
IAS Series
Band / Volume 36
ISBN 978-3-95806-315-0

IAS Series
Band / Volume 36
ISBN 978-3-95806-315-0

A multigrid perspective on the parallel full approximation
scheme in space and time

Dieter Moser

36

IA
S

Se
ri

es
A

 m
ul

tig
rid

 p
er

sp
ec

tiv
e

on
 P

FA
SS

T
D

ie
te

r M
os

er

Schriften des Forschungszentrums Jülich
Reihe IAS Band / Volume 36

Forschungszentrum Jülich GmbH
Institute for Advanced Simulation (IAS)
Jülich Supercomputing Centre (JSC)

A multigrid perspective on the parallel
full approximation scheme in space and time

Dieter Moser

Schriften des Forschungszentrums Jülich
Reihe IAS Band / Volume 36

ISSN 1868-8489 ISBN 978-3-95806-315-0

Bibliografische Information der Deutschen Nationalbibliothek.
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte Bibliografische Daten
sind im Internet über http://dnb.d-nb.de abrufbar.

Dissertation an der Universität Kassel
Fachbereich 10 Mathematik und Naturwissenschaften

Gutachter: Prof. Matthias Bolten
 Prof. Andreas Meister

Disputation: 23.11.2017

Herausgeber Forschungszentrum Jülich GmbH
und Vertrieb: Zentralbibliothek, Verlag
 52425 Jülich
 Tel.: +49 2461 61-5368
 Fax: +49 2461 61-6103
 zb-publikation@fz-juelich.de
 www.fz-juelich.de/zb

Umschlaggestaltung: Jülich Supercomputing Centre, Forschungszentrum Jülich GmbH

Druck: Grafische Medien, Forschungszentrum Jülich GmbH

Copyright: Forschungszentrum Jülich 2018

Schriften des Forschungszentrums Jülich
Reihe IAS, Band / Volume 36

D 34 (Diss., Kassel, Univ., 2017)

ISSN 1868-8489
ISBN 978-3-95806-315-0

Persistent Identifier: urn:nbn:de:0001-2018031401

The complete volume is freely available on the Internet on the Jülicher Open Access Server (JuSER)
at www.fz-juelich.de/zb/openaccess

 This is an Open Access publication distributed under the terms of the Creative Commons Attribution License 4.0,
 which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Für meine Großmutter, die mir das Rechnen beibrachte

Contents

1. Introduction 1

1.1. Parareal . 4

1.1.1. Convergence, stability and parallel efficiency 6

1.1.2. Applications and modifications . 10

1.2. Space-time multigrid . 13

1.2.1. Multigrid basics . 13

1.2.2. Parabolic multigrid . 16

1.2.3. Waveform relaxation . 17

1.2.4. Space-time multigrid by Horten and Vandewalle 18

1.2.5. Multigrid reduction in time . 18

1.2.6. Space-time multigrid by Neumüller and Gander 20

1.3. The parallel full approximation scheme in space and time 21

1.3.1. Preliminaries and notation . 21

1.3.2. Spectral deferred corrections . 23

1.3.3. Multi-level spectral deferred corrections 25

1.3.4. The PFASST algorithm . 27

2. A Multigrid Perspective 31

2.1. Iteration matrix of PFASST . 31

2.1.1. The composite collocation problem 31

2.1.2. The approximative block Gauß-Seidel solver 33

2.1.3. The approximative block Jacobi solver 34

2.1.4. Assembling PFASST . 35

2.2. Fourier transformation of the iteration matrix 38

2.2.1. The three layers . 40

2.2.2. Transforming interpolation and restriction 41

2.2.3. Transforming the full iteration matrix 44

2.2.4. Assuming periodicity in time . 46

2.3. Using the Fourier transformed iteration matrix 48

2.3.1. Conversion to matrix symbols . 49

2.3.2. Structure of the error vector . 51

v

Contents

3. Convergence study 55
3.1. First experiments . 58

3.1.1. Four strategies . 60
3.1.2. Collocation and time collocation blocks 64
3.1.3. Pseudospectra . 67

3.2. Mode damping fields . 69
3.2.1. Using the canonical basis in time 72
3.2.2. Using the Fourier basis in time . 77

4. Parallel performance 83
4.1. Basics . 83
4.2. Two parallelization strategies . 84

4.2.1. Estimating the wall-time of PFASST 84
4.2.2. Speedup for the case P = L . 87
4.2.3. Speedup for the case P < L . 89
4.2.4. Estimating the speedup of multi-level PFASST 92

4.3. Performance analysis . 93
4.3.1. Counting iterations . 93
4.3.2. Distribution of iterations . 95
4.3.3. Resulting speedups . 100

5. Outlook 107
5.1. Future work . 107

5.1.1. Time coarsening . 107
5.1.2. Multi-level and inexact PFASST 109
5.1.3. Stability and smoothing properties 110
5.1.4. Open questions and theoretical ideas 114

5.2. Conclusion . 116

Appendices 119

A. Proof of Theorem 1 121

vi

1. Introduction

Cuius auctores quanto sunt iuniores,
tanto perspicaciores.

Priscianus Caesariensis - 526

From careful observations, scientists derive rules to describe phenomena in nature.
These rules are implemented in form of algorithms in order to simulate these phenomena.
Nowadays, simulations are a vital element of numerous research fields, which study not
only natural phenomena, but also societal or macro-economical systems. For simulations
of a certain size and complexity, an adequate amount of computing power is required.
Such simulations are found in fields like molecular dynamics or material science, where
sometimes billions of atoms need to be simulated to observe emergent structures. Other
fields, which employ such simulations, include weather and climate sciences, where the
degrees of freedom simply surpass the capacities of a personal computer. For these simu-
lations a high performance computing approach is required. A more complete list of such
fields and their current state of research is found in [1]. The task of the mathematician is
to study the stability, accuracy, and cost of computation of the numerical methods used
in these simulations. In the last decades, the rapid increase of processors per machine
created a need for concurrent computation. This resulted in the reformulation of the
existing algorithms and development of new algorithms, which in turn also need to be
studied.

Most of the fields mentioned above model their problems in the form of partial dif-
ferential equations. For this class of equations many effective parallel methods already
exist. Independent of the method chosen, the model of nature has to be transformed into
a model that may be processed by a computer. Since computers are only able to process
and store a finite number of quantities with a limited precision, the newly transformed
model has to represent nature with this finite number of quantities. One way to do so is
to decompose the computational domain of the problem into a finite grid. Imagine, for
example, a simulation of the wing of an airplane. The computational domain consists of
the wing itself and the floating air around it. A system of partial differential equations
describes how the pressure, the temperature, and the speed of the air interact with the
mechanical forces of the wing at every point in this computational domain. When we
decompose this domain, we are only interested in the physical quantities on a finite
number of grid points. With, for example, the finite difference scheme, we derive a set
of rules from the partial differential equations. These rules describe how the values on

1

1. Introduction

the grid points are related to one another. Together with the grid, these rules constitute
the new model, which is then processed by the computer.

To process this model in parallel, we decompose the computational domain and dis-
tribute the parts of the domain to different processors. To understand the limits of
this parallelization strategy, we imagine a cube-shaped computational domain, which is
divided into smaller cubes. The size of the cube determines the number of grid points
it contains and thus the computational effort needed. During the computation, each
smaller cube needs some of the data stored in other cubes. When, for example, a dif-
fusive phenomena is observed, it should be sufficient to exchange information between
neighboring cubes. Whereas, in the case of electromagnetic phenomena, the cubes, most
probably, have to exchange information over long distances. Consequently, the respective
processors communicate with each other globally. Assume, we have a greater number
of processors available. This results in a greater number of smaller cubes. Each cube
requires less computational effort, but overall they cause more communication. When
the number of processors reaches a critical level, the communication represents the bulk
of the total effort. This means that additional processors do not result in a shorter
computational time. The parallelization strategy described above reaches the so called
strong scaling limit. A way to overcome this limit, is to scale the number of grid points
with the number of processors. This allows computations of a greater size or a higher
accuracy. Computational domains of a greater size do not, however, necessarily provide
additional insights. In our example with the wing, the speed and pressure too far away
from the wing do not always provide useful information, even if we study effects like
wake turbulences. Thus, a greater computational domain is not needed. Computational
domains of a higher accuracy are achieved by using more grid points. This means we are
able to state the quantities with a higher precision. However, this is not always benefi-
cial. For example, when the uncertainties of the boundary conditions are too high, the
precision loses its significance. Let us assume we are interested in a higher precision for
a time dependent problem. To treat the temporal dimension, a time stepping method
is needed. Since the current state of a physical system only affects its future state, the
natural design of a time stepping method is sequential and forward in time. This sequen-
tial design results in a new bottleneck when the spatial resolution is increased in order
to achieve a higher accuracy. To maintain the stability of the time stepping method,
the temporal resolution has to match the spatial resolution. Even if a greater number
of processors makes it possible to compute one time step with a higher accuracy in the
same computation time, we will need more time steps and thus more computation time
overall. This means that the weak scaling limit is reached. The only way to push these
scaling limits further, is to apply the surplus of processors to the temporal dimension
instead of the spatial dimension.

This approach is called parallel-in-time integration. In [2], such methods are classified
into parallelization across the step, across the method, and across the problem. Direct
time-parallel methods mostly belong to the class of parallelization across the method;

2

examples include certain parallel Runge-Kutta methods [3, 4]. Only modest parallel
speedup is expected for these methods, since the number of processing units used for
the parallelization are limited by e.g., the number of Runge-Kutta stage values. Other
direct methods for parallel-in-time integration include RIDC [5], ParaExp [6], tensor-
product space-time solvers [7], or methods using the Laplace transformation [8]. The
class of parallelization across the problem includes methods that decompose the problem
into subproblems, which are solvable in a parallel manner and couples these subprob-
lems using an iterative method. The most prominent examples are waveform relaxation
methods [9, 10], which are part of the broad area of domain decomposition methods.

The first idea of parallel-in-time integration belongs to the class parallelization across
the step. More precisely, one of the first parallel-in-time integration methods is a
multiple-shooting method introduced by Nievergelt in 1964 [11]. Further examples
of multiple-shooting methods, which are able to perform parallel-in-time are found
in [12, 13]. Among them, in 2001 by Lions et al., Parareal [14] renewed the interest
in parallel-in-time methods and influenced other methods (see [15]) and even inspired
the development of new methods. In [16], the Parareal approach is coupled to the spec-
tral deferred correction (SDC) method, which is an iterative solver for the collocation
problem. This approach is extended to the “parallel full approximation scheme in space
and time” (PFASST) in [17]. For time-dependent PDEs, parallel-in-time integration
using PFASST is a promising way to accelerate existing space-parallel approaches be-
yond their scaling limits [18, 19]. While many examples of potential uses exist, a solid
and reliable mathematical foundation is still needed. This makes PFASST an excellent
study object. In Section 1.1, we introduce Parareal as a foundation for the introduction
of PFASST. More precisely, we will show how PFASST adopts and evolves the charac-
teristics of Parareal by interweaving its iterations with those of the local SDC scheme.
In addition to Parareal and SDC, features of the nonlinear multigrid theory also played
a vital role in the development of PFASST. We will introduce these features along the
lines of representative space-time multigrid methods in Section 1.2.

All the classes mentioned above are not strictly separated from each other. Often,
methods of one class may be reformulated to conform with another class. A prominent
example of this is Parareal itself: it was reformulated as a multiple-shooting method as
well as a multigrid method in [20], which in turn paved the way for a comprehensive
analysis of Parareal. In this work we will also reformulate PFASST, to achieve a more
profound and rigorous mathematical understanding of PFASST. We will establish a close
connection between PFASST and standard multigrid methods, providing a comprehen-
sive approach to the mathematical analysis and algorithmic optimization. To this end,
we will focus on linear autonomous ordinary differential equations. This will enable us
to present SDC and MLSDC in the form of a stationary iterative scheme in Section
1.3. Together with the introduction of Parareal and space-time multigrid methods in
Sections 1.1 and 1.2, the classical formulation of PFASST in algorithmic form presented
in Section 1.3, represents the foundation of this work. From there on, we will leave fa-

3

1. Introduction

miliar territory and begin our own study of PFASST in Chapter 2. We will present the
matrix formulation of PFASST, use this formulation to show equivalence to a multigrid
method, and identify the smoother and coarse grid correction of PFASST. This yields
the iteration matrix of PFASST, which is presented in Theorem 3. In the second part
of Chapter 2, we decompose this iteration matrix with the help of techniques similar to
local Fourier analysis. On the basis of this decomposition, we derive the matrix sym-
bols in Theorem 6. Finally, with Definition 4 and Lemma 5, we show an efficient way
to employ this decomposition of the iteration matrix. In Chapter 3, we will introduce
our two model problems, the diffusion and advection problem. With the mathematical
groundwork described in Chapter 2, we study the convergence of PFASST for the two
model problems. In particular, we will investigate the role of the initial error vector
and the dispersion relation number of the problem. Furthermore, we will investigate
the interaction of the different parts of PFASST and we will present 3 setups, which
invoke distinguishable modes of operation of PFASST. In Chapter 4, we will introduce
a classical and a new strategy to parallelize PFASST. For both parallelization strate-
gies, we will outline the theoretical limits of the speedup. Finally, with the use of the 3
representative setups, we will estimate the speedup from a wide range of numerical ex-
periments for both model problems. In Chapter 5, we will present many promising ideas
that were gathered through the investigation of PFASST and conclude with a summary
of the work.

1.1. Parareal

The Parareal method was invented by Lions, Maday, and Turinici and first published
in [14]. It quickly became the most studied method in the realm of parallel-in-time
integration. Parareal is an effective and simple way to solve initial value problems
parallel-in-time, denoted by

ut(t) = f(t, u), u(0) = u0, (1.1)

where u0 ∈ Rd and t ∈ [0, T]. To do so, Parareal employs established numerical meth-
ods. The first numerical method for these problems is the famous Euler method [21],
which dates back to the year 1768. Since then, a solid mathematical foundation has
been formed for numerical methods for ordinary differential equations, cf. [22, 23]. The
advantage of Parareal is that it builds upon this foundation: it combines two, well-
studied methods in an iterative manner, to form a novel, time-parallel method. More
precisely, it employs a fine-but-expensive propagator F(t1, t0, u0) and the coarse-but-
cheap propagator G(t1, t0, u0). A propagator is an operator, which yields either an exact
or a numerical solution of the initial value problem at the time point t1, given an initial
value u0 at the time point t0. Parareal works in an iterative manner, thus we denote
the time points and the approximative values at these time points in the k-th Parareal

4

1.1. Parareal

(a) predictor (b) fine propagator

(c) correction (d) full

Figure 1.1.: Different phases of the Parareal algorithm. Preceding iteration values are
marked with full circles, next iteration with black circles. Intermediate
values of the fine and coarse propagator are marked with grey diamonds,
and empty circles respectively. Each marker is an approximation of the
exact solution, represented by the dashed line.

5

1. Introduction

iteration, as t1, t2, . . . , tL and Uk1 , U
k
2 , . . . , U

k
L. Additionally, we denote the set of values

U0
1 , . . . , U

0
L, as starting point of the Parareal iteration.

One way to generate them is to employ the coarse propagator

U0
n+1 = G(tn+1, tn, U

0
n),

beginning with G(t1, t0, u0) = U0
1 . We denote this part of the algorithm as predictor

step. Finally, the whole Parareal iteration may be described with the following simple
calculation rule:

Uk+1
n+1 = G(tn+1, tn, U

k+1
n) + F(tn+1, tn, U

k
n)− G(tn+1, tn, U

k
n) (1.2)

It is best explained along the lines of Figure 1.1. In Figure 1.1a, the exact solution
(dashed line) and the results of the predictor (straight lines and full circles) are depicted.
This is the initial situation for the Parareal iteration. The first step involves the parallel
computation of the fine propagator; the results are depicted in 1.1b in form of grey
diamond markers. Next, these values are corrected by G(tn+1, tn, U

k+1
n)−G(tn+1, tn, U

k
n),

which has to be done in serial. In Figure 1.1c, this correction is sketched: The value
Uk+1

1 is used to generate an estimation G(t2, t1, U
k+1
1) (empty circle), which is then

used to compute the correction (distance between full and empty circle). Consequently,
this value corrects the fine propagator value F(t2, t1, U

k
1) (grey diamond) and therefore

produces Uk+1
2 (black square). This is repeated for all time points. Note that this

correction is absent at the time point t1 because it holds Uk0 = u0 for all iterations.
Therefore, it holds Uk+1

1 = F(t1, t0, U
k
0).

After examining the basic mechanisms of Parareal, we will now present the basic
properties of Parareal in the following section.

1.1.1. Convergence, stability and parallel efficiency

Since Parareal primarily consists of the propagators, the convergence behavior is de-
pendent on the convergence properties of the propagators. To give an insight into the
structure of convergence proofs, we study Parareal for the test equation

ut(t) = −au(t), u(0) = u0, (1.3)

with the explicit Euler method as the coarse propagator G(t1, t2, u1). For the fine prop-
agator F(t1, t2, u1), we use the exact solution of

ut(t) = −au(t), u(t1) = u1, (1.4)

evaluated at the time point t2. Inspired by the results in [14], where an implicit Euler
scheme is used as the coarse propagator, we prove the following proposition for our

6

1.1. Parareal

particular setup.

Theorem 1 (Lions, Maday and Turinici 2001). The Parareal scheme is of order k, i.e.
there exists ck so that∣∣∣Ukn − u (tn)

∣∣∣+ max
t∈[tn,tn+1]

∣∣∣F(tn, t, U
k
n)− u (t)

∣∣∣ ≤ ck∆tk.
Proof. See Section A in the appendix.

Note that this proof may be considered as a blueprint for proofs of similar convergence
results found in literature. To produce more general results, the proof needs to be
expanded, which is quite an exercise. For example, it is possible to substitute the term
(1− a∆t) with the term 1

1+a∆t . This represents the usage of an implicit instead of an
explicit Euler scheme as the coarse propagator. From there on it is easy to try other time-
stepping schemes. As long as the stability function R of the coarse propagator is known,
it may be employed to represent the coarse propagator in the form of R (−a∆t). This
exercise gives valuable insights in the working mechanisms of Parareal. For example, the
proof demonstrates the recurring nature of Parareal, as well as the roles of the fine and
coarse propagator. The proof also provides ideas of how to produce more general results.
In [24], Gander et. al. presented such a generalized convergence result for the Parareal
algorithm, which holds for autonomous non-linear ODEs. In the respective proof, the
recurrence of errors and the difference between fine and coarse propagator are employed
on a more abstract level than in the proof of Theorem 1. We state the result without
proof.

Theorem 2 (Gander et. al. 2008). Let F
(
tn+1, tn, U

k
n

)
denote the exact solution at

tn+1 and G
(
tn+1, tn, U

k
n

)
be a one step method with local truncation error bounded by

C1∆tp+1. If

|G (t+ ∆t, t, x)− G (t+ ∆t, t, y)| ≤ (1 + C2∆t) |x− y|,

then the following error estimate holds:

max
1≤n≤L

∣∣∣u(tn)− Ukn
∣∣∣ ≤ C1∆tk(p+1)

k!
(1 + C2∆t)N−1−k

k∏
j=1

(N − j) max
1≤n≤L

∣∣u(tn)− U0
n

∣∣
(1.5)

≤ αk

k!

k∏
j=1

(N − j) max
1≤n≤L

∣∣u(tn)− U0
n

∣∣ (1.6)

≤ (C1T)k

k!
eC2(T−(k+1)∆t)∆tpk max

1≤n≤L

∣∣u(tn)− U0
n

∣∣ (1.7)

7

1. Introduction

This convergence result reflects properties which were observed in earlier works. For
example, the increase in order with increasing iteration number is found in form of ∆tpk

in (1.7). This concurs with the simpler result in Th. 1 and additionally shows how the
order of the coarse propagator affects the order of Parareal. Another example is the
exactness property: when the number of iterations reaches the number of time points
L, then the Parareal algorithm yields the solution of the fine propagator. Under the
requirements of Th. 2, Parareal yields the exact solution after a sufficient number of
steps, which is easily seen in (1.5). There, the term

∏k
j=1(N − j) becomes 0. The

last interesting term is k!: it produces a faster than linear contraction, since it grows
faster than the k-th power of C1T , while the remaining terms are not growing with
more iterations. This shows the superlinear convergence of Parareal. Beyond that,
the estimated bounds are tested on two model problems, the diffusion and the advection
problem. The convergence behavior of both problems may be explained along the lines of
inequality in (1.6). Depending on the propagators it is possible to bring the value α down
to 0.06 for the diffusion problem, whereas for the advection problem the lowest value
stated is 1.22. For diffusion, this leads to a bound which is monotonically decreasing with
more iterations For advection, the same curve first rises, reaches the highest point, and
then declines until the exactness property takes effect. Clearly, those are just theoretical
estimations. Nonetheless, the numerical experiments show that Parareal has difficulties
handling the advection problem. This is further investigated in [25] by studying the
characteristics of the advection problem.

The diffusion and advection problems are representatives of the classes of parabolic and
hyperbolic partial differential equations. Together, both classes cover many applications
in different fields of science. Generally, parallel-in-time algorithms have difficulties in
yielding speedups for hyperbolic problems. To ensure comparability to PFASST in
Chapter 3, we will also employ the diffusion and advection problem as model problems
for our numerical experiments.

However, the convergence result is just one part of a complete analysis. The other
part is the stability of the time-stepping method. The stability of Parareal was studied
for various requirements and problems, cf. [26, 27]. In this work, we will briefly sketch
the basic results for the linear case following [27]. Starting with the stability functions
Ri and Re of the implicit and explicit Euler methods respectively, given by

Un+1 = Un − a∆tUn = (1− a∆t)n+1 u0 = Re(−a∆t)n+1

Un+1 = Un − a∆tUn+1 = (1 + a∆t)−n−1 u0 = Ri(−a∆t)n+1.

In the case of |R(z)| ≤ 1, the method is denoted as stable. This definition is easily

8

1.1. Parareal

adapted to linear ODEs of the form

ut(t) = Au(t), u(0) = u0, (1.8)

by using an eigenvalue decomposition

A = VDV−1,

where D is a diagonal matrix containing the eigenvalues {λ1, . . . , λN}. With this trans-
formation, the exact solution is given by

u(t) = etAu0 = VetDV−1u0.

In the same manner, the stability functions are generated, resulting in

Ri(∆t) = V (I−∆tD)−1 V−1 and Re(∆t) = V (I + ∆tD) V−1.

As long as |R(∆tλi)| ≤ 1 for all eigenvalues λi, the method is stable for the system of
ODEs. For this Problem, Staff et al. [27] were able to derive the stability function H of
Parareal in the form of

Ukn = VH (n, k, r, R) V−1u0,

with the stability functions r and R of the fine and coarse propagator respectively. By
exploiting the Pascal tree structure of the recurrence of Ukn , it yields

H(n, k, r, R) =

k∑
i=0

(
n

i

)
(r −R)iRn−1.

The stability of the method is then achieved if

sup
1≤n≤L

sup
1≤k≤L

|H(n, k, r(∆tλi), R(∆tλi))| ≤ 1 ∀λi, i = 1, . . . , N.

For real eigenvalues, this condition is met for all possible L and all number of iterations
k as long as

r∆tλi − 1

2
≤ R(∆tλi) ≤

r∆tλi + 1

2
∀λi, i = 1, . . . , N.

When the fine propagator is almost exact, it holds r(∆t) � 1. Therefore, for real
eigenvalues and an exact fine propagator, Parareal is stable if |R(∆t)| ≤ 1

2 . More
abstract stability results are found in [28].

We complete the brief theoretical outline of Parareal with the observation of the

9

1. Introduction

parallel efficiency. For this purpose, we assume that the same time-stepping method
is used for the fine and coarse propagator, but with different time steps. For the fine
propagator we use the time step δt and for the coarse propagator we use a multiple
sδt, which we denote as ∆t. Further, let TC be the time needed for one application of
the coarse propagator. Consequently, the time needed for the application of the fine
propagator is TF = sTC . The whole computing time adds up to KLTC + (K − 1)sLTC ,
where K is the number of Parareal iterations and L is the number coarse steps needed
to reach the time end point tL. Since the fine and coarse propagator may be arranged in
a pipelining manner, the wall time is (K + 1)LTC + KsTC = ((K + 1) (L+ s)− s)TC .
In order to compute the speedup and therefore the parallel efficiency, a comparison
algorithm is needed. The canonical choice is to use only the fine propagator resulting
in sTCL. However, it should be kept in mind that Parareal and the fine propagator are
two different methods with different convergence properties. Thus, different numbers
of iterations have to be performed to reach the same level of accuracy. Therefore, the
comparison between a serial time-stepping method and Parareal is only reasonable when
a sufficient number of Parareal iterations is performed. Then, the parallel efficiency reads

sTCL

((K + 1) (L+ s)− s)TCL
=

1

(K + 1)
(
L
s + 1

)
− 1
≤ 1

K
. (1.9)

As the estimation shows in the case 1 � s, the parallel efficiency is ideal when only 1
Parareal iterations are needed. This is also a theoretical limit for the parallel efficiency
of standard Parareal. Therefore, for a reasonable parallel performance, a small number
of iterations is needed.

In the last years, Parareal was modified and applied to various problems. For some
problems Parareal showed reasonable convergence behavior and for some problems it
was just the most convenient way to parallelize legacy code. The modifications lead to
versions of Parareal, which for example, add adaptivity or lift the theoretical limit of
the parallel efficiency.

1.1.2. Applications and modifications

Shortly after the introduction of Parareal, many works showed the application of Parareal
for various problems. In [29], Baffico et al. applied Parareal for molecular dynamics
problems. They conclude that for the field of multiscale modeling, the introduction of
Parareal is very useful. They also note that the symplecticity has to be investigated for
such problems and that the previous time step solution should be used, which we count
as the first idea for a modification of Parareal. Also in 2002, in [30], Maday and Turinici
reinterpreted Parareal as a preconditioning procedure on an algebraic setting and used
this reinterpretation for optimal control for PDEs. See also [31–33]. In the following two
years, Parareal was applied to fluid-structure applications in [34], to quantum control

10

1.1. Parareal

problems in [35], and for unsteady Navier-Stokes equations for incompressible flow with
Reynolds numbers up to 1000 in [36]. The application to the more general Navier-
Stokes equations and its relatives was studied by many different authors, cf. [37–41].
Other interesting problems from various fields were studied in [42–45].

Every field has particular requirements for the time-stepping methods it is using,
for example the field of molecular dynamics asks for symplecticity, meaning that the
time-stepping method is volume-preserving in the phase space defined by the underlying
hamiltonian problem. Take for example a pendulum which is described by hamiltonian
equations, then the phase space is spanned by the momentum and the height of the pen-
dulum. In this phase space, the volume-preserving property relates to the preservation of
the kinetic and potential energy. In this case, a symplectic time-stepping method would
preserve the kinetic and potential energy. Thus, it would indicate a stability over many
time steps. Parareal itself is not symplectic, even when the fine and coarse propagator
are, because the linear combination of symplectic time-stepping methods does not neces-
sarily result in a symplectic time method. In [46], this is overcome by the introduction of
an interpolation operator, which substitutes the correction steps of Parareal. This comes
with raised computational costs. Another favorable property for many applications is
adaptivity, where the time step size is adjusted during the computation of the problem.
In [47], the formulation of Parareal as a multiple-shooting method is used to develop
an adaptive version. Additional efforts to develop an improved Parareal error control
mechanism were made in [48]. Lastly, for the case when a problem consists of a stiff
and non-stiff part, it is convenient to use an IMEX scheme, which treats the stiff part
implicitly and the non-stiff part explicitly. Consequently, a version of Parareal, equipped
with IMEX-RK schemes as propagators, were studied in [49].

However, to alleviate the theoretical limit of the parallel efficiency, one has to take
previous iterations into account. Following this idea, it is useful to interpret Parareal
as an iterative scheme and it becomes obvious to use iterative schemes as fine and
coarse propagator. Such iterative schemes, as Parareal itself, need an starting value
additional to an initial value. Fortunately, Parareal produces the starting values for the
propagators in each iteration, since the result of the previous iteration may be employed.
This idea has many realizations. One of the first realizations is found in [50]. In this
work, spectral deferred corrections (SDC) are used as fine propagators. Spectral deferred
corrections are also the basic building block of PFASST. This is no coincidence, given
that the algorithms Parareal/SDC described in [50] and the successing algorithm Hybrid
Parareal SDC described in [16] are precursor of PFASST.

Without going into the details of SDC, which we will do in Section 1.3.2, we denote
it as an iterative method for the discretization of ODE in the form

u(tn+1) = u(tn) +

∫ tn+1

tn

f(τ, u(τ))d τ,

11

1. Introduction

which is known as the Picard formulation. A fine propagator has for example the form

F
(
tn+1, tn, U

k
n

)
= Ūkn + I

(
tn+1, tn, U

k
n

)
,

where I
(
tn+1, tn, U

k
n

)
is a quadrature operator, which approximates the integration term

of the Picard formulation. Note that this quadrature operator may as well be iterative
and that depending on the quadrature used, the role of Ukn changes. In the usual case of
more than one quadrature node, it represents the approximate values on all quadrature
nodes in the interval [tn, tn+1], instead of just the value at the time point tn. Therefore,
we denote Ūkn as the value at the time point tn. With a similar definition for the coarse
propagator

G
(
tn+1, tn, U

k
n

)
= Ūkn +Q

(
tn+1, tn, U

k
n

)
,

where Q
(
tn+1, tn, U

k
n

)
is also an approximation of the integration term, it yields

Ūk+1
n+1 = Ūk+1

n +Q
(
tn+1, tn, U

k+1
n

)
−Q

(
tn+1, tn, U

k
n

)
+ I

(
tn+1, tn, U

k
n

)
.

At first glance, this form does not seem to differ much from the standard Parareal
iteration, but the novel idea is hidden behind the notation. The main difference here is
that we employ iterative operators Q and I and, therefore, have to conserve results of
the last iteration. This comes with a significant advantage. Similar to Parareal, SDC
increases in order with each iteration until it reaches a spectral order, depending on the
choice of quadrature nodes. Instead of having the cost of a high order time-stepping
method in each Parareal step, SDC steps are of low order. Thus, these lower costs
are spread over several Parareal iterations. Then, the spectral order of SDC should be
reached after several Parareal iterations. This is reflected in the new upper limit of the
parallel efficiency, which reads

M

(N +K)1
s +K

,

where K is the number of Parareal iterations, s the relation between the costs of a fine
and coarse propagator, N the number of processors, and finally M the number of fine
SDC iterations needed for the serial method, to which the modified Parareal is compared.
This new theoretical limit is significantly increased compared to the theoretical limit of
the classical Parareal method.

