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Preface

The present book is based on the graduate and post graduate courses of lectures

given at the Department of Theoretical Physics of Moscow State University and the

Department of Mathematics and Physics of Camerino University. It is addressed to

a wide audience of physicists and mathematicians, and aims at showing in a unified

way the role that the concept of a connection plays both in classical and quantum

field theory. To our knowledge, this is the first attempt to present connections as a

main geometrical object which underlies many relevant physical ideas.

The concept of a connection in quantum field theory. is rather new. It is phrased

in algebraic terms, in comparison with the purely geometric one used in classical

field theory. This concept is based on modern development of quantum mechanics,

SUSY models, BRST formalism, and non-commutative field theory. In our opinion,

connections provide a new link between classical and quantum physics. In classical

field theory, we follow the general notion of a connection on fibre bundles, formu-

lated in terms of jet manifolds. We emphasize the role of connections as the main

ingredient in dynamic equation theory, and Lagrangian and Hamiltonian formalisms.

As is well-known, connections on principal bundles have a role of gauge potentials

of fundamental interactions while, in gravitation theory, connections characterize

the space-time geometry. Classical mechanics is also presented as a particular field

theory, involving the concept of a connection in many aspects. The reader will find

connections in quantum mechanics, too. In fact, we collect together the basic meth-
ods concerning different types of connections in quantum field theory. These are

superconnections, connections in BRST formalism, topological field theory, theory

of anomalies, and non-commutative geometry.
Mathematics is not the primary scope of our book, but provides the powerful

methods of studying contemporary field models.

v
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Introduction

The main reasons why connections play a prominent role in contemporary field

theory lie in the fact that they enable us to deal with invariantly defined objects.
Gauge theory shows clearly that this is a basic physical principle.

In gauge theory, connections on principal bundles are well known to provide

the mathematical description of gauge potentials of the fundamental interactions.

Furthermore, since the characteristic classes of principal bundles are expressed in

terms of gauge strength, one also meets the topological phenomena in classical and

quantum gauge models, e.g., anomalies. All gauge gravitation models belong to the

class of metric-affine theories where a pseudo-Riemannian metric and a connection

on a world manifold are considered on the same footing as dynamic variables.

Though gauge theory has made great progress in describing fundamental inter-

actions, it is a particular case of field models on fibre bundles. Differential geometry

of fibre bundles and formalism of jet manifolds give the adequate mathematical for-

mulation of classical field theory, where fields are represented by sections of fibre

bundles. This formulation is also applied to classical mechanics seen as a particular

field theory on fibre bundles over a time axis. In summary, connections are the main
ingredient in describing dynamic systems on fibre bundles, and in Lagrangian and

Hamiltonian machineries.

Jet manifolds provide the appropriate language for theory of (non-linear) dif-

ferential operators and equations, the calculus of variations, and Lagrangian and

Hamiltonian formalisms. For this reason, we follow the general definition of connec-

tions as sections of jet bundles. This enables us to deal with non-linear connections

and to include connections in a natural way in describing field dynamics.

In quantum field theory requiring the theory of Hilbert and other linear spaces,

one needs another concept of a connection, phrased in algebraic terms as a con-

nection on modules and sheaves. This notion is equivalent to the above-mentioned

1



2 INTRODUCTION

geometric one in the case of structure modules of smooth vector bundles. Extended

to the case of modules over graded and non-commutative rings, it provides the

geometric language of supersymmetry and non-commutative geometry.
Our book is not a book on differential geometry, but it collects together the basic

mathematical facts about various types of connections in Lagrangian and Hamilto-

nian formalisms, gauge and gravitation theory, classical and quantum mechanics,

topological field theory and anomalies, BRST formalism, and non-commutative ge-

ometry. Additionally, it provides the detailed exposition of relevant theoretical

methods both in classical and quantum field theory.
We have tried throughout to give the necessary mathematical background, thus

making the book self-contained. We hope that our book will attract new interest,

from theoretical and mathematical physicists, in modern geometrical methods in

field theory.



Chapter 1

Geometric interlude

This Chapter summarizes the basic notions on fibre bundles and jet manifolds which
find an application in the sequel [123, 179, 265, 274].

Unless otherwise stated, all maps are smooth, while manifolds are real, finite-

dimensional, Hausdorff, second-countable (hence, paracompact) and connected.

We use the standard symbols ®, V, and A for the tensor, symmetric, and exterior
products, respectively. By aA are meant the partial derivatives with respect to the

coordinates with indices B. The symbol o stands for a composition of maps.

1.1 Fibre bundles

Subsections: Fibre bundles, 3; Vector bundles, 6; Affine bundles, 8; Tangent and

cotangent bundles, 9; Tangent and cotangent bundles of fibre bundles, 10.

Fibre bundles

Let M and N be manifolds of dimensions m and n, respectively. Recall that by

the rank of a morphism f : M -^ N at a point p E M is meant the rank of the

linear map of the tangent spaces

Tp f : TpM - Tj(p)N,

i.e., the rank of the Jacobian matrix of f at p. Suppose that f is of maximal rank

at p E M. Then f at the point p is said to be a local diffeomorphism if m = n, an

immersion, if m < n, and a submersion if m > n.

3



4 CHAPTER 1. GEOMETRIC INTERLUDE

A manifold Y is called a fibred manifold over a base X if there is a surjective

submersion (a projection)

7r:Y-+X. (1.1.1)

A fibred manifold Y -> X is provided with an atlas of fibred coordinates (x", yi),

where xA are coordinates on the base X with transition functions xA ..4 x'a inde-

pendent of the coordinates yi.

A fibred manifold Y - X is called a fibre bundle if it is locally trivial. It means

that the base X admits an open covering {U£} so that Y is locally equivalent to the

splittings

)C: 1(U^)- U£ xV,

together with the transition functions

PCS:(UUnUS)xV->(UenUU)xV,

PC(: (x, v) '-' (x, PC((x, v)),

C(y) = (PC( ° 0() (y), y E it-1 (UU n Uc),

which fulfill the cocycle relations

PCSopC,op,£=Id((UUnUUnUU)xV). (1.1.4)

The manifold V is one for all local splittings ( 1.1.2). It is called a typical fibre.

Trivialization charts (Ug, V)g ) constitute an atlas

' = {A, VGA), PO

of the fibre bundle Y. Given an atlas IF, a fibre bundle Y is provided with the

associated fibred coordinates (x", yi), called bundle coordinates, where

y'(y) = (y' ° pr2 ° VG£)(y), y E Y,

are coordinates on the typical fibre V. Note that a fibre bundle Y --* X is uniquely

defined by a bundle atlas T. Two bundle structures on a manifold Y are said to be

equivalent if the corresponding bundle atlases are equivalent, i.e., a union of these

atlases is also a bundle atlas.
Hereafter, we will restrict our consideration to fibre bundles.
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A fibre bundle Y --> X is called trivial if Y is diffeomorphic to the product

X x V. Different trivializations of a fibre bundle Y -> X differ from each other in

projections Y -> V.

THEOREM 1.1.1. Each fibre bundle over a contractible base is trivial ([286], p.53).

0

By a section (or a global section) of a fibre bundle (1.1.1) is meant a morphism

s : X -* Y such that it o s = IdX. A section s is an imbedding, i.e., s(X) C Y is

both a (closed) submanifold and a topological subspace of Y. Similarly, a section

s of a fibre bundle Y -> X over a submanifold N C X is said to be a morphism

s:N --+ Y such that

7r0 s=iN:N-4 X

is a natural injection. A section of a fibre bundle over an open subset U C X is

called simply a local section. A fibre bundle, by definition, admits a local section

around each point of its base.

THEOREM 1.1.2. Each fibre bundle Y --* X whose typical fibre is diffeomorphic to

R' has a global section. Its section over a closed subset of N C X can always be

extended to a global section ([157]; [286], p.55). q

A fibred (or bundle) morphism of two bundles 7r : Y -* X and 7r' : Y' --* X' is

a pair of maps 4) : Y - Y' and f : X -* X' such that the diagram

Y -* Y'

7r 1 1-
X -4 X'

f

is commutative , i.e., (D sends fibres to fibres. In brief, we will say that ( 1.1.5) is a

fibred morphism 4) : Y f Y' over f . If f = Id X, then 4D : Y X Y' is called a fibred

morphism over X.

If a fibred morphism (D (1.1.5) is a diffeomorphism, it is called an isomorphism

of fibre bundles. Two fibre bundles over the same base X are said to be equivalent

if there exists their isomorphism over X.
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A fibred morphism <F (1.1.5) over X (or its image (D(Y)) is called a subbundle

of the fibre bundle Y' -- X if <F(Y) is a submanifold of Y. There are the follow-

ing useful criteria for an image and an inverse image of a fibred morphism to be

subbundles ([247], p.19; [302]).

PROPOSITION 1.1.3. Let 4) : Y - Y' be a fibred morphism over X. Given a

global section s of the fibre bundle Y' -> X such that s(X) C <F(Y), by the kernel

of the fibred morphism <F with respect to the section s is meant the inverse image

Kers<F = -1(s(X))

of s(X) by <F. If <F : Y -* Y' is a fibred morphism of constant rank over X, then

<F(Y) and Ker s<F are subbundles of Y' and Y, respectively. q

Given a fibre bundle 7r : Y --> X and a morphism f : X' -* X, the pull-back of

Y by f is called the manifold

f*Y={(x',y)EX'xY: 7r(y)=f(X')} (1.1.6)

together with the natural projection (x', y) F- x'. It is a fibre bundle over X' such

that -the fibre of f*Y over a point x' E X' is that of Y over the point f(x') E X.

There is the canonical fibred morphism

fr: f*YE) (X" Y) f yEY

In particular, if X' C X is a submanifold of X and ix, is the corresponding

natural injection, then the pull-back

ix ,Y = Y fix'

is the restriction of a fibre bundle Y to the submanifold X' C X. In particular, let

7r : Y -* X and 7r': Y' -* X be fibre bundles over the same base X. Their fibred

product Y x Y' over X is defined as the pull-back

YxY'=lr*Y' or YxY'=lr*Y.
x x

Vector bundles

A vector bundle is a fibre bundle Y -> X such that:
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• its typical fibre V and all the fibres Yx = it-1(x), x E X, are real finite-

dimensional vector spaces;

• there is a bundle atlas 41 = {(UU, zee)} of Y -> X whose trivialization mor-

phisms '1e restrict to linear isomorphisms

V)e (x): YY --*V, VXEUe.

Dealing with a vector bundle Y, we will always use linear bundle coordinates (yi)

associated with a linear bundle atlas ', i.e.,

(pr2 ° e) (y) = y`ei,

y = y1ei(x) = y1V)£(x)-l(ei),

where {ei} is a fixed basis for the typical fibre V of Y, while {ei(x)} are the associated

fibre bases (or the frames) for the fibres Yx of Y. By a morphism of vector bundles

(D : Y -> Y' is meant a fibred morphism whose restriction to each fibre of Y is a

linear map. It is called a linear bundle morphism.

By virtue of Proposition 1.1.3, if ( : Y -> Y' is a linear bundle morphism of

vector bundles of constant rank, then (F(Y) and Ker(F are vector subbundles of

Y and Y', respectively (see also [159]). Injection and surjection of vector bundles

exemplify such kind morphisms.
Recall the following constructions of new vector bundles from old.

• Let Y -> X be a vector bundle with a typical fibre V. By Y* ---> X is meant the

dual vector bundle with the typical fibre V* dual of V. The interior product

of Y and Y* is defined as a fibred morphism

j :Y®Y* - X xR.

• Let Y -+ X and Y' - X be vector bundles with typical fibres V and V',

respectively. Their Whitney sum Y®Y' is a vector bundle over X with the
x

typical fibre V ® V.

• Let Y --* X and Y' -* X be vector bundles with typical fibres V and V',

respectively. Their tensor product Y 0 Y' is a vector bundle over X with the
x

typical fibre V ® V. Similarly, the exterior product of vector bundles Y A Y

is defined.
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Remark 1 .1.1. Let Y and Y' be vector bundles over the same base X. Every

linear morphism

4): Y Dei->,p (x)e'EY'

over X can be seen as a global section

4) :x-*-Di (x)e'®e'

of the tensor bundle Y(9 Y* -> X, and vice versa. •

By virtue of Theorem 1.1.2, a vector bundle has a global sections, e.g., the

canonical zero-valued global section 0.

Let us consider an exact sequence of vector bundles over the same base X

0-*Y' ^Y -'*Y"->0, ( 1.1.8)

where 0 denotes a 0-dimensional vector bundle, Y' '-* Y is an injection and Y 4 Y"

is a surjection of vector bundles such that Im i = Ker j. This is equivalent to the fact

that Y" = Y/Y' is the quotient bundle. One says that the exact sequence (1.1.8)

of vector bundles admits a splitting if there exists a linear bundle monomorphism

IF: Y" --+ Y over X such that j o r = Id Y". Then

Y=i(Y')®I'(Y").

THEOREM 1.1.4. Every exact sequence of vector bundles admits a splitting ([157],

p.56; [159]). q

Affine bundles

Let ' : V -3 X be a vector bundle with a typical fibre V. An affine bundle

modelled over the vector bundle V - X is a fibre bundle 7r : Y - X whose typical

fibre V is an affine space modelled over V, while the following conditions hold.

• All fibres Yx of Y are affine spaces modelled over the corresponding fibres Y.,

of the vector bundle V.
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• There is a bundle atlas T = {(Uc , V),,)} of Y -+ X whose trivialization mor-

phisms restrict to affine isomorphisms

^b((x) : YY -> V, Vx E UU.

In particular , every vector bundle has a natural structure of an affine bundle. Dealing

with an affine bundle, we will use only affine bundle coordinates (x", yi) associated

with an affine bundle atlas T. There are the fibred morphisms

Y X Y -+Y, (yt, y' +
X X

YXY +Y, (yt,Y`) -'y`-yt,
X 7 X

where (y) are linear coordinates on the vector bundle Y.

By a morphism of affine bundles is meant a fibred morphism 4): Y -* Y' whose

restriction to each fibre of Y is an affine map. It is called an affine bundle morphism.

Every affine bundle morphism : Y -* Y' from an affine bundle Y modelled over a

vector bundle V to an affine bundle Y' modelled over a vector bundle 7 determines

uniquely the linear bundle morphism

yto(D

= ay
called the linear derivative of (D.

Similarly to vector bundles, if (D : Y -+ Y' is an affine bundle morphism of affine

bundles of constant rank, then D(Y) and Ker P are affine subbundles of Y and Y',

respectively.
By virtue of Theorem 1.1.2, an affine bundle has a global section, but there is

no canonical global section of an affine bundle.

Let 7r : Y --+ X be an affine bundle modelled over a vector bundle Y -> X.

Every global section s of an affine bundle Y -* X yields the fibred morphism

D8:YDy- y - s(7r(y)) E V. (1.1.10)

Tangent and cotangent bundles

Tangent and cotangent bundles exemplify vector bundles. The fibres of the

tangent bundle

7rz:TZ->Z
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of a manifold Z are tangent spaces to Z. Given an atlas Tz = {(Ue, 0C)} of a

manifold Z, the tangent bundle is provided with the holonomic atlas

IF = {Ue, Of = T¢^)}, (1.1.11)

where by Tc^ is meant the tangent map to 0£. The associated linear bundle co-

ordinates with respect to the holonomic frames {a,\} in tangent spaces T.Z. They

are called induced or holonomic coordinates, and are denoted by (za) on TZ. The

transition functions of holonomic coordinates read

az'

azµ

Every manifold map f : Z --* Z' generates the linear bundle morphism of the tangent

bundles
a

T f: T Z f T Z', z'A o T f= azµ zµ,

called the tangent map to f.

The cotangent bundle of a manifold Z is the dual

7t.z :T*Z->Z

of the tangent bundle TZ -* Z. It is equipped with the holonomic coordinates

(Z A, za) with respect to the coframes {dzA} in T*Z dual of {aa}. Their transition

functions read

azo
za = azia zµ

Various tensor products

T = (®TZ) ®(®T*Z) (1.1.12)

over Z of tangent and cotangent bundles are called tensor bundles. Their sections

are (m, k)-tensor fields.

Tangent and cotangent bundles of fibre bundles

Let Try : TY --> Y be the tangent bundle of a fibre bundle 7r : Y - X. Given

fibred coordinates (x', y') on Y, the tangent bundle TY is equipped with the holo-

nomic coordinates (x", yi, ia, yi). The tangent bundle TY -> Y has the vertical

tangent subbundle

VY = Ker T7r,
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given by the coordinate relations xa = 0. This subbundle consists of the vectors tan-

gent to fibres of Y . The vertical tangent bundle VY is provided with the holonomic

coordinates (xA, yi, yi) with respect to the frames {ai}.

Let PP be the tangent map to a fibred morphism : Y -4Y'. Its restriction

V(D =TDlvy:VY->VY',

0 0V(I) =avi)t= ya;V,
to VY is a linear bundle morphism of the vertical tangent bundle VY to the vertical

tangent bundle VY', called the vertical tangent map to 4.
Vertical tangent bundles of many fibre bundles are equivalent to the pull-backs

VYYxY (1.1.13)
x

where Y --^ X is some vector bundle . It means that VY can be provided with

bundle coordinates (xx, yi, y ) such that the transition functions of coordinates

are independent of yi. For instance , every affine bundle Y -* X modelled over a

vector bundle Y --> X admits the canonical vertical splitting

VY =YxY (1.1.14)
x

because the holonomic coordinates yi on VY have the same transformation law

as the linear coordinates y on the vector bundle Y. If Y is a vector bundle, the

splitting ( 1.1.14) reads

VY = Y x Y. (1.1.15)
x

The vertical cotangent bundle V*Y -+ Y of a fibre bundle Y -> X is defined

as the vector bundle dual of the vertical tangent bundle VY -+ Y . There is the

canonical projection

T*Y Y V*Y, (1.1.16)

i,\dx' + yidyt '-' yidyt,

where {dyi } are the bases for the fibres of V*Y, which are dual of the holonomic

frames {49i} for the vertical tangent bundle VY.

It should be emphasized that there is no canonical injection of V*Y to T*Y as

it follows from the coordinate transformation laws
yi r: ayr

dy a aye dy +
axa dx", dyt = ayi dy
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With VY and V*Y, one has the following two exact sequences of vector bundles

over Y:

0->VYyTY ZYxTX -+0,
x

0->YxT*X *T*Y V*Y- -+ 0.
x

(1.1.17a)

(1.1.17b)

Every splitting

F : Y x TX '-+TY, ( 1.1.18)
x Y

as - as + Faazf

of (1.1 . 17a) and the dual splitting

F : V*Y Y T*Y, ( 1.1.19)

dya F-+ dyt - Fadx',

of (1.1.17b), by definition, are a connection r on the fibre bundle Y -+ X (see

Section 2.1).
For the sake of simplicity, the pull-backs Y x TX and Y x T*X will be denoted

x x
by TX and T*X, respectively.

1.2 Differential forms and multivector fields

Subsections: Vector fields, 12; Exterior forms, 15; Multivector fields, 17; Tangent-

valued forms, 19; Distributions, 23.

In this Section, we are concerned with vector and multivector fields, exterior

and tangent-valued differential forms on manifolds and fibre bundles. Note that

connections on fibre bundles are represented by tangent-valued forms.

Vector fields

A vector field on a manifold Z is defined as a global section of the tangent bundle

TZ -+ Z. The set T(Z) of vector fields on Z is both a locally free module over the

ring C°°(Z) of smooth functions on Z and a real Lie algebra with respect to the Lie

bracket

[v, ul = (v'\aauµ - uwaavµ)aµ, u = UAaa, v = vaaa.
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A curve c Z, () C R, in Z is said to be an integral curve of a vector field u

on Z if

c=uoc,

where by c is meant the morphism

c(t) = Tc(t, t = 1) : () -* TZ,

called the tangent prolongation of the curve c. For every point z E Z, there exists

a unique integral curve c of a vector field u through z = c(0).

Recall the relationship between vector fields on a manifold Z and its diffeo-

morphisms. Given an open subset U C Z, by a local 1-parameter group of local

diffeomorphisms of Z defined on (-E, E) x U is meant a mapping

G:(-E, E) x U D (t, z) H Gt(z) E Z, E>0,

which possesses the following properties:

• for each t E (-E, E), the mapping Gt is a diffeomorphism of U onto the open

subset Gt(U) C Z;

• Gt+t,(z) = (GtoGt,)(z) if t + t'

If G is defined on R x Z, it is called a 1-parameter group of diffeomorphisms of Z.

Each local 1-parameter group of local diffeomorphisms G on U C Z defines a local

vector field u on U by setting u(z) to be the tangent vector to the curve c(t) = Gt(z)

at t = 0. Conversely, let u be a vector field on a manifold Z. For each z E Z, there

exist a real number E > 0, a neighbourhood U of z and a unique local 1-parameter

group of local diffeomorphisms on (-E, c) x U, which determines u [177]. In brief,

one can say that every vector field u on a manifold Z is the generator of a local

1-parameter group of local diffeomorphisms. A vector field u on a manifold Z is is

called complete, if it is induced by a 1-parameter group of diffeomorphisms of Z.

A vector field u on a fibre bundle Y -+ X is said to be projectable if it projects

over a vector field T on X, i.e., if the diagram

Y - TIY

7r
I

T7r ^

X -TX

T07r=T7rou,
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commutes . A projectable vector field has the coordinate expression

u = UA(xµ)0A + ui (xµ, 3)19i, T = u'aA-

A projectable vector field u = uiai on a fibre bundle Y -> X is said to be vertical if

it projects over the zero vector field T = 0 on X.

A vector field T = Taaa on a base X of a fibre bundle Y - X can give rise to a

projectable vector field on the total space Y by means of some connection on this

fibre bundle (see the expression (2.1.6) below ). Nevertheless , every tensor bundle

(1.1.12 ) admits the canonical lift

T - Tµ0 + (a^Ta1^Q^z'Rk m + ... - aQ1T^2Az Qk
) a^..am (1.2.2)

ax01...A

of any vector field T on X. In particular, we have the canonical lift

T = Tµ0 + aTa2" aa±a
of T onto the tangent bundle TX and its canonical lift

a

(1.2.3)

T = Tµ0, - aQTv2va±p (1.2.4)

onto the cotangent bundle T*X . Hereafter, we will use the compact notation

a ( 1.2.5 )as=t-'

Let Y -* X be a vector bundle. Due to the canonical vertical splitting ( 1.1.15),

there exists the canonical vertical vector field

uY = Yiai
(1.2.6)

on Y, called the Liouville vector field. For instance, the Liouville vector field on the

tangent bundle TX reads

UTX = 'i;% . (1.2.7)

Accordingly, any vector field T = TAaa on a manifold X has the canonical vertical

lift

(1.2.8)
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onto the tangent bundle TX.

Exterior forms

An exterior r-form on a manifold Z is a section

= r^
.... rdzA' A ... A dzAr

of the exterior product nT*Z -* Z. We denote by or(Z) the vector space of
exterior r-forms on a manifold Z. This is also a locally free module over the ring
iD°(Z) = C°°( Z). All exterior forms on Z constitute the exterior i-graded algebra
D*(Z) with respect to the exterior product A . This algebra is provided with exterior

differential

d : iY(Z) -* Dr+1(Z),

dO = li O OA,...ardz" A dzA' A ... dzar

which obeys the relations

d(¢ A u) = d(cb) A a + (-1)101t A d (u), d o d = o.

The symbol 101 stands for the form degree.
Given a morphism f : Z -+ Z', by f *0 is meant the pull-back on Z of an r-form

on Z' by f. It is defined by the condition

.f*O(vl,...,vr)(z) _O(Tf(vl),...,Tf(vT))(f(z)), W, v' ETzZ

and obeys the relations

f*(c A a) = f*0 A f*a, df*0 = f*(dq5).

Let 7r : Y -+ X be a fibre bundle with fibred coordinates (xA, yi). The pull-back

onto Y of exterior forms on X by 7r provides the inclusion

7r* : 0*(X) - 0*(Y).

Elements of its image are called basic forms. Exterior forms

0:Y-SAT*X,

= ri ^a,... ardxA' A ... A dxar,
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on Y such that '9J 0 = 0 for an arbitrary vertical vector field 'd on Y are said to be

horizontal forms. A horizontal n-form is called a horizontal density. We will use the

notation

w=dx1A...Adx"`, wa=a,\ Iw, wµa=aµ]aa]W. (1.2.9)

In the case of the tangent bundle TX -+ X, there is a different way to lift onto

TX the exterior forms on X, besides the pull-back by 7rX. Let f be a function on

X. Its tangent lift onto TX is defined as the function

f=xaaaf. (1.2.10)

Let o, be an r-form on X. Its tangent lift onto TX is said to be the r-form v given

by the relation

a(T1i...T,) = a(T1,...,Tr), (1.2.11)

where Ti are arbitrary vector fields on X, and Tti are their canonical lifts (1.2.3) onto

TX. We have the coordinate expression

Q = ^ aa1...a,.dxA' n ... A dx^r,
r.

v = r^ [xµaµval...ardx^' A • • . A dx1r + (1.2.12)

r
uAl...ardx'\' A ... A d±Ai A ... A dxA,].

It is easily verified that dd = Ta.

The interior product of a vector field u = uµaµ and an exterior r-form is given

by the coordinate expression

r (-1)k-1 Ak

uJ ^ _ E u'\kOal..ak.... ,.dz'" A ... Adz A ... A dzAr = (1.2.13)
k=1

r!

uµ0112...,,, dza2 A ... A dz11r,
(r - 1)!

and satisfies the relations

o(u1,..,ur) = urJ...u1jo, (1.2.14)

uj(oAa)= uj A a +(-1)imiq Aura, (1.2.15)

[u, u' ]] 0 = uj d(u' ] 0) - u J d(uj 0) - u'] uJ do, E D1 (Z). (1.2.16)
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The Lie derivative of an exterior form 0 along a vector field u is

Lv,O = u] dq + d(u j 0),

Lu(oAU) = LuoA Q+0ALucr.

In particular , if f is a function, then

Luf = u(f) = ujdf.

Given the tangent lift q5 (1.2.12) of an exterior form 0, we have

Lu(q5) = u*q.

Multivector fields

A multivector field t9 of degree I V I= r (or simply an r-vector field) on a manifold

Z is a section

9 = 1 19A1 ... AraA, A ... A aar (1.2.17)
r.

of the exterior product &TZ -+ Z. Let T(Z) denote the vector space of r-vector

fields on Z. In particular, Ti (Z) is the space of vector fields on Z (denoted by

T(Z) for the sake of simplicity), while T0(Z) is the vector space C°°(Z) of smooth
functions on Z. All multivector fields on a manifold Z make up the exterior 7G-graded

algebra T*(Z) with respect to the exterior product of multivector fields.

Given a manifold Z, the tangent lift i9 onto TZ of an r-vector field 19 (1.2.17) on

Z is defined by the relation

r 179(vr ,...1& 1 ) =19(x,... Q) (1.2.18)

where: (i) o k = Qadxa are arbitrary 1-forms on the manifold Z, (ii) by

ak = iµa8o dx" + 0,adP

are meant their tangent lifts (1.2.12) onto the tangent bundle TZ of Z, and (iii) the

right-hand side of the equality (1.2.18) is the tangent lift (1.2.10) onto TZ of the

function 19(a...... al) on Z. We have the coordinate expression

A ... A aar + ( 1.2.19 )
da,...A aal n...^aA,^... Aa,r)
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In particular , if T is a vector field on a manifold Z, its tangent lift (1 .2.19) coincides

with the canonical lift T (1. 2.3). If an r-vector field 19 is simple, i.e.,

19=T1n...ATr,

its tangent lift (1.2.19) reads

r

ETvl ^...ATti...Arv,

ti-1
where Tvk is the vertical lift (1 . 2.8) onto TZ of the vector field Tk.

The exterior algebra of multivector fields on a manifold Z is provided with the

Schouten-Nijenhuis bracket which generalizes the Lie bracket of vector fields as

follows:

[., .]sN : T ,(M) X 7(M) - T+s-1(M),

19 = li ...araA, n ... A aar , v = 1 val-"",9al A ... A aas,

r. s!
[0, v]SN def 19

* V + (- 1 )"V * 19,

19 * v = r (i9µ-12 ...ar aµlJa^...aaa^2 A ... A aar A aa, A ... A ,9..).
r!s!

U

The following relations hold:

[?9 v]SN = (- 1)I19I1v1 [v, 79]SN ,
[V, 19 A V]SN = [V, 79]SN A v +

(-1)(Iv1-1)I'5I 9 A [v, V]SN,

(_1)IVI(Ivl -1)[V, [79, v]sN ]sN
+ (-1)IeeI(Iv1 -1)[19 [v v]SN ]SN +

(-1)1V1(1191-1) IV, [v,t9]SN]SN = 0.

(1.2.20)

(1.2.21)

(1.2.22)

(1.2.23)

In particular , the Lie derivative of a multivector field v along a vector field u is

Luv = [u, v]SN,

Lu(19 A v) = Lu19 A v + ?9 A Luv.

The Schouten-Nijenhuis bracket commutes with the tangent lift (1.2.19 ) of multi-

vector fields, i.e.,

[19, v]SN = 119, v]SN• ( 1.2.24)

The generalization of the interior product ( 1.2.13 ) is the left interior product

7910 = 0(9), 1191<-1 l 1, 0 E s*(Z), 19 E T*(Z),
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of multivector fields and exterior forms, which is derived from the equality

0(U1 A ... A ur) = 0(Ui, .. . , ur), 0 E 0*(Z), ui E T(Z),

for simple multivector fields. There is the relation

9Jvjql = (v A 79)J = (-1)1.11'91vj 9j , 0 E D*(Z), t9, v E T*(Z).
The right interior product

79 LO = V(0), 10 I<-I 9 I, 0 E D*(Z), 9 E T* (Z),

of exterior forms and multivector fields is given by the equalities

9(^^, V ... L^1, Oi E D' (Z), 19 E T ,(Z),

79Lo = (r - 1)
Igal...ar-1µ0µdal A ... A aar-1, 0 E 01(Z).

It satisfies the relations

(V Av)L0=19A(vlO)+(-1)1.1(t9l0)Av, 0ED1(Z),
V (q A a) = 19 La LO, 0,01 E D * (Z).

In particular , if 19 I=I 0 I, there is the natural contraction

(,) : T(Z) X Dr(Z) - C°°(Z),

(79, 0) _ 19 1 0 _ 79 LO _ X9(0) = c(9).

Tangent-valued forms

A tangent-valued r-form on a manifold Z is a section

1 µ dzal A ... A dzA®® a

(1.2.25)

of the tensor bundle , T*Z ®TZ -> Z.

Example 1 . 2.1. There is one-to-one correspondence between the tangent-valued

1-forms 0 on a manifold Z and the linear bundle endomorphisms

TZ-,TZ, TZZE) v^-^v]O(z)ETZ, (1.2.26)

:T*Z->T*Z, c*:T,Zv*i- (z)Jv*ETTZ, (1.2.27)
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(see Remark 1.1.1). In particular, the canonical tangent-valued 1-form

Oz = dzA 0 as

on Z corresponds to the identity morphisms (1.2.26) and (1.2.27). •

(1.2.28)

Example 1.2 .2. Let Z = TX. There is the fibred endomorphism J of the double

tangent bundle TTX of TX such that, for every vector field r on X, we have

JOT=TV, Jo TV=0,

where T is the canonical lift (1.2.3) and Tv is the vertical lift (1.2.8) onto TTX of a

vector field T on TX. This endomorphism reads

J(aa) = aat J(aa) = 0. (1.2.29)

It corresponds to the tangent-valued form

01=dxA®aa

on the tangent bundle TX. It is readily observed that J o J = 0. •

(1.2.30)

The space D*(M)®T(M) of tangent-valued forms is provided with the Frolicher-

Nijenhuis bracket (F-N bracket) which generalizes the Lie bracket of vector fields as

follows:

[ , ]FN :.OT (M) ® T(M) x Os(M) ® T(M) --+ Or+s(M) ® T(M),

[a®u, /30V]FN= (aA/3)®[u, v]+(aALu/3)®v- (1.2.31)

(LvaA/3)®u+(-1)T(daAuJ/3)®v+(-1)r(VJaAd(3)®u,
a E $Y (M), a E 0s(M), u,v E T(M).

Its coordinate expression is

v µ _1 v µ
a[,/,, U]FN = r!S! (^.^1...ara mar+ l...a +e - aar+i ...^/tr+sv^Ai...A

r't''"1....̂ r-1V +
SUV .̂ r+2...^.+ e a^T+1 Y'A1...\r )

dzl\l A ... A dz,`r+a ® 8µt

E or(M) 0 T(M), a E Ds(M) ® T(M).
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There are the relations

[0,'+/']FN = (-1)I0II7P1+'[0,0]FN, (1.2.32)
,

[Y', [W, B]FN]FN = [[Y', W]FN, B]FN + (-1)I^IhGI[^j [0, B]FN]FN, (1.2.33)

0, ', B E sD*(M) ® T(M).

Given a tangent-valued form B, the Nijenhuis differential on .47* (M) ® T(M) is
defined as the morphism

de:ui-->dou= [0, cr]FN, Vol E0*(M)®T(M).

By virtue,

/1

of the relati

o

n (1.2.33), it has the property

do[, B]FN = [d¢4', B] FN +(-I) 1011V'1[V), d¢e]FN-

In particular , if B = u is a vector field, the Nijenhuis differential is the Lie derivative
of tangent-valued forms

Lua = dua = [u, U]FN = (uvL9vUal...A - Ua,...a,avuµ +

sor µiA2 ...A . aA,uv )dXA l A ... A dxA' ® a, o, E 1D8(M) 0 T(M).

Let Y --+ X be a fibre bundle. We consider the following subspaces of the space
0*(Y) 0 T(Y) of tangent-valued forms on Y:

• tangent-valued horizontal forms

0:Y-*nT*X®TY,
Y

¢ = dxAl A ... A dxar ® [0a,...A (Y )aµ + Oa ar (y)a2],

• projectable tangent-valued horizontal forms

= dxa' A ... A dxA• 0 [Oa,...Ar (x)aµ + a,...a (y)ati],

• vertical-valued horizontal forms

0:Y-->AT*X®VY,
Y

0 = 0a,...a. (y)dxA1 A ... A dxar ®aa,
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• vertical-valued horizontal 1-forms, called soldering forms,

aa(y)dx'®a,,

• basic soldering forms

a=a'(x ) dx" ®ai.

Remark 1.2.3. The tangent bundle TX is provided with the canonical soldering

form 01 ( 1.2.30). Due to the canonical vertical splitting

VTX = TX x TX, (1.2.34)

this soldering form defines the canonical tangent -valued form OX (1.2.28 ) on X. By

this reason , tangent-valued 1-forms on a manifold X are also called soldering forms.

Remark 1.2.4. Let Y -p X be a fibre bundle, f : X'--+ X a morphism , f *Y X'

the pull-back of Y by f and fy : f *Y --> Y the corresponding fibred morphism

(1.1.7). Since

V f *Y = f *VY = fzVY, V,,Y' = Vf,,(y,)Y,

one can define the pull-back f *0 onto f *Y of any vertical-valued form f on Y in
accordance with the relation

f*O(vl,....vr)(y) _ 0(Tfy(vl),...,Tfy(vr))(fy(y))•

We also mention the TX-valued forms

0:Y-->AT*X®TX,
Y

_ ^a Adz A ... A dx\r ® aµ,

and V*Y-valued forms

Y-SAT*X®V*Y,
Y

_ 0a,...a.idxA' A ... A dx\'' 0 dy=.

(1.2.35)

(1.2.36)
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It should be emphasized that (1.2.35) are not tangent-valued forms, while (1.2.36)

are not exterior forms. They exemplify vector-valued forms.

Distributions

An r-dimensional smooth distribution on a k-dimensional manifold Z is an r-

dimensional subbundle T of the tangent bundle TZ. We will say that a vector field

v on Z is subordinate to a distribution T if it is a section of T --+ Z.

A distribution T is said to be involutive if the Lie bracket [u, u'] is subordinate

to T, whenever u and u' are subordinate to T.

A connected submanifold N of a manifold Z is called an integral manifold of a

distribution T on Z if the tangent spaces to N belong to the fibres of this distribu-

tion. Unless otherwise stated, by an integral manifold we mean an integral manifold

of maximal dimension, equal to dim T. An integral manifold N is called maximal

if there is no other integral manifold which contains N. There is the well-known

Frobenius theorem ([302], p.75).

THEOREM 1.2.1. Let T be a smooth involutive distribution on a manifold Z.

For any point z E Z, there exists a unique maximal integral manifold of T passing

through z. q

In view of this fact, involutive distributions are also called completely integrable

distributions.

If a distribution T is not involutive, there are no integral submanifolds of dimen-

sion equal to dim T. However, integral submanifolds always exist, e.g., the integral

curves of vector fields, subordinate to T.

A codistribution T* on a manifold Z is a subbundle of the cotangent bundle.

For instance, the annihilator Ann T of an r-dimensional distribution T is a (k - r)-

dimensional codistribution. Ann T,, z E Z, consists of covectors w E Tz such that

vjw=0,Vv ETZ.

THEOREM 1.2.2. Let T be a distribution and Ann T its annihilator. Let AAnn T(Z)

be the ideal of the exterior algebra D*(Z) which is generated by sections of Ann T --+

Z. A distribution T is involutive if and only if the ideal AAnnT(Z) is a differential

ideal, i.e., d(AAnnT(Z)) C AAnnT(Z) ([302], p.74). q

COROLLARY 1.2.3. Let T be an involutive r-dimensional distribution on a k-

dimensional manifold Z. Every point z E Z has an open neighbourhood U -3 z
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which is a domain of a coordinate chart (zl, ... , zk) such that the restrictions of the

distribution T and its annihilator Ann T to U are generated by the r vector fields

,91,9x...... a/azr and the (k - r) 1-forms dzk_r+l... , dzk, respectively. It follows

that integral manifolds of an involutive distribution make up a foliation. q

An r-dimensional (regular) foliation on a k-dimensional manifold Z is said to be

a partition of Z into connected leaves FF with the following property. Every point

of Z has an open neighbourhood U which is a domain of a coordinate chart (z' )

such that, for every leaf FF, the connected components F, f1 U are described by the

equations

zr+l = const., . . . , zk = const.

[166, 252]. Note that leaves of a foliation fail to be imbedded submanifolds, i.e.,

topological subspaces in general.

Example 1.2.5. Submersions it : Y -> X and, in particular, fibre bundles are

foliations with the leaves 7r-'(x), x E 7r(Y) C X. A foliation is called simple if it is

a fibre bundle. Any foliation is locally simple. •

Example 1.2.6. Every real function f on a manifold Z with nowhere vanishing

differential df is a submersion Z -+ R. It defines a 1-codimensional foliation whose

leaves are given by the equations

f(z)=c, cEf(Z)CR.

This is the foliation of level surfaces of the function f, called a generating function.

Every 1-codimensional foliation is locally a foliation of level surfaces of some function

on Z. •

The level surfaces of an arbitrary function f const. on a manifold Z define

a singular foliation F on Z [166]. Its. leaves are not submanifolds in general. Nev-

ertheless if df (z) 0 0, the restriction of F to some open neighbourhood U of z is a

foliation with the generating function flu.

1.3 Jet manifolds

Subsections: First order jet manifolds, 25; Second order jet manifolds, 27; Higher or-

der jet manifolds, 28; Jets of submanifolds, 30; Differential equations and differential

operators, 32.
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First order jet manifolds

Given a fibre bundle Y -* X with bundle coordinates (xA, yi ), let us consider the

equivalence classes j's, x E X, of its sections s, which are identified by their values
si(x) and the values of their first order derivatives aµsi(x) at points x E X.* The

equivalence class jys is called the first order jet of sections s at the point x E X.

The set J1Y of first order jets is provided with a manifold structure with respect to

the adapted coordinates (xA,y`,ya) such that

(xA, y`, ya )Ux' s) = (xA, si (x), aas'(x)),
ax"

(a )y"y + y a= (1 1)3.3A , µax's'
. .

It is called the jet manifold of the fibre bundle Y -> X.

The jet manifold J'Y admits the natural fibrations

7r J'Y3jysi--^xEX, (1.3.2)

7r 01 JlY3jysS(x)EY, (1.3.3)

where, by virtue of the transformation law (1.3.1), the latter is an affine bundle

modelled over the vector bundle

T*X®VY->Y. ( 1.3.4)
Y

For the sake of convenience , the fibration ( 1.3.2) is called a jet bundle , while the

fibration ( 1.3.3) is an affine jet bundle.

There are the following two canonical imbeddings of the jet manifold J1Y:

Al : J1Y Y T*X ®TY,
y

a1 = dx' ®(a,\ +yaai ) = dx"®dA,

where dA are total derivatives, and

B1 : JlY * T*Y ®VY,
Y

e1= (dyi - yadx" ) ® ai = ei ® ai,

where

(1.3.5)

(1.3.6)

6i = dyi - y' dxa (1.3.7)
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are called contact forms. In accordance with Remark 1.1.1, the morphism 01 (1.3.6)

can also be rewritten as

01: J1Y x TY - VY,
Y

91 = (yb - x?ya)0a- (1.3.8)

Remark 1.3.1. From now on, we will identify the jet manifold J1Y with its image

under the canonical morphisms (1.3.5) and (1.3.6), and represent the jet (xA, y', yµ)

by the tangent-valued forms

dxA ® (aa + y' ,9i) and (dyi - yadxA) ®81. (1.3.9)

•

Each fibred morphism 4) : Y -+ Y' over a diffeomorphism f is extended to the

fibred morphism of the corresponding affine jet bundles

J1,T) : J1Y J1Y',
41

y i ° J14 = a(f )µdµV ,
ax

,a

called the jet prolongation of the morphism 4.

Each section s of a fibre bundle Y -> X has the jet prolongation to the section

(J18) (x) , of j1s,

(yy, ya) ° J1s = (sz(x), a,\ s' (x)),

of the jet bundle J1Y --> X. A sections of the jet bundle J1Y --+ X is said to be

holonomic if it is the jet prolongation of some section of the fibre bundle Y -> X.

Any projectable vector field

u = uA(xµ)aa + ua(xµ, yJ)ati

on a fibre bundle Y -> X admits the jet prolongation to the projectable vector field

Jlu = r1 o J1u: J1Y -+ J1TY -> TJ1Y,

Jlu = u-\a,\ + utaj + (dau` - ytaauµ)a, , (1.3.10)

on the jet manifold J1Y. In order to obtain (1.3.10), the canonical fibred morphism

r1 : J1TY -+ TJ1Y, ya ° r1 = (yt)a - yµxa
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is used. In particular , there is the canonical isomorphism

VJ1Y = J1VY, yA = (y`)a. (1.3.11)

Second order jet manifolds

Taking the first order jet manifold of the jet bundle J'Y -4 X, we obtain the

repeated jet manifold Jl J'Y provided with the adapted coordinates

(IA, y`, ya, yµ, yµ'\),

91Z xa
d r

y^ = ax'A «y,

y i

axa
daya, do = as + ?Y. a3 + yvaav

There exist two different affine fibrations of Jl J1Y over J'Y:

• the familiar affine jet bundle (1.3.3)

711 : J1J'Y I J1Y, YA ° 711 = ya,

• and the affine bundle

J1ira : J'J1Y - * J'Y, ya 0 J1701 = ya.

(1.3.12)

(1.3.13)

In general , there is no canonical identification of these fibrations . The points q E

J'J1Y, where 7r11 (q) = J'ir' (q), make up the affine subbundle JAY -> J1Y of

J1J1Y, called the sesquiholonomic jet manifold. This is given by the coordinate

conditions ya = yi\, and is coordinated by (xx, yi, ya, yµa).

The second order jet manifold J2Y of a fibre bundle Y -* X is the affine sub-

bundle iri : J2Y -> J1Y of the fibre bundle J2Y -+ J1Y, given by the coordinate

conditions y'µ = yµa and coordinated by (x-\, yi, y, yaµ = yµa). It is modelled over

the vector bundle

V T*X ® VY -> J1Y.
J1Y

The second order jet manifold J2Y can also be seen as the set of the equivalence

classes j2s of sections s of the fibre bundle Y -> X, which are identified by their
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values and the values of their first and second order partial derivatives at points

x E X, i.e.,

ya(jxs) = OAsi(x), yaµ(jxs) = '9'\aµ82(X)-

Let s be a section of a fibre bundle Y - X and Jls its jet prolongation to a

section of the jet bundle J'Y --4X. The latter gives rise to the section J'J1s of

the repeated jet bundle J'J1Y -> X. This section takes its values into the second

order jet manifold J2Y. It is called the second order jet prolongation of the section

s, and is denoted by J2s.

PROPOSITION 1.3.1. Lets be a section of the jet bundle J1Y -> X and J1 its jet

prolongation to the section of the repeated jet bundle J1J1Y -> X. The following

three facts are equivalent:

• s = Jls where s is a section of the fibre bundle Y -> X;

• Jls takes its values into JAY;

• Jls takes its values into J2Y.

0

Higher order jet manifolds

The notion of first and second order jet manifolds is naturally extended to higher
order jet manifolds. Here, we touch on only a few elements of the higher order jet

technique , and refer the reader to Section 11.1 for a detailed exposition.

The k-order jet manifold JkY of a fibre bundle Y -> X comprises the equivalence

classes jxs , x E X, of sections s of Y identified by the k + 1 terms of their Taylor

series at the points x E X. The jet manifold jky is provided with the adapted

coordinates

W, y , y1\, ... , yak...a1)7

a^ sti(r), 0 < 1 < k.yat \,(jkS
) =a,\,

Every section s of a fibre bundle Y -> X gives rise to the section Jks of the jet

bundle jky -+ X such that

yal...A1 Jks = aa` ... aalsti 0 < 1 < k.
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We will use the following operators on exterior forms on jet manifolds (see Section

11.1 for their intrinsic definitions):

• the total derivative

da =as+ yAaz+yaµ`+...

given by the relations

dA(0 A o,) = da(0) A o, + A da(Q),

da(dcb) = d(da(q)),

e.g.,

da(f) = aaf + y),ai f + yaµa^f + ... f E C-(Jky),

da(dxµ ) = 0, da(dya,...A,) = dyaa,...a,;

• the horizontal projection ho given by the relations

(1.3.14)

ho(dxA) = dxx, ho(dyak...1\1) = y,,ak.... ,dx'`, (1.3.15)

e.g.,

ho(dy') = ydxm, ho(dya) = yµAdxµ;

• the horizontal differential

dH(0) = dx' A da(0)

possessing the properties

dHodH=O, hood=dHoho.

(1.3.16)
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Jets of submanifolds

The notion of jets of sections of a fibre bundle is generalized to jets of subman-

ifolds of a manifold Z which has no fibration [123, 185]. We will appeal to jets of

submanifolds both in order to introduce the general notion of a differential equation

and in relativistic mechanics.

Let Z be a manifold of dimension m + n. The k-order jet of n-dimensional

submanifolds of Z at a point z E Z is defined as the equivalence class [S]i of

n-dimensional imbedded submanifolds of Z which pass through z and which are

tangent to each other at z with order k > 0. The disjoint union

,7Z= U[S]z, k>0, (1.3.17)
zEZ

of jets [S]z is said to be the k-order jet manifold of the n-dimensional submanifolds of

Z. Lowering the order of tangency , one obtains the natural surjections J,JZ Jn-iZ

and JnZ -* Z. By definition , J°Z = Z.

Remark 1 .3.2. The above definition of jets of submanifolds does not provide for jets

of n-dimensional submanifolds of an n-dimensional manifold Z . Jets of this type are

widely known due to their application to the study of G-structures [ 123, 178, 252].

Hereafter, we will restrict our consideration to first order jets of submanifolds.

The set of these jets JnZ is provided with a manifold structure as follows. Let

Y -> X be an (m + n)-dimensional fibre bundle over an n-dimensional base X, and

let 4) be an imbedding of Y into Z. Then there is the natural injection

J1 : J1Y -+ J,zZ, (1.3.18)

jX1s'-' [S]"(s(x)), S = Im ((D o s),

where s are sections of Y -* X. This injection defines a chart on JnZ. Indeed, given

a submanifold S C Z which belongs to the jet [S]z, there exist a neighbourhood U,

of the point z and the tubular neighbourhood Us of S fl U,z so that the fibration

Us -* S fl Uz takes place. It means that every jet [S]z lives in a chart of the above-

mentioned type. These charts cover the set JnZ, and transition functions between

them are differentiable.
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It is convenient to use the following coordinate atlas of the jet manifold J, ',Z of
n-dimensional submanifolds of Z. Let Z be equipped with a coordinate atlas

{(U;zA)}, A = 1,...,n+m. (1.3.19)

Though J°Z = Z, let us provide J°Z with the atlas where every chart (U; zA) on a

domain U C Z is replaced with the

^n + m'\ (n + m)!

in n!m!

charts on the same domain U which correspond to different partitions of the collec-

tion (z1 . . . zA) in the collections of n and m coordinates, denoted by

(1.3.20)

The transition functions between the coordinate charts (1.3.20) of J°Z, associated

with the same coordinate chart (1.3.19) of Z, reduce to an exchange between coor-

dinates xA and y. Transition functions between arbitrary coordinate charts (1.3.20)

of the manifold J°Z read

Ya=(xµ,yi), =ft(xµ,y), (1.3.21)

xA = gA(xµ,y3), yi = fi(xµ,3)•

Given the coordinate atlas (1.3.20) of the manifold J°Z, the jet manifold J,1^Z is

provided with the adapted coordinates

(xA,y2,yaA = 1,...,n, i = 1,...,m. (1.3.22)

The transition functions of the coordinates ya (1.3.22) under coordinate transfor-

mations (1.3.21) take the form

ya = daft = [dag'(xµ, y )]d«f'(xµ, y) _

5X7a +yaayp) 9a(x^,y )^ \aaa +y^^ yi) ft(xµ,yi)• (1.3.23)

It is readily observed that the transition functions (1.3.1) are a particular case

of the coordinate transformations (1.3.23) when the transition functions g' (1.3.21)

are independent of coordinates y . In contrast with (1.3.1), the coordinate trans-

formations (1.3.23) are not affine. It follows that the fibration J,, Z -+ Z is not an

affine bundle. Similarly to the morphism (1.3.5), there is one-to-one correspondence

Al : [S]Z1 H xP(aa +ya([S]z)as) (1.3.24)
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between the jets [S]z at a point z E Z and n-dimensional vector subspaces of the

tangent space TzZ. It follows that the fibration J,,Z -+ Z is a fibre bundle with

the structure group GL(n, m; R) of linear transformations of the vector space Rm+n

which preserve its subspace Rn. The typical fibre of J,, Z -> Z is the Grassmann

manifold

6(n,m; R) = GL(n+m;R)/GL(n,m;R).

