Going AIPS:
A Programmer’s Guide to the NRAO
Astronomical Image Processing System

Version 15 April 90

VOLUME 1

ABSTRACT

This manual is designed for persons wishing to write programs using the NRAO Astronomical
Image Processing System (AIPS). It should be useful for a wide range of applications, from making
minor changes in existing programs to writing major new applications routines. All basic aspects
of AIPS programming are dealt with in some detail.

AIPS programmers:

Bill Cotton — Image construction and applications routines
Phil Diamond — Spectroscopy

Chris Flatters — Polarization and VLBI

Eric Greisen — TVs and AIPS

Kerry Hilldrup — UNIX and Cray COS implementations
Gareth Hunt — Data formats

Bill Junor — VLBI

Glen Langston — Imaging

Nancy Maddalena — WWTEX conversion

Contents

1 Introduction

1.1 Scope

1.2
1.3
1.4

1.5

1.6

1.7

Hey You, Read This e
Philosophy e,
An Overview of the AIPS System

1.4.1
14.2
143
144
Style
15.1
1.5.2
1.5.3
1.54
1.5.5
1.5.6
1.5.7
1.56.8

Tasks e e e
Verbs e e s

1O o

..

Body Comments
Indentation e,

Blanks
Modular Code
Portability

Language e

1.6.1
1.6.2
1.6.3
1.6.4
1.6.5

FORTRAN e e

SAVE Statements,

Documentation s,

1.7.1

Skeleton Tasks

2.1 Data Modification Tasks — FUDGE and TAFFY

2.2

3.1
3.2

3.3

2.1.1
2.1.2

FUDGE e
TAFFY . . e

Data Entry Tasks (UVFIL and CANDY)

2.2.1
2.2.2

UVFIL . . e
CANDY . .

Getting Started — Tasks

OVELVIEW o e
The Cost of Machine Independence

3.2.1

Character Strings L e e

Task Name Conventions s,

TrTTTT L
O LW WD = b

.l_n

3.4

3.5
3.6
3.7

3.8
3.9

3.10

3.11
3.12
3.13
3.14
3.15

3.16

Getting the Parameters 3-3

341 InAIPS (Helpfile) 3-3

3.4.2 At Task Startup (GTPARM) 3-5

3.4.3 While a Task is Running (GTTELL) 3-5

Restarting AIPS e 3-6

INCLUDE files« oo i e e e e e e e e e 3-6

Initializing Commonso e 3-7

3.7.1 Device Characteristics Common, 3-7

3.7.2 Catalog Pointer Common 3-8

3.7.3 History Common e e 3-9

374 TV COMMON vt i i e e e e e e e e e e e 3-9

3.7.5 UV datapointer common vt v ittt e e e 3-9

3.7.6 Files common, DFIL.INC 3-9

Input and Qutput File Names L o 3-10
Copying Extension Files o o oo L 3-10
3.9.1 History o i e e e e e 3-10
3.9.2 Extension tables (ALLTAB, TABCOP) 3-11
Communication with theuser L L L 3-11
3.10.1 Writing messages i e e e e e e 3-11
3.10.2 Turning off system messages e e 3-12
3.10.3 Writingtothelineprinter oL L 3-12
3.10.4 Writing to the Terminal (ZTTYIO) 3-13
Scratch Files e e 3-14
Terminating the Program L L 3-15
BatchJobs e 3-16
Installinga New Task 3-16
INCLUDES o e e e e e e e e e 3-16
3.15.1 DDCH.INC e e e e e 3-16
3.15.2 DFIL.INC o e e 3-17
3.15.3 DMSGL.INC e e e 3-17
3.154 DUVH.INC e e e 3-17
3.15.5 PUVDLINC e e 3-18
Routines e e e e 3-18
3.16.1 ALLTAB 3-18
3.16.2 CHCOPY e 3-19
3.16.3 CHCOMP e 3-19
3.164 CHFILL e 3-19
3.16.5 CHLTOU e e e e e e s 3-20
3.16.6 CHMATC o it e e e e 3-20
3.16.7 CHR2H e e 3-20
3.16.8 CHWMAT e 3-20
3.169 DIE e e 3-21
3.16.10DIETSK o e 3-21
316.11EXTCOP o e 3-21
3.16.12GTPARM e 3-22
3.U6.13GTTELL o e 3-22
3.16.14HIADDo e . R)
3.16.15HIADDN e 3-23
316.16HIADSOD o e e e e 3-23
3.6.0THICLOS o o o e e e e e e e 3-23
3.16.18HIINIT o e e e 3-24
3U6.19HIMERG 3-24
3.16.20HIREAD e e 3-25
3.16.21HISCOP o 3-25

1

3.16.22H2CHR e 3-25

3.16.23MAKOUT e e e 3-26
3.16.24PRTLIN e e 3-26
3.16.25PSFORM e e e 3-27
3.16.26RELPOP e 3-27
3.16.27SCREAT e e 3-27
3.16.28TABCOP e e 3-28
3.16.290UVPGET e 3-28
3.16.30ZDCHIN e 3-29
3.16.31ZTTYIO e e e e e 3-30
4 The AIPS Program 4-1
4.1 OVEIVIEW o i e e e e e e e e e e e e e e e e e 4-1
4.2 Structure of the AIPS Program 4-1
4.2.1 The POPS Processor v v v v v i i e e e e e e e e e e e e e e e 4-2
422 POPScommonst e 4-4
423 TAGand TYPE e e 4-7
424 ErrorHandling e e 4-8
425 Memory Files e e e 4-9
4.26 Specialmodes. 4-9
4.3 Exampleof the POPS processor e 4-10
43.1 TheCompiler e 4-10
4.3.2 Thelnterpreter e e e 4-13
4.4 Imstallingnew VERBS e 4-14
4.5 Installingnew ADVERBS 4-16
4.6 POPSGN e e e e 4-16
4.6.1 Function. e e e e e 4-16
4.6.2 POPSDAT.HLP e e e e e e 4-17
4.7 INCLUDEs e e e e e e e e 4-28
4.7.1 DAPLINC e e 4-28
472 DBATINC e e e e e 4-30
473 DBWTINC e e e e 4-30
4.74 DCON.INC e 4-31
4.7.5 DERR.INC e 4-31
4.7.6 DIOINC e e 4-31
4.7.7 DPOP.INC e 4-31
4.7.8 DSMSINC e 4-31
5 Catalogs 5-1
5.1 OVerview L e e e e e e 5-1
5.2 Public and Privatecatalogs L 5-1
53 FileNames e e e e e 51
54 DataCatalog e 5-2
5.4.1 Catalog Directory e e 5-2
54.2 Headerblock 5-2
5.4.3 Directory Section e e e 5-2
5.4.4 Directory Usage e 5-3
5.4.5 Structure of The Catalog Header Record 5-3
5.4.6 Routines to Access the DataCatalog 5-7
5.4.7 Routines to Interpret the Catalog Header 5-7
5.4.8 CatalogStatus e 5-8
5.5 Image Catalog e e 5-8
55.1 Overviewl e e e e e e e 5-8
5.5.2 DataStructureso e e e e e e e e e e 5-8

il

55.3 Usagenotes i i i i i e e e e e e e e e e e 5-9

5.5.4 Subroutines e 59
5.5.5 ImageCatalogCommons, 5-9
5.6 Coordinate Systems L e e 5-10
5.6.1 Velocity and Frequency e 5-10
5.6.2 Celestial Positions e, 5-10
5.6.3 Rotations e 5-13
57 Text of INCLUDEfiles. 5-13
5.7.1 DCATINC e e 5-13
5.7.2 DHDR.INC e e 5-13
5.7.3 DLOCINC e, 5-14
5.74 DTVCINC e e e e e e, 5-14
58 Routines e e e e e e e 5-15
5.8.1 AXEFND e e, 5-15
58.2 CATDIR e e e e, 5-15
583 CATKEY e e e 5-16
584 CATIO e e, 517
585 COORDT e e 5-17
586 FNDX e, 5-18
5.8.7 FNDY e e, 5-18
588 MAPCLS e e e 5-18
58.9 MAPOPN e e e e 5-19
5810 ROTFND e e e e e e e 5-19
5.8.11 SETLOC e e 520
5.8.12 TVFIND e e e e e e 5-20
5.8.13 UVPGET e e e e e 5-20
5.8.14 XYPIX e e e e 5-21
5.8.15 XYVAL e e 5-21
5816 YCINIT e e e e e e e 5-22
5.8.17 YCOVER e e e 5-22
58.18 YCWRIT e e e e e e e e 5-22
5.8.19 YCREAD e e e e e 5-23
6 Disk files 6-1
6.1 Overview e e e e e e e e, 6-1
6.2 Typesof Files e 6-1
6.3 FileManagement e e e e 6-2
6.3.1 CreatingFiles. e 6-2
6.3.2 Example Using ZCREAT i, 6-2
6.3.3 Destruction Routines e 6-3
6.3.4 Expansion and Contractionof Files. 6-3
64 I/OtoDiskFiles e 6-3
6.4.1 Upper Level /O Routines 64
6.4.2 Logicalunit numbers L 6-5
6.4.3 Contents of the Device Characteristics Commons 6-5
6.44 ImageFiles 6-6
6.4.5 Image File Manipulation Routines 0., 6-10
646 UV DataFiles e e e 6-11
6.4.7 UV Data ACCesS i i i it et e e e e e e e e e e e e e e e e 6-15
6.48 SingleDishData e 6-19
6.4.9 Extensionfiles L 6-21
6.4.10 Text files e 6-21
6.5 Bottom Level /O Routines 6-23
6.5.1 ZMIO and ZWAIT e 6-23

6.6

6.7

6.5.2 ZFIO e 6-24
Text of INCLUDE files e e, 6-24
6.6.1 DDCH.INC e 6-24
6.6.2 DSEL.INC 6-24
6.6.3 DUVH.INC 627
Routines 6-27
6.7.1 CALCOP e 6-27
6.7.2 CHNDAT 6-28
6.7.3 COMOFF, 6-28
6.74 DGGET, 6-29
6.7.0 DGINIT 6-29
6.7.6 EXTINI 6-30
6.7.7 EXTIO 6-31
6.7.8 GETVIS. 6-32
6.7.9 GETIVS 6-32
6.7.10 KEYIN, 6-33
6.7.11 MAPSIZ 6-33
6.7.12 MAPCLS e 6-33
6.7.13 MAPOPN 6-34
6.7.14 MCREAT 6-34
6.7.15 MDESTR e, 6-35
6.7.16 MDISK 6-35
6.7.17 MINIT 6-36
6.7.18 MINSK 6-37
6.7.19 MSKIP 6-37
6.7.20 PLNGET 6-38
6.7.21 PLNPUT 6-39
6.7.22 SCREAT 6-39
6.7.23 SDGET e 6-40
6.7.24 SELINI 6-41
6.7.25 SETVIS e, 6—42
6.7.26 SETIVS L 6-43
6.7.27 TABINI 6-43
6.7.28 TABIO 6-45
6.7.29 UVCREA 6-46
6.7.30 UVDISK 6-47
6.7.31 UVGET 647
6.7.32 UVINIT e, 6-50
6.7.33 UVPGET, 6-51
6.7.34 ZCLOSE e 6-52
6.7.35 ZCMPRS 6-52
6.7.36 ZCREAT 6-53
6.7.37 ZDESTR 6-53
6.7.38 ZEXPND 6-53
6.7.39 ZFIO 6-54
6.7.40 ZMIO 6-54
6.7.41 ZOPEN 6-54
6.7.42 ZPHFIL o e, 6-55
6.7.43 ZTCLOS e e e 6-55
6.7.44 ZTOPEN 6-56
6.7.45 ZTREAD 6-56
6.7.46 ZUVPAK, 6-56
6.7.47 ZUVXPN 6-57
6.7.48 ZTXCLS 6-57

6.7.49 ZTXIO e 6-57

6.7.50 ZTXOPN e e 6-58
6.7.51 ZUVPAK e e e e e 6-58
6.7.52 ZUVXPN e e 6-58
6.7.53 ZWAIT e e e e e e e e 6-59
7 High Level Utility Routines 7-1
T.1 Overview L e e e e e 7-1
7.2 File Specification 7-1
7.3 Data Calibration and Reformatting Routines 7-1
74 OperationsonImages 7-1
7.5 UV Model Calculations 7-2
7.6 ImageFormation 7-2
7.7 INCLUDEs e e e e e e e e 7-2
7.7.1 PUVDINC e e, 7-2
7.7.2 DFILINC e e e e 7-3
7.7.3 DGDSINC e e e 7-3
7.74 DMPRINC s 7-4
7.7.5 DSELINC e e, 7-4
776 DUVHINC e e e, -7
7.8 Routines e e e -7
7.8.1 APCONV . . . e, -7
7.82 CALCOP e e e 7-8
783 DSKFFT e 7-9
784 GRDCOR e e e e e 7-9
7.85 MAKMAP e e, 7-10
786 UVGET e e e 7-15
7.8.7 UVMDIV . . . e, 7-17
788 UVMSUB e, 7-18
8 WaWa (“Easy”) I/O 8-1
8.1 Overview e e e e e e e e e e e e, 8-1
8.2 Salient Features of the WaWal/O package 8-1
8.3 Namestrings 8-1
8.4 Subroutines L e 8-2
8.5 Things WaWa Can’t Do Wellor At AL, 8-3
85.1 Nom-mapfiles, 8-3
852 UVdatafiles 8-3
85.3 Plotting e 8-3
8.5.4 History i i i i e e e e e e e e e 8-3
8.5.5 Morethan 51/O StreamsataTime 8-3
856 I/OtoTapes i i e e 8-3
8.6 Additional goodies and “helpful” hints Lo L oL 8-4
86.1 Useof LUNs e e 8-4
8.6.2 WaWacommons 8-4
8.6.3 Errorreturncodes 8-6
8.7 INCLUDEs 8-6
8.71 DBUF.INC e 8-6
8.7.2 DCAT.INC e e e e e 8-7
8.7.3 DFIL.INC e e 8-7
8.74 DITBINC 8-7
8.8 Detailed Descriptions of the Subroutines 8-7
8.8.1 A2WAWA e 8-7
8.8.2 CLENUP e e 8-8

vi

8.8.3 FILCLS e e 8-8
884 TFILCR. i e e e e e 8-8
8.8.5 FILDES e e e e e 8-9
8.8.6 FILIO e e e e e e 8-9
8.8.7 FILNUM e e e e e e 8-9
8.8.8 FILOPN e e e e 8-10
8.8.9 GETHDR e e e 8-10
8.8.10 HDRINF e e e 8-10
8.8.11 H2WAWA e e 8-11
8812 TOSET . . . o o v e et e e 8-11
8.8.13 MAPCR . . . o oo e e e e e e e 8-11
8.8.14 MAPIO e e e 8-12
8.8.15 MAPMAX e e 8-12
8.8.16 MAPWIN e e e e e e 8-12
8.8.17 MAPXY e e e e e 8-13
8.8.18 OPENCF e e e e e .. 8-13
8.8.19 SAVHDR e e e 8-13
8.8.20 TSKBEG e e e e 8-14
8.8.21 TSKEND e e e e 8-14
8.8.22 UNSCR ottt e e e e e e e e e e 8-14
8.8.23 WAWAZ2A e e e e 8-14
A AIPS Directory Structure and Software Management A-1
Al Introduction L e e e e e e e e e A-1
A.2 Directory Structure L. e e e e e e e A-1
A21 DesignGuidelines A-1
A.2.2 Directory Structure i e e e e e e e e e e A-2
A.2.3 Mnpemonics - AREAS.DAT e A-8
A3 FileNamesForData ittt e s e e A-14
A4 VMS Details e e e e e A-15
A4l Object libraries e A-15
A.5 A.Tutorial for Programmers Using VMS L. A-16
A.5.1 Initialization and Startup Procedures A-16
A52 Compilingand Linking o oo A-16
A5.3 Miscellaneousroutineso A-18
A.5.4 Compiling and Linking: An Example. A-18
A5.5 Debuggingunder VMS L e A-20
A56 Checkoutsystem. e A-20
A6 UnixDetails. e A-21
A.6.1 Mnemonics e e e e A-21
A6.2 Object Libraries e A-21
A.7 A Tutorial for Programmers Using Unix A-27
A.7.1 Initialization And Startup Procedures A-27
A.7.2 Miscellaneous Routines e A-35
A.7.3 Compiling and linking, anexample, A-35
A.7.4 Non-standard INCLUDE files A-39
A.7.5 Running Tasks from Private Directories A-39
A7.6 Debuggingunder Unix A-39
A.T.7T Checkoutsystermnt A-39

vil

B Shopping lists B-1

B.1 Introduction e e e e e e B-1
B.1.1 AP-APPL . . . B-3
B.1.2 AP-FFT e e e e, B-5
B.1.3 AP-UTIL e e B-5
B.1.4 BATCH e e, B-5
B.1.5 BINARY B-6
B.1.6 CALIBRATION s B-6
B.1.7 CATALOG B-8
B.1.8 CHARACTER e s s s B-8
B.1.9 COORDINATES e e e e e s s s s, B-9
B.1.10 EXT-APPL e B-9
B.1.11 EXT-UTIL e e e e e e B-10
B.1.12 FITS e e e e B-11
B.1.13 GRAPHICS B-12
B.1.14 HEADER e B-13
B.1.15 HISTORY e e e e e, B-13
B.1.16 IO-APPL e e e B-14
B.1.17TIO-BASIC e e e e e e e e e B-14
B.LIB IO-TV o e e e s, B-15
B.LI9IO-UTIL s s s s s s s, B-15
B.1.20 IO-WAWA . . . B-16
B.1.21 MAP . . . B-17
B.1.22 MAP-UTIL, B-18
B.1.23 MATH e e B-18
B.1.24 MESSAGES B-20
B.1.25 MODELING s, B-20
B.1.26 PARSING e e B-20
B.1.27 PLOT-APPL B-21
B.1.28 PLOT-UTIL e s st s st B-21
B.1.29 POPS-APPL e, B-22
B.1.30 POPS-LANG s, B-23
B.1.31 POPS-UTIL e e B-23
B.1.32 PRINTER, B-23
B.1.33 SDISH e B-24
B.1.34 SERVICE B-24
B.1.35 SLICE e B-24
B.1.36 SORT e B-25
B.1.37 SPECTRAL B-25
B.1.38 SYSTEM e e B-25
B.1.39 TAPE e B-26
B.1.40 TERMINAL e B-27
B.1.41 TEXT o B-27
B.1.42 TV . . . e e e e e, B-27
B.1.43 TV-APPL e e B-27
B.1.44 TV-BASIC B-28
B.1.45 TV-IO e, B-28
B.1.46 TV-UTIL e e e e e e e B-29
B.1.47 UTILITY o e e e e e e e e e e e e e e e e s s s s s e, B-30
B.148 UV . . e e e, B-31
B.1.49 UV-UTIL s s e, B-33
B.1.50 VLA e B-33
B.1.51 YO . . . B-33
B.1.52 Y1 . . e e B-33

B.1.53 Y2 . . o e B-34

B.1b4 Y3 . . e e B-34
B.155 Z . . o . e e e e B-34
B.1.56 Z2 e B-36

ix

Chapter 1

Introduction

1.1 Scope

This document is intended for programmers who are familiar with general programming practices and FOR-
TRAN in particular and who are familiar with the common techniques for manipulating astronomical data.
This manual is intended to be of use to casual as well as serious programmers wishing to program using the
AIPS system. Going AIPS is not intended to be an exhaustive description of the functions and subroutines
available in AIPS, but rather to illustrate general techniques.

1.2 Hey You, Read This

This manual is designed for a wide variety of users, ranging from those wishing to add 1 line of code to an
existing task to the poor soul who has to assume the care and feeding of AIPS in the case all the current
AIPS programmers are hit by a truck. While the weight of this manual would tend to bring on attacks of
massive depression or homicidal mania in the lighter users from the above mentioned range, it should be
noted that, for many purposes, only a small fraction of the material in this manual is necessary in order to
program in the AIPS system. The following table suggests courses of action for various situations.

¢ “I want to get my data into AIPS.”

There are a number of skeleton tasks which make this relatively straightforward — frequently requiring
several hours of effort. See the chapter on the skeleton tasks and ignore the rest of this manual unless
you run into problems.

e “I just want to do something simple to my data.”

See the chapter on skeleton tasks. There are two tasks, FUDGE and TAFFY, which read uv data or
an image, pass the data to a user-provided subroutine and write what comes back into a new file. All
of the messy stuff is already taken care of.

o “I have this idea.”

This requires a bit more understanding about how AIPS works. Read the rest of this chapter, the
chapter on the skeleton tasks, the chapter on tasks, and the chapter on disk I/O. Depending on the
application, several other chapters may be relevant. Then find an existing task that is closest to your
need and start from there. For a great many purposes the skeleton tasks are a good place to start.
There is also a chapter describing various high-level utility routines such as making images from uv
data or subtracting model values from uv data.

e “I have lots of ideas.”

Find a comfortable chair, open a six pack of beer and start reading.

1-1

1-2 CHAPTER 1. INTRODUCTION

e “We just bought the Whizbang 8000 computer and want to run AIPS on it.”
Read all of this manual especially chapters 10 and 15 and Appendix A, then give us a call.

e “Why didn’t you %#&(*&! see that #&+@!% truck.”
Read it all, then write the parts left out. Lots of luck.

1.3 Philosophy

The NRAO Astronomical Image Processing System (AIPS) is designed to give the astronomer an integrated
system of flexible tools with which to manipulate a wide variety of astronomical data. To be of maximum
benefit to the general astronomical community and to increase the useful lifetime of the software, the AIPS
system has gone to great lengths to isolate the effects of the particular computer and installation on which
it is run. Needless to say, this portability requirement makes the programmer’s life more difficult.

The routines which depend on the host machine or operating system are denoted by using a “Z” as the
first character of the name; these are referred to as the “Z routines”. No other “standard” routines should
depend on the host machine or operating system to work properly. Routines which depend on the particular
television display device are denoted with names beginning with a “Y”; these are the “Y routines”. Routines
which depend on the computing hardware (e.g., array processors, vector processors, or lack thereof) have
names beginning with a “Q”.

It has been argued that it is not worth the additional effort to isolate the machine dependencies. We are
all aware of usable packages that have died because they were strongly tied to a particular computer. VAXes
are currently losing their position of dominance in the astronomical computing community and those with
a sufficiently long memory will recall that IBM 360s and 370s and CDC Cybers had a similar stranglehold
during the 60s and early 70s. By not tying ourselves to a particular computer or even vendor, we have the
freedom to buy hardware from the vendor who offers the most cost-effective models. This strategy should
allow the AIPS system to last longer than previous systems, so we can spend more time investigating new
algorithms and less time patching or recoding old programs every time we change computer.

In addition to isolating machine dependencies, we advocate modular program structure. By this we mean
that the main program should be relatively short and should basically call routines each of which has a well
defined and limited function. Modular coding is especially important for machines on which most programs
must be overlaid (a dying species), but it also makes the code easier to debug, easier to maintain, and very
importantly, easier from which to steal pieces. Routines which may be of use in other applications should
be coded in as general a form as possible and placed in the appropriate AIPS subroutine library. This may
take longer in the short run, but should pay off in the long run.

Another philosophical feature of AIPS is that the programs should run as quickly as possible without
making the code too difficult to maintain. This is frequently a matter of judgment, but, in general, tricks
and excessive cleverness should be avoided.

Since many of the most expensive AIPS tasks are I/O limited, the AIPS I/O system has been designed
for maximum performance. In general, this means that I/O is done in a double-buffered mode, in as large
blocks as possible, with fixed logical record size and programs work directly out of the I/O buffers. This
makes many of the features of the I/O system, which are normally hidden from the programmer, much more
obvious and allows the I/O to run as fast as the computer can manage.

The AIPS philosophy has always been that it should always be possible to determine what has been
done to a data set. For this purpose, every permanent cataloged data file has an associated history file in
which a permanent record is kept of the processing done to the data in that file. It is the responsibility of
the programmer to insure the integrity of the history. In addition to the history files, most communications
between the user and AIPS or tasks are logged in a file which can be printed.

1.4 An Overview of the AIPS System

The AIPS system consists of several distinct parts. First and most obvious to users is the program called
AIPS. This program, based around the People Oriented Parsing System (POPS), interacts with the user,

1.4. AN OVERVIEW OF THE AIPS SYSTEM 1-3

performs many of the display functions, does some manipulation of data and initiates other programs which
run asynchronously from AIPS. Functions built into AIPS are called verbs, the asynchronous programs are
called tasks, and both are controlled by the values of parameters in the POPS processor known as adverbs.
A third type of program in the AIPS system is the stand-alone utility program which is mostly of interest
to the AIPS system manager.

1.4.1 Tasks

Communication between the AIPS program and the tasks it spawns is fairly limited. When a task is initiated
from AIPS, an external file is read which specifies the number and order of adverbs whose values are sent
to the task. These values, along with some “hidden” values, are written into a disk (TD) file. AIPS then
initiates the requested task and begins looping, waiting for the task to either disappear or put a return
code into the TD file. The task reads the TD file and depending on the value of a logical “hidden” adverb
(DOWALIT in AIPS and RQUICK in the task) may immediately restart AIPS by returning the return code.
The task then does the requested operation and before stopping, sends AIPS the return code if this was not
done previously.

AIPS may communicate with a task after it has started running via the task communication (TC) file.
A list of adverbs which are to be sent to the task is defined in the inputs file; in addition, other instructions
such as “quit” may be sent. The task must read the TC file at relevant points. It is the responsibility of the
programmer to check the TC file and take appropriate actions. v

Tasks are used for operations which either require much computer memory or CPU time or both, whereas
verbs are used for operations which take no longer than a few seconds to finish. Since the tasks run
asynchronously from AIPS, the user may do other things while one or more tasks are running. Since there
is a minimal interaction between AIPS and tasks, programming tasks is much simpler than programming
verbs; AIPS does not need to be modified to install a new task. Tasks may communicate directly with the
user.

1.4.2 Verbs

Verbs are the functions built into the AIPS program itself. Many of these involve the display of images
and most of the interactive features of the AIPS system. POPS is a programming language itself, and
complicated combinations of tasks and verbs may be assembled into POPS procedures. Verbs, but not tasks,
may change the value of POPS adverbs.

The AIPS program is very modular and most verbs are implemented via a branch table contained in an
external file. Most of the verbs are called from subroutines with names like AU1, AU2, AU5C etc. A table
read from an external text file determines the subroutine and a function number for each function. The
values of adverbs are contained in a common.

1.4.3 Data Files

Data is kept in files which are cataloged in AIPS. At present we have two kinds of data (more are possible):
images and uv data. The internal structure is much like that of a FITS format tape. Associated with each
main data file may be up to 20 types of auxiliary information files with up to 255 versions of each type. The
basic information about the main data file and the existence of the auxiliary files (called extension files) is
kept in a catalog file. Bookkeeping and other information is kept in the first record of most of the extension
files. One example of the extension file is the HIstory file in which a record of the processing of the data is
automatically logged by the AIPS tasks.

1.4.4 I/O

The AIPS system has three basic types of files and three types of I/O to access them. The main data files
which are assumed to contain the bulk of the data are accessed in a double buffered mode with large blocks
being transferred. The extension files are read by single buffered transfers of 256 integers. Both types are
intrinsically random access; however, in practice the main data file access is sequential, but the extension

1-4 CHAPTER 1. INTRODUCTION

file access is frequently random. For the main data file, I/O tasks usually work directly from the I/O buffer.
The third type of file is the text file. More details about the I/O routines can be found in the chapter on
1/0.

1.5 Style

Since AIPS is a rather large package maintained by numerous people it is important that all of the software
be written in a consistent style. The following sections describe the style in which AIPS software is to be
written.

1.5.1 Precursor Comments

Precursor comments are the principal form of detailed programmer documentation in the AIPS system. These
are comments placed immediately following the PROGRAM, SUBROUTINE, or FUNCTION statement
which explain the purpose and methods of the routine, the input and output arguments, any use of variables
in commons, and any special coding techniques or limitations in the transportability of the routine. Precursor
comments do not need to be verbose, but they must explain most things which a programmer must know
about calling the routine. Routines must have acceptable prologue comments before they will be accepted
into the AIPS system.)

The precursor section should begin with two coded comment lines which give the use of the routine and
placing it in one of a number of categories. The first of these is a one line description of the function of the
routine; this line begins with a comment delimiter followed by a “!”. The second line lists the categories in
which the routine fits; this line begins with a comment delimiter followed by a “#”. These two lines allow
the automatic generation of software documentation.

Following the coded routine description lines is a user agreement notice which is intented to discourage
anyone from selling the AIPS software. Precursor comments describing the functionality of a routine should
be indented three columns except for the indentation of new paragraphs. Sections describing input or output
call arguments or major common variables should be set off by an “Inputs:” or “Outputs:” etc. line also
indented three columns. Descriptions of individual variables should be indented 6 colurmnns and consist of
three parts: 1) variable name, 2) type and dimensionality and 3) function, units etc. These parts should be
arrainged into columns. The declarations of the call arguments should be separated from the declarations of
the local variables by a single (mostly blank) comment line.

As a simple example, consider:

SUBROUTIKE COPY (X, KFROM, KTO)

C - s e e e 2 et e e o o -

C! copies integer words from one array to another

C# Utility

C This software is the subject of a User agreement and is confidential

C in nature. It shall not be sold or otherwise made available or

C disclosed to third parties.

C -

C COPY transfers N integer words from KFROM to KTO

C Inputs:

c | I number of words to be copied

c KFROM I(N) input array

C Outputs:

c KTO I output array

c -
INTEGER K, KFROM(*), KTO(*)

c
INTEGER I

C - ——— - ———

IF (N.LE.O) GO TO 999

1.5. STYLE 1-5

DO 10 I = 1,N
KTO(I) = KFROM(I)
10 CONTINUE
c
999 RETURN
END

1.5.2 Body Comments

“Body” comments are placed at strategic locations throughout the body of the code. They act as sign posts
to alert the reader to each logical block of code and also to clarify any difficult portions. Ideal places for
body comments are prior to DO loops and IF clauses. Body comments within a routine must all begin in
the same column and that column should be near column 41. Body comments (and precursor comments)
should be typed in lower case letters. This helps to separate visually the comments from the program text
(which must be all in upper caset!!).

1.5.3 Indentation

Another powerful tool to illustrate to the reader the logical structure of a routine is indentation. By indenting
statements to indicate that they belong together, one can enhance greatly the readability of one’s programs.
Each step of indentation shall be three (3) spaces, beginning in column 7. Numbered CONTINUE statements
should be employed to enhance the indentation pattern. DO loops and IF clauses should be indented. The
final CONTINUE and END IF statements should be indented the same as the bulk of the loop or IF block.
ELSE or ELSE IF statements should be indented the same as the corresponding IF statement. As an
example, consider:

c Multiply by transform matrix
po201-=1,3
VEC(I) = 0.0
DO 10 J = 1,3
VEC(I) = VEC(I) + TMATX(I,J)*VECO(J)

10 CONTINUE
20 CONTINVE
c Unit vector to polar
c Case at pole
IF ((X.EQ.0.0) .AND. (Y.EQ.0.0)) THEN
ALPHA = 0.0
DELTA = 0.0
ELSE
ALPHA = ATAN (X, Y)
DELTA = SQRT (X*X + Y*Y)
END IF
PDIST = ATAN2 (Z, DELTA)
c Swap to increasing order
IF (A.GE.B) THEN
C=A
A =8B
B=¢C
END IF

Z = Z ** (B-A)

1-6 CHAPTER 1. INTRODUCTION

1.5.4 CONTINUE Statements

All DO loops end with CONTINUE statements rather than some executable statement. This enhances
legibility as well as preventing compilation errors on those statements which are not allowed, by some
compilers, to be the last statement in a DO loop.

1.5.5 Statement Numbers

The use of GO TO statements is the cause of most logic errors in programming. Use of IF-THEN-ELSE
constructions can frequently simplify the logic of a routine. Statement numbers must increase through the
routine and should be integer multiples of 5 or 10. They should not exceed 999. Format numbers should
have 4 digits with the low order 3 giving the nearest preceding statement number to the first statement using
that format. All statement numbers are left justified beginning in column 2.

Statement numbers can help to clarify the logical structure of a routine. Let us consider the common
example of a routine which begins with some setup operations (e.g., file opening), then does operation set
A or B or C or D, and then does some close down operations (e.g., file closing) before returning. Where
possible, such a routine should use statement numbers 5-95 for the setup, 100-195 for set A, 200-295 for set
B, 300-395 for set C, 400495 for set D, and 900-995 for the close down. All FORTRAN routines should
end with a RETURN or STOP (main programs only) statment labeled 999.

1.5.6 Blanks

Blank spaces can improve the readability of the routine as can parentheses. Blanks should surround equals
signs and separate multiple word statements. Parentheses are a great help in compound logical expressions.
For example,

A=28

DO 10 I = 1,10

GO TO 999

CALL KPACK (IX, IY)

IF ((A.GT.B) .AND. (C.LE.D)) THEN

1.5.7 Modular Code

Modularity in program design is a very important asset for many reasons. Complicated tasks become
clearer, to coder and reader alike, when constructed from a logical sequence of smaller operations performed
by subroutine call. Such well-ordered tasks are far easier to design, to understand, and to make work
correctly than vast monolithic single programs. Furthermore, the small operation subroutines will often
turn out to be fairly general and useful to many other tasks as well. Programmers will have to remember
that their tasks will have to run not only in the “unlimited” address space of 32-bit virtual computers, but
also in the very limited address space of older computers. Although many modern computers have large (>
Mbyte) memories, these memories are often divided amongst many users. Also many older AIPS computers
have limited memories. Therefore, programmers must remember that excessive page faulting is extremely
expensive on most virtual memory computers.

1.5.8 Portability

The code of AIPS is intended to achieve a very high degree of portability between computers. The machine
independent portion of the AIPS software must strictly conform, after preprocessing, to FORTRAN 77 rules.
Vendor extensions to the language are not allowed. Extensions to FORTRAN allowed by the FORTRAN
preprocessor are described later in the section on FORTRAN. In particular CHARACTER and numeric data
are not to be equivalenced or mixed in a common.

All of the things mentioned in this chapter should be used in moderation. One can bury good code in a
plethora of inane comments. One can inundate statements with parentheses or spread them out with blanks
until they are no longer legible. Vastly elaborate indentation and numbering schemes can confuse rather

1.6. LANGUAGE 1-7

than aid the reader. The creation of large numbers of very short, special purpose subroutines will overburden
linkage editors and AIPS’s bookkeeping schemes. (In this regard, AIPS already contains a wide range of
useful utility subroutines. Programmers should check to see if a function is already available before creating
additional subroutines.) Basically, programmers should use good common sense in applying the standards
described in this chapter.

1.6 Language

The magnitude of the AIPS project and the desire to achieve portability of the software require a high
degree of standardization in the programming language and style. One must code in a language which can
be compiled on all machines. One must follow strict rules in statement ordering and location so that simple
preprocessors may, when necessary, locate and modify the standard code. Everyone must type code in the
same way so that all programmers will be able to read it with as little effort and confusion as possible. All
experienced programmers develop a personal typing style which they prefer. To them, the rules given in
this chapter may seem arbitrary, capricious, and unworkable. Nonetheless, they are the rules to be followed
when coding for the AIPS system. Routines which do not meet these standards will not be accepted. This
project is too important and too large to allow compromise at this level. Also, we have found these rules to
be fairly comfortable — after we got used to them.

1.6.1 FORTRAN

The programming language will be ANSI standard FORTRAN 77, except for the addition of INCLUDE,
LOCAL INCLUDEs, and HOLLERITH declarations and the use of a minimum number of local assembly
language (or C) Z routines when absolutely required. The extensions to FORTRAN 77 will be translated
by the preprocessor to standard FORTRAN 77. The preprocessor will include the text of INCLUDE files,
allowing the definition of “local INCLUDES? in the file and translate HOLLERITH declarations to a numeric
data type.

Hollerith data is characters coded into a numeric type variable. The use of Hollerith data is required
in some circumstances by the prohibition in FORTRAN of mixing CHARACTER and numeric data in a
common or of EQUIVALENCEing them in any way. Since the length of a character string in terms of
numeric data types is not defined character type data and numeric data may not be mixed in fixed length
records.

Due to these restrictions on the use of CHARACTERs in FORTRAN, AIPS uses data type HOLLERITH
in a limited set of circumstances, most notably in file catalog headers which are data structures containing
numeric and character data. All translation between HOLLERITH and CHARACTER data types is done
in the routines CHR2H and H2CHR which are described in Chapter 3. The only operation allowed for
HOLLERITH type data is the assignment to another HOLLERITH variable. HOLLERITH variables must
NEVER appear in DATA or WRITE statments.

AIPS FORTRAN requires that all variables be declared. This requirement, when enforced by the com-
piler, is a valuable tool for finding typos and related bugs.

A review of the entire language is inappropriate here, but programmers are urged to reread a basic
reference. (Do not read your local VAX FORTRAN manual. Use a fundamental reference such as IBM’s
FORTRAN Language manual.) In particular, programmers are reminded that the names of commons,
variables, functions, and subroutines must begin with a letter and contain no more than six (6) characters.
In AIPS, program names may have no more than five characters because of the need to append the value
of NPOPS. Comments are introduced by placing the capital letter C in column 1 of the card. No in-line
comments are allowed. Continuation statements are formed by placing a non-blank character in column 6
of the card. In AIPS, this character shall be an asterisk (*). There may be no more than 19 continuations
of a single statement. Only card columns 1-72 are used, even in comments. Executable statements at the
first level of indentation begin in column 7. TAB characters must not be left in the code after it is typed
and edited. The three non-standard statements have the forms:

1. INCLUDE ’INCS:<name> ’

1-8 CHAPTER 1. INTRODUCTION

where INCLUDE begins in column 7, the first single quote is in column 15, the <name> is a left justified
character string. and the second single quote follows <name> with no blanks. The conventions for
<name> will be described later. The statement causes the file called <name> to be inserted in the
routine in place of the INCLUDE statement. The INCS: indicates the standard include area or search
path and should be omitted for “files” given by LOCAL INCLUDESs. Only a single level in INCLUDE
is allowed.

2. LOCAL INCLUDE ’<name> ’

where LOCAL starts in column 1 tells the preprocessor that the text following, up to the next “LOCAL
END?” also starting in column 1, is to be included when a “INCLUDE <name> ’” line is encountered.
LOCAL INCLUDES are normally defined at the beginning of the file containing a task and should only
contain text relevant to that task, e.g. defining it’s internal commons.

3. HOLLERITH <list>

where <list> gives the list of variables to be declared as type HOLLERITH. The AIPS usage of
HOLLERITH is that 4 characters may be stored in each element.

1.6.2 Statement Order

Statements must be ordered as follows. The PROGRAM, FUNCTION, or SUBROUTINE statement must
occupy the first line and must begin in column 7. Then come the precursor comments, the declaration
statements, the body of the program, the format statements, and the END statement. Each of these segments
will be separated by a comment delimiter line (i.e., C followed by 71 minus signs). The last delimiters are
omitted if there are no FORMATS. The last line of the body of the routine must have the statement number
999 and be a STOP (for programs) or RETURN (for functions and subroutines) statement. There must be
no other STOP or RETURN statement in the routine.

Many computer systems allow declaration statements to occur in almost any order. However, FORTRAN
and some of the simpler compilers do not. Therefore, in AIPS, we will use the following order:

1. Data type and dimension statements: HOLLERITH, INTEGER, LOGICAL, REAL, DOUBLE PRE-
CISION and COMPLEX in any order. We prohibit DIMENSION and data types not allowed by FOR-
TRAN 77 (excluding HOLLERITH). and any use of these statements for data initialization. Note: the
use of COMPLEX arithmetic is discouraged as many compliers do not correctly compile statements
involving complex arithmetic. PARAMETER statements should be included with (usually before) the
declaration statements. Declaration, EQUIVALENCE and COMMON statments may be mixed.

We prohibit use of the COMMON statement to give the types and dimensions of variables. Use of
blank common must be reserved for cases where dynamic memory allocation is needed and the blank
common can be changed in size.

2. Data initialization statements: DATA. We prohibit the use of DATA statements to initialize variables
in commons (as do the FORTRAN standards and many compilers). The use of octal and hexadecimal
numbers in data statements is forbidden.

3. Function definitions.

1.6.3 INCLUDEs

INCLUDE statements are used in AIPS primarily to provide a fixed and uniform set of declarations for
commons and data structures. The naming conventions for such INCLUDEs is ’INCS:accc.INC’, where INCS:

is a logical directory name (which must be dealt with by the preprocessor), ’a’is P, D, or V for PARAMETER
INCLUDES (include files defining PARAMETERS), Declaration/EQUIVALENCE/COMMON includes and
includes containing DATA statments. These INCLUDEs must be named in this order.

INCLUDE ’INCS:DBWT.INC’

causes the text:

1.7. DOCUMENTATION 1-9

Cc Include DBWT.
INTEGER BWTNUM, BWTLUN, BWTIND, BWTREC, BWTDAT(266)
LOGICAL WASERR
CHARACTER BWTNAM*48
COMMON /BWTCHC/ BWTKRAM
COMMON /BWTCH/ BWTDAT, BWTNUM, BWTLUN, BWTIND, BWTREC, WASERR
c End DBWT.

to be inserted. Note that CHARACTER variables are in a separate common from numeric variables.

1.6.4 Dimension Declaration

The declaration of the dimensionality of arrays should be done as accurately as possible. When arrays are
passed as call arguments and the leading dimension is not passed, declare tha array “(*)” and never as “(1)”.
Arrays which are declared and equivalenced to other variables should be declared as accurately as possible.

1.6.5 SAVE Statements

If the value of a local variable in a subroutine or function is to be preserved between calls, it should be
mentioned in a SAVE statement. Some but, not all, compilers do this automatically but it is not required
by the definition of FORTRAN.

1.7 Documentation

Proper documentation for both users and programmers is vital to the success of any software system. In
the AIPS system, this documentation is primarily the responsibility of the programmer. In the following
sections the various categories of AIPS documentation are discussed.

1.7.1 User Documentation
HELP files

The primary source of user documentation is the HELP file. This information is available to the user on-line
from the AIPS program. There are several types of help files: (1) task help files, (2) general help files, and
(3) adverb help files. The general help files aid the user in finding the name of the task or verbs for a given
operation. These entries consist of the name and a one line description of a task or verb. New tasks should
be entered into the appropriate general help files. Task help files are the primary user documentation for a
task or verb.

There are three parts of the task HELP file separated by a line of 64 -’s. Details about the format of the
HELP file are found in the chapter on tasks.

1. INPUTS

The INPUTS section of the help file is required for any task to run. AIPS uses this section to determine
the number and order of adverbs to be sent to the task and can check on limits on the values. The
INPUTS section also contains a short description of the use of the task and of each of the adverbs. A
listing of the INPUTS section of the help file is displayed on the user’s terminal showing the current
values of the named adverbs when the user types “INPUT” to AIPS. The INPUTS section is also used
to specify any adverbs which may be send to the task during its execution through the TC file.

2. HELP

The HELP section of the help file gives a more detailed description of the function of the task and
a more complete description of the meaning of each of the adverbs than the INPUTS section. This
section should also explain the default values of the adverbs. The HELP section of the HELP file is
listed on the users terminal when the user types “HELP name”.

1-10 CHAPTER 1. INTRODUCTION

3. EXPLAIN

The EXPLAIN section of the help file should describe the techniques for properly using the task; hints
about reasonable values of the adverbs can be given here. A discussion of the interaction of the given
task with other tasks is also appropriate. It is best if someone other than the programmer writes the
EXPLAIN section of the help file. The HELP and EXPLAIN sections of the help file are written on
the line printer when the user types “EXPLAIN name” to AIPS.

AIPS Cookbook

The AIPS Cookbook is the main User documentation for AIPS. However, many users are unaware of the
existence of any feature in AIPS not advertised in the Cookbook and unfortunately, the Cookbook only covers
the most elementary portions of the AIPS system.

1.7.2 Programmer Documentation
Precursor Comments

The most fundamental source of detailed programmer documentation in the AIPS system are comments
in the source code, especially the precursor comments. The precursor comments for all routines should
describe the use of the routine as well as the meaning, units, etc., of all call arguments. Many of the detailed
descriptions of call sequences in this manual are essentially the precursor comments of the routines.

Shopping Lists

The precursor comments of routines contain one line descriptions of the routines. These are used to generate
the shopping lists found in Appendix B.

CHANGE.DOC

Once source code, text files, etc. are entered into the AIPS libraries all changes should be documented in the
CHANGE.DOC file. Installations outside of the main AIPS programming group are encouraged to adopt
this system. The CHANGE.DOC file contains entries giving the date, name of the routine, and the name
of the person making the change, with a short description of the changes. If a bug is being corrected, its
symptoms should be described.

The Checkout System

The AIPS group has instituted a check-out system for the text files in the master version of the AIPS system
(including CHANGE.DOC). The purpose of this check out system is to prevent different programmers from
destroying each others changes to code by trying to work on the same routines at the same time. There
are occasionally changes made in AIPS which require changes in most or all tasks; frequently the original
programmer of a task will be unaware of these changes. For these reasons, modifications or additions to the
the master version of AIPS should (are required to):

1. Check out the relevant files. A detailed description of the current check-out routines may be found in
DOCTXT:CHKOUT.RNO.

2. Modify the files.
3. Check the files back in.
4. Document the changes in CHANGE.DOC (which must itself be checked out).

Chapter 2

Skeleton Tasks

By far the easiest way to write a new task is to find an old one that does something similar to what is desired
and change it. With this thought in mind, we have written tasks whose sole purpose is to be changed into
something useful. These tasks take care of most of the bookkeeping chores and make certain limited classes
of operations quite simple. The source code for these tasks is heavily commented to aid the user in making
the necessary modifications. The names and functions of these tasks are given in the following list.

o FUDGE. This task modifies an existing uv data base and writes a new one.
¢ TAFFY This task modifies an existing image file and writes a new one.

o- UVFIL This task creates, catalogs and fills a new uv data file.

e CANDY This task creates, catalogs and fills a new image file.

o PRPLn These tasks (PRPL1, PRPL2, PRPL3) are used to generate plots and are discussed in detail
in the chapter on plotting.

Note: for many purposes task FETCH is adequate for reading an image into AIPS without modification.
FETCH reads an image from a text file containing a description of the image. See the HELP file for FETCH

for details.

Since these tasks contain most of the startup, shutdown, cataloging, etc. chores, they are a good place
to start writing a new task. Many of the standard AIPS tasks are cloned from FUDGE or TAFFY. No one
in the AIPS programming group has written a task from scratch in years. If the modified version of one of
these tasks is to be of more than temporary use, the name of the task should be changed to avoid confusion.
This chapter will describe in some detail the structure and use of the skeleton tasks.

2.1 Data Modification Tasks — FUDGE and TAFFY

There are two data modification tasks for the two types of data files, uv data (FUDGE) and images (TAFFY).
The basic structure of these two tasks is very similar. The main routine in these tasks is very short and calls

routines to do the basic functions:

1. Startup (FUDGIN in FUDGE, TAFIN in TAFFY)

e initialize commons

o get adverb values

e restart AIPS (if DOWAIT is FALSE)
e find input file in catalog

e create and catalog output file

2. Process data (SENDUV in FUDGE, SENDMA in TAFFY)

2-1

2-9 CHAPTER 2. SKELETON TASKS

3. write history (FUGHIS in FUDGE, TAFHIS called from OUTMA in TAFFY)
4. Shut down (DIE)

o unmark catalog file statuses

e restart AIPS if not done previously

Both FUDGE and TAFFY send one logical record (a visibility record in uv data or a row of an image) at a
time to a user supplied subroutine. This subroutine can do some operation on the logical record and return
the result. The result is then written to an output file. When all of the data has been processed, a final call
is made to the user routine. In this call, the routine can record any entries to be made in the history file. In
the history routine, the old history file is copied to the new file and some standard history entries are made.
Then any user supplied entries are added. More detailed descriptions of FUDGE and TAFFY can be found
in the following sections

2.1.1 FUDGE

FUDGE sends uv data records to a user supplied routine one at a time. The user routine performs some
operation on the record and returns the record with a flag which says whether the result is to be kept
or ignored. Many operations which require operating on several data records can be done by sorting the
data with UVSRT so that records which are to be combined are adjacent in the data file. The structure of
visibility records is described in detail in the chapter on disk I/O (Chapter 6).

If the size of the visibility record is unchanged, the only changes needed in FUDGE for most simple
operations are in the user supplied routine DIDDLE. If the record size is changed, there must be changes
made in FUDGIN so that the output file created has the correct size and catalog header information.
SENDUYV must also be modified so that it writes correct size records to the output file.

The source code for DIDDLE contains precursor comments explaining the use of the routine; these
comments are reproduced below.

SUBROUTINE DIDDLE (NUMVIS, U, V, W, T, IA1, IA2, VIS, RPARM,
*+ INCX, IRET)

This is a skeleton version of subroutine DIDDLE which allows the
user to modify a UV data base. Visibilities are sent one at a time
and when returned are written on the output file if so specified.

Up to 10 history entries can be written by using WRITE to
record up to 64 characters per entry into array HISCRD. Format:
WRITE (HISCRD(entry #),format) history information

The history is written after the last call to DIDDLE.

Messages can be written to the monitor/logfile by encoding
the message (up to 80 char) into array MSGTXT in INCLUDE DMSG.INC
and then issuing a call:

CALL MSGWRT (priority #)

If IRET > 0, then the output file will be destroyed iff
it was created in the current execution.

If the size of the vis record is to be changed, appropriate
modifications should be made to CATBLK in FUDGIN before the call
to UVCREA and LRECO in SENDUV should reflect the correct size of
the output record.

s N e s N s N e s e N N N N B Es s Ne e e s e el

See the precursor comments for UVPGET for a description

2.1. DATA MODIFICATION TASKS — FUDGE AND TAFFY

QOO OO OO0 0000O00000O0O000O00000000000000000O00000O00O00O00O00O00O00O00O00O00O0O00O00O00O0

of the contents of COMMON /UVHDR/ which allows easy access to
much of the information from the catalog header (CATBLK) and
which describes the order in which the data is given.

After all data has been processed a final call will be made to
DIDDLE with NUMVIS = -1. This is to allow for the completion of
pending operations, i.e. preparation of HIstory cards.

LUN’s 16 and 17 are open and not available to DIDDLE.

The current contents of CATBLK will be written back to the
catalog after the last call to DIDDLE.

Inputs:

NUMVIS I Visibility number, -1 => final call, no data
passed but allows any operations to be completed.
U in wavelengths
V in wavelengths
W in wavelengths
Time in days since 0 IAT on the first day for
which there is data, the julian day corresponding
to this day can be obtained in D form by:

CALL JULDAY (CATH(KHDOB),XDAY) where XDAY will
be the Julian day number.

IAl I First antenna number

IA2 I Second antenna number

RPARM R(*) Random parameter array which includes U,V,W etc

but also any other random parameters.

VIS R(INCX,*) Visibilities in order real, imaginary, weight

(Jy, Jy, unitless). Weight <= 0 => flagged-
NOTE: INCX may be any value .GE. 2
Inputs from COMMON:

HE<c
R

¥AME2 Cx12 Name of the aux. file

CLAS2 Cx6 Class of the aux. file.

SEQ2 I Sequence number of the aux. file.
DISK2 I Volumn number of the aux. file.

APARM(10) R(10) User array.
BPARM(10) R(10) User array.
BOX(4,10) R(4,10) User array.
RA D Right ascension (1950) of phase center. (deg)

DEC D Declination (1950) of phase center. (deg)

FREQ D Frequency of observation (Hz)

NRPARM I # random parameters.

NCOR I # correlators

CATBLK I(256) Catalog header record.

OQutput:

U R U in wavelengths

v R V in wavelengths

v R W in wavelengths

T R Time in same units as input.

RPARM R Modified random parameter array. ¥.B. U,V,VW,
time, baseline should not be modified in RPARM

VIS R Visibilities

2-4 CHAPTER 2. SKELETON TASKS
c IRET I Return code -1 => don’t write

Cc 0 => 0K

C >0 => error, terminate.

(v

C Output in COMMON:

c NUMHIS I # history entries (max. 10)

c HISCRD C(NUMHIS) History records

c CATBLK I Catalog header block

Q
1

There are a number of adverbs already included in FUDGE to pass user information to the user routine;
these are specifications for a second input file and the arrays CPARM, DPARM and BOX. More or different
adverbs are readily added.

FUDGE will automatically compress the output file if the number of visibility records in the file is
reduced. The source code for FUDGE can be found in the standard program source area; this is usually
assigned the logical name “APLPGM:” whose value is AIPS_VERSION:[APL.PGM] on VMS systems.

2.1.2 TAFFY

TAFFY reads a selected subset (or all) of an image, sends the image one row at a time to a user supplied
routine (DIDDLE) which operates on the row. The user routine sends back the result which may be of
arbitrary length; in particular the input row may be reduced to a single value. The values sent back from the
user supplied routine are written into the new cataloged file. DIDDLE can defer returning the next row; this
allows the use of scrolling buffer. TAFFY can handle multi-dimensional, blanked images. The task TRANS
may be used before a TAFFY clone to transpose which ever axis is necessary to the first axis. The returned
value of a row may be deferred for those cases when a scrolling buffer of the input is needed.

If the size or format of the output file is to be different from the input file, or if it is necessary to check
that the proper axis occurs first in the data array, or if there are several possible operations to be specified
by the adverb OPCODE, then the routine NEWHED needs to be modified. The main purpose of NEWHED
is to form the catalog header record for the output file. For many purposes the only modifications needed to
NEWHED are to modify the values in DATA statements from the default values supplied. The beginning
portion of NEWHED is reproduced below.

SUBROUTINKE NEWHED (IRET)

NEWHED is a routine in which the user performs several operations
associated with beginning the task. For many purposes simply
changing some of the values in the DATA statments will be all that
is necessary. The following functions are/can be performed
in NEWHED:

1) Modifying the catalog header block to represent the
output file. The MINIMUM modifications required here are those
required to define the size of the output file; ie.

CATBLK(KIDIN) the number of axes,

CATBLK(KINAX+i) = the dimension of each axis, and
Other changes can be made either here or in DIDDLE; the
catalog block will be updated when the history file is
written.

2) Checking the input image and/or input parameters.
For example, if a given first axis type such as
Frequency/Velocity is required this should be checked. The
routine currently does this and all that is required to
implement this is to modify the DATA statments.
A returned value of IRET .NE. 0 will cause the task to terminate.

e s Nt e N s s s s s s s s s s s s 2 I 2 2]

2.1. DATA MODIFICATION TASKS — FUDGE AND TAFFY 2-5

C A message to the user via MSGWRT about the reason for the
C termination would be friendly. This can be done by encoding
C the message into MSGTXT, setting IRET to a non-zero value
C and issuing a GO TO 990.
C 3) Default values of some of the input parameters
C (OUTNAME, OUTCLASS, OUTSEQ, OUTDISK, TRC and BLC defaults are
C set elsewhere). As currently set the default OPCODE is the
C first value in the array CODES which is set in a data statment.
c
c Input in common:
c CATBLK I(256) Output catalog header, also CATR, CATD
C CATOLD I(256) Input catalog header, also OLD4, OLDS
c Output:
c CATBLK I(256) Modified output catalog header.
Cc IRET I Return exror code, 0=>0K, otherwise abort.
c
INTEGER IRET
c
CHARACTER ATYPES(10)*8, FCHARS(3)*4, BLANK#8, CODES(10)*4,
* UNITS(10)#8, CTEMP*8
HOLLERITH OLD4(256)
DOUBLE PRECISION OLD8(128)
INTEGER NCODE, NTYPES, IOFF, IERR, INDXI, INC, INDEX,
* NCHTYP(10), LIMIT, I, FIRSTI, FIRSTO
LOGICAL LDROP1
INCLUDE ’INCS:DDCH.IKC’
INCLUDE ’INCS:DMSG.INC’
INCLUDE ’INCS:DHDR.INC’
INCLUDE ’TAFFY.INC’
INCLUDE ’INCS:DCAT.INC’
EQUIVALENCE (CATOLD, OLD4, OLDS)
DATA FCHARS /’FREQ’,’VELO’,’FELO’/
DATA BLANK /’ '/
c User definable values
c # and value of OPCODEs
DATA ECODE /0/
DATA CODES /10%’ '/
c Output units for each OPCODE.
DATA UNITS /’UNDEFINE’,9%’ '/
c Allowed number of axis types
c and types.
DATA NTYPES /0/
DATA ATYPES /10%’ '/
DATA NCHTYP /10%4/
c If LDROP1 is .TRUE. then the
c first axis will be dropped,
c (ie, one value results from
c the operation on each row.)

DATA LDROP1 /.FALSE./

The data modification routine in TAFFY is DIDDLE which contains numerous precursor comments
describing its use; these precursor comments follow.

SUBROUTINE DIDDLE (IPOS, DATA, RESULT, IRET)

T
o

CHAPTER 2. SKELETON TASKS

A0 OO0 0O000000O00000000000000000n0aO00000OQa

This is a skeleton version of subroutine DIDDLE which allows
operations on an image one row at a time (ist dimension).

Input and output data may be blanked. The calling routine keeps
track of max., min. and the occurence of blanking. If DROP1 is
.TRUE., the calling routine expects 1 value returned per call;
otherwise, CATBLK(KINAX) values per call are expected returned.
NOTE: blanked values are denoted by the value of the common variable
FBLAKNK.

DIDDLE may accumulate a scrolling buffer by returning a negative
value of IRET. This tells the calling routine to defer writing the
next row. If rows are deferred then an equal number of calls to
DIDDLE will be made with no input data; this allows reading out any
rows left in DIDDLEs internal buffers. Such a "no input call" is
indicated by a value of IPOS(1) of -1. The writing of the returned
values of these "no input calls" may NOT be deferred.

Up to 10 history entries can be written to

‘record up to 64 characters per entry into array HISCRD. Ex:

WRITE (HISCRD(entry #), format) list
TRC, BLC and OPCODE are already taken care of.
The history is written after the last call to DIDDLE.

Messages can be written to the monitor/logfile by encoding
the message (up to 80 char) into array MSGTXT in COMMON /MSGCOM/
and then issuing a call:

CALL MSGWRT (priority #)

It IRET .GT. O then the output file will be destroyed.

After all data have been processed a final call will be made to
DIDDLE with IP0S(1)=-2. This is to allow for the completion of
pending operations, i.e. preparation of HIstory cards.

AIPS LUN’s 16-18 are open and not available to DIDDLE.

The current contents of CATBLK will be written back to the
catalog after the last call to DIDDLE.

Inputs:
Ipos I(7) BLC (input image) of first value in DATA
IPOS(1) = -1 => no input data this call.
IPOS(2) = -2 => last call (no input data).
DATA R(*) Input row, magic value blanked.
Values from commons:
ICODE I Opcode number from list in NEWHED.
FBLANK R Value of blanked pixel.
CPARM R(10) Input adverb array.
DPARM R(10) Input adverb array.

CATBLK I Output catalog header (also CATR, CATD)

CATOLD I Input catalog header (also OLD4, OLDS8)

DROP1 L True if one output value per call.
Output:

RESULT R(*) Output row.

IRET I Return code 0 => 0K

>0 => error, terminate.

2.2. DATA ENTRY TASKS (UVFIL AND CANDY) 2-7

C Output in COMMON:

c NUMHIS I # history entries (max. 10)
c HISCRD C(NUMHIS) History records

c CATBLK I Catalog header block

C

In addition to the adverb OPCODE to specify the desired operation and the adverbs BLC and TRC to
specify the window in the input map, there are several user defined adverbs sent to TAFFY. These are the
arrays CPARM and DPARM; more and/or other adverbs can be added.

More details about TAFFY can be found in the comments in the source version of the program. The
source code for TAFFY can be found in the standard program source area; this is usually assigned the logical
name “APLPGM:” whose value is AIPS_ZVERSION:[APL.PGM) on VMS systems.

2.2 Data Entry Tasks (UVFIL and CANDY)

There is a pair of skeleton tasks for entering data into AIPS, UVFIL for uv data and CANDY for images.
These tasks are used to enter either observational or model data into the AIPS system. CANDY especially
has been used a number of times and usually takes a couple of hours to produce a working program. (Use
of task FETCH is useful in many cases for entering an image into AIPS).

These tasks each have two subroutines which may need to be supplied or modified. The first routine is
the one to create the new header record and, for UVFIL, to enter information about the antennas. Most of
the modifications required are changes to DATA statements from the supplied default values. The beginning
portion of these routines will be given with the detailed descriptions of UVFIL and CANDY. Details about
the catalog header record are given in the chapter on catalogs.

The second routine, to be supplied by the user, generates the data to be written to the output file. This
may be done by reading an external disk or tape file or by any other means.

The basic structure of UVFIL and CANDY are very similar. The main routine in these tasks is very
short and calls routines to do the basic functions:

1. Startup (UVFILN in UVFIL, CANIN in CANDY)

¢ initialize commons
e get adverb values

e restart AIPS (If DOWAIT is FALSE)
2. Create new catalog header record (NEWHED)

e create and catalog output file

e Enter antenna information (In UVFIL only)
3. Read/generate data (FIDDLE in UVFIL, MAKMAP in CANDY)
4. Write history (and antenna file) (FILHIS in UVFIL, CANHIS in CANDY)

5. Shut down (DIE)

e Unmark catalog file statuses

e Restart AIPS if not done previously

9-8 CHAPTER 2. SKELETON TASKS

2.2.1 UVFIL

UVFIL creates, catalogs and fills an AIPS uv data file. It can be used either to translate uv data from
another format or generate model data.

UVFIL comes with specific example code reading a file. The first routine, NEWHED, which the user
may need to modify is used to enter information required to create the catalog header block and to enter
information about the antennas. The beginning portion of this routine follows:

SUBROUTINE NEWHED (IRET)

NEWHED is a routine in which the catalog header is constructed.
Necessary values can be read in in the areas markes "USER CODE
GOES HERE".

NOTE: the AIPS convention for the coordinate reference value
for the STOKES axis is that 1,2,3,4 represent I, Q, U, V
stokes’ parameters and -1,-2,-3,-4 represent RR, LL, RL and
LR correlator values. Currently set for R and L polarization
ie Ref. value = -1 and increment = -1.

The MINIMUM information required here is that
required to define the size of the output file; ie.
CATBLK(KIGCN) = Number of visibility records
CATBLK(KIPCH) = Number of random parameters.
CATBLK(KIDIM) = Number of axes,
CATBLK(KINAX+i) = the dimension of each axis.
Other changes can be made either here or in FIDDLE; the
catalog block will be updated when the history file is
written.
The antenna information can also be entered in this
routine. It is possible to put much more information in the
Altenna file.

Input in common:

CATBLK(258) I Output catalog header, also CATR, CATH, CATD
The OUTNAME, OUTCLASS, OUTSEQ are entered
elsewhere.

Output in common:
CATBLK(258) I Modified output catalog header.
IRET I Return error code, 0=>0K, otherwise abort.

Also the antenna information can be filled into a common.

(el e N e N e I B e I e I e I e I e I e I e I e B e B e e e I I e B e e e e e e B e e e e e X e)

INTEGER IRET

Q

CHARACTER RTYPES(7)*8, TYPES(7)*8, UNITS*8, TELE*8, OBSR#8,
* INSTR*8, OBSDAT*8, LINE*80

INTEGER I, NAXIS, NRAN, NCHAN, NPOLN, NDIM(7), INDEX, XCOUNT,
*+ LUK, FIND

LOGICAL APPERD

REAL CRINC(7), CRPIX(7), EPOCH, BANDW

DOUBLE PRECISION CRVAL(7)

INCLUDB ’UVFIL.INC’

INCLUDE ’INCS:DCAT.INC’

INCLUDE ’INCS:DMSG.INC’

INCLUDE ’INCS:DHDR.INC’

2.2. DATA ENTRY TASKS (UVFIL AND CANDY) 2-9

INCLUDE ’INCS:DUVH.INC’
User definable values
Random parameters.
No. random parameters.
DATA NRAXN /&/
Rand. parm. names.
DATA RTYPES /’UU-L-SIN’,’VV-L-SIN’,’WW-L-SIN’,
* ’TIME1 ?, ’BASELINE’ , 2%’ 4
Uniform axes.
No. axes.
DATA NAXIS /5/
Axes names.
DATA TYPES /’COMPLEX ’,’STOKES °’,’FREQ ’,
= ‘RA ’.’DEC)’2‘) ’/
Axis dimensions
DATA ¥NDIM /3,1,1,1,1,0,0/
Reference values
DATA CRVAL /1.0D0O, -1.0DO, 5#%0.0D0/
Reference pixel.
DATA CRPIX /7%1.0/
Coordinate increment.
DATA CRIXC /1.0, -1.0, 0.0, 0.0, 0.0, 2%0.0/
Epoch of position.
DATA EPOCH /1950.0/
Units
DATA UNITS /’JY '/

The user supplied routine FIDDLE returns visibility records which are written into the cataloged output

file. The precursor comments describing the use of FIDDLE follow.

2 eI e N e I e I e e I e N e e e e B e B B e e 2 2 I 2)

SUBROUTINE FIDDLE (NUMVIS, U, V, W, T, IA1, IA2, VIS, RPARM, IRET)

This is a skeleton version of subroutine FIDDLE which allows the
user to create a UV data base. Visibilities are returned one at
a time and are written on the output file.

Up to 10 history entries can be written by using WRITE to
record up to 64 characters per entry into array HISCRD. Ex:
WRITE (HISCRD(entry #),format #) list
The history is written after the last call to FIDDLE.

Messages can be written to the monitor/logfile by writing
the message (up to 80 char) into array MSGTXT in INCLUDE DMSG.INC
and then issuing a call:

CALL MSGWRT (priority #)

If IRET .GT. O then the output file will be destroyed.
A value of IRET .1t. O indicates the end of the data.

See the precursor comments for UVPGET for a description
of the contents of COMMON /UVHDR/ which allows easy access to
much of the information from the catalog header (CATBLK) and
which describes the order in which the data is being written.

9-10 CHAPTER 2. SKELETON TASKS

After all data has been processed a final call will be made to
FIDDLE with NUMVIS = -1. This is to allow for the completion of
pending operations, i.e. preparation of NIstory cards.

AIPS I/0 LUK 16 is open and not available to FIDDLE.
FORTRAN unit numbers greater than 50 will probably not get the
AIPS routines confused. (Any unit numbers other than 1, 5, 6 and 12
will probably also work.)

The current contents of CATBLK will be written back to the
catalog after the last call to FIDDLE.

Inputs:
NUMVIS I Visibility number, -1 => final call, no data
passed but allows any operations to be completed.

Inputs from COMMON:
IN2FIL C»48 Name of the aux. file
APARM R(10) User array.
BPARM R(10) User array.
RA D Right ascension (1950) of phase center. (deg)

DEC D Declination (1950) of phase center. (deg)

FREQ D Frequency of observation (Hz)

NRPARM I # random parameters.

NCOR I # correlators

CATBLK(256)I Catalog header record. See Going AIPS for details.

Output:

U R U in wavelengths at the reference frequency.

\J R V in wavelengths

L] R ¥ in wavelengths

T R Time in days since the midnight at the start of
the reference date.

IAL I Antenna number of the first antenna.

IA2 I Antenna number of the second antemnna.
NOTE: IA2 MUST be greater that IAl

RPARM R Modified random parameter array. NB U,V,W,
time and baseline should not be modified in RPARM

VIS R(3,*) Visibilities. The first dimension is the COMPLEX
axis in the order Real part, Imaginary part,
weight. The order of the following visibilities is
defined by variables in COMMOM /UVHDR/ (originally
specified in NEWHED). The order number for Stokes
parameters is JLOCS and the order number for
frequency is given by JLOCF. The lower order
number increases faster in the array.
See precursor comments in UVPGET for more details.

IRET I Return code -1 => End of data.

0 => 0K
>0 => error, terminate.

Output in COMMON:
NUMHIS I # history entries (max. 10)

o000 00000000n0OO OO0

2.2. DATA ENTRY TASKS (UVFIL AND CANDY) 2-11

(¢ HISCRD C(NUMHIS) History records
c CATBLK I Catalog header block
C

The user defined array adverbs APARM and BPARM are sent to UVFIL; more and/or other adverbs can
easily be added. The source code for UVFIL can be found in the non-standard program source area; this
is usually assigned the logical name “APGNOT:” whose value is AIPS_.VERSION:[APL.PGM.NOTST] on
VMS machines.

2.2.2 CANDY

CANDY is similar to TAFFY except there is no AIPS input data file. This is a good routine to use to
generate an AIPS image from either a model or an external data file. CANDY has example code (mostly
commented out) in the text which gives an example of reading a formatted disk file. (Note this function is
also done in a general way in routine FETCH).

The routine in CANDY in which the values necessary for the catalog header must be entered is named
NEWHED. The beginning, heavily commented, portion of NEWHED follows.

SUBROUTINE KEWHED (IRET)

NEWHED is a routine in which the user performs several operations
associated with beginning the task. For many purposes simply
changing some of the values in the DATA statments will be all that
is necessary. The following functions are/can be preformed
in NEWHED:
1) Creating the catalog header block to represent the
output file. The MINIMUM information required here is that
required to define the size of the output file; ie.
CATBLK(KIDIM)= the number of axes,
CATBLK(KINAX+i) = the dimension of each axis.
Other changes can be made either here or in MAKMAP; the
catalog block will be updated when the history file is
written.
2) Setting default values of some of the input parameters
As currently set the default OPCODE is the first value in the
array CODES which is set in a data statment.

Input:
CATBLK I(266) Output catalog header, also CATR, CATD
The OUTNAME, OUTCLASS, OUTSEQ are entered

elsewhere.
Output:
CATBLK I(266) Modified output catalog header.
IRET I Return error code, 0=>0K, otherwise abort.

QOO0 0000000000000 000n

INTEGER IRET

(9]

CHARACTER FCHARS(3)#*4, BLANK*8, CODES(10)*4, UNITS(10)+*8,
* ATYPES(7)#*8, LINE*80

INTEGER I, NAXIS, IROUND, NCODE, IERR, NX, NY, INDEX
INCLUDE ’CANDY.INC’

INCLUDE ’INCS:DCAT.INC’

INCLUDE ’INCS:DDCH.INC’

INCLUDE ’INCS:DMSG.INC’

9-12 CHAPTER 2. SKELETON TASKS

INCLUDE ’INCS:DHDR.INC’
DATA FCHARS /’FREQ’,’VELO’,’FELO’/

DATA BLANK /’ '/
C User definable values
Cc # and value of OPCODEs
DATA NCODE /0/
DATA CODES /10%’ '/
C Output units for each OPCODE.
DATA UNITS /’UNDEFINE’,9%’ '/
C Number of axes and types.
c (Set for two axes = Ra, Dec.)
DATA NAXIS /2/
DATA ATYPES /’RA---SIN’, ’DEC--SIN’,
* 'STOKES °’, ’'FREQ ’, 3% '/
c

The user supplied routine that reads or generates the image is MAKMAP. This routine returns the image
one row at a time. The precursor comments describing the use of this routine follow.

SUBROUTINE MAKMAP (IPOS, RESULT, IRET)

This is a skeleton version of subroutine MAKMAP which allows

the user to create an image, one row at a time.

Output values may be blanked.

The calling routine keeps of max., min. and to occurence of blanking.
CATBLK(KINAX) values per call are expected returned.

NOTE: blanked values are denoted by the value of the common variable
FBLANK

Up to 10 history entries can be written by using WRITE to
record up to 64 characters per entry into array HISCRD. Ex:
WRITE (HISCRD(entry #),format #,) list
TRC, BLC and OPCODE are already taken care of.
The history is written after the last call to MAKMAP.

Messages can be written to the monitor/logfile by writing
the message (up to 80 char) into array MSGTXT in COMMON /MSGCOM/
and then issuing a call:

CALL MSGWRT (priority #)

If IRET .GT. O then the output file will be destroyed.

After all data has been processed a final call will be made to
MAKMAP with IP0OS(1)=-1. This is to allow for the completion of
pending operations, i.e. preparation of HIstory cards.

LUN’s 16-18 are open and not available to MAKMAP.

The current contents of CATBLK will be written back to the
catalog after the last call to MAKMAP.

Inputs:
1pos I(7) BLC (input image) of first value in DATA
Values from commons:

QOO0 00O000000

2.3. MODIFYING A SKELETON TASK 2-13

¢ ICODE 1 Opcode number from list in NEWHED.

C FBLANK R Value of blanked pixel.

C CPARM R(10) Input adverb array.

C DPARM R(10) Input adverdb array.

C CATBLK 1I(266) Output catalog header (also CATR, CATD)
C Output:

C RESULT R(*) Output row.

C IRET I Return code 0 => OK

C >0 => error, terminate.
C Output in COMMON:

C NUMHIS I # history entries (max. 10)

C HISCRD C(NUMHIS) History records

C CATBLK I Catalog header block

c

Pixel blanking is supported through magic value blanking, i.e., the value of FBLANK is recognized to mean
no value is associated with the pixel. The source code for CANDY is fairly heavily commented and can
be found in the non-standard program source area; this is usually assigned the logical name “APGNOT:”
whose value is AIPS_VERSION:[APL.PGM.NOTST] on VMS systems.

2.3 Modifying a Skeleton Task

To make a modified version of one of the skeleton tasks, first copy the source code and the help file to the
area in which you intend to work on the task. Then rename the task to avoid confusion (only five characters
are allowed in an AIPS task name). In addition to changing the name of the files, it is crucial to change the
name of the task entered in a DATA statement in the main program. You should also change the task name
referenced in the help file. (If there is a chance that your new task will become part of the standard AIPS
package, and we welcome contributions, rename the names of the subroutines as well.)

The next step is to modify the source code to taste. If the adverbs which the task uses are changed, the
help file should also be changed to reflect this. If the task is to be of more than temporary use, then it is
friendly to put sufficient documentation into the help file to assist other users in understanding the use of
the input adverbs; besides, you will also forget just what it is that BPARM(3) does. Once the source code
is modified, see Appendix A for details about compiling, linking and debugging a task

9-14 CHAPTER 2. SKELETON TASKS

Chapter 3

Getting Started — Tasks

3.1 Overview

This chapter will describe both the general structure of AIPS tasks and the operations which are needed for
the smooth startup and shutdown of most tasks. Following chapters will describe in detail other aspects of
AIPS tasks. The principal steps of a “typical” task are illustrated in the following. The names of relevant
AIPS utility subroutines are given in parentheses.

1. Startup

o initialize commons (ZDCHIN, VHDRIN etc.)
e get adverb values (GTPARM)
e restart AIPS (RELPOP)

2. Setup data files

e find input file in catalog (MAPOPN, CATDIR, CATIO)
e create and catalog output file (MCREAT, UVCREA)
e create scratch files (SCREAT)

3. Process data

e Check task communication (TC) file for any further instructions (GTTELL)
4. Write history (HISCOP, HIADD, HICLOS)
5. Shut down (DIETSK, DIE)

e destroy scratch files
e unmark catalog file statuses
o restart AIPS if not done previously

The programmer specifies the adverbs to be used for a task in the first section of the help file. The AIPS
user specifies the values of the adverbs used to control a task and AIPS writes these values into a disk file
(TD). The task must read these values from the TD file. After AIPS has started up a task, it suspends
itself until either, (1) the task returns a return code in the TD file, or (2) the task disappears. It is the
responsibility of the task to restart AIPS. This is usually done either at the beginning or at the end of the
task, depending on the value of the adverb DOWAIT (usually called RQUICK in tasks).

After a task has started, the user may send further instructions — mainly changed adverb values or
instructions to quit. This communication is through the task communication (TC) file; the task reads this
file using the routine GTTELL. The adverb values to be sent to the task are indicated in the INPUTS section
of the help file.

3-1

3-2 CHAPTER 3. GETTING STARTED — TASKS

AIPS tasks use commons extensively to keep various system and control information. Since many of
these commons are in many hundreds of routines, their declarations are kept in INCLUDE files. This allows
relatively simple system-wide changes in these basic commons.

Most of the details of the installation on which a task is running is kept in a disk text file. These details
include, how many tape drives, how many disk drives, etc. The parameters characterizing the system are
kept in a common which must be initialized by a call to the routine ZDCHIN. Several other commons may
be used in a given task, and many of these need to be initialized at the beginning of the program.

There is an accounting file which keeps track of various bookkeeping details of tasks. Calls to the
accounting routines are hidden from the programmer of the standard startup and shutdown routines.

Data in the AIPS system are kept in cataloged disk files. Information about the main data file is kept
in a catalog header record and only data values are kept in the main data file. Auxiliary data may be kept
in one or more “extension” files associated with a cataloged file. Many AIPS tasks modify a data file and
write the results into a new cataloged file, although the user is frequently allowed to specify the input file as
the output file.

Each cataloged AIPS data file should have an associated Hlstory extension file in which as complete as
possible a record of the processing is kept. It is the responsibility of the programmer of a task to copy old
history files to a new file, if necessary, and to update the history information. In general, the values of the
adverbs after defaults have been filled in are kept in the history file. There are usually other extension files
which should also be copied if a new output file is being generated. These include ANtenna files for UV data
and CLEAN components (CC) files for images. These may be convienently copied using routine ALLTAB.

Most communication between the user and AIPS or tasks is done through a single routine (MSGWRT)
which logs most of the communications in a disk file which can be printed. A major difference between
the message file and history files is that history files are permanent, whereas message files are not. User
interaction with a task is allowed; see the section below on communicating with the user via ZTTYIO.

The simplest way to write a program is to find a program that is close to the one desired and make the
necessary changes. In this spirit, there are two tasks available which read data, send it to a routine, and
write the result back to a new cataloged disk file. Two others will create and catalog a new disk file and
fill it with data generated in a subroutine. These routines (FUDGE, CANDY, TAFFY, and UVFIL) allow
the simplest access to the AIPS data files, and even for fairly complicated tasks, one of these programs is a
good place to start (a great many AIPS uv tasks were cloned from FUDGE). The chapter on skeleton tasks
describes these tasks in more detail. Three skeleton tasks for plotting (PFPL1, PFPL2, and PFPL3) are
described in the plotting chapter.

3.2 The Cost of Machine Independence

There are a number of general programming aspects which are seriously affected by the requirement of
machine independence. Most of these problems are alleviated by strict adherence to the standards of Fortran
77. The most serious problem is due to inadequate definition of CHARACTER variables in the Fortran 77
standards; this issue is discussed below. When the specifics of the machine/OS on which the software is
running MUST be taken into account this dependency must be isolated into an explicitly machine dependent
routine (“Z”, “Y” or “Q” routines).

3.2.1 Character Strings

The definition of CHARACTER type variables in Fortran 77 does not explicitly give the relationship of the
size of a given CHARACTER variable to that of numeric variables. The result of this is that CHARACTER
and numeric data cannot be EQUIVALENCEd in any way or mixed in binary records of known length.
For this reason there are two types of variables in AIPS which contain character information. These are:
CHARACTER and HOLLERITH. CHARACTER variables are the standard Fortran 77 data type and
are used in AIPS wherever possible. In some circumstances character information cannot be stored in
CHARACTER variables and in these cases the data is declared type HOLLERITH which the preprocessor
redeclares as a numeric data type. AIPS HOLLERITH variables are defined to contain 4 characters per
element.

3.3. TASK NAME CONVENTIONS 3.3

HOLLERITH data in AIPS is never to be initialized using DATA statements and is never to be used in
READ or WRITE statements. All conversion between HOLLERITH and CHARACTER type variables is
through the routines H2CHR and CHR2H. This allows the use of data structures such as the AIPS catalog
header without violation of the Fortran 77 rules. The cases in which HOLLERITH data is used is summarized

in the following:
1. any file containing mixed numeric and character data in binary form,
2. the I/O buffer used to read or write a file with mixed numeric and character data in binary form,
3. character data in the POPS processor,
4. AIPS string adverb values passed via GTPARM,
5. the catalog header records (CATBLK),
6. any other data structures containing mixed numeric and character data.

There are a number of AIPS utility routines for dealing with CHARACTER and HOLLERITH strings.
These are briefly described in the following and are described in detail at the end of this chapter.

e CHCOPY moves characters from one HOLLERITH string to another

e CHCOMP compares two HOLLERITH strings

e CHFILL fills portion of HOLLERITH string with a specified character

e CHLTOU converts a CHARACTER string to all upper case letters

o CHMATC searches one HOLLERITH string for the occurrence of another

e CHR2H converts a Fortran CHARACTER variable to an AIPS HOLLERITH string

e CHWMAT matches a pattern string containing “wild-card” characters with a test string. The wild-
cards “s” for any number and “?” for exactly one of any character are supported.

H2CHR convert AIPS Hollerith string to Fortran CHARACTER variable

3.3 Task Name Conventions

The number of characters allowed in task names is limited in many operating systems to six characters. AIPS
uses the last character of the name to indicate the AIPS number of the initiating process, in hexadecimal,
leaving five characters for a task name. It is most helpful to the bewildered user looking through the mass
of AIPS tasks if the name is at least vaguely mnemonic. For example, most tasks whose principal output is
to the line printer are named 'PRT..’; many tasks manipulating uv data are named 'UV...” etc.

3.4 Getting the Parameters

3.4.1 In AIPS (Help file)

The adverbs to be used by a task are defined by the programmer in the beginning portion of the help file.
This portion of the HELP file lists the adverbs in order, can give limits on the range of acceptable values,
and gives a short description of the use of the adverb. If the limit fields for an adverb are left blank, then
no limits are enforced. When AIPS receives the GO command, it reads the associated help file for the list of
adverbs and places the current values of these adverbs as well as a few “hidden” adverbs into the task data
(TD) file. Entries with a “?” in column 10 are ignored by GO. AIPS then starts the requested task. An
example, the help file for PRTIM follows:

3-4 CHAPTER 3. GETTING STARTED — TASKS

; PRTIM
’
;! Task displays a map on line-printer or terminal

;# TASK PRINTER

; This software is the subject of a User agreement and is

; confidential in nature. It shall not be sold or otherwise
; made available or disclosed to third parties.

’
PRTINM LLLLLLLLLLLLUUUUUUUUUUUU CCCCCCCCCCCccceeecccecceeccece
PRTIM: Task to print the image intensities in digital form
USERID -32000.0 32000.0 User ID. O => current user,
32000 => any user.
INNAME Image name(name).
INCLASS Image name(class).
INSEQ 0.0 9999.0 Image name(seq. #). O => high
INDISK 0.0 9.0 Disk drive #. 0 => any
BLC 0.0 4096.0 Bottom left corner of image
0 => entire image
TRC 0.0 4096.0 Top right corner of image
0 => entire image
¥DIG 0.0 7.0 Digits in display. 0=>1
FACTOR -99999.0 999999.0 Multiplication factor. 0 => 1
XINC 0.0 100.0 Display every XINC col. 0=> 1
YINC 0.0 100.0 Display every YINC rows. 0=>1
DOCRT -1.0 132.0 >0 -> use CRT, else printer
>72 => CRT width in chars
PRTINM
Type: Task

Use: PRTIM displays an image on the line printer or the user’s
terminal. The input parameters specify (1) any
rectangular solid in the image, (2) the number of digits
used for the display, (3) the skipping of pixels and (4)
the multiplication of the display after normalization.
Normalization is done using the larger of Datamax and
=10.0*Datamin rounded up to the next higher power of 10.
For NDIG=1, Datamin is used instead of 10 * Datamin. This
defanlt scaling (FACTOR = 1) causes the numbers to be
printed in “"natural” units (e.g. Jy/beam) scaled by some
power of 10. The output shows the scaling (e.g. 1000 =
1.0 Jy/beam on NDIG = 3).

Adverbs:

USERID...... User ID of owner of image. O => current user,
32000 => any user.

INNAME...... Image name(name). Standard defaults.
INCLASS..... Image name(class). Standard defaults.
INSEQ....... Image name(seq. #). 0 => highest.
INDISK...... Disk drive # of image. 0 => any.
BLC......... The Bottom Left-hand pixel of the subarray of

the map to be displayed. The value (0,0) means
start at the bottom left of the entire image.

TRC......... The Top Right-hand pixel of the subarray of
the map to be displayed. The value (0,0) means
go to the top right of the entire image.

3.4. GETTING THE PARAMETERS 3-5

NDIG........ The number of digits in the display. If NDIG <=
0, an NDIG of 1 is used.
FACTOR...... The multiplication factor for the display. It
FACTOR <= 0.0, a FACTOR of 1.0 is used.
XINC........ Display every XINC column(s) in the display.
If XINC <= 0, an XINC of 1 is used.
YINC........ Display every YINC row(s) in the display.
If YINC <= 0, a YINC of 1 is used.
DOCRT....... True (> 0.0) means to use the terminal, otherwise

use the line printer. If 72 < DOCRT <= 132, the
task will assume that the terminal is DOCRT
characters wide.

The first few lines of the HELP file are precursor comment lines that give the classification and a description
of the function of the item described in the HELP file and a statement designed to discourage the sale of
AIPS to third parties. On the first line after the precursor lines, the name of the task is given. The “L”,
“U” and “C” are guides showing the fields for the lower and upper limit for the value of the adverb and for
the comment field. These symbols mark fields in columns 11-22 (lower limit, if any), 23-34 (upper limit,
if any) and 36-64 (comment). No text should extend beyond column 64. The next line gives the name of
the task and a short explanation of the task. Following this is the list of adverbs, their limits and a short
description the use of each. The descriptions should be in lower case.

Column 10 in the first line of an adverb in the inputs section is used to indicate when the adverb is to
be used. If column 10 is blank or “«” then the adverb is used by the adverb GO and is written into the TD
file. If column 10 is “#” or “?” then the adverb will be used by the verb TELL and written into the TC file.

Following the inputs section of the HELP file and separated by a line of 64 “-” signs comes the help
section. This is the text which is displayed on the users terminal when he types “HELP name” to AIPS.
This section gives more details about the use of the task and its adverbs. The HELPs section should have
the format shown in the example above; explanations should be in lower case, where appropriate, and text
should not extend beyond column 64.

Following the helps section of the HELP file and separated from it by a line of 64 “-” is the explain
section. This text, preceded by the help section, is printed when the user types EXPLAIN ... to AIPS. This
section, which is unfortunately absent from the example above, describes in detail how to use the task and
its relation to other tasks. The general method the task uses should be described in the explain section.

3.4.2 At Task Startup (GTPARM)

When the task comes alive it must read the Task Data (TD) file to get the values of the adverbs. This is
done via a call to GTPARM. (Details of the call sequence to GTPARM can be found at the end of this
chapter).

A convenient way to access the values returned by GTPARM is to declare a common in a task LOCAL
INCLUDE which has the variables in order and pass the name of the first variable in place of RPARM.
The values can then be obtained by name. Note that all values are as REAL or HOLLERITH variables.
Characters are in HOLLERITH strings and require (NCHAR+3)/4 storage elements and, in general, these
HOLLERITH variables need to be converted to CHARACTER variables using H2CHR before use.

3.4.3 Wahile a Task is Running (GTTELL)

While a task is running in an interactive (non-batch) mode the user may send further instructions to the
task. This is done using verb TELL which writes instructions in the task communications (TC) file. The task
may read its instructions in the TC file using routine GTTELL. (Details of the call sequence to GTTELL
are given at the end of this chapter.)

3-6 CHAPTER 3. GETTING STARTED — TASKS

3.5 Restarting AIPS

When AIPS starts a task, it suspends itself until either (1) the task returns a return code in the TD file or
(2) the task disappears. It is therefore the responsibility of the task to restart AIPS. The timing of this is
determined by the value of RQUICK returned by GTPARM (set by the user as the AIPS adverb DOWAIT).
If RQUICK is true, then AIPS should be restarted as soon as possible (after perhaps some error checking
on the inputs). This is done by the routine RELPOP (the call sequence is given at the end of this chapter).
If the task has an interactive portion, it should be completed before restarting AIPS; this will keep the task
and AIPS from trying to talk to the user terminal at the same time.

RELPOP returns to AIPS a return error code RETCOD. A non-zero value of RETCOD indicates that
the task failed, in which case AIPS will terminate the current line of instructions, procedure or RUN file. If
RQUICK is false, then AIPS is not to be restarted until the task terminates. In this case RELPOP is called
by either DIETSK or DIE and the programmer only has to be sure the correct value of RQUICK is sent to
DIETSK.

3.6 INCLUDE files

AIPS tasks make extensive use of commons to keep system constants and to communicate between subrou-
tines. Many of these commons are in hundreds of routines. To make these commons manageable, they are
declared in INCLUDE files which are filled into the source code by the AIPS preprocessor.

The INCLUDE files. names have the form nxxx.INC where n indicates the type of include file: P indicates
that PARAMETER statements are included, D indicates that type declarations and/or COMMONSs and/or
EQUIVALENCES are included, V indicates that DATA statements are included, Z indicates that machine
dependent declarations are included. In general, the ordering of the includes is in order Pxxx.INC, Dxxx.INC
then Vxxx.INC. Fortran specifies that all declarations come before any executable statements and DATA
statements are considered executable. The directory containing the INCLUDE files is specified via a logical
name. The word INCLUDE must start in column 7 and the entire name of the file must be bracketed in
single quotes. An example:

INCLUDE ’INCS:DDCH.IHC’

In current VMS and UNIX implementations INCS: is a search path specifying a list of directories to search.
These directories are ordered from the most machine specific to the most general. For development and test
purposes, it is possible to modify the search path to search the programmer’s directory first. This is done
with an

$ASSIGN (search path) IKNCS
in VMS and by assigning a search path to the environment variable INCS in UNIX:
%setenv INCS "/mnt/mydir $INCXXX $INCHOT $INC"

where /mnt/mydir is the directory to be added and $INCXXX should be replaced with the include directory
specific to the local machine (e.g. SINCVEX for Convexes).