At this point, it is vital to set the right expectations for the analysis of PFASST in
this work. Generally, we will not take the time-stepping perspective, as we have done
here for Parareal. Thus, we will not be able to present statements such as in Theorems
1 and 2. The statements about convergence for PFASST will be more accurate, but also

12

1.2. Space-time multigrid

only applicable to very particular cases. For the stability in the sense of time-stepping
methods, it is necessary to solve the test equation. Since PFASST uses coarsening in
space, it is not applicable to the test equation and, thus, we are not able to study stability
in the classical sense. The parallel performance of PFASST is accessible in the same way
as the parallel performance of Parareal. In Chapter 4, we will investigate the parallel
performance in detail.

In this work, the focus lies on multigrid methods, given that PFASST has origins
in this field. Consequently, we illuminate these origins by introducing multigrid and
presenting several multigrid methods, which were devised as parallel-in-time methods.

1.2. Space-time multigrid

Multigrid methods are a class of efficient algorithms for the approximative solution of
systems of linear equations, given in the form

Au = f . (1.10)

One of the earliest works dates back to the year 1962, where Fedorenko devised in [51]
a prototypical multigrid method to solve an elliptic difference equation. The two main
subclasses of multigrid are algebraic multigrid, where only the system of linear equations
is given, and geometric multigrid, where additional knowledge about the underlying PDE
is incorporated into the method. For both subclasses it is important to have a suitable
hierarchy of discretizations and suitable transfer operations between them. For algebraic
multigrid, these discretizations are the result of heuristic methods applied to the system
matrix. For geometric multigrid, these discretizations stem from the PDE. A reasonably-
well designed multigrid method rewards one with computational costs of linear order in
the number of unknowns and with a convergence rate independent of the grid size. These
properties are quite common for elliptic PDEs, but we do not expect such properties to
occur for the time dependent PDEs, which we will encounter later on in Chapter 3.

1.2.1. Multigrid basics

Here, we give a very brief description of multigrid; for a comprehensive introduction
to multigrid, we refer to [52]. The main components of multigrid are relaxation, in-
terpolation, restriction, and coarse grid correction. To understand the roles of these
components, we need to introduce the terms of high and low oscillation error modes.
This differentiation stems from the diagonalization of the system matrices of the com-
mon model problems. This diagonalization results in eigenvectors, which are associated
with sinusoidal functions with different frequencies. Consequently, the error modes that
appear are decomposed into the eigenvectors and thus into high and low oscillating error
modes. This definition is closely intertwined with the respective problem. Therefore, this

13

1. Introduction

definition is not valid if the resulting eigenvectors have a different form. Nonetheless, the
core idea of dividing the possible errors into two groups translates well for other prob-
lems. Usually, the definition for these two groups is adjusted according to the problem.
To remain consistent with the terminology of multigrid, we denote these two groups as
high and low oscillation modes independent of the definition given by the problem. Note
that other designations for these two groups are “smooth” for low oscillation error modes
and “non-smooth” for high oscillation error modes. In addition, we denote the different
discretizations in the hierarchy as “levels”. The key mechanism on which the superior
convergence behavior of multigrid is built, is the change in frequency of the error modes
when transferred to another level. On each level, we have two groups of error modes,
when, e.g., a low oscillation error mode is transferred to a coarser level it may join both
groups on the coarser level Depending on the coarser grid, it is possible that almost half
of the low oscillation modes are reinterpreted as high oscillation modes on the coarser
level. Vice versa, high oscillation modes might be reinterpreted as low oscillation modes.
It is important to keep this in mind, when the roles of the components of multigrid are
discussed.

The first component is relaxation; it is an iterative operation that efficiently reduces
the high oscillation error modes on the respective level, but is usually inefficient in
reducing the low oscillation error modes. Common examples for relaxation are iterative
solvers of the form

uk+1 = uk + P−1
(
f −Auk

)
, (1.11)

with the preconditioning matrix P, the right hand side U0 and the system matrix A.
The preconditioning matrix defines the nature of the iterative solver. In the case of the
damped iterative Jacobi method, P equals the diagonal of A scaled with a damping factor
ω and in the case of the iterative Gauß-Seidel method P consists of the lower triangular
part of A. In both cases, it easy to compute the inverse of P, which is one requirement
for a reasonably-well designed preconditioning matrix. The other requirement is that it
in some way inherits the characteristics of the system matrix A. For more details on
iterative solvers we recommend [53]. Finally, the relaxation reduces the errors of one
group and leaves the second group nearly unchanged.

The next step involves the transfer of the residual rk = f −Auk to the next coarser
level, which is performed by the restriction operator TC

F . The simplest choice for a
restriction operator is the straight forward injection of the values of the fine grid onto
the coarse grid. From an algebraic point of view, it is favorable to use the transpose
of the interpolation operator as restriction operator. This algebraic point of view is
presented in detail in Chapter 5 of [54]. For linear interpolation this results in the full
weighted restriction. This restriction averages the neighboring values to compute the

14

1.2. Space-time multigrid

value on the coarse grid. Now, on the coarser level we treat the residual equation

Ãẽ = TC
F r

k

with the relaxation to reduce the respective high oscillation error modes of the coarse
level. Subsequently, the residual is transferred to the next coarser level. This procedure
is repeated until the coarsest level is reached, on which it becomes feasible to solve the
problem directly or to use a sufficiently large number of iterations to get an almost
exact solution. The solution from the coarsest level is interpolated to the next finer
level and used to correct the result of this level. This correction is often accompanied
by an additional relaxation. And again this procedure is repeated until the finest level
is reached. On the finest level, this correction has the form uk + TT

C ẽ
k. We denote this

process as coarse grid correction. Because of its visual form, this combination of transfer
and relaxation operators is called V-cycle. On each level, the algorithm can either pass
the result to the next finer level or get a correction from a coarser level. Therefore, other
forms like a W-cycle are possible and reasonable, depending on the problem. When a
suitable initial guess is needed, it is advisable to use the full multigrid cycle [55]. This
cycle starts on the coarsest level and interpolates the solution to the finest level, while
using additional V-cycles on each level to correct the coarse solution before reaching the
next finer level.

Note at this point that in the linear case, each coarse level receives the residual of
the preceding level in order to compute an error, which will subsequently correct the
approximate solution of the preceding level. The basis for the coarse grid correction is
the equation

Aek = A
(
u− uk

)
= f −Auk = rk.

In the case of non-linear problems, this residual equation does not hold any more and
we have to fall back to strategies, such as the full approximation scheme, which was
first introduced in [56] and is a key element of PFASST. The full approximation scheme
is the non-linear version of the coarse grid correction. Instead of treating the residual
equation with relaxation, the non-linear equation with a corrected right-hand side

A
(
uk+1

)
= f + τ k

is treated on the coarser level, where

τk = Ã
(
TC
Fu

k
)
−TC

FA
(
uk
)

is denoted as τ -correction. With the updated value ũk+1 from the coarser level, we

15

1. Introduction

compute the δ-correction

δk = TF
C

(
ũk+1 −TC

Fu
k
)
.

With this correction we update the value on the finer level

uk+1 = uk + δk.

In the linear case, these three steps are equivalent to the coarse grid correction. Another
variation of multigrid for non-linear problems is the Newton multigrid method; see [57]
for a detailed comparison of the Newton multigrid and the full approximation scheme.

Equipped with these basic multigrid ideas, we return to the field of parallel-in-time
methods. More precisely, we briefly review space-time multigrid methods, which are ca-
pable to perform parallel-in-time integration or offer an interesting mathematical foun-
dation.

1.2.2. Parabolic multigrid

When we apply these multigrid ideas to discretizations in space and time, we denote it
as space-time multigrid. First attempts were made by Hackbusch in 1984 with parabolic
multigrid [58]. For a parabolic problem

ut + L(t)u = f(t),

where L(t) is a time dependent elliptic operator, an implicit Euler discretization in time
direction is used to define the parabolic operator

P (u, t) =
u(t)− u(t−∆tl)

∆tl
+ L(t)u(t) = f(t),

for which Hackbusch used a multigrid method in each time step. It is stated that
with coarsening in the spatial dimension only, the standard multigrid convergence speed
is achieved. In this work a first intuitive way of understanding what happens with
coarsening in the temporal dimension is given. Hackbusch argues that since his smoother
only works on non-smooth modes in space, a non-smooth mode in time does not vanish
from relaxation. These are then handled on the coarser level by the exact solve and
the coarse grid correction. Therefore, temporal coarsening could in fact generate high
frequency error modes on the coarser level which are then interpolated back and not
affected by the relaxation. He suggests the use of coarsening in time as a preconditioning
strategy in the case of error modes, which are initially smooth in the temporal direction.

The second intuitive argument given describes what happens to error modes when
the relaxation is done parallel-in-time. This is done by using the values from the last

16

1.2. Space-time multigrid

iteration for the computation of the next time step, which is usually sequential. For
this case, he assumes that the error is an eigenvector of the elliptic operator Lh with
the associated eigenvalue λ. Consequently, it yields the error reduction for the parabolic
multigrid

α =
1− ρ

1 + λ∆tl
.

It is pointed out for the Poisson problem that α is of the order O(∆x2
l /∆tl), meaning

that the convergence behavior improves with the stiffness of the problem.

1.2.3. Waveform relaxation

The paper on waveform relaxation [59], written by Lubich and Ostermann in 1987,
provides a mathematically more rigorous approach to this topic. There, the parabolic
equation is transformed by the Laplace transformation in time

F (s) =

∫ ∞
0

e−stf(t) dt

into an elliptic equation

sû+ Lhû = f̂ .

Subsequently, a splitting method like Gauß-Seidel is applied formally. This means that
the system matrix

A(s) = sI + Lh

is solved by an iterative method according to (1.11) with a preconditioning matrix P(s),
which consists of the lower triangular part of A(s). When transformed back to the real
time, this yields

duk+1

dt
+ (D − C)uk+1 −Bu(k) = f, uk+1(0) = u0, t ∈ [0,∆T] ,

with functions uk that are generated at each iteration and the decomposition of Lh =
D − C − B into the diagonal, the strictly upper, and lower triangular parts. This
transformation is also applied to the usual multigrid two-grid operator, which yields a
set of sequential initial value problems. For this scenario an abstract two-level operator
M is introduced and analysed. This leads to the convergence result, given as an estimate
of the spectral radius

ρ(M) ≤ 1

2

√
µ0(2ν − 1), for ν = ν1 + ν2 ≥ 1 and µ0(ν) =

νν

(ν + 1)ν+1
,

17

1. Introduction

where ν1 and ν2 are the number of pre and post-relaxation steps. The proof relies on

ρ(M) = max
Re(s)≥0

ρ (M(s)) ,

which is true, as long as M ∈ Lp (R+,Cn). Except for the additional parameter s,
the two-grid operator M(s) in the Laplace space is analysed with the same means as
standard multigrid, e.g., the decomposition of the error into modes.

Hackbusch’s parabolic multigrid is covered by this theory, when the integration op-
erator M is exchanged by the respective discrete operator M∆t, representing a time-
stepping method like the implicit Euler or more involved methods like Runge-Kutta.
For algebraically stable Runge-Kutte methods it is then shown that

ρ (M∆t) ≤ ρ (M)

holds. Therefore, for adequate time-stepping methods, multigrid convergence is achieved.
Note that this work does not include the parallel-in-time relaxation nor the coarsening
in time as proposed by Hackbusch.

1.2.4. Space-time multigrid by Horten and Vandewalle

In [60], Horten and Vandewalle proposed another kind of multigrid method, which is
based on space-time stencils and checkered Gauß-Seidel smoothing. Using local Fourier
analysis, Horton and Vandewalle estimated the error reduction for coarsening in the
spatial, the temporal, and both directions simultaneously. The error reduction also
depends on the dispersion relation number, e.g., ∆t/∆x2 for the diffusion problem.
For this problem, it is then shown that coarsening in time works well when backward
differentiation of first or second order is used for a high dispersion relation number.
On the other hand, it is shown that coarsening in space works well for low dispersion
relation numbers. The break even point of both strategies is found at a point of high error
reduction. When the appropriate coarsening strategy is chosen on each level according
to the dispersion relation number, the worst error reduction is found at this break even
point. The parallel efficiency for this method is determined by the number of colors used
for relaxation, which is rather limited.

1.2.5. Multigrid reduction in time

The “multigrid reduction in time” method [61], in short MGRIT, is applicable to a
wide range of problems and exhibits a high potential for parallelization. It is devised
for initial value problems and only requires a time-stepping method Φ(ti, ti+1, ui). This
time-stepping method is used for the fine time steps in the form of the linear operator
Φδ and for the coarse time steps in the form of the operator Φ∆. In the linear case, this

18

1.2. Space-time multigrid

leads to a system

Au =

I
−Φδ I

. . .
. . .

−Φδ I

u = f .

This system is then solved in a multigrid fashion that could be interpreted as a multilevel
enhancement of Parareal. For that purpose, the time domain is discretized into Nt time
points. Every m-th point is now marked as a C-point; every point in-between the C-
points are marked as F -points. Associated with these points, F and C relaxation is
defined as the application of the respective time-stepping methods. More precisely, F
relaxation starts from each preceding C-point and performs the time-stepping method
Φδ on all F -points until the next C-point is reached. In contrast, C relaxation takes
as many preceding F -points as needed to compute the next C-point with Φ∆. Both
relaxations may be computed on Nt/m computing units, where Nt is the number of
fine steps. Restriction is done by injection on the C-points, interpolation is an injection
back followed by a F -relaxation. MGRIT is a robust and flexible method, devised for
HPC systems with many cores to work as a black box parallelization tool for linear and
non-linear problems in the temporal dimension. In the last years, MGRIT was actively
developed and efforts were made to provide theoretical results. The most recent work
on this matter is [62]. There, we find the two-grid relaxation propagation

E∆ = P
(
I −B−1

∆ A∆

)
(I −A∆)R = PEFCF∆ R,

which consists of the error propagation of the FCF relaxation enlaced by special inter-
polation and restriction operators P and R, and of the operators

A∆ =

I
−Φm

δ I
. . .

. . .

−Φm
δ I

 and B∆ =

I
−Φm

∆ I
. . .

. . .

−Φm
∆ I

 .
Under the assumption that the time-stepping operators Φδ and Φ∆ are diagonalized
by the same unitary transformation with eigenvalues λω and µω, the authors show the
following estimation:

∥∥EFCF∆ e
∥∥

2
≤ max

ω

{
|λmω − µω|

1− |µω|Nt/m−1

1− |µω|
|λω|m

}
‖e‖2 .

19

1. Introduction

By means of this estimation, we recognize the convergence improving tendencies, such
as the proximity between the coarse and fine time-stepping method (|λmω − µω|), the
improved accuracy of the fine time-stepping method, and the number of time steps
(|λω|m).

1.2.6. Space-time multigrid by Neumüller and Gander

The method in [63] is more in alignment with the works of Hackbusch, Horten and Van-
dewalle. In addition, this method has more capability of parallelism in space and time
and an equally well established theoretical foundation. The authors employ discontinu-
ous Galerkin formulations in space and time for the diffusion and Stokes equation, which
leads to the linear system

Aτ,h
Bτ,h Aτ,h

. . .
. . .

Bτ,h Aτ,h

u = f,

where

Aτ,h = Kτ ⊗Mh +Mτ ⊗Kh and

Bτ,h = −Nτ ⊗Mh

are compositions of the stiffness and mass matrix in time (Kτ ,Mτ) and space (Kh,Mh),
the operator Nτ determines the initial value for the next time step. Based on this, the
design of the method is straightforward. The relaxation is given in the form of stationary

iterative solver, see (1.11), with P = ω · diag
(
Ãτ,h, . . . , Ãτ,h

)
, where Ãτ,h is a simple-

to-compute approximation of Aτ,h. We denote this as weighted block Jacobi relaxation.
The usual linear interpolation and restriction operators are employed, both in space and
time combined together depending on the coarsening strategy. Like in [60], the coarsen-
ing strategy depends on the dispersion relation number of the problem, e.g., ∆t/∆x2 for
the heat equation. A detailed local Fourier analysis yields the appropriate coarsening
strategy and the optimal weighting parameters for relaxation. The numerical experi-
ments are performed on state-of-the-art HPC systems with almost optimal strong and
weak scaling results.

In summary, there are many possibilities to design successful parallel-in-time multigrid
methods and it is feasible to apply the theoretical framework of multigrid for the analysis
of such methods. For the space-time multigrid by Neumüller and Gander the Fourier
analysis is a key element, since it determines the coarsening strategy that is needed for the
excellent convergence behavior of the method. For PFASST, such a clear categorization
into the class of multigrid methods has not been provided so far. Therefore, we will

20

1.3. The parallel full approximation scheme in space and time

now introduce PFASST in the classical formulation, but in a notation suited to study
PFASST from a multigrid perspective.

1.3. The parallel full approximation scheme in space and time

After a brief overview of Parareal, the method which inspired PFASST, and multigrid,
the theory which inspired this work, we will now focus on PFASST itself. The fundamen-
tal requirement of all results in this work is the assumption that the underlying problem
stems form linear autonomous ordinary differential equations. This makes it possible
to reformulate PFASST as a complex stationary iterative solver and to use results from
linear algebra for the analysis.

However, in contrast to the various notations, which were matched to the literature
behind each method, we strive for a harmonized notation for the remainder of this work.
We dedicate the following section to this purpose. Note that the following sections
coincide with a paper, which was already submitted in [64].

1.3.1. Preliminaries and notation

The starting point is the linear autonomous ordinary differential equation in the Picard
formulation

U (t) = U0 +

∫ t

t0

AU (τ)dτ, t ∈ [t0, T] , (1.12)

where A is a discretized spatial operator, e.g., stemming from a method of line discretiza-
tion of a partial differential equation. For the discretization in the temporal dimension,
the time domain [t0, T] is divided into L subintervals. Each subinterval [tl−1, tl], with
l ∈ {1, . . . , L}, contains a set of M nodes {τ1, . . . , τM}. We choose

0 = t0 < . . . < tL = T, tl ≤ τ1 < . . . < τM = tl+1,

∆t = tl+1 − tl, ∆τm = τm+1 − τm.
(1.13)

Each set of nodes {τ1, . . . , τM} is used as quadrature nodes for the numerical integration
with rules such as Gauß-Radau or Gauß-Lobatto. Note that throughout this work the
last quadrature node coincides with the right border of the particular subinterval, which
simplifies the formal notation of the algorithm. The results presented here translate
to other quadrature rules with minor modifications, though. Furthermore, if a mathe-
matical entity like a set of numerical values or a certain matrix is time dependent and
belongs to a subinterval [tl, tl+1], we denote it e.g., with U [tl,tl+1] (if it is not clear from
the context).

Due to the nested structure and the distinct treatment of spatial and temporal dimen-

21

1. Introduction

sions, an appropriate notation is needed. Continuous functions are always represented
by lower case letters, discretized and semi-discretized functions are represented by upper
case letters. Let u(t, x) be a function in space and time, defined on the domain [t0, T]×R,
with T ∈ R+. For N degrees-of-freedom in space x1, ..., xN , we use the notation

U (t) = (u(t, x1), u(t, x2), . . . , u(t, xN))T ∈ RN , t ∈ [t0, T]

for semi-discretization in space. A full space-time discretization is denoted as

U [tl−1,tl] = (U (τ1),U (τ2), . . . ,U (τM))T ∈ RM ·N , τi ∈ [tl−1, tl], l ∈ {1, . . . , L} ,

U =
(
U [t0,t1], . . . ,U [tL−1,T],

)T ∈ RM ·N ·L.

On each subinterval, a collocation problem arises when quadrature is used as a numerical
counterpart to the integration in (1.12). The basis for most quadrature formulations is
the interpolation, which is easily expressed using the Lagrange polynomial basis {`i}Mi=1

with

`i(s) :=

M∏
k=1,k 6=i

s− τk
τi − τk

. (1.14)

If we weight each Lagrange polynomial with the evaluation of the function f(t) at the
point τi and sum them up, we get the interpolation polynomial of the function f(t),
which is exact on the nodes {τ1, . . . , τM}. Note that the formulation in (1.14) is not
the preferable way to evaluate the Lagrange polynomials, since it becomes numerically
unstable for a large number of nodes. A remedy for this problem is the barycentric
interpolation, cf. [65].

Quadrature is nothing more than using the exact integration values of the interpola-
tion polynomial as approximations for the integration of f(t). The following definition
employs this strategy.

Definition 1. Let a ≤ τ1 < τ2 < . . . < τM = b be the set of quadrature nodes on a
subinterval [a, b] with ∆t = b− a and Q the quadrature matrix with entries

qi,j =
1

∆t

∫ τj

a
`i(τ) dτ, i, j = 1, ...,M.

We discretize (1.12) at the quadrature nodes, using the matrix Q as an approximation
of the integral and obtain this set of linear equations:

U (τi) = U (t0) + ∆t

M∑
j=1

qi,jAU (τi) , i = 1, ...,M.

22

1.3. The parallel full approximation scheme in space and time

Using the Kronecker product and the vector of ones 1M ∈ RM we write this system of
linear equations as

U = U0 + ∆t (Q⊗A)U , with U0 = 1M ⊗U (t0),

or, more compactly,

MU = (I−∆tQ⊗A)U = U0. (1.15)

This problem is called the collocation problem on [a, b].

The set of quadrature nodes determines the type of quadrature. Well-known quadra-
ture rules are Gauß-Legendre, Gauß-Radau, and Gauß-Lobatto. These quadrature rules
have a spectral order, which is reflected in the high order of the numerical solution of the
collocation problem. Gauß-Radau and Gauß-Lobatto quadrature rules use quadrature
nodes, which are in accordance with (1.13). Due to the higher order, we will employ the
Gauß-Radau quadrature rule in this work.

Finally, the PFASST algorithm works on a hierarchy of discretizations. Given that it
is common in multigrid theory to define the method on multiple levels via recursion and
a two-level formulation, we focus on the two-level version with spatial coarsening only,
i.e. PFASST solves on a coarse and a fine level in space. For both levels a separate set
of operators and value vectors is needed. The coarse level versions are simply denoted
with a tilde, e.g., Ã is denoted as the coarse level version of A.

1.3.2. Spectral deferred corrections

Instead of directly solving the collocation problem on a subinterval, the spectral deferred
corrections method (SDC) utilizes a low-order method to generate an iterative solution
that converges to the collocation solution U . SDC was first introduced by Dutt et
al. [66] as an improvement of deferred correction methods [67]. In the last decade, SDC
has been accelerated with GMRES or other Krylov subspace methods [68], enhanced to
a high-order splitting method [69–71], and found its way into the domain of time-parallel
computing [50,72], in particular within PFASST [16,17].

Regarding the setting of this work, we cast SDC as a stationary iterative method
for the collocation problem as defined in Definition 1. This was pointed out earlier by
various authors. For example in the work of Weiser et al. [73], this interpretation was
used to optimize the convergence speed of SDC.

Like in (1.11), a general preconditioned stationary iterative method, here once again
denoted in our notation as

Uk+1 = Uk + P−1(c−MUk), (1.16)

is fully described by the preconditioner P, the system matrix M, and the right-hand side

23

1. Introduction

c of the linear equation under consideration. P has to be easy to invert, while being an
accurate alternative for the system matrix M. The SDC method follows this approach
by replacing the full quadrature matrix Q with a lower triangular matrix Q∆. A simple
way to generate a lower triangular matrix is to use the rectangle rule for quadrature
instead of the Gauß-Radau rule. In [73], a LU decomposition of Q provides a Q∆ which
results in better convergence properties than the use of the simple rectangle rule, while
requiring the same computational effort.

The particular choice

PSDC = I−∆tQ∆ ⊗A and c = (U (t0),U (t0), . . . ,U (t0))T ∈ RNM , (1.17)

then allows us to write SDC as an iterative method for the system matrix M as defined
in Def. 1, where the right-hand side is given by the initial values U (t0) of the ODE spread
on each node. If SDC is used on another subinterval other than the first, the right-hand
side consists of a numerical approximation of U (tl) spread on each node. In order to
start the iteration, an initial iteration vector U0 is needed. For SDC, the right-hand side
is an apparent choice for the initial iteration vector. With these choices, one iteration is
equivalent to one SDC sweep [73,74]. The iteration matrix of SDC is simply given by

TSDC = I−P−1
SDCM

= I− (I−∆tQ∆ ⊗A)−1 (I−∆tQ⊗A) .
(1.18)

Note that if we just use the lower triangular part of the Q matrix as Q∆, the iterative
method mimics a Gauß-Seidel iteration. With Q∆ being a simpler integration rule or
stemming from the LU decomposition of Q instead of the lower triangular part of Q, we
characterize SDC as an approximative Gauß-Seidel iteration.

Note further that the same procedure may be written using matrices S, which is
dense, and S∆, which is a lower triangular matrix with a similar role as Q∆. These
matrices have the effect of a node-to-node quadrature rule in each row. It is possible to
reformulate (1.15) and the associated SDC sweep associated with (1.17). Therefore, we
define the required constituents as

MS = I−∆tS⊗A−E⊗ IN (1.19)

PS = IM ⊗ IN −∆tS∆ ⊗A−E⊗ IN (1.20)

cS = (U0, 0, . . . , 0)T ∈ RNM . (1.21)

The multiplication with the matrix

[L]i,j =

{
1 if i ≤ j,
0 else ,

(1.22)

24

1.3. The parallel full approximation scheme in space and time

which forms the accumulated sum over the components from the left, yields the equiva-
lence to the Q matrix formulation of the SDC sweep. Yet another equivalence appears by
multiplying the preconditioning matrix PS from the left to both sides of the stationary
iteration equation and comparing it component-wise to the node-to-node formulation

Uk+1
m+1 = Uk+1

m + ∆τm

[
f(Uk+1

m+1, τm+1)− f(Ukm+1, τm+1)
]

+ ∆t
(
Sm+1
m Fk

)
m
,

(1.23)

which is the common formulation of SDC found in the literature, for example in [75]. In
this formulation it is also more convenient to define an IMEX or multi-rate version of
SDC, cf. [76]. More important than the formulation, are the stability and convergence
properties of SDC, for which we refer to [66, 73, 76, 77]. Note that it is difficult to
transfer these results to PFASST, since additional correction steps from coarser levels
are performed. In addition, many results have strong requirements, such as the Lipschitz
continuity and differentiability of the right hand side f(u). Most efforts to transfer
these results would keep PFASST in the realm of time-stepping methods. Whereas
in this work, efforts are made to move PFASST to the realm of multigrid methods.
Consequently, a multi-level version of SDC is introduced in the following chapter.

1.3.3. Multi-level spectral deferred corrections

The next step towards PFASST is the introduction of multiple levels in space. This
leads to the so called “multi-level spectral deferred corrections” method (MLSDC), first
introduced and studied in [78]. Here, SDC iterations (called “sweeps” in this context)
are performed alternately on a fine and on a coarse level, in order to shift work load
to coarser, i.e. cheaper, levels. These cheaper levels are obtained, e.g., by reducing
the degrees-of-freedom in space or the order of the quadrature rule in time. Therefore,
MLSDC requires suitable interpolation and restriction operators TF

C and TC
F , and a

coarse-grid correction in order to transfer information between the different levels. As
a consequence, MLSDC can be written as a FAS-multigrid-like iteration. Like SDC, it
solves the collocation problem in an iterative manner, using the same initial iteration
vector. For our purposes, we derive a two-level version of one MLSDC step Uk → Uk+1

from [78] as:

1. Perform nF fine SDC sweep using the values Uk according to (1.16). This yields
provisional values U∗.

2. Sweep from fine to coarse:

a) Restrict the fine values U∗ to the coarse values Ũ
k
.

b) Compute the FAS correction τ k = M̃Ũ
k −TF

CMU∗

25

1. Introduction

c) Perform nC coarse SDC sweeps on the collocation problem(
I−∆tQ̃⊗ Ã

)
Ũ = Ũ0 + τ k,

with Ũ
k

as starting value. This yields new values Ũ
k+1

.

3. Sweep from coarse to fine :

Compute the interpolated coarse correction δk = TF
C

(
Ũ
k+1 −TC

FU
∗
)

and add it

to U∗ to obtain Uk+1.

Note that we use the FAS correction strategy here to match the description of [78].
Since in the linear case using this correction strategy is equivalent to the standard coarse-
grid correction [52], this is just a question of notation. Note further that we will only
perform one fine and one coarse SDC sweep in each MLSDC iteration, i.e. nF = nC = 1.
The next lemma shows that, like for SDC, we can cast this algorithm as a preconditioned
stationary iterative method.

Lemma 1. Let TF
C ∈ RNM×ÑM̃ and TC

F ∈ RÑM̃×NM be the prolongation and restriction
operators which transfer information between the coarse and fine level. We describe the
same problem on a fine space-time grid with the system matrix M and on a coarse space-
time grid with M̃. For both levels, we use an iterative method, which is characterized by
P and P̃ to solve MU = c and M̃Ũ = TC

F c = c̃, respectively. Then, a combination of
both methods using coarse-grid correction can be written as

Uk+ 1
2 = Uk + TF

CP̃−1
SDCTC

F

(
U0 −MUk

)
Uk+1 = Uk+ 1

2 + P−1
SDC

(
U0 −MUk+ 1

2

) (1.24)

It is possible to write (1.24) in form of (1.16), using a new preconditioner PMLSDC,
where

P−1
MLSDC = TF

CP̃−1
SDCTC

F + P−1
SDC −P−1

SDCMTF
CP̃−1

SDCTC
F . (1.25)

Following (1.18) yields the MLSDC iteration matrix

TMLSDC = I− P−1
MLSDCM

=
(
I−P−1

SDCM
)(

I−TF
CP̃−1

SDCTC
FM

)
.