In particular, let Y -> X be an (m + n)-dimensional fibre bundle over an n-

dimensional base X, J'Y the first order jet manifold of its sections, and J9'Y the first

order jet manifold of n-dimensional subbundles of Y. Then the injection J1Y -> JJY

(1.3.18) is an affine subbundle of the jet bundle J,1lY -3 Y. Its fibre at a point y E Y

consists of the n-dimensional subspaces of the tangent space TyY whose intersections

with the vertical subspace VY of T,Y reduce to the zero vector.

Differential equations and differential operators

Jet manifolds provide the standard language for the theory of differential equa-

tions and differential operators [46, 123, 185, 2471. We will refer to the following

general notion of a differential equation.

DEFINITION 1.3.2. Let Z be an (m+n)-dimensional manifold. A system of k-order

partial differential equations in n variables on Z is defined as a closed submanifold

(F of the k-order jet bundle JJZ of n-dimensional submanifolds of Z. q

In brief, we will call (E simply a differential equation. By its classical solution is

meant an n-dimensional submanifold S of Z whose k-order jets [S]z, Z E S, belong

to (E.

DEFINITION 1.3.3. A k-order differential equation in n variables on a manifold Z
is called a dynamic equation if it can be algebraically solved for the highest order

derivatives, i.e., it is a section of the fibration JJZ ---* J.J-1Z. q

In particular, a first order dynamic equation in n variables on a manifold Z is a

section of the jet bundle J,',Z -* Z. Its image in the tangent bundle TZ -+ Z by the

correspondence al (1.3.24) is an n-dimensional vector subbundle of TZ. If n = 1, a

dynamic equation is given by a vector field

za(t) = UA(z(t)) (1.3.25)
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on a manifold Z. Its classical solutions are integral curves c(t) of the vector field u.
Let Y --> X be a fibre bundle and JkY its k-order jet manifold.

DEFINITION 1.3.4. In accordance with Definition 1.3.2, a k-order differential
equation on Y - X is defined as a closed subbundle c of the jet bundle jky -> X.

Its classical solution is a (local) section s of the fibre bundle Y -> X such that its
k-order jet prolongation Jks lives in €. 0

Henceforth, we will consider differential equations associated with differential

operators . Given a fibre bundle Y ---> X, let E -+ X be a vector bundle coordinated

by (X A, vA).

DEFINITION 1.3.5. A fibred morphism

E : JkY -- E, (1.3.26)

vAoc=EA xa i i i( , y , ya, ... , yak... Al ),

is called a k-order differential operator on the fibre bundle Y -+ X. It sends each

section s(x) of Y -* X onto the section (E o Jks)(x) of the vector bundle E -+ X:

(E o Jks)A(x) = EA(x), si(x), aAsi(x)...... ak ... aaJ si(x))-

Let us assume that 6 (X) C S(J'`Y), where 6 is the zero section of the vector
bundle E -- X. Then the kernel of a differential operator is the subset

KerE = E-1(6(X)) C JkY. (1.3.27)

If KerE ( 1.3.27 ) is a closed subbundle of the fibre bundle JAY -> X, it defines a
differential equation

E0Jks=0

written in the coordinate form

EA xa i i i = 0
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The following condition is sufficient for a kernel of a differential operator to be a

differential equation.

PROPOSITION 1.3.6. Let the morphism ( 1.3.26) be of constant rank. By virtue

of Proposition 1.1.3, its kernel ( 1.3.27) is a closed subbundle of the fibre bundle

jky -* X and, consequently, is a k-order differential equation. q

Remark 1.3 .3. Linear differential operators are usually phrased in terms of jets of

modules (see Section 8.1). •



Chapter 2

Connections

This Chapter is devoted to the general notion of a connection on a fibre bundle.

We start from the traditional definition of connections as splittings of the exact

sequences (1.1.17a) - (1.1.17b), but then follow their definition as global section of

the affine jet bundle [123, 179, 212, 265, 274]. These connections are represented

by tangent-valued forms. The algebraic definition of connections on modules and

sheaves is given in Chapter 8. It is appropriate for quantum field theory, and is

equivalent to the above mentioned ones in the case of vector bundles.

2.1 Connections as tangent -valued forms

A connection on a fibre bundle Y -+ X is defined traditionally as a linear bundle

monomorphism

r:YxTX -+TY,

r : :iaaa F-+ xa(a,\ + riai),

over Y which splits the exact sequence (1.1.17a), i.e.,

7rTor =Id(YxTX).
x

By virtue of Theorem 1.1.4, a connection always exists . The local functions ra(y)

in (2.1.1) are said to be components of the connection r with respect to the fibred

coordinates ( xA, y`) on Y -+ X.

35
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The image of Y x TX by the connection r defines the horizontal distribution

HY C TY which splits the tangent bundle TY as follows:

TY = HY ® VY, (2.1.2)
Y

'Pax + y`ai = i (aa + ri a8) + (yi - xAri ) ai.

Its annihilator is locally generated by the 1-forms dyi - radx.

The connection r (2.1.1) can be written in several equivalent forms (see (2.1.3),

(2.1.4), (2.1.7), (2.1.8) and (2.1.10) below). We will use the same symbol for all of

them.
Given the horizontal splitting (2.1.2), the projection

r:TY--VY,

o r=yi - rixa,

(2.1.3)

defines a connection on Y -i X in an equivalent way.

The linear morphism r over Y (2.1.1) yields uniquely the horizontal tangent-

valued 1-form

F = dxA ® (aa + riai) (2.1.4)

on Y which projects over the canonical tangent-valued form 9x (1.2.28) on X. With

this form, the morphism (2.1.1) reads

r:aaHaa]r=as+ria.

One can think of the tangent-valued form r (2.1.4) as being another definition of a

connection on a fibre bundle Y -+ X.

Given a connection IF and the corresponding horizontal distribution (2.1.2), a

vector field u on the fibre bundle Y -+ X is called horizontal if it lives in HY. A

horizontal vector field takes the form

u = u' (y)(aa + raai). (2.1.5)

In particular, let T be a vector field on the base X. By means of the tangent-valued

form r (2.1.4), we obtain the projectable horizontal vector field

rT=TJr= Ta(aA +riai)1 (2.1.6)
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on Y, called the horizontal lift of T by the connection F.

Given the splitting (2.1.1), the dual splitting of the exact sequence (1.1.17b) is

F:V*Y-+ T*Y,

F: dyc F-4 dy` - Fadx,\.

Hence, a connection r on Y -+ X is represented by the vertical-valued form

r = (dye - Fadxa) ®az

(2.1.7)

(2.1.8)

such that the morphism (2.1.7) reads

r : dyt H r] ay' = dy?  - FadxA.

The corresponding horizontal splitting of the cotangent bundle T*Y takes the form

T*Y = T*X ®F(V*Y),
Y

c,,dxA + yidy' = (xa + y,F')dxA + yc (dy' - FadxA).

Then we have the projection

F=pr1:T*Y-+ T*X,

^aor=xa+y=Fa,

which also defines a connection on the fibre bundle Y -* X.

(2.1.9)

(2.1.10)

Remark 2.1.1. Treating a connection as the vertical-valued form (2.1.8), we come

to the following important construction. Given a fibre bundle Y -> X, let f : X' -+
X be a map and f *Y -> X' the pull-back of Y by f . Any connection r (2.1.8) on
Y -* X induces the pull-back connection

a
f *F = (dyt - (F o fY)Aa 7-dx'µ) ®ati (2.1.11)

on f *Y -+ X' (see Remark 1.2.4). Accordingly the curvature (see (2.3.3 ) later)
of the pull-back connection ( 2.1.11 ) is the pull-back f *R of the curvature of the
connection F. •
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2.2 Connections as jet bundle sections

The definition of connections as sections of the affine jet bundle enables one to say
something more. This definition is based on the following canonical splittings.

Let Y -> X be a fibre bundle, and J1Y its first order jet manifold . Given the
canonical morphisms ( 1.3.5) and ( 1.3.6), we have the corresponding morphisms

J1Y x TX Sax -d,= aaJa1 E J1Y x TY,
X Y

61 : J1Y x V*Y 3 dyt " 0' . = 61 ]dyt E J1Y x T*Y

(2.2.1)

(2.2.2)

(see Remark 1.1.1). These morphisms yield the canonical horizontal splittings of
the pull-backs

J1Y x TY = a1(TX) ® VY,
Y JlY

xaax + ylai =IPA\+ ya9) +(y1- xl\yi)ail

J1Y x T*Y T*X ®61(V*Y),
Y J'Y

xadx;' + Tidy` = (xa + ylyi)dx" + y,(dyti - yadx'')•

(2.2.3)

(2.2.4)

Remark 2 .2.1. Let u = u'aa + utai be a vector field on a fibre bundle Y -+ X. In

accordance with the formula (2.2.3), we have its canonical horizontal splitting

u"aa + utai = uA(aa + yaai) + (ui - uAya)ai-

•

(2.2.5)

Let r be a global section of J1Y -+ Y. Substituting the tangent-valued form

Alor=dxA®(a,\ +Paai)

in the canonical splitting (2.2.3), we obtain the familiar horizontal splitting (2.1.2)

of TY by means of a connection F on Y -+ X. Accordingly, substitution of the

tangent-valued form

61 or= (dyt-Iadx")®at

in the canonical splitting (2.2.4) leads to the dual splitting (2.1.9) of T*Y by means

of a connection P.
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PROPOSITION 2.2.1. [123, 274 ]. There is one-to-one correspondence between the
connections I' on a fibre bundle Y --> X and the global sections

r:Y->J1Y,

(xl , y` , ya) o r = (x,, y1, ri), (2.2.6)

of the affine jet bundle J1Y --> Y. They are represented by the tangent-valued forms
(2.1.4) and (2.1.8) in accordance with Remark 1.3.1. q

It follows at once from this correspondence that connections on a fibre bundle
Y -> X make up an affine space modelled over the vector space of soldering forms
on Y -+ X, i.e., sections of the vector bundle ( 1.3.4). One deduces immediately
from ( 1.3.1) the coordinate transformation law

/i _ x
µ

rA - 9",\(aµ+ rjµaj )y
/i

of connection parameters.

Every connection r (2.2.6) on a fibre bundle Y -* X yields the first order
differential operator

Dr : J1Y Y T*X ®VY,

Dr=Al-F o7ro= (ya-ra)dx,\ ®ai,

(2.2.7)

called the covariant differential relative to the connection F. If s : X -> Y is a
(local) section , we obtain from (2.2.7) its covariant differential

Vrs=DroJ1s:X-+ T*X®VY, (2.2.8)

Ors= (aasi-I'os)dx,`®ai,

and the covariant derivative DTs = Tjyrs along a vector field T on X.

A (local) section s is said to be an integral section of the connection r if s obeys

the equivalent conditions

Vrs=0 or J1s=Fos. (2.2.9)

Let s : X -> Y be a global section . There exists a connection F such that s is an

integral section of r. This connection r is an extension of the local section s(x) H

Jls(x) of the affine jet bundle J'Y -+ Y over the closed imbedded submanifold

s(X) C Y in accordance with Theorem 1.1.2.
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Treating connections as sections as sections of the affine jet bundle, we come
naturally to the following two constructions.

Let Y and Y' be fibre bundles over the same base X. Given a connection P on
Y -+ X and a connection P on Y' -* X, the fibre bundle Y x Y' -> X is provided

x
with the product connection

F F':YxY'->J'(YxY')=J1YxJ1Y',
X x x

P x r' = dxl\ 0 R\ + IN ^yz + 1"i ay-,j (2.2.10)

Let iy : Y -> Y' be a subbundle of a fibre bundle Y' - X and P' a connection
on Y' -> X. If there exists a connection P on Y -+ X such that the diagram

Y' rT. J1Y

lY I I J1bY

Y r .
J1Y'

commutes, we say that F' is reducible to the connection P. The following conditions

are equivalent:

• P' is reducible to r;

• Tiy(HY) = HY'J jY(y), where HY C TY and HY ' C TY' are the horizontal

subbundles determined by r and r, respectively;

• for every vector field T E T(X), the vector fields FT and P'T are iy-related,
i.e.,

Tiy o FT = P'T O 2y.

2.3 Curvature and torsion

(2.2.11)

Let F be a connection on a fibre bundle Y ---^ X. Given vector fields T, T' on X and

their horizontal lifts PT and PT' (2.1. 6) on Y, let us compute the vector field

R(T, T') = -F [T, -r'] + [FT, PT'] ( 2.3.1)
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on Y. It is readily observed that this is the vertical vector field

R(T, T) = TAT µRA,,ai

Raµ = aari - 8µIa + I'pri - rair .
14 It

R= 1Raµdxl'A dx'`®8i

(2.3.2)

(2.3.3)

is called the curvature of the connection F.

In an equivalent way, the curvature (2.3.3) is defined as the Nijenhuis differential

R= 2drr= 1[F , I']FN:Y -* TAX ®VY.

Then we obtain at once the identities

(2.3.4)

[R, RIFN =0, (2.3.5)

drR = [r, RI FN- 0. (2.3.6)

The identity (2.3.5) results from the identity (1.2.32 ), while (2.3.6) is an immediate
consequence of the graded Jacobi identity ( 1.2.33). The identity (2.3.6) is called the
(generalized) second Bianchi identity . It takes the coordinate form

(8a R'µ„ + I'-,\ a, Rµ„ - esraRµ„) = 0, (2.3.7)
N-)

where the sum is cyclic over the indices A , is and v.
In the same manner, given a soldering form a, one defines the soldered curvature

p = 2dQa =
2 [

a, a]FN : Y --+ AT'X ® VY,

p = 2 p' dxa A dx ®® ai,

AA- aaa3aµ - 0,1ajaa1

which fulfills the identities

(2.3.8)

[p, PIFN = 0, d,p = [a, p]FN =0.
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Given a connection r and a soldering form v, the torsion of r with respect to o,

is introduced as

T =dru=dor :Y-> AT*X ®VY.

Its coordinate expression is

T = (a,\ o,,, + ri,\ ajaµ - aj ravµ )dx-\ A dx ® ® ai. (2.3.9)

There is the (generalized) first Bianchi identity

drT = dra = [R , Q]FN = -d,R. (2.3.10)

If r' = F + a, we have the important relations

T'= T+ 2p, (2.3.11)

R' = R + p + T. (2.3.12)

2.4 Linear connections

A connection r on a vector bundle Y -> X is said to be a linear connection if the

section

r:Y-4J1Y,

r = dxa (9 (aa + raij(x)yjai), (2.4.1)

is a linear bundle morphism over X. Note that linear connections are principal

connections, and they always exist (see Section 6.1).

The curvature R (2.3.3) of a linear connection r (2.4.1) reads

®ai,R =
1
2 Ra`j (x)y'dx" A dx ®

R,\µtj = aJrµij - aµra + rahjr,A ih - rµhjFAih. ^ (2.4.2)

Due to the vertical splitting (1.1.15), we have the linear morphism

R: Y 3 yiei F--> 2RaµijyjdxA A dxµ ®ei E 02(X) ®Y. (2.4.3)

Then one can write

R(T, z) o s = ([Vr , VT,] - V1T,T,])s (2.4.4)
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for any section s of the vector bundle Y -* X and any two vector fields T and T'
on X. We will refer to the expressions (2.4.3) and (2.4.4) in order to introduce the
curvature of connections on modules and sheaves (see Chapter 8).

Some standard operations with linear connections should be recalled.
(i) Let Y -+ X be a vector bundle and r a linear connection (2.4.1) on Y. Then

there is a unique linear connection P* on the dual vector bundle Y* -* X such that
the diagram

JlY X J1Y* _ *T*X x R
X

rxr* 1
YxY* X x
x 0

commutes. The connection r* is called the dual connection of r. It has the coordi-
nate expression

r*i = -r (2.4.5)

where (x", yj ) are the fibred coordinates on Y* dual of those on Y.
(ii) Let Y -> X and Y' --* X be vector bundles with linear connections F and

P, respectively. Then the product connection (2.2.10 ) is the direct sum connection
r® P' on Y® Y'.

(iii) Let Y -+ X and Y' -+ X be vector bundles with linear connections r and
P, respectively. There is a unique linear connection r ® P on the tensor product
Y ® Y' --* X such that the diagram

x

J1Y X JIY, ± J1(Y ®Y')

rxr' 1 1 rur'

Y x Y' -+ Y ®Y'
x a x

commutes.

pression

It is called the tensor product connection, and has the coordinate ex-

(I, i jk i k it (2.4.6)

where ( xl`, yik ) are linear bundle coordinates on Y ®Y' -+ X.
X



44 CHAPTER 2. CONNECTIONS

An important example of linear connections is a linear connection

K = dx" ® (8a + Ka'`"x"aµ) (2.4.7)

on the tangent bundle TX of a manifold X. We will call it a world connection on

a manifold X. The dual connection (2.4.5) on the cotangent bundle T*X is

K* = dx" ® (aa - Kaµ"±µa"). (2.4.8)

Then, using the construction of the tensor product connection (2.4.6), one can intro-

duce the corresponding linear connection on an arbitrary tensor bundle T (1.1.12).

Remark 2 .4.1. It should be emphasized that the expressions (2.4.7) and (2.4.8)

for a world connection differ in a minus sign from those usually used in the physical

literature. •

The curvature of a world connection is defined as the curvature R (2.4.2) of the

connection F (2.4.7) on the tangent bundle TX. This reads

R = 1 RaµaoxodXA A dx" 0 8a,

RaN,'o =,9,\Kµ'0 - 8 KA'o + KaryoKK'.y - KN,'rpKa',y. (2.4.9)

By the torsion of a world connection is meant the torsion (2.3.9) of the connection

I (2.4.7) on the tangent bundle TX with respect to the canonical soldering form 9.

(1.2.30):

T = 2I TVA? A dx' ®

Tµ"a = Kµ"A - Ka "µ.

(2.4.10)

A world connection is said to be symmetric if its torsion (2.4.10) vanishes, i.e.,

Kµ"a = Ka"µ. Note that, due to the canonical vertical splitting (1.2.34), the torsion

(2.4.10) can be seen as the tangent-valued 2-form

T = 2Tµ"Adx" A dxµ ® a"

on X if there is no danger of confusion.

(2.4.11)

Remark 2.4.2. For any vector field r on a manifold X, there exists a connection

F on the tangent bundle TX --+ X such that T is an integral section of K, but this



2.5. AFFINE CONNECTIONS 45

connection is not necessarily linear . If a vector field T is non-vanishing at a point

x E X, then there exists a local symmetric world connection K (2.4.7) around x for

which T is an integral section

a^Ta = KVa0T-Q. (2.4.12)

Then the canonical lift T (1.2.3) of T onto TX can be seen locally as the horizontal

lift KT (2.1.6) of r by means of this connection. •

Remark 2.4.3. Every manifold X can be provided with a non-degenerate fibre

metric

a
g E V 01(X)' g = gaµdxa ® dxµ,

in the tangent bundle TX, and with the corresponding metric

g EVT'(X), 9=94`aa (& aµ,

in the cotangent bundle T*X. We call it a world metric on X. For any world metric

g, there exists a unique symmetric world connection IF (2.4.7) with the components

1KA
= {8Vµ} _ -19VP(9a9Pµ + aµ9Pa - 8P9'\µ)'

called the Christoffel symbols, such that g is an integral section of r, i.e.,

as gaQ = gal{aR7} + g0'r{aa7}.

This is called the Levi-Civita connection associated with g. •

2.5 Affine connections

(2.4.13)

Let Y --> X be an affine bundle modelled over a vector bundle Y -> X. A connection

IF on Y -+ X is said to be an affine connection if the section IF: Y -* J'Y (2.2.6) is

an affine bundle morphism over X. Affine connections are associated with principal

connections, and they always exist (see Section 6.1).

For any affine connection F : Y - J1Y, the corresponding linear derivative

r: Y J'Y (1.1.9) defines uniquely the associated linear connection on the vector
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bundle Y -+ X. Since every vector bundle has a natural structure of an affine

bundle, any linear connection on a vector bundle is also an affine connection.

With affine bundle coordinates (xA, yi ) on Y, an affine connection r reads

r = F iA A j(x)yj + aa(x). (2.5.1)

The coordinate expression of the associated linear connection is

FA = rats (x)y', (2.5.2)

where (x', y) are the linear bundle coordinates on Y.

Affine connections on an affine bundle Y -+ X constitute an affine space modelled

over the vector space of soldering forms on Y --+ X. In view of the vertical splitting

(1.1.14), these soldering forms can be seen as global sections of the vector bundle

T*X ®Y -+ X. If Y -+ X is a vector bundle, both the affine connection IF (2.5.1)

and the associated linear connection r are connections on the same vector bundle

Y -+ X, and their difference is a basic soldering form on Y. Thus, every affine

connection on a vector bundle Y -+ X is the sum of a linear connection and a basic

soldering form on Y -+ X.

Given an affine connection r on a vector bundle Y -+ X, let R and R be the

curvatures of the connection r and the associated linear connection r, respectively.

It is readily observed that R = R + T, where the VY-valued 2-form

T=dra=dr :X-->AT*X®VY,
X

(2.5.3)T = 1Taµdxa A dx'' 0 (9i,

h h
T,,\ µ = C7 (7

i
- C7NU

i
+ U^r14)j - or14 a

i
h,

is the torsion (2.3.9) of the connection r with respect to the basic soldering form Q.

In particular, let us consider the tangent bundle TX of a manifold X and the

canonical soldering form a = Bj = ox (1.2.30) on TX. Given an arbitrary world

connection K (2.4.7) on TX, the corresponding affine connection

A=K+0x, Aa=K,' f'+6, (2.5.4)

on TX is called the Cartan connection. Since the soldered curvature p (2.3.8) of

Oj equals to zero, the torsion (2.3.11) of the Cartan connection coincides with the

torsion T (2.4.10) of the world connection K, while its curvature (2.3.12) is the sum

R + T of the curvature and the torsion of K.
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2.6 Flat connections

By a flat or curvature-free connection is meant a connection which satisfies the
following conditions.

PROPOSITION 2.6.1. Let F be a connection on a fibre bundle Y -> X. The following
conditions are equivalent.

• The horizontal lift T(X) D T --+ rT E T (Y) is a Lie algebra morphism.

• The horizontal distribution is involutive.

• The curvature R of the connection F vanishes everywhere on Y.

• There exists a (local ) integral section for the connection r through any point
yEY.

By virtue of Theorem 1.2.1, a flat connection F on a fibre bundle Y -> X yields
the integrable horizontal distribution and, consequently, the horizontal foliation on
Y, transversal to the fibration Y -+ X. The leaf of this foliation through a point
y E Y is defined locally by an integral section s. for the connection r through y.
Conversely, let a fibre bundle Y -> X admit a horizontal foliation such that, for
each point y E Y, the leaf of this foliation through y is locally defined by a section
sy of Y -> X through y. Then the map

r:Y-+J1Y,

F(y) = 7xsy, ir(y) = x,

introduces a flat connection on Y -+ X. Hence, there is one-to-one correspondence

between the flat connections and the horizontal foliations on a fibre bundle Y -+ X.

Given a horizontal foliation on a fibre bundle Y -+ X, there exists the associated

atlas of fibred coordinates (zA, yt) of Y such that every leaf of this foliation is locally

generated by the equations yi =const., and the transition functions yi -+ y'2(yi) are

independent of the base coordinates xa [48, 123]. This is called the atlas of constant

local trivializations. Two such atlases are said to be equivalent if their union is

also an atlas of constant local trivializations. They are associated with the same

horizontal foliation. Thus, we come to the following assertion.
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PROPOSITION 2.6.2. There is one-to-one correspondence between the flat connec-

tions IF on a fibre bundle Y --> X and the equivalence classes of atlases of constant

local trivializations of Y such that r = dxj' ®aa relative to these atlases. q

2.7 Composite connections

Let us consider the composition of fibre bundles

Y-->E-+X,

where

(2.7.1)

7ryE:Y-->E (2.7.2)

and

7rrX:E->X (2.7.3)

are fibre bundles. This is called a composite fibre bundle. It is provided with an

atlas of fibred coordinates (x", am, y`), where (xµ, am) are fibred coordinates on the

fibre bundle (2.7.3) and the transition functions am -. O'm(x), o) are independent

of the coordinates y`.
The following two assertions make composite fibre bundles useful for physical

applications [123, 213, 268].

PROPOSITION 2.7.1. Given a composite fibre bundle (2.7.1), let h be a global
section of the fibre bundle E --* X. Then the restriction

Yh = h*Y (2.7.4)

of the fibre bundle Y -+ E to h (X) C E is a subbundle ih : Yh ---* Y of the fibre

bundle Y --> X. q

PROPOSITION 2.7.2. Given a section h of the fibre bundle E -* X and a section sE

of the fibre bundle Y -* E, their composition

s=sEoh (2.7.5)
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is a section of the composite fibre bundle Y -+ X (2.7.1). Conversely, every section
s of the fibre bundle Y -+ X is the composition (2.7.5) of the section h = 7ryE o s
of the fibre bundle E -* X and some section sr of the fibre bundle Y --+ E over the
closed submanifold h(X) C E. q

Let us consider the jet manifolds J'E, JEY, and J'Y of the fibre bundles E -+ X,
Y -+ E and Y -+ X, respectively. They are parameterized respectively by the
coordinates

(xa
e
Um 0, ) (xa

r Um r y` e ay + ^ ,y ` ) >
(XA

> Qm > yt e Qa , ya)•A

LEMMA 2.7.3. [274]. There is the canonical map

o : J1E x J£Y ) J1Y,
E Y

(2.7.6)

Using this map, we can consider the relations between connections on the fibre
bundles Y --+ X, Y -+ E and E -+ X as follows.

Remark 2 .7.1. Let

-y= dxA (& (aa +'y. 8m +7aaz)
be a connection on the composite fibre bundle Y -+ X and

F=dx1\0A+I'a8,n) (2.7.7)

a connection on the fibre bundle E -+ X. We say that the connection ry is projectable

over the connection F if the diagram

Y "-+ J1Y

7rY£ 1 I J17rYE

E F + J1E

is commutative . It is readily observed that the commutativity of this diagram is

equivalent to the condition rya = 17'. •
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Let

AE = dxa ® (aa + Aaai) + dam ® (am + A;m8) (2.7.8)

be a connection on the fibre bundle Y -+ E. Given a connection IF (2.7.7) on E -+ X,

the canonical morphism p (2.7.6) enables one to obtain a connection ry on Y --+ X

in accordance with the diagram

(r,A)

J1E x J1YE -2, J1Y
E

i ily
ExY - Y
x

This connection, called the composite connection, reads

ry=dx"®(aa+Faam+(Ai+Air )ai). (2.7.9)

It is projectable over F.
An equivalent definition of a composite connection is the following. Let AE and

r be the connections as before. Then their composition

YxTX(1 YxTE QTY
x E

is the composite connection -y (2.7.9) on the composite fibre bundle Y -* X. In

brief, we will write

ry=AEoF. (2.7.10)

In particular, let us consider a vector field T on the base X, its horizontal lift F-r

onto E by means of the connection r and, in turn, the horizontal lift AE(Prr) of Frr

onto Y by means of the connection AE. Then AE(Fr) coincides with the horizontal

lift ryT of r onto Y by means of the composite connection ry (2.7.10).

Let h be a section of the fibre bundle E -+ X and Yh the subbundle (2.7.4) of the

composite fibre bundle Y -* X, which is the restriction of the fibre bundle Y -+ E

to h(X). Every connection AE (2.7.8) induces the pull-back connection

Ah = i AE = dxa ® [aa + ((AL o h)a^,hm + (A o h)a)ai] (2.7.11)

on Yh -+ X (see (2.1.11)). Now, let r be a connection on E -+ X and let 'y = AE o IF

be the composition (2.7.10). Then it follows from (2.2.11) that the connection ry is



2.7. COMPOSITE CONNECTIONS 51

reducible to the connection Ah if and only if the section h is an integral section of

IF, i.e.,

FT oh=8ah'.

Such a connection r always exists.
Given a composite fibre bundle Y (2.7.1), there are the following exact sequences

of vector bundles over Y:

0->VEY-+ VY--*YxVE --*0, (2.7.12a)
E

0 --^YxV*E"V`Y-*VVY-* 0,E (2.7.12b)

where VEY and VVY are vertical tangent and cotangent bundles of the fibre bundle
Y -+ E, respectively . Every connection A (2.7.8) on the fibre bundle Y -* E

provides the splittings

VY = VEY ®AE(Y x VE), (2.7.13)

yz8i + Qmam = (y2 - A11dm) 8i + Om(8m + A' aj),

V*Y = (Y x V*E) ®AE(VVY), (2.7.14)

t'idy' + amdam = yi(dy' - A;,,dam ) + ( &m + Amyi)dam,

of the exact sequences (2.7.12a) and (2.7.12b ), respectively. Using the splitting

(2.7.13), one can construct the first order differential operator

D : J1Y -> T*X ®VEY,
Y

dx'0(ya-Aa-Amaa)8i, (2.7.15)

called the vertical covariant differential , on the composite fibre bundle Y -> X. This

operator can also be seen as the composition

D=pr1 oD7 : J1Y->T*X®VY-*T`X®VYE,
y Y

where D7 is the covariant differential (2.2.7) relative to some composite connection

(2.7.9), but D does not depend on I.
The vertical covariant differential (2.7.15) possesses the following important

property. Let h be a section of the fibre bundle E --* X and Yh the subbundle

(2.7.4) of the composite fibre bundle Y -* X, which is the restriction of the fibre



52 CHAPTER 2. CONNECTIONS

bundle Y -* E to h(X). Then the restriction of the vertical covariant differential

D (2.7.15) to J'ih(JIYh) C JIY coincides with the familiar covariant differential on

Yh relative to the pull-back connection Ah (2.7.11).

Let now Y -+ E -* X be a composite fibre bundle where Y -+ E is a vector

bundle. Let a connection

-y = dxl\ ® (ax + ra am + Aaijyjai) (2.7.16)

on Y - X be a linear morphism over the connection r on E -> X. The follow-

ing constructions generalize the notions of a dual connection and a tensor product

connection on vector bundles.

(i) Let Y* --> E -> X be a composite fibre bundle where Y* -+ E is the vector

bundle dual of Y -+ E. Given the projectable connection (2.7.16) on Y --+ X over

r, there exists a unique connection

-y* = dxa ® (a, + raam. - A,,jiyjai)

on Y* -* X, projectable over IF, such that the diagram

JIY X JIY* J,()' J1E x(T*X x R)
J1 E E

(ry,ry*) I i (r,O,Id)

Y x Y* ---* E x ][8
E ()

is commutative. We call ry* the dual connection of y over r.

(ii) Let Y --+ E -+ X and Y' -> E -4X be composite fibre bundles where

Y -+ E and Y' -+ E are vector bundles. Let y and ry' be connections (2.7.16) on

Y --4X and Y'--4X, respectively, which are projectable over the same connection

r on E -> X. There is a unique connection

ry ®y' = dx'>' ® [a,\ + raam + (AaijyjI` + A'\'jyij)aik] (2.7.17)

on the tensor product Y ® Y' -+ X, which is projectable over r, such that the
E

diagram

JIY X JIY' J^®. ii (Y ® Y')
J1E J1E

(7,'Y') I I 7®'y'

Y X Y' -> Y ®Y'
E E
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is commutative. This is called the tensor product connection over r.

Example 2 .7.2. Let I' : Y --> J'Y be a connection on a fibre bundle Y -* X.
In accordance with the canonical isomorphism VJ1Y = J1VY (1.3.11), the vertical
tangent map VI' : VY -* VJ1Y to 1 defines the connection

VIP: VY-*J1VY,

Vr = dxa ®(aa + I'aa, + a3I'aYa, 1 (2.7.18)

on the composite vertical tangent bundle VY -> Y -* X. This is called the vertical
connection to F. Of course, the connection VI' projects over F. Moreover, VI' is
linear over F. Then the dual connection of VF on the composite vertical cotangent
bundle V*Y -> Y -* X reads

V*F: V*Y - J1V*Y,

V*r = dx,\ ® (aa + F'a1 - aiI'ay;ai). (2.7.19)

It is called the covertical connection to r.
If Y --* X is an affine bundle, the connection VI' (2.7.18) can be seen as the

composite connection (2.7.8) generated by the connection r on Y --+ X and the
linear connection

f = dxj` ® (aa + ajI'ay'a1) + dy= ®a= (2.7.20)

on the vertical tangent bundle VY --> Y. •
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Chapter 3

Connections in Lagrangian field
theory

We will limit our study to first order Lagrangian formalism since the most contem-

porary field models are described by first order Lagrangians . This is not the case
of General Relativity whose Hilbert -Einstein Lagrangian belongs to the particular
class of second order Lagrangians leading to second order Euler-Lagrange equations
(see [123, 187 ] for details).

As was mentioned above , we follow the geometric formulation of classical field
theory, where fields are represented by sections of a fibre bundle Y -* X, coordinated
by (xA, yi). For example , matter fields , gauge fields , gravitational fields, Higgs fields
are of this type. In this Chapter, we do not specify the type of fields and stand the
collective notation yi for all of them. The finite-dimensional configuration space of
fields is the first order jet manifold J'Y of Y -+ X , coordinated by (xA, yi, yi ). A
first order Lagrangian is defined as a horizontal density

L:J'Y->AT*X, n = dimX,

L = G(xa, y1 , yi\)w, (3.0.1)

on J'Y (see the notation ( 1.2.9)).

In Lagrangian field theory , one deals with connections in the relation to the
following three constructions.

• Every second order dynamic equation on a fibre bundle Y -+ X is a second

order holonomic connection on Y -* X (see Definition 3.1.2 below). The

55
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Euler-Lagrange equations are not second order dynamic equations in general,

but one introduces the notion of a Lagrangian connection which is a second

order dynamic equation and whose integral sections are solutions of the Euler-

Lagrange equations.

• In the physically relevant case of quadratic Lagrangians , a Lagrangian L fac-

torizes always through the covariant differential Dr (2.2.7) for some connection

Fon Y-*X,i.e.,

L : J1Y 4T*X ®VY -> AT*X (3.0.2)
Y

(see expressions (3.3.13) and (3.3.14 ) below).

• Different connections on a fibre bundle Y -> X are responsible for different

energy-momentum currents of fields, which differ from each other in Noether

currents.

3.1 Connections and dynamic equations

In accordance with Definitions 1.3.3 and 1 . 3.4, a k-order dynamic equation on a

fibre bundle Y -* X is a section of the affine jet bundle J'`Y -, Jk-lY. Further on,

we will restrict our consideration only to first and second order dynamic equations.

DEFINITION 3.1.1. A first order dynamic equation on a fibre bundle Y -> X is a

section of the affine jet bundle J1Y --> Y, i.e., a connection

F=dxA®(B\+Fa9)

on a fibre bundle Y -> X. It characterizes the kernel of the covariant differential

Dr (2.2.7) which is a closed subbundle

ya = Fa(x"`,yi)

of the jet bundle J1Y --+ X. This is a first order differential equation on the fibre

bundle Y -* X in accordance with Definition 1.3.4. q

Classical solutions of the first order dynamic equation (3.1.1) are integral sections

s of the connection F. By virtue of Proposition 2.6.1, the dynamic equation (3.1.1)
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admits a solution through each point of an open subset U C Y if and only if the

curvature of the connection r vanishes on U.

To characterize second order dynamic equations on a fibre bundle Y -* X, the

notion of a second order connection on Y -> X is introduced.

A second order connection f on a fibre bundle Y --+ X is defined as a connection

f = d? ® (aa + j,ai + I'aµaa) (3.1.2)

on the jet bundle J1Y -> X, i.e., this is a section of the affine bundle 7r11 : J1J'Y -->

J1Y

Remark 3 .1.1. Every connection on a fibre bundle Y -> X gives rise to the second

order one by means of a world connection on X. The first order jet prolongation PIP

of a connection IF on Y --+ X is a section of the repeated jet bundle Jiro (1.3.13),

but not of ir11. Given a world connection K (2.4.8) on X, one can construct the

affine morphism

sK : J1J1Y -+ J'J1Y,
i i a i ^ i i i

(x , y , Y
i

, ya yaµ) SK = (x y > y^ ya yµa y))

such that lr11 = Jl7ro 0 SK [123]. Then 1' gives rise to the second order connection

I'=s1.,0J1r: J1Y- J1J1Y,

I = dx" ® (aa + raai + [a,\ FA + y3aa)I µ + Ka"µ(y - rv)]aµ), (3.1.3)

which is an affine morphism

J 1 Y LJ1J1Y

Y r J1Y

over the connection P. Note that the curvature R (2.3.3) of a connection F on a

fibre bundle Y -> X can be seen as a soldering form

R = Raµdxl\ ®aµ

on the jet bundle J1Y --+ X. Therefore , P - R is also a connection on J1Y --+ X. •
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A second order connection IF (3.1.2) is said to be holonomic if it takes its val-

ues into the subbundle J2Y of J'J1Y. Such a connection is characterized by the

coordinate conditions

r i
A=ya,

and reads

P' 1 2aµ
-
- µa

aXA0(aa+yia,+fi aµ). (3.1.4)

There is one-to-one correspondence between the global sections of the jet bundle

J2Y -* J1Y and the holonomic second order connections on Y -+ X. Since the jet

bundle J2Y - J1Y is affine , a holonomic second order connection on a fibre bundle

Y -* X always exists.

DEFINITION 3.1.2. A second order dynamic equation on a fibre bundle Y -> X

is a section of the affine jet bundle J2Y -> J1Y, i.e., a holonomic second order

connection (3.1.4) on a fibre bundle Y -+ X. It characterizes the closed subbundle

yaµ - raµ(X") yiI yv) (3.1.5)

of the second order jet bundle J2Y -> X. q

By virtue of Proposition 1.3.1, every integral sections X -> J1Y of the holo-

nomic second order connection (3.1.4) is holonomic, i.e., s = Jls where s : X -> Y

provides a classical solution s of the second order dynamic equation (3.1.5).

3.2 The first variational formula

We will follow the standard formulation of the variational problem where defor-

mations of sections of a fibre bundle Y -* X are induced by local 1-parameter

groups of local automorphisms of Y -+ X over IdX [25, 290]. We will not study

the calculus of variations in depth, but apply in a straightforward manner the first

variational formula [123]. In Section 11.2, Lagrangians, the first variational formula

and Euler-Lagrange operators will be introduced in an algebraic way as elements of

the variational cochain complex.

Remark 3 .2.1. In the physical literature, automorphisms of a fibre bundle Y -+ X

are called gauge transformations [123, 214]. Every projectable vector field u on
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a fibre bundle Y --* X is a generator of a local 1-parameter group Gu of gauge

transformations of Y -> X. Accordingly, the jet prolongation J1u (1.3.10) of u onto

J1Y is the generator of the local 1-parameter group of the jet prolongations J1g of

local automorphisms g E Gu. Recall that an exterior form 0 on a fibre bundle Y is

invariant under a local 1-parameter group Gu of gauge transformations of Y if and

only if its Lie derivative Luo along u vanishes. •

Let u be a projectable vector field on a fibre bundle Y -* X and

L jiuL = [aauAl + (uAaa + u'ai + (dau' - yµaAuµ)ai )l]w (3.2.1)

the Lie derivative of a Lagrangian L along J1u (or briefly along u). The first

variational formula provides the canonical decomposition of the Lie derivative (3.2.1)

in accordance with the variational problem. Bearing in mind the notation (1.3.15)

and (1.3.16), this decomposition reads

LJ1uL = uv ] £L +dHho(u]HL) (3.2.2)

_ (2lz - yuµ)( (9i - daa2 )lw - da[7ri (uµyµ - u') - 21\1]w,

where uv = (uJ0i)ai is the vertical part of the canonical horizontal splitting ( 2.2.5)
of the vector field u,

SL : JZY -, T*Y A (AT*X),

SL =(ail-dair')0'Aw, 7r = ail, (3.2.3)

is the Euler-Lagrange operator associated with the Lagrangian L, and

HL : J1Y --> Zy = T*Y A (TAiT*X),

HL = L + irL B' A (,)A = 7ridyi A w,\ + (l - Sri y')w,

(3.2.4)

(3.2.5)

is the Poincare-Cartan form (see the notation (1.2.9), (1.3.15) and (1.3.16)).

Remark 3 .2.2. The Poincare-Cartan form HL (3.2.5) is a Lepagean equivalent

of the Lagrangian L (i.e., ho(HL) = L) which is a horizontal form on the affine

jet bundle J'Y --4Y (see, e.g., [123, 133]). The fibre bundle Zy (3.2.4), called the

homogeneous Legendre bundle, is endowed with holonomic coordinates (xj>`, yi, R, p)

possessing the transition functions

.a axE
d

ay ax'A µ axE ay ay".
d t ( - (3 2 6))p i = et(a- ay' ax" pj,

ep = p(ax"') ay" ax"
. . .
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Relative to these coordinates, the morphism (3.2.4) reads

(pi l, p) o HL = (7r1 , .C - 7riy).

A glance at the transition functions (3.2.6) shows that Zy is a 1-dimensional affine

bundle

7rzn:Zy->II (3.2.7)

over the Legendre bundle

II = V'Y A (nAlT'X). (3.2.8)

The latter is endowed with holonomic coordinates (x ', yi, pi ). Then the composition

L=7rZnoHL :J1Y Y II, (3.2.9)

a i a i a

is the well-known Legendre map. One can think of pz as being the covariant mo-

menta of field functions, and the Legendre bundle H (3.2.8) plays the role of a

finite-dimensional momentum phase space of fields in the covariant Hamiltonian

field theory (see Chapter 4). Recall that a Lagrangian L is said to be:

• hyperregular if the Legendre map L is a diffeomorphism,

• regular if L is of maximal rank, i.e., det (aiai G) # 0,

• almost regular if the Lagrangian constraint space NL = L ( JiY) is a closed

imbedded subbundle of the Legendre bundle II - Y and the Legendre map

L : J'Y -+ NL is a fibred manifold with connected fibres.

The kernel of the Euler-Lagrange operator £L (3.2.3), given by the coordinate

relations

(ai- dAai)L=0, (3.2.10)

defines the system of second order Euler-Lagrange equations . Classical solutions of

these equations are section s of the fibre bundle X -> Y, whose second order jet

prolongations J2s live in (3.2.10). They satisfy the equations

AL os- (aa+aas3a;+aaas38 )a;cos =0. (3.2.11)
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Remark 3.2.3. The kernel (3.2.10) of the Euler-Lagrange operator EL fails to

be a closed subbundle of the second order jet bundle J2Y -* X in general. There-

fore, it may happen that the Euler-Lagrange equations (3.2.10 ) are not differential

equations in a strict sense (see Proposition 1.3.6). •

Remark 3 . 2.4. Different Lagrangians L and L' can lead to the same Euler-

Lagrange operator if their difference Lo = L - L' is a variationally trivial Lagrangian

whose Euler-Lagrange operator vanishes identically . A Lagrangian Lo is variation-

ally trivial if and only if

Lo = ho(e) (3.2.12)

where e is a closed n-form on Y [123, 186, 189]. We have locally e = do and

Lo = ho(dO) = da(ho(O)) = daho(O)'w, ho(o) = ho(d)\wa.

Given a Lagrangian L, a holonomic second order connection 1 (3.1.4) on the

fibre bundle Y -* X is said to be a Lagrangian connection if it takes its values into

the kernel of the Euler-Lagrange operator EL. A Lagrangian connection satisfies

the pointwise algebraic equations

8tG - 8aIri - y'a8 7r - F = 0. (3.2.13)

If a Lagrangian connection f exists, it defines the second order dynamic equation

(3.1.5) on Y -+ X, whose solutions are also solutions of the Euler-Lagrange equa-

tions (3.2.10) for L. Conversely, since the jet bundle J2Y -> J'Y is affine, every

solution s on X of the Euler-Lagrange equations is also an integral section of a

holonomic second order connection f which is the global extension of the local sec-

tion J's(X) -* J2s(X) of this jet bundle over the closed imbedded submanifold

J's(X) C J'Y. Hence, every solution on X of Euler-Lagrange equations is also a

solution of some second order dynamic equation , but it is not necessarily a Lagran-

gian connection.
A glance at the equations (3.2.13 ) shows that a regular Lagrangian L admits

a unique Lagrangian connection. In this case , Euler-Lagrange equations for L are

equivalent to the second order dynamic equation associated with this Lagrangian

connection.
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3.3 Quadratic degenerate Lagrangians

This Section is devoted to the physically important case of almost regular quadratic

Lagrangians . These Lagrangians describe almost all types of field interactions con-

sidered in contemporary field theory. We aim to show that such a Lagrangian

factorizes as in (3.0.2) through the covariant differential relative to some connection

onY --*X.

Given a fibre bundle Y -> X, let us consider a quadratic Lagrangian L which

has the coordinate expression

G = 2a"' (xv , yk)yay + bz (xv, yk )ya + c(xv, yk), (3.3.1)

where a, b and c are local functions on Y. This property is coordinate-independent

due to the affine transformation law of the coordinates ya. The associated Legendre

map L (3.2.9) is an affine morphism over Y given by the coordinate expression

p2 oL=a^µyµ+b2. (3.3.2)

It defines the corresponding linear morphism

L:T*X®VY Y 11,

oL=aµpI ^ (3.3.3)

where y^µ are bundle coordinates on the vector bundle T*X 0 VY.

^Let the Lagrangian L (3.3.1) be almost regular, i.e., the matrix function a!`

is of constant rank. Then the Lagrangian constraint space NL (3.3.2) is an affine

subbundle of the Legendre bundle H -> Y, modelled over the vector subbundle NL

(3.3.3) of 11 -> Y. Hence, NL - Y has a global section s. For the sake of simplicity,

let us assume that s = 0 is the canonical zero section of 11 -* Y. Then NL = NL.

Accordingly, the kernel of the Legendre map (3.3.2) is an affine subbundle of the

affine jet bundle J1Y -+ Y, modelled over the kernel of the linear morphism L

(3.3.3). Then there exists a connection

P:Y->KerLCJ1Y,

a ŷ µPi + bib = 0,

(3.3.4)

(3.3.5)
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on Y -+ X. Connections (3.3.4) constitute an affine space modelled over the linear

space of soldering forms 0 = q',dx' ® 8 on Y -+ X, satisfying the conditions

a ^!`O', = 0 (3.3.6)

and, as a consequence, the conditions Oab^ = 0. If the Lagrangian (3.3.1) is regular,

the connection (3.3.4) is unique.

Remark 3 .3.1. If s 0, we can consider connections I' with values into Ker 9L. •

The matrix function a in the Lagrangian L (3.3.1) can be seen as a global section
of constant rank of the tensor bundle

AT*X ®[V(TX (9 V*Y)] , Y.

Then it satisfies the following corollary of Theorem 1.1.4.

COROLLARY 3.3.1. Given a k-dimensional vector bundle E -+ Z, let a be a fibre

metric of rank r in E. There is a splitting

E=Kera®E' (3.3.7)
z

where E' = E/Ker a is the quotient bundle, and a is a non-degenerate fibre metric

in E. q

THEOREM 3 . 3.2. There exists a linear bundle map

u:II -+T*X®VY, yaoa=aaµ-,
Y Y

such that L o a o iN = iN. q

Proof. The map (3.3.8) is a solution of the algebraic equations

a
^ cr akn =abv.

By virtue of Corollary 3.3.1, there exists the bundle splitting

TX*®VY= Kera®E'
Y Y

(3.3.8)

(3.3.9)

(3.3.10)
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and a (non-holonomic ) atlas of this bundle such that transition functions of Ker a and

E' are independent . Since a is a non-degenerate section of nT*X ®(V E'*) -+ Y,
y

there is an atlas of E' such that a is brought into a diagonal matrix with non-

vanishing components aAA. Due to the splitting (3.3.10 ), we have the corresponding

bundle splitting

TX ®V*Y = (Kera)* ®E'*.
Y Y

Then the desired map a is represented by a direct sum al ® ao of an arbitrary section

al of the fibre bundle

ATX ®(V Ker a) -+ Y

and the section ao of the fibre bundle

ATX ®(VE')-4Y

which has non-vanishing components aAA = (aAA)-1 with respect to the above

mentioned atlas of E'. Moreover, a satisfies the additional relations

ao=aooLoao, aoa1=0, al oa=0. (3.3.11)

QED

Remark 3.3.2. Using the relations (3.3.11), one can write the above assumption

that the Lagrangian constraint space NL --> Y admits a global zero section in the

form

big µa jk v
= aij UAvbk

With the relations (3.3.5), (3.3.9) and (3.3.11), we obtain the splitting

J1Y = S(J1Y) ®F(J1Y) = Ker L ® Im(a o L),
Y Y

' = SI .F i aik (aaµ + b)] + [ak
(aaµy

+ be)]-
ya a a = yA as kj µ k l as kjaµ k

(3.3.12a)

(3.3.12b)
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Then with respect to the coordinates Sa and Fix (3.3.12b), the Lagrangian (3.3.1)

reads

G = Za2 f'',.Fj + c',

where

P= a akj1yµ- 1'µ)

(3.3.13)

(3.3.14)

for some (Ker L)-valued connection r (3.3.4 ) on Y -> X. Thus, the Lagrangian

(3.3.1) written in the form ( 3.3.13 ) factorizes through the covariant differential rel-

ative to any such connection.

Note that , in gauge theory , we have the canonical splitting (3.3.12a ) where 2.F

is the strength tensor (see (6.2.21) below). The Yang-Mills Lagrangian (6.3.18) of
gauge theory is exactly of the form (3.3.13 ) where c' = 0. The Lagrangian (6.4.16)
of Proca fields is also of the form (3.3.13 ) where c' is the mass term. This is an

example of a degenerate Lagrangian system without gauge symmetries.

3.4 Connections and Lagrangian conservation laws

Let L be again an arbitrary Lagrangian on the configuration space J1Y. The first

variational formula (3.2.2) provides the standard procedure for the study of differ-

ential conservation laws in Lagrangian field theory.

Let u be a projectable vector field on a fibre bundle Y -+ X, treated as the

generator of a local 1-parameter group of gauge transformations. On-shell, i.e., on

the kernel (3.2.10) of the Euler-Lagrange operator EL, the first variational formula

(3.2.2) leads to the weak identity

aauA,C + [uaaa + uba1 + (d),ut - yµaauµ)a2 ]G (3.4.1)

-da[7ri (uµ2, µ - ut) - uA,C].

Let the Lie derivative LjiuL (3.2.1) vanishes, i.e., a Lagrangian L is invariant under

gauge transformations whose generator is the vector field u. Then we obtain the

weak conservation law

0 -dPz^ d ,\[7r2 (uµyµ - ut ) - uAL],

of the symmetry current

T = `Awa, 7ri (uµyµ - ut ) - ua'C,

(3.4.2)

(3.4.3)
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along the vector field u.