Many tasks also have their own includes; this greatly reduces the problems in developing and maintain-
ing tasks. In order to facilitate task INCLUDESs the AIPS preprocessor allows the defination of LOCAL
INCLUDESs. These are segments of text which are defined in the file in which they are to be INCLUDEd.
By convention these are given at the beginning of the file and have the syntax illustrated in the following
example:

LOCAL INCLUDE ’MYTASK.INC’
Cc Local include for MYTASK
HOLLERITH XSTR1, XSTR2
REAL X, Y, 2
INTEGER I, J, K
CHARACTER STR1*8, STR2%4

3.7. INITIALIZING COMMONS 3-7

COMMON /MYCOM/ XSTR, XSTR2, X, Y, Z, I, J, K
COMMON /MYCHR/ STR1, STR2
LOCAL END

The text segment defined in this example can then be INCLUDEd by the preprocessor with a statement
INCLUDE '"MYTASK.INC’ beginning in column 7.

3.7 Initializing Commons

In order for the commons mentioned in the previous section to be of use, their values must be filled in. For
this purpose there are a number of common initialization routines. These commons and their initialization
are discussed in the following sections.

3.7.1 Device Characteristicsc Common

The most important commons are the Device Characteristics Commons; these are obtained from the IN-
CLUDE file DDCH.INC. The text of this INCLUDE is to be found at the end of this chapter. The contents
of the Device Characteristics commons are initialized by a call to ZDCHIN. Details of the call sequence can
be found at the end of this chapter. Many of the values in the Device Characteristics common are read from
a disk file. The values in this file can be read and changed using the stand-alone utility program SETPAR.
The constants kept in this common are described in the following:

SYSRAM C#20 System name

VERNAM C+4 Version ID

RLSNAM C=8 Release name

DEVNAM C(10)#*48 Names of files using non-FTAB I/0 currently open.
NONNAM C(8)+48 Names of files using non-map I/0 currently open.
MAPNAM C(12)#*48 Names of files using map I/0 currently open.

SYSTYP C=*4 system type: ’VMS ’ or ’UNIX’ or 777

SYSVER C=*8 system version: ’'4.5’, ’BSD 4.2’, ’SYS b’,
XPRDMM R Printer points per millimeter

XTKDMM R Graphics points per millimeter

TIMEDA R(15) Min. TIMDEST time for each disk (days)

TIMESG R Min. TIMDEST time for SAVE/GET files (days)
TIMEMS R Min. automatic destruction time for messages
TIMESC R Min. automatic destruction time for scratch
TIMECA R Min. destruction time for empty catalogs.
TIMEBA R(4) Times during which AP Batch jobs cannot start.

1, 2 start, stop times (hrs) on weekends

3, 4 start, stop times (hrs) on weekdays
TIMEAP R(3) 1 => time between rolls (min)

2,3 polynomial terms for determining how long

a job must wait before grabbing the AP.

FBLANK R REAL value used to indicate blanking

DBLANK D DOUBLE PRECISION value used to indicate blanking.
HBLANK X HOLLERITH blank string (4 char)

RFILIT R(14) Spare

NVOL I Number of disk drives available to AIPS

NBPS I Number of bytes per disk sector

NSPG I Number of disk sectors per allocation granule
NBTB1 I Number bytes in FTAB / non-FTAB device

NTAB1 I Max number of non-FTAB devices open at once
NBTB2 I Number bytes in FTAB / slow I/0 device

NTAB2 I Max number of slow I/0 devices open at once

3-8 CHAPTER 3. GETTING STARTED — TASKS

NBTB3 I Number bytes in FTAB / fast I/0 device
NTAB3 1 Max number of fast I/0 devices open at once
NTAPED 1 Number of tape drives available to AIPS
CRTMAX I Number lines / CRT terminal page

PRTMAX I Number lines / printer page

NBATQS I Number batch AIPSs in system

MAXXPR I(2) Number of plotter dots / page in X, Y

CSIZPR 1I(2) Number of plotter dots / character in X, Y

NINTRN I Maximum # simultaneous interactive AIPSs
KAPWRD I # 10248 of words of array processor memory
NWDPDP 1 # words / double-precision floating point
NBITWD I # bits / word
NWDLIN I # words in a POPS input line
NCHELIRK I # characters in a POPS input line
NTVDEV 1 # television display devices available
NTKDEV 1 # graphics display devices available
BLANKV I Integer magic value => blanked pixel
NTVACC I Number POPS programs allowed access to TV devices
NTKACC I Humber POPS programs allowed access to graphics
UTCSIZ I Private catalog size (O=>public)
BYTFLP 1 Byte flip, O=none, 1=bytes, 2=words, 3=both
USELIM I Maximum user number
NBITCH 1 # bits per character
NCHPRT I Width of line printer in characters.
KAP2WD I # 1024s words of secondary AP memory.
MAXXTK I(2) Graphics screen size x,y
CSIZTK 1I(2) Graphics character size x,y
DASSGN I(8,15) Lists of allowed users, 8 per disk for up to 15
disks.
SPFRMT 1 Single precision floating-point format code
0 => OTHER
1 => IEEE
2=>VAXF
3 =>VAX G
4 => IBM (not supported yet)
DPFRMT I Double precision floating-point format code
(see codes for SPFRMT)
NSNORT I Shortest vector length to vectorize
TTYCAR I 1 => TTY i/o uses carriage control characters.
DEVTAB 1I(50) Device type code numbers
FTAB I(*) I/0 driving tables

3.7.2 Catalog Pointer Common

The catalog header record for an AIPS data file is a data structure containing characters, integers, and
single and double precision reals. The size of the record is fixed at 512 bytes where a byte is defined as
half an integer. Values in the catalog header record are accessed from a number of arrays of different data
types equivalenced together. Since different computers have different sizes for different data types, we use
pointers in these equivalenced arrays. These pointers are kept in a common invoked with the INCLUDE
DHDR.INC and are initialized by a call to VHDRIN. VHDRIN has no arguments, but should be called after
ZDCHIN. For more details, see the chapter on the catalog header. The catalog header can contain arbitrary
keyword/value pairs to allow storage of information not currently allocated space in the header. Access to
these keyword/value pairs is throught routine CATKEY.

3.7. INITIALIZING COMMONS 3-9

3.7.3 History Common

The routines that write Hlstory files carry information in pointers in commons invoked with the INCLUDE
DEHIS.INC and are initialized by a call to HIINIT; the details of the call sequence are given at the end of
this chapter.

3.7.4 TV Common

The routines that talk to the television display use information from the commonsobtained by the INCLUDEs
DTVC.INC and DTVD.INC. If a task uses the TV, there must be an initializing call to YTVCIN which has
no call arguments.

YTVCIN initializes the common which describes the characteristics of the interactive display devices and
the common which has the current status parameters of the TV. The values set are default values only. They
are reset to the current true values by a call to TVOPEN. YTVCIN resets the common values of TVZOOM
and TVscroll, but does not call the TV routines to force these to be true. See the chapter on the television
devices for more details.

3.7.5 UV data pointer common

The format in which uv data is stored is relatively flexible and is described in the chapter on disk 1/0. Since
it is rather flexible, the location in a logical record of a given value must be determined from the catalog
header. In order to make it easier to find values in a uv data record, we use a common containing pointers;
this common is obtained by using the INCLUDE DUVH.INC. This common is filled in by a call to UVPGET
which analyzes the current catalog header in common /MAPHDR/ (In INCLUDE DCAT.INC). Details of
the call arguments and the pointers etc. set are found at the end of this chapter.

3.7.6 Files common, DFIL.INC

Many tasks open a number of cataloged files and create several scratch files. The status of the cataloged files
are marked 'READ’ or "'WRIT’ in the catalog directory and need to be cleared by the end of the program.
Scratch files must be destroyed by the end of the program. Since an error might terminate the program at any
stage, the program must be prepared to clear catalog files and destroy scratch files under any circumstances
in which it controls its death.

Many tasks accomplish these functions through use of the common obtained from the INCLUDE DFIL.INC
and use of the termination routine DIE (which will be discussed in a later section). The contents of DFIL.INC
is found at the end of this chapter.

In this common, NSCR is the number of scratch files that have been created, SCRCNO contains the
catalog numbers of the scratch files, and SCRVOL contains the disk numbers of the scratch files.

NCFILE tells how many catalog files are marked, FVOL contains the disk numbers of the cataloged files
marked, FCNO contains the catalog slot numbers of the marked files, and FRW contains flags for each of
the marked catalog files (0 =’READ’, 1="WRIT’, 2="WRIT’ but destroy if the task fails).

IBAD is an array to contain the disk drive numbers on which not to put scratch files; IBAD is used by the
scratch file creation routine SCREAT. RQUICK is also carried along in this common so that AIPS can be
restarted by the shutdown routines if necessary. If the information in this common is kept current, catalog
file status words will be cleared and scratch files deleted by the shutdown routine DIE. If the DFIL.INC
common is being used, it should be initialized with the following statements before use:

NSCR

=0
NCFILE =

(o]

and by initializing the array IBAD to zeroes or the values of BADDISK sent by AIPS.

3-10 CHAPTER 3. GETTING STARTED — TASKS

3.8 Input and Output File Names

The input and output file name, class, sequence etc. passed to a task are subject to a number of default and
wild-card conventions in the case that they are not completely specified. For the most part, these conventions
are incorporated into the standard utility routines. For some tasks, there are logical default values which are
not the standard defaults and which must be handled by the task. An example of this is the output class
for APCLN. If the input class is IMAP and the output class is not specified (all blanks), then APCLN uses
ICLN for the output class.

The standard defaults for input names are as follows: If the disk is not specified, all disks are searched
in order starting with disk 1. If the name and/or class is not specified, then the catalog (or catalogs) are
searched until a file satisfying all specified criteria is found. If the sequence number is not specified, then
the file with the highest sequence number meeting all specified criteria is picked. In addition to the default
conventions, AIPS also supports two types of wild-cards; “+«” means any number, including none, of any
character will be accepted, “?” means exactly one character of any type will be accepted as a match. The
standard defaults and wild-cards are fully supported by the standard catalog routines. The standard default
for the output name is the input name; the standard default for the output class is the name of the task, and
the standard default for the output sequence is 1 higher than the highest sequence number on any disk for
any file with the same name and class; if there are no other matching files, the sequence number is 1. The
default output disk is the highest numbered disk on which space is available. Wild-cards are supported in the
output name; basically a wild-card in the output name and class means to use the corresponding character
(or characters) from the input name or class. Only one “#” is allowed in an output name or class; others
are ignored. These defaults and wild-card conventions are implemented in the utility MAKOUT. MAKOUT
must be called by all tasks which may create an output file. The details of the call sequence of MAKOUT
are given at the end of this chapter.

3.9 Copying Extension Files

Each cataloged file may (and usually does) have auxiliary files containing information related to the cataloged
file; these files are called extension files. There are usually several of these extension files that a task must
copy if it is creating a new output file. The most important of these is the history file (file type “HI”) which
should be updated as well as copied. For uv data files, the ANtenna tables (type “AN”), FreQuency tables
(type “FQ”) and any relevant calibration tables should be copied and for images any CLEAN components
tables (type “CC”) should be copied. Other extension file types may also have to be copied. The following
sections describe how to copy and/or update these files.

3.9.1 History

Information describing the processing history of a data set is kept in an extension file to each main data
file. These files consist of 72 character records using the FITS convention for history records. Each task
writes into the history file records which begin with the name of the task and contain information about how
data was processed by that task. This is usually in the form “adverb name=" followed by the actual value
used. These records should be able to be parsed in the same manner as FITS header records. Comments
are preceded by a “/”.

There are a number of utility routines to simplify handling history files. A short description of each
follows and the details of the call sequences can be found at the end of this chapter.

e HIINIT initializes the history common.

e HISCOP creates and catalogs a new history file, opens it, opens an old history file and copies it to the
new history file, and leaves the old history file closed and the new file open.

e HIADD adds a history card to an open history file.

HIADDN adds a history card to number of open history files.

HIADS0 adds an 80-character card image into an open history file.

3.10. COMMUNICATION WITH THE USER 3-11

e HICLOS closes a history file, flushing the buffer if requested.
e HIMERG creates several history files by merging several old files.
e HIREAD reads the next history card from an open history file.

Once the history file is open, entries can be made in it by first WRITEing the message (up to 72 characters)
into a CHARACTER array dimensioned to be at least 72 characters and calling HIADD. We wish to
encourage the convention of using the name “HILINE” for this CHARACTER variable. An example:

CHARACTER HILINE#72
INCLUDE ’INCS:DMSG.INC’

WRITE (HILINE,2000) TSKNAM, FACTOR
2000 FORMAT (A8,’ FACTOR=’,F5.2,°’ / CORRECTION FACTOR’)
CALL HIADD (NLUH, HILINE, BUFFER, IERR)

Once all new entries have been made to the history file, the buffer is flushed and the file closed by a call to
HICLOS. (HICLOS should normally be called with UPDATE=.TRUE. for a history file being written)

It should be noted that HISCOP will also work properly if the old and new history files are actually the
same file. In this case, it simply opens the new file to add new entries. Several other history utilities, which
may occasionally be useful, are HICREA which creates a history file, HIOPEN which opens a history file and
HICOPY which copies the contents of one history file onto the end of another history file. The functions of
these routines are incorporated into the routines described above so they are normally not of great interest
to the programmer.

3.9.2 Extension tables (ALLTAB, TABCOP)

All tables extension files may be copied with a single call to ALLTAB. ALLTAB also accepts a list of table
types not to be copied. Certain nontable extension file types are excluded from being copied by ALLTAB,
these being history files (type “HI”) and plot files (type “PL”). A description of the call sequence to ALLTAB
is given at the end of this chapter. Routine TABCOP can be used to copy tables of a given type.

An older form of extension file was managed by the pair of routines EXTINI and EXTIO. Files of this
type can be copied by the routine EXTCOP.

3.10 Communication with the user

3.10.1 Writing messages

Most of the important communications between a user and AIPS and its tasks are sent to both a monitor
terminal, which may be the users own terminal, and to a disk log file. This logged information is primarily of
use to the user, but is frequently of great use in debugging a program. The basic way a task communicates
to the user is through the utility routine MSGWRT. A message of up to 80 characters (< 64 is best) is
first written into array MSGTXT in the message common, which is invoked by the include DMSG.INC. By
convention, error messages should be all in upper case and warning or informative messages should be mixed
case.

A call is made to the routine MSGWRT with a single INTEGER argument which is the priority level to
write the message. The meaning of the priority is as follows:

Priority Use
(o] Write to log file only
1 Write to monitor terminal only

2 Low interest normal messages

3-12 CHAPTER 3. GETTING STARTED — TASKS

3-4 Normal message

5 High interest normal message.
6-8 Error message

9-10 Severe error messages

An example of the use of MSGWRT follows:

INCLUDE ’INCS:DMSG.INC’

WRITE (MSGTXT,1000) IERR
CALL MSGWRT (8)

1000 FORMAT (’ENCOUNTERED ERROR ’,I3)

3.10.2 Turning off system messages

Many of the AIPS utility routines give messages which may or may not indicate a problem such as the “FILE
ALREADY EXISTS” message from ZCREAT. Most of the messages are written at priority level 6 or 7 and
may be turned off by setting the variable MSGSUP in INCLUDE DMSG.INC (the same one MSGTXT lives
in) to 32000. This variable should be restored as soon as possible to a value of 0 to enable level 6 and 7
messages.

3.10.3 Writing to the line printer

The standard Fortran logical unit number for the line printer in the AIPS system is unit 1. Writing to the
line printer can be done with normal formatted Fortran writes. Before writing to the line printer it should be
opened with a call to ZOPEN and a header page prepared for batch jobs with a call to BATPRT. When the
task is finished writing to the printer, a second call to BATPRT will write a trailer page, a call to ZENDPG
will eject a page (very important on electrostatic printers), and a call to ZCLOSE will close the file and send
it to the printer spooler. An example follows:

INTEGER LPLUN, LPIND, BUFFER(256), IPCNT
LOGICAL T,F

REAL VALUE1, VALUE2

CHARACTER LPNAME+#48

PARAMETER (T = .TRUE.)

PARAMETER (F = .FALSE.)

PARAMETER (LPLUN = 1)

PARAMETER (LPNAME = * .?)

INCLUDE ’INCS:DDCH.INC’

C Open the printer.
CALL ZOPEN (LPLUN, LPFIND, 1, LPNAME, F, T, T, IERR)
(handle error condition if detected)
C Header page if batch
CALL BATPRT (1, BUFFER)
IPCNT = 0

3.10. COMMUNICATION WITH THE USER 3-13

C Increment line count
IPCNT = IPCHNT + 1
C Check if page full.
IF (IPCNT .LT. PRTMAX) GO TO 100
C Write new page header
ICPNT = 0
c Write to printer

100 WRITE (LPLUN,1000) VALUE1, VALUE2

C Trailer page if batch
CALL BATPRT (2, BUFFER)
c Eject a page
CALL ZENDPG (IPCET)
C Close printer and send to
C spooler.

CALL ZCLOSE (LPLUN, LPIND, IERR)

1000 FORMAT (’ VALUE1 =’,F10.5, ’ VALUE2 =’,1PE12.6)

The number of lines per page on the line printer is obtained, as shown in the example, by the variable
PRTMAX in the device characteristics common (DDCH.INC). In the example above, ZOPEN recognized
the unit number (LPLUN) value of 1 as meaning the line printer, so most of the arguments to ZOPEN are
dummy in this case.

In the real world, the use of line printers is more complicated than this. For example, line printers
have not only a variable number of lines per page, but also a variable number of characters across a page
(NCHPRT in DDCH.INC). Line printers are often located at some distance from the user’s terminal. As a
result, all AIPS printing tasks allow the user the DOCRT option, which specifies that the terminal, rather
than the printer, is to be used. DOCRT may also be used to specify the width of the terminal (see PRTIM
help file earlier in the chapter). Thus, standard AIPS print programs must handle variable width formats,
pagination, alternate output devices, pausing on page full for terminal output, etc. The subroutine PRTLIN
will provide many of these services. A description of the call sequence of PRTLIN is given at the end of this
chapter. Read the code of the task PRTUYV to see a good example of the full AIPS handling of a print job.

3.10.4 Writing to the Terminal (ZTTYIO)

Many mainframe computers are batch oriented and discourage programs from talking directly to a terminal.
To get around this problem, AIPS has a “Z” routine for this purpose. ZTTYIO, rather than Fortran reads
and writes to units 5 and 6, is used to communicate with the terminal.

If a task is going to talk to the user terminal, it should not call RELPOP until after communication with
the user terminal is complete. If AIPS is restarted too soon, both AIPS and the task will be trying to talk
to the terminal at the same time; this will probably confuse the user.

Before calling ZTTYIO, the device must be opened by a call to ZOPEN, and after the task is through
talking to the terminal, it should be closed with a call to ZCLOSE. Use a value of 5 for the LUN. In the
call to ZOPEN, the file name and disk number are dummy parameters since ZOPEN recognizes LUN=5 as
a Fortran device. Write messages to be sent into an array and send the array to ZTTYIO. Lines read from
the terminal will be returned by ZTTYIO as a CHARACTER string. An example of the use of ZTTYIO is
the following:

3-14 CHAPTER 3. GETTING STARTED — TASKS

INTEGER TTYLUN, TTYIND, IRET
LOGICAL T, F

PARAMETER (TTYLUN = 5)
PARAMETER (T = .TRUE.)
PARAMETER (F = .FALSE.)
CHARACTER LINE*72

c Open the terminal

CALL ZOPEN (TTYLUN, TTYIND, t, LINE, F, T, T, IERR)
c Error it IERR .KE. O
c Write message for terminal

WRITE (LINE,1000)

C Send to terminal
C Set here to read and write
C up to 72 characters per
C transmission.
CALL ZTTYIO (’WRIT’, TTYLUR®, TTYIND, 72, LINE, IERR)
C Brror it IERR .ME. O
c Read from terminal.
c Up to 72 characters.
CALL ZTTYIO (’READ’, TTYLUN, TTYIND, 72, LINE, IERR)
c Error if IERR .NE. O
Cc Close terminal

CALL ZCLOSE (TTYLUN, TTYIND, IERR)

1000 FORMAT (’ Hi there’)

3.11 Scratch Files

Many tasks require the use of scratch files which must be created at the beginning of the task and destroyed
at the end of the task. Since the task may detect an error condition and decide to quit at an arbitrary place
in the program, some provision must be made to destroy the scratch files under all conditions for which the
task controls its death. Scratch files are cataloged as type SC’ so that the user can directly delete them.
The DFIL.INC commons described in a previous section are designed for this purpose.

A simple way to create scratch files is to use the common /CFILES/ and the routine SCREAT. SCREAT
will try to scatter the scratch files among as many disk drives as possible, will try all of the disks if necessary
to find space for a scratch file, and can be prohibited from putting scratch files on certain disks by use of
the array IBAD (adverb array BADDISK in AIPS). Details of the call sequence for SCREAT can be found
at the end of this chapter.

An example of the use of SCREAT is the following:

INTEGER IRET, WX, NY, NP(2), BUFF(512), SIZE
INCLUDE ’INCS:DFIL.INC’
INCLUDE ’INCS:DDCH.INC’

3.12. TERMINATING THE PROGRAM 3-15

c NX, NY are the size of an
c image. Make a scratch file
C big enough for a copy of the
C image.
c
C Compute the size.
¥P(1) = KX
NP(2) = NY
c Compute size needed
CALL MAPSIZ (2, NP, SIZE)
c Create scratch file.
CALL SCREAT (SIZE, BUFF, IRET)
c Test for errors...

In the above example, the scratch file created will be entered in the DFIL.INC common as number NSCR
(which was incremented). The disk and catalog slot numbers are thus SCRVOL(NSCR) and SCRCNO(NSCR).
This scratch file can be opened as follows:

INTEGER LUN, IND
CHARACTER FILE#48
INCLUDE ’INCS:DFIL.INC’

Cc ISCR = DFIL.INC slot number.
CALL ZPHFIL (’SC’, SCRVOL(ISCR), SCRCNO(ISCR), 1, FILE, IRET)
CALL ZOPEN (LUN, IND, SCRVOL(ISCR), FILE, .TRUE., .TRUE.,
= _TRUE., IRET)

Once opened, these files can be initialized and read or written in the same way as permanent cataloged data
files.

Since scratch files are cataloged, they have an associated catalog header record. SCREAT fills in nominal
values, but, if the scratch file contains data in the same form as an image or uv data, the appropriate
information can be placed in the header to describe the data. This allows using the header record to specify
the contents of a file in utility routines, simplifies the interface to the routine, and allows the routine to work
equally well on permanent or scratch files. This technique is used in a number of utility routines such as
VISDFT.

3.12 Terminating the Program

Most tasks create scratch files or open cataloged files which have status words marked in the catalog directory.
These scratch files should always be destroyed by the end of the program, and the catalog files should be
unmarked. Also AIPS may have to be restarted at the end of the program. For these and other reasons, we
strongly advise that when error conditions are detected that the routine finding the error set the appropriate
error code and return; all the way back to the main routine. Then a call to one of the shutdown routines
can be followed by a Fortran STOP statement. There should be no other STOP statements in the program.

In the section describing initialization of the DFIL.INC common, there is a discussion of using it to carry
information about scratch and cataloged files. If this common is used, the shutdown routine DIE will take
care of deleting all scratch files, unmarking catalog files, and restarting AIPS if necessary. If the DFIL.INC
common is not used, the routine DIETSK will restart AIPS and take care of the other shutdown functions.
(DIE calls DIETSK). Both of these routines accept a return code which is sent to AIPS if it is restarted at
that time; a nonzero value of the return code indicates that the program failed. Descriptions of DIE and
DIETSK can be found at the end of this chapter.

3-16 CHAPTER 3. GETTING STARTED — TASKS

3.13 Batch Jobs

AIPS has a capability to run tasks in the batch mode. It usually makes little difference to a task if it is
being run in batch or interactive mode, but use of some devices is forbidden to batch tasks. These devices
are the tape drive, the graphics device, and the television. After the calls to GTPARM and ZDCHIN, a task
can determine if it is running as a batch task by comparing the value of NINTRN (number of interactive
AIPS allowed) from the device characteristics common (DDCH.INC) with NPOPS (the AIPS number of the
initiating task) from the message common (DMSG.INC). If NPOPS is greater than NINTRN, then the task
is running as a batch task and use of the devices mentioned above is disallowed. A new, better way to make
this determination is to test the value of ISBTCH in the device characteristics common. If ISBTCH = 32000,
the task is to act as a batch job, no matter what its value of NPOPS. The user can set this condition into
an apparently interactive AIPS session with the pseudoverb statement ISBATCH TRUE. Batch jobs always
run with RQUICK (DOWAIT in AIPS) true and thus do not restart AIPS until they are done. GTPARM
enforces this on the RQUICK parameter.

3.14 Installing a New Task

The procedure to install a task depends a great deal on the host computer and operating system. Appendix
A at the end of this volume describes how to test and install new software and describes the directory
structure.

3.15 INCLUDEs

There are several types of INCLUDE files which are distinguished by the first character of their name.
Different INCLUDE file types contain different types of Fortran declaration statements as described in the
following list.

o Pxxx.INC. These INCLUDE files contain declarations for parameters and the PARAMETER state-
ments.

e Dxxx.INC. These INCLUDE files contain Fortran type (with dimension) declarations, COMMON and
EQUIVALENCE statements.

o Vxxx.INC. These contain Fortran DATA statements.

o Zxxx.INC. These INCLUDE files contain declarations which may change from one computer or instal-
lation to another.

3.15.1 DDCH.INC

c Include DDCH.
c AIPS system parameters
CHARACTER SYSNAM#*20, VERNAM#4, RLSNAM*8, DEVNAM(10)#48,
*+ NONNAM(8)*48, MAPNAM(12)#*48, SYSTYP#4, SYSVER+8
HOLLERITH HBLANK
DOUBLE PRECISION DBLANK
REAL XPRDMM, XTKDMM, TIMEDA(15), TIMESG, TIMEMS, TIMESC, TIMECA,
* TIMEBA(4), TIMEAP(3), FBLANK, RFILIT(14)

INTEGER NVOL, NBPS, NSPG, NBTB1, NTAB1, NBTB2, NTAB2, NBTB3,
NTAB3, NTAPED, CRTMAX, PRTMAX, NBATQS, MAXXPR(2), CSIZPR(2),
NINTRN, KAPWRD, NWDPDP, NBITWD, NCHLIN, NTVDEV, NTKDEV, BLANKV,
NTVACC, NTKACC, UCTSIZ, BYTFLP, USELIM, NBITCH, NCHPRT,

KAP2WD, MAXXTK(2), CSIZTK(2), DASSGN(8,15), SPFRMT, DPFRMT,
NSHORT, TTYCAR, DEVTAB(50), FTAB(1024)
COMMON /DCHCHM/ SYSNAM, VERNAM, SYSTYP, SYSVER, RLSHAM,

* % % ® @

3.15. INCLUDES 3-17

+ DEVNAM, NONNAM, MAPNAM

COMMON /DCHCOM/ DBLANK, XPRDMM, XTKDMM, TIMEDA, TIMESG, TIMEMS,
TIMESC, TIMECA, TIMEBA, TIMEAP, FBLANK, RFILIT, HBLANK,
NVOL, NBPS, NSPG, NBTBi, NTAB1, NBTB2, NTAB2, NBTB3, NTAB3,
NTAPED, CRTMAX, PRTMAX, NBATQS, MAXXPR, CSIZPR, NINTRN,
KAPWRD, XWDPDP, NBITWD, NCHLIN, NTVDEV, NTKDEV, BLANKV,
NTVACC, NTKACC, UCTSIZ, BYTFLP, USELIM, NBITCH, NCHPRT,
KAP2WD, MAXXTK, CSIZTK, DASSGN, DEVTAB, SPFRMT, DPFRMT,
NSHORT, TTYCAR

COMMON /FTABCM/ FTAB

c End DDCH.

* % % B % * »

3.15.2 DFIL.INC

c Include DFIL.
c AIPS system catalog and scratch

INTEGER NSCR, SCRVOL(128), SCRCNO(128), IBAD(10), LUNS(10),

* NCFILE, FVOL(128), FCNO(128), FRW(128), CCNO

LOGICAL RQUICK

COMMOR /CFILES/ RQUICK, NSCR, SCRVOL, SCRCEO, NCFILE, FVOL, FCNO,

* FRW, CCNO, IBAD, LUNS
c End DFIL.

3.15.3 DMSG.INC

c Include DMSG.
c AIPS system message common

INTEGER MSGCNT, NPOPS, NLUSER, NACOUN, MSGSUP, MSGREC,

* MSGKIL, ISBTCH, DBGAIP, MSGDM1, MSGDM2, MSGDM3

CHARACTER MSGTXT*80, TSKNAM+8

COMMON /MSGCOM/ MSGCNT, NPOPS, NLUSER, NACOUN, MSGSUP, MSGREC,

* MSGKIL, ISBTCH, DBGAIP, MSGDM1i, MSGDM2, MSGDM3

COMMON /MSGCHR/ MSGTXT, TSKNAM
c End DMSG.

3.15.4 DUVH.INC

Include DUVH.
If you change this include you
must also change common
/CATHDR/ in DBCON
Include for uv header info

QOO0

INTEGER NVIS

INTEGER ILOCU, ILOCV, ILOCW, ILOCT, ILOCB, ILOCSU, ILOCFQ,
= JLOocC, JLOCS, JLOCF, JLOCR, JLOCD, JLOCIF, NRPARM, LREC,

* NCOR, INCS, INCF, INCIF, ICORO, TYPUVD

CHARACTER SOURCE*8, ISORT#*2

DOUBLE PRECISION FREQ, RA, DEC

COMMON /UVHDR/ FREQ, RA, DEC, NVIS, ILOCU, ILOCV, ILOCW, ILOCT,
* ILOCB, ILOCSU, ILOCFQ, JLOCC, JLOCS, JLOCF, JLOCR, JLOCD,

* JLOCIF, INCS, INCF, INCIF, ICORO, NRPARM, LREC, NCOR, TYPUVD

3-18 CHAPTER 3. GETTING STARTED — TASKS

COMMON /UVHCHR/ SOURCE, ISORT
c End DUVH.

3.13.5 PUVD.INC

[Include PUVD

(o Parameters for uv data
INTEGER MAXANT, MXBASE, MAXIF, MAXFLG, MAXFLD, MAXCHA

C MAXANT = Max. no. antennas.
PARAMETER (MAXANT=45)

C MXBASE = max. no. baselines
PARAMETER (MXBASE= ((MAXANT#*(MAXANT+1))/2))

c MAXIF=max. no. IFs.
PARAMETER (MAXIF=15)

c MAXFLG= max. no. flags active
PARAMETER (MAXFLG=1000)

C MAXFLD=max. no fields
PARAMETER (MAXFLD=16)

c MAXCHA=max. no. freq. channels.
PARAMETER (MAXCHA=512)

c Parameters for tables

INTEGER MAXCLC, MAXSNC, MAXANC, MAXFGC, MAXNXC, MAXSUC,
* MAXBPC, MAXBLC, MAXFQC

C MAXCLC=max no. cols in CL table
PARAMETER (MAXCLC=41)

C MAXSNC=max no. cols in SN table
PARAMETER (MAXSEC=20)

C MAXARC=max no. cols in AN table
PARAMETER (MAXANC=12)

c MAXFGC=max no. cols in FG table
PARAMETER (MAXFGC=8)

c MAXNXC=max no. cols in NX table
PARAMETER (MAXNXC=7)

C MAXSUC=max no. cols in SU table
PARAMETER (MAXSUC=21)

Cc MAXBPC=max no. cols in BP table
PARAMETER (MAXBPC=14)

C MAXBLC=max no. cols in BL table
PARAMETER (MAXBLC=14)

Cc MAXFQC=max no. cols in FQ table
PARAMETER (MAXFQC=5)

C End PUVD.

3.16 Routines
3.16.1 ALLTAB

ALLTAB copies all Table extension file(s). The output files must be new - old ones cannot be rewritten.
The output file must be opened WRIT in the catalog and will have its CATBLK updated on disk.

ALLTAB (NONOT, NOTTYP, LUNOLD, LUNNEW, VOLOLD, VOLNEW,
*« CNOOLD, CNONEW, CATNEW, BUFF1, BUFF2, IRET)

3.16. ROUTINES

Inputs:

NONOT I Number of "Forbidden" types to copy.

NOTTYP(#) C*2 Table types to ignore (2 char meaningful, blank
filled)

LUNOLD I LUN for old file

LUNNER I LUN for new file

VOLOLD I Disk number for old file.

VOLNEW I Disk number for new file.

CNOOLD 1 Catalog slot number for old file

CHONEW I Catalog slot number for new file

In/out:

CATNEW(266)I Catalog header for new file.

Output:

BUFF1(1024) 1 Vork buffer

BUFF2(1024) I Work buffer

IRET I Return error code 0 => ok, otherwise TABCOP
or 10*CATIO error.

3.16.2 CHCOPY
CHCOPY moves characters from one HOLLERITH string to another
CHCOPY (NCHAR, NP1, STR1, NP2, STR2)

Inputs:
NCHAR I Number of characters to move
| 11 I Start char position in input string
STR1 H(*) Input string
NP2 I Start char position in output string
Qutput:

STR2 H(*) Output string

3.16.3 CHCOMP
CHCOMP compares two HOLLERITH strings
CHCOMP (NCHAR, KP1, STRi, KP2, STR2, EQUAL)

Inputs:
NCHAR I # characters to compare
KP1 I starting character in string 1
STR1 H(*) string 1
kP2 I starting character in string 2
STR2 H(*) string 2

Output:
EQUAL L T => strings are same

3.16.4 CHFILL
CHFILL fills a HOLLERITH string with a character
CHFILL (NCHAR, CEAR, NBP, STRING)

Inputs:
NCHAR I Number of char positions to fill
CHAR H Char in char position 1
NBP I Start char position to fill
Output:

STRING H(*) Filled string

3-19

3-20 CHAPTER 3. GETTING STARTED — TASKS

3.16.5 CHLTOU
CHLTOU converts any lower case characters in a CHARACTER string to upper case.

CHLTOU (M, STRING)
Inputs:
| 1 Number of characters

In/out:
STRING C*(*) String to be converted.

3.16.6 CHMATC

searches one HOLLERITH string for the occurrence of another string.

CHMATC (NA, JA, CA, ¥B, JB, CB, ¥P)

Inputs:
N I Number of characters in CA (start at JA)
JA I Start at char position JA in CA
Ck H(#*) Packed substring to be found in CB
| §: N ¢ Number of characters in CB (n.b. TOTAL)
JB I Start search at offset in CB
CB H(*) Packed string.
Cutput:
P I start position in CB of CA, O if nonme.

w.r.t. start of string

3.16.7 CHR2H

Convert a Fortran CHARACTER variable to an AIPS HOLLERITH string. IF NCH > LEN (ISTR) then
blank fill the rest.

CHR2E (NCH, ISTR, OUTPNT, OSTR)

Inputs:

xcH I Number of characters

ISTR C+(*) Input CHARACTER string

OUTPAT I Start position in output string
Output:

OSTR H(s) Output AIPS string

3.16.8 CHWMAT

CHWMAT matches a pattern string containing “wild-card” characters with a test string. The wild cards “*’
for any number and ‘?’ for exactly 1 of any character are supported.

CHWMAT (¥PM, PS, IPT, NTS, TS, EQUAL)

Inputs:
NPM I Length of test string (not incl NTS-1
characters)
PS Ce(s) Pattern string
IPT I(NPM) Pattern array prepared by PSFORM
NTS I Start char position in TS for testing
TS Ce(*) Test string
Output:

EQUAL L T => they match

3.16. ROUTINES 3-21

3.16.9 DIE

DIE does the housekeeping necessary for an orderly death of the task. Primarily clearing catalog flags and
destroying scratch files. It also calls RELPOP if RQUICK is false.

DIB (ICODE, BUFF)
Inputs:
ICODE I Return code: 0 => good, other => bad end
BUFF I(266) VWork buffer
Locations in catalog are communicated by COMMON /CFILES/:
NCFILE I Number of files marked in catalog.
FVOL I Volume numbers of the maps.
FCEO I Slot numbers of the maps.
FRW I A O if READ , 1 if WRITE clear desired,
a 2 if a new file with Write, destroy on ICODE
bad; other values => file already closed.
NSCR Number of scratch files to be destroyed
SCRVOL Scratch file volume numbers
SCRCNQ 1 Scratch file catalog numbers.

- -

3.16.10 DIETSK

DIETSK must be called at the end of each task as the last real statement before the final RETURNs and
STOP statement. It issues a closing message, terminates the accounting, and, if RQUICK is false, restarts
the initiating AIPS program.

DIETSK (IRET, RQUICK, IBUF)

Inputs:

IRET I 0 => ok, else bad end

RQUICK L T => initiator already resumed
OQutput:

IBUP I1(2686) Scratch buffer

3.16.11 EXTCOP
EXTCOP copies an extension file(s) of the EXTINI-EXTIO variety.

EXTCOP (TYPE, INVER, OUTVER, LUNOLD, LUNNEW, VOLOLD,
= VOLNEW, CNOOLD, CNONEW, CATNEW, BUFF1, BUFF2, BUFF3, IRET)

Inputs:

TYPE C»2 Extension file type eg ’CC’,’AN’

INVER I Version number to copy, 0=>copy all.

OUTVER I Version number on output file, if more than one
copied (INVER=0) this will be the # of the first
file. If OUTVER=0 the EXTINI defaults are used.

LUNOLD LU¥ for old file

I
LUNNEVW I LUN for new file
VOLOLD I Disk number for old file.
VOLREVW I Disk number for new file.
CROOLD I Catalog slot number for old file
CNONEW I Catalog slot number for new file
CATNEW 1(256) Catalog header for new file.
In/out:
BUFFt I(>512) Work buffer: 256 words + n * 256 words (enough
to hold at least one logical record)
BUFF2 I(>512) Work buffer: as BUFF1

3-99 CHAPTER 3. GETTING STARTED — TASKS

BUFF3 I(*) Buffer large enough to hold one logical record
Output:

IRET I Return error code 0 => ok
=> files the same, no copy
=> no input files exist
=> failed
=> no output files created

W -

3.16.12 GTPARM

GTPARM obtains the activator task number, obtains the transmitted parameters, initializes the message
common, and outputs the message ‘task NAME begins’. It also handles startup accounting.

GTPARM (NAME, NPARMS, RQUICK, RPARM, SCRTCH, IERR)

Inputs:

NAME C+6 Task name

NPARNS I Number of real variables wanted
Outputs:

RQUICK L T => release POPs as soon as possible

F => wait until you have finished
RPARM R(NPARMS) Parameters received
SCRTCH I1(256) Scratch buffer
IERR I Brror code: 0 -> ok
1 -> initiator (AIPS) not found
2 -> disk troubles
3 => initiator zeroed

3.16.13 GTTELL

GTTELL gets any parameters sent to the current task by AIPS verb TELL. All entries for the task in the
TC file are cleared and the most recent is returned to the calling routine.

GTTELL (NPARMS, OPTELL, PARMS, SCRTCH, IERR)

Inputs:
NPARMS I Number REAL parameters
OQutput:
OPTELL C*4 Opcode from TELL
PARMS R(*) Returned parameters
SCRTCH 1(258) Scratch buffer
IERR I 0 => okay (no parms)

1 => okay (got parms)

2 => TELL orders quit

3 => TELL orders abort
Note: if GTTELL encounters an internal error, i.e. file open, read,
etc. failure, it returns IERR = 0 after emitting a message.

3.16.14 HIADD

HIADD adds a history card to a history file. I/O takes place only if necessary. Thus UPDATE = .TRUE.
on HICLOS is required.

BIADD (HLUN, CARD, BUFFER, IERR)

Inputs:
HLUN I LUN of HI file (must be open!!)
CARD C*72 new card

In/out:

3.16. ROUTINES 3-23

BUFFER I(266) HI work buffer
OCutput:
IERR I Error return: 0 => ok, other set by HIIO

3.16.15 HIADDN
HIADDN is used by HIMERG for output to avoid large numbers of loops.

HIADDX (LUN, N, HILINE, BUF, CHK, IERR)

Inputs:
LUN I(N) Input LUNs.
CHK I(N) Only write if CHK(I) = 0.
| Number of files (including "dummies").
HILINE String to add.
In/Out:
BUF I(256,X) Working buffers
IERR I Error code = max error code generated by HIADD

3.16.16 HIADSO

HIADS80 puts an 80-character card image into a history file. It actually puts 0 (CARD all), 1 (< 72 chars),
or 2 cards in the file.

HIAD8O (HLUN, IST, CARD, HBLK, IERR)

Inputs:
HLUR I LUK of open history file
IST I Start character position in card
CARD C=80 80-character "card"
In/out:
HBLK I(266) HI I/0 buffer
Output:
IERR I Error code of HIADD

3.16.17 HICLOS
HICLOS closes a history file updating it if requested.
HICLOS (HLUN, UPDATE, BUFFER, IERR)

Inputs:

HLUN I file LUN (already open!!)

UPDATE L T => write last record & update pointers
In/out:

BUFFER 1(288) HI work buffer
Output:

IERR I error code : 0 - ok

i - LUN not open
2-68 - ZFIO errors

3.16,18 HIINIT
HIINIT initializes the history common area /HICOM /

HIINIT (NFILES)
Inputs:
NFILES I number of HI files open at once (max)

at least 20 are available via DHIS.INC

3-24 CHAPTER 3. GETTING STARTED — TASKS

3.16.19 HIMERG

HIMERG merges NOLD history files an copies them to NNEW new history files. The merged history file
consists of the whole of the "master” history file, followed by the other history files starting from the first line
at which each differs from the master. The history files are separated by comment lines noting the number
of lines omitted. If any of the input files is unreadable, it is omitted from the input list and a comment is
inserted in the merged history. If there is trouble writing to any of the output files, copying to that file is
stopped. If one of the output files is also one of the (readable) input files, that file is designated the master.
If more that one of the output files is in the input list, the last such duplicate is the master; no history copy
is attempted for the earlier duplicate files and the program returns an error code of 2. If none of the output
files is in the input list, the master file is the first (readable) input file. If a read error is encountered while
copying, the output HI files are reset to their pristine state, i.e. empty for new files and with the original
contents for old files. The task name, date, and time are entered on the new files. This is a generalised

version of HISCOP/HICOPY.

HIMERG (LUNOLD, LUNNEW, VOLOLD, VOLNEW, CNOOLD,
* CNONEW, NOLD, NNEW, CATBLK, BUFER1, BUFER2, IERR)
Inputs:
LUNOLD I(NOLD) LUNs for old history file.
LUNNEW I(NNEW) LUN for new history file.
VOLOLD I(NOLD) Vol. number for old history file.
VOLEEW I(NNEW) Vol. number for new history file.
CNOOLD I(NOLD) Catalog slot number of old history file.
CMONEW I(NNEW) Catalog slot number of new history file.

NOLD I . Number of old history files.
NMEW I Number of new history files.
In/Out:

CATBLK I(256,NNEW) Catalog header of map for new file.
BUFER1 1(256,N0LD) Work buffer, used for old files.
BUFER2 1(256,NNEW) Work buffer, new file; must be used
in further HIADD calls until file
is closed.
Output:
IERR I Return error code: 0 => OK.
1 => could not open old history file.
2 => could not copy old history file.
3 => could not write time on new file
4 => could not create/open new HI file.
6 => Two or more output files the same.
6 => Wrong number of input files.
NOTE: IERR < 3 is a warning only, = 3 serious, = 4 a real problem.
Calling programs should ignore IERR < 3, branch to HICLOS of the
new HI file on IERR = 3, and skip over all HI stuff on IERR = 4.
Errors 5 and 6 should not occur in working programs.

3.16.20 HIREAD

HIADD reads next history card from a history file. 10 takes place only if necessary.
HIREAD (HLUN, HIREC, CARD, BUFFER, IERR)

Inputs: HLUN I lun of HI file (must be open!!)
HIREC I logical rec no to read

IN/out: BUFFER 1(256) HI work buffer

Output: IERR I 0 => ok, other set by HIIO
HIREC+1 I lrecno incremented for next read

CARD I(*) card

3.16. ROUTINES 3-25

3.16.21 HISCOP

HISCOP copies one history file to another. If the new history file already exists the only action is to open
it. At finish the old history file is closed; the new history file is open. The task name, date, and time are
entered on the new file.

NISCOP (LUNOLD, LUNNEW, VOLOLD, VOLNEW, CNOOLD,
* CHEONEW, CATBLK, BUFER1, BUFER2, IERR)

Inputs:
LUNOLD I LUN for old history file.
LUNNEW I LUN for new history file.
VoLoLp I Vol. number for old history file.
VOLNEN I Vol. number for new history file.
CHOOLD I Catalog slot number of old history file.
CNONEVW I Catalog slot number of new history file.
In/Out:

CATBLK I(266) Catalog header of map for new file.
BUFER1 I(256) VWork buffer, used for old file.
BUFER2 I(256) Work buffer, new file; must be used in
further HIADD calls until file is closed.
Output:
IERR I Return error code: 0 => OK.
1 => could not open old history file.
2 => could not copy old history file.
3 => could not write time on new file
4 => could not create/open new HI file.
NOTE: IERR < 3 is a warning only, = 3 serious, = 4 a real problem.
Calling programs should ignore IERR < 3, branch to HICLOS of the
new NI file on IERR = 3, and skip over all KNI stuff on IERR = 4,

3.16.22 H2CHR

Convert an AIPS HOLLERITH string to a Fortran CHARACTER variable. Blank fills the full OSTR
variable.

N2CHR (NCH, INPNT, ISTR, OSTR)

Inputs:
NCR I Number of characters
INPNT 1 Start position in input string
ISTR N(*) Input AIPS string

Output:

OSTR C*(*) Output CNARACTER string

3.16.23 MAKOUT

MAKOUT applies the wild card standards to complete the preparation of the output file name parameters.
Namely:

ouUTs <= -1 becomes OUTS = INSEQ
OUTN = * ? becomes OQUTN = INN
‘yy*zz ? becomes OUTN = INN with first n characters

replaced by yy and last m chars with zz - if
yy or zz contain ?’s don’t replace those char
positions
OUTCL = ’ becomes OUTCL= DEFCLS
‘yyezz °’ becomes OUTCL= DEFCLS with same as OUTN

3-26 CHAPTER 3. GETTING STARTED — TASKS

If the 1st character of OUTCL is a ’_’ then the default
is replaced with INCL and the remaining 5 characters of
OUTCL are used as normal.

MAKOUT (INN, INCL, INS, DEFCLS, OUTN, OUTCL, OUTS)

Inputs:
INN C*12 Input file name
INCL C*6 Input file class
INS I Input file sequence number
DEFCLS C=6 Default output file class 6 packed chars
if =’ ?, use task name
In/Cut:
OUTHN C*12 User-supplied OUTNAME adverd
OUTCL C=6 User-supplied OUTCLASS adverd
oUTs I User-supplied OUTSEQ adverdb in integer

NOTE: the actual Input file name parameters must be supplied, not
the user adverbs (which can themselves contain wild cards, pure
blank fields, zeros, and the like.

3.16.24 PRTLIN

PRTLIN handles actual printing on the line printer or CRT for tasks. For the CRT, it also handles page-full
user communication.

PRTLIN (OUTLUN, OUTIND, DOCRT, NC, Ti, T2, LINE, NLINE,
#+ IPAGE, SCRTCH, IERR)

Inputs:
OUTLUN I LUN for print device (open)
OUTIND I FTAB pointer for print device
DOCRT R > 0. => use CRT, else line printer
NC I Number characters in line
T1 C*132 Page title line 1
T2 C*132 Page title line 2
LINE C*132 Text line
In/out:
NLINE I Number lines so far on page

> 1000 => just ask about continuing
= 899 => just start new page

IPAGE I Current page number
= 0 => just start new page

Output:
SCRTCH Cx*(*) Scratch core > 132
IERR I Error code: 0 => 0K, -1 user asks to quit

3.16.25 PSFORM
PSFORM prepares a string pattern array for use by CHWMAT (the wild card matching subroutine).

PSFORM (NC, PS, IPT)

Inputs:
NC I Number characters in pattern possible
PS C#(*) Pattern string

Cutput:

IPT I(NC) Coded array:
value = -2 => position is *

3.16. ROUTINES 3-27

value = -1 => position is ?

value => position is a blank

value > 0 => there are IPT(i) real chars
including the present following

"
o

3.16.26 RELPOP

RELPOP places the specified return code in the appropriate location of the first record of the Task Data
(TD) file. This will allow the calling program (AIPS, AIPSC, AIPSB, BATER) to resume normal operations.

RELPOP (RETCOD, SCRTCH, IERR)

Inputs:

RETCOD I return code number
Outputs:

SCRTCH 1I(256) scratch buffer

IERR I error number: 0 -> ok

1,2 -> task not resumed
3 -> NPOPS out of range
4 -> parameter not passed

3.16.27 SCREAT

SCREAT is intended to replace all previous scratch file creation routines in AIPS (beginning on February
11, 1985). It uses the Common included via DFIL.INC and returns the scratch file disk and catalog number
in variables SCRVOL(NSCR) and SCRCNO(NSCR), where NSCR is updated on successful creation. It
attempts to avoid the disk used for the previously created scratch file.

SCREAT (SIZE, WBUFF, IERR)

Input:
SIZE I Desired size in AIPS bytes
Output:
WBUFF I(512) Scratch buffer (NOTE 612 integers)
IERR I error: 0 => ok
1 => catalog error in setting name
2 => catalog error on open
3 => CATIO error writing header to catlg
4 => No allowed disk with room
Commons:
/MAPHDR/ in scratch file image header - contents mostly

ignored
/CFILES/ in/out file info
Note: this common uses IBAD to specify BADDISKs which are avoided.

3.16.28 TABCOP

TABCOP copies Table extension file(s). The output file must be a new extension - old ones cannot be
rewritten. The output file must be opened WRIT in the catalog and will have its CATBLK updated on disk.

TABCOP (TYPE, INVER, OUTVER, LUNOLD, LUNNEW, VOLOLD,
* VOLNEW, CNOOLD, CNONEW, CATNEW, BUFF1, BUFF2, IRET)

Inputs:
TYPE C*2 Extension file type (e.g. ’CC’,’AN’)
INVER I Version number to copy, O => copy all.
OUTVER I Version number on output file, if more than one

copied (INVER=0) this will be the number of the
first file. If OUTVER = 0, it will be taken as

3-28 CHAPTER 3. GETTING STARTED — TASKS

1 higher than the previous highest version.

LUNOLD I LUN for old file

LUNNEW I LUN for new file

VOLOLD I Disk number for old file.

VOLNEW I Disk number for new file.

cNoorp I Catalog slot number for old file

CNOEEW I Catalog slot number for new file
In/out:

CATHEW 1(258) Catalog header for new file.
Output:

BUFF1 I(266) Work buffer
BUFF2 I(256) Work buffer
IRET I Return error code 0 => ok
1 => files the same, no copy.
2 => no input files exist
=> failed
> no output files created.
> failed to update CATNEW
> output file exists

[« B I
|

3.16.29 UVPGET

UVPGET determines pointers and other information from a UV CATBLK. The address relative to the start
of a vis record for the real part for a given spectral channel (CHAN) and stokes parameter (ICOR) is given
by NRPARM+(CHAN-1)*INCF+ABS(ICOR-ICORO0)*INCS+(IF-1)*INCIF

Single dish data, i.e. randomly sampled data in the image plane, is also recognized and ILOCU and
ILOCYV point to the longitude like and latitude like random parameters. Also a “BEAM” random parameter
may be substitued for the “BASELINE” random parameter. The data type present may be determined from
the common variable TYPUVD.

UVPGET (IERR)
Inputs: From common /MAPHDR/ (DCAT.INC)

CATBLK 1(258) Catalog block
CATH H(266) same as CATBLK
CATR R(2566) same as CATBLK
CATD D(128) same as CATBLK

Output: In common /UVHDR/ (DUVRE.INC)

SOURCE C*8 Source name.
ILOCU I Offset from beginning of vis record of U

or longitude for single dish format data.
ILOCV I Offset from beginning of vis record of V

or longitude for single dish format data.
ILOCW I Offset from beginning of vis record of W.
ILOCT I " Time
ILOCB I " Baseline

(or beam)

ILOCSU I " Source id.
ILOCFQ I " Freq id.
JLOCC I O-rel. order in data of complex values
JLOCS I Order in data of Stokes’ parameters.
JLOCF I Order in data of Frequency.
JLOCR I Order in data of RA
JLOCD I Order in data of dec.
JLOCIF I Order in data of IF.

3.16. ROUTINES 3-29

INCS I Increment in data for stokes (see above)
INCF I Increment in data for freq. (see above)
INCIF I Increment in data for IF.

ICORO I Stokes value of first value.

NRPARM I Number of random parameters

LREC I Length in values of a vis record.

WVIS I Number of visibilities

FREQ D Frequency (Hz)

RA D Right ascension (1950) deg.

DEC D Declination (1950) deg.

NCOR I Number of correlators (Stokes’ parm.)
ISORT C»2 Sort order ist 2 char meaningful.
TYPUVD I UV data type, O=interferometer,

=single dish unprojected,
2=single dish projected RA and Dec.
IERR I Return exror code: 0=>0K,

1, 2, 5, 7 : not all normal rand parms
2, 3, 6, 7 : not all normal axes
4, 5, 6, 7 : wrong bytes/value

3.16.30 ZDCHIN

Initialize the device characteristics common and the FCB’s (file control blocks) in FTAB(*) for the maximum
number of different file types that can be open at the same time. Initialize also other machine-dependent
commons and the message common. Note that the task name is not set here.

ZDCHIN starts with hard-coded values. Then, if DODISK is true, resets those contained in the system
parameter file. The utility program SETPAR is used to alter the system parameter file values.

Critical system constants (all "words” are local integers, all "bytes” are AIPS-bytes, i.e., 1/2 a local
integer and on 64 bit architectures, double precision contructs should be preprocessed into their single
precision counterparts):

ZDCHIN (DODISK, JOBLK)

Inputs:
DODISK L Get SETPAR-controlled parameters from disk
Inputs from common: DMSG.INC
TSKNAM C#*8 Task name if known - else ’ ’ (used in ABORT
handler mostly to separate standalones and
tasks)
Output:

JOBLK I(266) 1/0 block - no longer used
Output in commons: DDCH.INC DMSG.INC
all e All values set to init except TSKNAM

3.16.31 ZTTYIO

Perform 1/0 to a terminal.

ZTTYIO (OPER, LUN, FIND, NCNARS, BUFF, IERR)

Inputs:
OPER Cx4¢ Operation code ’READ’ or ’WRIT’
Lus I Logical unit number
FIND I Index in FTAB to file control block for LUN
NCHARS I # characters to transfer (<= 132)

In/out:

3-30 CHAPTER 3. GETTING STARTED — TASKS

BUFF C+#(*) I/0 buffer containing characters (1-256)
Output:
IERR I Exrror return code: 0 => no error

1 => file not open
2 => input error
3 => I/0 erxor

4 => end of file

Chapter 4

The AIPS Program

4.1 Overview

The AIPS program is the portion of the AIPS system with which the user normally interacts. The major
functions of the AIPS program are: (1) prepare the parameters for and initiate the tasks which do most of
the computations, (2) allow interactive use of TV and graphics devices, (3) provide limited direct analysis
capability and (4) provide a high level of control logic to allow simple functions to be grouped into more
complex functions (i.e., a programming language).

The basis of the AIPS program is the POPS (People Oriented Parsing Service) language processor. POPS
is an interpretive language processor which can either accept statements for immediate execution or in the
form of programs, called procedures, which are compiled and stored for later execution. Operations on data,
images etc. are performed by means of “verbs” and “tasks”. Verbs are operations which are done directly
by the AIPS program and tasks are programs which are run asynchronously from AIPS. Both verbs and
tasks are controlled by a set of global parameters called “adverbs”. Verbs may change the values of adverbs
whereas tasks cannot.

This chapter will attempt to describe the basic methods of the POPS processor and explain how to add
new verbs and adverbs. The AIPS program does not know directly about tasks, so adding tasks requires no
modifications to the AIPS program.

Other documentation about POPS processors may be found in a report by Jerome A. Hudson entitled
“POPS People-Oriented Parsing Service Language Description and Program Documentation” and POPS An
Interactive Terminal Language with Applications in Radio Astronomyby A. Sume, 1978, Internal Report no.
115, Research Laboratory of Electronics and Onsala Space Observatory, Chalmers University of Technology,
Gothenburg, Sweden.

4.2 Structure of the AIPS Program

The basis of the AIPS program is a POPS processor which interprets user instructions and calls the relevant
applications routines and spawns the desired tasks. Input to the POPS processor is in the form of statements
which may do one of the following:

1. Modify an adverb value. This may be either by specifying a literal constant or an arithmetic, logical
or character string expression.

2. Invoke an applications verb. These are the verbs which are specific to a given data analysis problem,
such as displaying an image on the TV, rather than general control verbs such as loop control or sine

functions etc.

3. Logic flow control. These statements control the execution of other statements, e.g., loop control, IF,
THEN, ELSE etc.

4-1

4-2 CHAPTER 4. THE AIPS PROGRAM

4. Spawn tasks. Tasks are programs which take relatively long times to run and are executed asyn-
chronously from AIPS. Communication between AIPS and tasks is primarily by disk files.

5. Prepare and edit procedures. POPS programs called procedures may be entered and compiled for later
execution. These procedures may later be edited.

6. Prepare batch files. AIPS can run in a batch mode. To do this, the user enters and/or edits a list of
commands in a batch file for later execution. This can be done either in the normal AIPS or a special
batch version of AIPS named BATER.

7. Store the current environment including all current procedures via the STORE or SAVE command.
This environment is restored via the RESTORE or GET command.

4.2.1 The POPS processor

POPS uses an “inverse POLISH” stack to store operands and operation codes. Symbolics such as verb,
adverb or procedure names are stored in a symbol table and each is identified by a type (TYPE) and a
number (TAG). The initial entries in the symbol table and initial values of the adverbs are read from an
external disk file which is prepared by the stand alone utility routine POPSGN. The various tables and stack
pointers etc. are carried in common and the tables are equivalenced into an array known as the “K array”.

Multiple statements, separated by semicolons, may be entered in a single line. There are a number of
special verbs known as “pseudo” verbs which are executed as soon as they are encountered, causing any
other instructions on the same line to be parsed in special fashions, ignored, or handled normally depending
on the pseudoverb.

The basic structure of the AIPS program is very hierarchal. The main routine calls a startup routine,
AIPBEG, a shutdown and error routine, AIPERR and a single routine GTLINE which controls the bulk of
the processing. The structure of the basic routines in the POPS processor is shown in the following figure:

GTLINE OERROR
read line erTor messages
POLISH INTERP
compiles line execute POPS code
r____l l
h 4 4 } 4
COMPIL PSEUDO/|{ | EDITOR || STORES || HELPS ! +

VERBS KWICK

t

GETFLD
; 4

LTSTOR SYMBOL GETNUM | | GETSTR

Structure of POPS

4.2. STRUCTURE OF THE AIPS PROGRAM 4-3

More details of each of these routines is given in the following:

e GTLINE is the main POPS routine. It causes lines to be read by PREAD, parsed and compiled or
executed (in the case of pseudo verbs) by POLISH, and finally executed by INTERP. GTLINE returns
only on error or requested termination of the program.

o OERROR displays an error message on the user terminal and resets POPS.

o INTERP causes POPS code to be executed by placing operands on the V and STACK stacks and
calling VERBS and KWICK for verbs.

o VERBS calls the relevant applications verb routines based on the verb number. Functions are grouped
together in routines named AUn. The appropriate routine is called with a branch code as an argument.
This branch code in the verb number minus the first verb number in that AU routine plus one. The verb
numbers are defined in an external file but VERBS must also know which verb numbers correspond to
which AU routine.

o KWICK executes the basic POPS control verbs. These are the verbs which don’t depend particularly
on a given application but are frequently encountered.

o POLISH parses the character string entered by the user and translates it to Polish postfix notation.
The result is a string of integers representing code for the POPS interpreter. Negative tokens are
operand pointers while positive tokens are operator codes. The array A, which is equivalenced to
STACK, holds the list of tokens; AP points to the most recent entry and SP points to the next entry.
The operand pointers are to the location of the adverb or temporary variable in the K array.

o COMPIL does the actual interpretation of instructions and adds them to the stacks. COMPIL exits
when a pseudo-verb or end-of-line is encountered.

e PSEUDO handles procedure and adverb declarations, sets up for the runtime operators IF, THEN,
ELSE, WHILE (which require forward references and an additional cleanup pass) and the FINISH
operator.

e EDITOR performs the operations required to begin and stop editing an existing procedure.

o STORES stores either the procedure source code, procedure object code, or handles the procedure
source code.

e HELPS handles the user assistance facilities HELP, INPUT, EXPLAIN and RUN and other functions
which require access to external text files. HELP lists symbols by type or lists a text file whose member
name matches a user name. RUN sets the input to a specified member of a text file. This allows users
to have personal strings of commands (e.g., procs, verbs, adverb settings). INPUTS lists the adverbs
and their current values and brief descriptions on the terminal. Subroutine HELPS simply parses the
user input in a more friendly fashion and places appropriate verb numbers and strings on the stacks.

e GETFLD finds the next non-blank character in the input buffer, KARBUF, and determines whether
the token begun with that character is symbolic (1st char is A-Z), numeric (1st char is 0-9 or .),
or hollerith (1st char is ’). After the field length is found, appropriate calls are made to the symbol
processing routine, number scanning routine, etc. Communication back to POLISH is via TYPE and
TAG parameters determined by the processors SYMBOL, GETNUM, LTSTOR...

e LTSTOR searches the list of literals in the K array. If a matching literal is found, the TAG is returned.
If not, a new one is generated and linked to the literal list. Note: a “literal” is a constant having either
a numeric, character, or logical value.

e SYMBOL finds a symbol in the symbol list. The result is returned as TYPE and TAG through a
common. If the routine is in the variable declaration mode, a new entry will be made in the symbol
table if it does not already exist.

o GETNUM converts a character string into a DOUBLE PRECISION value.
e GETSTR obtains a character string from a buffer.

4-4 CHAPTER 4. THE AIPS PROGRAM

4.2.2 POPS commons

Most of the communication between POPS subroutines is by means of commons. As with most commons
in the AIPS system, these commons are obtained by use of include files. The contents and uses of these
commons are described in the following. The text of the include files is given at the end of this chapter.

DCON.INC

This common contains the basic POPS “memory” or K array, i.e., the symbol tables, adverb values, pro-
cedures etc. This common consists of equivalenced, INTEGER (K), REAL (C) and HOLLERITH (CH)
arrays. Included in the latter part of this array are the adverb values. The variables used for the installed
(predefined) adverbs ate declared in the include DAPL.INC and follow a shortened declaration of the K
array in DCON.INC. They specify the adverbs as equivalences to the K array beginning at K(KXORG+10).

User defined adverbs as well as as procedures and temporary literal values are stored beginning at K(301).
The names of all symbolics (adverbs, verbs and procedures) are kept in a symbol table which is a linked list
of symbol names containing the symbol type (TYPE), location in the K array (TAG) and the location of the
array or string descriptor entries if appropriate. The first entry in the symbol table is pointed to by K(1)
and a zero link indicates the last entry in the table. More details are given in later sections.

Literals (constants) are kept in a literal table which is also a linked list in the K array. The first entry
is pointed to by K(4) and the last entry is pointed to by K(10). The literal table entry contains the type,
length, and value of the literal.

The current compiled version of procedures is also kept in the K array. Each procedure may be divided
into several blocks in the K array; the blocks are connected by forward links. A pointer is kept to the first
location of the source version of the procedure in the LISTF array kept in the working memory file (kept on
disk). The first block of a procedure is pointed to by the symbol table.

The different portions of the K array are used as follows:

K(1) Symbol table link, points to first entry in the symbol table.

K(2) Program link, points to first program (Procedure)

K(3) Next free cell in K array to be allocated.

K(4) Constants (literal) link, points to first entry in the
literal table.

K(5) Number of cells allocatable. Currently 14760.

K(e) KTEMP, pointer to KKT (temporary value) area.

K(7) Symbol protect limit. Names with TAGs greater than this

value may be changed. This is used to protect
procedures compiled by POPSGN.
K(8) KXORG, pointer to KX array (data area). Currently 14761.

K(9) Last symbol pointer.
K(10) Last literal pointer
K(11-50) Not used

KKT area, temporary storage for MODE=0

K(51) Not used

K(62) Program link

K(53) Next free cell

K(54) Constants link

K(565) Number of cells allocatable
K(56-69) not used

K(60) Last constant pointer.

K(301...) Used for program storage, constants, symbols etc. for the
remainder of the program position of the K array.

4.2. STRUCTURE OF THE AIPS PROGRAM

KX area, data storage

K(KXORG+0) Not used

K(KXORG+1) not used

K(KXORG+2) Next free cell

K(KXORG+4) Number of cells allocatable

K(KXORG+5) not used

K(KXORG+8) Highest adverb address in K not changeable by user.
K(KXORG+7->+9) not used

K(KXORG+10...) data storage.

Symbol table entries.

Word 1: Link to next symbol table entry. Zero if end of list.

2: bits 2%*0 to 2#%3 = type.
bits 2**4 to 2**15 = number of words in symbol

3: TAG (location in core where the data is kept)

4: Array data block counter if symbol is an array name,
string, or procedure.

5: Bytes 1 and 2 of the name.

6: Bytes 3 and 4 of symbol name.

7: etc.
Array data blocks, define arrays.
(pointed to by symbol table)

Word 1: Total array size

2: Number of dimensions

3: Initial index for first index

4: first dimension

5: Initial index for second dimension

6: etc.

Strings and string arrays
(pointed to by symbol table)

Word 1: Total array size
2: Number of dimensions
3: 1
4: no. floating point words in each element.
6: initial index for first subscript, if any
6: first subscript range, if any
7: etc.
Literal table entries
Word 1: Pointer to next literal table entry, zero if last entry.

2: Bits 2%#0 to 2**3 = type. the types are 11=>floating point
real (2 integer words), i4=>character string, 15=>
logical constant (TRUE or FALSE)

Bits 2%#4 to 2++15 length of literal in integers.

3: First integer word in literal.

4: etc.

4-5

Word 1:

w» wN

/POPS/

CHAPTER 4. THE AIPS PROGRAM

Procedure storage (compiled code)
(pointed to by symbol table)

Link to next program block, zero if last.
Pointer to text array for purposes of listing.
first interpreter instruction.

etc.

1 An opcode of 1 terminates a block. If the link to the
next block is zero the procedure terminates.

This common carries the various stacks, stack pointers and other values. This common is obtained from
include DPOP.INC. The contents of this common are described in the following:

v(60) R Operand stack for REAL variables.
XX R Intermediate REAL value
KT I Starting location in K array of KKT (temporary) area.
LPGM I Start address of an entry in the K array. Used while
allocating storage.
LLIT I DNot used
LAST I Last token (opcode); if zero, finished with line.
Used by COMPIL.
IDEBUG I A debug flag used in various places. If true
(.GE.O) then debug info about POPS is given.
MODE I The current mode of the POPS processor.
0 => immediate execution of an input line
1 => compile a procedure
2 => finishing a procedure
3 => editing a procedure
69 => adding a new symbol to symbol table
IFFLAG I =1 if an operator has been found in the current
instruction; 0 otherwise.
LINK I A link (pointer in K array)
L I Another link (pointer in K array)
NAMEP I Pointer in K array to a name in the symbol table.
IP I Pointer in K array
LP I Pointer in K array
SLIM I Maximum allowed index in the stacks (currently 60)
AP I Pointer to last entry in STACK
BP I Pointer to last entry in CSTACK
ONE I Pointer in C to value of 1.0
ZERO I Pointer in C to value of 0.0
TRUE I Pointer in C to value .TRUE.
FALSE I Pointer in C to value .FALSE.
STACK(60) I Instruction stack
CSTACK(80) I Second (temporary) instruction stack
SP I Pointer in STACK
CP I Pointer in CSTACK
SPO I Another pointer in STACK
MPAGE I Number of pages (512 bytes) in the Memory file.

4.2. STRUCTURE OF THE AIPS PROGRAM 4-7

(LISTF + K array)
LPAGE I Number of pages (512 bytes) of the memory file
which contain LISTF (procedure source code)

DSMS.INC

This common contain various important values passed between routines. The contents of this common are
described in the following.

KPAK(S5) H Temporary array for storing a symbol name.

NKAR I The number of characters in KPAK

KBPTR I A character pointer in KARBUF, the input line buffer.

NEWCOD I Tag given by SYMBOL when allocating space for a new
adverb.

TYPE I Symbol type. See section on TAG and TYPE.

SKEL R Not used.

TAG I Symbol number. See section on TAG and TYPE.

LEVEL I Precedence level bias.

LX I Number of integer words in character string X.

NEXTP I Precedence level of next item on A-stack.

x(25) R Temporary storage for character strings.

LOCSYM I Location in symbol or literal table of current
symbol.

DIO.INC

This common contains short I/O buffers and related information. The contents of this common are described
in the following.

IPT C+*1 Prompt character

NBYTES 1 Kumber of valid characters in KARBUF, number of last
non-blank character.

KARBUF C*80 A buffer containing the current input line.

JBUFF C#80 Buffer used to read user input.

KARLINM I Number of characters in KARBUF

JIUNIT I Input unit number for PREAD; 1=> user terminal, 2=>
text editor, 3=>batch input file 4=>text entered
during screen hold.

HOLDUF C#80 Buffer for storing text entered during screen hold by
SCHOLD.

4.2.3 TAG and TYPE

Adverbs, verbs, procedures etc. are all represented by symbolic names to the user. Internally, POPS identifies
symbolics by TYPE and TAG. TYPE determines the type of symbolic (e.g., scalar, character string, verb
etc.) and TAG is a label for the particular symbolic (e.g., a verb number). The TYPE of all symbols and
the TAG of verbs are specified to POPSGN in the POPSDAT .HLP file. The TAG of an adverb is computed
by POPS and is the start address of the value field.

The current list of symbolic types is given in the following list.

TYPE = REAL scalar.

1
2 REAL array.

Procedure name.

Verb name

Pseudo verbd name.

Quit (used by POPSGN)
Character string

Element of character string
substring of a character string
not used

Numeric constant

Character constant

Logical constant.

4.2.4 Error Handling

If a subroutine determines that an error condition exists, it sets the variable ERRNUM in INCLUDE
DERR.INC to an error code known to the routine OERROR, increments ERRLEV in DERR.INC, and, if
ERRLEV .LE. 5, copies the name of the subroutine into DERR.INC array PNAME. Following this, the
subroutine returns. Thus, after each call to another AIPS subroutine, a subroutine should check ERRNUM
and, if it is not zero, then that subroutine should increment ERRLEV, add its name to PNAME and exit. If
GTLINE determines that an error has occurred, it returns to to the main AIPS routine which calls AIPERR
which calls OERROR. This provides a traceback capability which can be exercised setting the AIPS adverb
DEBUG to 1.0.

The messages displayed to the user corresponding to the defined values of ERRNUM are shown in the

following:

ERRNUM

0 ~N DO b W=

CHAPTER 4. THE AIPS PROGRAM

Message ERRNUM Message
’BLEW CORE! ° 33 ’CTLG PROBLEM’
?SYMBOL? ’ 34 ’HISTORY FILE’
’BAD (OR) 35 ’FIT FAILS
'LINE SIZE 36 ’NO PROC MODE’
>SYMBOL SIZE!’ 37 TEKS IN USE °’
?ARRAY LIMITS’ 38 ’VERS TOO NEW’
’STACK LIMITS’ 39 ’NOT YES / KO’
’SYNTAX! ! 40 ’BATCH ERROR °’
CHARACTER? ° 41 ’NO RET CODE °’
’PRINT ’ 42 ’TASK ACTIVE '’
’NO PROGRAM ° 43 ’NOT TASK ’
’ARG LIST? ° 44 ’SYNC. FAILS ’
’STRING SIZE °’ 45 'FILE MISSING®
'ALREADY DF ° 46 ’NO DESTROY °
’CONTROL ! 47 *INVALID TAPE’
’LOGIC EXP? 48 ’TAPE PROBLENM’
’FOR---END? °* 49 TV PROBLEM °’
’INF LOOP? ’ 50 ’DISK PROBLENM’
’NO OPERATOR!’ 51 'TV UNAVAILAB’
’DIVIDE BY 0 ° 52 'OPEN FILE? °
*IF OR LOOP! ’ 63 'NOT IN RUN
’READ ’ b4 *NOT INPUTS °
'DATA TYPE? 556 ’CREATE FILE?’
JUSING WHAT? ° 56 ’CLOSE FILE? '’
’PROTECTED! ' 57 'PRINTER ERR.’
’SQRT NEGTIVE’ 68 ’FILE NOT OPN’
’NUMBER SIZE ° 13} *TEXT READER
"RUN IN A RUN’ 60 ’NOT IN BATCH’

4.2. STRUCTURE OF THE AIPS PROGRAM 4-9

29 ’LOG NEGATIVE’ 61 ’DISK PROBLEM’

30 ’VERS TOO OLD’ 62 ’BAD EXPONENT’

31 ’UNAVAILABLE!’ 70 ’ONLY IN PROC’

32 ’BOUNDARY LIM’ 71 ’XOT IN PROC °’
100 ?ABORT!!! ?

4.2.5 Memory Files

The contents of the K array and LISTF, the source code for procedures, are initially obtained by AIPS from
a memory file (type “ME”). The user may save the contents of LISTF and the K array by the pseudo verbs
STORE or SAVE. The contents of these arrays can be recovered by the pseudo verbs RESTORE and GET.
The working version of LISTF is stored at the beginning of the memory file.

The structure of the memory file is illustrated in the following. The size of the LISTF is given in pages
(512 bytes) by variable LPAGE in common /POPS/ and the combined number of pages used by the LISTF
and the K array are given by MPAGE in the same common. The current values of LPAGE and MPAGE are
16 and 90, respectively.

| Lw | KO | LO | K1 | L1 | K2 | L2 |

where Lw = working version of LISTF
KO = startup version of the K array
initialized by POPSGN.

LO = startup version of the LISTF
initialized by POPSGN.

K1 = user STORE area 1 for K array.

L1 = user STORE area 1 for LISTF.

K2 = user STORE area 2 for K array.

L2 = user STORE area 2 for LISTF.

etc.

4.2.6 Special modes

In the normal mode in which AIPS operates, the user types in instructions which are executed immediately.
There are several alternate modes in which AIPS can operate. These modes are described briefly in the
following sections.

RUN files

AIPS can be directed to read input from a disk text file which can be prepared with the local source
editor. The instructions in such a file will be treated in the same fashion as if they were typed in through
the terminal. RUN files are used mostly for permanent storage of complex procedures or other fixed data
processing schemes. In AIPS, if IUNIT=3 in common /IO/, instructions are read from the RUN file until
an end-of-file or an error is encountered.

Batch

AIPS can also be made to run in batch mode at a lower priority. To run AIPS batch, the user edits a file of
instructions which are the same as would be given to an interactive AIPS. The major difference is that all
tasks are run with DOWAIT=TRUE. This causes AIPS to suspend itself until the task is finished. Another
difference is that tape drives, TVs, and graphics devices are not allowed for batch jobs.

The batch file can be created either by an interactive AIPS or a special version of AIPS, called BATER,
for this purpose. Once the file is created, the SUBMIT verb sends it to AIPSC which checks the syntax.

4-10 CHAPTER 4. THE AIPS PROGRAM

One of several possible AIPSBs, the batch AIPSs, is scheduled to execute the batch file. Each of the three
versions of AIPS (AIPS, the interactive program; AIPSC, the batch checker; and AIPSB, the batch AIPS)
has a separate version of the subroutine VERBS called VERBS, VERBSC and VERBSB, respectively.

Procedures

POPS programs, called procedures, can be entered into the K array or edited by the user with the editor in
the POPS processor. Alternately, procedures can be entered by POPSGN when creating the POPS memory
files. As a procedure is entered, it is compiled line by line and the final compiled code is stored in the K
array. Editing or modifying a procedure will cause the procedure to be recompiled and replaced in the K
array.

The source version of the procedures is stored in an array called LISTF which is kept on disk in the
current working memory file. All access to the source code causes this file to be read and/or written.

When procedures are recompiled and stored in the K array, the space for the old instructions is not
recovered. The verb, COMPRESS, which was to recover this unused space, has never been implemented.

4.3 Example of the POPS processor

The following discussion of the POPS compiler and an example of its action is lifted (with some updates)
from the 1978 Sume report.

4.3.1 The Compiler

POPS compiles expressions into reverse polish stacks, which can then be executed by the interpreter. Op-
erators are translated into integers 1, 2, 3,... and operands into negative integers. The magnitudes of the
negative integers are the addresses within the K array of the operands. Arithmetic operators carry a prece-
dence which is used in converting expressions into polish sequences. Some operators, such as (and ; are used
only at compile time to signal the elevation of precedence of operators, the end of a statement, etc.

The following table lists POPS operators and their precedence level.

4.3. EXAMPLE OF THE POPS PROCESSOR 4-11

Symbol Meaning Precedence

Store

Oor

And

Not

Equal (as
opposed to store)

& = N1
WNNN -

> Greater than 3
< Less than 3
<= Greater or equal 3
>= Less or equal 3
<> Not equal 3
TO Loop control 4
: Loop control 4
BY Loop control 4
" String concatenation 4
+ Add 5
- Subtract 1)
SUBSTR String extraction,
insertion 5
* Multiply 6
/ Divide 6
** Exponentiate 7
- Unary - 8
+ Unary + 0
Verbs ;,FOR,END,READ,TYPE,PRINT,
RETURN, AND DUMP 0
All other verbs 9

Translation to polish form takes place in the routines POLISH and COMPIL as follows: Three push-down
stacks, A, B, and BPR, hold operands, operators, and operator precedents respectively, while an expression
is scanned from left to right. The expression is contained in the array KARBUF and the tokens are obtained
from KARBUF by the subroutine GETFLD (in POLISH) called from COMPIL. Operands are placed on the
A stack in order of appearance. Operators are placed on the B stack if their precedence (NEXTP) exceeds
the precedence of the last operator on the stack, or if the B stack is empty. Using the BCLEAN subroutine,
operators are taken off the B stack and pushed onto A if their precedence is equal to or greater than the
precedence of the operator currently being scanned. This takes place until the top operator on the B stack
has precedence lower than the one being scanned, or the B stack is emptied, whence the new operator is
pushed onto the B stack, and its precedence onto the BPR stack at the corresponding position. If the “(”
operator is encountered, the precedence of every subsequent operator is raised by an amount MAXLEV
(=10) while “)” lowers the level by MAXLEV. The end of a statement “operator”, the “;” operator, and
others with which arithmetic expressions may be associated, such as TO, BY, THEN, ELSE, etc. are taken
to have lowest possible precedence, so that they have the effect of emptying the B stack. We are then left
with the polish sequence of operators and operands in the A stack. For example, the expression.

Y = A*(B*X + C);

would be translated with the following steps:

4-12 CHAPTER 4. THE AIPS PROGRAM

Step Token Prec(token) A-stack B-stack BPR-stack
(1 Y e (empty) (empty) (empty)
(2) = 3 Y (empty) (empty)
(3) A . Y = 3
(C)) * 6 Y = 3
A
(s5) (raise level Y = 3
A * 6
(8) B ces SAME ———
(¢p) * 6+MAXLEV Y = 3
A 6
B
(8) X Y = 3
A * 6
B * 6+MAXLEV
(9) + S+MAXLEV Y = 3
A * 6
B * 6+MAXLEV
X
(10) C Y = 3
A * 6
B + S5+MAXLEV
X
*
(11)) decrement Y = 3
A * 6
B + 5+MAXLEV
X
*
c
(12) ; 0 emmememmmee- SAME ———--~=-———-

(13) Final result (empty) (empty)

0 ®* + O %> > <

4.3. EXAMPLE OF THE POPS PROCESSOR 4-13

4.3.2 The Interpreter

The POPS interpreter executes polish postfix code left by the POPS compiler. To do so requires 3 run-time
stacks: the main stack (STACK), the control stack (CSTACK) and a value stack (V).

The main stack holds operand addresses (tags). Corresponding to each operand, the appropriate position
in the value stack is loaded with a floating point number, found in core at the stack address. This number
may or may not be meaningful, depending on the type of data kept at that address. Operators will make
use of the address or value depending on which is appropriate.

The control stack is used to save the run-time location counter (L) and the program chunk link (LINK),
together with saved stack pointers, etc. While the main stack could be so used, it was felt that greater
reliability would ensue if the control stack were kept separate, guarding from user-caused stack errors (such
as leaving garbage on the main stack). Operations using the control stack require an authentication code to
appear on the top of the stack before they are activated.

The interpreter expects all operands to be negative integers; all operators, save 0 to be positive (0 is
considered a legitimate operand). Operands will be pushed onto the main stack. The value stack, described
above, holds intermediate results of computations, as well as the contents of memory when the stack was
loaded.

An example, using the arithmetic expression described in the polish compile segment:

Source code: Y = A * (B * X + C)

Compiled code

(1) -addr. of Y
(2) -addr. ot A
(3) -addr. of B
(4) -addr. of X
(5) +TAG of * operator
(6) -addr. of C
(7) +TAG of + operator
(8) +TAG of * operator
(9) +TAG of = operator

Execution: Suppose A = 1.5, B = 2.5, C = 3.5, X = 10.0

Token being

Step executed stack v
(1) Y (empty) (empty)
(2) A Y ERRERREE
(3) B Y ERERERRE
A 1.5
(4) X Y kkkkkkE
A 1.5
B 2.5

(5) * Y kR kkkER

4-14

(6)

m

(8)

(9)

(10)

CHAPTER 4. THE AIPS PROGRAM
A 1.5
B 2.5
X 10.0
C Y hkkkpkE
A 1.5
xREERRRE 25.0
+ Y EREEERRE
A 1.5
ERRERRREE 26.0
C 3.5
* Y L TIT T TY e
A 1.5
ERERRERERE 28.5
= Y T I TTY)
hkkkkkkkk 42.75
finish (empty) (empty)

4.4 Installing new VERBS

To install a new verb in AIPS several actions are required.

1.

Enter the new verb in POPSDAT.HLP and run POPSGN. The new verb will probably be TYPE 4
and should be assigned a verb number (TAG) greater than 100; making sure the verb number is not
already used. It should be noted that contiguous groups of verb numbers will use the same AU routine.
If the new verb is similar to existing verbs it should be put in the same AU routine if possible.

Create or modify an AU routine to perform the desired function. If there are available verb numbers
in the range available to the relevant AU routine, then the function can be added to that AU routine.
If not, then a new AU routine is required. Note that the branch code sent to the AU routine is the
verb number (one) relative to the first verb number in that AU routine. If the verb requires more than
a few lines of Fortran, the AU routine should call a subroutine to do the work.

. Modify VERBS, if necessary, to call the necessary AU routine when it is given the new verb number

(J in VERBS). The range of verb numbers in each routine is defined in the arrays IAB and IAE. If
new AU routines are added the dimensions of IAB and IAE should be changed and the upper limit on
the DO loop index for the loop terminating at statement label 5 should be changed. The computed
GO TO in this loop should be modified to include the new AU routine. New AU routines should be
added at the end of the list for simplicity. Note that there are three versions of VERBS (VERBS,
VERBSC, and VERBSB) for the interactive AIPS, the batch AIPS checker program, and batch AIPS
respectively. All three must have corresponding changes although an error return may be desired for
the two batch versions in the implementation of a new verb.

Compile the necessary subroutines and add them to the AIPS program subroutine library.

. Recompile and link edit AIPS.

Create a HELP file for the verb in the same manner as for a task. Verbs will work without a HELP
file, but it is much friendlier to write one.

4.4. INSTALLING NEW VERBS 4-15

As a convenience for developing new verbs, nine temporary verbs are available, TIVERB, T2VERSB, ...,
and T9VERB (verb numbers 900-908) These are accessible through the routine AUT. To use one of these
verbs all that is necessary is to modify AUT, recompile it, replace it in the AIPS program subroutine library
(COMRPL), and recompile AIPS and relink it. Once verbs are tested, they should be moved to a more
permanent AU routine if they meet AIPS’ portability standards.

The branch code sent to the AU routine is (one) relative to the first verb number in that AU routine.
If the verb has one or more arguments, they will be found in the value stack V in common /POPS/ in
the reverse of the order in which they were specified. Real values can then be obtained as in the following
example:

SUBROUTINE TESTXX

C —_——
C Routine to average the top two numbers on the V stack.
C This routine is designed to be run from VERBS rather than KWICK,
Cc that is, it should be called from an AU routine.
c
REAL Vi, V2, RESULT
INTEGER POTERR
CHARACTER PRGNAM*6
PARAMETER (PRGNAM = ’TESTXX’)
INCLUDE ’INCS:DPOP.INC’
INCLUDE ’INCS:DERR.INC’
C -
C Set potential error number,
c 7 = ’STACK LIMIT’
POTERR = 7
c Check that stack not
c exhausted.
IF (SP.GE.2) THEN
C Get values from stack.
Vi = V(SP-1)
V2 = V(SP)
c Average.
RESULT = (V1 + V2) / 2.0
c For two operands change SP and,
C STACK, for one don’t change
c SP or STACK.
SP =8P -1
STACK(SP) = 0
(o If the verb returns a value,
C RESULT, do the following.
V(SP) = RESULT
C Set error code
ELSE
ERRNUM = POTERR
c Fill in /ERRORS/.
ERRLEV = ERRLEV + 1
IF (ERRLEV.LE.5) PNAME(ERRLEV) = PRGNAM
END IF
C Return
999 RETURN

END

4-16 CHAPTER 4. THE AIPS PROGRAM

The stack contents are as follows when a verb is called with an immediate argument:

1. For a real scalar including a subscripted real array adverb,

SP =1 STACK(SP) = TAG V(SP) = C(TAG) (=value)

2. For an array adverb,

SP =1 STACK(SP) = TYPE V(SP) may be ignored
2 |
3 TAG
4 2

where for TYPE = 2,7 N = K array pointer to array
descriptor block,

number of characters,

100 * character offset +

characters

14
9

Adverbs may be accessed by name using the name as defined in the include DAPL.INC. Note that the order
of adverbs is really defined in the POPSDAT.HLP file and the order in DAPL.INC must correspond exactly.
Also, all adverbs are of Fortran data type REAL, although they may contain character strings. Note that
character strings are stored as HOLLERITH which are allocated storage space as (NCHAR+3)/4 REAL
locations.

4.5 Installing new ADVERBS

New, temporary, adverbs can be created in an executing AIPS task by SCALAR, ARRAY or STRING
statements in a procedure. Permanent installation of an adverb requires entering it in POPSDAT.HLP,
running POPSGN to update the memory files, and adding a variable into the declarations in common
/CORE/ in the include DAPL.INC. The new adverbs should be entered in the same relative location among
the other adverbs in common as in the POPSDAT file. At the end is, of course, best. The adverb value will
be kept in this variable and is, therefore, directly available to verbs. A HELP file should be written for any
permanent adverb.

4.6 POPSGN

The initial contents of the POPS memory files, and hence the LISTF and K arrays, are set by the stand
alone utility program POPSGN. This program takes as input the file POPSDAT.HLP.

4.6.1 Function

The function of POPSGN is to initialize the contents of LISTF (the source code for procedures) and the
K array when AIPS starts up by storing the contents in the POPS memory (“ME”) files. This program is
normally found in the same place as the AIPS program itself and asks for instructions directly from the key
board. When the program begins it asks:

ENTER NPOPS1,NPOPS2,IDEBUG,MNAME,VERSION

The response is in free format (blanks between entries) and should be as follows:

4.6. POPSGN 4-17

NPOPS1 The lowest POPS number for this run of POPSGN, this
is normally 1.

NPOPS2 The highest POPS number for this run of POPSGK, this
is normally the highest POPS number run = No.
interactive POPS + number of batch queues + 1.

IDEBUG If not O, POPSGKR will give lots of debug messages.
Use O.

MNAME The name of the file in the HELP area that contains
the input file for POPSGR. This is normally
POPSDAT.HLP; type only ’POPSDAT’.

VERSION This specifies the version of AIPS to have the
memory files updated. Normally this is blank
which will update the ’TST’ area; ’NEW’ and ’OLD’
are also understood by POPSGN.

After POPSGN has digested POPSDAT.HLP it will return a “>” prompt. Type a blank line to terminate
the input and POPSGN will update the memory files.

4.6.2 POPSDAT.HLP

The bulk of the definitions of verbs, adverbs, and standard procedures are defined in the POPSDAT file.
A “C-” in columns one and two indicate a comment line. A “/” character conventionally indicates the
beginning of an end-of-line comment which must begin after column 44. The names of symbols begin in
column 1 with no embedded blanks and may have no more than 8 characters. The POPSDAT file is read
with a (A8,1X,13,1X,13,1X,14,1X 14,2(1X,F7.2)) format.