(1.26)

Proof. Let Uk be the result of the last iteration on the fine level. For the proof we start

26

1.3. The parallel full approximation scheme in space and time

in the middle of the algorithm. First we compute the FAS correction

τ k = M̃TC
FU

k − TCFMUk (1.27)

and use it to modify c̃ for the next iteration on the coarse level. We start the iteration
on the coarse level with

Ũ
k+1

= Ũ
k

+ P̃−1
SDC

(
c̃+ τ k − M̃Ũ

k
)

= TC
FU

k + P̃−1
SDCTC

F

(
c−MUk

)
,

with the restricted value Ũ
k

= TC
FU

k. Then, we compute the coarse correction

δk = TF
C

(
Ũ
k+1 −TC

FU
k
)

and obtain the half-step

Uk+ 1
2 = Uk + δk = Uk + TF

CP̃−1
SDCTC

F

(
U0 −MUk

)
after some algebraic manipulations. Using this half-step for the next iteration on the
fine level gives (1.24). Simple algebraic manipulations, after inserting the half-step into
the second step, yield the preconditioner (1.25), which immediately leads to the iteration
matrix (1.26).

For the matrix formulation, it is irrelevant whether the MLSDC step starts with the
computation on the fine or the coarse level. To comply with the literature, we leave
the algorithm of MLSDC in the original order, while changing the order for the matrix
formulation.

As a part of PFASST, MLSDC corresponds to the computation performed on each
subinterval. Adding a communication framework between the MLSDC iterations that are
performed on each subinterval, leads to PFASST. However, adding the communication
framework yields a structure similar to the one we have seen in Lemma 1.

1.3.4. The PFASST algorithm

First we explain PFASST on the basis of the schematic representation in Figure 1.2.
This is followed by a simplified two level algorithmic representation as it is found in
the literature [17]. First of all, we see the time domain, decomposed into subintervals,
on the x-axis. On the y-axis we see the elapsed computational time. Each processor is
assigned to a subinterval, where it performs MLSDC iterations and sends intermediate
results on each level to the next processor. The blue and red blocks represent the SDC
sweeps on the coarse and fine level. These blocks are connected through FAS corrections
to the subjacent blocks (red to blue). The arrows represent the communication between
the processors. Before starting with the actual PFASST iterations, a prediction phase,

27

1. Introduction

coarse

sweep

fine

sweep

coarse

comm.

fine

comm.

P0
t0 P1

t1 P2
t2 P3

t3 t4

co
m
p
u
ta
ti
o
n
ti
m
e

p
re
d
ic
to
r

Figure 1.2.: Schematic representation of the PFASST algorithm with two levels and
four processes P0, ..., P3 handling four parallel time steps. Created using
pfasst-tikz [79].

represented by the first blue blocks near the x-axis, computes suitable initial values for
the iterations to come.
Based on the schematic representation and the full algorithm description in [17], we

state a two-level version without the prediction phase. Let U k
[tl−1,tl],m

be the value on

the l-th subinterval at the k-th iteration and the m-th node. We have

F k
[tl−1,tl]

= [AU k
[tl−1,tl],1

, . . . ,AU k
[tl−1,tl],Ml

] and Uk
[tl−1,tl]

=
[
U k

[tl−1,tl],1
, . . . ,U k

[tl−1,tl],Ml

]
,

where Ml is the number of nodes on the l-th interval. An upper bar, e.g. Ū k+1
l−1 , indicates

that this value was sent by the preceding processor. Note that depending on the colloca-
tion nodes this value is computed from an extrapolation of all U k

[tl−1,tl],1
, . . . ,U k

[tl−1,tl],Ml
.

If the last quadrature node coincides with the right interval border just U k
[tl−1,tl],Ml

is

sent forward. These values are used as a new right-hand side to the collocation problem
on the following subinterval. Denote the initial values for each subinterval as U 0

[tl−1,tl],m
.

Prepared with this notations, we are ready to formulate the PFASST algorithm:

1. Go down to the coarse level:

a) Restrict the fine values Uk
[tl−1,tl]

to the coarse values Ũ
k
[tl−1,tl]

and compute

F̃
k
[tl−1,tl]

.

b) Compute FAS correction τ k, using F̃
k
[tl−1,tl]

and F k
[tl−1,tl]

.

c) If l > 0, then receive the new initial value ˜̄U
k

l from processor Pl−1 and

28

1.3. The parallel full approximation scheme in space and time

compute F̃
k
[tl−1,tl],0

, or else use the initial value of the ODE.

d) Perform nC SDC sweeps with values Ũ
k
[tl−1,tl]

, F̃
k
[tl−1,tl]

and the FAS correction

τ k. This yields new values Ũ
k+ 1

2

[tl−1,tl]
and F̃

k+ 1
2

[tl−1,tl]
.

e) Send Ũ
k+ 1

2

[tl−1,tl],Ml
to processor Pl+1 if l < N − 1. This will be received as the

new initial condition ˜̄U k
l for the solver on the coarse level.

2. Return to the fine level:

a) Interpolate the coarse correction δk = Ũ
k+ 1

2

[tl−1,tl]
−Ũk

[tl−1,tl]
and add to Uk

[tl−1,tl]
,

yielding U
k+ 1

2

[tl−1,tl]
. Recompute F

k+ 1
2

[tl−1,tl]
.

b) If l > 0, then receive the new initial value Ū k
l−1 from processor Pl−1, or else

take the initial value of the ODE.

c) Interpolate coarse correction vector δk = ˜̄U
k+ 1

2
l−1 −

˜̄U k
l−1 and add it to Ū k

l ,

yielding Ū
k+ 1

2
l . Recompute F

k+ 1
2

[tl−1,tl],1
.

3. Perform nF fine SDC sweeps using the values U
k+ 1

2

[tl−1,tl]
and F

k+ 1
2

[tl−1,tl]
. This yields

values Uk+1
[tl−1,tl]

and F k+1
[tl−1,tl]

.

4. Send U k+1
[tl−1,tl],Ml

to processor Pl+1 if l < N − 1. This will be used as initial value

Ū k+1
l+1 in the next iteration on the fine level.

This form of the PFASST algorithm is suitable for implementation, but not for the
mathematical analysis. It is especially difficult to capture how the parts influence each
other. In the next chapter, we change the perspective to overcome this limitation.

29

2. A Multigrid Perspective

We don’t want to focus on the trees
(or their leaves) at the expense of the
forest.

Douglas Hofstadter

As the main result of this chapter, we will provide an iteration matrix in Theorem 3 for
PFASST similar to the iteration matrix of MLSDC in Lemma 1. Therefore, instead of
building the algorithm in a “vertical” way (MLSDC on each subinterval), we look at all
intervals at once in a “horizontal” way, i.e., we analyze how the different components of
PFASST act on the full time-domain [t0, T]. The greatest difficulty in this undertaking,
is to understand in which form the communication of PFASST is represented. When
this difficulty is overcome, the already conjectured multigrid nature of PFASST is finally
revealed. With this representation, we elaborate a particular Fourier transformation of
the iteration matrix and thus a foundation for the analysis of PFASST. Note that the
following sections mostly coincide with the own work submitted in [64].

2.1. Iteration matrix of PFASST

The first step towards the iteration matrix of PFASST is the system matrix of the
underlying problem.

2.1.1. The composite collocation problem

In this section, the perspective is shifted from solvers on one specific subinterval to the
interaction of the solvers on the whole time domain [t0, T]. We begin with stating the
composite collocation problem.

Definition 2. Let the interval [t0, T] be decomposed as in (1.13) into L subintervals
[tl, tl+1]. On each subinterval a collocation problem in the form of (1.15), denoted by

31

2. A Multigrid Perspective

M[tl,tl+1], is posed. The collocation matrix on the whole time domain is then defined as

M[t0,T] =

M[t0,t1]

−H M[t1,t2]

. . .
. . .

−H M[tL−1,T]

 ∈ RNML, with

N =

0 0 · · · 1
0 0 · · · 1
...

...
...

0 0 · · · 1

 ∈ RM , and thus H = N⊗ IN ∈ RNM .

The operator N handles how the new starting value for the upcoming interval is produced.
Furthermore, stacking together

c[tl,tl+1] =

{
U0, for l = 0

0, for l > 0
∈ RNM ,

forms the right-hand side c[t0,T] for the composite collocation problem

M[t0,T]

U [t0,t1]

U [t1,t2]
...

U [tL−1,T]

 =

U0

0
...
0

 = c[t0,T]. (2.1)

With this definition, the block structure of our problem becomes evident. On the
diagonal of the new collocation matrix, we find blocks of the size NM , each of which are
associated with one subinterval [tl, tl+1]. The operators on the subdiagonal deal with
the communication between two adjacent subintervals. Note that the structure of the
operator N depends on the choice of the quadrature nodes, since the last quadrature
node coincides with the right boundary of the respective subinterval. When designing
iterative solvers for the composite collocation problem, it is our goal to exploit this block
structure. Therefore, the following two sections are dedicated to the block versions of an
approximate Jacobi and an approximate Gauß-Seidel iteration, both emerging from the
interpretation of SDC as an approximate Gauß-Seidel iterative solver. When the two
methods are correctly interlaced, this results in PFASST as we will see in Section 2.1.4.
Such block-solvers call to mind the block-solvers of the space-time multigrid methods
in Section 1.2. Indeed, especially the relaxation operators in [63] appear very similar to
the operators introduced here.

32

2.1. Iteration matrix of PFASST

2.1.2. The approximative block Gauß-Seidel solver

The classical Gauß-Seidel solver is a splitting method, which incorporates the lower tri-
angular part of the system matrix as a preconditioning matrix. In principle, this strategy
may be applied the composite collocation problem, as defined in Definition 2, but this
would neglect the particular block structure of the problem. Therefore, we now construct
a block version of the SDC iteration, following its description as an approximative Gauß-
Seidel solver.

Assume we perform one SDC sweep on each subinterval via

Uk+1
[tl,tl+1] = Uk

[tl,tl+1] + P−1
[tl,tl+1]

(
ck+1

[tl,tl+1] −M[tl,tl+1]U
k
[tl,tl+1]

)
, (2.2)

where P[tl,tl+1] denotes the SDC preconditioner (1.17), and ck[tl,tl+1] is the right-hand side

on the l-th subinterval in the k-th iteration. In order to pass the last value forward in
time to the next subinterval, we can use the matrix N. Therefore, the right-hand side
of the collocation problem can be written as

ck[t0,t1] = [U0, . . . ,U0] , for l = 0 and k > 0

ck[tl,tl+1] =
[
Ū k
l , . . . , Ū

k
l

]
= HUk

[tl−1,tl]
for l > 0 and k > 1. (2.3)

For some initial iteration vector U0
[tl,tl+1], stemming, e.g., from copying the initial value

on each node of each subinterval (“spreading”), we can write this process compactly as
a single approximate Gauß-Seidel step over the whole time domain.

Lemma 2. Let M[t0,T] be the matrix of a composite collocation problem, see Definition
2. Using SDC on each subinterval and passing the results via (2.3) corresponds to

Uk+1
[t0,T] = Uk

[t0,T] + P−1
[t0,T]

(
c[t0,T] −M[t0,T]U

k
[t0,T]

)
, (2.4)

with

Uk
[t0,T] =

Uk

[t0,t1]

Uk
[t1,t2]
...

Uk
[tL−1,T]

 ∈ RNML, c[t0,T] =

U0

0
...
0

 ∈ RNML

33

2. A Multigrid Perspective

and

P[t0,T] =

P[t0,t1]

−H P[t1,t2]

. . .
. . .

−H P[tL−1,T]

 ∈ RNML×NML.

Proof. We multiply equation (2.2) with P[tl,tl+1] from the left and equation (2.4) with
P[t0,T] from the left. Comparing the resulting terms line by line reveals the equivalence.

This Gauß-Seidel-like iteration can be found in Fig. 1.2: Here, after each blue block,
which represent SDC sweeps on the coarse level, the values Ū k

l are passed forward in time,
providing new initial values for the sweep on the next interval. Thus, the iteration on the
coarse level can be identified with an approximate block Gauß-Seidel iteration for the
composite collocation problem. The communication between subintervals is performed
using operator N on the block sub-diagonal of P[t0,T], by passing the value Ū k

l in form
of a new right-hand side to the subsequent solver. This communication is represented
in Fig. 1.2 as the arrows connecting the blue blocks.

2.1.3. The approximative block Jacobi solver

The communication, which is emerging from the use of the approximate block Gauß-
Seidel solver, is blocking. Each processor has to wait for its predecessor. Hence, this is a
purely serial approach. A simple way to avoid the blockage of communication is to use
an approximate block Jacobi solver, omitting the subdiagonal blocks responsible for the
communication.

Assume we perform a step similar to (2.2), but we use the right-hand side

ck[t0,t1] = [U0, . . . ,U0] , for l = 0 and k > 0

ck[tl,tl+1] =
[
Ū k−1
l , . . . , Ū k−1

l

]
= HUk−1

[tl−1,tl]
for l > 0 and k > 1

(2.5)

instead. This means that instead of using the result of the current iteration, the result
of the previous iteration is used. In the first iteration, the result of the prediction phase
is used. Using the simple spreading prediction phase, this is easily achieved by choosing
Ū 0
l = U0 for l > 0.

Lemma 3. Let M[t0,T] be the matrix of a composite collocation problem, see Definition
2. Then, using SDC on each subinterval and passing the results via (2.5) corresponds to

Uk+1
[t0,T] = Uk

[t0,T] + P̂−1
[t0,T]

(
c[t0,T] −M[t0,T]U

k
[t0,T]

)
(2.6)

34

2.1. Iteration matrix of PFASST

with

P̂[t0,T] =

P[t0,t1]

P[t1,t2]

. . .

P[tL−1,T]

 ,

and Uk
[t0,T], c[t0,T] defined as in Lemma 2.

Proof. Similar to the proof in Lemma 2, a block wise comparison yields the equivalence.
Especially the influence of the subdiagonal of M[t0,T] on the communication is revealed
by a block wise view on (2.6):

Uk+1
[t0,t1] = Uk

[t0,t1] + P−1
[t0,t1]

(
U0 −M[t0,t1]U

k
[t0,t1]

)
, for l = 0

Uk+1
[tl,tl+1] = Uk

[tl,tl+1] + P−1
[tl,tl+1]

(
HUk

[tl−1,tl]
−M[tl,tl+1]U

k
[tl,tl+1]

)
, for l > 1.

The values NUk
[tl−1,tl]

are equivalent to 1M ⊗ Ū k−1
l .

It is evident that due to the block diagonal structure of P̂[t0,T], one block Jacobi iter-
ation may be performed concurrently on L computing units. This approach corresponds
with the sweeps on the fine (red) blocks in Fig. 1.2; these sweeps can be performed in
parallel, since they do not depend on the previous subinterval of the same iteration.
Therefore, the iteration on the fine level can be identified with an approximate block
Jacobi iteration for the composite collocation problem (2.1).

2.1.4. Assembling PFASST

Already in Section 1.3.3, multigrid elements were incorporated into SDC to construct
MLSDC. The same principles apply when we interlace both iterative block solvers from
above to introduce a novel representation of PFASST. In order to achieve more paral-
lelism, we compute the approximate Gauß-Seidel iteration step on the coarse level and
the approximate block Jacobi iteration step on the fine level, so that the more cost inten-
sive work is carried out in parallel. As the following theorem shows, it is now possible to
write PFASST in the form of (1.24) and we are able to state an iteration matrix, which
has the form of a two-level multigrid iteration matrix.

Theorem 3. Let TC
F and TF

C be block-wise defined transfer operators, which treat the
subintervals independently from each other, let{

P[t0,t1], . . . ,P[tL−1,T]

}
and

{
P̃[t0,t1], . . . , P̃[tL−1,T]

}

35

2. A Multigrid Perspective

be sets of the preconditioner for the fine and coarse level, respectively, describing SDC
sweeps on [tl, tl+1] for l ∈ {0, . . . , L− 1} and tL = T . Let M[t0,T] be the composite

collocation matrix of Definition 2 and H, H̃ be the operations to compute the initial
value for the following subinterval. Then, the linear two-level version of PFASST can be
written in matrix form as

U
k+ 1

2

[t0,T] = Uk
[t0,T] + TF

CP̃−1
[t0,T]T

C
F

(
c[t0,T] −M[t0,T]U

k
[t0,T]

)
Uk+1

[t0,T] = Uk
[t0,T] + P̂−1

[t0,T]

(
c[t0,T] −M[t0,T]U

k+ 1
2

[t0,T]

)
,

(2.7)

with P̃[t0,T] as in Lemma 2 and P̂[t0,T] as in Lemma 3. In addition, define H and H̃ such

that H̃TC
F = TC

FH and c[t0,T] = [U0, 0, . . . , 0] as well as c̃[t0,T] = TC
F c[t0,T]. Finally, the

PFASST iteration matrix is given by

TPFASST =
(
I− P̂−1

[t0,T]M[t0,T]

)(
I−TF

CP̃−1TC
FM[t0,T]

)
. (2.8)

Proof. We compare, systematically, each step of PFASST with the computations on the
subinterval found in equation (2.7), which expands into

τ k[t0,T] = M̃[t0,T]T
C
FU

k
[t0,T] −TC

FM[t0,T]U
k
[t0,T] (2.9)

Ũ
k+1
[t0,T] = Ũ

k
[t0,T] + P̃−1

(
c̃[t0,T] + τ k[t0,T] − M̃[t0,T]Ũ

k
[t0,T]

)
(2.10)

U
k+ 1

2

[t0,T] = Uk
[t0,T] + TF

C

(
Ũ
k+1
[t0,T] −TC

FU
k
[t0,T]

)
(2.11)

Uk+1
[t0,T] = U

k+ 1
2

[t0,T] + P̂−1

(
c[t0,T] −M[t0,T]U

k+ 1
2

[t0,T]

)
. (2.12)

From top to bottom, we have the computation of the FAS τ -correction of the right-hand
side, the SDC sweep on the coarse level, the FAS δ-correction of the updated value, and
the SDC sweep on the fine level. PFASST’s communication between the subintervals
has already been derived in Lemmas 2 and 3. The evaluations of the right-hand side, in
the form of F and F̃ , are included in the matrix vector multiplication with M[t0,T] and

M̃[t0,T], respectively.

The computation of the FAS correction τ k[t0,T], as in (2.9), differs from the for-

mula (1.27), which we derived for MLSDC, as the latter is only applied on one subinter-
val. This leads to the FAS correction vector of (2.9) having additional terms

L = H̃TC
F −TC

FH (2.13)

36

2.1. Iteration matrix of PFASST

with

τ[t0,T] =
(
τ[t0,t1], τ[t1,t2] + LUk

[t0,t1], ..., τ[tN−1,T] + LUk
[tN−1,T]

)T
(2.14)

However, by requirement we have L = 0 and in Remark 1 we will investigate how this
requirement is met. The iteration matrix is the result of simple algebraic manipulations.

In contrast to Lemma 1 for MLSDC, we now have an additional requirement, which
necessitates the following remark.

Remark 1. When only coarsening in space is performed, our interpolation operator has
the form TC

F = IM ⊗ T̄C
F , where T̄C

F is the restriction operator in space. In this case, it
yields

L = H̃ ·
(
IM ⊗ T̄C

F

)
−
(
IM ⊗ T̄C

F

)
·H

= N⊗
(
T̄C
F − T̄C

F

)
= 0

and therefore, the condition is met. When we additionally have coarsening in the number
of quadrature nodes, our restriction operator takes the form TC

F = T̂C
F ⊗ T̄C

F , where T̂C
F

is the restriction operator in time. In this case, it yields

L =
(
ÑT̂C

F − T̂C
FN

)
⊗ T̄C

F

and we need further assumptions about the restriction operator in time. Let ti,j be the
j-th entry of the i-th row of T̂C

F . Due to the assumptions above, L = 0 translates to

0 = T̂C
FN− ÑT̂C

F

=

0 · · · 0
∑M

j=1 t1,j
...

...
...

0 · · · 0
∑M

j=1 tM̃,j

−
tM̃,1 · · · tM̃,M−1 tM̃,M

...
...

...
tM̃,1 · · · tM̃,M−1 tM̃,M

 .

Hence, we require that

tM̃,j = 0 ∀ j ∈ {1, . . . ,M − 1} and tM̃,M =

M∑
j=1

ti,j ∀ i ∈
{

1, . . . , M̃
}
.

If the restriction T̂C
F of a constant vector yields a constant vector with the same values

37

2. A Multigrid Perspective

but a smaller dimension, we infer that

M∑
j=1

ti,j = 1 ∀ i ∈
{

1, M̃
}

and hence tM̃,M = 1. This requirement is met when the restriction in time projects the
last node of the fine level onto the last node of the coarse level. It holds e.g., for the
linear restriction or simple injection, as long as τ̃M̃ = τM .

The hierarchy of discretizations on which PFASST is working and the exchange of
information between those levels using coarse-grid correction clearly indicates a strong
similarity to classical multigrid methods. This relation is in particular emphasized by
the iteration matrix. Standard multigrid methods are typically described and analyzed
by their iteration matrix TMG, which reads

TMG(ν, η) =
(
I−P−1

postM
)ν (

I−TF
CM̃−1TC

FM
)(

I−P−1
preM

)η
, (2.15)

for ν post- and η pre-smoothing steps. The expression in the middle is the coarse
grid correction and M̃ is a coarse version of M. In a standard two-grid algorithm,
the problem is solved directly at the coarsest level. In practice, it is also legitimate to
use the approximate solution in form of P̃−1. PFASST does exactly this. Under the
conditions of Theorem 3, the comparison of (2.15) and (2.8) yields that PFASST can
be readily interpreted as a multigrid algorithm with one post-smoothing iteration and
no pre-smoothing steps. We point out that this does not prove that PFASST actually
behaves like a classical multigrid method on elliptic PDEs in terms of convergence and
robustness. In particular, the smoothing and approximation property are not necessarily
satisfied and the analysis of the algorithm in this respect is left for future work. However,
this does not prohibit an analysis based on the tools which are usually used for multigrid
schemes.

2.2. Fourier transformation of the iteration matrix

The most common tool for the analysis and the design of multigrid algorithms is the
local Fourier analysis (LFA), which was initially introduced by Brandt in [56], cf. [52].
It simplifies the problem by making assumptions such as periodic domains and constant
coefficients. The goal of LFA is, in the rigorous case, the computation and usually the
estimation of the spectral radius of the iteration matrix and its building blocks. If there
is no Toeplitz structure to exploit in the building blocks of the iteration matrix or if
the boundary conditions have a strong influence, LFA fails to give accurate predictions.
To account for this problem, it is reasonable to use a combination of LFA and alge-
braic computations, as it was first introduced by Friedhoff et. al. in [80] in the form

38

2.2. Fourier transformation of the iteration matrix

of “semi-algebraic mode analysis” (SAMA). The motivation behind SAMA is the large
gap between the theoretical analysis and the actual performance of multigrid methods
for parabolic equations and time-parallel methods. Friedhoff et. al. demonstrated that
SAMA enables accurate predictions of the short-term behavior and asymptotic conver-
gence factors.

In this work, we focus on two prototype problems, namely the diffusion and advection
problem in one dimension, to show how in principle PFASST can be analyzed using the
framework we describe in this work. We will use periodicity in space to stay consistent
with the assumptions of LFA.

The usual approach to LFA is to define and work with Fourier symbols for each
operator. These Fourier symbols represent the behavior of the operators on the grid
functions

ϕθ(x) = exp (iθx/h) , x ∈ [0, 1] , θ ∈ [0, 2π) , (2.16)

for distinct frequencies θ. The observation, how the different grid functions are damped
or changed on different grids and under different operations is a central point of LFA.

However, in our analysis we will make use of the matrix notation and henceforth first
avoid the use of explicit Fourier symbols. Rather, we perform a block diagonalization
of the matrices of PFASST. The goal is the block-wise diagonalization of the iteration
matrix of PFASST. Later on, each block will be associated with a discrete frequency.
Therefore, we will be able to state which frequency is damped or changed to which
degree.

Due to the periodicity in space, parts of the iteration matrix consists of circulant
matrices. A circulant matrix is a special kind of Toeplitz matrix, where each row vector
is shifted one element to the right, relative to the preceding row vector. More precisely,
we denote

C =

c0 c1 · · · cN−1

cN−1 c0 c1

. . .
. . .

c1 · · · cN−1 c0

 . (2.17)

This matrix has the eigenvalues λk and eigenvectors ψk for k = 0, . . . , N − 1 with

λk =

N−1∑
j=0

cj exp

(
i
2π

N
k · j

)
and

ψk =
1√
N

[
exp

(
i
2π

N
k · 0

)
, exp

(
i
2π

N
k · 1

)
, . . . , exp

(
i
2π

N
k · (N − 1)

)]T
.

(2.18)

This also means that with the transformation matrix Ψ, which is orthogonal and consists

39

2. A Multigrid Perspective

of the eigenvectors, it holds (
ΨTCΨ

)
j,j

= λj . (2.19)

For two diagonalizable matrices A,B with the same eigenvector space it holds

ΨT (A + B) Ψ = ΨTAΨ + ΨTBΨ = D(A) + D(B),

ΨTABΨ = ΨTAΨΨTBΨ = D(A)D(B),

ΨTA−1Ψ =
(
D(A)

)−1

(2.20)

Here, D(A) denotes the diagonal matrix containing the eigenvalues of A. Furthermore,
for the Kronecker product it holds P−1A ⊗ BP = B ⊗ A, where P is a suitable per-
mutation matrix. These rules will be used extensively along the lines of the following
algebraic manipulations.

2.2.1. The three layers

The PFASST algorithm operates on three layers. The first layer is the spatial space,
the second consists of the quadrature nodes, and the third is the temporal structure
given by the subintervals. All layers are interweaved; we illustrate this by rewriting the
system matrix M[t0,T] under the assumption that we have the same problem (i.e. the
same discretization of the same operator) on each subinterval

M[t0,T] = IL ⊗ IM ⊗ IN −∆t · IL ⊗Q⊗A−E⊗N⊗ IN , (2.21)

where N is again the number of degrees of freedom in the spatial dimension, M the num-
ber of nodes per subinterval, and L the number of subintervals. Also, a new operator
E ∈ RL×L is introduced, which has ones on the first subdiagonal and zeros elsewhere.
In each term, the layers are separated by the Kronecker product, and through the sum-
mation of those parts we interweave them again. Our transformation aims at the layer
where each matrix is diagonalizable by Ψ. With the help of the permutation matrix P,
we define a transformation matrix F , which effects and reorders the layers, as

F = P · (IL ⊗ IM ⊗Ψ) , F−1 =
(
IL ⊗ IM ⊗ΨT

)
·P−1,

and therefore

F−1M[t0,T]F = IN ⊗ (IL ⊗ IM −E⊗N)−∆t ·D(A) ⊗ IL ⊗Q.

40

2.2. Fourier transformation of the iteration matrix

This yields diagonal matrices on the layer for the spatial dimension, so that we can write

F−1M[t0,T]F = diag
(
B

(M[t0,T])

1 , ...,B
(M[t0,T])

N

)
with B

(M[t0,T])

j = IL ⊗ IM −E⊗N−∆t · λjIL ⊗Q.

We call the resulting blocks “time collocation blocks”, highlighting the dimension and
components of the blocks. We note that this is actually SAMA in a different notation.

The transformation strategy above leads to a block structure for all matrices, which
emerge in the formulation of PFASST; particularly for the iteration matrix. Here how-
ever, the interpolation and restriction matrices need special attention.

2.2.2. Transforming interpolation and restriction

In this section, we focus on interpolation and restriction operators, which are designed
for two special isometric periodic grids with an even number of fine grid points. We
define a special class of interpolation and restriction pairs between these two grids.

Definition 3. Let C ∈ RN/2×N/2 be a circulant matrix, with the associated eigenvalues
{λk}k=1...N

2
, and let the fine grid X and coarse grid X̃ be defined as

X = [x1, . . . , xN] and X̃ = [x̃1, . . . , x̃N/2] ,with x2j−1 = x̃j for all j ∈
{

1, . . . ,
N

2

}
.

Let W(., .) : RN/2×N/2 × RN/2×N/2 7→ RN×N/2 be an “interweaving” operator, which
stacks together the rows of two matrices subsequently, beginning with the first row of
the first matrix, followed by the first row of the second matrix, and finally ending with
the last row of the second matrix. Then, we define the class of circulant interweaved
interpolation (“CI-interpolation”) operators as

Π =
{
TF
C : ∃C ∈ RN/2×N/2 circulant and C · 1 = 1,TF

C =W(IN/2,C)
}

(2.22)

and the class of circulant interweaved restriction (“CI-restriction”) operators as

ΠT =

{
TC
F : c

(
TC
F

)T
∈ Π, c ∈ R

}
. (2.23)

Due to the circulant nature of the interweaved matrices, we are able to state a trans-
formation analytically.

Lemma 4. Let TF
C be a CI-interpolation and TC

F the associated CI-restriction operator,
Ψ the transformation matrix for N grid points and ΨC the transformation matrix for

41

2. A Multigrid Perspective

N/2 grid points. Then it holds

ΨTTF
CΨC =

d0

. . .

dN/2−1

d̂0

. . .

d̂N/2−1

(2.24)

and

ΨT
CTC

FΨ = c

d0 d̂0

. . .
. . .

dN/2−1 d̂N/2−1

 . (2.25)

The values on the diagonal depend solely on the circulant matrix C and its eigenvalues

λ
(C)
k for k ∈ {0, N/2− 1}. More precisely, we have

dk =
1 + λ

(C)
k exp(−i2π

N k)
√

2
and d̂k =

1− λ(C)
k exp(−i2π

N k)
√

2
. (2.26)

Proof. Using the properties of the interweaving operator, we have

TF
C ·ΨC =W(IN

2
,CN

2
)ΨC =W(ΨC ,CN

2
ΨC).

Using the eigenvector-eigenvalue relation (2.18) of the two circulant matrices C and I,
see Section 2.2, for the computation of the k-th column, we have

[
TF
C ·ΨC

]
−,k

=

√
2

N

exp(i4π/Nk · 0)
λk exp(i4π/Nk · 0)

...
exp(i4π/Nk · (N/2− 1))
λk exp(i4π/Nk · (N/2− 1))

 .