Remark 3.4.1. It should be emphasized that, from the first variational formula,

the symmetry current (3.4.3) is defined modulo the terms dµ(cti" (y„ u" -ui)), where

c2`' are arbitrary skew-symmetric functions on Y [123]. Here we leave aside these

boundary terms which are independent of a Lagrangian. •

The weak conservation law (3.4.2) leads to the differential conservation law

8a(T' os)=0 (3.4.4)

on solutions of the Euler-Lagrange equations (3.2.11). This differential conservation

law implies the integral conservation law

f s*T= 0, (3.4.5)

ON

where N is a compact n-dimensional submanifold of X with the boundary 8N.

Remark 3.4.2. It may happen that a symmetry current `¶ (3.4.3) can be put into

the form

T = W + dHU = (WA + d,Uµa)wa, (3.4.6)

where the term W contains only the variational derivatives 6jC = (ai - daaj' ) G, i.e.,

W^0and

U=Uµ'`wµa: J'Y-.-nA2T*X

is a horizontal (n - 2)-form on J1Y -> X. Then one says that T reduces to the

superpotential U [99, 123, 269 ]. On-shell, such a symmetry current is the dH-exact

form (3.4.6), while the equality

T-dHU=W(5C)=0 (3.4.7)

is a combination of the Euler-Lagrange equations 5 I = 0. If a symmetry current T

reduces to a superpotential, the differential conservation law (3.4.40 and the integral

conservation law (3.4.5) become tautological. At the same time, the superpotential

form (3.4.6) of '¶ implies the following integral relation

f s*T = f s*U,

N"-1 8N^'1

(3.4.8)
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where N'-1 is a compact oriented (n - 1)-dimensional submanifold of X with the
boundary ON"-1. One can think of this relation as being a part of the Euler-

Lagrange equations written in an integral form. Superpotentials are met in gauge

theory (see Section 6.3) and in gravitation theory (see Section 7.4), where generators

of gauge transformations depend on derivatives of gauge parameters. •

It is easy to see that the weak identity (3.4.1) is linear in a vector field u.

Therefore, one can consider superposition of weak identities (3.4.1) associated with

different vector fields. For instance, if u and u' are projectable vector fields on Y

over the same vector field on X, the difference of the corresponding weak identities

(3.4.1) results in the weak identity (3.4.1) associated with the vertical vector field

u - u'. Every projectable vector field u on a fibre bundle Y -> X, which projects
over a vector field T on X, can be written as the sum u = T + 19 of a lift T of T

onto Y and a vertical vector field t9 on Y. It follows that the weak identity (3.4.1)

associated with a projectable vector field u can be represented as the superposition

of those associated with T and 79.

In the case of a vertical vector field t9 = 19iai on Y -i X, the weak identity

(3.4.1) takes the form

[192at + dai9iaa ]G : da(7rz 19'). (3.4.9)

In field theory, vertical gauge transformations describe internal symmetries. If a

Lagrangian is invariant under internal symmetries, we have the Noether conservation

law

0 dA(7ri 19`)

of the Noether current

TA _ -7rl`29'.
E

(3.4.10)

The well-known example of a Noether conservation law is that in gauge theory of

principal connections (see Section 6.3).

A vector field T on X can be lifted onto Y by means of a connection r on a fibre

bundle Y -+ X. This lift is the horizontal vector field FT (2.1.6). The weak identity

(3.4.1) associated with such a vector field takes the form

aOT'G + [TµaN, + 7- 18, + (dA(r t' ) - yµaATµ)a^ ] G ;: (3.4.11)

-dA[7riT,(yµ - Fµ) - Sµ-r"L].
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The corresponding current (3.4.3) along rT reads

Tr = T1'(7ri (yµ - I'µ) - 6;,L). (3.4.12)

It is called the energy-momentum current relative to the connection r [104, 123, 269].

To discover energy-momentum conservation laws, one may choose different con-

nections on Y -> X (e.g., different connections for different vector fields T on X

and different connections for different solutions of the Euler-Lagrange equations).

It is readily seen that the energy -momentum currents with respect to different con-

nections r and r' differ from each other in the Noether current (3.4.10) along the

vertical vector field

19 = Tµ(]'µ - I'µ) aa.

Example 3 .4.3. Let all vector fields T on X be lifted onto Y by means of the same

connection I' on Y --> X. The weak identity (3.4.11) can be rewritten as follows

Tµ{[aµ + I'µai + (aarµ + y'aajr'µ)ai ]G - da[7ri (rµ - y,, ) + 6µG]} 0.

Since this relation takes place for an arbitrary vector field T on X, it is equivalent

to the system of weak identities

(aµ + rai + darµai )G + d,I Aµ 0,µ

where TrA. are components of the tensor field

(9 w,\,`fir = Tr'\µdx®

e x Aµ = 7r (yµ - I'µ) - 6AL.

This is called the energy-momentum tensor relative to the connection F. •

Example 3 .4.4. If we choose the local trivial connection (170)µ = 0, the weak

identity (3.4.11) takes the form

aµG -da`,i=oAA, (3.4.13)

CIOXµ = 7ft yµ - 6µG,

where ` o"µ is called the canonical energy-momentum tensor . Though it is not a

true tensor field, both the sides of the weak identity (3.4.14) on solutions s of the

Euler-Lagrange equations are well defined:

X,\ (oµ o s). (3.4.14)
ax o s a ^µ
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This results from the weak identity (3.4.11) when, for every solution s, we choose

the connection r which has s as its integral section. •

Note that, in gravitation theory on natural bundles T -* X, we have the canon-
ical horizontal lift of vector fields on X onto T, e.g., the canonical lift (1.2.2) on
a tensor bundle. This lift, under certain conditions, can be represented locally as

a horizontal lift by means of a connection (see Remark 2.4.2). The corresponding

current is also an energy-momentum current (see Section 7.4).

Remark 3 .4.5. Let us consider conservation laws in the case of gauge transfor-

mations which preserve the Euler-Lagrange operator EL, but not necessarily a La-

grangian L. This is the case of BRST theory in Section 11.4 and the Chern-Simons

topological field theory [123]. Let u be a projectable vector field on Y -+ X, which
is the generator of a local 1-parameter group of such transformations, i.e.,

L J2UEL = 0,

where J2u is the second order jet prolongation of the vector field u. There is the
useful relation

LJ2 eL = EL,luL

[123]. Then, in accordance with (3.2.12), we have locally

LJiUL = dafAw.

In this case, the weak identity (3.4.1) reads

0^da(EA- V),

where T is the symmetry current (3.4.3) along the vector field u. •

(3.4.15)

(3.4.16)

(3.4.17)

Remark 3.4.6. Background fields, which do not live in the dynamic shell (3.2.10),

violate conservation laws as follows . Let us consider the product

Ytot=YxY'x
(3.4.18)

of a fibre bundle Y with coordinates (xA, yi), whose sections are dynamic fields, and

a fibre bundle Y' with coordinates (x", yA), whose sections are background fields

which take the background values

yB = 0B(x), yB = 0a0B(x)•
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A Lagrangian L is defined on the total configuration space J1Ytot• Let u be a
projectable vector field on Yot which also projects onto Y' because gauge transfor-

mations of background fields do not depend on the dynamic ones. This vector field

takes the coordinate form

u = UA(xµ)aa + uA(xµ, YB)aA + ut (xµ, yB, y3 )ai. (3.4.19)

Substitution of (3.4.19) in (3.2.2) leads to the first variational formula in the presence

of background fields

0,\U AC + [U-1,9A + UAaA + uiai + (danA - yµaauµ)aa + (3.4.20)

(daut-yµaauµ)ai ]L = (uA - you")aAL +7rAda(n' - yµuµ)+

(ua
- yau')6 C - da[7ri (uµyµ - ut) - uaL].

Then the weak identity

C7a26AC + [uAaA + UAaA + nhai + (dAnA - yµ 9 nl )8A +

(dau' - yµaauµ )ai ],C (uA - yA uA )aAL + 7rAdA(nA - yµ uµ) -

dA[7i (uµyµ - u' ) - uA'C]

holds on the shell (3.2.10). If a total Lagrangian L is invariant under gauge trans-

formations of the product (3.4.18), we obtain the weak identity in the presence of

background fields

(uA - yµuµ )aA.C +7rAdA(uA - yµuµ ) : d.\ [7ri (uµyµ - u' ) - uAL]. (3.4.21)

The weak identity (3.4.21) can also be applied to the case of Euler-Lagrange

equations plus external forces

(ai- daai)L+Fi=0,

where Fi are local functions on J1Y. Then it reads

(u2 - yxµuµ )Fi -d\ [,ri (uµyµ - u2) - u^G ]. (3.4.22)



Chapter 4

Connections in Hamiltonian field
theory

Applied to field theory, the familiar symplectic Hamiltonian technique takes the

form of instantaneous Hamiltonian formalism on an infinite-dimensional phase space,

where canonical coordinates are field functions at a given instant of time (see, e.g.,

[134]). The Hamiltonian counterpart of Lagrangian formalism on fibre bundles is

covariant Hamiltonian field theory where canonical momenta correspond to deriva-

tives of fields with respect to all world coordinates (see [52, 123, 133, 268] for a

survey). Covariant Hamiltonian formalism utilizes the Legendre bundle II (3.2.8) as

a finite-dimensional momentum phase space of fields, and is equivalent to Lagran-

gian formalism in the case of hyperregular Lagrangians. A degenerate Lagrangian

requires a set of associated Hamiltonian forms in order to exhaust all solutions of

the Euler-Lagrange equations. It is important for quantization that these Hamil-

tonians are not necessarily non-degenerate. In the case of fibre bundles over R, the

covariant Hamiltonian approach provides the adequate Hamiltonian formulation of

non-relativistic time-dependent mechanics (see Section 5.10). Covariant Hamilto-

nian field theory is formulated in terms of Hamiltonian connections and Hamiltonian

forms which contain the connection dependent terms [123, 268].

71
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4.1 Hamiltonian connections and Hamiltonian forms

Given a fibre bundle Y -> X, let 11 be the Legendre bundle (3.2.8) provided with

the composite fibration

lrnx= 7fo7fny :II-Y -+X.

For the sake of convenience, the fibration II -* Y will be called a vector Legendre

bundle, in contrast with the Legendre bundle II -* X.

There are the canonical isomorphism

II = nT*X ®V*Y ®TX
Y Y

and the canonical bundle monomorphism

Oy : 11 Y nn1T*Y®TX,
y

OY= pidyi/hW ®aa= pidyinwa, (4.1.2)

called the tangent-valued Liouville form on II. Since the exterior differential d can

not be applied to the tangent-valued form (4.1.2), the polysymplectic form is defined

as a unique TX-valued (n + 2)-form fly on II such that the relation

Qyj0 = d(oyj0)
holds for arbitrary exterior 1-forms 0 on X [123]. It is given by the coordinate

expression

Sty = dpi A dyi A ®aa, (4.1.3)

which is maintained under holonomic coordinate transformations of II.

Let J1II be the first order jet manifold of the Legendre bundle II --* X. It is

equipped with the adapted coordinates (xA, yi, pi , yµ, pµi) such that yµ o J1^ny = yµ.

A connection

-y = dx' (& (aa + -ya 9 + -Yaiaµ) (4.1.4)

on II --> X is called a Hamiltonian connection if the exterior form -y] Sty is closed.

Components of a Hamiltonian connection satisfy the conditions

8y -aµrya=0, airyµj-ajryµi=0, ajY^+aaryµj= 0. (4.1.5)
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If the form ryj fly is closed, there is a contractible neighbourhood U of each point

of H which belongs to a holonomic coordinate chart (x", yi, pZ) and where the local

form ryj Sty is exact. We have

-yj Sty=dH=dpi /^dytnw,-(Yadp'-laidyi)Aw (4.1.6)

on U. It is readily observed that the second term in the right-hand side of this

equality is also an exact form on U. By virtue of the relative Poincare lemma (see

Remark 4.1.2 below), it can be brought into the form d1-l A w where l is a local

function on U. Then the form H in the expression (4.1.6) reads

H = pi dyi A u,,\ - 1-lw. (4.1.7)

Further on, we will restrict our consideration to Hamiltonian connections ry such

that ry] Sly is the exterior differential of some global form (4.1.7).

Remark 4.1.1. In conservative Hamiltonian mechanics, any function on a momen-

tum phase space can play the role of a Hamiltonian. It is not so in Hamiltonian

field theory and time-dependent mechanics where Hamiltonians 'H obey a certain

coordinate transformation law (see Remark 5.10.1 below). •

Remark 4 . 1.2. Relative Poincare lemma. Let us consider the vector space

Rm x R' with the Cartesian coordinates (?). Let

0=VAw, w=dz1A•••Adzn,

be an exact (r + n)-form on Rm x W. Then 0 is brought into the form q = do, A w,

where a is an (r - 1)-form on R'n x R", defined by the relation

1

a(z) Aw = f tr-1zj0(tz)]dt.
0

Indeed, it is easy to check that

(4.1.8)

d(a(z) A w) = f dt(tro(tz))dt = 0(z)•
0

If n = 0, the expression (4.1.8) reduces to the well-known homotopy operator

h : jy(R-) . jDk-1(R-),

1

h(O) = f tr-1zj (tz)]dt, (4.1.9)

0
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(see, e.g., [73, 280]). It is readily observed that the homotopy operator (4.1.9) obeys

the relation

doh+hod=Id D*(R'r), h2 =0.

Let us consider the homogeneous Legendre bundle Zy (3.2.4) and the affine

bundle Zy -> lI (3.2.7). This affine bundle is modelled over the pull -back vector

bundle II x nT*X --> II in accordance with the exact sequence
x

0 ->II xnT*X4Zy ->11 -->0. (4.1.10)
x

The homogeneous Legendre bundle Zy is provided with the canonical exterior n-

form

Ey =Pw+pidyz AWA„ (4.1.11)

whose exterior differential dcY is a multisymplectic form. Given any section h of

the affine bundle Zy -* H (3.2.7), the pull-back

H = h*8y = p2 dyi A wA - 711

is a called a Hamiltonian form on the Legendre bundle II.

As an immediate consequence of this definition, we obtain that:

(4.1.12)

(i) Hamiltonian forms constitute a non-empty affine space modelled over the

linear space of horizontal densities H = 1-lw on II - X;

(ii) every connection F on the fibre bundle Y -* X yields the splitting (2.1.7)

of the exact sequence (4.1.10) and defines the Hamiltonian form

=a i A a iHr = r* ^Y = Pi dy w,\ - Pi raw; (4.1.13)

(iii) given a connection F on Y --> X, every Hamiltonian form H admits the

decomposition

H=Hr-Hr=pzdyiAw),-pZr'w-l-lrw. (4.1.14)
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Remark 4.1.3. The physical meaning of the splitting (4.1.14) is illustrated by the

fact that, in the case of X = R of time-dependent mechanics, Nr is exactly the

energy of a mechanical system with respect to the reference frame IF (see Section

5.11). If a reference frame is fixed, the Hamiltonian form (4.1.12) coincides with

the well-known integral invariant of Poincare-Cartan in mechanics, where N is a

Hamiltonian. In covariant Hamiltonian field theory, H is also called a Hamiltonian.

The splitting (4.1.14) shows that it is not a density under holonomic coordinate

transformations of II. •

The assertion (ii) can be generalized as follows. By a Hamiltonian map is meant
any bundle morphism

4 =dxA®(ax +4 ): II -J'Y.
Y

In particular, let r be a connection on Y -+ X . Then the composition

(4.1.15)

r o7rlY= dxA ®(aA +F 3):H-+ Y--+ J1Y (4.1.16)

is a Hamiltonian map.

PROPOSITION 4.1.1. Every Hamiltonian map (4.1.15) defines the Hamiltonian form

R p = -4)J O = p2 dyi A w,\ - pi 4Daw. (4.1.17)

Proof. Given an arbitrary connection r on the fibre bundle Y --> X, the corre-

sponding Hamiltonian map (4.1.16) defines the form -r] E) which is exactly the

Hamiltonian form Hr (4.1.13). Since 4' - r is a VY-valued basic 1-form on II -+ X,

H,, - Hr is a horizontal density on II. Then the result follows from the assertion

(i). QED

Now we will show that every Hamiltonian form H (4.1.12) admits a Hamiltonian

connection yH which obeys the condition

'YHJ f2Y = dH,

ya = a^x 'Yaz = -a;?-t.
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It is readily observed that a Hamiltonian form H (4.1.12) is the Poincare-Cartan
form (3.2.5) of the Lagrangian

LH = ho(H) = (pi ya - ^-l)w (4.1.20)

on the jet manifold J11I. The Euler-Lagrange operator (3.2.3) associated with this
Lagrangian reads

£H: PH -->T*HA(AT*X),

£H = [(y' - aax)dp^ - (pai + 8iH)dyi] A w. (4.1.21)

It is called the Hamilton operator for H. A glance at the expression (4.1.21) shows

that this operator is an affine morphism over II of constant rank. It follows that its

kernel (i.e., the Euler-Lagrange equations for LH)

ya = (4.1.22a)

pai (4.1.22b)

is an affine closed imbedded subbundle of the jet bundle J111 -* II. By virtue of
Definition 1.3.4, it is a system of first order differential equations on the Legendre
bundle II -> X, called the covariant Hamilton equations . Being an affine subbundle,
Ker £H -> lI has a global section yH which is a desired Hamiltonian connection

obeying the relation (4.1.18).
If n > 1, there is a set of Hamiltonian connections associated with the same

Hamiltonian form H . They differ from each other in soldering forms o on H --> X

which fulfill the equation u j Qy = 0. In particular, a Hamiltonian connection for

the Hamiltonian form Hr (4.1.13) reads

I dx' ®[aa+F'ai+ (Ka'`„p^ - KA'p^ - 88F pi )8µ], (4.1.23)

where K is a symmetric linear connection on X.

Every Hamiltonian form H defines the Hamiltonian map

H = J17rny o yH : lI -> J1H -> J1Y, (4.1.24)

yaoH

which is the same for all Hamiltonian connection yH associated with H.

Every integral section J1r = yor of a Hamiltonian connection yH associated with

a Hamiltonian form H is obviously a solution of the Hamilton equations (4.1.22a)
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- (4.1.22b). If r : X - lI is a global solution, there exists an extension of the local
section Pr : r(X) --> Ker£H to a Hamiltonian connection ryH which has r as an
integral section. Substituting Pr in (4.1.24), we obtain the equality

J1(7rny o r) = H o r, (4.1.25)

which is the coordinate-free form of the Hamilton equations (4.1.22a).

4.2 Lagrangian and Hamiltonian degenerate systems

Let us study the relations between the Euler-Lagrange equations (3.2.10) and the

covariant Hamilton equations (4.1.22a) - (4.1.22a). The key point is that different

solutions of the Euler-Lagrange equations for a degenerate Lagrangian may appear

to be solutions of different Hamilton equations for different Hamiltonian forms.

We will start from the case of a hyperregular Lagrangian L. Then L-1 is a

Hamiltonian map. Let us consider the Hamiltonian form

H = HL_, + L-"L, (4.2.1)

7-l =
L-11- G xa L-1.i

^ µ ( ^^^ a)>

where Hi_, is the Hamiltonian form (4.1.17) associated with the Hamiltonian map

L-1. Let s be a solution of the Euler-Lagrange equations (3.2.10) for the Lagrangian

L. A direct computation shows that L o J's is a solution of the Hamilton equations
(4.1.22a) - (4.1.22a) for the Hamiltonian form H (4.2.1). Conversely, if r is a solution
of the Hamilton equations (4.1.22a) - (4.1.22a) for the Hamiltonian form H (4.2.1),

then s = 7rny or is a solution of the Euler-Lagrange equations (3.2.10) for L (see the

equality (4.1.25)). It follows that, in the case of hyperregular Lagrangians, covariant

Hamiltonian formalism is equivalent to the Lagrangian one.

Let now L be an arbitrary Lagrangian on the configuration space J1Y. A Ha-
miltonian form H is said to be associated with a Lagrangian L if H satisfies the
relations

L o HoL=L, (4.2.2a)

H = HH + H*L . (4.2.2b)

A glance at the relation (4.2.2a) shows that L o H is the projector

p c NL, (4.2.3)pµ (p) = di''G(x',y`,a'ax(p)),
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from II onto the Lagrangian constraint space NL = L(J'Y). Accordingly, H o L is
the projector from J'Y onto H(NL). A Hamiltonian form is called weakly associated

with a Lagrangian L if the condition (4.2.2b) holds on the Lagrangian constraint

space NL.

PROPOSITION 4.2.1. If a Hamiltonian map 1 (4.1.15) obeys the relation (4.2.2a),

then the Hamiltonian form H = HD+V L is weakly associated with the Lagrangian

L. If (b = H, then H is associated with L. q

PROPOSITION 4.2.2. Any Hamiltonian form H weakly associated with a Lagrangian

L fulfills the relation

H I NL= H*HL I NL, (4.2.4)

where HL is the Poincare-Cartan form (3.2.5). q

Proof. The relation (4.2.2b) takes the coordinate form

71(p) = p^ a7-l - C(x', y2, a'ax(p)), p E NL. (4.2.5)

Substituting (4.2.3) and (4.2.5) in (4.1.12), we obtain the relation (4.2.4). QED

The difference between associated and weakly associated Hamiltonian forms lies

in the following. Let H be an associated Hamiltonian form, i.e., the equality (4.2.5)

holds everywhere on II. Acting on this equality by the exterior differential, we obtain

the relations

aµx(p) _ - (aµc) o H(p), P E NL,

aix(p) _ -(aic) o H(p), p E NL,

(pi` - 09µL)(x', y`, c?"\f))aµaa7-l = 0.

(4.2.6)

(4.2.7)

The relation (4.2.7) shows that the associated Hamiltonian form is not regular out-

side the Lagrangian constraint space NL. In particular, any Hamiltonian form is

weakly associated with the Lagrangian L = 0, while the associated Hamiltonian

forms are only of the form Hr (4.1.13).

A hyperregular Lagrangian has a unique weakly associated Hamiltonian form

(4.2.1). In the case of a regular Lagrangian L, the Lagrangian constraint space

NL is an open subbundle of the vector Legendre bundle II -> Y. If NL II, a
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weakly associated Hamiltonian form fails to be defined everywhere on H in general.
At the same time, the open subbundle NL can be provided with the pull-back
polysymplectic structure with respect to the imbedding NL H, so that one may
consider Hamiltonian forms on NL.

Contemporary field models are almost never regular. Hereafter, we will restrict
our consideration to almost regular Lagrangians. From the physical viewpoint,

Lagrangians of the most of field models are of this type. From the mathematical

one, this notion of degeneracy is particularly appropriate in order to study the

relations between solutions of Euler-Lagrange and Hamilton equations.

The following assertion is a corollary of Proposition 4.2.1.

PROPOSITION 4.2.3. A Hamiltonian form H weakly associated with an almost
regular Lagrangian L exists if and only if the fibred manifold J'Q -> NL admits a
global section. q

There is another useful fact.

LEMMA 4.2.4. The Poincare-Cartan form HL for an almost regular Lagrangian L
is constant on the connected pre-image L-1(p) of any point p c NL. q

Proof. Let u be a vertical vector field on the affine jet bundle J1Y -* Y which
takes its values into the kernel of the tangent map TL to L. Then LuHL = 0. QED

Then we come to the following assertion.

PROPOSITION 4.2.5. All Hamiltonian forms weakly associated with an almost reg-
ular Lagrangian L coincide with each other on the Lagrangian constraint space NL,
and the Poincare-Cartan form HL (3.2.5) for L is the pull-back

HL = L'H, (4.2.8)

(7r ya - C) w = W (2µ, yi, 7r )CJ,

of any such a Hamiltonian form H. q

Proof. Given a vector v E T fl, the value TH(v)jHL(H(p)) is the same for all
Hamiltonian maps H satisfying the relation (4.2.2a). Then the results follow from
the relation (4.2.4). QED
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Proposition 4.2.5 enables one to connect Euler-Lagrange equations for an almost

regular Lagrangian L with the Hamilton equations for Hamiltonian forms weakly

associated with L [123, 126, 266, 267, 268].

THEOREM 4.2.6. Let a section r of II --+ X be a solution of the Hamilton equations

(4.1.22a) - (4.1.22b) for a Hamiltonian form H weakly associated with an almost

regular Lagrangian L. If r lives in the Lagrangian constraint space NL, the section

s = 7rny o r of Y -+ X satisfies the Euler-Lagrange equations (3.2.10). q

The proof is based on the relation £L = (J1L)*£H I j2y. The converse assertion

is more intricate.

THEOREM 4.2.7. Given an almost regular Lagrangian L, let a section s of the

fibre bundle Y -> X be a solution of the Euler-Lagrange equations (3.2.10). Let H

be a Hamiltonian form weakly associated with L, and let H satisfy the relation

HoL0J1s=J's. (4.2.9)

Then the section r = L o J's of the Legendre bundle H --+ X is a solution of the

Hamilton equations (4.1.22a) - (4.1.22b) for H. q

We will say that a set of Hamiltonian forms H weakly associated with an al-

most regular Lagrangian L is complete if, for each solution s of the Euler-Lagrange

equations, there exists a solution r of the Hamilton equations for a Hamiltonian

form H from this set such that s = 7rny o r. By virtue of Theorem 4.2.7, a set

of weakly associated Hamiltonian forms is complete if, for every solution s of the

Euler-Lagrange equations for L, there is a Hamiltonian form H from this set which

fulfills the relation (4.2.9).

In accordance with Proposition 4.2.3, on an open neighbourhood in II of each

point p E NL, there exists a complete set of local Hamiltonian forms weakly asso-

ciated with an almost regular Lagrangian L. Moreover, one can always construct a
complete set of associated Hamiltonian forms [268, 311]

4.3 Quadratic and affine degenerate systems

Lagrangians of field models are almost always quadratic or affine in the derivatives

of field functions. Gauge theory exemplifies a model with a degenerate quadratic
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Lagrangian (see Section 6.4), whereas fermion fields are described by the affine one

(see Section 7.5). In this Section, we obtain the complete sets of Hamiltonian forms

weakly associated with almost regular quadratic and affine Lagrangians. Hamilto-

nian forms in such a complete set are parametrised by different connections on the
fibre bundle Y -* X.

Let L (3.3.1) be an almost regular quadratic Lagrangian, a a linear map (3.3.8)

and r a connection (3.3.4). Similarly to the splitting (3.3.12a) of the configuration
space J1Y, we have the splitting of the momentum phase space

II = R(H) ®P(II) = Ker ao ®NL, (4.3.1a)

pti = R2 + Pti = ^t - ajµaµap/̂  ] + [a J au«p' (4.3.1b)

In the coordinates (4.3.1b), the Lagrangian constraint space (3.3.2) is given by the
reducible constraints

^p aRt -Ui - atj lia k0. (4.3.2)

Let us consider the affine Hamiltonian map

,i) = f + a : II -> JlY, VA = ri + aaAp^ , (4.3.3)

and the Hamiltonian form

H = H.1, + V L = pz dy` A wa - {rapt + 2 ao^µp
:
p^ + a1 pZ p^ - c ]w (4.3.4)

_ (1Z + PZ )dyt A wa - [(RA + Pti )rA + 2aoaµPz P, + alaµp2 p^ - c']w.

PROPOSITION 4.3.1. The Hamiltonian forms (4.3.4) parametrised by connections F

(3.3.4) are weakly associated with the Lagrangian (3.3.1) and constitute a complete

set. q

Proof. By the very definitions of r and a, the Hamiltonian map (4.3.3) satisfies the

condition (4.2.2a). Then H is weakly associated with L (3.3.1) in accordance with
Proposition 4.2.1. Let us write the corresponding Hamilton equations (4.1.22a) for

a section r of the Legendre bundle II -> X. They are

Jls = (r + a) o r, s = 7ny o r. (4.3.5)
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Due to the surjections S and F (3.3.12a), the Hamilton equations (4.3.5) break in
two parts

SoJ1s=Fos, (4.3.6)

aari - aik(aaJu r3 +bk)=I'aos,

FoJ1s=o, or, (4.3.7)
ik aµ ik a

01 (aa aµr
j
+ bk) = Qaark

Let s be an arbitrary section of Y -+ X, e.g., a solution of the Euler-Lagrange

equations. There exists a connection r' (3.3.4) such that the relation (4.3.6) holds,

namely, F = S o F' where F' is a connection on Y -* X which has s as an integral

section. It is easily seen that, in this case, the Hamiltonian map (4.3.3) satisfies the

relation (4.2.9) for s. Hence, the Hamiltonian forms (4.3.4) constitute a complete

set. QED

It is readily observed that, if Q1 = 0, then 1 = H and the Hamiltonian forms

(4.3.4) are associated with the Lagrangian (3.3.1). If Q1 is non-degenerate, so is the

Hamiltonian form (4.3.4). Thus, for different a1i we have different complete sets of

Hamiltonian forms (4.3.4). Hamiltonian forms H (4.3.4) from such a complete set

differ from each other in the term where 0 are the soldering forms (3.3.6). It

follows from the splitting (4.3.1a) that this term vanishes on the Lagrangian con-

straint space. Accordingly, the Hamilton equations for different Hamiltonian forms

(4.3.4) weakly associated with the same quadratic Lagrangian (3.3.1) differ from

each other in the equations (4.3.6). These equations are independent of momenta

and play the role of gauge-type conditions.

Let us turn now to an affine Lagrangian

L=biya+c, (4.3.8)

where b and c are local functions on Y. The associated Legendre map takes the

form

p o L = bi. (4.3.9)2

Clearly, the Lagrangian (4.3.8) is almost regular.

Let F be an arbitrary connection on the fibre bundle Y - X and r the associated

Hamiltonian map (4.1.16). Let us consider the Hamiltonian form

H=Hr+LoF=pzdy''AWA-(pa -b;)I'aW+CW. (4.3.10)
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It is associated with the affine Lagrangian (4.3.8). The corresponding Hamiltonian

map is

ya o H = ra. (4.3.11)

It follows that the Hamilton equations (4.1.22a) for the Hamiltonian form H reduce

to the gauge-type condition

whose solutions are integral sections of the connection F.

Conversely, for each section s of the fibre bundle Y -# X, there exists a connec-

tion r on Y whose integral section is s. Then the corresponding Hamiltonian map

(4.3.11) obeys the condition (4.2.9). It follows that the Hamiltonian forms (4.3.10)

parameterized by connections r on Y -* X constitute a complete set.

4.4 Connections and Hamiltonian conservation laws

As in Lagrangian field theory, different connections are responsible for different

energy-momentum currents in Hamiltonian field theory.

To obtain the conservation laws within the framework of covariant Hamiltonian

formalism, let use the fact that a Hamiltonian form H (4.1.12) is the Poincare-

Cartan form for the Lagrangian LH (4.1.20) and that the Hamilton equations for
H, by definition, are the Euler-Lagrange equations for LH.

Due to the canonical lift (1.2.2), every projectable vector field u on the fibre

bundle Y -* X gives rise to the vector field

u = wuDN, + u'ai + (-au3p; - aµuµp2 + aµuapµ)aa
on the Legendre bundle II -* Y. We have

L;H = L jiiiLH = (-ui(9i7-l - O, (uµ1-1) - u' 0,',R + pZ aaui)w.

(4.4.1)

(4.4.2)

It follows that the Hamiltonian form H and the Lagrangian LH have the same gauge

symmetries. Then one can follow the standard procedure of describing differential

conservation laws in Lagrangian formalism (see Chapter 3), and apply the first

variational formula (3.2.2) to the Lagrangian (4.1.20) [123 ] . We have

-u'ai'H - aN,(ut' ) - ui aa9-l + p1 aau' ° -(u2 - yµuµ)(pai + ai7-l) +

(-

rr

5iui - aµuµpi + aµ/u,„api - pµiuµ) (ya - a^^) -

(pi (aµxuµ - u') - ui 8µf - 7-I)].C^al^' A
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On the shell (4.1.22a) - (4.1.22b), this identity takes the form

-ui8t71- 8µ(u'`71) - ui aaf + Pi aau` lzz^ - (4.4.3)

da[pj' (a,',Ru' - ui) - uw(pT a,,7-1- 7-c)].
If LpiiLH = 0, we obtain the weak conservation law

0 : -dA[p2 (uµ5µ7-1- u') - wA(pi 5µ7-l -1-1)]w

of the current

pti (uµ'8,7-1- uL ) - u,\ (p2 57-l - 7-l

(4.4.4)

(4.4.5)

On solutions r of the covariant Hamilton equations (4.1.22a) - (4.1.22b), the weak

equality (4.4.4) leads to the weak differential conservation law

0 -x;l

There is the following relation between differential conservation laws in Lagran-

gian and Hamiltonian formalisms.

PROPOSITION 4.4.1. Let a Hamiltonian form H be associated with an almost

regular Lagrangian L. Let r be a solution of the Hamilton equations (4.1.22a) -

(4.1.22b) for H which lives in the Lagrangian constraint space NL, and s = lr1Y o r

the corresponding solution of the Euler-Lagrange equations for L so that the relation

(4.2.9) holds. Then, for any projectable vector field u on the fibre bundle Y -* X,

we have

T(r) = T(H o r), T (L o Jls) = T(s), (4.4.6)

where T is the current (3.4.3) on J'Y and T is the current (4.4.5) on H. q

In particular, let u = ulai be a vertical vector field on Y --+ X. Given the

splitting (4.1.14) of a Hamiltonian form H, the Lie derivative (4.4.2) takes LuH

takes the form

LuH = (pj [8A + rae1, u]3 - ujdfr)w,

where [.,.] is the Lie bracket of vector fields. The corresponding Noether current

(4.4.5) reads

to = T 'wa = -uj Oy = -u] H, I `iA _ -UPI. . I (4.4.7)
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Remark 4.4.1. The Noether currents (4.4.7), taken with the sign minus, constitute
a Lie algebra with respect to the bracket

-Tu ] def - [u u'] • (4.4.8)

If Y -> X is a vector bundle and X is provided with a non-degenerate metric g, the

bracket (4.4.8) can be extended to any horizontal (n - 1)-forms 0 = ¢aWa on H by

the law

[0, 0'] = g«Qgµv(aµ0'494"' - aµ^^pati^)W^

Let T = TAaa be a vector field on X and

Tr = TA( 8A + raa1)
its horizontal lift onto Y by means of a connection r on Y -+ X. In this case, the
weak identity (4.4.3) takes the form

-(aµ + rµa, - p:a,rµaa )7lr +pi Raµ da`r^µ>

where the current (4.4.5) reads

r\ =Tµ rAµ=Tµ(piaµ7lr-8 (psa;11r-7-lr))• (4.4.9)

The relations (4.4.6) show that, on the Lagrangian constraint space NL, the current
(4.4.9) can be treated as the Hamiltonian energy-momentum current relative to the
connection r.

In particular, let us consider the weak identity (4.4.3) when the vector field u on
H is the horizontal lift of a vector field r on X by means of a Hamiltonian connection
on II -+ X which is associated with the Hamiltonian form H. We have

ii = Tµ (aµ + 8µ1a, +7µiaa)

In this case, the corresponding energy-momentum current is

TA _ -TA(pµaµ2 7l - ^)i ,

and the weak identity (4.4.3) takes the form

-8µ 7-L + da(p=8µ7-c) aµ(pz aan -H).

(4.4.10)

(4.4.11)
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A glance at the expression (4.4.11) shows that the energy-momentum current (4.4.10)

is not conserved, but we can write the weak identity

-aµ'H +da iiaµ^l-,9,,H-1- H)] Pz^ 0.

This is exactly the Hamiltonian form of the canonical energy-momentum conserva-
tion law (3.4.13 ) in Lagrangian formalism.

4.5 The vertical extension of Hamiltonian formalism

The vertical extension of of field theory on a fibre bundle Y -+ X to the vertical
tangent bundle VY of Y --4 X describe linear deviations of fields. It is also a

preliminary step toward its SUSY extension in Section 9.6.
Let us start from the vertical extension of Lagrangian formalism. The configu-

ration space of a field theory on VY -> X is the jet manifold J'VY . Due to the

canonical isomorphism J1VY = VJ'Y ( 1.3.11), it is provided with the coordinates

(xA, y', ya, yi, ya ). It follows that Lagrangian formalism on J1VY can be developed

as the vertical extension of Lagrangian formalism on J'Y. Let L be a Lagrangian

on J1Y. Its prolongation onto the vertical configuration space J1VY can be defined

as the vertical tangent morphism

Lv=pr2oVL:VJIY-->AT*X, (4.5.1)

Lv = avL = (yi5ti + yaa2 )G,

to the morphism L (3.0.1). The corresponding Euler-Lagrange equations (3.2.10)

read

SiLv = S&L 0,

6^Lv=avbL=0, aV = 09+ y"ai +

(4.5.2a)

(4.5.2b)

The equations (4.5.2a) are exactly the Euler-Lagrange equations for the Lagrangian

L. In order to clarify the physical meaning of the equations (4.5.2b), let us suppose

that Y -+ X is a vector bundle. Given a solution s of the Euler-Lagrange equations

(3.2.10), let Ss be a Jacobi field, i.e., s + ecs is also a solution of the same Euler-

Lagrange equations modulo the terms of order > 1 in the parameter E. Then it

is readily observed that the Jacobi field 5s satisfies the Euler-Lagrange equations

(4.5.2b).
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The momentum phase space of a field theory on VY is the vertical Legendre

bundle

IIVY = V*VY Y(nn1T*X).

LEMMA 4.5.1. There exists the bundle isomorphism

IIVYVI, VII, pi (--) pi, qi (-) pi (4.5.3)

written with respect to the holonomic coordinates (xx, yi, y', p; , q=) on IIvY and

(? > yi pi', y', Pi' ) on VII. q

Proof. Similarly to the well-known isomorphism between the fibre bundles TT*X

and T*TX [174], the isomorphism

VV*Y V*VY, Pi #_* vi, 7piHyi,
VY

can be established by inspection of the transformation laws of the holonomic coor-
dinates (xa, y', pi ) on V*Y and (xA, yi , v') on VY. QED

It follows that Hamiltonian formalism on the vertical Legendre bundle IIvy can
be developed as the vertical extension onto VII of covariant Hamiltonian formalism

on II, where the canonical conjugate pairs are (y',15) and (yi, pL ). Any Lagrangian

(4.5.1) yields the vertical Legendre map

Lv = VL : V J1Y -* VII, (4.5.4)
VY

pi = ai .Cv = 7fi o pi = av7r', (4.5.5)

= 1/8,

Due to the isomorphism (4.5.3), VII is endowed with the canonical polysymplec-

tic form (4.1.3) which reads

QvY = [dpz A dy' + dpi A dy'] A w ®aa. (4.5.6)

Let Zvy be the homogeneous Legendre bundle (3.2.4) over VY with the cor-

responding coordinates (x', y', y', p= , qi , p). It can be endowed with the canonical

form -vy (4.1. 11). Sections of the affine bundle

ZvY -+ VII, (4.5.7)
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by definition, provide Hamiltonian forms on VII. Let us consider the Hamiltonian

forms on II which are related to those on the Legendre bundle II. Due to the fibre

bundle

VZY->Zvr, (4.5.8)

(xA, y^, yz, p: , 4i , p) o _ (x, yt, p t , p),

the vertical tangent bundle VZy of Zy -* X is provided with the exterior form

.7v = (*Evy = pW + (pi dyt +pi dy') AWA.

Given the affine bundle Zy -> II (3.2.7), we have the fibre bundle

V7rzn: VZY -* VII, (4.5.9)

where Vlrzn is the vertical tangent map to lrzn. The fibre bundles (4.5.7), (4.5.8)

and (4.5.9) make up the commutative diagram.

Let h be a section of the affine bundle Zy -* H and H = h*-E the corresponding

Hamiltonian form (4.1.12) on II. Then the section Vh of the fibre bundle (4.5.9) and

the corresponding section ( o V h of the affine bundle (4.5.7) defines the Hamiltonian

form

Hv = (Vh)*=-v = (pi dyt +p%dyi ) AWA - 7-lvW, (4.5.10)

7lv=avx=(yi9+pi8)x,

on VII. It is called the vertical extension of H. In particular , given the splitting

(4.1.14) of H with respect to a connection F on Y -> X, we have the corresponding

splitting

xV = pa ra + y'piair), + av7-lr

of Hv with respect to the vertical connection VI' (2.7.18) on VY -* X.

PROPOSITION 4.5.2. Let y (4.1.4) be a Hamiltonian connection on II associated

with a Hamiltonian form H. Then its vertical prolongation Vy (2.7.18) on VII -*

X is a Hamiltonian connection associated with the vertical Hamiltonian form Hv

(4.5.10). q

Proof. The proof follows from a direct computation. We have

Vy = 7 + dx" (9 [av'YN.a, + avyµzaa]
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Components of this connection obey the Hamilton equations (4.1.19) and the equa-

tions

rµ = aµi-cv = avaµi-l, jai = -aixv = -avaix. (4.5.12)

QED

The Hamiltonian form Hv (4.5.10) defines the Lagrangian LHv (4.1.20) on J1VII

which takes the form

GHv = ho(Hv) = PZ (ya - 3 7I) - y'(pai + ail) + dAWy')• (4.5.13)

The corresponding Hamilton equations contain the Hamilton equations (4.1.22a) -

(4.1.22b) and the equations

ya = aai-ly = avaax, PAi = -aii-ly = -avaii-l

for Jacobi fields 6yi = eyi, 5pti = E

In conclusion, let us study the relationship between the vertical extensions of

Lagrangian and Hamiltonian formalisms. The Hamiltonian form Hv (4.5.10) on

VII yields the vertical Hamiltonian map

HvVH:V[I -VJ'Y,

ya = a,\ i-ly = aai-l, ya = avaai-c.
(4.5.14)

(4.5.15)

PROPOSITION 4.5.3. Let H on II be a Hamiltonian form associated with a Lagran-

gian L on J'Y. Then the vertical Hamiltonian form Hv (4.5.10) is weakly associated

with the Lagrangian Lv (4.5.1). q

Proof. If the morphisms H and L obey the relation (4.2.2a), then the corresponding

vertical tangent morphisms satisfy the relation

VLoVHoVL=VL.

The condition (4.2.2b) for Hv reduces to the equality (4.2.6) which is fulfilled if H

is associatedwith L. QED
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Chapter 5

Connections in classical mechanics

The technique of Poisson and symplectic manifolds is well known to provide the

adequate Hamiltonian formulation of conservative mechanics. This formulation,

however, cannot be extended to time-dependent mechanics because the standard

symplectic form

Q = dpi A dqa (5.0.1)

is not invariant under time-dependent transformations of canonical coordinates and

momenta

q i r-' qt(t, g3,pj), pi - pi (t, gj,pj),

including inertial frame transformations. Non-relativistic time-dependent mechan-

ics can be formulated as a particular field theory on fibre bundles Q -- R over a

time axis R [121, 190, 199, 213, 216, 271]. At the same time, there is the essential

difference between field theory and time-dependent mechanics. In contrast with

gauge potentials in field theory, connections on a configuration bundle Q --> R of

time-dependent mechanics fail to be dynamic variables since their curvature van-

ishes identically. They characterize non-relativistic reference frames (see Section

5.5). Connections play a prominent role in the formulation of time-dependent me-

chanics. In particular, dynamic equations of time-dependent mechanics are given

by connections.

Throughout this Chapter,

-7r : Q -> R (5.0.2)

91
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is a fibre bundle whose typical fibre M is an m-dimensional manifold. This is

not the case of relativistic mechanics whose configuration space does not imply

any preferable fibration over a time (see Section 7.3). A fibre bundle Q -* 1E8 is

endowed with bundle coordinates (t, q1) where t is a Cartesian coordinate on R with

the transition functions t' = t+ const. The base R is provided with the standard

vector field at and the standard 1-form dt which are invariant under the coordinate

transformations t' = t+ const. The same symbol dt also stands for any pull-back of

the standard 1-form dt onto fibre bundles over R. For the sake of convenience, we

also use the compact notation (qA) where q° = t.

5.1 Fibre bundles over R

In this Section, we point out some peculiarities of fibre bundles over R. The most

important one is that connections on these fibre bundles are represented by vector

fields.
Since R is contractible, any fibre bundle over R is trivial. Different trivializations

Vi:Q=RxM (5.1.1)

differ from each other in the projections Q -* M, while the fibration Q -+ R is one

for all.

Let J1Q be the first order jet manifold of a fibre bundle Q -+ R (5.0.2). It is

provided with the adapted coordinates (t, qt, qt ). Every trivialization (5.1.1) yields

the corresponding trivialization of the jet manifold

J1Q=RxTM. (5.1.2)

The canonical imbedding (1.3.5) of J1Q takes the form

Al : J1Q '-* TQ, (5.1.3)

^1 (t, q`, qt) qz, t = 1, 4t = qt'),

A1=dt=at+qta=.

Following Remark 1.3.1, we will identify the jet manifold J1Q with its image in TQ.

In particular, the jet prolongation Jc of a section c : R -+ Q can be identified with

the tangent prolongation c (1.2.1) of the curve c.
A glance at the morphism Al (5.1.3) shows that the affine jet bundle J1Q -+ Q

is modelled over the vertical tangent bundle VQ of the fibre bundle of Q -+ R.
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As a consequence, we have the following canonical splitting (1.1.14) of the vertical

tangent bundle VQJ1Q of the affine jet bundle J'Q -* Q:

a : VQJ1Q - J1Q x VQ, a( 3) = ai, (5.1.4)
Q

together with the corresponding splitting of the vertical cotangent bundle VQJ1Q

of J'Q Q:

a* : VQJ1Q - J'Q Q V*Q, a*(dqi) = dqz, (5.1.5)

where dqt and dqi are the holonomic bases for VQJ1Q and V* Q, respectively.
There is the following endomorphism , called the vertical endomorphism, of the

tangent bundle TJ'Q:

v:TJ'Q->TJ'Q,

v(at) = -giai, v(ai) = az, v(a1) = 0. (5.1.6)

This endomorphism obeys the nilpotency rule v o v = 0. The transpose of the

vertical endomorphism v (5.1.6) is

v* : T*J1Q --* T*J1Q,

v*(dt) = 0, v*(dqi) = 0, v*(dqt) = Bi,

where 0' = dq' - gtdt are the contact forms (1.3.7).

In view of the morphism Al (5.1.3), any connection

r=dt®(at +riai)

(5.1.7)

(5.1.8)

on a fibre bundle Q -* R can be identified with a nowhere vanishing horizontal

vector field

IF =at +riai (5.1.9)

on Q which is the horizontal lift rat (2.1.6) of the standard vector field at on R

by means of the connection (5.1.8). Conversely, any vector field r on Q such that

dt J F = 1 defines a connection on Q -* R. As a consequence, connections on a fibre

bundle Q -* I[8 constitute an affine space modelled over the vector space of vertical

vector fields on Q -+ R. Accordingly, the covariant differential (2.2.7) associated
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with a connection r on Q --> R takes its values into the vertical tangent bundle VQ

of Q->1[8:

Dr : J1Q Q-VQ, 4' o Dr = qi - F,. (5.1.10)

A connection F (5.1.8) is obviously flat. By virtue of Proposition 2.6.2, it defines
an atlas of local constant trivializations.of Q -f R such that the associated bundle

coordinates (t, q`) on Q possess the transition function qi --> q'=(qj ) independent of

t, and F = at with respect to these coordinates . Conversely, every atlas of local

constant trivializations of the fibre bundle Q -> R determines a connection on
Q -* R which is equal to at relative to this atlas.

A connection F on a fibre bundle Q -f R is said to be complete if the horizontal

vector field (5.1.9) is complete.

PROPOSITION 5.1.1. [213]. Every trivialization of a fibre bundle Q -* R yields a

complete connection on this fibre bundle. Conversely, every complete connection F

on Q -* R defines its trivialization (5.1.1) such that the vector field (5.1.9) equals

at relative to the bundle coordinates associated with this trivialization. o

Let J1J'Q be the repeated jet manifold of a fibre bundle Q -> 118, provided with

the adapted coordinates (t, qt, qt, q( t), qtt)• For a fibre bundle Q -+ R, we have the

canonical isomorphism k between the affine fibrations 1r11 (1.3.12) and J17ro (1.3.13)

of J1J'Q over J1Q (see Remark 3.1.1), i.e.,

irll o k = J017rol, k o k IdJ1J1Q,

where

gtok=q(t), q(t)ok=qt, gtcok=qte (5.1.11)

By JQJ1Q throughout is meant the first order jet manifold of the affine jet bundle

J'Q -* Q, equipped with the adapted coordinates (q), qt, qat).
For a fibre bundle Q --> 118, the sesquiholonomic jet manifold PQ coincides with

the second order jet manifold J2Q, coordinated by (t, q', qt, qte) . The affine bundle

J2Q --> J1Q is modelled over the vertical tangent bundle

VQJ1Q = J1Q Q VQ --> J1Q (5.1.12)
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of the affine jet bundle PQ -+ Q. There are the imbeddings

PQ 4 TJ1Q Ty VQTQ = T2Q C TTQ,

A2 (t,q',qt,qtt )'-'(t,q',gt,t=1,4'=gt,4t=qtt), (5.1.13)

TA1 o A2 (t, q', qt, qtt ) -' (t, q', t = t = 1, 4' = q' = qt, t = 0, q' = qtt), (5.1.14)

where (t, qt, t, 4i, t, qi, t, 4i) are the holonomic coordinates on the double tangent

bundle TTQ, by VQTQ is meant the vertical tangent bundle of TQ --> Q, and

T2Q C TTQ is a second order tangent space, given by the coordinate relation t = t.

Due to the imbedding (5.1.13), any connection 6 on the jet bundle PQ -> R

(i.e., a second order connection on Q -* R) is represented by a horizontal vector

field on PQ such that 6 j dt = 1. Every connection r on a fibre bundle Q -+ R has
the jet prolongation to the section J1I' of the affine bundle J17ro and, by virtue of

the isomorphism k (5.1.11), gives rise to the connection

Jr' f k o J1r : J1Q J1J1Q,

JF= at +riai +dtI'ia2,

on the jet bundle PQ -* R. It is holonomic if

^=dt®(at+gtai+^'az)

(5.1.15)

In view of the imbedding (5.1.13), a holonomic second order connection on Q ---+

R is represented by a horizontal vector field

= at + giai + ^iai (5.1.16)

on J1Q. Conversely, every vector field e on PQ which fulfills the conditions

dtj6 = 1, v(6) = 0,
where v is the vertical endomorphism (5.1.6), is a holonomic connection on the jet

bundle PQ -+ R. As a consequence, holonomic connections (5.1.16) make up an

affine space modelled over the linear space of vertical vector fields on the affine

jet bundle PQ --f Q. Therefore, the covariant differential (5.1.10) relative to a

holonomic connection

D^ : J1J'Q - VQJ1Q C VJ1Q,JIQ

4ioDe=0, 4toDC=qtt-

takes its values into the vertical tangent bundle VQJ'Q of the affine jet bundle

J'Q- Q.
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5.2 Connections in conservative mechanics

Conservative mechanics is characterized by first order dynamic equations on a mo-

mentum phase space in Hamiltonian mechanics and by second order dynamic equa-

tions on a configuration space in Lagrangian and Newtonian mechanics.