The first portion of the POPSDAT file defines the POPS verbs. Most of these verbs and pseudo verbs
with verb numbers (TAG) less than 100 reside in the AIPS routine KWICK. Verb numbers greater than
100 are all in AU routines called by VERBS. The values following the symbol name are (1) the number of
characters in the symbol name, (2) the symbol type (4 or 5 for verbs and pseudo verbs) and (3) the TAG, in
this case the verb number. The end-of-line comments for verbs with numbers (TAG) greater than 100 tell
the AU routine in which that verb is found.

Following the verbs come the adverb definitions. The values following the symbol name are: (1) the
number of characters in the symbol name, (2) the symbol type (see the section of TYPEs and TAGs). For
scalar, real adverbs (TYPE 1) the next two integer fields are blank and the following REAL field (F7.0) is
taken to be the initial value of that scalar.

For real arrays (TYPE 2), the first value past the TYPE field is the number of dimensions (1 or 2), the
next integer field is blank and the following one or two REAL (F7.1) fields give the number of positions in
each of the one or two dimensions.

For character string variables (TYPE 7) the first integer field past the TYPE is the number of dimen-
sions; where the characters in the each string constitute the first dimension. Thus there can only be single
dimensional character string array adverbs. The next integer field is blank and the next REAL (F7.0) field
is the number of characters in the string. For character string arrays the following REAL (F7.0) field is the
second dimension, i.e., the number of elements in the array.

An adverb named QUIT with TYPE = 6 tells POPSGN that all verb and adverb definitions have been

read. Following this, normal POPS commands may be entered and the definitions of the standard procedures
are normally entered here. A “+” in column 1 indicates a POPS comment line. The end of file terminates

the input.
The current contents of POPSDAT is shown in the following:

4-18 CHAPTER 4. THE AIPS PROGRAM

; POPSDAT
’
;! lists all POPS symbols, used to create them in MEmory files
;# List POPS

; This software is the subject of a User agreement and is

; confidential in nature. It shall not be sold or otherwise

; made available or disclosed to third parties.

’
POPSDAT LLLLLLLLLLLLUUUUUUUUUUUU CCCCCCCCCCCCCccceccccccccecece

Cc- This module is POPSDAT.
. 1 4 1 --1

(1 4 2 |

) 1 4 3 |

= 1 4 4 |

+ 1 4 5 |

- 1 4 6 | subtract
* 1 4 7 |

/ 1 4 8]

= 2 4 9 !

> 1 4 10 |

< 1 4 11 |

+ i 4 12 |

- 1 4 13 | unary
= 1 4 14 |

TO 2 4 ib6 |

: 2 4 156 |

BY 2 4 16 |

= 1 4 17 | logical
! 1 4 18 |

& i 4 19 i

; 1 4 20 I

FOR 3 4 21 |

END 3 4 22]

READ 4 4 23 |

TYPE 4 4 24

PRINT 5 4 24 |
RETURN 6 4 25

LENGTH 8 4 26 |

c- 27 | res array equates
C-RUN 3 4 28 |
C-EXIT 4 4 29 |
C-RESTART 7 4 30 |

LOG 3 4 31

LN 2 4 32

MOD 3 4 33

MODULUS 7 4 34

ATAN2 13 4 36

SIN 3 4 36

Ccos 3 4 37

TAN 3 4 38

ATAN 4 4 39

SQRT 4 4 40

DUMP 4 4 41

4.6. POPSGN 4-19

<= 2 4 42 |

>= 2 4 43 |

< 2 4 44 I

EXP 3 4 45

SUBSTR 6 4 46

' 2 4 a7

CHAR 4 4 48

VALUE 6 4 a9

MSGKILL 7 5 50O --1 PSEUDO
PROCEDURE 9 65 b1 -=1

PROC 4 5 51 |

ARRAY 6 6 52 |

ELSE 4 65 53

THEN 4 b5 54

FINISH 6 5 55]

DEBUG 6 & 56 |

IF 2 5 87 |

STRING 6 &5 58

WHILE 6 65 59

SCALAR 6 5 60

EDIT 4 5 61 | EDITOR
ENDEDIT 7 5 62 ol

MODIFY 6 &5 63

C~-storecode 64 --| reserved
STORE 6 5 65 |

RESTORE 7 5 66 |

SAVE 4 5 67 |

GET 3 5 68 I

LIST 4 5 69 | -~ STORES
CORE 4 65 70 i

SCRATCH 7 5 T1 |

COMPRESS 8 5 T2 |
C-endmodify 73 --| reserved
SHOW 4 5 76 | -~ HELPS
TELL 4 b6 77 | -~ HELPS
ISBATCH 7 65 78 | -~ PSEUDO
ERASE 5 5 79 | -~ EDITOR
RUN 3 65 80 | -- HELPS
HELP 4 5 81 -1

INP 3 5 82 -=|

INPUTS 6 5 83

GO 2 5 84

TGET 4 5 85

SGDESTR 7 5 86

ABORTASK 8 5 87

TPUT 4 5 88

WAITTASK 8 5 89

EXPLAIN 7 5 90

CEIL 4 4 91

FLOOR 5 4 92

ABS 3 4 93

MAX 3 4 94

MIN 3 4 95

4-20 CHAPTER 4. THE AIPS PROGRAM

c- 96 ~-| res: END
c- o7 res: WHILE
c- 98 res: SUBS
c- 99 res: NOP
PRTNMSG 6 4 100 | AUl
EXIT 4 4 101

RESTART 7 4 102

CLRMSG 6 4 103

C-HELP 110 | AU1A
C-INP 111

C-INPUTS 112

C-EXPLAIR 113

C-SHOW 114

C-GO 2 4 120 | AU2
SPY 3 4 121

C-WAITTASK 122

C-ABORTASK 8 4 123

C-TPUT 4 4 124

C-TELL 4 4 1256

STQUEUE 7 4 126

SETDEBUG 8 4 127

C-TGET 130 | AU2A
C-SGDESTR 131

TGINDEX 7 4 132

SGINDEX 7 4 133

CATALOG 7 4 150 | AU3
MCAT 4 4 151

IMHEADER 8 4 152

ZAP 3 4 153

UCAT 4 4 154

QHEADER 7 4 155

PCAT 4 4 156

FREESPAC 8 4 160 | AU3A
ALLDEST 7 4 161

TIMDEST 7 4 162

SAVDEST 7 4 163

SCRDEST 7 4 164

RENUMBER 8 4 170 | AU3B
RECAT 5 4 171

TPHEAD 6 4 180 | AU4
AVFILE 6 4 181

AVMAP 5 4 182

REWIND 6 4 183

AVEQT 6 4 184

MOUNT 6 4 185

DISMOUNT 8 4 186

TVINIT 6 4 200 | AUS
TVCLEAR 7 4 201

GRCLEAR 7 4 202

TVON 4 4 203

TVOFF 5 4 204

GRON 4 4 205

GROFF 6 4 206

4.6. POPSGN 4-21

TV3COLOR 8 4 207

TVPOS 65 4 208

IMXY 4 4 209

IMPOS 6 4 210

TVNAME 6 4 211

CURBLINK 8 4 212

TVLOD 5 4 220 | AUSA
TVROAM 6 4 221

SETROAM 7 4 222

REROAM 6 4 223

TVLABEL 7 4 240 | AUSB
TVWLABEL 8 4 241

TVANOT 6 4 242

TVWEDGE 7 4 250 | AUSC
IMWEDGE 7 4 251

WEDERASE 8 4 252

IMERASE 7 4 253

TVWINDOW 8 4 254

TVBOX 65 4 256

TVSLICE 7 4 256

REBOX 5 4 257

TVMOVIE 7 4 260 | AUSD
REMOVIE 7 4 261

TVCUBE 6 4 262

OFFPSEUD 8 4 280 | AU8
OFFZ0O0M 7 4 281

OFFSCROL 8 4 282

TVZOOM 6 4 283

TVSCROL 7 4 284

TVPSEUDO 8 4 285

TVHUEINT 8 4 286

OFFTRAN 7 4 290 | AUBA
TVTRANSF 8 4 201

TVBLINK 7 4 292

TVMBLINK 8 4 203

TVLUT 6 4 294

TVMLUT 6 4 295

TVSPLIT 7 4 296

CURVALUE 8 4 300 | AU6B
C-TVALL 5 4 305 | AvueC
TVFIDDLE 8 4 306

TVSTAT 6 4 310 | AU6D
IMSTAT 6 4 311

PRTHI 5 4 330 | AU7
RENAME 6 4 331

RESCALE 7 4 332

CLRSTAT 7 4 333

AXDEFINE 8 4 334

ALTDEF 6 4 335

ALTSWTCH 8 4 336

CELGAL 6 4 337

ADDBEAM 7 4 340 | AU7A
PUTHEAD 7 4 341

4-22

GETHEAD
PUTVALUE
CLRNAME
GETNAME
GET2RAME
GET3NAME
EXTDEST
CLR2NAME
CLR3NAME
EGETNAME
GETONAME
CLRONAME
EXTLIST
MAXFIT
IMVAL
QIMVAL
TKPOS
TKVAL
TKXY
TKSLICE
TKASLICE
TKMODEL
TKAMODEL
TKRESID
TKARESID
TKGUESS
TKAGUESS
TKSET
TK1SET
SUBMIT
BATCH
BATEDIT
UNQUE
BATCLEAR
BATLIST
QUEUES
JOBLIST
BAMODIFY
GRIPE
GRINDEX
GRLIST
PASSWORD
GRDROP
T1VERB
T2VERB
T3VERB
T4VERB
TSVERB
TEVERB
T7VERB
T8VERB
TOVERB

USERID

DDA OOONNONDNTOONNNNDONONO0 NN NO0NWONOONO I 000 0000 ~ 0 0~ ~ 0~

o B B B B W B B B B B o B B R B B D D B o B B B B o i B o B B B R B D B B B oD B B B B B B B B B D

342
343
360
361
362
363
364
3656
366
367
368
369
370
390
391
392
400
401
402
410
411
412
413
414
415
416
417
420
421

444
445
446
447
448
460
461
462
463
464
900
901
902
903
904
905
906
907
908

0.00

CHAPTER 4. THE AIPS PROGRAM

| AUS

| AUSA
| AU®

| AU9A

| AU9B

| AU9C

| AUA

| AUC

| AUT

4.6. POPSGN

INNAME
INCLASS
INSEQ
INDISK
INTYPE
IN2NAME
IN2CLASS
IN2SEQ
IN2DISK
IR2TYPE
IN3NAME
IN3CLASS
IN3SEQ
IN3DISK
IN3TYPE
OUTNAME
OUTCLASS
OUTSEQ
OUTDISK
OUT2NAME
OUT2CLAS
OUT2SEQ
0UT2DISK
INEXT
IN2EXT
IN3EXT
INVERS
IN2VERS
IN3VERS
BADDISK
INTAPE
OUTTAPE
NFILES
NMAPS
TASK
DOWAIT
PRIORITY
BLC

TRC

XIRC
YINC
PIXXY
PIXVAL
PIXRANGE
FACTOR
OFFSET
TVBUT
XTYPE

XPARM
YTYPE
YPARM
OPCODE
FURCTYPE

mmmcmom-b.&wwmo»maﬂaﬂﬂﬂaoommﬂmmﬂamﬂﬂﬂamﬂﬂﬂamﬂcnamqa

0o oo,

Ll e e I S e B R I e B e B B S R B e P I I T T T I N VO Oe e

NNNN=N

-

-

- [-
NN O

OO0 0000000000 o 0O OO
OOOOOOOOOOOOOSOOOOgg

O 00000 o
oooooooogoo

o

N O OONONRKLRN~NO
o

O O 0000
(=]

o

10.00
5.00
10.00
4.00
2.00

4-23

4-24

ROTATE
GAIN
NITER
FLUX
OBJECT
QUAL
STOKES
BAND
TVCHAR
GRCHNAN
TVLEVS
TVCORN
COLORS
TVXY
DOTV
BATQUE
BATFLINE
BATNLINE
JOBNUM
LTYPE
PLEV
CLEV
LEVS
XYRATIO
DOINVERS
DOCENTER
ZXRATIO
SKEW
DOCONT
DOVECT
ICUT
PCUT
DIST
IMSIZE
CELLSIZE
SHIFT
SORT
UVTAPER
UVRANGE
UVNTFN
UVBOX
DOGRIDCR
ZEROSP
BITER
BMAJ
BMIN

BPA
NBOXES
BOX
DOEOF
NDIG
DOCAT
DOHIST
BDROP

NN DO WOOWPDDANARODNAENNPRNORD P PROIDRNOONPR R BRONIDO VRN D OO b®

. A e D) e e e e N ST NN N NNN R e R e e e N R e e e N N e NN] e e

[T T O T

25

|
O - b b= 0O OO

[=]

]

OO WOOONMNON

W
[=]

.00
.10
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

0.00

1
-

.00

1.00
0.25

»
[<,]

ORHOHRPOOOOO MM

QN NNNNNNWOO M K

.00
.00
.00
.10
.10
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

10.00

CHAPTER 4. THE AIPS PROGRAM

4.6. POPSGN 4-25

EDROP 5 1 0.00
ASPMM 5 1 0.00
MINPATCH 8 1 61.00
APARM 5 2 1 10.00
BPARM 5 2 1 10.00
GPOS 4 2 2 2.00 4.00
GMAX 4 2 1 4.00
GWIDTH 6 2 2 3.00 4.00
DOPOS 5 2 2 2.00 4.00
DOMAX 5 2 1 4.00
DOWIDTH 7T 2 2 3.00 4.00
NGAUSS 6 1 0.00
TRANSCOD 8 7 i 14.00
AXREF 5 1 1.00
NAXIS 5 1 3.00
AXINC 5 1 0.00
AXVAL 5 2 1 2.00
AXTYPE 6 7 1 8.00
DOSLICE 7 1 1.00
DOMODEL 7 1 -1.00
DORESID 7 1 =-1.00
ROMODE 6 1 0.00
DETIME 6 1 0.00
DOCRT 6 1 -1.00
CHANNEL 7 1 0.00
CPARM 5 2 1 10.00
DPARM 5 2 1 10.00
DOALIGN 7 1 1.00
NPOINTS 7 1 1.00
AX2REF 6 1 0.00
DOALL 5 1 =-1.00
TXINC 5 1 1.00
TYINC 6 i 1.00
TBLC 4 2 1 7.00
TTRC 4 2 1 7.00
VERSION T 7 1 48.00
DOEQT 5 1 1.00
DOSTOKES 8 1 -1.00
PRTLEV 6 b 0.00
DOARRAY 7 1 -1.00
ZIKRC 4 1 1.00
TZINC 5 1 1.00
BCHAN 5 1 1.00
ECHAN 5§ 1 0.00
RESTFREQ 8 2 1 2.00
INFILE 6 7 1 48.00
IN2FILE 7 7 1 48.00
OUTFILE 7 7 1 48.00
DENSITY 7 1 1600.00
KEYWORD 7T 7 1 8.00
KEYVALUE 8 2 1 2.00
KEYSTRNG 8 7 1 16.00
BCOUNT 6 1 1.00

4-26

ECOUNT
NCOUNT
DOTABLE
DOTWO
COPIES
PRNUMBER
PRTIME
PRTASK
CTYPE
PIXAVG
PIXSTD
DOCIRCLE
CHINC
NFIELD
FLDSIZE
RASHIFT
DECSHIFT
PHAT
GAINERR
TIKSMO
DOOUTPUT
DOCONCAT
DONEWTAB
DOCONFRM
DOALPHA
ERROR
GRNAME
GRADDRES
GRPHONE
SLOT
VLAOBS
VLAMODE
CMETHOD
CMODEL
BCOMP
NCOMP
LPEN
PRSTART
OPTYPE
DOWEDGE
SOURCES
CALSOUR
TIMERANG
SUBARRAY
BIF

EIF
ANTENXAS
BASELINE
DOCALIB
INTERPOL
SMOTYPE
INTPARM
FLAGVER
GAINVER

NNNANONOOOWWO0ONNNONRONONDENNDOARNODON NDODWOWODNPONTOANDANNOANADANNOOO

o N NN DN R R R D NN R R R DRSNS NN RN NN R R NN RN R R RN R R R e e e e

[

SV O PO

NN

N+t OO W01 OO = OO

L - LU 1 Ww - -
[+ = T S - - -]

[

-
B WO PRNER,O

-
[«]

.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

8.00

O =

.00
.00

0.00

O O W b

.00
50.
.00
.00
.00
.00
.00
.00

00

16.00

30.00
30.00

CHAPTER 4. THE AIPS PROGRAM

4.6. POPSGN

GAINUSE
REASON
SAMPTYPE
CODETYPE
NOISE
PBSIZE
OUTVERS
DOCELL
PIX2XY
PIX2VAL

STFACTOR
CUTOFF
OPTELL
FORMAT
BLVER
BPVER
ANTVT
SOLINT
CALCODE
REFANT
SMODEL
SOLTYPE
SOLNMODE
SOLCON
WTUV
DODELAY
SYSVEL
VELDEF
VELTYP
RESTFREQ
DOBNMS
BLOCKING
PMODEL
DOPOL
DOBAND
SMOOTH
DOUVCOMP
REVEIGHT
REFDATE
SELBAND
SELFREQ
FREQID
CHANSEL
FQTOL

Cc- Adverbs
STRA1
STRA2
STRA3
STRB1
STRB2
STRB3
STRC1
STRC2

NN oOR N

N NDADNNNTNODONDDADONDNDOONORNOOOOON PRI NOOPOONTOTNOTEOOO ®

N = DN SNSN -

[I A B S A C RN SN S I B B L O B B S I B U I S B

1

- e e

2

O N O W

1
= = O ¥ OO

w
o

] [}
N = Wer N =N 0O = OO ~NOWBO

below are dummys for

oo on

7

N~NNN~NNN

P N T S N S SN VNS

4.
.00

8

12.
4.
8.

12,

.00

4

8.

.00
24.
.00
.00
64.
64.
.00
.00
.00
.00

00

00
00

.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00 10.00
-1.

00
testing.
00

00
00
00
00

00

4-27

4-28 CHAPTER 4. THE AIPS PROGRAM

STRC3 5 7 1 12.00
ARRAY1 6 2 1 10.00
ARRAY2 6 2 2 20.00 2.00
ARRAY3 6 2 1 3.00
SCALR1 6 1 1.00
SCALR2 -] 1 0.00
SCALR3 6 1 0.00
C- Quit tells POPSGN ’end of adverbs’.
QUIT 4 6

=

VERSION = ’ ’; OPTELL = ’CHAN’

DOPOS = 1 ; DOMAX = 1 ; DOWIDTH = 1 ;
=

PROC TSTDUM

SCALAR X, Y, I , J , DELTAX , DELTAY
FINISH

*

PROC SETXWIN(DELTAX,DELTAY);IMXY;BLC(1)=PIXXY(1)-DELTAX/2

TRC(1)=BLC(1)+DELTAX;BLC(2)=PIXXY(2)-DELTAY/2;

TRC(2)=BLC(2)+DELTAY ;RETURN;FINISH

*

PROC OFFROAM; I=TVCHAN;J=GRCHAN; TVCHAN=1234;GRCHAN=1234;

OFFSCROL ; TVOFF ; GRCHAN=J ; TVCHAN=I ; TVON; RETURN ; FINISH

*

PROC OFFHUINT; I=ABS(TVCHAN); IF I < 12 THEN I=12; END
=M0D(1/10,10);I=MOD(I,10);TVOFF(1234);0FFPS; TVCH=I;0FFTR;

TVCH=J ; OFFTR; TVON ; RETURN

FINISH

*

PROC TKWIN;TKXY;BLC=PIXXY;TKXY;TRC=PIXXY;

RETURN;FINISH

*

PROC TKBOX(I); TKXY;BOX(1,I)=PIXXY(1);B0OX(2,I)=PIXXY(2)
TKXY;BOX(3,I)=PIXXY(1);BOX(4,I)=PIXXY(2);RETURN;FINISH

=

PROC TKNBOXS(NBOXES); FOR J=1:NBOXES;

TYPE ’SET BOX NUMBER’,J,’ :?;TKBOX(J);END;RETURN

FINISH

E 3

PROC TVRESET; COLOR=0;TVOFF(12345);TVON(TVCH); OFFZ; OFFSC;

OFFPS; GRCH=0;GRCLEAR; OFFTR;RETURN; FINISH

*x

PROC TVALL; TVOFF(1234);0FFZ00M;TVON(TVCH) ; GROFF(1234); J=GRCH;

GRCH=24; GRCL ; GRCH=J ; TVCL ; TVLOD ; TVWED (16) ; TVWLAB; TVFID; RETURN

FINISH

e ———— e ———————— e cmccmme

4.7 INCLUDEs
4.7.1 DAPL.INC

C Include DAPL.
C length before adverdb values

4.7. INCLUDES 4-29

INTEGER K(14770)

full length

REAL Cc(18944)
HOLLERITH CH(18944)

L 2EE 2R R BRI B R R ER 4

L 2N K B BE R R R K

character strings

HOLLERITH INNAM(3), INCLS(2), INTYP, IN2NAM(3), IN2CLS(2), IN2TYP,

IN3NAM(3), IN3CLS(2), IN3TYP, OUTNAM(3), OUTCLS(2), OU2NAM(3),
ou2CLS(2), INEXT, IN2EXT, IN3EXT, TASK(2), OPCODE, FUNTYP,
OBJECT(2), STOKES, BAND, SORT, UVWTFN, TRANSC(4), AXTYPE(2),
VERSON(12), INFLL(12), IN2FLL(12), OUTFLL(12), KEYWRD(2),
KEYSTR(4), PRTASK(2), GRNAME(5), GRADDR(12), GRPHON(4),
VLAOBS(2), VLAMOD, CMETHX, CMODXX, OPTYPE, CSOURS(4,30),
CCALS(4,30), CINTPL, CSMOTY, CREASO(6), SMPTYP, CDETYP, OPTELL,
VELDEF(2), VELTYP(2), XREFDA(2),

STRA1, STRA2(2), STRA3(3), STRBi, STRB2(2), STRB3(3),

STRC1, STRC2(2), STRC3(3)

numeric variables

REAL XTRUE, XFALSE, USERID, INSEQ, INDSK, IN2SEQ, IN2DSK,

IN3SEQ, IN3DSK, OUTSEQ, OUTDSK, OU2SEQ, OU2DSK, INVER, IN2VER,
IN3VER, BADDSK(10), INTAPE, OUTTAP, NFILES, NMAPS, DOWAIT,
PRIOTY, BLCORN(7), TRCORN(7), XINC, YINC, PIXXY(7), PIXVAL,
PXRANG(2), FACTOR, OFFSET, TVBUTT, XTYPE, XPARM(10), YTYPE,
YPARM(10), ROTATE, GAIN, NITER, FLUX, QUAL, TVCHAN, GRCHAN,
TVLEVS, TVCORN(2), COLORS, TVXY(2), DOTV, BATQUE, BTFLIN,
BTNLIN, JOBNUM, LTYPE, PLEV, CLEV, LEVS(30), XYRATO, DOINVR,
DOCENT, ZXRATO, SKEW, DOCONT, DOVECT, ICUT, PCUT, DIST,
IMSIZE(2)

REAL CELSIZ(2), SHIFT(2), UVTAPR(2), UVRANG(2), UVBOX, DOGRDC,

L 2K JER JEE JEE JEE IR IR

ZEROSP(5), BITER, CBMAJ, CBMIK, CBPA, NBOXES, BOX(4,10), DOEOF,
NDIG, DOCAT, DOHIST, BDROP, EDROP, ASPMM, MPTCH, APARNMS(10),
BPARMS(10), GPOS(2,4), GMAX(4), GWIDTH(3,4), ERRP0OS(2,4),
ERRMAX(4), ERRWTH(3,4), NGAUSS, AXREF, NAXIS, RAXINC, AXVAL(2),
DOSLIC, DOMODL, DORESI, ROMODE, DETIME, DOCRT, CHANKL,
CPARM(10), DPARM(10), DOALIN, NPONTS, AX2REF, DOALL, TVXINC,
TVYINC, TVBLCO(7), TVTRCO(7), DOEOT, DOSTOK, LEVPRT, DORRAY,
ZINC, TVZINC, BECHAN, ENCHAN, RESTFR(2), DENSTY, KEYVAL(2)

REAL BEGCNT, ENDCNT, NUMCNT, DOTABL, DOTWO, COPIES, PRNUMB,

L JEE JEE JEE K B BR BN

*
*
E 3
*
*

%
*

PRTIME, CTYPES(4), PIXAVG, PIXRMS, DOCIRC, XCHINC, XKFIEL,
XFLDSZ(2,16), XRASHF(16), XDCSHF(16), XPHAT, XGNERR(30),
XTMSMO(30), DOOUTP, DOCNCT, DONEW, DOCONF, DOALPH, ERRORA,
SLOTAD, XBCOMP(16), XNCOMP(16), QMSPEN, PRSTRT, DOWDGE,
XTIMR(8), XSUBAR, XBIF, XEIF, XANTS(50), XBASLN(50), XDOCAL,
XINTPR(3), XFLGVE, XGAVER, XGAUSE, ANOISE(64), PBSIZE(64),
OUTVER, DOCELL, PIX2XY(7), PIX2VL, STFCTR, CUTOFF, TAMROF,
XBLV, XBPV, XANTWT(30), XSOLIN, XCALCO, XREFA, XSMODE(7)

REAL XSOLTY, XSOLMO, XSOLCO, XWTUV, XDODEL, XSYSVL, DOHMS,

BLOCKD, XPMDL(7), XDOPOL, XDOBND, XSMOTH(3), XDOUVC, XXREWT(2),
XSELBN, XSELFQ, XFQID, CHNSEL(3,10), XFQTOL,
ARRAY1(10), ARRAY2(20,2), ARRAY3(3), SCALR1, SCALR2,
SCALR3

COMMON /CORE/ K, XTRUE, XFALSE, USERID, INNAM, INCLS, INSEQ,

INDSK, INTYP, IN2NAM, IN2CLS, IN2SEQ, IN2DSK, IN2TYP, IN3NAN,
IN3CLS, IN3SEQ, IN3DSK, IN3TYP, OUTNAM, OUTCLS, OUTSEQ, OUTDSK,
OU2NAM, OU2CLS, OU2SEQ, OU2DSK, INEXT, IN2EXT, IN3EXT, INVER,

4-30 CHAPTER 4. THE AIPS PROGRAM

IN2VER, IN3VER, BADDSK, INTAPE, OUTTAP, NFILES, NMAPS, TASK,
DOWAIT, PRIOTY, BLCORN, TRCORN, XINC, YINC, PIXXY, PIXVAL,
PXRANG, FACTOR, OFFSET, TVBUTT, XTYPE, XPARM, YTYPE, YPARNM,
OPCODE, FUNTYP, ROTATE, GAIN, NITER, FLUX, OBJECT, QUAL,
STOKES, BAND, TVCHAN, GRCHAN, TVLEVS, TVCORN, COLORS, TVXY,
DOTV, BATQUE, BTFLIN, BTNLIN, JOBNUM, LTYPE, PLEV, CLEV, LEVS,
XYRATO, DOINVR, DOCENT, ZXRATO, SKEW, DOCONT, DOVECT, ICUT,
PCUT, DIST, IMSIZE

COMMON /CORE/ CELSIZ, SHIFT, SORT, UVTAPR, UVRANG, UVWTFN, UVBOX,
DOGRDC, ZEROSP, BITER, CBMAJ, CBMIN, CBPA, NBOXES, BOX, DOEOF,
¥DIG, DOCAT, DOHIST, BDROP, EDROP, ASPMM, MPTCH, APARMS,
BPARMS, GPOS, GMAX, GWIDTH, ERRPOS, ERRMAX, ERRWTH, NGAUSS,
TRANSC, AXREF, NAXIS, RAXINC, AXVAL, AXTYPE, DOSLIC, DOMODL,
DORESI, ROMODE, DETIME, DOCRT, CHANNL, CPARM, DPARM, DOALIN,
NPONTS, AX2REF, DOALL, TVXINC, TVYINC, TVBLCO, TVTRCO, VERSON,
DOECT, DOSTOK, LEVPRT, DORRAY, ZINC, TVZINC, BECHAN, ENCHAN,
RESTFR, INFLL, IN2FLL, OUTFLL, DENSTY, KEYWRD, KEYVAL, KEYSTR,
BEGCNT, ENDCNT, NUMCNT, DOTABL, DOTWO, COPIES, PRNUMB, PRTIME,
PRTASK, CTYPES, PIXAVG, PIXRMS, DOCIRC, XCHINC, XNFIEL, XFLDSZ

COMMON /CORE/ XRASHF, XDCSHF, XPHAT, XGNERR, XTMSMO, DOOUTP,
DOCNCT, DONEW, DOCONF, DOALPH, ERRORA, GRNAME, GRADDR, GRPHON,
SLOTAD, VLAOBS, VLAMOD, CMETHX, CMODXX, XBCOMP, XNCOMP, QMSPEN,
PRSTRT, OPTYPE, DOWDGE, CSOURS, CCALS, XTIMR, XSUBAR, XBIF,
XEIF, XANTS, XBASLN, XDOCAL, CINTPL, CSMOTY, XINTPR, XFLGVE,
XGAVER, XGAUSE, CREASO, SMPTYP, CDETYP, ANOISE, PBSIZE, OUTVER,
DOCELL, PIX2XY, PIX2VL, STFCTR, CUTOFF, OPTELL, TAMROF, XBLV,
XBPV, XANTWT, XSOLIN, XCALCO, XREFA, XSMODE, XSOLTY, XSOLMO,
XSOLCO, XWTUV, XDODEL, XSYSVL, VELDEF, VELTYP, DOHMS, BLOCKD,
XPMDL, XDOPOL, XDOBND, XSMOTH, XDOUVC, XXREWT, XREFDA, XSELBN,
XSELFQ, XFQID, CHNSEL, XFQTOL,

STRA1, STRA2, STRA3, STRB1, STRB2, STRB3, STRC1i, STRC2,
STRC3, ARRAY1, ARRAY2, ARRAY3, SCALR1, SCALR2, SCALR3
EQUIVALENCE (K(1), c(1), CH(1))
c End DAPL.

LK N IR L R IR R

L 2K JEE K B 2R BE B N N

L R K R B IR R IR L IR R R

4.7.2 DBAT.INC

C Include DBAT.
INTEGER BATLUN, BATIRD, BATREC, BATDUM, BATDAT(256)
COMMON /BATCH/ BATLUN, BATIND, BATREC, BATDUM, BATDAT

c End DBAT.

4.7.3 DBWT.INC

c Include DBWT.
INTEGER BWTNUM, BWTLUN, BWTIND, BWTREC, BWTDAT(256)
LOGICAL WASERR
CHARACTER BWTRAM*48
COMMON /BWTCHC/ BWTNAM
COMMON /BWTCH/ BWTDAT, BWTNUM, BWTLUN, BWTIND, BWTREC, WASERR
[End DBWT.

4.7. INCLUDES 4-31

4.7.4 DCON.INC

C Include DCON.
INTEGER K(18944), KXORG
REAL Cc(18944)
HOLLERITH CH(18944)
COMMON /CORE/ K
EQUIVALENCE (K(1), C(1), CH(1)), (X(8), KXORG)
c End DCON.

4.7.5 DERR.INC

c Include DERR.
C POPS error handling for OERROR
INTEGER ERRNUM, IERROR(10), ERRLEV
CHARACTER PNAME(10)*6
COMMOX /ERRORS/ ERRNUM, IERROR, ERRLEV
COMMON /ERRORC/ PNAME
c End DERR.

4.7.6 DIO.INC

C Include DIO.
INTEGER NBYTES, KARLIM, IUNIT
CHARACTER KARBUF#*80, JBUFF+*80, HOLDUF+80, IPT*1
COMMOK /POPSIO/ NBYTES, KARLIM, IUNIT
COMMON /POPCIO/ KARBUF, JBUFF, HOLDUF, IPT
c End DIO.

4.7.7 DPOP.INC

C Include DPOP.
INTEGER KT, LPGM, LLIT, LAST, IDEBUG, MODE, IFFLAG, LINK,
* L, NAMEP, IP, LP, SLIM, AP, BP, ONE, ZERO, TRUE, FALSE,
* STACK(100), CSTACK(100), SP, CP, SPO, MPAGE, LPAGE
REAL V(100), XX
COMMON /POPS/ V, XX, KT, LPGM, LLIT, LAST, IDEBUG, MODE, IFFLAG,
* LINK, L, NAMEP, IP, LP, SLIM, AP, BP, ONE, ZERO, TRUE, FALSE,
* STACK, CSTACK, SP, CP, SPO, MPAGE, LPAGE
c End DPOP.

4.7.8 DSMS.INC

C Include DSMS.
INTEGER NKAR, KBPTR, NEWCOD, TYPE, TAG, LEVEL, LX, NEXTP, LOCSYM
REAL SKEL, X(25)
HOLLERITH KPAK(5)
COMMON /SMSTUF/ KPAK, X, SKEL, NKAR, KBPTR, NEWCOD, TYPE,

* TAG, LEVEL, LX, NEXTP, LOCSYM
C End DSMS.

4-32 CHAPTER 4. THE AIPS PROGRAM

Chapter 5

Catalogs

5.1 Overview

AIPS keeps a catalog with a directory which contains an entry for each data file and its associated extension
files. The catalog header record is used to keep various pieces of information about the data in the main
data file and keeps track of the number and types of extension files associated with the main data file. These
catalog header records are kept in individual files. The intent of this chapter is to describe the contents of
the catalog header and to describe the use of the routines that access the catalog header record.

The information in the catalog header record is patterned after the FITS format tape header, although it
is not as flexible. The catalog header describes the order and amount of data and maximum and minimum
values, etc.

AIPS data files have a structure very similar to the structure of data of FITS format tapes. An image
consists of a rectangular array of up to 7 dimensions. Pixel locations must be evenly spaced along each axis,
although a proper redefinition of the axis can usually make this possible. The header record contains the
number of pixels along each axis, a label for each axis, the number of the reference pixel (may be a fractional
pixel and need not be in the portion of the axis covered), the coordinate at the reference pixel, the coordinate
increment between pixels and the coordinate rotation. The axes of images may be in any order.

The AIPS format for uv data is also similar to the FITS convention. Each data point has a number of
“random parameters”, usually “u”, “v”, time, baseline number etc., followed by a rectangular array similar
to, but usually smaller than, an image data array. Up to 14 random parameters have labels kept in the
catalog header. More than 14 random parameters can be used, but the labels for the fifteenth and following
are lost.

Most tasks read an old data file, do some operation on the data and write a new data file. In this case,
the task simply takes the old catalog header record and modifies it to describe the data in the new file.

AIPS also keeps a catalog of the images displayed on all display devices. This image catalog allows
AIPS interactive verbs to use the display devices without having to find and read the original catalog header
record.

5.2 Public and Private catalogs

AIPS catalogs may be either public, i.e., all files on a given disk are in the same catalog, or private, i.e.,
each user has a separate catalog on each disk. The stand-alone utility program, SETPAR, is used to specify
which type is currently in use. The distinction is completely transparent to the programmer; all distinctions
between the two types are hidden in ZPHFIL and the catalog routines.

5.3 File Names

AIPS data files, especially cataloged files, are referenced in a number of different ways. The following list
summarizes the three basic ways of specifying AIPS data files:

5-1

5-2

1.

CHAPTER 5. CATALOGS

AIPS logical names. The full AIPS logical file specification is given by disk number, file name, file class,
file sequence number, file physical type, user number, and, for extension files, the version number. This
is the fundamental way an AIPS user specifies a file; although some of these, such as physical type
and user number, may not have to be specified directly. In a task, these values are used by CATDIR
(which may be called by a higher level routine such as MAPOPN) to locate the desired file in the AIPS
catalog using various default and wild-card conventions.

Disk and catalog number. Just as the AIPS user frequently uses the disk and catalog numbers to
specify files using the verb GETNAME, programs usually keep track of cataloged files by means of the
disk and catalog numbers, file types, and version numbers for extension files.

. Physical name. The host operating system needs a name for the file for its own catalog. The allowed

physical file specifications depends on the host operating system, so AIPS tasks use the Z routine
ZPHFIL to create the physical name from the disk and catalog numbers, the file type and version, and
the user number for systems with private catalogs. These physical names may be up to 48 characters
long.

An example from a VAX system with private catalogs is “DAOn:ttrcccvv.uuu”, where n is the zero-
relative disk drive number, DAOn: is a logical variable which is assigned to a directory, tt is a two
character file type (e.g., “MA”), r is a data format version number (see Appendix A), ccc is the catalog
slot number, vv is the version (01 for “MA”, “SC” and “UV” files), and uuu is the user’s number. All
numbers are expressed in hexadecimal notation.

5.4 Data Catalog

The data catalog actually consists of many separate files. There is one directory file (type “CA”) per user
for private catalogs per disk drive. Each cataloged file has its own catalog header file (“CB”).

5.4.1 Catalog Directory

Each catalog directory contains a one block (256-word) header and a number of catalog directory blocks.
The header block contains principally the number of catalog blocks in the file; this is set when the file is
initialized or expanded. The directory blocks contain a 32-byte reference to each catalog header record. The
directory is used to speed catalog searches and also contains the map status words that register map file
activity.

5.4.2 Header block
The format of the Header Block is as follows:

OFFSET TYPE DESCRIPTION
0 I Volume number of disk containing this catalog
1 I Unused
2 I Number of catalog blocks in this file

5.4.3 Directory Section

The Mth directory block contains NLPR entries, each NWPL words, indexing the NLPR+(M-1)+1 to the
NLPR+M-1 catalog records. The first directory block is the 2nd block in the file. The parameters are given
by NWPL = 11 and NLPR = 256/NWPL.

The description of a directory entry is as follows:

OFFSET LENGTH TYPE DESCRIPTION
0 1 I User ID number; or -1 if slot is empty
1 1 I Map file activity status

5.4. DATA CATALOG 5-3

2 2 H(2) Date/Time file was cataloged

4 i I User defined sequence number 1 to 9999
13 3 H(3) User defined map name, 12 characters
8 2 H(2) User defined map class, 6 characters
10 1 H Map type, 2 characters

5.4.4 Directory Usage

Map name and class are user defined character strings of 12 and 6 characters that can be used to identify
and locate a specific map. The strings are stored as HOLLERITH strings together with the 2-character
HOLLERITH string which identifies the “physical” map type, in their slots in the directory. The sequence
number is similarly an arbitrary integer reference number.

The Map Status is an integer registering the activity of the map file itself.

STATUS = 0 => no programs are accessing the map file
n>0 => n programs are reading the map

=1 => one program is writing into the file
n<0 => 1 + n programs are reading the map, one

program is writing into the file.

Maintaining the integrity of the catalog entries is essential to ensure reliable access to the cataloged files.
Thus certain rules should be followed when using the catalog. These rules are coded in to the utility routines
described below; these routines should be-used when at all possible to access the catalog.

Rules:

1. Take exclusive use of the catalog whenever you access it. The required operation should be done quickly
and then the catalog file should be closed and released. .

2. The status word must be monitored to see if an intended catalog or map operation will disturb an
(asynchronous) operation already in progress.

Specifically: Do not modify a catalog block, nor write into a map file which is not in a rest state (STATUS
=0).

If you intend to write into a map and STATUS = 0, change the status to “WRITE” (STATUS = -1)
before releasing exclusive use of the catalog.

If you intend to read a map file or catalog block, check to see if someone else is writing on it (STATUS
< 0). If s0, decide whether this is acceptable to your program. If so, modify the status to “READ”:

1 + STATUS if STATUS > 0
1 + STATUS if STATUS < 0.

Clear status when you have finished your operation. If you were reading, reverse the process just described.
If you were writing, STATUS = - (1 + STATUS).

5.4.5 Structure of The Catalog Header Record

The catalog header block is a fixed format data structure 512 bytes long (one byte is defined in AIPS as half
an integer). The catalog header block contains double and single precision floating point numbers, integers,
and hollerith strings. The catalog header record is accessed by equivalencing integer, hollerith, real and
double precision arrays, and obtaining the information from the array of the appropriate data type. Since
the structure of the catalog header is subject to change we use pointers for the different arrays that are
computed by VHDRIN. These pointers are kept in a common invoked with the INCLUDE DHDR.INC.

54

CHAPTER 5. CATALOGS

The uses of the pointers are given in the following table. In this table, the term “random parameters”
refers to the portion of a uv data record that contain u, v, w, time, baseline etc.; the term “indeterminate”
pixel means a pixel whose value is not given.

TYPE POINTER

H(2) KHOBJ

B(2) KHTEL

H(2) KHINS

H(2) KHOBS

H(2) KHDOB

B(2) KHDMP

H(2) KHBUN

E(2) (14)KHPTP
KIPTPE=

H(2)(7) KHCTP
KICTPE=

D(7) KDCRV

R(T) KRCIC

R(T) KRCRP

R(7) KRCRT

R KREPO

R KRDMX

R KRDMN

R KRBLK

1 KIGCK

I KIPCN

I KIDIM

I(7) KINAX

I KIIMS

H(3) KHIMN
KHIMNO=

H(2) KHIMC
KHIMCO=

H KHPTY
KHPTYO=

I KIIMU

I KINIT

R KRBMJ

R KRBMN

R KRBPA

1 KITYP

I KIALT

D KDORA

D KDODE

D KDRST

14

1

13

19

DESCRIPTION

Source name

Telescope, i.e., VLA’

e.g., receiver or correlator
Observer name

Observation date in format ’DD/MN/YY’

Date map created in format ’DD/MM/YY’

Map units, i.e., >JY/BEAM ’

Random Parameter types

Max. number of labeled random paramaters
Coordinate type, i.e., ’RA---SIK’

Max. number of axes

Coordinate value at reference pixel
Coordinate value increment along axis
Coordinate Reference Pixel
Coordinate Rotation Angles

Epoch of coordinates (years)

Real value of data maximum

Real value of data minimum

Value of indeterminate pixel (real
maps only)

Number of random par. groups.

This is the number of uv data
records.

Number of random parameters

Number of coordinate axes

Number of pixels on each axis

Image sequence no.

Image name (12 characters)

Character offset in HOLLERITH string
Image class (6 characters)

Character offset in HOLLERITH string
Map physical type (i.e., ’MA’,’UV’) (2 char)
Character offset in HOLLERITH

Image user ID number

clean iterations

Beam major axis in degrees

Beam minor axis in degrees

Beam position angle in degrees

Clean map type: 1-4 => normal,
components, residual, points.

For uv data this word contains a

two character sort order code.

Velocity reference frame: 1-3

=> LSR, Helio, Observer +

2566 if radio definition.

Antenna pointing Right Ascension

Antenna pointing Declination

Rest frequency of line (Hz)

5.4. DATA CATALOG

D KDARV
R KRARP
R KRXSH
R KRYSH

H(20) KHEXT

Alternate ref pixel value

(frequency or velocity)

Alternate ref pixel location

(frequency or velocity)

Offset in X (rotated RA) of phase center
Offset in Y (rotated Dec) from tangent pt.
Names of extension file types (2 char)

KHEXTN= 20 Max number of extension files

I(20) KIVER

Number of versions of corresponding
extension file.

The actual values of the pointers depend on the size of the various data types and are computed in the
routine VADRIN. Note that VHDRIN should be called after ZDCHIN is called because it uses values set by

ZDCHIN. VHDRIN has no call arguments.

The name of the pointer tells which data type array the data is to be read from: KInnn indicates the
integer array, KHnnn indicates the hollerith array, KRnnn indicates the real array, and KDnnn indicates the
double precision array. Conversion of HOLLERITH data to and from CHARACTER variables is done using
routines H2CHR and CHR2H. The Name, class, and physical type are contained in HOLLERITH strings as
are the labels of the regular and random axes. This is best explained by an example:

INTEGER NDIM1, INDEX
REAL CRPIX2

CHARACTER CLASS*6, ALABE2+8
DOUBLE PRECISION CRVAL3

Include for header pointers

Include for catalog header
common

Get the dimension of
the first axis (I)

Get reference pixel
of second axis (R)

Get coordinate at reference
pixel on third axis. (R)

Copy axis label for third
axis (H array).

c
INCLUDE ’INCS:DHDR.INC’
c
c
INCLUDE ’INCS:DCAT.INC’
c
c
NDIM1 = CATBLK(KINAX)
c
c
CRPIX2 = CATR(KRCRP+1)
c
c
CRVAL3 = CATD(KDCRV+2)
c
c
INDEX = KHPTP + 2 * 2
CALL H2CHR (8, 1, CATH(INKDEX), ALABE2)
c

Copy image class.

CALL H2CHR (6, KHIMCO, CATH(KHIMC), CLASS)

In the example above the catalog header block is obtained from a common defined in INCLUDE DCAT.INC.
Many AIPS utility routines get the catalog header record from this common, 80 it is a good place to store it.

56 CHAPTER 5. CATALOGS

Keyword-Value Pairs

Arbitrary sets of keyword value pairs can be stored in an extension of the catalog header using routine
CATKEY. The values may be of the following types: DOUBLE PRECISION, REAL, HOLLERITH (up to
8 char), INTEGER and LOGICAL. A description of CATKEY is given at the end of this chapter.

Image Files

An image consists of a single multidimensional (up to 7), rectangular array of pixel values. The structure of
this array is defined by the catalog header record, which contains the number of dimensions (KIDIM) and
the number of pixels on each axis (KINAX). All images are stored as REAL values.

The label for each axis is in a HOLLERITH string array pointed to by KHCTP. The coordinate increment
between pixels must be a constant on each axis, and the array of axis increments is obtained using the pointer
KRCIC. The array of coordinate reference pixels (the pixel at which the coordinate value is that pointed to
by KDCRY) is pointed to by KRCRP; the reference pixel need not be either an integral pixel or in the range
covered by the data. The coordinate values at the reference pixels are pointed to by KDCRYV.

Each axis also has an associated rotation angle, but the only rotation currently supported is that on the
plane of the sky. This rotation value is kept on the declination/Galactic latitude/Ecliptic latitude/Y axis
and is the rotation of the coordinate system from north toward east.

Since there is no explicit provision made in the catalog header for such important parameters as position,
frequency, and polarization, these are always declared as axes even if that axis contains only one pixel. This
allows a place in the header record for these parameters.

Since the Stokes’ axis is not inherently an ordered set, we use the following definitions for the values
along the stokes’ axis.

0 => beam 6 => Percent polarization

1 =1 6 => Fractional polarization

2 =0Q 7 => Polarization position angle
3 =10 8 => Spectral index

4 =V 9 => Optical depth

Pixel values may be blanked using “magic value” blanking. The magic (stored) value for images is given by
KRBLK (always INDE’).

Each row of an image (first dimension) starts on a disk sector boundary (as defined on the local system)
unless several rows may fit in a sector. In the latter case, as many rows as possible are put in a sector, but
a row is not allowed to cross a sector boundary. Each plane in the image (dimension 3 and higher) starts on
a sector boundary.

All angles in the header record are in degrees.

Uv Data Files

Uv data files consist of a sequence of interferometer visibility records each of which contains all data measured
on a given baseline (pair of antennas) in a given integration period. The number of visibility records is given
in the catalog header record by the integer value pointed to by KIGCN. The order of the visibility records
are given by the two character code pointed to by KITYP. (More details of the sort order can be found in
the chapter on disk I/O). All values are in floating point (except for compressed data).

Each visibility record consists of a number (KIPCN) of “random” parameters, followed by a data array
similar to a miniature image. Any number of random parameters are allowed, but only the labels of 14
(KIPTPN) can be kept in the header. These labels are kept in Hollerith strings pointed to by KHPTP. The
random parameters are used for values which vary “randomly” from visibility to visibility (i.e., u, v, w, time,
baseline). The data array is described by the catalog header record in the same ways as for an image file.

The tangent point of the data (position for which the u, v, and w are computed) is kept as the RA and
Dec axis in the data array. The offset in x and y (RA and dec after rotation) are pointed to by KRXSH and
KRYSH. All angles in the catalog header record are in degrees.

5.4. DATA CATALOG 5-7

Uv data may contain correlator based polarization or true Stokes’ parameters. In the former case, the
following Stokes’ values are defined:

-1 =>RR

-2 =>LL

-3 => RL

-4 => LR

-5 => XX Orientation of X and Y are defined in the
-6 => YY AN table

-7 => XY

-8 => YX

Visibility records are allowed to span disk sector boundaries. More details about the uv data file format are
given in the chapter on disk I/O.

Single Dish Data Files

Randomly sampled sky brightness measurments may be stored in data files which are similar to uv data
files (the file “type” of the files is “UV”). The random parameters use for this type of data give the celestial
position and beam or feed number rather than the location in the uv plane or a baseline. This type of data
is described in more detail in next chapter.

5.4.6 Routines to Access the Data Catalog
MAPOPN and MAPCLS

There are a number of utility routines to access the catalog header record. In many cases, most of the catalog
operations can be taken care of by the pair of routines MAPOPN and MAPCLS. MAPOPN will locate the
correct catalog entry from a given name, class, disk, sequence and physical type following all default and
wild-card conventions. MAPOPN then reads the catalog header record, opens the main data file and marks
the catalog status word. Following a call to an initialization routine, the file can be read from or written
to. After all I/O to the file is complete, MAPCLS will close the file, update the catalog header record if
requested and clear the catalog status word for the file. A description of the call sequence of MAPOPN and
MAPCLS is given at the end of this chapter.

CATDIR and CATIO

If MAPOPN and MAPCLS are not appropriate, then the use of more specialized routines is necessary.
First the desired file must be located in the catalog directory. The routine CATDIR is the basic method of
accessing the catalog directory. This routine will find the desired file given the name, class, etc. following the
usual default and wild-card conventions. CATDIR returns the disk number and catalog slot number. Given
a disk number and catalog slot number, CATIO can read or write a catalog header record and/or change
the status word. Detailed descriptions of CATDIR and CATIO can be found at the end of this chapter.

5.4.7 Routines to Interpret the Catalog Header

There are a number of specialized routines which obtain information from the catalog header record. The
following list gives a short description of each and detailed descriptions of the call sequence are found at the
end of this chapter.

e AXEFND will return the axis number of a given type of random or regular axis.
e ROTFND returns the angle of rotation on the sky of either an image or uv data file.

e UVPGET obtains a number of pointers and other pieces of information which simplify accessing uv
data.

5-8 CHAPTER 5. CATALOGS

5.4.8 Catalog Status

The AIPS catalog directory keeps a status word for each cataloged file. This status word is used to help
prevent conflicting use of the file. The status may be marked as either “READ” or “WRIT”; the status of
each file can be seen in AIPS by listing the catalog. A file can be marked “READ” multiple times, but a
file marked “WRIT” cannot be marked “READ” or “WRIT” again, and a file marked “READ” cannot be
marked “WRIT”.

The use of the status word can complicate updating of the catalog header with CATIO. If the status of
a file has been marked as “WRIT”, then the opcode in the call to CATIO must be “UPDT”. If the status
is not marked, the opcode must be “WRIT” to update the catalog header block.

5.5 Image Catalog

5.5.1 Overview

The image catalog contains data for images stored on the TV device that identify the images, refer them
back to their original map files, and specify scaling of the X-Y and intensity coordinates. There is a separate
image catalog which performs the same functions for graphics devices (e.g., TEK4012 storage screens).

There is one image catalog file for each television device, whose physical name corresponds to ICv0000n,
where v = version code and n = the device number (0 for graphics, 1 to n for TVs). They reside on disk 1
and must be created at AIPS installation, usually by FILAIP.

5.5.2 Data Structures

General: For each gray-scale image plane of the TV device, the IC contains N 1-block (256-word) records
for cataloging up to N subimages, plus a (N-1)/51+1 block directory. The directory immediately precedes
the catalog blocks for each image plane. For each TV graphics overlay plane there is one catalog block with
no directory. These blocks follow immediately after the last gray-scale block.

The IC for pure graphics devices (called TK devices) has one image catalog block for each device in the
system including all “local” TK devices followed by all remote-entry devices. Record number n in this file is
associated with TK device number n (NTKDEV in /DCHCOM/ from include DDCH.INC).

The image catalog blocks themselves are essentially duplicates of the map catalog blocks except that
scaling information replaces the extension file index of the map catalog.

The following is a description of the format of the directory block and the portions of the image catalog
block which is different from the normal catalog header block.

Directory Block (Gray-scale image)

OFFSET TYPE DESCRIPTION
0 I Sequence number of last sub-image cataloged
on this plane
1 I Seq. no. of sub-image in slot 1; 0 if slot empty
2 I(4) TV pixel positions of corners of ist sub-image,
x1,y1,x2,y2
I Seq. no. of sub-image in slot 2; 0 if empty
I(4) TV pixel positions of corners of 2nd sub-image

~N o

Catalog Block for each image or subimage:
Most of the Image Catalog block is identical to the map CAtalog block of the source of the image. (See
section on CB files.) The informationon antenna pointing, alternate frequency/velocity axis descriptions, and

5.5. IMAGE CATALOG 5-9

extension files (KIALT, KDORA, KDODE, KDRST, KDARV, KRARP, KHEXT and KIVER) is replaced
in the IC by:

TYPE POINTER DESCRIPTION

R(2) IRRAR Map values displayed as min & max brightness. I IIVOL
Disk volume from which map came I IICNO Catalog slot number of orig.
map I(4) IIWIN Map pixel positions of corners of displayed image (rel.
to orig. map) I(5) IIDEP Depth of displayed image in 7 - dimensional
map (axes 3 - 7) I(4) IICOR TV pixel positions of corners of image on
screen I IHTRA 2-char code for transfer function used to compute TV
brightness from map intensity values. I IIPLT Code for type of plot.
I(31)IIOTH Misc. plot type dependent info. (at the moment no more
than 20 used)

The standard pointer values are computed by VHDRIN and are available through the common /HDRVAL/
via include DHDR.INC. They are machine-dependent and are used in the same way as the normal catalog
pointers.

5.5.3 Usage notes

We assume that single images only are stored on graphics planes; there is no directory.

When a gray-image plane is cleared, its directory is zeroed. As images are added to the plane, their
coordinates are written into an open directory slot for that plane, along with the current value of the plane
sequence number. The sequence number is then incremented. If an old image is completely overwritten by
a new one, its directory slot is cleared. For partially overlapping images, the sequence # allows the user to
select the one most recently loaded into a given part of the plane.

5.5.4 Subroutines

There are a number of routines to manipulate the image catalog. The following is a short description of
each; detailed descriptions of the call sequences is given at the end of this chapter.

e YCINIT clears the Image Catalog for a given plane.

e YCOVER asks if there are any overlapped images in each quadrant visible.
e YCWRIT adds a new block to the catalog.

e YCREAD returns the block corresponding to a given TV pixel.

TVFIND determines desired image, asks user if > 1 visible.

These routines expect the “plane number” as an argument. TV gray scale planes are numbered 1-NGRAY,
TV graphics overlay planes are numbered (NGRAY+1)-(NGRAY+NGRAPH), and TK devices are refer-
enced by any plane number greater than NGRAY+NGRAPH.

5.5.5 Image Catalog Commons
The COMMON /TVCHAR/ referenced by INCLUDE "DTVC.INC’ contains TV device characteristics such

as:

NGRAY # of gray-scale planes on this device
NGRAPH # of graphics planes
MAXXTV(2) Maximum number of pixels in x,y directions in image

5-10 CHAPTER 5. CATALOGS

The listing of DTVC.INC is given at the end of this chapter.

The common /DCHCOM/ (from DDCH.INC) contains two important parameters in this regard: NTVDEV
and NTKDEV. The subroutine ZDCHIN sets these to the actual number of such devices present locally.
Then, the routines ZWHOMI (in AIPS only) and GTPARM (in all tasks) reset them to the device number
assigned to the current user. ZWHOMI determines these assignments.

5.6 Coordinate Systems

Astronomical images are usually represented as projections onto a plane causing the true position on the sky
of a pixel to be a nonlinear function of the pixel location. In a similar fashion, most spectral observations
are done with evenly spaced frequency channels which results in a nonlinear relation between the velocity
of a channel and the channel number. AIPS Memos Nos. 27 and 46 describe in great detail the approach
AIPS uses to these problems. Much of the following sections is taken from these memos.

5.6.1 Velocity and Frequency

The physically meaningful measure in a spectrum is the radial velocity of a feature; unfortunately, observa-
tions are normally made using a uniform spacing in frequency (and may contain Doppler tracking to remove
the effects of the earth’s motion). Thus it is necessary to convert between frequency and velocity. The
details of the conversion are in AIPS Memo No. 27 and will not be reproduced here. Conversion can be
done using the routines described in the section on celestial positions. The following sections describe the
naming conventions and the way in which the necessary information is stored in the catalog header block.

Axis Labels

The AIPS convention is to use the axis label to denote the axis type with the first four characters and the
inertial reference system with the last four characters. The axis types currently supported are ‘FREQ...’
which is regularly gridded in frequency, ‘VELO...” which is regularly gridded in velocity, and ‘FELO...’
which is regularly gridded in frequency, but expressed in velocity units in the optical convention.

The inertial reference systems currently supported are -LSR’, ‘-HEL’, and ‘-OBS’ indicating Local Stan-
dard of Rest, heliocentric, and geocentric. Others may be added if necessary.

Catalog Information

In addition to the normal axis coordinate information carried in the catalog header, described previously in
this chapter, the catalog header record has provision for storing an alternate frequency axis type. The AIPS
verb ALTDEF allows the user to switch the two axis definitions. The pointers for these values are given in
the following:

KDRST Rest frequency (Hz)

KRARP Alternate reference pixel

KDARV Alternate reference value

KIALT axis type code. 1=>LSR, 2=>HEL, 3=>0BS
(plus 256 if radio convention).
0 implies no alternate axis.

5.6.2 Celestial Positions

The following sections will describe the AIPS conventions and routines for determining positions from images
with different projections.

5.6. COORDINATE SYSTEMS 5-11

Axis Labels

The AIPS convention is to use the first four characters of the axis type and the second four characters to
denote the projection. The standard nonlinear axis types are given in the following:

e RA—— denotes Right ascension
o DEC- denotes declination
e GLON denotes galactic longitude
e GLAT denotes galactic latitude
e ELON denotes Ecliptic longitude
e ELAT denotes Ecliptic latitude
The geometry used for the projection is given in the axis label using the codes given in the following list:
o —TAN denotes tangent projection. This projection is commonly used in optical astronomy.
o —SIN denotes sine projection. This projection is commonly used in radio aperture synthesis images.

e —ARC denotes arc projection. In this geometry, angular distances are preserved and it is commonly
used for Schmidt telescopes and for single dish radio telescopes.

e —NCP denotes a projection to a plane perpendicular to the North Celestial Pole. This geometry is
used by Westerbork.

o —STG denotes stereographic projection. This is the tangent projection from the opposite side of the
celestial sphere.

o —AIT denotes Aitoff projection. This is used for very large fields.
o —GLS denotes Global sinusoidal projection. This is also used for very large fields.

e —MER denotes Mercator projection.

Determining Positions

There are a number of AIPS utility routines which help determine the position of a given location in an
image. These routines use values in theINCLUDE DLOC.INC. A listing of this include can be found at the
end of this chapter.

Position Routines The upper level position determination routines are briefly described in the following;
details of the call sequences are given at the end of this chapter.

e SETLOC initializes the DLOC.INC INCLUDE based on the current catalog header block in the
DCAT.INC (CATBLK) common.

o XYPIX determines the pixel location corresponding to a specified coordinate value.
e XYVAL determines the coordinate value (X,Y,Z) corresponding to a given pixel location.

e FNDX returns the X axis coordinate value of a point given the Y axis coordinate value and the X axis
pixel position of a point. Does rotations and non linear axes.

e FNDY returns the Y axis coordinate value of a point given the X axis coordinate value and the Y axis
pixel position of a point. Does rotations and non linear axes.

o COORDT converts between celestial, galactic and ecliptic coordinates.

5-12

CHAPTER 5. CATALOGS

Include DLOC.INC The commonsin INCLUDE DLOC.INC are used by the position routines and the
plot labeling routines to keep constants needed for the coordinate transformation. The contents of these
commons is described in the following:

RPVAL D(4)

COND2R D
AXDERU D
GEOMDY D
GEOMD2 D
GEQGMD3 D
GEOMD4 D

RPLOC R(4)
AXINC R(4)

CTYP c(4)*20

CPREF C(2)*5

ROT R

SAXLAB C(2)#*20

ZDEPTH I(5)

ZAXIS I
AXTYP I
CORTYP I
LABTYP I
SGNROT I
AXFUNC 1
KLOCL I
KLOCM I
KLOCF I
KLOCS I
KLOCA I
KLOCB I
NCHLAB I

¢p]

(2)

Reference pixel values

Degrees to radians multiplier = pi/180
delta(nu) / nu(x) when a FELO axis is
present.

Storage for parameter needed for geometry.

Reference pixel locations

Axis increments

Axis types

x,y axis prefixes for labeling
Rotation angle of position axes
Labels for axes 3 and 4 values
Value of Idepth from SETLOC call

1 relative number of z axis
Position axis code

Which position is which

Special x,y label request

Extra sign to apply to rotation
Kind of axis code

O-rel axis number-longitude axis
0-rel axis number-latitude axis
O-rel axis number-frequency axis
0-rel axis number-stokes axis
0-rel axis number-"primary axis" 3
O-rel axis number-"primary axis" 4
Number of characters in SAXLAB

Several of the above values need further explanation:

AXTYP value =

CORTYP value

LABTYP value
code

n unn

b WO O d WN-O P WN=O

nn non

no position-axis pair
x-y are position pair
x-z are position pair
y-z are position pair
2 z axes form a pair
linear x,y axes
is longitude,
is longitude,
is longitude,
is longitude,
is longitude,
is longitude,
ycode + xcode
use CPREF, CTYP
use Ecliptic longitude
use Ecliptic latitude
use Galactic longitude
use Galactic latitude
use Right Ascension

is latitude
is latitude
is latitude
is latitude
is latitude
is latitude

*# N < N X< X
< N M N M <

5.7. TEXT OF INCLUDE FILES 5-13

use declination
no axis

linear axis
FELO axis

SIN projection
TAN projection
ARC projection
NCP projection
GLS projection
MER projection
AIT projection
STG projection

hn
[}
[

AXFUKC value =

]
© 0 N WN O

The KLOCx parameters have a value of -1 if the corresponding axis does not exist. If AXTYP is 2 or 3, the
pointer KLOCA will always point at the z axis. In this case, SETLOC does not have enough information to
prepare SAXLAB. The string must be computed later when an appropriate x,y position is specified.

5.6.3 Rotations

The use of one rotation angle per axis, as provided in the AIPS catalog header, is obviously not enough to
completely describe an arbitrary rotation of the coordinate system. In practice, the only rotation currently
used in AIPS is the rotation in the sky plane (projected RA and dec, galactic latitude and longitude, or
ecliptic latitude and longitude). The rotation angle in this plane of the actual coordinate system of the
image, in the usual astronomical north through east convention, is given on the axis corresponding to the
declination, galactic latitude, or ecliptic latitude as appropriate.

Another convention followed in AIPS involving rotations is related to precession. As the earth precesses,
the north-south line in a field will rotate; this causes a rotation in an image made of a given field on the
sky. This “differential precession” will cause problems determining positions away from the field center and
comparing images made at different epochs. To avoid this problem, the coordinate system used for the u-v
data is rotated to the orientation as of the mean epoch (1950 or 2000).

5.7 Text of INCLUDE files

5.7.1 DCAT.INC

C Include DCAT.
c catalog header common

INTEGER CATBLK(258)

REAL CATR(2586)

HOLLERITH CATH(2586)

DOUBLE PRECISION CATD(128)

COMMON /MAPHDR/ CATBLK

EQUIVALENCE (CATBLK, CATR, CATH, CATD)
C End DCAT.

5.7.2 DHDR.INC

C Include DHDR.
INTEGER KHOBJ, KHTEL, KHINS, KHOBS, KHDOB, KHDMP, KHBUN,
* KHPTP, KHCTP, KRCIC, KRCRP, KRCRT, KREPO, KRDMX, KRDMN, KRBLK,
* KHIMN, KHIMC, KHPTY, KRBMJ, KRBMN, KRBPA, KRARP, KRXSH, KRYSH,

5-14 CHAPTER 5. CATALOGS

KHIMNO, KHIMCO, KHPTYO,
KDCRV, KDORA, KDODE, KDRST, KDARV,
KIGCN, KINIT,
KIPTPN, KICTPN, KIEXTN,
KIPCN, KIDIM, KINAX, KIIMS, KIIMU, KITYP, KIALT, KHEXT, KIVER,
IRRAN, IIVOL, IICNO, IIVWIN, IIDEP, IICOR, IITRA, IIPLT, IIOTH,
KIRES, KIRESN
COMMON /HDRVAL/ KHOBJ, KHTEL, KHINS, KHOBS, KHDOB, KHDMP, KHBUN,

L JEE R JER BEE JNE B 1

* KHPTP, KHCTP, KRCIC, KRCRP, KRCRT, KREPO, KRDMX, KRDMN, KRBLK,
* KHIMN, KHIMC, KHPTY, KRBMJ, KRBMN, KRBPA, KRARP, KRXSH, KRYSH,
* KNIMNO, KHIMCO, KHPTYO,
* KDCRV, KDORA, KDODE, KDRST, KDARV,
* KIGCN, KINIT,
* KIPTPN, KICTPN, KIEXTN,
* KIPCN, KIDIM, KINAX, KIIMS, KIIMU, KITYP, KIALT, KHEXT, KIVER,
= IRRAN, IIVOL, IICNO, IIWIN, IIDEP, IICOR, IITRA, IIPLT, IIOTH,
* KIRES, KIRESN

C End DHDR.

5.7.3 DLOC.INC

C Include DLOC.
C Position labeling common
DOUBLE PRECISION RPVAL(4), COND2R, AXDENU, GEOMD1, GEOMD2, GEOMD3,
* GEOMD4
CHARACTER CTYP(4)#*20, CPREF(2)#*5, SAXLAB(2)*20
REAL RPLOC(4), AXINC(4), ROT

INTEGER ZDEPTH(5), ZAXIS, AXTYP, CORTYP, LABTYP, SGNROT,
* AXFUNC(7), KLOCL, KLOCM, KLOCF, KLOCS, KLOCA, KLOCB,
*+ NCHLAB(2)
COMMON /LOCATC/ CTYP, CPREF, SAXLAB
COMMON /LOCATI/ RPVAL, COND2R, AXDENU, GEOMD1, GEOMD2, GEOMD3,
* GEOMD4, RPLOC, AXINC, ROT, ZDEPTH,
*« ZAXIS, AXTYP, CORTYP, LABTYP, SGNROT, AXFUNC, KLOCL, KLOCM,
« KLOCF, KLOCS, KLOCA, KLOCB, NCHLAB
c End DLOC.

5.7.4 DTVC.INC

(o} Include DTVC.

INTEGER NGRAY, NGRAPH, NIMAGE, MAXXTV(2), MAXINT, LUTOUT,
OFMINP, OFMOUT, SCXINC, SCYINC, MXZOOM, CSIZTV(2), TYPSPL,
TVALUS, TVXMOD, TVYMOD, ISUNUM,

TVDUMS(10),
TVZOOM(3), TVSCRX(16), TVSCRY(16), TVLIMG(4), TVSPLT(2),
TVSPLM, TVSPLC, TYPMOV(16), YBUFF(168)

COMMON /TVCHAR/ NGRAY, NGRAPH, NIMAGE, MAXXTV, MAXINT, LUTOUT,
OFMINP, OFMOUT, SCXIEC, SCYINC, MXZOOM, CSIZTV, TYPSPL,
TVALUS, TVXMOD, TVYMOD, ISUNUNM, TVDUMS,
TVZOOM, TVSCRX, TVSCRY, TVLIMG, TVSPLT, TVSPLM, TVSPLC,
TYPMOV, YBUFF

c End DTVC.

* * * * *

* * # »

5.8. ROUTINES

5.8 Routines
5.8.1 AXEFND

AXEFND determines the order number of an axis whose name is in the character string TYPE. It will work
for either regular or random axes.

AXEFKD (NCHC, TYPE, NAXIS, AXES, IOFF, IERR)

Inputs:
NCHC I Compare only first NCHC characters of axis type
TYPE C*8 Axis type.
NAXIS I the number of axes to search,
for uniform axes use: CATBLK(KIDIM) or KICTPXN
for random axes use: CATBLK(KIPCN) or KIPTPN
AXES(*) N Catalog axis name list,
for uniform axes use: CATH(KHCTP)
for random axes use : CATN(KHPTP)
Output:
IOFF I Axis offset (zero relative axis number)
IERR I Return exrror code, 0=>0K, i=>could not find.

5.8.2 CATDIR
CATDIR manipulates

catalog directory.

CATDIR (OP, IVOL, CNO, CNAME, CCLASS, SEQ, PTYPE, USID,
* STAT, BUFF, IERR)

Inputs:
op C*4
IVoOL I
CNO I
CNAME C*12
CCLASS C*6
SEQ I
PTYPE C»2
UsiD I
STAT C=*4

Outputs:
CNO I
IVOL I
CNAME C=*12

searches find entry with specified data:

'SRCH’ high seq # (if SEQ 0), return things
'SRNH’ high seq # (if SEQ 0), NOT return things
’SRCN’ next match, return things

’SRNN’ next match, NOT return things

’OPEN’ = create a new slot (and init header file)
’CLOS’ destroy a slot

’INFO’ = return contents of a slot

’CSTA’ = modify status of a slot

Disk volume containing catalog

0 => all on searches, OPEN

Slot number to begin: SRCN, SREN, OPEN

Ignored if IVOL = O : searches, OPEN

Slot number to examine (solely): CLOS, INFO, CSTA
Map name: searches, OPEN, CLOS

Map type: searches, OPEN, CLOS

Map sequence number: searches, OPEN, CLOS

Map physical type (2 chars): searches, OPEN, CLOS
User identification #: searches, OPEN, CLOS
Status (OP=CSTA): READ, WRIT, CLRD, or CLWR

Slot number found: searches, OPEN
If 0 on input, value actually used: searches, OPEN
Map name: SRCH, SRCN, INFO

5-16 CHAPTER 5. CATALOGS

CCLASS C*6 Map type: SRCH, SRCN, INFO

SEQ I Map sequence number: SRCH, SRCN, INFO
PTYPE C*2 Map physical file type: SRCH, SRCN, INFO
USID I User identification #: SRCH, SRCN, INFO

STAT C#*4 Status: INFO
BUFF I(266) Working buffer
IERR I Error return
=> can’t open cat file or header file
=> input error
can’t read catalog or header file
=> CLOSE blocked by non-REST status
=> end of catalog on OPEN or SRCH i.e.
no open slots or slot not found
=> on IKFO requested slot not open
=> can’t use WRIT status because now READ
on CLOSE the ID’s don’t match
=> Warning: read status added on a file
being written
10 => Clear read/write when didn’t exist warning

OV W N
"
v

© 00 NO®
[}
v

5.8.3 CATKEY

Reads or writes KEYWORDs from or to an AIPS image (or uv) header. The order of the keywords is
arbitrary. Uses LUN 15, so any CA or CB files must be closed before calling this routine.

CATKEY (OPCODE, IVOL, CNO, KEYWRD, NUMKEY, LOCS, VALUES, KEYTYP,
* BUFFER, IERR)

Inputs:
OPCODE Cx4 Operation desired, ’READ’, ’WRIT’,
’ALL ’ => Read all.
’REED’ => no error msg if some missing
IVOL I File disk number
CNO I File catalog block number
In/out:
KEYWRD C(#*)#8 Keywords to read/write: output on ALL
NUMKEY I Number of keywords to read/write.

Input on OPCODE=’ALL’ = max. to read.
Output on OPCODE=’ALL’ = no. read.

Locs I(NUMKEY) The word offset of first short integer
word of keyword value in array VALUES.
Output on READ, input on WRIT.

On READ this value will be -1 for keywords
not found.

VALUES I The array of keyword values; due to word
alignment problems on some machines values
longer than a short integer should be copied,
eg. if the 5th keyword (XXX) is a R*8:

IPOINT = LOCS(5)
CALL COPY (NWDPDP, VALUES(IPOINT), XXX)
Output on READ, input on WRIT

KEYTYP I(NUMKEY) The type code of the keywords:

= Double precision floating

Single precision floating

Character string (8 HOLLERITH chars)

integer

1
2
3
4

5.8. ROUTINES

6 = Logical
Output:
BUFFER I(256) Scratch buffer
IERR I Return code, 0=>(0K,
1-10 => ZFIO error
19 => unrecognized data type.

20 => bad OPCODE

20+n => n keywords not found on READ.
This produces messages at level 6
suppress them w MSGSUP if needed

5.8.4 CATIO
CATIO reads or writes blocks in the map catalog header file.

CATIO (OP, IVOL, CNO, CATBLK, STAT, BUFF, IERR)

Inputs:
oP Cx4 *READ’ => get block into CATBLK
’WRIT’ => put CATBLK onto disk catalog
*UPDT’ => as WRIT but for use when the calling
program has previously set the
status to WRITE
IvoL I Disk volume containing catalog (1 rel)
CKO I Slot number of interest
CATBLK I(256) Array to be written on disk: WRIT, UPDT
STAT Cx4 Status desired for slot after operation
’READ’,’WRIT’,’REST’ where REST => no
change of status is desired
Outputs:
CATBLK I(286) Array read from disk: READ
BUFF I1(256) Working buffer
IERR I Error code: 0 => ok

1 => cannot open catalog file
2 => input parameter error
=> cannot read catalog file
=> cannot WRIT/UPDT: file is busy
=> did READ/UPDT, cannot add STAT = WRIT
=> Warning on READ, file writing
=> As 6, also added STAT=READ
=> As 6, STAT inconsistent or wrong
9 => Warning: STAT inconsistent/wrong
The requested OP is performed unless IERR = 1 through 4. The
final status requested is not set if IERR =1 - 5, 8 - 9. The
latter are probably unimportant.

W N OMbdbw
]
v

5.8.5 COORDT
COORDT translates between types of coordinates:

COORDT (ITI, ITO, LONGI, LATI, EPOK, LONGO, LATO, IERR)
Inputs:
ITI I Input type (1 Ra, Dec; 2 gal, 3 ecliptic)
ITO I Output type
LONGI D Input longitude
LATI D Input latitude

5-18 CHAPTER 5. CATALOGS

EPOK R Epoch of positions (used very simply with
ecliptic coords only)

Output:
LONGO D Output longitude
LATI D Output latitude
IERR I error: O ok, 1 input error, 2 conversion fails
5.8.6 FNDX

FNDX returns the X axis coordinate value of a point given the Y axis coordinate value and the X axis pixel
position of the point. Needed for rotations and non-linear axes (L-M).

FNDX (XPIX, YVAL, XVAL, IERR)

Inputs:

XPIX R X pixel position

YVAL D Y coordinate value
Output:

XVAL D X coordinate value

IERR I 0 ok, 1 out of range, 2 bad type, 3 undefined
Common:

Pos. parms in DLOC.INC must have been set up by SETLOC

5.8.7 FNDY

FNDY returns the Y axis coordinate value of a point given the X axis coordinate value and the Y axis pixel
position of the point. Needed for rotations and non-linear axes (L-M).

FNDY (YPIX, XVAL, YVAL, IERR)

Inputs:

YPIX R Y pixel position

XVAL D X coordinate value
Output:

YVAL D Y coordinate value

IERR I 0 ok, 1 out of range, 2 bad type, 3 undefined
Common:

Pos. parms in DLOC.INC must have been set up by SETLOC

5.8.8 MAPCLS

closes a cataloged file, updates header on disk, clears catalog status.

MAPCLS (OP, IVOL, CKO, LUN, IND, CATBLK, CATUP, WBUFF, IERR)

Inputs:
op C*xq OPcode used by MAPOPN to open this file
IvoL I Disk volume containing map file
CNO I * Catalog slot number of file
LUN I Logical unit # used for file
IND I FTAB pointer for LUN

CATBLK I(256) New catalog header which can optionally
be written into header if OP=WRIT or INIT
Dummy arguement if OP=READ
CATUP L If TRUE, write CATBLK into catalog,
ignored if OP = READ
Outputs:
IERR I 0 = 0.K.

5.8. ROUTINES 5-19

[

CATDIR couldn’t access catalog
illegal OP code

(<)}
Hn

5.8.9 MAPOPN
MAPOPN opens a map file marking the catalog entry for the desired type of operation.

MAPOPN (OP, IVOL, NAMEIN, CLASIN, SEQIN, TYPIN, USID,
* LUN, IND, CNO, CATBLK, WBUFF, IERR)

Inputs:
opP C*4q Operation: READ, WRIT, or INIT where INIT is for
known creation processes (it ignores current file
status & leaves it unchanged). Also: HDWR for
use when the header is being changed, but the
data are to be read only.
LUN I Logical unit # to use
In/out:
NAMEIN C*12 Image name (name)
CLASIN C*8 Image name (class)
SEQIFR I Image name (seq.#)
USID I User identification #
IvVoL I Input disk unit
TYPIN C*2 Physical type of file
Outputs:
IND I FTAB pointer
CRO I Catalog slot containing map

CATBLK I(256) Buffer containing current catalog block
WBUFF I(256) Working buffer for CATIO and CATDIR
IERR I Error output: 0 = OK
2 = Can’t open WRIT because file busy
or can’t READ because file marked WRITE
File not found
Catalog i/o error
Illegal OP code
Can’t open file

DOV Ww
" o

5.8.10 ROTFND
ROTFND finds the map rotation angle from a given catalog block.
ROTFED (CATR, ROT, IERR)

Inputs:
CATR(*) R Map catalog header
Outputs:
ROT R Map rotation angle (degrees)
IERR I Error code. 0=>0K, i=>couldn’t find axis.

5.8.11 SETLOC

SETLOC uses the catalog header to build the values of the position commons in INCLUDE DLOC.INC for
use by position finding and axis labeling routines (at least).

SETLOC (DEPTH, SWAPOK)
Inputs:
DEPTK I(5) Position of map plane axes 3 - 7
SWAPOK L T => okay to swap axes if rotation near 90

5-20 CHAPTER 5. CATALOGS

Common:
DCAT.INC catalog block (not modified)
DLOC.INC position parms - filled in here

5.8.12 TVFIND

TVFIND determines which of the visible TV images the user wishes to select. If there is more than one
visible image, it requires the user to point at it with the cursor. The TV must already be open.

TVFIND (MAXPL, TYPE, IPL, UNIQUE, CATBLK, SCRTCH, IERR)

Inputs:
MAXPL I Highest plane number allowed (i.e. do graphics
planes count?)
TYPE C%2 2-char image type to restrict search
Output:
IPL I Plane number found
UNIQUE L T => only one image visible now

(all types except zeroed ones (’ZZ’))
CATBLK 1I(266) Image catalog block found
SCRTCE I(256) Scratch buffer
IERR I Error code: 0 => ok
1 => no image
2 => I0 error in image catalog
3 => TV error

5.8.13 UVPGET

UVPGET determines pointers and other information from a UV CATBLK in the common in INCLUDE
DCAT.INC. The address relative to the start of a vis record for the real part for a given spectral channel
(CHAN) and stokes parameter (ICOR) is given by NRPARM+(CHAN-1)*INCF+ABS(ICOR-ICORO0)*INCS
+ (IF-1)*INCIF

Single dish data, i.e. randomly sampled data in the image plane, is also recognized and ILOCU and
ILOCY point to the longitude like and latitude like random parameters. Also a ’ BEAM” random parameter
may be substitued for the ’BASELINE” random parameter. The data type present may be determined from
the common variable TYPUVD. Two types of single dish data are recognized:

TYPUVD=1 = unprojected RA and Dec and

TYPUVD=2 = projected RA and Dec (ready for GRIDR)

UVPGET (IERR)
Inputs: From common /MAPEDR/ (DCAT.INC)
CATBLK I(2568) Catalog block

CATH H(256) same as CATBLK
CATR R(256) same as CATBLK
CATD D(128) same as CATBLK
Output: In common /UVHDR/ (DUVH.INC)
SOURCE C*8 Source name.
ILOCU I Offset from beginning of vis record of U
or longitude for single dish format data.
ILOCV I Offset from beginning of vis record of V
or longitude for single dish format data.
ILOCW I Offset from beginning of vis record of W.
ILOCT I " Time
ILOCB I " Baseline
(or beam)

ILOCSU I " Source id.

5.8. ROUTINES

ILOCFQ
JLOCC
JLOCS
JLOCF
JLOCR
JLOCD
JLOCIF
IKCS
INCF
INCIF
ICORO
NRPARM
LREC
NVIS
FREQ
RA

DEC
NCOR
ISORT
TYPUVD

IERR

HQHOOOMKH H H H HH H = H H H H H

5.8.14 XYPIX

XYPIX determines the pixel location corresponding to a specified coordinate value. The pixel location is
not necessarily an integer. The position parms are provided by the commons in DLOC.INC which requires
a previous call to SETLOC.

5-21

" Freq id.

O-rel. order in data of complex values
Order in data of Stokes’ parameters.
Order in data of Frequency.
Order in data of RA
Order in data of dec.
Order in data of IF.
Increment in data for stokes (see above)
Increment in data for freq. (see above)
Increment in data for IF.
Stokes value of first value.
Number of random parameters
Length in values of a vis record.
Number of visibilities
Frequency (Hz)
Right ascension (1950) deg.
Declination (1950) deg.
Number of correlators (Stokes’ parm.)
Sort order 1ist 2 char meaningful.
UV data type, O=interferometer,

i=single dish unprojected,

2=single dish projected RA and Dec.
Return error code: 0=>0K,
1, 2, 5, : not all normal rand parms

3, 86

7
2, 3, 6, 7 : not all normal axes

XYPIX (X, Y, XPIX, YPIX, IERR)

Inputs:
X
Y
Output:
XPIX
YPIX
IERR

5.8.15 XYVAL

D
D

R
R
I

X-coordinate value (header units)
Y-coordinate value (header units)

x-coordinate pixel location
y-coordinate pixel location
0 ok, 1 out of range, 2 bad type, 3 undefined

XYVAL determines the coordinate value (X,Y,Z) corresponding to the pixel location (XPIX,YPIX). The
pixel values need not be integers. The necessary map header data is passed via commons in DLOC.INC
requiring a previous call to SETLOC. This program is the inverse of XYPIX.

XYVAL (XPIX, YPIX, X, Y, Z, IERR)

Inputs:
XPIX
YPIX

Outputs:
X
Y
Z

R
R

(=}

O o

Pixel location, x-coorxrdinate
Pixel location, y-coordinate

X-coordinate value at pixel location
Y-coordinate value at pixel location
Z-coordinate value (if part of a position

5-29 CHAPTER 5. CATALOGS

pair with either X or Y)
IERR I 0 ok, 1 out of range, 2 bad type, 3 undefined

Common inputs:
DLOC.INC position parms deduced from the map header by
subroutine SETLOC.
Units are as in the mapheader: degrees for position coords

5.8.16 YCINIT
Initialize image catalog for plane IPLANE - TK now done with TKCATL
YCINIT (IPLANE, BUFF)
Input:
IPLAXE I Image plane to initialize
Output:
BUFF I1(266) Working buffer

5.8.17 YCOVER

YCOVER checks to see if there are partially replaced images in any of the TV planes currently visible by
quadrant.

YCOVER (OVER, BUF, IERR)

Outputs:
OVER L(4) T => there are in quadr. I
BUF I(512) scratch
IERR I Error code: 0 => ok, other catlg IO error

5.8.18 YCWRIT
Write image catalog block in CATBLK into image catalog.
YCWRIT (IPLANE, IMAWIN, CATBLK, BUFF, IERR)

Inputs:
IPLARE I image plane involved
IMAVIN I(4) Corners of image on screen
CATBLK I(256) 1Image catalog block
Outputs:
BUFF I(266) working buffer
IERR I error code: 0 => ok

1 => no room in catalog
2 => 10 problems

5.8.19 YCREAD
Read image catalog block into CATBLK - TV only (TK in TKCATL).

YCREAD (IPLANE, IX, IY, CATBLK ,IERR)

Inputs:
IPLARE I plane containing image whose block is wanted
IX I X pixel coordinate of a point within image
IY I Y pixel coordinate of point within image

Outputs:

5.8. ROUTINES 5-23

CATBLK I(2566) Image catalog block

IERR I error codes: 0 => ok
1 => IX, IY lies outside image
2 => Catalog i/o errors
3 => refers to TK device

5-24 CHAPTER 5. CATALOGS

Chapter 6

Disk files

6.1 Overview

Most images, uv data sets, scratch files, and other information in the AIPS system are kept in cataloged
disk files. The purpose of this chapter is to describe the general techniques for accessing data in disk files.

Associated with each image or uv data file may be a number of auxiliary files known as “extension”
files containing information about the main file. Examples of extension files are the history file, CLEAN
components files and antenna files. Details of the structure of the various files used in AIPS programs are
described in Appendix C. Except for the image and uv data files, the details of the file structure will not be
described here.

The amount of data in the image and uv data files can be rather large, so it is important that the routines
accessing them be relatively efficient. This efficiency comes at the cost of increased complexity. There are a
number of features of AIPS I/O routines for handling large amounts of data which are designed for efficiency.

1. Fixed record length. All files internal to AIPS have a fixed logical record length. This allows the I/O
routines to block disk transfers into a number of logical records.

2. Large double buffered transfers. The upper level I/O routines automatically make data transfers as
large as possible and when possible double buffer the transfers.

3. Visible I/O buffers. To avoid an in-core transfer of all data, most AIPS routines work directly from
the I/0 buffer.

Extension files are handled somewhat differently. Since the amount of data in these files is rather small,
friendlier, but less efficient, techniques are used. Logical records have a fixed length, but the basic I/O
routine (TABIO) returns the data in an array which allows implementation of data structures.

This chapter discusses the various aspects of disk files — creating, destroying, reading, writing, etc. The
cataloging of these files has been covered in a previous chapter. A typical programmer will not need to
understand all of the material in this chapter to program effectively in AIPS. The detailed descriptions of
the major routines discussed will be given at the end of the chapter.

6.2 Types of Files

AIPS has two logically different types of files, which on some machines are also physically different. The
first type, known as regular disk files, is used mainly for extension files. I/O to this type of file is done in
512-AIPS byte blocks. The second type of file, known as “map” files, is used for image and uv data files. I/O
to this type of file is usually done in the double buffered mode with large size transfers. (Double buffering is
when the program works out of one half of a buffer, while the other half is being read from, or written to,
the external device.) Both of these types of files may be expanded or contracted.

The principle distinction between the two types of files are the file creation and opening routines. Many
of the higher level creation and file open routines hide this distinction from the programmer. These routines
will be discussed later in this chapter.

6-1

6-2

6.3

CHAPTER 6. DISK FILES

File Management

AIPS has a set of utility routines for creating and managing disk files. The four functions covered in this
section are file creation, destruction, extension and contraction.

6.3.1 Creating Files

There are several higher level file creation routines, one for each of several applications. These applications
are image files, UV data files, scratch files, general extension files and history files. The basic file creation
routine is ZCREAT.

MCREAT creates and catalogs an image file (type “MA”) using the description of the file contained in
a catalog header record passed to MCREAT via the common /MAPHDR/ (INCLUDE DCAT.INC).
All information in the header defining the size and name of the file must be filled in before calling
MCREAT. The catalog header record is described in detail in another chapter.

UVCREA creates and catalogs a uv data file (type “UV”) using the description of the file contained in
the catalog header record passed to UVCREA in the common /MAPHDR/ (INCLUDE DCAT.INC).
The catalog header record must be sufficiently complete to determine the name, class, etc. and size of
the required file.

SCREAT will create scratch files using the /CFILES/ (INCLUDE DFIL.INC) common system; thus
the scratch files will be automatically deleted when the task calls the shutdown routine DIE. Scratch
files are cataloged as type “SC” files. Use of SCREAT is described in more detail in the chapter
describing tasks.

TABINI. The creation of most tables extension files is hidden from the casual programmer in the
create/open/initialize routine TABINI. TABINI will be discussed in more detail in the chapter on
tables.

HICREA. The creation of history files is normally hidden in the upper level routine HISCOP. The use
of HISCOP and HICREA are described in more detail in the chapter on writing tasks.

ZCREAT. The basic file creation routine is ZCREAT. If none of the other file creation routines are
applicable, then use ZCREAT. ZCREAT needs the physical name of the file and the size of the file in
bytes. ZCREAT does not catalog the file created.

6.3.2 Example Using ZCREAT
The use of ZCREAT is demonstrated in the following:

INTEGER IRET, NX, NY, WP(2), WBYTE, IVOL, CRO, IVER, IERR
CHARACTER PHNAME*48

LOGICAL MAP

PARAMETER (MAP = .TRUE.)

INCLUDE ’INCS:DDCH.INC’

NX, NY are the size of an
image. Determine file size.
NP (1) NX
XpP(2) = NY
CALL MAPSIZ (2, NP, NBYTE)

Size now in NBYTE

6.4. I/O TO DISK FILES 6-3

Make physical name.
IVOL = disk number
CNO = catalog slot number
IVER = extension file
version number.
1 for main cataloged files.
CALL ZPHFIL (’MA’, IVOL, CNO, IVER, PNNAME, IERR)
filename now in PHNAME.
(error if IERR not 0)
o Create file of type ’MA’
CALL ZCREAT (IVOL, PNNAME, NBYTE, MAP, IERR)
C Test for errors...

anaoaoo0oaan

aaa

In the example above, a map file was created large enough to hold a NX by NY image using the routine
MAPSIZ to compute the correct size for the file. To catalog this file a catalog header record should be
constructed and calls made to CATDIR and CATIO before the call to ZPHFIL to get the catalog slot
number needed to form the physical name of the file. A detailed description of the calling sequence for
ZCREAT can be found at the end of this chapter. (In practice, one would use MCREAT to catalog and
create the file shown in the example above.)

