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Figure S1: Band structure diagram and orbital-projected density of states (DOS) at each atomic site for the ordered orthorhom-
bic ZnSnN2 obtained using HSE06 at its theoretical lattice constants. The band path is based on Ref. [1]. The energy zero is
set at the VBM. Note that the DOS near the CBM is significantly small owing to the large band dispersion.
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Figure S2: Electron (me) and heavy-hole (mh) effective masses calculated through parabola fitting along the Γ-X, Γ-Y, and Γ-Z
directions. The fitting range and the derived curves are also shown by dashed lines. The hole effective mass calculated from
the split-off-like band is given in the parentheses as it does not significantly affect the averaged effective mass. These electron
and heavy-hole effective masses are comparable or even superior to those of GaN (me =0.18m0 and mh = 1.97m0 [2]).
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Figure S3: Simulated powder diffraction patterns for (a) the ordered structure and (b) 128-atom disordered structure with local
charge neutrality (DLCN) based on the HSE06 structures. The VESTA code [3] was used in the simulations. (c) Those for
the DLCN models in different cell sizes optimized using PBEsol-GGA. The supercells used for (c) are shown in (d). Note that
low angle peaks vary relatively largely depending on the configurations.
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Figure S4: Experimental and HSE06 calculated band gaps of metal nitrides. Calculated values are denoted with circles and
experimental values are shown with horizontal bars (see Refs. [4, 5, 6, 7, 8, 2]). The HSE06 functional accurately reproduces
the band gaps up to ∼ 2 eV. Note that the BM shifts have been observed in InN, Zn3N2, and ScN, which lead to larger optical
band gaps than the fundamental direct gaps. Thus, we show the smallest experimental values among those reported.
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Figure S5: Relative total energies of special quasi-random structure (SQS) and DLCN models of ZnSnN2 with different
supercell sizes calculated using PBEsol-GGA. The energy zero is set to that of the ordered structure. The horizontal axis
means the number of atoms in the supercells. Both DLCN and SQS models were generated by Monte Carlo simulated
annealing (MCSA) using in-house and CLUPAN codes [9], respectively. The SQS models were obtained by optimizing the
correlation functions of pairs up to the 50th nearest neighbors to mimic the fully disordered state. To check the validity of
the MCSA, we repeated the search of the SQS models ten times for each supercell. Lattice relaxation was allowed for all the
structures. The energy differences indicate that the DLCN models have large advantages in energy than the SQS models with
fully random cation disordering; the energies of the DLCN models differ by less than 1 meV/atom from that of the ordered
model.
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Figure S6: Optical gap as a function of the carrier-electron concentration for the ordered ZnSnN2 calculated from the band
structure and DOS using HSE06. The band dispersions of the valence and conduction bands were explicitly considered to
evaluate the minimum vertical transition energy at each value of the carrier-electron concentration (see Ref. [10]).
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Figure S7: Absorption spectra for ordered ZnSnN2 calculated using HSE06 and PBE-GGA [11] with the 16-atom unit cell.
The calculated band gaps with 8×8×8 k-point sampling are also shown by dashed-dotted lines. The HSE06 calculation
was performed with 8×8×8 k-point sampling, whereas the PBE-GGA ones with 8×8×8, 16×16×16, and 24×24×24 k-point
sampling; the lesser k-point set for the former is due to much higher computational cost of the HSE06 hybrid functional.
The HSE06 result with 8×8×8 k-point sampling shows a sharp initial rise of the absorption spectrum near the band gap of
1.4 eV. Note, however, as inferred from the PBE results showing non-negligible k-point sampling dependencies, the HSE06
absorption coefficient would be increased near the onset when using well converged k-point sampling.
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Figure S8: Isosurfaces of the squared wave functions at the VBM and CBM in (a) ordered, (b) DLCN, and (c) SQS ZnSnN2.
The band gap values are also shown. There is no significant difference in the distribution of the wave functions between the
ordered and DLCN models. In contrast, the wave function at the VBM in the SQS model is largely localized at the N site with
higher Zn coordination numbers, similarly to the ZnSn antisite defect (see the main text), while that at the CBM is localized at
the Sn site. The VESTA code [3] was used for visualization.
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Figure S9: (a–i) Site dependencies of the defect-formation energies in the DLCN model shown in Figure 1(b) in the main
text as a function of the Fermi level and (j, k, l) local structures near these interstitial sites considered. Here, PBEsol-GGA
was used in conjunction with the 2×2×2 Monkhorst-Pack (MP) k-point mesh. Errors associated with the finite supercell
size were corrected for all the defects using the extended FNV correction scheme. One can see that site dependences are
negligibly small, especially for defects with lower formation energies. Relatively large variations are seen in interstitial-type
defects, presumably because of the difference in neighboring cation configurations as shown in (j, k, l); the difference in the
neighboring Sn:Zn ratios results in different electrostatic effects on the interstitial-type defects. HX and OX sites (X= Zn, Sn)
are not considered in HSE06 calculations because their energies are much higher than those of Hi and ON. Configurations
enclosed in squares were adopted for the HSE06 calculations in the main text. Spin polarization was not considered here in
order to reduce the computational costs.
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Figure S10: Formation energies of (a) Sn2+
Zn and (b) Sn0