A generic example of conservative Hamiltonian mechanics is a regular Poisson

manifold (Z, w) and a Hamiltonian l seen as a real function on Z (by w is meant a

Poisson bivector). Given the corresponding Hamiltonian vector field 19% = wo(df),

the closed subbundle t9,-j(Z) of the tangent bundle TZ is a first order dynamic equa-

tion on a manifold Z (see Definition 1.3.3), called the Hamilton equations. This is
also the case of presymplectic Hamiltonian systems. Since every presymplectic form

can be represented as a pull-back of a symplectic form by a coisotropic imbedding

[132, 213], a presymplectic Hamiltonian system can be seen as a Dirac constraint

system [50, 213]. An autonomous Lagrangian system also exemplifies a presymplec-

tic Hamiltonian system where a presymplectic form is the exterior differential of the

Poincare-Cartan form, while a Hamiltonian is the energy function [51, 198, 213, 229].

Lagrangian conservative mechanics implies the existence of a configuration ma-

nifold M of a mechanical system. In this case, the momentum phase space is

the cotangent bundle T*M, while the velocity phase space is the tangent bundle

TM. Let us consider second order dynamic equations on a configuration mani-

fold M and their relations with connections on the tangent bundle TM -+ M (see

[142, 196, 213, 226]).

DEFINITION 5.2.1. An autonomous second order dynamic equation on a manifold

M is defined as a first order dynamic equation (1.3.25) on the tangent bundle TM

which is associated with a holonomic vector field

-- = 4'ai +'-;t(gj, 4' )at (5.2.1)

on TM. This vector field, by definition, obeys the condition J(E) = 'TM, where J

is the endomorphism (1.2.29) and uTm is the Lionville vector field (1.2.7) on TM.

0

With respect to the holonomic coordinates (g8, qt qi Qs) on the double tangent

bundle TTM, the second order dynamic equation given by the holonomic vector

field-",';' (5.2.1) reads

qt = 42, qt = °'(q3, 4i)• 1 (5.2.2)
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By its classical solutions are meant the curves c : () --+ M in a manifold M whose

tangent prolongations c : () -+ TM (1.2.1) are integral curves of the holonomic

vector field 7- or, equivalently, whose second order tangent prolongations c live in

the subbundle (5.2.2). They satisfy the equations

o7(t) = =- (c'(t),c'(t))•

A particular second order dynamic equation on a manifold M is a geodesic

equation on the tangent bundle TM. Given a connection

K=dq3®(a3 +K,a1)

on the tangent bundle TM -* M, let

K: TMxTM -->TTM
M

(5.2.3)

be the corresponding linear bundle morphism (2.1.1) over TM which splits the exact

sequence

0 ->VMTM-+ TTM -->TMxTM --0.
M

DEFINITION 5.2.2. A geodesic equation on TM with respect to the connection K

is defined as the image

qZ=qa q'=K^

of the morphism (5.2.3) restricted to the diagonal TM C TM x TM. q

(5.2.4)

By a solution of a geodesic equation on TM is meant a geodesic line c in M,

whose tangent prolongation c is an integral section (a geodesic vector field) over

c c M for the connection K.

It is readily observed that the morphism K I TM is a holonomic vector field on

TM. It follows that any geodesic equation (5.2.3) on TM is a second order equation

on M. The converse is not true in general. There is the following theorem.

THEOREM 5.2 . 3. [226]. Every second order dynamic equation (5.2.2) on a manifold

M defines a connection Kn on the tangent bundle TM -> M whose components are

t 1•EtKj = 2a;^ . (5.2.5)
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However, the second order dynamic equation (5.2.2) fails to be a geodesic equa-

tion with respect to the connection (5.2.5) in general. In particular, the geodesic

equation (5.2.4) with respect to a connection K determines the connection (5.2.5)

on TM -> M which does not necessarily coincide with K. A second order equation

on M is a geodesic equation for the connection (5.2.5) if and only if

^Z2
= a' (q)4k4

is a spray, i.e., [UTM, 8] = where uT,M is the Liouville vector field (1.2.7) on TM.

In this case, the connection K (5.2.5) is a symmetric linear connection (2.4.7) on

TM ->M.

In the next Section, we will improve Theorem 5.2.3 (see Proposition 5.3.4 below).

5.3 Dynamic connections in time-dependent mechanics

Turn now to second order dynamic equations in time-dependent mechanics on the

configuration bundle Q -* R, coordinated by (t, q').

DEFINITION 5.3.1. In accordance with Definition 3.1.2, a second order dynamic

equation on a fibre bundle Q -> R is the kernel of the covariant differential D£

corresponding to a holonomic second order connection (5.1.16) on Q -+ R. This is

a closed subbundle of the second order jet bundle J2Q -+ R, given by the coordinate

relations

qtt = qi>qt)• (5.3.1)

Throughout this Chapter, we will call (5.3.1) simply a dynamic equation if there is

no danger of confusion. The corresponding horizontal vector field ^ (5.1.16) is also

termed a dynamic equation. q

A solution of the dynamic equation (5.3.1), called a motion, is a curve c in Q

whose second order jet prolongation c lives in (5.3.1). It is clear that any integral

section c for the holonomic connection ^ is the jet prolongation c of a solution c of

the dynamic equation (5.3.1), i.e.,

c1=^1oc, (5.3.2)
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and vice versa.

One can easily find the transformation law

qtt
^^2 = (eia. +ggta ak + 2q8;at +8t)q't(t, qi (5.3.3)

of a second order dynamic equation under fibred coordinate transformations qi

q" (t, qi)•

Remark 5.3.1. There are the following relations between second order dynamic

equations on fibre bundles and autonomous second order dynamic equations on

manifolds. A dynamic equation ^ on a fibre bundle Q -> R is said to be conservative

if there exists a trivialization (5.1.1) of Q and the corresponding trivialization (5.1.2)

of J1Q such that the vector field ^ (5.1.16) on J1Q is projectable over M. Then

this projection

is an autonomous second order dynamic equation on the typical fibre M of Q -> R

in accordance with Definition 5.2.1. Conversely, every autonomous second order

dynamic equation ° on a manifold M can be seen as a conservative dynamic equation

^E= at+4iai +UZai (5.3.4)

on the fibre bundle R x M -> R in accordance with the isomorphism (5.1.2).

One can also show [213] that any dynamic equation (5.3.1) given by a holonomic

second order connection ^ (5.1.16) on a fibre bundle Q -+ R is equivalent to the

autonomous second order dynamic equation

t=0, i=1, 4i =u`, (5.3.5)

on a manifold Q defined by the holonomic vector field 8 on TQ which satisfies the

relations

This vector field H makes the diagram

J2Q ------ T2Q

J1Q -" TQ
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commutative (see the morphism (5.1.14)). Theorem 5.4.2 below will improve this

result. •

The fact that ^ is a curvature-free connection places a limit on the geometric
analysis of dynamic equations by holonomic second order connections. Therefore, we

will consider the relationship between the holonomic connections on the jet bundle

J1Q -> R and the connections on the affine jet bundle J1Q -+ Q. We aim to

show that any connection on J1Q -> Q defines a dynamic equation, and vice versa

[68, 196, 213].

Let y : J1Q -+ JQJ1Q be a connection on the affine jet bundle J1Q -* Q. It

takes the coordinate form

'Y = dqA 0 (aa +'Yaa:) (5.3.6)

with the transformation law

aqµ

Let us consider the composite fibre bundle

J1Q-*Q--+118

and the morphism p (2.7.6) which reads

(5.3.7)

(5.3.8)

J1 J1 A i i
H A t i Z t

1+ qqq` ) E J2Q. (5.3.9)P Q Q (4 , 4t, qat) ( 4 , qt, q(' t) = q, Oct = 40t
3
t

PROPOSITION 5.3.2. Any connection y (5.3.6) on the affine jet bundle J1Q -* Q

defines the holonomic connection

S7 = r
o y : J1Q -4 JQJIQ -+ J2Q,

at+ giat + (Yo +%-y3^) a; ,

on the jet bundle J1Q --> R. q

(5.3.10)

It follows that every connection y (5.3.6) on the affine jet bundle J1Q -> Q

yields the dynamic equation

5.3.11qet='Yo+^y^ ( )
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on the configuration bundle Q -> R. This is precisely the restriction to J2Q of the
kernel Ker D7 of the vertical covariant differential 5..7 (2.7.15) relative the connection

Dry:J'J'Q-*VQJ'Q,

qt ° Dry = qt, - 'yo - q' j• (5.3.12)

Therefore , connections on the jet bundle J'Q -* Q are called the dynamic connec-
tions. The corresponding equation (5.3.2) can be written in the form

Ci = '0Oy06,

where o is the morphism (5.3.9). Of course, different dynamic connections can lead

to the same dynamic equation (5.3.11).

A converse of Proposition 5.3.2 is the following.

PROPOSITION 5.3.3. Any holonomic connection ^ (5.1.16) on the jet bundle

J'Q --> R defines the dynamic connection

ry^= dt®[at+ Zgta,^t)aal +dql ®[a; +2a;Staal

on the affine jet bundle J'Q --> Q. q

(5.3.13)

It is readily observed that the dynamic connection -y£ (5.3.13) possesses the

property

'yk = aa'yo + q,10a'yk (5.3.14)

which implies the relation ajryk = aay^ . Therefore , a dynamic connection -y obeying
the condition (5.3.14 ) is said to be symmetric . The torsion of a dynamic connection
-y is defined as the tensor field

T =7 dqi®ak: J'Q->V'Q®VQ,

Tk k t k t k (5.3.15)

It follows at once that a dynamic connection is symmetric if and only if its torsion

vanishes.
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Let ry be a dynamic connection (5.3.6) and ^.y the corresponding dynamic equa-

tion (5.3.10). Then the dynamic connection (5.3.13) associated with the dynamic

equation takes the form

N-0 k - 2 ('Yi + aa'Yo + q,a; Y ), 'Ye, k = c - gi'YC, i.

It is readily observed that -y = -yC, if and only if the torsion T (5.3.15) of the dynamic

connection ry vanishes.

Example 5 .3.2. The affine jet bundle J1Q -+ Q admits an affine connection

'Y = dqA ® [aa + ('Yao(gl`) + Ya^(4µ)^)a:] (5.3.16)

This connection is symmetric if and only if 'yaµ = ryN,a. One can easily justify that

an affine dynamic connection generates a quadratic dynamic equation, and vice

versa. A non-affine dynamic connection whose symmetric part is affine also defines

a quadratic dynamic equation. •

Using the notion of a dynamic connection, we can modify Theorem 5.2.3 as
follows. Let E be an autonomous second order dynamic equation on a manifold M,

and && (5.3.4) the corresponding conservative dynamic equation on the fibre bundle

R x M --+ R. The latter yields the dynamic connection -y (5.3.13) on the fibre bundle

x TM -> R x M. Its components y are exactly those of the connection (5.2.5) on

the tangent bundle TM -+ M in Theorem 5.2.3, while -yo' make up a vertical vector

field

e = Yoa; _ (^' - 14i6i=iA

on TM --> M. Thus, we have shown the following.

(5.3.17)

PROPOSITION 5.3.4. Every autonomous second order dynamic equation E (5.2.2)

on a manifold M admits the decomposition

K!43 + e'

where K is the connection (5.2.5) on the tangent bundle TM -> M, and e is the

vertical vector field (5.3.17) on TM -> M. q

Remark 5.3.3. Every dynamic equation ^ on Q and the corresponding dynamic

connection ry£ (5.3.13) also define a linear connection on the tangent bundle TJ1Q ->

J1Q [68, 213, 216]. 0
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5.4 Non-relativistic geodesic equations

In this Section, we aim to show that every dynamic equation in non-relativistic

mechanics on a configuration bundle Q -* R is equivalent to a geodesic equation

on the tangent bundle TQ -> Q. Treated in such a way, non-relativistic dynamic

equations can be examined by means of the standard geometric methods (see Section

5.9).
We start from the relation between the dynamic connections 'y on the affine jet

bundle J1Q -> Q and the connections

K=dq'®(aa+Kaaµ) (5.4.1)

on the tangent bundle TQ --> Q. Let us consider the diagram

JQJ1Q r-4 J11 TQQ

1 1 K (5.4.2)

J1Q a^ . TQ

where JQTQ is the first order jet manifold of the tangent bundle TQ -- Q, co-

ordinated by (t, q' t 4' (t)µ, (4')µ) The jet prolongation over Q of the canonical

imbedding A1 (5.1.3) reads

J1.\1 (t, q', qi, 4t) (t, q', 1, 4' = q', (t)µ = 0, (q')µ = qµt)•

Then we have

J1A1 o 7 : (t, q', qt) (t,q', qt, (4µ 01 (q')µ - Yµ),

Ko A1: (t, q ,gt)H (t, q', t=1 ,41=qi, (i). = K, (4')µ = K).

It follows that the diagram (5.4.2) can be commutative only if the components Kµ

of the connection K (5.4.1) on the tangent bundle TQ -* Q vanish.

Since the transition functions t -+ t' are independent of q', a connection

K=dq-\ ® (aa+Ka9) (5.4.3)

with Kµ = 0 can exist on the tangent bundle TQ -* Q in accordance with the

transformation law

K'a = (aj4'K1i, +aµ42) qQa. (5.4.4)
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Now the diagram (5.4.2) becomes commutative if the connections ry and K fulfill

the relation

(5.4.5)

It is easily seen that this relation holds globally because the substitution of 4i = qt

in (5.4.4 ) restates the transformation law (5.3.7 ) of a connection on the affine jet

bundle J1Q -* Q. In accordance with the relation (5.4.5), the desired connection k

is an extension of the section J1 Al o -y of the affine jet bundle J11 TQ -> TQ over the

closed submanifold J1Q C TQ to a global section. Such an extension always exists,

but is not unique. Thus , we have proved the following.

PROPOSITION 5.4.1. In accordance with the relation ( 5.4.5), every dynamic equa-

tion on a configuration bundle Q -> ]1 can be written in the form

Ott = oA1 +q'K3^ o , (5.4.6)

where K is a connection (5.4.3) on the tangent bundle TQ -> Q. Conversely, each

connection k (5.4.3) on TQ -> Q defines the dynamic connection 'y (5.4.5) on the

affine jet bundle J1Q - Q and the dynamic equation (5.4.6) on a configuration

bundle Q -+ R. q

Then we come to the following theorem.

THEOREM 5.4.2. Every dynamic equation (5.3.1) on a configuration bundle Q--4R

is equivalent to the geodesic equation

4°=0, 4°=1,

4' = K4(4µ, 4")44, (5.4.7)

on the tangent bundle TQ relative to a connection K with the components Ka = 0

and Ka (5.4.5). Its solution is a geodesic curve in Q which also obeys the dynamic

equation (5.4.6), and vice versa. q

In accordance with this theorem, the second order equation (5.3.5) can be cho-

sen as a geodesic equation. It should be emphasized that, written in the bundle

coordinates (t, qi), the geodesic equation (5.4.7) and the connection k (5.4.5) are

well defined with respect to any coordinates on Q.
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From the physical viewpoint, the most interesting dynamic equations are the
quadratic ones

ajk(q' )qqi +b;(q``)q' +ft(gµ). (5.4.8)

This property is coordinate-independent due to the transformation law (5.3.3). Then

one can use the following two facts.

PROPOSITION 5.4.3. There is one-to-one correspondence between the affine con-
nections y on the affine jet bundle J'Q - Q and the linear connections K (5.4.3)

on the tangent bundle TQ -* Q. q

This correspondence is given by the relation (5.4.5), written in the form

yµ = YAo + yµ 4' = Kµto(gV )t + Kµtj (qv) 4' Jt=i 92 = Kµto(gV) + Kµta (4V )qt1 J t

In particular, if an affine dynamic connection y is symmetric, so is the corresponding

linear connection K.

COROLLARY 5.4.4. Every quadratic dynamic equation ( 5.4.8) on a configuration

bundle Q -+ R of non-relativistic mechanics gives rise to the geodesic equation

4° = 0, 4° = 1,

if = a)k(q' )f 4k + bj(q' )414° + fz(q )4°4° (5.4.9)

on the tangent bundle TQ with respect to the symmetric linear connection

K°v = 0, Koto = f' , Koij = Kjio = 1 b^, Kktj = aki (5.4.10)

on the tangent bundle TQ --f Q. q

The geodesic equation (5.4.9), however, is not unique for the dynamic equation

(5.4.8).

PROPOSITION 5.4.5. Any quadratic dynamic equation (5.4.8), being equivalent to

the geodesic equation with respect to the symmetric linear connection K (5.4.10),
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is also equivalent to the geodesic equation with respect to an affine connection K'

on TQ -+ Q which differs from K (5.4.10) in a soldering form o, on TQ -+ Q with

the components

0 i i i 0 i i k i 0 iU0=O, Qk=hk+(s-1)h vo=-shk4 -ho4 +h01

where s and ha are local functions on Q. q

The proof follows from direct computation.
Now let us extend our inspection of dynamic equations to connections on the

tangent bundle TM --> M of the typical fibre M of a configuration bundle Q -+ R.

In this case , the relationship fails to be canonical , but depends on a trivialization

(5.1.1)of Q-+1l.

Given such a trivialization , let (t, q ) be the associated coordinates on Q, where q

are coordinates on M with transition functions independent of t. The corresponding

trivialization (5.1.2) of J1Q -+ R takes place in the coordinates (t, 4, q t), where qi

are coordinates on TM. With respect to these coordinates , the transformation law

(5.3.7) of a dynamic connection ry on the affine jet bundle J1Q -> Q reads

Ii
,i _

- _Y1070 = %
8` on
ar

)
81k

It follows that, given a trivialization of Q --+ R, a connection -y on J'Q -+ Q defines

the time-dependent vertical vector field

ry0i (t,4',
qi R

xTM -+VTM

and the time-dependent connection

d-qk®
q k +_Yk(t ,4j,4^) qi I : R x TM --> J1TM C TTM (5.4.11)

on the tangent bundle TM -> M.

Conversely, let us consider a connection

dqk ®I qk+Kk (4',4^)
a

i

^i
.i ^
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on the tangent bundle TM -+ M. Given the above-mentioned trivialization of the
configuration bundle Q -* R, the connection K defines the connection K (5.4.3),
with the components

Ko=0, KK=Kk

on the tangent bundle TQ -> Q. The corresponding dynamic connection y on the

affine jet bundle J'Q -* Q reads

7o=0, 'y =Kk. (5.4.12)

Using the transformation law (5.3.7 ), one can extend the expression (5.4.12) to
arbitrary bundle coordinates (t, q') on the configuration space Q as follows:

02q'
1k = I jKn(4j(gr),i^(q',gt + q j^' + ar' ^ ak4'^, (5.4.13)

a ri +aFi
j- Mirk •1

ry0 t j qt k

where ra = atq'(t, q) is the connection on Q -- R, corresponding to a given trivial-

ization of Q, i.e., r' = 0 relative to ( t , ' ) . The dynamic equation on Q defined by

the dynamic connection (5.4.13) takes the form

qtt = atF` + gia3F® +'Yy(gt - rk). (5.4.14)

By construction, it is a conservative dynamic equation. Thus, we have proved the

following.

PROPOSITION 5.4.6. A connection K on the tangent bundle TM -> M of the

typical fibre M of a configuration bundle Q -+ R and a connection F on Q -* R

yield a conservative dynamic equation (5.4.14) on Q. q

5.5 Connections and reference frames

From the physical viewpoint, a reference frame in non-relativistic mechanics deter-

mines a tangent vector at each point of a configuration space Q, which characterizes

the velocity of an "observer" at this point. These speculations lead to the following

notion of a reference frame in non-relativistic mechanics [213, 216, 271].
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DEFINITION 5.5.1. In non-relativistic mechanics, a reference frame is a connection
r on the configuration bundle Q -* R. q

In accordance with this definition, one can think of the horizontal vector field

(5.1.9) associated with a connection I' on Q - R as being a family of "observers",

while the corresponding covariant differential

def
4r =Dr(gi)=qi-FZ

determines the relative velocities with respect to the reference frame P.

In particular, given a motion c : R -* Q, its covariant derivative Vrc with respect

to a connection IF is the velocity of this motion relative to the reference frame P. For

instance, if c is an integral section for the connection IF, the velocity of the motion c

relative to the reference frame P is equal to 0. Conversely, every motion c : R -* Q,

defines a reference frame IF, such that the velocity of c relative to r, vanishes. This
reference frame P, is a global extension of the section c(R) ---> J1Q of the affine jet

bundle J1Q --+ Q over the closed submanifold c(R) C Q.

By virtue of Proposition 2.6.2, any reference frame P on a configuration bundle

Q --> IR is associated with an atlas of local constant trivializations, and vice versa.

The connection P reduces to r = at with respect to the corresponding coordinates

(t, 4% whose transition functions q --p 4" are independent of time, One can think of

these coordinates as being also the reference frame, corresponding to the connection

r = at. They are called adapted to the reference frame P. Thus, we come to the

following notion of a reference frame, equivalent to Definition 5.5.1.

DEFINITION 5.5.2. In non-relativistic mechanics, a reference frame is an atlas of

local constant trivializations of a configuration bundle Q ---> R. q

In particular, with respect to the coordinates q adapted to a reference frame P,

the velocities relative to this reference frame are equal to the absolute ones

•
= 4t•Dr(9t) = 4r

Z

A reference frame is said to be complete if the associated connection F is com-

plete. By virtue of Proposition 5.1.1, every complete reference frame defines a

trivialization of a bundle Q -* IR, and vice versa.
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Remark 5 .5.1. Given a reference frame P, one should solve the equations

P(t, q' (t, 4a)) = aqi (t, 4 )at (5.5.1a)

a-qa(t, 4') Fi(t, q') + aq (t, qj) = 0 (5.5.1b)aqi at
in order to find the coordinates (t, q) adapted to r.

Let (t, ql) and (t, q2) be the adapted coordinates for reference frames r1 and r2,
respectively. In accordance with the equality (5.5.1b), the components Pi of the
connection F1 with respect to the coordinates (t, q2) and the components 172 of the

connection r2 with respect to the coordinates (t, ql) fulfill the relation

a

ag2F1+FZ =0.

Using the relations (5.5.la) - (5.5.1b), one can rewrite the coordinate transfor-
mation law (5.3.3) of dynamic equations as follows. Let

-a

qtt = (5.5.2)

be a dynamic equation on a configuration space Q, written with respect to a reference
frame (t, 4-). Then, relative to arbitrary bundle coordinates (t, qi) on Q -> R, the
dynamic equation (5.5.2) takes the form

, (5.5.3)qit = dtFi + ari(q' - P') - a aq ak (qt - F')(qe - Ft`) + a-q

where F is the connection corresponding to the reference frame (t, q ). The dynamic

equation (5.5.3) can be expressed in the relative velocities 4r = qt - Pi with respect
to the initial reference frame (t, q ). We have

Oq
' a--a a i

(t, 4', r ). (5.5.4)dt4r = aiPt4r
aq aqjagkrgr + a-qa

Accordingly, any dynamic equation (5.3.1) can be expressed in the relative velocities
4r = qt - Pi with respect to an arbitrary reference frame F as follows:

dtar = (^ - JF)t dtri, (5.5.5)

where JP is the prolongation (5.1.15) of the connection r onto J1Q -+
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Remark 5.5.2. Let us consider the following particular reference frame r for a

dynamic equation ^. The covariant differential of a reference frame IF with respect

to the corresponding dynamic connection 'yt (5.3.13) reads

pryr = v'rkdg ® ® ak : Q --# T*Q x VQJ'Q, (5.5.6)

vark=aark-7a0r.

A connection IF is called a geodesic reference frame for the dynamic equation ^ if

rJoryr = ra(aark - _Ya 0 r) = (dtrt - o r)ai = 0. (5.5.7)

It is readily observed that integral sections c of a reference frame r are solutions of

a dynamic equation ^ if and only if r is a geodesic reference frame for ^. •

With a reference frame, we obtain a converse of Theorem 5.4.2.

THEOREM 5.5.3. Given a reference frame r, any connection K (5.4.1) on the

tangent bundle TQ --* Q defines a dynamic equation

(Kax r2Ka°)

11

This theorem is a corollary of Proposition 5.4.1 and the following lemma proved

by the inspection of transition functions.

LEMMA 5.5.4. Given a connection IF on the fibre bundle Q --+ R and a connection

K on the tangent bundle TQ -+ Q, there is the connection k on TQ -> Q with the

components

Ka=0, K), =Ka - riKa.
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5.6 The free motion equation

We say that the dynamic equation (5.3.1) is a free motion equation if there exists a
reference frame (t, q) on the configuration space Q such that this equation reads

(5.6.1)

With respect to arbitrary bundle coordinates (t, qi), a free motion equation takes

the form

qct = dtri +a, r'(gt - r') - aq a k (4t - r')(qt - rk), (5.6.2)

where ri = atgi (t, q) is the connection associated with the initial reference frame

(t, q) (cf. (5.5.3)). One can think of the right-hand side of the equation (5.6.2) as

being the general coordinate expression for an inertial force in non-relativistic me-

chanics. The corresponding dynamic connection ry£ on the affine jet bundle J1Q -> Q

reads

0q '
_Yk = OX -

aQ aqqk

70=atri +a3rigt - 7kirk•

(5.6.3)

It is affine. By virtue of Proposition 5.4.3, this dynamic connection defines a linear

connection K on the tangent bundle TQ -> Q, whose curvature necessarily vanishes.

Thus, we come to the following criterion of a dynamic equation to be a free motion

equation.

• If l; is a free motion equation on a configuration space Q, it is quadratic, and

the corresponding symmetric linear connection (5.4.10) on the tangent bundle
TQ -> Q is a curvature-free connection.

This criterion is not a sufficient condition because it may happen that the com-

ponents of a curvature-free symmetric linear connection on TQ , Q vanish with
respect to the coordinates on Q which are not compatible with the fibration Q --->
The similar criterion involves the curvature of a dynamic connection (5.6.3) of a free

motion equation.

• If ^ is a free motion equation, then the curvature R of the corresponding

dynamic connection y is equal to 0.
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This criterion also fails to be a sufficient condition. If the curvature R of a dynamic

connection lye vanishes, it may happen that components of 7y are equal to 0 with

respect to non-holonomic bundle coordinates on the affine jet bundle J1Q -* Q.

Nevertheless, one can formulate the following necessary and sufficient condition

of the existence of a free motion equation on a configuration space Q [68, 213].

• A free motion equation on a fibre bundle Q --+ R exists if and only if the

typical fibre M of Q admits a curvature-free symmetric linear connection.

Indeed, let a free motion equation take the form (5.6.1) with respect to some atlas

of local constant trivializations of a fibre bundle Q -> R. By virtue of Proposition

5.3.3, there exists an affine dynamic connection ry on the affine jet bundle J1Q -+ Q

whose components relative to this atlas are equal to 0. Given a trivialization chart

of this atlas, the connection ry defines the curvature-free symmetric linear connection

(5.4.11) on M. The converse statement follows at once from Proposition 5.4.6.

The free motion equation (5.6.2) is simplified if the coordinate transition func-

tions q` qi are affine in the coordinates Then we have

qie = atri - r3a3r' + 2gtajr1. (5.6.4)

The following lemma shows that the free motion equation (5.6.4) is affine in the

coordinates qi and qt.

LEMMA 5.6.1. [213]. Let (t, qa) be a reference frame on a configuration bundle

Q --> R and r the corresponding connection. Components ri of this connection with

respect to another coordinate system (t, qi) are affine functions in the coordinates qi

if and only if the transition functions between the coordinates q and qi are affine.

11

As an example, let us consider a free motion on a plane R2. The corresponding

configuration bundle is lR3 lt, coordinated by (t, r). The dynamic equation of

this motion is

r=0.

Let us choose the rotatory reference frame with the adapted coordinates

r = Ar, A =
(cos apt - sin wt)

sin wt cos wt l

(5.6.5)

(5.6.6)
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Relative to these coordinates, the connection F corresponding to the initial reference
frame reads

P=atr =atA•A-1r.

Then the free motion equation (5.6.5) with respect to the rotatory reference frame
(5.6.6) takes the familiar form

rtt = w 2 r + 2 01-01) rt. (5.6.7)

The first term in the right-hand side of the equation (5.6.7) is the centrifugal force
(-PPajP'), while the second one is the Coriolis force (2gtajI i).

One can easily find the geodesic reference frames for a free motion equation.

They are r' = v' = const. By virtue of Lemma 5.6.1, these reference frames define
the adapted coordinates

ql = kjql - v't - a', kj' = const., v' = const., a' = const. (5.6.8)

The equation (5.6.1) keeps obviously its free motion form under the transformations

(5.6.8) between the geodesic reference frames. It is readily observed that these

transformations are precisely the elements of the Galilei group.

5.7 The relative acceleration

It should be emphasized that, taken separately, the left- and right-hand sides of
the dynamic equation (5.5.5) are not well-behaved objects. This equation can be

brought into the covariant form if we introduce the notion of a relative acceleration.

To consider a relative acceleration with respect to a reference frame IF, one

should prolong the connection P on the configuration bundle Q --> R to a holonomic

connection er on the jet bundle PQ -^ R. Note that the jet prolongation Jr (5.1.15)

of r onto PQ --> R is not holonomic. We can construct the desired prolongation

by means of a dynamic connection y on the affine jet bundle PQ -+ Q.

LEMMA 5.7.1. [213]. Let us consider the composite bundle (5.3.8). Given a frame

r on Q --* R and a dynamic connections -y on PQ --> Q, there exists a dynamic
connection ry` on PQ -^ Q with the components

t`' k' ='y%, 'Yo = dtP' - rykP. (5.7.1)
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Now, we construct a certain soldering form on the affine jet bundle J1Q -+ Q
and add it to this connection . Let us apply the canonical projection T*Q -> V*Q

and then the imbedding r : V*Q --> T*Q to the covariant differential (5.5.6) of

the reference frame IF with respect to the dynamic connection -y. We obtain the
VQJ'Q-valued 1-form

= [- ri(ark - -yk o r)dt + (airk - yk o r) dgi] ®ak'

on Q whose pull-back onto J1Q is the desired soldering form. The sum

def .-
'Yr = 'Y + a,

called the frame connection, reads

'Yr0=dtra -'irk-rk(akrt-7'k or),

Yrk _ 'Yk + akrt - ry o r.

This connection yields the desired holonomic connection

^r=dtri+(akri+-ri-^yi or)(q^ -rk)

(5.7.2)

on the jet bundle J1Q --* R.

Let ^ be a dynamic equation and ry = rye the connection (5.3.13 ) associated with

e . Then one can think of the vertical vector field

def CC
ar ^-fir= (fit - Sr)ai (5.7.3)

on the affine jet bundle J1Q --> Q as being a relative acceleration with respect to

the reference frame r in comparison with the absolute acceleration ^.

Example 5 .7.1. Let us consider a reference frame which is geodesic for the dynamic

equation t;, i.e., the relation (5.5.7) holds. Then the relative acceleration of a motion

c with respect to the reference frame r is

(^- r) oIF =0.

•
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Let ^ now be an arbitrary dynamic equation, written with respect to coordinates

(t, q') adapted to the reference frame r, i.e., r' = 0. In these coordinates, the relative
acceleration with respect to the reference frame r is

ar = ^'(t, q , qt) - 2gt (akSf - OX Iq_o). (5.7.4)

Given another bundle coordinates (t, q'i) on Q -* R, this dynamic equation takes

the form (5.5.4), while the relative acceleration (5.7.4) with respect to the reference
frame r reads ar = ajq"ar. Then we can write a dynamic equation (5.3.1) in the
form which is covariant under coordinate transformations:

D7rgt
i _
-dtge

i
- cr- ar, (5.7.5)

where Dyr is the vertical covariant differential (5.3.12) with respect to the frame

connection yr (5.7.2) on the affine jet bundle J1Q -4 Q.

In particular, if ^ is a free motion equation which takes the form (5.6.1) with
respect to a reference frame r, then

D7rgi = 0

relative to arbitrary bundle coordinates on the configuration bundle Q --.
The left-hand side of the dynamic equation (5.7.5) can also be expressed into

the relative velocities such that this dynamic equation takes the form

dt4r - 'Yrk4r = ar (5.7.6)

which is the covariant form of the equation (5.5.5).

The concept of a relative acceleration is understood better when we deal with

the quadratic dynamic equation ^, and the corresponding dynamic connection y is
affine. If a dynamic connection y is affine, i.e.,

'YA = yao + %kqt

so is the frame connection yr for any frame r:

= = yj
s
k^

yrok = OW - 'Y34r3, 'Yrko = akF - -yk,r-', (5.7.7)

yroo = atr' - rja;ri + y krjrk.
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In particular, we obtain

'Yr34 = 'Yilk, 'Yrok = 'Yr%o = 'Yroo = 0

relative to the coordinates adapted to a reference frame F. A glance at the expression

(5.7.7) shows that, if a dynamic connection ry is symmetric , so is a frame connection

'Yr

COROLLARY 5.7.2. If a dynamic equation ^ is quadratic, the relative acceleration

ar (5.7.3) is always affine, and it admits the decomposition

ar = -(F-V" A + 24rVAri),

where ry = ry£ is the dynamic connection (5.3.13), and

4r=qe -ra, qeo =1, ro=1

is the relative velocity with respect to the reference frame F. q

(5.7.8)

Note that the splitting (5.7.8) gives a generalized Coriolis theorem. In particu-

lar, the well-known analogy between inertial and electromagnetic forces is restated.

Corollary 5.7.2 shows that this analogy can be extended to an arbitrary quadratic

dynamic equation.

5.8 Lagrangian and Newtonian systems

Lagrangian formalism of time-dependent mechanics is the repetition of Lagrangian

field theory (see Section 3.2) in the particular case of fibre bundles Q -> R. By

a Lagrangian system is meant a mechanical system whose motions are solutions of

Euler-Lagrange equations for some Lagrangian

L=Cdt, L:J'Q,R, (5.8.1)

on the velocity phase space J1Q. We also consider more general notion of a New-

tonian system. A Newtonian system is characterised both by a dynamic equation

(i.e., a dynamic connection) and a mass tensor which satisfy a certain relation. At

first, we will obtain this relation in the framework of Lagrangian formalism.

As in field theory, by gauge transformations in time-dependent mechanics are

meant automorphism of the configuration bundle Q ---+ R, but only over translations
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of the base R. Therefore, we will restrict our consideration to projectable vector
fields

u = utat + u2ai, ujdt = ut = const., (5.8.2)

on Q -+ 11 which are generators of local 1-parameter groups of such gauge transfor-
mations. The jet prolongation (1.3.10) of u (5.8.2) is

Jlu = utat + uiai + dtuiati.

Given a Lagrangian L (5.8.1), its Lie derivative (3.2.1) along u reads

L j' L = (uj d,C)dt = (utat + uiai + dtuiai ),Cdt. (5.8.3)

Then the first variational formula (3.2.2) takes the form

J1ujdG = (ui - utgt)Ei + dt(uJHL), (5.8.4)

where

HL = v'(dL) + L = it dq2 - ( lrigt - C)dt (5.8.5)

is the Poincare-Cartan form (3.2.5) and

EL:J2Q_V*Q,

EL = Eidgi = (ai - dta2t ),Cdgi, (5.8.6)
is the Euler-Lagrange operator ( 3.2.3) for a Lagrangian L. We will use the notation

7ri = ai ,C, 7rji = a;aic.

The kernel Ker EL C J2Q of the Euler-Lagrange operator (5.8.6) defines the Euler-
Lagrange equations

A - dtait),C = 0 (5.8.7)

in time-dependent mechanics.

As in field theory, a holonomic connection e (5.1.16) on the jet bundle J1Q -+ R
is said to be a Lagrangian connection for the Lagrangian L if it takes its values in

the kernel of the Euler-Lagrange operator, i.e., obeys the equation

OpC-at'ri- q'a,7ri- ^'7r^ i =0 (5.8.8)
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(cf. (3.2.13 )). If a Lagrangian connection ^L exists, it defines a dynamic equation

whose solutions are solutions of the Euler-Lagrange equations (5.8.7). Different
Lagrangian connections ^L lead to different dynamic equations associated with the
same system of Euler-Lagrange equations . In particular , if L is a regular Lagrangian,
there exists a unique Lagrangian connection

^i = (7r 1)%7[-8iL+,9t7ri +gi,9k7ri) (5.8.9)

for L. In this case , Euler-Lagrange equations are equivalent to a dynamic equation.

Turn now to the notion of a mass tensor.

Every Lagrangian L on the jet manifold J1Q yields the Legendre map (3.2.9):

L: J'Q->V*Q, ptoL= 7ri, (5.8.10)

where (t, q, pi ) are coordinates on the vertical cotangent bundle V*Q which plays

the role of a momentum phase space of time-dependent mechanics (see Section 5.10.

Due to the vertical splitting (1.1.14) of VV*Q, the vertical tangent map VL to L

reads

VL:VQJIQ--->V*QxxV*Q.

It yields the linear bundle morphism

b def (Id J1Q, pr2 o V L) : VQJ1Q Q VQ J1Q, (5.8.11)

H : Of H 7ijdyt,

where { dqt } are bases for the fibres of the vertical tangent bundle VQJ1Q -> J1Q.

The morphism ( 5.8.11 ) defines both the mapping

J1Q -> VQJ1Q J QVQJIQ

and, due to the splitting (5.1.5), the mapping

m : J'Q -->V*Q Q V*Q,

mij = pij o r = 7rij,

where (t, qi, pij ) are holonomic coordinates on V*Q Q V* Q. Thus, 7rij = mij are

2
components of the V V*Q-valued field m on the velocity phase space J1Q. It is

called the mass tensor.
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Let a Lagrangian L be regular . Then the mass tensor is non-degenerate, and
defines a fibre metric, called mass metric , in the vertical tangent bundle VQJ'Q ->

J1Q. Since a Lagrangian L is regular , there exists a unique Lagrangian connection

eL for L which obeys the equation

mikeL = -atii - a;ir tiq' + air. (5.8.12)

This holonomic connection defines the dynamic equation (5.8.9). At the same time,

the equation (5.8.12) leads to the commutative diagram

VQJ1Q -T VQJ1Q
D,L N/ EL

J2Q

where

EL=
boD^L,

k fk
E4=mik(4tt-SL) (5.8.13)

and D£L is the covariant differential (5.1.10) relative to the connection SL. Further-
more, the derivation of (5.8.12) with respect to q results in the relation

^Lj dmtii + m=k7i
k + mik'Ytik = 0,

where

7L =
1
2af ^ L

(5.8.14)

are coefficients of the symmetric dynamic connection 7kL (5.3.13) corresponding to

the dynamic equation ^L.

Thus, each regular Lagrangian L defines both the dynamic equation SL, related

to the Euler-Lagrange operator SL by means of the equality (5.8.13), and the non-

degenerate mass tensor m13, related to the dynamic equation SL by means of the

relation (5.8.14). This is a Newtonian system in accordance with the following

definition [213].

DEFINITION 5.8.1. Let Q - R be a fibre bundle together with
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• a non-degenerate fibre metric m' in the fibre bundle VQJ1Q -+ J1Q:

m=
1
2-mijdq'Vdq3 : J'Q-'V`QQV*Q,

satisfying the symmetry condition

19k'Mij = 19jmik, (5.8.15)

• and a holonomic connection ^ (5.1.16) on the jet bundle J'Q -+ R, related to

the fibre metric 'm by the compatibility condition (5.8.14).

The triple (Q, m, 6) is called a Newtonian system. q

This Definition generalizes the second Newton law of particle mechanics. Indeed,

the dynamic equation for a Newtonian system is equivalent to the equation

k k (5.8.16)

There are two main reasons for considering Newtonian systems.
From the physical viewpoint, with a mass tensor, we can introduce the notion of

an external force which can be defined as a section of the vertical cotangent bundle

VQJ1Q -> J1Q. Let us also bear in mind the isomorphism (5.1.5). Note that there

are no canonical isomorphisms between the vertical cotangent bundle VQ*,J1Q and

the vertical tangent bundle VQJ1Q of J1Q. Therefore, one should distinguish forces

and accelerations which are related with each other by means of a mass metric.

Remark 5 .8.1. Let (Q, i, ^) be a Newtonian system and f an external force. Then

^i del fi + (m-1)ik fk
f S

(5.8.17)

is a dynamic equation, but the triple (Q, m, l; f) is not a Newtonian system in general.

As follows from direct computations, only if an external force possesses the property

a', f, + a, f, = 0, (5.8.18)

then ^f (5.8.17) fulfills the relation (5.8.14), and (Q, m, ^f ) is also a Newtonian

system. For instance , the Lorentz force

fi = eFAigt , q0 = 1, (5.8.19)
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where FA, = aAAN. - aAA is the electromagnetic strength, obeys the condition

(5.8.18). •

From the mathematical viewpoint, one may hope to bring the equation (5.8.16)
into a system of Euler-Lagrange equations by a choice of an appropriate mass tensor.

This is the well-known inverse problem formulated for time-dependent mechanics

(see [213] for details).

Example 5 .8.2. Let us consider the 1-dimensional motion of a point mass mo

subject to friction. It is described by the equation

mogtt = -kqt, k > 0, (5.8.20)

on the configuration space R2 -> R, coordinated by (t, q). This mechanical system

is characterized by the mass function m = mo and the holonomic connection

at + gta9 -
k
mgtat9, (5.8.21)

but it is neither a Newtonian nor a Lagrangian system. Nevertheless, there is the

mass function

m = mo exp I
mo
k tJ (5.8.22)

such that m and the holonomic connection (5.8.21) is both a Newtonian and a

Lagrangian system with the Havas Lagrangian

G= 2mo exp
I k t l qt

(5.8.23)

[253]. The corresponding Euler-Lagrange equations are equivalent to the equation

of motion (5.8.20). •

Example 5 .8.3. Let us consider a non-degenerate quadratic Lagrangian

G = Zmjj(q )gigi + kz(q )qi + f (q''), (5.8.24)

where the mass tensor mtj is a Riemannian metric in the vertical tangent bundle

VQ -* Q (see the isomorphism (5.1.4)). Then the Lagrangian L (5.8.24) can be

written as

1 ga11qckqt1A, q0 5.8.25
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where g is the fibre metric

goo = 20, 9oi = ki, 9ij = mij (5.8.26)

in the tangent bundle TQ. The corresponding Euler-Lagrange equations take the

form

q," = (m-1 )ik {akv}qt Aqt , qo = 1, (5.8.27)

where {aµ„} are the Christoffel symbols (2.4.13) of the metric (5.8.26). Let us

assume that this metric is non-degenerate. By virtue of Corollary 5.4.4, the dynamic

equation (5.8.27) gives rise to the geodesic equation (5.4.9)

4° = 0, 4'0 = 1,

q' = (m-1)ik{Akv}4V'

on the tangent bundle TQ with respect to the linear connection K (5.4.3) with the

components

Ka°v = 0, Kai,, = (m-1)
ik{Akv}.

We have the relation

(5.8.28)

V am=j = 0Amij + mikKAkj + mjkKaki = 0. (5.8.29)

A Newtonian system (Q, m, ^) is said to be standard, if m is the pull-back on

VQJ1Q of a fibre metric in the vertical tangent bundle VQ - Q in accordance

with the isomorphisms (5.1.4) and (5.1.5), i.e., the mass tensor m is independent

of the velocity coordinates qt. It is readily observed that any fibre metric 'm in

VQ --4 Q can be seen as a mass metric of a standard Newtonian system, given by

the Lagrangian

G = 2Mij(q')(gt - r')(qt - r"), (5.8.30)

where I' is a reference frame. If m is a Riemannian metric, one can think of the

Lagrangian (5.8.30) as being a kinetic energy with respect to the reference frame r.
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Example 5.8 .4. Let us consider a system of n distinguishable particles with masses

(m1, .. , mn) in a 3-dimensional Euclidean space R3. Their positions (r1, ... , rn)

span the configuration space R3n. The total kinetic energy is

n
2

Ttot = 2 F_ mA I rA
A=1

that corresponds to the mass tensor

mABii = 6AB6iimA, A, B = 1.... n, i, j = 1,2,3,

on the configuration space Ran. To separate the translation degrees of freedom, one

performs a linear coordinate transformation

(rl,... , rn ) '-' (P 1, ... ) Pn-1, R),

where R is the centre of mass, while the n - 1 vectors (pl, ... , Pn_1) are mass-

weighted Jacobi vectors (see their definition below) [200, 201]. The Jacobi vectors

PA are chosen so that the kinetic energy about the centre of mass has the form

In-1 2
T= 2F_ IPAI (5.8.31)

A=1

that corresponds to the Euclidean mass tensor

mABii = &ABbii, A,13 = 1.... n - 1, 2, j = 1, 2, 3,

on the translation-reduced configuration space 1[83n-a. The usual procedure for defin-

ing Jacobi vectors involves organizing the particles into a hierarchy of clusters, in

which every cluster consists of one or more particles, and where each Jacobi vector

joins the centres of mass of two clusters, thereby creating a larger cluster. A Jacobi

vector, weighted by the square root of the reduced mass of the two clusters it joins,

is the above-mentioned mass-weighted Jacobi vector. For example, in the four-body

problem, one can use the following clustering of the particles:

P1 = µ1( r2 - ri),

P2 = µ2(r4 - r3),
m3r3 + m4r4 mlrl + m2r2

P 3 93 ( m3 + m4 m1 + m2 ,
1 1 1 1 1 1 1 1 + 1

P1 m1 + m2' µ2 m3 + m4' µ3 m1 + m2 m3 + m4
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Different clusterings lead to different collections of Jacobi vectors, which are related

by linear transformations. Since these transformations maintain the Euclidean form

(5.8.31) of the kinetic energy, they are elements of the group O(n - 1), called the

"democracy group". •

5.9 Non-relativistic Jacobi fields

Return now to Section 5.4. In accordance with Proposition 5.4.1, any non-relativistic
dynamic equation (5.3.1) on a configuration bundle Q -> R is equivalent to a

geodesic equation with respect to a connection K (5.4.3) on the tangent bundle

TQ -+ Q. Let us consider the generic quadratic dynamic equation (5.4.8). Then

the connection k is linear and symmetric (see the expression (5.4.10), and the equa-

tion for Jacobi vector fields along the geodesics of this connection can be written as

follows.

The curvature R (2.4.2) of the connection k (5.4.10) has the temporal component

RA,40 = 0. (5.9.1)

Then the equation for a sl Jacobi vector field u along a geodesic c reads

gpgµlOR(V u') - RA,y'pu') = 0, 704' = 0, (5.9.2)

where VA denote the covariant derivatives with respect to the connection K [177].

Due to the relation (5.9.1), the equation (5.9.2) for the temporal component u° of

a Jakobi field takes the form

41'41'(a8,apu° + K,,'payu°) = 0.

We choose its solution

u°=0 (5.9.3)

because all non-relativistic geodesics obey the constraint 4° = 0.
Let us consider a quadratic Newtonian system with a Riemannian mass metric

mtij. Given a reference frame (t, q1), this mass metric is extended to the Riemannian

metric

900 = 1, 904 = 0, 9tij = m43 (5.9.4)
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on Q. However , the covariant derivative of this metric with respect to the connection

K (5.8.28 ) does not vanish in general , namely, Dagoi 0. Nevertheless , due to the

relations (5.8.29 ) and (5.9.3 ), the well-known formula

b/ pf (mij(gaDau' )(4aoau^) + Riµj"uV 43'4")dt + (5.9.5)
a

mij4'V,u%u3 It=a -mij4'Vau'u_' It=n= 0

for a Jacobi vector field u, which is perpendicular to a geodesic c, takes place. Note

that this expression is independent of the components goa of the metric (5.9.4),

i.e., is frame-independent. It differs from that obtained by the variational methods

where a metric is independent of a dynamic equation [215].

Remark 5.9.1. Note that, in the case of a quadratic Lagrangian L, the equation

(5.9.2) coincides with the Jacobi equation

ujdt(ajaiL) + dt(iujai83L) - ujaiajL = 0 (5.9.6)

for a Jacobi vector field on solutions of the Euler-Lagrange equations for L. This

equation is the Euler-Lagrange equation

(ai - dtajt)Cv = 0

for the vertical extension Lv (4.5.1) of the Lagrangian L [81, 213]. •

With the formula (5.9.5), the conjugate points of solutions of the dynamic equa-

tion ^ can be examined in accordance with the well -known geometric criteria [177].

PROPOSITION 5.9.1. If the sectional curvature Riµj"uiuj4µ4" is non-negative on a

solution c, this geodesic has no conjugate points. q

PROPOSITION 5.9.2. If the sectional curvature Riµj"uiujvµv ", where v is an arbi-

trary unit vector field on a Riemannian manifold Q does not exceed -ko < 0, then,
for any solution c, the distance between two consecutive conjugate points is at most

7r/ ko. q

For instance , let us consider a one-dimensional time-dependent oscillator de-

scribed by the Lagrangian

L = 1 [m(t)41) 2 - k(t)(gl)2]•
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The corresponding Lagrange equation is the well-known Sturm equation. In this

case, the metric (5.8.26) reads

2
goo = -kx goi = 0,

Its Christoffel symbols are

gii = m.

{111} = 0, {o11} = {110} _ 2712,

{olo} = {loo} = kx , {1o1} = 2m, {ooo} = -2k.
The connection k (5.8.28) takes the form

KA°µ=0, Koll =Kilo=-2m'

Its curvature has the nonzero component

k rim 3 r rrc \ 2

Rlolo= - m 2m+4 m

1 kx
Koo- M.

Let us apply the Propositions 5.9.1 and 5.9.2 to this case. If Rlolo >- 0 on a solution

c, this solution has no conjugate points. This condition reads

If Riolo < -ko < 0, the distance between two consecutive conjugate points is at

most rr/v"k-. This condition takes the form

k m 3 (rn)2

^:k0 +2mm 4 m

For instance , let us consider an oscillator where m and k are independent of t.

In this case , Rolol = -k , while the half-period of this oscillator is exactly ir/ ko

in accordance with Proposition 5.9.2. Similarly , solutions for the oscillator with a

constant mass m and a function k(t) _> ko > 0 also have conjugate points, and the

distance between two consecutive conjugate points is at most 7r/ ko.
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5.10 Hamiltonian time-dependent mechanics

This Section is devoted to the Hamiltonian mechanics subject to time-dependent

transformations [213, 271]. Hamiltonian time-dependent mechanics is formulated as

the particular Hamiltonian field theory on a fibre bundle Q --+ R. The corresponding

momentum phase space II (3.2.8) is the vertical cotangent bundle

7rn:V*Q-Q, (5.10.1)

equipped with the holonomic coordinates (t, qb, pi = qt). The main peculiarity of Ha-

miltonian time-dependent mechanics in comparison with the general polysymplectic

case lies in the fact that V*Q is equipped with the canonical Poisson structure. In

contrast with conservative mechanics, this Poisson structure however does not define

dynamic equations.