6.3.3 Destruction Routines

There are a number of special purpose file destruction routines; the basic file destruction routine is ZDESTR.
A brief description is given here of these utility routines; a description of the call sequence is given at the
end of this chapter.

e MDESTR will delete a catalog entry for a file, delete all extension files for that file, and then delete
the file. The file must be in the REST state. Since catalog files can be marked “WRITE — Destroy if
task fails” which will cause the shutdown routine DIE to destroy the file there is seldom a need to call
MDESTR directly. MDESTR will destroy either cataloged image or uv data files.

o SNDY will destroy scratch files described in the /CFILES/ common (INCLUDE DFIL.INC). SNDY is
called by the shutdown utility DIE so tasks do not have to call it separately.

e ZDESTR is the basic file destruction routine. ZDESTR will not uncatalog the file destroyed. CATDIR
should be used to uncatalog a cataloged file destroyed.

6.3.4 Expansion and Contraction of Files

All files can be both expanded and compressed. Since most extension file access is by TABIO, the expansion
of extension files is hidden from the programmer. Expansion of files is done with routine ZEXPND and
compression is done using routine ZCMPRS. Details of the call sequences of these routines are given at the
end of this chapter.

6.4 I/0O to Disk Files

There are a number of steps necessary in order to access a disk file. Normal Fortran I/O hides a number of
these steps but they are all visible in at least some AIPS applications. This increased complexity of the I/O
system gives the programmer a high degree of control over how the I/O is actually done. One or more of
the steps in accessing a file may be performed with a single call. In general, access of a disk file is as follows:

6-4 CHAPTER 6. DISK FILES

1. Forming the physical name of the file. The AIPS utility ZPHFIL is always used for this purpose.
The name is derived from file type, the disk number, catalog slot number, version number and user
ID number. Also a revision code is usually included in the physical name of the file so that versions
of AIPS with incompatable file formats can coexist in the same directories. The file type of image
files is “MA”, of uv data files is “UV” and of scratch files is “SC”. The disk number and catalog slot
number for cataloged files may have to be obtained from the AIPS utility routine CATDIR before
calling ZPHFIL. This step is incorporated in a number of routines such as SCREAT, TABINI and
MAPOPN.

2. Opening the file. This is done with routine ZOPEN for binary files and ZTOPEN or ZTXOPN for
text files. In either case, the file must be given a logical unit number (LUN) and the opening routine
returns a pointer to the AIPS I/0 table (FTAB) which, with the LUN, must be used in all subsequent
calls. This step is incorporated in the routines TABINI and MAPOPN.

3. Initializing the transfers. The AIPS higher level I/O routines need to be told a number of parameters
about the data transfers, such as whether a read or write is desired, the size and number of logical
records, and the location and size of the buffer to be used. In several cases the range of data desired
can also be specified. This step is usually done in one of the specialized routines to be described later.

4. Data transfers. This is when the data is transferred from the disk to the specified buffer or vice versa.
Actual data transfers are done by Direct Memory Access (DMA) and are usually in large blocks for
“map” files and in 512-byte blocks for non-map (extension) files. Since the transfers usually consist of
a number of logical records, the programmer is unaware of when transfers actually take place. Because
the programs frequently work directly from the I/O bufler, many of the I/O routines return a pointer
to the first word in the buffer of the next logical record.

5. Flushing the buffer (writing only). When all calls to disk write routines are complete, there may still
be data in the buffer which has not been written. In this case, a call must be made to the appropriate
I/0 routine telling it to flush the buffer to disk.

6. Closing the file. When all operations on a file are complete the file needs to be closed. This is usually
done with an explicit call to the appropriate close routine.

6.4.1 Upper Level I/O Routines

There are a number of AIPS upper level I/O routines which do most of the bookkeeping. The following is a
short description of the more commonly used of these; detailed descriptions of the call sequences are found
at the end of the chapter. The use of many of these routines is discussed later in this chapter.

o TABINI opens and initializes an table extension file, will create and catalog the extension file if neces-
sary. See the chapter on tables for more details.

TABIO does random access mixed reads and writes to extension tables. TABIO deals with one logical
record at a time in an array which can be used as a data structure. TABIO takes care of file expansion
and other bookkeeping chores. Requires initialization by TABINI.

o MAPOPN finds a cataloged image or uv data file in the catalog, opens it and returns the catalog
header and marks the catalog status.

e MINIT initializes I/O for image files; can specify a subimage for reads.

e MDISK does double buffered 1/O for image files; requires initialization by MINIT.

e UVINIT initializes I/O for uv data files; can specify a starting visibility record number.
e UVDISK does double buffered I/O for uv data files; requires initialization by UVINIT.

o MAPCLS closes a cataloged image or uv data file, updates the catalog header block if requested and
clears the catalog status.

6.4. I/0 TO DISK FILES

6.4.2 Logical unit numbers

Many logical unit numbers in AIPS have special meanings which indicate to the I/O routines what kind of
device or file is involved. The information about which LUN corresponds to which device is contained in a
table (DEVTAB) in the device characteristics common (INCLUDE DDCH.INC). AIPS has 50 defined LUN
values, i.e., DEVTAB has 50 entries, and the type of device or file type for each LUN is given in DEVTAB

with the following codes:

DEVTAB(LUN)
DEVTAB(LUN)
DEVTAB(LUN)
DEVTAB(LUN)

DEVTAB(LUN)

LUN is for disk file requiring I/0 control area in
FTAB. Multi-record I/0 is possible.

Device not requiring I/0 control area in FTAB.

I/0 done by Fortran (terminals, printer/plotter).
LUK is for device requiring I/0 control area in
FTAB. Multi-record I/0 not allowed (e.g., tapes)
Similar to 1. VAX uses this code to defer opens
from ZOPEN to ZTOPEN for text files.

LUN is for TV device requiring special I/0 routine
and normal I/0 control area in FTAB.

In addition, many LUNs have predefined values as shown in the following table.

LUN

© 0N WN -

10

27 - 30
31 - 37

Use
Line printer
Plotter
Reserved
Input to batch processors
Input CRT
Output CRT
Graphics CRT
Array Processor (roller)
TV device
POPS "run" files
POPS "help" files
Log/exrror file (used by MSGWRT).
Task communication file. .
POPS '"memory" file
Catalog files.
Map (image or uv data) files.
Graphics files
General (non-map) disk files.
Magnetic tape drives (31 - 30+NTAPED)

6.4.3 Contents of the Device Characteristics Commons

The device Characteristics commons, obtained from the INCLUDE DDCH.INC contains a number of useful

parameters about the host system.

6-6 CHAPTER 6. DISK FILES

6.4.4 Image Files

A disk image file contains an ordered, binary sequence of pixel values with logical records consisting of single
“rows” of the image. The pixel values are arranged in the order defined in the catalog header block, the first
axis going the fastest. Blanking of pixels is allowed by use of a special value (magic value blanking) specified
by the header. For more information about the catalog header and the typical axes used, see the chapter on
the catalog.

Image files are stored on the disk with each row beginning on a block boundary. An exception to this is
when multiple rows will fit into a single block, in which case multiple rows can be in a given disk block. In
this latter case, rows are not allowed to span block boundaries.

Opening Image Files

The simplest way to find, open and close a cataloged image file is with the routines MAPOPN and MAPCLS.
These routines and the alternate ways to find an image in the catalog are discussed in the chapter on the
catalog and details of the call sequence are found at the end of this chapter.

If the use of MAPOPN and MAPCLS is not appropriate to open and close the image file, then the
routines ZPHFIL, ZOPEN and ZCLOSE are to be used to (1) form the physical name of the file, (2) open
the file, both in the AIPS and system tables, and (3) close the file when done. The details of these routines
are given at the end of this chapter. These operations are demonstrated in the following example.

INTEGER IRET, CNO, IVOL, IVER, LUN, IND
LOGICAL MAP, EXCL, WAIT

CHARACTER PHNAME=*48

PARAMETER (MAP = .TRUE.)

PARAMETER (EXCL = .TRUE.)

PARAMETER (WAIT = .TRUE.)

PARAMETER (LUN = 16)

DATA IVER /1/

Make physical name.
’MA’ = file type
IVOL = disk number
CHNO = catalog slot number
(arbitrary for
uncataloged files).
IVER = extension file
version number.
1 for main cataloged
files. Arbitrary
otherwise.
CALL ZPHFIL (’MA’, IVOL, CNO, IVER, PHNAME, IRET)
filename now in PHNAME.
(error if IRET not 0)
C Open file
CALL ZOPEN (LUN, IND, IVOL, PHENAME, MAP, EXCL, WAIT, IRET)
c Test for errors (IRET not 0)

s s s s s NN s N2 K1)

aQQ

(I/0 to tile)

6.4. 1/O TO DISK FILES 6-7

C Close filse.
CALL ZCLOSE (LUN, IND, IRET)

MINIT and MDISK

Once the image file is opened, I/O is normally initialized by a call to MINIT; I/O is done by calls to MDISK,
with a final call to MDISK to flush the buffer, if necessary. MINIT sets up the bookkeeping for one plane of
an image at a time; if multiple planes are to be read, multiple calls to MINIT must be made. A rectangular
window in a given plane can be specified to MINIT, and it can be instructed to read or write the rows in
reverse order by reversing the values of WIN(2) and WIN(4). A subimage cannot be specified for write.

Due to the use of buffer pointers, MDISK must be called for WRITE before placing data into the buffer.
This produces a rather strange logic flow, but is necessary. Details of the call sequences to MINIT and
MDISK are given at the end of this chapter.

Multi-plane Images (COMOFF)

If the image has more than two dimensions, planes parallel to the first plane can be accessed using the block
offset argument to MINIT. The subroutine COMOFF is to be used to compute the block offset. The block
offset is an integer whose value for the first plane is 1. COMOFF returns a value which is to be added to
the block offset for the first plane.

An example of the use of COMOFF to compute the block offset:

INTEGER BLKOF, PLARR(5), IERR
INCLUDE ’DHDR.IKRC’
INCLUDE ’DDCH.IKNC’
INCLUDE ’DCAT.INC’

c Get second plane on third
(o} axis, first pixel on
c the remaining axes.
PLARR(1) = 2
PLARR(2) = 1
PLARR(3) = 1
PLARR(4) = 1
PLARR(E) = 1
c PLARR specifies desired plane
c Use header block from DCAT.INC
CALL COMOFF (CATBLK(K2DIM), CATBLK(K2NAX), PLARR, BLKOF, IERR)
c Add block offset for first
c plane.
BLKOF = BLKOF + 1
c BLKOF now contains the value
c to send to MINIT to get the
c specified plane.

A detailed description of the call sequence for COMOFF is given at the end of this chapter.

6-8 CHAPTER 6. DISK FILES

Example of MINIT and MDISK

In the following is an example in which two files are read, the pixel values are added and a third file is
written.

SUBROUTINE FLADD (NX, NY, ISCRi, ISCR2, ISCR3, IERR)

c -

C FLADD adds the values in the scratch files in the /CFILES/ common

C (include DFIL.INC) number ISCRi and ISCR2 and writes them in the

C /CFILES/ scratch file number ISCR3

C Inputs:

C NX, Y I Number of pixels per row and number of rows

c ISCR1 I /CFILES/ scratch file number of first input file

c ISCR2 I /CFILES/ scratch file number of second input file

c ISCR3 I /CFILES/ scratch file number of output file

C Output:

Cc IERR I Return code, 0=>0K, otherwise error.

C -
INTEGER NX, NY, ISCRi, ISCR2, ISCR3, IERR

c

INTEGER FIND1, FIND2, FIND3, BIND1, BIND2, BIND3, BO,
+ WIN(4), BUFSZ1, BUFSZ2, BUFSZ3, LUNi, LUN2, LUN3
LOGICAL T, F -

CHARACTER FILE#48

REAL BUFF1(4096), BUFF2(4096), BUFF3(4096)
PARAMETER (T = .TRUE.)

PARAMETER (F = .FALSE.)

INCLUDE ’INCS:DMSG.INC’

INCLUDE ’INCS:DFIL.INC®

DATA BO, WIN /1, 4#%0/

C Use LUNs 16, 17, 18

DATA LUN1, LUN2, LUN3 /16,17,18/

C - -—
c Set buffer sizes

BUFSZ1 = 4096 * 2

BUFSZ22 = 4096 * 2

BUFSZ3 = 4096 * 2
C Open and init ISCR1

CALL ZPHFIL (’SC’, SCRVOL(ISCR1), SCRCNO(ISCR1), 1, FILE, IERR)
CALL ZOPEN (LUNi, FIND1, SCRVOL(ISCR1), FILE, T, F, T, IERR)
C Check for error
IF (IERR.NE.O) THEN
WRITE (MSGTXT,1000) IERR, ’READ’, 1

GO TO 990
END IF
CALL MINIT (’READ’, LUNi, FINDi, NX, NY, WIN, BUFF1, BUFSZ1, BO,
* IERR)
C Check for error

IF (IERR.NE.O) THEN
WRITE (MSGTXT,1010) IERR, ’READ’, 1
GO TO 990
END IF
c Open and init ISCR2
CALL ZPHFIL (’SC’, SCRVOL(ISCR2), SCRCNO(ISCR2), 1, FILE, IERR)
CALL ZOPEN (LUN2, FIND2, SCRVOL(ISCR2), FILE, T, F, T, IERR)

6.4. 1/0 TO DISK FILES

c

Q

IF

Check for error
(IERR.NE.O) THEN
WRITE (MSGTXT,1000) IERR, ’READ’, 1
GO TO 990
END IF

CALL MINIT (’READ’, LUN2, FIND2, NX, NY, WIN, BUFF2, BUFSZ2, BO,

*

IF

IERR)
Check for error
(IERR.NE.O) THEN
WRITE (MSGTXT,1010) IERR, ’READ’,2
GO TO 990
END IF
Open and init ISCR3

CALL ZPHFIL (’SC’, SCRVOL(ISCR3), SCRCNO(ISCR3), 1, FILE, IERR)
CALL ZOPEN (LUN3, FIND3, SCRVOL(ISCR3), FILE, T, F, T, IERR)

IF

Check for error
(IERR.XE.O) THEX
WRITE (MSGTXT,1000) IERR, °’WRIT’
GO TO 990
END IF

CALL MINIT (’WRIT’, LUN3, FIND3, NX, NY, WIN, BUFF3, BUFSZ3, BO,

*

IF

DO

IERR)

Check for error
(IERR.NE.O) THEN
WRITE (MSGTXT,1010) IERR, ’WRIT’

GO TO 990
END IF

Loop, adding rows.
110 I = 1,NY

Read ISCR1
CALL MDISKX (’READ’, LUN1, FIND1, BUFF1, BIND1, IERR)
Check for error
IF (IERR.¥E.O) THEN
WRITE (MSGTXT,1060) IERR, ’READ’, 1
GO TO 990
ERD IF
Read ISCR2
CALL MDISK (’READ’, LUN2, FIND2, BUFF2, BIND2, IERR)
Check for error
IF (IERR.NE.O) THEN
WRITE (MSGTXT,1080) IERR, ’READ’,2
GO TO 990
END IF
Write ISCR3
CALL MDISK (’WRIT’, LUN3, FIND3, BUFF3, BIND3, IERR)
Check for error
IF (IERR.NE.O) THEN
WRITE (MSGTXT,10680) IERR, ’WRIT’
GO TO 990
END IF
Add row.
DO 100 J = 1,NX
Note: buffer pointer is to
first element so need zero

6-9

6-10 CHAPTER 6.

c relative index for each pixel.
J1=J-1
BUFF3(BIND3+J1) = BUFF1i(BIND1+J1) + BUFF2(BIND2+J1)
100 CONTINUE
110 CONTINUE

Cc Flush buffer.
CALL MDISK (’FINI’, LUN3, FIND3, BUFF3, BIND3, IERR)
c Check for error

IF (IERR.NE.O) THEN
WRITE (MSGTXT,1060) IERR, ’'FINI’
GO TO 990
END IF
c Close files.
CALL ZCLOSE (LUN1, FIND1, IERR)
IF (IERR.NE.O) THEN
WRITE (MSGTXT,1060) IERR, ’CLOS’, 1
GO TO 990
END IF
CALL ZCLOSE (LUN2, FIND2, IERR)
IF (IERR.NE.O) THEN
WRITE (MSGTXT,1060) IERR, °CLOS’, 2
GO TO 990
END IF
CALL ZCLOSE (LUN3, FIND3, IERR)
IF (IERR.NE.O) THEN
WRITE (MSGTXT,1060) IERR, ’CLOS’, 3

GO TO 990
END IF
C Finished OK.
GO TO 999
Cc An error has occurred - send
c message
990 CALL MSGWRT (8)
c
999 RETURR
c

1000 FORMAT (’FLADD: ERROR’,I3,’ OPEN FOR ’,A4,’ FILE’,I2)
1010 FORMAT (’FLADD: ERROR’,I3,’ INIT FOR ’,A4,’ FILE’,I2)
1060 FORMAT (’FLADD: ERROR’,I3,1X,A4,’ING FILE’,I2)

END

MINSK and MSKIP

DISK FILES

There are some operations, such as transposing images, in which it is convenient to read every n’th row of
an image. The pair of routines MINSK and MSKIP will do this operation. Descriptions of these routines

can be found at the end of this chapter.

6.4.5 Image File Manipulation Routines

There are a number of AIPS utility routines available to operate on files. Many of these involve copying
data from catalog files to scratch files or vice versa. Details of the call sequences to these routines are given

at the end of this chapter.

6.4. I/O TO DISK FILES 6-11

o PLNGET reads a selected portion of a selected plane from a cataloged file and writes it into a specified
scratch file. The output file will be zero padded and a shift of the center may be specified.

e PLNPUT writes a subregion of a scratch file image into a cataloged image.

6.4.6 UV Data Files

Interferometers take samples of the visibility (also called coherence) function of a wavefront at random
locations so these data must be stored differently from images. Also, this data may be in a variety of forms,
calibrated or raw, one source per file or many. The following sections describe these uv data files.

Single-source Files

The simplest form of a uv data file is the single source file which contains data from a single celestial source
and is usually assumed to be calibrated and edited. A given visibility record consists of all data taken on a
given baseline (with a pair of antennas) at a given time. Thus, this record may contain data for a number
of frequencies and/or polarizations. Each measurment consists of a triplet of values giving the real part,
the imaginary part and the weight of a given visibility sample. (This may be modified for compressed data;
see the section on compressed data). The visibility records in this type of file may be in an arbitrary order
depending on the application.

Each uv data file needs one or more antenna {AN) tables to describe the locations and other properties
of the antennas used. The visibility data contains, in a coded form, the numbers of the antennas involved in
each baseline. The antenna numbers refer to entries in the Antenna table.

There are occasions where data is sampled at a number of relatively arbitrary frequencies. For these cases
we have introduced a frequency-like axis called IF. The offset of the frequency of the reference pixel in each
IF group of data from the file reference frequency is given in the FQ table. Since these sets of frequencies
may change in a given file (e.g. bandwidth synthesis or rotation measure studies) a random parameter in
the data file labeled (’FQID’) points to a given entry in the FQ table. In general, a single source file will
contain only a single FQ id.

Multi-source Files

In order to allow the use of calibration and editing software, multi-source files contain data from more than
one source. In addition, the data are in relatively raw form and have associated calibration and editing
tables which must be applied before the data are used. This type of file has an index and must be in strict
time-baseline order. The structure of multi-source data files is very similar to the single source file. The use
of multi-source files is described in detail in the chapter on Calibration and Editing in Volume 2.

The principal difference between the single-source files and the multi-source files is the addition, in the
latter, of a source number random parameter and a number of associated tables. Several of these tables are
described in the following:

e SU table. This table contains the information specific to a given source (e.g., position)
e NX table. This table contains an index for the file, telling when each source was observed.
o CL tables. These tables contain the information necessary to calibrate the data.

o FG tables. These tables contain the information necessary to flag bad data.

Read access to multi-source files is through the routines UVGET and CALCOP. UVGET selects, reformats,
flags and calibrates data as specified and returns one visibility per call after setup. CALCOP will copy all
selected records after setup by UVGET. The details of the call sequences of these routines are given at the
end of this chapter. These routines handle all of the I/O chores described in this chapter and will also work

for single source data files.

6-12 CHAPTER 6. DISK FILES

Compressed Data

AIPS supports a “Compressed” format for uv data. In this form there is a single “Weight” and scaling
random parameter in each visibility record and the real and imaginary parts of the correlation values are
packed into a single REAL value with magic value blanking. The details of the packing is machine dependent
and is implemented via the “Z” routines ZUVPAK and ZUVXPN. Compressed data can be identified by a
dimension of 1 on the “COMPLEX?” (first) axis of the data array. The calibration package (UVGET) will
automatically unpack visibility data.

Subarrays

Since uv data sets frequently contain data from physically separate arrays, AIPS uv data sets can contain
“sub arrays”. This is necessary so that the physical identity of each antenna in a visibility record can be
uniquely established. Each subarray has its own antenna file, which contains the true frequency and date of
observation and the locations and other information about each antenna.

When uv data sets are concatenated, the u, v and w terms of each subsequent data set are converted to
wavelengths at the reference frequency defined by the first data set. The subarray number is encoded into
the baseline number in each visibility record. The older practice of offsetting times by (subarray-1) * 5 days
is being phased out, but still appears in some applications.

Visibility record structure

AIPS uv data is organized in the data file in the same way that similar data is organized on a FITS random
groups format tape. Each logical record consists of all data on a given baseline for a given integration period;
that is, all polarizations, frequencies, and IFs are contained in a given logical record. The first portion of a
logical record is a list of the “random” parameters such as u, v, time, etc. Following the random parameters
comes a regular array of data, which is very similar to a small image file. The length and structure of the
visibility logical record is fixed in a given data base, but may vary from one data base to another. Records
may span disk sector boundaries.

The random parameters can be in any order, but the names of only the first 14 are kept in the catalog
header record; this list defines the order in which the values occur. The labels for the normal u, v and w
random parameters are “UU-L-SIN”, “VV-L-SIN”, “WW-L-SIN” indicating that the coordinates correspond
to the tangent point of the data computed using sine projection and the units are wavelengths at the reference
frequency. The label for the time random parameter is “TIME1” for historical reasons and the label for
the baseline parameter is “BASELINE”. The label for the source number random parameter is “SOURCE”;
the source number points to an entry in the source (SU) table. Other “standard” but optional random
parameters are “FQID” for the FQ table identifier and “WEIGHT” and “SCALE” for compressed data.

The regular portion of the array is like an image array in that the order of the axes is arbitrary. In
practice for uncompressed data, the first axis should be the COMPLEX axis (real, imaginary, weight). As
in image files, the RA, Dec and frequency (for continuum data) are dummy axes which provide a place to
store the values for these parameters.

A “regular” axis, which is not intrinsically regular, is what will be referred to as IFs. These are the
results of separate receivers (either at RF or IF) which are randomly spaced, but have one or more regularly
spaced frequency channels. The pixel number of these IFs points to an entry in the FQ table which gives the
frequency offset from the reference frequency for that IF. The FQ table is accessed by the routine CHNDAT,
whose call sequence is given at the end of this chapter. The values of the frequency offsets are allowed to be
variable inside of a given data set and the set of frequencies and bandwidths used in a given visibility record
is specified by an optional FQ identifier random parameter labeled “FQID”. One entry is made in the FQ
table for each set of frequencies and/or bandwidths.

The structure of a typical VLA data record from a single source file with a single IF is shown in the
following figure.

| u, v, ¥, ¢, bl Ri, I1, Wi, R2, I2, W2, R3, I3, W3, R4, 14, Wa|
random RR LL RL LR
parametets rectangular data array

6.4. 1I/O TO DISK FILES 6-13

The symbols in the above are:
e u = u coordinate in wavelengths at the reference frequency
e v = v coordinate
e w = w coordinate

e t = time in days since reference date given in antenna file for this subarray. (The time may be offset
by 5 x (subarray no. - 1))

e b = baseline code; 256 x antenna 1 no. + antenna 2 no. + 0.01 x (subarray no. - 1). (see later section
for more details)

o Rn = the real part of a correlator value in Jy.
o In = the imaginary part of a correlator value.

e Wn = the weight assigned to the correlator value. In general, it is arbitrary. Data with Wn < 0 are
“flagged” (to be ignored).

AIPS uv data sets may contain data in either true Stokes’ parameters or correlator based values for circularly
polarized IFs. Since Stokes’ parameters are not an inherently ordered set, we have adopted the following
convention for the values along the Stokes’ axis:

Stokes’ (or correlator) parameter Value
I 1
Q 2
U 3
v 4

RR -1
LL -2
RL -3
LR -4
Xx -5
YY -6
XY -7
X -8

The orientations of the “X and “Y” linearly polarized feeds are defined in the antenna (AN) table.

The order of the visibility records in a single source file may be changed; this is usually done with the
task UVSRT. Sorting is done using a two key sort and the current sort order is described in the catalog
header record (CATBLK(KITYP)) as a two-character HOLLERITH string. The codes currently defined for
the sort order are given in the following table, the first key in the sort order varies more slowly.

B => baseline number

T => time oxder

U => u spatial freq. coordinate
V => v spatial freq. coordinate
W => w spatial freq. coordinate
R => baseline length.

P => baseline position angle.

6-14 CHAPTER 6. DISK FILES

> descending ABS(u)
> descending ABS(v)
ascending ABS(u)
> ascending ABS(v)
=> not sorted

#* RN < >
non
v

As examples of the use of the sort order, the older mapping routines require “XY” sorted data (actually
they are happy as long as the first key is “X”), self calibration tasks require “TB” order, etc.

Data Order, UVPGET

The position in the record of the standard random parameters (u,v,w,t,b) and the order of the regular axes
can be obtained using the routine UVPGET. UVPGET determines pointers and other information from a
uv data file catalog header record in common /MAPHDR/ from include DCAT.INC. These pointers are
placed in commons which are obtained by the DUVH.INC INCLUDE. The address relative to the start of a
vis record for the real part for a given spectral channel (CHAN), IF (NIF) and Stokes parameter (ICOR) is
given by:

NRPARM + (CHAN-1) # INCF + (NIF-1) IKCIF + ABS (ICOR-ICORO) * INCS

Antenna and Subarray Numbers

Antenna and subarray numbers are coded into a single floating word. Some care must be used in decoding
these values. The following example shows how to extract these values from a buffer BUFF with UVDISK
pointer IBIND and baseline offset ILOCB from DUVH.INC.

INTEGER IBASE, BIND, ANT1, ANT2, SUBAR

REAL BUFF(*), BASE

c Extract from buffer
BASE = BUFF(BIND+ILOCB)

C First antenna number
ANT1 = (BASE / 266.0) + 0.1

C Second antenna number
ANT2 = (BASE - ANT1 * 256.0) + 0.1

IBASE = BASE + 0.1
c Subarray number
SUBAR = (BASE - IBASE) * 100.0 + 1.1

Data Reformatting Routines

The variety of different uv data formats, especially different polarization types, allowed in AIPS uv data
bases complicates handling of uv data. If a routine is to read and write uv data, it must be prepared to
handle any allowed data type. If the routine is only reading the data, reformatting the data to a standard
form is practical. There are a number of reformatting routines available.

Efficient reformatting requires two routines, one to setup arrays of pointers and factors and the second
to reformat each record. The following list describes several such pairs; detailed descriptions of the call
sequence to the routines can be found at the end of this chapter.

e SET1VS, GET1VS return a single visibility value in true Stokes’ parameter (I, Q, U, V) or circular
polarization (RCP, LCP). They may be requested to work on multiple frequency channels. Does not
allow specification of IF at present; defaults to the first.

e SETVIS, GETVIS return several visibility values in the form of true Stokes’ parameter (I, Q, U, V) or
circular polarization (RCP. LCP). They may be requested to work on multiple frequency channels. A
single IF may be specified.

6.4. I/O TO DISK FILES 6-15

o DGINIT, DGGET are the most general data selection/Stokes’ translation routines.

o UVGET sets up, selects, reformats, calibrates, edits either single- or multi-source data files. After set
up by UVGET, CALCOP can be used to copy the contents of a file to another file.

6.4.7 UV Data Access

The following is a discussion of the routines to access UV data.

UVGET and CALCOP

Routine UVGET allows relatively easy access to all kinds of AIPS interferometer uv data from both single-
and multi-source files, in either normal or compressed format and can optionally select, calibrate, edit and
convert the stokes parameter of the data selected. After an initialization call UVGET returns one visibility
at a time. UVGET can apply SN, BL or BP calibration tables and/or make polarization corrections as
specified in the AN table to single source files. Most of the communication with UVGET is through the
commons in INCLUDE file DSEL.INC which are described in the description of UVGET at the end of this
chapter. These values may be initialized using routine SELINI whose description appears at the end of this
chapter.

If it is more convienent to operate on a uv data scratch file than on one visibility at a time (e.g. multiple
passes throught the data are required) then CALCOP can be used to produce a file containing the selected
data with any calibration etc. operations done on them. CALCOP will optionally create the scratch file. A
description of CALCOP is given at the end of this chapter.

UVINIT and UVDISK

UV data files may be located and opened using routine MAPOPN.Data are read or written using UVINIT
and UVDISK in much the same manner in which image files are read with MINIT and MDISK. One
significant difference between UVDISK and MDISK is that UVDISK can be requested to process multiple
logical records (NPIO) in a single call. If NPIO is 0, then the largest value consistent with double buffering
will be used; if NPIO is too large for the buffer provided, it will be reduced to the largest value consistent
with single buffering. This is useful when large amounts of data are to be sent to a sorting routine or to the
array processor or to reduce the overhead of many subroutine calls.

Another difference between MINIT and UVINIT is that, unlike MINIT, UVINIT returns the buffer
pointer for the first call so the output buffer can be written into before the first call to UVDISK.

UVINIT sets up the bookkeeping for UVDISK which does double buffered (if possible) quick-return 1/0.
UVDISK will run much more efficiently if, on disk, the requested transfer (logical record length x the number
of records per call) is an integral number of disk blocks. Otherwise, partial writes or oversize reads will have
to be done. Minimum disk I/O is one block.

The buffer size for UVDISK should include an extra NBPS bytes for each buffer for reads, if NPIO records
does not correspond to an integral number of disk sectors (NBPS bytes). 2«xNBPS extra bytes required for
each (single or double) buffer for writes. More details about the call sequence to UVINIT and the use of the
FTAB are given at the end of this chapter.

UVDISK reads and writes records of arbitrary length, especially uv visibility data. There are three
operations which can be invoked: READ, WRITE and FLUSH (OPcodes “READ”, “WRIT” and “FLSH”).

If the requested transfers are too large to double buffer with the given buffer size, then UVDISK will
single buffer the I/O. If it is possible to do double buffered physical transfers of some multiple of the requested
number of records, then this is done.

OPcode =“READ?” reads the next sequential block of data as specified to UVINIT and returns the actual
number of visibilities, NIO, and the pointer, BIND, to the first word of this data in the buffer.

OPcode=“WRIT” collects data in a buffer half until it is full. Then, as many full blocks as possible are
written to the disk with the remainder left for the next disk write. For writes, left-over data is transferred
to the beginning of the next buffer half to be filled. The value of NIO in the call is the number of visibility
records to be added to the buffer and may be fewer than the number specified to UVINIT. On return, NIO

6-16 CHAPTER 6. DISK FILES

is the maximum number which may be sent next time. On return, BIND is the pointer in BUFFER to begin
filling new data.

OPcode=“FLSH” writes integral numbers of blocks and moves any data left over to the beginning of
buffer 1. One exception to this is when NIO < 0, in which case the entire remaining data in the buffer is
written (if NIO < 0 then ABS (NIO) visibilities are to be written). After the call, BIND is the pointer in
BUFFER for new data. The principal difference between FLSH and WRIT is that FLSH always forces an
I/0 transfer. This may cause trouble if a transfer of less than 1 block is requested. A call with a nonpositive
value of NIO should be the last call and corresponds to a call to MDISK with opcode “FINI”.

The input/output argument to UVDISK, NIO, can be very useful for controlling the loop reading and/or
writing uv data. The value of NIO for reads is the number of values in the buffer that are available. When
the file has been completely read, the value of NIO returned by UVDISK on the next call is 0; this value
can be used to determine when all of the data has been read. The example in the following section uses this
feature in UVDISK. More details about the call sequence can be found at the end of this chapter.

Example using UVINIT and UVDISK

SUBROUTINE UVCONJ (ISCR1, ISCR2, LUN1, LUN2, BUFF1, BUFF2,
* BUFSZ1, BUFSZ2, IERR)

UVCONJ takes the complex conjugate of the values in a uv data set
in a scratch file in the /CFILES/ common (INCLUDE DFIL.INC) number
ISCR1 and writes them in the /CFILES/ scratch file number ISCR2.
The current values in the /UVHDR/ commons (INCLUDE DUVH.INC) are
assumed to describe the uv data files.

Inputs:
ISCR1 I /CFILES/ scratch file number of input file
ISCR2 I /CFILES/ scratch file number of output file
LUN1 I Logical unit number to use for file 1

LUN2 I Logical unit number to use for file 2
BUFF1 R(*) I/0 buffer to use for file 1
BUFF2 R(*) I/0 buffer to use for file 2
BUFSZ1 I Size of BUFF1 in AIPS bytes (2*no. words)
BUFSZ2 1 Size of BUFF2 in AIPS bytes

Inputs from common /UVHDR/ (DUVH.INC)

NVIS I Number of visibility records

LREC I logical record length.

NRPARM I number of random parameters.

ICORO I (signed) value of first Stokes’ parameter.

JLOCF I zero relative order of the frequency axis in
the data array.

Jrocs I relative order of the Stokes’ axis.

JLOCIF I relative order of the IF axis.

INCF I word increment in the data array between
successive frequencies at the same location on
all other axes.

INCS I word increment in the data array between
successive Stokes’ values.

INCS I word increment in the data array between

successive IF values.
Inputs from common /MAPHDR/ (DCAT.INC)
CATBLK I(266) Catalog header record
Output:
IERR I Return code, 0=>0K, otherwise error.

o000 0000000000000 000 000

6.4. 1/O TO DISK FILES

INTEGER ISCR1, ISCR2, LUN1, LUN2, BUFSZ1, BUFSZ2, IERR

REAL BUFF1(*), BUFF2(x*)

C
INTEGER FIND1, FIND2, BIND1, BIND2, NFREQ, NSTOKE, NIF, I, IV,

* IFQ, IST, IIF, NIOIN, NIOUT, INDEX, JCORO, NILIM, BO, VO

LOGICAL T, F

CHARACTER FILE*48

PARAMETER (T = .TRUE.)

PARAMETER (F = .FALSE.)
C Listings of the standard
C INCLUDE files are at the end

C of the chapter on tasks.
INCLUDE ’INCS:DMSG.INC’
INCLUDE ’INCS:DUVH.INC’
INCLUDE ’INCS:DHDR.INC’
INCLUDE ’INCS:DCAT.INC’
DATA VO, BO /0,1/

C-_- - -
C Take absolute value of first
C Stokes’ value.
JCORO = ABS (ICORO)
C Find dimension of freq

C and Stokes axes.
NFREQ = CATBLK(KINAX+JLOCF)
NSTOKE = CATBLK(KINAX+JLOCS)

c May not have IF axis
NIF = 1
IF (JLOCIF.GT.O) NIF = CATBLK(KINAX+JLOCIF)

c Open and init ISCR1

CALL ZPHFIL (’SC’, SCRVOL(ISCR1), SCRCNO(ISCR1), 1, FILE, IERR)
CALL ZOPEN (LUN1, FIND1, SCRVOL(ISCR1), FILE, T, F, T, IERR)
C Check for error
IF (IERR.NE.O) THEN
WRITE (MSGTXT,1000) IERR, ’READ’, 1
GO TO 990
END IF
c Let UVINIT determine #/call
NIOIN = O
CALL UVINIT (’READ’, LUN1, FIND1, NVIS, VO, LREC, NIOIN,
* BUFSZ1, BUFF1, BO, BINDi, IERR)
Cc Check for error
IF (IERR.NE.O) THEN
WRITE (MSGTXT,1010) IERR, ’READ’, 1
GO TO 990
END IF
C Open and init ISCR2
CALL ZPHFIL (’SC’, SCRVOL(ISCR2), SCRCNO(ISCR2), i, FILE, IERR)
CALL ZOPEN (LUN2, FIND2, SCRVOL(ISCR2), FILE, T, F, T, IERR)
C Check for error
IF (IERR.NE.O) THEN
WRITE (MSGTXT,1000) IERR, ’WRIT’, 2
GO TO 990
END IF
NIOUT = O

6-18 CHAPTER 6. DISK FILES

CALL UVINIT (’WRIT’, LUN2, FIND2, NVIS, VO, LREC, NIOUT,
* BUFSZ2, BUFF2, BO, BIND2, IERR)
NILIM = NIOUT
NIOUT = O
C Check for error
IF (IERR.NE.O) THEN
WRITE (MSGTXT,1010) IERR, 'WRIT’, 2

GO TO 990
END IF
c Loop through data file.
C Read input file
CALL UVDISK (’READ’, LUN1, FIND1, BUFF1, NIOIN, BINDi, IERR)
Cc Check for error
IF (IERR.NE.O) THEN
WRITE (MSGTXT,1060) IERR, ’READ’, 1
GO TO 990
END IF
c Check if data all read.
IF (NIOIN.LE.O) GO TO 120
c Loop through records
DO 100 IV = 1,NIOIN
C Loop through IF
DO 90 IIF = 1,NIF
C Loop through Stokes’ axis
DO 80 IST = 1,NSTOKE
C Loop through frequency axis
DO 80 IFQ = 1,NFREQ
c Compute pointer in the
c buffer to imag. part
INDEX = NRPARM + (IFQ-1) * INCF + (IIF-1) * INCIF
+ (IST-JCORO) * INCS + 1 + (BIND1 - 1)
c Conjugate visibility
BUFF1(INDEX) = - BUFF1(INDEX)
80 CONTINUE
90 CONTINUE
C Copy record to output buffer
CALL RCOPY (LREC, BUFF1(BIND1), BUFF2(BIND2))
Cc Update buffer pointers
BIND1 = BIND1 + LREC
BIND2 = BIND2 + LREC
NIOUT = NIOUT + 1
c Write output when necessary
IF (NIOUT.GE.NILIM) THEN
CALL UVDISK (’WRIT’, LUN2, FIND2, BUFF2, BIND2,
NIOUT, IERR)
NILIM = NIOUT
NIOUT = 0
c Check for error

IF (IERR.NE.O) THEN
WRITE (MSGTXT,1060) IERR, ’WRIT’, 2
GO TO 990
END IF
END IF
100 CONTINUE

6.4. I/O TO DISK FILES 6-19

c Loop back for more data
110 GO TO 60

Cc Finished, flush buffer.

c No more output records.

120 NIOUT = -NIOUT
CALL UVDISK (’FLSH’, LUN2, FIND2, BUFF2, BIND2, NIOUT, IERR)
Cc Check for error
IF (IERR.NE.O) THEN
WRITE (MSGTXT,1060) IERR, ’FLSH’, 2

GO TO 990
END IF
C Close files.
130 CALL ZCLOSE (LUN1, FIND1i, IERR)
C Check for error

IF (IERR.NE.O) THEN
WRITE (MSGTXT,1060) IERR, ’'CLOS’, 1
GO TO 990
END IF
CALL ZCLOSE (LUN2, FIND2, IERR)
C Check for error
IF (IERR.NE.O) THEN
WRITE (MSGTXT,1060) IERR, ’CLOS’, 2
GO TO 990
END IF
IERR = 0
GO TO 999
C Error.
990 CALL MSGWRT (8)
999 RETURN
c ------- e o = —— —— v o - - e o s o o e o
1000 FORMAT (’UVCONJ: ERROR’,I3,’ OPEN FOR ’,A4,’ FILE’,I2)
1010 FORMAT (’UVCONJ: ERROR’,I3,’ INIT FOR ’,A4,’ FILE’,I2)
1060 FORMAT (’UVCONJ: ERROR’,I3,1X,A4,’ING FILE’,I2)
END

6.4.8 Single Dish Data

AIPS has a limited capacity to handle single dish data; that is measurments of sky brightness at random
locations on the sky. The format of single dish data is much like that of interferometer data so that many of
the utility routines will work for both. The “COMPLEX” axis still has 3 values (except for the compressed
form) which are: the measured sky brightness, any baseline or other offset removed and a weight. In place
of the U and V random parameters are sky positions which may be either absolute or in a specified tangent
plane projection. The structure of Single dish data is described in the following.

Single dish random parameters

The single dish random parameter types are described in the following:

1. ‘RA’ and ‘DEC’: These random parameters are the Right Ascension and Declination of the observation
in degrees. If the coordinates have been projected onto the tangent plane then the RA and Declination
types become ‘RA-xxxx’ and ‘DEC-xxxx’ where xxxx is the projection code. See the chapter on AIPS
catalog headers and/or AIPS memoes 27 and 46 for details of the projection codes. These random
parameter these are required but the order is arbitrary.

6-20 CHAPTER 6. DISK FILES

2. ‘TIMEY’: The time tags for the data are kept in days since the reference day.

3. ‘BEAM’: This random parameter gives the beam number + 256. The beam offset makes the data look
more like uv data and more of the the AIPS uv data tasks will work for this data.

4. ‘SCAN’: This random parameter gives the scan number. This random parameter is optional.

5. ‘SAMPLE’: This random parameter gives the sample number in the scan. This random parameter is
optional.

Single dish regular axis coordinates

The units of the regular axis coordinates are defined by convention; the conventions used by AIPS for the
regular axis types are the following:

1. ‘COMPLEX’: the “complex” axis consists of the measured brightness, subtracted baseline, and (op-
tional) weight. Magic value blanking is supported. This axis is required.

2. ‘STOKES’: this axis is used to describe which Stokes’ parameters are given; the conventions are the
same as used for uv data. This axis is required.

3. ‘FREQ’: the frequency axis coordinates are in Hz. This axis is required.

4. ‘IF’: The IF axis is a construct which allows irregularly spaced groups of frequency channels. The IF
number specifies an entry in the FQ table which must be present if this axis is present. This axis is
optional.

5. ‘RA’ and ‘DEC’: the celestial coordinates are given in degrees. The values associated with these
axes are irrelevant (although they should be present) for unprojected data. For data with projected
coordinates the coordinate values of these axes should be the tangent point, i.e. the position on the
sky at which the plane onto which the coordinates are projected is tangent to the celestial sphere and
these axes should become ‘RA— — —ccc’ and ‘DEC~—ccc’ where ccc is the projection code. These axes
are required.

Weights and flagging are handled the same as for visibility data. Sort order is the same as for visibility data
except that the sort codes for sorting by u and v become:

U => ordered by RA

=> ordered by Declination

=> descending ABS (RA)
descending ABS (Declination)
=> ascending ABS (RA)
=> ascending ABS (Declination)

BN < <
[
v

UVPGET and Single Dish Data

The routine UVPGET that interpretes uv data catalog headers also understands single dish data. The values
passed in INCLUDE DUVH.INC which differ for single dish and interferometer data are described in the
following:

e TYPUVD. This integer has a value of 1 for unprojected and 2 for projected sky coordinates. (0
indicates interferometer data).

e ILOCU. This integer gives the O-rel offset from the beginning of the record of the longitude like celestial
coordinate random parameter.

e ILOCV. This integer gives the 0-rel offset from the beginning of the record of the latitude like celestial
coordinate random parameter.

e ILOCB. This integer gives the 0-rel offset from the beginning of the record of the beam number random
parameter if present; -1 if absent.

6.4. I/0 TO DISK FILES 6-21

Access to and Calibration of Single Dish Data

Single dish data may be read with UVINIT/UVDISK in the same manner as interferometer data. There is
a calibration system for single dish data that parallels the interferometer system. Access to this system is
through the routine SDGET which is the single dish analog to UVGET for interferometer data with most
of the control parameters being passsed through the commons in DSEL.INC. SDGET can optionally apply
calibration information from the CS table and flagging from the FG table. A detailed description of SDGET
is given at the end of this chapter. A more complete description of the calibration system is given in Volume
2.

6.4.9 Extension files

Extension files contain a great variety of different types of data, but usually are small compared to the data
files. Thus, for extension file I/O, the routines are friendlier, but less efficient. In many cases, the data
stored in extension files consist of logical records which contain different data types and are, in fact, data
structures.

One type of extension file is the table. This type of file contains a self-describing header and is useful for
most types of data which can be forced into a tabular structure. The principal advantage of tables is that
generalized table manipulating routines, including writing to, and reading from, FITS files automatically are
available.

TABINI and TABIO

The routines TABINI and TABIO do I/O to extension tables. A single call to TABINI will create an
extension table if necessary, catalog it, open the file, and initialize the I/O. TABIO then allows random
access, with mixed reads and write allowed, to the extension file. TABINI returns a set of pointers which
can be used to access data in a record. In practice, another level of specific routines for each table type is
useful to access tables. Use of tables in AIPS is dealt with in more detail in another chapter in this manual.

EXTINI and EXTIO

NOTE: TABINI and TABIO are strongly preferred over EXTINI and EXTIO as EXTINI/EXTIO files are
not copied to FITS format files.

The routines EXTINI and EXTIO make I/O to extension files much simpler than the image and uv data
routines. A single call to EXTINI will create an extension file if necessary, catalog it, open the file, and
initialize the I/O. EXTIO then allows random access, with mixed reads and write allowed, to the extension
file. EXTIO copies the data into a specified array so that a data structure can be formed by means of a
Fortran equivalence, either an explicit EQUIVALENCE statement or through the use of a common.

The structure of the extension file is a header record of 512 bytes, some of which are used by EXTINI
and EXTIO for bookkeeping, but many of which are available for use. Following the header record come
the fixed length logical records which are physically blocked in 512 byte blocks. A single logical record may
use several physical blocks or several logical records may be in a given 512 byte block. Details of the call
sequences for EXTINI and EXTIO and a description of the file header record are given at the end of this
chapter.

Simple copies of any and/or all EXTINI-EXTIO files of a given type may be copied with a single call to
EXTCOP. A description of the call sequence for EXTCOP is given at the end of the chapter on tasks.

6.4.10 Text files

AIPS uses a number of text files, such as the HELP and RUN files; in addition, there is the capability to
read and write arbitrary text files. There are several routines which allow access to text files: ZTXOPN,

ZTXIO, ZTXCLS, ZTOPEN, ZTREAD, ZTCLOS, and KEYIN.

o ZTXOPN opens a text file for read or write.

e ZTXIO reads/writes a line from/to a text file opened by ZTXOPN.

6-22 CHAPTER 6. DISK FILES

o ZTXCLS closes a text file opened via ZTXOPN.

o ZTOPEN opens a text file. It is similar to ZOPEN except that it has an additional input argument
(MNAME) which gives the name of the desired file or member.

o ZTREAD returns one 80-character line of text from a file opened by ZTOPEN.
o ZTCLOS closes the text file.

e KEYIN is the AIPS version of the Cal Tech VLBI parsing routine. This a very flexible routine for
obtaining values from external text files.

ZTREAD has a number of standard places that it can find text files. These include the RUN file area, the
HELP file area, and various source code areas. To access files in the “RUN” area, a file name (PNAME)
should be constructed with ZPHFIL with type “RU”; other inputs are dummy. ZTOPEN should then be
called with LUN=10 and this value of PNAME.

Arbitrary text files can be read or written using ZTXIO which needs ZTXOPN to open a file and ZTXCLS
to close it. Details of the call sequences are given at the end of this chapter and an example of their use
follows. In this example a text file whose name is in the CHARACTER variable FILNAM is read. This file
contains lines of text no longer than 80 characters.

INTEGER LUN, FIND, IERR
LOGICAL F

CHARACTER FILNAM#48, LINE*80
PARAMETER (F = .FALSE.)
PARAMETER (LUN = 10)

INCLUDE ’INCS:DMSG.INC’

c Open file

CALL ZTXOPN (’READ’, LUN, FIND, FILNAM, F, IERR)
C Check error

IF (IERR.NE.O) THEN
WRITE (MSGTXT,1000) IERR, ’OPENING’

GO TO 990
END IF
C Loop over file.
C Read next line
100 CALL ZTXIO (’READ’, LUN, FIND, LINE, IERR)
C EOF
IF (IERR.EQ.2) GO TO 700
C Check error

IF (IERR.NE.O) THEN
WRITE (MSGTXT,1000) IERR, ’READING’

GO TO 990
ERD IF
C Process LINE
c Loop for next LIKE
GO TO 100
C Close file
700 CALL ZTXCLS (LUN, FIKD, IERR)
c Check error

IF (IERR.NE.O) THEN
WRITE (MSGTXT,1000) IERR, ’CLOSING’

6.5. BOTTOM LEVEL I/O ROUTINES 6-23

GO TO 990
END IF
GO TO 999
C Exrroxr
990 CALL MSGWRT (8)
c
995 RETURN
c

1000 FORMAT (’ERROR ’,I3,1X,A,’ TEXT FILE’)
END

In the example above, calls to KEYIN could have replaced the calls to ZTXIO.

The file name passed to ZTXOPN should contain a logical pointing to the directory containing the file.
In VMS this may be a complete specification of the directory but in Unix an environment must be set outside
of AIPS.

Examples:
FILNAM='DISK$RES: [USERNAME]CAL.DAT’ (VMS)
FILNAM="MYAREA:CAL.DAT’ (Unix)

where MYAREA is an environment variable set before
starting AIPS:
%setenv MYAREA /mnt/username

6.5 Bottom Level I/O Routines

The routines described so far in this chapter have been relatively high level routines which have hidden a
great deal of bookkeeping. In addition, the image and uv data I/O routines work basically sequentially with
some data selection ability. Beneath the higher level routines there are, of course, lower level routines. These
routines have a great deal more flexibility than the higher level routines, but usually at a cost of a great deal
of bookkeeping.

The basic AIPS I/0 routines are intrinsically random access, although a data transfer must start on a
disk block boundary. “Map” type files (image and uv data) are read with a pair of routines ZMIO and
ZWAIT. Non-map (extension) files are read with ZFIO.

6.5.1 ZMIO and ZWAIT

ZMIO initiates a data transfer to or from one of two possible buffer halves and returns without waiting
for the operation to complete. ZWAIT is a timing routine which suspends the task until the specified 1/0
operation is complete. In this manner, I/O and computation can be overlapped.

The I/O commons (INCLUDE DDCH.INC) contain an array, FTAB, which contains AIPS and host
system I/O tables. ZOPEN returns a pointer in FTAB to the area to use for a given file. The first 16 integer
words of this area are available for AIPS program use, the remainder of an FTAB entry is used for the host
systemn I/O tables. These 16 words are normally used for bookkeeping information (the first always contains
the value of the LUN). Examples of the use of the FTAB are found in MINIT, MDISK, MINSK, MSKIP,
UVINIT and UVDISK which use ZMIO and ZWAIT. Descriptions of the way these routines use the FTAB
are to be found at the end of this chapter. A description of the call arguments to ZMIO and ZWAIT are

also found at the end of this chapter.

6.5.2 ZFIO

Extension file I/O and single buffer non-disk I/O is usually done with the routine ZFIO. For disk files, ZFIO
reads a 512 byte block from a specified offset in the file. This block size is independent of the true physical
block size on the disks being used. The I/O transfer is complete when ZFIO returns.

6-24 CHAPTER 6. DISK FILES

Details of the call sequence for ZFIO are found at the end of this chapter. An example of the use of
ZFIO may be found in the source code for TABINI and TABIO.

6.6 Text of INCLUDE files

6.6.1 DDCH.INC

C Include DDCH.
C AIPS system parameters
CHARACTER SYSNAM*20, VERNAM*4, RLSNAM#8, DEVEAM(10)#48,
* NONNAM(8)*48, MAPNAM(12)#*48, SYSTYP*4, SYSVER#8
HOLLERITH HBLANK
DOUBLE PRECISION DBLANK
REAL XPRDMM, XTKDMM, TIMEDA(15), TIMESG, TIMEMS, TIMESC, TIMECA,
* TIMEBA(4), TIMEAP(3), FBLANK, RFILIT(14)

INTEGER NVOL, NBPS, NSPG, NBTB1i, NTAB1, NBTB2, NTAB2, NBTB3,
NTAB3, NTAPED, CRTMAX, PRTMAX, EBATQS, MAXXPR(2), CSIZPR(2),
NINTRN, KAPWRD, NWDPDP, NBITWD, NCHLIN, NTVDEV, NTKDEV, BLAKNKV,
NTVACC, NTKACC, UCTSIZ, BYTFLP, USELIM, NBITCH, NCHPRT,

KAP2WD, MAXXTK(2), CSIZTK(2), DASSGN(8,15), SPFRMT, DPFRMT,
NSHORT, TTYCAR, DEVTAB(50), FTAB(1024)

COMMOX /DCHCHM/ SYSNAM, VERNAM, SYSTYP, SYSVER, RLSNAM,

* DEVNAM, NONNAM, MAPNAM

COMMON /DCHCOM/ DBLANK, XPRDMM, XTKDMM, TIMEDA, TIMESG, TIMEMS,

#* % # * »

TIMESC, TIMECA, TIMEBA, TIMEAP,
NVOL, NBPS, NSPG, NBTB1, NTAB1,
NTAPED, CRTMAX, PRTMAX, NBATQS,
KAPWRD, NWDPDP, NBITWD, NCHLIN,
NTVACC, NTKACC, UCTSIZ, BYTFLP,
KAP2WD, MAXXTK, CSIZTK, DASSGN,
NSHORT, TTYCAR
COMMON /FTABCM/ FTAB

L K K R IR IR K J

6.6.2 DSEL.INC

FBLANK, RFILIT, HBLAERK,
NBTB2, NTAB2, NBTB3, NTAB3,
MAXXPR, CSIZPR, NINTRN,
NTVDEV, NTKDEV, BLAKNKV,
USELIM, NBITCH, NCHPRT,
DEVTAB, SPFRMT, DPFRMT,

End DDCH.

C Include DSEL.

C Commons for UVGET use
INTEGER XCTBSZ, XBTBSZ, XPTBSZ, XSTBSZ, XTTSZ, XBPSZ,
* XBPBUF

c XCTBSZ=internal gain table size
PARAMETER (XCTBSZ=2500)

C XBTBSZ=baseline table size
PARAMETER (XBTBSZ=3500)

c XPTBSZ=polar. corr. table size
PARAMETER (XPTBSZ=16384)

C XSTBSZ=Source no. table size
PARAMETER (XSTBSZ=500)

Cc XTTSZ=Pol. trans. table size
PARAMETER (XTTSZ=MAXIF*MAXCHA*2)

Cc XBPSZ=max. no. BP time entries
PARAMETER (XBPSZ=60)

c XBPBUF=internal BP I/0 buffer

PARAMETER (XBPBUF=65536)

6.6. TEXT OF INCLUDE FILES

INTEGER
BCALWD, CALWAN(XSTBSZ), CALWTN(30), SUBARR, SMOTYP, CURSOU,
NXKOLS(MAXNXC), NXNUMV(MAXNXC), MVIS, JADR(2,XTTSZ), PMODE,
LRECIN, UBUFSZ, BCHAN, ECHAN, BIF, EIF, NPRMIN, KLOCSU, KLOCFQ,
SELQUA, SMDIV, SMOOTH(3), KLOCIF, KLOCFY, KLOCWT, KLOCSC,
NDECMP, DECMP(2,MAXIF*4), BCHANS, ECHANS, FRQSEL, FSTRED,
FQKOLS(MAXFQC), FQNUMV(MAXFQC)

L R JEE JEE JEE JEE J

LOGICAL

Data selection and control
ANTENS(50), NANTSL, NSOUWD, SOUWAN(XSTBSZ), SOUWTN(30),

DOSWNT, DOCWNT, DOAWNT, ALLWT, TRANSL, DOSMTH, ISCMP,

* DOXCOR, DOACOR, DOWTCL, DOrQSL

INTEGER
REAL

INXRHO, NINDEX, FSTVIS, LSTVIS, IFQRNO
TIMRNG(8), UVRNG(2), INTPRM(3), UVRA(2), TSTART, TEKD,

* SELFAC(2,XTTSZ), SMTAB(2500), SUPRAD, SELBAN

CHARACTER SOURCS(30)*18, CALSOU(30)*16, STOKES*4, INTFN*4,
* SELCOD*4

DOUBLE PRECISION UVFREQ, SELFRQ

REAL

INTEGER
LOGICAL
INTEGER

Flag table info
TMFLST, FLGTND(MAXFLG)
IFGREO
DOFLAG, FLGPOL(4,MAXFLG)
FGVER, NUMFLG, FGKOLS(MAXFGC), FGNUMV(MAXFGC),

* KNCOR, KNCF, KNCIF, KNCS,
* FLGSOU(MAXFLG), FLGANT(MAXFLG), FLGBAS(MAXFLG), FLGSUB(MAXFLG),
* FLGBIF(MAXFLG), FLGEIF(MAXFLG), FLGBCH(MAXFLG), FLGECH(MAXFLG)

REAL

CAL table info
GMMOD, CURCAL(XCTBSZ), LCALTM, CALTAB(XCTBSZ,2),

* CALTIM(3), RATFAC(MAXIF), DELFAC(MAXIF), DXTIME, DXFREQ,
* LAMSQ(MAXCHA, MAXIF), IFRTAB(MAXANT, 2), IFR(MAXANT)

INTEGER
LOGICAL
INTEGER

ICLRNO, NCLINR, MAXCLR, CNTREC(2,3)
DGCAL, DOAPPL
CLVER, CLUSE, NUMANT, NUMPOL, NUMIF, CIDSOU(2),

CLKOLS(MAXCLC), CLNUMV(MAXCLC), LCLTAB, LCUCAL, ICALP1, ICALP2,
* POLOFF(4,2)

REAL

INTEGER
LOGICAL
INTEGER

REAL
INTEGER
LOGICAL

Baseline table info
LBLTM, BLTAB(XBTBSZ,2), BLFAC(XBTBSZ), BLTIM(3)
IBLRNO, NBLINR
DOBL
BLVER, BLKOLS(MAXBLC), BLNUMV(MAXBLC), IBLP1i, IBLP2
Polarization table.
POLCAL(2,XPTBSZ), PARAGL(2,MAXANT), PARTINM
PARSOU
DOPOL
Bandpass table

DOUBLE PRECISION BPFREQ(MAXIF)

REAL

PBUFF(XBPBUF), TIMENT(XBPSZ), BPTIM(3), LBPTIM, CHNBND

CHARACTER BPNAME=*48

INTEGER
INTEGER

IBPRNO, NBPINR, ANTPNT(2), NVISM, NVISS, NVIST
BPVER, BPKOLS(MAXBPC), BPNUMV(MAXBPC), NANTBP, NPOLBP,

« NIFBP, NCHNBP, BCHNBP, DOBAND, ANTENT(XBPSZ,MAXANT),
* BPDSK, BPVOL, BPCNO, USEDAN(MAXANT), BPGOT(2),
* KSNCF, KSNCIF, KSNCS, MXANUM

INTEGER

Channel O stuff
FSTVS3, LREC3, LSTVS3, NREAD3, FSTRD3, KLOCW3,

* KLOCS3, NDECM3, DECM3(2,MAXIF*4), BIND3, RECNO3, LENBU3

6-25

6-26 CHAPTER 6. DISK FILES

LOGICAL ISCMP3, DOUVIN
C File specification.
INTEGER IUDISK, IUSEQ, IUCNO, IULUN, IUFIND, ICLUN, IFLUN,
= IXLUN, IBLUN, IPLUN, IQLUN, LUNSBP, BPFIND, CATUV(268),
*+ CATBLK(258)
REAL USEQ, UDISK
CHARACTER UNAME#*12, UCLAS*6, UFILE#*48
c I/0 butfers
INTEGER CLBUFF(1024), FGBUFF(512), NXBUFF(512), BLBUFF(512),
= BPBUFF(32767), FQBUFF(512)
REAL UBUFF(8192)
C Character common
COMMON /SELCHR/ SOURCS, CALSOU, STOKES, INTFK, SELCOD, UNAME,
* UCLAS, UFILE, BPNAME
C Common for UVGET use
C Data selection and control
COMMON /SELCAL/ UVFREQ, SELFRQ,
USEQ, UDISK, TIMRNG, UVREG, INTPRM, UVRA, TSTART, TEND, UBUFF,
SELFAC, SMTAB, SUPRAD, SELBAN,
INXRNO, NINDEX, FSTVIS, LSTVIS, IFQRNO,
DOSWNT, DOCWNT, DOAWNT, ALLWT, TRANSL, DOSMTH, ISCMP, DOXCOR,
DOACOR, DOWTCL, DOFQSL,
CLBUFF, FGBUFF, NXBUFF, BLBUFF, BPBUFF, FQBUFF,
IUDISK, IUSEQ, IUCNO, IULUN, IUFIND, ICLUN, IFLUN, IXLUN,
IBLUN, IPLUN, IQLUN, LUNSBP, BPFIND, CATUV, ANTENS, NANTSL,
NSOUWD, SOUWAN, SOUWTN, NCALWD, CALWAN, CALWTN,
SUBARR, SMOTYP, CURSOU, NXKOLS, NXNUMV, FQKOLS, FQNUMV,
MVIS, JADR, PMODE,
LRECIN, UBUFSZ, BCHAN, ECHAN, BIF, EIF, NPRMIN, KLOCSU,
KLOCFQ, SELQUA, SMDIV, SMOOTH, KLOCIF, KLOCFY, KLOCWT,
KLOCSC, NDECMP, DECMP, BCHANS, ECHANS, FRQSEL, FSTRED
C FLAG table info
COMMON /CFMINF/ TMFLST, FLGTND, IFGRNO, DOFLAG, FLGPOL,
* FGVER, NUMFLG, FGKOLS, FGNUMV, KNCOR, KNCF, KNCIF, KNCS,
* FLGSOU, FLGANT, FLGBAS, FLGSUB, FLGBIF, FLGEIF, FLGBCH, FLGECH
C CAL table info
COMMON /CGNINF/ GMMOD, CURCAL, LCALTM, CALTAB, CALTIM, RATFAC,
DELFAC, DXTIME, DXFREQ,
ICLRRO, NCLINR, MAXCLR, CNTREC,
DOCAL, DOAPPL,
CLVER, CLUSE, NUMART, NUMPOL, NUMIF, CIDSOU, CLKOLS, CLNUMV,
LCLTAB, LCUCAL, ICALP1, ICALP2, POLOFF,
LAMSQ, IFRTAB, IFR
C BL table info
COMMON /CBLINF/ LBLTM, BLTAB, BLTIM, BLFAC,
* IBLRNO, NBLINR,

L2 IR JNE JNE R JEE JEE JEE R 2R BN B B 4

* # # # # »

* DOBL,

* BLVER, BLKOLS, BLNUMV, IBLP1, IBLP2
C Pol. table

COMMON /CPLINF/ POLCAL, PARAGL, PARTIM, PARSOU, DOPOL
C BP table

COMMON /CBPIKF/ BPFREQ,
* PBUFF, TIMENT, BPTIM, LBPTIM, CHNBKND,
= IBPRNO, NBPINR, ANTPNT, NVISM, NVISS, NVIST,

6.7. ROUTINES 6-27

* BPVER, BPKOLS, BPNUMV, NANTBP, NPOLBP, NIFBP, NCHNBP, BCHHBP,
* DOBAND, AKTENT, BPDSK, BPVOL, BPCNO, USEDAN, BPGOT,
* KSNCF, KSNCIF, KSNCS, MXANUM
C Channel 0 common
COMMON /CHNZ/ FSTVS3, LREC3, LSTVS3, NREAD3, FSTRD3, KLOCW3,
* KLOCS3, NDECM3, DECM3, BIND3, RECNO3, LENBU3,
* ISCMP3, DOUVIN

COMMON /MAPHDR/ CATBLK
C End DSEL.

6.6.3 DUVH.INC

Include DUVH.
If you change this include you
must also change common
/CATHDR/ in DBCON
Include for uv header info

a0

INTEGER NVIS

INTEGER ILOCU, ILOCV, ILOCW, ILOCT, ILOCB, ILOCSU, ILOCFQ,

* JLOCC, JLOCS, JLOCF, JLOCR, JLOCD, JLOCIF, NRPARM, LREC,
*« NCOR, IKCS, INCF, INCIF, ICORO, TYPUVD

CHARACTER SOURCE#8, ISORT*2

DOUBLE PRECISION FREQ, RA, DEC

COMMON /UVHDR/ FREQ, RA, DEC, NVIS, ILOCU, ILOCV, ILOCW, ILOCT,
* ILOCB, ILOCSU, ILOCFQ, JLOCC, JLOCS, JLOCF, JLOCR, JLOCD,
* JLOCIF, INCS, IKCF, INCIF, ICORO, NRPARM, LREC, NCOR, TYPUVD
COMMON /UVHCHR/ SOURCE, ISORT

c End DUVH.

6.7 Routines
6.7.1 CALCOP

Routine to copy selected data from one data file to another optionally applying calibration and editing
information. The input file should have been opened with UVGET. Both files will be closed on return from
CALCOP. Note: UVGET returns the information necessary to catalog the output file. The output file will
be compressed if necessary at completion of CALCOP.

CALCOP (DISK, CNOSCR, BUFFER, BUFSZ, IRET)
Inputs:
DISK I Disk number for catalogd output file.
If .LE. O then the output file is a /CFILES/
scratch file.
BUFFER R(*) Work Buffer for writing.

BUFSZ I Size of BUFFER in bytes.
Input via common:
LREC I (/UVHDR/) length of vis. record in R words.
NRPARM I (/UVEDR/) number of R random parameters.
In/out:
CNOSCR I Catalog slot number for if cataloged file;

/CFILES/ scratch file number if a scratch file,
IF DISK=CNOSCR=0 then the scratch is created.
On output = Scratch file number if created.

6-28 CHAPTER 6. DISK FILES

In/out via common:
CATBLK I(266) Catalog header block from UVGET
on output with actual no. records

NVIS I (/UVHEDR/) Number of vis. records.
Output:
IRET I Exrror code: 0 => 0K,

> 0 => failed, abort process.

Usage notes:

(1) UVGET with OPCODE=’INIT’ MUST be called before CALCOP to setup
for calibration, editing and data translation. If an output
cataloged file is to be created this should be done after the
call to UVGET.

(2) Uses AIPS LUK 24

6.7.2 CHNDAT

Routine to create/fill/read CH/FQ extension tables. We are phasing out CH tables, so this routine will read
them, but will only write FQ tables.

CENDAT (OPCODE, BUFFER, DISK, CNO, VER, CATBLK, LUN,
* NIF, FOFF, ISBAND, FREQID, IERR)
Inputs:
OPCODE C#*4 Operation code:
'WRIT’ = create/init for write or read
READ’ = open for read only
BUFFER I(612) 1I/0 buffer and related storage, also defines
file if open.

DISK I Disk to use.

CNo I Catalog slot number

CATBLK 1(268) Catalog header block.

LUN I Logical unit number to use

FREQID I Frequnecy ID #, if FQ tables exists
Input/Output:

VER I CH file version

NIF I Number of IFs.

FOFF D(*) Frequency offset in Hz from ref. freq.

True = reference + offset.
ISBAND I(#) Sideband of each IF.

-1 => 0 video freq. is high freq. end
1 => 0 video freq. is low freq. end
Output:
IERR I Return erroxr code, 0=>0K, else TABINI or TABIO
error, -1 => tried to create/write an FQ table

6.7.3 COMOFF .

Compute the block offset of a 2-D map plane in a NDIM-dimensional map from the beginning of the map.

COMOFF (NDIM, NAX, DEPTH, BLKOF, IERR)

Inputs:

NDIM I Number of axes in map

NAX(7) I Number of pixels on each axis

DEPTH(S6) I Depth of required plane along other axes
Outputs:

BLKOF 1 Block offset

6.7. ROUTINES 6-29

IERR I Brror return 0 = 0K, 1= error in NDIM

6.7.4 DGGET

Gets requested data from visibility record, reformatting if needed. REQUIRES setup by DGINIT to set
values of MVIS, JADR, SELFAC and ALLWT.

DGGET (VISIN, IND, MVIS, JADR, SELFAC, ALLWT, VISOUT, DROP)

Inputs:
VISIE R(IND,*) 1Input visibility array
IND I First dimension of VISIK (CATBLK(KINAX))
MVIS I Number of visibilities in requested output
format.
JADR 1(2,*) Pointers to the first and second visibility
input records to be used in the output record.
It JADR(1,n) is negative use IABS (JADR(1,n))
and multiply the visibility by i (=SQRT(-1))
SELFAC R(2,*) Factors to be multiplied by the first and
second input vis’s to make the output vis.
ALLWT L Flag, = .TRUE. if all visibilities must have
positive weight.
Output:
VISOUT R(3,*) Output visibility record
DROP L .TRUE. if all data in record flaged.

6.7.5 DGINIT

Sets up tables for selecting data from vis. record. Checks if requested data in data base. Requires catalog
header record from include DCAT.INC and setup of commons in INCLUDE DUVH.INC by UVPGET before
call.

Note: STOKES="HALF’ will work if only partial information (i.e. 1 polarization) is available in the
data.

DGINIT (STOKES, BCHAN, ECHAN, BIF, EIF, MVIS, JADR, SELFAC, ALLWT,
* PMODE, IERR)

Inputs:

STOKES C*4 Desired output data format: 'I’,’V’,’Q’,'U?,
'IQU’ , ’IQW’ . "IV . 'RR? , 'LL? ,’RL?, ‘LR’
"HALF’ (=parallel pol.), ’FULL’ (=RR,LL,RL,LR)

BCHAN I First channel desired.

ECHAN I Last channel desired.

BIF I First IF desired.

EIF I Last IF desired.

Input from common /MAPHDR/
CATBLK I(256) Catalog header record.

Output:
MVIS I Number of visibilities in requested output
format.
JADR I(2,*) Pointers to the first and second visibility

input records to be used in the output record.
If JADR(1,n) is negative use IABS (JADR(1,n))
and multiply the visibility by i (=SQRT(-1))
SELFAC R(2,*) Factors to be multiplied by the first and
second input vis’s to make the output vis.
ALLWT L Flag, = .TRUE. if all visibilities must have

6-30

PMODE

IERR

I

6.7.6 EXTINI

EXTINI creates/opens an extension file. If a file is created it is cataloged by a call to CATIO which saves
the updated CATBLK.

EXTINI (OPCODE, PTYP, VOL, CNO, VER, CATBLK, LUN, IND,
* LREC, NREC, BUFFER, IERR)

Inputs:
OPCODE

PTYP
VOL
CNO
Lux
NREC
In/out:
VER

CATBLK

LREC

BUFFER

Output:
IND
IERR

C*4

Cx2

L B I I]

I(2686)

I(*)

Useage notes:
For sequential access, EXTINI leaves pointers for EXTIO such that
it IRNO .le. O reads will begin at the start of the file and writes
will begin after the last previous record.

File should be marked

Header record:
Each extension file using this system must have the first physical
(512 bytes) record containing necessary information. In addition
space in this first record not reserved can be used for other

purposes.

positive weight.

Polarization mode:

1 =1, 2=
4 =1, 6 =
7T =1V, 8 =
10 =

RL, 11 = LR, 12

CHAPTER 6. DISK FILES

v, 3=0Q
IQu, 6 = IQUV
RR, o = LL

parallel (RR,LL)

13 = (RR,LL,RL,LR)
Error flag. 0 => ok, 1 = unrecognized stokes,
2 = data unavailable.

Operation code, ’READ’ => read only,
JWRIT’ => read/write
Physical extension type (eg. ’CC’)

Volume number

Catalog slot number
Logical unit number to use.
Number of logical rec. for create/extend

in: Version number: (<= 0 => write a new one,
read the latest one)

out: Version number used.

Catalog block of cataloged file, ext info is

updated if necessary.

in: Record length in units of REALs (write new)

out: Logical record length (in units of REALs)

for read/write old files

Work buffer, at least 1024 bytes in size,

more if logical record longer than 512 bytes

out: Header info. for EXTIO

FTAB pointer.

Return error code. 0 => 0K

1
2
3

=> bad input.
=> could not find or open
=> create/I/0 problem.

WRIT’ if the file is to be created.

The header record contains the following:

6.7. ROUTINES 6-31

I word(s) description

b12-byte records in the existing file

logical records to extend the file when req.

max. # of logical records

current number of logical records

bytes per value

values per logical record.

of logical records per physical record, if neg then
the # of physical records per logical record.

N0 WN -

8 - 10 Creation task name (6 Hollerith characters)
11 - 16 Creation date, time
17 - 28 File name (48 Hollerith characters)
29 Volume number on which file resides.
30 - 32 Last write-access task (6 Hollerith characters)
33 - 38 Last write-access time,date
39 - 66 reserved. (53-56 used by EXTIO:

63 =#1 words per logical record.

54 = IOP sent to EXTINI
66 = current physical record no.
(doesn’t include header rec.)
56 = current logical rec. no.
67 -266 Available for use.

6.7.7 EXTIO

EXTIO does random access I/O to an extension files. Mixed reads and writes are allowed if EXTINI was
called with "WRIT’.

EXTIO (OPCODE, LUN, IND, IRNO, RECORD, BUFFER, IERR)

Inputs:
OPCODE C*4 Opcode ’READ’,’WRIT’,’CLOS’
LUN I Logical unit number
IND I FTAB pointer
IRNO I Logical record no. 0=> next.
RECORD(*) I Array containing record to be written
BUFFER(*) I Work buffer = 512 bytes + enough 512 byte
blocks for at least one full logical record.
Output:
RECORD(*) I Array containing record read.
BUFFER(*) I buffer.
IERR I Return error code 0 => OK
1 => file not open
2 => input error
3 => I/0 error
4 => attempt to read past end of data

or write past log. or phys.
record 32766.
IMPORTANT NOTE: the contents of BUFFER should not be changed
except by EXTIO between the time EXTINI is called until the file
is closed. The exception is that the user portion of the header
record is available.

6.7.8 GETVIS
GETVIS gets and reformats uv data. Requires setup by SETVIS.

6-32 CHAPTER 6. DISK FILES

GETVIS (MODE, MVIS, JADR, SFACT, ALLWT, DATA, WT,
* VIS, IERR)

Inputs:
MODE I Operation number (see SETVIS).
When MODE = 2 or 3 and RL and LR are given
the U visibility is multiplied by i.
MVIS I Number of visibilities wanted.
JADR(2,MVIS) I Pointers set by SETVIS.
SFACT(2,MVIS) R Factors set by SETVIS.
ALLNT L Flag set by SETVIS, if .TRUE. all relevant
veights must be positive.
DATA(3,*) R Visibility portion of input data.
Outputs:
wT R Average weight.
VIS(MVIS) CMPX Visibilities.
IERR I Error code, 0=>0K,

1 => bad weights.(data flagged).
2 = bad input.
6.7.9 GET1VS

GET1VS gets and reformats uv data. Returns one Stokes’ type per frequency channel. Requires setup by
SET1VS.

GET1VS (MODE, MVIS, JADR, JINC, SFACT, ALLWT, STOKES,
* DATA, WT, VIS, IRET)

Inputs:
MODE I Operation number (see SET1VS).
When MODE = 3 and RL and LR are given,
the U visibility is multiplied by i.
MVIS I Number of visibilities wanted.
JADR(2) I Pointers set by SET1VS.
JINC I Increment between vis.
SFACT(2) R Factors set by SET1VS.
ALLNT L If true all vis are required.
STOKES L True if input data true Stokes’.
Used for UPOL only.
DATA(3,*) R Visibility portion of input data.
COutputs:
WT R Average weight.
VIS(MVIS) CMPX Visibilities.
IRET I Error code, 0=>0K,

1 => bad weights.(data flagged).
2 = bad input.

6.7.10 KEYIN

Standard Fortran version of the CIT VLBI Keyin subroutines. These subroutines read keyed parameters
on cards images. The text file should be opened via a call to ZTXOPN before the first call to KEYIN and
closed via a call to ZTXCLS after the last call. (HINT: use LUN = 10) Note: in this version time like entries
in the form hh:mm:ss will be returned in hours.

KEYIN (KEYS, VALUES, VALCHR, N, ENDMRK, MODE, LUN,
* FIND, IERR)
Inputs:

6.7. ROUTINES

KEYS(N) C*8 Array of parameter names .

Array names should have the last characters
indicate the element number. Should all be

in upper case characters.

| I number of parameters (dimension of keys, values)
ENDMRK C*8 special keyword to indicate end of input
MODE I 1 = turn on reflection, 0 = turn off

2 = interactive mode (prompts for input,
no reflection, no limit on errors)
3 = Pass values until ENDMRK, File should not

contain keywords.

Note: currently only reads from a file.

LUx I LUK to read from (used in call to ZTXOPN)

FIND I FTAB pointer for input. (from ZTXOPN)
Input/Output:

VALUES(N) D array to receive numeric values or defaults,

each value corresponds to a KEY.

VALCHR(N) C*8 array to receive character values or defaults,

each value corresponds to a KEY.

OQutputs:
) § I (MODE=3 only) number of values found
IERR I error code, 0=>0K, 1=>EOF found, 2=>Error

6.7.11 MAPSIZ

6-33

MAPSIZ computes the correct number of bytes to request from ZCREAT for a file using map 1/O methods.

MAPSIZ (NAX, NP, ISIZE)

Inputs:

NAX I # axes

¥P I(NAX) Number of points on each axis
Cutput.:

ISIZE I File size in AIPS bytes

6.7.12 MAPCLS

closes a cataloged file, updates header on disk, clears catalog status.

MAPCLS (OP, IVOL, CNO, LUN, IND, CATBLK, CATUP, WBUFF, IERR)

Inputs:
oP C*4 OPcode used by MAPOPN to open this file
IvoL I Disk volume containing map file
CNO I Catalog slot number of file
LUN I Logical unit # used for file
IND I FTAB pointer for LUN

CATBLK 1I(256) New catalog header which can optionally
be written into header if OP=WRIT or INIT

Dummy arguement if OP=READ
CATUP L If TRUE, write CATBLK into catalog,
ignored if OP = READ
Outputs:
IERR I 0 = 0.K.
= CATDIR couldn’t access catalog
illegal OP code

[I
n o\

6-34

6.7.13 MAPOPN

CHAPTER 6. DISK FILES

MAPOPN opens a map file marking the catalog entry for the desired type of operation.

MAPOPN (OP, IVOL, NAMEIN, CLASIN, SEQIN, TYPIN, USID,
*= LUN, IND, CRO, CATBLK, WBUFF, IERR)

Inputs:
op C*4
LUN I
In/out:
NAMEIN C*12
CLASIN C=*6
SEQIN I
UsI1D I
IvoL I
TYPIR Cs2
Outputs:
IND I
CNO I

CATBLK I(258)
WBUFF I(266)
IERR 1

6.7.14 MCREAT

Operation: READ, WRIT, or INIT where INIT is for
known creation processes (it ignores current file
status & leaves it unchanged). Also: HDWR for
use when the header is being changed, but the

data are to be read only.
Logical unit # to use

Image name (name)
Image name (class)
Image name (seq.#)
User identification #
Input disk unit
Physical type of file

FTAB pointer
Catalog slot containing map
Buffer containing current catalog block
Working buffer for CATIO and CATDIR
Error output: 0 = OK

2 = Can’t open WRIT because file busy

or can’t READ because file marked WRITE

File not found
Catalog i/o error
Illegal OP code
Can’t open file

D 0w
[]

Subroutine to create a map file using the parameters in a CATBLK. The file will be cataloged and marked
with WRITE status. The image name parameters incl. physical type must be filled in. A blank physical type
is converted to 'MA’. The OUTSEQ default is applied (0 = highest matching+1). The name must be unique
ignoring the physical type. The extension file areas of the CATBLK are cleared and the ”’DATE-MAP” string

is filled in.
MCREAT (IVOL, CNO,

In/Outs:
IVOL 1

WBUFF I(256)

Outputs:
CNO I
IERR I

WBUFF, IERR)

Volume # on which to put file: 0 => ALL

on output has volume used
Working buffer

Catalog slot number
Exrror code; => o.k.

v Vv

no room in catalog

v Vv

Other Create errors

0
1
2
3
4
5
6 no catalog file

nououounN
v

v

couldnt create,no room
no create, duplicate name

i/o problem on catalog

6.7. ROUTINES 6-35

Common: (in/out)
CATBLK I(256) Catalog block (via common MAPHDR)
CATB4 R(286) Catalog block (equivalenced to CATBLK)

6.7.15 MDESTR

MDESTR will delete a catalog entry for a file, delete all extension files for that file, and then delete the file.
The file must be in the REST state.

MDESTR (IVOL, ISLOT, CATBLK, IWBLK, INDEST, IERR)

Inputs:
IVOoL I disk volume number of the file.
ISLOT I catalog slot number.
In/out:
INDEST I number of extension files destroyed.
(it = -32000 on in, suppress normal msg)
Output:

CATBLK I(258) the header block for this file.
IWBLK I(266) work buffer.
IERR I error code: 0 no error

1 = disk error
2 = map too busy
3 = destroy failed somehow

6.7.16 MDISK

MDISK reads or writes a row of an image. MDISK is called only after a call to MINIT and you should read
the precursor remarks of MINIT. MDISK actually sets an array index (BIND) to the start of the next line
wanted. Actual IO is done only when needed and a row is written not on “its” call to MDISK but on some
subsequent call (or the FINI call).

MDISK (OP, LUN, FIND, BUFF, BIND, IERR)

Inputs:
op Cx4 0p code ’WRIT’, ’READ’, ’FINI’ (flush write buffers)
Lo I logical unit number
FIND I Pointer to FTAB returned by ZOPEN

Input and output:
BUFF R(*) Buffer holding data
Output:
BIND I Pointer to position in buffer of first pixel in
window in the present line
IERR I Error return: 0 => ok
=> file not open
=> input error
I/0 error
end of file
beginning of medium
end of medium

v

DOV WN -
nononn
v Vv

v

6.7.17 MINIT

MINIT sets up a special section of FTAB for quick-return, double buffered I/O. N.B. This routine is designed
to read/write images one plane at a time.

MINIT (OP, LUN, IND, LX, LY, WIN, BUFF, BFSZ, BLKOF, IERR)
Inputs:

6-36 CHAPTER 6. DISK FILES

oP C*4 Operation code character string: ’READ’,’WRIT’,’UPDT’

L I logical unit number

I 1I pointer to FTAB, returned by ZOPEN

LX I Number of pixels per line in X-direction for whole
map

LY I Number of lines in whole plane

WIN I(4) Xmin,Ymin,Xmax,Ymax defining desired subrectangle in
the current plane

BFSZ I Size of total available buffer in AIPS bytes
BLKOF I block number, 1 relative, of first map pixel in this
plane of the image
Outputs:
IERR I Error return: 0 => ok

=> file not open
=> input error
=> Buffer too small
i/o error on initialize
=> end of file
=> beginning of medium
end of medium
Usage notes: For map i/o the first 16 words in each FTAB entry
contain a user table to handle double buffer i/o, the rest
contain system—-dependent I0 tables. A "major line" is 1 row or
1 sector if more than 1 line fits in a sector. FTAB user table
entries, with offsets from the FIND pointer are:
FTAB + 0 => LUN using this entry
No. of major lines transfered per i/o op
2 => No. of major times a buffer has been acessed
3 => HNo. of major lines remaining on disk
4 => QOutput index for first pixel in window
5 => No. pixels to increment for next major line
]
7
8

N WNN -
[
v

-]
"
v

-
n
v

=> Which buffer to use for i/o; -1 => single buffer
=> Block offset in file for next operation

9 => Block increment in file for each operation

10 => No. of bytes transferred

11 => I/0 op code

12 => sum of any buffer numbers needing to be waited upon
13 => # rows / major line (>= 1)

14 => # times this major line has been accessed

16 => # pixels to increment for next row (= LX)

6.7.18 MINSK

MINSK initializes the use of MSKIP to read noncontigious but evenly spaced rows in a map. Read is double
buffered if possible; in which case MINSK initiates the first read. Single buffering is used if the desired data
cannot be double buffered. If more data is required than will fit in the buffer, multiple (NBUF) equally filled
buffers are obtained by NBUF calls to MSKIP.

MINSK (LUN, FIND, LROW, NROW, ISTRT, NSKIP, BUFF, BUFSZ, BO, NBUF,

*+ IERR)
Inputs:
LUN I Logical unit number.
FIND I pointer to FTAB returned by ZOPEN.

LROW I Length of a row in pixels.

6.7. ROUTINES

NROW I
ISTRT I
NSKIP I
BUFF R(x)
BUFSZ I
BO I
NBUF I

OUTPUT:

NBUF I
IERR I

6-37

Total number of rows this plane.

First row for read.

Number of rows to skip.

Output buffer.

Buffer size in AIPS bytes.

Block offset

factor times which LROV is multiplied normally = 1.

number of buffer fulls to complete read of row.
MSKIP must be called this number of times to
complete the read.

Error code: 0 = OK

1 = file not open

2 = input error

4 = tried to read past end of map.
10+ = 10 + ZMIO or ZWAIT error.

FTAB assigments:

-
- O O O ~NOOOd WN = O
nuw on

-
w» W N
| 1]

LUN
BO block offset

length of row / [6] in bytes
multiplier of [4]

next record number.

record increment+i (total increment)
calls per record.

record call # (when MSKIP is called)

= bytes / call

buffer flag, -i= single, 1=>current buffer is 1
2=>current buffer=2 (buffer already read)
buffer size in pixels (1/2 for double buffering)

= NROV (the number of rows to read)
= BTYOFF the byte offset when double buffering.

6.7.19 MSKIP

MSKIP reads rows in a map file which are evenly spaced. The reads are double, single buffered or partial
buffers if the row size 1) is < BUFSZ/2, 2) between BUFSZ/2 and BUFSZ or 3).GT.BUFSZ. For case 3)
multiple calls (NBUF from MINSK) are required to read each row. Each call returns LROW*2/NBUF bytes
and I/0 is single buffered. IFIN = 0 indicates a row is completed. See MINSK for more details.

MSKIP (LUN, FIND, BUFF, BIND, IFIN, IERR)

Input:
LUN
FIND
BUFF

Output:
BIND
IFIN
IERR

I
I
R(*)

-

Logical unit number.
pointer for FTAB
Buffer

Pointer for BUFF

0 if row complete, 1 otherwise.

error code: O OK
1 file not open
2 = attempt to read past end of map.
10+= I/0 error = 10 + ZWAIT error.

6-38 CHAPTER 6. DISK FILES

6.7.20 PLNGET

PLNGET reads a selected portion of a selected plane parallel to the front and writes it into a specified
scratch file. The output file will be zero padded and a shift of the center may be specified. If the input
window is unspecified (0’s) and the output file is smaller than the input file, the NX x NY region about
position (MX/2+1-OFFX, MY/2+1-OFFY) in the input map will be used where MX,MY is the size of the
input map. NOTE: If both XOFF and/or YOFF and a window (JWIN) which does not contain the whole
map, XOFF and YOFF will still be used to end-around rotate the region inside the window. The image
header is taken from the disk catalog AND explicitly will not handle blanked images.

PLNGET (IDISK, ICNO, CORN, JWIN, XOFF, YOFF, NOSCR,
= NX, NY, BUFF1, BUFF2, BUFSZ1, BUFSZ2, LUN1, LUN2, IRET)

Inputs:
IDISK I Input image disk number.
ICNO I Input image catalog slot number.

CORN I(7) BLC in input image (1 & 2 ignored)
IVIN I(4) Window in plane.

XOFF I offset in cells in first dimension of the center
from MX/2+1 (MX 1st dim. of input win.)
YOFF I offset in cells in second dimension of the center

from MY/2+1 (MY 2nd dim. of input win.)
NOSCR I Scratch file number in common /CFILES/ for outpu.
| §4 I Dimension of output file in X
ny I Dimension of output file in Y
BUFF1 R(*) Work buffer
BUFF2 R(*) Work buffer.

BUFSZ1 I Size in AIPS bytes of BUFF1
BUFSZ2 I Size in AIPS bytes of BUFF2
LUN1 I Logical unit number for input file
LUN2 I Logical unit number to use for output
Output:
IRET I Return error code, 0 => 0K,
1 = couldn’t copy input CATBLK
2 = wrong number of bits/pixel in input map.
3 = input map has inhibit bits.
4 = couldn’t open output map file.
5 = couldn’t init input map.
6 = couldn’t init output map.
7 = read exrror input map.
8 = write error output map.
9 = error computing block offset
10 = output file too small.
Common :

DCAT.INC CATBLK is set to the input file CATBLK.

6.7.21 PLNPUT

PLNPUT writes a subregion of a scratch file image into a cataloged image.

PLEPUT (IDISK, ICNO, CORN, JWIN, NOSCR, NX, NY, BUFF1,
* BUFF2, BUFSZ1, BUFSZ2, LUNi, LUN2, IRET)

Input:
IDISK I Output image disk number.
ICNO I Output image catalog slot number.