Multiplying (2.24) by the eigenvector Ψk from the left yields

[
TF
C ·ΨC

]
−,k

!
=

dk√
N

 exp(i2π/Nk · 0)
...

exp(i2π/Nk · (N − 1))

+
d̂k√
N

 exp(i2π/N(N/2 + k) · 0)
...

exp(i2π/N(N/2 + k) · (N − 1))

 .

42

2.2. Fourier transformation of the iteration matrix

Then solve the resulting equation row-for-row to find that it has an unique solution
(2.26).

Depending on the structure of C, we are able to state further simplifications for dk
and d̂k, as we see in the following remark.

Remark 2. For the first simplification let m ≤ N/2 and let the entries of C be, so that

cl =

{
cN−l, l ∈ {1, . . . ,m} ,
0, l > m.

In this case, C is generated by an symmetric stencil with an odd number of entries.
Then, it holds

dk = dN/2−k and d̂k = d̂N/2−k.

The second simplification applies for a CI-interpolation and -restriction operator with

C ·1 = 1, i.e. the operators should conserve constants. This yields λ
(C)
0 = 1, from which

follows

d0 = 0 and d̂0 =
√

2.

We now use Lemma 4 to transform the coarse-grid correction. For the interpolation

operator, we obtain diagonal entries
{
d0, d̂0, . . . , dN/2−1, d̂N/2−1

}
and for the restriction

operator the diagonal entries
{
f0, f̂0, . . . , fN/2−1, f̂N/2−1

}
. These entries may coincide if

the same circulant matrix C is used for the construction of both operators. Furthermore,
we transform the inverse of the system matrix Ã−1 in the spatial dimension into a

diagonal matrix consisting of the eigenvalues
{
λ̃−1

0 , . . . , λ̃−1
N/2−1

}
of Ã−1. Then, we

43

2. A Multigrid Perspective

obtain

ΨTTF
CÃ−1TC

FΨ = ΨTTF
CΨCΨT

CÃ−1ΨCΨT
CTC

FΨ

=
1

2

d0

. . .

dN
2
−1

d̂0

. . .

d̂N
2
−1

λ̃−1

0
. . .

λ̃−1
N
2
−1

f0 f̂0

. . .
. . .

fN
2
−1 f̂N

2
−1

=
1

2

d1λ̃
−1
0 f0 d0λ̃

−1
0 f̂0

. . .
. . .

dN
2
−1λ̃

−1
N
2
−1
fN

2
−1 dN

2
−1λ̃

−1
N
2
−1
f̂N

2
−1

d̂0λ̃
−1
0 f0 d̂0λ̃

−1
0 f̂0

. . .
. . .

d̂N
2
−1λ̃

−1
N
2
−1
fN

2
−1 d̂N

2
−1λ̃

−1
N
2
−1
f̂N

2
−1

.

The values are now scattered over three diagonals. By using the appropriate permutation
matrix we can gather them into new blocks:

P−1ΨTTF
CÃ−1TC

FΨP = diag
(
B0, . . . ,BN

2
−1

)
, (2.27)

where Bl =

(
dlλ̃
−1
l fl dlλ̃

−1
l f̂l

d̂lλ̃
−1
l fl d̂lλ̃

−1
l f̂l

)
∈ R2×2. (2.28)

In this structure we find the classical mode-mixing property of interpolation and restric-
tion operators. This well-known property of standard multigrid iterations interweaves
pairs of one low and one high frequency, the harmonic pairs. In Section 2.3, we will
formally introduce these harmonic pairs.

2.2.3. Transforming the full iteration matrix

The iteration matrix of PFASST can now be transformed into a block matrix with N/2
blocks of the size 2LM . Each block is associated with a harmonic pair of the spatial
problem and therefore with one high and one low spatial frequency. In contrast, the
smoother alone is decomposed into N blocks, which may be associated with only one
single frequency. This is summarized in the following theorem.

44

2.2. Fourier transformation of the iteration matrix

Theorem 4. Let us have a iteration matrix in the form of (2.8) with

T =
(
I−P−1M

)(
I−TF

CP̃−1TC
FM

)
,

where M is the collocation matrix, TC
F ,T

F
C are two circulant interweaved transfer op-

erators and P, P̃ are two preconditioners with a matrix in the spatial layer, which is
diagonalizable and has the same eigenvector space as the spatial system matrix A. Then,
there exists a transformation F , so that

F−1TF = diag

(
B(S)

0 B
(CGC)
0 , . . . ,B(S)

N
2
−1
B(CGC)
N
2
−1

)
∈ RLMN×LMN ,with (2.29)

B(S)
k =

I−
(
B

(P)
k

)−1
B

(M)
k

I−
(

B
(P)
N
2

+k

)−1

B
(M)
N
2

+k

 ∈ R2LM×2LM (2.30)

B(CGC)
k =

I− fkdk
(
B

(P̃)
k

)−1
B

(M)
k −f̂kdk

(
B

(P̃)
k

)−1
B

(M)
N
2

+k

−d̂kfk
(
B

(P̃)
k

)−1
B

(M)
k I− f̂kd̂k

(
B

(P̃)
k

)−1
B

(M)
N
2

+k

 ∈ R2LM×2LM ,

(2.31)

with matrices B
(P)
k ,B

(M)
k ∈ RLM×LM for k = 0 . . . N − 1 and B

(P̃)
k ∈ RLM×LM for

k = 0 . . . N2 − 1, solely depending on the eigenvalues of A and Ã. Where

ΨTPΨ = diag
(
B

(P)
0 , . . . ,B

(P)
N−1

)
,with B

(P)
j = IL ⊗ IM −∆t · λ(A)

j IL ⊗Q∆,

ΨTMΨ = diag
(
B

(M)
0 , . . . ,B

(M)
N−1

)
,with B

(M)
j = IL ⊗ IM −E⊗N−∆t · λ(A)

j IL ⊗Q,

ΨT P̃Ψ = diag

(
B

(P̃)
0 , . . . ,B

(P̃)
N
2
−1

)
,with B

(P̃)
j = IL ⊗ IM −E⊗N−∆t · λ(Ã)

j IL ⊗Q∆.

(2.32)

We call B
(M)
j ,B

(P)
j and B

(P̃)
j basic blocks. The matrix Q∆ ∈ RM×M is a lower triangular

matrix approximating Q, see Section 1.3.2.

Proof. The proof is rather straightforward. The matrices P,M and P̃ have 3 layers,
separated by Kronecker products like in (2.21). Applying the transformation in the
spatial dimension leads to the basic blocks (2.32). Similar to (2.28), we choose the
adequate permutation matrices on the layers of subintervals and quadrature nodes, to
get the blocks of harmonic pairs. Also, each block of the post smoother is associated

with a mode, hence we stack harmonic pairs together to B(S)
k in order to match them

45

2. A Multigrid Perspective

with the blocks of the coarse grid correction B(CGC)
k , performed by the same permutation

matrix.

This theorem makes it possible, at least semi-algebraically, to analyze the convergence

properties of PFASST by computing the spectral radius of each block
(
B(S)
k B

(CGC)
k

)
.

Until this point, the choice of the particular problem and operators yields a rigorous
transformation. Hence, the blocks and the full iteration matrix of PFASST have exactly
the same eigenvalues. This translates to computing N/2 eigenvalue decompositions of
matrices of the size 2ML× 2ML. As we can see in (2.32), the basic blocks consist of IL
and E on the first layer. However, it is not directly possible to apply the transformation
strategy presented above to this layer. For an empirical study like LFA, though, only
estimates of the spectral radii are needed. This is mainly due to the fact that even the
exact spectral radius does not reflect the direct numerical behavior of the method exactly,
but rather asymptotically. In the following section, we therefore give up the rigorousness
of the transformation in order to find a decomposition of the time collocation blocks into
L much smaller blocks of size 2M × 2M .

2.2.4. Assuming periodicity in time

To enable the further decomposition of the basic blocks, we substitute

E =

0 0 · · · 0
1 0
...

. . .

0 1 0

 with Ê =

0 0 · · · 1
1 0
...

. . .

0 1 0

 (2.33)

in the matrix formulation of PFASST. This introduces time periodicity to the problem
and makes the matrix circulant. Hence, it becomes easy to transform[

Ψ−1ÊΨ
]
j,j

= exp

(
−i2π j

L

)
, (2.34)

which makes the time collocation blocks B
(M)
j ,B

(P)
j and B(P̃) further decomposable into

NL or NL/2 blocks of the size M ×M or 2M × 2M , respectively. This directly leads
to the following theorem that can be proved using straightforward computations similar
to the ones used previously.

Theorem 5. Let us have the identical requirements as in Theorem 4, with the exception
of the use of Ê instead of E. Then there exists a transformation F̂ , such that

F̂−1TF̂ = diag

(
B(S)

0,0 · B
(CGC)
0,0 ,B(S)

0,1 · B
(CGC)
0,1 , . . . ,B(S)

N
2
−1,L−1

· B(CGC)
N
2
−1,L−1

)
, (2.35)

46

2.2. Fourier transformation of the iteration matrix

where the blocks are first iterated over the time steps (second index) and then over the
collocation nodes (first index). They are defined as

B(S)
k,j =

I−
(
B

(P)
k,j

)−1
B

(M)
k,j

I−
(

B
(P)
N
2

+k,j

)−1

B
(M)
N
2

+k,j

 ∈ R2M×2M and (2.36)

B(CGC)
k,j =

I− fkdk
(
B

(P̃)
k,j

)−1
B

(M)
k,j −f̂kdk

(
B

(P̃)
k,j

)−1
B

(M)
N/2+k,j

−d̂kfk
(
B

(P̃)
k,j

)−1
B

(M)
k,j I− f̂kd̂k

(
B

(P̃)
k,j

)−1
B

(M)
N/2+k,j

 ∈ R2M×2M ,

(2.37)

with matrices B
(P)
k,j ,B

(M)
k,j ∈ RM×M for k = 0 . . . N−1, j = 0 . . . L−1 and B

(P̃)
k,j ∈ RM×M

for k = 0 . . . N2 −1, j = 0 . . . L−1, solely depending on the eigenvalues of A and Ã, with

ΨTPΨ = diag
(
B

(P)
0,0 , . . . ,B

(P)
N−1,L−1

)
,with B

(P)
k,j = I− λ(A)

k ∆tQ∆,

ΨTMΨ = diag
(
B

(M)
0,0 , . . . ,B

(M)
N−1,L−1

)
,with B

(M)
k,j = I− λ(A)

k ∆tQ− exp

(
−i2π j

L

)
N,

ΨT P̃Ψ = diag

(
B

(P̃)
0,0 , . . . ,B

(P̃)
N
2
−1,L−1

)
,with B

(P̃)
k,j = I− λ(Ã)

k ∆tQ∆ − exp

(
−i2π j

L

)
N.

(2.38)

We denote these blocks as “collocation blocks”, in contrast to the time-collocation blocks
of Theorem 4.

This leaves us with NL/2 blocks of the size 2M × 2M . We identify the matrices Q
and Q∆ as the atomic part of the whole matrix formulation. Further decompositions
may only be performed if a decomposition of Q is found. In the case of a Q ∈ R1×1,
the time stepping part reduces to, e.g., an implicit Euler. In this case, no eigenvalue
computations are necessary anymore and the Fourier symbols are easily derived from
the basic collocation blocks.

Remark 3. With the assumption of periodicity in time we loose the initial value, which
means that if u(t, x) is a solution of the problem then u(t, x)+c is also a solution for any

c ∈ R. Therefore, neither the inverse of B
(P)
k,0 and B

(P̃)
k,0 nor the inverse of the iteration

matrix blocks B(T)
k,0 = B(S)

k,0 ·B
(CGC)
k,0 exist. Our remedy for this problem is to set B(T)

k,0 to 0.
These blocks belong to constant modes and we assume that there are no constant error
modes which have to be damped.

47

2. A Multigrid Perspective

2.3. Using the Fourier transformed iteration matrix

Through the Fourier transformation, we have a relation between the various block ma-
trices and the frequencies θ ∈ [0, 2π]. As described in Section 1.2.1, a well-designed
multigrid reduces the high frequencies on the fine level and the low frequencies on the
coarse level. One of our goals is to find out if PFASST shares this property. Therefore,
we denote

Θhigh = (π/2, 3π/2) and Θ low = [0, 2π] \ (π/2, 3π/2) ,

as the high and low frequencies. To describe the relation between matrix blocks and
the frequencies in more detail, we need to elaborate on the idea of harmonics. The
concept of harmonics is found in all fields where waves play an important role, such
as music theory or physics. Assume a basis wave with a certain frequency, then every
wave with an integer multiple k of this frequency is denoted as the k-th harmonic of
the basis wave. In the case of two superposed equidistant grids, where the coarser grid
has half the number of points, the harmonic and basis wave represented on the fine grid
are indistinguishable on the coarse grid. Thus, we need the composition of the basic
block matrices to construct the time collocation block for the coarse grid correction.

More precisely, we recognize that the block matrices B
(M)
k and B

(M)
k+N/2 are employed.

Since we assume a circulant system matrix for the spatial problem, the index k is directly
related to the frequency θk = 2πk/N . This relation is evident from (2.18). Consequently,
the index k +N/2 is directly related to the frequency

θk+N/2 =
2π
(
k + N

2

)
N

=
2πk

N
+ π = θk + π.

Thus, we denote the harmonic frequency as

θ′ =

{
θ + π , θ ≤ π
θ − π , else

(2.39)

and in order to have a mapping between harmonic and base frequencies we further denote

Θleft = [0, π) and Θright = [π, 2π) ,

as the left and right frequencies, and (θ, θ′) as a harmonic pair. Note that it is important
to distinguish left and right frequencies from the high and low frequencies, since both
have different roles in the interaction of the different constituents of PFASST. In Figure
2.1, these different frequencies are presented. With these definitions, it is natural to
make the transition from a block structure, with an finite number of blocks, to matrix
symbols, which depend on the continuous frequency value θ.

48

2.3. Using the Fourier transformed iteration matrix

0

π
2

left
π

high

3π
2

right

2π

low low

Figure 2.1.: Overview over how the frequency spectrum is subdivided.

2.3.1. Conversion to matrix symbols

A reinterpretation of the time collocation blocks into time collocation matrix symbols
liberates us from the discretization of the spatial dimension. Assuming periodicity in
time only liberates us from a part of the temporal discretization, since the number of
subintervals and the frequency in the temporal dimension are merged by the reformula-
tion of the time collocation blocks into collocation blocks. More precisely, we may only
apply the Fourier transformation in the temporal dimension on the layer, which contains
the subintervals. The layer, which contains the quadrature nodes, remains untouched
from the Fourier transformation and, thus, needs to be discretized.

An example for a matrix symbol is the generalization of (2.33) and (2.34), which
is done by substituting 2πj/L with a continuous variable θ ∈ [0, 2π) in (2.34). This
yields the 1×1 matrix symbol exp (−iθ) for the operator Ê with an arbitrary number of
subintervals L. In principle, this function also denotes the matrix symbol of the operator
E, since, usually, the matrix symbol of an operator is obtained from the diagonalization
of its circulant counterpart. The dimension L of the operator is now reflected in how
the interval θ ∈ [0, 2π) is sampled. Hence, the evaluation of the matrix symbol at these
sampled points yields the eigenvalues of the operator. This is especially helpful when
an upper bound is sought for the euclidean norm of the operator. In this case, a sharp
upper bound is given by ∥∥∥Ê∥∥∥ ≤ sup

θ∈[0,2π)
‖exp (−iθ)‖2 = 1.

In the same sense, we are able state the matrix symbols for a reinterpretation of Theorem
4 in the following

Theorem 6. Let us apply the conditions of Theorem 4. Further let λA (θ), λC (θ) and
λC
′
(θ) be the matrix symbols of the spatial system matrix A, the interpolation-defining

matrix C and the restriction-defining matrix C′. Thus, it yields the matrix symbols for

49

2. A Multigrid Perspective

the interpolation and restriction operators

d(θ) =
1 + λC (2θ) e−iθ√

2
, d̂(θ) =

1− λC (2θ) e−iθ√
2

,

f(θ) =
1 + λC

′
(2θ) e−iθ√
2

, f̂(θ) =
1− λC′ (2θ) e−iθ√

2
,

and in the same way for the preconditioning matrices and the system matrix

B(P)(θ) = IL ⊗ IM −∆t · λ(A)(θ)IL ⊗Q∆,

B(M)(θ) = IL ⊗ IM −E⊗N−∆t · λ(A)(θ)IL ⊗Q,

B(P̃)(θ) = IL ⊗ IM −E⊗N−∆t · λ(A)(2θ)IL ⊗Q∆.

(2.40)

Consequently, these symbols result in

B(T)(θ) = B(S)(θ)B(CGC)(θ) with (2.41)

B(S)(θ) =

I−
(
B(P)(θ)

)−1
B(M)(θ)

I−
(
B(P)(θ′)

)−1
B(M)(θ′)

 (2.42)

B(CGC)(θ) =

I−
(
fd
(
B(P̃)

)−1
B(M)

)
(θ) −

(
f̂d
(
B(P̃)

)−1
)

(θ) B(M)(θ′)

−
(
d̂f
(
B(P̃)

)−1
B(M)

)
(θ) I−

(
f̂ d̂
(
B(P̃)

)−1
)

(θ)B(M)(θ′)

 ,

(2.43)

the matrix symbols of PFASST. These matrix symbols produce the time collocation blocks,
when evaluated at the points θk = 2πk/N for k = 0, . . . , N − 1.

Proof. The first part of the theorem is only the definition of the emerging matrix sym-
bols. Only the statement that the evaluation at the points θk = 2πk/N yields the time
collocation blocks needs proof, which is just a series of straightforward computations.

We also introduce the matrix symbols related to the collocation blocks in the following
theorem, which has a similar proof as Theorem 6.

Theorem 7. Let us apply the conditions of Theorem 5. Further let λA (θ), λC (θ) and
λC
′
(θ) be the matrix symbols of the spatial system matrix A, the interpolation defining

matrix C and the restriction defining matrix C′. Thus, it yields the matrix symbols for

50

2.3. Using the Fourier transformed iteration matrix

the interpolation and restriction operators

d(θ) =
1 + λC (2θ) e−iθ√

2
, d̂(θ) =

1− λC (2θ) e−iθ√
2

f(θ) =
1 + λC

′
(2θ) e−iθ√
2

, f̂(θ) =
1− λC′ (2θ) e−iθ√

2
,

and in the same way for the preconditioning matrices and the system matrix

B(P)(θx) = IM −∆t · λ(A)(θx)Q∆,

B(M)(θx, θt) = IM − exp(−iθt)N−∆t · λ(A)(θx)Q,

B(P̃)(θx, θt) = IM − exp(−iθt)N−∆t · λ(Ã)(2θx)Q∆.

(2.44)

Consequently, these symbols result in B(T)(θ) = B(S)(θ)B(CGC)(θ), with Θ = (θx, θt),
Θ′ = (θ′x, θt) and

B(S)(Θ) =

I−
(
B(P)(θx)

)−1
B(M)(Θ)

I−
(
B(P)(θ′x)

)−1
B(M)(Θ′)

 (2.45)

B(CGC)
k (Θ) =

I−
(
fd
(
B(P̃)

)−1
B(M)

)
(Θ) −

(
f̂d
(
B(P̃)

)−1
)

(Θ) B(M)(Θ′)

−
(
fd̂
(
B(P̃)

)−1
B(M)

)
(Θ) I−

(
f̂ d̂
(
B(P̃)

)−1
)

(Θ)B(M)(Θ′)

 ,

(2.46)

the matrix symbols of PFASST with the assumption of periodicity in time. These matrix
symbols produce the collocation blocks, when evaluated at the points θk = 2πk/N for
k = 0, . . . , N − 1 and θj = 2πk/L for j = 0, . . . , L− 1.

We stated the matrix symbols in this work for reasons of completeness, since this is
the form which appears in standard multigrid theory. By using matrix symbols, we are
able to state convergence estimates independently from the number of grid points in
space. A supremum over θ of norms or spectral radii yields an upper bound, which is
independent of the number of grid points N used. Another potential application for
matrix symbols is the simplified way of observing the effect of the operators on vectors
with a certain structure. We investigate this simplified way in the following section.

2.3.2. Structure of the error vector

For space-time multigrid methods it is reasonable to write the vector as a Kronecker
product between a spatial and temporal vector, as we find it in the following definition.

51

2. A Multigrid Perspective

Definition 4. Let the spatial problem with N degrees of freedom be diagonalizable, then
let the eigenvectors be denoted as vk for k ∈ {1, . . . , N}. Furthermore, let j = M · l+m
be the index for the m-th quadrature node of the l-th subinterval, with l ∈ {0, . . . , L− 1}
and m ∈ {0, . . . ,M − 1}, then sk denotes the weight at the k-th time point and w denotes
the vector containing this weights. Altogether we define

E = {vk ⊗ s|k ∈ {1, . . . , N} and s ∈ S} , where S is a basis of CLM , (2.47)

as a set of basis vectors of the error space. Depending on the basis vector sj ∈ S, we
denote

ek,j = vk ⊗ sj ∈ E

as the k, j-th error basis vector. Additionally, we denote the canonical basis of CLM
as C and its basis vectors as bj.

Remark 4. Note that E is a basis for KNML. Therefore, every possible error may be
represented as a linear combination of error basis vectors. Furthermore, the construc-
tion of the vector vj depends on the type and dimension of the spatial problem. For one
dimensional problems with periodic boundaries on an equidistant mesh, we obtain the set
{vj}j∈{1,...,N} by evaluating the function exp (iθk) for k ∈ {0, . . . , N − 1} for different

θ ∈ [0, 2π). Once again, finite dimensionality is regained by using a sampled subset of
discrete points from the interval θ = 2π k

N ∈ [0, 2π).

The structure of an error basis vector acts jointly with the transformations. This leads
to the time collocation blocks and therefore also to the corresponding matrix symbols.
Exactly this structure is the foundation of the following lemma.

Lemma 5. Let ek,j be an error vector as defined in 4, B(θ) one of the matrix symbols
defined in (2.41), (2.42) or (2.43) and let N be the degree of freedom in space, then it
holds

‖T · ek,j‖2 =

∥∥∥∥∥B (πkN) ·
(

1

0

)
⊗wj

∥∥∥∥∥
2

, for k < N
2 ,∥∥∥∥∥B (πkN − π

2

)
·

(
0

1

)
⊗wj

∥∥∥∥∥
2

, for k ≥ N
2 .

(2.48)

Proof. We use the same transformation F , which was used to construct the time collo-
cation blocks. For an arbitrary basis S in time, it holds FT · ek,j = vk ⊗ sj . Together

52

2.3. Using the Fourier transformed iteration matrix

with the permutation operator

Pbk ⊗ s =

{
b2k−1 ⊗ s , for k < N/2

b2(k−N/2) ⊗ s , for k ≥ N/2,
,

it holds

P−1F−1TFPP−1F−1ek,j = P−1F−1TFPP−1bk ⊗ sj

=

diag

(
B(T)
k

)
· b2k−1 ⊗ sj , for k < N/2,

diag
(
B(T)
k

)
· b2(k−N/2) ⊗ sj , for k ≥ N/2,

=

B(T)
k ·

(
1

0

)
⊗ sj , for k ≤ N/2,

B(T)
k−N/2 ·

(
0

1

)
⊗ sj , for k ≤ N/2.

The operator P−1F−1 is orthogonal, consequently it follows∥∥∥P−1F−1ek,j

∥∥∥
2

= ‖ek,j‖2 .

This lemma will assist the numerical experiments conducted in the next chapter. It
also gives insight into the mechanism of mode mixing. In our case we denote mode
mixing, as the property that e.g., error modes ek,j associated with a frequency θk ∈ Θleft

result in a linear combination of two error modes after one PFASST step. This effect is
associated with the idea of harmonic pairs.

53

3. Convergence study

Das Experiment, dem nicht eine
Theorie, d.h. eine Idee vorausgeht,
verhält sich zur Naturforschung wie
das Rasseln einer Kinderklapper zur
Musik.

Justus Freiherr von Liebig

Building upon the theoretical basis derived in the previous chapters, we are now able
to sketch a more complete picture of PFASST. This picture will contain three basic
aspects: the problems we would like to solve, the properties we would like to observe
and finally the parameters of PFASST. Each aspect itself holds a huge number of possible
experiments and may be studied extensively.

We will confine ourselves to two basic problems: the diffusion and the advection
problems in one dimension; each of which is discretized by a simple finite difference
scheme. Thus, two frequent elements found in physical systems, are covered.

As for the properties, we observe the spectral radii of the iteration matrix, effects on
Fourier modes, and later, the approximation and smoothing property. These properties
originate from multigrid theory. In the field of parallel computing, the parallel efficiency
and the speedups are usually of interest. In the theory of time-stepping methods, the
observation of stability fields takes an important role. This gives us even more interesting
properties, we could study. Here, we also confine ourselves to a basic subset.

Not only the property itself, but also the methods to measure the property have to
be chosen with care, in order to sketch a complete picture of PFASST. For example,
the computation of the eigenvalues turns out to be difficult for some cases, as we will
elaborate in Section 3.1.

The third aspect is a change of the algorithm itself, which also harbors plenty of
possibilities. For example, we may use a different coarsening strategy, different solvers
in space, different transfer operators, or variations of the SDC method.

When each aspect is confined to a manageable extent, we are able to focus on the
interaction between the three aspects, thus gain a complete picture and thereby a better
understanding of PFASST.

As first step, we introduce the two model problems, which have been known to math-
ematicians for centuries. Take for instance the Poisson equation [81], discovered by

55

3. Convergence study

Siméon Denis Poisson and published in 1813. It is used in physics to describe gravita-
tional and electrostatic laws. It is also the ideal model problem to explain the success
of multigrid methods [54]. The heat or diffusion parabolic equation is a time depen-
dent version of the Poisson equation and is equally well understood [82]. Many efficient
numerical methods are known and depending on the boundary conditions it is possi-
ble to state an analytical solutions. This makes it a natural candidate for the analysis
of a multigrid-like time integration method like PFASST. The problem in one spatial
dimension is given by

ut = ν∆u, x ∈ [0, 1] and t ∈ [0, T]

u(x, 0) = u0(x), u(0, t) = u(1, t), t ∈ [0, T],
(3.1)

for an end time point T > 0 and the diffusion coefficient ν > 0. We use periodic bound-
aries, which simplifies the notation but does not change the behavior of the equation.
To keep the discretization simple, we use a second-order finite differences on a isometric
grid it holds

X = [x1, . . . , xN], with xj =
j − 1

N
and ∆x =

1

N
, (3.2)

which leads to a system of linear ODEs

Ut(t) =
ν

∆x2
AU (t), t ∈ [0, T] and U (0) = [u(x1, 0), . . . , u(xN , 0)],

with A =

2 −1 0 · · · −1
−1 2 −1

0
. . .

. . .
. . . 0

... −1 2 −1
−1 0 · · · −1 2

 ∈ RN×N .
(3.3)

When this ODE is solved by a time-stepping method, the spacing in the temporal and
spatial dimension becomes an important indicator for the numerical behavior. Therefore,
we denote this indicator in form of

µ = ν
∆t

∆x2

as the dispersion relation number (DRN) of the heat equation. At this point, the peri-
odic boundary conditions already pays off, because A becomes a circulant matrix. This
way, the spectral decomposition into eigenvalues and eigenvectors is easily computed.

56

For the eigenvalues λk and normal eigenvectors ψk, k ∈ {0, . . . , N − 1}, we get

λk = 4 sin2

(
kπ

N

)
and ψk =

1√
N

[
exp

(
i
2π

N
k · 0

)
, . . . , exp

(
i
2π

N
k · (N − 1)

)]T
.

(3.4)

The second model problem is the 1D advection equation, given by

ut = cux, x ∈ [0, 1] and t ∈ [0, T]

u(x, 0) = u0(x), u(0, t) = u(1, t) t ∈ [0, T],
(3.5)

with a constant speed c > 0. As a result of conservation laws, it mostly appears as a part
of more involved fluid dynamics equations [83]. It is classified as a hyperbolic PDE. This
class sparked many new mathematical methods, e.g., the finite volume methods [84].

The discretization is done in the same manner as (3.3), but instead of a central differ-
ence stencil we use an upwind scheme of the order 2, which introduces a predominant
direction in the numerical method itself. By defining

c+ = max(c, 0) , c− = min(c, 0)

and

u−x =
uni − uni−1

∆x
, u+

x =
uni+1 − uni

∆x
,

both directions of the advection are considered. These two conditional equations above,
when combined, yield

un+1
i = uni −∆t

[
c+u−x + c−u+

x

]
. (3.6)

These upwind schemes are stable, as long as the Courant-Friedrichs-Lewy (CFL) condi-
tion ∥∥∥∥c∆t∆x

∥∥∥∥ ≤ 1 (3.7)

is fulfilled, cf. [85].

However, due to the constant speed c, we may formulate the part of (3.6), which
describes the derivative in space, in matrix form. For periodic boundary conditions it

57

3. Convergence study

yields a circulant matrix

FD =

−3 4 −1 · · · 0

. . .
. . .

. . .

0 · · · −3 4 −1

−1
... 0 −3 4

4 −1 · · · 0 −3

 ∈ RN×N ,

with eigenvalues

λk = exp

(
i
2π

N
k

)(
−3 + 4 exp

(
i
2π

N

)
− exp

(
i
4π

N

))
,where k ∈ {0, . . . , N − 1} .

This matrix leads to a system of linear ODEs

Ut(t) =
c

2∆x
FDU (t), t ∈ [0, T] and U (0) = [u(x1, 0), . . . , u(xN , 0)].

When this ODE system is solved by an explicit Euler scheme, it yields one of the afore-
mentioned upwind schemes. However, we are interested in the properties of PFASST
and therefore will employ it to solve this system of linear ODEs implicitly. As for the
first model problem, it holds for the second model problem that the numerical behavior
is strongly influenced by an according dispersion relation number. For the advection
problem this is the CFL number from Eq. (3.7). With these two model problems and
a set of particular experiments we begin our study, which will serve as an appropriate
starting point for the following experiments.