Remark 5.10.1. Note on the widely spread formulation of time-dependent mechan-

ics which implies a preliminary splitting of a momentum phase space II = R x Z,

where Z is a Poisson manifold [53, 57, 96, 144, 197, 226]. From the physical view-

point, this means that a certain reference frame is chosen. In this case, the momen-

tum phase space II is endowed with the product of the zero Poisson structure on R

and the Poisson structure on Z. A Hamiltonian is defined as a real function 1i on

II. The corresponding Hamiltonian vector field 29N on II is vertical with respect to

the fibration II -+ R. Due to the canonical imbedding

IIxTR ->TII,

one introduces the vector field

'Yn = at +Vrt,

(5.10.2)

(5.10.3)

where at is the standard vector field on IR [144]. The first order dynamic equation

7N(11) C TII on the manifold II plays the role of Hamilton equations , while the

evolution equation on the Poisson algebra C°° (H) of smooth functions on II is given

by the Lie derivative

L7If = at f + {f, f }. (5.10.4)

This is not the case of mechanical systems subject to time-dependent transforma-

tions. These transformations violate the splitting R x Z. As a consequence, there
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is no canonical imbedding (5.10.2 ). The vector field (5.10.3) and the splitting in
the right -hand side of the evolution equation (5.10.4) are ill-defined. A Hamiltonian

N is not scalar under time -dependent transformations . Its Poisson bracket with

functions f E C°°(II) is not maintained under these transformations. •

A generic momentum phase space of time-dependent mechanics is a fibre bundle

II -- R endowed with a regular Poisson structure whose characteristic distribution

belongs to the vertical tangent bundle VII of II -> R [144]. It can be seen locally

as the Poisson product over R of the Legendre bundle V*Q -> R and a fibre bundle

over R, equipped with the zero Poisson structure. Such a Poisson structure however

cannot provide dynamic equations. A first order dynamic equation on II -* R, by

definition, is a section of the affine jet bundle J1II -* II, i.e., a connection on II -* R.

Being a horizontal vector field, such a connection cannot be a Hamiltonian vector
field with respect to the above mentioned Poisson structure on II.

To endow the momentum phase space V*Q of time-dependent mechanics with

a Poisson structure, let us consider the cotangent bundle T*Q of the configuration

space Q, equipped with the coordinates (t, qi, p, pi). This is a particular case of

the homogeneous Legendre bundle Zy (3.2.4). This cotangent bundle admits the

canonical Liouville form

= pdt + pidgi (5.10.5)

and the canonical symplectic form

dE=dpAdt+dpiAdgi. (5.10.6)

The corresponding Poisson bracket on the ring C°°(T*Q) of functions on T*Q reads

If, 9}T = Yfat9 - ao9atf + aifai9 - a`9aif• (5.10.7)

Let us consider the subring of C°°(T*Q) which comprises the pull-backs (*f onto

T*Q of functions f on the vertical cotangent bundle V*Q by the canonical projection

^ (1.1.16). This subring is closed under the Poisson bracket (5.10.7). Then, by virtue

of the well-known theorem [213, 299], there exists the degenerate Poisson structure

If, 9}v = at f ai9 - atgaif (5.10.8)

on the momentum phase space V*Q such that

(*{f, 91v = {c*f, (*9}T• (5.10.9)
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A glance at the expression (5.10.8) shows that the holonomic coordinates of V*Q

are canonical for the Poisson structure (5.10.8).

Given the Poisson bracket (5.10.8), the Hamiltonian vector field i9f for a function

f on the momentum phase space V*Q is defined by the relation

If, 9 }v = t9 jd9, dg E fDo(V*Q)•

It is the vertical vector field

19f= &fa, -aifai (5.10.10)

on the fibre bundle V*Q -* R. Hamiltonian vector fields generate the characteristic

distribution of the Poisson structure (5.10.8) which is precisely the vertical tangent

bundle VV*Q C TV*Q of the fibre bundle V*Q -> R. This distribution is involutive

and defines the symplectic foliation on the momentum phase space V*Q, which

coincides with the fibration V*Q --> R. The symplectic forms on the fibres of

V*Q -* R are the pull-backs

Qc = dpi A dqi

of the canonical symplectic form on the typical fibre T*M of the fibre bundle V*Q -->

1& with respect to trivialization morphisms.

The Poisson structure (5.10.8) can be introduced in a different way [213, 271].

Given a section h of the fibre bundle (1.1.16), let us consider the pull-back forms

O= h* (=- A dt), ft = h*(dE A dt)

on V*Q. They are independent of a section h and are canonical exterior forms on

V*Q:

O = pidgi A dt,

ft = dpi A dq' A dt.

These are the particular tangent-valued Liouville form (4.1.2) and the polysymplec-
tic form (4.1.3), respectively. With 1, the Hamiltonian vector field 19f (5.10.10) for

a function f on V*Q is given by the relation

19f 19 = -df A dt, (5.10.13)
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while the Poisson bracket (5.10.9) is written as

If, g}vdt = i9J'fJ f2.

Remark 5 . 10.2. It is easily seen that an automorphism p of the Legendre bundle

V*Q -* R is a canonical transformation of the Poisson structure (5.10.8) if and

only if it preserves the canonical 3-form St (5.10.12 ). A vector field u on V*Q

is canonical for the Poisson structure {, }v if and only if the form u j 0 is exact.

Let us emphasize that canonical transformations are compatible with the fibration

V*Q --+ R, but not necessarily with the fibration 7rQ : V*Q --^ Q. Unless otherwise

stated, we will restrict ourselves to the holonomic coordinates on V*Y and holonomic

transformations which are obviously canonical. •

The 3-form 0 (5.10.12) gives something more than a Poisson structure on V*Q.

Let us follow the general scheme of Section 4.1.

A Hamiltonian vector field, by definition, is canonical. A converse is the follow-

ing.

PROPOSITION 5.10.1. Every vertical canonical vector field on the Legendre bundle

V*Q - R is locally a Hamiltonian vector field. q

The proof is based on the following fact.

LEMMA 5.10.2. Let a be a 1-form on V*Q. If a A dt is closed form, it is exact.

Then aAdt=dg Adtlocally q

Proof. Since V*Q is diffeomorphic to R x T*M, we have the De Rham cohomology

group

H2(V*Q) = H°(R) ® H2(T*M) ® H1(R) ® H1(T*M)

(see (6.8.4) below). The form a A dt belongs to its second item which is zero. Then

the relative Poincare lemma (see, e.g., [123]) can be applied. QED

A connection 'y on the Legendre bundle V*Q -+ R is called canonical if the

corresponding horizontal vector field is canonical for the Poisson structure on V*Q.

We will prove that such a form is necessarily exact (see Proposition 5.10.3 below).

A canonical connection 'y is a said to be a Hamiltonian connection if

yj f2 = dH (5.10.14)
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where H = h*E is a Hamiltonian form. Given a local reference frame (t, q') on

Q -4R, a Hamiltonian form reads

H = pidq' - hdt. (5.10.15)

This is the well-known integral invariant of Poincare-Cartan, where 7-l is a Ha-

miltonian. A glance at the expression (5.10.15) shows that 7L fails to be a scalar

under time-dependent transformations. We will show that every Hamiltonian form

H admits a unique Hamiltonian connection ryH (see Proposition 5.10.5 below). The

kernel of the covariant differential D7H, relative to this Hamiltonian connection yH
provides the Hamilton equations in time-dependent mechanics.

Let 'y = at + ry'ai + ryta' be a canonical connection on the Legendre bundle

V*Q -* R. Its components obey the relations

027) - airy' = 0, a=7j -aryl = 0, a;ry' + 8'y = 0. (5.10.16)

Canonical connections constitute an affine space modelled over the vector space of

vertical canonical vector fields on V*Q -* R.

PROPOSITION 5.10.3. If -y is a canonical connection, then the form -yj fl is exact.

0

Proof. Every connection r on Q -* R gives rise to the covertical connection

V*r = at + r'ai - pia3r'a' (5.10.17)

(2.7.20) on V*Q -* R which is a Hamiltonian connection for the Hamiltonian form

Hr. Let us consider the decomposition -y = V*r + V, where IF is a connection on

Q -4 R. The assertion follows from Proposition 5.10.1. QED

Thus, every canonical connection -y on V*Q defines an exterior 1-form H modulo

closed forms so that dH = -yjft. Such a form is called a locally Hamiltonian form.

PROPOSITION 5.10.4. Every locally Hamiltonian form on the momentum phase

space V*Q is locally a Hamiltonian form modulo closed forms. q

Proof. Given locally Hamiltonian forms H7 and Hy, their difference Q = H7 - Hy

is a 1-form on V*Q such that the 2-form v A dt is closed. By virtue of Lemma

5.10.2, the form a A dt is exact and or = f dt + dg locally. Put H7, = Hr where r
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is a connection on V*Q ---, R. Then H7 modulo closed forms takes the local form

H.y = Hr + fdt, and coincides with the pull-back of the Liouville form =_ on T*Q by

the local section p = -piPi + f of the fibre bundle (1.1.16). QED

PROPOSITION 5.10.5. Conversely, each Hamiltonian form H on the momentum

phase space V*Q admits a unique Hamiltonian connection ryH on V*Q -* R such

that the relation (5.10.14) holds. D

Proof. Given a Hamiltonian form H, its exterior differential

dH = h*dH = (dpi + ai7-ldt) A (dqi - 49'Hdt) (5.10.18)

is a presymplectic form of constant rank 2m since the form

(dH)m = (dpi A dgz)m - m(dpi h dgti)m-l A dl-1 A dt (5.10.19)

is nowhere vanishing. It is also seen that (dH)m A dt 0. It follows that the kernel

of dH is a 1-dimensional distribution. Then the desired Hamiltonian connection

_1H=at+ORA-aixai (5.10.20)

is a unique vector field 7H on V*Q such that -yH J dH = 0, -yH J dt = 1. QED

Remark 5 .10.3. Hamiltonian forms constitute an affine space modelled over the

vector space of horizontal densities fdt on V*Q -> R, i.e., over C°°(V*Q). Accord-

ingly, Hamiltonian connections ryH form an affine space modelled over the vector

space of Hamiltonian vector fields. •

Given a Hamiltonian connection ryH (5.10.20), the corresponding Hamilton equa-

tions D yH = 0 take the coordinate form

qt = a171,

pti = -ai'H.

(5.10.21a)

(5.10.21b)

Their classical solutions r(t) are integral sections of the Hamiltonian connection

,yH, i.e., r = ryH o r. Thus, evolution in Hamiltonian time-dependent mechanics is

described as a parallel transport along time. In Section 10.4, this description is

extended to evolution in quantum time-dependent mechanics.
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Remark 5.10.4. The Hamilton equations (5.10.21a) - (5.10.21b) are the particular

case of the first order dynamic equations

qt= l1, Pti= 1'i (5.10.22)

on the momentum phase space V*Q -> R, where 'y is a connection on V*Q -+ R.

The first order reduction of the equation of a motion of a point mass m subject
to friction in Example 5.8.2 exemplifies first order dynamic equations which are not

Hamilton ones. These equations read

1 k
qt= -p, Pt= --P.mo mo

The connection

(5.10.23)

,Y=at+Mipaq-M
k

does not obey the third condition (5.10.16) for a Hamiltonian connection. At the

same time, the equations (5.10.23) are equivalent to the Hamilton equations for the

Hamiltonian associated with the Lagrangian (5.8.23). •

As in the case of field theory, a Hamiltonian form H (5.10.15) is the Poincare-

Cartan form for the Lagrangian

LH = ho(H) = (Pig' - 7-l)W (5.10.24)

on the jet manifold J1V*Q such that the Hamilton equations (5.10.21a) - (5.10.21b)

are equivalent to the Euler-Lagrange equations for LH. They characterize the kernel

of the Euler-Lagrange operator

SH = (qt - aZ1 )dPi - (pti + aiH)dq` : J1V*Q -+ V*V*Q (5.10.25)

for the Lagrangian LH which is the Hamilton operator for the Hamiltonian form H.

Furthermore , given a function f c C°°(V*Q) and its pull-back onto J1V*Q, let

us consider the bracket

(f, LH) = Si f 8tLH - 6ifS''LH = L7Hf - dtf,

where Si , Si are variational derivatives . Then the equation (f, LH) = 0 is the evolu-

tion equation

dtf = L.yH f = at f + {f, f }V (5.10.26)
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in time-dependent mechanics . Note that , taken separately, the terms in its right-

hand side are ill-behaved objects under time-dependent transformations . In partic-

ular, the equality {R, f }v = 0 is not preserved under time-dependent transforma-

tions.
To obtain the covariant splitting of the evolution equation, let consider a refer-

ence frame r and the corresponding splittings

H=Hr - jlydt,

U = V*I' + z9 ,,

(5.10.27)

where t9iir is the vertical Hamiltonian field for the function 7-1r. With these splitting,

the evolution equation (5.10.26) takes the form

L.yH f = V*FJH + {7-lr, f }v. (5.10.28)

Remark 5.10.5. The following construction enables us to represent the right-

hand side of the evolution equation (5.10.28) as a pure Poisson bracket. Given a

Hamiltonian form H = h*c, let us consider its pull-back C*H onto the cotangent

bundle T* Q. It is readily observed that the difference 8-^*H is a horizontal 1-form

on T*Q -+ R, while

f* = at] (E - (*H) = p + 7-l (5.10.29)

is a function on T*Q. Then the relation

(* (L7Hf ) = {7-l*, S* f}T (5.10.30)

holds for every function f E C°°(V*Q ). In particular , f is an integral of motion

if and only if its bracket (5.10.30 ) vanishes . Moreover , let 1971. be the Hamiltonian

vector field for the function 7`l* (5.10.29) with respect to the canonical Poisson

structure {, }T on T*Q. Then

T(('d7r) =.yH. (5.10.31)

•

We complete this Section by consideration of canonical transformations in time-

dependent mechanics (see Remark 5.10.2).
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PROPOSITION 5.10.6. Let -y be a Hamiltonian connection on V*Q -* R. There

exist canonical coordinates on V*Q such that 'y = at. q

The proof is based on the fact that, in accordance with the relation (5.10.14),

every locally Hamiltonian connection -y is the generator of a local 1-parameter group

of canonical automorphisms of the Legendre bundle V*Q -* R. Let Vo Q be the

fibre of V*Q -> R at 0 E R. Then canonical coordinates of the symplectic manifold

Vo Q = T*M dragged along integral curves of the complete vector field -Y determine

the desired canonical coordinates on V*Q. In other words, a complete Hamiltonian

connection y on the momentum phase space V*Q in accordance with Proposition

5.1.1 defines a trivialization

V:V*Q->RxVOQ (5.10.32)

of the fibre bundle V*Q --> R such that the corresponding coordinates (q', PA) of

V*Q (where qA are not coordinates on Q in general) are canonical, i.e.,

SZ = dpA A dqA A dt, -yH = at, dH = dpA A dqA>

and H reduces to the Hamiltonian form

H = pAdgA

with the Hamiltonian 7-l = 0. Then the corresponding Hamilton equations take the

form of the equilibrium equations

qt = 0, ptA = 0 (5.10.33)

such that qA(t, qi, pi) and PA(t, qi, pi) are constants of motion.

Example 5 .10.6. Let us consider the 1-dimensional motion with constant accel-

eration a with respect to the coordinates (t, q). Its Hamiltonian on the momentum

phase space R3 -* ii reads

2
7-1=2-aq.

The associated Hamiltonian connection is

'yH= 8t +paq+aar.
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This Hamiltonian connection is complete . The canonical coordinate transformations

at2
9 =q-pt+ 2 ' p =p-at (5.10.34)

bring it into yH = at. Then the functions q'(t, q, p ) and p' (t, p) (5.10. 34) are constants

of motion. •

Example 5 .10.7. Let us consider the 1-dimensional oscillator with respect to the

same coordinates as in the previous Example. Its Hamiltonian on the momentum

phase space 1[83 -* R reads

7l = 1(p2 + q2).

The associated Hamiltonian connection is

'YH=at+paq-qar,

which is complete. The canonical coordinate transformations

q' = gcos t - psint, p' =pcost+gsint (5.10.35)

bring it into yH = at. Then the functions q'(t, q, p) and p'(t, q, p) (5.10.35) are

constants of motion. •

Note that the kinematic term in the evolution equation (5.10.28) can be elim-

inated at least locally by means of canonical transformations. Let a connection IF

in the splitting of a Hamiltonian form (5.10.27) be complete. With respect to the

coordinate system (t, qi) adapted to the reference frame r, the configuration bun-

dle Q is trivialized, and the corresponding holonomic coordinates (t, q', pi) on the

momentum phase space V*Q are canonical. With respect to these coordinates, the

evolution equation (5.10.28) takes the form (5.10.4).

5.11 Connections and energy conservation laws

Following the methods of field theory in order to obtain conservation laws in time-

dependent mechanics, we aim to show that, in time-dependent mechanics on a fibre

bundle Q -* R, the energy-momentum current Tr with respect to a connection r
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on Q --> R is the energy function of a mechanical system relative to the reference

frame F.

Let L be a Lagrangian (5.8.1) on the velocity phase space J'Q and u a projectable

vector field (5.8.2) on the configuration bundle Q --> R. On the shell (5.8.7), the

first variational formula (5.8.4) is brought into the weak identity

J1ujdr ~ -dt`.l•, (5.11.1)

(utat + u'ai + dtuiai' )G dt(iri(utq - u1) - utG),

where, by analogy with field theory,

`I = -ujHL = 7ri(utgt - u') - utI (5.11.2)

is said to be the symmetry current along the vector field u. If the Lie derivative

LjiuL (5.8.3) vanishes, we obtain the weak conservation law

0 ti -dt[iri (utq - ut ) - u1L]. (5.11.3)

It is brought into the differential conservation law

o - dt
[(iri o c) (utatci - ui o c) -U tG 061

on solutions c of the Euler-Lagrange equations. A glance at this expression shows

that, in time-dependent mechanics, the conserved current (5.11.2) plays the role of

an integral of motion.
As in field theory, since the weak identity (5.11.1) is linear in the vector field

u, one can consider superposition of weak identities (5.11.1). Every vector field u

(5.8.2), projected onto at, can be written as the sum u = F + 19 of some reference

frame r = at + riai and a vertical vector field 79 on Q -f R. It follows that the

weak identity (5.11.1) associated with an arbitrary vector field u (5.8.2) can be

represented as the superposition of those associated with a reference frame IF and a

vertical vector field '9.

If u = 19 = 19 ) ai, the weak identity (5.11.1) reads

(alai + dt'9'a^ )L dt(iri19').

If L,9L = 0, we obtain from ( 5.11.3) the weak conservation law

0 .:; dt (ir'0 ) (5.11.4)
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and the integral of motion

T = -7r19'. (5.11.5)

By analogy with field theory, (5.11.4) is called the Noether conservation law for the

Noether current (5.11.5).

Example 5 .11.1. Let assume that, given a trivialization Q = R x M in coordinates

(t, qt), a Lagrangian L is independent of a coordinate q1. Then the Lie derivative

of L along the vertical vector field ?9 = al equals zero, and we have the conserved

Noether current (5.11.5) which reduces to the momentum T = -7r1. With respect

to arbitrary coordinates (t, q'i), this Noether current takes the form

aq ,
T = aql art.

In the case of a reference frame IF, where ut = 1, the weak identity (5.11.1) reads

(at + Fiat + dtFtaz)L -dt(iri(gt - Ft) - G), (5.11.6)

where

`fir = 7ri(gi - Ft) - L (5.11.7)

is said to be the energy function relative to the reference frame F [97, 213, 271].

Example 5 .11.2. With respect to the coordinates adapted to the reference frame

F, the weak identity (5.11.6) takes the form of the familiar energy conservation law

atL -dt(ir q - L)+

and `fir coincides with the canonical energy function

Er, = 7rigi - L.

(5.11.8)

Example 5 .11.3. Let us consider a free motion on a configuration space Q --> R.

It is described by the Lagrangian

L = Zmtjgtgt , m = const., (5.11.9)



5.11. CONNECTIONS AND ENERGY CONSERVATION LAWS 139

written with respect to a reference frame (t, q) such that the free motion equation

takes the form (5.6.1). Let r be the associated connection. Then the conserved

energy function Tr (5.11.7) relative to this reference frame r is precisely the kinetic

energy of this free motion. Relative to arbitrary coordinates (t, q') on Q, it takes
the form

`-fir = 7ri (q - F') - G = 2mij(q)(q' - rz )(qtl - Fi)•

Now we generalize this example for a motion described by the equation

(ai -dtat)G+Fi(t,g3,q,) = 0

where L is the free motion Lagrangian (5.11.9) and F is an external force . The Lie
derivative of the Lagrangian (5.11.9 ) along the reference frame I, vanishes, and we
have the weak equality (3.4.22) which reads

4r' Fi dt` r, (5.11.10)

where cjr is the relative velocity. This is the well-known physical law whose left-hand

side is the power of an external force. •

Example 5 .11.4. Let us consider a 1-dimensional motion of a point mass mo

subject to friction on the configuration space R2 -> R, coordinated by (t, q) (see
Example 5.8.2). It is described by the dynamic equation (5.8.20) which coincides

with the Euler-Lagrange equations for the Lagrangian L (5.8.23). It is readily

observed that the Lie derivative (5.8.3) of this Lagrangian along the vector field

r=at-2rrtogaq
(5.11.11)

vanishes. Hence, we have the conserved energy function (5.11.7) with respect to the

reference frame r (5.11.11). This energy function reads

1 IM0

k 1 k 1 2 mkt 2
`fir = 2 mo exp t l gt (qt + m q) = 2 m4r - 8mt

0
q ,

0

where m is the mass function (5.8.22). •

These examples show that the energy function Tr (5.11.7) characterizes a phys-

ical energy of a mechanical system with respect to a reference frame F. Energy
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functions relative to different reference frames r and r' differ from each other in the

Noether current (5.11.5) along the vertical vector field r - I".

Let us consider conservation laws in the case of gauge transformations which

preserve the Euler-Lagrange operator EL, but not necessarily a Lagrangian L. We
use the formula (3.4.15) where

J2u = utat + u'a, + dtu'az + dtdtu'aat

is the second order jet prolongation of a vector field (5.8.2). Since

LJsueL = 0, (5.11.12)

we have the equality LuL = dtf (3.4.16), where f is a function on Q. In this case,

we obtain the weak equality (3.4.17) which reads

O ^ dt(iri(u' - qt) + utG - f ). (5.11.13)

Example 5 .11.5. Let L be the free motion Lagrangian (5.11.9). The corresponding

Euler-Lagrange operator

t
EL = -mi.,getdq

is invariant under the Galilei transformations with the generator

uZ = vtt + at, vi = const., as = const., (5.11.14)

(see (5.6.8)). At the same time, the Lie derivative of the free motion Lagrangian
(5.11.9) along the vector field (5.11.14) does not vanish, and we have

LuL = I aqt = dt(mijv'q1 + c), c. = const.

Then the weak equality (3.4.17 ) shows that (qtt - q' ) is a constant of motion. •

Turn now to conservation laws in Hamiltonian time-dependent mechanics.

Let H be a Hamiltonian form H (5.10.15) on the momentum phase space V*Q

and the corresponding Lagrangian LH (5.10.24) on the jet manifold J1V*Q. Given

a vector field u (5.8.2) on the configuration space Q and its lift

u = utat + u'ati - aiu9P3a' (5.11.15)
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(4.4.1) onto the Legendre bundle V*Q -* R, we obtain the Lie derivative

LuH = L,i;LH = (-ut9t7. + PA Uù` - waif + ajuzpia'7{)dt. (5.11.16)

The first variational formula (5.8.4) applied to the Lagrangian LH (4.1.20) leads to

the weak identity

LuH dt(ujH)dt.

If the Lie derivative (5.11.16) vanishes, we have the conserved current

to = -u] dH = -piui + ut7{

along u.
If u is a vertical vector field, (5.11.17) is the Noether current

Tu = -ujq = -piu', q = pid4Z E V*Q.

The current `T (5.11.17) along a reference frame r reads

(5.11.17)

(5.11.18)

`fir=7-l-piI'i=iii, (5.11.19)

(see the splitting (5.10.27)). In the case of almost regular Lagrangians, we have the

relationship between Lagrangian and Hamiltonian conserved currents in accordance

with Proposition 4.4.1. In particular, the Hamiltonian counterpart of the Lagrangian

energy function Tr (5.11.7) relative to a reference frame r is just the function 7{r

(5.11.19), called the Hamiltonian energy function relative to the reference frame F.

For instance, if Fi = 0, we obtain the well-known energy conservation law

at7-l Pz^ dt7{

relative to the coordinates adapted to the reference frame F. This is the Hamiltonian
variant of the Lagrangian energy conservation law (5.11.8).

It is readily observed that, given a Hamiltonian form H, the energy functions

11r constitute an affine space modelled over the vector space of Noether currents.

PROPOSITION 5.11.1. The conserved currents (5.11.17), taken with the sign minus,

form a Lie algebra with respect to the Poisson bracket

{-T"' -Tu,}v = -1[(5.11.20)

In accordance with Remark 4.4.1, all Noether currents (5.11.18), taken with the

sign minus, constitute a Lie algebra with respect to the bracket (5.11.20).
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5.12 Systems with time-dependent parameters

Let us consider a configuration space which is a composite fibre bundle

Q--^E-'I[8, (5.12.1)

coordinated by (t, am, qi) where (t, am) are coordinates of the fibre bundle E -* R.

We will treat sections h of the fibre bundle E -* R as time-dependent parameters,

and call E -+ R the parameter bundle. Then the configuration space (5.12.1)

describes a mechanical system with time-dependent parameters. Note that the fibre

bundle Q -> E is not necessarily trivial.
Let us recall that, by virtue of Proposition 2.7.1, every section h of the parameter

bundle E --a 1I defines the restriction

Qh = h*Q (5.12.2)

of the fibre bundle Q --> E to h(R) C E, which is a subbundle ih : Qh y Q of

the fibre bundle Q --> R. One can think of the fibre bundle Qh --4R as being a

configuration space of a mechanical system with the background parameter function

h(t).
The velocity momentum space of a mechanical system with parameters is the

jet manifold J1Q of the composite fibre bundle (5.12.1) which is equipped with the

adapted coordinates (t, am, qi, at", qt).

Let the fibre bundle Q --* E be provided with a connection

AE = dt ® (at + Atai) + dam ® (am + A11zai). (5.12.3)

Then the corresponding vertical covariant differential

D : J1Q -* VVQ,

(5.12.4)

(2.7.15) is defined on the configuration space Q. Given a section h of the parameter

bundle E -> R, its restriction to J1ih(J1Qh) C J'Q is precisely the familiar covariant

differential on Qh corresponding to the restriction

Ah = at + ((A;,, o h) athm + (A o h)i)a1 (5.12.5)

of the connection Ar to h(R) C E. Therefore, one may use the vertical covariant

differential D in order to construct a Lagrangian for a mechanical system with

parameters on the configuration space Q (5.12.1).
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We will suppose that such a Lagrangian L depends on derivatives of parameters
o ` only through the vertical covariant differential D (5.12.4), i.e.,

L = £(t, am, qt, qe - At - A' o, )dt. (5.12.6)

This Lagrangian is obviously degenerate because of the constraint condition

7rm + A' 7ri =

As a consequence, the total system of the Euler-Lagrange equations

(ai - dtai')L = 0, (5.12.7)

(am. - dtar )L = 0 (5.12.8)

admits a solution only if the very particular relation

(am+Amai)L+7ridtA;,L = 0 (5.12.9)

holds. However, we believe that parameter functions are background, i.e., indepen-

dent of a motion. In this case, only the Euler-Lagrange equations (5.12.7) should be

considered. One can think of these equations as being the Euler-Lagrange equations

for the Lagrangian Lh = Jlh*L on the velocity phase space J1Qh.
In particular, let us apply the first variational formula (3.4.20) in order to obtain

conservation laws for a mechanical system with time-dependent parameters. Let

u = utat + um(t, u')am + ui(t, o,', q')ai (5.12.10)

be a vector field which is projectable with respect to both the fibration Q

and the fibration Q --+ E. If the Lie derivative L J,uL vanishes, then, on the shell
(5.12.7), we obtain the conservation law

O= (um - u''ut)am£ +7rmdt(um - Qt ut) - dt[7i(utgt - u') - ut,C] (5.12.11)

for a system with time-dependent parameters.

Now, let us describe such a system in the framework of Hamiltonian formalism.

Its momentum phase space is the vertical cotangent bundle V*Q. Given a connection
(5.12.3), we have the splitting (2.7.14) which reads

V*Q = AE(V,Q) Q(Q x V*E),

pidq' + pmd0 = pi(dq' - A'1dam) + (pm + A j)dam.
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Then V*Q can be provided with the coordinates

pi = pi, Pm = Pm + Am,pi

compatible with this splitting. However, these coordinates fail to be canonical in

general. Given a section h of the parameter bundle E -+ R, the submanifold

{Q = h(t), Pm = O}

of the momentum phase space V*Q is isomorphic to the Legendre bundle V*Qh of

the subbundle (5.12.2) of the fibre bundle Q --+ R, which is the configuration space

of a mechanical system with the parameter function h(t).

Let us consider Hamiltonian forms on the momentum phase space V*Q which

are associated with the Lagrangian L (5.12.6). Given a connection

r=at+rmam

on the parameter bundle E -> R, the desired Hamiltonian form

H = (p4dgt + pmdam ) - [i (At + A;,tF )
+ pmrm + 'J-l]dt

(5.12.12)

(5.12.13)

can be found, where at + rmam, + (A'+ Aim rm) ai is the composite connection (2.7.9)

on the fibre bundle Q -+ IR, which is defined by the connection AE (5.12.3) on

Q -+ E and the connection r (5.12.12) on E -> R. The Hamiltonian function k is

independent of the momenta pm and satisfies the conditions

r (t, qt, m, 81 (t, Qm, qt, ii)) _'Ti,

piatx - R =- C(t, qt, am, atx)

which are obtained by substitution of the expression (5.12.13) in the conditions

(4.2.2a) - (4.2.2b).

The Hamilton equations for the Hamiltonian form (5.12.13) read

qt = Ai + Affirm + aix, (5.12.14a)

pti = -pj (aiAj + a%Almrm) - aix, (5.12.14b)

Qt't = rm, (5.12.14c)

ptm = -pi(amAt + r-amA;^) - am11, (5.12.14d)
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whereas the Lagrangian constraint space is given by the equations

pi = 7ri(t, q`, o,'", a:x(t, a",,, q', pi)), (5.12.15)

pn. + Ai'Zpi = 0. (5.12.16)

The system of equations (5.12.14a) - (5.12.16) are related in the sense of Propo-

sition 4.2.6 to the Euler-Lagrange equations (5.12.7) - (5.12.8). Because of the

equations (5.12.14d) and (5.12.16), this system is overdetermined. Therefore, the

Hamilton equations (5.12.14a) - (5.12.14d) admit a solution living in the Lagran-

gian constraint space (5.12.15) - (5.12.16) if the very particular condition, similar

to the condition (5.12.9), holds. Since the Euler-Lagrange equations (5.12.8) are

not considered, we can also ignore the equation (5.12.14d). Note that the equations

(5.12.14d) and (5.12.16) determine only the momenta pm and do not influence other

equations.

Therefore, let us consider the system of equations (5.12.14a) - (5.12.14c) and

(5.12.15) - (5.12.16). Let the connection F in the equation (5.12.14c) be com-

plete and admit the integral section h(t). This equation together with the equation

(5.12.16) defines a submanifold V*Qh of the momentum phase space V*Q , which
is the momentum phase space of a mechanical system with the parameter func-

tion h(t). The remaining equations (5.12.14a) - (5.12.14b) and (5.12.15) are the

equations of this system on the momentum phase space V*Qh, which correspond to

the Euler-Lagrange equations (5.12.7) in the presence of the background parameter

function h(t).

Conversely, whenever h(t) is a parameter function, there exists a connection IF

on the parameter bundle E -> lR such that h(t) is its integral section. Then the

system of equations (5.12.14a) - (5.12.14b) and (5.12.15) - (5.12.16) describes a

mechanical system with the background parameter function h(t). Moreover, we

can locally restrict our consideration to the equations (5.12.14a) - (5.12.14b) and

(5.12.15). These are the Hamilton equation for the Hamiltonian form

Hh = pidq' - [pi (A' + A' a h-) + 1-l]dt (5.12.17)

on V*Qh associated with the Lagrangian Lh on J1Qh.

The following examples illustrate the above construction.

Example 5.12 . 1. Let us consider the 1-dimensional motion of a probe particle in

the presence of a force field whose centre moves. The configuration space of this
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system is the composite fibre bundle

R3- R2 - R,

coordinated by (t, a, q) where or is a coordinate of the field centre with respect to

some inertial frame and q is a coordinate of the probe particle with respect to the

field centre. There is the natural inclusion

Q x TE E) ( t, a, q, t,&)'-' ( t, or, t,a ,y = -a) E TQ

which defines the connection

AE=dt®at+da®(a,-aq)

on the fibre bundle Q -^ E. The corresponding vertical covariant differential (5.12.4)

reads

D = (qt + at)8q.

This is precisely the velocity of the probe particle with respect to the inertial frame.

Then the Lagrangian of this particle takes the form

L = [2 (qt + at )' - V(q)]dt. (5.12.18)

In particular, we can obtain the energy conservation law for this system. Let us

consider the vector field u = at. The Lie derivative of the Lagrangian (5.12.18)

along this vector field vanishes. Using the formula (5.12.11), we obtain

0 ^s -irgatt - dt[7rggt - G]

or

0 agrat - dt[irq(gt + at) - C],

where

T =7rq(gt+at) -L

is an energy function of the probe particle with respect to the inertial reference

frame. •
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Example 5 .12.2. Let us consider an n-body as in Example 5.8.4. Let R3n-3
be the translation-reduced configuration space of the mass-weight Jacobi vectors

{pA}. Two configurations {WA} and {pA} are said to define the same shape of the
n-body if pA = RpA for some rotation R E SO(3). This introduces the equivalence
relation between configurations, and the shape space S of the n-body is defined as
the quotient

S=R 3n-3/SO(3)

[200, 201]. Then we have the composite fibre bundle

RxR3n-3-*RxS,R,

where the fibre bundle

(5.12.19)

R3n-3 -*S (5.12.20)

has the structure group SO(3). The composite fibre bundle (5.12.19) is provided

with the bundle coordinates(t, am, qt), where q', i = 1, 2, 3, are some angle coordi-
nates, e.g., the Eulerian angles, while am, m = 1, ... , 3n - 6, are said to be the

shape coordinates on S. A section oA(dm) of the fibre bundle (5.12.20), called a
gauge convention, determines an orientation of the n-body in a space. Given such

a section, any point {pa} of the translation-reduced configuration space R3n-3 is

written as

PA = R(ql) PA(o.m).

This relation yields the splitting

PA = a,R/PA+ 9-PA6",

of the tangent bundle TR3n-3, which determines a connection AE on the fibre bundle

(5.12.20). This is also a connection on the fibre bundle

RxRIn-3->RxS

with the components At = 0. Then the corresponding vertical covariant differential

(5.12.4) reads

D = (qt' - Amat"`)ai.
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With this vertical covariant differential, the total angular velocity of the n-body

takes the form

SZ=aii'=w+A,..at , (5.12.21)

where ai are certain kinematic coefficients and w is the angular velocity of the n-

body as a rigid one. In particular, we obtain the phenomenon of a falling cat if

S2=0sothat

In Section 10.5, we will extend the above description of mechanical systems

with time-dependent parameters to quantum systems in order to reproduce the

phenomenon of Berry's geometric phase.



Chapter 6

Gauge theory of principal

connections

The literature on the geometric gauge theory is extensive. We refer the reader, e.g.,

to [177] for the standard exposition of geometry of principal bundles and to [214]

for a survey on geometric foundations of gauge theory. In this Chapter, we presents

gauge theory of principal connections as a particular case of geometric field theory

formulated in terms of jet manifolds. The main ingredient in our consideration is the
bundle of principal connections C = J1P/G whose sections are principal connections
on a principal bundle P with a structure group G. The first order jet manifold J1C
plays the role of a finite-dimensional configuration space of gauge theory.

6.1 Principal connections

By 7rp : P -+ X throughout is meant a principal bundle whose structure group is
a real Lie group G, dim G > 0. For short, P is called a G-principal bundle. By
definition, P -> X is a fibre bundle provided with the free transitive action of G on
P on the right:

RG:PxG-4P, (6.1.1)
x

R9:p'-'pg, pEP, gEG.

A G-principal bundle P is equipped with a bundle atlas T p = { (Un, 7b ) } whose
trivialization morphisms

VIa : 7rp1(U,,) , Uc x G

149
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obey the condition

(pr2 (p9) = (pr2 ° ^a)(p)9, dg E G , Vp E 7rp1(Ua).

Due to this property, every trivialization morphism 1a determines a unique local

section za : Ua -> P such that

0,I'P
pre°4'a °za=1,

where 1 is the unit element of G. The transformation rules for za read

z,(x) = za (x)pap(x), x c Ua(1 Up, (6.1.2)

where pp(x, g) = pap(x)g are transition functions (1.1.3) of the atlas %PP. Con-

versely, the family { (Ua, za) } of local sections of P obeying (6.1.2) uniquely deter-

mines a bundle atlas 'Pp of P.

Note that there is the pull-back operation of a principal bundle structure. The

pull-back f *P (1.1.6) of a principal bundle is also a principal bundle with the same

structure group.

Remark 6 .1.1. We recall some notions related to tangent and cotangent bundles

of Lie groups. Let G be a real Lie group with dim G > 0 and 01 [g,.] its left [right]

Lie algebra of left-invariant vector fields 6j(g) = TLg(ei(1)) [right-invariant vector

fields 6r(g) = TRg(6r(1))] on the group G. Here L9 and Rg denote the action of

G on itself on the left and on the right, respectively. Every left-invariant vector

field 6j(g) [right-invariant vector field 6r(g)] corresponds to the element v = 61(1)

[v = er(1)] of the tangent space T1G provided with both left and right Lie algebra

structures. For instance, given v e T1G, let vi(g) and vr(g) be the corresponding

left-invariant and right-invariant vector fields. There is the relation

vi(g) = TLg o TRg 1(vr(9))•

Let {Em = e,,,,(1)} [{E,n = E,n(1)}] denote the basis for the left [right] Lie algebra,

and let can be the right structure constants, i.e.,

[Em, En] = CmnEk

The mapping g t--* g-1 yields the isomorphism

019Em-Em=-Em E Or
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of left and right Lie algebras.

The tangent bundle 7rG : TG -* G of the Lie group G is trivial. There are the

isomorphisms

Pt:TGE) q'--' (9=7rG(4),TL91(q)) EGxgt,

Pr: TG 3gt--'(9=7rG(4),TRg1(4))EGxOr.

The left action Lg of a Lie group G on itself defines its adjoint representation g

Adg in the right Lie algebra Or and its identity representation in the left Lie algebra

gt. Correspondingly, there is the adjoint representation

E : E i--> ad E '(E) = [e', E],

k
adE,m(En) = CmnEk,

of the right Lie algebra Or in itself.

An action

GxZ3(g,z)'-,gzEZ

of a Lie group G on a manifold Z on the left yields the homomorphism

Or 3) E - ^, E T(Z)

of the right Lie algebra Or of G into the Lie algebra of vector fields on Z such that

eAdg(e) = Tg o Se o g-1 (6.1.3)

[177]. Vector fields Se,,, are said to be the generators of a representation of the Lie

group G in Z.

Let g* = T, *G be the vector space dual of the tangent space T1G. It is called the

dual Lie algebra (or the Lie coalgebra), and is provided with the basis {E'} dual of

the basis {E.,,,,} for T1G. The group G and the right Lie algebra Or act on g* by the

coadjoint representation

(Ad*9(E*),
E) def(e*,

Adg-1(E)), E* E g*, E E Or, (6.1.4)

(ad*^ (E*)> E) = -(E*, [E', e]), 6' E Or,

ad*Em(En) _ -CmkEk-

Note that, in the literature, one can meet another definition of the coadjoint repre-

sentation in accordance with the relation

(Ad*9(E*),e) _ (E*,Ad9(E))•
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An exterior form 0 on the group G is said to be left-invariant [right-invariant]

if qb(1) = L*(¢(g)) [0(1) = Ry**(0(g))]. The exterior differential of a left-invariant

[right-invariant ] form is left-invariant [right-invariant ]. In particular , left-invariant

1-forms satisfy the Maurer-Cartan equations

2^([E, E E gi.

There is the canonical gl-valued left-invariant 1-form

01:TiG3E^-->EEgt (6.1.5)

on a Lie group G. The components e' of its decomposition el = er'E,,, with respect

to the basis for the left Lie algebra gl make up the basis for the space of left-invariant

exterior 1-forms on G:

J n n
Em el = bny.

The Maurer-Cartan equations, written with respect to this basis, read

m= m n k
del 2Cnkel A elO.

The canonical action (6.1.1) of G on P on the right defines the canonical trivial

vertical splitting

a:VPPPxgI

such that a-' (E,,,) are the familiar fundamental vector fields on P corresponding to

the basis elements E,,, of the Lie algebra gl.

Taking the quotient of the tangent bundle TP --* P and the vertical tangent

bundle VP of P by TRG (or simply by G), we obtain the vector bundles

TGP = TP/G and VGP = VP/G (6.1.6)

over X . Sections of TGP -* X are G-invariant vector fields on P, while sections of

VGP -^ X are G-invariant vertical vector fields on P. Hence , the typical fibre of

VGP -> X is the right Lie algebra g, of the right -invariant vector fields on the group

G. The group G acts on this typical fibre by the adjoint representation.
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The Lie bracket of G-invariant vector fields on P goes to the quotient by G and

defines the Lie bracket of sections of the vector bundles TGP -> X and VGP -* X.

It follows that VGP -* X is a Lie algebra bundle (the gauge algebra bundle in the

terminology of gauge theories) whose fibres are Lie algebras isomorphic to the right

Lie algebra gr of G.
Given a local bundle splitting of P, there are the corresponding local bundle

splittings of TGP and VGP. Given the basis {ep} for the Lie algebra gr, we obtain

the local fibre bases { aa, ep } for TGP -> X and {ep} for VGP. If

^ _ eaaa + prep, 77 = r/µa, + r79eq

are sections of TGP, the coordinate expression of their bracket is

[ , q] = (e"aµila - ^7``aµfa)aa + (eaa,lir -
,aaa^r + c 5prl°)er. (6.1.7)

Let J1P be the first order jet manifold of a G-principal bundle P -+ X. Bearing

in mind that J1P -+ P is an affine bundle modelled over the vector bundle

T*X®VP -^P,
P

let us consider the quotient of the jet bundle J1P -> P by the jet prolongation J1RG

of the canonical action (6.1.1). We obtain the affine bundle

C=J1P/G-+X

modelled over the vector bundle

C=T*X ®VGP->X.

(6.1.8)

(6.1.9)

Hence, there is the canonical vertical splitting

VC =CxC.
x

It is easily seen that the fibre bundle J1P - C is a principal bundle with the

structure group G. It is canonically isomorphic to the pull-back

J1P=PG=CXP- C.
X

(6.1.10)

Turn now to connections on a principal bundle P --+ X. In this case, the exact

sequence (1.1.17a) can be reduced to the exact sequence

0 -+ VGP - TGP -+ TX -> 0 (6.1.11)
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by taking the quotient with respect to the action of the group G.

DEFINITION 6.1.1. A principal connection A on a principal bundle P ---+ X is

defined as a section A : P -> J1P which is equivariant under the action (6.1.1) of

the group G on P, that is,

J1R9oA=AoR9, dgE G. (6.1.12)

Such a connection yields the splitting of the exact sequence (6.1.11), and can be

represented by the Ta-valued form

T*X ®TaP

A

X - T`X®TX

A=dxA ®(aa+Aae9), (6.1.13)

where Aa are local functions on X. On the other hand, due to the property (6.1.12),

there is one-to-one correspondence between the principal connection on a principal

bundle P --> X and the global sections of the fibre bundle C -* X (6.1.8), called

the bundle of principal connections. Since this fibre bundle is affine, principal con-

nections on a principal bundle always exist.
Given a bundle atlas of P, the bundle of principal connections C is equipped with

the associated bundle coordinates (x", aa) such that, for any section A of C -+ X,

the local functions

Aa=aaaA

are coefficients of the connection 1-form (6.1.13). In gauge theory, these coefficients

are treated as gauge potentials. We will use this term to refer to sections A of the

fibre bundle C -+ X.

Let a principal connection on the principal bundle P -+ X be represented by

the vertical-valued form A (2.1.8). Then the form

q: P +T`P®VP1d-2,3 T*P® gi (6.1.14)
P
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is the familiar 91-valued connection form on the principal bundle P. Given a local

bundle splitting (U(, z() of P, this form reads

A = V)(*(9( - Aadx' (& €q), (6.1.15)

where B1 is the canonical gl-valued 1-form (6.1.5) on G and T. are local functions

on P such that

Aa(pg)eq = Aa(p)ad9 1(Eq)•

The pull-back z*A of the connection form A over UU is the well-known local connec-

tion 1-form

Ac = -Aadx\ ® Eq = Aadx" ® Eq, (6.1.16)

where AA = AA o z( are local functions on X. It is readily observed that the

coefficients Aa of this form are precisely the coefficients of the form (6.1.13). It

should be emphasized that the local connection form (6.1.16) is g`-valued, while

the vertical part A - Ox of A (6.1.13) is a VG-valued form. There is the relation

AS = 7p eta(A - Ox). In local expressions, we will mean by a local connection form

the VG-valued form

A = AadxA ®eq. (6.1.17)

In the case of principal bundles, there are both pull-back and push-forward

operations of principal connections [177].

THEOREM 6.1.2. Let P be a principal fibre bundle and f *P (1. 1.6) the pull-

back principal bundle with the same structure group. Let f p be the canonical

morphism (1.1.7) of f*P to P. If A is a principal connection on P, then the pull-

back connection f *A (2.1.11) on f *P is a principal connection. q

THEOREM 6 .1.3. Let P' -X and P -> X be principle bundles with structure

groups G' and G, respectively. Let 4): P' -+ P be a principal bundle morphism over

X with the corresponding homomorphism G' -+ G. For every principal connection

A' on P', there exists a unique principal connection A on P such that TOP sends the

horizontal subspaces of A' onto the horizontal subspaces of A. q
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The curvature of a principal connection A (or the strength of A) is defined to be

the VGP-valued 2-form on X

2
FA :X-->AT*X®VGP,

FA = 2 Faµd? A dx"` ® e,., (6.1.18)

Faµ = [8a + AaeP, 8µ + Aµeq]' = 8,Aµ - 8JAA + CPgA,,Aµ,

whose coordinate expression follows from (6.1.7). We have locally

FA=dA + 1[A,A] =dA+AAA,

(6.1.19)

(6.1.20)

where A is the local connection form (6.1.17). It should be emphasized that the

form FA (6.1.19) is not the standard curvature (2.3.3) of a connection (see (6.1.25)

below). It also differs from the 91-valued curvature form

c =dA+21A, A].

Given a local bundle splitting (U(, psi() of P, we have the relation z^Q = - C(FA).

In local expressions , by FA we will also mean the g,.-valued 2-form

b( (FA) = dA + 1[A,A] = dA + A A A, ( 6.1.21)

where A is the local connection form (6.1.16). It is given by the expression (6.1.18)

where the fibre basis {e,.} are replaced with the right Lie algebra basis {e,.}.

Let now

Y = (P x V)/G (6.1.22)

be a fibre bundle associated with the principal bundle P -+ X whose structure group

G acts on the typical fibre V of Y on the left. For short, we will say that (6.1.22)

is a P-associated fibre bundle.

Remark 6 .1.2. Let us recall that the quotient in (6.1.22) is defined by identification

of the elements (p, v) and (pg, g-lv) for all g E G. By [p] we will denote the

restriction of the canonical morphism

PxV--*(PxV)/G (6.1.23)
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to {p} x V, and write

[p](v)=(p,v)•G, vEV.

Then we have [p] (v) = [pg](g-1v). •

Remark 6.1.3. In fact, Y (6.1.22) is the fibre bundle canonically associated with

the principal bundle P. A fibre bundle Y --> X, given by the triple (X, V, i) of

a base X, a typical fibre V and a bundle atlas ', is called a fibre bundle with a

structure group G if G acts effectively on V on the left and the transition functions

pap of the atlas 1 take their values into the group G. The set {(UU fl Up, pap} of

these transition functions, satisfying the cocycle condition (1.1.4), form a cocycle

(see Remark 6.9.2 below). If atlases are equivalent the cocycles of their transition

functions are equivalent. The set of equivalent cocycles are elements of the first

cohomology set H' (X; Gam). Fibre bundles (X, V, G, %F) and (X, V', G, iT") with

the same structure group G, which may have different typical fibres, are called

associated if the transition functions {pap} and {pµ„} of the atlases ' and W',

respectively, belong to the same element of the the cohomology set H1(X;G"^).

Any two associated fibre bundles with the same typical fibre are isomorphic to each

other, but their isomorphism is not canonical in general. A fibre bundle Y -> X

with a structure group G is associated with some G-principal bundle P -> X. If Y

is canonically associated with P as in (6.1.22), then

• every atlas TP = {(Ua, za)} of P determines canonically the associated atlas

W = {(UA, fa (x) = [za(x)]-1) of Y;

• every automorphism of a principal bundle P yields the corresponding auto-

morphism of the P-associated fibre bundle (6.1.22) (see Section 6.3).

Unless otherwise stated (see Section 6.7), by a P-associated fibre bundle we mean

the quotient (6.1.22).
It should be emphasized that the notions introduced in this Remark are extended

in a straightforward manner to topological fibre bundles over topological spaces when

morphisms are continuous, but not necessarily smooth. •

Let Y be a P-associated fibre bundle (6.1.22). Every principal connection on

P -> X induces canonically the corresponding connection on the P-associated fibre

bundle (6.1.22) as follows. Given a principal connection A (6.1.13) on P and the
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corresponding horizontal splitting of the tangent bundle TP, the tangent map to the

canonical morphism (6.1.23) defines the horizontal splitting of the tangent bundle

TY and the corresponding connection on the P-associated fibre bundle Y -* X

[177]. The latter is called the associated principal connection or simply a principal

connection on Y -- X. If Y is a vector bundle, this connection takes the form

IP(92),A=dxA®(5 -AP (6.1.24)

where Ir are generators of the representation of the Lie algebra gr in V. The

curvature (2.3.3) of this connection reads

F = -1F IIdxA A dxµ ® OZ. (6.1.25)

In particular, a principal connection A yields an associated linear connection on

the gauge algebra bundle VGP --+ X. The corresponding covariant differential VA6

of a section ^ = 6per of VGP --^ X reads

VA1;:X-+T*X(9 VGP,

vA = (a),r + CPgAa 9) dx'' ® er. (6.1.26)

If u is a vector field on X, the covariant derivative VAS of ^ along u is given by

vu^ = uJ vAe = [u] A, ],

where A is the TG-valued form (6.1.13). In particular , we have

VAeq = c;gAaer . (6.1.27)

The covariant derivative Vu is compatible with the Lie bracket of sections of

VGP -+ X, i.e.,

vu [vu , 77] + [C, vu ^]

for any vector field u : X -> TX and sections ^, 77 : X -+ VGP.