CORN I(7) BLC in Output image (1 & 2 ignored)

6.7. ROUTINES 6-39

JVIN I(4) Window in plane in input image.

NOSCR I Scratch file number in common /CFILES/ for
input scratch file.

nX I X-dimension of input file.

Ny I Y-dimension of input file.

BUFF1 R(*) Work buffer

BUFF2 R(*) VWork buffer.

BUFSZ1 I Size in bytes of BUFF1.

BUFSZ2 Size in bytes of BUFF2

LUN1 Logical unit number to use.

LUN2 Second loical unit number to use.
Output:

IRET I Return error code: 0 => OK
= couldn’t read output CATBLK.
Output bits/pixel not allowed.
Output and input windows not same.
couldn’t open input map file.
couldn’t init output map.
couldn’t init input map.
read error input map.
= write error output map.
= error writing header to catalog
= error computing block offset.

- - -

O © O ~N®O bW -

-

Commons:
CATBLK in /MAPHDR/ is used as the map header.
0f particular importance is the data max/min values
which must apply to the map. As this is read from the
catalog it must be updated by a call to CATIO etc.
before calling this routine.

6.7.22 SCREAT

SCREAT creates scratch files. It uses the Common included via the DFIL.INC INCLUDE and returns the
scratch file disk and catalog number in variables SCRVOL(NSCR) and SCRCNO(NSCR), where NSCR is
updated on successful creation. It attempts to avoid the disk used for the previously created scratch file.
All files have physical name SCvcec01 where v is the revision code and cce is the catalog slot number. Their
logical names are determined from the routine BLDSNM.

SCREAT (SIZE, WBUFF, IERR)

Input:
SIZE I Desired size in AIPS bytes
Output:
WBUFF I(512) Scratch buffer (NOTE 612 integers)
IERR I error: 0 => ok
1 => catalog error in setting name
2 => catalog error on open
3 => CATIO error writing header to catlg
4 => No allowed disk with room
Commons :
/MAPHDR/ in scratch file image header - contents mostly

ignored
/CFILES/ in/out file info
Note: this common uses IBAD to specify BADDISKs which are avoided.

6-40

6.7.23 SDGET

Subroutine to obtain data from a single dish data base with optional application of flaging and/or calibration
and/or pointing information. Reads data with a large variety of selection criteria and will reformat the data
as necessary. Does many of the startup operations, finds Single dish uv like data file etc., reads CATBLK
and updates the /UVHDR/ commons (INCLUDE DUVH.INC) to reflect the output rather than input data.

CHAPTER 6. DISK FILES

SDGET (OPCODE, RPARM, VIS, IERR)

Input:
OPCODE

C*4

Opcode -~

’INIT’ => Open files Initialize I/0.
’READ’ => Read next specified record.
CLOS’ => Close files.

Inputs via common /SELCAL/ (Include DSEL.INC)

UNAME
UCLAS
UDISK
USEQ
SOURCS

TIMRNG

UVRA

STOKES

BCHAX

ECHAX
BIF

EIF
DOCAL
SUBARR
FGVER

CLUSE
Output:
RPARM
Vis
IERR

C*12
C*6

R

R
C(30)*18

R(8)

R(2)

Ced

- -

-

R(*)
R(3,*)

AIPS name of input file.

AIPS class of input file.

AIPS disk of input file.

AIPS sequence of input file.

Names of up to 30 sources, ’*’ => all

First character of name ’-’ => all except those
specified.

Start day, hour, min, sec, end day, hour,
min, sec. 0’s => all.

Range of RA (1) and dec (2) in degrees about
the value in CATBLK at time of READ call to
SDGET. 0=>all.

Stokes types wanted.
’I’,’Q’,’U’,’V’,’R’,’L',’IQU’,’IQUV’

? ’=> Leave data in same form as in input.
First channel number selected, 1 rel. to first
channel in data base. 0 => all

Last channel selected. 0 => all

First IF number selected, 1 rel. to first

IF in data base. 0 => all

Last IF selected. 0 => all

If true apply calibration, else not.

Subarray desired, 0 => all

FLAG file version number, if < O then

NO flagging is applied. 0 => use highest
numbered table.

Cal (CS) file version number to apply.

Random parameter array of datum.
Regular portion of data array.
Error code: 0 => (0K,

-1 => end of data

>0 => failed, abort process.

Output in common /SELCAL/: The default values will be filled in
if null values were specified.

CATBLK

NPRMIX
TRANSL
CNTREC

1(268)

I
L
I1(2,3)

Catalog header block, describes the output
data rather than input.

Number or random parameters in the input data.
If true translate data to requested Stokes’
Record counts:

(1%2,1) Previously flagged (partly, fully)

6.7. ROUTINES 6-41

(1%2,2) Flagged due to gains (part, full)
(122,3) Good selected (part, full)
Usage notes:

1) Include DSEL.IKC should be declared in the main
program or at a level that they will not be overlaid while
SDGET is in use (ie. between the ’INIT’ and ’CLOS’ calls)

2) If no sorting is done SDGET uses AIPS luns 25, 28, 29 and 30
(1 map, 3 non map files). If sorting is done (usually possible)
then 8 map and 3 non map files are used (mostly on OPCODE=’INIT’)
and LUNs 16,17,18,19,20,21,22,23,24,25, 28,29,30.

3) OPCODE = ’INIT’ does the following:

- The cataloged data file is located and the catalog header
record is read.
- The index file (if any) is initialized.
- The flag file (if any) is initialized and sorted if necessary
(Must be in time order).
- The CS table (if any) is initialized.
- I/0 to the input file is initialized.
The following LUNs may be used but will be closed on
return: 16, 17, 18, 19, 20, 21, 22, 23, 24
The following LUNs may be used but will be open on
return: 26 (uv data), 28 (NX table), 29 (CS table),
30 (FG table).
NO data are returned from this call.

4) OPCODE = ’READ’ reads one record properly selected,
transformed (e.g. I pol.), calibrated and edited as requested
in the call with OPCODE = ’INIT’

6) OPCODE = ’CLOS’ closes all files used by SDGET which are still
open. No data are returned.

6) If DOCAL is true then the common array CNTREC will contain the
counts of records which are good or fully or partly flagged
both previously and due to flagged gain solutions.

6.7.24 SELINI
Subroutine to initialize the control values for UVGET in commons in DSEL.INC.

SELINI

Outputs via common /SELCAL/ (Include DSEL.INC)
UNAME C#*12 AIPS name of input file. (blank)
UCLAS C*6 AIPS class of input file. (blank)
UDISK R AIPS disk of input file. (0.0)
USEQ R AIPS sequence of input file. (0.0)
SOURCS C(30)*16 Names of up to 30 sources. (blank)
SELQUA I Qualifier wanted (-1 => all)
SELCOD C*4 Cal code (’ ")
TIMRKG R(8) Timerange (0s => all)
UVRNG R(2) Baseline range (0s => all)
STOKES C*4 Stokes types wanted. (blank)
BCHAN I First channel number selected, (1)
ECHAN I Last channel selected. (0=>all)
BIF I First IF number selected. (1)
EIF 1 Last IF selected. (0=>all)
DOCAL L If true apply calibration. (false)
DOPOL L If true then correct polarization (false)

6-42 CHAPTER 6. DISK FILES

DOACOR L True if autocorrelations wanted (false)
DOXCOR L True if cross-correlations wanted (true)
DOWTCL L True if weight calibration wanted. (false)
DOFQSL L True if FREQSEL random parm present (false)
FRQSEL I Default FQ table entry to select (-1)
SELBAN R Bandwidth (Hz) to select (-1.0)

SELFRQ D Frequency (HEz) to select (-1.0)

DOBAND I >0 if bandpass calibration. (-1)

BPNAME C=48 Name of scratch file set up for BP’s.
DOSKTH L True if smoothing requested. (false)
SMOOTH R(3) Smoothing parameters (0.0s)

DXTIME R Integration time (days). (1 sec)

ANTERS I(50) List of antennas selected. (0=>all)

SUBARR I Subarray desired. (0=>all)

FGVER I FLAG file version number. (0)

CLUSE I Cal (CL or SN) file version number (0)
BLVER I BL Table to apply (-1)

BPVER I BP table to apply (-1)

6.7.25 SETVIS

SETVIS setup the arrays JADR, SFACT and the flag ALLWT for reformatting uv data as specified by
MODE. There is also a check to make sure the desired data is available. Calls to GETVIS will reformat the
data. Needs values set by UVPGET and VHDRIN. Only 1 IF will be processed.

SETVIS (MODE, NCH, IFNUM, MVIS, JADR, SFACT, ALLWT, IERR)
Inputs:
MODE I Desired output data format:
1 =1
2 => IQU
=> IQUV
=> IV
R (right hand circular)
=> L
=> RL
8 => straight correlators (used in UVFND)
10+n => n I pol. line maps. (n .le. 8)
20+n => n R pol. line maps.
30+n => n L pol. line maps.
NCH I First line channel desired.
IFNUN I IF number wanted.
Output:
MVIS I Number of visibilities in requested output
format.
JADR I(2,*) Pointers to the first and second visibility
input records to be used in the output record.
SFACT R(2,*) Factors to be multiplied by the first and
second input vis’s to make the output vis.

N 0w
0
v

ALLWT L Flag, = .TRUE. if all visibilities must have
positive weight.
IERR I Error flag. O =>0K, otherwise data unavailable.

Common (input):
DCAT.INC must have uv header
DUVH.INC must be initialized by UVPGET

6.7. ROUTINES 6-43

6.7.26 SET1VS

SET1VS setup the arrays JADR, SFACT and the flag ALLWT for reformatting uv data as specified by
MODE. One visibility per frequency channel will be returned by GET1VS. There is also a check to make
sure the desired data is available. Calls to GET1VS will reformat the data. Needs values set by UVPGET.

SET1VS (MODE, NCH, JADR, SFACT, ALLWT, JINC, IRET)

Inputs:
MODE I Desired output data format:
1=>1
2=>0Q
3=>U
4 =>V
5 => RCP
6 => LCP
NCH I First line channel desired.
Output:

JADR(2) I Pointers to the first and second visibility
input records to be used in the output record.

SFACT(2) R Factors to be multiplied by the first and
second input vis’s to make the output vis.

ALLNT L If true no flagged data is allowed.

JINC I Visibility increment.

IRET I Error flag. 0 =>0K, otherwise data unavailable.

6.7.27 TABINI

TABINI creates/opens a table extension file. If a file is created, it is cataloged by a call to CATIO which
saves the updated CATBLK.

TABINI (OPCODE, PTYP, VOL, CNO, VER, CATBLK, LUN, NKEY,
« NREC, NCOL, DATP, NBUF, BUFFER, IERR)

Input:
OPCODE C=4 Operation code, ’READ’ => read only,
'WRIT’ => read/write
PTYP IC#*2 Physical extension type (eg. ’'CC’)
voL I Disk volume number
CNO I Catalog slot number
CATBLK I(266) Catalog block of cataloged file.
LUN I Logical unit number to use.
NREC I Number of logical rec. for create/extend
NBUF I Number I words in BUFFER
In/out:
VER I Version number: (<= 0 => write a new one,
read the latest one), returns one used.
NKEY I Maximum number of keyword/value pairs

input: used in create, checked on write old
(0 => any); output: actual

NCOL I Number of logical columns (does not include
selection column). Input: used in create,
checked on write old (0=>any); output: actual

DATP 1(128,2) DATP(*,1) address pointers (output only)
DATP(#*,2) column data type codes. Input:
used in create only; output: actual.

BUFFER I(*) Work buffer, at least 1024 bytes in size,

6-44 CHAPTER 6. DISK FILES

more if logical record longer than 512 bytes
Output: control info, lookup table,
Output:
IERR I Return error code. 0 => OK
-1 => 0K, created new file
1 => bad input.
2 => could not find or open
3 => I/0 problem.
4 => create problem.
5 => not a table file
Usage notes:
For sequential access, TABINI leaves pointers for TABIO such that,
if IRNO <= 0, reads will begin at the start of the file and writes
will begin after the last previous record. Cataloged file should
be marked 'WRIT’ if the file is to be created.

Header record:

Each extension file using this system must have the first physical
(512 bytes) record containing necessary information. The full table
file format is described in Going AIPS. The user must read this
section to understand fully how to use such files. The header
record contains the following:

I word(s) Description
i Number 512-byte records now in file
2
3 Max number rows allowed in current file
4
[Number rows (logical records) now in file
8
7 Number of bytes/value (2 for TA files)
8 Number values / logical (# Is / row for TA)
9 > 0 => number rows / physical record
< 0 => number physical records / row
10 Number logical columns / row
11 - 16 Creation date: ZDATE(11), ZTIME(14)
17 - 28 H Physical file name (set on each TABINI call)
29 - 30 H Creation task name
31
32 Disk number
33 - 38 Last access date: ZDATE(33), ZTIME(36)
39 - 40 H Last access task name
42 Number logical records to extend file if needed
43 Sort order: logical column # of primary sorting
44 Sort order: logical column # of secondary sorting
0 => unknown, < 0 => descending order
45 Disk record number for column data pointers (2)
46 Disk record number for row selection strings (3)
47 Disk record number for 1st record of titles (5)
48 Disk record number for ist record of units
49 Disk record number for 1ist record of keywords
50 Disk record number for 1st record of table data
51 DATPTR (row selection column)

52 Maximum number of keyword/value pairs allowed

6.7. ROUTINES

63
54
57
60
61
62
63
64
66
66
67
68
69
70

sxxxxsses for TABIO /

71
72
73
74
76
76
77
78
79
80
81
82
e
83
L
101
129

- 56
- b9

T2 2T
-100
SERERRER
-128
-266

Current number of keyword/value pairs in file

"+«AIPS TABLE*" packed string to verify that table.

If 1 then then table cannot be written as FITS ASCII

Humber of selection strings now in file
Next available R

First R address
First R address
First R address
First R address
First R address
First R address
First R address
First R address

address for

of
of
of
of
ot
of
of
of

selection
selection
selection
selection
selection
selection
selection
selection

IOP : 1 => read, 2 => writ
I words per logical record
Current table row physical record in BUFFER

Number

Current

Type ot

Current
Current

Type of
LuUX

a selection string
string 1
string 2
string 3
string 4
string &
string 6
string 7
string 8

TABINI use only ##*sssss*xs

table row logical record in BUFFER

current record in BUFFER

control physical record number in BUFFER
control logical record number in BUFFER

current control record in BUFFER

FTAB pointer of open file

Reserved

Table title

lookup table as COLPTR(logical column) = phys column

6.7.28 TABIO
TABIO does random access I/O to Tables extension files. Mixed reads and writes are allowed if TABINI

was called "'WRIT". Files opened for WRITe are updated and compressed on CLOS.

TABIO (OPCODE, IRCODE, IRNO, RECORD, BUFFER, IERR)

Inputs:
OPCODE

IRCODE

IRKNO

C*4

I

I

Opcode ’READ’,’CLOS’

WRIT’
’FLAG’

Type of information
=> Table row
=> DATPTR/DATYPE record

=> title
=> units
5 => keyword/value pair

» W N = O
]
v

Logical

: write data as selected
: write data as de-selected

data selection string

record number. 0 => next (can work

with row data and latest IRCODE > O only)
IRNO is row number (IRCODE = 0)
IRNO is ignored (IRCODE = 1)
IRNO is string number (IRCODE = 2)

6-45

6-46 CHAPTER 6. DISK FILES

IRNO is column number (IRCODE = 3)
IRNO is column number (IRCODE = 4)
IRNO is keyword number (IRCODE = 5)
RECORD I(x) Array containing record to be written
BUFFER I(*) Work buffer = 512 bytes + enough 512 byte
blocks for at least one full logical record.
Must be the same one given TABINI.

Output:

RECORD I(%) Array containing record read.
BUFFER I(x) butfer.
IERR I Return error code 0 => 0K

-1 => on READ: row read is flagged

1 => file not open

2 => input error

3 => I/0 error

4 => attempt to read past end of data

or write past end of data + 1
5 => error on expanding the file
IMPORTANT NOTE: the contents of BUFFER should not be changed
except by TABIO between the time TABINI is called until the file
is closed. The exception is that the user portion of the header
record is available.

6.7.29 UVCREA

Subroutine to create a uv file using the parameters in a CATBLK. The file will be cataloged and marked with
WRITE status. The image name parameters must be filled in except that the physical type is converted to
'UV’. The OUTSEQ default is applied (0 = highest matching+1). The name must be unique ignoring the
physical type. The extension file areas of the CATBLK are cleared and the “DATE-MAP” string is filled in.

UVCREA (IVOL, CNO, WBUFF, IERR)

In/Outs:
IvoL I Volume # on which to put file. 0 => any
on output is volume used (IERR = 0)
Outputs:
WBUFF I1(256) Working buffer
CNO I Catalog slot number
IERR I Brror code; 0 => o.k.
1 => couldnt create,no room
2 => no create, duplicate name
3 => no room in catalog
4 => i/o problem on catalog
6 => Other Create errors
6 => No catalog file on disk

COMMON: /MAPHDR/ catalog block used a lot, final seq # on output

6.7.30 UVDISK

UVDISK reads and writes records of arbitrary length especially UV visibility data. Operation is faster if
blocks of data are integral numbers of disk blocks. There are three operations which can be invoked: READ,
WRITE and FLUSH (OPcodes "READ’, "'WRIT’ and 'FLSH’).

'READ’ reads the next sequential block of data as specified to UVINIT and returns the number of
visibilities in NIO and sets the pointer in BUFFER to the first word of this data.

'WRIT’ arranges data in a buffer until it is full. Then as many full blocks as possible are written to the
disk with the remainder left for the next disk write. For writes, left-over data is transfered to the beginning

6.7. ROUTINES 6-47

of buffer 1 if that is the next buffer to be filled. The value of NIO in the call is the number of vis. rec.
to be added to the buffer and may be fewer than the number specified to UVINIT. On return NIO is the
maximum number which may be sent next time. On return BIND is the pointer in BUFFER to begin filling
new data.

'FLSH’ writes integral numbers of blocks and moves any data left over to the beginning of buffer 1. One
exception to this is when NIO < 0, in which case the entire remaining data in the buffer is written (if NIO
> 0 then ABS (NIO) visibilities are to be written). After the call BIND is the pointer in BUFFER for new
data. The principal difference between 'FLSH’ and "WRIT’ is that FLSH always forces an I/O transfer.
This may cause trouble if a transfer of less than 1 block is requested. A call with a nonpositive value of NIO
should be the last call and corresponds to a call to MDISK with opcode 'FINTI’.

NOTE: A call to UVINIT is REQUIRED prior to calling UVDISK.

UVDISK (OP, LUN, FIND, BUFFER, NIO, BIND, IERR)

Inputs:

opP Cx4 Opcode 'READ’,’WRIT’,’FLSH’ are legal

LUN I Logical unit number

FIND I FTAB pointer returned by ZOPEN

BUFFER I(*) Buffer for 1/0

¥IO0 I No. additional visibilities to write.
Output:

NIO I No. visibilities read.

Max. no. vis. for next write.
BIND I Pointer to start of data in buffer
IERR 1 Return error code: 0 => OK
1 => file not open in FTAB

> input error

> I/0 error

> end of tile

> attempt to write more vis than specified
to UVIKIT or will fit in buffer.

2
3
4
7

6.7.31 UVGET

Subroutine to obtain data from a data base with optional application of flaging and/or calibration infor-
mation. Reads data with a large variety of selection criteria and will reformat the data as necessary. Does
many of the startup operations, finds uv data file etc, reads CATBLK and updates the DUVH.INC com-
mons to reflect the output rather than input data. Most of the input to UVGET is through the commons
in DSEL.INC; the initial (default) values of these may be set using routine SELINI.

UVGET (OPCODE, RPARM, VIS, IERR)
Input:
OPCODE C=*4 Opcode:
'INIT’ => Open files Initialize I/0.
’READ’ => Read next specified record.
’CLOS’ => Close files.
Inputs via common (Include DSEL.INC)

UNAME Cx12 AIPS name of input file.
UCLAS C*6 AIPS class of input file.
UDISK R AIPS disk of input file.
USEQ R AIPS sequence of input file.

SOURCS C(30)*16 Names of up to 30 sources, *=>all
First character of name ’-’ => all except
those specified.

TIMRNG R(8) Start day, hour, min, sec, end day, hour,
min, sec. 0’s => all

UVRNG

STOKES

BCHAN

ECHAX
BIF

EIF
DOCAL
DOPOL

DOSMTH
DOACOR
DOWTCL
DOFQSL
FRQSEL
SELBAN
SELFRQ
DOBAND
BPNAME
DOSMTH
SMOOTH
DXTIME

ANTENS

SUBARR
FGVER

CLUSE
BLVER
BPVER
Output:
RPARNM
VIs
IERR

R(2)

C#*4

- -

-

[o

- I QOHODOHEEEE
~ ~ »*

] W [

o ~ [+

~r

- -

-

R(*)
R(3,*)
I

CHAPTER 6. DISK FILES

Minimum and maximum baseline lengths in
1000’s wavelengths. 0’s => all

Stokes types wanted.
’I’,'Q',’U’,‘V’,'R’,'L’,'IQU’,’IQUV’

’ ’=> Leave data in same form as in input.
First channel number selected, 1 rel. to first
channel in data base. 0 => all

Last channel selected. 0=>all

First IF number selected, 1 rel. to first
IF in data base. 0 => all

Last IF selected. 0=>all

If true apply calibration, else not.

If true then correct for feed polarization
based on antenna file info.

True if smoothing requested.

True if autocorrelations are requested.
True if weight calibration wanted.

True if FREQSEL random parm present (false)
Default FQ table entry to select (-1)
Bandwidth (Hz) to select (-1.0)

Frequency (Hz) to select (-1.0)

>0 if bandpass calibration. (-1)

Name of scratch file set up for BP’s.

True if smoothing requested. (false)
Smoothing parameters (0.0s)

Integration time (days). Used when applying
delay corrections to correct for delay error.
List of antennas selected, 0O=>all,

any negative => all except those specified
Subarray desired, 0=>all

FLAG file version number, if < 0 then

NO flagging is applied. 0 => use highest
numbered table.

Cal (CL or SH) file version number to apply.
BL Table to apply .le. O => none

BP table to apply .le. O => none

Random parameter array of datum.
Regular portion of visibility data.
Error code: 0 => OK,

-1 => end of data

>0 => failed, abort process.

Output in commons in DSEL.INC: The default values will be filled in
if null values were specified.

UVFREQ
CATBLK

NPRMIN

TRANSL
CNTREC

ISCMP

D
1(256)

I

L
1(2,3)

L

Frequency corresponding to u,v,w

Catalog header block, describes the output
data rather than input.

Number or random parameters in the input data.
If true translate data to requested Stokes’
Record counts:

(1%2,1) Previously flagged (partly, fully)
(1&2,2) Flagged due to gains (part, full)
(142,3) Good selected (part, full)

True if input data is compressed.

6.7. ROUTINES 6-49

KLoCsU I 0-rel random parm. pointer for source in input
file.

KLOCFQ I 0-rel random parm. pointer for FQ id in input
file.

KLOCIF 1 0-rel random parm. pointer for IF in input
file.

KLOCFY I O-rel random parm. pointer for freq. in input
file.

KLOCWT I O-rel random parm. pointer for weight in
input file.

KLOCSC I 0-rel random parm. pointer for scale in
input file.

Usage notes:

1)

2)

3)

4)

5)

8)

7)

Include DSEL.INC should be declared in the main program or at a
level that they will not be overlaid while UVGET is in use (ie.
between the ’INIT’ and ’CLOS’ calls). SELINI can be used to
initialize the control variables in these commons.

If no sorting is done UVGET uses AIPS luns 25, 28, 29 and 30

(1 map, 3 non map files). If sorting is done (usually possible)

then 8 map and 3 non map files are used (mostly on OPCODE=’INIT’)
and LUNs 16,17,18,19,20,21,22,23,24,25, 28,29,30,40,42,43,44,45.

OPCODE = ’INIT’ does the following:

- The catalgue data file is located and the catalog header

record is read.

- The source file (if any) is read.
-~ The index file (if any) is initialized.
- The flag file (if any) is initialized and sorted if necessary

(Must be in time order).

- The gain table (if any) is initialized.

- The bandpass table (if any) is initialized

- The smocthing convolution table (if any) is initialized
- I/0 to the input file is initialized.

The following LUNs may be used but will be closed on
return: 16, 17, 18, 19, 20, 21, 22, 23, 24

The following LUNs may be used but will be open on
return: 26 (uv data), 28 (NX table), 29 (CL or SN table),

30 (FG table), 40 (BL table), 41 (BP table).

N0 data are returned from this call.
OPCODE = ’READ’ reads one visibility record properly selected,
transformed (e.g. I pol.), calibrated and edited as requested
in the call with OPCODE = ’INIT’
OPCODE = ’CLOS’ closes all files used by UVGET which are still
open. No data are returned.
If DOCAL is true then the common array CNTREC will contain the
counts of records which are good or fully or partly flagged
both previously and due to flagged gain solutions.
Only one subarray can be calibrated at a time if DOPOL is true.
This is because the polarization information for only one
subarray is kept at a time.

6.7.32 UVINIT

UVINIT sets up bookkeeping for the UV data I/O routine UVDISK. I/O for these routines is double buffered
(if possible) quick return I/O. UVDISK will run much more efficiently if on disk LREC*NPIO is an integral

6-50

number of blocks. Otherwise, partial writes or oversize reads will have to be done. Minimum disk I/O is one
block. Smaller calls to UVINIT may be made as long as the buffer is large enough. The buffer size should
include an extra NBPS bytes for each buffer for read if NPIO records does not correspond to an integral
number of disk sectors (NBPS bytes). 2*NBPS extra bytes required for each buffer for write. NPIO will be
adjusted to the maximum allowed for double buffering if the input value is .LE. 0, or the maximum allowed

CHAPTER 6. DISK FILES

single buffering value if NPIO is too large. If it is positive and useable it is used.

UVINIT (OP, LUN, FIND, KVIS, VISOFF, LREC, NPIO, BUFSZ,
*+ BUFFER, BO, BIND, IERR)

Inputs:
op
Lux
FIND
VIS
VISOFF
LREC
¥PIO

BUFSZ
BUFFER
BO
Output:
NPIO

BIND
IERR

C*4

o

R(#*)

-

OP code, ’READ’ or ’WRIT’ for desired operation.
Logical unit number of file.

FTAB pointer for file returned by ZOPEN.

Number of visibilities to be transfered.

Offset in vis. rec. of first vis. rec. from BO.
Number of values in a visibility record.

Number of visibilities per call to UVDISK.
Determines block size for tape I/0

0 => decide (see note above)

Size in bytes of the buffer.

Buffer

Block offset to begin transfer from (1-relative)

The max. number of visibilities which can be
be written or will be read per call.
Pointer in BUFFER for WRITE operations.
Return error code:
=> 0K
=> file not open in FTAB -
=> invalid input parameter.
I/0 error
=> End of file.
=> buffer too small

~N e W N = O
]
v

Note: VISOFF and BO are additive.
UVDISK uses values in the FTAB:

UVINIT sets and
FTAB(FIND+0)

156

LU

Bytes per I/0

vis. records left to transfer. For double buffer
read, 1 more I/0 will have been done than shown

Block offset for next I/0.

byte offset of next I/0

= Current buffer #, -1 => single buffering

non

OPcode 1 = read, 2 = write.
Values per visibility record.
vis. records per UVDISK call

max. # vis. per buffer.

= # vis. processed in this buffer.
= Buffer pointer for start of current buffer

(in values). Used for WRIT only; includes any
data carried over from the last write.
Buffer pointer for call (values)

6.7. ROUTINES 6-51

6.7.33 UVPGET

UVPGET determines pointers and other information from a UV CATBLK. The address relative to the
start of a vis record for the real part for a given spectral channel (CHAN) and stokes parameter (ICOR)
is given by NRPARM+(CHAN-1)*INCF+ABS(ICOR-ICOR0)*INCS+(IF-1)*INCIF Single dish data, i.e.
randomly sampled data in the image plane, is also recognized and ILOCU and ILOCYV point to the longitude
like and latitude like random parameters. Also a “BEAM” random parameter may be substitued for the
“BASELINE” random parameter. The data type present may be determined from the common variable
TYPUVD. Two types of single dish data are recognized:

TYPUVD=1 => unprojected RA and Dec and

TYPUVD=2 => projected RA and Dec (ready for GRIDR)

UVPGET (IERR)
Inputs: From common /MAPHDR/ (DCAT.INC or DSEL.IKC)
CATBLK I(266) Catalog block
CATH H(266) same as CATBLK
CATR R(266) same as CATBLK
CATD D(128) same as CATBLK
Output: In common /UVHDR/ (DUVH.IKC)

SOURCE C=*8 Source name.
ILOCU I Offset from beginning of vis record of U

or longitude for single dish format data.
ILOCV I Offset from beginning of vis record of V

or longitude for single dish format data.
ILOCW I Offset from beginning of vis record of W.
ILOCT I " Time
ILOCB I " Baseline

(or beam)

ILOCSU I " Source id.
ILOCFQ I " Freq id.
JLOCC I O-rel. order in data of complex values
JLOCS I Order in data of Stokes’ parameters.
JLOCF I Order in data of Frequency.
JLOCR I Order in data of RA
JLOCD I Order in data of dec.
JLOCIF I Order in data of IF.
INCS I Increment in data for stokes (see above)
INCF I Increment in data for freq. (see above)
INCIF I Increment in data for IF.
ICORO I Stokes value of first value.
NRPARM I Number of random parameters
LREC I Length in values of a vis record.
NVIS I Number of visibilities
FREQ D Frequency (Hz)
RA D Right ascension (1950) deg.
DEC D Declination (1960) deg.
NCOR I Number of correlators (Stokes’ parm.)
ISORT C*2 Sort order 1st 2 char meaningful.
TYPUVD I UV data type, O=interferometer,

i=single dish unprojected,
2=single dish projected RA and Dec.
IERR I Return error code: 0=>0K,

1, 2, 5, 7 : not all normal rand parms
2, 3, 86, 7 : not all normal axes
4, 5, 6, 7 : wrong bytes/value

6-52 CHAPTER 6. DISK FILES

6.7.3¢ ZCLOSE

Close the file associated with LUN removing any exclusive use state and clear the FTAB entry for the LUN.

ZCLOSE (LUN, FIND, IERR)

Inputs:

LUN I Logical unit number

FIND I Index in FTAB to file control block for LUN
Output:

IERR I Error return code: 0 => no error

1 => close error

2 => file already closed in FTAB
3 => both errors

4 => erroneous LUN

6.7.35 ZCMPRS

ZCMPRS releases unused disk space from the end of an open disk file. AIPS “Byte” is defined as 1/2 of a
integer.

ZCMPRS (IVOL, PNAME, LUN, LSIZE, SCRTCH, IERR)

Inputs:

IvoL I volume number

PNAME C#*48 physical file name

LUK I logical unit number under which file is open.
In/COut:

LSIZE I (In) desired final size in AIPS bytes

(Out) actual final size in AIPS bytes

Outputs:

SCRTCH I(268) scratch buffer (not used under UNIX).

IERR I error code: 0 => ok

1 => input data error
2 => compress error

6.7.36 ZCREAT

Create a disk file of a specified name and size reserving the disk space.

ZCREAT (IVOL, PNAME, RSIZE, MAP, ASIZE, SCRTCH, IERR)

Inputs:
IVOL I Disk volume containing file
PNAME C*48 Physical file name
RSIZE I Requested size of the file in AIPS-bytes (1/2
of a local integer)
MAP L Is this a "map" file?
Output:
ASIZE I Actual size of file in AIPS-bytes
SCRTCE I(256) Scratch buffer
IERR I Error return code: 0 => no error
1 => file already exists

> volume not found

> insufficient space
=> other

=> forbidden (reserved)

2
3
4
)

6.7. ROUTINES 6-53

6.7.37 ZDESTR
Destroy (i.e., delete) a file. The file should already be closed.

ZDESTR (IVOL, PNAME, IERR)

Inputs:
IvVoL I Disk volume containing file, 1,2,3,...
PNAME C=%48 Physical file name (left justified)
Output:
IERR I Error return code: 0 => no error

1 => tile not found (no message)
2 => device not found

3 => file in use

4 => other

6.7.38 ZEXPND

Increase the size of a disk file — it must be open.

ZEXPED (LUN, IVOL, PNAME, NREC, IERR)

Inputs:
LUN I LUR of file open file
IVOoL I Disk volume containing file, 1,2,3,...
PNAME C#*48 Physical file name
In/Out:
NREC I # 256-integer records requested/received
Output:
IERR I Error return code: 0 => no error

1 => input error
2 => expansion error
3 => ZEXIST error

6.7.39 ZFIO

Transfer one logical record between an I/O buffer and device LUN. For disk devices, the record length is
always 256 local small integers and NREC is the random access record number. For non-disk devices, NREC
is the number of 8-bit bytes.

ZFIO (OPER, LUN, FIND, NREC, BUFF, IERR)

Inputs:
OPER C*4 Operation code ’READ’ or ’WRIT’
LUN I Logical unit number
FIND I Index in FTAB to file control block for LUN
NREC I Random access record number (1-relative) for
disk transfers or number of 8-bit bytes for
sequential device transfers (e.g., Tektronix
terminals)
BUFF 1(266) 1I/0 buffer
Output:
IERR I Error return code: 0 => no error

1 => file not open
2 => input error

3 => I/0 error

4 => end of file

6-54 CHAPTER 6. DISK FILES

6.7.40 ZMIO

Low level random access, large block, double buffered device I/0.

ZMI0 (OPER, LUN, FIND, BLKNO, NBYTES, BUFF, IBUFF,

* IERR)
Inputs:
OPER C*4 Operation code ’'READ’ oxr ’WRIT’
LUN I Logical unit number
FIND I Index in FTAB to file control bIock for LUN
BLKNO I Beginning virtual block number (1-relative).
Block size is given by NBPS in /DCHCOM/.
NBYTES I Number of AIPS-bytes to transfer (an AIPS-byte is
1/2 a local integer).
IBUFF I Buffer number to use (1 or 2)
In/out:
BUFF I(*) 1I/0 butfer
Output:
IERR I Error return code: 0 => no error

1 => file not open
2 => input error

3 => I/0 error

4 => end of file

6.7.41 ZOPEN

Open a binary disk file, line printer or tty. Message files, text files, tape devices, Tektronix devices and
TV devices are NOT opened using this routine (see ZMSGOP for message files, ZTOPEN for text files,
ZTPOPN for tape devices, ZTKOPN for Tektronix devices and the device specific routine for TV devices,
e.g., ZM700P).

ZOPEN (LUN, FIND, IVOL, PNAME, MAP, EXCL, WAIT, IERR)

Inputs:
LUN I Logical unit number
IVOL I Disk volume containing file, 1,2,3,...
PNAME C*48 Physical file name (from ZPHFIL)
MAP L Is this a "map" file?
EXCL L Exclusive use requested?
WAIT L Wait for exclusive use?
Output:
FIND I Index in FTAB to file control block for LUN
IERR I Error return code: 0 => no error

1 => LUN already in use
2 => file not found

=> volume/logical not found
exclusive use denied
=> no room for LUN in FTAB
=> other open errors

D 0w
]
v

6.7.42 ZPHFIL

Construct a physical file name in PNAM from TYPE, IVOL, NSEQ, and IVER - either for public data files
or user-specific files.

ZPHFIL (TYPE, IVOL, NSEQ, IVER, PNAM, IERR)
Inputs:

6.7. ROUTINES

TYPE
IVOL
NSEQ
IVER

Outputs:

PNAM
IERR

Example:

TYPE
TYPE
TYPE
TYPE

c

-

C
I

*2

*48

Type of file: e.g. "MA’ for map file
Number of the disk volume to be used (1-15)
Sequence number (000-4095)

Version number (00-255)

physical file name, left justified
Error return code: 0 = good return. i = error.

If TYPE='MA’, IVOL=7, AIPSVER=C, NSEQ=321, IVER=99,

NLUSER=762 then

)H’r’
)'rx’
)Tv)
IHE)

PNAME="DA07:MAC14163;1’

for public data or

PNAME=’DA07:MAC14163.2FA;1’ for private data
where 321 = 141 base 168, 99 = 63 base 16, 762 = 2FA base 16

leads
leads
leads
leads

6.7.43 ZTCLOS
Close the text file and clear the FTAB entry associated with LUN.

to special name for tapes

to special name for TEK4012 plotter CRT
to special name for TV device

to special logical for POPS memory files

ZTCLOS (LUN, FINKD, IERR)

Inputs:
LUN
FIND

Output:
IERR

6.7.44 ZTOPEN

I Logical unit number
I Index in FTAB for LUN

I Error return code: 0 => no error

1 => close error

2 => file already closed in FTAB
3 => both errors

4 => erroneous LUN

Open a text file - logical area, version, member name as arguments

ZTOPEN (LUN, FIND, IVOL, PNAME, MNAME, VERSON, WAIT, IERR)

Inputs:
LUN
IvVOoL

PNAME

MNAME
VERSON

WAIT

OQutputs:

FIND
IERR

I
I
C#48

Cx8
C#48

Logical unit number

Disk volume containing file, (not used)
Physical file name, only used to determine file
type or logical area

Text file name

Logical name for directory or version of
directory to search (for file-specific
directories)

T => wait until file is available (not used)

Index in FTAB for LUN

Error return code: 0 => no error
1 => LUN already in use
2 => file not found

6-55

6-56 CHAPTER 6. DISK FILES

=> volume not found

=> file locked

=> no room for LUN in FTAB
=> other open errors

DO w

6.7.45 ZTREAD

Read the next sequential 80-character card image from a text file.

ZTREAD (LUN, FIND, RBUFF, IERR)

Inputs:
LUN I Logical unit number
FIND I Index in FTAB for LUN
Output:
RBUFF C*80 I/0 buffer for card image
IERR I Error return code: 0 => no error

1 => file not open
2 => end of file
4 => other 1I/0 error

6.7.46 ZUVPAK

Routine to pack uv data with magic value blanking. One AIPS logical uv data record is processed at a time.

ZUVPAK (XCORR, VISIN, WTSCL, VISOUT)

Inputs:
NCORR I Number of correlator values in data
VISIN R(3,*) Unpacked uv data as real, imag and weight per
correlator.
Output:
WTSCL R(2) "Weight" and "scale" random parameters for the

packed record.
VISOUT R(*) Packed visibility data with local magic value
blanking.
6.7.47 ZUVXPN

Routine to expand packed uv data to unpacked form. One AIPS logical uv data record is processed at a
time.

ZUVXPX (NCORR, VISIN, WTSCL, VISOUT)

Inputs:

NCORR I Number of correlator values in data

VISIK R(*) Packed visibility data with local magic value
blanking.

WTSCL R(*) “Weight" and "scale" random parameters for the
packed record.

Output:

VISOUT R(3,*) Unpacked uv data as real, imag and weight per

correlator.

6.7.48 ZTXCLS
Close the text file and clear the FTAB entry associated with LUN.

6.7. ROUTINES

ZTXCLS (LUN, FIND, IERR)
Inputs:
LUN I Logical unit number
FIND I Index in FTAB for LUN
Output:
IERR I Error return code: 0 => no error
1 => close error
2 => file already closed in FTAB
3 => both errors
4 => inputs error

6.7.49 ZTXIO
Read/write the next sequential line from/to a text file.

ZTXIO (OPER, LUN, FIND, LINE, IERR)

Inputs:
OPER C*4 Operation code (’READ’ or ’WRIT’)
LUN I Logical unit number
FIND I Index in FTAB for LUN
Input/output:

LINE Cx(x) Line of text. For WRIT, ZTXIO writes the full
string including any trailing blanks. Use ITRIM
and substring notation in the call if you desire
only up to the last non-blank (which is usually
preferable!). On READ, adequate size must be
declared in calling routine.

Output:
IERR I Error return code: 0 => no error
1 => file not open
2 => end of file
3 => input error
4 => other I/0 error

6.7.50 ZTXOPN
Open a text file.

ZTXOPN (OPCODE, LUN, FIND, OUTFIL, APPEND, IERR)

Inputs:
OPCODE C*4 Open for ’READ’ or ’WRIT’
LUN I Logical unit number
OUTFIL C#48 Physical file name
APPEND L If true append new text to end of old file.
(OPCODE="WRIT’ only).
Outputs:
FIND I Index in FTAB for LUN
IERR I Error return code: 0 => no error

=> error in inputs

=> LUN already in use

no room for LUN in FTAB
trouble translating logical
file already exists

open error

DO WN =
Hou nn
vV Vv Vv

\%

6-57

6-58

6.7.51 ZUVPAK

Routine to pack uv data with magic value blanking. One AIPS logical uv data record is processed at a time.

ZUVPAK (NCORR, VISIN, WTSCL, VISOUT)

Inputs:
NCORR I

VISIN R(3,*)

Output:

WTSCL R(2)

VISOUT R(*)

Number of correlator values in data
Unpacked uv data as real, imag and weight per

correlator.

CHAPTER 6. DISK FILES

“Weight" and "scale" random parameters for the
packed record.
Packed visibility data with local magic value
blanking.

6.7.52 ZUVXPN
Routine to expand packed uv data to unpacked form. One AIPS logical uv data record is processed at a

time.

ZUVXPN (NCORR, VISIN, WTSCL, VISOUT)

Inputs:
NCORR I

VISIN R(*)

WTSCL R(*)

Output:

Number of correlator values in data

Packed visibility data with local magic value
blanking.
"Weight" and "scale" random parameters for the
packed record.

VISOUT R(3,*) Unpacked uv data as real, imag and weight per
correlator.

6.7.53 ZWAIT

Wait until an asynchronous I/O operation completes.

ZWAIT (LUN, FIND, IBUFF, IERR)

Inputs:
LUN
FIND
IBUFF

Output:
IERR

I
I
I

I

Logical unit number

Index in FTAB to file control block for LUN
Buffer # to wait for (1 or 2)

Error return code: 0 => no error
1=

2
3
4
7

LUN not open in FTAB
error in inputs

I/0 error

end of file

wait service error

Chapter 7

High Level Utility Routines

7.1 Overview

There are a number of high level AIPS utility routines which merit special attention. Many of these routines
do complex, but. common, operations on data or image files, such as gridding uv data or doing 2-D FFTs.
Since many of the routines do a great deal of computation, most use the array processor.

Many of these routines make heavy use of commons or the values in catalog header records for control
and internal communication. A number of these routines will create scratch and/or output files if necessary.
Several general and somewhat overlapping categories of routines are discussed below.

7.2 File Specification

The routines described in this chapter use several methods to specify the input, output, and scratch files.
For cataloged files the file is usually specified by a disk number and a catalog slot number. For scratch files
an index in arrays SCRVOL and SCRCNO in the common from include DFIL.INC is passed. The indicated
values from SCRVOL and SCRCNO are the disk and catalog slot numbers of the scratch files. These values
are filled in by SCREAT when the files are created.

A common convention for the routines described in this chapter is that a disk and “catalog slot” number
are passed as call arguments and if the disk number is zero and the “catalog slot” number is positive then
the file is a scratch file and the “catalog slot” number is the index in SCRVOL and SCRCNO. Several of the
routines in this chapter also allow optional creation of output and/or scratch files.

7.3 Data Calibration and Reformatting Routines

The variety of different uv data formats, especially different polarization types, allowed in AIPS uv data
bases complicates handling of uv data. In addition, uncalibrated multi-source uv data files need to have
calibration, editing and selection criteria applied. A pair of routines allows simplified read access to either
single- or multi-source uv data files. A short description is given here and the details of the subroutine calls
are given at the end of this chapter. These routines do not use the array processor.

e UVGET sets up, selects, reformats, calibrates, edits either single- or multi-source data files.

o CALCOP. After set up by UVGET, CALCOP can be used to process the entire selected contents of a
file to another file.

7.4 Operations on Images

These operations are those performed on entire image files. A short description is given here and the details
of the subroutine calls and interfacce COMMONSs are given at the end of this chapter.

7-1

7-2 CHAPTER 7. HIGH LEVEL UTILITY ROUTINES

e DSKFFT is a disk-based, two dimensional FFT.

o GRDCOR normalizes and corrects an image for the gridding convolution used to grid the image. Used
in conjunction with UVGRID and DSKFFT.

e APCONYV convolves two images.

7.5 UV Model Calculations

A system of routines is available to compute the Fourier transform of a model, given as either CLEAN or
Gaussian components or an image, at the u,v and w locations of the data in a uv data file and to either
subtract the model values from the observed values or divide the model values into the observed values.
These routines make heavy use of COMMONSs. A short description is given here and the details of the
subroutine calls and interface COMMONS are given at the end of this chapter.

e UVMDIV divides model visibilities derived from CLEAN or Gaussian components or images into a uv
data set.

e UVMSUB subtracts model visibilities derived from CLEAN or Gaussian components or images from
a uv data set.

7.6 Image Formation

Routine MAKMAP makes an image or a dirty beam given a uv data set. The data may be either calibrated or
uncalibrated (raw) data and calibration and various selection criteria may be (optionally) applied. MAKMAP
makes heavy use of COMMONSs and the array processor. The details of the call sequence and interface
COMMONSs are given at the end of this chapter.

7.7 INCLUDESs

There are several types of INCLUDE file which are distinguished by the first character of their namre.
Different INCLUDE file types contain different types of Fortran declaration statements as described in the
following list.

o Pxxx.INC. These INCLUDE files contain declarations for parameters and the PARAMETER state-
ments.

e Dxxx.INC. These INCLUDE files contain Fortran type (with dimension) declarations, COMMON and
EQUIVALENCE statments.

e Vxxx.INC. These contain Fortran DATA statements.

e Zxxx.INC. These INCLUDE files contain declarations which may change from one computer or instal-
lation to another.

7.7.1 PUVD.INC

[Include PUVD
[Parameters for uv data
INTEGER MAXANT, MXBASE, MAXIF, MAXFLG, MAXFLD, MAXCHA
c MAXART = Max. no. antennas.
PARAMETER (MAXANT=45)
c MXBASE = max. no. baselines

PARAMETER (MXBASE= ((MAXANT#*(MAXANT+1))/2))
C MAXIF=max. no. IFs.

7.7. INCLUDES

PARAMETER (MAXIF=15)

c MAXFLG= max. no. flags active

PARAMETER (MAXFLG=1000)

Cc MAXFLD=max. no fields

PARAMETER (MAXFLD=16)

c MAXCHA=max. no. freq. channels.

PARAMETER (MAXCHA=512)

c Parameters for tables
INTEGER MAXCLC, MAXSNC, MAXANC, MAXFGC, MAXNXC, MAXSUC,

#*

MAXBPC, MAXBLC, MAXFQC

C MAXCLC=max
PARAMETER (MAXCLC=41)

C MAXSNC=max
PARAMETER (MAXSNC=20)

C MAXANC=max
PARAMETER (MAXANC=12)

Cc MAXFGC=max
PARAMETER (MAXFGC=8)

C MAXEXC=max
PARAMETER (MAXNXC=7)

(o MAXSUC=max
PARAMETER (MAXSUC=21)

C MAXBPC=max
PARAMETER (MAXBPC=14)

C MAXBLC=max
PARAMETER (MAXBLC=14)

C MAXFQC=max

PARAMETER (MAXFQC=5)

7.7.2 DFIL.INC
C

LOGICAL RQUICK

no.

no.

no.

no.

no.

no.

no.

no.

no.

cols in CL table
cols in SN table
cols in AN table
cols in FG table
cols in NX table
cols in SU table
cols in BP table
cols in BL table
cols in FQ table
End PUVD.

Include DFIL.
c AIPS system catalog and scratch
INTEGER NSCR, SCRVOL(128), SCRCNO(128), IBAD(10), LUNS(10),
= NCFILE, FVOL(128), FCNO(128), FRW(128), CCNO

COMMON /CFILES/ RQUICK, NSCR, SCRVOL, SCRCNO, NCFILE, FVOL, FCNO,

* FRW, CCNO, IBAD, LUKS

7.7.3 DGDS.INC
c

INTEGER SCRBLK(256), KLNBLK(256), MFIELD, FLDSZ(2,MAXFLD),

End DFIL.

Include DGDS.
c include for uv modeling

* CCDISK(MAXFLD), CCCHO(MAXFLD), CCVER(MAXFLD), CNOBEM,
*+ BEMVOL, KSTOK, SCTYPE, VOFF, NSTOK, NCHANG

LOGICAL DOFFT, NONEG, DOPTMD, NGRDAT
INTEGER NSUBG(MAXFLD), NCLNG(NAXFLD)

REAL CELLSG(2), FLUXG(MAXFLD), TFLUXG, SSROT, CCROT,

7-4 CHAPTER 7. HIGH LEVEL UTILITY ROUTINES

XPOFF (MAXFLD), YPOFF(MAXFLD), SCLUG(MAXFLD), SCLVG(MAXFLD),
SCLWG(MAXFLD), SCLUM, SCLVM, FACGRD, DXCG(MAXFLD),
DYCG(MAXFLD), DZCG(MAXFLD), OSFX, OSFY,
PTFLX, PTRAOF, PTDCOF, PARMOD(6)

DOUBLE PRECISION FREQG(MAXCHA)

COMMON /MAPDES/ FREQG, SCRBLK, KLNBLK,

* * * »

* CELLSG, SCLUG, SCLVG, SCLWG, SCLUM, SCLVM,
* DXCG, DYCG, DZCG, FLUXG, TFLUXG, XPOFF, YPOFF, SSROT, CCROT,
* FACGRD, OSFX, OSFY, PTFLX, PTRAOF, PTDCOF, PARMOD,
= NCLNG, NSUBG, DOFFT, NOKEG, DOPTMD, NGRDAT,
* MFIELD, FLDSZ, CCDISK, CCCNO, CCVER, CNOBEM, BEMVOL,
* KSTOK, SCTYPE, VOFF, NSTOK, NCHANG
C End DGDS.

7.7.4 DMPR.INC

C Include DMPR.
C include for gridding

C and correction routines.

C NOTE: uses PARAMETER in DGDS.INC

INTEGER NXBEM, NYBEM, NXUNF, NYUNF, NXMAX, NYMAX,
* ICNTRX(MAXFLD), ICNTRY(MAXFLD), CTYPX, CTYPY, NUVCH, CHUV1,
* NCHAVG, UNFBOX, TVFLD, BORES(MAXFLD), BOBEM, MDISKN, MSEQ
LOGICAL DOZERO, DOTAPE, DOUNIF
REAL XFLD(MAXFLD), YFLD(MAXFLD), XPARM(10), YPARM(10),
= TAPERU, TAPERV, ZEROSP(5), BMMAX, BMMIN,
FLDMAX(MAXFLD), FLDMIN(MAXFLD), BEMMAX,
* XSHIFT(MAXFLD), YSHIFT(MAXFLD), BLMAX, BLMIN
CHARACTER MNAME*12, MCLASS#*6
DOUBLE PRECISION FREQUV
COMMON /GRDCOM/ FREQUV,
XFLD, YFLD, XPARM, YPARM, TAPERU, TAPERV, ZEROSP,
BMMAX, BMMIN, FLDMAX, FLDMIN,
BEMMAX, XSHIFT, YSHIFT, BLMAX, BLMIN,
DOZERO, DOTAPE, DOUNIF,
NXBEM, NYBEM, NXUNF, NYUNF, NXMAX, NYMAX, ICNTRX, ICNTRY,
CTYPX, CTYPY, NUVCH, CHUVi, NCHAVG, UNFBOX,
TVFLD, BORES, BOBEM, MDISKN, MSEQ
COMMON /GRDCHR/ MNAME, MCLASS
c . End DMPR.

L R JEE BEE BEE IR B

7.7.5 DSEL.INC

c Include DSEL.
C Commons for UVGET use
INTEGER XCTBSZ, XBTBSZ, XPTBSZ, XSTBSZ, XTTSZ, XBPSZ,
* XBPBUF
o XCTBSZ=internal gain table size

PARAMETER (XCTBSZ=2500)
c XBTBSZ=baseline table size

7.7. INCLUDES 7-5

PARAMETER (XBTBSZ=3500)

C XPTBSZ=polar. corr. table size
PARAMETER (XPTBSZ=16384)

c XSTBSZ=Source no. table size
PARAMETER (XSTBSZ=500)

(v XTTSZ=Pol. trans. table size
PARAMETER (XTTSZ=MAXIF*MAXCHA*2)

c XBPSZ=max. no. BP time entries
PARAMETER (XBPSZ=50)

(o] XBPBUF=internal BP I/0 buffer
PARAMETER (XBPBUF=65536)

C Data selection and control

INTEGER ANTENS(50), NANTSL, NSOUWD, SOUWAN(XSTBSZ), SOUWTN(30),
NCALWD, CALWAN(XSTBSZ), CALWTN(30), SUBARR, SMOTYP, CURSOU,
NXKOLS(MAXNXC), NXNUMV(MAXNXC), MVIS, JADR(2,XTTSZ), PMODE,
LRECIN, UBUFSZ, BCHAN, ECHAN, BIF, EIF, NPRMIN, KLOCSU, KLOCFQ,
SELQUA, SMDIV, SMOOTH(3), KLOCIF, KLOCFY, KLOCWT, KLOCSC,
NDECMP, DECMP(2,MAXIF#4), BCHANS, ECHANS, FRQSEL, FSTRED,
FQKOLS (MAXFQC), FQEUMV(MAXFQC)

LOGICAL DOSWNT, DOCWNT, DOAWNT, ALLWT, TRANSL, DOSMTH, ISCMP,

* DOXCOR, DOACOR, DOWTCL, DOFQSL
INTEGER IRXRNO, NINDEX, FSTVIS, LSTVIS, IFQRNO
REAL TIMREG(8), UVREG(2), INTPRM(3), UVRA(2), TSTART, TEND,
* SELFAC(2,XTTSZ), SMTAB(2500), SUPRAD, SELBAR
CHARACTER SOURCS(30)*16, CALSOU(30)#16, STOKES*4, INTFN=*4,
* SELCOD*4
DOUBLE PRECISION UVFREQ, SELFRQ
c Flag table info
REAL TMFLST, FLGTND(MAXFLG)
INTEGER IFGRNO
LOGICAL DOFLAG, FLGPOL(4,MAXFLG)
INTEGER FGVER, NUMFLG, FGKOLS(MAXFGC), FGNUMV(MAXFGC),
* KNCOR, KNCF, KNCIF, KNCS,
* FLGSOU(MAXFLG), FLGANT(MAXFLG), FLGBAS(MAXFLG), FLGSUB(MAXFLG),
* FLGBIF(MAXFLG), FLGEIF(MAXFLG), FLGBCH(MAXFLG), FLGECH(MAXFLG)
c CAL table info
REAL GMMOD, CURCAL(XCTBSZ), LCALTM, CALTAB(XCTBSZ,2),
* CALTIM(3), RATFAC(MAXIF), DELFAC(MAXIF), DXTIME, DXFREQ,
* LAMSQ(MAXCHA, MAXIF), IFRTAB(MAXANT, 2), IFR(MAXANT)
INTEGER ICLRNO, NCLINR, MAXCLR, CNTREC(2,3)
LOGICAL DOCAL, DOAPPL
INTEGER CLVER, CLUSE, NUMANT, NUMPOL, NUMIF, CIDSOU(2),
* CLKOLS(MAXCLC), CLNUMV(MAXCLC), LCLTAB, LCUCAL, ICALP1, ICALP2,
*+ POLOFF(4,2)
(o] Baseline table info
REAL LBLTM, BLTAB(XBTBSZ,2), BLFAC(XBTBSZ), BLTIM(3)
INTEGER IBLRNO, NBLINR
LOGICAL DOBL
INTEGER BLVER, BLKOLS(MAXBLC), BLNUMV(MAXBLC), IBLP1, IBLP2
(¢ Polarization table.
REAL POLCAL(2,XPTBSZ), PARAGL(2,MAXANT), PARTIM
INTEGER PARSOU
LOGICAL DOPOL
C Bandpass table

* * % # * »

CHAPTER 7. HIGH LEVEL UTILITY ROUTINES

DOUBLE PRECISION BPFREQ(MAXIF)
REAL PBUFF(XBPBUF), TIMENT(XBPSZ), BPTIM(3), LBPTIM, CHNBED
CHARACTER BPNAME#48
INTEGER IBPRNO, NBPINR, ANTPNT(2), NVISM, NVISS, HVIST
INTEGER BPVER, BPKOLS(MAXBPC), BPEUMV(MAXBPC), NANTBP, NPOLBP,
&« NIFBP, NCHNBP, BCHNBP, DOBAND, ANTENT(XBPSZ,MAXANT),
+ BPDSK, BPVOL, BPCNO, USEDAN(MAXANT), BPGOT(2),
* KSNCF, KSNCIF, KSNCS, MXANUM
Channel 0 stuff
INTEGER FSTVS3, LREC3, LSTVS3, NREAD3, FSTRD3, KLOCW3,
*+ KLOCS3, NDECM3, DECM3(2,MAXIF*4), BIND3, RECNO3, LENBU3
LOGICAL ISCMP3, DOUVIN
File specification.
INTEGER IUDISK, IUSEQ, IUCNO, IULUN, IUFIND, ICLUN, IFLUN,
= IXLUN, IBLUN, IPLUN, IQLUN, LUNSBP, BPFIND, CATUV(266),
* CATBLK(266)
REAL USEQ, UDISK
CHARACTER UNAME#*12, UCLAS*6, UFILE#48
I/0 buffers
INTEGER CLBUFF(1024), FGBUFF(512), NXBUFF(512), BLBUFF(512),
= BPBUFF(32767), FQBUFF(512)
REAL UBUFF(8192)
Character common
COMMOR /SELCHR/ SOURCS, CALSQU, STOKES, INTFN, SELCOD, UNAME,
* UCLAS, UFILE, BPNAME
Common for UVGET use
Data selection and control
COMMON /SELCAL/ UVFREQ, SELFRQ,
USEQ, UDISK, TIMRNG, UVRNG, INTPRM, UVRA, TSTART, TEKD, UBUFF,
SELFAC, SMTAB, SUPRAD, SELBAN,
INXRNO, NINDEX, FSTVIS, LSTVIS, IFQRNO,
DOSWNT, DOCWNT, DOAWNT, ALLWT, TRANSL, DOSMTH, ISCMP, DOXCOR,
DOACOR, DOWTCL, DOFQSL,
CLBUFF, FGBUFF, NXBUFF, BLBUFF, BPBUFF, FQBUFF,
IUDISK, IUSEQ, IUCNO, IULUN, IUFIND, ICLUN, IFLUN, IXLUN,
IBLUN, IPLUN, IQLUN, LUNSBP, BPFIND, CATUV, ANTENS, NANTSL,
NSOUWD, SOUWAN, SOUWTN, NCALWD, CALWAN, CALWTN,
SUBARR, SMOTYP, CURSOU, NXKOLS, NXNUMV, FQKOLS, FQNUMV,
MVIS, JADR, PMODE,
LRECIN, UBUFSZ, BCHAN, ECHAN, BIF, EIF, NPRMIN, KLOCSU,
KLOCFQ, SELQUA, SMDIV, SMOOTHN, KLOCIF, KLOCFY, KLOCNT,
KLOCSC, NDECMP, DECMP, BCHANS, ECHANS, FRQSEL, FSTRED
FLAG table info
COMMON /CFMINF/ TMFLST, FLGTND, IFGRNO, DOFLAG, FLGPOL,
* FGVER, NUMFLG, FGKOLS, FGNUMV, KNCOR, KNCF, KNCIF, KNCS,
= FLGSOU, FLGANT, FLGBAS, FLGSUB, FLGBIF, FLGEIF, FLGBCH, FLGECH
CAL table info
COMMON /CGNINF/ GMMOD, CURCAL, LCALTM, CALTAB, CALTIM, RATFAC,
DELFAC, DXTIME, DXFREQ,
ICLRNO, NCLINR, MAXCLR, CNTREC,
DOCAL, DOAPPL,
CLVER, CLUSE, NUMANT, NUMPOL, NUMIF, CIDSOU, CLKOLS, CLNUMV,
LCLTAB, LCUCAL, ICALPi, ICALP2, POLOFF,
LAMSQ, IFRTAB, IFR

L 2EE JEE NN BN K R R BE R K IR IR N

L 2R 2NN JEE JEE R J

7.8. ROUTINES 7-7

c BL table info
COMMON /CBLINF/ LBLTM, BLTAB, BLTIM, BLFAC,
* IBLRNO, NBLINR,

= DOBL,

= BLVER, BLKOLS, BLNUMV, IBLP1, IBLP2
Cc Pol. table

COMMON /CPLINF/ POLCAL, PARAGL, PARTIM, PARSOU, DOPOL
C BP table

COMMON /CBPINF/ BPFREQ,
PBUFF, TIMENT, BPTIM, LBPTIM, CHNBND,
IBPRNO, NBPINR, ANTPNT, NVISM, NVISS, NVIST,
BPVER, BPKOLS, BPNUMV, NANTBP, NPOLBP, NIFBP, NCHNBP, BCHNBP,
DOBAND, ANTENT, BPDSK, BPVOL, BPCNO, USEDAN, BPGOT,
KSNCF, KSNCIF, KSNCS, MXANUM
C Channel 0 common
COMMON /CHNZ/ FSTVS3, LREC3, LSTVS3, NREAD3, FSTRD3, KLOCW3,
* KLOCS3, NDECM3, DECM3, BIND3, RECNO3, LENBU3,
* ISCMP3, DOUVIN

* * X »

COMMON /MAPHDR/ CATBLK
C End DSEL.

7.7.6 DUVH.INC

Include DUVH.
If you change this include you
must also change common
/CATHDR/ in DBCON
Include for uv header info

aoaaan

INTEGER NVIS

INTEGER ILOCU, ILOCV, ILOCW, ILOCT, ILOCB, ILOCSU, ILOCFQ,

= JLOCC, JLOCS, JLOCF, JLOCR, JLOCD, JLOCIF, NRPARM, LREC,

* NCOR, INCS, INCF, IKCIF, ICORO, TYPUVD

CHARACTER SOURCE#8, ISORT*2

DOUBLE PRECISION FREQ, RA, DEC

COMMON /UVHDR/ FREQ, RA, DEC, NVIS, ILOCU, ILOCV, ILOCW, ILOCT,
* ILOCB, ILOCSU, ILOCFQ, JLOCC, JLOCS, JLOCF, JLOCR, JLOCD,

* JLOCIF, INCS, INCF, INCIF, ICORO, NRPARM, LREC, NCOR, TYPUVD

COMMON /UVHCHR/ SOURCE, ISORT
C End DUVH.

7.8 Routines
7.8.1 APCONV

" APCONV is a disk based, two dimensional convolution routine. The image to be convolved and the FFT of
the convolving function are passed to APCONYV along with two scratch files. All are specified as pointers to
the arrays in the common (/CFILES/) from INCLUDE DFIL.INC. NOTE: Uses AIPS LUNs 18, 23, 24, 25.

APCONRV (NX, NY, LI, LWi, LW2, LO, LC, FACTOR, JBUFSZ, BUFF1, BUFF2,

*+ BUFF3, SMAX, SMIN, IERR)

Inputs:
NX

NY
LI
LW1

Lw2

Lo
LC

FACTOR

JBUFSZ

Output:
BUFF1
BUFF2
BUFF3
SMAX
SMIN
IERR

7.8.2 CALCOP

I

-

R(*)
R(*)
R(+)

CHAPTER 7. HIGH LEVEL UTILITY ROUTINES

The number of columns in the input image (must be

a power of 2).

The number of rows in the input image.

File number in /CFILES/ of input.

File number in /CFILES/ of work file no. 1
size = (4+HX x NY+2).

File number in /CFILES/ of work file no. 1
size = (4*NX x NY+2).

File number in /CFILES/ of output.

File number in /CFILES/ of FFT of convolving fn.
size = (4*NX x NY+2).

Normalization factor
is multiplied by the
function

Size of BUFF1,2,3 in
large, at least 8192

Working buffer
Working buffer
Working buffer
Maximum value in the
Minimum value in the
Return error code, 0

for convolving function; i.e.
transform of the convolving

AIPS bytes. Should be
words.

output file.
output file.
=> 0K, otherwise error.

Routine to copy selected data from one data file to another optionally applying calibration and editing
information. The input file should have been opened with UVGET. Both files will be closed on return from
CALCOP. Note: UVGET returns the information necessary to catalog the output file. The output file will
be reduced in size if necessary at completion of CALCOP. Makes heavy use of common /CFILES/ from
INCLUDE DFIL.INC.

CALCOP (DISK, CNOSCR, BUFFER, BUFSZ, IRET)

Inputs:
DISK 1
BUFFER R(#)
BUFSZ I
LREC I
NRPARM I
In/out:
CNOSCR I

In/out via common:
1(266)

CATBLK

NVIS
Output:

I

Disk number for cataloged output file.

If .LE. O then the
scratch file.

output file is a /CFILES/

Work buffer for writing.
Size of BUFFER in bytes.
Input via common: (DUVK.INC) -
length of vis. record in R words.

number of R random

parameters.

Catalog slot number for if cataloged file;

(DFIL.INC) scratch
file,

file number if a scratch

IF DISK=CNOSCR=0 then the scratch is created.
On output = Scratch file number if created.

Catalog header block from UVGET
on output with actual no. records

(DUVH.INC) Number of vis. records.

7.8. ROUTINES 7-9

IRET I Error code: 0 => 0K,
> 0 => failed, abort process.

Usage notes:

(1) UVGET with OPCODE=’INIT’ MUST be called before CALCOP to setup
for calibration, editing and data translation. If an output
cataloged file is to be created this should be done after the
call to UVGET.

(2) Uses AIPS LUN 24

7.8.3 DSKFFT

DSKFFT is a disk based, two dimensional FFT. If the FFT all fits in AP memory then the intermediate
result is not written to disk. Input or output images in the sky plane are in the usual form (i.e. center at
the center, X the first axis). Input or output images in the uv plane are transposed (v the first axis) and
the center-at-the-edges convention with the first element of the array the center pixel. NOTE: Uses AIPS
LUNSs 23, 24, 25. Makes use of commons in INCLUDE DFIL.INC.

DSKFFT (NR, XC, IDIR, EERM, LI, LW, LO, JBUFSZ, BUFF1,
* BUFF2, SMAX, SMIN, IERR)

Inputs:

KR I The number of rows in input array (# columns ‘in
output). When HERM is TRUE and IDIR=-1, KR is
twice the number of complex rows in the input file

NC I The number of columns in input array (# rows in
output).

IDIR I 1 for forward (+i) transform, -1 for inverse (-i)
transform.

It HERM = .TRUE. the follwing are recognized:
IDIR=1 keep real part omnly.
IDIR=2 keep amplitudes only.
IDIR=3 keep full complex (half plane)
HERM L When HERM = .FALSE., this routine does a complex to
complex transform.
When HERM = .TRUE. and IDIR = -1, it does a
complex to real transform. When HERM = .TRUE. and
IDIR = 1, it does real to complex.
LI I File number in (DFIL.IHC) of input.
LW I File number in (DFIL.INC) of work file (may equal LI)
LO I File number in (DFIL.INC) of output.
JBUFSZ I Size of BUFF1, BUFF2 in bytes. Should be large
at least 4096 R words.
Output:
BUFF1 R(*) Working buffer
BUFF2 R(*) Working buffer

SMAX R For RERM=.TRUE. the maximum value in output file.
SMIN R For HERM=.TRUE. the minimum value in output file.
IERR I Return error code, 0 => okay, otherwise error.

7.8.4 GRDCOR

GRDCOR normalizes and corrects for the gridding convolution function used in gridding uv data to make
the image. Uses AIPS LUNs 18 and 19

GRDCOR (IFIELD, DOGCOR, DISKI, CNOSCI, DISKO, CNOScCO,
* MAPMAX, MAPMIN, JBUFSZ, BUFF1, BUFF2, BUFF3, IRET)

7-10

Input:
IFIELD

DOGCOR
DISKI

CNOSCI
DISKO
CNOSCO

JBUFSZ

CHAPTER 7. HIGH LEVEL UTILITY ROUTINES

The subfield number, if = 1 the histogram is
zero filled first.

It IFIELD = O the input is assumed to be

a beam.

It TRUE, do gridding convolution correction.
Input file disk number for catalogd files,
.LE. 0 => /CFILES/ scratch file.

Input file catalog slot number or /CFILES/
scratch file number.

Output file disk number for catalogd files,
.LE. 0 => /CFILES/ scratch file.

Output file catalog slot number or /CFILES/
scratch file number.

Size in bytes of buffers. Dimension of
BUFF1,2,3 must be at least 4096 words.

From commons: (Includes DGDS, DMPR, DUVH)

BEMMNAX

CTYPX,CTYPY
XPARM(10)

YPARM(10)
BORES(186)

BOBEM

NGRDAT

R

-]

- o

Sum of the weights used in gridding, used
to normalize images.

Convolving function types for RA and Dec
Convolving function parameters for RA
XPARM(1) = support half width.

Convolving function parameters for Dec.
Block offset desired in output file for
an image, 1 per field. (1 rel.)

Block offset desired in output file for
an beam. (1 rel.)

It FALSE get map size, scaling etc. parms
from the model map cat. header. If TRUE
then the values filled in by GRDAT must
already be filled into the common.

The following must be provided if EGRDAT is .TRUE.

FLDSZ(2,*)

I Dimension of map in RA, Dec (cells)

ICNTRX,ICNTRY(*) I The center pixel in X and Y for each

Output:
MAPMAX
MAPMIN
BUFF1
BUFF2
BUFF3
IRET

7.8.5 MAKMAP

H > >

field.

The maximum value in the resultant image.
The minimum value in the resultant image.
Working buffer
Working buffer
Working buffer
Return error code. 0=>0K, error otherwise.

MAKMAP makes a imageor a dirty beam given a uv data set. The data may either calibrated or uncalibrated
(raw) data and calibration and various selection criteria may be (optionally) applied. Data in an arbitrary
sort order can be processed although only “TB” ordered data can be calibrated or edited.

The weights of the data may (optionally) have the uniform weighting correction made.

The visibilities are convolved onto the grid using the convolving function specified by CTYPX, CTYPY,
XPARM, YPARM. The defaults for these values are filled in by a call to GRDFLT. The gridded data is
phase rotated so that the map center comes out at location ICNTRX, ICNTRY. If requested, a uv taper
is applied to the visibility weights before gridding. If necessary, a three dimension phase reference position

shift is done.

7.8. ROUTINES 7-11

Multiple channels may be gridded onto the same grid; a technique calles bandwidth synthesis. This
bandwidth synthesis (BS) process may use the SCRWRK file. For bandwidth synthesis both the CNOSCO
and SCRWRK files should be big enough for an extra m rows, where m is the half width of the X convolving
function. Zero spacing flux densities are gridded if provided.

The final image will be normalized and (optionally) corrected for the effects of the gridding convolution
function.

The input and output files are specified by either disk number and catalog number or as pointers in
the /CFILES/ common from INCLUDE DFIL.INC. Input uv data file in UV file CNOSCI, DISKI. Output
image file in image file CNOSCO, DISKO and may optionally be created as a scratch file.

Communication is through commons in INCLUDES DSEL.INC, DGDS.INC and DMPR.INC.

Uses buffer UBUFF from the UVGET commons (include DSEL.INC)

MAKMAP (IFIELD, DISKI, CNOSCI, DISKO, CNOSCO, SCRGRD, SCRWRK,
* CHANUV, CHANIM, DOCREA, DOINIT, DOBEAM, DOSEL, DOGCOR,
* JBUFSZ, BUFFER, IRET)

Inputs:

IFIELD I Field number to map, if O then make a beam.

DISKI I Input file disk number for cataloged files,
.LE. 0 => /CFILES/ scratch file.

CNOSCI I Input file catalog slot number or /CFILES/
scratch file number.

DISKO I Output file disk number for cataloged files,
.LE. 0 => /CFILES/ scratch file.

CNOSCO I Output file catalog slot number or /CFILES/
scratch file number. If DOCREA is FALSE and
DISKO=0 and CN0SC0=0 a scratch file is created.

SCRGRD I Grid scratch file number, will be set if the
file is created, (DOINIT=TRUE)

SCRWRK I Work scratch file number, will be set if the
file is created, (DOINIT=TRUE)

CHANUV I Channel number to grid. If DOSEL=TRUE
then this is 1-rel wrt the selected data.

CHARIM I Channel number of output image.

DOCREA L If TRUE, Create/catalog output image file.

DOINIT L If TRUE, initialize scratch files, set defaults
for convolving functions. Should
be TRUE on first call, and FALSE there after.

DOBEAM L If TRUE a grid the beam before gridding the
field. See useage notes.

DOSEL L If true, data need to be reformatted to a

single Stokes’ type. If TRUE, the cataloged
file NAME, CLASS etc should be filled into
UNAME, UCLAS, UDISK, USEQ in common /SELCAL/

DOGCOR L It TRUE, correct image for gridding
convolution correction function.
(Normally .TRUE.)

JBUFSZ I Size in bytes of buffers. Dimension of
BUFFER must be at least 4096 R.

From commons: (Includes DGDS and DMPR)

MFIELD I The number of fields which are going to
to be imaged (excluding any beam).
MUST be filled in.

FLDSZ(2,*) I Dimension of map in RA, Dec (cells) of each
field. MUST be completely filled in before the
DOINIT=TRUE call if the output file (either

7-12 CHAPTER 7. HIGH LEVEL UTILITY ROUTINES

image or scratch) is to be created or zeroed
if the files already exist.

DOUNIF L If TRUE, apply Uniform weighting. Should be
TRUE on only the first call, otherwise it will
be applied again.

NCHAVG I Number of channels to grid together for
bandwidth synthesis.

UNFBOX I Half width of unif. wt. counting box size.

CTYPX,CTYPY 1 Convolving function types for RA and Dec i

XPARM(10) R Convolving function parameters for RA)
XPARM(1) = support half width.

YPARM(10) R Convolving function parameters for Dec.

UVRNG(2) R Minimum and maximum baseline lengths in

1000’s wavelengths. 0’s => all
XSHIFT(16) R Shift in X (after rotation) in asec.
in projected coordinates. 1 per field.

YSHIFT(16) R Shift in Y (after rotation) in asec.
in projected coordinates. 1 per field.

STOKES C*4 Stokes types wanted.
’I’,'Q’,’U’,'V’,’R'.’L’

DOZERO L If true then do zero spacing flux.

ZEROSP(5) R Zero spacing flux, 1=>flux density (Jy)
5 => weight to use.
polarization.

TFLUXG R The total flux density removed from the data,
this will be subtracted from the zero spacing
flux before gridding.

DOTAPE L True if taper requested.

TAPERU,TAPERV R TAPER (to 30%) in u and v (kilolamda)

NXUNF,NYUNF 1 Dimension (cells) of the map in RA and Dec
to be used to set uniform weighting.

(should be min. of FLDSZ)
The following must be provided if DOSEL is .FALSE.:
CATBLK (2586) I Catalog header for uv data input file.
(only used on DOINIT=TRUE call)
The following must be provided if DOCREA is .TRUE. (includes DMPR,

DGDS)
MNAME C*12 Output image name.
MCLASS C*6 Output image class.
(If more than 1 field the last 2 char
are used to encode the field number)
MDISK I Desired image file output disk
MSEQ I Desired image file output sequence no.

The following must be provided if the output file is to be created;
either by setting DOCREA=TRUE or DISKO=CNOSC0=0.

FLDSZ(2,*) I Dimension of map in RA, Dec (cells)
NXBEM,NYBEM I Dimension (cells) of beam.

CELLSG(2) R The cell spacing in X and Y in arcseconds.
XSHIFT(16) R Shift in X (after rotation) in asec.

in projected coordinates. 1 per field.
YSHIFT(16) R Shift in Y (after rotation) in asec.

in projected coordinates. 1 per field.
ICNTRX,ICNTRY(*) I The center pixel in X and Y for each

field. O values cause the default.

7.8. ROUTINES

The following must be provided if DOCREA is FALSE and output
files already exist. (Includes DGDS).

CCDISK(16)

CCCNO(18)

I

I

Disk numbers of the output images.
(Must be zeroed if not filled in.)
Catalog slot numbers of output images.
(Must be zeroed if not filled in.)

The following must be provided if DOSEL is .TRUE.
(Includes DSEL.INC)
Cx12 AIPS name of input file.

AIPS class of input file.

AIPS disk of input file.

AIPS sequence of input file.

FLAG file version number, if .le. O then
NO flagging is applied.

Name of desired source.

Start day, hour, min, sec, end day, hour,
min,sec. 0’8 => all

Stokes types wanted.
’I’,’Q’,’U’,'V’,’R',’L’

First channel number selected, 1 rel. to first
channel in data base. 0 => all

Last channel selected. 0=>all

First IF number selected, 1 rel. to first
IF in data base. 0 => all

Last IF selected. 0=>all

If true apply calibration, else not.

The following must be provided if DOCAL is TRUE.

UNAME
UCLAS C*6
UDISK R
USEQ R
FGVER I
SOURCS(1) C*16
TIMRNG(8) R
STOKES C*4
BCNAN I
ECNAN I
BIF I
EIF I
DOCAL L
ANTENS(50) I
GAUSE I
Output:
DISKI I
CNOSCI I
DISKO I
CNOSCO I
SCRGRD I
SCRWRK I
DOSEL L
DOBEAM L
DOINIT L
BUFFER(*) R
IRET I
Output in Common:
DOUNIF L
UBUFSZ I
MNAME C*12
MCLASS C*6
MDISK I

List of antennas selected, 0=>all,
any negative => all except those specified
GAIN (CL or SN) file version number to use.

UV data file disk if data reformatted.
Reformatted uv data scratch file number

to be used in subsequent calls.

Output image file disk number if output file.
created and/or cataloged (DOCREA=TRUE

or input DISKO=0 and CNOSCO0=0).

Output image file catalog slot number

or scratch file number if output file created.
Grid scratch file number, will be set if the
file is created, (DOINIT=TRUE)

Work scratch file number, will be set if the
file is created, (DOINIT=TRUE)

Set to FALSE if data reformatted.

Set to FALSE.

Set to FALSE.

Working buffer

Return er%or code. 0=>0K, error otherwise.

Set to FALSE if uniform weighting applied.
Buffer size for UBUFF (UVGET buffer)
Output image name. (defaults applied)
Output image class (defaults applied)
Desired image file output disk

7-14

CHAPTER 7. HIGH LEVEL UTILITY ROUTINES

(defaults applied)

MSEQ I Desired image file output sequence no.
(defaults applied)
FLDMAX(*) R Maximum pixel value in field.
FLDMIN(*) R Minimum pixel value in field.
The following are filled in if a output file is created:
CCDISK(16) I Disk numbers of the output images.
cccyo(ie) I Catalog slot numbers of output images.

Useage Notes:

1) The input uvdata file is, with one exception, assumed to be
accurately described by the contents of CATR and the common
/UVHDR/ (include DUVH). The exception is that the u, v and
w may refer to a different frequency. The reference frequency for
the u,v and v terms is taken from the input CATBLK in the DOINIT
TRUE call unless the data is reformatted (DOSEL=TRUE).

In this latter case this frequency is obtained from UVGET call.

If DOSEL = TRUE the input value of CATBLK is ignored.

2) Information about the output image is obtained from the
catalog header for the relevant file. If MAKMAP makes the
output file this information is filled in. If MAKMAP does not
make the output image file then this information must be filled
in before hand. Routine IMCREA will help do this. Note: even
scratch files are cataloged and thus have a catalog header.

It MAKMAP does not create the output files, CCDISK(IFIELD) and

CCCHO(IFIELD) should give their disk and catalog slot number
before the call to MAKMAP.

3) only one polarization can be processed and the input data
to the gridding routine is assumed to be in the desired Stokes’
type (i.e. I, Q, U, V etc.).

If DOSEL = TRUE the input data will be selected, calibrated
and reformatted as specified in common (include DSEL).

Only Stokes’ types I,Q,U,V,R,L should be used.

Multiple channels may be gridded together a la baundwidth
synthesis by specifying NCHAVG > 1. One channel of several
channels may be gridded specified by CHANUV.

4) If DOSEL=FALSE on the first call (i.e. the data is not
reformatted), the random parameters in the data should include,
in order, u, v, w, weight (optional), time (optional) and baseline
(optional). While the last are optional and not used, the last
words of random parameters are used as work space and, if they
are missing, u, v, and v may be clobbered. The weights are
required but may be passed either as random parameters or as
part of the regular data array, CATR should tell which.

It DOSEL=TRUE is used these conditions will be satisfied.

6) The necessary image normalization constant for proper
normalization of the FFTed image is produced only by gridding the
beam. If a beam is to be made, it should be done first; in this
case DOBEAM should be FALSE in all calls. If a beam is not
desired then the first call to MAKMAP should have DOBEAM TRUE and
FALSE on subsequent calls. MNote MAKMAP sets DOBEAM to FALSE.

6) Much of the control information used by MAKMAP is passed to and
stored in commons. The calling routine should have the following

includes:
DHDR.INC, DUVH.INC, DFIL.INC, DMPR.INC, DGDS.INC, DSEL.INC

7.8. ROUTINES

NOTE: care should be taken that the contents of these commons
not be clobbered by overlaying.

7) If calibration is applied then up to 8 map and 3 non map files
will be open at once; this should be reflected in the call to
ZDCHIN and the dimension of FTAB in the main routine of the

calling program.

MAKMAP may use AIPS LUNs 16, 17, 18, 19,

20, 21, 22, 23, 24, 25, 28, 29, 30.

7.8.6 UVGET

Subroutine to obtain data from a data base with optional application of flaging and/or calibration infor-
mation. Reads data with a large variety of selection criteria and will reformat the data as necessary. Does
many of the startup operations, finds uv data file etc, reads CATBLK and updates the DUVH.INC com-
mons to reflect the output rather than input data. Most of the input to UVGET is through the commons
in DSEL.INC; the initial (default) values of these may be set using routine SELINI.

UVGET (OPCODE, RPARM, VIS, IERR)

Input:
OPCODE

Cx4

Opcode:

*INIT’ => Open files Initialize I/O0.
’READ’ => Read next specified record.
’CLOS’ => Close files.

Inputs via common /SELCAL/ (Include DSEL.INC)

UNAME
UCLAS
UDISK
USEQ
SQURCS

TIMRNG
UVREG

STOKES

BCHAN

ECHAN
BIF

EIF
DOCAL
DOPOL

DOSMTN
DOACOR
DOWTCL
DOFQSL
FRQSEL
SELBAR
SELFRQ
DOBAXND
BPNAME

C*12
Cx8

R

R
C(30)=186

R(8)
R(2)

C+4

[o

HOXMHIDCCDOCE

Cx48

AIPS name of input file.

AIPS class of input file.

AIPS disk of input file.

AIPS sequence of input file.

Names of up to 30 sources, *=>all

First character of name ’~’ => all except
those specified.

Start day, hour, min, sec, end day, hour,
min, sec. 0’s => all

Minimum and maximum baseline lengths in
1000’s wavelengths. 0’s => all

Stokes types wanted.
’I',’Q’,’U’,’V’,’R’,’L’,’IQU’,’IQUV’

’ ’=> Leave data in same form as in input.
First channel number selected, 1 rel. to first
channel in data base. 0 => all

Last channel selected. 0=>all

First IF number selected, 1 rel. to first
IF in data base. 0 => all

Last IF selected. 0=>all

If true apply calibration, else not.

If true then correct for feed polarization
based on antenna file info.

True if smoothing requested.

True if autocorrelations are requested.
True if weight calibration wanted.

True if FREQSEL random parm present (false)
Default FQ table entry to select (-1)
Bandwidth (Hz) to select (-1.0)

Frequency (Hz) to select (-1.0)

>0 if bandpass calibration. (-1)

Name of scratch file set up for BP’s.

7-15

DOSMTH L True if smoothing requested. (false)

SMOOTH R(3) Smoothing parameters (0.0s)

DXTIME R Integration time (days). Used when applying
delay corrections to correct for delay error.

ANTENS I(80) List of antennas selected, 0=>all,
any negative => all except those specified

SUBARR I Subarray desired, 0=>all

FGVER I FLAG file version number, if < O then
NO flagging is applied. O => use highest
numbered table.

CLUSE I Cal (CL or SN) file version number to apply.

BLVER I BL Table to apply .le. O => none

BPVER I BP table to apply .le. O => none

Output:

RPARM R(*) Random parameter array of datum.

VIS R(3,%) Regular portion of visibility data.

IERR I Error code: 0 => OK,

=1 => end of data
>0 => failed, abort process.
Output in commons in DSEL.INC: The default values will be filled in
if null values were specified.
UVFREQ D Frequency corresponding to u,v,w
CATBLK I(256) Catalog header block, describes the output
data rather than input.
NPRMIN I Number or random parameters in the input data.
TRANSL L If true translate data to requested Stokes’
CNTREC I(2,3) Record counts:
(1&2,1) Previously flagged (partly, fully)
(1£2,2) Flagged due to gains (part, full)
(122,3) Good selected (part, full)

ISCMP L True if input data is compressed.

KLOCSU I O-rel random parm. pointer for source in input
file.

KLOCFQ I O-rel random parm. pointer for FQ id in input
file.

KLOCIF I O-rel random parm. pointer for IF in input
file.

KLOCFY I O-rel random parm. pointer for freq. in input
file.

KLOCNT I O-rel random parm. pointer for weight in
input file.

KLocsc 1 O-rel random parm. pointer for scale in
input file.

Usage notes:

1) Include DSEL.INC should be declared in the main program or at a
level that they will not be overlaid while UVGET is in use (ie.
between the ’INIT’ and ’CLOS’ calls). SELINI can be used to
initialize the control variables in these commons.

2) If no sorting is done UVGET uses AIPS luns 265, 28, 29 and 30

(1 map, 3 non map files). If sorting is done (usually possible)
then 8 map and 3 non map files are used (mostly on OPCODE=’INIT’)
and LUNs 16,17,18,19,20,21,22,23,24,25, 28,29,30,40,42,43,44,45.

3) OPCODE = ’INIT’ does the following:

- The catalgue data file is located and the catalog header

CHAPTER 7. HIGH LEVEL UTILITY ROUTINES

7.8. ROUTINES 7-17

record is read.
~ The source file (if any) is read.
- The index file (if any) is initialized.
- The flag file (if any) is initialized and sorted if necessary
(Must be in time order).
- The gain table (it any) is initialized.
- The bandpass table (if any) is initialized
- The smoothing convolution table (if any) is initialized
- I/0 to the input file is initialized.
The following LUNs may be used but will be closed on
return: 16, 17, 18, 19, 20, 21, 22, 23, 24
The following LUNs may be used but will be open on
return: 25 (uv data), 28 (NX table), 29 (CL or SN table),
30 (FG table), 40 (BL table), 41 (BP table).
NO data are returned from this call.

4) OPCODE = ’READ’ reads one visibility record properly selected,
transformed (e.g. I pol.), calibrated and edited as requested
in the call with OPCODE = ’INIT’

5) OPCODE = ’CLOS’ closes all files used by UVGET which are still
open. No data are returned.

6) If DOCAL is true then the common array CNTREC will contain the
counts of records which are good or fully or partly flagged
both previously and due to flagged gain solutions.

7) Only one subarray can be calibrated at a time if DOPOL is true.
This is because the polarization information for only one
subarray is kept at a time.

7.8.7 UVMDIV

UVMDIV divides model visibilities derived from CLEAN or Gaussian components or images into a uv data
set. The weights of the data returned will be the input values multiplied by the model amplitude.

A variety of model computation methods are available; if a single pass through VISDFT, the DFT routine,
is not sufficient then the data is copied to a scratch file which has space for a second copy of the data, the
model values are computed and summed in these locations and finally then model is divided into the data
and written to the output file.

Extensive use is made of commons to communicate with UVMDIV, in particular /MAPDES/ (include
DGDS.INC) contains most of the critical information about the model components files or images to be
used. Common /UVHDR/ (DUVH.INC filled in by UVPGET) is presumed to describe the uv data files.

If the data is not sorted ’X*’ and MODEL=1 then UVMSUB will use the DFT irregardless of the value
of METHOD.

Also fills in frequency table (NCHANG, FREQG) in INCLUDE DGDS.INC

UVMDIV (DISKI, CNOSCI, DISKO, CNOSCO, MODEL, METHOD, DOMSG, CHANEL,
= NCHAN, CATBLK, JBUFSZ, FREQID, BUFF1, BUFF2, BUFF3, IRET)

Inputs:

DISKI I Input disk number. if .LE. O then input is a
scratch file.

CNOSCI I Input file catalog slot number or /CFILES/
scratch file number.

DISKO I Output disk number. if .LE. O then output is a
scratch file.

CROSCO I Output file catalog slot number or /CFILES/

scratch file number. If .LE. O then one of the
internal scratch files will be used.
MODEL I 1=> clean components, 2=>image.

7-18
METHOD I
DOMSG L
CNANEL I
NCHAN I
CATBLK(256)1
JBUFSZ I
FREQID I
BUFF1,2,3 R

CHAPTER 7. HIGH LEVEL UTILITY ROUTINES

1=>gridded, -1=>DFT, O=>chose.

If true give percent done messages for DFT.

First uv data channel to subtract.

Number of frequency channels to subtract.

Uv data catalog header record.

Size of BUFF1,2,3 in bytes, must be at least 4096
words.

Freq ID number, if it exists.

Work buffers.

Inputs from COMMOK /MAPDES/:

MFIELD I Number of fields

NSUBG(#) I Number of components already sub.

NCLHG(*) I Number of components per field.