3.1. First experiments

In our first experiments, we use a typical setup for the diffusion and advection problem
with an identical decomposition of the space-time domain. We use 8 subintervals with
5 Gauß-Radau quadrature nodes to decompose the time domain [0, 1]. In space, we use
32 discretization points for the space domain [0, 1] and an interpolation operator with
the order of 6, and injection for the restriction operator. An interpolation order of 6
means that polynomials with the degree up to 6 are interpolated exactly. These transfer
operators are used to pass information between the fine and coarse grid. The coarse
grid uses the same discretization in the temporal dimension and half of the points in
the spatial dimension. On each level, an exact solver is used in space. This could, for
example, be a fully converged multigrid in space. For our purposes, it is sufficient to
invert the system matrix A and FD respectively. As the starting iteration value, we take
the initial value of the ODE and spread it over all time nodes.

In Figure 3.1 we see that the chosen parameters lead to non-pathological setups. This

58

3.1. First experiments

(a) inital distribution (b) diffusion (c) advection

Figure 3.1.: Initial distribution, generated by evaluating sin (4πx) and spreading it on
every time node, and the result of 10 PFASST iterations for the diffusion
problem with μ = 10−2 and the advection problem with c = 1.

(a) diffusion (b) advection

Figure 3.2.: Errors over iterations for the diffusion problem with μ = 10−2 and advection
with c = 1. The gray area indicates possible errors resulting from different
initial values of the form sin (2πkx) for k ∈ {1, . . . , 15}.

59

3. Convergence study

means that the choice neither leads to strong numerical diffusion in Figure 3.1c, which
sometimes appears for advective problems, nor that the choice of µ leads to vanishing
or almost constant results for the diffusion problem, as shown in Figure 3.1b.

Of course, these are only two examples out of an infinite number of possibilities,
nonetheless they are an excellent starting position to observe the parameter space sys-
tematically. Therefore, our first step is to observe the convergence behavior for different
initial values of the form sin (2πkx) for k ∈ {1, . . . , 15}. In Fig. 3.2, instead of plot-
ting the error curve for each initial value, we mark the maximal and minimal errors for
each iteration with a grey area. In addition, the mean and one example error curve are
plotted. We see a gap of the magnitude of 6 to 8 between the best and worst scenario
for both problems, showing the crucial influence of the initial values on the convergence
behavior. The mean curve shows that most initial values result in an error curve near
the maximum. PFASST works significantly better for the diffusion problem than the
advection problem, which is observed quite often for other parallel-in-time algorithms,
see e.g., [25, 86, 87]. The results we have presented up until now are a posteriori and
were produced without using the theory from Chapter 2. However, by introducing the
theory, we are able to give a priori results. Another advantage is the precise control
over the spatial problem, which enables an observation in finer nuances. More precisely,
we are now able to study the different properties for each fundamental mode in space.

3.1.1. Four strategies

The theory discussed in Chapter 2 gives us the iteration matrix of PFASST and its
constituents. We consider the following four strategies, in order to estimate the error
vector of the κ-th iteration eκ, for which the iteration matrix plays a main role. The
first strategy is based on the inequality of consistent matrix norms ‖ · ‖ for each κ ∈ N

ρ(A) ≤ ‖Aκ‖
1
κ , and ‖Aκ‖

1
κ → ρ(A) for κ→∞, (3.8)

cf. [53].
Note that by using the spectral radius, neither an upper nor lower bound is given

for the error of each iteration, rather one gets an asymptotic estimation. In contrast,
strategies 2 and 3 rely on the inequality

‖eκ‖ =
∥∥Tκe0

∥∥ ≤ ‖Tκ‖
∥∥e0
∥∥ ≤ ‖T‖κ ∥∥e0

∥∥ . (3.9)

and therefore give an upper bound for the norm of the error at each iteration. Addi-
tionally, the iteration matrix is separated from the initial error vector e0, so that an a
priori estimation of the relative error reduction is possible for these strategies.

When we apply these strategies to the results depicted in Fig. 3.2, we observe, as
Figure 3.3 indicates, Strategy 1 and 3 are capable of estimating the mean convergence
behavior of PFASST for the advection and diffusion problem. Since the 2-norm of ‖T‖

60

3.1. First experiments

(a) diffusion (b) advection

Figure 3.3.: Errors over iteration for diffusion with μ = 10−2 and advection with c = 1
in comparison to the error estimation of Strategy 1 and 3.

for the diffusion problem is 1.148 and 1.665 respectively for the advection problem. This
renders Strategy 2 useless to estimate the convergence behavior of PFASST.
To complete the number of strategies, we count the application of the transformed

iteration matrix κ times to the spatial modes of the error vector as the fourth strategy.
In short, we summarize the strategies as follows:

1. use the spectral radius ρ(T),

2. use the norm ‖T‖,
3. use the norm ‖Tκ‖,
4. compute the norm

∥∥Tκe0
∥∥.

In contrast to the other strategies, Strategy 4 requires the initial error vector e0 to
be known, making it an a posteriori strategy. If time collocation blocks are used, the
computation following Strategy 4 yields the analytically correct error norm for each
iteration.
However, the error is usually not known. Thus, instead of taking only one error into

account, we partially randomize the error vector and use a stochastic perspective. There-
fore, we resort to the results in Section 2.3.1. In particular, we will use the Definition 4
of a particular error vector

ek = mk ⊗w,

wheremk is a Fourier mode andw is an arbitrary error vector of the temporal dimension.
Furthermore, we rely on the relation of the iteration matrices in block form and the

61

3. Convergence study

(a) j = 1 (b) κ = 1

(c) j = 8 (d) κ = 10

(e) j = 16 (f) κ = 20

Figure 3.4.: Error over iteration for the diffusion problem with μ = 10−2, a randomized
error in time and certain spatial modes mj on the left. Respectively, error
over modes for a certain iteration κ on the right. The gray area indicates
possible errors resulting from the randomization in the temporal dimension.

62

3.1. First experiments

(a) j = 1 (b) κ = 1

(c) j = 8 (d) κ = 10

(e) j = 16 (f) κ = 20

Figure 3.5.: Error over iteration for the advection problem with c = 1, a randomized
error in time and certain spatial modes mj on the left. Respectively, error
over modes for a certain iteration κ on the right. The gray area indicates
possible errors resulting from the randomization in the temporal dimension.

63

3. Convergence study

particular error vectors, worked out in Lemma 5. Due to the special structure of the
error vectors, we have control over the spatial dimension and only use randomized and
normalized vectors with real entries for w.

This control also gives us the possibility to use all strategies for separate pairs of
harmonic modes, by computing the spectral radii and norms of the blocks instead of the
whole iteration matrix. Figures 3.4 and 3.5 depict this control for the diffusion problem
and for the advection problem, respectively. There are more observations to be made.
For every mode and iteration, the range of errors is in the same order of magnitude,
which indicates that the influence of the temporal part of the error is mild. As expected,
Strategy 3 gives an upper bound and the spectral radius is only an asymptotic estimation,
see, for example, Fig. 3.5f, where the spectral radius clearly lies over or under the mean
error.

Of greater interest is that the connection between the harmonic modes are easily seen
when errors are plotted over the modes. Each time collocation block of the iteration
matrix represents two modes. Therefore, when Strategy 1 to 3 are used to estimate
the error of a certain mode, the harmonic mode is inevitably considered as well. While
modes with lower frequencies are reduced by PFASST more efficiently, the first three
strategies do not predict this, since every low frequency mode has a harmonic mode with
a higher frequency. This is a vital distinction to Strategy 4 and also the main reason,
together with the accuracy of Strategy 4 for each mode and iteration, to lay the focus
on Strategy 4 in the following sections.

Nonetheless, for an a priori worst case estimation, a combination of the spectral
radius and the norm of the iteration matrix is suitable. Therefore, it is of interest to find
efficient ways to compute the spectral radius and norms of the iteration matrices. Using
time collocation blocks is a first step, and the use of collocation blocks is the natural
second step. In the following section, we explore this second step.

3.1.2. Collocation and time collocation blocks

The main difference between collocation and time collocation blocks is the use of different
matrices E, see Section 2.2.4. This modification can be applied to the formulation of
PFASST without the decomposition into blocks. With this modification, the collocation
blocks are an accurate reformulation of the iteration matrix and not just an estimation.
In Figure 3.6, the convergence behavior of this modified time periodic version of PFASST
is shown and at first glance it appears to be an inferior idea, when compared with the
error plots in Fig. 3.2. From the theory of circulant and Toeplitz matrices [88], we
know that under certain conditions the spectrum of the Toeplitz matrices converge to
the spectrum of the right circulant counterpart for an increasing size of the matrices.
Therefore, we assume that with more subintervals, the convergence behavior becomes
increasingly similar. We test this hypothesis by comparing the spectral radius, which
has shown to be a possible estimator for the convergence behavior for an exponentially

64

3.1. First experiments

(a) diffusion (b) advection

Figure 3.6.: Errors over iteration for diffusion with μ = 10−2 and advection with c = 1,
using a time periodic version of PFASST. The gray area indicates possible
errors resulting from different initial values of the form sin (2πkx)
for k ∈ {1, . . . , 15}.

increasing number of subintervals and a fixed time domain. Figure 3.7 depicts this for
our example and reveals that the asymptotic convergence of E to Ê does not necessarily
imply the asymptotic convergence of iteration matrices T to T̂ for an increasing number
of subintervals and a fixed time domain. In other words, asymptotic convergence could be
observed for more than 256 subintervals, but setups with more than 256 subintervals are
not common and therefore not of interest. Another reason could be that the computation
of the spectral radius itself is instable, as we will elaborate in Section 3.1.3.

However, from Figure 3.7 we also learn that the number of subintervals used has a
significant influence on the expected worst case convergence behavior. This is due to the
change of the numerical dispersion relation, which changes with Δt. When the dispersion
relation is changed, the numerical problem we attempt to solve changes and the effect
of the asymptotic convergence between the two vanishes. Note that the effect of the
dispersion relation is discussed more thoroughly in Section 3.2.

The situation changes when the length of subintervals is fixed to Δt. Then, the physical
problem is solved on the time domain [0,Δt · L], but the dispersion relation number
and hence the numerical properties are similar for different number of subintervals. In
Figure 3.7c and 3.7d, at least for the diffusion problem, we observe that the spectral
radii approach each other.

In the first instance, one would conclude that the use of collocation blocks is not suited
as a general strategy, because it is not feasible to check for every new problem and setup,
if the use of collocation blocks leads to acceptable estimations. The only exceptions are
setups with a sufficiently high number of subintervals, where the computation becomes

65

3. Convergence study

(a) diffusion, non-fixed Δt (b) advection, non-fixed Δt

(c) diffusion, fixed Δt (d) advection, fixed Δt

Figure 3.7.: Comparison between spectral radii, computed by collocation or time collo-
cation blocks, for the diffusion problem with μ = 10−2 and the advection
problem with c = 1, for different numbers of subintervals and fixed Δt = 1/8
or non-fixed Δt = 1/L, where L is the number of subintervals.

66

3.1. First experiments

too expensive, when time collocation blocks are used.

However, we obtain contradictory results when this conclusion is checked against Fig-
ure 3.8, where spectral radii of the collocation blocks are compared to the actual errors
of a setup with 128 subintervals. In detail, we observe that the spectral radii of the
collocation blocks give a better estimation of the actual error, compare e.g., Fig. 3.8a to
Fig. 3.8c. As aforementioned, one reason could be the computation of the spectral radii
of the time collocation blocks, which becomes difficult and unreliable. In the following
section we introduce pseudospectra in order to study this effect in more detail.

3.1.3. Pseudospectra

In Section 3.1.1, we argued that the spectral radius is a valid indicator to estimate
the mean convergence behavior for both problems. This gradually changes when the
number of subintervals increases. Figure 3.8 shows that the spectral radius clearly fails
to estimate the convergence behavior for this case. The root of this problem is that the
computation of the spectral radius is sometimes sensitive to a change in the entries of
the underlying matrix. To measure this sensitivity, we use the ε-pseudospectrum of a
matrix A, which consists of all eigenvalues of matrices, which are ε-close to A:

Λε(A) = {λ ∈ C | ∃x ∈ Cn \ {0}, ∃F ∈ Cn×n : (A + F)x = λx, ‖F‖ ≤ ε}. (3.10)

This was first introduced under a different name by Henry Landau in [89] and indepen-
dently later under different names by different authors, cf. [90–92].

In our case, matrix F models the numerical accuracy with which we may express the
entries in the matrix A. Assume we have computed the eigenvalues λ, we plot this
eigenvalue on the complex plane and use the algorithms described in [93–95] to compute
Λε(A) for a certain ε, e.g. the machine epsilon. The main core of those algorithms is the
computation of minimum singular values of zI−A for every z in the region of interest.
One alternative are path finding algorithms, where one point on the boundary of a desired
pseudospectrum is found and then the boundary is traced by finding constant minimum
singular values near z, which then gives the next z. When plotted, these sets surround
the computed eigenvalues and their extent reveals how sensitive the computation of each
eigenvalue is to a disturbance by a matrix F, with ‖F‖ ≤ ε. Note that these spectral
portraits yield a grayscalemap where each shade of gray represents an ε and therefore
marks the boundary of a ε-pseudospectrum. Indeed, it holds Λε(A) ⊂ Λε̂(A) for ε ≤ ε̂,
which enables the representation of the various ε-pseudospectra in one picture. The
computation of the pseudo spectra is costly, especially in our case with L = 128 the
computation for the whole iteration matrix with an acceptable resolution would take
several weeks on a desktop computer. Therefore, we compute the pseudospectrum for
just one time collocation block, knowing that it represents part of the whole spectrum
of the iteration matrix. For one block, we already observe in Figure 3.9b and 3.9d the

67

3. Convergence study

(a) diffusion, (tcb) (b) advection, (tcb)

(c) diffusion, (cb) (d) advection, (cb)

Figure 3.8.: Error over iterations for the diffusion problem with μ = 10−2 and the advec-
tion problem with c = 1 with a decomposition of the time domain [0, 1] into
L = 128 subintervals. The gray area indicates possible errors resulting from
different initial values of the form sin (2πkx) for k ∈ {1, . . . , 15}. The errors
are compared to the estimations of strategy one and three, using collocation
(cb) or time collocation blocks (tcb).

68

3.2. Mode damping fields

difficulty of computing the spectrum for large L in comparison to the case with L = 8.
The eigenvalues represented by the white dots are surrounded by a dark grey area,
representing the pseudospectrum with the respective ε, which are in the range of the
machine accuracy.

Large dark areas mean that the actual position of the eigenvalues found in this area is
uncertain. This uncertainty affects the observation of the spectral radius. However, this
problem could be fixed by a lower machine epsilon for a certain number of subintervals.
At the same time, for an increasing number of subintervals an even lower machine epsilon
is needed. This also puts into question the results depicted in Figure 3.7. We may not
be certain that the computed spectral radii are accurately computed for increasing L.
But on the other hand, this is where the collocation blocks have an advantage over time
collocation blocks. Due to the small size of 2M × 2M of each block, the computation
of the spectral radii is reliable and at least for many subintervals it may give acceptable
estimations, as shown in Figure 3.8c and 3.8d.

Finally, we conclude with our choice of strategy for the following sections. Using the
spectral radius has two major flaws: Its computation becomes unreliable and it cannot
predict the convergence for low frequency modes due to the relation of the harmonic error
mode pairs. One idea to overcome the first flaw for some cases, is to use the collocation
blocks for the computation instead. The computation of norms is more reliable, but in
most cases the norm ‖T‖ is greater than 1, which renders Strategy 2 useless. Strategy
3 shares the latter disadvantage with the use of the spectral radius and it also takes a
matrix-matrix-multiplication to predict the error for each iteration, whereas the spectral
radius has to be computed just once. Despite this, it is advisable to use Strategy 3 for
the computation of a reliable upper bound, as we observed throughout the experiments.
However, for our purposes of giving a more complete picture of PFASST, we will rely
on Strategy 4. This has two advantages: First, it may be used as a heuristic a priori
estimator, when semi-randomized error vectors are used. Arguably, the decomposition of
blocks and the theory behind is not necessary to generate the same results as Strategy
4, but then it lacks the cost efficiency and the convenience of Lemma 5. Also, one
inconvenience would be that for each minor change in the spatial problem a new entity
T has to be generated without matrix symbols, whereas with matrix symbols these minor
changes are integrated seamlessly. Second, it gives us the possibility to investigate the
role of initial values and starting iteration values, which have a remarkable influence on
PFASST. These influences will be investigated in the following section.

3.2. Mode damping fields

As “mode damping fields” we denote the plots in this section, where we illustrate how
error modes are damped by PFASST and its constituents. With the help of these mode
damping fields, it is possible to depict a set of initial values simultaneously. Furthermore,

69

3. Convergence study

(a) diffusion L = 8 (b) diffusion L = 128, (tcb)

(c) advection L = 8 (d) advection L = 128, (tcb)

Figure 3.9.: Pseudospectra of our diffusion and advection problem, for the full iteration
matrix in the case of L = 8 and for one time collocation block (tcb) in
the case of L = 128. The colors indicate the ε of the pseudospectrum on a
logarithmic scale to the base of 10.

70

3.2. Mode damping fields

different dispersion relation numbers will be presented, in order to increase the level of
abstraction and disengage from the two particular examples.

To achieve this, we present the possible error vectors in the form

ek,j = mk ⊗wj ∈ E ,

as defined in Definition 4. Based on this definition and the choice of wj , we introduce
two perspectives. In the first perspective the vector wj contains weights related to
the respective time nodes and mk are the spatial error modes which are distributed
and weighted on the different time nodes. This perspective was, for example, used
in [58] to discuss the effect of spatial error modes on different positions in the temporal
dimension, which relates to the use of the canonical basis vectors for wj . Likewise, the
second perspective is found in literature, for example in the analysis of [60]. This second
perspective treats the temporal dimension in the same fashion as the spatial dimension
and employs oscillating modes

wj(t) = exp (ij2πt/T) , with j ∈ {0, . . . ,ML− 1} , (3.11)

evaluated at the time points for wj . In this section we present insights in the working
mechanisms of PFASST from both perspectives. Each perspective is associated with
one type of mode damping field. The damping fields of first type depict the absolute
value of the entries of an error vector after a transformation with the operator F , which
is mainly a Fourier transformation in the spatial dimension, see Section 2.2.1. It is the
same operator that transforms the PFASST iteration matrices into block form. Then,
the transformed error vector is cut into LM equal sized pieces and the absolute value of
the entries is plotted together, stacked side by side. In this way, we may perceive how
the spatial Fourier modes are distributed on the temporal grid after the application of
the approximative block Jacobi (BJAC), coarse grid correction (CGC) or PFASST.

In contrast to this, the mode damping fields of second type do not represent indi-
vidual error vectors, but the 2-norms of NML error basis vectors in one map after the
application of BJAC, CGC, or PFASST. The error basis vectors ei,j are generated by
the function

ei,j(x, t) = mi(x)wj(t), with i ∈ {1, . . . , N} , j ∈ {1, . . . ,ML} , (3.12)

where wj(t) is defined in (3.11) and mi(x) generates the Fourier modes in space. By
evaluating this function on the space-time grid and stacking the results in canonical
order and subsequently normalizing the vector, we get ei,j . These error vectors refer to
the error basis vectors in Definition 4. Accordingly, the application of BJAC and CGC
may be performed along the lines of Lemma 5, which means that the respective block
form is used and harmonic pairs are considered. Finally, each value of ‖Tei,j‖2 produces
one entry in the mode damping fields of second type.

71

3. Convergence study

Note that we aim for a certain aspect ratio of the plots and therefore double the
number of points in space. To keep the dispersion relation of the standard cases of
Section 3.1, we change the standard coefficients µ to 4 · 10−2 and c to 1/2.

3.2.1. Using the canonical basis in time

The first challenge is to integrate the harmonic mechanics into the computation of the
first type of mode damping fields. In our case for the coarse grid correction, always two
spatial modes are connected, for each mode with frequency θ < π there is a harmonic
mode with frequency θ + π. Consequently, the frequencies on the left half (θ < π) are
connected to the right half (θ > π), which also means that frequencies (3π/2 > θ >
π/2) are only connected to low frequencies. For more information about the different
frequencies we refer to Section 2.3. However, in Figure 3.10 we see the effect of BJAC,
CGC, and PFASST for the 3 cases. For the first case we distribute only modes with
frequencies from Θright equally on each time point, for the second case we employ the
frequencies Θright and for the last case we employ both halves of the frequency spectrum.
We see the effect of the coarse grid correction on the right half in Figure 3.10d or the
left half in Figure 3.10e. This effect is denoted as mode mixing, because modes of
the respective other half appear after the application of CGC. More precisely, the low
frequency part of the respective halves are mixed. Because no coarse level is involved
for BJAC, this connection between modes is absent and therefore no mode mixing is
observed, as Figures 3.10a to 3.10c show. For the whole PFASST iteration we observe
mode mixing in Figures 3.10g to 3.10i, due to the CGC. We conclude that the modes
are mixed at some point in the calculation anyway and by mixing the modes ourselves
beforehand, we may half the number of plots in this section. So, instead of treating both
halves separately, the mode damping fields in this section depict the results of

B(CGC)
k ·

(
1
1

)
⊗wj , B(S)

k ·
(

1
1

)
⊗wj and finally B(IT)

k ·
(

1
1

)
⊗wj , (3.13)

which relates to equally mixed modes. The result of this kind of mode mixing leads to
a symmetric mode damping fields in Figures 3.10c, 3.10f and 3.10i. More precisely, the
left half is the mirror image of the right half. This is due to the linearity of the iteration
matrix and the symmetry of how the modes are mixed.

Next, for Figure 3.11, we place the spatial error modes on different subintervals on
particular quadrature nodes. Once the spatial Fourier error modes are placed at the
beginning 3.11a, in the middle 3.11b and at the end 3.11c of a subinterval. The partic-
ular decomposition into different subintervals and furthermore into quadrature nodes is
reflected in the Figures 3.11d to 3.11f, in form of the effects of the approximative block
Jacobi iteration. An error located at the beginning of the subinterval is reduced effec-
tively, an error located in the middle of the subinterval is reduced, but also scattered on

72

3.2. Mode damping fields

(a) BJAC, right half (b) BJAC, left half (c) BJAC, both halves

(d) CGC, right half (e) CGC, left half (f) CGC, both halves

(g) PFASST, right half (h) PFASST, left half (i) PFASST, both halves

Figure 3.10.: The damping field for the diffusion problem (μ = 4 · 10−2), with only right
half frequency modes, only left half frequency modes and finally both halves
as suggested in (3.13).

73

3. Convergence study

(a) init, j = 11 (b) init, j = 19 (c) init, j = 30

(d) BJAC, j = 11 (e) BJAC, j = 19 (f) BJAC, j = 30

(g) CGC, j = 11 (h) CGC, j = 19 (i) CGC, j = 30

Figure 3.11.: Mode damping fields of first type for the diffusion problem for the coarse
grid correction (CGC) and the approximative block Jacobi smoother
(BJAC), with all spatial error modes distributed to the j-th time node,
where j ∈ {0, . . . , LM − 1}.

74

3.2. Mode damping fields

(a) init (b) CGC, μ = 4 · 10−2 (c) BJAC, μ = 4 · 10−2

Figure 3.12.: Mode damping field of first type for the diffusion problem with μ = 4 ·10−2

to illustrate the effect of an approximative block Gauß-Seidel iteration,
with transfer to the coarse grid (CGC), and the effect of an approximative
block Jacobi iteration (BJAC). For the initial error distribution (init) each
Fourier error mode in space is distributed equally on every quadrature
node.

the quadrature nodes of the current subinterval and an error on the last quadrature node
is scattered on the current and the subsequent subinterval. The last effect arises from
the absent communication between two subintervals and mainly generates Fourier error
modes in space with low frequencies. In contrast, the error modes are not scattered
differently by CGC on the different quadrature nodes, see Figures 3.11g to 3.11i. In
addition, the low frequency error modes are reduced efficiently, while the high frequency
error modes are not changed.

A more complete overview of the whole error reduction effects is given by Figure 3.12,
where the same mixed spatial error modes are initially placed at each time node. In
general, we observe that high frequency modes are reduced by the Jacobi iteration and
the low frequency modes are reduced by the Gauß-Seidel iteration. Yet, by changing the
dispersion relation number, we observe a change in the effect of our operators, which is
shown in Figure 3.13. In the case of a low dispersion relation number, the block Jacobi
smoothing only works on the first subinterval. The error spread at the interface of the
subintervals is dominant and the block Gauß-Seidel smoother works almost ideal. This
leads to an inferior reduction of the error for the combination of both solvers. For a high
dispersion relation, on the other hand the block Jacobi solver reduces every error mode
except the one with the lowest frequency and the Gauß-Seidel works exactly the other
way around. This conserves the good overall convergence behavior of PFASST in the
case of high dispersion relation numbers.

75

3. Convergence study

(a) BJAC, μ = 10−4 (b) CGC, μ = 10−4 (c) both, μ = 10−4

(d) BJAC, μ = 1.0 (e) CGC, μ = 1.0 (f) both, μ = 1.0

Figure 3.13.: Mode damping field of first type to illustrate the effect of block Jacobi
smoother, coarse grid correction (CGC) and the combination of both start-
ing with the block Jacobi smoother, for a high and low dispersion relation
number for the diffusion problem.

76

3.2. Mode damping fields

(a) BJAC, c = 1/2 (b) CGC, c = 1/2 (c) both, c = 1/2

Figure 3.14.: Mode damping field of first type to illustrate the effect of approximative
block Jacobi smoother (BJAC), coarse grid correction (CGC) and the com-
bination of both starting with (BJAC) for the advection problem with
c = 1/2. The initial distribution depicted in Figure 3.12a is used.

In Figure 3.14, we only show the mode damping fields for the advection problem
in the standard case c = 0.5, where both smoothers work jointly together. Already
for c = 0.0125 the mode damping fields of the advection problem resembles the mode
damping fields for the diffusion problem 3.13a to 3.13c and for c = 5 we observed a
resemblance with 3.13d, 3.13e and 3.13f. In contrast to the possible coefficients μ for
the diffusion problem, this leaves us with smaller range speeds c, for which PFASST is a
suitable solver. Outside of this parameter space, PFASST loses its convergence behavior.
The convergence behavior changes very quickly with the dispersion relation number and
we will investigate this with mode damping fields of second type in the next section. In
this section, the spatial error modes were only distributed homogeneously over the time
nodes. When the spatial error modes are distributed in an oscillating fashion, the mode
damping fields changes in a way that eventually impedes the convergence properties of
PFASST. This is especially true for the advection problem and a good reason to study
the second type mode damping fields, which are not bound to one distribution across the
time nodes but visualize many possible distribution in time at once. This will further
increase the level of abstraction.

3.2.2. Using the Fourier basis in time

In the mode damping fields of the second type, each point represents a frequency in space
and time. Due to the number of space-time grid points, only a finite number of space-time
modes is representable on the space time grid, each one is found in the mode damping
fields. Which means that almost every iteration starting value is considered, therefore we

77

3. Convergence study

are able to study PFASST on a more abstract level. However, as the generating function
in (3.12) reveals, we make the assumption of separation of the spatial and temporal
dimension. For the advection and diffusion problem, we know that the solution has
separated temporal and spatial parts. Therefore, we make the same assumption about
the error. For other problems, this may be not the case and hence could be a limiting
factor and should be kept in mind.

In the next step, we implement the new mode damping fields by revisiting the diffusion
cases depicted in Fig. 3.13 and 3.12. The result is found in Figure 3.15 and similar effects
are observed. We see how the two solvers work jointly for the right dispersion relation and
how the block Jacobi smoother disrupts the convergence for a small dispersion relation
number in 3.15a. Additionally new observations are made, in Fig. 3.15f and 3.15i we see
emerging regions of space-time frequencies, which are reduced less with an increasing µ.
This definitely shows that it is important how the error modes are distributed across the
time nodes.

The behavior of PFASST for the advection problem, cf. 3.16, is more interesting than
for the diffusion problem. We notice that the coarse grid correction is not symmetric
anymore and even for moderate speeds c we are able to find low frequency space modes,
for which the coarse grid correction fails to reduce them, see for example Figure 3.16e. It
is worthwhile noting at this point that the colorbars in all plots are clipped to an upper
limit of 1. Therefore, regions where ‖Tei,j‖2 > 1 are possible, but are not indicated by
a distinctive color. We denote those regions as regions of instability. In these regions
the application of BJAC, CGC, or PFASST leads to an amplification of the error, which
increases with the respective dispersion relation number. The mode damping fields of
the BJAC are no exception. They become asymmetric and show regions of instability.
An unfortunate deformation of the regions of non-reduced space time frequency error
modes, cf. 3.16d and 3.16h, leads to small regions of instability in Figure 3.16f. These
regions also contain low frequency spatial error modes. These kind of instabilities are
not observed for the diffusion problem in the region with spatial low frequency. We also
find regions in the mode damping fields of the coarse grid correction of the diffusion
problem, but generally not in the mode damping fields of the block Jacobi smoother.
The experiments seem to suggest an upper bound less than 1 for all error basis vectors
for BJAC. For all observed diffusion cases the combination of both smoothers also seem
to be free of such regions of instability.

In conclusion, the success of PFASST is highly dependent on the dispersion relation
number and the appearing modes. In this section we presented three dispersion relation
numbers for both problems. For the advection problem the different speeds c = 0.0125,
c = 0.5 and c = 5 and for the diffusion problem the different values µ = 10−4, µ =
4 · 10−2 and µ = 1.0 relate to low, moderate and high dispersion relation numbers. Each
dispersion relation number leads to a different grade of stiffness and therefore results in a
distinctive behavior of PFASST. In this chapter we have illuminated the mechanisms of
convergence, yet we are not able to predict how PFASST compares to a serial alternative.

78

3.2. Mode damping fields

(a) BJAC, μ = 10−4 (b) CGC, μ = 10−4 (c) both, μ = 10−4

(d) BJAC, μ = 4 · 10−2 (e) CGC, μ = 4 · 10−2 (f) both, μ = 4 · 10−2

(g) BJAC, μ = 1.0 (h) CGC, μ = 1.0 (i) both, μ = 1.0

Figure 3.15.: Mode damping field of second type to illustrate the effect of approxima-
tive block Jacobi smoother (BJAC), coarse grid correction (CGC) and the
combination of both starting with (BJAC), for the diffusion problem with
different μ.