Remark 6.1.4. Let P -> X be a G-principal fibre bundle. Then the F-N bracket

on 0* (P) ®T(P) is compatible with the canonical action RG, and we obtain the

induced F-N bracket on D*(X) ®TGP(X), where TGP(X) is the vector space of

sections of the vector bundle TGP -> X. Recall that TGP(X) projects onto T(X).
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If A E 01(X) ®TGP(X) is a principal connection as in (6.1.13), the associated

Nijenhuis differential is

dA : 0'(X) ®TGP(X) i7''+1(X) ®VGP(X),

dAq5 = [A, 01FN, 0 E i7''(X) 0 TGP(X ). (6.1.28)

On VGP(X), the differential dA coincides with the covariant differential VA (6.1.26),

i.e.,

da.^ = DAB.

We also have the local expression

VAe = d^ + [A, ^], (6.1.29)

where A is the local connection form (6.1.17). If q = a ®^ E .EY(X) ® VGP(X)

where a E Dr(X) and e E VGP(X), we have the formula

dA 0 = da ®^ + (_1)rce AVAe (6.1.30)

which follows from (1.2.31).

By means of the Nijenhuis differential (6.1.28), the strength FA of the connection

A is defined as

FA = ZdAA = 2 [A, A]FN E 02(X) 0 VGP(X). (6.1.31)

6.2 The canonical principal connection

This Section is devoted to vector fields and connections on the bundle of principal

connections C -* X. To introduce them, we will use the canonical connection on

the pull-back principal bundle Pc --> C (6.1.10).
Given a G-principal bundle P --> X and its jet manifold J1C coordinated by

(xA, aµ, a%,), let us consider the canonical morphism

0: J1P x TP - VP
P
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(1.3.8). Taking its quotient with respect to G, we obtain the morphism

C X TGP B-+ VGP
x

X

0(aa) = -aaep, 0 (ep) = ep.

(6.2.1)

It follows that the exact sequence (6.1.11 ) admits the canonical splitting over C

[116].
Let us now consider the pull-back principal bundle Pc (6.1.10 ) whose structure

group is G. Since

VG(C x P) = C x VGP, TG(C x P) = TC x TGP, (6.2.2)
X x x x

the exact sequence (6.1.11 ) for this principal bundle Pc reads

0-*CxVGP yTCxTcP-+TC +0. (6.2.3)
x C x

It is readily observed that the morphism (6.2.1) yields the horizontal splitting (2.1.3)

TCxTGP -+ C xTGP -+CxVGP
x x x

of the exact sequence (6.2.3) and, consequently, defines the non-flat principal con-

nection

A: TC --+ TC x TGP,
x

A=d? ®(aa+aaep)+daa®a;., (6.2.4)

A G ,t71(C) ® TG(C X P)(X ),

on the principal bundle

PC =CxP-+C.
X

(6.2.5)

It follows that the principal bundle Pc carries the canonical principal connection

(6.2.4).
Accordingly, the vector bundle

CxVGP -+C
x



6.2. THE CANONICAL PRINCIPAL CONNECTION 161

is provided with the canonical linear connection such that the corresponding covari-

ant differential (6.1.27) reads

aajVAeq = cgaaer, arjVAeq = 0.

Following (6.1.31), we define the canonical curvature

FA = 2dAA = 2 [A, A)FN E D2 (C) ®VcP(X ),

FA = (daµ A dxµ + 2cpgaaaµdx' A dx)) ®e, .

(6.2.6)

(6.2.7)

Its meaning is the following . Let A : X -* C be a principal connection on the
principal bundle P -> X. Then the pull-back

A*FQ=FA (6.2.8)

is the curvature of the principal connection A.

Example 6 .2.1. In particular, let us consider the trivial principal bundle P =

X x 1[1 -* X. Then C = T*X -> X is the affine cotangent bundle, and principal

connections on P are precisely 1-forms on X. The canonical connection A, the F-N

covariant differential dA and the curvature reduce to

0 = xadx',

dA = d,

FA=1l=d8EA(T*X), 1 =d±AAdxA. (6.2.9)

This Example shows that the bundle C -+ X is a generalization of the cotangent

bundle T*X --> X in a sense. Indeed, just as T*X carries the canonical symplectic

form (6.2.9), C does the canonical VGP-valued 2-form (6.2.7). In particular, given a

vector field T on a manifold X, its canonical lift T (1.2.4) onto the cotangent bundle

T*X can be determined by the equation

T] S2 = d(Tj8). (6.2.10)

The generalization of this equation by means of the canonical curvature FA is of

basic importance in gauge theories.
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Let ^ = Taaa + ^T'ep be a section of the fibre bundle TGP -> X, projected onto

a vector field r on X. One can think of ^ as being a generator of a 1-parameter

group of general gauge transformations of the principal bundle P --* X (see the next

Section). Using (6.2.1), we obtain the morphism over X

6Je:C -*VGP,

i.e., as (6.2.2) shows, a section of VG(C x P) -* C. Then the equation
x

eCJFA = dA(ejo) (6.2.11)

determines uniquely a vector field 6C on C projectable over T. Simple computations

lead to

O , (6.2.12)ec =T'aA+ Ur

UA = a,6r + Cpgaa.9 - aµaaTµ.

The vector field CC (6.2.12) is the generator of the associated gauge transformations

of the bundle of principal connections C. In particular, if 6 E VGP(X), we obtain

the vertical vector field

SC = uaar , uA = aaer + Cp9aag9.

In this case , since VC = C x T*X ® VGP C TC, we can write
x

CC= VC:C ->VC

where V is the covariant differential (6.2.6).

Remark 6 . 2.2. The jet prolongation ( 1.3.10) of the vector field fC reads

l A
r a r Al"^C =T as+uaar + uA'ar ,

uaµ = aA C' - araaµT" + Cpga aAC9 -

a'VaµTv + cp aP.Cq - ar c9A r",
VIA

where ua is given as in (6.2.12). •

(6.2.13)

(6.2.14)

(6.2.15)

Example 6 .2.3. Let A (6.1.13) be a principal connection. For any vector field T

on X, this connection yields the section

C =TJA:X-+TGP,

C = TAaa + Ap r'ep,
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which, in turn, defines the vector field (6.2.12):

FA =T'a'\ +u;aT,

ur = aaAµT' + c;ga'AµTµ - (aµ - Aµ),9.\7-',

on the bundle of principal connection C. •

(6.2.16)

One can obtain the vector field (6.2 . 16) as the horizontal lift uJ F of T with respect
to some connection F on the fibre bundle C -> X. For this purpose, let us consider

a symmetric world connection K on X and a principal connection A on P -* X.

They define a connection on the fibre bundle C -+ X as follows . Given the linear

connection (6.1.27 ) induced by A on the fibre bundle VGP -> X, let us consider the

tensor product connection F on T*X ® VGP -* X induced by K and A. Given the

coordinates (xl, aµ, aaµ ) of Jl(T*X (9 VGP), we have

I' : T*X ® VGP -* Jl(T*X 0 VGP),

arAP, o F _ -Ka"µav + c^aµAa.

Using the fibred morphism

DA:C->T*X®VGP

(1.1.10), we obtain the section

F:C-*J1C,

a AµoF=Faµ=8Aµ+C;9aµA.-Ka"µ(aV-A,)+cc9AaAA

in accordance with the commutative diagram

J1C PD ; J1(T*X ® VGP)

r i i r

(6.2.17)

C DA, T*X ® VGP

Of course , F is an affine morphism over X, i.e., an affine connection on the affine

bundle C -+ X, while the associated linear connection is I'. Moreover, it is easily

seen that A is an integral section of F, i.e., J1A = F o A. The connection (6.2.17)

is not a unique one defined by a symmetric world connection K and a principal

connection A. Since the strength FA of A can be seen as a soldering form

FA = FaµdxA 0 aT , (6.2.18)
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one can obtain another connection F' = F - FA on the fibre bundle C -+ X. Now let

us assume that a vector field T on X is an integral section of the symmetric world

connection K (see Remark 2.4.2). Then it is readily observed that the horizontal

lift F'T of T by means of the connection F' coincides with the vector field TA (6.2.16)

on the fibre bundle C.

Let us return to the canonical curvature FA (6.2.7). It can be seen in a slightly

different way. Namely, there is a horizontal VcP-valued 2-form

= 2 N,dx\ndxµ®er,

-µ - a'µ - aµa + cpgaaaµ, (6.2.19)

on J1C which satisfies the condition

.F o J1A = ho(FA)

for each principal connection A : X - C. It is readily observed that

.F/2->AT*X®UGP (6.2.20)

is an affine surjection over C and, hence, its kernel C+ = Ker F is an affine sub-

bundle of J1C -+ C (see Proposition 1.1.3). Thus, we have the canonical splitting

over C:

PC = C+ ®C_ = C+ ®(C x AT*X (9 VcP), (6.2.21)

a'µ = 2(a'µ + aµa - crga\a',) + 2(a'µ - aµa + c^gaaaµ).

The corresponding canonical projections are pr2 = .F /2 (6.2.20) and

pr1=S:J1C--*C+, (6.2.22)

Sr r r r p q)Sµ = 2 (aaµ + a,,,\ - cpgaaµ

In particular , let r : C -* J1C be a connection on the bundle of principal

connections C - X. Then S o r is a C+-valued connection on C -+ X which

satisfies the condition

(S 0 F)'µ - (S o F)µa + ccgaaaµ = 0.
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For instance, let us consider the affine connection r (6.2.17). Then we obtain the
connection

IPA =Sor:C->C+CJ1C,
rAA, = 2 [aaAA + aµAA - cp aaaµ + (6.2.23)

cpq(aaAµ + aµAa)] - Ka"µ (a„ - A'),

which has the property

rAoA=SoJ'A. (6.2.24)

As in the general case (3.3.14) of quadratic degenerate systems, one can write

µ = (a'
r

Aµ - rA,,) + (aµA - rAµA ). (6.2.25)

6.3 Gauge conservation laws

The main peculiarities of conservation laws in gauge theory of principal connections

consists in the following.

• Noether currents reduce to superpotentials (see Remark 3.4.2) because gener-

ators of gauge transformations depend on derivatives of gauge parameters.

• Noether conservation laws and Noether currents depend on gauge parameters,

but this is not the case of an Abelian gauge model.

• An energy-momentum conservation law implies the gauge invariance of a La-

grangian.

Let P -* X be a G-principal bundle. In a gauge model with a symmetry group

G, gauge potentials are identified with principal connections on the principal bundle

P --> X, i.e., with global sections of the bundle of principal connections C -+ X

(6.1.8), while matter fields are represented by global sections of a P-associated vector

bundle Y (6.1.22), called a matter bundle. The total configuration space of a gauge

model with unbroken symmetries is the product

Jlytot = JlY x J1C. (6.3.1)
x
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In gauge theory, several particular classes of gauge transformations are consid-

ered [123, 214, 283]. By a gauge transformation of a principal bundle P is meant

its automorphism -tp which is equivariant under the canonical action (6.1.1), i.e.,

Rgo4p= $p0Rg, V9EG.

This is called a general principal automorphism of P or simply an automorphism of

P if there is no danger of confusion.
Every general principal automorphism of P yields the corresponding automor-

phisms

,by : (p, v) • G - (4,p (p), v) • G, P E P, V E V, (6.3.2)

of the P-associated bundle Y (6.1.22). For the sake of brevity, we will write

1DY : (P x V)/G -* ((Dp(P) x V)/G.

General principal automorphisms F of the principal bundle P also determine the

corresponding automorphisms

.,PC : J1P/G -* J1(Dp(J1P)/G

of the bundle of principal connections C [123, 1721.

(6.3.3)

To obtain the Noether conservation laws, we will consider only vertical auto-

morphisms of the principal bundle P, which are called principal automorphisms or

simply gauge transformations if there is no danger of confusion.

Every principal automorphism of a principal bundle P is represented as

4)p(P) = pf (p), p E P,

where f is a G-valued equivariant function on P, i.e.,

f(pg) = g-1f (p)g, dg E G.

(6.3.4)

(6.3.5)

There is one-to-one correspondence between the functions f (6.3.5) and the global

sections s of the group bundle

PC = (P x G)/G, (6.3.6)
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whose typical fibre is the group G which acts on itself by the adjoint representa-

tion. There is the canonical fibre-to-fibre action of the group bundle PG on any

P-associated bundle Y:

PGxY -, Y,
x

((p,g)•G,(p,v )• G)-+ (p,gv)•G, VgEG, VvEV.

Then the above-mentioned correspondence is defined by the relation

(s(lrpx(p)),p) - pf (p)•

It follows that principal automorphisms of a G-principal bundle P -i X form the

group Gau(P ), called the gauge group, which is isomorphic to the group of global

sections of the group bundle (6.3.6).
Here we restrict our consideration to (local ) 1-parameter subgroups [4Dp] of the

gauge group . Their generators are G-invariant vertical vector fields ^ on a principal

bundle P. We will call ^ a principal vector field. Recall one-to-one correspondence

between the principal vector fields on P and the sections

^ = Spep (6.3.7)

of the gauge algebra bundle VGP -+ X (6.1.6). Therefore , one can think of the

components ep(x) of a principal vector field (6.3.7) as being gauge parameters. The

principal vector fields (6.3.7) are transformed under the generators of gauge trans-
formations by the adjoint representation given by the Lie bracket

c qS/Tsgep, Sy S' E VGP(X).

Accordingly, gauge parameters are changed by the coadjoint representation

^' : p H -cpq " g. (6.3.8)

Given a principal vector field ^ (6.3.7) on P, the corresponding principal vector

field on the P-associated vector bundle Y -* X, which corresponds to the (local)

1-parameter group [1y] of principal automorphisms (6.3.2) of Y, reads

^r = ^P,"ai,

where Ip are generators of the group G acting on the typical fibre V of Y. Ac-

cordingly, the principal vector field on the bundle of principal connections C, which
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corresponds to the local 1-parameter group [4c] of principal automorphisms (6.3.3)

of C, takes the form

Sc = (aµ r + cpa1e)a,

(see (6.2 .13)). Then a principal vector field on the product C x Y reads
x

Syc = (aµSr + c' a'61 ) -9,1 + SP pai = (upµaµsP + u, P),9A,

where the collective index A is used:

up µOA = 6,r, , u aA = crpaµar + Ipai.

(6.3.9)

(6.3.10)

Remark 6.3.1. Let us consider a local 1-parameter group of general principal

automorphisms ['P] of the principal bundle P -* X whose generator is a projectable

G-invariant vector field on P, given by a section

^ = TAaa + EPep

of the fibre bundle TAP -> X. Let [qbc] be the corresponding 1-parameter group

of automorphisms (6.3.3) of the fibre bundle C -> X. The generator of [cc] is the

vector field ^c (6.2.12) on C which takes the coordinate form

^c = Taaa + (aµyr + c9paµEP - a r OT A)ar,

where SP are gauge parameters. •

(6.3.11)

A Lagrangian L on the configuration space (6.3.1) is said to be gauge-invariant

if the strong equality

LpC,,oL = 0

holds for every principal vector field ^ (6.3.7).
In this case, the first variational formula (3.2.2) ttleads to the strong equality

0 = (upSp + UP µa/Le )6AL + dA[(upSp + npµa8Sp)iA], (6.3.12)

where SAL are the variational derivatives of L and

dA= as + aAN,aP +yaat•
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Due to the arbitrariness of gauge parameters ^P(x), this equality is equivalent to

the following system of strong equalities:

Up bA G + dµ(upir ) = 0, (6.3.13a)

U µ6AG + dA(uuµirA) + uP^A = 0, (6.3.13b)

uP X7rA +upµ7rA=0. (6.3.13c)

One can regard these strong equalities as the conditions of a Lagrangian L to be

gauge-invariant. Let us study these equations in the case of a Lagrangian

L : J1C --> nT*X (6.3.14)

for free gauge fields. Then the equations (6.3.13a) - (6.3.13c) read

CP9(aµaT G + aAt a,a. µG) = 0, (6.3.15a)

c99 P aL + cr aParµaG = 0, (6.3.15b)

ap"G + aPµG = 0. (6.3.15c)

Let us utilize the coordinates (aµ, Sµa,a) (6.2.19), (6.2.22), which correspond to

the canonical splitting (6.2.21) of the jet manifold J1C.

With respect to these coordinates, the equation (6.3.15c) reads

aG
r = 0. (6.3.16)asµa

Then the equation (6.3.15b) takes the form

a9 aµ = 0. (6.3.17)

A glance at the equations (6.3.16) and (6.3.17) shows that the gauge-invariant La-

grangian (6.3.14) factorizes through the strength F of gauge potentials, i.e.,

J1
\

C -* C_

L y /T

AT*X

[43, 116]. Then the equation (6.3.15a) is written as

r aG
'VPCP9µ a^ r = 0,
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which is an equivalent of the gauge invariance of the Lagrangian L (6.3.14). As a

result, we obtain the conventional Yang-Mills Lagrangian LYM of gauge potentials

on the configuration space PC in the presence of a background world metric g on

the base X. It reads

LYM = 4e2ap9gA1Lgm QFµ"
I 9 IW g = det(9µ„), (6.3.18)

where aG is a non-degenerate G-invariant metric in the Lie algebra of g, and a is a

coupling constant. The expression (6.2.25) shows that, as in the general case (3.3.13)

of quadratic Lagrangians, the Yang-Mills Lagrangian (6.3.18) factorizes through the

covariant differential relative to the connection (6.2.23) on the bundle of principal

connections C --> X.

Remark 6.3.2. Substituting (6.3.13b) and (6.3.13c) in (6.3.13a), we obtain the

well-known constraint conditions of the variational derivatives of a gauge-invariant

Lagrangian:

up SAG - dµ (up µ6AG) = 0.

•

(6.3.19)

On-shell, the strong equality (6.3.12) becomes the weak conservation law

0 ^5 da [(up e + up La eP)^A]

of the Noether current

CIA = -(UpAep + puAµaµSp)7rA•

(6.3.20)

(6.3.21)

Accordingly, the equalities (6.3.13a) - (6.3.13c) on-shell lead to the familiar Noether

identities for a gauge-invariant Lagrangian L:

dµ( up iA)
pt: 0,

d),(up µ1A) + up7rA 0,

upA7rA + upµ7rA = 0.

(6.3.22a)

(6.3.22b)

(6.3.22c)

They are equivalent to the weak equality (6.3.20) due to the arbitrariness of the

gauge parameters ^p(x).
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A glance at the expressions (6.3.20) and (6.3.21 ) shows that the Noether conser-
vation law and the Noether current depend on gauge parameters . The weak identi-
ties (6.3.22a) - (6.3.22c) play the role of the necessary and sufficient conditions in
order that the weak conservation law (6.3.20 ) be gauge-covariant , i.e., form-invariant

under changing gauge parameters . This means that, if the equality (6.3.20) takes
place for gauge parameters ^, it does so for arbitrary deviations e + 6l; of ^. Then

the conservation law (6.3.20 ) is also covariant under gauge transformations, when
gauge parameters are transformed by the coadjoint representation (6.3.8).

Thus, dependence of the Noether current on gauge parameters guarantees that
the Noether conservation law is maintained under gauge transformations.

It is easily seen that the equalities (6.3.22a) - (6.3.22c ) are not mutually indepen-

dent, but (6.3.22a ) is a corollary of (6.3.22b) and (6.3.22c). This property reflects

the fact that, in accordance with the strong equalities (6.3.13b) and (6.3.13c), the
Noether current ( 6.3.21 ) is brought into the superpotential form (3.4.6):

` ,1 =
pUP-16AL - dµ(e

Ao7r,\ \
Up A

where the superpotential is Uµ' = -lpuP µ7rA. Since a matter field Lagrangian does
not depend on the derivative coordinates aaµ, the Noether superpotential

U1 ' = rp^
p
µa

S (6.3.23)

depends on the gauge potentials only.

We have the corresponding integral relation (3.4.8), which reads

f s*T''Wa = f s`W'rP')wµa, (6.3.24)

Nn-1 8Nn-1

where N"-1 is a compact oriented (n - 1)-dimensional submanifold of X with the

boundary ON n-1. One can think of (6.3.24) as being the integral relation between

the symmetry current (6.3.21) and the gauge field generated by this current. In

the electromagnetic theory, the similar relation between an electric current and the

electromagnetic field generated by this current is well known. In comparison with

(6.3.24), this relation is free from gauge parameters due to the peculiarity of Abelian

gauge models.

Remark 6 .3.3. It should be emphasized that the superpotential form of the

Noether current (6.3.21) is caused by the fact that principal vector fields (6.3.10)

depend on derivatives of gauge parameters. •
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Example 6.3.4. The Abelian gauge model . In gauge theory with an Abelian

symmetry group G, one can take the Noether current and the Noether conservation

law independent of gauge parameters.

Let us consider the electromagnetic theory, where

G=U(1), I7(y)=iy7.

In this case, a gauge parameter C is not changed under gauge transformations as

follows from the coadjoint representation law (6.3.8). Therefore, one can put, e.g.,

= 1. Then the Noether current (6.3.21) takes the form

TTA =
-uA7rAA•

Since the group G is Abelian, this current (6.3.25) does not depend on gauge po-

tentials and it is invariant under gauge transformations. We have

`a = -iy77r^ (6.3.25)

It is easy to see that T, under the sign change, is the familiar electric current of

matter fields, while the Noether conservation law (6.3.20) is precisely the equation

of continuity. The corresponding integral equation of continuity (3.4.5) reads

J s*(vu7r )wA = 0,
aN

where N is a compact n-dimensional submanifold of X with the boundary 8N.

Though the Noether current T (6.3.25) is expressed in the superpotential form

` A = -SAG + dUµa,

the equation of continuity is not tautological. This equation is independent of an

electromagnetic field generated by the electric current (6.3.25) and it is therefore

treated as the strong conservation law.
When ^ = 1, the electromagnetic superpotential (6.3.23) takes the form

Uµ'\ = 7CµA = - 1 J7'
4 '\ ,

47r

where .F is the electromagnetic strength.

precisely the system of Maxwell equations

1 (µ.7µa = iy 7r^ .
47r

The corresponding equality (3.4.7) is
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Accordingly, the integral relation (6.3.24) is the integral form of the Maxwell equa-

tions. In particular, the well-known relation between the flux of an electric field

through a closed surface and the total electric charge inside this surface is recov-

ered. •

Let us turn now to energy -momentum conservation laws in gauge theory. For
the sake of simplicity , we will consider only gauge theory without matter fields. The
corresponding Lagrangian is the Yang-Mills Lagrangian (6.3.18) on the jet manifold

JPC.

Given a vector field T on X, let B be a principal connection on the principal
bundle P -> X and

TB = TA(aA + BPEp)

the horizontal lift of T onto P by means of the connection B. This vector field, in

turn, gives rise to the vector field TB (6.2.16) on the bundle of principal connections

C, which reads

TB = TAOA + [TA(aNBa + CgaµBa) - O,,T'(a - B',03i)]o . (6.3.26)

Let us discover the energy-momentum current along the vector field TB (6.3.26)

[120, 123, 269].

Since the Yang-Mills Lagrangian (6.3.18) depends also on a background world

metric g, we will consider the total Lagrangian

L 4e2 a
9oraµ^p,pµV

O 01 kW, v = det(a,), (6.3.27)

on the total configuration space

J1(CxVTX)
X

2
(see Remark 2.4.3), where the tensor bundle V TX is provided with the holonomic

coordinates (x', 04w).

Given a vector field T on X, there exists its canonical lift (1.2.2)

T = TA '9A + (avTauvo + auTaava)Oaf
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2
onto the tensor bundle VT*X, which is the generator of a local 1-parameter group

of general covariant transformations of V T*X (see Section 7.1). Thus, we have the

lift

TB = T'aa + [TA(aµBr\ + c gaµB^) - aµ-l (aQ - BQ)]ar + (6.3.28)

(a"Tauvo + 0"TpU"a)9

2
of a vector field r on X onto the product C x V T*X. For the sake of simplicity, we

x
denote it by the same symbol TB.

The total Lagrangian (6.3.27), by construction, is invariant under gauge trans-

formations and general covariant transformations. Hence, its Lie derivative along

the vector field TB (6.3.28) equals zero. Then one can use the formula (3.4.21). On

the Yang-Mills shell and on the background field aµv = g^`v(x), this reads

0 ^% (a„Tag"a + avrQg"« - aag'1T\ )a.0L - d)T8, (6.3.29)

where

B = 7fTV [-Tµ( a"Bµ + c;gavBµ - aµ") + a"T"(aµ - Bµ)] - SµTµGYM (6.3.30)

is the energy-momentum current along the vector field (6.3.26). The weak identity

(6.3.29) can be written in the form

0 aaTµtµ I g I - Tµ{µQa}ta V I g I - da'XB (6.3.31)

where {µa,\} are the Christoffel symbols (2.4.13) of g and

tp I g I = 2gµaa.PGYM

is the metric energy-momentum tensor of gauge potentials . We have the relation

tµ V ' g
I = 7rq".^µ" - 5 CYM.

In particular , let A be a solution of the Yang-Mills equations . Let us consider the

lift (6.3.26 ) of the vector field T on X onto C by means of the principal connection

B = A. In this case, the energy-momentum current (6.3.30) reads

TA aA= - (tµ a A) IgI•
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Then the weak identity (6.3.31) on the solution A takes the form

o- {µpa }(tp o A) I g I- da[(tµ o A) j g I]•

Thus, it leads to the familiar covariant conservation law

(6.3.32)VA ((tµ ° A) I g I) = 0,

where VA are the covariant derivatives with respect to the Levi-Civita connection
{N,QA} of the background metric g.

Note that, in the case of an arbitrary principal connection B, the corresponding
weak identity (6.3.31) differs from (6.3.32) in the Noether conservation law

(] 't' da (^vr7rrav),

where

r CC tt
SC = Srar = (avbr + c9pale)C^r, er = 7-'(B,' - Aµ),

(6.3.33)

is the principal vector field (6.3.9) on C. Since Noether currents in gauge the-

ory reduce to a superpotential and, consequently, the conservation law (6.3.33) is

tautological, one can always bring the weak identity (6.3.31) into the covariant con-

servation law (6.3.32) by cutting down Noether currents (see [135]). Though the

physical motivation of this operation is under a question. It follows that differential

conservation laws in gauge invariant models are not sufficient.

6.4 Hamiltonian gauge theory

This Section is devoted to Hamiltonian formulation of gauge theory in the framework

of the covariant Hamiltonian formalism in Chapter 4. As was mentioned above,

the main ingredients in gauge theory are not connected directly with the gauge

invariance property, but are common for field models with degenerate quadratic

Lagrangians. In order to illustrate this fact clearly, we will compare the gauge-

invariant model of electromagnetic fields with that of Proca fields. We will follow

the general scheme for models with degenerate quadratic Lagrangians in Section 4.3.

The peculiarity of gauge theory consists in the fact that the splittings (3.3.12a) and

(4.3.1a) of configuration and phase spaces are canonical.
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Given a bundle C --> X of principal connections, the corresponding Legendre

bundle II (3.2.8) is

Irnc : 1I -->C,

ll =nT*X®TX®[CxC] (6.4.1)

It is coordinated by (xx, aa, and admits the canonical splitting

n=n+®n_ (6.4.2),
C

1 1
\ \A." = P(UA) + p - p")•+A"') + 2 (PA= 2 (PA

The Legendre map defined by the Yang-Mills Lagrangian LYM (6.3.18) takes the

form

pm-\)oLYM=0,

p[AA] o LYM = e-Zamn9p-9Ap p 01 9

(6.4.3a)

(6.4.3b)

A glance at these expressions shows that Ker LYM = C+, and the Lagrangian con-

straint space is

NL = LYM(J'C) = n_.

Obviously, NL is an imbedded submanifold of 11, and the Lagrangian LYM is almost

regular. Accordingly, the canonical splittings (6.2.21) and (6.4.2) are similar to the

splittings (3.3.12a) and (4.3.1a), respectively.

Therefore, we can follow the general procedure in Section 4.3 in order to construct

a complete set of Hamiltonian forms associated with the Yang-Mills Lagrangian

(6.3.18).

Let us consider connections r on the fibre bundle C -* X which take their values

into Ker L, i.e.,

P:C--+C+, (6.4.4)

Given a symmetric world connection K on X, every principal connection B on the

principal bundle P --* X gives rise to the connection rB : C --+ C+ (6.2.23 ) which has
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the property (6.2.24). With this connection, the Hamiltonian form (4.3.4) (where
vl = 0) is

HB = prµdaµ A WA - P r4W - NYMW , (6.4.5)

HYM = 4 aGn9µv9app[.a)pn^a] 1 9 1

It is associated with the Lagrangian LYM. The corresponding covariant Hamilton
equations for sections r of the Legendre bundle 11 -> X consist of the equations
(6.4.3b) and the equations

uArµ + a r' = 2PB(aµ),
a^rTµ = Cgrpr[aµl - cgPBPr(aµ) + KAµvTav)

(6.4.6)

(6.4.7)

The Hamilton equations (6.4.6) and (6.4.3b) are similar to the equations (4.3.6)

and (4.3.7), respectively. The Hamilton equations (6.4.3b) and (6.4.7) restricted to

the constraint space (6.4.3a) are equivalent to the Yang-Mills equations for a gauge

potential A = 7rnC o r.

Different Hamiltonian forms HB lead to different equations (6.4.6). The equa-

tions (6.4.6) are independent of canonical momenta, and take the form of a gauge-
type condition (4.3.6):

rBOA=s oJ1A.

A glance at this condition shows that, given a solution A of the Yang-Mills equations,
there always exists a Hamiltonian form HB (e.g., HB=A) which obeys the condition
(4.2.9), i.e.,

HB o LYM o J1A = J1A.

It follows that the Hamiltonian forms HB (6.4.5) parameterized by principal con-

nections B constitute a complete family.

Remark 6.4.1. It should be emphasized that the gauge-type condition (6.4.6)
differs from the familiar gauge conditions in gauge theory which single out a repre-

sentative of each gauge coset (with the accuracy to Gribov's ambiguity). Namely, if

a gauge potential A is a solution of the Yang-Mills equations, there exists a gauge

conjugate potential A' which is also a solution of the same Yang-Mills equations

and satisfies a given gauge condition. At the same time, not every solution of the
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Yang-Mills equations is a solution of the system of the Yang-Mills equations and a

certain gauge condition. In other words, there are solutions of Yang-Mills equations

which are not singled out by the gauge conditions known in gauge theory. In this

sense, this set of gauge conditions is not complete. In gauge theory, this lack is

not essential since one can think of all gauge conjugate potentials as being phys-

ically equivalent, but not in the case of other constraint field theories, e.g., that

of Proca fields. Within the framework of the covariant Hamiltonian description

of quadratic Lagrangian systems, there is a complete set of gauge-type conditions

in the sense that, for any solution of the Euler-Lagrange equations, there exists a

system of Hamilton equations equivalent to these Euler-Lagrange equations and a

supplementary gauge-type condition which this solution satisfies. •

Example 6.4.2. Electromagnetic fields . Let us consider the particular Abelian

case of an electromagnetic theory. In gauge theory, electromagnetic potentials are

identified with principal connections on a principal bundle P -* X with the structure

group U(1). In this case, the gauge algebra bundle (6.1.6) is equivalent to the trivial

line bundle

VGP=XxR.

The corresponding bundle of principal connections C (6.1.8) coordinated by (xA, aµ)

is the cotangent bundle T*X provided with the natural affine structure. The config-

uration space J1C of electromagnetic theory admits the canonical splitting (6.2.21)

which takes the form

PC = C+ ®(XT*X x C), (6.4.8)

where C+ -+ C is an affine bundle modelled over the pull-back symmetric tensor

bundle
2

C+=VT*X xC.
X

Relative to the adapted coordinates (xA, aµ, a,,) on J1C, the splitting (6.4.8) reads

aaµ = 2 (Sap + J1,\µ) = a(aµ) + a[A )

For any section A of C -+ X, we find that

F, =.F, oJ1A=a,Aa-a,\ A,



6.4. HAMILTONIAN GAUGE THEORY 179

is the familiar strength of an electromagnetic field.

For the sake of simplicity, let X = R4 be the Minkowski space with the Minkowski
metric q = diag(1, -1, -1, -1). Then the conventional Lagrangian of electromag-

netic fields on the configuration space (6.4.8) is written as

LE 161f
77Aµr/Q".F'a0yµ„W. (6.4.9)

The momentum phase space of electromagnetic theory is the Legendre bundle

H = (AT*X ®TX (9 TX) X C, (6.4.10)

coordinated by (xx, aµ, paµ). With respect to these coordinates, the Legendre map
defined by the Lagrangian (6.4.9) reads

p(aµ) o LE = 0, (6.4.11a)

p[aal o LE = - 1 77 aa77 µPT/3 . (6.4.11b)
47r

On the Legendre bundle H (6.4.10, we have a complete set of Hamiltonian forms

HB = pAµdaµ A W,, - p\TPBaµW - flEW, (6.4.12)

FBaµ = 1(aµBa + 0\B,),

xE = -7r77µVr7appLuAlp1V01,

which are parametrised by electromagnetic potentials B, and are associated with the

Lagrangian (6.4.9). Given such a Hamiltonian form HB (6.4.12), the corresponding
Hamilton equations consist of the equations (6.4.11b) and the equations

aarµ + aµra = aAB, + aBa, (6.4.13)

aarµ = 0. (6.4.14)

On the constraint space (6.4.11a), the equations (6.4.1lb ) and (6.4.14 ) reduce to the
Maxwell equations in the absence of matter sources, while the equations (6.4.13),
independent of canonical momenta, play the role of a gauge-type condition. •

Example 6 .4.3. Proca fields . The model of massive vector Proca fields exem-

plifies a degenerate field theory which is similar to the electromagnetic one, but

without the gauge invariance property.
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Proca fields (see Example 7.4.1 below) are represented by sections of the cotan-

gent bundle T*X (in contrast with electromagnetic potentials given by sections of

the affine cotangent bundle). The configuration space of Proca fields is the jet mar

nifold Jl(T*X) with coordinates (xx, kµ, kaµ), modelled over the pull-back tensor

bundle

2
®T*X x TX --+ TX. (6.4.15)

On the Minkowski space X, the Lagrangian of Proca fields looks like the electro-

magnetic one (6.4.9) minus the mass term, i.e.,

Lp LE 8 M2r7µ'\kµkaw.

It is almost regular.

The momentum phase space of Proca fields is the Legendre bundle

11 = AT*X ®TX ®TX x T*X,
x

(6.4.16)

equipped with the holonomic coordinates (xa, k, pa, ). With respect to these coor-

dinates, the Legendre map defined by the Lagrangian (6.4.16 ) takes the form

p(Aft) o LP = 0,

p[aµ] 0 LP = _ 1
77 aa77 µQ.F0'0.

47r

We have

Ker Lp = V T*X x T*X
X

and

NL = AT*X (&(ATX) x T*X,

pUµ) = 0.

(6.4.17a)

(6.4.17b)

Following the general procedure of describing quadratic degenerate systems, let

us consider the map v (3.3.8):

kA,A o o,.= -27rqaV?7,0p[V0],



6.4. HAMILTONIAN GAUGE THEORY 181

where k,\µ are the fibred coordinates on the fibre bundle (6.4.15). Since

Imv = nT*X x T*X,
x

Ker a = nT*X ® (V TX) xT*X,
x

one can perform the corresponding splitting (6.2.21) of the configuration space

J1T*X = S+ ®n T*X,
T•X

k,\µ = 2 (S,\µ + Faµ) = k(,\µ) + k1,\µ1

(see (7.4.7) below) and the splitting (4.3.1a) of the phase space

II = [%'T*X ®(V TX)] ®Q,

PAµ = p(,\µ
) + p1µ1

Let us consider connections on the cotangent bundle T*X taking their values
into Ker Lp. Bearing in mind that K = 0 on the Minkowski space X, we can write
every such connection as

f = dx" ® (8a +

where 0 _ c,\µdxa ® 8µ is a symmetric soldering form on T*X. By analogy with the
case of electromagnetic fields, it suffices to take the connections

rB = dx" ® [a,\ + 2 (8B,\ + a,\B,,)aµ],
where B are sections of T*X -> X. Then it is readily observed that the Hamiltonian
forms

HB = p'\µdkµ A W,\ - PAµfB,\,W - f"(pW,

xP = NE + 8_m277µvkµk,,,

are associated with the Lagrangian Lp (6.4.9) and constitute a complete set.
Given the Hamiltonian form HB, the corresponding Hamilton equations for sec-

tions r of the fibre bundle II -> X consist of the equations (6.4.17b) and the equa-

tions

a,\ r,, + a,r,\ = a,\ Bµ + a,B,\, (6.4.18)

Bar,\µ = - m2r7µ"rv. (6.4.19)
47r



182 CHAPTER 6. GAUGE THEORY OF PRINCIPAL CONNECTIONS

On the constraint space (6.4.17a), the equations (6.4.17b) and (6.4.19) are equivalent

to the Euler-Lagrange equations, and they are supplemented by the gauge-type

condition (6.4.18). •

6.5 Geometry of symmetry breaking

Spontaneous symmetry breaking is a quantum phenomenon. In classical field theory,

spontaneous symmetry breaking is modelled by classical Higgs fields. In gauge

theory on a principal bundle P --> X, a symmetry breaking is said to occur when

the structure group G of this principal bundle is reducible to a closed subgroup H

of exact symmetries [123, 161, 172, 236, 264, 295]. This reduction of a structure

group takes place if and only if a global section h of the quotient bundle P/H --> X

exists (see Theorem 6.5.2 below). In gauge theory, such a global section h is treated

as a Higgs field. From the mathematical viewpoint, one talks on the Klein-Chern

geometry [312] or the reduced G-structure.

This Section provides a brief exposition of geometry of G-structures.

We will start from some basic notions. Let 7rPX : P --> X be a G-principal

bundle and H a closed Lie subgroup of G. We assume that dimH > 0. Recall that

a closed subgroup of a Lie group is a Lie group. There is the composite fibre bundle

P-->P/H-*X, (6.5.1)

where

=P" *P/HP 5 2)(6E ..

is a principal bundle with the structure group H and

E=P/H"4X (6.5.3)

is a P-associated fibre bundle with the typical fibre G/H on which the structure

group G acts naturally on the left. Note that the canonical surjection G - G/H is

an H-principal bundle.

One says that the structure group G of a principal bundle P is reducible to a

Lie subgroup H if there exists a H-principal subbundle Ph of P with the structure

group H. This subbundle is called a reduced G1H-structure [123, 131, 178, 312].
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Two reduced G1H-structures Ph and Phi on a G-principal bundles are said to

be isomorphic if there is an automorphism (D of P which provides an isomorphism

of Ph and Phi. If 1 is a vertical automorphism of P, reduced structures Ph and Phi

are called equivalent.

Remark 6.5.1. Note that, in [131, 178] (see also [66]), reduced structures on the

frame bundle LX are considered. Therefore, the class of isomorphisms of such re-

duced structures is restricted to holonomic automorphisms of LX, i.e., the canonical

lifts onto LX of diffeomorphisms of the base X (see Section 7.1). •

Remark 6 .5.2. Reduction of a structure group is a particular changing a structure

group. Let 0 : H -+ G be a Lie group homomorphism. There are two variants of

this problem [49].

(i) If PH -+ X is an H-principal bundle, there is always exists a G-principal

bundle PG -> X together with the principal bundle morphism 4D : PH -> PG over

X. This is the PH-associated fibre bundle PG = (PH x G)/H with the typical fibre

G on which H acts on the left by the rule h(g) = 0(h)g, while G acts on PG as

GE) g': (p,g).Hi (p, g9) - H.

(ii) More intricate is an inverse problem to this. If PG -4 X is a G-principal

bundle, can we find an H-principal bundle PH -> X together with the principal

bundle morphism PH , PG? If H - G is a subgroup, we have the structure group

reduction discussed in this Section. If H -+ G is a group epimorphism ( extension),
one says that H lifts to G. We will study such a lift when G is a central extension

of H with kernels Z2 (see Section 7.5). •

Let us recall the following two theorems [177].

THEOREM 6.5.1. A structure group G of a principal bundle P is reducible to

its closed subgroup H if and only if P has an atlas 'p with H-valued transition

functions. q

Given a reduced subbundle Ph of P, such an atlas 'p is defined by a family of

local sections {za} which take their values into Ph.

THEOREM 6.5.2. There is one-to-one correspondence

ph = 7rPE(h(X))
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between the reduced H-principal subbundles Ph of P and the global sections h of

the quotient fibre bundle P/H -* X (6.5.3). q

Given such a section h, let us consider the restriction h*PE (2.7.4) of the H-

principal bundle PE (6.5.2) to h(X) C E. This is a H-principal bundle over X [177],

which is equivalent to the reduced subbundle ph of P.

In general, there are topological obstructions to the reduction of a structure

group of a principal bundle to its subgroup. In accordance with Theorem 1.1.2, the

structure group G of a principal bundle P is always reducible to its closed subgroup

H, if the quotient G/H is homeomorphic to a Euclidean space Rk.

THEOREM 6.5.3. [286]. A structure group G of a principal bundle is always re-

ducible to its maximal compact subgroup H since the quotient space G/H is home-

omorphic to a Euclidean space. q

Two H-principal subbundles ph and Ph, of a G-principal bundle P are not

isomorphic to each other in general.

PROPOSITION 6.5.4. (i) Every vertical automorphism (E Gau(P) of the principal

bundle P -+ X sends an H-principal subbundle ph onto an equivalent H-principal

subbundle Phi. (ii) Conversely, let two reduced subbundles ph and ph' of a principal

fibre bundle P be isomorphic to each other, and 4) : ph -> ph' be an isomorphism.

Then (F is extended to a vertical automorphism of P. q

Proof. (i) Let

,ph = {(U«> za), PhQ}, z^(x) = zp(x)P«p(x), x E U. n Up,

be an atlas of the reduced subbundle ph, where za are local sections of ph -> X

and pip are the transition functions. Given a vertical automorphism (F of P, let us

provide the reduced subbundle ph' _ (F(Ph) with the atlas

4 h' (U., Zh ' h'

determined by the local sections z^' _ Roza of ph' -^ X. Then it is readily observed

that

P^p(x) = Ph (x), x E U« n U.
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(ii) Any isomorphism of reduced structures ph and ph' on P determines a

G-valued function f on ph given by the relation

pf (p) = D(P), P E Ph.

Obviously, this function is H-equivariant. Its prolongation to a G-equivariant func-

tion on P is defined as

f (pg) = g-If (p)g, p E ph, g E G.

In accordance with the relation (6.3.4), this function yields a principal automorphism

of P whose restriction to ph coincides with (D. QED

PROPOSITION 6.5.5. If the quotient G/H is homeomorphic to a Euclidean space

1, all H-principal subbundles of a G-principal bundle P are equivalent to each

other [286]. q

Given a reduced subbundle ph of a principal bundle P, let

Yh=(PhxV)/H (6.5.4)

be the associated fibre bundle with a typical fibre V. Let ph' be another reduced

subbundle of P which is isomorphic to ph, and

yh' = (ph' x V)/H.

The fibre bundles Yh and Yh' are isomorphic, but not canonically isomorphic in

general.

PROPOSITION 6.5.6. Let ph be an H-principal subbundle of a G-principal bundle

P. Let Y' be the ph-associated bundle (6.5.4) with a typical fibre V. If V carries a

representation of the whole group G, the fibre bundle yh is canonically isomorphic

to the P-associated fibre bundle

Y = (PxV)/G.

Indeed, every element of Y can be represented as (p, v) • G, p E Ph. Then the

desired isomorphism is

yh E) (p,v).H ' (p,v)•GEY.
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It follows that, given a H-principal subbundle Ph of P, any P-associated fibre

bundle Y with the structure group G is canonically equipped with a structure of the

Ph-associated fibre bundle Yh with the structure group H. Briefly, we can write

Y = (P x V)/G c^ (ph x V)/H = Yh.

However, if ph phi, the ph- and phi-associated bundle structures on Y are not

equivalent. Given bundle atlases 41h of ph and Thy of phi, the union of the associated

atlases of Y has necessarily G-valued transition functions between the charts from
q1h and qVh'.

In accordance with Theorem 6.5.2, the set of reduced H-principal subbundles

ph of P is in bijective correspondence with the set of Higgs fields h. Given such

a subbundle ph, let yh (6.5.4) be the associated vector bundle with a typical fibre

V which admits a representation of the group H of exact symmetries, but not the

whole symmetry group G. Its sections sh describe matter fields in the presence of

the Higgs fields h and some principal connection Ah on ph. In general, the fibre

bundle yh (6.5.4) is not associated or canonically associated (see Remark 6.1.3) with

other H-principal subbundles ph' of P. It follows that, in this case, V-valued matter

fields can be represented only by pairs with Higgs fields. The goal is to describe the

totality of these pairs (sh, h) for all Higgs fields h.

For this purpose, let us consider the composite fibre bundle (6.5.1) and the

composite fibre bundle

y".YE,E" -X (6.5.5)

where Y -* E is a vector bundle

Y=(PxV)/H

associated with the corresponding H-principal bundle PE (6.5.2). Given a global

section h of the fibre bundle E -+ X (6.5.3 ) and the ph-associated fibre bundle

(6.5.4), there is the canonical injection

ih:Yh= (phxV)/H'--.Y

over X whose image is the restriction

h*Y = (h*P x V)/H
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of the fibre bundle Y --> E to h(X) C E, i.e.,

ih(Yh) = 7rYE(h(X)) (6.5.6)

(see Proposition 2.7.1). Then, by virtue of Proposition 2.7.2, every global section

sh of the fibre bundle Y' corresponds to the global section ih o sh of the composite

fibre bundle (6.5.5). Conversely, every global section s of the composite fibre bundle

(6.5.5) which projects onto a section h = 7ryr o s of the fibre bundle E -* X takes

its values into the subbundle ih(Yh) C Y in accordance with the relation (6.5.6).

Hence, there is one-to-one correspondence between the sections of the fibre bundle

yh (6.5.4) and the sections of the composite fibre bundle (6.5.5) which cover h.

Thus, it is precisely the composite fibre bundle (6.5.5) whose sections describe

the above-mentioned totality of pairs (Sh, h) of matter fields and Higgs fields in

gauge theory with broken symmetries [123, 264, 268].
Turn now to the properties of connections compatible with a reduced structure.

Recall the following theorems [177].

THEOREM 6.5.7. Since principal connections, by definition, are equivariant (see

(6.1.12)), every principal connection Ah on a reduced H-principal subbundle ph of

a G-principal bundle P gives rise to a principal connection on P. q

THEOREM 6 . 5.8. A principal connection A on a G-principal bundle P is reducible

to a principal connection on a reduced H-principal subbundle ph of P if and only

if the corresponding global section h of the P-associated fibre bundle P/H -• X is

an integral section of the associated principal connection A on P/H -* X. q

THEOREM 6 .5.9. Given the composite fibre bundle (6.5.1), let AE be a principal

connection on the H-principal bundle P -> P/H. Then, for any reduced H-principal

subbundle ph of P, the pull-back connection ihAE (2.7.11) is a principal connection
on ph. q

This theorem is the corollary of Theorem 6.1.2.
As a consequence of Theorem 6.5.9, there is the following feature of the dynamics

of field systems with symmetry breaking. Let the composite fibre bundle Y (6.5.5)

be provided with coordinates (x A, am, yi), where (x A, am) are fibred coordinates on

the fibre bundle E -> X. Let

AE = dx" ® (ax + Aaai) + dam ® (am + A,^ai) (6.5.7)
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be a principal connection on the vector bundle Y --+ E. This connection defines

the splitting (2.7.13) of the vertical tangent bundle VY and leads to the vertical
covariant differential (2.7.15) which reads

D=dxa®(ya-A'-A;^Qa)a1. (6.5.8)

As was mentioned above, the operator (6.5.8) possesses the following property.

Given a global section h of E -> X, its restriction

Dh = 50 Jlih : JlYh -+ T*X ® VYh, (6.5.9)

Dh = dxa (9 (y' - Al - Amaah'^`)a:,

to yh is precisely the familiar covariant differential relative to the pull-back principal

connection Ah (2.7.11) on the fibre bundle Yh -* X. Thus, one may construct a

Lagrangian on the jet manifold J1Y of a composite fibre bundle which factorizes

through DA, that is,

L:J1Y 4 T*X ®VYE n T*X.
Y

(6.5.10)

In Section 7.5, we will apply the above scheme of symmetry breaking in gauge

theory to describing Dirac fermion fields in gauge gravitation theory.

6.6 Effects of flat principal connections

This Section addresses the effects related to flat principal connections, treated as

vacuum gauge fields. In electromagnetic theory, two such effects are well known.

These are an Aharonov-Bohm effect and the quantization of a magnetic flux.

Example 6 .6.1. Let ][83 be a 3-dimensional Euclidean space provided with the

Cartesian coordinates (x, y, z) or the cylindrical coordinates (p, a, z). Let us con-

sider its submanifold X = R3 \ {p = 0}. This submanifold admits the vacuum

electromagnetic field

A = -b da = ydx -
'I"

dy. (6.6.1)x24)y2 x2 + Y2

The strength of this field F = dA vanishes everywhere on X, i.e., the 1-form A

(6.6.1) is closed. It is readily observed that the form

A= df, f = (^ , (6.6.2)
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is exact on any contractible open subset of X (e.g., given by the coordinate relations

0 < e < a < 2ir - e, e > 0), but not everywhere on X. It follows that A (6.6.1)

belongs to a non-vanishing element of the De Rham cohomology group H'(X) = Il8

of X (see Appendix 6.8). Being represented by the 1-forms (6.6.1), elements of this

cohomology group are parametrised by coefficients D in the expression (6.6.1). We

can denote them by ['] C H' (X) so that the corresponding group operation in

H' (X) reads

['D] + [D'] = [4' + 41].