CCDISK(#) I Disk numbers for CC files

CCCNO(*) I Catalog slot numbers for CC files.

CCVER(*) I CC file version number for each field.

FACGRD R Value to multiply clean component fluxes

by before subtraction (negative for sum).

SCTYPE C#2 Scratch file type to create. (eg. ’SC’)

¥ONEG L Stop reading comps. from a file past the first

negative component. (DFT modeling ONLY)

DOPTHD L Use the point model specified by PTFLX, PTRAOF,

PTDCOF (DFT modeling ONLY)
PTFLX R Point model flux demsity (Jy) (I pol. only)
PTRAOF R -Point model RA offset from uv phase center
(asec)
PTDCOF R Point model Dec. offset from uv phase center
Input from COMMON /UVHDR/:

LREC I Length of visibility record.

NVIS I Number of visibility records.

NRPARM I "Random" parameters before data, can be used

to skip observed values when computing model.
Output:

CNOSCO I Output file catalog slot number or /CFILES/
scratch file number. Value returned if not
specified in call.

IRET I Return error code. 0=>0K, otherwise failed.

7.8.8 UVMSUB

UVMSUB subtracts a CLEAN or Gaussian model or an image from a set of uv data. Extensive use is
made of commons to communicate with UVMSUB, in particular /MAPDES/ (include DGDS.INC) contains
most of the critical information about the model components files or images to be subtracted. Common
/UVHDR/ (filled in by UVPGET) is presumed to describe the uv data files.

If the data is not sorted ’X*’ and MODEL=1 then UVMSUB will use the DFT irregardless of the value

of METHOD.

Also fills in frequency table (NCHANG, FREQG) in INCLUDE DGDS.INC

UVMSUB (DISKI, CNOSCI, DISKO, CNOSCO, MODEL, METHOD, CHANEL, NCHAN,
* DOSUM, DOMSG, CATBLK, JBUFSZ, FREQID, BUFF1i, BUFF2, BUFF3,

* IRET)
Inputs:
DISKI I
CHOSCI I

Input disk number. if .LE. O then input is a
scratch file.
Input file catalog slot number or /CFILES/

7.8. ROUTINES

DISKO I
CNOSCO I

MODEL
METHOD
CHANEL
NCHAX
DOSUM

o H -

DOMSG L
CATBLK(256)1I
JBUFSZ I

FREQID I

scratch file number.

Output disk number. if .LE. O then output is a
scratch file.

Output file catalog slot number or /CFILES/
scratch file number.

1=> clean components, 2=>image.

1=>gridded, -1=>DFT, 0=>chose.

First uv data channel to subtract.

Number of frequency channels to subtract.

If true then sum component fluxes in FLUXG,
TFLUXG.

If true give percent done messages for DFT.
Uv data catalog header record.
Size of BUFF1,2,3 in bytes, must be at least 4096
words.
Freq ID number, if it exists.

Inputs from COMMON /MAPDES/:

MFIELD
NSUBG(*)
NCLNG(*)
CCDISK(*)
CCCNO(*)
CCVER(*)
FACGRD

NONEG
DOPTMD

PTFLX
PTRAOF

PTDCOF

OHHHHHH

R
R

R

Number of fields

Number of components already sub.

Number of components per field.

Disk numbers for CC files

Catalog slot numbers for CC files.

CC file version number for each field.

Value to multiply clean component fluxes

by before subtraction (negative for sum).
Stop reading comps. from a file past the first
negative component. (DFT modeling OKLY)

Use the point model specified by PTFLX, PTRAOF,
PTDCOF (DFT modeling ONLY)

Point model flux density (Jy) (I pol. only)
Point model RA offset from uv phase center
(asec)

Point model Dec. offset from uv phase center

Input from COMMON /UVHDR/ (DUVH.INC):

LREC
¥ViSs
NRPARM

BUFF1,2,3 R
Output:
IRET I

I
I
I

Length of visibility record.

Number of visibility records.

"Random" parameters before data, can be used

to skip observed values when computing model.
Work buffers.

Return error code. 0=>0K, otherwise failed.

7-19

7-20 CHAPTER 7. HIGH LEVEL UTILITY ROUTINES

Chapter 8

WaWa (“Easy”) I/0

8.1 Overview

There is a fairrly coherent set of routines which attempt to hide many of the nasty details mentioned in the
previous chapters. They perform most catalog file operations for the programmer and hide the details of
calls to COMOFF, MINIT, MDISK, ZCREAT, et al. In many cases these cost memory and/or speed, but
for computation-bound algorithms these are probably not important.

Any task which uses the WaWa package and creates scratch files should include the /CFILES/ common
given in the INCLUDE DFIL.INC. The values of IBAD should be filled in using the contents of AIPS adverb
BADDISK. This allows the scratch file creation routine to avoid putting files on user selectable disks.

8.2 Salient Features of the WaWa I/0O package

1. Each main task calls a single setup routine; a maximum of 5 simultaneously open image files is allowed.
2. All the parameters needed to specify a cataloged file are gathered into a single array, called a namestring.

3. The WaWa package hides the interface between the parameter passing subroutines (e.g., GTPARM)
and the I/O routines.

4. Many subroutine calls are combined so that e.g., ZPHFIL, CATDIR, CATIO, and MINIT, more or
less disappear from sight.

5. A general clean-up subroutine for closing files and destroying scratch files is provided.

6. “Hidden” buffers large enough to hold a 2048-point image row are provided. These make double
buffered I/O look more like FORTRAN I/O on the large mainframes.

8.3 Namestrings

In order to reduce the many arguments required for the fundamental AIPS I/O routines needed to specify the
desired file the WaWa package uses a namestring. With a namestring it is possible to refer to any cataloged
file by a character string. The name string used for WAWA [/0 is a CHARACTER string of length 36 of

the following form:

1:12 C*12 Name

13:18 C*68 Class

19:20 C+*2 Physical type
21:27 I7 Sequence number
28:29 I2 Disk number
30:36 17 User id number

8.5. THINGS WAWA CAN’T DO WELL OR AT ALL 8-3

¢ MAPMAX - Find MAX & MIN of a map and enter into catalog.
e FILNUM - Find WaWa pointers to open file (used for history).

e GETHDR - Retrieve catalog header for an open cataloged file.

SAVHDR - Save header in catalog for an open cataloged file.

HDRINF - Retrieve specified items from map header.
e TSKBEG - Combination of IOSET and some task startup chores.

e TSKEND - Some task cleanup chores.

8.5 Things WaWa Can’t Do Well or At All

There are several applications for which the WaWa routines are inadequate. The non-map I/O routines are
much inferior to the other AIPS non-map I/O routines. Other applications, such as uv data handling and
plotting, are not provided for at all. History files may be written in tasks using WaWa I/O, but it requires
digging in the the WaWa commons. The following sections suggest possible courses of action.

8.5.1 Non-map files

The WaWa package is not overly useful for non-map I/O at the moment. The user will want to consult the
chapter on disk I/O and the routines TABINI and TABIO for more useful software.

8.5.2 UV data files
No help here. See the chapter on disk I/O.

8.5.3 Plotting

The WaWa package has no plotting capability. See the chapter in this manual on plotting.

8.5.4 History

The WaWa package has no capacity to copy or write into history files. See the chapter on tasks and
in particular the routines HISCOP and HIADD. In addition, you will need to determine the catalog slot
numbers of the relevant files from the /WAWAIO/ common variable FILTAB(POCAT,) (file must be open
to do so0). Use FILNUM. The task HGEOM provides a useful example of history writing within the WaWA
I/O system.

8.5.5 More than 5 I/O Streams at a Time

If a task may need to have more than 5 map or non-map I/O streams open at the same time, then serious
restructuring of the WaWa commons is needed. You are better off ignoring WaWaI/O and using the standard
I/0 described in the chapter on disk I/O.

8.5.6 I/O to Tapes
No help here. See the chapter on device I/0O.

84 CHAPTER 8. WAWA (“EASY”) I/O

8.6 Additional goodies and “helpful” hints

A number of features have been added to the WaWa package to increase it usefulness. These will be discussed
in the following sections. Also on occasion the programmer will have to find some of the things the WaWa
package has hidden; a discussion of where WaWa hides useful information is also given in the following
sections.

8.6.1 Use of LUNSs

The LUN used does convey meaning. Legal values range from 9 through 30. However, values 16 through 25
convey an implication that the file is a map file, value 9 is reserved for the TV, and values 10 through 15
may get you into trouble. Use 26-30 for non-maps.

8.6.2 WaWa commons

The WaWa package hides many things in several commons. Frequently the programmer needs to know the
contents of these commons. The following sections describe the contents of the commons.

Information common

The primary common in the WaWa package is obtained by the INCLUDE DITB.INC.. The text of this and
other relevant includes are shown at the end of this chapter. The name of the primary WaWa I/O common
is /JWAWAIO/ and its contents are as follows:

WRIT C*4¢ WRIT’ I/0 control strings

REED C+x4 ’READ’

CLWR C+4 ’CLWR’ Catalog control strings
CLRD C+*4 ’CLRD’

REST C+x4 ’REST’

OPENX C*x4 'OPEN’

CLOS C*4 ’CLOS’

SRCH C+4 ’SRCH’

INFO C+4 INFO’

UPDT C+4 ’UPDT’

FINI C*4 FINI’ I/0 control string

CSTA C+4 ’CSTA’ Catalog control string
INDEF R *INDE’ Blanked floating point pixel
SUBNAM Cx68(8) Subroutine names: CATDIR, CATIO, MIKIT,

MDISK, ZCLOSE, ZCREAT, ZDESTR, ZOPEN

LINT I Number integer values in one I0 buffer

LREAL I Number real values in one IO buffer

NFIL I Number simultaneous open map files

EFIL I Size of FILTAB (5 + NFIL) - number of
simultaneous files of all types

QUACK I 0 => restart AIPS at end, 1 => already done

POLUN I FILTAB pointer for LUN value (1)

POFIN I FILTAB pointer for I/0 table pointer value
(2)

POVOL I FILTAB pointer for disk number value (3)

POCAT I FILTAB pointer for cat location value (4)

POIOP I FILTAB pointer for opcode number (5):

values 1 => write, 2=> read, <0 => new win

8.6. ADDITIONAL GOODIES AND “HELPFUL” HINTS

POASS I
POBPX I
PODIM I
PONAX 1
POBLC I
POTRC I
PODEP I
POBL I

FILTAB(38,EFIL) I

FILTAB pointer for
(8): 1 => assoc, 0
FILTAB pointer for
FILTAB pointer for
FILTAB pointer for
axes (9)

FILTAB pointer for
FILTAB pointer for
FILTAB pointer for

is it associated file
=> main file
bytes/pixel code (7)
axes (8)

points on each of 7

Bottom left corner (16)
Top right corner (23)
current depth in I/0 on

axes 2 - 7 (30), Area (36) used for integer
map (input) blanking code.

FILTAB pointer for

block offset start I/0

in the current plane (37)

Table to hold all the values pointed

at by the PO...

the cat number

pointers above: (e.g.,
is = FILTAB (POCAT, n)

where n is found by finding that

FILTAB (POLUN,
(Only for open

Catalog and Buffer Commons

n) which = desired LUN
files!!)

8-5

There are 2 other commons which are used heavily. They are /MAPHDR/ which is a work area for map
headers containing the equivalenced arrays CATBLK, CATH, CATR, and CATD. The contents of this
common are changed frequently by the basic WaWa I/O routines, but it can be used, for example, to get the
catalog header record after a call to FILOPN or OPENCEF. This common may be obtained by the include

DCAT.INC. The other common, called /WAWABU/ from INCLUDE DBUF.INC, contains:

RMAX R(10) 1-5 used by MAPIO for scale factor
RMIN R(10) 1-5 used by MAPIO for offset
WBUFF I(266) scratch buffer for catalog access
RBUF R(*) I/0 buffers for map I/0.

The areas RMAX and RMIN for subscripts 6 through 10 could be used by a programmer, for example, to
keep track of max/min. If no map file is currently open, RBUF is a large and useful scratch area of core.

Declaration of Commons

If a WaWa I/O task (or any other task for that matter) is to be overlaid on some computers, then all
commons must be declared in the main program. For the WaWa system, this may be done by the following
list of includes:

INCLUDE ’INCS:
INCLUDE ’INCS:
INCLUDE ’INCS:
INCLUDE ’INCS:
INCLUDE ’INCS:
INCLUDE ’INCS:
INCLUDE ’INCS:

DBUF.INC’
DITB.INC’ WaWa
DDCH.INC’
DHDR.INC’
DMSG.INC’
DCAT.INC’
DFIL.INC’

WaWa buffer/table sizes

I/0 common

System parms
Header pointers
Messages, POPS #,
Catalog header
Gives BADDISK

8-6 CHAPTER 8. WAWA (“EASY”) I/O

8.6.3 Error return codes

A uniform system of error code numbers has been adopted in the WaWa I/O package. These codes are
consistent with the error codes used by many I/O routines, but not with the other error codes in the
multitudinous collection of AIPS routines. They are:

v

File not open

Input parameter error

1/0 error ("other")

End of file (hardware generated, see 9)
Beginning of medium

End of medium

buffer too small

Illegal data type

Logical end of file (software generated, not hardware)
Catalog operation error

Catalog status error

Map not in catalog

EXT file not in catalog

No room in header/catalog

Illegal window specification

Illegal window specification for writing a file
Create: file already exists

Create: volume unavailable

Create: space unavailable

Create: "other"

Destroy: "other"

Open: "other"

v Vv

N [¥ [V] - -

3 » - » (=]

onoumon o ononononnonnnnnnnnnNnn
VVVVVVVVVVVVVVVYVVVY

8.7 INCLUDEs

There are several types of INCLUDE file which are distinguished by the first character of their name.
Different INCLUDE file types contain different types of Fortran declaration statements as described in the
following list.

o Pxxx.INC. These INCLUDE files contain declarations for parameters and the PARAMETER state-
ments.

e Dxxx.INC. These INCLUDE files contain Fortran type (with dimension) declarations, COMMON and
EQUIVALENCE statments.

o Vxxx.INC. These contain Fortran DATA statements.

e Zxxx.INC. These INCLUDE files contain declarations which may change from one computer or instal-
lation to another.

8.7.1 DBUF.INC

C Include DBUF.
REAL RBUF(20480), RMAX(10), RMIN(10)
INTEGER WBUFF(2588), IBUF(1)
COMMON /WAWABU/ RMAX, RMIN, WBUFF, RBUF
EQUIVALENCE (RBUF(1), IBUF(1))
c End DBUF.

8.8. DETAILED DESCRIPTIONS OF THE SUBROUTINES 8-7

8.7.2 DCAT.INC

c Include DCAT.
c catalog header common

INTEGER CATBLK(256)

REAL CATR(256)

HOLLERITH CATH(266)

DOUBLE PRECISION CATD(128)

COMMON /MAPHDR/ CATBLK

EQUIVALENCE (CATBLK, CATR, CATH, CATD)
C End DCAT.

8.7.3 DFIL.INC

C Include DFIL.
C AIPS system catalog and scratch

INTEGER NSCR, SCRVOL(128), SCRCKO(128), IBAD(10), LUNS(10),

= NCFILE, FVOL(128), FCNO(128), FRW(128), CCNO

LOGICAL RQUICK

COMMON /CFILES/ RQUICK, NSCR, SCRVOL, SCRCNO, NCFILE, FVOL, FCNO,

= FRW, CCNO, IBAD, LUNS
c End DFIL.

8.7.4 DITB.INC

Cc Include DITB.
c Vawa I/0 common

REAL INDEF

CHARACTER WRIT*4, REED*4, CLWR#*4, CLRD*4, REST*4, OPEN*4, CLOS=*4,

* SRCH#4, INFO*4, UPDT*4, FINI#*4, CSTA*4, SUBNKAM(8)=*6

INTEGER LINT, LREAL, KFIL, EFIL, QUACK,

* POLUN, POFIN, POVOL, POCAT, POIOP, POASS, POBPX,

* PODIM, PONAX, POBLC, POTRC, PODEP, POBL,.FILTAB(38,10)

COMMON /WAWCHR/ WRIT, REED, CLWR, CLRD, REST, OPEN, CLOS,

* SRCH, INFO, UPDT, FINI, CSTA, SUBNAM

COMMON /WAWAIO/ INDEF, LIKT, LREAL, NFIL, EFIL, QUACK,

* POLUN, POFIR, POVOL, POCAT, POIOP, POASS, POBPX,

* PODIM, PONAX, POBLC, POTRC, PODEP, POBL, FILTAB
C End DITB.

8.8 Detailed Descriptions of the Subroutines

8.8.1 A2WAWA

WaWa IO system: Packs Wawa-IO Namestring having format A12, A6, A2, 17, 12, I7 for NAME, CLASS,
PTYPE, SEQ, VOL, USID from its component parts

A2WAWA (NAME, CLASS, SEQ, PTYPE, VOL, USID, NAMEST)
Inputs:

8-8 CHAPTER 8. WAWA (“EASY”) I/O

NAME Cx12 file name
CLASS C=6 file class (6 chars)

SEQ I file sequence number
PTYPE C*2 file physical type (2 chars)
VOL I file disk number
USID I user number
Dutut:

NAMEST C+*36 VWaWa Namestring

8.8.2 CLENUP
WaWa IO system: Close all files opened with FILOPN. Destroy scratch files.

CLENUP
no arguments

8.8.3 FILCLS

WaWa IO system: Close a file opened by FILOPN, taking care of catalog bookkeeping and flush last write
buffers if any.

FILCLS (LUN)
Inputs:
LUx I Logical unit no. of file to close

8.8.4 FILCR

WaWa IO system: Create an associated or scratch non-map file

FILCR (NAMS, TYPE, NBLOCK, VER, ERROR)
Inputs:
NANMS C+36 NAMESTRING specifying catalog block to which
file is associated: NAME,CLASS,CATTYPE,SEQ,VOL,
USID. NAME,CLASS,USID ignored for scratch files.
TYPE C*2 Associated file type for non-scratch files
Ignored for scratch files

In/out:
NBLOCK I Number of 512-type blocks in file: in requested,
out actual
Outputs:
VER I Version number of file created
ERROR I Error code: 0 => ok

10 => catalog error

12 => map not in catalog

14 => no room for another ext. type

21 => ZCREAT: file already exists

22 => ZCREAT: volume unavailable

23 => Disk space unavailable

24 => Other create errors

Common: /MAPHDR/ modfified extensively for scratch file create
a little for associated file

8.8. DETAILED DESCRIPTIONS OF THE SUBROUTINES 8-9

8.8.5 FILDES
WaWa IO system: Destroy the file specified by NAMS, TYPE, VER

FILDES (NAMS, ASSOC, TYPE, VER, ERROR)

Inputs:
NAMS C+36 NAMESTRING specifying catalog block to which
file is associated: NAME,CLASS,CATTYPE,SEQ,VOL,
USID. NAME,CLASS,USID ignored for scratch files.
ASSOC L File is an associated file,i.e. not cataloged
ASSOC will be taken as FALSE if NAMS(8)=’SCxx’
TYPE C+2 Associated file type; ignored if ASSOC is false
VER I Associated file version; ignored if ASSOC is fal
Outputs:
ERROR I Error code: 0 => o.k.

10 => catalog error

11 => map too busy to destroy

12 => map not found in catalog

13 => extension file not in catalog
25 => other destroy errors

8.8.6 FILIO

WaWa IO system: Read or Write a single record from/to a non-map file which has been opened with FILOPN
(256 integers). Adds a '"READ’ status to catlg on first call.

FILIO (OP, LUN, REC, DATA, ERROR)

Inputs:

op Cx4 READ or WRIT

LUN I File Logical Unit Number

REC I Which record out of file (i-relative)
In/Out:

DATA(266) I Data record to input or output
Output:

ERROR I Error return from ZFI3

0 => o.Xk.

1 => file not open

2 => input error e.g. file not opened for
desired operation

i/o error

end of file

beginning of medium

end of medium (from IO system)
catalog error

Hn unnon
VVVVY

8.8.7 FILNUM
WaWa IO system: find the FILTAB entry for a file

FILNUM (LUN, IFIL, ERROR)
Inputs:
LUN I Logical unit number of file

Outputs:
IFIL I Entry number (2nd subscript to FILTAB)

8-10 CHAPTER 8. WAWA (“EASY”) I/0O
ERROR I Error code: 0 => ok, 1 => file not open
8.8.8 FILOPN

WaWa IO system: Open the file specified by NAMS and associate it with Logical Unit number LUN.
FILOPX (LUN, NAMS, ASSOC, TYPE, VER, ERROR)

Inputs:
LUN I Logical Unit Number
ASSOC L Fils is an associated file,i.e. not cataloged
ASSOC will be taken as FALSE if NAMS(8)=’SCxx’
TYPE C%2 Associated file type; ignored if ASSOC is false
VER I Associated file version; ignored if ASSOC is fal
In/Cut:
NAMS C*36 NAMESTRING specifying catalog block to which
file is associated: NAME,CLASS,CATTYPE,SEQ,VOL,
USID. NAME,CLASS,USID ignored for scratch files.
Outputs:

ERROR I Error code: 0 => o.k.
2 => input error: bad or in use LUX
10 => catalog error
12 => map not found
13 => extension file not in catalog
14 => no room in FILTAB
22 => volume not available
26 => open error

8.8.9 GETHDR
WaWa IO system: Retrieve the catalog header block for a file that is already open (via FILOPN or OPENCF)
GETHDR (LUN, CAT, ERROR)

Inputs:
Lun I Logical Unit No. of file
Outputs:
CAT(258) I Returned Header block
ERROR I Error code: 0 => ok

1 => file not open
10 => catlg error

8.8.10 HDRINF

WaWa IO system: Return a number of items from the header block of an open, cataloged file.

HDRINF (LUN, WTYPE, SITEM, NITEM, OUTPUT, ERROR)

Inputs:
LUN I Logical Unit No. of file
VTYPE I Data type: 1 = I, 2=R 3 =D 6 = C*8
SITEM I Index # of ist item wanted, indexed in a

system appropriate to WTYPE (R for C#*8)

NITEM I Number of items requested

Outputs:
OUTPUT(*) 77?7 Array into which items go

ERROR I Error code: 0 => ok

8.8. DETAILED DESCRIPTIONS OF THE SUBROUTINES 8-11

1 => file not open
2 => nonsense input parms
10 => catlg read error
Common /MAPHDR/ receives the header read from catlg file

8.8.11 H2WAWA

WaWa IO system: packs AIPS adverb values (Holleriths, floating points) into a WaWa IO Namestring having
format A12, A6, A2, I7, 12, I7 for NAME, CLASS, PTYPE, SEQ, VOL, USID

H2WAWA (NAME, CLASS, SEQ, PTYPE, VOL, USID, NAMEST)
Inputs:

NAME H(3) file name

CLASS H(2) file class (6 chars)

SEQ R file sequence number

PTYPE H tfile physical type (2 chars)
VOL R file disk number

USID R user number

Output:
NAMEST C*38 WaWa Namestring

8.8.12 IOSET

This routine initializes the I/O tables; calls ZDCHIN; allocates buffer space for map I/O to 5 files adequate
for 2048 real or 1024 complex pixels per line.

IOSET

no calling arguments

8.8.13 MAPCR

WaWa IO system: Create and catalog a map whose catalog description is defined by the namestring NAMS,
and whose size is specified by the KIDIM and KINAX parameters in the Header.

MAPCR (ONAMS, NAMS, HDR, ERROR)
Inputs:

ONAMS C=*36 Namestring of related "input" file - must be
complete and correct; used to complete defaults
in NAMS (typically the input file namestring).

In/Cut:

NAMS C#*36 Namestring NAME:CLASS:TYPE:SEQ:VOL:USID of map to
be created; can contain blanks, wildcards...

HDR I(256) Catalog header for map, containing enough info to
define size. The updated header is returned for
real images, not SC files

Outputs:
ERROR I Error code: 0 => ok
10 => catalog error
14 => no room in catalog
21 => file already exists
23 => create error

8-12 CHAPTER 8. WAWA (“EASY”) I/O

8.8.14 MAPIO
WaWa IO system: Do I/O from a file opened using FILOPN to area DATA

MAPIO (OP, LUN, DATA, ERROR)

Inputs:
oP C*4 'READ’ or ’WRIT’
Lux I File logical unit no.
Input/output:
DATA(*) R Data in or out
Output:
ERROR I Error code: 0 => ok
1 => file not open
2 => bad input parms
3-6 => I0 errors
8 => Bad data type (ie write integers)
9 => I0 is complete (software
generated EOF)
10 => catalog read/write error
11 => Catalog status error

8.8.15 MAPMAX
WaWa IO system: Determine max and min of a map opened by FILOPN and update CAT block accordingly

MAPMAX (LUN, XMAX, XMIN, ERROR)

Inputs:

LUN I Logical Unit No. of map
Outputs:

XMAX Maximum in map

R
IMIN R Minimum
BERROR I Error codes: 0 => ok
1 => file not open
2 => input parms error
3-8 I0 errors
10 => catalog read/... error

"
v

8.8.16 MAPWIN
WaWa IO system: Set or reset parameters for a window on MAP 1/0 File must be opened first with FILOPN.

MAPVIN (LUN, BLC, TRC, ERROR)

Inputs:
LUK I Logical Unit No. of file (must be open)
BLC R(7) Lower bounds of map subrectangle
TRC R(7) Upper bounds of map subrectangle
Outputs:
ERROR I Exrror codes: 0 => ok

1 => file not open
10 => catalog error
18 => bad window specification

17 => partial row specified on write.

8.8. DETAILED DESCRIPTIONS OF THE SUBROUTINES 8-13

8.8.17 MAPXY

WaWa IO system: Set windows so that MAPIO returns a subrectangle of the top plane of a map

MAPXY (LUN, WIN, ERROR)
Inputs:
LUN I Logical Unit No. of an open map
VIN R(4) Corners of rectangle. If WIN(1)=0.0, whole top
plane is taken.
Output:
ERROR I As returned by MAPWIN

8.8.18 OPENCF

WaWa IO system: Open a MAIN (i.e. Cataloged) file and associate it with Logical Unit Number LUN.
OPENCF (LUN, NAMS, ERROR)

Inputs:
LUN I Logical Unit No.
In/out:
NANS C+#36 Catalog identification NAMESTRING:
NAME:CLASS:PTYPE:SEQIN:VOL:USID
NAME, CLASS, & USID ignored if PTYPE = ’SC’.
OUTPUTS:
ERROR I Error codes: 0 => o.k.

Otherwise as returned by FILOPN

8.8.19 SAVHDR

WaWa IO system: Save the catalog header block for a file that is already open (via FILOPN or OPENCF)
SAVHEDR (LUN, CATBLK, ERROR)

Inputs:
LUN I Logical Unit No. of file
CATBLK I(256) Saved Header block
Outputs:
ERROR I Error code: 0 => ok

1 => file not open
10 => catlg error

8.8.20 TSKBEG

WaWa IO system: Do most of the operations necessary to begin a task: Calls IOSET, calls GTPARM to
get parameters, and, if appropriate, calls RELPOP. For < 5 simultaneously open map files. You should end
with TSKEND.

TSKBEG (PRGNAM, NPARM, RPARM, ERROR)

Inputs:
PRGNAM C#6 Task name
NPARM I No. of real parameters passed by AIPS
OUTPUTS:
RPARM R(*) Array to receive passed parameters
ERROR I Error return: 0 => Okay

0 < ERROR <10 => Error return from GTPARM

8-14 CHAPTER 8. WAWA (“EASY”) /O

8.8.21 TSKEND

WaWa IO system: Terminate a task, including calls to CLENUP and RELPOP if appropriate. Also close
down messages.

TSKEND (IRET)
Inputs:
IRET I A return code passed to AIPS if task was run
in wait mode: 0 => ok, else => failure.

8.8.22 UNSCR
WaWa 10 system: Destroy all scratch files created by this task.

UNSCR
no arguments

8.8.23 WAWA2A

WaWa IO system: unpacks Wawa-IO Namestring having format A12, A6, A2, 17, 12, I7 for NAME, CLASS,
PTYPE, SEQ, VOL, USID into component parts

WAWA2A (NAMEST, NAME, CLASS, SEQ, PTYPE, VOL, USID)
Input:

NAMEST C*36 WaWa Namestring
Outputs:

RAME C+12 file nanme

CLASS C=6 file class

SEQ I file sequence number
PTYPE C=2 file physical type
VOL I file disk number

USID I user number

Appendix A

AIPS Directory Structure and
Software Management

A.1 Introduction

This appendix is based on AIPS Memo Number 39. The purpose of Memo 39 was to propose shareable
images for AIPS under VMS. To this end, the authors proposed a revision of the directory structure and
software management tools. This revision has been implemented, whereas shareable load modules in VMS
have not. The model presented for the directory structure has also been adopted for Unix.

This appendix describes the directory structure and the software management tools that a programmer
will need to work in a VMS or Unix environment. The original discussion of shareable load modules has been
dropped, and the other discussion updated to reflect the current realities, especially the Unix implementation.

A.2 Directory Structure

A.2.1 Design Guidelines

The following are some of the guidelines used in devising this scheme.

1.

Separate source code from all other system-specific files. This source code directory tree should con-
tain no system-specific object libraries, command procedures etc., as these may well be implemented
differently on different machines.

. The source code areas should be clearly organized into standard AIPS areas and particular operating-

system or device-specific areas. It is also convenient to allow the existence of a few generic areas for
routines that are not standard, but are useful in various environments.

. Clarify routine hierarchy to allow shareable images to be sensibly defined and to clearly reflect linking

sequences.

. The subroutine and program hierarchy should be independent of any object libraries or shareable

images used on a particular system. The source code directories may be assembled into object libraries
etc. in any manner convenient for the system being used.

. Preserve non-standard areas so that we can keep track of programs which are, or use, non-standard

code.

. Define search paths to pick up the most suitable version of a routine automatically. For example, the

search should begin with any device-specific routine, then with a generic routine, and finally with a
standard routine. The first one found should be used. This ensures that the most efficient is used,
while allowing less efficient, more general ones to be available.

. Try to make the structure as logical and consistent as possible.

A-1

A-2 APPENDIX A. AIPS DIRECTORY STRUCTURE AND SOFTWARE MANAGEMENT

A.2.2 Directory Structure

The directory structure requires a hierarchical file system on the host computer. Given this restriction, it
should be easy to implement on various operating systems. It attempts to divide up the files along the
following lines.

1. Routine hierarchy — i.e., whether a routine makes use of the AP (or vector routines) or TV.
2. Routine type — whether a routine is a general library routine or specific to a single application program.

3. Routine version — whether a routine is standard and works with all implementations, generic and
works with some, or specific and only works with one implementation.

The proposed directory structure uses the first of the above as the primary division of source code. All source
code is contained in five top level areas i.e., areas one level below the AIPS version node (e.g., 150CT85).

These areas are labelled as follows:

1. APL — general utility routines

2. Q — AP (Vector) routines

3. Y — TV routines

4. QY — AP and TV routines (at present only application programs)

5. AIPS — POPS utility routines (may use TV also)

There are a few obvious omissions from this list, such as no attempt to formalize various graphics, terminal
or network devices. These may also benefit from such a division, but at present AIPS has no suitably general
model available. These may be added later.

These top level areas are each divided in an identical manner into three, although the third is omitted
from the QY and AIPS areas:

1. Programs — application programs. Lower level areas are present for any device-specific programs. A
non-standard area is also provided.

2. Utility routines — library subroutines that may call device-specific routines, but are themselves device
independent. A non-standard area is also provided.

3. Device routines — library subroutines that are device specific. Various generic areas are also included.

In addition to these five source code areas, there are several other top level directory areas. All of these are
now described in more detail. In this discussion, only three operating system branches are shown, but more
can easily be added. Some of these low level areas may be further sub-divided, for example, to allow for
different flavors/vendors of Unix systems.

APL

This area is for utility routines and programs that make no reference to an AP or TV device.

A.2. DIRECTORY STRUCTURE A-3

APL
1
Y ' ¥
DEV SUB PGM
1 |
. ¥
VMS UNIX NOTST NOTST
VMS UNIX VMS UNIX

BELL BERK
I
{ 1 f 1 {1 1
MA'SC CRI ALLN SUN| | VAX| | CVEX

NRAOL1 || VLAC1

APL Directories

The DEV branch is for the standard set of Z routines. Many of these have now been made generic for
some operating systems, and these are in the DEV area itself. The lower levels are for true system-specific
versions. The SUB branch is for routines that are in principle system independent. There is a NOTST area
for those which, while not fully following AIPS coding standards, stand a good chance of working on many
systems. The system-specific areas on this branch are for peculiar non-standard routines that are not part of
standard AIPS. The PGM branch is for task programs. It too has non-standard and system-specific areas.

This area is for routines and programs that make use of the AP.

A-4 APPENDIX A. AIPS DIRECTORY STRUCTURE AND SOFTWARE MANAGEMENT

Q
L 2 Y [
DEV SUB PGM
|
¥ K i Y ¥
FPS PSAP NOTST NOTST
— — 1 11 1
32B 16B ALLN | [VMS || CVEX || CRI VMS UNIX
190 120B 5000

Q Directories

The DEV branch is for the various versions of the Q routines. The DEV area itself is for the most
general version of these, i.e., the PSAP or “Pseudo AP” code. The lower level branches support a variety of
different AP devices and vector hardware, in some cases with generic areas. Note that, because of the search
path mechanism, these low level areas need not contain a full set of Q routines, generic ones from higher
up the tree can be substituted. The SUB branch is for routines which make use of the Q routines, but are
themselves device independent. This includes a non-standard area, but no system-specific ones. The PGM
branch is for tasks which use the “Q” routines.

Y

This area is for routines and programs that make use of the TV.

Y
‘ %
; SUB| ° PGM
DEV 1
! 1 ‘ I 1 NOTST NOTST| | VDEV
1vas | | [sTus|| | DEA] | 1S LEX — 1
vMS| | UNIX
ARGS SSS vIv || | v20
3 Y

M70 M75| | LEXC

Y Directories

A.2. DIRECTORY STRUCTURE A-5

This tree is very similar to the Q tree. The only difference is in the device-specific DEV branch. The
generic DEV area is for Y routines that really are implemented in device independent-ways. Note that there
is a difference here between the Q and Y trees — all systems have some kind of “AP”, while some systems do
not have a TV. We therefore need to be able to distinguish generic routines from stubbed routines substituted
when no TV is present. This is the purpose of the STUB area. Y routines for which no generic version is
possible have stubbed versions in the generic DEV area. Those that do have generic versions have stubbed
versions in the STUB area.

QY

This area is for routines and programs that make use of the both the AP and TV. At present, this only
occurs at the program level, so this tree is very simple.

QY

VMS UNIX

QY Directories

AIPS

This area is for the POPS-level programs and related routines. Several of these make use of the TV device,
but, as they are routines not accessible to tasks, they reside here. The stand-alone service programs are also
stored in this area.

AIPS
|
Y Y
SUB PGM
y
NOTST
VMS UNIX

AIPS Directories

A-6 APPENDIX A. AIPS DIRECTORY STRUCTURE AND SOFTWARE MANAGEMENT

Notice that at present, there are no non-standard subroutines and no device- or system-specific subrou-
tines.

Include

This area is for the various include files needed by routines in all the above trees.

INC

y 1

NOTST | { LOCAL

1 X Y K 2
ALLN || CRI CVEX| |VMS] | UNIX

Include Directories

The system-specific areas allow array sizes to change between systems, and also permit system-specific
options, such as dependency directives needed by vectorizing compilers.

Help

The HELP tree is very simple, as all help files are in a standard format. This tree consists of a single area.

Load

This area is for load modules, i.e., fully linked programs in a form ready to be run. This is split into a
standard LOAD area and a few alternative areas immediately below (e.g., LOAD.ALT1). These alternate
areas could, for example, be used to keep pseudo-AP versions of programs or versions linked for a second
model of TV display.

Library

This area (LIBR) is for the various subroutine libraries used to build AIPS programs. Note that these have
been moved out of the system-independent source code areas. We may in the future wish to include several
libraries not of AIPS origin along with AIPS. These would enable AIPS programs to make use of some useful
code that is available in the public domain. Such libraries will be included in this area.

Documentation

The DOC area is used to store documentation files (this manual, other coding descriptions) in DOCTXT.
The directory structure is simple:

A.2. DIRECTORY STRUCTURE A-T

DOC

Y

TXT

Documentation Directories

Text files

There are a number of directories which reside above the version specific portion of the AIPS directory tree.
These include AIPSPUBL containing the Cookbook text, AIPSGRIP containing the AIPS gripe system, AIP-
SIONS containing ionospheric monotoring data and AIPSWHO containing mailing lists etc. The directory
structure is shown in the following:

TEXT

' 1 ? ¢

GRIP IONS PUBL WHO

Text Directories

System

This area is used to store the various system-specific tools needed for programming, maintenance and exe-
cution of AIPS.

SYSTEM
{ . 3
UNIX VMS
')] ‘ I}
INSTALL UPDATE INSTALL | | LOCAL | | UPDATE
¢ t ¥)} !
CRI | |ALLN | |CcVEX | |Sun UPDATE

—

NRAOL1 || VLAC1

System Directories

A-8 APPENDIX A. AIPS DIRECTORY STRUCTURE AND SOFTWARE MANAGEMENT

The Unix, and VMS areas are for procedures and files describing system structures and link edit paths.
The LOCAL areas are for local variants (site dependent) on the standard files. INSTALL areas are for
source code shipping/installation procedures and UPDATE areas are for automatic update procedures (the
so-called “midnight job”).

A.2.3 Mnemonics - AREAS.DAT

Programmers always refer to the AIPS directory areas by means of mnemonics. These need to be im-
plemented on various operating systems and it is convenient to store a list of them, complete with their
associated areas, in a file which can be used by the operating system. Below is a copy of this file from
SYSAIPS. It can be used to assign the appropriate mnemonics, or to create a complete directory tree.

! " AREAS.DAT "

t " This file defines the entire AIPS directory structure (relative to "
! " a ’version’ directory node) plus the ’logical’ associated with "
! " each ’area’ (i.e., directory). "

1

[}

!

]

]

]

!

! * Unix: The script $SYSUNIX/AREAS uses $SYSAIPS/AREAS.DAT to create "
! " $SYSLOCAL/AREAS.CSH and $SYSLOCAL/AREAS.SN, which contain C shell
! " and Bourne/Korn shell syntax, respectively, to define the area "
! " logicals in terms of environment variables. The definitions are "
! " toggled between different versions of AIPS by executing $CDOLD, "
! " $CDNEW or $CDTST, which are defined $AIPS_ROOT/LOGIN.CSH and/or "
! " $AIPS_ROOT/LOGIN.SH. The AREAS.* environment variables are NOT "
! " required for the execution of AIPS programs, just for AIPS "
! " programming. In fact, having all the area logicals defined takes "
! " up such a large fraction of the available environment space on "
! " some systems that the execution of AIPS programs, Unix commands, "
t " AIPS programming tools and system debuggers can be impaired. To "
! " avoid this, it may be necessary to comment out some or all of the "
! " definitions that don’t apply to the host implementation. "
[}
]
[}
]
!
!
!
]
[}
'

! " VMS: AIPS_PROC:ASSNLOCAL.COM uses this file more or less directly "
! " to establish the definitions of area logicals. The definitions "
! " are toggled between different versions of AIPS by executing the "
! " AIPS defined ’'VERSION’ command (see AIPS_PROC:AIPSUSER.COM), e.g., "
! " 'VERSION NEW’. "

! " Top level directories of source code areas "

AIP AIPS

APL APL
Q
Y QY

* AIPS program areas "

“Standard programs'

A.2. DIRECTORY STRUCTURE

AIPPGM AIPS.PGM

! "Non-standard programs'
AIPROT AIPS.PGM.NOTST

! "Unix non-standard programs"
AIPGUNIX AIPS.PGM.NOTST.UNIX

! "VMS non-standard programs"
AIPGVMS AIPS.PGM.NOTST.VMS

'
!
! " AIP subroutine areas - only referenced by AIP* programs "
]
'

AIPSUB AIPS.SUB
!

! " APL program areas - these reference only APL* routines "

!
1 "Standard programs"
APLPGM APL.PGM

! "Non-standard programs"
APGNOT APL.PGM.NOTST

! "Unix programs"

APGUNIX APL.PGM.NOTST.UNIX

! "VMS programs"

APGVMS APL.PGM.NOTST.VMS

!
!
! " APL subroutine areas - nothing here references Q or Y-routines "
!
!
1

! "Standard routines"
APLSUB APL.SUB

! - “Non-standard routines"
APLNOT APL.SUB.NOTST

! "VMS non-standard routines”
APLNVMS APL.SUB.NOTST.VMS

'R - ——— -—

t " Z-routine areas

[= > e e . . e s > o o o o . "

! "Generic"

APLGEN APL.DEV

! "Generic Unix"
APLUNIX APL.DEV.UNIX

! "Bell Unix"

APLBELL APL.DEV.UNIX.BELL

! "Cray Research Inc"
APLCRI APL.DEV.UNIX.BELL.CRI

! ""Masscomp"”

APLMASC APL.DEV.UNIX.BELL.MASC

! "Berkeley Unix"

A-10 APPENDIX A. AIPS DIRECTORY STRUCTURE AND SOFTWARE MANAGEMENT

APLBERK APL.DEV.UNIX.BERK

H “Alliant"

APLALLN APL.DEV.UNIX.BERK.ALLN

! "Convex"

APLCVEX APL.DEV.UNIX.BERK.CVEX

! "NRAQ-VLA Convex local"”
APLVLAC1 APL.DEV.UNIX.BERK.CVEX.VLAC1

' "NRAO-CV Convex local"
APLRRAO1 APL.DEV.UNIX.BERK.CVEX.NRAO1

! "“Sun"

APLSUN APL.DEV.UNIX.BERK.SUN

! "VAX"

APLVAX APL.DEV.UNIX.BERK.VAX

' "Generic VMS"

APLVMS APL.DEV.VMS

! " Documentation areas "

!
DocC boC

DOCTXT DOC.TEXT
'

- e o 20 e e 2 o e o o e o o A ”"

! " Core dump area "

ERRORS ERRORS

!
!
t " HELP file area "
!
|

HLPFIL HELP
1

! " History area "

HIST HIST

t * INCLUDE file areas "

"

[]
1
]
1
1
1 "Standard INCLUDEs"
I
!

NC INC

! "Non-standard INCLUDEs"
INCNOT INC.NOTST

! "Local"

INCLOC INC.LOCAL

! "Alliant"

INCALN INC.NOTST.ALLN

A.2. DIRECTORY STRUCTURE A-11

¢ "Cray Research Inc"
INCCRI INC.NOTST.CRI

! "Convex"
INCVEX INC.NOTST.CVEX

! "VMS"
INCVMS INC.NOTST.VMS

! " Object module areas

! "“Subroutine object libraries"
LIBR LIBR

! “Executable modules"

LOAD LOAD

! "“"Alternate executable modules"
' "Pseudo AP w/wo TV 1"

LOAD1 LOAD.ALT1

! “TV 2 w/wo real AP"

LOAD2 LOAD.ALT2

! "“TV 2 w Pseudo AP"

LOAD3 LOAD.ALT3

]
!
! " POPS memory file area
4
!

MEMORY MEMORY

* Q-routine areas (real and pseudo array processor)

! “Generic"

QDEV Q.DEV

' “Generic FPS"

QFPS Q.DEV.FPS

! "16 bit FPS"

QFPS16 Q.DEV.FPS.16B

! “Model 120B FPS"
Q1208 Q.DEV.FPS.16B.120B

! "Models 5106, 5205 ... FPS"
Q56000 Q.DEV.FPS.16B.5000

! 32 bit FPS"

QFPsS32 Q.DEV.FPS.32B

! "Model 190 FPS"
Q180 Q.DEV.FPS.32B.190

! "“Generic pseudo AP"
QPSAP Q.DEV.PSAP '
! "Alliant pseudo AP"
QALN Q.DEV.PSAP.ALLN

! "Cray Research Inc pseudo AP"
QCRI Q.DEV.PSAP.CRI

A-12 APPENDIX A. AIPS DIRECTORY STRUCTURE AND SOFTWARE MANAGEMENT

! "Convex pseudo AP"
QVEX Q.DEV.PSAP.CVEX

! "VMS pseudo AP"
QVMs Q.DEV.PSAP.VMS

! " Programs that reference Q-routines "

]

]

]

]

' "Standard programs'
QPGM Q.PGM

!

! "Non-standard programs"
QPGNOT Q.PGM.NOTST

! "VMS programs"

QPGVMS Q.PGM.BOTST.VMS

! " Subroutines that reference Q-routines "

' "Standard routines'
QsSuB Q.SUB
' "“Non-standard routines"

QEOT Q.SUB.NOTST
!

! " Programs that reference both Q-routines and Y-routines "

!
1 "Standard programs"
QYPGM QY.PGM

! "Non-standard programs"
QYPGNOT QY.PGM.NOTST

! "VMS programs"

QYPGVMS QY.PGM.NOTST.VMS

! " System RUN file area - useful procedures for everyone "

| M e - —_——— -

RUNSYS RUN
'

! " System manager areas "

1
! "Midnight job data area"
UPDATE UPDATE

] “Generic"
SYSAIPS SYSTEM

] "Generic Unix"
SYSUNIX SYSTEM.UNIX

! “Alliant"

A.2. DIRECTORY STRUCTURE

SYSALLN SYSTEM.UNIX.ALLN

! “Cray Research Inc"

SYSCRI SYSTEM.UNIX.CRI

' "Convex"

SYSCVEX SYSTEM.UNIX.CVEX

! "NRAO-VLA Convex local"
SYSVLAC1 SYSTEM.UNIX.CVEX.VLAC1

! “NRAO-CV Convex local"
SYSNRAO1 SYSTEM.URIX.CVEX.NRAO1

! "Sun"

SYSSUR SYSTEM.UNIX.SUN

' "UNIX installation"

INSUNIX SYSTEM.UNIX.INSTALL

! "Unix midnight and quarterly"
! "update"

UPDUNIX SYSTEM.UNIX.UPDATE

! "NRAO-CV Convex midnight and"
! "'quarterly update"

UPDNRAO1 SYSTEM.UKIX.UPDATE.NRAO1

'
!
UPDVLAC1 SYSTENM.

!
SYSVMS SYSTEM.
'
SYSLVAX SYSTENM.
!
INSVMS SYSTENM.
!
!
UPDVMS SYSTEM.
!
!
UPDVLA SYSTENM.

"NRAO-VLA Convex midnight and"
‘‘quarterly update"

UNIX.UPDATE.VLAC1
“Generic VMS"
VMS
"Local VMS"
VMS.LOCAL
"VMS installation"
VMS.INSTALL
"VMS midnight and quarterly"
“update"
VMS.UPDATE
"NRAO-VLA VAXn midnight and"
"quarterly update"”
VMS.UPDATE.VLA

! "Generic"

YGEN Y.DEV

' "ARGS pipe from M70"
YARGS Y.DEV.ARGS

! "Deanza”

YDEA Y.DEV.DEA

! “IIS generic"
YIIS Y.DEV.IIS

! "IIS Model IVAS"
YIVAS Y.DEV.IVAS

! "“IIS Model 70"
YM70 Y.DEV.IIS.M70

"IIS Model 75"

YM75 Y.DEV.IIS.M75

A-14 APPENDIX A. AIPS DIRECTORY STRUCTURE AND SOFTWARE MANAGEMENT

YLEX Y.

!
%LEXC Y.
'
*SSS Y.
1
*SVU Y.
!
§STUB Y.
'
§V20 Y
1
&VTV Y.

DEV.LEX

DEV.LEX.LEXC

DEV.SSS

DEV.SSS.SVU

DEV.STUB

.DEV.V20

DEV.VTV

"Lexidata"

"Lexidata C code"

"“SUN Screen Server"

"SSS - SunView *.C"

"Stubbed"

"Comtal Vision 1/20"

"Virtual TV"

" Programs that

reference Y-routines

- ——

!
§
! n
!
]

YPGM Y.

!
YPGVDEV Y.
!
YPGNOT Y.
'
YPGVMS Y.

PGM

PGM.VDEV

PGM.NOTST

PGM.NOTST.VMS

"Standard programs"
"Virtual TV program"
"Non-standard programs"

"VMS programs"

" Subroutines that reference Y-routines

!
!
!
!
!
!
Y
!

SuUB Y.SUB

YNOT Y.SUB.NOTST

A.3 File Names For Data

As of the 15APR86 version of AIPS, the disk volume field for data files was replaced by a data format version
code in the form of a letter. The letter used for 1I5APR86 was “A” and this changed to “B” for the 15JAN87
release. It should be quite sometime before we get to “Z”. As an example, the 150CT85 format map file
MA201501.221;1 was renamed to MAA01501.221;1 in the 15APR86 release. As of the 150CT89 release the
revision code has been “C”.

The change has a number of advantages:

"“Standard routines"

"“Non-standard routines"

1. Data backed up by system utilities (e.g., tar under Unix, BACKUP under VMS) can be restored to a

different disk.

2. Multiple dismountable disk drives are now supported better. Previously, a disk written as AIPS disk
2 and then dismounted always had to be re-mounted as AIPS disk 2.

3. Data from different releases of AIPS with different data formats can coexist peacefully during data-
format transitions. Data with different formats can be distinguished easily by filename.

A.4. VMS DETAILS A-15

4. An intelligent data file format update program (UPDAT) has been written. It can recognize what
version of input data it is being fed and convert the format to the current version.

Files that are shared among users (and between different versions), such as system-parameter files, accounting
files, batch files, etc. are found in the directory pointed to by logical device name DAQO and have a “1” in
the AIPS version letter field (the “1” doesn’t signify anything).

Memory files are stored in the version-specific area, SAIPS_ZVERSION/MEMORY under Unix and
AIPS_VERSION:[MEMORY) under VMS. These also have a “1” in the AIPS version letter field.

A.4 VMS Details

The previous sections described the directories that are visible in all versions of AIPS. This section details
the specifics of the VMS implementation.

A.4.1 Object libraries

With the source code directory structure, it is possible for AIPS to use different object library structures with
different operating systems, as is convenient. Below is a list of object libraries suitable for VMS, together
with a list of areas from which they are built. Note that the object library file names have been deliberately
lengthened with the LIB string. This is to prevent any name conflicts with the directory-area mnemonics,
which are listed below in search-path order.

1. APLSUBLIB.OLB from APLSUB
2. APLNOTLIB.OLB from APLNVMS, APLNOT

w

. APLVMSLIB.OLB from APLVMS, APLGEN

. QSUBLIB.OLB from QSUB
. QNOTLIB.OLB from QNOT

<RI

QVMSLIB.OLB from QVMS, QPSAP

7. Q120BLIB.OLB from Q120B, QFPS16, QFPS
8. Q5000LIB.OLB from Q5000, QFPS16, QFPS
9. Q190LIB.OLB from Q190, QFPS32, QFPS

10. YSUBLIB.OLB from YSUB

11. YNOTLIB.OLB from YNOT

12. YSTUBLIB.OLB from YSTUB, YGEN
13. YM70LIB.OLB from YM70, YIIS, YGEN
14. YM75LIB.OLB from YM75, YIIS, YGEN
15. YDEALIB.OLB from YDEA, YGEN

16. YV20LIB.OLB from YV20, YGEN

17. YIVASLIB.OLB from YIVAS, YGEN

18. AIPSUBLIB.OLB from AIPSUB

A-16 APPENDIX A. AIPS DIRECTORY STRUCTURE AND SOFTWARE MANAGEMENT

When routines are modified, these object libraries are updated by means of a COMRPL procedure. There
are a large number of directories; this means that programmers need to know precisely where a routine
resides. It may be possible to reduce the impact of this by setting up logical names to implement search
paths to find a particular routine. However, initially we have not done this, so as to help ensure that the
programmers are aware of which version of a routine they are modifying, and any consequences it may have.
Second, some routines find their way into more that one object library. This is done deliberately to simplify
linking procedures while still maintaining a single copy of the ultimate source. The necessary intelligence
to replace a routine in multiple libraries has been built into the COMRPL procedure, together with the
intelligence to avoid replacing a device-specific routine in the library with a generic one. Appendix B is
useful in determining in which directory a routine resides. '

These object libraries serve two purposes. They can be used directly by a COMTST procedure for
programs to link with directly. This is not the normal mode of operation, but is available for testing
purposes. Normally the object libraries are used to build load modules with the COMLNK procedure.
These procedures are described in detail in section 6.

A.5 A Tutorial for Programmers Using VMS

A.5.1 Initialization and Startup Procedures
LOGIN.PRG

The logical names and symbols needed to program in AIPS can be obtained by executing command procedure
LOGIN.PRG. A programmer should put the following line (substituting the disk used for AIPS at his site
for “AIPS_DISK_NAME”) in his LOGIN.COM file:

$ CGAIPS_PROC:LOGIN.PRG
where the logical is defined as

$ DEF AIPS_PROC AIPS_Disk_Name: [AIPS.date.SYSTEM.VMS]

At NRAO, this procedure makes TST the default AIPS_.VERSION. Other sites may only have one AIPS_VERSION
(NEW) and may have things set up differently.

AIPS “Version” “Option”

This procedure starts up a given version of AIPS. On NRAO Vaxes, “Version” can be one of OLD, NEW,
or TST. One can also start up AIPS with the following options:

REMOTE - Used to run AIPS from a TEK graphics terminal.
DEBUG - Run AIPS with the debugger.
LOCAL - Run a private AIPS found in the current default directory.

The DEBUG option works only if the standard AIPS is linked with debug, or if you use the LOCAL option
and you have an AIPS linked with debug in your current default directory.

A.5.2 Compiling and Linking
COMRPL “SubroutineSpec” “Option”

This procedure will preprocess, compile and replace a subroutine or set of subroutines in the proper AIPS
libraries. The “Option” field, if present, MUST follow the “Subroutine Spec” field, rather than precede it.
The parameter “SubroutineSpec” can be a single logical name and subroutine such as APLSUB:CTICS, or
it can be a list of subroutines such as APLSUB.CTICS,COPY,APLNOT:CHKTARB, or it can be a wild-card
such as APLSUB:CHs=.%, or it can be a file containing a list or routines such as @MYLIST.TXT (the “@”

A.5. A TUTORIAL FOR PROGRAMMERS USING VMS A-17

signifies a file). Note that, to specify the directory of the subroutine, you MUST use a logical name, such
as APLSUB, rather than the full directory specification, such as [AIPS.15APR86.APL.SUB]. The procedure
uses the standard AIPS defaults for the compile (FORTRAN) command. You may use any of the valid
FORTRAN options listed at the end of this section. If you want to use more than one option, separate them
with at least one blank. For example, the following command will compile subroutine CHCOPY, replace
it in the standard AIPS library area, produce a listing, and produce no warning messages for undeclared
variables, tabs, and lower case code (the highly deprecated DIRTY option).

$ COMRPL APLSUB:CHCOPY LIST DIRTY

The following examples show how multiple files can be compiled.

$ COMRPL APLSUB:MSGWRT,APLNOT:NXTFLG
$ COMRPL APLSUB:MP2*.FOR

Compile MSGWRT and NXTFLG.
Compile every routine whose
name begins with MP2.
Compile every routine listed
in MYLIST.TXT

$ COMRPL @MYLIST.TXT

COMLNK “ProgramSpec” “Option”

This procedure will preprocess, compile and link a program or set of programs and put them in the AIPS
“LOAD” area. If any alternate areas are set up, such as the pseudo AP area, then modules linked with
alternate libraries will be put in the alternate areas. The “ProgramSpec” may be a list of programs, a
wild-card, or a file containing a list of programs as described in the COMRPL explanation. The “Option”
may be any of the list of options at the end of this section.

COMTST “ProgramSpec” “Option”

This is a version of COMLNK designed for preprocessing, compiling and linking experimental AIPS pro-
grams in a programmer’s own area. This procedure will compile and link a program or set of programs and
put the executable module in the current default directory. This routine also uses an option file “Program-
Name” .OPT, if it exists, or LOCAL.OPT, if it does not. One of these option files MUST be found in the
default directory. Option files are used to specify which libraries and routines to link with a program. A
programmer will usually copy the appropriate COMLNK option file to his own area for use with COMTST.
COMLNK finds its option files in AIPS_PROC by following this rule: If a program is found in a directory
XYZ, then its option file is AIPS_.PROC:XYZOPT.OPT. If an alternate LOAD area exists for a program,
such as the pseudo AP area, then COMLNK also uses AIPS_.PROC:XYZOPTn.OPT (n = 1 to 6) to link the
alternate executable module(s). A programmer working with MX (which is found in QYPGNOT) will copy
AIPS_PROC:QYPGNOTOPT.OPT to his own area and rename it LOCAL.OPT or MX.OPT. If a program-
mer wants to use the pseudo AP libraries instead, then he will copy AIPS_ PROC:QYPGNOTOPT1.0PT
to his area and rename it LOCAL.OPT or MX.OPT. These option files can also be used as a means of
specifying experimental subroutines or libraries. For instance, a programmer working on MX may copy
AIPS_ PROC:QYPGNOTOPT.OPT into MX.OPT and then put the names of any experimental subrou-
tines or libraries in MX.OPT. A full example is given in the section “COMPILING AND LINKING, AN
EXAMPLE”.

Options
The following options can be used with the compile and link procedures:

Option Minimum
Abbreviation Comments

DEBUG DE LINK with DEBUG (compile is always debug)

A-18 APPENDIX A. AIPS DIRECTORY STRUCTURE AND SOFTWARE MANAGEMENT

NODEBUG NODE LINK without DEBUG (Default)

LIST LI produce compiler listing

NOLIST NOLI no listing (Default)

MAP MA produce LINKER map.

NOMAP NOMA no linker map (Default)

OPTIMIZE opP compile optimized and NODEBUG.

NOOPTIMIZE OGP compile no-optimized (Default)

DIRTY DI no warnings for undeclared variables, tabs
NODIRTY NODI warnings for undeclared var, tabs (Default)
PURGE PU purge executable after link (Default)
ROPURGE NOPU do not purge executable

A.5.3 Miscellaneous routines
VERSION “Version”

This command will set the default version (release) to “Version”, i.e., all logicals will point to the “Version”
version of the directories. “Version” can be either OLD, NEW or TST. The version will stay in effect until
the programmer changes it, or logs off. Note that, when starting up the AIPS program, this command is
executed to select the version of AIPS to be used. This procedure should be used (with “Version” NEW)
before checking out programs from NEW, or compiling and linking NEW routines. To again use the TST
version, use the procedure with “Version” set to TST.

FORK “command”

FORK is useful for running things, such as links and compiles, as a subprocess. It is defined to be

SPAWN/NOWAIT/NOTIFY/INPUT=NLAO:/OUTPUT=FORK.LOG"

The following example shows how to compile and link IMLOD in a subprocess:

$ FORK COMLNK IMLOD

FLOG

This command is defined to be “TYPE FORK.LOG” and will type the latest FORK log file in the current
directory.

A.5.4 Compiling and Linking: An Example

This example shows how we can compile and link an experimental version of program MX with experimental
versions of subroutines GRDAT and DSKFFT, and keep the executable image in our own directory.

First, we set our default to some work directory and copy the current versions of MX, DSKFFT, and
GRDAT from QYPGNOT and APLNOT. NRAO programmers should copy the routines using the code
checkout system.

Next, we need an option file to tell the linker what subroutines and libraries to use. MX is found in
QYPGNOT, so we copy over the option file for the QYPGNOT programs and rename it to LOCAL.OPT
or MX.OPT. This can be done using the following command:

$ COPY AIPS_PROC:QYPGNOTOPT.OPT LOCAL.OPT

A.5. A TUTORIAL FOR PROGRAMMERS USING VMS A-19

QYPGNOTOPT not only works for MX, but, since it has every library (except for the POPS language
processor stuff) in it, it can also be used to link any task with the standard AIPS subroutines.

To link MX with our experimental version of GRDAT and DSKFFT, we can use the text editor to change
LOCAL.OPT which looks like this:

LIBR:QROTLIB/LIB,LIBR:APLNOTLIB/LIB,-

LIBR:QSUBLIB/LIB,-

LIBR:Q120BLIB/LIB,-

LIBR:YSUBLIB/LIB,LIBR:YM7OLIB/LIB,-
LIBR:APLSUBLIB/LIB,LIBR:APLVMSLIB/LIB,LIBR: APLSUBLIB/LIB,-
FPS:ESRLIB/LIB,FPS:FPSLIB/LIB

to make it look like this:

GRDAT,DSKFFT, -

LIBR:QNOTLIB/LIB,LIBR:APLNOTLIB/LIB,-

LIBR:QSUBLIB/LIB,-

LIBR:Q120BLIB/LIB,-

LIBR:YSUBLIB/LIB,LIBR:YM70LIB/LIB, -
LIBR:APLSUBLIB/LIB,LIBR:APLVMSLIB/LIB,LIBR: APLSUBLIB/LIB,~
FPS:HSRLIB/LIB,FPS:FPSLIB/LIB

The “” is the line continuation indicator in option files.
To preprocess and compile subroutines in a private directory use the following procedure:

$!COMPILE.COM

$! Use:

$! CCOMPILE subroutine_name option ! option equals LIST or CROSS or
$! DIRTY or nothing

$! Only does a compile, leaves .0BJ

$! -

$!

$! Determine if LIST option.
$ OPTION := "/NOLIST"

$ IF (P2.EQS."LIST") TKEN OPTIOK := "/LIST"

$ IF (P2.EQS."CROSS") THEN OPTION := "/LIST/CROSS/SHOW=INCLUDE"
$ OPT1 := "/STANDARD=(SYNTAX,SOQURCE_FORM)/WARNINGS=(DECLARATIONS)"
$ IF (P2.EQS."DIRTY") THEN OPT1 := ""

$ OPT2 := "/DEBUG/NOOPTIMIZE"

$ ON ERROR THEN GOTO FINI

$! Preprocess

$ WRITE SYS$OUTPUT " Preprocess "’P1’".FOR to "’P1’".g"

$ OAIPS_PROC:PP ’'P1’.FOR 'P1’.f

$! Compile subroutine
$ WRITE SYS$OUTPUT "compile in " ,F$DIRECTORY(),":"’P1’".f"
$ FOR ’OPT1’ ’OPT2’ ’OPTION’ ’'P1’.f

$ PURGE ’P1’.0BJ

$ PURGE ’P1’.%

$ FINI:

$ EXIT

A-20 APPENDIX A. AIPS DIRECTORY STRUCTURE AND SOFTWARE MANAGEMENT

Now we make the changes to GRDAT, DSKFFT and MX. Then we compile and link them with the
following commands (the DEBUG on the COMTST command is optional):

$OCOMPILE GRDAT
$CCOMPILE DSKFFT
$ COMTST MX DEBUG

Suppose we want to link MX with debug and have the link run as a subprocess. Then we can type in

$ FORK COMTST MX DEBUG

We will be notified when COMTST finishes (or aborts!). We should type FORK.LOG (we can use the FLOG
command) to make sure our task compiled and linked correctly.

A.5.5 Debugging under VMS

To run the VMS debugger the task and any relevant routines should have been compiled and link edited
with the DEBUG option. Use of the debugger on optimized code can be confusing so is best avoided.

If a private directory is to be used during the debugging phase then the .EXE and the .HLP file should
be in the same directory. Then inside AIPS set adverb VERSION to point to this directory, e.g:
> VERSION = ’mydisk:[mydir.aips]’
and INPUTS, HELP and GO will use the right versions of the files. To cause a task to be run under the
debugger in AIPS use pseudo verb SETDEBUG, e.g.:
> setdebug = 20

Using a value of 0 turns off initiating tasks under the debugger. It is also useful to type “WAIT” after
“GO” to AIPS to prevent both AIPS and the debugger from trying to talk to the terminal at the same time.

A.5.6 Check out system

The AIPS group has instituted a check-out system for the text files in the master version of the AIPS system
(including CHANGE.DOC). The purpose of this check out system is to prevent different programmers from
destroying each others changes to code by trying to work on the same routines at the same time. There
are occasionally changes made in AIPS which require changes in most or all tasks; frequently the original
programmer of a task will be unaware of these changes. For these reasons, modifications or additions to the
the master version of AIPS should (are required to):

1. Check out the relevant files. A brief description of the checkout system is given in a later section; a
detailed description of the check-out system may be found in DOCTXT:CHKOUT.RNO.

2. Modify the files.
3. Check the files back in.
4. Document the changes in CHANGE.DOC (which must itself be checked out).

All directories should be specified using the logical names instead of the full directory names. The

programmer must make sure that AIPS_VERSION is set correctly. AIPS_-VERSION will be TST after a
programmer executes LOGIN.PRG, but AIPS_VERSION can be set to NEW if the programmer runs the
NEW version of AIPS or sets the version to NEW using the VERSION command.

To check things out of NEW, the programmer should use the command

$ VERSION NEW

A.6. UNIX DETAILS A-21

to set the programmer’s current working version to NEW. The version can be reset to TST with the
command

$ VERSION TST

A file that is still checked out of NEW cannot be checked out of TST, or vice versa.
A brief description of the functions of the checkout system is given in the following:

e CHKOUT < file name > Allows a programmer to checkout a file. A copy of the file will be written into
the current default directory. The file name must include the logical defining the directory. CHKOUT
will ask for a one line reason for checking out the file. Example: CHKOUT APLPGM:IMEAN.FOR.

e PUTBCK < file name > Returns a modified file to the appropriate directory; the file must reside in the
default directory. The file name must include the logical defining the directory. Example: PUTBCK
APLPGM:IMEAN.FOR.

e REMOVE < file name > Deletes all versions of a file. The file name must include the logical defining
the directory. Example: REMOVE APGVMS:VBAD.FOR.

e FORGET < file name > Cancels the CHKOUT of a file. The file name must include the logical defining
the directory. Example: FORGET APLSUB:MDISK.FOR.

o NAMCHK < file name > Reserves a name for a routine being developed. The file name must include
the logical defining the directory. Example: NAMCHK APLPGM:HMEAN.FOR.

e CPURGE < file name > Purges files in the standard AIPS source code directories matching file name.
Executing a VMS PURGE command will not be allowed to delete these files.

e OUTPRT Prints a list of files currently checked out.
e HISPRT Prints the checkout history.

A.6 Unix Details

This section describes the details the for the Unix implementation. In many cases, the Unix implementation
is the same as for VMS.

A.6.1 Mnemonics

Programmers always refer to the AIPS directory areas by means of mnemonics. These need to be im-
plemented on various operating systems and it is convenient to store a list of them, complete with their
associated areas in a file which can be used by the operating system. A copy of this file appears in section
A.2.3 above. It can be used to assign the appropriate mnemonics and/or to create a complete directory tree.

A.6.2 Object Libraries

With the source code directory structure shown above, it is possible for AIPS to use different parts of the
directory infrastructure with different operating systems and peripherals. Under Unix, the mapping of source
code area search paths, the mapping of subroutine source code area to object libraries, and the mapping of
object library link lists to program source code areas are all maintained in a single file called LIBR.DAT.
The paraform LIBR.DAT provided in the generic Unix system area (i.e., 8SYSUNIX) is listed below. This
paraform should be copied to $SYSLOCAL and modified to reflect the host implementation. Note that the
object library file names are always SUBLIB and that they are each stored in a subdirectory of SLIBR, the
name of which reflects the source code area from which the object code is derived. In the case of libraries
generated from multiple source code areas, the name reflects the most vendor/model/version specific area
used (e.g., YIVAS, APLCVEX). Under Unix, the mechanics of adding/replacing object code in an object

A-22 APPENDIX A. AIPS DIRECTORY STRUCTURE AND SOFTWARE MANAGEMENT

library are rather expensive. For this reason, object libraries are maintained in separate subdirectories of
$LIBR so that new object modules may be staged there. These are added/replaced en masse whenever the
target object library is included as part of a link operation (see COMLNK below).

--- Begin $SYSUNIX/LIBR.DAT ----
AIPS subroutine source code search paths and object libraries:

$LIBR/AIPSUB/SUBLIB:0:$AIPSUB

APL subroutine source code search paths and object libraries:
Standard routines

$LIBR/APLSUB/SUBLIB:0:$APLSUB

Non-standard and routines

$LIBR/APLNOT/SUBLIB:0:$APLNUNIX
$LIBR/APLNOT/SUBLIB:0:$APLNOT

Z-routines

$LIBR/APLALLN/SUBLIB:0:~--Your local Z-routine directory goes here-—-
$LIBR/APLALLN/SUBLIB:0:$APLALLE---For example---
$LIBR/APLALLN/SUBLIB:0:$APLBERK---For example---
$LIBR/APLALLN/SUBLIB:0:$APLUNIX
$LIBR/APLALLN/SUBLIB:0:$APLGEN

Q subroutine source code search paths and object libraries:
Standard routines

$LIBR/QSUB/SUBLIB:0:$QSUB

Non-standard routines

$LIBR/QNOT/SUBLIB:0:$QNOT

Q-routines

$LIBR/QVEX/SUBLIB:0:$QVEX---For example---
$LIBR/QVEX/SUBLIB:0:$QPSAP---For example---
$LIBR/QVEX/SUBLIB:0:$QDEV

Y subroutine source code search paths and object libraries:
Standard routines

$LIBR/YSUB/SUBLIB:0:$YSUB

Non-standard routines

$LIBR/YNOT/SUBLIB:0:$YNOT

A.6. UNIX DETAILS

Y-routines

$LIBR/YSTUB/SUBLIB:0:$YSTUB---For example---
$LIBR/YSTUB/SUBLIB:0:$YGEN

AIPS stand alone program source code search paths and link libraries:
AIPGUNIX => Unix specific stand alone programs

$LIBR/AIPSUB/SUBLIB:0:$AIPGUNIX
$LIBR/APLALLN/SUBLIB---For example---:0:$AIPGUNIX
$LIBR/APLSUB/SUBLIB:0:$AIPGUNIX
$LIBR/APLALLE/SUBLIB---For example---:0:$AIPGUNIX
$LIBR/APLSUB/SUBLIB:0:$AIPGUNIX
$LIBR/APLALLN/SUBLIB---For example---:0:$AIPGUNIX

AIPPGM => Standard stand alone programs

$LIBR/AIPSUB/SUBLIB:0:$AIPPGN
$LIBR/APLALLR/SUBLIB---For example---:0:$AIPPGM
$LIBR/YSUB/SUBLIB:0:$AIPPGM
$LIBR/YSTUB/SUBLIB---For example---:0:$AIPPGM
$LIBR/APLSUB/SUBLIB:0:$AIPPGM
$LIBR/APLALLN/SUBLIB---For example---:0:$AIPPGM
$LIBR/APLSUB/SUBLIB:0:$AIPPGM
$LIBR/APLALLN/SUBLIB---For example---:0:$AIPPGM

YVTVPGM => TV by wire control program

$LIBR/AIPSUB/SUBLIB:0:$YVTVPGM
$LIBR/APLALLN/SUBLIB---For example---:0:$YVTVPGM
$LIBR/YSUB/SUBLIB:0:$YVTVPGM
$LIBR/YSSS/SUBLIB---For example---:0:$YVTVPGM
$LIBR/APLSUB/SUBLIB:0:$YVTVPGM
$LIBR/APLALLN/SUBLIB---For example---:0:$YVTVPGM
$LIBR/APLSUB/SUBLIB:0:$YVTVPGM
$LIBR/APLALLN/SUBLIB---For example---:0:$YVTVPGM

APL-task source code search paths and link libraries:
APGUNIX => Unix specific tasks that call neither Q nor Y-routines

$LIBR/APLNOT/SUBLIB:0:$APGUNIX
$LIBR/APLSUB/SUBLIB:0:$APGUNIX
$LIBR/APLALLN/SUBLIB---For example---:0:$APGUNIX
$LIBR/APLSUB/SUBLIB:0:$APGUNIX

APGNOT => Non-standard tasks that call neither Q nor Y-routines

$LIBR/APLNOT/SUBLIB:0:$APGNOT
$LIBR/APLSUB/SUBLIB:0:$APGNOT
$LIBR/APLALLN/SUBLIB---For example---:0:$APGNOT
$LIBR/APLSUB/SUBLIB:0:$APGNOT
$LIBR/APLNOT/SUBLIB:0:$APGNOT

A-23

A-24 APPENDIX A. AIPS DIRECTORY STRUCTURE AND SOFTWARE MANAGEMENT

$LIBR/APLALLN/SUBLIB~--For example---:0:$APGNOT
APLPGM => Standard tasks that call neither Q nor Y-routines

$LIBR/APLSUB/SUBLIB:0:$APLPGM
$LIBR/APLALLN/SUBLIB---For example---:0:$APLPGM
$LIBR/APLSUB/SUBLIB:0:$APLPGM

Q-task source code search paths and link libraries:
QPGUNIX => Unix specific tasks that call Q-routines but not Y-routines

$LIBR/QKOT/SUBLIB:0:$QPGUNIX
$LIBR/APLNOT/SUBLIB:0:$QPGUNIX
$LIBR/QSUB/SUBLIB:0:$QPGUNIX
$LIBR/QVEX/SUBLIB---For example---:0:$QPGUNIX
$LIBR/APLSUB/SUBLIB:0:$QPGURIX
$LIBR/APLALLN/SUBLIB---For example---:0:$QPGUNIX
$LIBR/APLSUB/SUBLIB:0:$QPGUNIX

QPGNOT => Non-standard tasks that call Q-routines but not Y-routines

$LIBR/QNOT/SUBLIB:0:$QPGNOT
$LIBR/APLNOT/SUBLIB:0:$QPGNOT
$LIBR/QSUB/SUBLIB:0:$QPGNOT
$LIBR/QVEX/SUBLIB--~For example---:0:$QPGNOT
$LIBR/APLSUB/SUBLIB:0:$QPGNOT
$LIBR/APLALLN/SUBLIB---For example---:0:$QPGNOT
$LIBR/APLSUB/SUBLIB:0:$QPGNOT

QPGM => Standard tasks that call Q-routines but not Y-routines

$LIBR/QSUB/SUBLIB:0:$QPGM
$LIBR/QVEX/SUBLIB---For example---:0:$QPGM
$LIBR/APLSUB/SUBLIB:0:$QPGM
$LIBR/APLALLR/SUBLIB---For example---:0:$QPGM
$LIBR/APLSUB/SUBLIB:0:$QPGM

Y-task source code search paths and link libraries:
YPGUNIX => Unix specific tasks that call Y-routines but not Q-routines

$LIBR/YNOT/SUBLIB:0:$YPGUNIX
$LIBR/APLROT/SUBLIB:0:$YPGUNIX
$LIBR/YSUB/SUBLIB:0:$YPGUNIX
$LIBR/YSTUB/SUBLIB~-~For example---:0:$YPGUNIX
$LIBR/APLSUB/SUBLIB:0:$YPGUNIX
$LIBR/APLALLN/SUBLIB--~For example~--:0:$YPGUNIX
$LIBR/APLSUB/SUBLIB:0:$YPGUNIX

YPGNOT => Non-standard tasks that call Y-routines but not Q-routines

$LIBR/YNOT/SUBLIB:0:$YPGNOT
$LIBR/APLNOT/SUBLIB:0:$YPGNOT

A.6. UNIX DETAILS A-25

$LIBR/YSUB/SUBLIB:0:$YPGNOT
$LIBR/YSTUB/SUBLIB---For example---:0:$YPGNOT
$LIBR/APLSUB/SUBLIB:0:$YPGNOT
$LIBR/APLALLN/SUBLIB---For example~—-:0:$YPGNOT
$LIBR/APLSUB/SUBLIB:0:$YPGNOT

YPGM => Standard tasks that call Y-routines but not Q-routines

$LIBR/YSUB/SUBLIB:0:$YPGM
$LIBR/YSTUB/SUBLIB---For example-—--:0:$YPGM
$SLIBR/APLSUB/SUBLIB:0:$YPGM
$LIBR/APLALLN/SUBLIB---For example---:0:$YPGM
$LIBR/APLSUB/SUBLIB:0:$YPGM

QY-task source code search paths and link libraries:
QYPGUNIX => Unix specific tasks that call both Q-routines and Y-routines

$LIBR/QNOT/SUBLIB:0:$QYPGUNIX
$LIBR/APLNOT/SUBLIB:0:$QYPGUNIX
$LIBR/QSUB/SUBLIB:0:$QYPGUNIX
$LIBR/QVEX/SUBLIB---For example---:0:$QYPGUNIX
$LIBR/YSUB/SUBLIB:0:$QYPGUNIX
$LIBR/YSTUB/SUBLIB---For example---:0:$QYPGUNIX
$LIBR/APLSUB/SUBLIB:0:$QYPGUNIX
$LIBR/APLALLN/SUBLIB---For example---:0:$QYPGUNIX
$LIBR/APLSUB/SUBLIB:0:$QYPGUNIX

QYPGNOT => Non-standard tasks that call both Q-routines and Y-routines

$LIBR/QNOT/SUBLIB:0:$QYPGNOT
$LIBR/APLNOT/SUBLIB:0:$QYPGNOT
$LIBR/QNOT/SUBLIB:0:$QYPGNOT
$LIBR/QSUB/SUBLIB:0:$QYPGNOT
$LIBR/QVEX/SUBLIB--~-For example---:0:$QYPGNOT
$LIBR/YSUB/SUBLIB:0:$QYPGNOT
$LIBR/YSTUB/SUBLIB---For example---:0:$QYPGNOT
$LIBR/APLSUB/SUBLIB:0:$QYPGNOT
$LIBR/APLALLN/SUBLIB---For example---:0:$QYPGNOT
$LIBR/APLSUB/SUBLIB:0:$QYPGNOT

QYPGM => Standard tasks that call both Q-routines and Y-routines

$LIBR/QSUB/SUBLIB:0:$QYPGM
$LIBR/QVEX/SUBLIB---For example---:0:$QYPGM
$LIBR/YSUB/SUBLIB:0:$QYPGM
$LIBR/YSTUB/SUBLIB---For example---:0:$QYPGM
$LIBR/APLSUB/SUBLIB:0:$QYPGM
$LIBR/APLALLN/SUBLIB---For example---:0:$QYPGM
$LIBR/APLSUB/SUBLIB:0:$QYPGM

--- End $SYSUNIX/LIBR.DAT ----

A-26 APPENDIX A. AIPS DIRECTORY STRUCTURE AND SOFTWARE MANAGEMENT

There are two major procedures called COMRPL and COMLNK used in the programming of AIPS under
Unix.

COMRPL, given the name of an AIPS subroutine and a reasonable starting point, will search the directory
structure for the version of the source code most appropriate to the host implementation, preprocess it (if
necessary), compile it (if necessary) and stage the resulting object module for replacement in the proper
object library or libraries.

Under some implementations, it is necessary that the object module from a given routine be stored in
more than one object library. For example, if a system has the luxury of two TV display devices that are
not of the same make and model (e.g., IIS model 70 and IIS model M75), it is possible that the object
module generated from a given subroutine source code area (e.g., $YIIS) is the same for both devices. In
this case, a copy of the object module is staged for replacement in each of the object libraries appropriate
to the different devices (e.g., SLIBR/YM70/SUBLIB and $LIBR/YM75/SUBLIB).

COMLNK, given the name of an AIPS program and a reasonable starting point, will search the directory
structure for the version of the source code most appropriate to the host implementation, preprocess it
(if necessary), compile it (if necessary), determine from $SYSLOCAL/LIBR.DAT the appropriate object
libraries to include in its link list, perform the link and move the resulting executable to the appropriate
load library.

Similar to the case of COMRPL, under some implementations, it is necessary that the object module
from a given program be linked with more than one list of object libraries. Each link produces a distinct
executable module. For example, given the same hypothetical system described above, where there are two
TV display devices that are not of the same make and model (e.g., IIS model 70 and IIS model M75), the
object module generated from a given TV oriented program source code area (e.g., 3YPGM) needs to be
linked once with the object library list including the library appropriate for one of the devices and then
again with the object library list appropriate for the other device. The resulting executables are moved to
the appropriate load libraries (e.g., SLOAD and $LOAD?2). In multiple TV device environments, the desired
TV must be selected by the user at the beginning of an AIPS session. The AIPS startup procedure will
query the user for this, if a definition for the environment variable TVDEV?2 exists.

Unlike the programming environment for AIPS under VMS, the procedure COMTST does not exist.
The Unix version of COMLNK has been designed to detect whether the directory of the specified program
module is one of the official AIPS source code areas. If not, it moves the resulting executable module to the
current working directory (if necessary) instead of the official AIPS load library. This also requires that the
user provide a filename with the extension “.OPT” (or “.opt”) containing a suitable object module/library
link list. Similarly, if such a link list is provided and the program module resides in one of the official
AIPS source code areas, COMLNK will assume that this is a non-standard link and will simply move
the resulting executable to the current working directory (if necessary). All of these intended protections
against corruptions of the official load library can be easily circumvented. They are mostly intended to
protect against inadvertent corruptions. Such link list files are specified as command line arguments to the
COMLNK procedure, e.g.,

COMLNK $APLPGM/UVSRT APLPGM.OPT

A utility exists called LIBS that will display the required link list for the programs which reside in a given
AIPS source code area. For example,

LIBS $QYPGNOT > F0O0.OPT

would generate the object library link list required for all programs that reside in the source code area defined
as SQYPGNOT (i.e., non-standard programs that depend on both Q-routines and Y-routines) and redirect
the list to FOO.OPT, i.e.,

$LIBR/QNOT/SUBLIB
$LIBR/APLNOT/SUBLIB
$LIBR/QSUB/SUBLIB

A.7. A TUTORIAL FOR PROGRAMMERS USING UNIX A-27

$LIBR/QVEX/SUBLIB
$LIBR/YSUB/SUBLIB
$LIBR/YM70/SUBLIB
$LIBR/APLSUB/SUBLIB
$LIBR/APLCVEX/SUBLIB
$LIBR/APLSUB/SUBLIB

FOO.OPT could then be used as is, or edited to include non-standard object code as full pathnames of
either object libraries or individual object modules. The pathnames can contain any combination of literals,
wild-carding and environment variables (i.e., whatever you can keep straight). For example,

$MYAREA/mymod .o
$myarea/[a-z]*.0
/aippgmr/khilldru/DEBUG/ZSUBLIB
$KCHJUNK/ [X-2]+/2Q*
$MYLIBS/*.LIB
$LIBR/QNOT/SUBLIB
$LIBR/APLNOT/SUBLIB
$LIBR/QSUB/SUBLIB
$LIBR/QVEX/SUBLIB
$LIBR/YSUB/SUBLIB
$LIBR/YM70/SUBLIB
$LIBR/APLSUB/SUBLIB
$LIBR/APLCVEX/SUBLIB
$LIBR/APLSUB/SUBLIB

The contents of the “.OPT” files are be evaluated at link time.

The search process as executed by COMRPL and COMLNK is designed to substitute the most appro-
priate version and form of the routine specified, regardless of what the user types. The appropriate version
is determined by the search path as defined in $SYSLOCAL/LIBR.DAT. Actually, for the sake of speed,
the environment variable definitions of $SYSLOCAL/LIBR.DAT are evaluated and stored as pathnames
in $SYSLOCAL/SEARCH.DAT and this file is used instead. $SYSLOCAL/SEARCH.DAT is regenerated
whenever any of the programming tools which depend on it detect that $SYSLOCAL/LIBR.DAT is newer.
Concomitant to the search process for the most appropriate version of a given module for the host implemen-
tation (e.g., Unix versus VMS Z-routine) is a search process for the most up to date “form” of the module
(e.g., unpreprocessed, preprocessed or object module). This is determined by the most recent modification
date of the various extant forms. In the case of Fortran oriented modules, this also includes the modification
dates of any included source text (i.e., source text stored in different modules but “included” as part of the
preprocessing step).

A.7 A Tutorial for Programmers Using Unix

A.7.1 Initialization And Startup Procedures
LOGIN.CSH or LOGIN.SH

The logical names and symbols needed to program in AIPS (and to run AIPS) can be obtained by executing
the script LOGIN.CSH for those whose default login shell is the C shell or LOGIN.SH for those whose
default login shell is either the Bourne (System V only) or Korn shell. Very early in the AIPS installation
process, the LOGIN.x files that come on the installation tape should be moved to the home directory of the
login designated as the repository for the AIPS system. Those who want to program in AIPS should add
the execution of the appropriate LOGIN.x file to their private login procedures. Those programmers whose
default login shell is the C shell should add the line

A-28 APPENDIX A. AIPS DIRECTORY STRUCTURE AND SOFTWARE MANAGEMENT
source AIPS_account_home_directory/LOGIN.CSH

and those programmers whose default login shell is either the Bourne or Korn shell should add the line

AIPS_account_home_directory/LOGIN.CSH

substituting the local pathname for the “AIPS_account_home_directory”. At NRAO this procedure defaults
$AIPS_VERSION to $3TST. The versions of the LOGIN.# files that come on the installation tape default
SAIPS_VERSION to $SNEW. The LOGIN.* files only define the means by which the AIPS programming
“logicals” (i.e., environment variables) can be defined and toggled between the $OLD, SNEW and $TST
versions. Unlike VMS, redefining the programming logicals entails redefining all of the individual logicals,
not just AIPS_.VERSION. Also, since child processes cannot change the environment of their parent, this
cannot be done via a procedure. There is the notion of aliases under the C shell and functions under the
Bourne and perhaps Korn shells (System V Unix only). However, the only universal solution seems to be the
notion of an “executable” environment variable. This is something we have never seen used anywhere else,
or even discussed in the Unix literature, but it works. The LOGIN.* files define three environment variables
named CDOLD, CDNEW and CDTST. These will redefine AIPS_VERSION as $OLD, $SNEW or $TST,
respectively and execute the commands in $AIPS_VERSION/SYSTEM/UNIX/LOCAL/AREAS.CSH via
the “source” command or $AIPS_-VERSION/SYSTEM/UNIX/LOCAL/AREAS.SH via the “” command
depending on whether LOGIN.CSH or LOGIN.SH was used to define the CD* environment variables. To
define or redefine the AIPS programming logicals, the user need only type:

$CDOLD (or $CDNEW, or $CDTST)

This is not required for the execution of AIPS, but is crucial for the AIPS programming tools to work.
Programmers may prefer to include the execution of one of $CDOLD, $CDNEW or $CDTST to their login
procedure as well. However, their execution will substantially slow down the login process.

AIPS “Version” “Option”

This procedure is used to start up an interactive AIPS session. The following text is taken from the comments
found at the beginning of the AIPS start-up procedure as stored in $SYSUNIX:

: " Usage: AIPS [NEW, OLD or TST] [REMOTE] [DEBUG] [LOCAL] "

M e e e e e ot e 2 e e o = = s o e e o o e "

: " Procedure to start up an AIPS session with process name AIPSn, "
: " then disappear (i.e., exec without fork). "

: " Inputs: "
R OLD, "
R NEW or "
;" TST to select version of AIPS to run (default is NEW) "
" REMOTE to indicate a remote terminal i.e., no TV and TEK output "
. is directed to the user’s terminal (i.e., it better be "
A a Tektronix 4010/4012 compatible terminal if any TK=* "
R verbs or tasks are executed) "
" DEBUG to run with debugger "
R LOCAL to run a local version of AIPS (assumes AIPS.EXE is in "
D" current working directory) "

: " Generic Unix version. "

A.7. A TUTORIAL FOR PROGRAMMERS USING UNIX A-29

BATER “Version” “Option”

This procedure is used to start up an interactive BATER session. BATER can be used to prepare and submit
Jjobs to the AIPS batch queue. The following text is taken from the comments found at the beginning of the
BATER start-up procedure as stored in $SYSUNIX:

: " Procedure to start up an BATER session with process name BATERn,
: " then disappear (i.e., exec without fork).

: " Inputs:
HE oLD, "
L NEW or "
R TST to select version of BATER to run (default is NEW) "
" DEBUG to run with debugger
HERY LOCAL to run a local version of BATER (assumes BATER.EXE is in "
I current working directory)

: " Generic Unix version.

RUN “Program?”

This is a general purpose startup procedure for any of the stand-alone utility programs in AIPS (e.g.,
SETPAR, RECAT, etc.). This is normally only used by the local AIPS manager(s). The following text is
taken from the comments found at the beginning of the RUN procedure as stored in $SYSUNIX:

: " Usage: RUN program

.« " B s THEEI R U RIS USSR ———————]]
.

: " A script to facilitate the execution of AIPS stand-alone programs "
: " (e.g., FILAI*, SETPAR, POPSGN, RECAT, SETTVP, etc.). AIPS and "
: " BATER sessions should be initiated via the procedures AIPS and "
: " BATER (what else?). The version of the program started is

: " determined by $AIPS_VERSION as set upon login or by the execution
: " of $CDOLD, $CDNEW or $CDTST (or manually, of course). "

: " Generic Unix version.