Zn in the ordered ZnSnN2 as a function of the supercell size using
PBEsol-GGA. Natom is the number of atoms in the supercell. In the case of Sn2+

Zn, corrected formation energies using the
extended FNV method are also shown. The energy zero is set at the corrected energy calculated using the largest 1024-atom
supercell. The estimated error in the 128-atom supercell is 0.72 eV, but it is reduced to less than 0.05 eV when the FNV
corrections are applied. In the case of Sn0

Zn, the supercells contain a doubly occupied hydrogenic donor state whose electrons
are released from a defect state as shown by the schematic illustration. One can see a large cell size dependence, although the
charge state is neutral. This is mostly attributed to the interaction between the doubly ionized SnZn, its periodic images, and
hydrogenic donor electrons that spread throughout the supercell and behave like the background charge. See Refs. [12, 10]
for more details.
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Figure S11: Defect-formation energies as a function of the Fermi level in the ordered ZnSnN2 (a, b) without (w/o) and (c, d)
with (w/) finite cell size corrections. (a, c) The Γ-point and (b, d) the 2×2×2 MP k-point mesh were used for reciprocal space
sampling. The cell size corrections were performed using the extended FNV correction scheme. One can see the importance
of the cell-size corrections and k-point sampling. (e) The formation energies calculated by Chen et al. reproduced from
Ref. [13]. They used the same calculation condition with (a), namely no finite-cell size corrections and Γ-point only k-point
sampling, but the mixing parameter of HSE was increased from 0.25 to 0.31, resulting in a larger band gap.
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Figure S12: Formation energies of (a) native defects and (b) impurities in the ordered ZnSnN2 as a function of the Fermi
level. In (b), the formation energy of the dominant acceptor ZnSn among the native defects is also shown for comparison. The
upper limit of the Fermi level is extended up to (a) 1.8 eV and (b) 2.1 eV with respect to the VBM, respectively, so that the
intersections between the formation energies of the dominant donors and acceptors are visible. The transition levels above the
CBM are calculated properly when the k-point mesh used for the defect calculations does not sample the CBM. In this study,
we used the 2×2×2 MP k-point mesh, in which the lowest unoccupied state in the perfect supercell is located at 2.34 eV above
the VBM (see Ref. [10] for details).
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Figure S13: (a) Formation energies of Hi and ZnSn and their complex defects (ZnSn + Hi)− and (ZnSn + 2Hi)0 calculated using
HSE06. Relaxed atomic structures of (ZnSn + Hi)− and (ZnSn + 2Hi)0 are shown in (b) and (c), respectively. The distances
between atoms indicated by arrows in (b) and (c) are shown in Å. Note that only one configuration for each complex defect
is considered. Complexing with hydrogen is exothermic and drastically decreases the formation energy of acceptor ZnSn. See
main text for details.
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Figure S14: (a–d) Band structures for the up-spin and down-spin channels of Zn0
Sn and Zn−Sn in the 128-atom supercell of

the ordered model. (e–g) Squared wave functions of the bands highlighted in Figures (b) and (d), indicating localized defect
states. The distances of ZnSn-N are indicated by arrows in Å. Note that the Zn2−

Sn -N distances are 2.04–2.07 Å. As discussed
in the main text, two holes in the Zn0

Sn model are located in the down-spin channel within the band gap, while one hole in the
Zn−Sn model is in the same channel but slightly above the CBM. The deep levels exist as hole polaronic states captured by the
neighboring N atoms with accompanying outward relaxations as seen in (e–g).
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Figure S15: Local defect structures in the ordered ZnSnN2. The distances between atoms are shown in Å. For comparison,
the tetrahedral configuration around an N atom in the ordered ZnSnN2 is shown in (a). Sn2+
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dopants in the ordered ZnSnN2 at the Sn-poor (Zn-rich) condition in Figure S16. (c, d) Squared wave functions of the hole
trapping states in Na0

Zn, and K0
Zn models. All the monovalent cations (Li, Na, K, and Cu) favor the interstitial site in the p-type

regime, and CuZn and CN show extremely deep acceptor levels, indicating difficulty of p-type doping with these dopants. It is
also noteworthy in view of electronic structure that NaZn and KZn show similar polaronic behaviors to ZnSn; they exist as hole
polarons locating at the N sites near the defects, as seen in (c) and (d). In the cases of CN and CuZn, on the other hand, a hole
is localized at the C-p state and Cu-3d state, respectively.
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