Note that the field (6.6.1) can be extended to the whole space R3 in terms of gen-

eralized functions

A = 24D 0(p)da, (6.6.3)
7rp

F = . 6(p2)dp A da,

where B(p) is the step function, while 6(p2) is the Dirac 6-function. The field (6.6.3)

satisfies the Stokes formula

21r

f A = f Aapda = f Fpdpda = 4D, (6.6.4)

as o s

where S is a circle in the plane z = 0 whose centre is the point p = 0. One can think

of A (6.6.3) as being an electromagnetic field generated by an infinitely thin and

infinitely long solenoid along the axis z. This is a well-known example demonstrating

the Aharonov-Bohm effect.

Remark 6 .6.2. Note that the Berry's phase phenomenon in quantum systems

depending on classical parameters is also a kind of the Aharonov-Bohm effect (see

Section 10.5). •

Another well-known effect of a vacuum electromagnetic field is the quantization

of a magnetic flux in a ringed superconductor. Let us consider the model of an

electromagnetic field A and a complex scalar field 0 of the Cooper pair condensate

which satisfy the vacuum field equations

Fµ„ = 0, Dµ0 = (0 + ieAµ)4 = 0, 02 = const.,
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in the region p > b > 0 of R3. These equations have a solution

= a
exp (-),

Z A = 2a = const. (6.6.5)
P

Since the wave function ¢ must obey the periodicity condition 0(a) = 0(a+27r), the

amplitude (D of the electromagnetic potential A (6.6.5) is not arbitrary, but takes

the values

(D =27rne, nEZ.

It follows that the magnetic flux (6.6.4) also takes the quantized values D = 27rne.

These examples show that effect of vacuum gauge fields takes place on multi-

connected spaces with non-trivial homotopy and cohomology groups (see Appendix

6.8). Let us consider vacuum gauge fields A of a group G on a manifold X. We aim

to show the following (see also [3]).

PROPOSITION 6.6.1. There is one-to-one correspondence between the set of gauge

conjugate vacuum gauge fields A and the set Hom (irl(X),G)/G of conjugate ho-

momorphisms of the homotopy group irl(X) of X to the group G. Recall that two

elements a, b E G are said to be conjugate if there exists an element g E G such that

ga = bg. O

Remark 6 .6.3. Holonomy groups . Let us recall the notion of a holonomy group

[177]. Let 7rp : P --> X be a G-principal bundle and A a principal connection on P.

Let c : [0, 1] -> X be a smooth piecewise closed curve through a point x E X, i.e.,

c(0) = c(1) = x. For any point p E Px = irP1(x), there exists the horizontal lift cp of

the curve c in P through p, i.e., c(0) = p and every tangent vector cp(t), t E [0, 1],

(if it exists) is the horizontal lift Ac(t) of the tangent vector c(t) by means of the

connection A. Then the map

'Yo : P. E) p = cp(0)'-' cp(1) E P. (6.6.6)

defines an isomorphism g, of the fibre Px. This isomorphism can be seen as a parallel

transport of the point p along the curve c with respect to the connection A. Let us

consider the group Cx of all smooth piecewise closed curves through a point x E X

and its subgroup C° of the contractible curves. Then the set 1Cx = {ry,, c E Cx} of
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isomorphisms (6.6.6) and its subset )CO. = {ryc, c E C°} constitute the groups called

the holonomy group and the restricted holonomy group for the connection A at a

point x E X, respectively. If a manifold X is connected, the holonomy groups Kx

for all x E X are isomorphic to each other, and one can speak about an abstract

holonomy group K and its subgroup K°.

Since Cy/C° = irl(X, x), there is a homomorphism

7r1(X, x) -* Kx/K° (6.6.7)

of the homotopy group 7r1 (X,x) at a point x E X onto the quotient group Kx/K°.

In particular, if a manifold X is simply connected, then Kx = K° for all x c X and,

consequently, K = K°.
There exists a monomorphism of a holonomy group into the structure group G,

which is however is not canonical. For a point p E P, it is given by the mapping

KxE) -y,H9cEKpcG, x=7rp(p), (6.6.8)

where the element g, is determined by the relation

-ye(p) = p9c•

The subgroup Kp [)CPO] of the structure group G is also called the holonomy group

[restricted holonomy group] at a point p E P. Obviously, the holonomy subgroups

Kp and Kp, for different points p, p' E P are conjugate in G. Recall the following

important properties of the holonomy groups ICp and Kp [177].

THEOREM 6.6.2. The holonomy group Kp [restricted holonomy group Kp] is a Lie

subgroup [connected Lie subgroup] of the structure group G, and the quotient group

Kp/Kp° is countable. q

THEOREM 6.6.3. If the holonomy group Kp of a principal connection A does not

coincide with the structure group G, the latter is reducible to Kp. The corresponding

reduced subbundle P(p) of the principal bundle P consists of the points of P which

can be connected with p by horizontal curves in P. It means that A is reducible to

a principal connection on P(p). q

THEOREM 6.6.4. The values of the curvature R (2.3.3) of the principal connection

A at points of the reduced subbundle P(p) constitute a subspace of the Lie algebra
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gr of the group G which coincides. with the Lie algebra of the restricted holonomy

group 1CP. q •

As follows from Theorem 6.6.4, if a principal connection A on a G-principal

bundle P --* X is flat, the restricted holonomy group K° of A is trivial, while the

holonomy group K is discrete (countable). In particular, if a principal bundle over

a simply connected base X admits a flat connection, this fibre bundle is trivial.

Given a flat principal connection A, the composition of homomorphisms (6.6.7)

and (6.6.8) gives the homomorphism

7r1(X,x) -> G

which is not unique, but depends on a point p E P in the expression (6.6.8). There-

fore, every flat principal connection A on a G-principal bundle P -> X defines a

class of conjugate homomorphisms of the homotopy group 7r1(X) to G in accordance

with Proposition 6.6.1. A converse assertion is based on the following lemma.

LEMMA 6.6.5. Let K be a discrete group. A connected K-principal bundle over a

connected manifold X exists if and only if there is a subgroup N C 7rl (X) such that

7r1 (X)/N = K. q

To prove this Lemma, let us consider the exact sequence of homotopy groups of

a fibre bundle 7r : Y -> X. Given y E Y and x = 7r(y), this exact sequence reads

irk(Y=, y) --> ltk(Y, y) - lrk(X , x) -> 7rk -1 (Yx, y ) -.4 (6.6.9)

. --+ 71 x) > 70 (Y., y) - 70 (Y, y) -* 70 (X, x) --* 0.

If Y is a connected principal bundle with a discrete structure group K, we have

1Tk>o(Y=, y) = 70 (Y, y) = iro(X, x) = 0, iro(Y., y) = K.

Then the exact sequence (6.6.9) is reduced to the short exact sequences

0 -* 7rk(Y, y) ' lrk(X, x) -* 0, k > 1,

0-firi(Y,y)-'irl(X,x)-*K-*0.

It follows that 7rl (Y, y) is a subgroup of 7rl (X, x) and

7rl(X,x)/7ri(Y,y) = K. (6.6.10)
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This is a necessary condition for a desired fibre bundle over X to exist . One can

show that, since a manifold X is a locally contractible space, the condition that

K = -7rl(X,.)/N for some subgroup N C 7rl(X,.) is sufficient.

Let us return to Proposition 6.6.1. Let iri (X) -> G be a homomorphism whose

image is a subgroup K E G and whose kernel is a subgroup N E irl (X). By virtue

of Lemma 6 . 6.5, there exists a connected K-principal fibre bundle Y -* X and,

consequently, a G-principal fibre bundle P -+ X which has Y -* X as a subbundle
and whose structure group G is reducible to the discrete subgroup K. In accordance

with Theorem 6.5.1, there exists an atlas

I F P = {(Ua, `Pa ) , Pap}
of the principal bundle P with K-valued constant transition functions pp. This is

an atlas of local constant trivializations. Following Proposition 2.6.2, one can define

a flat connection A on P -> X whose local coefficients with respect to the atlas 4'p

equal zero. This is a principal connection. Certainly, the holonomy group IC of this

connection is K.

Remark 6.6.4. In the topological field theory, the space Hom (7r, (X), G) IG is

treated as the moduli space of flat connections [30]. This space has a reach geomet-

rical structure which has been extremely studied in the particular case when X is a

compact Riemannian surface [12, 129, 158], though it is not a smooth manifold in

general (it may not even be Hausdorff if G is non-compact). •

Now, we can extend the description of an Aharonov-Bohm effect in Example

6.6.1 to an arbitrary gauge model on a principal bundle P -+ X which admits a flat

principal connection A with a non-trivial discrete holonomy group C. Let Y -+ X be

a P-associated vector bundle (6.1.22). The notion of holonomy group is extended

in a straightforward manner to associated principal connections on Y -* X. In

particular, if A is a flat principal connection with a holonomy group K on P --> X,

the associated connection A (6.1.24) on Y -> X is a flat connection with the same

holonomy group. There exists an atlas

T = {(Ua, Wa), Pap}

of local constant trivializations of the fibre bundle Y -* X such that the connection

A on Y -> X takes the form

A=dxa®a,\.
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Let c be a smooth piecewise closed curve through a point x E X which crosses the

charts U,,,,... , Uak of the atlas IF. Then the parallel transport of a vector v E Y,:
along this curve with respect to the flat connection A is

v'-' (Pa2al ... P«lQk)(v)•

It depends only on the homotopic class of a curve c.
Another physical effect discussed in Example 6.6.1 is the quantization of a mag-

netic flux in a ringed superconductor . To describe this phenomenon in geometric

terms, one needs the notion of relative homology and cohomology (see Appendix

6.8).
Given a manifold Y and its submanifold X, let us consider an electromagnetic

field on Y whose restriction to X is the vacuum one. The strength of this field is

represented by a relative cocycle Q2 E 02 (Y, X). Let S be a surface in Y whose

boundary lies in X. It is represented by a relative cycle b2 E B2 (Y, X ). Then the

flux of the above-mentioned electromagnetic field through the surface S is given by

the integral

cl; = f v2 (6.6.11)

b2

which depends only on the relative homology class of b2 and the relative cohomology

class of U2 . In particular , if a manifold Y is contractible , the closed 2-form a2 is

exact on Y , i.e., Q2 = do' where the restriction of al to X is an exact form. Then

the integral (6.6.11) reads

-D = fdo = f o1.

62 ab2cx

(6.6.12)

In accordance with the equalities (6.8.13 ) and (6.8.15 ), this integral depends only

on the homology class of the curve ab2 in Hl (X) and on the De Rham cohomology

class of the form Ql in H1(X). For instance , if Y = R3 and its submanifold X =

R3 \ {p < b} is occupied by a superconductor , the integral (6.6.12) is exactly a

magnetic flux in Example 6.6.1.
It should be noted that , in contrast with the Aharonov-Bohm effect , the flux

quantization one is described only in the case of an Abelian gauge field. Nevertheless,

this effect may also take place in a non-Abelian gauge model on a principal bundle

whose structure group is reducible to an Abelian subgroup.
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6.7 Characteristic classes

There exist non-equivalent principal bundles with the same structure group G over
the same manifold X. Their classification is given by the well-known classification

theorem . Our interest to classification of non-equivalent principal bundles is based

on the fact that the equivalence classes of U(n)- and 0(n)-principal bundles are
associated with the De Rham homology classes of certain characteristic forms ex-

pressed into the strength of gauge fields. If X is a compact manifold , the principal

bundles over X are classified by the characteristic numbers which are integrals of

the above-mentioned characteristic forms over X. One meets characteristic forms

and characteristic numbers, treated as topological charges, in many models of clas-

sical and quantum gauge theory , e.g., in the description of instantones, monopoles

and anomalies , in topological gauge theory. There is the extensive literature on this

subject. In our book, we will be mainly concerned with the topological field theory

and anomalies (see Chapters 12 and 13). This Section summarizes some of the basic

facts on the Chern, Pontryagin and other characteristic classes which we will refer

to in the sequel (see, e.g., [98, 157 , 223]).

The classification theorem is concerned with topological fibre bundles with a

structure group (see Remark 6.1.3). Its application to smooth fibre bundles is based

on Propositions 6.8.1 and 6.9 . 1 below.

Let S(X, G) denote the set of equivalence classes of associated fibre bundles

with a topological structure group G over a paracompact topological space X (we

follow the terminology of Bourbaki; see also [157 ] where a paracompact space, by

definition , is Hausdorff). It is in bijection with the first cohomology set H'(X; Go)

(see Remark 6.9.2 below). Basing on this bijection, one can state the following

important properties of the set S(X; G).

(i) If H is a subgroup of the group G, then the inclusion H -> G implies the nat-

ural inclusion S(X, H) -+ S(X, G) whose image consists of the equivalence classes

of G-principal bundles reducible to H-principal bundles over X. In particular, if a

base X is paracompact , G is a Lie group and H is its maximal compact subgroup,

then

S(X, G) = S(X, H) (6.7.1)
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(see Theorem 6.5.3). For instance, the equality (6.7.1) takes place when

G = GL(n, C), H = U(n);
G = GL(n, R), H = O(n);
G = GL+(n, R), H = SO(n);
G = SO (1, 3), H = SO(3).

(ii) Let f : X' -> X be a continuous map. Every topological G-principal bundle

P -+ X yields the pull-back topological principal bundle f *P -> X' (see ( 1.1.6))

with the same structure group G. Therefore, the map f induces the morphism

f * : S(X, G) -+ S(X', G) (6.7.2)

which depends only on the homotopy class of the map f. Hence, there is the

morphism

7r (X', X) -+ S(X', G).

Then we come to the following classification theorem.

THEOREM 6 .7.1. For every topological group G, there exists a topological space

B(G), called the classifying space, and a G-principal bundle PG -> B(G), called the

universal bundle, which possess the following properties.

• For any G-principal bundle P over a paracompact base X, there exists a

continuous map f : X -* B(G) such that P = f *Pc.

• If two maps fl and f2 of X to B(G) are homotopic then the pull-back bundles

fl PG and f2 are equivalent , and vice versa, i.e., S(X, G) = 7r(X, B(G)).

This theorem shows that the set S(X, G) depends only on the homotopic class

of the space X. In other words, this set is a homotopic invariant. In general, the

classifying space is infinite-dimensional, but its choice depends on the category of

spaces.
Here we will concentrate our attention to fibre bundles with the structure groups

GL(n, C) (reduced to U(n)) and GL(n, R) (reduced to O(n)). They are most inter-

esting for physical applications. The classifying spaces for these groups are

B(U(n)) = Nim 0(n, N - n; C),
(6.7.3)

B(0(n)) = rlim 0 (n, N - n; R),
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where 6(n, N - n; C) and 6(n, N - n; R) are the Grassmann manifolds of n-

dimensional vector subspaces of Cn' and RN, respectively. Then an equivalence

classes of U(n)- and 0(n)-principal bundles over a manifold X can be represented

by elements of the Cech cohomology groups H*(X;Z), called the characteristic

classes. Moreover, due to the homomorphism

H*(X;76) -+ H*(X;R) = H*(X), (6.7.4)

these characteristic classes are represented by elements of the De Rham cohomology

groups. They are cohomology classes of the certain exterior forms defined as follows

[98, 177, 214].

Let P -> X be a principal bundle with a structure Lie group G, C -* X the

corresponding bundle of principal connections (6.1.8), A the canonical principal

connection (6.2.4) on the G-principal bundle J1P --f C and FA its curvature. We

consider the algebra I(gr) of real G-invariant polynomials on the Lie algebra gr of

the group G. Then there is the well-known Weil homomorphism of I(gr) into the De

Rham cohomology algebra H*(C). By virtue of this homomorphism, every k-linear

element r c I(g) is represented by the cohomology class of the closed 2k-form r(FA)

on C, called the characteristic form. If A is a section of C -+ X, we have

A*r(FA) = r(FA), (6.7.5)

where FA is the strength of A and r(FA) is the corresponding characteristic form on

X. The characteristic forms (6.7.5) possess the following important properties:

• r(FA) is a closed form, i.e., dr(FA) = 0;

• r(FA) - r(FA,) is an exact form, whenever A and A' are two principal connec-

tions on the same principal bundle P (see Section 13.1).

It follows that characteristic forms r(FA) for different principal connections A have

the same De Rham cohomology class.

We start from the Chern classes ci(P) E H2z(X, 7G) of GL(k, C)-principal bundles

which are always U(k)-principal bundles.

Remark 6.7.1. Note that Chern classes can be defined without reference to any

differentiable structure, and are therefore homotopic invariants. The Pontryagin

classes that we consider are expressed into the Chern classes by the formula (6.7.25)

and, therefore, are homotopic invariants. •
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Let A be a complex (k x k)-matrix and r(A) a GL(k, C)-invariant polynomial of

components of A, i.e.,

r(A) = r(gAg-1), g E GL(k,C).

If a matrix A has eigen values a1, ... , ak, an invariant polynomial r(A) takes the

form

r(A) = b + cSl (a) + dS2(a) + • •

where

Sp(a) _ ail ...
aij

it<...<ij

are symmetric polynomials of a1,. .. , ak.

Example 6 .7.2. An important example of an invariant polynomial is

det(1 + A) = 1 + Sl(a) + S2(a) + • • . + Sk(a),

where 1 denotes the unit matrix. •

(6.7.6)

Let P -+ X be a U(k)-principal bundle and E the associated vector bundle with

the typical fibre C'k which performs the natural representation of U(k). For brevity,

we will call E the U(k)-bundle.

Let F be the curvature form (6.1.19) of a principal connection on E. The char-

acteristic form

c(F) = det (1 + 2-F) = 1 + cl(F) + c2(F) + • • • (6.7.7)

is called the total Chern form, while its components ci(F) are called Chern 2i-forms.

For instance,

co(F) = 0,

cl(F) 4TrF, (6.7.8)

c2(F) = 8x2 [Tr (F A F) - Tr F A Tr F]. (6.7.9)

All Chern forms ci (F) are closed , and their cohomology classes are identified with

the Chern classes ci(E) E H2i (X, 7G) of the U(k)-bundle E under the homomorphism

(6.7.4). The total Chern form (6.7.7) corresponds to the total Chern class

c(E) =co (E)+ci(E)+•••.
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Example 6.7.3. Let us consider a U(1)-bundle L -> X. It is a complex line bundle

with the typical fibre C on which the group U(1) acts by the generator I = il. The

curvature form (6.1.25 ) on this fibre bundle reads

F = 2 Faµdx-' A dxµ. (6.7.10)

Then the total Chern form (6.7.7) of a U(1)-bundle is

c(F) = 1 +cl(F), (6.7.11)

cl (F) = Tr F = - 1 FaµdxA dxµ.
27r 47r

0

Example 6 . 7.4. Let us consider a SU(2)-bundle E -> X. The curvature form

(6.1.25 ) on this fibre bundle reads

ZQ
F = a Fa (6.7.12)

2 '

where o , a = 1, 2, 3, are the Pauli matrices . Then we have

c(F) = 1 + cl(F) + c2(F),

cl (F) = 0,

(F A F)T(F) = 13)(6 7.8 Z rc2 . .

Using the natural properties of Chern forms, one can obtain easily the properties

of Chern classes:

(i) ci(E) = 0 if 2i > n = dimX;

(ii) ci(E) = 0 if i > k;

(iii) c(E ® E') = c(E)c(E');

(iv) cl(L ® L') = cl(L) + cl(L') where L and L' are complex line bundles;
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(v) if f *E ---> X' is the pull-back bundle generated by the morphism f : X'

X, then

c(f *E) = f *c(E),

where f * is the induced morphism of the cohomology groups

f* : H* (X; Z) -* H* (X'; Z). (6.7.14)

The properties (iii) and (v) of Chern classes are utilized in the following theorem.

THEOREM 6.7.2. For any U(k)-bundle E -* X, there exists a topological space X'

and a continuous morphism f : X' --+ X so that:

• the pull-back f *E -> X' is the Whitney sum of line bundles

f*E = Ll ®... ED Lk;

• the induced morphism f * (6.7.14) is an inclusion.

It follows that the total Chern class of any U(k)-bundle E can be seen as

c(E) = f *c(E) = c(Li ® ... ® Lk) = c(Li) ... c(Lk) _ (6.7.15)

(1 + a,)...(1 + ak),

where a2 = cl(Li) denotes the Chern class of the line bundle Li (see Example 6.7.3).

The formula (6.7.15) is called the splitting principle. In particular, we have

ci(E) = ai,

c2(E) = ail ail,

it <i2

cj(E) = F ail ... ai,
il<...<ij

(cf. (6.7.6)).

Example 6 .7.5. Let E* be a U(k)-bundle dual of E. In accordance with the

splitting principle, we have

c(E*) = c(L*,) ... c(Lk) = (1 + a*) ... (1 + at).
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Since the generator of the dual representation of U(1) is I = -il , then F* = -F

and as = -ai. It follows that

ci(E') = (-1)'ci(E). (6.7.16)

If the base X of a U(k)-bundle E is a compact n-dimensional manifold, one can

form some exterior n-forms from the Chern forms ci(F) and can integrate them over

X. Such integrals are called Chern numbers. Chern numbers are integer since the

Chern forms belong to the integer cohomology classes. For instance, if n = 4, there

are two Chern numbers

C2(E) = f c2(F), C2 (E) = f cl(F) Acl(F ). (6.7.17)

X x

There are also some other characteristic classes of U(k)-bundles which are ex-

pressed into the Chern classes. We will mention only two of them.

The Chern character ch(E) is given by the invariant polynomial

ch(A) = Trexp (__A ) =
00

2^Tr (2A)m. (6.7.18)
M=0

It has the properties

ch(E ® E') = ch(E) + ch(E'),

ch(E ® E') = ch(E) • ch(E').

Using the splitting principle , one can express the Chern character into the Chern

classes as follows:

ch(E) = ch(Ll (D • . ( g ) = ch(Ll) + • + ch(Lk)

expal+ + exp ak = k + E ai +2 Eai+
i i

k+ E ai+ 2 I(F_ ai)2 -2 F ai,aa2 +...
i L i ii<i2

k + ci(E) + 1[c2l(E) -2c2(E)]+
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The Todd class is defined as
k

td(E) _ 1 - exp(-ati) = 1 + Zcl + 12 (ci + c2) + (6.7.19)

It has the property

td(E ® E') = td(E) • td(E').

Turn now to characteristic classes of a real k-dimensional vector bundle E with

the structure group O(k). For brevity, we will call E the O(k)-bundle.

The Pontryagin classes of a O(k)-bundle E in the De Rham cohomology algebra

H*(X) are associated with the invariant polynomial

p(F) = det (1 - 1 F) = 1 +pi(F) +p2(F) + (6.7.20)
27

of the curvature F (6.1.25)/ which takes its values in the Lie algebra o(k) of the

group O(k). Since the generators of the group O(k) satisfy the condition

(I )b = -(I )b

only the components of even degrees in F in the decomposition (6.7.20) are different

from zero, i.e., pi(E) E H4a(X). Pontryagin classes possess the following properties:

(i) pi(E) = 0 if 4i > n = dimX;

(ii) pi(E) = 0 if 2i > k;

(iii) p(E (5 E') = p(E) + p(E').

Note that, for the Pontryagin classes taken in the Cech cohomology H*(X; Z), the

property (ii) is true only modulo cyclic elements of order 2.

Remark 6.7.6. It should be emphasized that, though fibre bundles with the struc-

ture groups O(k) and GL(k, R) have the same characteristic classes, their charac-

teristic forms are different. For instance, if F is the curvature form (6.1.25) which

takes its values into the Lie algebra gl(k, R), the characteristic form p(F) (6.7.20)

contains the terms of odd degrees in F in general. Therefore, to construct the char-

acteristic forms corresponding to Pontryagin classes, one should use only O(k)- or

O(k - in, m)-valued curvature forms R. In particular,

TrRAR-R 21)(6 78 Z ,) _pi( . .

p2(R) = 1327r2EabcdRab A Rrd . (6.7.22)
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Let us consider the relations between the Pontryagin classes of 0(k)-bundles and

the Chern classes of U(k)-bundles. There are the following commutative diagrams

of group monomorphisms

O(k) -> U(k)

1 1 (6.7.23)

GL(k, R) GL(k, C)

U(k) -* 0(2k)

GL(k,C) --+GL(2k, R)

The diagram (6.7.23) implies the inclusion

cp : S(X, O(k)) -> S(X, U(k)),

and one can show that

pi(E) = (-1) ic2i (cp(E))•

(6.7.24)

(6.7.25)

The diagram (6.7.24) yields the inclusion

p : S(X, U(k)) -> S(X, 0(2k)).

Then we have

cpp : S(X, U(k)) --+ S(X, 0(2k)) --> S(X, U(2k)).

It means that, if E is a U(k)-bundle, then p(E) is a 0(2k)-bundle, while cpp(E) is

a U(2k)-bundle.

Remark 6 .7.7. Let A be an element of U(k). The group monomorphisms

U(k) -* 0(2k) -* U(2k)

define the transformation of matrices

(ReA ReA -Im A (A 0 (6.7.26)
ReA) -- 0 A*
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written relative to complex coordinates zi on the space Ck, real coordinates

xi = Re zi, xk+i = Im zi

on R2k and complex coordinates

zi = x2 + ixk+i e
zk+i = xz - ixk+i

on the space C2k, respectively. •

A glance at the diagram (6.7.26) shows that the fibre bundle cpp(E) is the Whit-

ney sum of E and E* and, consequently,

c(cpp(E)) = c(E)c(E*).

Then combining (6.7.16) and (6.7.25) gives the relation

F(-1)zpi(p(E)) = c(^pp(E)) = c(E)c(E*) =
i

(6.7.27)

[ ci(E)J [(_l)ic(E) ]
z j

between the Chern classes of the U(k)-bundle E and the Pontryagin classes of the

0(2k)-bundle p(E).

Example 6 .7.8. By Pontryagin classes pi (X) of a manifold X are meant those

of the tangent bundle T(X). Let a manifold X be oriented and dim X = 2m. One

says that a manifold X admits an almost complex structure if its structure group

GL(2m, R) is reducible to the image of GL(m, C) in GL(2m, R). By Chern classes

ci (X) of such a manifold X21 are meant those of the tangent bundle T (X) seen as

a GL(m, C)-bundle, i.e.,

ci(X) = ci (p(T(X)))•

Then the formula (6.7.27) provides the relation between Pontryagin and Chern

classes of a manifold X admitting an almost complex structure:

D- 1) POO = [ c(X)] [(_1)ici (X)].
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In particular, we have

pl(X) = ci(X) - 2c2(X), (6.7.28)

p2(X) = c2(X) - 2c1(X)c3(X) + 2c4(X).

If the structure group of a O(k)-bundle E is reduced to SO(k), the Euler class

e(E) of E can be defined as an element of the Cech cohomology group Hk(X,Z)

which satisfies the conditions:

(i) 2e(E) = 0 if k is odd;

(ii) e(f *E) = f *e(E);

(iii) e (E (B E') = e(E)e(E');

(iv) e(E) = ci(E) if k = 2.

The last condition follows from the isomorphism of groups SO(2) and U(1).

Let us consider the relationship between the Euler class and the Pontryagin

classes. Let E be a U(k)-bundle and p(E) the corresponding SO(2k)-bundle. Then,

using the splitting principle and the properties (iii), (iv) of the Euler class, we obtain

e(p(E)) = e(p(Li) ®... (D p(Lk)) = e(p(Li)) ... e (p(Lk)) _ (6.7.29)

ci(Li) ... cl(Lk) = a1... ak = ck(E)•

At the same time, we deduce from (6.7.27) that

pk(p(E)) = ck(E)• (6.7.30)

Combining (6.7.29) and (6.7.30) gives the desired relation

e(E) = [Pk(E)]1'2 (6.7.31)

for any SO(2k)-bundle.
For instance, let X be a 2k-dimensional oriented compact manifold. Its tangent

bundle TX has the structure group SO(2k). Then the integral

e = J e(R)
x
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coincides with the Euler characteristic of the compact manifold X.

We refer the reader to Remark (12.3.1) below for the notion of a signature of a

4-dimensional topological manifold and to [157] to that of a 4k-dimensional smooth

manifold.

Let us also mention the Stiefel-Whitney classes w; E Hi(X, Z2) of the tangent

bundle T(X). In particular, a manifold X is orientable if and only if w, = 0. If X

admits an almost complex structure, then

wet+i = 0, w2ti = cimod 2.

In contrast to the above mentioned characteristic classes, the Stiefel-Whitney ones

are not represented by De Rham cohomology classes of exterior forms.

6.8 Appendix. Homotopy, homology and cohomology

For the sake of convenience of the reader , we recall the basic notions of algebraic

topology. Dealing below with topological spaces, groups and fibre bundles, one

should bear in mind that manifolds have the homotopy type of CW-complexes [85].

An application of algebraic topology to gauge theory is based on the following two

mathematical facts.

PROPOSITION 6.8.1. [286]. Let P - X be a principal bundle. Let f, and f2 be two

mappings of a manifold X' to X . If these mappings are homotopic , the pull-back

bundles fl P -* X' and f2 P -* X' are isomorphic. q

PROPOSITION 6.8.2. [157]. The De Rham cohomology groups H*(X) of a para-

compact manifold X are isomorphic to the Cech cohomology groups H* (X, R) with

coefficients in R (see Remark 8.3.6 below). This isomorphism enables one to repre-

sent characteristic classes of principal bundles as the De Rham cohomology classes

of characteristic exterior forms expressed into terms of principal connections (see

the next Section). q

Let us start from homotopy theory (see, e.g., [139, 305]). Continuous maps f

and f of a topological space X to a topological space X' are said to be homotopic

if there is a continuous map

g: [0, 1]xX->X'
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whose restriction to {0} x X [{1} x X] coincides with f [f']. The set of equivalence
classes of homotopic maps X -> X' is denoted by 7r(X, X'). The topological spaces
X and X' are called homotopically equivalent or simply homotopic if there exist
mappings f : X - X' and g : X' -> X such that g o f is homotopic to the identity
map Id X, and f o g is homotopic to Id X'. In particular, a topological space is
called contractible if it is homotopic to any its point. For instance, Euclidean spaces

IRk are contractible.

Let (Sk, a) be a k-dimensional sphere and a E Sk a point. Let us consider the
set of equivalence classes irk (X, b) of homotopic maps of Sk to a topological space
X which send a onto a fixed point b of X. If X is pathwise connected, this set

does not depend on the choice of a and b, and one can talk about the set 7rk(X) of

equivalence classes of homotopic maps Sk -* X. This set can be provided with a

group structure, and is called the kth homotopy group of the topological space X,

while the first homotopy group 7r1(X) is also known as the fundamental group of X.

The homotopy groups 7rk>l(X) are always Abelian. By 7ro(X) is denoted the set of

connected components of X.

A topological space X is said to be p-connected if it is pathwise connected and
its homotopy groups 7rk<p(X) are trivial. A 1-connected space is also called simply

connected. A contractible topological space is p-connected for any p E N.

There is the important relation for the homotopy groups of the product of topo-

logical spaces:

7rk(X x X') = 7rk(X) X 7rk(X').

For more complicated constructions of topological spaces we refer the reader to the

Van Kampen theorem [71].

Homotopy groups of topological spaces are homotopic invariants in the sense that
they are the same for homotopic topological spaces. Other homotopic invariants are
homology and cohomology groups of topological spaces.

Let us recall briefly the basic notions of homology and cohomology of complexes

(see, e.g., [41, 204]). A sequence

0 a0 Bo +- B2 ... Bp a+'±' ... (6.8.1)

of Abelian groups Bp and homomorphisms ap is said to be a chain complex if

ap oap+1=0 , VpEN,
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i.e., Im ap+l C Ker 8P. Elements of Im aP+l and Ker aP are called p-boundaries and

p-cycles, respectively. The quotient

HP(B*) = Ker aP/Im aP+l

is called the pth homology group of the chain complex B. (6.8.1). The chain complex

(6.8.1) is called exact at an element Br if HP(B*) = 0. B. is an exact sequence if it

is exact at each element.

A sequence

0 --+ B° 60 + B
1

-6-' 4 . . . 6p--1
3 BP _61- ... (6.8.2)

of Abelian groups BP and homomorphisms 6P is said to be a cochain complex if

b9Obp-1=0, bpE N,

i.e., Im 5P_1 C Ker (P. Elements of Im 6P-1 and Ker bP are called p-coboundaries and

p-cocycles, respectively.

The pth cohomology group of the cochain complex B* (6.8.2) is the quotient

HP(B*) = Ker bP/Im 6P-1.

Though there are different homology and cohomology theories (see [304] for a

survey), one usually refers to:

• the singular homology H*(X; )C) and the singular cohomology H*(X; K) with

coefficients in a numeral ring /C,

• the De Rham cohomology H* (X),

• the Cech cohomology with coefficients in a ring /C

[70, 92, 139]. In this Section, we are concerned only with De Rham cohomology.

The De Rham complex

0 -,R '1;7°(X) --4D1(X) d ,... d ,i7P(X) --d... (6.8.3)

of exterior forms on a manifold X is a cochain complex, whose cohomology group

HP(X) is called the pth De Rham cohomology group. It is the quotient of the space

of closed p-forms by the subspace of exact p-forms. By H°(X) is meant a vector

space whose dimension equals the number of connected components of X. It is clear
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that HP(X) = 0, p > dimX. If X is contractible, HP>0(X) = 0. Let us also recall
the Kenneth formula

Hm(X x X') = F Hk(X) ® H' (X') (6.8.4)
k+ l=m

for the De Rham cohomology groups of the product X x X. Elements of the De

Rham cohomology groups constitute an algebra H*(X) with respect to the cup-
product induced by the exterior product of exterior forms:

[a] U [b] = [a A b], a c [a], b E [b]. (6.8.5)

It is called the De Rham cohomology algebra.

There are the following important relations between homotopy, homology and
cohomology groups.

(i) There exists the Hurewicz homomorphism

hk : 7rk (X) ---+ Hk(X; Z ) (6.8.6)

of homotopy groups 7rk (X) to singular homology groups Hk(X; Z ) with coefficients
in Z. In particular , the kernel of the homomorphism h1 (6.8.6 ) is the commutant of
the group 7r1(X) which is generated by elements a-1b-lab E 7r, (X). If the homotopy
group 71 (X) is commutative , it is isomorphic to the homology group H1 (X; Z). If
7ri(X) = 0 for all i < k, then the homomorphism hk is an isomorphism, while hk+1
is an epimorphism.

(ii) There is the isomorphism

Hk(X; R) = Hk(X; Z) ® R, (6.8.7)

where by ® is meant the tensor product of Abelian groups. One can show that, if G

is a finite Abelian group, then G®R = 0. It follows that a homology group Hk(X; R)

has no a finite subgroup. The isomorphism (6.8.7) defines the homomorphism

Hk(X; Z) -> Hk(X; R). (6.8.8)

(iii) The singular homology H*(X;1C) and the singular cohomology H*(X; K)

make up a dual pair where elements of Hk(X;1C) are 1C-valued characters (linear

forms ) on the group Hk(X;1C).

(iv) For paracompact and second countable manifolds which we deal with in field

theory, the singular cohomology groups H* (X; R), the De Rham cohomology groups
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H*(X) and the Cech cohomology groups with coefficients in R (see Appendix 6.9)

coincide with each other [85, 157].

(v) In accordance with the De Rham duality theorem, there is the bilinear form

(I) : HI (X) ®Hp(X, R) -> R

given by the integration

(o 'I CP) = f UP,

Cp

(6.8.9)

(6.8.10)

where aP are closed p-forms on X and c, are p-cycles in X. By virtue of the Stokes

theorem, the integral (6.8.10) depends only on the cohomology class of aP and the

homology class of cp. As a consequence the De Rham cohomology group HP(X) and

the singular homology group Hp (X, J18) are isomorphic as vector spaces.

(vi) Let X be a compact oriented manifold. We have the bilinear form

O:HP(X)®H' -P(X)-+

(aP Uf-P) = f orP A On-P

X

(6.8.11)

This bilinear form defines the Poincare duality isomorphisms of vector spaces

HP(X) = Hn-P(X ), HP(X) = Hn_P(X; R), Hp(X;

Relative homology and cohomology

R ) = Hn-P(X; R).

Let Y be a topological space and X its subspace. Then the group Bk (X) of

singular chains in X belongs to the group Bk(Y) of singular chains in X. The

quotient

Bk(Y, X) = Bk(Y)/Bk(X).

is called the group of relative k-chains [92]. Its elements bk are singular k-chains bk

in Y modulo singular k-chains in X. The boundary operator

a : Bk(Y) -> Bk-l(1')

yields the boundary operator

a : Bk (Y, X) -+ Bk-1(Y, X)
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on relative chains. By a relative cycle bk is meant a class of singular k-chains bk in

Y such that abk C X, i.e. AN = 0. Accordingly, a relative boundary bk = abk+l
is defined as a singular k-boundary bk = abk+l in Y modulo k-chains in X. The

quotient of the group of relative k-cycles by the group of relative k-boundaries is

called the kth relative homology group Hk(Y,X). We have the exact sequence

... ,Hk(X)-*Hk (y)-pHk(y, X)-+Hk_1 (X)-.... (6.8.12)

Example 6 .8.1. If Y is a contractible space, Hk(Y) = 0, k > 0. Then the exact

sequence (6.8.12) reduces to the short exact sequences

0 -* Hk+1(Y, X) - Hk (X) -> 0, k > 0.

It follows that

Hk+1(Y, X) = Hk(X), k > 0. (6.8.13)

Similarly, relative cohomology groups are introduced. Let X be a submanifold of

a manifold Y. Let us consider the homomorphism i.Dk(Y) -4 .4Ok(X) which restricts

k-forms on Y to k-forms on X. Its kernel is called the group of relative k-cochains

,i0k(Y, X) of the pair (Y, X). Elements Qk of this group can be represented by k-

forms uk on Y which vanish on X C Y. Therefore, the exterior differential d acts on

relative cochains &k in an ordinary way. Accordingly, the relative cocycles a k such

that dQk = 0 and the relative coboundaries Qk = d&k-1 are introduced. It is readily

observed that a relative cocycle is a closed form, while a relative cocycle which is an

exact form ak = dak-1 on Y fails to be a relative coboundary in general since ok-1

does not necessarily vanish on X. The quotient of the additive group of relative

k-cocycles by the additive group of relative k-coboundaries is called the kth relative

cohomology group H' (Y, X). There is the exact sequence

... Hk(Y X) -+ Hk(y) - Hk(X) , Hk+1(Y X) --> .... (6.8.14)

Example 6 .8.2. If Y is a contractible manifold, Hk(Y) = 0, k > 0. Then the exact

sequence (6.8.14) reduces to the short exact sequences

0-+ Hk(X)Hk+1(YX)-*0, k > 0.

It follows that

Hk+1(Y X) = Hk(X), k > 0. (6.8.15)

0
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6.9 Appendix. Cech cohomology

Recall briefly the notion of tech cohomology [85, 157]. Let it = {U2}iEr be an open

covering of a paracompact topological space X. Let us consider functions 0 which

associate an element of an Abelian group K to each (p + 1)-tuple (i0,.. . , ip) of

indices in I such that U 0 n • • • n Ui, 0. One can think of 0 as being constant

K-valued functions on the set U 0 n • • • n U,. These functions form an Abelian group

BP(it, K). Let us consider the cochain morphism

6P : BP(i K) - BP+1(11K),
P+1 _

(5P0)(i0, ... , iP+1) = jam(- 1)k0(i0.... , Zk, ... ip+1),

k=0

where ik means that the index ik is omitted. One can check that

6P+10,P=0.

Hence, we have the cochain complex

... -, BP(f t, K) 6 BP+1(U K) -^ .. .

and its cohomology groups

HP(1.t; K) = Ker 6P/Im 6P-1 (6.9.1)

can be defined.

Example 6 .9.1. For instance,

(So0)(io, i1) = 01) - ON),

(510)(20, il, i2) = 0(i1, i2) - ON, i2) + ON, i1)•

The cohomology group H1 (U; K) (6.9.1) consists of the class of functions '(ik, ij)

which satisfies the cocycle condition

1(ik, i.i) - 0(ip, i3) + 0(ip, ik) = 0, (6.9.2)

module functions 0(ik, ij) = Cb(ik) - Oij). •

Of course, the cohomology groups (6.9.1) depend on an open covering it of the
topological space X. Let i' be a refinement of the covering U. Then there exists a

homomorphism

HP(4.t; K) -> HP(.ft'; K).
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One can take the direct limit of the groups HP(i, K) with respect to these homo-

morphisms, where it runs through all open coverings of X [157]. This limit is the

pth Cech cohomology group Hp(X; K) of X with coefficients in K. By definition,
H°(X; K) = K.

Remark 6.9.2. tech cohomology groups introduced above are particular cohomol-
ogy groups with coefficients in a sheaf, namely, in the sheaf of locally constant K-

valued functions or simply in the constant sheaf K (see Example 8.3.1 below). Here

we consider again a particular case of such cohomology groups when 0(io, . . . , ip) are
local continuous functions Oio _., ip on Uio n .. n Uti , with values in an Abelian group

K. Let us write the group operation in K in a multiplicative form. One says that

the set of functions {(UU n Ui; iii)} is a cocycle if these functions obey the cocycle

condition (6.9.2), i.e.,

ciigik I U;nUjnUk= Oik IU,nujnuk • (6.9.3)

In particular , fii = 1 and fii = fail. Two cocycles { lbii} and {0(i} are said to be

equivalent if there exists a set of K-valued functions {Ui; fi} such that

O=i = ficiif; '. (6.9.4)

Then the set of equivalent cocycles on an open covering U of a paracompact topolog-

ical space X constitute a cohomology group H'(.ft; K°). The direct limit H'(X; K°)

of the groups H'(.ft, K°), where it runs all open coverings of X is said to be the first

cohomology group with coefficients in the sheaf K° of continuous K-valued functions

on X. Similarly, the higher cohomology groups with coefficients in the sheaf K° are
introduced.

Note that, given an arbitrary group G, the first cohomology set H' (X; Go) with

coefficients in the sheaf of continuous G-valued functions can be defined in the same

manner [157]. This set fails to be a group, unless G is Abelian. If G is a Lie group,

one can consider the cohomology set H' (X ; Gam) with coefficients in the sheaf G,

of smooth G-valued functions on X.

PROPOSITION 6.9.1. [157]. There is a bijection H'(X;G,) -> H'(X;Go). q •
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Chapter 7

Space-time connections

The geometry of gravitation theory is a geometry of the tangent bundle TX of a

world manifold X and associated fibre bundles. The connections which one deals

with in gravitation theory are linear and affine connections on the tangent bundle

TX, spinor connections, the associated principal connections on the fibre bundle

LX of linear frames in TX and some others. They are not necessarily expressed

into a pseudo-Riemannian metric on X, and play the role of independent dynamic

variables in metric-affine and gauge gravitation theories.

7.1 Linear world connections

In the absence of fermion fields, gravitation theory is formulated on fibre bundles

T -> X, called natural bundles, which admit the canonical lift of any diffeomorphism

of its base X. The reader is referred to [179] for a detailed exposition of the category

of natural bundles. Tensor bundles (1.1.12 ) exemplify natural bundles.

Throughout this Chapter , by X is meant a 4-dimensional orientable manifold,

called a world manifold . Let an orientation of X be chosen. Unless otherwise stated,

a coordinate atlas %Fx of X and the corresponding holonomic bundle atlas' (1.1.11)

of the tangent bundle TX is assumed to be fixed.

The tangent bundle TX of a world manifold X has the structure group

GL4 = GL+(4, R).

It is associated with the GL4-principal bundle

lrLx : LX -> X

215
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of oriented linear frames in the tangent spaces to a world manifold X. For the sake

of brevity, we will call LX the frame bundle. Its (local) sections are termed frame

fields. Given holonomic frames {aµ} in the tangent bundle TX associated with the

holonomic atlas (1.1.11), every element {Ha} of the frame bundle LX takes the

form Ha, = Ha aµ, where Ha is a matrix element of the natural representation of the

group GL4. These matrix elements constitute the bundle coordinates

(X-1 Hµ) axiµ HaXAa
on LX. In these coordinates, the canonical action (6.1.1) of GL4 on LX reads

Rg:Ha HHbg'a, gEGL4.

The frame bundle LX is equipped with the canonical R4-valued 1-form

BLX = Hµdxµ ® ta, (7.1.1)

where {ta} is a fixed basis for R4 and Hµ is the inverse matrix of H.

The frame bundle LX -* X belongs to the category of natural bundles. Every

diffeomorphism f of X gives rise canonically to the general principal automorphism

1: (?, Ha) - (.f ) (x), aµ f AHa) (7.1.2)

of LX and, consequently, to the corresponding automorphisms (6.3.2) of the associ-

ated bundles T. These automorphisms are called general covariant transformations

or holonomic automorphisms. In particular, if T = TX is the tangent bundle,

f = T f is the familiar tangent map to the diffeomorphism f. We will denote the

group of holonomic automorphisms by HOL(X) C AUT(LX). This is isomorphic

to Diff(X). Note that the gauge group Gau(LX) C AUT(LX) of vertical automor-

phisms of LX does not contain any holonomic automorphism, except the identity

morphism.

Remark 7 .1.1. By this reason, gauge gravitation theory cannot follow gauge theory

of internal symmetries in a straightforward manner [161, 263]. •

The lift (7.1.2) leads to the canonical lift T of every vector field T on X onto the

principal bundle LX and the associated fibre bundles. The canonical lift of T onto

LX is defined by the relation

LTOLX = 0.
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The corresponding canonical lift T on a tensor bundle T (1.1.12) is given by the

expression (1.2.2). Let us introduce the collective index A for the tensor bundle

coordinates

yA
xFj1...Qk (7.1.3)

In this notation, the canonical lift f (1.2.2) onto T of a vector field T on X reads

TAa.\ + uAa(9QTa'9A. (7.1.4)

The expression (7.1.4) is the general form of the canonical lift of a vector field T

on X onto a natural bundle T, when this lift depends only on the first partial

derivatives of the components of T. One can think of such a canonical lift as being

the generator of a local 1-parameter group of general covariant transformations of

a natural bundle T.

Since the tangent bundle TX is associated with the frame bundle LX, every

world connection K (2.4.7) on a world manifold X is associated with a principal

connection on LX whose connection form K (6.1.15) reads

K = HH(dHH - Kp"aHadxa) ®eb, (7.1.5)

where eb are the basis elements of the left Lie algebra gl (4, R). It follows that there

is one-to-one correspondence between the world connections and the sections of the

quotient fibre bundle

CK = J1LX/GL4i (7.1.6)

called the bundle of world connections.

With respect to the holonomic frames in TX, the fibre bundle CK (7.1.6) is

provided with the coordinates (x", ka"a) so that, for any section K of CK --+ X,

ka"a o K = Ka"a

are the coefficients of the world connection K (2.4.7).

Though the bundle of world connections CK -+ X (7.1.6) is not a LX-associated

bundle, it is a natural bundle, and admits the canonical lift

Jfc : J1LX/GL4' J1f(J'LX)/GL4
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of any diffeomorphism f of X and, consequently, the canonical lift

T = Tµ8µ + [8 r"kµvp - a vkµ,", - 88TV k,"Q + BµQT"] (7.1.7)ak
µ
"

R

of any vector field r on X.

The jet manifold J1CK has the canonical splitting (6.2.21). We will denote the

corresponding 2-form .T by R. It has the coordinate expression

Raµ"p = kaµ"p - kµa"Q + kµ"EkAEp - ka"EkAE0. (7.1.8)

It is readily observed that, if K is a section of CK --> X, then R o J'K is the

curvature (2.4.9) of the world connection K.

Recall that the torsion of a world connection is said to be the vertical-valued 2-

form T (2.4.10) on TX. Due to the canonical vertical splitting (1.2.34), the torsion

(2.4.10) defines the tangent-valued 2-form (2.4.11) on X and the soldering form

T = Tµ" a.JPdxµ ® k (7.1.9)

on TX. It is clear that, given a world connection K (2.4.7) and its torsion form T

(7.1.9), the sum K + AT, A E lR, is a world connection . In particular , every world

connection K defines a unique symmetric world connection

K'=K -2 T. (7.1.10)

This is a corollary of a more general result. If K and K' are world connections, so

is AK+(1-A)K'.

Remark 7 . 1.2. Note that , a world connection K is both torsionless and curvature-

free if and only if there exists a holonomic atlas of constant local trivializations for

K, i.e., all components Kµ",\ of K vanish with respect to this atlas. •

Every world connection K yields the horizontal lift

KT = TA (8a + Kap"x"8 ) (7.1.11)

of a vector field r on X onto TX and the associated bundles. One can think

of this lift as being the generator of a local 1-parameter group of non-holonomic

automorphisms of these bundles . Note that , in the pioneer gauge gravitation models,
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the canonical lift (1.2.3) and the horizontal lift (7.1.11) were treated as generators

of the gauge group of translations (see [149, 161] and references therein).

Remark 7.1.3. We refer the reader to [203] for some other lifts onto TX of vector

fields on X, which are combinations of the horizontal lift (7.1.11) and the vertical

lift (1.2.8). •

The horizontal lift of a vector field T on X onto the frame bundle LX by means

of a world connection K reads

KT = Ta (a, + ra^aHa
aH^ I .

(7.1.12)

A horizontal vector field u on the frame bundle LX is called standard if the morphism

uJ BLX : LX -+ R4

is constant on LX. It is readily observed that every standard horizontal vector field

on LX takes the form

u„ = HA vb (ax + K,\ H.'
aH_)

(7.1.13)

where v = vbtb E R4. A glance at this expression shows that a standard horizontal

vector field is not projectable.

Remark 7.1.4. A world connection K defines a parallelization of the frame bundle

LX [66]. Standard horizontal vector fields uta (7.1.13) and fundamental vector fields

a-1(eb) form a basis of the tangent space TTLX at any point p E LX. •

Since TX is an LX-associated fibre bundle, we have the canonical morphism

LX x I[84 -* TX,

(Ha, va) r-> xµ = Ha va.

The tangent map to this morphism sends every standard horizontal vector field

(7.1.13) on LX to the horizontal vector field

u = xa(a), + Ka".xaav) (7.1.14)

on the tangent bundle TX. This is a holonomic vector field (see Definition 5.2.1).

Then the vector field (7.1.14) defines the second order dynamic equation (5.2.2)

xv = Ka",,iaia (7.1.15)
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on X which is the geodesic equation (5.2.4) with respect to the world connection K.

Solutions of the geodesic equation (7.1.15) (i.e., the geodesic lines of the connection

K) are the projection of integral curves of the vector field (7.1.14) onto X. Moreover,

there is the following theorem [177].

THEOREM 7.1.1. The projection of an integral curve of any standard horizontal
vector field (7.1.13) on LX onto X is a geodesic in X. Conversely, any geodesic in
X can be built in this way. q

A world connection K on a manifold X is said to be complete if the holonomic

horizontal vector field (7.1.14) on the tangent bundle TX is complete. It takes place

if and only if any standard horizontal vector field (7.1.13) on the frame bundle LX

is complete.