COMRPL

This procedure will preprocess (if necessary) and/or compile (if necessary) subroutines, then stage the
resulting object modules for replacement in the proper object module library or libraries (if any). It takes

a variety of options which are described below. Arguments to COMRPL can appear in any order and in
any combination. At least one subroutine should be specified. However, if it is invoked with no arguments,

or otherwise incorrectly, it will display a terse synopsis of its usage. The following text is taken from the
comments found at the beginning of the COMRPL procedure as stored in $SYSUNIX:

A-30 APPENDIX A. AIPS DIRECTORY STRUCTURE AND SOFTWARE MANAGEMENT

: " Usage: COMRPL [directory-path/][€@)routine[.FOR,.f,.C,.c,.S,.8,.0] "
: " [AIPS-style-options] [Unix-style-options] [file.LOG] "

: " Drives the preprocessing of, and/or compilation of, and/or library "
: " replacement of AIPS routines. Any source code generated as the "
: " result of preprocessing is left in the same directory as the "
: " un-preprocessed source code. Object modules that are the result "
: " of the compilation of source code which resides in a subdirectory "
: " of $AIPS_VERSION are moved to the proper $LIBR subdirectory as "
: " defined in $SYSLOCAL/LIBR.DAT (unless NORE[PLACE] is specified). "

: " Inputs (can appear in any order): "
o 1) [directory-path/]{@]lroutine{.FOR,.f,.C,.c,.S,.8,.0] "

A At least one (uppercase) routine module name with or without "
i an extension. If not a pathname, the current working "
" directory is assumed and prepended. Pathnames can be given "
R either literally or using environment variables defined as "
" directory paths (e.g., $APLSUB/[@]lroutine[.FOR,.f,.C,.c,.S, "
" .8,.0]). The special character ’Q’, if prepended to the "
. filename, denotes the name of a file containing a list of "
A such routine module pathnames. If extensions are given with "
: " simple filenames, (i.e., ’no directory-path/’ prefix), it "
" speeds up the command line parsing somewhat. This is "
A because filename versus AIPS-style option ambiguities are "
N resolved by first testing for AIPS-style option recognition "
I then assuming the argument is a simple filename. In any "
¢ " case, the extension is effectively ignored since SEARCH "
R strips it and tries to determine the fastest up-to-date "
A module form. SEARCH will also search "directory-path/" and "
" below for the existence of a routine module more appropriate "
HE to the host implementation and, if necessary, substitute the "
s proper ’directory-path/’ and/or filename extension. In the "
" case where the starting ’directory-path/’ is not a "
A subdirectory of $AIPS_VERSION, the search is restricted to "
N that directory. Otherwise, the directory search path is "
: " determined from $SYSLOCAL/SEARCH.DAT. v

: 2) [AIPS-style-options] "

i Recognizable AIPS-style options. These are translated into
" local syntax based on the definitions in the host specific
R $SYSLOCAL/*OPTS.SH files invoked by the appropriate compiler "
H procedure (i.e., FC, CC, or AS). Recognized AIPS-style "
" options include: "

e " (NO)DE(BUG] - generate code suitable for execution under "
" host debugger(s). "
" (NO)DI[RTY] ~ compile letting declarations default (not "
R recommended) "
R (NO)LI[ST] - generate line numbered listing of source "

N code as part of compilation process (if no "
A compilation is necessary, no listing is "

A.7. A TUTORIAL FOR PROGRAMMERS USING UNIX A-31

A generated) "
I (NO)MAP - generate link map "
" (NO)OPTn - optimization level (n = 0 to 9) "
" (NO)PR[OFILE] - generate code suitable for profiling "
: " (NO)PU[RGE] - delete preprocessed source code after "
A successful compilation and delete "
A automatically generated log files if all "
¢ " goes well "
" (NO)RE[PLACE] - move object module to proper $LIBR "
R subdirectory (procedure LINK does any "
A necessary replacements in and randomizations "
I of $LIBR/.../SUBLIB’s prior to linking) "
A where "
I (NO) = alternate form (e.g., NODEBUG is the opposite of "
HE DEBUG) "

" [...] = additional letters of option not required but "
I recognized "
" 3) [Unix-style-options] "

" Unix-style options which are passed on to the local compiler
HE involved.

; " 4) [file.LOG] "

HE Optional log filename of the form ’#.L0G’. If not given, "
A log files are automatically generated (or appended to) for

A each routine being processed. If purging is enabled either
A by default or by specifying PURGE on the command line and "
A all goes well, these automatic log files as well as "
L preprocessed forms of the routine involved are deleted. If
. the user specifies a ’.L0OG’ file on the command line, it is "
" either generated or appended to but never deleted.

: " Generic Unix version.

For example, the following command will preprocess (if necessary) the subroutine SAPLSUB/CHCOPY .FOR,
compile the preprocessed source code using the default compiler options as defined in the corresponding
$SYSLOCAL/+«OPTS.SH compiler options files, and stage the resulting object module for replacement in
the object library appropriate for subroutines from $APLSUB.

COMRPL $APLSUB/CHCOPY

The following examples show how multiple files can be compiled.

Process the subroutines MSGWRT and NXTFLG:

COMRPL $APLSUB/MSGWRT $APLNOT/NXTFLG

Process all routines in $APLSUB whose name begins with MP2:

A-32 APPENDIX A. AIPS DIRECTORY STRUCTURE AND SOFTWARE MANAGEMENT

COMRPL $APLSUB/MP2#*.FOR

Process every routine pathname listed in FOO.LIST:

COMRPL QF00.LIST

Simply for the purpose of illustration, the next example does everything above, but with the debug compiler
option enabled, the replacement option disabled (i.e., object modules will be left in the same directory as
the source code) and with a ”.LOG” file specified in which all actions are to be recorded (i.e., as well as
displaying them on the terminal):

COMRPL $APLSUB/MSGWRT DeBug $APLNOT/NXTFLG WIERD.LOG $APLSUB/MP2*.FOR \
OF00.LIST NORepLACe

COMLNK “ProgramSpec” “Option”

This procedure will preprocess (if necessary) and/or compile (if necessary) a program or set of programs
and/or link them with an appropriate object library link list. The resulting executable modules are moved
to the proper AIPS load libraries (if any). Any necessary replacements of object modules in object libraries
are performed prior to any links that include such libraries. Recall that COMRPL does not actually replace
object modules in object libraries, it only stages them for replacement. This way, the price of replacements
and the subsequent required “randomizations” of object libraries is only paid at link time rather than in
each COMRPL. Like COMRPL, COMLNK takes a variety of options which are described below. Arguments
to COMLNK can appear in any order and in any combination. At least one program should be specified.
However, if it is invoked with no arguments, or otherwise incorrectly, it will display a terse synopsis of its
usage. The following text is taken from the comments found at the beginning of the COMRPL procedure
as stored in $SYSUNIX:

: " Usage: COMLRK [directory-path/][@lprogram[.FOR,.f,.C,.c,.S,.8,.0] "
: " [AIPS-style-options] [Unix-style-options] "
" [file.OPT] [file.LOG] "

: " Drives the preprocessing of and/or compilation of and/or linking of"
: " AIPS programs. Object modules that are the result of compilations "
: " are left in the same directory as the source code. Executable "
: " modules that are the result of linking modules which all reside in "
: " subdirectories of $AIPS_VERSION are moved to $LOAD (unless "
: " NORE[PLACE] is specified, in which case, the executable module is "
: " left in the same directory as the source code). Otherwise, "
¢ " executable modules are moved to or left in the current working "
: " directory. "

: " Inputs (can appear in any order): "
" 1) [directory-path/][€@]program[.FOR,.t,.C,.c,.S,.8,.0] "

HER At least one (uppercase) program module name with or without "
" an extension. If not a pathname, the current working "
" directory is assumed and prepended. Pathnames can be given "
A either literally or using environment variables defined as "
¢ " directory paths (e.g., $APLPGM/[@)program[.FOR,.f,.C,.c,.S, "

A.7. A TUTORIAL FOR PROGRAMMERS USING UNIX

2)

3)

.8,.0]).

The special character ’Q’, if prepended to the

filename, denotes the name of a file containing a list of
such program module pathnames. If extensions are given with
simple filenames, (i.e., ’no directory-path/’ prefix), it
speeds up the command line parsing somewhat. This is
because filename versus AIPS-style option ambiguities are
resolved by first testing for AIPS-style option recognition
then assuming the argument is a simple filename. In any
case, the extension is effectively ignored since SEARCH
strips it and tries to determine the fastest up-to-date
SEARCE will also search "directory-path/" and
below for the existence of a program module more appropriate
to the host implementation and, if necessary, substitute the
proper ’directory-path/’ and/or filename extension. In the
case where the starting ’directory-path/’ is not a
subdirectory of $AIPS_VERSION, the search is restricted to
that directory.
determined from $SYSLOCAL/SEARCH.DAT.

module form.

Otherwise, the directory search path is

[AIPS-style-options]

Recognizable AIPS-style options. These are translated into
local syntax based on the definitions in the host specific
$SYSLOCAL/*0OPTS.SH files invoked by the respective steps
(i.e., FC, CC, or AS and LINK). Recognized AIPS-style

options include:

(NO)DE[BUG] - generate code suitable for execution under
host debugger(s).

(NO)DI[RTY] - compile letting declarations default (not
recommended)

(RO)LI[ST] - generate line numbered listing of source
code as part of compilation process (if no
compilation is necessary, no listing is
generated)

(NO)MAP - generate link map

(N¥O)OPTn - optimization level (n = 0 to 9)

(NO)PR[OFILE] - generate code suitable for profiling

(NO)PU[RGE] - delete preprocessed source code after
successful compilation and delete
automatically generated log files if all
goes well

(NO)RE[PLACE] - move executable module to $AIPS_VERSION/LOAD
if appropriate

where

(NO) = alternate form (e.g., NODEBUG is the opposite of
DEBUG)

[...] = additional letters of option not required but
recognized

[Unix-style-options]

Unix-style options which are passed on to the local compiler

"

"

A-33

A-34 APPENDIX A. AIPS DIRECTORY STRUCTURE AND SOFTWARE MANAGEMENT

" involved (the compiler is also invoked for the linking step "
R rather than invoking the loader directly). "

; " 4) [file.OPT] "

A Semi-optional link list file of the form ’*.0PT’. If not "
R given and the program object module passed to LINK resides "

" in a subdirectory of $AIPS_VERSION, the procedure LINK will "
I try to determine the default link list from the definitions '

" in $SYSLOCAL/LIBR.DAT. Otherwise, a ’*.0PT’ file must be "

" specified. The routine LIBS, given the pathname of an AIPS "
HEA program area will print out the default link list (e.g., "
R LIBS $APLPGM will print out the default link list for all "
R $APLPGM programs). Its output can be redirected to a "
" ’file.0OPT’ to simplify the construction of these files. "

; " 5) [file.LOG] "

HE Optional log filename of the form ’'*.L0OG’. If not given, "
R log files are automatically generated (or appended to) for "
I each program being processed. If purging is enabled either "
" by default or by specifying PURGE on the command line and "

" all goes well, these automatic log files as well as "
A preprocessed forms of the program involved are deleted. If "
A the user specifies a ’.LOG’ file on the command line, it is "
R either generated or appended to but never deleted. "

: " Generic Unix version. "

COMTST
Use COMLNK.

Options
The following AIPS-style options can be used with the compile and link procedures:

Option Minimum

Abbreviation Comments
DEBUG DE Compile or link with debug option enabled
NODEBUG NODE Compile or link without debug option enabled
LIST LI Produce a line numbered source code listing
NOLIST NOLI No line numbered source code listing
MAP MA Produce a link map
NOMAP NOMA No link map
OPTn OPTn Compile with optimization level n = 0 to 9
NOOPTn NOOPTn Disable optimization level n = 0 to 9
DIRTY DI Let declarations default
NODIRTY NODI Treat undeclared items as fatal errors
PURGE PU Delete preprocessed source code and

auto-logs if all goes well (also program

A.7. A TUTORIAL FOR PROGRAMMERS USING UNIX A-35

object module after successful links)
NOPURGE NOPU No deletion

Unix-style options are passed on to the compiler involved. The local
definitions of the AIPS-style options and the default modes are setup
in ASOPTS.SH (assembler), CCOPTS.SH (C compiler), FCOPTS.SH (Fortran
compiler) and LDOPTS.SH (linker). These files are stored in _$SYSLOCAL.

A.7.2 Miscellaneous Routines
VERSION “Version”
See SCDOLD, $SCDNEW and $CDTST under “LOGIN.CSH or LOGIN.SH” above.

FORK

The FORK procedure makes no sense under Unix (use &). The following example shows how to compile
and link AIPS as a background process:

COMLNK $AIPPGM/AIPS &

FLOG

The FLOG procedure makes no sense under Unix. Log files can be specified on the command line. Otherwise
they are automatically generated for each module as it is processed. In either case, the user can examine
the log files at any time using any number of different Unix commands.

A.7.3 Compiling and linking, an example

This example shows how we can link a private, experimental version of the program MX with private copies
of the subroutines GRDAT.FOR and DSKFFT.FOR. We will use the standard version of MX.FOR as found
in $QYPGNOT.

First, we change to some work directory and copy the current versions of DSKFFT.FOR and GR-
DAT.FOR from $APLNOT. Now we make any changes as desired to GRDAT.FOR and DSKFFT.FOR and
COMRPL them with the following command:

COMRPL DSKFFT GRDAT

COMRPL will recognize that DSKFFT and GRDAT reside in the current working directory (which is
presumably not an AIPS directory defined in $SYSLOCAL/LIBR.DAT). In this case, COMRPL will go
through all its normal actions, but will make no attempt to stage the resulting object modules for replacement
in an AIPS object library. Instead, the object modules will be left in the same directory as the source code.

For example, if we executed the COMRPL command line above on the NRAO-CV Convex with $AIPS_VERSION
defined as /AIPS/15APR87 and did this from the directory /aippgmr/khilldru where DSKFFT.FOR and
GRDAT.FOR had been copied, COMRPL would display the following on the user’s terminal:

COMRPL : Date Fri Feb 13 04:16:53 EST 1987
COMRPL : Substitute /aippgmr/khilldru/DSKFFT.FOR
COMRPL : for /aippgmr/khilldru/DSKFFT

PP : Preprocess /aippgmr/khilldru/DSKFFT.FOR
PP : into /aippgmr/xhilldru/DSKFFT.t

FC : Date Fri Feb 13 04:17:26 EST 1987

A-36 APPENDIX A. AIPS DIRECTORY STRUCTURE AND SOFTWARE MANAGEMENT

FC : Interpret FC \

FC : /aippgmr/khilldru/DSKFFT.
FC : as LIST=FALSE PURGE=TRUE

FC : plus fc -V -c =00 \

FC : /aippgmr/khilldru/DSKFFT. £

CONVEX FPP VERSION V2.2
CONVEX FSKEL VERSION V2.2
CONVEX FC VERSION V2.2

FC : Compile of /aippgmr/Xhilldru/DSKFFT.f
FC : ends successfully.

FC : Delete /aippgmr/khilldru/DSKFFT.t
COMRPL : Module /aippgmr/khilldru/DSKFFT.o
COMRPL : not /AIPS/15APR87/. ..

COMRPL : Not replaced!

COMRPL : Date Fri Feb 13 04:17:47 EST 1987
COMRPL : Substitute /aippgmr/khilldru/GRDAT.FOR
COMRPL : for /aippgmr/khilldru/GRDAT

PP : Preprocess /aippgmr/khilldru/GRDAT.FOR
PP : into /aippgmr/khilldru/GRDAT.t
FC : Date Fri Feb 13 04:18:21 EST 1987
FC : Interpret FC \

FC : /aippgmr/khilldru/GRDAT.t

FC : as LIST=FALSE PURGE=TRUE

FC : plus fc -V -c -00 \

FC /aippgmr/khilldru/GRDAT.f

CONVEX FPP VERSICN V2.2
CONVEX FSKEL VERSION V2.2
CONVEX FC VERSION V2.2

FC : Compile of /aippgmr/khilldru/GRDAT.f
FC : ends successfully.

FC : Delete /aippgmr/khilldru/GRDAT.f
COMRPL : Module /aippgmr/xhilldru/GRDAT.o
COMRPL : not /AIPS/1BAPR8T/. ..

COMRPL : Not replaced!

COMRPL : Ends successfully

As you can see, COMRPL is rather verbose and didactic. It invokes various subordinate procedures to
accomplish its mission. The procedure responsible for each action is listed in the left margin. Each of these
is designed so that it can be used stand-alone, if so desired. A description of their usage can be found at
the beginning of the text of each. Most are stored in 8SYSUNIX, but a few are system specific and reside
in $SYSLOCAL. However, using COMRPL affords the best protection against foul ups.

Next, we need an option file to tell the linker what object modules and object libraries to use. The
name of the options file can be anything that you please, except it must have an extension of “.OPT” (or
“.opt”). We can use the procedure LIBS to create an initial version of an options file for programs found in

$QYPGNOT (like MX). To do this, we type:

LIBS $QYPGNOT > MYMX.OPT

This will extract the normal library link list from $SYSLOCAL/LIBR.DAT for programs that reside in
$QYPGNOT and store this list in MYMX.OPT. To link our private versions of GRDAT and DSKFFT with
$QYPGNOT/MX, we need to use a text editor to change this version of MXMY.OPT from:

A.7. A TUTORIAL FOR PROGRAMMERS USING UNIX A-37

$LIBR/QNOT/SUBLIB
$LIBR/APLNOT/SUBLIB
$LIBR/QSUB/SUBLIB
$LIBR/QVEX/SUBLIB
$LIBR/YSUB/SUBLIB
$LIBR/YM70/SUBLIB
$LIBR/APLSUB/SUBLIB
$LIBR/APLCVEX/SUBLIB
$LIBR/APLSUB/SUBLIB

to:

DSKFFT.o

GRDAT.o
$LIBR/QNOT/SUBLIB
$LIBR/APLNOT/SUBLIB
$LIBR/QSUB/SUBLIB
$LIBR/QVEX/SUBLIB
$LIBR/YSUB/SUBLIB
$LIBR/YM70/SUBLIB
$LIBR/APLSUB/SUBLIB
$LIBR/APLCVEX/SUBLIB
$LIBR/APLSUB/SUBLIB

With a suitable “.OPT” file prepared, we are ready to create our private version of an MX executable. To
do this, we need only type:

COMLNK $QYPGNOT/MX.FOR MYMX.OPT

For example, if we executed the COMLNK command line above on the NRAO-CV Convex with SAIPS_VERSION
defined as /AIPS/15APR87 and did this from the directory /aippgmr/khilldru where our private DSKFFT.o
and GRDAT .o reside, COMLNK would display the following on the user’s terminal:

COMLNK : Date Fri Feb 13 05:12:59 EST 1987
COMLRNK : Substitute /AIPS/15APR87/QY/PGN/NOTST/MX.o
COMLNK : for /AIPS/15APR87/QY/PGM/NOTST/MX.FOR
LINK : Date Fri Feb 13 05:15:10 EST 1987

LINK : Interpret LINK MYMX.OPT \

LINK : /AIPS/15APR8T/QY/PGM/NOTST/MX .0
LINK : as PURGE=FALSE REPLACE=TRUE

LINK : plus /usr/convex/fc -V -g \

LINK : /AIPS/15APR87/QY/PGM/NOTST/MX.0 \
LINK : DSKFFT.o \

LINK : GRDAT.o \

LINK : /AIPS/15APR87/LIBR/QNOT/SUBLIB \
LINK : /AIPS/15APR87/LIBR/APLNOT/SUBLIB \
LINK : /AIPS/15APR87/LIBR/QSUB/SUBLIB \
LINK : /AIPS/15APR87/LIBR/QVEX/SUBLIB \
LINK : /AIPS/15APR87/LIBR/YSUB/SUBLIB \
LINK : /AIPS/15APR87/LIBR/YM70/SUBLIB \
LINK : /AIPS/15APR87/LIBR/APLSUB/SUBLIB \
LIRK : /AIPS/15APR87/LIBR/APLCVEX/SUBLIB \

LINK : /AIPS/15APR87/LIBR/APLSUB/SUBLIB \

A-38 APPENDIX A. AIPS DIRECTORY STRUCTURE AND SOFTWARE MANAGEMENT

LINK : ~-o /AIPS/15APR87/QY/PGM/NOTST/MX.EXE
CONVEX FC VERSION V2.2

LINK : Moved /AIPS/15APR87/QY/PGM/NOTST/MX .EXE
LINK : to /aippgmr/khilldru/MX.EXE

LINK : Link of /AIPS/15APR8T/QY/PGM/NOTST/MX.0

LINK : ends successfully.

COMLNK : Delete /AIPS/15APR8T/QY/PGM/NOTST/MX.LOG
COMLNK : Ends successfully

Note that, in this case, no preprocessing or compiling was performed. Despite the fact that the command line
specified $QYPGNOT/MX.FOR, the search process found an extant version of $QYPGNOT/MX.o (i.e., the
MX program object module) which it determined was up to date. It therefore substituted $QYPGNOT/MX.o
for 3QYPGNOT/MX.FOR and COMLNK dutifully proceeded directly to the link step. If we had known this
a priori, we could have instead invoked the procedure LINK via “LINK $QYPGNOT/MX.o MYMX.OPT”.
However, this can be dangerous since LINK makes no attempt to determine whether the specified object
module is up to date. In any case, it has become the preferred practice to leave program object modules
around, since it is much faster than preprocessing and compiling the the same source code again. The object
modules occupy about the same disk space as a second copy of the unpreprocessed source code and, as long
care is taken (e.g., using COMLNK with its search process), the practice is safe. Also note that, whereas
the executable module was originally generated in the $QYPGNOT directory, it was ultimately moved to
the current working directory.

Suppose we wanted to compile and/or link SQYPGNOT/MX with execution profiling enabled and have
the link run as a background process. For this, we type:

COMLNK $QYPGNOT/MX PROFILE &

In the above, we used the AIPS-style option to enable execution profiling. Alternatively, we could have
specified the local compiler option for execution profiling explicitly, for example:

COMLNK $QYPGNOT/MX -p &

The “p” would have been passed on to the compiler assuming that it had some meaning. Once this is
known, this is the practice that most knowledgeable Unix users will probably adopt. The AIPS-style options
are merely preserved for those who don’t know any better.

The actions of COMLNK will be displayed on the terminal as well as recorded in a log file whose name
defaults to MX.LOG (unless otherwise specified). If all goes well, MX.LOG will be deleted. If not, it will
be available for post mortem examination. If we really want to, we can redirect the terminal output from
COMLNK to the “bit bucket” by typing:

COMLNK $QYPGNOT/MX > /dev/null &

In any case, unless we logout and login again, the shell will notify us when any of our background processes
finish, successful or not. If we’ve redirected our COMLNK output to /dev/null, the existence of MX.LOG
will also tell us that the COMLNK failed. This is not true if the user specifies a log file on the COMLNK
command line. If a log file is specified, COMLNK assumes that the user must want this information for
some reason and will leave it around. Furthermore, if the user-specified log file already exists, new text is
simply appended.

A.7. A TUTORIAL FOR PROGRAMMERS USING UNIX A-39

A.7.4 Non-standard INCLUDE files

The source code preprocessor must naturally have a mechanism for handling included source text in Fortran
modules. These are used exclusively in AIPS code to insert variable declarations, COMMON definitions,
EQUIVALENCE statements, DATA initialization statements, PARAMETER statements and special com-
piler directives. Since there is no industry standard for such included text, the AIPS coding practice is to
use VMS-style INCLUDE statements. These take the following form:

INCLUDE ’INCS:filename’

The “INCS:” portion refers to an AIPS programming logical. In Unix, this takes the form of an environment
variable defined as a search path. This search path consists of a blank-separated list of directory pathnames.
If another directory is to be added to the search path (e.g. /mnt/myname/aips) then define INCS:

% setenv INCS “/mnt/mydir SINCXXX $SINCNOT SINC”

Note: you must use double quotes in defining SINCS. The actual value of $INCXXX should be depends of the
type of computer you are using. Determine the one to use from examining the listing of AREAS.DAT earlier
in this chapter. Usually for developing new routines only $INC of the AIPS standard INCLUDE libraries
are needed. If $INCS is undefined the preprocessor will set it to a standard value for your installation.

A.7.5 Running Tasks from Private Directories

If a private directory is to be used then the .EXE and the .HLP file should be in the same directory. To use
the executables in a private directory during a session with AIPS it is first necessary to define an environment
variable to point to this directory, e.g.:

setenv MYVAR /mnt/myname/aips (C shell)

or

MYVAR=/mnt/myname/aips (Bourne or Korn shell)

export MYVAR

Then, inside AIPS set adverb VERSION to point to this directory, e.g:
> VERSION = "MYDIR’
and INPUTS, HELP and GO will use the right versions of the files.

A.7.6 Debugging under Unix

To run the debugger the task and any relevant routines should have been compiled and link edited with the
DEBUG option. Use of the debugger on optimized code can be confusing so is best avoided. If you are using
executables in a private directory see the previous section.

DEBUG must be specified on the command line when starting AIPS:
The startup procedure will then ask you which debugger (e.g., dbx, csd, adb) and if you wish to run
AIPS itself under the debugger. To cause a task to be run under the debugger in AIPS use pseudo verb
SETDEBUG, e.g.:
> setdebug = 20
Using a value of 0 turns off initiating tasks under the debugger. AIPS will not resume until after the task
has completed.

A.7.7 Check out system

Programmers at NRAO must use the checkout procedures on CVAX to change AIPS code. Please remember
to specify directories using their logical names instead of the full directory names. Otherwise, the automatic
procedures for updating other NRAO machines each night will fail.

A-40 APPENDIX A. AIPS DIRECTORY STRUCTURE AND SOFTWARE MANAGEMENT

Appendix B

Shopping lists

B.1

Introduction

This appendix contains the one line descriptions of each of the AIPS system subroutines that may be called
from applications software arrainged by category (a given routine may have several entries). Not all of the
subroutines described in the following lists may be called for all applications software. In particular, routines
in directory AIPSUB may only be called from program AIPS or other tasks in the AIPPGM directory. Z2
and Y3 routines #nay only be called from other “Z” or “Y” routines.

This list should simplify finding the appropriate routine inside the AIPS system. Each routine name is
prefixed with the logical name of the directory in which it resides. A summary of the categories is given
below.

AP-APPL These are routines that use “Array Processor” routines for a particular operation.

AP-FFT These are routines that use “Array Processor” routines for FFT (Fast Fourier Transform)
operation.

AP-UTIL These are utility routines that use “Array Processor” routines.
BATCH These routines are related to AIPS batch functions.

BINARY These routines process external binary format data.

CALIBRATION These routines are related to the calibration package of routines.
CATALOG These routines are related to the AIPS catalog.

CHARACTER There routines are AIPS character manipulating functions.
COORDINATES These routines manipulate astronomical coordinate systems.
EXT-APPL These are applications routines for extension files; generally tables.
EXT-UTIL These are utility routines for extension files.

FITS These routine are for processing data in FITS files.

GRAPHICS These are the AIPS graphics routines.

HEADER These routines process AIPS catalog header records.

HISTORY These routines process AIPS history files or records.

I0-APPL These are applications routines for the AIPS I/O system.

I0-BASIC These are the basic routines for the AIPS I/0O system.

B-1

APPENDIX B. SHOPPING LISTS

IO-TV These are the routines that communicate with the image display.
10-UTIL These are utility routines for the AIPS 1/O system.

10-WAWA These are the “WAWA” or “Easy I0” package of routines.
MAP These routines deal with images.

MAP-UTIL These are utility routines dealing with images.

MATH These are basic mathematical routines.

MESSAGES These routines deal with sending messages to the user.
MODELING These routine involve model fitting or calculation.
PARSING These routine involve parsing information from character strings.
PLOT-APPL These are applications plotting routines.

PLOT-UTIL These are utility plotting routines.

POPS-APPL These are POPS applications routines (verbs).
POPS-LANG These are parts of the POPS language processor.
POPS-UTIL These are POPS utility routines.

PRINTER These are routines related to printers.

SDISH These are routines for processing single dish data.

SERVICE These are various service routines.

SLICE These are routines that deal with slices through images.

SORT These are sorting routines.

SPECTRAL These are routine related to spectroscopy.

SYSTEM These are AIPS system functions.

TAPE These are routines related to reading tape or other external binary files.
TERMINAL These are routines for I/O to user terminals

TEXT These are routines related to text files.

TV These are routines related to the image display.

TV-APPL These are applications routines related to the image display.
TV-BASIC These are basic image display routines.

TV-10 These are 1/O applications routines related to the image display.
TV-UTIL These are utility routines related to the image display.
UTILITY These are general utility routines.

UV These routines deal with uv (interferometer) data.

UV-UTIL These utility routines deal with uv (interferometer) data.
VLA These are routines that are specific to the VLA (NRAO Very Large Array)

B.1. INTRODUCTION

e YO These are the main top level TV (image display) routines.

o Y1 These are the second level TV routines.

e Y2 These are the IIS specific TV routines; these are unlikely to be supported on othe displays.

e Y3 These are “Y” routines that can only be called from other “Y” routines.

e Z These are routines which may contain system dependent functions.

e Z-2 These are routines which may contain system dependent functions but may only be called from

other “Z” routines.

B.1.1 AP-APPL

QROT:ALGSUB.FOR
QNOT : APCONV.FOR
QNOT:CONV.FGOR

QROT:DISPTV.FOR

QPSAP:
QPSAP:
QPSAP:
QPSAP:
QPSAP:
QPSAP:
QPSAP:
QPSAP:
QPSAP:
QPSAP:
QPSAP:
QPSAP:
QPSAP:
QPSAP:
QPSAP:
QPSAP:
QPSAP:
QPSAP:
QPSAP:
QPSAP:
QPSAP:
QPSAP:
QPSAP:
QPSAP:
QPSAP:
QPSAP:
QPSAP:
QPSAP:
QPSAP:
QPSAP:
QPSAP:
QPSAP:
QPSAP:
QPSAP:
QPSAP:
QPSAP:
QPSAP:

Q1FIN.FOR
Q1GRD.FOR
QBAKSU.FOR
QBOXSU . FOR
QCLNSU.FOR
QCRVMU.FOR
QCSQTR.FOR
QCTLUT.FOR
QCVCMU.FOR
QCVCOX.FOR
QCVEXP.FOR
QCVIAD.FOR
QCVMAG.FOR
QCVMMA .FOR
QCVMOV.FOR
QCVMUL .FOR
QCVSDI.FOR
QCVSMS.FOR
QDIRAD.FOR
QFINGR.FOR
QGADIV.FOR
QGASUB.FOR
QGET.FOR
QGRD1.FOR
QGRD2.FOR
QGRD3.FOR
QGRD4.FOR
QGRDCC.FOR
QGRDFI.FOR
QGRDMI.FOR
QGRID.FOR
QGRIDA.FOR
QHIST.FOR
QINT.FOR
QINTP.FOR
QLVGT.FOR
QMAKMS .FOR

Interpolates model visibility grom a grid and subtracts from uv data.
Disk based 2-D convolution using FFTs.

*TESS routine: Convolve a map with a beam.

*TESS routine: Display an image on a TV

Finish gridding a row of uv data.

Grid a uv data.

Back substitution.

Boxcar sum of a vector.

Low level Clark CLEAN routine.

Complex-real vector multiply.

inplace transpose of square, complex matrix.
Initialize cosine lookup table etc.

Scalar complex times conjugate of vector to real.
Complex conjugate of a vector.

Vector complex exponential.

Complex vector conjugate of vector add.

Complex vector magnitude squared.

Max. square of modulus of complex vector.
Complex vector move.

Complex vector multiply.

Divide weighted complex vector by complex scalar.
Subtract real vector*complex scalar from vector.
Directed vector add.

Finish gridding row of uv data.

Divide Gaus. model vis. into uv data.

Subtract Gaus. model vis. from uv data.

Move data from pseudo-AP memory to "host'".
Convolves visibility data onto a grid.

Convolves linear polarization data onto a grid.
Convolve visibility data onto a grid.

Convolves visibility data onto a grid.

Grid and FT Clean components.

Finish griding a row of uv data.

Combined complex vector in gridding uv data.
Grid uv data into row.

Grid visibility data.

Make histogram of a vector.

Interpolates model visibilities from a grid.
Interpolates model visibilities from a grid.
Vector logical greater than.

Make mask depending on vector, scalar comparison.

B-4

QPSAP:
QPSAP
QPSAP
QPSAP
QPSAP
QPSAP:
QPSAP
QPSAP:
QPSAP
QPSAP:
QPSAP:
QPSAP
QPSAP
QPSAP
QPSAP
QPSAP:
QPSAP:
QPSAP
QPSAP:
QPSAP:
QPSAP:
QPSAP:
QPSAP:
QPSAP
QPSAP:
QPSAP:

QPSAP:
QPSAP:
QPSAP:
QPSAP:

QPSAP:
QPSAP:
QPSAP:
QPSAP:
QPSAP:
QPSAP:
QPSAP
QPSAP
QPSAP
QPSAP:
QPSAP
QPSAP:
QPSAP
QPSAP
QPSAP
QPSAP:
QPSAP:
QPSAP:
QPSAP:
QPSAP:
QPSAP:
QPSAP:
QPSAP:

QMAXMI.FOR

:QMAXV.FOR
:QMCALC.FOR
:QMENT.FOR
:QMINV.FOR

QMTRAN.FOR

:QMTYP.FOR

QMULCL.FOR

:QPHSRO.FOR

QPOLAR.FOR
QPTDIV.FOR

:QPTFAZ.FOR
:QPTSUB.FOR
:QRECT.FOR
:QRFT.FOR

QSEARC.FOR
QSPDIV.FOR

:QSPSUB.FOR

QSVE.FOR
QSVESQ.FOR
QUVIN.FOR
QUVINT.FOR
QVABS.FOR

:QVADD.FOR

QVCLIP.FOR
QVCLR.FOR
QVCcOS.FOR
QVDIV.FOR
QVEXP.FOR
QVFILL.FOR
QVFIX.FOR
QVFLT.FOR
QVIDIV.FOR
QVINDE.FOR
QVLN.FOR
QVMA.FOR

:QVMOV.FOR
:QVMUL.FOR
:QVNEG.FOR

QVRVRS.FOR

:QVSADD.FOR

QVSIN.FOR

:QVSMA.FOR
:QVSMAF .FOR
:QVSMSA.FOR

QVSMUL.FOR
QVSQ.FOR

QVSQRT.FOR
QVSUB.FOR
QVSWAP.FOR
QVTRAN.FOR
QVTSMU.FOR
QXXPTS .FOR

QNOT:VISDFT.FOR

APPENDIX B. SHOPPING LISTS

Find maximum and minimum of a vector.

Find maximum value element of a vector.
Compute model visibility from point model.
MEM routine

Find minimum value element of a vector
matrix transpose.

Chose DFT or gridded interpolation method.
High level Clark CLEAN routine

Add phase gradient to a complex array.

Vector rectangular-to-polar conversion.
Divide point model visibility into uv data.
Compute phase in model visibilities.

Subtract point model visibility from uv data.
Vector polar-to-rectangular conversion.

Does real, inverse FT with arbitrary spacing.
VLBI fringe search with FFT.

Divide Gaussian model visibility into uv data.
Subtract Gaussian model visibility from uv data.
Sum the elements of a vector.

Sum the squares of the elements of a vector.
Interpolate visibility model from a grid.
Interpolate model visibility from grid.
Vector absolute value.

Vector add.

Vector clip.

Vector zero.

Vector cosine.

Vector divide.

Vector exponentiate.

Vector fill.

Vector fix.

Vector float.

Divide a vector by the product of two integers.
Vector index (gather)

Vector natural logrithm

Vector multiply and vector add.

Vector move.

Vector multiply.

Negate the elements of a vector.

Reverse the elements of a vector.

Vector scalar add.

Vector sine.

Vector scalar multiply and vector add.

Scalar multiply and and round.

Vector scalar multiply and scalar add.
Vector scalar multiply.

Square vector.

Vector square root.

Vector subtract.

Vector swap.

Inplace transpose of a matrix of vectors.
Vector table scalar multiply.

Subtract point model visibility from uv data.

Compute DFT of model and subtract/divide from/into uv data.

B.1. INTRODUCTION

B.1.2 AP-FFT

APLSUB:AP2SIZ.FOR
QSUB: APXPOS.FOR
QNOT:CONV1.FOR
QNOT:CONV2.FOR
QNOT :CONV3.FOR
QNOT:CONV4.FOR
APLNOT:DSKFFT.FOR
APLNOT:EMPTY1.FOR
APLNOT:EMPTY2.FOR
QNOT:FFTIM.FOR
APLNOT:FILL1.FOR
APLNOT:FILL2.FOR
QNOT : MAKMAP .FOR
APLSUB:MINSK.FOR
APLSUB:MSKIP.FOR
QSUB:PASS1.FOR
QSUB:PASS2.FOR
QPSAP:QCFFT.FOR
QPSAP:QRFFT.FOR

B.1.3 AP-UTIL

QNOT: APIO.FOR
QSUB: APROLL.FOR
QNOT: CCSGRD . FOR
QNOT: CONVFN.FOR
QNOT : GRDCOR . FOR
QNOT : GRDCRM . FOR
QNOT: GRDSUB. FOR
QNOT:GRDTAB.FOR
QNOT: INTPFN.FOR
QNOT : MAKMAP . FOR
QPSAP:QGSP.FOR
QPSAP:QINIT.FOR
QPSAP:QPUT.FOR
QPSAP:QRLSE.FOR
QSUB:QROLL.FOR
QPSAP:QWAIT.FOR
QPSAP:QWD.FOR
QPSAP:QWR.FOR
QNOT:UVGRID.FOR
QNOT:UVMDIV.FOR
QNOT:UVMSUB.FOR
QNOT: UVMTYP.FOR
QNOT:UVTBGD.FOR
QNOT: UVTBUN.FOR
QNOT:UVUNIF.FOR

B.1.4 BATCH

AIPSUB:AUA.FOR
AIPSUB:AUB.FOR
APLSUB:BATPRT.FOR

B-5

returns largest power of 2 not exceeding 1024 times first argument
In place transpose of complex array.

First of four routines to convolve two real images.

Second of four routines to convolve two real images.

Third of four routines to convolve two real images.

Fourth of four routines to convolve two real images.

2-D disk based FFT using AP.

DSKFFT utility routine

DSKFFT utility routine

FFTs an image for uv interpolation.

DSKFFT utility routine

DSKFFT utility routine.

Makes image or beam from uv data set.

Inits use of MSKIP to read noncontiguous, evenly spaced rows in a map
Reads noncontiguous, but evenly spaced rows in a map (see also MINSK)
First of two routines to FFT an image file.

Second of two routines to FFT an image file.

Complex 1-D FFT.

Real-half plane complex FFT

Copies image-like data between disk and "AP memory".

Copies AP "memory" to disk, gives up AP then reloads AP
Transforms CLEAN components to a grid.

Computes convolving fn. kernels and stores them in "AP memory"
Normalizes and corrects image for gridding convolution fn.
Loads CLEAN components into AP for uv model computation.
Subtracts transform of CLEAN components from uv data.

Computes Fourier transform of gridding convolution function.
Computes interpolation kernals and put them into "AP memory".
Makes image or beam from uv data set.

Read "S-pad" register

Initialize "AP".

Move data from "host" to "AP" memory.

Release "AP".

Determines if time to roll AP, if so calls APROLL.

Suspend host until AP done.

Suspend host until AP data transfer done.

Suspend host until AP computations complete.

Grids uv data to be FFTed.

Divides a uv data set by the Fourier transform of a model.
Subtracts the Fourier transform of a model from a uv data set.
Determines relative CPU times for DFT or gridded interpolation.
Grids uv data in arbitrary sort order to be FFTed.

Determines and applies uniform weighting to uv data in arb. order.
Determines and applies uniform weighting to a uv data set.

verb to submit batch jobs to AIPSC and the QMNGR queues
verbs to prepare, edit, and review batch jobs and queues
prints header/trailer messages for printer tasks when run in batch

B-6

APLSUB:BATQ.FOR
AIPSUB:BBUILD.FOR

B.1.5 BINARY

APLGEN:ZBYMOV.FOR
APLGEN:ZBYTFL.FOR
APLGEN:ZC8CL.FOR

APLGEN:ZCLC8.FOR

APLGEN:ZDHPRL.FOR
APLGEN:ZGETCH.FOR
APLGEN:ZI16IL.FOR
APLGEN:ZI32IL.FOR
APLGEN:ZIS8IL.FOR

APLGEN:ZILI16.FOR
APLGEN:ZILI32.FOR
APLGEN:ZPUTCH.FOR
APLGEN:ZR32RL.FOR
APLGEN:ZR64RL.FOR
APLGEN:ZR8P4.FOR

APLGEN: ZRDMF .FOR

APLGEN:ZRHPRL.FOR
APLGEN:ZRLR32.FOR
APLGEN:ZRLR64.FOR
APLGEN:ZRM2RL.FOR
APLGEN:ZUVPAK.FOR
APLGEN:ZUVXPK.FOR

APPENDIX B. SHOPPING LISTS

performs operations on batch queue control file such as OPEN RUN CLOS
reads input lines and adds them to the text file for a batch job

move 8-bit bytes from in-buffer to out-buffer

interchange bytes in buffer if needed to go between local & standard
convert packed ASCII buffer to local character string

convert local character string to packed ASCII buffer

convert 64-bit HP floating buffer to local DOUBLE PRECISION values
get a character from a REAL word

convert FITS-standard 16-bit integers to local integers

convert FITS-standard 32-bit integers from buffer into local integers
convert 8-bit unsigned integers in buffer to local integers

convert local integers to 16-bit FITS integers in a buffer

convert local integer into FITS-standard 32-bit integers

inserts 8-bit "character” into a word

convert 32-bit IEEE floating buffer to local REAL values

convert 64-bit IEEE floating-point buffer to local "DOUBLE PRECISION"
converts pseudo I*4 to double precision - for tape handling only
convert DEC Magtape Format (36 bits data in 40 bits) to 2 integers
convert 32-bit HP floating buffer to local REAL values

converts buffer of local REAL values to IEEE 32-bit floating-point
convert buffer of local double precision values to IEEE 64-bit float.
convert Modcomp to local single precision floating point

Pack visibility data, 1 correlator per real with magic value blank.
Expands packed visibility data and adds weight

B.1.6 CALIBRATION

APLNOT:BLGET.FOR

APLNOT:BLINI.FOR

APLNOT :BLREFM.FOR
APLNOT:BLSET.FOR

APLNOT:BPASET.FOR
APLNOT :BPGET.FOR

APLNOT:BPINI.FOR

APLNOT:BPREFM.FOR
APLNOT:CALADJ.FOR
APLNOT:CALCOP.FOR
APLNOT:CALINI.FOR
APLNOT:CALREF.FOR
APLNOT:CGASET.FOR
APLNOT:CHNCOP.FOR
APLNOT: CHNDAT.FOR
APLNOT:CLREFM.FOR
APLNOT:CLUPDA.FOR
APLNOT:CMPARM.FOR
APLNOT:CSINI.FOR

APLNOT:CSLGET.FOR
APLNOT:DATBND.FOR
APLNOT:DATCAL.FOR
APLNOT:DATFLG.FOR
APLNOT:DATGET.FOR

Sets up for interpolation in baseline (BL) table
Create/open/init I/0 to BL table

Checks existence of BL table, changes format if necessary
Fills current baseline calibration table

Sets up the bandpass table array for use by DATBND.

Sets bandpass correction arrays in common
Create/open/initialize bandpass (BP) table

Checks existence of BP table, changes format if necessary
Adjusts solution (SN) table phases to a common reference antenna.
Copies selected uv data with calibration and editing
Creates/opens/initializes calibration (CL) table

Adjusts the reference antenna in an SN table.

Maintains calibration values in an array in common

Copies selected portions of the IF table
Creates/Opens/Reads/Writes/Closes an IF table.

Checks existence of CL table, changes format if necessary
Concatenates, rereferences, smooths SN tables and applies 1t to CL.
Determines blocks of data in a vis. record to decompress
Create/Open/Init Single dish calibration (CS) table

Reads CL (or SN) table and sets up for interpolation.
Applies the bandpass correction to data.

Applies calibration to data

Flags data specified in flagging table

Reads, selects, calibrates and edits data.

B.1. INTRODUCTION

APLNOT
APLNOT
APLNOT
APLNOT
APLNOT
APLNOT
APLNOT
APLNOT
APLNOT
APLNOT
APLNOT
APLNOT
APLNOT
APLNOT

APLNOT:
APLNOT:
APLNOT:
APLNOT:
APLNOT:
APLNOT:
APLNOT:
APLNOT:
APLNOT:
APLNOT:
APLNOT:
APLNOT:
APLNOT:
APLNOT:
APLNOT:
APLNOT:
APLNOT:
APLNOT:
APLNOT:
APLNOT:

APLNOT
APLNOT

APLNOT:
APLNOT:
APLNOT:
APLNOT:
APLNOT:
APLNOT:
APLNOT:
APLNOT:
APLNOT:
APLNOT:

APLNOT
APLNOT
APLNOT

APLNOT:
APLNOT:
APLNOT:
APLNOT:

APLNOT

:DATPOL.FOR
:DCALSD.FOR
:DGETSD.FOR
:DGGET.FOR
:DGNEAD.FOR
:DGINIT.FOR
:FLAGUP.FOR
:FLGINI.FOR
:FLGSTK.FOR
:FNDSOU.FOR
:FQINI.FOR
:FQMATC.FOR
:GACSIN.FOR
:GAINI.FOR
GAININ.FOR
GETFQ.FOR
GETSOU.FOR
INDXIN.FOR
IOBSRC.FOR
LXYPOL.FOR
MULSDB.FOR
NDXINI.FOR
NXTFLG.FOR
PARANG.FOR
POLSET.FOR
SCINTP.FOR
SCLOAD.FOR
SDCGET.FOR
SDCSET.FOR
SDGET.FOR
SELINI.FOR
SELSMG.FOR
SET1VS.FOR
SETSM.FOR
:SETSTK.FOR
:SMOSP.FOR
SN2CL.FOR
SNAPP.FOR
SNINI.FOR
SNREFM.FOR
SNSMO.FOR
SOUELV.FOR
SOUFIL.FOR
SOURNU.FOR
TABBL.FOR
TABBP.FOR
:TABCAL.FOR
:TABCS.FOR
:TABFLG.FOR
TABFQ.FOR
TABGA.FOR
TABNDX.FOR
TABSN.FOR
:TABSOU.FOR

Apply polarization corrections to data.

Apply Single dish calibration to data.

Reads, selects single dish data, calibrates and edits.
Selects uv data and changes Stokes

Fills output CATBLK for UVGET

Sets arrays for selecting data and changing Stokes

Updates the Flag (FG) table.

Create/Open/Init Flag (FG) table.

Set Stokes flag for uv flagging.

Find source numbers for a list of sources.
Create/open/initialize frequency (FQ) table

Check if selection criteria match FQ table entries.
Initializes CS file, and prepares table to be applied.
Creates and initializes gain (GA) extension tables.
Initializes calibration table for application.

Find info on a given frequency id.

Find info on a given source id.

Initializes index (NX) file, finds first scan selected.
Search for antennas in the current bandpass buffer.

Fills polarization correction table for AT like linear polarization.
Determines if a uv file is multi- or single- source.
Create/open/init index (NX) table

Manages flagging info in tables in common.

Computes antenna parallactic angles

Fills polarization correction table from info in AN table.
Interpolates bandpass tables in time.

Copies part of one bandpass scratch file to another for efficiency.
Sets up to interpolate in Single dish calibration (CS) table.
Interpolates single dish calibration data for current time.
Reads single dish data with optional calibration and flagging
Initialize data selection and control in commons in DSEL.IKNC
Selects calibrator data, smooths solutions.

Sets up pointer and weights arrays for selecting uv data.
Determines type of spectral smoothing and sets up look up table.
Sets STOKES parameters correctly for plotting routines
Convolves a spectrum with a tabulated function.

Apply an SN to a CL table.

Append SN tables and keep track of reference antennas.
Create/open/initialize solution (SN) tables.

Checks existence of SN table, changes format if necessary
Smooths solution (SN) tables

Computes source hour angles and elevations

Fills in arrays of source numbers to be included or excluded.
Look up source numbers for a list of names.

Do IO to Baseline (BL) table after setup by BLINI.

Does I/0 to bandpass (BP) table opened by BPINI

Does I/0 to Calibration (CL) table opened by CALINI

Does I/0 to single dish calibration (CS) table opened by CSINI
Does I/0 to Flag (FG) table opened by FLGINI

Does I/0 to frequency (FQ) table opened by FQINI

Does I/0 to GAIN (GA) table opened by GAINI

Does 1/0 to Index (NX) table opened by NDXINI

Does I/0 to Solution (SN) table opened by SNINI

Does I/0 to Source (SU) table opened by SOUINI

B-8

APLNCT:
APLNQT:
APLNOT:
APLNOT:

B.1.7

AIPSUB:
AIPSUB:
AIPSUB:
AIPSUB:
APLSUB:
APLSUB:

APLSUB
APLSUB

AIPSUB:

APLSUB

APLSUB:
APLSUB:

AIPSUB

APLSUB:
APLSUB:
APLSUB:

APLSUB
APLSUB
APLSUB
APLSUB
APLSUB

APLSUB:
APLSUB:

APLSUB

APLSUB:

APLSUB

AIPSUB:

APLSUB
APLSUB
APLSUB

B.1.8

APLSUB:
APLSUB:
APLSUB:
APLSUB:
APLSUB:
APLSUB:
APLSUB:
APLSUB:
APLSUB:

APLSUB
APLSUB

APLSUB:

APLSUB

APLSUB:

APPENDIX B. SHOPPING LISTS

TABTY.FQR Does I/0 to Tsys (TY) table opened by TYINI
TYINI.FOR Create/open/initialize Tsys (TY) table
UVGET.FOR Read UV data with optional calibration, editing, selection, etc.
VISCNT.FOR Determines number of visibility records requested of UVGET
CATALOG
AU3.FOR Verbs to display contents of catalogs and headers: CATA, IMHE ...
AU7.FOR Verbs to print history, rescale image, alter axis descriptions
AU8S .FOR Verbs to get or clear name adverbs, destroy extension files
CATCR.FOR Create and initialize catalog (CA) files
CATDIR.FOR Manipulates the catalog directory: OPEN, CLOS, various SRCHs,
CATIME.FOR Stores current, or recovers previous, date and time in packed format
:CATIO.FOR Reads/writes header blocks in the catalog file
:CATKEY.FOR Reads/writes the Keyword section of an AIPS header file
CATLST.FOR List the contents of the catalog directory file
:CATOPN.FOR Opens the catalog directory file and returns its size
CHSTAT.FOR Changes numeric code used to record the status of the catalog entry
CHWMAT.FOR Matches a pattern string having wild-card chars with a test string
:DESCR.FOR Destroys all scratch files for tasks which are no longer active
HDRBUF .FOR Translates AIPS header to/from FITS-standard integer form
ICOPEN.FOR Opens image catalog for the specified image plane (call from Y only)
IMA2KMP.FOR Converts pixel numbers in a TV-image into real image pixels
:MADDEX.FOR Adds extension file to catalog header
:MAKOUT.FOR Convert input and output names to actual output names in standard way
:MAPCLR.FOR Clears status flags in catalog and deletes lists of files
:MAPCLS.FOR Closes cataloged file, updating header and catalog status if needed
:MAPOPN.FOR Open file pointed to by catalog entry and mark the entry busy
MCREAT.FOR Create and catalog a map file
MDESTR.FOR Deletes a catalog entry and all files assocated with it
:MP2IMA.FOR Convert image pixel positions to TV pixel positions
HXTMAP.FOR Opens next catalog entry matching the input parameters
:PSFORM.FOR Analyses a wild-card string, preparing an array for pattern matching
RENUMB.FOR Renumbers an entry in the catalog (CA) file
:STXT.FOR Translates catalog status code into a character string
:TKCATL.FOR Performs operations on the Graphics image catalog
:UVCREA.FOR Create and catalog a uv data base file
CHARACTER
CH2NUM.FOR converts string containing an integer in ASCII form into the integer
CNBLEK.FOR returns position of first non-blank character in portion of string
CNCOMP.FOR compares two HOLLERITH strings
CHCOPY.FOR moves characters from one NELLERITH string to another
CHFILL.FOR £ills portion of HOLLERITH string with a specified character
CHLTOU.FOR converts a CHARACTER string to all upper case letters
CHMATC.FOR searches one HOLLERITH string for the occurrence of another
CHR2H.FOR converts a Fortran CHARACTER variable to an AIPS HOLLERITH string
CHWMAT.FOR matches a pattern string having wild-card chars with a test string
:FILZCH.FOR replaces blank characters with
:N2CHR.FOR convert AIPS Nollerith string to Fortran CHARACTER variable
IFPC.FOR returns the number of HOLLERITH locations needed to hold N characters
:ITRIM.FOR returns length of CNARACTER variable to last non-blank
JTRIM.FOR clears nulls, returns length of CHARACTER variable to last non-blank

B.1. INTRODUCTION

APLSUB

APLSUB:
APLSUB:
APLSUB:
:TRIM.FOR

:UNPACK.FOR

APLSUB
APLSUB

B.1.9

APLNOT:
AIPSUB:
APLSUB:
APLROT:
APLSUB:
APLSUB:
APLEOT:
APLNOT:
APLNOT:
:DIRCOS.FOR
APLSUB:
:DIRRA.FOR

APLSUB

APLSUB

APLNOT:
:FNDX.FOR
APLSUB:
APLNOT:
APLSUB:
APLSUB:
APLSUB:
APLSUB:
APLSUB:
APLSUB:
APLSUB:
APLSUB:
APLSUB:
APLSUB:
APLROT:
:NUT4.FOR

APLSUB

APLNOT

APLNOT:
APLNOT:
APLSUB:
APLSUB:
APLSUB:
APLSUB:
APLSUB:
APLNOT:
APLSUB:
APLSUB:

:NAMEST.FOR

PSFORM.FOR
SPFIL.FOR
STLTOU.FOR

B-9

packs image name in string with leading and trailing blanks removed
analyses a wild-card string, preparing an array for pattern matching
£ills HOLLERITH string with blanks beginning at first null

converts any characters beween single quotes to upper case

removes leading and trailing blanks, returns actual length of string
converts a packed character buffer into one with 1 character/integer

COORDINATES

ATFPNT.FOR
AU7.FOR
AXSTRN.FOR
BDN.FOR
COORDD .FOR
COCRDT.FOR
DA13.FOR
DA46.FOR
DAPM.FOR

DIRDEC.FOR

DMAP.FOR

FNDY.FOR
GRD.FOR
JABER.FOR
JRUT.FOR
JPOLAR.FOR
JPRECS.FOR
JPRENU.FOR
LABINI.FOR
LMPIX.FOR
METSCA.FOR
MP2SKY.FOR
NEWPOS.FOR
NUT2.FOR

PARANG.FOR
PRECES.FOR
SETLOC.FOR
SKY2MP.FOR
SKYFRM.FOR
SLAEVP.FOR
SLBINI.FOR
SOUELV.FOR
XYPIX.FOR

XYVAL.FOR

Routine to calculate X-Y coords from galactic coords

verbs to print history, rescale image, alter axis descriptions
encodes axis type and value in a string

Computes Besselian day numbers of Julian date.

converts angles between degrees and sexagesimal format

translates between celestial, galactic, and eccliptic coordinates
Computes arguments Al, A2 and A3 of the mean motion of the sun.
Computes arguments A4, A5 and A6 of the mean motion of the moon
Converts apparent to mean positions.

determines direction cosines between ref position and test positiomn
finds longitude pixel and latitude given latitude pixel and longitude
finds latitude pixel and longitude given longitude pixel and latitude
Compute apparent position from mean position

returns X-axis coordinate value given X pixel and Y coordinate value
returns Y-axis coordinate value given Y pixel and X coordinate value
Compute the general relativity displacements in RA and DEC.

Compute vectors needed for J2000 aberation and GR light bending.
Computes nutation from IAU 1980 series

Correct rectangular position for polar motion.

Precess between apparent and J2000 epoch positions.

Compute rotation matrix for precession and nutation IAU 1980 series.
initializes commons for labeling of plots (calls SETLOC)

returns pixel location corresponding to specified coordinates

scale a value to the range 1-999 and provide a metric prefix to match
calls SETLOC, XYVAL to convert image pixel to physical coordinates
returns astronomical coordinates given direction cosines, projection
Computes nutation in longitude and obliquity for a Julian date.
Computes nutation using a non ridgid earth model

Computes antenna parallactic angles

Convert between mean and apparent positions (B1950 only)

sets location common for coordinate computations and display

calls SETLOC, XYPIX to convert sky coordinates to map pixel locations
returns string with character representation of a corrdinate

Earth position and motion ephemeris (J2000)

initializes labeling for slice plots

Computes source hour angles and elevations

returns pixel position corresponding to given coordinates

returns coordinate values corresponding to specified pixel position

B.1.10 EXT-APPL

APLSUB:
APLSUB:
APLROT:
APLNOT:

ANTDAT.FOR
ANTINI.FOR
BLINI.FOR

BLREFM.FOR

Returns the reference date and frequency for each array in uv dataset
creates and intializes antenna tables

Create/open/init I/0 to BL table

Checks existence of BL table, changes format if necessary

B-10

APLNOT
APLNOT:
APLNQT:
APLNOT:
APLNOT:
APLSUB:
APLNOT:
APLNOT:
APLNOT:
APLNOT:
APLSUB
APLSUB:
APLNOT:
APLNOT
APLNOT:
APLNOT:
APLNOT:
APLNOT:
APLNQT:
APLNOT:
APLNOT:
APLNOT:

:BLSET.FOR

BPASET.FOR
BPREFM.FOR
CALADJ.FOR
CALINI.FOR
CCINI.FOR

CCMERG.FOR
CLREFM.FOR
CLUPDA.FOR
CSLGET.FOR

:EXTHIS.FOR

EXTREQ.FOR
FLAGUP.FOR

:FNDSQU.FOR

GACSIN.FOR
GAININ.FOR
GETANT.FOR
GETFQ.FOR
GETSOU.FOR
GNFSMO.FOR
GNSMO.FOR
GRDAT.FOR

QNOT : GRDCRM.FOR

APLNOT:
APLNOT:
APLNOT:
APLNOT
APLNOT:
APLNOT:
APLNOT
APLNQOT:
APLNOT:
APLNOT:
APLKOT:
APLNGT:
APLNOT:
APLROT:
APLNOT:
APLNOT:
APLNOT:
APLSUB
APLNOT:
APLSUB:
APLNOT:
APLNOT:

B.1.11 EXT-UTIL

APLSUB:
AIPSUB:
APLNOT:
APLNOT:
APLNOT:
APLNOT:

INDXIN.FOR
ITBSRT.FOR
LXYPOL.FOR

:MULSDB.FOR

NXTFLG.FOR
OTBSRT.FOR

:POLSET.FOR

SDCGET.FOR
SELSMG.FOR
SETSTK.FOR
SN2CL.FOR

SNAPP.FOR

SNREFM.FOR
SHSMO.FOR

SOUFIL.FOR
SOURNU.FOR
SUMARY.FOR

:TABAN.FOR

TABAXI.FOR
TABLIN.FOR
TYINI.FOR

VISCNT.FOR

ALLTAB.FOR
AUS.FOR
BPINI.FOR
CHNCOP.FOR
CHNDAT.FOR
CSINI.FOR

APPENDIX B. SHOPPING LISTS

Fills current baseline calibration table

Sets up the bandpass table array for use by DATBND.

Checks existence of BP table, changes format if necessary
Adjusts solution (SN) table phases to a common reference antenna.
Creates/opens/initializes calibration (CL) table

creates and/or opens a CC (components) extension table
Compresses a CLEAN component (CC) table

Checks existence of CL table, changes format if necessary
Concatenates, rereferences, smooths SN tables and applies it to CL.
Reads CL (or SN) table and sets up for interpolation.

adds to history file for contents of FITS extension file being read
parse FITS tape record for required extension file FITS keywords
Updates the Flag (FG) table.

Find source numbers for a list of sources.

Initializes CS file, and prepares table to be applied.
Initializes calibration table for application.

Reads AN table and stores the info in common.

Find info on a given frequency id.

Find info on a given source id.

Boxcar smooths and ASCAL solution (GA) file.

Optimized spline smoothing of amplitudes in ASCAL (GN) file.
Getn info about CLEAN components for GRDSUB.

Loads CLEAN components into AP for uv model computation.
Initializes index (NX) file, finds first scan selected.

Read a table and write a scratch file to be sorted.

Fills polarization correction table for AT like linear polarization.
Determines if a uv file is multi- or single- source.

Manages flagging info in tables in common.

Copies sorted table from scratch file to table form

Fills polarization correction table from info in AN table.

Sets up to interpolate in Single dish calibration (CS) table.
Selects calibrator data, smooths solutions.

Sets STOKES parameters correctly for plotting routines

Apply an SN to a CL table.

Append SN tables and keep track of reference antennas.

Checks existence of SN table, changes format if necessary
Smooths solution (SN) tables

Fills in arrays of source numbers to be included or excluded.
Look up source numbers for a list of names.

Accumulates and lists CLEAN components

I/0 to antenna tables (following initialization by ANTINI)

parse FITS tape record for required extension file FITS keywords
reads a line from the data portion of a FITS extension of type TABLE
Create/open/initialize Tsys (TY) table

Determines number of visibility records requested of UVGET

Copies all table extension files from one catalog slot to another
verbs to get or clear name adverbs, destroy extension files
Create/open/initialize bandpass (BP) table

Copies selected portions of the IF table
Creates/Opens/Reads/Writes/Closes an IF table.

Create/Open/Init Single dish calibration (CS) table

B.1. INTRODUCTION

APLSUB

APLSUB:
APLSUB:
APLSUB:
:FLGINI.FOR
:FNDCOL.FOR

APLNOT
APLSUB

APLSUB:
APLNOT:
APLNOT:
:GETCOL.FOR
APLSUB:
APLNOT:
:GTPAIR.FOR
APLSUB:
:MADDEX.FOR

APLSUB

APLNOT

APLSUB

APLNOT:
APLEOT:
APLSUB:
APLSUB:
APLNOT:
APLSUB:
APLNGT:
APLNOT:
APLSUB:
APLNOT:
APLROT:
APLNOT:
APLNOT:
APLNOT:
APLNOT:
: TABCOP.FOR
APLNOT:
APLNOCT:
APLNOT:
APLROT:
:TABFRM.FOR
APLNOT:
APLNOT:
APLNOT:
APLSUB:
APLSUB:
APLSUB:
:TABMRG.FOR

APLSUB

APLNOT

APLSUB

APLNOT:
:TABSN.FOR

APLNOT

APLNOT:
APLNGT:
APLNOT:
APLNOT:

:DELEXT.FGOR

EXTCOP.FOR
EXTINI.FOR
EXTIO.FOR

FNDEXT.FOR
FQINI.FOR
GAINI.FOR

GETHUT.FGOR
GETNAN.FOR

ISTAB.FOR

MAKTAB.FOR
NDXINI.FOR
OPEXT.FOR
PUTCOL.FOR
R3DTAB.FOR
RESCSL.FGOR
RWTAB.FOR
SDTCRD.FOR
SELSTR.FGOR
SNINI.FOR
SOUINI.FOR
TABAPP.FOR
TABBL.FOR
TABBP.FOR
TABCAL.FOR

TABCS.FGOR
TABF3D.FOR
TABFLG.FOR
TABFQ.FOR

TABGA.FOR
TABHDK.FGOR
TABHDR.FOR
TABIKI.FOR
TABIO.FOR
TABKEY.FOR

TABNDX.FOR

TABSQU.FOR
TABSPC.FOR
TABSRT.FOR
TABTY.FOR

B.1.12 FITS

APLNOT:
APLSUB:

ATCONV.FOR
CHAVRT.FOR

B-11

removes an extension file from the header in the catalog file
copies extension file of the EXTINI/EXTIO variety

creates and/or opens an extension file of the EXTINI/EXTIO type
does random access IO to extension files of the EXTINI/EXTIO type
Create/Open/Init Flag (FG) table.

locvates logical column numbers for given titles in a Table
returns latest version number of specified extension file type
Create/open/initialize frequency (FQ) table

Creates and initializes gain (GA) extension tables.

returns value and type found at specified column and row in a table
returns column titles, units, types, lengths in logical column order
Find number of antennas and subarrays from AN tables.

Returns specified Keyword-value pair from an open AIPS table

finds if an extension file exists and whether it is a standard table
adds extension file to catalog header

Create and initialize table from data in common /TABHDR/ (FITS)
Create/open/init index (NX) table

opens a specified extension file

returns value and type found at specified column and row in a table
Read data from FITS 3-D table and write AIPS table.

Rescale flux-like data in any SLice files.

Read FITS ASCII table data and write AIPS table file.

Parse "SINGLDSE" FITS table headers, get some keywords.

builds string displaying the functions applied to columns of table
Create/open/initialize solution (SN) tables.
Create/initialize/open source (SU) table

Appends one table to the end of a similar table.

Do IO to Baseline (BL) table after setup by BLINI.

Does I/0 to bandpass (BP) table opened by BPINI

Does I/0 to Calibration (CL) table opened by CALINI

copies one or all tables extension files of specified type

Does I/0 to single dish calibration (CS) table opened by CSINI
Determines repeat count and data type for FITS 3-D tables entries.
Does I/0 to Flag (FG) table opened by FLGINI

Does I/0 to frequency (FQ) table opened by FQINI

Parses format for FITS ASCI table entries.

Does I/0 to GAIN (GA) table opened by GAINI

Reads a FITS table header.

Reads a FITS table header.

create/open a table extension file

reads/writes tables extension files

reads/writes the Keyword section of an AIPS table file

merges rows of an an input table file

Does I/0 to Index (NX) table opened by NDXINI

Does I/0 to Solution (SN) table opened by SNINI

Does I/0 to Source (SU) table opened by SOUINI

Determines repeat count and data type for FITS 3-D tables entries.
Sorts the entries in an AIPS table.

Does I/0 to Tsys (TY) table opened by TYINI

Fix AIPS FITS tables
converts between local NOLL and local INT binary forms for transport

B-12

APLNOT:
APLSUB:
APLSUB:
APLSUB:

AIPSUB

APLSUB:
APLSUB:
APLSUB:
APLSUB:
APLSUB:
APLSUB:
APLSUB:
APLSUB:
APLNOT:
AIPSUB:

APLNQT

APLNOT:
APLSUB:

APLNOT

APLNOT:

APLSUB

APLSUB:
APLSUB:
APLSUB:

APLROT
APLNOT

APLSUB

APLNOT:
APLNOT:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:

CHKTAB
EXTHIS
EXTREQ

FPARSE.
:FWRITE.
GETCRD.
.FOR

GETLOG

GETNUM.
GETSTR.
GETSYM.
.FOR
.FOR

GTWCRD
IDWCRD

JULDAY.
.FOR

MAKTAB

MSGHDR.
:PTF3D.FOR
R3DTAB.
REAVRT.
:RWTAB.FOR
SDTCRD.
:SETBSC.
SETDEF.
SKPBLK.
SKPEXT.
: TABAXI.
:TABF3D.
APLNOT:
APLNOT:
APLNOT:

TABFRM

TABHDK.
TABHDR.
:TABLIN.
TABSPC.
.FOR

TPIOHD

ZBYTF2.
ZBYTFL.
ZTPMID.
ZTPOPD.
ZTPWAD.

.FOR
.FOR
.FOR

FOR
FOR
FOR

FOR
FOR
FOR

FOR

FOR

FOR
FOR

FOR
FOR
FOR
FOR
FOR
FOR
FOR

.FOR

FOR
FOR
FOR
FOR

FOR
FOR
FOR
FOR
FOR

ZX8XL.FOR
ZXLX8.FQOR

APPENDIX B. SHOPPING LISTS

Check fields of known FITS table types.

adds to history file for contents of FITS extension file being read
parse FITS tape record for required extension file FITS keywords
interprets card image from FITS header into AIPS header format
converts FITS header to AIPS header and displays it with MSGWRT
parses card image from FITS header, returns recognized keyword
returns value of logical variable from character buffer

returns numeric field from character buffer

returns a string value (was enclosed by quotes) from character buffer
returns next symbol in character-form card image

returns allowed keyword from FITS header card image

returns allowed keyword from FITS header card image

converts a character-encoded calendar date to Julian day number
Create and initialize table from data in common /TABHDR/ (FITS)
lists header contents for standard header plus random parameters
Copies 8-bit bytes to tape.

Read data from FITS 3-D table and write AIPS table.

converts between local REAL and local INT binary forms for transport
Read FITS ASCII table data and write AIPS table file.

Parse "SINGLDSH" FITS table headers, get some keywords.

determines scaling/offset parameters to convert image to integer
£ills FITS reader area for table-file extensions with defaults

find next non-blank card image in a FITS header, read tape if needed
finishes reading FITS extension header, skips the extension data
parse FITS tape record for required extension file FITS keywords
Determines repeat count and data type for FITS 3-D tables entries.
Parses format for FITS ASCI table entries.

Reads a FITS table header.

Reads a FITS table header.

reads a line from the data portion of a FITS extension of type TABLE
Determines repeat count and data type for FITS 3-D tables entries.
Reads tape header and tests if FITS, tape labels etc.

interchange bytes in buffer if needed to go between local & standard
interchange bytes in buffer if needed to go between local & standard
pseudo-tape disk read/write for 2880-bytes records

open a pseudo-tape, sequential disk file for FITS

"wait" for I0 operation to complete on pseudo-tape disk file (ZTPMID)
convert FITS table bit array to AIPS bit array

convert AIPS bit array to FITS binary table bit array

B.1.13 GRAPHICS

AIPSUB:
AIPSUB:
AIPSUB:
AIPSUB:
APLNOT:
AIPSUB:
: TEKFLS
:TEKVEC
TKCATL.
:TKCHAR.
APLSUB:
APLSUB:

APLSUB
APLSUB

APLSUB:

APLSUB

AUSA .FOR
AUSB.FOR
AU9C.FOR

SET1DG.
.FOR

SETSTK

SLOCIN.
.FOR
.FOR

FOR

FOR

FOR
FOR

TKCLR.FOR

TKCURS.

FOR

verbs to read TEK cursor and display pixel, sky, image values

verbs to plot slices and models on graphics

verbs to set initial guesses for slice model fits using TEK graphics
sets initial guess parameters with the TEK for fitting slices

Sets STOKES parameters correctly for plotting routines

initialize location common for slice (on the TEK) model fitting
writes any remaining buffer to the TK graphics device, zeros buffer
write bright or dark, scaled or unscaled vector to TK graphics device
performs operations on the Graphics image catalog

writes characters to a TK graphics device

clears the TK graphics screen

turns on, reads, turns off the TK graphics cursor

B.1. INTRODUCTION

APLSUB:
:TKGGPL.FOR

AIPSUB

AIPSUB:
:TKLAB.FOR

:TKRSPL.FOR
:TKSLAC.FOR
:TKSLIN.FOR

APLSUB
AIPSUB
AIPSUB
APLSUB

AIPSUB:
APLSUB:
:ZTKBUF.FOR

APLGEN

APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:

B.1.14 HEADER

AIPSUB

AIPSUB:
:AUTA.FOR
:AXEFND.FOR
:BLDSNM.FOR
:CATIO.FOR

AIPSUB
APLSUB
APLSUB
APLSUB

APLSUB:
:COINC.FOR
APLNOT:
APLNOT:
APLNOT:
APLNOT:
APLSUB:
AIPSUB:
:LMPIX.FOR

:LSTHDR.FOR

APLNOT

APLSUB
APLSUB

AIPSUB:
APLSUB:
APLSUB:
APLSUB:
APLSUB:
:UVPGET.FOR
:VEDRIN.FOR

APLSUB
APLSUB

B.1.15 HISTORY

AIPSUB:
APLSUB:
APLSUB:
APLSUB:
APLSUB:
APLSUB:
APLSUB:
:HIADD.FOR
APLSUB:
APLSUB:

APLSUB

TKDVEC.FQOR

TKGMPL.FOR

TKSLPL.FOR
TKTICS.FOR

ZTKCL2.FOR
ZTKCLS.FOR
ZTKFI2.FOR
ZTKOP2.FOR
ZTKOPN.FOR

:AU3.FOR

AU7 .FOR

CATKEY.FOR

DGHEAD.FOR
FRQTAB.FOR
GETCTL.FOR
IMCREA.FOR
JULDAY.FOR
KWIKHD.FOR

MSGHDR.FOR
NAMEST.FOR
ROTFND.FOR
SUBHDR.FOR
SWAPAX.FOR

AU7 .FOR

EXTHIS.FOR
HENCO1.FOR
HENCO2.FOR
HENCO3.FOR
HENCOO.FOR
HIAD80O.FOR

HIADDN.FOR
HICLOS.FOR

converts vector command to TK graphics commands

plots model slice on Graphics

plot model fit to slice on the graphics terminal

labels axes on plot directly to a TK graphics device, draw ticks
plots residuals between slice and its model on Graphics device
activates and reads TEK cursor, converts result to image coordinates
initialize parameters for plotting a slice directly on a TK graphics
plot a slice on graphics device

writes tick marks and labels directly to TK graphics device

flush TK buffer if needed, then store 8-bit byte in buffer

close a Tektronix device

close the TK device

read/write from/to a Tektronix device

read/write from/to a Tektronix device

open a TK device

verbs to display contents of catalogs and headers: CATA, IMEE ...
verbs to print history, rescale image, alter axis descriptions
verbs to put/get header values, to put values into images

finds axis number for specified axis type

builds a name for a scratch file

reads/writes header blocks in the catalog file

reads/writes the Keyword section of an AIPS header file

Checks if two maps are exactly coincident.

Fills output CATBLK for UVGET

Fill Frequency table in common for IFs and channels

Determine Stokes’ type of Clean map and other modeling info.
Fills catalog header for an image and optionally creates and catalogs
converts a character-encoded calendar date to Julian day number
list header contents in abbreviated, image centered form

returns pixel location corresponding to specified coordinates
lists header contents in standard form with MSGWRT

lists header contents for standard header plus random parameters
packs image name in string with leading and trailing blanks removed
find the coordinate rotation angle from the catalog header

changes input to output header correcting for subimaging

swaps the values for two axes

determines pointers to UV data from the header

computes pointers (subscripts) to address components of the header

verbs to print history, rescale image, alter axis descriptions

adds to history file for contents of FITS extension file being read
Adds INNAME, INCLASS, INSEQ, INDISK to an open history file

Adds IN2NAME, IN2CLASS, IN2SEQ, IN2DISK to an open history file
Adds IN3NAME, IN3CLASS, IN3SEQ, IN3DISK to an open history file
adds OUTNAME, OUTCLASS, OUTSEQ, OUTDISK to an open history file
puts an 80-character card image into a history file as required
adds a history record ("card" = 72 characters) to a history file
Writes one history line to several history files

closes a history file, flushing the buffer if desired

B-14

APLSUB
APLSUB:
APLSUB
APLSUB
APLSUB
APLSUB
APLSUB
APLSUB:
APLNQT:
APLSUB:

B.1.16 IO-APPL

APLNOT:
APLKNQT:
APLNGT:
APLROT:
APLNQT:
APLNOT:
APLNOT:
APLNQT:
APLHOT:
APLNQOT:
APLNOT:
APLNOT:
APLNOT:

B.1.17 1I0-BASIC

APLSUB:
APLSUB:
APLSUB:
APLSUB:
APLSUB:
APLSUB:
APLSUB:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEK:

:NICOPY.FOR

HICREA.FOR

:BIINIT.FOR
:HIIO.FOR

:HILOCT.FOR
:HIMERG.FOR
:HIOPEN.FOR

HIPLOT.FOR
HIREAD.FOR
NISCOP.FOR

FQMATC.FOR
MAKGAU.FOR
MLTMAP.FOR
PLNPUT.FOR
RESID.FOR
SDGET.FOR
SDTCRD.FOR
STEP.FOR
SUBMAP.FOR
TVFOAD.FOR
UVDOUT.FOR
UVDPAD.FOR
UVGET.FOR

FSERCH.FOR
IAMOK.FOR
LSERCN.FOR
MDISK.FOR
MINIT.FOR
UVDISK.FOR
UVINIT.FOR
ZCLOSE.FOR
ZCMPR2.FOR
ZCMPRS.FOR
ZCREA2.FOR
ZCREAT.FOR
ZDACLS.FOR
ZDAOPN.FOR
2DEST2.FOR
ZDESTR.FOR
ZEXIS2.FOR
ZEXIST.FOR
ZEXPN2.FOR
ZEXPND.FOR
ZFI2.FOR
ZFI0.FOR
ZFRE2.FOR
ZMI2.FOR
ZMIC.FOR

APPENDIX B. SHOPPING LISTS

copies one history file to the end of a second

open a history file, creating one if needed

initializes the history common area - must be called before history
does I0 and file expansion (if needed) on HI files

manipulates the history table, opening, closing, located an entry
creates several new history files by merging several old ones.

opens a history file, preparing common pointers and reading record 1
places a record in the history file concerning a plot file creation
Reads next history card from a history file

creates new history file and copies an old one to it

Check if selection criteria match FQ table entries.

*TESS routine: Make a Gaussian convolution function.

*TESS routine: multiplies an image by a value, writes another.
Copies a subregion of a scratch file image to a cataloged image.
*TESS routine: Computes residual image.

Reads single dish data with optional calibration and flagging
Parse "SIHGLDSH" FITS table headers, get some keywords.

*TESS routine: adds a fraction of one image to another.

*TESS Routine: Subtract two images.

TVFLG routine to load and image with smoothing converting to display.
Divides uv model in one half of a record into other, writes result.
Reformat UV data record, doubling size and zero extra words.

Read UV data with optional calibration, editing, selection, etc.

determines type and number of entries in the common file table (FTAB)
decides if a disk file type is allowed for the user on a disk
opens, locates, closes entries in the common file table (FTAB)
reads or writes a row from an image

intializes IO and pointers for quick-return image IO via MDISK
reads/writes records of arbitrary length, esp UV data, see UVINIT
initializes IO for arbitrary length records via UVDISK, esp UV data
closes open devices: disk, line printer, terminal

truncate a disk file, returning blocks to the system

release space from the end of an open disk file

create the specified disk file

creates a disk file

close a disk file

open the specified disk file

destroy a closed disk file

destroy a closed disk file

return size of disk file and if it exists

return file size and, consequently, whether file exists

expand an open disk file

expand an open disk file --- either map or non-map now allowed
read/write one 256-integer record from/to a non-map disk file

reads and writes single 256-integer records to non-map disk files
return AIPS data disk free space information

read/write large blocks of data from/to disk, quick return
random-access, quick return (double buffer) disk IO for large blocks

B.1. INTRODUCTION

APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
:ZTPWA2.FOR
:ZWAI2.FOR

APLGEN
APLGEN

APLGEN:

ZMKTMP .FOR
ZMSGCL.FOR
ZMSGDK . FOR
ZMSGOP.FOR
ZMSGXP.FOR
Z0PEN.FOR

ZPATHN.FOR

ZPHFIL.FOR
ZPHOLV.FOR
ZRENA2.FOR
ZTFILL.FOR
ZTPOP2.FOR

ZWAIT.FOR

B.1.18 IO-TV

APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:

B.1.19 I0O-UTIL

APLNOT:
APLNOT:
APLNOT:

ZARGC2.FOR
ZARGCL.FOR
ZARGMC.FOR
ZARGO2.FOR
ZARGOP.FOR
ZIPACK.FOR
ZM70CL.FOR
ZM70M2.FOR
ZM70MC.FOR
ZM700P.FOR
ZM70XF.FOR
ZV20CL.FOR
ZV200P.FOR
ZV20XF.FOR

AKCESS.FOR
AKCLOS.FOR
AKOPEN.FOR

QNOT:APIO.FOR

APLNOT:

APPLPB.FOR

QSUB: APROLL.FOR

APLNOT:
APLSUB:
APLNOT:
APLSUB:
:DIE.FOR
APLNQT:
APLNOT:
APLNOT:
:FSWTCH.FOR

APLSUB

APLSUB

APLNOT:
APLNOT:
APLNQT:
APLNOT:

BGTOSM.FOR
COMOFF.FOR
COPMAP.FOR
DBINIT.FOR

DIVMAP.FOR
FILSWP.FOR
FLAT.FOR

GETROW.FOR
GTBWRT.FOR
GTF3D.FOR

HIREAD.FOR

convert a "temporary" file name into a unique name
close Message file or terminal

disk I0 to message file

open a message file or message terminal

expand the message file

open binary disk files and line printer and TTY devices
convert a file name

construct a physical file or device name from AIPS logical parameters
construct a physical file - version for UPDAT

rename a file

zero-fill, initialize a file IO table (FTAB) entry
open a tape device for double-buffer, asymchronous IO
vait for read/write from/to a tape device

vait for read/write large blocks of data from/to disk
wait for asynchronous ("MAP") I0 to finish

close an ARGS TV device

close an ARGS TV device

issues a master clear to an ARGS TV

open ARGS TV device

open ARGS TV device

pack/unpack long integers into short integer buffer
close an IIS Model 70 TV device, flushing any buffer
issues a master clear to an IIS Model 70 TV

issues a master clear to an IIS Model 70 TV

open IIS Model 70 TV device

read/write data to IIS Model 70 TV with buffering
close a Comtal Vision 1/20 TV device

open Comtal Vision 1/20 TV device

read/write data to Comtal Vision 1/20 TV device

*TESS routine to read or write files

*TESS routine to close files

*TESS I/0 routine to open files.

Copies image-like data between disk and "AP memory".

*TESS routine to apply a taper to an image

Copies AP "memory" to disk, gives up AP then reloads AP

*TESS routine to copy a subset of a large image to a small one
determines start block number of a plane in an N-dimensional image
*TESS routine to copy an image.

checks map window and initializes for map double buffer IO

closes down tasks which use DFIL.INC to maintain status of files
Tim Corwell routine: Divide one image by another.

*TESS routine: switch file info

*TESS routine: initialize an image to a value.

switches names and addresses of two files

Read row of an image opened with INTMIO

Routine used by GRIDTB to write buffers.

Copies real-world bytes from a tape buffer, reading if necessary.
Reads next history card from a history file

B-16

APLNOT:
APLNOT:
APLNOT:

APLSUB
APLSUB

APLSUB:
APLKNOT:
APLNOT:
APLNOT:
APLSUB:
APLNOT:
APLSUB:
APLNOT:
APLNOT:
APLNQGT:
APLGEN:
APLGEN:
APLGEN:

B.1.20 I0-WAWA

APLSUB:
APLSUB:
APLSUB:

APLSUB

APLEQT:

APLSUB
APLSUB

APLSUB:

APLSUB

APLSUB:

APLNOT

APLNOT:
APLSUB:
APLSUB:

APLSUB

APLNOT:
APLNOT:
APLSUB:
APLEOT:
APLNOT:

APLSUB
APLSUB
APLSUB
APLSUB
APLSUB
APLSUB

APLNQOT:
APLNOT:

APLSUB
APLSUB

APLNOT:
APLSUB:

APLNOT

INTMIO.FOR
LINIO.FOR
MAKCVM.FOR
:MAPCLS.FOR
:MAPOPN.FOR
MDESTR.FOR
REIMIO.FOR
SCINTP.FOR
SCLOAD.FOR
SCREAT.FOR
SMTOBG.FOR
SEDY.FOR
TABSRT.FOR
TPIOHD.FOR
VECWIN.FOR
ZDIR.FOR
ZFULLN.FOR
ZRENAM.FOR

A2WAWA .FOR
CLENUP.FOR
FILCLS.FOR
:FILCR.FOR
FILDEF.FOR
:FILDES.FOR
:FILIO.FOR
FILNUM.FOR
:FILOPN.FOR
GETHDR.FOR
:GETWIN.FOR
GTNAME.FOR
H2WAWA .FOR
HDRINF.FOR
:HDRWIN.FOR
IMOPEN.FOR
IMWIN.FOR
IOSET.FOR
MADD.FOR
MAKNAM.FOR
:MAPCOP.FOR
:MAPCR.FOR
:MAPIO.FOR
:MAPMAX.FOR
:MAPWIN.FOR
:MAPXY.FOR
MCOPY.FOR
MFILL.FOR
:OPENCF.FOR
:PRENAM.FOR
PRTERR.FOR
PRTNAM.FOR
:SAVHDR.FOR

APPENDIX B. SHOPPING LISTS

Open an image file for use with GETROW

Reads/writes line to/from an image.

*TESS routine: Make image with residuals added.

closes cataloged file, updating header and catalog status if needed
open file pointed to by catalog entry and mark the entry busy
deletes a catalog entry and all files assocated with it
Reinitialize for image I/0 using INTMIO

Interpolates bandpass tables in time.

Copies part of one bandpass scratch file to another for efficiency.
create an AIPS-standard scratch file w common DFIL.INC,

*TESS routine: Copies small image to a large one.

closes all files, then deletes all scratch files

Sorts the entries in an AIPS table.

Reads tape header and tests if FITS, tape labels etc.

Interpretes BLC and TRC into useable values as a vector.

build a full path name to files in AIPS-standard areas (HE, RU, ..
convert file name to full pathname with no logicals

rename a disk file

packs WaWa I0 NameString from its components

closes all open files and deletes all scratch files for this task
close file opened by FILOPN, flushing write buffers, clearing catal
create associated or scratch non-map file

Fills in default values in WAWA namestring

destroy the specified file or associated file

reads/writes 256-integer record to non-map file opened by FILOPX
finds the FILTABle entry number for an open file

open image, associated, or scratch file (WaWa system)

get the catalog header for an open file (WaWa)

Get current window of file open in WAWA IO system.

WAWA I0 routine to fill in a namestring for an open file

packs AIPS adverb values into WaWa IO NameString

returns consecutivew items of specified type from header for WaWa
sets image corners via WINDOW, revises header to that of output
Open the TV under the system set up by IOSET

Set up window on TV device

initialize tables and set buffer space for WaWa IO

Routine to add windows of open images.

Constructs WAWA namestring (Now use H2WAWA or A2WAWA)

Copy a map

create and catalog an image in the WaWa package

reads or writes a file opened by FILOPN (WaWa IO)

determine extrema of image opened by FILOPN and update header
set/reset the window parameters for an open file (in WaWa)

sets WaWa windows for a window in the top plane of an image
Copies a window in one image to another.

Fill a window in an image with a given value.

opens a cataloged file (main file only), simplifies call to FILOPN
checks name-string for WaWa IO package - fills in some defaults
Prints standard WaWa error message and namestring of file.

prints the contents of a WaWa-IO file Namestring

Save catalog header for an open file.

)

og

B.1. INTRODUCTION

APLSUB:SCRNAM.FOR
APLSUB: TSKBEG.FOR
APLSUB: TSKEND .FOR
APLSUB:UNSCR.FOR

APLSUB:WAWA2A.FOR

B.1.21 MAP

QNOT: APCONV.FOR
QNOT:APIC.FOR
AIPSUB:AU9.FOR
APLXOT: BMSHP.FOR
QNOT:CCSGRD .FOR
APLNOT:COINC.FOR
APLNOT : COMCLR .FOR
QNOT:CONV.FOR
QNOT:CONV1i.FOR
QNOT:CONV2.FOR
QNOT:CONV3.FOR
QNOT:CONV4.FOR
APLNOT:COPMAP.FOR
QNOT:DISPTV.FOR
APLNOT :DSKFFT.FOR
QNOT:FFTIM.FOR
APLNOT:GETCTL.FOR
APLKOT:GETROW.FOR
QNOT:GRDCOR.FOR
QNOT: GRDCRM.FOR
APLNOT : GRDFLT.FOR
QNOT:GRDSUB.FOR
QNOT:GRDTAB.FOR
APLNOT:GRIDTB.FOR
APLNQT: IMCREA.FOR
APLNQT: INTMIO.FOR
QNOT:INTPFN.FOR
APLNOT:LINIO.FOR
APLNOT: MADD.FOR
APLNOT: MAKCVM.FOR
APLNOT : MAKGAU.FOR
QNOT :MAKMAP.FOR
APLNOT:MCOPY.FOR
APLNOT:MFILL.FOR
APLNOT :MLTMAP.FOR
QSUB:PASS1.FOR
QSUB:PASS2.FOR
APLNOT:PLNPUT.FOR
APLNOT:REIMIO.FOR
APLNOT:RESID.FOR
APLNOT:SAVHDR.FOR
APLNOT: SMTOBG.FOR
APLNOT: SUBMAP.FOR
APLNOT : SUMARY.FOR
QNOT:UVMDIV.FOR
QNOT:UVMSUB.FOR

build scratch file name string in the WaWa form

task start up operations (common inits, GTPARM, RELPOP) for WaWa
closes down a task and its files in the WaWa system

delete all scratch files belonging to this tasl

unpacks WaWa I0 NameString into its components

Disk based 2-D convolution using FFTs.

Copies image-like data between disk and "AP memory".

verbs to fit or interpolate the image intensity (MAXFIT, IMVAL)
*TESS routine to fit an elliptical Gaussian to a dirty beam
Transforms CLEAN components to a grid.

Checks if two maps are exactly coincident.

Scale and map complex array into RBG space, amp=inten. phase=hue.
*TESS routine: Convolve a map with a beam.

First of four routines to convolve two real images.

Second of four routines to convolve two real images.

Third of four routines to convolve two real images.

Fourth of four routines to convolve two real images.

*TESS routine to copy an image.

*TESS routine: Display an image on a TV

2-D disk based FFT using AP.

FFTs an image for uv interpolation.

Determine Stokes’ type of Clean map ‘and other modeling info.
Read row of an image opened with INTMIO

Normalizes and corrects image for gridding convolution fn.
Loads CLEAN components into AP for uv model computation.

Sets default gridding convolution functions.

Subtracts transform of CLEAN components from uv data.

Computes Fourier transform of gridding convolution function.
Makes a gridded image of the UV data in TB order.

Fills catalog header for an image and optionally creates and catalogs
Open an image file for use with GETROW

Computes interpolation kernals and put them into "AP memory".
Reads/writes line to/from an image.

