 3-13, 3-30
ZTXCLS 6-21, 6-57
ZTXIO 6-21, 6-22, 6-57
ZTXOPN 6-4, 6-21, 6-58
ZUVPAK 6-12, 6-56, 6-58
ZUVXPN 6-12, 6-57, 6-58
ZWAIT 6-23, 6-59

INDEX-3