79

3. Convergence study

(a) BJAC, c = 0.0125 (b) CGC, c = 0.0125 (c) both, c = 0.0125

(d) BJAC, c = 0.5 (e) CGC, c = 0.5 (f) both, c = 0.5

(g) BJAC, c = 5 (h) CGC, c = 5 (i) both, c = 5

Figure 3.16.: Mode damping field of second type to illustrate the effect of the approxi-
mative block Jacobi smoother (BJAC), coarse grid correction (CGC) and
the combination of both starting with (BJAC), for the advection problem
with different c.

80

3.2. Mode damping fields

Therefore, we take over these dispersion relation numbers to the following chapter, where
we analyze the parallel performance of PFASST by studying the speedup.

81

4. Parallel performance

Everyone knows Amdahl’s law, but
quickly forgets it.

Thomas Puzak, IBM,2007

In this chapter, we conclude the analysis of PFASST with the study of the parallel
performance, under the conditions adopted from the previous chapter. We begin by
briefly introducing the basic terms of how to measure parallel performance. Then, we
derive two main strategies to distribute the workload of PFASST on multiple processes.
Finally, in the last section, we present numerical results.

4.1. Basics

Amdahl’s law [96], dating back to 1967, belongs to the curriculum of every computer
science student. It states the theoretical limit of the speedup of an algorithm, which has
a fixed workload consisting of two parts. One part is only executable in serial, the other
part is perfectly parallelizable. Let p be the percentage of the latter part and P the
number of the used processes, then Amdahl’s law states that the speedup S is limited
by

S ≤ 1

(1− p) + p
P

.

When divided by the number of processes, it yields the parallel efficiency. For a parallel
efficiency of 1, it is necessary that every part of the workload is parallelizable. We
speak of strong scaling, if a fixed workload is distributed effectively. In 1988, Gustafson
reevaluated Amdahl’s law [97] by introducing the term of weak scaling. This term
describes the case, in which the workload increases proportionally with the number of
processes. Thus, Gustafson’s law states the theoretical limit

S ≤ (1− p) + P · p

for the speedup.
However, neither of these laws are not directly applicable for our purpose. The reason

for this is the non-linear relation between the number of processes and the workload

83

4. Parallel performance

of PFASST. In detail, when we change the number processes, we need to change the
number of subintervals for PFASST. This changes the setup, the numerical behaviour,
the number of iterations, as well as the workload. Since, in most cases, PFASST does
not perform optimally for only one subinterval, a speedup computed by the comparison
to such a PFASST setup would provide no significant statement. Therefore, it is an
additional challenge to find a serial method for comparison and hence for the computation
of a reasonable speedup.

4.2. Two parallelization strategies

The very first thing we assume is the optimal parallelization of the spatial problem. This
means that we have several sets of processes for the parallelization of the spatial problem.
The natural way to distribute the work of PFASST is to assign one set of processes to each
subinterval. Within the set of processes, communication is needed to solve the spatial
problem. Between the set of processes, we have the typical PFASST communication,
consisting of forward-only communication on the different levels. The only blocking
communication, where one set of processes has to wait for the preceding to finish its
computations, is found on the coarsest level. On the finer levels, the communication
between subintervals may be performed, while SDC sweeps are performed on the coarser
levels. Of course, parts of the set of processes have to interrupt their computations
to receive and send information on the finer levels. Nevertheless, this communication
is non-blocking and we may consider the time needed to receive and send information
as a negligible part of the time needed to perform one fine SDC sweep TF . Note that
we assume a pipelined arrangement of the SDC sweeps as depicted in Figure 1.2 and
4.1, although the formulation of the algorithm is given in form of a two-grid operator,
which may not suggest such an arrangement at first glance. In the following sections we
distinguish two parallelization strategies. The first strategy assigns only one subinterval
per set of processes (P = L), whereas the second strategy assigns multiple subintervals
to one set of processes (P < L). Subsequently, we will estimate the wall-time for both
strategies.

4.2.1. Estimating the wall-time of PFASST

In Table 4.1, we find the quantities which are required for the computation of the
speedup. The speedup is the ratio between the wall-time of a serial method to the
wall-time of a parallel counterpart. Ideally, the parallel method should be compared to
the best serial method available. The theory of time stepping methods is still an evolving
field of research, already today this field holds many answers regarding the best choice
of the method. This choice depends strongly on the requirements of problem, which we
try to solve. Here, we assume that we are able to find a quasi-optimal configuration of
SDC for the problem at hand and use this as our serial method, which leads to the serial

84

4.2. Two parallelization strategies

Name Description

TF time needed for the fine time stepping method

TC time needed for the coarse time stepping method

α ratio TC/TF

L number of subintervals

γF time needed to communicate data on the fine
level

γC time needed to communicate data on the coarse
level

Kp number of PFASST iterations needed to achieve
a certain accuracy ε

Ks number of fine SDC sweeps performed in serial
needed overall to achieve a certain accuracy ε

γ0 time needed to interpolate and restrict between
fine and coarse level

P number of set of processes used

ν number of relaxation steps in each PFASST it-
eration

k ratio L/P

Table 4.1.: Quantities needed for the computation of the parallel efficiency

wall-time

Ts(Ks) =

L∑
k=1

KSDC,k · TF = Ks · TF .

Here, KSDC,k is the number of SDC sweeps needed on the k-th subinterval and Ks thus
the sum of SDC sweeps. Consequently, our parallel counterpart is a PFASST algorithm,
which employs this SDC method on different levels with different spatial grids. It is not
just a redistribution of the workload of the SDC steps, which are performed in serial,
but a new time stepping method with new properties for every change in configuration,
like a different number of subintervals or a different coarse level.

When a proper configuration of PFASST proves to be successful, the resulting work-

85

4. Parallel performance

Figure 4.1.: The distribution of the fine SDC sweeps (red blocks) and the coarse SDC
sweeps (blue blocks) for PFASST in the case of P = L.

load may be distributed to different numbers of set of processes. The maximal number of
set of processes is the number of subintervals (P = L), since we use only one instance of
PFASST and not several consecutive instances of PFASST. This is illustrated in Figure
4.1. First of all, we have to account for the coarse SDC sweeps until the last subinterval,
which leads to LTC . In this sketch, we see 3 PFASST iterations. For each PFASST
iteration, we need coarse SDC sweeps, ν fine SDC sweeps, time to receive the new right-
hand side on the fine and coarse level γC +γF , and finally the time for interpolation and
restriction 2γ0. The wall-time of a two-level PFASST sums up to

T̃p(Kp, L) = (L− 1)(γG + TC) +Kp(νTF + γF + γC + 2γ0 + TC).

In the case of P < L, the implementation gets more involved and the memory require-
ments are higher, since one set of processes now has to handle more than one subinterval.
Consequently, it has to store the states of multiple subintervals. If we, for example, have
8 subintervals but only 2 set of processes at our disposal, one set of processes has to
store the states of all 4 even subintervals and the other set stores the states of the odd
subintervals. The scenario with 3 set of processes is less desirable because, following
the same logic, each set of processes has to cycle through the subintervals. Therefore,
for the execution of the sweeps, the states and new right-hand sides of all subintervals
are needed. When we do not cycle through the subintervals, we have to assign an un-
balanced number subintervals to the different sets of subintervals. In our scenario, this
could mean that we assign 6 subintervals to two set of processes, 3 each, and the remain-
ing 2 subintervals to the last set of processes. Inevitably, this would result in waiting
time for, at least, one set of processes. To avoid this intricate scenario, we assume that
the number of subintervals is a multiple of the number of set of processes.

86

4.2. Two parallelization strategies

If the last set of processes carried out the SDC sweep on the coarsest level and needs to
transfer the new right-hand side to the next subinterval, then a receiving set of processes
is needed. At this point, we face two possibilities: first the initial set of processes is still
computing, or it has completed the current SDC sweep and is waiting for the new initial
value. Both cases are depicted in Figure 4.2. The first case is preferable because it does
not result in idle time. To account for this idle time in the latter case, we adjust the
time of the fine sweep

TF ←

{
TF , for (P − 1)(γC + TC) < TF ν + γF + γC + 2γ0

(P − 1)(γC + TC) , else
(4.1)

by using the time of the coarse sweeps and communication, instead of the time of the
usual fine sweep. This leads to the main constrain of the second strategy (P < L)

(P − 1)(γC/TF + α) < ν + (γF + γC + 2γ0)/TF , (4.2)

which simply reads Pα ≤ ν + α in the case of negligible communication and transfer
costs γF , γC , and γ0. With this adjustment in mind, we estimate the wall-time of Kp

PFASST iterations on P ≤ L set of processes as

T̃p(Kp, P, L) = (P − 1)(γC + TC) +KpL/P (νTF + γF + γC + 2 · γ0 + TC).

Figure 4.2a depicts the ideal case, in which the fine sweep takes more time than the
coarse sweeps on P − 1 sets of processes. We observe graphically that the faint blue and
red blocks of the third and fourth subinterval fit perfectly between the non-transparent
blocks of the first two subintervals. Then, the wall-time is measured similar to the case
P = L, but with P − 1 instead of L − 1 coarse sweeps and L/PKp iterations instead
of Kp iterations. In the non-ideal case, depicted in Figure 4.2b, the faint blue and red
blocks have more than enough space to fit between the non-transparent blocks of the
first two subintervals. Thus, idle time emerges, which is depicted in form of black blocks.

With the estimation of the wall-time, we are able to estimate the speedups in the
following sections.

4.2.2. Speedup for the case P = L

Henceforth, we assume that the cost of communication, interpolation and restriction is
negligible and, therefore, we set all values in question to zero. Thus, the speedup reads

S(Ks,Kp, L) =
Ts(Ks)

Tp(Kp, L)
=

KsTF
(P − 1)TC +Kp(νTF + TC)

.

87

4. Parallel performance

(a) ideal (b) non ideal

Figure 4.2.: The distribution of the fine SDC sweeps (red blocks) and the coarse SDC
sweeps (blue blocks) for PFASST in the case of P < L. The black blocks
represent idle time, which is the result of a violation of the constraint in
Equation (4.2). Note that the more transparent blocks are assigned to the
same set of processes.

88

4.2. Two parallelization strategies

The theoretical limit of the PFASST speedup is highly dependent on the relation between
the iteration numbers Ks

Kp
and the relation between the time needed for the fine and coarse

step TC
TF

. For example, we notice that

if
TC
TF
→ 0, then S → Ks

νKp
.

This means that PFASST needs to converge reasonably-well, in order to keep the number
of iterations low enough. Note that Kp relates to the simultaneous treatment of several
subintervals, whereas Ks relates to the treatment of all subintervals one by one.

This speedup has already been described in [17], the original PFASST paper. Addi-
tionally, a comparison to Parareal was made as follows: Assume that the serial solver is
time stepping method of order 2m, which, with the right collocation points, is achieved
by 2m SDC iterations on each subinterval, cf. [66]. Thus, we have Ks = P · 2m and
therefore the parallel efficiency reads

S(Ks,Kp, L)

P
=

2mTF
(P − 1)TC +Kp(νTF + TC)

→ 2m

νKp
, for

TC
TF
→ 0.

For Parareal and the same limit, we observe a parallel efficiency of 1/Kp, see Section
1.1.1 for details. In comparison, PFASST has a significantly improved parallel efficiency
when a high-order method is employed.

However, in this work we will view the serial method as an iterative method, which
needs different numbers of iterations depending on the problem at hand. Thus, we
will measure the iterations Kp and Ks for the problem setups introduced in Chapter 3.
Additionally, the quantities TC and TF are easy to estimate because they mainly depend
on the number of right-hand side evaluations needed to solve the space problem. As a
rough estimation for TC/TF one may assume the value 1/2d, where d is the dimension
of the spatial problem.

In the same sense we will compute the speedup for P < L in the following section.

4.2.3. Speedup for the case P < L

For the second parallelization strategy, it is of interest how the wall-times with differ-
ent number of set of processes for one configuration of PFASST relate to each other.

89

4. Parallel performance

Therefore, we investigate the relation

Tp(Kp, L)

Tp(Kp, L, P)
=

(L− 1)TC +Kp (νTF + TC)

(L/k − 1)TC +Kpk (νTF + TC)
=

(L− 1)α+Kp (ν + α)

(L/k − 1)α+Kpk (ν + α)

=
L− 1 +Kp (ν/α+ 1)

L/k − 1 +Kpk (ν/α+ 1)
=

k

1 + (k − 1)
(

(k+1)Kp(1+ν/α)−1
L−1+Kp(1+ν/α)

)
=

k

1 + (k − 1) ς
,

(4.3)

where we denote k = L/P and

ς =
(k + 1)Kp (1 + ν/α)− 1

L− 1 +Kp (1 + ν/α)
.

Then, we observe that

if Kp � L, then ς → 0 and, therefore,
Tp(Kp, L)

Tp(Kp, L, P)
→ k

and if Kp � L, then ς → k + 1 and, therefore,
Tp(Kp, L)

Tp(Kp, L, P)
→ 1

k
.

These are the two extremes. When P sets of processes are used, the wall-time is
either k times longer in one extreme or k times shorter in the other extreme. This would
indicate a higher parallel efficiency, when less processes are used. Not every relation is
possible due to the constrain in Eq. (4.2), as we will show by contradiction. To this end,
we begin with some simple algebraic manipulations, which yield

that
Tp(Kp, L)

Tp(Kp, L, P)
= z is equivalent to ς =

k/z − 1

k − 1
.

Then, we choose z ≥ 1, which is the case where the wall-time is reduced when less sets
of processes are employed. Thus, we claim

ς ≤ k/z − 1

(k − 1)
= 1.

Additionally, we assume that TF is not adjusted, which, according to (4.2), is equivalent
to the constraint Pα < ν. Together, this leads to the inequality

(k + 1)Kp (1 + ν/α)− 1

L− 1 +Kp (1 + ν/α)
≤ 1, which is equivalent to Kp (α+ ν) ≤ Pα ≤ ν + α,

90

4.2. Two parallelization strategies

with α positive, ν ≥ 1 and Kp ≥ 1 this yields a contradiction for Kp > 1. For Kp = 1
and Pα = α+ν it holds that Tp(Kp, L)/Tp(Kp, L, P) = 1. This is the only case in which
the wall-times of both strategies are equal. Therefore, the wall-time is shortest for the
case in which one subinterval is assigned to one set of processes (L = P). Nonetheless,
an improvement of the parallel efficiency is still possible because when P < L set of
processes are employed, the wall-time is still less than k times the wall-time of Tp(Kp, L).
To verify this, we assume z > 1/k, which leads to the inequality

ς <
k2 − 1

k − 1
= k + 1, which is equivalent to 0 < (L− 1) (k + 1) .

Fortunately, this is always fulfilled. This means that it is possible to improve in parallel
efficiency by using less processes. Note that this statement could also be established by
a careful observation of Equation (4.3).

Next, we will investigate how the second strategy affects the speedup of PFASST.
When communication is neglected in the estimation of the wall-time, the computation
of the speedup reduces to

S(Ks,Kp, L, P) =
Ts(Ks)

Tp(Kp, L, P)
=

KsTF
(P − 1)TC + L/PKp(νTF + TC)

=
Ks

(P − 1)α+ L/PKp(ν + α)
.

(4.4)

Similar to the previous section, we notice that

if
TC
TF
→ 0, then S → Ks

kνKp
.

This means that in this limit, with the same number of iterations Kp, the speedup is
only one-k-th of the speedup of the first strategy on P subintervals. Now, if we assume
that we have Kp1 PFASST iterations on L subintervals and Kp2 PFASST iterations
with P subintervals, then for the case Kp1k ≤ Kp2 , the speedup is improved, and for
the opposite case reduced. Thus, it depends on the convergence properties for different
setups of PFASST.

Next, we study this effect from a slightly different perspective by observing a relation
similar to the relation in (4.3), which reads

S(Ks,Kp, L, P)

S(Ks,Kp, L, 2P)
=
T (Kp, L, 2P)

T (Kp, L, P)
=

2P − 1 + L
2PKp(ν + α)

P − 1 + L
PKp(ν + α)

. (4.5)

This relation is of interest because it gives an upper and lower bound for the speedup
when the number of set of processes is halved. By simple algebraic manipulation we rec-

91

4. Parallel performance

ognize that the relation is monotonically decreasing in Kp and monotonically increasing
in P . For the lower bound, we let Kp →∞, then the relation converges to 1

2 . So, in the
best case, half the processes means half the speedup and, therefore, constant parallel
efficiency. The worst case occurs for just one iteration and P = 1 + ν/α, according to
the constraint from Equation (4.1). Thus, in summary it holds

1

2
≤ S(Ks,Kp, L, P)

S(Ks,Kp, L, 2P)
≤

1 + 2 να + k
2 (ν + α)

ν
α + k (ν + α)

.

Note that the estimations in this section are constrained by Pα < ν + α, to avoid
adjusting TF according to (4.1). In summary, the theoretical bounds for the second
strategy appear to be promising. We conclude the theoretical part of this chapter with
an outlook of the multi-level case.

4.2.4. Estimating the speedup of multi-level PFASST

If we use l + 1 levels with PFASST, we just need to substitute the original TF with

T̂F = TF + Tm1 + . . .+ Tml

= TF

l∑
i=0

qi = TF ·
1− ql+1

1− q

where we assume Tmi = qi ·TF with q ∈ (0, 1). Furthermore, we assume TC = ql+1TF for
the coarsest level. Together this yields a new estimation for the wall-time of PFASST
and, therefore, the speedup reads

S(Ks,Kp, L, P, l, q) =
Ts(Ks)

Tp(Kp, L, P, l, q)
=

Ks

(P − 1)ql+1 + kKp

(
ν 1−ql+1

1−q + ql+1
) .

For the asymptotic case q → 0, we get the same limit as in the previous section. Fur-
thermore

S → Ks

kνKp
1

1−q
for l→∞.

Therefore, when the number of iterations Kp remains constant, the speedup declines
when more than two levels are used. Every additional level has to be justified with an
improved convergence of PFASST.

However, using the two-level version of PFASST and the examples introduced in the
previous chapter, we will assess the parallel performance.

92

4.3. Performance analysis

4.3. Performance analysis

PFASST is designed to be used parallel in time and should be evaluated with this in
mind. With the speedup introduced in Sec. 4.2, the computation of parallel efficiency
reads

S(Ks,Kp, L, P)

P
=

Ks

P (P − 1)α+ LKp(ν + α)
. (4.6)

In literature, the plot of the parallel efficiencies is more commonly found because one
can immediately read the improvement on a system with more cores. Nonetheless, we
will only present speedup plots in this work. The main reason for this is that we still
study PFASST on a qualitative level and the effects of changes in the setup of PFASST
are more easily illustrated with the speedup than with the parallel efficiency. Another
reason is that we are primarily interested in time-to-solution, which is also more easily
illustrated with the speedup.

The estimation of the speedup itself is only dependent on the estimation of iteration
numbers for different setups of PFASST, SDC, and MLSDC. We will now discuss a way
to count these iterations.

4.3.1. Counting iterations

In order to count iterations, we need a setup of PFASST in the form of an iteration
matrix, as well as an initial error vector. It is beneficial to have a matrix symbol of the
iteration matrix as found in Theorem 6, since it enables us to observe different harmonic
pairs individually. Furthermore, it is beneficial to use particular error vectors along the
lines of Definition 4 in combination with Lemma 5, since it facilitates the application of
the iteration matrix on these error vectors. Then, for a given tolerance, we apply the
iteration matrix until the norm of the resulting error vector reaches the tolerance.

This approach has two drawbacks. First of all, the solution to the problem is unknown
to most cases. Thus, it is impossible to measure the error. Usually, the tolerance is set
for the residual and not for the error. To overcome this drawback, we make the bold but
necessary assumption that the residual relates directly to the error. The second drawback
has more serious implications, it concerns the temporal part of the error vector. If we
examine the last columns in Figure 3.15 and 3.16, we realize that the frequency of
the temporal error modes has a significant influence on the convergence behavior. In
contrast to the spatial dimension, where we only have mode mixing between two modes,
the modes of the temporal dimension are mixed with more than one counterpart. It
is therefore more laborious to follow a temporal mode, than to follow a harmonic pair
of spatial modes. Furthermore, it is unlikely that every space-time error mode has the
same probability of appearance, especially when a reasonable initial estimation is made.
For example, an efficient predictor step could yield such a reasonable initial estimation.

93

4. Parallel performance

Here, we use a random but normalized vector w for the temporal dimension. In Section
3.1, and more precisely in Figures 3.4 and 3.5, we already employed this strategy and
observed only a moderate variance in the convergence behavior. This suggests only a
small expected variance in the number of iterations we count.

This choice of the error vector reflects the case, in which the spatial problem is well-
known. In this case, for example, an engineer or scientist would be able to make an
educated guess about the spatial error modes for his or her problem in an initial state.
Based on this, we could easily confine our analysis to these error modes and, thus, make
a more accurate prediction about the convergence behavior of PFASST for the respective
problem. For cases where the comprehension of the spatial problem is insufficient, it is
more appropriate to use fully randomized error modes in space and time with sufficient
samples.

However, our knowledge of the spatial problem for our two model problems is extensive
and our goal is to show the variety of parallel performances related to the initial spatial
error modes. Especially helpful for this goal is the theory introduced in Chapter 2,
since it enables us to treat the different spatial error modes individually. The measured
parallel performance itself will come in a statistical form, since we have less knowledge
about the problem in the temporal dimension. We will count the number of iterations
several times until we get a statistically consolidated estimation of the iteration number.
Subsequently, the standard deviation is used as uncertainty. The uncertainty of the
estimated speedup is computed, by the rules of error propagation, cf. [98]. Let y be a
quantity, which is dependent on a set of uncertain values {x1, . . . , xn}, afflicted with the
uncertainties {u1, . . . , un} and independent of each other, then it holds

uy =

√(
∂y

∂x1
· u1

)2

+

(
∂y

∂x2
· u2

)2

+ · · ·,

for the uncertainty of the quantity y. Our uncertain quantities are the number of itera-
tions Ks and Kp. Following this rule, it yields for the speedup (4.4) the uncertainty

uS(Ks,Kp, P) =

√√√√√√
(

uKs

(P − 1)α+
LKp
P (ν + α)

)2

+

 LKs
P (ν + α)uKp(

(P − 1)α+
LKp
P (ν + α)

)2

2

.

(4.7)

We have established how to count iterations and how we handle uncertainties. Now,
we have to define the setups for which we have to count iterations. In the numerical
examples below, we divide the time domain into 64 equally sized subintervals and use
µ and c such that the dispersion relation numbers of the previous chapter emerge once
again. Since we used 8 subintervals in Section 3.2, this is achieved by multiplying the

94

4.3. Performance analysis

factor 64/8 to each µ and c, in order to compensate for the smaller ∆t of the new
decomposition of the time domain.

For SDC or MLSDC, we count the number of iterations as follows: we iterate SDC or
MLSDC on the first subinterval until the error tolerance is met, then the result is passed
to the next subinterval and again the iterations are counted until every subinterval is
covered. This is repeated 20 times with semi-randomized error vectors.

When PFASST is used, this procedure is applied for several setups of PFASST. Each
time another power of 2 is chosen as a number of subintervals, which PFASST covers with
one iteration. For example, let L = 16, then we iterate PFASST on the domain, which
consists of the first 16 subintervals, until the error tolerance is reached. Then we pass the
result to the next assemblage of 16 subintervals and perform and count iterations until
the error tolerance is reached. This is repeated until the whole time domain is covered
and subsequently the whole procedure is repeated 20 times with semi-randomized error
vectors.

Note that it may at first sound unjustified that PFASST has to reach the same error
tolerance for an assemblage of subintervals, while SDC has to reach a certain error
tolerance at each individual subinterval. This means that the required error bound at
the end of the assemblage is guaranteed by PFASST, but not by SDC. The first suggestion
that comes to mind is to put a stricter error tolerance after a single subinterval, than after
an assemblage of subintervals. Unfortunately, this cannot be done without a presumption
being made of how an error associated to one subinterval effects the errors of the following
subintervals or the assemblages of subintervals. Assume we have an ODE with a high
sensitivity to the initial value, then a small error may end in a quite different result at
the end of 64 subintervals, even when the error tolerance is achieved by SDC on each
subinterval. This does not happen when PFASST is set up with L = 64; making it more
stable to sensitive ODEs. As long as the sensitivity of the underlying ODE is moderate,
this effect is not dominant and it is appropriate to expect the same tolerance on each
subinterval and assemblage of subintervals.

By adhering to a consistent set of rules regarding the process of counting iterations,
we are able to make estimations of the iterations and, thus, the speedup. In particular,
we are able to depict how many iterations are needed not only in sum, but for a certain
spatial Fourier mode on each subinterval or assemblage of subintervals. To make the
iteration counts comparable, we translate iterations into a number of fine SDC sweeps.

4.3.2. Distribution of iterations

Before we examine the distribution of iterations across the subintervals, we look at
the total sum of iterations across the different modes in Figure 4.3. We observe that
the number of iterations is higher for the advection problem, than for the diffusion
problem when we compare the plots on both sides. Also, we observe that with an
increasing dispersion relation number, the iterations fall heavily for the diffusion problem

95

4. Parallel performance

(a) μ = 1 (b) c = 5

(c) μ = 4 · 10−2 (d) c = 0.5

(e) μ = 10−4 (f) c = 0.0125

Figure 4.3.: Total sum over assemblages of subintervals of iterations are measured in
number of fine SDC sweeps to allow comparability and to reflect the wall-
time. On the left we find the diffusion problem and on the right the advection
problem. A error tolerance of ε = 10−6 and a total number of subintervals
L = 64 is used.

96

4.3. Performance analysis

but increase slightly for the advection problem. Another interesting finding is how diverse
the different setups of PFASST become for different modes, when the dispersion relation
is low for the diffusion problem and in general for the advection problem; Compare for
example Figure 4.3a with Figure 4.3e or 4.3f. In the previous sections, we used setups of
PFASST with L = 8 and observed a decent damping of spatial high frequency modes for
moderate dispersion relation numbers and for both problems, see Figure 3.15f or 3.16f.
Therefore, the high iteration count for spatial high frequency modes in Figure 4.3d or
4.3b was not anticipated by the mode damping field in Section 3.2. Finally, we point
out that MLSDC seems to be the better choice for low dispersion relation numbers.

In regard to the distribution of the iterations across the subintervals, which for SDC
are found in Figure 4.4, we observe for increasing dispersion relation numbers and lower
spatial mode frequencies, that more iterations are needed in the later subintervals. The
error advances further to the end of the time domain. This is observed for both problems
and the same effect is observed for one setup of PFASST with a fixed L. However, what
happens for different numbers of subintervals? The answer is found in Figure 4.5; where
with the increasing size of the assemblages of subintervals, the error also advances further
to the end of the time domain, the iteration numbers are reduced overall and are more
evenly distributed over the whole time domain. Each effect observed here influences the
speedup and therefore the parallel efficiency for the different setups.

Until now, only mean values have been presented. However, we must also consider the
statistics. In Table 4.2, the mean over the different PFASST setups and error modes of
the standard deviations of measured iterations and speedups are presented, along with
the respective maxima. Admittedly, the information in the table is very condensed,
nonetheless it shows that the computation of the speedup is very robust. Since the sum
of iterations does not change significantly over the 20 semi-randomised initial values, the
deviation of the iteration is small relatively to the absolute sum of iterations. Take for
example the case with the diffusion problem and a high dispersion relation number. We
observe that the maximum number of PFASST iterations Kp observed is 8. This is the
maximum over all setups of PFASST, over all spatial error modes and over 20 different
semi-randomized initial values. The mean over all these cases is 7.2. We use the 20
different semi-randomized initial values to compute the deviation δKp for all setups and
for all spatial error modes. We observe that the maximal deviation of Kp is 0.5 and that
the mean is one magnitude smaller. This shows the reliability of the measurement of Kp

for this case, since we have a mean relative deviation of 0.6 percent. The measurement
of the number of fine SDC sweeps Ks needed for the serial run shows a similar reliability,
since the mean relative deviation is around 1.6 percent for a mean iteration number of
around 22 and a mean deviation of 0.35. It is worth noting that we are not able to read
the relative worst case deviation from the table, because the maximal deviation could
be associated with a much smaller iteration number than the mean or maximal number.
This is not a problem, since the computation of the speedup and the deviation of the
speedup according to Equation (4.7) considers the relation between number of iterations

97

4. Parallel performance

(a) μ = 1 (b) c = 5

(c) μ = 4 · 10−2 (d) c = 0.5

(e) μ = 10−4 (f) c = 0.0125

Figure 4.4.: SDC iteration distributions over subintervals and spatial error modes of the
diffusion problem on the left and for the advection problem on the right. A
error tolerance of ε = 10−6 and a total number of subintervals L = 64 is
used. Note that the color bars have different scales.

98

4.3. Performance analysis

(a) P = 1 (b) P = 2

(c) P = 4 (d) P = 8

(e) P = 16 (f) P = 32

Figure 4.5.: Iteration distributions over assemblages of subintervals and spatial error
modes of PFASST for the diffusion problem with μ = 10−4, measured in
number of fine SDC sweep iterations. Except for the case P = 1, where
MLSDC is used. A error tolerance of ε = 10−6 and a total number of
subintervals L = 64 is used. Note that the color bars have different scales.

99

4. Parallel performance

and the associated deviation. Since we are interested in the shortest time-to-solution, we
are in particular interested in the highest speedup. For our case we measure a maximal
speedup of 4.33 with a maximal deviation of 0.14, which is a very reliable result. For the
diffusion case the maximal deviation of the speedup declines together with dispersion
relation number, whereas the mean speedup rises, thus making the measurement of the
speedups more reliable. For the advection problem we are not able to observe the same
behavior. Nonetheless, the maximal deviation of the speedup is just 0.46 and it may be
traced back to the high frequency error modes and the PFASST setup with L = 2. This
is the only case, in which the computed speedup is significantly influenced by the initial
distribution in the temporal dimension. Furthermore, the mean value of the deviation
of the speedup never exceeds 0.03. Because of the otherwise small deviations of the
speedup, we will introduce the speedup plots without error bars in the following section.