Routine to add windows of open images.

*TESS routine: Make image with residuals added.

*TESS routine: Make a Gaussian convolution function.

Makes image or beam from uv data set.

Copies a window in one image to another.

Fill a window in an image with a given value.

*TESS routine: multiplies an image by a value, writes another.
First of two routines to FFT an image file.

Second of two routines to FFT an image file.

Copies a subregion of a scratch file image to a cataloged image.
Reinitialize for image I/0 using INTMIO

*TESS routine: Computes residual image.

Save catalog header for an open file.

*TESS routine: Copies small image to a large one.

*TESS Routine: Subtract two images.

Accumulates and lists CLEAN components

Divides a uv data set by the Fourier transform of a model.
Subtracts the Fourier transform of a model from a uv data set.

B-18 APPENDIX B. SHOPPING LISTS

APLNOT:VECWIN.FOR
QNOT:VISDFT.FOR

APLNOT:VMBLKD.FOR
APLNGT:VTTELL.FOR

Interpretes BLC and TRC into useable values as a vector.
Compute DFT of model and subtract/divide from/into uv data.
*TESS Routine: Initialize constants in common.

*TESS Routine: checks TELL file.

B.1.22 MAP-UTIL

APLNOT : ADDMAP . FOR
APLNOT:APLPBI.FOR
APLSUB:BLTGLE.FOR
APLSUB:BLTLIS.FOR
APLSUB: COMOFF .FOR
AIPSUB:CUBINT.FOR
APLSUB:DBINIT.FOR
APLSUB:HDRWIN.FOR
APLSUB:MAPSIZ.FOR
APLSUB:MAPSNC.FOR
APLSUB:MCREAT.FOR
APLSUB:MDISK.FOR

APLSUB:MINIT.FOR

APLSUB:MINSK.FOR

APLSUB :MSKIP.FOR

APLSUB:PEAKFN.FOR
APLSUB:PLNGET.FOR
APLSUB:RESCAL.FOR
APLSUB:SETBSC.FOR
APLSUB:SNRVAL.FOR
APLSUB:SUBHDR.FOR
APLSUB :WINDOW.FOR
APLSUB:WRBLNK.FOR
APLSUB:WRPLAN.FOR

*TESS routine to add images

*TESS routine to apply a taper to an image. VLA only!

returns angle from A through a test position to B

lists any segments of current row which fall inside blotch regions
determines start block number of a plane in an N-dimensional image
does 2-dimensional cubic interpolation of array values to position
checks map window and initializes for map double buffer IO

sets image corners via WINDOW, revises header to that of output
returns the file size needed to hold the specified image in AIPS
creates a scratch image file of specified dimensionality

create and catalog a map file

reads or writes a row from an image

intializes I0 and pointers for quick-return image I0 via MDISK
inits use of MSKIP to read noncontiguous, evenly spaced rows in a map
reads noncontiguous, but evenly spaced rows in a map (see also MINSK)
returns location of maximum within 5 pixels of image plane center
reads subimage of a plane and writes it to scratch file with shifts
Scales and offsets a cataloged image, updates CATBLK

determines scaling/offset parameters to convert image to integer
substitutes specified value for magic blank value in a buffer
changes input to output header correcting for subimaging
translates user BLC, TRC parameters into usable window arrays
write blanked pixels at all pixels corresponding to specified pixel
copies an N dimensional plane to a N or N+1 dimensional image

B.1.23 MATH

APLNOT:APPLPB.FOR
APLNOT :BOXBSM.FOR
APLNQOT:BOXSMO.FOR

*TESS routine to apply a taper to an image
Box car smoothing of an irregularly spaced array with blanking
Does boxcar smoothing of an irregularly spaced array.

APLNOT:BSC.FOR

APLNOT:

APLNOT:CAXPY.FOR
APLNOT:CD.FOR
APLNOT:CGEDI.FOR
APLNOT:CGEFA.FOR
APLNOT:CLD.FOR

CALRES.FOR

Computes Besselian star constants

*TESS routine to calculate the residuals of an image.

Linpack routine: Complex constant times a vector plus a vector
Computes Besselian day numbers C and D for aberration

Linpack routine: Determinant and inverse of a complex matrix
Linpack routine: Factors complex matrix by Gaussian Elimination
Converts Julian date to civil date

QNOT :CONV.FOR *TESS routine: Convolve a map with a beam.

QNOT : CONV1.FOR First of four routines to convolve two real images.
QNOT:CONV2.FOR Second of four routines to convolve two real images.
QNOT:CONV3.FOR Third of four routines to convolve two real images.
QNOT:CONV4.FOR Fourth of four routines to convolve two real images.

QNOT :CONVFN.FOR Computes convolving fn. kernels and stores them in "AP memory"

APLSUB:COVAR.FOR
APLNOT:CSCAL.FOR
APLNOT:CSWAP.FOR

AIPSUB:CUBINT.FOR

Determines the covariance matrix of an M x N matrix

Linpack routine: Complex constant times vector

Linpack routine: Swaps two complex vectors

does 2-dimensional cubic interpolation of array values to position

B.1. INTRODUCTION

APLNOT:
APLNQT:
APLNOT:
APLNOT:
APLNOT:
:DERF.FOR

APLNOT

APLNOT:
:DMACH.FOR
APLNOT:
APLNOT:
APLSUB:
APLNOT:
APLNOT:
APLNOT:
APLNOT:
APLSUB:
APLNOT:
APLNOT:
APLNOT:
:FOURG.FOR
APLNOT:
APLNQOT:
APLNOT:
APLNOT:

APLKOT

APLNOT

DA13.FOR
DA46.FOR
DAPM.FOR
DCUV.FOR
DDOT.FOR

DIVMAP.FOR

DMAP.FOR
DNRM2.FOR
DPMPAR.FOR
DPRE.FOR
DTRC.FOR
DUVC.FOR
DVDMIN.FOR
ENORM.FOR
EPS.FOR
ERF.FOR
FEDVAR.FOR

FOURYF.FOR
GNFSMO.FOR
GNSMO.FOR
GRD.FOR

QNOT : GRDCOR.FOR

APLNOT:

GRDFLT.FOR

QNOT :GRDTAB.FOR

APLNQT:
APLNOT:
APLNOT:
APLSUB:
APLSUB:
APLSUB:
APLSUB:
APLSUB:
APLNOT:
APLNOT:
APLSUB:
APLSUB:
:LMSTR.FOR
APLSUB:
APLNOT:
APLNOT:
APLSUB:
APLNOT:
APLNOT:
APLNOT:
APLNOT:
APLNOT:

APLSUB

GSTROT.FOR
ICAMAX.FOR
ICSORT.FOR
JABER.FOR
JNUT.FOR
JPOLAR.FOR
JPRECS.FOR
JPRENU.FOR
L1.FOR
LG2BIT.FOR
LMDER.FOR
LMDER1.FOR

LMSTR1.FOR
MACNIN.FOR
MAKGAU.FOR
MATVMU.FOR
MLTMAP .FOR
NULB.FOR
NUT2.FOR
NUT4.FOR
PARANG.FOR

QSUB:PASS1.FOR
QSUB:PASS2.FOR

APLSUB:
APLNOT:
APLNOT:

PERMAT.FOR
PRECES.FOR
QKSORT.FOR

B-19

Computes arguments Al, A2 and A3 of the mean motion of the sun.
Computes arguments A4, A5 and A6 of the mean motion of the moon
Converts apparent to mean positions.

Computes unit vector for a given celestial position.

Linpack routine: Form dot product of two vectors (DOUBLE)

Double precision erf function

Tim Corwell routine: Divide one image by another.

Linpack? routine: Sets machine precision parameters. (DOUBLE)
Compute apparent position from mean position

Compute Euclidean norm of N-Vector

returns machine precision or smallest or largest magnitude
Compute General precession matrix

Transforms spherical coordinates given transform matrix.

Converts unit vector to celestial coordinates.

Davidon

computes the Euclidean norm of a N-vector

Computes mean obliquity of the Ecliptic for a Julian date.

error function.

*TESS routine: Convert errors in Jy/beam to Jy per cell
Cooley-Tukey fast fourier transform.

Fast Fourier transform by W. Newman - vectorizes.

Boxcar smooths and ASCAL solution (GA) file.

Optimized spline smoothing of amplitudes in ASCAL (GN) file.
Compute the general relativity displacements in RA and DEC.
Normalizes and corrects image for gridding convolution fn.

Sets default gridding convolution functions.

Computes Fourier transform of gridding convolution function.
Computes GST at UT=0 and earth rotation rate.

Linpack routine: Index of complex element with max. abs. value
Two key in memory sort by one of several methods

Compute vectors needed for J2000 aberation and GR light bending.
Computes nutation from IAU 1980 series

Correct rectangular position for polar motion.

Precess between apparent and J2000 epoch positionms.

Compute rotation matrix for precession and nutation IAU 1980 series.
Compute L1 solution to an overdetermined system of linear equations
Converts between bit arrays and logical arrays

minimize the sum of squares of M nonlinear functions in N variables
minimize the sum of squares of M nonlinear functions in N variables
minimize sum of squares of M nonlinear functions in N variables
minimize sum of squares of M nonlinear functions in N variables
Returns the smallest positive value that added to 1.0 is .gt. 1.0.
*TESS routine: Make a Gaussian convolution function.

multiplies a matrix and a vector

*TESS routine: multiplies an image by a value, writes another.
Finds a root of a function in an interval.

Computes nutation in longitude and obliquity for a Julian date.
Computes nutation using a non ridgid earth model

Computes antenna parallactic angles

First of two routines to FFT an image file.

Second of two routines to FFT an image file.

permutes rows or columns of matrix according to permutation vector
Convert between mean and apparent positions (B1950 only)

Two key "quick"” sort routine to sort arrays.

B-20

APLSUB

APLSUB:

APLSUB

APLSUB:
APLNOT:
APLNOT:

APLSUB

APLSUB:
APLNOT:
APLNOT:
APLNOT:
:SUBMAP.FOR

APLNOT

:QRFAC.FOR
QRSOLV.FOR
:RANDIN.FOR
RAKDUNM.FOR
RESID.FOR
RFFTF.FOR
:RWUPDT.FOR
SLAEVP.FOR
SOUELV.FOR
SPHFN.FOR
STEP.FOR

APPENDIX B. SHOPPING LISTS

computes a QR factorization of an MxN matrix

completes the least squares matrix solution

initializes tables for random number routine RANDUM

generates random number between O and 1; initialized by RANDIN
*TESS routine: Computes residual image.

Vectorizable, table lookup Fast Fourier transform (non-AP)
computes the QR decomposition of an upper triangular matrix + a row
Earth position and motion ephemeris (J2000)

Computes source hour angles and elevations

Evaluate rational approx. to selected spheriodial functions.
*TESS routine: adds a fraction of one image to another.

*TESS Routine: Subtract two images.

B.1.24 MESSAGES

APLGEN

:ZMSGCL.FOR

close Message file or terminal

B.1.25 MODELING
QNOT: ALGSUB.FOR

APLNQT

:BMSHP .FOR

QNOT:CCSGRD.FOR

APLSUB
APLSUB

:COVAR.FOR
:DECONV.FOR

QNOT:FFTIM.FOR

APLROT
APLSUB
APLEOT

:FRQTAB.FOR
:GETERR.FOR
:GRDAT.FOR

QNOT:GRDCRM.FOR

APLNOT

:GRDSET.FOR

QNOT: GRDSUB.FOR
QNOT:INTPFN.FOR

APLSUB
APLSUB
APLSUB
APLSUB
APLSUB
APLSUB
AIPSUB
APLSUB
APLSUB
APLSUB
APLNQT
APLNOT
APLNOQT

:LMDER.FOR
:LMDER1.FOR

:LMPAR.FOR
:LMSTR.FOR

:LMSTR1.FOR
:MOM.FOR
:PFIT.FOR
:QRFAC.FOR
:QRSOLV.FOR
:RWUPDT.FOR
:SETGDS.FOR
:UVDOUT.FOR
:UVDPAD.FOR

QNOT:UVMDIV.FOR
QNOT : UVMSUB.FOR
QNOT:VISDFT.FOR

B.1.26 PARSING

APLSUB
APLSUB
APLEOT

:CH2NUM.FOR
:CHLTOU.FOR
:CITC2D.FOR

Interpolates model visibility grom a grid and subtracts from uv data.
*TESS routine to fit an elliptical Gaussian to a dirty beam
Transforms CLEAN components to a grid.

Determines the covariance matrix of an M x N matrix

deconvolves two gaussians

FFTs an image for uv interpolation.

Fill Frequency table in common for IFs and channels

calculates the errors on the fitted parameters

Getn info about CLEAN components for GRDSUB.

Loads CLEAN components into AP for uv model computation.

Creates scratch files and sets up for GRDSUB

Subtracts transform of CLEAN components from uv data.

Computes interpolation kernals and put them into "AP memory".
minimize the sum of squares of M nonlinear functions in N variables
minimize the sum of squares of M nonlinear functions in N variables
completes solution of the MxN matrix least squares problem
minimize sum of squares of M nonlinear functions in N variables
minimize sum of squares of M nonlinear functions in N variables
calculates moments in a 16x16 data array

parabolic fit to 3x3 matrix

computes a QR factorization of an MxN matrix

completes the least squares matrix solution

computes the QR decomposition of an upper triangular matrix + a row
Sets up for UV model computation, fills common in DGDS.INC

Divides uv model in one half of a record into other, writes result.
Reformat UV data record, doubling size and zero extra words.
Divides a uv data set by the Fourier transform of a model.
Subtracts the Fourier transform of a model from a uv data set.
Compute DFT of model and subtract/divide from/into uv data.

converts string containing an integer in ASCII form into the integer
converts a CHARACTER string to all upper case letters
KEYIN routine: parses Double precision value from a character string

B.1. INTRODUCTION

APLNOT

APLNOT:
APLNOT:
:CITEXP.FOR

APLNOT

APLNOT:
APLNOT:
APLSUB:
APLSUB:
APLNOT:
APLSUB:

APLSUB

APLSUB:
APLSUB:
APLSUB:
APLSUB:
APLNOT:
APLNOT:
APLNOT:
APLNOT:

APLNQT

:CITC2I.FOR
CITC2R.FOR
CITCPR.FOR

CITSKP.FOR
DCODEF.FOR
FPARSE.FOR
GETCRD.FOR
GETKEY.FOR
GETLOG.FOR
:GETNUM.FOR
GETSTR.FOR
GETSYM.FOR
GTWCRD.FOR
IDWCRD.FOR
KEYIN.FOR

SDTCRD.FOR
TABF3D.FOR
TABFRM.FOR
:TABSPC.FOR

B-21

KEYIN routine:
KEYIN routine:
KEYIN routine:

parse an integer from a character string.

parses a floating value from a character string
character compare with wild cards.

KEYIN routine: evaluate an expression in a character string

KEYIN routine: Find next non blank character in a string.

Decodes data from a character string using a format.

interprets card image from FITS header into AIPS header format
parses card image from FITS header, returns recognized keyword
Parses symbol = value from a character string.

returns value of logical variable from character buffer

returns numeric field from character buffer

returns a string value (was enclosed by quotes) from character buffer
returns next symbol in character-form card image

returns allowed keyword from FITS header card image

returns allowed keyword from FITS header card image

AIPS version of CIT parsing routine

Parse "SINGLDSE" FITS table headers, get some keywords.

Determines repeat count and data type for FITS 3-D tables entries.
Parses format for FITS ASCI table entries.

Determines repeat count and data type for FITS 3-D tables entries.

B.1.27 PLOT-APPL

APLNQOT
AIPSUB
APLNQGT

:AITOFF.FOR
:AUBA.FOR
:COMCLR.FOR

writes vectors for Aitoff projection grid to plot file
verb EXTLIST to list contents of plot files and other extension files
Scale and map complex array intp RBG space, amp=inten. phase=hue.

B.1.28 PLOT-UTIL

APLSUB:

APLSUB
APLSUB

APLSUB:
APLSUB:
APLSUB:
APLSUB:
APLSUB:
APLSUB:
APLSUB:
APLSUB:

APLSUB

APLSUB:
APLSUB:
APLSUB:
APLSUB:
APLSUB:
APLSUB:
APLSUB:
APLSUB:
:LABINI.FOR

APLSUB

APLSUB:
APLSUB:
APLNOT:
APLSUB:

AXSTRN.FOR
:CHNTIC.FOR
:CLAB1.FOR
CLAB2.FOR
COMLAB.FOR
CONDRW.FOR
CTICS.FOR
GCHAR.FOR
GFINIS.FOR
GINIT.FOR
GINITG.FOR
:GINITL.FOR
GMCAT.FOR
GPHWRT.FOR
GPOS.FOR
GRAYPX.FOR
GVEC.FOR
HIPLOT.FOR
INTEDG.FOR
ISCALE.FOR

LABNO.FOR
LINLIM.FOR
PLEND.FOR
PLGRY.FOR

encodes axis type and value in a string

counts characters to the left of a plot (for labeling vertical axis)
puts axis labels in plot file and calls CTICS to draw and label ticks
puts axis labels in plot file and calls CTICS to draw and label ticks
initializes line drawing and labels plot with text, contour levels
writes contour plot to a plot file

writes tick marks and tick labels to a plot file

writes a draw character string command record into a plot file
writes the end of plot record into a plot file and closes it down
creates, opens, initializes plot file (does not catalog it)

writes an initialize-for-grey-scale record into a plot file

writes an initialize-for-line-drawing command into a plot file
writes a copy-misc-image~catalog-info records into a plot file
write plot buffer to file, prepares buffer for more commands

write a position-"pen" command into a plot file

writes an array of grey values into a plot file

vrites a move-pen-down (or write vector) command in a plot file
places a record in the history file concerning a plot file creation
returns intersections of a line with the edges of a box

scale a buffer by various functions to an integer buffer (ie for TV)
initializes commons for labeling of plots (calls SETLOC)

write a tick mark numeric label in a plot file

clips X,Y values at edges of rectangular area with interpolation
End-of-plot clean-up functions: Gary plot package.

draws grey scale commands in the plot file: Gary plot package

B-22

APLNOT:
APLSUB:
:PLVEC.FOR
:RNGSET.
SETLOC.
SCALMNM.
.FOR
STARPL.
:TICCOR.
.FOR

APLSUB
APLSUB

APLSUB:
APLSUB:
APLSUB:
APLSUB:

APLSUB

APLSUB:
APLSUB:
:TKSLIN.
.FOR
ZDOPRT.
ZLASC2.
ZLASCL.
ZLASIO.
.FOR

APLSUB

APLSUB:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:

PLMAKE.

FOR

PLPOS.FOR

SLBINI

TICINC

FOR
FOR
FOR

FOR
FOR

TKLAB.FOR

TKTICS

ZLASOP

FOR

FOR
FOR
FOR
FOR

ZLWIO.FOR
ZLWOP.FOR

APPENDIX B. SHOPPING LISTS

creates & opens plot file, puts into map header, writes first record
puts a position vector command in a plot file: Gary plot package
puts a draw vector command in a plot file: Gary plot package

set plat intensity range from image header and user parameters

sets location common for coordinate computations and display
computes plot scaling factors and plot scale in arc sec per mm
initializes labeling for slice plots

adds to plot plus signs at coordinates given in an ST (star) file
correct tick lengths from increments in dir cosines to coordinates
determines tick mark lengths and increments for CTICS,

labels axes on plot directly to a TK graphics device, draw ticks
initialize parameters for plotting a slice directly on a TK graphics
writes tick marks and labels directly to TK graphics device

reads bit file and causes it to be plotted on printer/plotter

spool a closed laser printer print/plot file

close and spool a laser printer print/plot file

open, write to, close and spool a laser printer print/plot file
open a laser printer print/plot file

open, write to, close and spool a PostScript print/plot file

open a PostScript (LaserWriter) print/plot file

B.1.29 POPS-APPL

AIPSUB:
:AU1A.FOR

AIPSUB

AIPSUB:
:AU2A.FOR
:AU3.FOR

AIPSUB:
AIPSUB:
AIPSUB:
AIPSUB:
AIPSUB:
AIPSUB:
AIPSUB:
AIPSUB:
AIPSUB:
AIPSUB:
AIPSUB:
AIPSUB:
AIPSUB:
AIPSUB:
AIPSUB:
AIPSUB:
AIPSUB:
AIPSUB:
AIPSUB:
AIPSUB:
AIPSUB:
AIPSUB:
AIPSUB:
AIPSUB:
AIPSUB:
AIPSUB:

AIPSUB
AIPSUB

AU1.FOR

AU2.FOR

AU3A.FOR
AU3B.FOR
AU4.FOR
AUS.FOR
AUBA.FOR
AUSB.FOR
AUSC.FOR
AUSD.FOR
AUG.FOR
AUGA.FOR
AU6GB.FOR
AUGC.FOR
AU6D.FOR
AU7.FOR
AU7A.FOR
AU8.FOR
AUSA.FOR
AU9.FOR
AUSA.FOR
AU9SB.FOR
AUSC.FOR
AUA.FOR
AUB.FOR
AUC.FOR
AUT.FOR

PRTALN.

FOR

prints and clears the message file, sets up for EXIT and RESTART
does parameter display: INPUTS, SHOW, HELP, EXPLAIN

handles task-related activities: GO, TELL, WAIT, ABORT, SPY, TPUT
verb functions on task save and Save/Get files: TGET, SGdestr, index
verbs to display contents of catalogs and headers: CATA, IMHE ...
verbs for disk management: FREE, ALLDEST, TIMDEST, etc.

verbs to rearrange the entries in the catalog file: RECAT, RENUMBER
verbs to handle basic tape operations: TPXEAD, MOUNT, AVFILE,

basic TV verbs to do on/off, read cursor position, init the TV,
verbs to load images to the TV including ROAM

verbs to anotate TV images

verbs to draw wedges on TV, erase images, set corners with TV cursor
verbs to load and run TV movie sequences

verbs to manipulate TV scroll, zoom, color tables, and TVHUEINT
verbs to set the TV blank and white LUT linearly and to blink planes
verb to display image value at pixel indicated by TV cursor (CURVAL)
verb to alter zoom and enhance image in' standard way: TVFIDDLE
verbs to do image statistics in blotch regions: TVSTAT, IMSTAT
verbs to print history, rescale image, alter axis descriptions
verbs to put/get header values, to put values into images

verbs to get or clear name adverbs, destroy extension files

verb EXTLIST to list contents of plot files and other extension files
verbs to fit or interpolate the image intensity (MAXFIT, IMVAL)
verbs to read TEK cursor and display pixel, sky, image values

verbs to plot slices and models on graphics

verbs to set initial guesses for slice model fits using TEK graphics
verb to submit batch jobs to AIPSC and the QMNGR queues

verbs to prepare, edit, and review batch jobs and queues

verbs to enter, list, drop gripes, enter password

site-specific test verbs

prints line on CRT orprinter, handles page full AND POPS type-ahead

B.1. INTRODUCTION

AIPSUB:

B.1.30

AIPSUB:
AIPSUB:
AIPSUB:
AIPSUB:
AIPSUB:
AIPSUB:
AIPSUB:
AIPSUB:
AIPSUB:
:HUNT.FOR

AIPSUB

AIPSUB:
:KWICK.FOR
AIPSUB:
AIPSUB:
AIPSUB:
AIPSUB:
AIPSUB:
AIPSUB:
AIPSUB:
AIPSUB:
AIPSUB:
:RLOCAT.FOR
AIPSUB:
APLSUB:
AIPSUB:
AIPSUB:
AIPSUB:
AIPSUB:
AIPSUB:
AIPSUB:

AIPSUB

AIPSUB

TASKWT.FOR

BCLEAK.FOR
CHUNT.FOR
COMPIL.FOR
CONCAT.FOR
EDITOR.FOR
EQUIV.FOR
GETFLD.FOR
GETNME.FOR
HELPS.FOR

INIT.FOR

LLOCAT.FOR
LTSTOR.FOR
MASSGN.FOR
OERROR.FOR
POLISH.FOR
POP.FOR
PREAD.FOR
PSEUDO.FOR
PUSH.FOR

SETTYP.FOR
STLTOU.FOR
STORES.FOR
SUBS.FOR

SYMBOL.FOR
VERBS .FOR

VERBSB.FOR
VERBSC.FOR

B-23

waits for tasks to begin, send resumption signal, and/or terminate

POPS-LANG

Pops items from B-stack to A-stack until BPR-stack precedence < NEXTP
searches symbol table for character string accepting min match
parses line of input with GETFLD, builds stacks for execution
creates temporary literal on stack = concatanation of 2 strings

does operations needed at start and end of editing existing procedure
checks whether two variables are logically equivalent

finds the next symbol in KARBUF and determines its pointers

gets the next name in the input character buffer

executes "pseudoverb name" -> hidden verb w name on stack (INP, RUN)
searches a linked list for words to be matched

initializes symbol, procedure text tables, and commons for POPS
verbs: math, assignment, comparison, looping, branching, proc calls
allocates space in linked-list array and handles link pointers
allocate storage for literal if needed, return pointer in any case
handles array = value(s) constructs

gives user error message, resets parameters to read next input line
parses the input text buffer, building stacks; executes pseudoverbs
pops item from stack

reads an input line from current input source (CRT, RUN file, batch)
compiles pseudoverbs: PROC, declarations, IF, THEN, WHILE, FINISH,
pushes item onto stack advancing the stack pointer

allocates space in linked-list array and handles link pointers
replaces the symbol type code in the data description structure
converts any characters beween single quotes to upper case

stores proc code; pseudoverbs: SAVE, GET, RESTORE, STORE, LIST,
converts variable with subscript to the appropriate scalar

obtains symbol identification from symbol table; creates new symbols
calls verbs subroutines (AUnc) by verb number - interactive version
calls verbs subroutines (AUnc) by verb number - batch version

calls verbs subroutines (AUnc) by verb number - Checker version

B.1.31 POPS-UTIL

AIPSUB
AIPSUB

APLSUB:
:GETSTR.FOR

APLSUB

AIPSUB:
:RDUSER.FOR

AIPSUB

AIPSUB:
AIPSUB:
AIPSUB:
:UINIT.FOR

AIPSUB

B.1.32 PRINTER

APLSUB:
APLSUB:
AIPSUB:
APLSUB:

:ASSGN.FOR
:CONFRM.FOR

GETNUM.FOR

PRTMSG.FOR

SCHOLD.FOR
SGLAST.FOR
SGLOCA.FOR

BATPRT.FOR
DATDAT.FOR
PRTALN.FOR
PRTLIN.FOR

performs the assignment functions of scalar/vector = scalar/vector
asks user to respond yes or no to some question

returns numeric field from character buffer

returns a string value (was enclosed by quotes) from character buffer
prints and deletes messages from the MS file

reads the user number from the terminal

wait for user input on screen full, allows type ahead, quit, continue
does a SAVE or GET of the K array cataloged as LASTEXIT.

locates a Save/Get file by name in catalog of SG files

general, non-language initialization routine; only calls VHDRIN

prints header/trailer messages for printer tasks when run in batch
converts "DD/MM/YY" form of date to "dd-mmm-yyyy" for printing
prints line on CRT orprinter, handles page full AND POPS type-ahead
prints line on printer or terminal with page-full handling, headers

B-24

APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:

B.1.33 SDISH

APLNOT:
APLNOT:
APLNOT:
APLNOT:
APLNOT:
APLNOT:
APLNOT:
APLEOT:
APLNOT:

B.1.34 SERVICE

AIPSUB:
AIPSUB:
APLSUB:
APLSUB:
APLSUB:
APLSUB:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:

ZDOPRT.FOR
ZENDPG.FOR
ZLASC2.FOR
ZLASCL.FOR
ZLASIO.FOR
ZLASOP.FOR
ZLPCL2.FOR
ZLPCLS.FOR
ZLPOP2.FOR
ZLPOPN.FOR
ZLWIO.FOR

ZLWOP.FOR

CSINI.FOR
DCALSD.FOR
DGETSD.FOR
GACSIN.FOR
SDCGET.FOR
SDCSET.FOR
SDGET.FOR
SDTCRD.FOR
TABCS.FOR

AIPINI.FOR
DESCR.FOR
INQFLT.FOR
INQGEN.FOR
INQINT.FOR
INQSTR.FOR
ZADDR.FOR
ZDELA2.FOR
ZDELAY.FOR
ZERRO2.FOR
ZGTBIT.FOR
ZHEX.FOR
ZKDUMP.FOR
ZMSGWR.FOR
ZMYVER.FOR
ZPTBIT.FOR
ZTIME.FOR

B.1.35 SLICE

AIPSUB:
AIPSUB:
AIPSUB:
AIPSUB:
AIPSUB:
AIPSUB:
AIPSUB:

AU9B.FOR

AU9C.FOR

SET1DG.FOR
SLOCIN.FOR
TKGGPL.FOR
TKGMPL.FOR
TKRSPL.FOR

APPENDIX B. SHOPPING LISTS

reads bit file and causes it to be plotted on printer/plotter
advance printer if needed to avoid electrostatic-printer "burn-out"
spool a closed laser printer print/plot file

close and spool a laser printer print/plot file

open, write to, close and spool a laser printer print/plot file
open a laser printer print/plot file

queue a file to the line printer and delete

close an open printer device

open a line-printer text file - actual OPEN call

open a line-printer text file

open, write to, close and spool a PostScript print/plot file
open a PostScript (LaserWriter) print/plot file

Create/Open/Init Single dish calibration (CS) table

Apply Single dish calibration to data.

Reads, selects single dish data, calibrates and edits.
Initializes CS file, and prepares table to be applied.

Sets up to interpolate in Single dish calibration (CS) table.
Interpolates single dish calibration data for current time.
Reads single dish data with optional calibration and flagging
Parse "SINGLDSH" FITS table headers, get some keywords.

Does I/0 to single dish calibration (CS) table opened by CSINI

does all AIPS initializations for a stand-alone program

destroys all scratch files for tasks which are no longer active
inquire of the user for specified number of floating-point values
inquire of user for specified list of integer, float, & char values
inquire of user for specified number of integer values

request character string from user (1st ¥ characters of line)
determine if 2 addresses inside computer are the same

delay current process a specified interval

delay current process a specified interval

return system error message for given system error code

get array of bits from a word

encode an integer into hexadecimal characters

display portions of an array in various Fortran formats

call MSGWRT based on call arguments - for C routines to call MSGWRT
returns OLD, NEW, or TST based on translation of logical AIPS_VERSION
put array of bits into a word

return the local time of day

verbs to plot slices and models on graphics

verbs to set initial guesses for slice model fits using TEK graphics
sets initial guess parameters with the TEK for fitting slices
initialize location common for slice (on the TEK) model fitting
plots model slice on Graphics

plot model fit to slice on the graphics terminal

plots residuals between slice and its model on Graphics device

B.1. INTRODUCTION

APLSUB:
AIPSUB:

TKSLIN.FOR
TKSLPL.FOR

B.1.36 SORT

APLSUB:
APLSUB:
APLSUB:
APLSUB:
APLSUB:

LSORT.FOR
MERGE.FOR
OSORT.FOR
PERMAT.FOR
SHSORT.FOR

B-25

initialize parameters for plotting a slice directly on a TK graphics
plot a slice on graphics device

sort a data buffer minimizing number times records are switched
sorts by merging previously sorted blocks of records

does quick sort on array of vectors, then reorders by calling PERMAT
permutes rows or columns of matrix according to permutation vector
Shell sort of an array or records on two keys

B.1.37 SPECTRAL

APLNOT:
APLEOT:
APLNOT:
APLNOT:
APLNOT:
APLNOT:
APLNOT:
APLNOT:
:TABBP.FOR
:UVGET.FOR

APLNOT
APLNOT

B.1.38 SYSTEM

APLSUB:
AIPSUB:
APLSUB:
APLSUB:
APLSUB:
APLSUB:
APLSUB:
APLSUB:
:WHOAMI.FOR

APLSUB

APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEK:

DATBND.FOR
FQMATC.FOR
FRQTAB.FOR
IOBSRC.FOR
SCINTP.FOR
SCLOAD.FOR
SETSM.FOR
SMOSP .FOR

ACOUNT.FOR
AIPINI.FOR
BATQ.FOR
DIE.FOR
DIETSK.FOR
PASENC.FOR
PASWRD.FOR
RELPOP.FOR

ZABOR2.FOR
ZABORT.FOR
ZACTV8.FOR
ZCPU.FOR
ZDATE.FOR
ZDCKI2.FOR
ZDCHIC.FOR
ZDCHINX.FOR
ZFREE.FOR
ZGNAME.FOR
ZPRI2.FOR
ZPRIO.FOR
ZPRPAS.FOR
ZSETUP.FOR
ZSTAI2.FOR
ZSTAIP.FOR
ZTACT2.FOR
ZTACTQ.FOR
ZTKILL.FOR

Applies the bandpass correction to data.

Check if selection criteria match FQ table entries.

Fill Frequency table in common for IFs and channels

Search for antennas in the current bandpass buffer.

Interpolates bandpass tables in time.

Copies part of one bandpass scratch file to another for efficiency.
Determines type of spectral smoothing and sets up look up table.
Convolves a spectrum with a tabulated function.

Does I/0 to bandpass (BP) table opened by BPINI

Read UV data with optional calibration, editing, selection, etc.

Writes beginning and final entries in the AIPS accounting file

does all AIPS initializations for a stand-alone program

performs operations on batch queue control file such as OPEN RUR CLOS
closes down tasks which use DFIL.INC to maintain status of files
closes a task: restarting AIPS, settling the accounting, issuing msg
encrypts a i12-character password into 3 Holleriths

prompts for and checks password if the user has a non-blank PW entry
places a return code in the task data file, thereby resuming AIPS
given root task name, gets actual task name and finds KPOPS number
establishes or carries out (when appropriate) abort handling
establishes or carries out (when appropriate) abort handling
activate the requested program, returning process ID information
return current process CPU time and IO count

return the local date

initialize device and Z-routine characteristics commons - local vals
set more system parameters; make them available to C routines
initialize message, device and Z-routine characteristics commons
display available disk space

get name of current process

raise or lower the process priority

raise or lower the process priority

prompt user and read 12-character password (invisible) from CRT
performs system-level operations after VERNAM, TSKNAM, NPOPS known
does any system cleanup needed at the end of interactive AIPS session
does any system cleanup needed at the end of interactive AIPS session
inquires if a task is currently active on the local computer

inquires if a task is currently active on the local computer

deletes (or kills) the specified process

B-26

APLGEN:
APLGEN:
APLGEN:
APLGEN:

ZTQSP2.FOR
ZTQSPY.FOR
ZTRLOG.FOR
ZWHOMI.FOR

B.1.39 TAPE

APLSUB:
APLSUB:
APLSUB:
APLSUB
AIPSUB
APLNOT:
APLSUB:
APLNOT
APLNOT:
APLNOT:
APLNOT:
APLSUB:
APLSUB:
APLNOT:
APLNOT:
APLNOT:
APLSUB
APLNOT:
APLSUB
APLSUB
APLNOT:
AIPSUB
APLSUB:
APLGEN:
APLGER
APLGEN:
APLGEN
APLGEN:
APLGEN:
APLGEX
APLGEN:
APLGEN
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEK:
APLGENX:
APLGEN
APLGEN:
APLGEN
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:

DWRITE.FOR
EXTHIS.FOR
EXTREQ.FOR

:FNDEQT.FOR
:FWRITE.FOR

GTF3D.FOR
MLREOF.FOR

:PTF3D.FOR

R3DTAB.FOR
RWTAB.FOR

SDTCRD.FOR
SKPBLK.FOR
SKPEXT.FOR
TABAXI.FOR
TABF3D.FOR
TABFRM.FOR

:TABLIN.FOR

TABSPC.FOR

:TAPIO.FOR
:TPEEAD.FOR

TPIOHD.FOR

:UWRITE.FOR

VBOUT.FOR
ZBKLD1.FOR

:ZBKLD2.FOR

ZBKLD3.FOR

:ZBKTP1.FOR

ZBKTP2.FOR
ZBKTP3.FOR

:ZBYTF2.FOR

ZBYTFL.FOR

:ZMCACL.FOR

ZMOUN2.FOR
ZMOUNT.FOR
ZR8P4.FOR
ZRDMF.FOR
ZRM2RL.FOR
ZTAP2.FOR

:ZTAPE.FOR

ZTAPIO.FOR

:ZTPCL2.FOR

ZTPCLD.FOR
ZTPCLS.FOR
ZTPMI2.FOR
ZTPMID.FCOR
ZTPMIO.FOR
ZTPOP2.FOR

APPENDIX B. SHOPPING LISTS

display AIPS account or all processes running on the system
display AIPS account or all processes running on the system
translate a logical name

determines AIPSxn task name; sets NPOPS, assigns TV and TK devices

translate "DEC" format map header and display parameters

adds to history file for contents of FITS extension file being read
parse FITS tape record for required extension file FITS keywords
advances tape to logical end of information (2 consecutive EOFs)
converts FITS header to AIPS header and displays it with MSGWRT
Copies real-world bytes from a tape buffer, reading if necessary.
advances tape to end of file and reports records read in TAPIO system
Copies 8-bit bytes to tape.

Read data from FITS 3-D table and write AIPS table.

Read FITS ASCII table data and write AIPS table file.

Parse "SINGLDSH" FITS table headers, get some keywords.

find next non-blank card image in a FITS header, read tape if needed
finishes reading FITS extension header, skips the extension data
parse FITS tape record for required extension file FITS keywords
Determines repeat count and data type for FITS 3-D tables entries.
Parses format for FITS ASCI table entries.

reads a line from the data portion of a FITS extension of type TABLE
Determines repeat count and data type for FITS 3-D tables entries.
read/writes tape and FITS disk files

reads a tape record, advances over label file, decides if it

Reads tape header and tests if FITS, tape labels etc.

writes summary of UV Export-format tape

writes variable length, blocked records of 16-bit integers to tape
initialize environment for BAKLD

does BACKUP operation: load images from tape to directory

clean up system things for BAKLD ending

initialize BACKUP to tape operation for BAKTP

write a cataloged file plus extensions to BACKUP tape in BAKTP

clean up host environment at end of BAKTP

interchange bytes in buffer if needed to go between local & standard
interchange bytes in buffer if needed to go between local & standard
convert Modcomp compressed ASCII to Hollerith characters (for FILLR)
mount or dismount magnetic tape device

mount or dismount magnetic tape device

converts pseudo I*4 to double precision - for tape handling only
convert DEC Magtape Format (36 bits data in 40 bits) to 2 integers
convert Modcomp to local single precision floating point

position (forward/back record/file), write EOF, etc. for tapes
mount, dismount, position, write EOF, etc. for tapes

tape operations for IMPFIT (compressed FITS transport tape)

close a tape device

close pseudo-tape disk file

closes a tape device (real or pseudo-tape disk)

tape read/write

pseudo-tape disk read/write for 2880-bytes records

read/write tape devices with quick return IO methods

open a tape device for double-buffer, asymchronous IO

B.1. INTRODUCTION

APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:

ZTPOPD.FOR
ZTPOPN.FQOR
ZTPWA2.FOR
ZTPWAD.FOR
ZTPVAT.FOR

B-27

open a pseudo-tape, sequential disk file for FITS

open tape or pseudo-tape device

wait for read/write from/to a tape device

"gait" for IO operation to complete on pseudo-tape disk file (ZTPMID)
wait for asynchronous IO to finish on tape or pseudo-tape disk

B.1.40 TERMINAL

APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:

ZPRMPT.FOR
ZPRPAS.FOR
ZTTBUF.FOR
ZTTCLS.FOR
ZTTOP2.FOR
ZTTOPX.FOR
ZTTYIO.FOR

B.1.41 TEXT

APLSUB

APLSUB:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:

B.1.42
APLNOT:

B.1.43 TV-APPL

AIPSUB

:TXTMAT.FOR

VERMAT.FOR
ZDIR.FOR
ZTCLOS.FOR
ZTOPE2.FOR
ZTOPEN.FOR
ZTREAD.FOR
ZTXCLS.FOR
ZTXIO0.FOR
ZTXMA2.FOR
ZTXMAT.FOR
ZTX0P2.FOR
ZTXOPN.FOR

TV
IMVIN.FOR

:AUS.FOR
AIPSUB:
AIPSUB:
AIPSUB:
AIPSUB:
AIPSUB:
AIPSUB:
AIPSUB:
AIPSUB:
AIPSUB:

AUBA.FOR
AUSB.FOR
AUSC.FOR
AUSD.FOR
AU6.FOR

AU6A.FOR
AU6B.FOR
AU6C.FOR
AU6D.FOR

QNOT:DISPTV.FOR
YSUB:GRBOXS.FOR

AIPSUB:
AIPSUB:
AIPSUB:

GRLUTS.FOR
HIENH.FOR
HILUT.FOR

YSUB:IAXIS1.FOR

prompt user and read 80-characters from CRT screen

prompt user and read 12-character password (invisible) from CRT
reads terminal input with no prompt or wait - simulates TV trackball
close a terminal device

open a message terminal

open a terminal device

read/write buffer to terminal

min match handling for text files (calls ZTXMAT, does messages)

min match handling for text file names incl sequence of directories
build a full path name to files in AIPS-standard areas (HE, RU, ...)
close text file opened with ZTOPEN

open text file for ZTOPEN

open text file - logical area, version, member name as arguments
read next 80-character record in sequential text file (ZTOPEN type)
clos text file opened via ZTXOPN

read/write a line to a text file

find all file names matching a given wildcard specification

return list of files in specified area beginning with specified chars
translate the file name and open a text file

open a text file for read or write

Set up window on TV device

basic TV verbs to do on/off, read cursor position, init the TV,
verbs to load images to the TV including ROAM

verbs to anotate TV images

verbs to draw wedges on TV, erase images, set corners with TV cursor
verbs to load and run TV movie sequences

verbs to manipulate TV scroll, zoom, color tables, and TVHUEINT
verbs to set the TV blank and white LUT linearly and to blink planes
verb to display image value at pixel indicated by TV cursor (CURVAL)
verb to alter zoom and enhance image in standard way: TVFIDDLE
verbs to do image statistics in blotch regions: TVSTAT, IMSTAT
*TESS routine: Display an image on a TV

sets rectangular boxes or diagonal line with TV cursor and graphics
interactive piecewise linear LUT using graphic plane and cursor
interactive linear enhancement of 2-image hue-intensity TV display
calculates new LUTs for hue-intensity display and sends them to TV
draws axis labels and tick marks (via ITICS) on TV

B-28 APPENDIX B. SHOPPING LISTS

APLNOT:IMOPEN.FOR Open the TV under the system set up by IOSET

YSUB:ITICS.FOR dravs tick marks and labels on TV

AIPSUB:TVBLNK.FOR blinks two TV channels, cursor controls rate

APLNOT: TVFOAD.FOR TVFLG routine to load and image with smoothing converting to display.
AIPSUB:TVMOVI.FOR runs movie algorithm on pre-loaded images, with interactions
AIPSUB:TVROAM.FOR does interactive multi-channel "ROAM" display on pre-loaded images
YGEN:YCUCOR.FOR correct cursor position for scroll; return image coordinates, header
YGEN:YISDRM.FOR read/write data memory of NRAO-ISU device

YGEN:YISDSC.FOR read/write micro-processor memory of NRAO-ISU device
YGEN:YISIMP.FOR cause microprocessor jump toaddress in NRAO-ISU device
YGEN:YISLOD.FOR loads/unloads program memory of NRAO-ISU device

YGEN : YISMPM.FOR reads/writes microprocessor memory of the NRAO-ISU device

YGEN : YMKCUR.FOR selects the form of the cursor to be displayed

B.1.44 TV-BASIC

YGEN:YALUCT.FOR drives the TV arithmetic logic unit - not to be used much

YGEN : YCONST.FOR controls the constant registers added to the TV picture - not used
YGEN:YCRCTL.FOR controls the TV cursor visibility, position; reads trackball buttoms
YGEN: YFDBCK.FOR causes a feedback operation in the TV

YGEN:YGGRAM.FOR controls the TV graphics color assignments

YGEN:YGRAFE.FOR controls the graphics control register (IIS function)

YGEN: YGRAPH.FOR turns TV graphics planes on and off

YGEN:YIFM.FOR read/write TV Input look-up-table

YGEN:YIMGIO.FOR read/vwrite data to the TV grey and graphics memories

YGEN:YIKIT.FOR initialize everything about the TV

YGEN:YLUT.FOR read/vrite channel-based look-up-table

YGEN: YMNMAX.FOR read 3 min/max values from TV data paths (IIS only, not used)
YGEN:YOFM.FOR read/write all-channel look-up-table ("output function memory")
YGEN: YRHIST.FOR read the histogram of the selected TV output color

YGEN: YSCROL.FOR write the scroll registers (shift location of 1 or more TV channels)
YGEN:YSHIFT.FOR read/write the shift (bias) registers of the TV (IIS M70, not used)
YGEN:YSPLIT.FOR set channel selection by split-screen quadrant

YGEN:YSTCUR.FOR reads/writes the cursor pattern array

YGEN:YTVCIN.FOR initialize TV characteristics common (not needed much - see TVOPEN)
YGEN:YTVCLS.FOR close the TV, including TV device and TV control/parameter disk file
YGEN:YTVOPX.FOR open the TV device and the TV disk control/parameter file.

YGEN : YZO0MC.FOR set the TV zoom magnification and center

B.1.45 TV-IO

YGEN:YTVCL2.FOR close actual TV device (called by YTVCLS)

YGEN:YTVMC.FOR issue a master clear to reinitialize IO to the TV

YGEN: YTVOP2.FOR open actual TV device (called by YTVOPN)

APLGEN:ZARGS.FOR sends command to/from the ARGS TV device

APLGEN: ZARGXF.FOR translates IIS Model 70 commands into calls to ZARGS for ARGS TV
APLGEN:ZDEAC2.FOR close DeAnza TV device

APLGEN:ZDEACL.FOR close DeAnza TV device

APLGEN:ZDEAMC.FOR issue a master clear to the TV - for DeAnzas this is a No-Op
APLGEN:ZDEAO2.FOR opens DeAnza TV device

APLGEN:ZDEAOP.FOR opens DeAnza TV device

APLGEN:ZDEAX2.FOR do actual read/write from/to DeAnza device

APLGEN : ZDEAXF .FOR do I0 to DeAnza TV

APLGEN:ZIVSOP.FOR opens IVAS TV device - using the IIS package

B.1. INTRODUCTION

APLGEN:ZM70C2.FOR
APLGEN:ZM7002.FOR
APLGEN:ZM70X2.FOR
APLGEN:ZTTBUF.FOR
APLGEN:ZV20C2.FOR
APLGEN:ZV20MC.FOR
APLGEN:2ZV2002.FOR
APLGEN:ZV20X2.FOR
APLGEN:ZVTVC2.FOR
APLGEN:ZVTVC3.FOR
APLGEN:ZVTVCL.FOR
APLGEN:ZVTVGC.FOR
APLGEN:ZVTVO3.FOR
APLGEN:ZVTVOP.FOR
APLGEN:ZVTVRC.FOR
APLGEN:ZVTVRO.FOR
APLGEN:ZVTVRX.FOR
APLGEN:ZVTVX2.FOR
APLGEN:ZVTVX3.FOR
APLGEN:ZVTVXF.FOR

B.1.46 TV-UTIL

YSUB:BLTFIL.FOR
APLSUB:CHAVRT.FOR
APLSUB:DECBIT.FOR
YSUB:DLINTR.FOR
AIPSUB:GRPOLY.FOR
APLSUB: HDRBUF .FOR
YSUB:IENHNS.FOR
YSUB:ILNCLR.FOR
APLSUB:IMA2MP.FOR
YSUB:IMANOT.FOR
YSUB:IMCCLR.FOR
YSUB:IMCHAR.FOR
YSUB: IMLCLR.FOR
YSUB: IMPCLR.FOR
YSUB: IMVECT.FOR
APLSUB:ISCALE.FOR
APLSUB : MKYBUF . FOR
APLSUB:MOVIST.FOR
APLSUB :MP2IMA.FOR
APLSUB:REALOG.FOR
APLSUB:REAVRT.FOR
YSUB:TVCLOS.FOR
YSUB:TVFIDL.FOR
AIPSUB:TVFIND.FOR
YSUB:TVLOAD.FOR
YSUB:TVOPEN.FOR
YSUB:TVWHER.FOR
APLSUB:TVWIND.FOR
APLSUB:UNYBUF.FOR
YGEN: YCHRW.FOR
YGEN:YCINIT.FOR

B-29

close IIS Model 70/75 TV device

opens IIS Model 70.75 TV device

read/write from/to IIS Model 70/75 device

reads terminal input with no prompt or wait - simulates TV trackball
close Comtal Vision 1/20 TV device

issue a master clear to the TV - for Comtal this is a No-Op

opens Comtal Vision 1/20 TV device

does I/0 to Comtal Vision 1/20 TV device

close virtual TV connection to remote, real-TV computer

close connection in real-TV computer to client, virtual-TV computer
close connection in client (virtual-TV) to server (remote, real-TV)
close & reopen connection in server (real-TV) to client (virtual-tv)
open connection in server (real-TV) to client (virtual-TV)

opens connection from client (virtual-TV) to server (real-TV)

closes channel in server (real-TV) to client (virtual-TV)

open socket in server (real-TV) to any clieant (virtual-TV)

does IO for server (real TV) to client (Virtual-TV) incl close/reopen
writes/reads to/from server for the client (virtual TV) machine
reads/writes from/to client (virtual TV) for the server (real TV)
sends data from the client (virtual TV) to server (real TV)

fills in closed polygons on a tv "blotch" plane

converts between local HOLL and local INT binary forms for transport
converts decimal coded number to bit coded (e.g. 13 -> 0000101)
interactive delays, cursor tests, prevent wraparound

uses TV graphics to let user develop polygonal blotch regions
translates AIPS header to/from FITS-standard integer form
interactive linear enhancement of TV black & white LUTs

computes and loads a piecewise linear OFM to the TV

converts pixel numbers in a TV-image into real image pixels

draws a character string with black background to graphics

write color contour OFM to TV Irom standard sets

writes character string to TV

continuous colors fom blue thru green to red (or rotations thereotf)
writes OFM with color contour helix in lightness-hue-saturation space
draws connected line segments on TV

scale a buffer by various functions to an integer buffer (ie for TV)
packages a command line into machine-independent form

sets/resets the movie status parameters in the TV common

convert image pixel positions to TV pixel positions

converts numbers between floating and an integer version of their log
converts between local REAL and local INT binary forms for transport
does error checks on device open, then closes the TV via YTVCLS
standard, simple interactive B&W LUT and color enhancements, zooming
determines which of the visibile images on the TV the user desires
load image to a TV memory from open MA file

sets LUNs, calls YTVOPN to open the TV device, does error messages
turns on cursor, waits for button, returns quadrant, position, button
determines image windows for TV, including for interpolation & Roam
unpacks a machine-independent integer buffer into local command line
writes characters into image and graphics planes

initialize image catalog for specified TV memory plane

B-30

YGEN:
YGEN:
:YCREAD.FOR

YGEX

YGEN:
YGEN:
YGEN:
YGEN:
YGEN:
YGEN:
:YLOWOH.FOR
:YMAGIC.FOR
YGEN:
:YSLECT.FOR
:YTCOMP .FOR

YGEN
YGEN

YGEN
YGEN

YGEN:

YCHNECT.FOR
YCOVER.FOR

YCURSE.FOR
YCWRIT.FOR
YFILL.FOR
YFIXD.FOR
YGYHDR.FOR
YLOCAT.FOR

YMKHDR.FOR

YZERO.FOR

APLGEN:

B.1.47

APLSUB:
APLSUB:
APLSUB:
APLSUB:
APLSUB:
APLSUB:
APLSUB:
APLSUB:
APLSUB:
APLSUB
APLSUB
APLSUB
APLSUB
APLSUB:
APLSUB
APLSUB:
APLSUB:
APLSUB:
APLSUB:
APLSUB:
APLSUB:
APLSUB:
APLSUB:
APLSUB:
APLSUB:
APLSUB:
APLSUB:
APLSUB:
APLSUB:
APLSUB:
APLSUB:
APLSUB:
APLSUB:
APLSUB:
APLSUB:

ZVTV02.FOR

AP2SIZ.FOR
BLDSNM.FOR
BLDTNM.FOR
BLTGLE.FOR
BOUNDS.FOR
CATIME.FOR
COMPAR.FOR
COORDD.FOR
COPY.FOR

:DAT2JD.FOR
:DATDAT.FOR
:DTINIT.FOR
:DTTIME.FOR

FILL.FOR

:FMATCH.FOR

FRMT.FOR
GETRLS.FOR
GREG.FOR
GTPARM.FOR
GTTELL.FOR
H2CHR.FOR
IROUND.FOR
ITRIM.FOR
JD2DAT.FOR
JTRIM.FOR
JULDAY.FOR
LINTER.FCR
LSORT.FOR
METSCA.FOR
MSGWRT.FOR
NAMEST.FOR
NMATCC.FOR
NMATCH.FOR
RCOPY.FOR
REALOG.FOR

UTILITY

APPENDIX B. SHOPPING LISTS

write line segment between 2 points on TV

checks for overlapped images on the TV by quadrant

read the image catalog, return image header for TV only

read and control TV cursor

write image header to image catalog, update image catalog directory
£ill rectangle of TV memory with a constant value

determines the unique TV image of desired type, returns catalog block
builds basic TV IO header to write gray scale data

return TV positions for set of image positions

select least on bit in a bit mask integer

initialize graphics, zoom, scroll units for IIS Model 75 (level 3)
builds standard TV-I0 header, used for IIS Models 70 and 75

turn gray and graphics planes on and off

decide if a parameter has changed

£ill a TV memory plane with zeros

open connection in client (virtual-TV) to server (remote, real-TV)

returns largest power of 2 not exceeding 1024 times first argument
builds a name for a scratch file

constructs full task name by appending NPOPS to task root name
returns angle from A through a test position to B

prints message if 1 or 2 values are outside a specified range

stores current, or recovers previous, date and time in packed format
compares two integer arrays and returns .TRUE. if they are equal
converts angles between degrees and sexagesimal format

copies integer words from one array to another

converts date and time to a Julian date

converts "DD/MM/YY" form of date to "dd-mmm-yyyy" for printing

inits parameters for displaying elapsed CPU and real time w DTTIME
displays elapsed CPU and real times since last call to DTINIT

fills an integer array with an integer constant

returns pointer to location of small array in a bigger array

encode floating number removing trailing zeros, alter accuracy if nec
returns the name of the current release (edited each quarter in CV)
converts Julian day number to date in character form

starts tasks, getting parameters and task ID number, does accounting
gets any parameters sent to task by AIPS verb TELL

convert AIPS Hollerith string to Fortran CHARACTER variable

rounds a REAL to the nearest INTEGER

returns length of CHARACTER variable to last non-blank

converts Julian day number to calendar date and time

clears nulls, returns length of CHARACTER variable to last non-blank
converts a character-encoded calendar date to Julian day number

does linear interpolation of a 1-D INTEGER array

sort a data buffer minimizing number times records are switched
scale a value to the range 1-999 and provide a metric prefix to match
writes messages to log file and/or terminal - a fundamental routine!
packs image name in string with leading and trailing blanks removed
returns next character in a string not matching a specified constant
returns next word in INTEGER array not matching a specified constant
copies one real array into another

converts numbers between floating and an integer version of their log

B.1. INTRODUCTION

APLSUB:RFILL.FOR
APLSUB:SETUP.FOR
APLSUB:STRLIN.FOR
APLSUB:TIMDAT.FOR
APLGEN:ZERROR.FOR
APLGEN : ZMSGER.FOR

B.1.48 UV

QNOT: ALGSUB.FOR
APLNOT :CALREF .FOR
QNOT:CCSGRD.FOR
APLNOT:DGGET.FOR
APLNOT : DGNEAD.FOR
APLNOT:DGINIT.FOR
QNOT:FFTIM.FOR
APLNOT:FQMATC.FOR
APLNOT:GAININ.FOR
APLNOT:GET1VS.FOR
APLNOT:GETANT.FOR
APLNOT : GETCTL.FOR
APLNOT: GETFQ.FOR
APLNOT:GETSOU.FOR
APLNOT: GETSTN.FOR
APLNOT: GNFSMO.FOR
APLNOT : GNSMO . FOR
QNOT : GRDCRM.FOR
APLNOT: GRDFLT.FOR
APLNOT: GRDSET.FOR
QNOT : GRDSUB. FOR
APLNOT: GRIDTB.FOR
APLNOT: INDXIN.FOR
QNOT: INTPFN.FOR
APLNOT: IOBSRC.FOR
APLNOT:LXYPOL.FOR
QNOT : MAKMAP . FOR
APLNOT : MULSDB . FOR
APLNOT : NDXINI.FOR
APLNOT: NXTFLG.FOR
APLNOT : PARANG . FOR
APLNOT: POLSET.FOR
QPSAP:QiFIN.FOR
QPSAP:Q1GRD.FOR
QPSAP:QFINGR.FOR
QPSAP:QGADIV.FOR
QPSAP:QGASUB.FOR
QPSAP:QGRD1.FOR
QPSAP:QGRD2.FOR
QPSAP:QGRD3.FOR
QPSAP:QGRD4.FOR
QPSAP :QGRDFI.FOR
QPSAP : QGRDMI . FOR
QPSAP:QGRID.FOR
QPSAP:QGRIDA.FOR

B-31

fills a real array with a constant

does several task start up chores for non-interactive tasks
computes integer array as linear interpolation between two points
convert integer time and date to character form for display

prints strings associated with system error codes for Z routines
prints strings associated with system error codes for ZMSG routines

Interpolates model visibility grom a grid and subtracts from uv data.
Adjusts the reference antenna in an SN table.

Transforms CLEAN components to a grid.

Selects uv data and changes Stokes

Fills output CATBLK for UVGET

Sets arrays for selecting data and changing Stokes

FFTs an image for uv interpolation.

Check if selection criteria match FQ table entries.
Initializes calibration table for application.

Extract desired uv data, 1 value per freq. channel.

Reads AN table and stores the info in common.

Determine Stokes’ type of Clean map and other modeling info.
Find info on a given frequency id.

Find info on a given source id.

Reads the VLB station list opened in VBLIN and VBCIT

Boxcar smooths and ASCAL solution (GA) file.

Optimized spline smoothing of amplitudes in ASCAL (GN) file.
Loads CLEAN components into AP for uv model computation.
Sets default gridding convolution functions.

Creates scratch files and sets up for GRDSUB

Subtracts transform of CLEAN components from uv data.

Makes a gridded image of the UV data in TB order.
Initializes index (NX) file, finds first scan selected.
Computes interpolation kernals and put them into "AP memory".
Search for antennas in the current bandpass buffer.

Fills polarization correction table for AT like linear polarization.
Makes image or beam from uv data set.

Determines if a uv file is multi- or single- source.
Create/open/init index (NX) table

Manages flagging info in tables in common.

Computes antenna parallactic angles

Fills polarization correction table from info in AN table.
Finish gridding a row of uv data.

Grid a uv data.

Finish gridding row of uv data.

Divide Gaus. model vis. into uv data.

Subtract Gaus. model vis. from uv data.

Convolves visibility data onto a grid.

Convolves linear polarization data onto a grid.

Convolve visibility data onto a grid.

Convolves visibility data onto a grid.

Finish griding a row of uv data.

Combined complex vector in gridding uv data.

Grid uv data into row.

Grid visibility data.

B-32

QPSAP:QINT.FOR
QPSAP:QINTP.FOR
QPSAP:QMCALC.FOR
QPSAP:QPTDIV.FOR
QPSAP:QPTFAZ.FOR
QPSAP:QPTSUB.FOR
QPSAP:QSPDIV.FOR
QPSAP:QSPSUB.FOR
QPSAP:QUVIN.FOR
QPSAP:QUVINT.FOR
QPSAP:QXXPTS.FOR

APLEOT:
APLNOT:
APLNOT:
APLNOT:
APLNOT:
APLNOT:
APLNOT:
APLNOT:
APLNOT:
APLNOT:
APLNOT:
APLNOT:
APLNOT:
APLNOT:
APLNOT:
APLNQOT:
APLNOT:
APLNOT:
APLNOT:
APLNOT:
APLNOT:
APLNOT:
APLNOT:
APLNOT:
APLNOT:
APLNOT:
APLNOT:
APLNOT:
APLNOT:
APLNOT:
APLNOT:
APLROT:

SCINTP.FOR
SCLOAD.FOR
SELINI.FOR
SELSMG.FOR
SET1VS.FOR
SETGDS.FOR
SETGRD.FOR
SETSM.FOR
SETSTK.FOR
SMOSP .FOR
SN2CL.FOR
SNAPP.FOR
SNINI.FOR
SNSMO.FOR
SOUELV.FOR
SOUFIL.FOR
SOURNU.FOR
TABBL.FOR
TABBP.FOR
TABCAL.FOR
TABCS.FOR
TABFLG.FOR
TABFQ.FOR
TABGA.FOR
TABNDX.FOR
TABSK.FOR
TABSOU.FOR
TABTY.FOR
TYINI.FOR
UVDOUT.FOR
UVDPAD.FOR
UVGET.FOR

QNOT:UVGRID.FOR
QNOT:UVMDIV.FOR
QNOT :UVMSUB.FOR
QNOT:UVTBGD.FOR
QNOT:UVTBUN.FOR
QNOT:UVUNIF.FOR

APLNOT:

VISCNT.FOR

QNOT:VISDFT.FOR

APPENDIX B. SHOPPING LISTS

Interpolates model visibilityes from a grid.

Interpolates model visibilities from a grid.

Compute model visibility from point model.

Divide point model visibility into uv data.

zCompute phase in model visibilities.

Subtract point model visibility from uv data.

Divide Gaussian model visibility into uv data.

Subtract Gaussian model visibility from uv data.

Interpolate visibility model from a grid.

Interpolate model visibility from grid.

Subtract point model visibility from uv data.

Interpolates bandpass tables in time.

Copies part of one bandpass scratch file to another for efficiency.
Initialize data selection and control in commons in DSEL.INC
Selects calibrator data, smooths solutions.

Sets up pointer and weights arrays for selecting uv data.

Sets up for UV model computation, £ills common in DGDS.INC
Sets up for gridding uv data.

Determines type of spectral smoothing and sets up look up table.
Sets STOKES parameters correctly for plotting routines
Convolves a spectrum with a tabulated function.

Apply an SN to a CL table.

Append SN tables and keep track of reference antennas.
Create/open/initialize solution (SN) tables.

Smooths solution (SN) tables

Computes source hour angles and elevations

Fills in arrays of source numbers to be included or excluded.
Look up source numbers for a list of names.

Do I0 to Baseline (BL) table after setup by BLINI.

Does 1/0 to bandpass (BP) table opened by BPINI

Does I/0 to Calibration (CL) table opened by CALINI

Does I/0 to single dish calibration (CS) table opened by CSINI
Does 1/0 to Flag (FG) table opened by FLGINI

Does I/0 to frequency (FQ) table opened by FQINI

Does I/0 to GAIN (GA) table opened by GAINI

Does I/0 to Index (NX) table opened by NDXINI

Does I/0 to Solution (SN) table opened by SNINI

Does I/0 to Source (SU) table opened by SOUINI

Does I/0 to Tsys (TY) table opened by TYINI
Create/open/initialize Tsys (TY) table

Divides uv model in one half of a record into other, writes result.
Reformat UV data record, doubling size and zero extra words.
Read UV data with optional calibration, editing, selection, etc.
Grids uv data to be FFTed.

Divides a uv data set by the Fourier transform of a model.
Subtracts the Fourier transform of a model from a uv data set.
Grids uv data in arbitrary sort order to be FFTed.

Determines and applies uniform weighting to uv data in arb. order.
Determines and applies uniform weighting to a uv data set.
Determines number of visibility records requested of UVGET
Compute DFT of model and subtract/divide from/into uv data.

B.1. INTRODUCTION

B.1.49 UV-UTIL

APLNOT:AN10ORS.FOR

APLSUB:
APLNOT:

APLSUB
APLSUB

APLSUB:
APLSUB:
APLSUB:
APLSUB:
:UVDISK
APLSUB:
APLSUB:
AIPSUB:

APLSUB

APLSUB

ANTDAT.
CALCOP.
:GETVIS.
:MERGE.FOR
APLSUB:

FOR
FOR
FOR

OSORT.FOR

REQBAS.
SETVIS.
SNSORT.
.FOR
.FOR
.FOR
UVPGET.
UWRITE.
:VISCHK.

UVCREA

UVINIT

FOR
FOR
FOR

FOR
FOR
FOR

B.1.50 VLA

APLNOT:APLPBI.FOR
APLNOT : APPLPB.FOR

B.1.51 YO

YGEN:YCINIT.FOR
YGEN: YCNECT.FOR
YGEN:YCOVER.FOR
YGEN:YCREAD.FOR
YGEN: YCUCOR.FOR
YGEN : YCURSE.FOR
YGEN:YCWRIT.FOR
YGEN:YFILL.FOR

YGEN:YFIND.FOR

YGEN:YLOCAT.FOR
YGEN : YLOWON.FOR
YGEN : YSLECT.FOR
YGEN : YTCOMP .FOR

B.1.52 Y1

YGEN:YCRCTL.FOR
YGEN: YGRAPN.FOR
YGEN: YIMGIO.FOR
YGEN:YINIT.FOR
YGEN: YLUT.FOR

YGEN:YOFM.FOR

YGEN: YSCROL.FOR
YGEN:YSPLIT.FOR
YGEN:YTVCIN.FOR
YGEN:YTVCLS.FOR
YGEN:YTVMC.FOR
YGEKR:YTVOPN.FOR
YGEN:YZERO.FOR

YGEN:YZOOMC.FOR

B-33

Determines a list of antenna pairs from adverbs ANTANNA, BASELINE
Returns the reference date and frequency for each array in uv dataset
Copies selected uv data with calibration and editing

uses setup from SETVIS to get and reformat a visibility sample

sorts by merging previously sorted blocks of records

does quick sort on array of vectors, then reorders by calling PERMAT
Apply ANTENNA and BASELINE selection adverbs to a baseline
initializes pointers to select/convert uv data to desired form

Shell sort of an array or records on two keys

create and catalog a uv data base file

reads/writes records of arbitrary length, esp UV data, see UVINIT
initializes I0 for arbitrary length records via UVDISK, esp UV data
determines pointers to UV data from the header

writes summary of UV Export-format tape

checks if UV data sample is desired, returms it in RR, LL, RL, LR

*TESS routine to apply a taper to an image. VLA only!
*TESS routine to apply a taper to an image

initialize image catalog for specified TV memory plane

write line segment between 2 points on TV

checks for overlapped images on the TV by quadrant

read the image catalog, return image header for TV onmly

correct cursor position for scroll; return image coordinates, header
read and control TV cursor

write image header to image catalog, update image catalog directory
£ill rectangle of TV memory with a constant value

determines the unique TV image of desired type, returns catalog block
return TV positions for set of image positions

select least on bit in a bit mask integer

turn gray and graphics planes on and off

decide if a parameter has changed

controls the TV cursor visibility, position; reads trackball buttons
turns TV graphics planes on and off

read/write data to the TV grey and graphics memories

initialize everything about the TV

read/write channel-based look-up-table

read/write all-channel look-up-table ("output function memory')
write the scroll registers (shift location of 1 or more TV channels)
set channel selection by split-screen quadrant

initialize TV characteristics common (not needed much - see TVOPEN)
close the TV, including TV device and TV control/parameter disk file
issue a master clear to reinitialize IO to the TV

open the TV device and the TV disk control/parameter file.

£ill a TV memory plane with zeros

set the TV zoom magnification and center

B-34

B.1.53 Y2

YGEN:YALUCT.FOR
YGEN: YCONST.FOR
YGEN:YFDBCK.FOR
YGEN:YIFM.FOR

YGEN : YMNMAX . FOR
YGEN:YRHIST.FOR
YGEN:YSHIFT.FOR

B.1.54 Y3

YGEN:YGGRAM.FOR
YGEN:YGRAFE.FOR
YGEN:YGYHDR.FOR
YGEN:YISDRM.FOR
YGEN:YISDSC.FOR
YGEN:YISJMP.FOR
YGEN:YISLOD.FOR
YGEN:YISMPM.FOR
YGEN:YMAGIC.FOR
YGEN : YMKCUR.FOR
YGEN: YMKHDR . FOR
YGEN:YSTCUR.FOR
YGEN:YTVCL2.FCR
YGEN:YTVOP2.FOR

B.1.55 Z

APLGEN:
APLGEN:
APLGEN:
APLGENX:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGENR:
APLGEN:
APLGEN:
APLGEN
APLGEN:
APLGEN:

ZABORT.FOR
ZACTV8.FOR
ZADDR.FOR
ZARGCL.FOR
ZARGMC.FOR
ZARGOP.FOR
ZARGXF .FOR
ZBKLD1.FOR
ZBKLD2.FOR
ZBKLD3.FOR
ZBKTP1.FOR
ZBKTP2.FOR
ZBKTP3.FOR
ZBYMOV.FOR
ZBYTFL.FOR
ZC8CL.FOR

ZCLC8.FOR

ZCLOSE.FOR
ZCMPRS.FOR
ZCPU.FOR

ZCREAT.FOR
ZDATE.FOR
ZDCHIN.FOR

:ZDEACL.FOR

ZDEAOP.FOR
ZDEAXF.FOR

APPENDIX B. SHOPPING LISTS

drives the TV arithmetic logic unit - not to be used much

controls the constant registers added to the TV picture - not used
causes a feedback operation in the TV

read/write TV Input look-up-table

read 3 min/max values from TV data paths (IIS only, not used)

read the histogram of the selected TV output color

read/write the shift (bias) registers of the TV (IIS M70, not used)

controls the TV graphics color assignments

controls the graphics control register (IIS function)
builds basic TV IO header to write gray scale data
read/write data memory of NRAO-ISU device

read/write micro-processor memory of NRAO-ISU device

cause microprocessor jump toaddress in NRAO-ISU device
loads/unloads program memory of NRAO-ISU device
reads/writes microprocessor memory of the NRAO-ISU device
initialize graphics, zoom, scroll units for IIS Model 75 (level 3)
selects the form of the cursor to be displayed

builds standard TV-IO header, used for IIS Models 70 and 75
reads/writes the cursor pattern array

close actual TV device (called by YTVCLS)

open actual TV device (called by YTVOPN)

establishes or carries out (when appropriate) abort handling
activate the requested program, returning process ID information
determine if 2 addresses inside computer are the same

close an ARGS TV device

issues a master clear to an ARGS TV

open ARGS TV device

translates IIS Model 70 commands into calls to ZARGS for ARGS TV
initialize environment for BAKLD

does BACKUP operation: load images from tape to directory

clean up system things for BAKLD ending

initialize BACKUP to tape operation for BAKTP

write a cataloged file plus extensions to BACKUP tape in BAKTP
clean up host environment at end of BAKTP

move 8-bit bytes from in-buffer to out-buffer

interchange bytes in buffer if needed to go between local & standard
convert packed ASCII buffer to local character string

convert local character string to packed ASCII buffer

closes open devices: disk, line printer, terminal

release space from the end of an open disk file

return current process CPU time and IO count

creates a disk file

return the local date

initialize message, device and Z-routine characteristics commons
close DeAnza TV device

opens DeAnza TV device

do I0 to DeAnza TV

B.1. INTRODUCTION

APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGER:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGENX:
APLGEX:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN
APLGEN
APLGEN
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:

ZDELAY.FOR
ZDESTR.FOR
ZDRPRL.FOR
ZDM2DL.FOR
ZENDPG.FOR
ZERROR.FOR
ZEXIST.FOR
ZEXPND.FOR
ZFIO.FOR
ZFREE.FOR
ZGETCN.FOR
ZGNAME .FOR
ZGTBIT.FOR
ZHEX.FOR
ZIPACK.FOR
ZKDUMP . FOR
ZLASIO.FOR
ZLPCLS.FOR
ZLPOPN.FOR
ZLWIO.FOR
ZM70MC.FOR
ZM700P.FOR
ZM70XF.FOR
ZMIO.FOR
ZMKTMP.FOR
ZMOUNT.FOR
ZMSGCL.FOR

:ZMSGDK . FOR

ZMSGER.FOR
ZMSGOP.FOR
ZMSGXP.FOR
Z0PEN.FOR

ZPEFIL.FOR
ZPNOLV.FOR
ZPRIO.FOR

:ZPRMPT.FOR
:ZPRPAS.FOR
:ZPTBIT.FOR

ZPUTCH.FOR
ZRDNMF .FOR

ZRENAM.FOR
ZRLR64.FOR
ZRM2RL.FOR
ZSTAIP.FOR
ZTACTQ.FOR
ZTAPE.FOR

ZTAPIO.FOR
ZTIME.FOR

ZTOPEN.FOR
ZTPWAT .FOR
ZTQSPY.FOR
ZTTBUF.FOR
ZTXCLS.FOR
ZTXIO.FOR

B-35

delay current process a specified interval

destroy a closed disk file

convert 64-bit HP floating buffer to local DOUBLE PRECISION values
convert Modcomp REAL*6 and REAL#*8 to local double precision
advance printer if needed to avoid electrostatic-printer "burn-out"
prints strings associated with system error codes for Z routines
return file size and, consequently, whether file exists

expand an open disk file --- either map or non-map now allowed
reads and writes single 256-integer records to non-map disk files
display available disk space

get a character from a REAL word

get name of current process

get array of bits from a word

encode an integer into hexadecimal characters

pack/unpack long integers into short integer buffer

display portions of an array in various Fortran formats

open, write to, close and spool a laser printer print/plot file
close an open printer device

open a line-printer text file

open, write to, close and spool a PostScript print/plot file

issues a master clear to an IIS Model 70 TV

open IIS Model 70 TV device

read/vrite data to IIS Model 70 TV with buffering

random-access, quick return (double buffer) disk IO for large blocks
convert a "temporary" file name into a unique name

mount or dismount magnetic tape device

close Message file or terminal

disk I0 to message file

prints strings associated with system error codes for ZMSG routines
open a message file or message terminal

expand the message file

open binary disk files and line printer and TTY devices

construct a physical file or device name from AIPS logical parameters
construct a physical file - version for UPDAT

raise or lower the process priority

prompt user and read 80-characters from CRT screen

prompt user and read 12-character password (invisible) from CRT
put array of bits into a word

inserts 8-bit character" into a word

convert DEC Magtape Format (36 bits data in 40 bits) to 2 integers
rename a disk file

convert buffer of local double precision values to IEEE 64-bit float.
convert Modcomp to local single precision floating point

does any system cleanup needed at the end of interactive AIPS session
inquires if a task is currently active on the local computer

mount, dismount, position, write EOF, etc. for tapes

tape operations for IMPFIT (compressed FITS transport tape)

return the local time of day

open text file - logical area, version, member name as arguments
wait for asynchronous IO to finish on tape or pseudo-tape disk
display AIPS account or all processes running on the system

reads terminal input with no prompt or wait - simulates TV trackball
clos text file opened via ZTXOPN

read/write a line to a text file

B-36

APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:

ZTXMAT.
.FOR
ZV20CL.
.FOR
.FOR
ZV20XF.
.FOR

ZTXOPN

ZV20MC
ZV200P

ZWHOMI

B.1.56 Z2

APLGENR:
APLGEN:

ZABOR2

ZARGC2.

FOR

FOR

FOR

.FOR

FOR

APLGEN:ZARGO2.FOR
APLGEN:ZARGS.FOR

APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGENX:
APLGENX:
APLGENX:

ZBYTF2
ZCMPR2

ZDCHI2
ZDCHIC
ZDEAC2
ZDEAQ2
ZDELA2
ZDEST2

.FOR
.FOR
ZCREA2.
ZDACLS.
ZDAOPN.
.FOR
.FOR
.FOR
.FOR
.FOR
.FOR

FOR
FOR
FOR

APLGEN:ZDIR.FOR
APLGEN:ZERRO2.FOR
APLGEN:ZEXIS2.FOR
APLGEN:ZEXPN2.FOR
APLGEN:ZFI2.FOR
2ZFRE2.FOR

APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGENX:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:
APLGEN:

ZLASC2.
ZLASCL.
ZLASOP.
ZLPCL2.
ZLPOP2.
.FOR
ZM7002.

ZM70C2

FOR
FOR
FOR
FOR
FOR

FOR

ZMI2.FOR

ZMOUN2.
ZMSGWR.

FOR
FOR

ZPATH.FOR
ZPRI2.FOR

ZRENA2.
ZSTAI2.
ZTACT2.

FOR
FOR
FOR

ZTAP2.FOR

ZTKCL2

ZTPCL2
ZTPMI2
ZTPMID

ZTPOP2.

.FOR
ZTKOP2.
ZTOPE2.
.FOR
.FOR
.FOR

FOR
FOR

FOR

APPENDIX B. SHOPPING LISTS

return list of files in specified area beginning with specified chars
open a text file for read or write

close a Comtal Vision 1/20 TV device

issue a master clear to the TV - for Comtal this is a No-Op

open Comtal Vision 1/20 TV device

read/vrite data to Comtal Vision 1/20 TV device

determines AIPSxn task name; sets NPOPS, assigns TV and TK devices

establishes or carries out (when appropriate) abort handling

close an ARGS TV device

open ARGS TV device

sends command to/from the ARGS TV device

interchange bytes in buffer if needed to go between local & standard
truncate a disk file, returning blocks to the system

create the specified disk file

close a disk file

open the specified disk file

initialize device and Z-routine characteristics commons - local vals
set more system parameters; make them available to C routines

close DeAnza TV device

opens DeAnza TV device

delay current process a specified interval

destroy a closed disk file

build a full path name to files in AIPS-standard areas (HE, RU, ...)
return system error message for given system error code

return size of disk file and if it exists

expand an open disk file

read/vurite one 256-integer record from/to a non-map disk file
return AIPS data disk free space information

spool a closed laser printer print/plot file

close and spool a laser printer print/plot file

open a laser printer print/plot file

queue a file to the line printer and delete

open a line-printer text file - actual OPEN call

close IIS Model 70/75 TV device

opens IIS Model 70.75 TV device

read/write large blocks of data from/to disk, quick return

mount or dismount magnetic tape device

call MSGWRT based on call arguments - for C routines to call MSGWRT
convert a file name

raise or lower the process priority

rename a file

does any system cleanup needed at the end of interactive AIPS session
inquires if a task is currently active on the local computer
position (forward/back record/file), write EOF, etc. for tapes
close a Tektronix device

read/write from/to a Tektronix device

open text file for ZTOPEN

close a tape device

tape read/write

pseudo-tape disk read/write for 2880-bytes records

open a tape device for double-buffer, asymchronous IO

B.1. INTRODUCTION B-37

APLGEN:ZTPOPD.FOR open a pseudo-tape, sequential disk file for FITS
APLGEN:ZTPWA2.FOR wait for read/write from/to a tape device
APLGEN:ZTQSP2.FOR display AIPS account or all processes running on the system
APLGEN:ZTTCLS.FOR close a terminal device

APLGEN:ZTTOP2.FOR open a message terminal

APLGEN:ZTTOPN.FOR open a terminal device

APLGEN:ZTXMA2.FOR find all file names matching a given wildcard specification
APLGEN:ZTXOP2.FOR translate the file name and open a text file
APLGEN:ZV20C2.FOR close Comtal Vision 1/20 TV device

APLGEN:ZV2002.FOR opens Comtal Vision 1/20 TV device

APLGEN:ZV20X2.FOR does I/0 to Comtal Vision 1/20 TV device

APLGEN:ZWAI2.FOR wait for read/write large blocks of data from/to disk

XXXV1il

Index

—AIT 5-11

—ARC 5-11

—GLS 5-11

—MER 5-11

—NCP 5-11

—SIN 5-11

-STG 5-11

—TAN 5-11

A2WAWA 8-2, 8-7

AIPS batch 3-15, 4-2, 4-9, 4-10, 4-14
ALLTAB 3-2, 3-11, 3-18

AN table 3-10, 6-11, 6-13, 6-15
APCONYV 7-1, 7-7

AXEFND 5-15, 5-7

BADDISK 3-14

BATPRT 3-12

BL table 6-15

BP table 6-15

CALCOP 6-11, 6-15, 6-27, 7-1, 7-8
calibration 6-15

CANDY 2-1, 2-7, 2-11, 2-13, 3-2
catalog 3-8, 3-9, 5-1, 5-3, 5-7, 6-12, 8-1
CATDIR 5-2, 5-7, 5-15, 6-3, 6—4, 8-1
CATIO 5-7, 5-17, 6-3, 8-1
CATKEY 3-8, 5-6, 5-16

CC table 3-10

CHCOMP 3-3, 3-19

CHCOPY 3-3, 3-19

CHFILL 3-3, 3-19

CHLTOU 3-3, 3-20

CHMATC 3-3, 3-20

CHNDAT 6-12, 6-28

CHR2H 3-2, 3-3, 3-20
CHWMAT 3-3, 3-20

CL table 6-11

CLENUP 8-2, 8-8

COMOFF 6-7,6-28

Compressed data 6-12

COORDT 5-11, 5-17

CS table 6-21

DAPL.INC 4-4, 4-28

data structures 1-6

DBAT.INC 4-30

DBUF.INC 8-5, 8-6

DBWT.INC 4-30

DCAT.INC 3-9, 5-5, 5-13, 6-2, 6-14, 6-29, 8-5,
8-7

DCON.INC 44, 4-31

DDCH.INC 3-7, 3-13, 3-16, 5-10, 5-8, 6-5, 6-23,
6-24

DEC- 5-11

DERR.INC 4-8, 4-31

DEVTAB 6-5

DFIL.INC 3-9, 3-14, 3-15, 3-17, 6-3, 7-1, 7-3,
7-7, 7-8, 7-9, 7-10, 7-17, 7-18, 8-1, 8-7

DGDS.INC 7-3

DGGET 6-14, 6-29

DGINIT 6-14, 6-29

DHDR.INC 3-8, 5-3, 5-9, 5-13

DHIS.INC 3-8

DIE 3-1, 3-6, 3-9, 3-15, 3-21, 6-2, 6-3

DIETSK 3-1, 3-6, 3-15, 3-21

differential precession 5-13

DIO.INC 4-7, 4-31

DITB.INC 8-4, 8-7

DLOC.INC 5-11, 5-14, 5-19

DMPR.INC 74

DMSG.INC 3-11, 3-16, 3-17

DOCRT 3-13

DOWAIT 1-3

DPOP.INC 4-31

DSEL.INC 6-15, 6-21, 6-24, 6-41, 6-47, 7-4, 7-15

DSKFFT 7-1, 7-9

DSMS.INC 4-31, 4-7

DTVC.INC 3-9, 5-9, 5-14

DTVD.INC 3-9

DUVH.INC 3-9, 3-17, 6-14, 6-20, 6-27, 6-29, 6-
40, 6-51, 7-7

ELAT 5-11

ELON 5-11

EXTCOP 3-11, 3-21, 6-21
EXTINI 3-11, 6-21, 6-30
EXTIO 3-11, 6-21, 6-31
FETCH 2-1, 2-7

FG table 6-11, 6-21
FILAIP 5-8

FILCLS 8-2, 8-8

FILCR 8-2, 8-8

FILDES 8-2, 8-8

FILIO 8-2, 8-9

INDEX-1

FILNUM 8-3, 8-9

FILOPN 8-2, 8-10

FITS 1-3, 5-1, 6-12

FNDX 5-11, 5-18

FNDY 5-11, 5-18

FQ 6-11

FQ table 3-10, 6-11, 6-12
FUDGE 2-1, 2-4, 3-2
GET1VS 6-14, 6-32
GETHDR 8-3, 8-10

GETVIS 6-14, 6-32

GLAT 5-11

GLON 5-11

GRDCOR 7-1, 7-9
GTPARM 3-1, 3-3, 3-6, 3-16, 3-22, 8-1
GTTELL 3-1, 3-22

H2CHR 3-2, 3-3, 3-5, 3-25
H2WAWA 8-11, 8-2

HAIDD 3-1

HDRINF 8-3, 8-10

HIADS80 3-10, 3-23

HIADD 3-10, 3-11, 3-22, 8-3
HIADDN 3-10, 3-23
HICLOS 3-1, 3-11, 3-23
HICOPY 3-11

HICREA 6-2

HIINIT 3-10, 3-24

HIMERG 3-11, 3-24
HIOPEN 3-11

HIREAD 3-11, 3-25
HISCOP 3-1, 3-10, 3-11, 3-25, 6-2, 8-3
history 3-2, 3-10
HOLLERITH 3-2, 3-5

IF 6-12

image catalog 5-1, 5-8
INCLUDE 3-2, 3-8, 3-9
IOSET 8-2

KEYIN 6-21, 6-23, 6-32
LOCAL INCLUDE 3-7
logical unit number 6—4, 6-5, 8-4
LUNSs assignments of 6-5
MAKMAP 7-2, 7-10
MAKOUT 3-10, 3-26
MAPCLS 5-7, 5-18, 6-4, 6-6, 6-33
MAPCR 8-2, 8-11
MAPHDR 6-2

MAPIO 8-2, 8-12

MAPMAX 8-3, 8-12
MAPOPN 5-7, 5-19, 6-4, 6-6, 6-34
MAPSIZ 6-3, 6-33
MAPWIN 8-2, 8-12
MAPXY 8-2, 8-13

MCREAT 3-1, 6-2, 6-34
MDESTR 6-3, 6-35

MDISK 6-4, 6-7, 6-15, 6-35
MINIT 6-4, 6-7, 6-15, 6-36, 8-1
MINSK 6-10, 6-36
MSGWRT 3-2, 3-11
MSKIP 6-10, 6-37
multi-source files 6-11

NX table 6-11

OPENCF 8-2, 8-13

pain 3-2

PFPL 3-2

PLNGET 6-11, 6-38
PLNPUT 6-11, 6-39
polarization 6-13

POPS 1-3

POPSDAT 4-17

POPSGN 4-2, 4-7, 4-16
precession 5-13

Preprocessor 3-7

PRPLn 2-1

PRTLIN 3-13, 3-26
PSFORM 3-27

PUVD.INC 3-18, 7-2
Quiche-eaters 8-1

RA—- 5-11

random parameters 6—12
RELPOP 3-1, 3-6, 3-13, 3-27
rotation 5-13

ROTFND 5-75-19
SAVHDR 8-3, 8-13

scratch files 3-14, 8-2

SCREAT 3-1,-3-14, 3-27, 6-2, 6-4, 6-39, 7-{

SDGET 6-21, 6-40
SELINI 6-15, 6-41
SET1VS 6-14, 6-43
SETLOC 5-11, 5-19
SETPAR 3-8, 3-29, 5-1
SETVIS 6-14, 6-42
Single dish 6-19, 6-20
SN table 6-15

SNDY 6-3

sort order 6-13

source number 6-12
STOP 3-15

SU table 6-11, 6-12
TABCOP 3-11, 3-28
TABINI 6-2, 6-4, 6-21, 6-43, 8-3
TABIO 6-1, 6-4, 6-21, 6-45, 8-3
TAFFY 2-1, 3-2

TC file 1-3, 3-1, 3-5
TD file 1-3, 3-1, 3-5
TSKBEG 8-3, 8-13
TSKEND 8-3, 8-14
TVFIND 5-9, 5-20
UNSCR 8-2, 8-14

INDEX-2

UVCREA 3-1, 6-2, 6-46

UVDISK 6-4, 6-15, 6-16, 6-21, 6-47
UVFIL 2-1, 2-7, 2-8, 2-11, 3-2
UVGET 6-11, 6-15, 6-47, 7-1, 7-15
UVGRID 7-1

UVHDR 6-16

UVINIT 6-4, 6-15, 6-21, 6-50
UVMDIV 7-2, 7-17

UVMSUB 7-2, 7-18

UVPGET 3-28, 5-7, 5-20, 6-14, 6-20, 6-51
VERBS 4-10, 4-14

VERBSB 4-10, 4-14

VERBSC 4-10, 4-14

VHDRIN 3-1, 5-3, 5-5, 5-9
WAWA2A 8-2, 8-14

XYPIX 5-11, 5-21

XYVAL 5-11, 5-21

YCINIT 5-9, 5-22

YCOVER 5-22

YCREAD 5-9, 5-22

YCWRIT 5-9, 5-22

ZCLOSE 3-12, 6-6, 6-52

ZCMPRS 6-3, 6-52

ZCREAT 6-2, 6-3, 6-53

ZDCHIN 3-1, 3-2, 3-7, 3-16, 3-29, 5-5
ZDESTR 6-3, 6-53

ZENDPG 3-12

ZEXPND 6-3, 6-53

ZF10O 6-24, 6-53

ZMIO 6-23, 6-54

ZOPEN 3-12, 3-15, 64, 6-6, 6-22, 6-54
ZPHFIL 3-15, 5-1, 5-2, 6-3, 6-4, 6-6, 6-55, 8-1
ZTCLOS 6-21, 6-22, 6-55

ZTOPEN 6-4, 6-21, 6-22, 6-56
ZTREAD 6-21, 6-22, 6-56

ZTTYIO 3-2, 3-13, 3-30

ZTXCLS 6-21, 6-57

ZTXIO 6-21, 6-22, 6-57

ZTXOPN 6-4, 6-21, 6-58

ZUVPAK 6-12, 6-56, 6-58
ZUVXPN 6-12, 6-57, 6-58

ZWAIT 6-23, 6-59

INDEX-3