4.3.3. Resulting speedups

Overall, for both strategies and both problems, we encountered a great variety of speedups
across Fourier modes in space and across dispersion relation numbers of the problem.
Figure 4.6 presents this variety for the first strategy. In each plot of Figure 4.6, the
gray area represents the possible speedups depending on the spatial error modes used
in the initial value. Take, for example, the case with c = 0.0125, which is depicted in
Figure 4.6f. First, we notice the dashed line representing the ideal speedup according to
Amdahl’s law. This represents the ideal case, in which a fixed workload is distributed
perfectly over the available processes. Thus, at first glance, it is whimsical that the gray
area surpasses the ideal speedup for P = 1 and P = 2 cores. PFASST is equivalent to
MLSDC for P = 1. Therefore, we plotted the speedup resulting from using MLSDC
instead of SDC. This shows that the workload is not just distributed, but that for every
setup, a slightly different method with different properties and, therefore, different work-
load is applied to the problem. Additionally, we plotted 3 colored lines to represent the
speedups for different spatial error modes. Each one represents one mode. For the high,
moderate and low frequency, we use mk with k = 32, k = 16, and k = 1 respectively.
The blue speedup line, related to the low frequency, starts for PFASST at P = 2 and
behaves similar to a typical speedup curve according to Amdahl’s law. It starts with an
almost ideal speedup and then converges to an upper bound. The other two speedup
curves behave atypically. For example, the speedup related to the high frequency first
declines with more processes and then rises again for 32 and 64 processes. The other
plots also show atypical speedup, which is highly dependent on the frequency of the spa-
tial error mode and the dispersion relation number of the respective problem. It shows,
for example, in Figure 4.6c that for small dispersion relation numbers, MLSDC has a
better convergence rate than SDC. Furthermore, it shows that for the diffusion problem
and moderate or high dispersion relation numbers, PFASST is a good choice, as long
as only two subintervals are computed at once. For the advection problem we recognize

100

4.3. Performance analysis

Dispersion relation number

high moderate low

mean max mean max mean max

Diffusion

Ks 21.7468 35.0 41.9945 325.0 442.625 522.0

δKs 0.34113 0.58949 0.41344 0.66895 0.0 0.0

Kp 7.17213 8.0 9.30403 25.0 106.894 567.0

δKp 0.04075 0.5 0.14953 0.57227 0.01348 0.49749

S 1.32592 4.33125 1.83386 17.1052 4.80615 13.2051

δS 0.02349 0.13952 0.02482 0.10003 0.00048 0.03352

Advection

Ks 165.080 2168.0 206.433 704.0 430.812 586.0

δKs 0.42556 0.71414 0.25037 0.65383 0.0 0.0

Kp 57.5048 3198.0 136.843 2386.0 128.868 1152.0

δKp 0.43065 19.1102 1.67827 127.573 0.01691 0.5

S 2.38166 36.5292 2.32251 17.3827 4.63581 14.9275

δS 0.02647 0.45952 0.00992 0.06060 0.00165 0.15740

Table 4.2.: Maximal and mean over all measured setups of the sum of iterations for the
serial case Ks, the parallel case Kp and for the speedup S for different. The
deviation is noted by a δ in front of the quantity and computed over the
20 semi-randomized initial values. Then, the maximal and mean over all
measured setups of the deviations are presented.

101

4. Parallel performance

two trends. First, with decreasing dispersion relation numbers and increasing sizes of
assemblages, the speedup gathers more around its mean value across the spatial Fourier
modes. Second, the mean speedup improves with smaller dispersion relation numbers.
This second trend is also found for the diffusion problem. In comparison to the advection
problem, the diffusion problem shows less variety across the spatial Fourier modes.

Regardless of this scattering of speedups, it is possible to achieve better speedups for
the advection problem than for the diffusion problem when only low frequency spatial
error modes form the initial error vector. In Figure 4.6b, we see the maximal speedup
of 36.5 achieved for a low frequency mode and we also observe a very low speedup of
0.6, both for the case with 64 processes. Figure 4.6e, on the other hand, shows a reliable
speedup between 8 and 16 for all spatial Fourier modes and P = 64. Independent of
these different ranges of speedups, this clearly shows that the scaling limits are expected
to be reached rather early. Already for 64 processes, we only reach a maximal parallel
efficiency of 56 percent. This emphasizes the point that a parallelization in space should
always be implemented first, since it is usually easier to achieve a higher parallel efficiency
in the spatial dimension. Nonetheless, PFASST and parallel-in-time methods in general
are a possible way to push scaling limits further.

Note that the presented results are not comparable to the results in the literature,
e.g. [17]. The main reason for this is the employed serial solver. In [17], the serial
solver is a SDC method of a fixed order m, which means that m fine SDC sweeps were
performed on each subinterval. Let m = 5, then for all cases the serial cost equates to
320 fine SDC sweeps. Compared to the measured numbers of SDC sweeps in Figure
4.3, this would result in different speedups. For example, for the diffusion problem with
µ = 1 in Fig. 4.3a, the highest number of fine SDC sweeps measured in the serial case is
34. When this number is substituted by 320, the resulting speedup is almost 10 times
greater. On the other hand for the advection problem with c = 0.0125, see Fig. 4.3f, the
highest number of fine SDC sweeps measured in the serial case is 590. In this case, the
resulting speedup would be smaller than the speedup presented in this section.

Next, we present the second parallelization strategy and the resulting speedups. When
a reasonable PFASST configuration is found, it is possible to distribute the resulting
workload to fewer processes P than the number of subintervals in the assemblage, as
described in Section 4.2.3. Let us focus on Figure 4.7f, where we find the two bold
speedup curves for a low and high frequency. These are the same two speedup curves as
in Figure 4.6f. Additionally, we see branches of the same color starting at the respective
speedups of the case P = L. Following these branches from right to left, we may observe
how the speedup changes, when the workload of the case P = L is distributed to less
processes. Take, for example, the first blue branch that starts at the far right. First, the
speedup declines significantly when the workload of PFASST with L = 64 is distributed
to 32 processes. Then, the speedup remains nearly constant until the point at which
the workload is distributed on 4 processes. Finally, the speedup declines again with at
most the slope of the ideal speedup curve. These are the 3 phases. Each branch shows

102

4.3. Performance analysis

(a) μ = 1 (b) c = 5

(c) μ = 4 · 10−2 (d) c = 0.5

(e) μ = 10−4 (f) c = 0.0125

Figure 4.6.: On the left the speedup plots for the diffusion problem and on the right
for the advection problem are depicted. Only speedups for certain Fourier
modes in space are plotted. Also the mean speedup and the range of
speedups is plotted. For P = 1 MLSDC was used to compute the speedup.

103

4. Parallel performance

up to 3 of these phases, which may be explained along the lines of Section 4.2.3. The
first phase, again read from right to left, consists of a drop in speedup due to restriction
along the lines of (4.1), which is found immediately after the branch is forked. The next
phase persists as long as Pα > ν + α holds and results in a stagnating speedup. This
way, the parallel performance is improved for decreasing P until the last phase begins.
The last phase is explained by the asymptotic behavior of Equation (4.5) in the case
P � LKp (ν + α). In this case, the speedup has at most the slope of the ideal speedup
curve. Again, it depends on various parameters, whether this strategy is successful or
not. In most cases the decrease of the first phase is severe enough to let this strategy fail
for all numbers of processes P < L. See for example Figure 4.7a, where each branch has
a lower speedup than the main speedup of the case P = L. For some cases the decrease
is intercepted by the second phase for a sufficient number of configurations of P , so that
the parallel performance is improved in comparison to the main speedup curve. See
for example the blue line for all advection cases in Figure 4.7. There the first branch
from the right crosses the main branch near P = 8 and from there improves the parallel
performance of PFASST in comparison to the previous parallelization strategy. Note
that with this strategy, PFASST is sometimes even able to surpass MLSDC, when the
workload of L = 2 is distributed to one single process, for example in Figures 4.7a and
4.7c.

In conclusion, the numerical experiments so far primarily showed that there is a great
variety of speedups across the dispersion relation numbers and across the spatial error
modes. It shows the importance of the theory established in Chapter 2, which enables
us to easily study the different error modes in spatial dimension individually. It also
enables us to study the influence of the spatial and temporal part of the error vector
separately. This shows us that the influence of the temporal part of the error vector
is much weaker. We observed these influences for two different ways of parallelizing
PFASST and we found configurations, which yield reasonable speedups for both model
problems. Under the right conditions, it is therefore possible to push the scaling limits
using PFASST. In the following chapter we will summarize the work and give ideas to
improve the parallel performance and the understanding of PFASST.

104

4.3. Performance analysis

(a) μ = 1 (b) c = 5

(c) μ = 4 · 10−2 (d) c = 0.5

(e) μ = 10−4 (f) c = 0.0125

Figure 4.7.: On the left the speedup plots for the diffusion problem and on the right
for the advection problem are depicted. The dispersion relation number
decreases from top to bottom. Only speedups for certain Fourier modes in
space are plotted. For P = 1 MLSDC was used to compute the speedup.
Each main speedup line has branching lines, showing the speedup stemming
from distributing the workload of the main branch to fewer processes P .

105

5. Outlook

Casus ubique valet; semper tibi
pendeat hamus. Quo minime credas
gurgite, piscis erit.

Ovid

Although we have already investigated many aspects of PFASST in the previous chap-
ters, some elemental aspects and ideas are still waiting to be explored. We will now con-
clude our investigation of PFASST by exploring a number of practical and theoretical
ideas. In the first section we will begin by introducing some practical ideas, such as time
coarsening and multi-level PFASST, along with some proof-of-concept results for these
practical ideas. Developing these ideas is primarily a question of implementation in a
high performance environment. Subsequently, we will present a second set of ideas and
open questions, which are of a theoretical nature. The success of these ideas is rather
a question of mathematical proficiency. Finally, we conclude the dissertation with a
summary of the work presented in the previous chapters.

5.1. Future work

In this section, practical ideas are developed to enhance PFASST in the direction of
multigrid using the matrix formulation. We begin by introducing a new coarsening
strategy.

5.1.1. Time coarsening

Originally, we only presented coarsening in space, since this is the form of PFASST
found in the literature. In Section 1.2, we find two successful examples, in which the
combinations of coarsening in time and space is employed by multigrd methods. The
first example is the space-time multigrid by Horten and Vandewalle [60]. The second
example is the space-time multigrid by Neumüller and Gander [63]. Both methods
adjust their coarsening strategy to the dispersion relation number of the problem on
the respective level. We will now outline several ways to introduce coarsening in time.
The first option is to use less quadrature nodes on the coarser level, while keeping the
number of subintervals constant. This option is limited to a few levels, since the number
of quadrature nodes is usually not greater than 10. The second option is to reduce the

107

5. Outlook

number of subintervals on the coarser levels. To this end, we take all time nodes on the
fine level and coarse level with a coarsening factor of 2

{τ1, τ2, . . . , τM ,∆t+ τ1, . . . ,∆t+ τM , . . . ,∆t(L− 1) + τM} and

{2τ1, 2τ2, . . . , 2τM , 2∆t+ 2τ1, . . . , 2∆t+ 2τM , . . . , 2∆t(L/2− 1) + 2τM} .

Next, we define the interpolation and restriction between the two sets as T̂F
C and T̂C

F .
To construct the interpolation operator, we proceed as follows: Each row contains the
values needed to get the interpolation value of the respective time point tj . Depending
on the order of the interpolation, l, we find the l next neighbors among the time points
on the coarser level. Next, we construct the Lagrange polynomials according to Equation
(1.14). Then, we fill the row of the operator with either 0, when the respective time
point on the coarser level t̃i is not a next neighbor, or with `i (tj) when t̃i is a next
neighbor of tj . This is done for each time point on the fine level tj and each row of
the operator T̂F

C respectively. The restriction operator T̂C
F is constructed in a similar

fashion, by finding next neighbors of t̃i in the set of time points on the fine level.

With this approach, the communication costs of PFASST may be increased because
some time points on the coarse level are found on a subinterval, which is treated by
another set of processes. It is possible to combine the different coarsening strategies with
one another. In our examples, we will only use coarsening in the number of subintervals
with a coarsening factor of 2; the coarsening in space, as it is used throughout this work,
and the combination of both.

To implement time coarsening for PFASST, we simply substitute the interpolation
and restriction operator

TF
C = IM ⊗ T̄F

C and TC
F = IM ⊗ T̄C

F by TF
C = T̂F

C ⊗ T̄F
C and TC

F = T̂C
F ⊗ T̄C

F .

This confirms the advantage of the implementation of PFASST in matrix formulation,
introduced in this work, over the implementation in algorithmic form.

In Figure 5.1, we find the spectral radius of the PFASST iteration matrix for the
3 different coarsening strategies for the diffusion problem plotted over the dispersion
relation number. We observe that the difference between the configurations with high
and low interpolation order in Figure 5.1a and 5.1b is rather small. The biggest differ-
ence is found for the spatial coarsening configuration for the highest dispersion relation
number with 2 · 10−3 for a low interpolation order and around 1 · 10−3 for the high
interpolation order. This would roughly half the number of iterations needed, when the
interpolation order is high enough. In all cases, the spatial coarsening strategy yields
the smaller spectral radii. This shows that PFASST behaves contrary to the space-time
multigrid methods found in [60,63]. Therefore, the results do not indicate that a combi-
nation of the strategies would improve the convergence of PFASST. On the other hand,
the computational costs are reduced, which could have a positive effect on the parallel

108

5.1. Future work

(a) low interpolation order (b) high interpolation order

Figure 5.1.: Spectral radius of an iteration matrix stemming from different PFASST
setups for the diffusion problem with 4 subintervals. The setups of PFASST
differ in the coarsening strategies used. Coarsening in time, space and in
both directions is employed. Furthermore, two different interpolation orders
for both directions are used. For the spatial dimension interpolation orders
1 and 7 are used, whereas in the temporal dimension 1 and 5 were used.
Time coarsening is performed by the reduction of subintervals.

performance of PFASST.

It is a goal for the future to assess the parallel performance of PFASST for these new
coarsening strategies. Therefore, it is important to find ways to distribute the workload
for these strategies. Another goal is the investigation of different interpolation strategies
on the convergence of PFASST. Since the spectral radius is only a mediocre indicator
for the convergence of PFASST as we pointed out in Section 3.1.3, it is advisable to use
a better indicator for the study of these novel coarsening strategies. Altogether, novel
coarsening and interpolation strategies for PFASST are an interesting study subject for
the future.

5.1.2. Multi-level and inexact PFASST

In this section, we will exploit the matrix formulation of PFASST a little further, by
exchanging the spatial solver and introducing additional levels. Exchanging the spatial
solver is done by substituting

P[tl,tl+1] = I−ΔtQΔ ⊗A by P[tl,tl+1] = I−ΔtQΔ ⊗ Â,

where Â is a preconditioning matrix for the spatial system matrix. On the coarsest level
we will keep Ã. The multi-level PFASST is constructed recursively, by substituting

109

5. Outlook

the preconditioning matrix of coarse grid correction with the preconditioning matrix of
another PFASST iteration.

In Figure 5.2, the convergence plots for both enhancements are depicted. These plots
are similar to the convergence plots in Chapter 3. On the left, we find the two level
version and on the right the five-level version of PFASST. We observe that the five-level
version is slightly worse than the two-level version. Furthermore, we observe that the
convergence behavior is greatly dependent on the spatial solver. The more accurate the
spatial solver, the better the convergence behavior of PFASST.

These results are only a fraction of what has to be studied for a more complete
picture. For a fair comparison between the exact, the Gauß-Seidel, and the weighted
Jacobi spatial solver, one has to consider the parallel performance, as well as other
problems besides the diffusion problem.

Note that in [99], this idea was already investigated to some extend. In particular, a
multigrid solver was employed for the spatial problem. This yields convergence results
which range between the convergence results of Figures 5.2a and 5.2c.

5.1.3. Stability and smoothing properties

In Section 1.1.1, we discussed the stability of Parareal. The stability property of the
time stepping method is defined by its ability to solve the test equation. Since the test
equation has no spatial dimension, it is not possible to define a coarser level in space.
Therefore, it is not possible to apply the PFASST version with spatial coarsening to the
test equation, and the stability property is not applicable in this form.

Instead, we briefly study the stability of the approximative block Jacobi solver in the
weighted form

Uk+1 = Uk + ωP̂−1
(
c−MUk

)
,

similar to the approximative block Jacobi solver in Lemma 3, which is a part of PFASST.
In Figure 5.3, we used the matrix symbols introduced in Section 2.3.1 to generate the
stability plots with and without the assumption of periodicity in time. More precisely,
we plot the spectral radius of the iteration matrix of the weighted block Jacobi for the
coefficient ρ of the test equation. We use three different weights ω for the block Jacobi
solver. Since the optimal convergence of a classical multigrid method depends on the
right choice of ω, it is worth a try to see if an adjusted weight improves the convergence
properties of our approximative block Jacobi solver. For the classical weighted Jacobi
solver and the standard diffusion problem, ω = 2/3 is an optimal choice. In this case, high
frequency modes are reduced most effectively by the weighted Jacobi solver. Neumüller
and Gander use ω = 1/2 with good results. This is not the case for the approximative
block Jacobi solver used by PFASST. For ω = 1, we observe a stronger error reduction
than for ω = 2/3 or ω = 1/2, compare Figure 5.3a with Figure 5.3c or 5.3e. When we

110

5.1. Future work

(a) exact, two-level (b) exact, five-level

(c) Gauß-Seidel, two-level (d) Gauß-Seidel, five-level

(e) Jacobi, two-level (f) Jacobi, five-level

Figure 5.2.: Convergence behavior of PFASST for the diffusion problem (μ = 5 · 10−1)
with 4 subintervals, two and five levels, and 3 different spatial solver. As
spatial solvers we employ: solving the spatial problem directly, one Gauß-
Seidel iteration step or one Jacobi iteration step weighted with ω = 2/3. In
all setups, a spatial interpolation of order 4 is used. The gray area indicates
possible errors resulting from different initial values of the form sin (2πkx)
for k ∈ {1, . . . , 15}.

111

5. Outlook

use the matrix symbols stemming from to the assumption of periodicity in time, the
stability plots change significantly. The most concise difference is observed for ρ → 0.
This case may be related to ∆t→ 0. For a consistent time stepping method we expect
that the spectral radius also converges to 0. Only Figure 5.3a shows this consistency.

Figure 5.4 depicts the spectral radii of M[t0,T] ·Tν
bJac, where Tν

bJac is the iteration ma-
trix of the approximative block Jacobi solver. Computing these spectral radii, provides
an empirical way to study the smoothing property for the approximative block Jacobi
solver. Note that the spectral radius is preferable over a matrix norm, since it is a lower
bound for all matrix norms. More precisely, according to Gelfand’s formula it holds

∀ε > 0 ∃N ∈ N ∀k ≥ N ρ(A)− ε <
∥∥∥Ak

∥∥∥ 1
k
< ρ(A) + ε,

for an arbitrary matrix A. The smoothing property holds when

∥∥M[t0,T] ·Tν
bJac

∥∥ ≤ η(ν)

hα
for all 1 ≤ ν < ν̄(h),

for a number α and with ν̄(h) → ∞ for h → 0 as well as η(ν) → 0 for ν → ∞. The
functions η and ν̄ are independent of h. The value h may reflect the distance between grid
points in different ways; for PFASST a suitable way has yet to be found. Independent
of the way in which h is used, the process h→ 0 may be associated with a path on the
stability plot running towards the origin. In Figure 5.4a, the stability plot in the case
ω = 1 is depicted. In this case we observe, at least empirically, that the spectral radii
converges to 0 for h→ 0.

Furthermore, when we compare Figure 5.4b with Figure 5.4a, we observe that with
every additional iteration of the smoother the spectral radii is reduced further. These
first observations do not contradict the smoothing property. Thus, further investigations
of the smoothing property are an interesting task for the future.

Another important property is the approximation property, which reads∥∥∥M−1
[t0,T] −TF

CM̃−1
[t0,T]T

C
F

∥∥∥ ≤ Chα,
for a constant C and the same α as for the smoothing property. When the approximation
and smoothing property is fulfilled, this leads to a h independent convergence.

Note that these properties and the deduction of the h independent convergence are
a part of the qualitative analysis, which was introduced in 1982 by Hackbusch in [100].
Since then, this qualitative analysis was successfully applied to a wide range of multi-
grid methods. Therefore, using this qualitative analysis for PFASST with the novel
formulation of this work is another interesting subject for future work.

112

5.1. Future work

(a) ω = 1, (tcb) (b) ω = 1, (cb)

(c) ω = 2
3
, (tcb) (d) ω = 2

3
, (cb)

(e) ω = 1
2
, (tcb) (f) ω = 1

2
, (cb)

Figure 5.3.: Stability plots of the weighted block Jacobi smoother of PFASST with 4
subintervals and the weight ω. On the left we find the matrix symbols
related to time collocation blocks (tcb) and on the right the matrix symbols
related to collocation blocks (cb) were used.

113

5. Outlook

(a) ν = 1 (b) ν = 3

Figure 5.4.: Spectral radii of M[t0,T] ·Tν
bJac with 4 subintervals and ν iterations.

5.1.4. Open questions and theoretical ideas

In the next section, we explore a multitude of open questions and theoretical ideas
encountered in the course of researching this work. The first ideas are inspired by the
analysis of Parareal and modifications introduced in Section 1.1.2:

Symplecticity
It may be possible to achieve simplecticity for PFASST along the lines of the work
by Bal in [46].

Adaptivity
There are numerous ways to increase the accuracy of PFASST in exchange for
computational costs. For example, the number of spatial solver steps or the number
of quadrature nodes used could be changed, which then could be used for an
adaptive usage of PFASST.

Analysis
The analysis in this work is greatly influenced by multigrid theory. Alternatively,
we could try to analyse PFASST with the means of time stepping theory. In the
appendix we find the proof of Theorem 1. This proof reflects the iterative nature
of Parareal and thus also of PFASST. Therefore, it could serve as a prototype for
another analysis strategy of PFASST.

IMEX
The IMEX principle is easily implemented for PFASST, since we are able to employ
IMEX-SDC; even multi-rate SDC versions are possible, cf. [76].

114

5.1. Future work

The final idea in this list brings us to the idea of substituting SDC with a iterative
time stepping method. For example, in [101] an iterative and parallel solver for one
Runge-Kutta step is introduced. It would be of interest to study if the properties of the
Runge-Kutta method transfer to the resulting PFASST method. It is also of interest to
compare SDC to these Runge-Kutta methods when they are a part of PFASST.

The interpretation and analysis of multigrid methods from the Fourier perspective is
a very classical one. Representatives of this perspective are the works by Hackbusch
and Brandt. New interpretations and theories have emerged since the works of Hack-
busch and Brandt. Examples are the half space analysis by Diskin in [102], the subspace
splitting by Bramble in [103], and the truncated multigrid methods by Gräser in [104].
These novel theories and methods have one principle in common: they employ a func-
tional analysis perspective instead of a Fourier perspective. This new perspective could
also be beneficial for the understanding of PFASST. It would also be an interesting at-
tempt to study PFASST along the lines of the wave form relaxation theory by Lubich
and Ostermann in [59].

To study PFASST in asymptotic cases, such as ∆t → 0, ∆x → 0 or L → ∞, would
also be of great interest. Take, for example, the matrix symbol of the approximative
block Jacobi solver according to Theorem 6, which reads on the diagonal

I−
(
B(P)(θ)

)−1
B(M)(θ)

=I−
(
IL ⊗ IM −∆t · λ(A)(θ)IL ⊗Q∆

)−1 (
IL ⊗ IM −E⊗N−∆t · λ(A)(θ)IL ⊗Q

)
=
(
IL ⊗ IM −∆t · λ(A)(θ)IL ⊗Q∆

)−1 (
E⊗N + ∆t · λ(A)(θ)IL ⊗ (Q−Q∆)

)
.

We can show that this term converges towards E ⊗ N for ∆t → 0, independently of
the eigenvalues λ(A)(θ). Since E ⊗N is a strictly lower triangular matrix, the spectral
radius is 0. Therefore, the block Jacobi solver yields the exact solution after one step
in this asymptotic case. This confirms the observation made in Figure 5.3a. It seems
feasible to equip this procedure with more mathematical thoroughness, then apply it
to the remaining matrix symbols of PFASST and produce convergence results for the
asymptotic cases ∆t→ 0 and ∆x→ 0. For the case L→∞, the matrix symbols relating
to the time collocation blocks are of increasing size. In contrast, the size of the matrix
symbols relating to collocation blocks remains constant despite an increasing number
of subintervals L. Thus, making them an option for the study of the asymptotic case
L→∞. This option requires some sort of asymptotic equivalence, as introduced in [88],
between the iteration matrices with and without the assumption of periodicity in time.
More ideas to treat this asymptotic case may be found in [105].

115

5. Outlook

5.2. Conclusion

The starting point of this work was PFASST, an interesting and highly developed
parallel-in-time method with a very scarce mathematical basis. The main goal of this
work was to strengthen this mathematical basis. In Chapter 1, Parareal was introduced
as a fundamental parallel-in-time method with such a solid mathematical basis. We
outlined the steps necessary in the development from Parareal to PFASST. Then, sev-
eral space-time multigrid methods were introduced in order to motivate the multigrid
perspective and to present relating methods. Altogether, we presented ideas and meth-
ods from the field of parallel-in-time integration, some of which provided the basis for
developing a deeper understanding of PFASST. Next, we introduced SDC as the basic
building block of PFASST, and MLSDC as an intermediate step in the development of
PFASST. Both of these methods were already introduced in matrix formulation, which
was made possible through the assumption of a linear autonomous ordinary differen-
tial equation. This assumption is fundamental for this work. PFASST itself was first
presented in algorithmic form on the basis of SDC and MLSDC, following the original
papers. This form was then transformed into a novel matrix form in Chapter 2. To this
end, first the composite collocation problem and then the approximative block Jacobi
solver and the approximative block Gauß-Seidel solver were introduced. Both solvers are
special stationary iterative solvers for the composite collocation problem. In Theorem
3, these two solvers were assembled to create PFASST. This gave us the new multigrid
perspective needed for a better understanding of PFASST. Now we are able to describe
PFASST in the same terms as other multigrid methods. In particular, we were able
to identify the typical elements of multigrid. The approximative block Jacobi solver is
the smoother, the approximative Gauß-Seidel solver is the coarse grid solver used for
the coarse grid correction. Using these different elements, we formulated the iteration
matrix of PFASST. The iteration matrix determines how an error vector is reduced after
one iteration of PFASST; this represents the key element of the mathematical basis in
this work. The logical next step was the study of this iteration matrix in Section 2.2,
where we also decomposed this iteration matrix with and without the assumption of pe-
riodicity in time. Without the assumption the decomposition yields the time collocation
blocks, which have twice the size of the degrees of freedom in the temporal direction.
With the assumption of periodicity in time it yields the collocation blocks, which have
the size of the number of quadrature points.

However, due to this new decomposed forms, we were able to observe the different
spatial error modes individually, since each time collocation block relates to a harmonic
pair of spatial error modes. With Lemma 5, we were further able to connect the de-
composition of the iteration matrix with the special structure of the error vectors from
Definition 4. This enabled us to separate the temporal part from the spatial part of the
error vector, in turn we were able to treat the spatial part of the problem with estab-
lished mathematical tools. In a nutshell, we separated the temporal and spatial part of

116

5.2. Conclusion

the iteration matrix, decomposed the spatial part into its fundamental elements, and,
finally, established an efficient way to apply the iteration matrix to the error vectors
in this particular decomposition. This served as a basis for the convergence studies in
Chapter 3. In this chapter, we focused on two model problems, namely the diffusion and
the advection problem. For both problems, we found representative setups. We applied
PFASST to these problems and presented the first convergence behavior across different
initial values. Then, we introduced 4 prediction strategies and evaluated them. We de-
cided to compute the error vectors directly in the following sections, since this strategy
is the most accurate of the four strategies. It is also the only a posteriori prediction
strategy. We also ruled out the use of collocation blocks for most cases and studied the
reliability of the eigenvalue computations using pseudospectra in Section 3.1.3.

In Section 3.2, we introduced two types of mode damping fields in order to visualize
the influence of the temporal part of the initial error. In particular, the mode damping
fields of the second type depict the effect of the constituents of PFASST on all space-time
error modes. This revealed the underlying mechanism of PFASST, since it shows how
the approximative block Jacobi and the coarse grid correction complement each other by
reducing different error modes. On the basis of these mode damping fields, we studied
the role of the dispersion relation numbers for the modes of operation of PFASST. For
both problems, we found 3 representative dispersion relation numbers, which invoked 3
characteristic modes of operation of PFASST. With these characteristic modes in mind,
we studied the parallel performance of PFASST in Chapter 4.

There, we briefly introduced Amdahl’s and Gustafson’s law and argued that PFASST
will not obey both laws, since the execution of PFASST yields a non-fixed, usually un-
known workload. The reason for this is that different numbers of iterations of PFASST
are needed in order to achieve a certain accuracy for different setups. Next, we intro-
duced two different parallelization strategies. The first strategy assumes that each set
of processes is in charge of one subinterval, whereas the second strategy assigns several
subintervals to one set of processes. For both strategies, we estimated the theoretical
limits of the resulting speedup in Section 4.2. In a wide range of numerical experiments
in Section 4.3, we introduced a way to estimate the speedup of PFASST by counting
the number of iterations for SDC and PFASST. Additionally, we developed the idea of
semi-randomized error vectors in order to assess the influence of the temporal part of
the initial error vector. Finally, in Section 4.3.3, we presented the estimated speedups
for both parallelization strategies, which showed that the parallel performance is highly
dependent on the dispersion relation number of the problem and the initial error vec-
tor. This also demonstrates the importance of the theoretical framework developed in
Chapter 2, since this framework made it feasible to study the different error modes
individually and revealed the functionality of PFASST for different dispersion relation
numbers. Throughout this process, we gathered ideas to enhance the performance, and
to improve the understanding of PFASST. Some of these ideas were briefly presented in
this chapter.

117

5. Outlook

In summary, the main achievement of this work is a new perspective of the PFASST
method, which enabled us to study the convergence and the parallel performance for
model problems. Through this, we were able to strengthen the mathematical basis of
PFASST significantly. In the future, this work can be the foundation for an even more
profound and rigorous mathematical understanding of PFASST. Eventually, it may even
inspire novel parallel-in-time methods.

118

Appendices

119

A. Proof of Theorem 1

Theorem (Lions, Maday and Turinici 2001). The Parareal scheme is of order k, i.e. it
exists ck so that ∣∣∣Ukn − u (tn)

∣∣∣+ max
t∈[tn,tn+1]

∣∣∣F(tn, t, U
k
n)− u (t)

∣∣∣ ≤ ck∆tk.
Proof. We proof by induction over the iterations k. Before we start with the case k = 1,
we denote

F(tn, tn+1, U
k
n) = ukn(tn+1) = e−a∆tUkn and G(tn, tn+1, U

k
n) = ukn(t) = (1−∆ta)Ukn ,

since the fine propagator is exact and the coarse propagator is an explicit Euler step.
Also we use the analytical solution of our simple problem u(t) = e−atu0. First we
transform (1.2) according to the requirements

Uk+1
n+1 = e−a∆tUkn + (1− a∆t)Uk+1

n − (1− a∆t)Ukn

=

n∑
j=0

(1−∆t)n−j
(
Ukn−i

(
e−a∆t − (1− a∆t)

))
+ (1− a∆t)n+1 u0

= e−a∆tUkn +

n∑
j=0

(1−∆t)n−j
(
e−a∆tUkj − Ukj+1

)
.

In the case of k = 1, we use the starting iteration values

U0
n = (1− a∆t)nu0,

which are generated by the explicit Euler scheme. Then the first iteration of Parareal
reads

U1
n+1 = (n+ 1)(1− a∆t)n(e−a∆t − 1 + a∆t)u0 + (1− a∆t)n+1u0

= (1− a∆t)n
(
(n+ 1)(e−a∆t − 1 + a∆t) + (1− a∆t)

)
u0.

121

A. Proof of Theorem 1

With the use of the Taylor series it holds

U1
n+1 − u(tn+1) = (1− a∆t)n

(
(n+ 1)(e−a∆t − 1 + a∆t) + (1− a∆t)− e−(n+1)a∆t

(1− a∆t)n

)
u0

= (1− a∆t)n

(n+ 1)

∞∑
j=2

(−a∆t)j

j!
+

(1− a∆t)n+1 −
∑∞

j=0
(−a∆t)j

j!

(1− a∆t)n

u0.

In this form and with the assumption that a∆t is sufficiently small, we get∣∣U1
n+1 − u(tn+1)

∣∣ ≤ (L+ 1)C1∆t2u0 + C2∆tu0 ≤ C3∆t.

For the second part of the inequality it holds∣∣u1
n(t)− u(t)

∣∣ =
∣∣∣(1−∆ta)n

(
e−(t−n∆t)a

)
u0 − e−tau0

∣∣∣
=
∣∣∣(((1− a∆t) ea∆t

)n − 1
)
e−tau0

∣∣∣ ≤ C∆te−tau0,

for t ∈ [tn, tn+1]. Now we assume that the proposition is true for the k-th Parareal
iteration and denote εkj = Ukj − u(tj), then it holds

∣∣∣Uk+1
n+1 − u(tn+1)

∣∣∣ =

∣∣∣∣∣∣
n−1∑
j=0

(1− a∆t)n−j
(
e−a∆tεkj − εkj+1

)
+ e−a∆tεkn

∣∣∣∣∣∣
=

∣∣∣∣∣∣
n−1∑
j=0

(1− a∆t)n−j
(
e−a∆tεkj

)
−

n∑
j=1

(1− a∆t)n−j+1
(
εkj

)
+ e−a∆tεkn

∣∣∣∣∣∣
=

∣∣∣∣∣∣
n∑
j=0

(1− a∆t)n−j εkj
(
e−a∆t − (1− a∆t)

)∣∣∣∣∣∣ ≤ ck∆tk+1
n∑
j=0

(1− a∆t)j

Finally, this yields∣∣∣uk+1
n (t)− u(t)

∣∣∣ =
∣∣∣e−(t−∆tn)aUk+1

n − u(t)
∣∣∣

=
∣∣∣e−(t−∆tn)a(Uk+1

n − u(tn) + u(tn))− u(t)
∣∣∣

= e−(t−∆tn)a
∣∣∣εk+1
n

∣∣∣ ≤ ck+1∆tk+1.

for t ∈ [tn, tn+1].

122

Bibliography

[1] D. Atkins, S. Baker, et al. National science foundation advisory committee for
cyberinfrastructure task force on data and visualization final report. National
Science Foundation, 2011.

[2] Kevin Burrage. Parallel methods for ODEs. Advances in Computational Mathe-
matics, 7:1–3, 1997.

[3] A. Iserles and S.P. Nørsett. On the theory of parallel Runge–Kutta methods. IMA
Journal of numerical Analysis, 10(4):463–488, 1990.

[4] J.C. Butcher. Order and stability of parallel methods for stiff problems. Advances
in Computational Mathematics, 7(1):79–96, 1997.

[5] A. J. Christlieb, C. B. Macdonald, and B. W. Ong. Parallel high-order integrators.
SIAM Journal on Scientific Computing, 32(2):818–835, 2010.

[6] M. J. Gander and S. Güttel. PARAEXP: A parallel integrator for linear initial-
value problems. SIAM Journal on Scientific Computing, 35(2):C123–C142, 2013.

[7] Y. Maday and E. M. Rønquist. Parallelization in time through tensor-product
space-time solvers. Comptes Rendus Mathematique, 346(1–2):113 – 118, 2008.

[8] D. Sheen, I. H. Sloan, and V. Thomée. A parallel method for time discretization
of parabolic equations based on Laplace transformation and quadrature. IMA
Journal of Numerical Analysis, 23(2):269–299, 2003.

[9] M. J. Gander. A waveform relaxation algorithm with overlapping splitting for re-
action diffusion equations. Numerical Linear Algebra with Applications, 6(2):125–
145, 1999.

[10] S. Vandewalle and D. Roose. The parallel waveform relaxation multigrid method.
Parallel Processing for Scientific Computing, pages 152–156, 1989.

[11] J. Nievergelt. Parallel methods for integrating ordinary differential equations.
Commun. ACM, 7(12):731–733, 1964.

[12] P. Chartier and B. Philippe. A parallel shooting technique for solving dissipative
ODE’s. Computing, 51(3-4):209–236, 1993.

123

Bibliography

[13] A. Bellen and M. Zennaro. Parallel algorithms for initial-value problems for dif-
ference and differential equations. Journal of Computational and Applied Mathe-
matics, 25(3):341 – 350, 1989.

[14] J. Lions, Y. Maday, and G. Turinici. A “Parareal” in time discretization of PDEs.
Comptes Rendus de l’Académie des Sciences - Series I - Mathematics, 332(7):661–
668, 2001.

[15] M. J. Gander, YL. Jiang, and RJ. Li. Parareal Schwarz waveform relaxation
methods. In Domain Decomposition Methods in Science and Engineering XX,
volume 91 of Lecture Notes in Computational Science and Engineering, pages 451–
458. Springer Berlin Heidelberg, 2013.

[16] M. L. Minion. A hybrid Parareal spectral deferred corrections method. Communi-
cations in Applied Mathematics and Computational Science, 5(2):265–301, 2010.

[17] M. Emmett and M. L. Minion. Toward an efficient parallel in time method for
partial differential equations. Communications in Applied Mathematics and Com-
putational Science, 7:105–132, 2012.

[18] R. Speck, D. Ruprecht, M. Emmett, M. Bolten, and R. Krause. A space-time par-
allel solver for the three-dimensional heat equation. In Parallel Computing: Ac-
celerating Computational Science and Engineering (CSE), volume 25 of Advances
in Parallel Computing, pages 263 – 272. IOS Press, 2014.

[19] M. Emmett and M. L. Minion. Efficient implementation of a multi-level parallel
in time algorithm. In Proceedings of the 21st International Conference on Domain
Decomposition Methods, Lecture Notes in Computational Science and Engineering,
2012.

[20] M. J. Gander and S. Vandewalle. Analysis of the Parareal time-parallel time-
integration method. SIAM Journal on Scientific Computing, 29(2):556–578, 2007.

[21] L. Euler. Institutionum calculi integralis, volume 1. imp. Acad. imp. Saènt., 1768.

[22] E. Hairer, S. P. Norsett, and G. Wanner. Solving Ordinary Differential Equations
I, volume 8. 1993.

[23] G. Wanner and E. Hairer. Solving Ordinary Differential Equations II, volume 1.
Springer-Verlag, Berlin, 1991.

[24] M. J. Gander and S. Vandewalle. On the superlinear and linear convergence of the
Parareal algorithm. In Domain Decomposition Methods in Science and Engineer-
ing, volume 55 of Lecture Notes in Computational Science and Engineering, pages
291–298. Springer Berlin Heidelberg, 2007.

124

Bibliography

[25] M. J. Gander. Analysis of the Parareal algorithm applied to hyperbolic problems
using characteristics. Bol. Soc. Esp. Mat. Apl., 42:21–35, 2008.

[26] C. Farhat and M. Chandesris. Time-decomposed parallel time-integrators: theory
and feasibility studies for fluid, structure, and fluid-structure applications. Inter-
national Journal for Numerical Methods in Engineering, 58(9):1397–1434, 2003.

[27] G. A. Staff and E. M. Rønquist. Stability of the Parareal algorithm. In Domain
Decomposition Methods in Science and Engineering, volume 40 of Lecture Notes
in Computational Science and Engineering, pages 449–456, Berlin, 2005. Springer.

[28] G. Bal. On the convergence and the stability of the Parareal algorithm to solve
partial differential equations. In Domain decomposition methods in science and
engineering, pages 425–432. Springer, 2005.

[29] L. Baffico, S. Bernard, Y. Maday, G. Turinici, and G. Zrah. Parallel-in-time
molecular-dynamics simulations. Phys. Rev. E, 66:057701, 2002.

[30] Y. Maday and G. Turinici. A Parareal in time procedure for the control of partial
differential equations. Comptes Rendus Mathmatique, 335(4):387–392, 2002.

[31] M. Sarkis, C. E. Schaerer, and T. Mathew. Block diagonal Parareal preconditioner
for parabolic optimal control problems. In Domain Decomposition Methods in Sci-
ence and Engineering XVII, volume 60 of Lecture Notes in Computational Science
and Engineering, pages 409–416. Springer Berlin Heidelberg, 2008.

[32] A. Lapin and A. Romanenko. Udzawa-type iterative method with Parareal precon-
ditioner for a parabolic optimal control problem. IOP Conference Series: Materials
Science and Engineering, 158(1):012059, 2016.

[33] X. Du, M. Sarkis, C. E. Schaerer, and D. B. Szyld. Inexact and truncated Parareal-
in-time Krylov subspace methods for parabolic optimal control problems. Elec-
trontic Transactions on Numerical Analysis, 40:36–57, 2013.

[34] C. Farhat and M. Chandesris. Time-decomposed parallel time-integrators: theory
and feasibility studies for uid, structure, and fluid-structure applications. Interna-
tional Journal for Numerical Methods in Engineering, 58(9):1397–1434, 2003.

[35] Y. Maday and G. Turinici. Parallel in time algorithms for quantum control:
Parareal time discretization scheme. Int. J. Quant. Chem., 93(3):223–228, 2003.

[36] J. M. F. Trindade and J. C. F. Pereira. Parallel-in-time simulation of the un-
steady Navier-Stokes equations for incompressible flow. International Journal for
Numerical Methods in Fluids, 45(10):1123–1136, 2004.

125

Bibliography

[37] P. F. Fischer, F. Hecht, and Y. Maday. A Parareal in time semi-implicit approx-
imation of the Navier-Stokes equations. In Domain Decomposition Methods in
Science and Engineering, volume 40 of Lecture Notes in Computational Science
and Engineering, pages 433–440, Berlin, 2005. Springer.

[38] J. M. F. Trindade and J. C. F. Pereira. Parallel-in-time simulation of two-
dimensional, unsteady, incompressible laminar flows. Numerical Heat Transfer,
Part B: Fundamentals, 50(1):25–40, 2006.

[39] D. Guibert and D. Tromeur-Dervout. Parallel deferred correction method for
CFD problems. In Parallel Computational Fluid Dynamics 2006, pages 131 – 138.
Amsterdam, 2007.

[40] Y. Liu and J. Hu. Modified propagators of Parareal in time algorithm and ap-
plication to Princeton Ocean model. Int. J. for Numerical Methods in Fluids,
57(12):1793–1804, 2008.

[41] J. Steiner, D. Ruprecht, R. Speck, and R. Krause. Convergence of Parareal for
the Navier-Stokes equations depending on the Reynolds number. In Numerical
Mathematics and Advanced Applications - ENUMATH 2013, volume 103 of Lec-
ture Notes in Computational Science and Engineering, pages 195–202. Springer
International Publishing, 2015.

[42] LP. He and M. He. Parareal in time simulation of morphological transformation
in cubic alloys with spatially dependent composition. Communications in Compu-
tational Physics, 11:1697–1717, 2012.

[43] J. M. Reynolds-Barredo, D. E. Newman, R. Sanchez, and L. A. Berry. Modelling
Parareal convergence in 2D drift wave plasma turbulence. In High Performance
Computing and Simulation (HPCS), 2012 International Conference on, pages 726–
727, 2012.

[44] M. Duarte, M. Massot, and S. Descombes. Parareal operator splitting techniques
for multi-scale reaction waves: Numerical analysis and strategies. ESAIM: Math-
ematical Modelling and Numerical Analysis, 45:825–852, 8 2011.

[45] D. S. Daoud. Stability of the Parareal time discretization for parabolic inverse
problems. In Domain Decomposition Methods in Science and Engineering XVI,
volume 55 of Lecture Notes in Computational Science and Engineering, pages 275–
282. Springer Berlin Heidelberg, 2007.

[46] G. Bal and Q. Wu. Symplectic Parareal. In Domain Decomposition Methods
in Science and Engineering XVII, volume 60 of Lecture Notes in Computational
Science and Engineering, pages 401–408. Springer Berlin Heidelberg, 2008.

126

Bibliography

[47] D. Guibert and D. Tromeur-Dervout. Parallel adaptive time domain decomposition
for stiff systems of ODEs/DAEs. Computers & Structures, 85(9):553 – 562, 2007.

[48] B. Lepsa and A. Sandu. An efficient error control mechanism for the adaptive
’Parareal’ time discretization algorithm. In Proceedings of the 2010 Spring Sim-
ulation Multiconference, pages 87:1–87:7, San Diego, CA, USA, 2010. Society for
Computer Simulation International.

[49] Z. Wang and SL. Wu. Parareal algorithms implemented with IMEX Runge–Kutta
methods. Mathematical Problems in Engineering, 2015.

[50] M. L. Minion and S. A. Williams. Parareal and spectral deferred corrections. In
AIP Conference Proceedings, volume 1048, page 388, 2008.

[51] R. P. Fedorenko. A relaxation method for solving elliptic difference equations.
USSR Computational Mathematics and Mathematical Physics, 1(4):1092–1096,
1962.

[52] U. Trottenberg, C. W. Oosterlee, and A. Schuller. Multigrid. Academic Press,
2000.

[53] T. C. Kelley. Iterative methods for linear and nonlinear equations. Raleigh N. C.:
North Carolina State University, 1995.

[54] W. L. Briggs, S. F. McCormick, et al. A multigrid tutorial. SIAM, 2000.

[55] A. Brandt. Multi-level adaptive techniques (MLAT) for singular-perturbation
problems. 1978.

[56] A. Brandt. Multi-level adaptive solutions to boundary-value problems. Mathemat-
ics of computation, 31(138):333–390, 1977.

[57] K. J. Brabazon, M. E. Hubbard, and P. K. Jimack. Nonlinear multigrid methods for
second order differential operators with nonlinear diffusion coefficient. Computers
& Mathematics with Applications, 68(12):1619–1634, 2014.

[58] W. Hackbusch. Parabolic multigrid methods. Computing Methods in Applied
Sciences and Engineering, VI, pages 189–197, 1984.

[59] Ch. Lubich and A. Ostermann. Multi-grid dynamic iteration for parabolic equa-
tions. BIT Numerical Mathematics, 27(2):216–234, 1987.

[60] G. Horton and S. Vandewalle. A space-time multigrid method for parabolic par-
tial differential equations. SIAM Journal on Scientific Computing, 16(4):848–864,
1995.

127

Bibliography

[61] R. D. Falgout, S. Friedhoff, Tz. V. Kolev, S. P. MacLachlan, and J. B. Schroder.
Parallel time integration with multigrid. SIAM Journal on Scientific Computing,
36(6):C635–C661, 2014.

[62] V. Dobrev, Tz. Kolev, N. A. Petersson, and J. Schroder. Two-level convergence
theory for parallel time integration with multigrid. SIAM Journal on Scientific
Computing, LLNL-JRNL, 692418, 2016.

[63] M. J. Gander and M. Neumüller. Analysis of a new space-time parallel multi-
grid algorithm for parabolic problems. SIAM Journal on Scientific Computing,
38(4):A2173–A2208, 2016.

[64] M. Bolten, D. Moser, and R. Speck. A multigrid perspective on the parallel full
approximation scheme in space and time. arXiv preprint arXiv:1603.03586, 2016.

[65] J. Berrut and L. N. Trefethen. Barycentric Lagrange interpolation. SIAM review,
46(3):501–517, 2004.

[66] A. Dutt, L. Greengard, and V. Rokhlin. Spectral deferred correction methods for
ordinary differential equations. BIT Numerical Mathematics, 40(2):241–266, 2000.

[67] R. Frank and Ch. W. Ueberhuber. Iterated defect correction for the efficient solu-
tion of stiff systems of ordinary differential equations. BIT Numerical Mathematics,
17(2):146–159, 1977.

[68] J. Huang, J Jia, and M. L. Minion. Accelerating the convergence of spectral
deferred correction methods. Journal of Computational Physics, 214(2):633 – 656,
2006.

[69] A. T. Layton and M. L. Minion. Conservative multi-implicit spectral deferred
correction methods for reacting gas dynamics. Journal of Computational Physics,
194(2):697 – 715, 2004.

[70] M. L. Minion. Semi-implicit projection methods for incompressible flow based on
spectral deferred corrections. Applied Numerical Mathematics, 48(3–4):369 – 387,
2004. Workshop on Innovative Time Integrators for PDEs.

[71] A. Bourlioux, A. T. Layton, and M. L. Minion. High-order multi-implicit spectral
deferred correction methods for problems of reactive flow. Journal of Computa-
tional Physics, 189(2):651 – 675, 2003.

[72] D. Guibert and D. Tromeur-Dervout. Parallel deferred correction method for
CFD problems. In Parallel Computational Fluid Dynamics 2006, pages 131 – 138.
Elsevier Science B.V., Amsterdam, 2007.

128

Bibliography

[73] M. Weiser. Faster SDC convergence on non-equidistant grids by DIRK sweeps.
BIT Numerical Mathematics, 55(4):1219–1241, 2015.

[74] M. Winkel, R. Speck, and D. Ruprecht. A high-order Boris integrator. Journal of
computational physics, 295:456–474, 2015.

[75] M. L. Minion. Semi-implicit spectral deferred correction methods for ordinary
differential equations. Communications in Mathematical Sciences, 1(3):471–500,
2003.

[76] E. L. Bouzarth and M. L. Minion. A multirate time integrator for regularized
stokeslets. Journal of Computational Physics, 229(11):4208–4224, 2010.

[77] D. Ketcheson and U. bin Waheed. A comparison of high-order explicit Runge–
Kutta, extrapolation, and deferred correction methods in serial and parallel. Com-
munications in Applied Mathematics and Computational Science, 9(2):175–200,
2014.

[78] R. Speck, D. Ruprecht, M. Emmett, M. L. Minion, M. Bolten, and R. Krause.
A multi-level spectral deferred correction method. BIT Numerical Mathematics,
55(3):843–867, 2015.

[79] F. Koehler. PFASST TikZ. https://github.com/Parallel-in-Time/

pfasst-tikz, 2015.

[80] S. Friedhoff and S. MacLachlan. A generalized predictive analysis tool for multigrid
methods. Numerical Linear Algebra with Applications, 22(4):618–647, 2015.

[81] D. Hilbert and R. Courant. Methoden der mathematischen Physik. 1924.

[82] J. R. Cannon. The one-dimensional heat equation. Number 23. Cambridge Uni-
versity Press, 1984.

[83] G. K. Batchelor. An Introduction to Fluid Dynamics. Cambridge University Press,
2000.

[84] R. J. LeVeque. Finite Volume Methods for Hyperbolic Problems, volume 31. Cam-
bridge University Press, 2002.

[85] C. Hirsch. Numerical Computation of Internal and External Flows: The Funda-
mentals of Computational Fluid Dynamics. Butterworth-Heinemann, 2007.

[86] X. Dai and Y. Maday. Stable Parareal in time method for first- and second-order
hyperbolic systems. SIAM Journal on Scientific Computing, 35(1):A52–A78, 2013.

129

https://github.com/Parallel-in-Time/pfasst-tikz
https://github.com/Parallel-in-Time/pfasst-tikz

Bibliography

[87] T. Haut and B. Wingate. An asymptotic parallel-in-time method for highly oscil-
latory PDEs. SIAM Journal on Scientific Computing, 2014.

[88] R. M. Gray. Toeplitz and Circulant Matrices: A Review. now publishers inc, 2006.

[89] H. J. Landau. On Szegös eigenvalue distribution theorem and non-Hermitian ker-
nels. Journal d’Analyse Mathématique, 28(1):335–357, 1975.

[90] J. M. Varah. On the separation of two matrices. SIAM Journal on Numerical
Analysis, 16(2):216–222, 1979.

[91] S. K. Godunov. Spectral portraits of matrices and criteria of spectrum dichotomy.
In Computer Arithmetic and Enclosure Methods: Proc. Third IMACS-GAMM
Symp. Computer Arithmetic and Scientific Computing (SCAN-91), L. Atanassova
and J. Herzberger, eds., Amsterdam, 1992.

[92] L. N. Trefethen and M. Embree. Pseudospectra gateway. Web site. URL:
http://web. comlab. ox. ac. uk/projects/pseudospectra.

[93] T. Braconnier and N. J. Higham. Computing the field of values and pseudospec-
tra using the Lanczos method with continuation. BIT Numerical Mathematics,
36(3):422–440, 1996.

[94] T. Braconnier, R. A. McCoy, and V. Toumazou. Using the field of values for
pseudospectra generation. European Centre for Research and Advanced Training in
Scientific Computation (CERFACS), Toulouse, France, Tech. Rep. TR/PA/97/28,
1997.

[95] T. G. Wright and L. N. Trefethen. Large-scale computation of pseudospectra using
ARPACK and eigs. SIAM Journal on Scientific Computing, 23(2):591–605, 2001.

[96] G. M. Amdahl. Validity of the single processor approach to achieving large scale
computing capabilities. In Proceedings of the April 18-20, 1967, spring joint com-
puter conference, pages 483–485. ACM, 1967.

[97] J. L. Gustafson. Reevaluating Amdahl’s law. Communications of the ACM,
31(5):532–533, 1988.

[98] H. H. Ku. Notes on the use of propagation of error formulas. Journal of Research
of the National Bureau of Standards, 70(4), 1966.

[99] M. L. Minion, R. Speck, M. Bolten, M. Emmett, and D. Ruprecht. Interweav-
ing PFASST and parallel multigrid. SIAM Journal on Scientific Computing,
37(5):S244–S263, 2015.

130

Bibliography

[100] W. Hackbusch. Multi-grid convergence theory. In Multigrid methods, pages 177–
219. Springer, 1982.

[101] P. J. van der Houwen and B. P. Sommeijer. Iterated Runge–Kutta methods
on parallel computers. SIAM Journal on Scientific and Statistical Computing,
12(5):1000–1028, 1991.

[102] B. Diskin and J. L. Thomas. Half-space analysis of the defect-correction method
for Fromm discretization of convection. SIAM Journal on Scientific Computing,
22(2):633–655, 2000.

[103] J. H. Bramble and X. Zhang. The analysis of multigrid methods. Handbook of
numerical analysis, 7:173–415, 2000.

[104] C. Gräser, U. Sack, and O. Sander. Truncated non-smooth Newton multigrid
methods for convex minimization problems. In Domain Decomposition Methods in
Science and Engineering XVIII, pages 129–136. Springer, 2009.

[105] A. Böttcher and S. M. Grudsky. Toeplitz matrices, asymptotic linear algebra, and
functional analysis. Birkhäuser, 2012.

131

Schriften des Forschungszentrums Jülich
IAS Series

Band / Volume 24
Automated Optimization Methods for Scientific Workflows in e-Science
Infrastructures
S. Holl (2014), xvi, 182 pp
ISBN: 978-3-89336-949-2
URN: urn:nbn:de:0001-2014022000

Band / Volume 25
Numerical simulation of gas-induced orbital decay of binary systems
in young clusters
A. C. Korntreff (2014), 98 pp
ISBN: 978-3-89336-979-9
URN: urn:nbn:de:0001-2014072202

Band / Volume 26
UNICORE Summit 2014
Proceedings, 24th June 2014 | Leipzig, Germany
edited by V. Huber, R. Müller-Pfefferkorn, M. Romberg (2014), iii, 60 pp
ISBN: 978-3-95806-004-3
URN: urn:nbn:de:0001-2014111408

Band / Volume 27
Automatische Erfassung präziser Trajektorien
in Personenströmen hoher Dichte
M. Boltes (2015), xii, 308 pp
ISBN: 978-3-95806-025-8
URN: urn:nbn:de:0001-2015011609

Band / Volume 28
Computational Trends in Solvation and Transport in Liquids
edited by G. Sutmann, J. Grotendorst, G. Gompper, D. Marx (2015)
ISBN: 978-3-95806-030-2
URN: urn:nbn:de:0001-2015020300

Band / Volume 29
Computer simulation of pedestrian dynamics at high densities
C. Eilhardt (2015), viii, 142 pp
ISBN: 978-3-95806-032-6
URN: urn:nbn:de:0001-2015020502

Band / Volume 30
Efficient Task-Local I/O Operations of Massively Parallel Applications
W. Frings (2016), xiv, 140 pp
ISBN: 978-3-95806-152-1
URN: urn:nbn:de:0001-2016062000

Schriften des Forschungszentrums Jülich
IAS Series

Band / Volume 31
A study on buoyancy-driven flows: Using particle image velocimetry
for validating the Fire Dynamics Simulator
by A. Meunders (2016), xxi, 150 pp
ISBN: 978-3-95806-173-6
URN: urn:nbn:de:0001-2016091517

Band / Volume 32
Methoden für die Bemessung der Leistungsfähigkeit
multidirektional genutzter Fußverkehrsanlagen
S. Holl (2016), xii, 170 pp
ISBN: 978-3-95806-191-0
URN: urn:nbn:de:0001-2016120103

Band / Volume 33
JSC Guest Student Programme Proceedings 2016
edited by I. Kabadshow (2017), iii, 191 pp
ISBN: 978-3-95806-225-2
URN: urn:nbn:de:0001-2017032106

Band / Volume 34
Multivariate Methods for Life Safety Analysis in Case of Fire
B. Schröder (2017), x, 222 pp
ISBN: 978-3-95806-254-2
URN: urn:nbn:de:0001-2017081810

Band / Volume 35
Understanding the formation of wait states in one-sided communication
M.-A. Hermanns (2018), xiv, 144 pp
ISBN: 978-3-95806-297-9
URN: urn:nbn:de:0001-2018012504

Band / Volume 36
A multigrid perspective on the parallel full approximation scheme
in space and time
D. Moser (2018), vi, 131 pp
ISBN: 978-3-95806-315-0
URN: urn:nbn:de:0001-2018031401

Weitere Schriften des Verlags im Forschungszentrum Jülich unter
http://wwwzb1.fz-juelich.de/verlagextern1/index.asp

IAS Series
Band / Volume 36
ISBN 978-3-95806-315-0

IAS Series
Band / Volume 36
ISBN 978-3-95806-315-0

A multigrid perspective on the parallel full approximation
scheme in space and time

Dieter Moser

36

IA
S

Se
ri

es
A

 m
ul

tig
rid

 p
er

sp
ec

tiv
e

on
 P

FA
SS

T
D

ie
te

r M
os

er

	1 Introduction
	1.1 Parareal
	1.1.1 Convergence, stability and parallel efficiency
	1.1.2 Applications and modifications

	1.2 Space-time multigrid
	1.2.1 Multigrid basics
	1.2.2 Parabolic multigrid
	1.2.3 Waveform relaxation
	1.2.4 Space-time multigrid by Horten and Vandewalle
	1.2.5 Multigrid reduction in time
	1.2.6 Space-time multigrid by Neumüller and Gander

	1.3 The parallel full approximation scheme in space and time
	1.3.1 Preliminaries and notation
	1.3.2 Spectral deferred corrections
	1.3.3 Multi-level spectral deferred corrections
	1.3.4 The PFASST algorithm

	2 A Multigrid Perspective
	2.1 Iteration matrix of PFASST
	2.1.1 The composite collocation problem
	2.1.2 The approximative block Gauß-Seidel solver
	2.1.3 The approximative block Jacobi solver
	2.1.4 Assembling PFASST

	2.2 Fourier transformation of the iteration matrix
	2.2.1 The three layers
	2.2.2 Transforming interpolation and restriction
	2.2.3 Transforming the full iteration matrix
	2.2.4 Assuming periodicity in time

	2.3 Using the Fourier transformed iteration matrix
	2.3.1 Conversion to matrix symbols
	2.3.2 Structure of the error vector

	3 Convergence study
	3.1 First experiments
	3.1.1 Four strategies
	3.1.2 Collocation and time collocation blocks
	3.1.3 Pseudospectra

	3.2 Mode damping fields
	3.2.1 Using the canonical basis in time
	3.2.2 Using the Fourier basis in time

	4 Parallel performance
	4.1 Basics
	4.2 Two parallelization strategies
	4.2.1 Estimating the wall-time of PFASST
	4.2.2 Speedup for the case P=L
	4.2.3 Speedup for the case P<L
	4.2.4 Estimating the speedup of multi-level PFASST

	4.3 Performance analysis
	4.3.1 Counting iterations
	4.3.2 Distribution of iterations
	4.3.3 Resulting speedups

	5 Outlook
	5.1 Future work
	5.1.1 Time coarsening
	5.1.2 Multi-level and inexact PFASST
	5.1.3 Stability and smoothing properties
	5.1.4 Open questions and theoretical ideas

	5.2 Conclusion

	Appendices
	A Proof of Theorem 1