It is readily observed that, if world connections K and K' differ from each other

only in the torsion, they define the same holonomic vector field (7.1.14) and the

same geodesic equation (7.1.15).

7.2 Lorentz connections

Gravitation theory is the theory with different types of symmetry breaking. We

refer the reader, e.g., to [66, 131] for the general theory of reduced structures on the

frame bundle LX. This Section is devoted to the reduced Lorentz structures and

the Lorentz connections compatible with these structures.

The geometric formulation of the equivalence principle requires that the structure

group GL4 of the frame bundle LX over a world manifold X must be reducible to

the Lorentz group SO(1, 3), while the condition of existence of fermion fields implies

that GL4 is reducible to the proper Lorentz group L = SO°(1, 3) [161, 263]. Recall

that L is homeomorphic to RP3 x R3, where RP3 is a real 3-dimensional projective

space.

Unless otherwise stated, by a Lorentz structure we will mean a reduced L-

principal subbundle LhX, called the Lorentz subbundle, of the frame bundle LX.

Remark 7.2.1. There is the topological obstruction for a reduced Lorentz structure

to exist on a world manifold X. All non-compact manifolds and compact manifolds

whose Euler characteristic equals zero admit a reduced SO(1, 3)-structure and, as

a consequence, a pseudo-Riemannian metric [83]. A reduced L-structure exists if X
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is additionally time-orientable . In gravitational models some conditions of causality
should be also satisfied (see [147]). A compact space-time does not possess this
property. At the same time, a non-compact world manifold X has a spin structure if
and only if it is parallelizable (i.e., the tangent bundle TX -> X is trivial) [119, 306].
It should be noted that also paracompactness of manifolds has a physical reason. A

manifold is paracompact if and only if it admits a Riemannian structure [177]. •

From now on, we will assume that a Lorentz structure on a world manifold exists.

Then one can show that different Lorentz subbundles LhX and Lh'X of the frame
bundle LX are equivalent as L-principal bundles [154]. It means that there exists

a vertical automorphism of the frame bundle LX which sends isomorphically L'X

onto Lh'X (see Proposition 6.5.4).

By virtue of Theorem 6.5.2, there is one-to-one correspondence between the L-

principal subbundles LhX of the frame bundle LX and the global sections h of the

quotient fibre bundle

ET = LX/L, (7.2.1)

called the tetrad bundle. This is an LX-associated fibre bundle with the typical

fibre GL4/L, homeomorphic to S3 x R7. Its global sections are called the tetrad

fields.

The fibre bundle (7.2.1) is the two-fold covering of the metric bundle

EPR = LX/SO(1, 3), (7.2.2)

whose typical fibre is homeomorphic to the topological space RP3 x R7, and whose

global sections are pseudo-Riemannian metrics g on X. In particular, every tetrad

field h defines uniquely a pseudo-Riemannian metric g. For the sake of simplicity,

we will often identify the metric bundle with an open subbundle of the tensor bundle

2
EPR C V TX.

Therefore, we can equip EPR with the coordinates (xA, aµ").

Remark 7.2.2. In General Relativity, a pseudo-Riemannian metric (a tetrad field)

describes a gravitational field. Then, following the general scheme of gauge theory,

we can treat a gravitational field as a Higgs field associated with a Lorentz structure

[161, 263]. •
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Every tetrad field h defines an associated Lorentz atlas Th = {(UU, zs)} of the
frame bundle LX such that the corresponding local sections zh of LX take their
values into the Lorentz subbundle LhX. In accordance with Theorem (6.5.1) the
transition functions of the Lorentz atlases of the frame bundle LX and associated
bundles are L-valued.

Given a Lorentz atlas Th, the pull-back

ha ®ta = zS*BLX = hAd? ®ta (7.2.3)

of the canonical form 6LX (7.1.1) by a local section zh is said to be a (local) tetrad
form. The tetrad form (7.2.3) determines the tetrad coframes

ha = hµ(x)dx , E U(, (7.2.4)

in the cotangent bundle T*X. These coframes are associated with the Lorentz atlas
Th. The coefficients ha of the tetrad form and the inverse matrix elements

ha = HNa Q Z (7.2.5)

are called the tetrad functions. Given a Lorentz atlas Th, the tetrad field h can be
represented by the family of tetrad functions {ha}. We have the well-known relation

9 = 7labh® ® hb, gµ, = hahbnab, (7.2.6)

between the tetrad functions and the metric functions of the corresponding pseudo-

Riemannian metric g : X --* EPR. A glance at the expressions (7.2.6) shows that

this pseudo-Riemannian metric g has the Minkowski metric functions with respect

to any Lorentz atlas Th.

In particular, given the Minkowski space M = R4 equipped with the Minkowski

metric ri, let us consider the LhX-associated fibre bundle of Minkowski spaces

MhX = (LhX x M)/L. (7.2.7)

By virtue of Proposition 6.5.6, the fibre bundle MhX (7.2.7) is isomorphic to the

cotangent bundle

T*X = (LX x R4)/GL4 = (LhX x M)/L = MhX. (7.2.8)

Given the isomorphism (7.2.8), we say that the cotangent bundle T*X is provided

with a Minkowski structure. Note that different Minkowski structures MhX and

Mh'X on T*X are not equivalent.
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If the frame bundle LX over a world manifold admits a Lorentz subbundle LhX,

its structure group L is always reducible to the maximal compact subgroup SO(3).

It means that there exists an SO(3)-principal subbundle LhX C LhX C LX, called

a space-time structure. The corresponding global section of the quotient fibre bundle

LhXISO(3) -+ X with the typical fibre R3 is a 3-dimensional spatial distribution

FX C TX on X. Its generating 1-form written relative to a Lorentz atlas is the

global tetrad form h° [263]. We have the corresponding space-time decomposition

TX = FX ® NF, (7.2.9)

where NF is the 1-dimensional fibre bundle defined by the time-like vector field h° =

hoa,a. In particular, if the generating form h° is exact, the space-time decomposition

(7.2.9) obeys Hawking's condition of stable causality [147].

There is the commutative diagram

GL4 --> SO(4)
(7.2.10)

L -* SO(3)

of the reduction of structure groups of the frame bundle LX in gravitation theory

[263]. This diagram leads us to the well-known theorem [147].

THEOREM 7.2.1. For any pseudo-Riemannian metric g on a world manifold X,

there exists a space-time decomposition (7.2.9) with the generating tetrad form h°

and a Riemannian metric gR (associated with a reduced GL41SO(4) structure) such

that

gR=2h° ®ho -g. (7.2.11)

M

Turn now to Lorentz connections. A principal connection on a Lorentz subbundle

LhX of the frame bundle LX is called the Lorentz connection. It reads

1 (7.2.12)Ah = dx^ ®(aa + ZAaabEab),

where Eab = -eba are generators of the Lorentz group. Recall that the Lorentz group

L acts on R4 by the generators

Eabcd = 1adbb - ?lbdba•
(7.2.13)
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By virtue of Theorem 6.5.7, every Lorentz connection (7.2.12 ) is extended to a

principal connection on the frame bundle LX which is given by the same expression

(7.2.13 ) and, thereby, it defines a world connection K whose coefficients are

Ka"`,. = hkaahk + rlha.hn hkA,\ b. (7.2.14)

This world connection is also called the Lorentz connection. Its holonomy group is

a subgroup of the Lorentz group L. Conversely, let K be a world connection whose

holonomy group is a subgroup of L. By virtue of Theorem 6.6.3, it defines a Lorentz

subbundle of the frame bundle LX, and is a Lorentz connection on this subbundle

(see also [276]).
Now let K be an arbitrary world connection. Given a pseudo-Riemannian metric

g corresponding to a Lorentz structure LhX, every world connection K admits the

decomposition

1
Kµva = Jµva} + Cµva + 2Qµva

in the Christoffel symbols {N,,,,} (2.4.13), the non-metricity tensor

Qµva = Qµav = Dµ gva = aµgva + Kµva + Kµav

and the contorsion

Cµva = -Cµav = 2 (T". + T., + Tµva + Qavµ - Qvaµ),

(7.2.15)

(7.2.16)

(7.2.17)

where Tµ„a = -Ta„µ is the torsion of K. The tensor fields T and Q, in turn, are

decomposed into three and four irreducible pieces, respectively (we refer the reader

to [150, 220, 241] for details and outcomes of this decomposition).
By virtue of Theorem 6.5.8, a world connection K is reducible to a principal

connection on the Lorentz subbundle LhX if and only if it satisfies the metricity

condition

Oµ gva = 0. (7.2.18)

Then K is called a metric connection for g. Obviously, a metric connection is

the Lorentz one. Conversely, every Lorentz connection obeys the metricity condi-
tion (7.2.18) for some pseudo-Riemannian metric g (which is not necessarily unique

[294]). A metric connection reads

Kµva = lµva} + 1 (Tvµa +Tvaµ +Tµva). (7.2.19)
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The Levi-Civita connection, by definition, is a torsion-free metric connection Kµva =

{µva}.

Remark 7.2.3. There is a classification, e.g., of vacuum pseudo-Riemannian ge-

ometries by the Lie algebras of a constrained holonomy group which are subalgebras

of the Lorentz Lie algebra [143]. •

Remark 7.2.4. It is easily seen that different metric connections (7.2.19) for the

same world metric g lead to different geodesic equations (7.1.15). Note on a problem

if a spinless test particle in the presence of a non-symmetric metric connection K

moves along the geodesics of the Levi-Civita connection as in General Relativity (a

geodesic motion) or along the geodesics of the total connection K (an autoparallel

motion) (see, e.g., [107] for a discussion). •

Though a world connection is not a Lorentz connection in general, any world

connection K defines a Lorentz connection Kh on each L-principal subbundle LhX

of the frame bundle as follows.
It is readily observed that the Lie algebra of the general linear group GL4 is the

direct sum

g(GL4) = g(L) ® m

of the Lie algebra g(L) of the Lorentz group and a subspace m such that

ad(l)(m) C m, Vl E L.

Let K be the connection form (6.1.15) of a world connection K on LX. Then,

by virtue of the well-known theorem [177], the pull-back onto LhX of the g(L)-

valued component KL of R is the connection form of a principal connection Kh

on the Lorentz subbundle LhX. To obtain the connection parameters of Kh, let us

consider the local connection 1-form (6.1.16) of the connection K with respect to a

Lorentz atlas q1h of LX given by the tetrad forms ha. This reads

zS*K = -KabadX" ®eb,

Kaba = -hb aaha + Kaµvhb ha,

where {eb} is the basis for the right Lie algebra of the group GL4. Then the Lorentz

part of this form is precisely the local connection 1-form (6.1.16 ) of the connection
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Kh on LhX. We have
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Z h* KL
1

= -
2 AAabdxa 0 Eab,

AAab =

2 (
7kbha - rlkahb)(aahk - h%Kaµ,)

(7.2.20)

If K is a Lorentz connection extended from LhX, then obviously Kh = K.

Lorentz non-symmetric connections play a prominent role in describing fermion

fields on a world manifold (see Section 7.5). At the same time, the torsion of a

world connection does not make a contribution in the strength (6.2.25) of gauge

potentials in gauge theory because a world connection K in the expression (6.2.23)

for connections IPA on the bundle of principal connections C is necessarily symmetric.

7.3 Relativistic mechanics

In accordance with Theorem (5.4.2), non-relativistic dynamic equations on a config-

uration bundle Q -> R are equivalent to some particular geodesic equations (5.4.7)

on the tangent bundle TQ. Let us compare them with relativistic geodesic equations.

In contrast with non-relativistic mechanics , a configuration space Q of relativistic

mechanics has no preferable fibration over R [213, 271]. Therefore, one should use

formalism of jets of 1-dimensional submanifolds of Q. In these terms, relativistic

mechanics can be formulated on an arbitrary configuration space Q, dimQ > 1 [213].
Here we restrict our consideration to relativistic mechanics of a test particle on a

4-dimensional configuration space Q.

Let us provide Q with a coordinate atlas {U; (qo g1'2,3)} (1.3.20) together with

the transition functions

q° - 4 (q°,qi), q' -+ 4 (q°,q2)

(1.3.21). Note that, given a coordinate chart (U; q°, q'), we have a local fibre bundle

U z) (q°, qi) '-+ q° E R (7.3.1)

which can be treated as a configuration space of a local non-relativistic mechanical

system.
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The velocity phase space of relativistic mechanics on the configuration space Q

is the first order jet manifold JiQ of 1-dimensional subbundles of Q. It is endowed

with the coordinates (q°, qi, qo) (1.3.22). Their transition functions (1.3.23) read

a^ Ni a^°
40 = C ago + aq; I ('40ao +4o agk (7.3.2)

A glance at this expression shows that the fibre coordinates qo on JiQ --+ Q are

the standard coordinates on the projective space RP4, i.e., the velocity phase space

JiQ -> Q of relativistic mechanics is a projective bundle.

Example 7.3.1. Let consider the configuration space Q = R4, provided with the

Cartesian coordinates (q°, q1). Let

q = q°cha - glsha,

q = -q°sha+ glcha, (7.3.3)
Q'3=q2'3.

be a Lorentz transformation of the plane (q°, q'). Substituting these expressions in

the formula (7.3.2), we obtain

-sha + lchai qo -2,3
2,3

40-
q0 cha - gosha ' qO cha - gosha

This is precisely the transformation law of 3-velocities in Special Relativity if

cha =
1 V

1 - v2
sha = ,

1-v2

where v is the velocity of a reference frame, moving along the axis q'. •

Thus, one can think of the velocity phase space JiQ as being the space of 3-

velocities v of a relativistic system. We will call J11Q the 3-velocity phase space.

Given a coordinate chart (U; q°, q'), 3-velocities v = (qo) of a relativistic system can

be seen as velocities of a local non-relativistic system (7.3.1) with respect to the

corresponding local reference frame r = at on U. However, the notion of a reference

frame in non-relativistic mechanics fails to be extended to relativistic mechanics

since the relativistic transformations qo -> qo and I'i --> 11 are not affine and the

relative velocity qo - ri is not maintained under these transformations.

To introduce relativistic velocities, let us take the tangent bundle TQ of the

configurations space Q, equipped with the holonomic coordinates (q°, q1, 4°, qt). In
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accordance with (1.3.24), there is the multivalued morphism A from the 3-velocity

phase space J1 'Q to the tangent bundle TQ when a point (q°, q2, qo) E J, 'Q corre-

sponds to a line

(7.3.4)

in the tangent space to Q at the point (q°, qt). Conversely, there is the morphism

ti= q°, (7.3.5)o:TQ Q J11Q, goof
4

such that

ooId J1Q.

Indeed, it is readily observed that qo and 4i/4° have the same transformation laws.

It should be emphasized that, though the expressions (7.3.4) and (7.3.5) are singular

at 4° = 0, this point belongs to another coordinate chart, and the morphisms A and

o are well defined. Thus, one can think of the tangent bundle TQ as being the

space of relativistic velocities or 4-velocities of a relativistic system. It is called the

4-velocity phase space.

Since the morphism A of J1 1Q onto TQ is multivalued and the converse morphism

(7.3.5) is a surjection, one may try to find a subbundle W of the tangent bundle

TQ such that p : W -> JQ is an injection. Let us assume that Q is oriented and

endowed with a pseudo-Riemannian metric g. The pair (Q, g) is called a relativistic

system. The metric g defines the subbundle of velocity hyperboloids

W9 = {4A E TQ : gµ.(q)41`4" = 1} (7.3.6)

of TQ. Of course, Wg is neither vector nor affine subbundle of TQ. Let Q be

time-oriented with respect to the pseudo-Riemannian metric g. This means that

Wg is a disjoint union of two connected subbundles W+ and W-. Then it is readily

observed that the restriction of the morphism o (7.3.5) to each of these subbundles

is an injection into J1 1Q.

Let us consider the image of this injection in a fibre of J1 'Q at a point q E Q.

There are local coordinates (q°, q`) on a neighbourhood of q E Q such that the

pseudo-Riemannian metric g(q) at q comes to the Minkowski metric g(q) = 77. With

respect to these coordinates, the velocity hyperboloid Wq C TqQ is given by the

equation

(4°)2 - Y(4i)2 = 1.

i
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This is the union of the subset W9 , where 4° > 0, and W9 , where 4° < 0. Restricted

to W+, the morphism (7.3.5) takes the familiar form of the relations between 3- and

4-velocities

go__ 1 i qo

1 - F_ (go)2' 4 = 1 - E(g0')2

in Special Relativity. The image of each of the hyperboloids W+ and W- in the

3-velocity phase space J1 Q by the morphism (7.3.5) is the open ball

E(go)2 < 1, (7.3.7)
i

i.e, 3-velocities of a relativistic system (Q, g) are bounded.

Turn now to a dynamics of relativistic mechanics.

In a straightforward manner, Lagrangian formalism fails to be appropriate to

relativistic mechanics because a Lagrangian L = Ldq°, by very definition, is defined

only locally on a coordinate chart (1.3.22) of the 3-velocity phase space JJQ. For

instance, the Lagrangian

Lm = -m 1 - Y(go)2dq° (7.3.8)

of a free relativistic point mass m in Special Relativity can be introduced on each

coordinate chart of J1 Q, but it is not maintained in a straightforward manner by

the Lorentz transformations (7.3.3) because of the term dq°. At the same time,

given a motion qi = c(q° ) with respect to a coordinate chart (q°, qi), its Lorentz

transformation (7.3.3) reads

q = q°cha - cl (q°)sha,

21(4) = -q° (q )sha + c' (q°(4 ))cha,

'3(q) = c2'3(q°(q ))•

Then we have the Lorentz invariance of the pull-back c*L,,, of the Lagrangian (7.3.8),

i.e., c*L,,,. = where dq° = dgo(q )dq° and do is the total derivative.

Therefore , let us start from Hamiltonian relativistic mechanics. Then we will

come to dynamic equations on the 4-velocity phase space TQ.

Given a coordinate chart of the relativistic configuration space Q, the homoge-

neous Legendre bundle corresponding to the local non-relativistic system (7.3.1) is



230 CHAPTER 7. SPACE-TIME CONNECTIONS

the cotangent bundle T*Q. This fact motivates us to choose T*Q as the relativistic

momentum phase space , equipped with the holonomic coordinates (q"', pa). The

cotangent bundle T*Q is endowed with the canonical symplectic form

S2 = dpµ A dq'`. (7.3.9)

Let us describe a relativistic system (Q, g) as a Hamiltonian system of conservative

mechanics on the symplectic manifold T*Q, characterized by a relativistic Hamilto-

nian

H:T*Q--;R. (7.3.10)

Any relativistic Hamiltonian H (7.3.10) defines the Hamiltonian map

H:T*Q Q TQ, qµ=8µH, (7.3.11)

from the relativistic momentum phase space T*Q to the 4-velocity phase space TQ

(see [213] for details). Since the 4-velocities of a relativistic system live in the velocity

hyperboloids (7.3.6), we have the constraint subspace

N = H*W9, (7.3.12)

gµ"81'H8"H = 1,

of the relativistic momentum phase space T*Q. It follows that the relativistic system

(Q, g) can be described as an autonomous Dirac constraint system on the primary

constraint space N (7.3.12) (see also [259]). Its solutions are integral curves of the

Hamiltonian vector field u = uµ8µ + uµ8µ on N C T*Q which obeys the Hamilton

equation

u j in,S2 = - iNdH. (7.3.13)

Example 7.3.2. Let us consider a point electric charge e in the Minkowski space in

the presence of an electromagnetic potential AA. Its relativistic Hamiltonian reads

H = -
1

21 g7µ" (pµ - eAL)(p" - eA"),

while the constraint space N (7.3.12) is

271µ"(pµ-eA,)(p"-eA") =m.
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Then the Hamilton equation (7.3.13) takes the form

ujin,S0 = 0.

Its solution is

(7.3.14)

Pk = Uk = uµakAµ, (7.3.15)

4k = uk = u°77ik(Pi - eAi) (7.3.16)

VM - r1'i (pi - eAi) (pj - eAj)

The equality (7.3.16) leads to the usual expression for the 3-velocities

mrlkigi
Pk = + Ak.

+ 1lijgigi

Substituting this expression in the equality (7.3.15), we obtain the familiar equation

of motion of a relativistic charge in an electromagnetic field. •

Example 7.3.3. The relativistic Hamiltonian for a point mass m in a gravitational

field g on a 4-dimensional manifold Q reads

H = -
1

2m9µ" (q)Pµpv,

while the constraint space N (7.3.12) is

9µV PAP" = m2.

As in previous Examples, the equation (7.3.13) takes the form (7.3.14). •

Given a relativistic Hamiltonian H on the relativistic momentum phase space

T'Q, let

^H = 8iH8i - 89H8' (7.3.17)

be the corresponding Hamiltonian vector field whose integral curves are solutions of

the Hamilton equation

^HJ SZ = -dH.
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If the Hamiltonian map H (7.3.11) is a diffeomorphism , the Hamiltonian vector field

(7.3.17) yields the holonomic vector field

6= THo6HOH -1=41aµ+S18µ, (7.3.18)

6µ = (aaa'`HaaH - aaaµHaaH) o H -1,

on the 4-velocity phase space TQ, where

(qµ, 41, 4µ, 4µ) o TH = (4µ, 8µH, 49, aaauHda + aaa&Hpa)

is the tangent morphism to H. The holonomic vector field (7.3.18) defines an au-

tonomous second order dynamic equation

4µ = (aaa&HaaH - (9aa&HaaH ) o H-1, (7.3.19)

called the relativistic dynamic equation, on the relativistic configuration space Q.

For instance, the relativistic dynamic equation (7.3.19) for a point electric charge

in Example 7.3.2 takes the well-known form

4µ = 77µv4AF'va, (7.3.20)

where F is the electromagnetic strength. The relativistic dynamic equation (7.3.19)

for a point mass m in a gravitational field g in Example 7.3.3 reads

Qµ = {aµ„}4Af (7.3.21)

where {aµ„} are the Christoffel symbols of the pseudo-Riemannian metric g.

The equations (7.3.20) and (7.3.21) exemplify relativistic dynamic equations

which are geodesic equations

4µ = Ka (qa, 48)4-\ (7.3.22)

with respect to a connection K on the tangent bundle TQ -* Q (see Definition

5.2.4). We call (7.3.22) the relativistic geodesic equation. For instance, a connection

K in the equation (7.3.21), is the Levi-Civita connection of the pseudo-Riemannian

metric g. In the equation (7.3.20), K is the zero Levi-Civita connection of the

Minkowski metric plus the soldering form

a = ,gµ"F',.adgA ®aµ. (7.3.23)
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We say that a relativistic geodesic equation (7.3.22) on the 4-velocity phase space

TQ describes a relativistic system (Q, g) if its geodesic vector field does not leave the

subbundle of velocity hyperboloids (7.3.6). It suffices to require that the condition

(8Agµ„41 + 2gµ„KA) 4'4" = 0 (7.3.24)

holds for all tangent vectors which belong to W9 (7.3.6). Obviously, the Levi-Civita

connection {aµ„} of the metric g fulfills the condition (7.3.24). Any connection K

on TQ -->Q can be written as

Ka + o, (qa,

where v = vadgA ®aa is a soldering form. Then the condition (7.3.24) takes the

form

gJ'V0"\ 4V = 0. (7.3.25)

It is readily observed that the soldering form (7.3.23) in the equation (7.3.20) obeys

this condition for the Minkowski metric g.
Now let us compare relativistic and non-relativistic geodesic equations [213, 127,

128]. In physical applications, one usually thinks of non-relativistic mechanics as

being an approximation of small velocities of relativistic theory. At the same time,

the 3-velocities in mathematical formalism of non-relativistic mechanics are not

bounded.
Let a relativistic configuration space Q admit a fibration Q -+ R, where R is

a time axis. One can think of the fibre bundle Q --4R as being a configuration

space of a non-relativistic mechanical system. In order to compare relativistic and

non-relativistic dynamics, one should consider pseudo-Riemannian metric on TQ,

compatible with the fibration Q -> R. Note that R is a time of non-relativistic

mechanics. It is the same for all non-relativistic observers. In the framework of a

relativistic theory, this time can be seen as a cosmological time. Given a fibration

Q -> R, a pseudo-Riemannian metric on the tangent bundle TQ is said to be

admissible if it is defined by a pair (gR, r) of a Riemannian metric on Q and a

non-relativistic reference frame r, i.e.,

2r ®r R (7.3.26)g= r2 -g,

I r I2= gµr'`rv = gµVrµrV
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in accordance with Theorem 7.2.1. The vector field P is time-like relative to the

pseudo-Riemannian metric g (7.3.26), but not with respect to other admissible

pseudo-Riemannian metrics in general. There is the canonical imbedding (5.1.3)

of the velocity phase space J'Q of non-relativistic mechanics into the affine subbun-

dle

q°=1, qt=qo (7.3.27)

of the 4-velocity phase space TQ. Then one can think of (7.3.27) as the 4-velocities

of a non-relativistic system. The relation (7.3.27) differs from the familiar rela-

tion (7.3.5) between 4- and 3-velocities of a relativistic system. In particular, the
temporal component 4° of 4-velocities of a non-relativistic system equals 1. It fol-

lows that the 4-velocities of relativistic and non-relativistic systems occupy different

subbundles of the 4-velocity space TQ. Moreover, Theorem 5.4.2 shows that both

relativistic and non-relativistic equations of motion can be seen as the geodesic

equations on the same tangent bundle TQ. The difference between them lies in

the fact that their solutions live in the different subbundles (7.3.6) and (7.3.27) of

TQ. At the same time, relativistic equations, expressed in the 3-velocities 4i/4° of

a relativistic system, tend exactly to the non-relativistic equations on the subbun-

dle (7.3.27) when 4° -+ 1, goo -> 1, i.e., where non-relativistic mechanics and the

non-relativistic approximation of a relativistic theory only mutually coincide.

Let (q°, qi) be a non-relativistic reference frame on Q compatible with the fi-

bration of Q -+ R. Given a non-relativistic geodesic equation (5.4.7), we will say

that the relativistic geodesic equation (7.3.20) is the relativization of (5.4.7) if the

spatial parts of these equations are the same. In accordance with Lemma (5.5.4),

any relativistic geodesic equation with respect to a connection K is a relativization

of a non-relativistic geodesic equation with respect to the connection

K=dq-\ ® (8a+(K,\-PiKa)ai),

where ri = 0 is the connection corresponding to the reference frame (q°, qi). Of

course, for different reference frames, we have different non-relativistic limits of the

same relativistic equation . The converse procedure is more intricate.

Following Section 5.9, a generic quadratic dynamic equation (5.4.8) can be writ-

ten in the form

qoo = -(m_i)i^{akµ}gogo + bµ(gv)go, qo = 1 , (7.3.28)
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where {akµ} are the Christoffel symbols of some pseudo-Riemannian metric g, whose

spatial part is the mass tensor (-mik), while

b%(9µ)46 + b (gµ) (7.3.29)

is an external force. In view of Proposition 5.4.5, the decomposition of the right-

hand side of the equation (7.3.28) into two parts is not unique. With respect to the

coordinates where goi = 0, one may construct the relativistic geodesic equation

4µ = {aµ,.}4a4'v + 0,A11A (7.3.30)

where the soldering form a must fulfill the condition (7.3.25). It takes place only if

9ikbj +9ijbk = 0,

i.e., the external force (7.3.29) is the Lorentz-type force plus some potential one.

Then we have

ap = 0, ak' = -9009kj11, ak = bk•

However, the relativization (7.3.30) fails to exhausts all examples. Let a non-

relativistic acceleration 6i(xµ) be a spatial part of a 4-vector 6' in the Minkowski

space. Then one can write the relativistic equation

4A = eA - n.gp9a4A. (7.3.31)

This is the case, e.g., for the relativistic hydrodynamics that we usually meet in

the literature on gravitation theory. However, the non-relativistic limit 4° = 1 of

(7.3.31) does not coincide with the initial non-relativistic equation.

7.4 Metric-affine gravitation theory

Metric-affine gravitation theory deals with a pseudo-Riemannian metric g and a

world connection K considered as independent dynamic variables. We refer the

reader to [150, 220, 222, 241] for a general formulation of this gravitation theory

and to [77, 150, 296] for the study of its solutions.
Affine-metric gravitation theory is formulated on natural bundles. Due to Propo-

sition 6.5.6 and Theorem 6.5.7, this theory includes in a natural way the gauge

theory of Lorentz connections on natural bundles. Moreover, the gauge theory of
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Lorentz connections on spinor bundles is also reduced to metric-affine theory of

world connections (see the next Section).

The gauge transformations of metric-affine gravitation theory on natural bundles

are general covariant transformations. All field Lagrangians in gravitation theory, by

construction, are invariant under these transformations. As was mentioned above,

the generator of a 1-parameter group of general covariant transformations of a nat-

ural bundle T -> X is the canonical lift T onto T of a vector field T on X. Following

the general procedure in Section 3.4, let us examine the conservation laws along such

canonical lifts of vector fields on X. These are the energy-momentum conservation

laws [122, 123, 269]. There are several approaches to discover an energy-momentum

conservation law in gravitation theory. Here we treat this conservation law as a
particular gauge conservation law. Accordingly, the energy-momentum of gravity is

seen as a peculiar Noether current (see, e.g., [16, 33, 100, 150, 156, 289]). A glance at

the expression (7.1.4) shows that the generators T of general covariant transforma-

tions (as well as the generators (6.3.10) of principal automorphisms in gauge theory)

depend on the derivatives of components rA of a vector field r, which play the role

of gauge parameters. Therefore, the main peculiarity of the energy-momentum con-

servation laws along these generators is that the corresponding energy-momentum

currents reduce to a superpotential and that this superpotential depends on com-

ponents of a vector field T as gauge parameters.

We have seen in Section 6.3 that these properties are common for gauge con-

servation laws. In particular, the fact that the energy-momentum current depend

on a vector field T provides the maintenance of the gravitational energy-momentum

conservation law under general covariant transformations.

We will start from the tensor field model which clearly illustrates these phenom-

ena.

Let T -4 X be the tensor bundle (1.1.12) with fibred coordinates (x)`, yA) (7.1.3).

The canonical lift onto T of a vector field r on X is given by the expression T (7.1.4).

Let L be a first order Lagrangian on J1T which is invariant under general covariant

transformations, i.e., L satisfies the strong equality

LjiTL = Oa(TaL) + uAOOQTaO L + dµ (26Afl aQTa)irA - YQA pTcX7rA = 0. (7.4.1)

The corresponding weak identity (3.4.2) takes the form

0 da [1r (y4Ta - uA,9Opra) - rNL]. (7.4.2)
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Due to the arbitrariness of the gauge parameters Ta, the equality (7.4.1) is equivalent

to the system of strong equalities

a,\ 1C = 0, (7.4.3a)

6aC +7LA,,6A .C + dµ(uAairA) = y7rA, (7.4.3b)

UA07rµA + U"4a7rAA = 0, (7.4.3c)

where SAG are variational derivatives . Substituting the relations (7.4.3b) and (7.4.3c)

in the weak identity (7.4.2), we obtain the energy -momentum conservation law

0 N -da[u"4a6`ACTa +dµ(u 4a7fATa)]. (7.4.4)

A glance at the expression (7.4.4) shows that, on-shell , the corresponding energy-

momentum current leads to the superpotential form (3.4.6), i.e.,

T = 16`4a6AGTa + dµ(764airgra),

where

UTµA = uAa7rA7 (7.4.5)

is the energy-momentum superpotential of tensor fields.

It is readily seen that the energy-momentum superpotential (7.4.5) emerges from

the dependence of the canonical lift T (7.1.4) on the derivatives of the components

of the vector field T. This dependence guarantees that the energy-momentum con-

servation law (7.4.4) is maintained under general covariant transformations.

Let us now consider tensor fields, treated as matter fields, in the presence of a

metric gravitational field described by the second order Hilbert-Einstein Lagran-
gian. The first variational formula and the associated procedure of constructing

Lagrangian conservation laws can also be extended to this case [123, 238]. As a

result, we obtain that the corresponding energy-momentum current reduces to the

superpotential which is the sum of the energy-momentum superpotential (7.4.5) of

tensor fields and the Komar superpotential

UKµa =
2w

I U I (0"\-V'-r" - OA-VT (7.4.6)

of a metric fields, where tea" are coordinates on the metric bundle EPR (7.2.2) and

V"T
µ

= a"T
µ_{

"
I+

a
} Ta

,

I. Pol = - 2 01A0 (a"pa + Qap" - 0,0a").
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Example 7 .4.1. Let us consider Proca fields as an example of tensor matter

fields. They are represented by sections of the cotangent bundle T = T*X, and

their configuration space is the jet manifold J1T*X coordinated by (x"', kµ, kµa).

Given a world connection K, the configuration space J1T* X admits the splitting

J'T*X = S+ ®(T*X x AT*X), (7.4.7)

where S+ is an affine bundle modelled over the vector bundle

T*X X(VT*X) -* T*X.

In coordinates

,/

this splitting reads

1
kAN, = 2 (SA,. + TA A

kµ„ - k,,,,. + Tµavka, (7.4.8)

So, = k/W + kUL - Tµavka, (7.4.9)

where Tµa„ is the torsion of the world connection K.

Let us consider the relation (7.4.3c). In coordinates S,l„) associated with

the splitting (7.4.7), it takes the form

aGP = 0.
aSa,,

It follows that , in order to be invariant under general covariant transformations, the

Lagrangian Lp of Proca fields must factorize through the morphism

J : J1T*X _*T*X x X T*X.
T*X X

Indeed, the standard Lagrangian of Proca fields takes the form

LP = [- 4UµaUVp 2M ul Akka] l 9 1W• (7.4.10)
y

Let us consider Proca fields in the presence of a symmetric world connection K.

In this case, the strength.F (7.4.8) is independent of K, and we come to the above

tensor field model in the presence of a metric gravitational field. The canonical lift

T (7.1.4) onto T*X is

Tµa,,- aaT'k,
a

aka
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Substituting it in the expression (7.4.5), we obtain the energy-momentum superpo-
tential

UpµA = -kaffµaTa

of Proca fields, where

7fµ = -
1
1,9µa9AQ17aR 91.

(7.4.11)

Let us turn now to the energy-momentum conservation laws in metric-affine
gravitation theory.

Recall that world connections are represented by sections of the fibre bundle CK
(7.1.6). Therefore, the configuration space of the metric-affine gravity is the first
order jet manifold of the fibred product

EPR X CK.
x

(7.4.12)

Let LMA be a Lagrangian on this configuration space equipped with the adapted
coordinates (x', Qao, kµap, a , kaµap). The problem lies in the fact that a Lagran-
gian LMA which factorizes through the curvature R,\µap (7.1.8) is invariant under
the transformations

kµap H kµ.ao + Vµ6,3, (7.4.13)

called the projective freedom. One can think of (7.4.13) as being the gauge transfor-
mations associated with the dilatation subgroup of the group GL4. The projective
invariance of LMA implies that of a matter Lagrangian which imposes rigorous con-

straints on matter sources. In fact, these matter sources are only fermion fields

(see the next Section). One also suggests to include in a metric-affine Lagrangian

LMA different terms expressed into the irreducible parts of the torsion T and the

non-metricity Q (see [241] and references therein). The projective symmetry of such

a Lagrangian is broken, and one utilizes a Proca field [77] and the hypermomentum

fluid [15, 241] as hypothetical matter sources of the metric-affine gravity. Here we

restrict our consideration to the case when a metric-affine Lagrangian LMA factorizes
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through the curvature is independent of the derivative coordinates Qa"Q of a world

metric, while matter sources are absent. The following relations take place:

7r
AV

a
= Q_ -7rva aQ

,
(7.4.14)

ALMA _ _av
ak Q - 7rAv Qk v (7.4.15)

akvaQ

We also have the equalities

7rAA nAaµ = T a 0>

7fA2GAaa = -0EarMA - 7fEQQryka° y.

Given a vector field T on a world manifold X, its canonical lift onto the product

(7.4.12) reads

T = TAaa + (UvQa,T" + Uava ,̂ TQ)aaQ + (UAaarr" + UAaµaQPT")aA,

where we use the compact notation

(uAaa1T" + 26AaµaQµT")aA,
YA = kµ"0+

26µ"pryer _ oµv13v ,

uµ
"E

Qry= kµE Qb"-k abe -k"SE
ry µ 'y Q ry Q µ,

for the vertical part of the vector field (7.1.7)

Let the Lagrangian LMA be invariant under general covariant transformations,

LJ1TLMA = 0. (7.4.16)

Then, on-shell, the first variational formula (3.2.2) leads to the weak conservation

law

0,:^i -dA[ A(YaT" - uAaaQTa - UAEa aQTa )
- TACMAI, (7.4.17)

where

a = 7fA Aya - 2LAQa T" - UAEQaE T" T^CMA (7.4.18)
MA A (23a a Q a Q )

is the energy-momentum current of the metric -affine gravity.
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Remark 7 .4.2. It is readily observed that, in the local gauge where the vector
field r is constant , the energy-momentum current (7.4.18) leads to the canonical
energy-momentum tensor

TMAA
_ )µ (3 A

(7r Q 1aµ v - SaLMA)Ta

This tensor was suggested in order to describe the energy-momentum complex in
the Palatini model [80, 230, 239]. •

Due to the arbitrariness of the gauge parameters TA, the equality (7.4.16) is

equivalent to the system of strong equalities

8AGMA = 0,

8 CMA + 2ap1'6aµCMA + U,Aa6AGMA + dµ(7rAUAa) - ya 7rA = 0, (7.4.19)
[(2GA7oaA + UAryaj)GMA]DotT'Y = 0, (7.4.20)

7r(AE70") = 0, (7.4.21)

where SaµG, SAG and PL are the corresponding variational derivatives.

Remark 7.4.3. It is readily observed that the equalities (7.4.20) and (7.4.21) hold

due to the relations (7.4.15) and (7.4.14), respectively. •

Substituting the term yA, v3 from the expression (7.4.19) in the energy-momentum

conservation law (7.4.17), we bring it into the form

0 N -dA[2QAµT'&,ALMA + UAATa6AGMA - 7rAUAO00 Ta + (7.4.22)

dµ(7r aµap)aQra + dµ(7rAUAa)Ta - dµ(^XµaQaRTa)]

After separating the variational derivatives, the energy-momentum conservation

law (7.4.22) of the metric-affine gravity and Proca fields leads to the superpotential

form

0 •' :i -da[2aAµ7-a6aµ.MA + (kµ''7SµaryrMA - kµoa8µo"GMA - l£ao.y6\oryGMA)Ta

+8Aa1'Ca,Ta -
dµ(& AG)Ta

+ dµ(7rµAava,Ta)],

where the energy-momentum current on-shell reduces to the generalized Komar

superpotential

UMAµA = 7rµAav(avTa - koavTa )I (7.4.23)
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[122, 123, 269]. We can rewrite this superpotential as

UMAA" = 2 aGMA (D.T" + TvaoT°)

0RLAav

where D„ is the covariant derivative relative to the connection k,av and TVav is the

torsion of this connection.

Example 7.4.4. Let us consider the Hilbert-Einstein Lagrangian

LHE 2s;R
J Q IW,

R = o AvRAaav,

in the metric-affine gravitation model. Then the generalized Komar superpotential

(7.4.23) comes to the Komar superpotential (7.4.6) if we substitute the Levi-Civita

connection kvao One may generalize this example by considering the

Lagrangian

L = f(R)/W,

where f (R) is a polynomial of the scalar curvature R. In the case of a symmetric

connection, we restate the superpotential

U'`A _ aRV-g(g"DvTµ - 9µvDvTa)

of the Palatini model [33] just as the superpotential when a Lagrangian of the

Palatini model factorizes through the product R' Rap [34]. •

7.5 Spin connections

We will restrict our consideration to Dirac spinor fields since all fermion matter,

observable till now, is described by these fields. Let us consider gauge theory on

spinor bundles over a world manifold whose sections describe Dirac fermion fields.

The key point is that these spinor bundles are not preserved under general covariant

transformations. From the physical viewpoint, a Dirac fermion matter is responsible

for a spontaneous symmetry breaking in gravitation theory. From the mathematical

viewpoint, every Dirac spin structure on a world manifold X is associated with a cer-

tain tetrad gravitational field h on X, i.e., with a certain reduced Lorentz structure
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Ph C LX. The problem of a spin connection for Dirac spinor fields in the presence of

a background gravitational field has been solved by V.Fock and D.Ivanenko in 1929,

and their spin Levi-Civita connection (see (7.5.13) below) is naturally extended to

an arbitrary Lorentz connection Ah on Ph. Here we study a spin connection associ-
ated with an arbitrary linear world connection on X. Therefore, we should consider

a spinor structure which is not associated with a certain tetrad field h and which

is subject to general covariant transformations (see also [74, 101, 243]). To solve

this problem, one can follow the general scheme of describing symmetry breaking

in gauge theories in terms of composite bundles in Section 6.5. We will construct

a composite bundle S -> ET -+ X, where S --> ET is a spinor bundle over the
tetrad bundle (7.2.1) [123, 124, 272, 273]. Given a section h of the tetrad bundle

ET, the restriction of this spinor bundle to h(X) C ET describes the familiar Dirac
spin structure in the presence of h. Conversely, every Dirac spin structure S' on

a world manifold can be seen in this way. Note that S - X is not a spin bundle,
and is subject to general covariant transformations. A desired spin connection is a

connection on the composite bundle S -* X.

Remark 7.5.1. Dirac spinors. We describe Dirac spinors in terms of Clifford

algebras (see, e.g., [69, 123, 240, 255] and [47, 194] for a general Clifford algebra
technique).

Let M be the Minkowski space equipped with the Minkowski metric ri, and
let {ea} be a fixed basis for M. By C1,3 is denoted the complex Clifford algebra
generated by elements of M. This is the complexified quotient of the tensor algebra

®M of M by the two-sided ideal generated by elements

e®e'+e'®e-2i (e, e') E OM, e,e' E M.

The complex Clifford algebra C1,3 is isomorphic to the real Clifford algebra

whose generating space is R5 equipped with the metric

diag (1, -1, -1, -1, 1).

2,3,

Its subalgebra generated by elements of M C R5 is the real Clifford algebra R1,3.

A spinor space V is defined as a minimal left ideal of C1,3 on which this algebra

acts on the left. We have the representation

'y:M®V-+V, ry(ea)=rya, (7.5.1)
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of elements of the Minkowski space M C C1,3 by the Dirac -y-matrices on V. Dif-

ferent ideals V lead to equivalent representations (7.5.1). The spinor space V is

provided with the spinor metric

a(v, v) = 2 (vv' + VV) = 2 (v+y°v' + v'+ry°v) (7.5.2)

since the element e° E M satisfies the conditions

(e°)+ = e°, (e°e)+ = e0e, de E M.

By definition, the Clifford group G1, 3 consists of the invertible elements is of
the real Clifford algebra R1,3 such that the inner automorphisms defined by these

elements preserve the Minkowski space M C R1 ,3, i.e.,

lsels 1 = 1(e), e E M, (7.5.3)

where 1 is a Lorentz transformation of M. Hence, we have an epimorphism of the

Clifford group G1,3 onto the Lorentz group 0(1, 3). Since the action (7.5.3) of the

Clifford group on the Minkowski space M is not effective, one usually consider its pin

and spin subgroups. The subgroup Pin(1, 3) of G1,3 is generated by elements e E M

such that 77(e, e) = ±1. The even part of Pin(1, 3) is the spin group Spin( 1, 3). Its

component of the unity

LS = Spin°(1, 3) ^^ SL(2, C)

is the well-known two-fold universal covering group

ZL : LS -+ L = LS/Z2, Z2 = {1, -1}, (7.5.4)

of the proper Lorentz group L.

The Clifford group G1,3 acts on the spinor space V by left multiplications

G1,3D1s:VI--*iSV, vEV.

This action preserves the representation (7.5.1), i.e.,

ry(lM ® l9V) = lsyy(M ® V).

The spin group LS acts on the spinor space V by means of the generators

Lab = I ['Ya,'Yb] (7.5.5)
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Since L bryo = -'YoLab, this action preserves the spinor metric (7.5.2). •

A Dirac spin structure on a world manifold X is said to be a pair (P', z5) of an
L,, principal bundle Ph -4 X and a principal bundle morphism

Zh : ph -- LX (7.5.6)

from ph to the frame bundle LX [14, 27, 194]. More generally, one can define a spin
structure on any vector bundle E --> X [194]. Since the homomorphism L. -* GL4
factorizes through the epimorphism (7.5.4), every bundle morphism (7.5.6) factorizes
through a morphism

zh : ph LhX, (7.5.7)

Zh o R9 = R-L(9), V9 E L3,

of ph to some L-principal subbundle LhX of the frame bundle LX.

It follows that the necessary condition of the existence of a Dirac spin structure

on X is the existence of a Lorentz structure. From the physics viewpoint, it means

that the existence of Dirac's fermion matter implies the existence of a gravitational
field.

Fermion fields in the presence of a tetrad field h are described by sections of the
ph-associated spinor bundle

Sh = (ph x V)/L3 , X (7.5.8)

whose typical fibre V carriers the spinor representation (7.5.5) of the spin group

L8. To describe Dirac fermions and, in particular, to construct the Dirac operator,

the spinor bundle Sh (7.5.8) must be represented as a subbundle of the bundle of

Clifford algebras, i.e., as a spinor structure on the cotangent bundle T*X.
Every fibre bundle of Minkowski spaces MhX (7.2.7) over a world manifold X is

extended to the fibre bundle of Clifford algebras ChX with the fibres generated by
the fibres of MhX [27]. This fibre bundle ChX has the structure group Aut(C1,3)
of inner automorphisms of the Clifford algebra C1,3. In general, ChX does not
contain a spinor subbundle because a spinor subspace V is not stable under inner

automorphisms of C1,3. As was shown [27], a spinor subbundle of ChX exists if the

transition functions of ChX can be lifted from Aut(C1,3) to the Clifford group G1,3.

This agrees with the usual condition of the existence of a spin structure which holds

for a world manifold X. Such a spinor subbundle is the bundle Sh (7.5.8) associated
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with the universal two-fold covering (7.5.7) of the Lorentz bundle LhX. We will call

ph (and Sh) the h-associated Dirac spin structure on a world manifold.

Remark 7.5.2. All spin structures on a manifold X which are related to the

two-fold universal covering groups possess the following two properties [140]. Let

P -* X be a principal bundle whose structure group G has the fundamental group

irl (G) = 7L2. Let d be the universal covering group of G.

• The topological obstruction to the existence of a G-principal bundle P -> X

covering the bundle P -> X is given by the Cech cohomology group H2 (X; Z2)

of X with coefficients in 7G2. Roughly speaking, the principal bundle P defines

an element of H2(X; Z2) which must be zero so that P -> X can give rise to
X.

• Non-equivalent lifts of P -+ X to G-principal bundles are classified by elements

of the Cech cohomology group HI(X; Z2).

In particular, the well-known topological obstruction to the existence of a Dirac

spin structure is the second Stiefel-Whitney class w2(X) E H2(X; Z2) of X [194].

In the case of 4-dimensional non-compact manifolds, all Riemannian and pseudo-

Riemannian spin structures are equivalent [14, 119]. •

There exists the bundle morphism

I yh : T*X ® Sh = (Ph X (M (9 V))/LB -+ (ph x -y(M ® V))/Lg = Sh, (7.5.9)

where by 7 is meant the left action (7.5.1) of M C C1,3 on V C C1,3. One can think

of (7.5.9) as being the representation of covectors to X4 by the Dirac -y-matrices

on elements of the spinor bundle Sh. Relative to an atlas {zC} of ph and to the

associated Lorentz atlas {zh o zS} of LX, the representation (7.5.9) reads

Y'('Yh(ha(x) (9 v)) = 7aAByB(v), v E Sx,

where yA are the corresponding bundle coordinates of Sh, and ha are the tetrad

coframes (7.2.4). For brevity, we will write

ha = 7h (ha) = 7a, dxA = 7'h(dx') = h'(x)rya.

Let Ah be a principal connection on Sh and let

D : J1Sh , T*X ®Sh,
Sh

D = (,Y - Aab\LabABVB)dx^` (9 8A,
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be the corresponding covariant differential (2.2.7), where

VSh=ShXSh.
X

The first order differential Dirac operator is defined on Sh by the composition

Dh=7'hoD:JlSh->T*X®Sh->Sz, (7.5.10)

1
YA o Dh = ha7'aAB(Y - 1 Aab\LabABYB)•

Remark 7.5.3. The spinor bundle Sh is a complex fibre bundle with a real structure

group over a real manifold. Of course, one can regard such a fibre bundle as the real

one. In particular, the jet manifold JiSh with coordinates (x', yA, yA) is defined as

usual. •

The h-associated spinor bundle Sh is equipped with the fibre spinor metric

ah:S"xSh-..
X

ah(v, v' ) = 2 (v+ry°v' + v +°v), v, v E Sh.

Using this metric and the Dirac operator (7.5.10), one can define Dirac's Lagrangian

on J1Sh in the presence of a background tetrad field h and a background connection

Ah on Sh as

Lh : J1Sh -^ nT*X,

Lh = [ah (iDh(w ), w) - mah (w, w)]h° n • • • A h3, w E J1Sh.

Its coordinate expression is

'Ch = {2h9 [yA(Y°Yq)AB (yA _
-A^abLabBC2JC) - (7.5.11)

(y A- 2A\abyCl'ab)(Y°-Y9)ABY' ] -mya (7^°)ABYB }det(hµ ).

Note that there is one-to-one correspondence between the principal connections,

called spin connections, on the h-associated principal spinor bundle ph and the

Lorentz connections on the L-principal bundle LhX. Indeed, it follows from Theorem

6.1.3 that every principal connection

Ah = dx® ® (0A+ 2A, Eab) (7.5.12)
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on Ph defines a principal connection on LhX which is given by the same expression

(7.5.12). Conversely, the pull-back zhAh on ph of the connection form Ah of a

Lorentz connection Ah on LhX is equivariant under the action of the group L. on

ph and, consequently, it is a connection form of a spin connection on ph.

In particular, the Levi-Civita connection of a pseudo-Riemannian metric g gives

rise to the spin connection with the components

AAab = l)kbha(aahL - by{aµ„} (7.5.13)

on the g-associated spinor bundle S9.
We consider the general case of a spin connection generated on ph by a world

connection K. The Lorentz connection Kh induced by K on LhX is given by the

local connection 1-form (7.2.20), and it defines the corresponding spin connection

on Sh

Kh = dxA ®[aa + 1(nkbha - 77 kahb)(aAhk - hkKA v)LabABYBaA], (7.5.14)

where Lab are the generators (7.5.5) [123, 248, 270].

Substituting the spin connection (7.5.14) in the Dirac operator (7.5.10) and

Dirac's Lagrangian (7.5.11), we obtain a description of Dirac fermion fields in the

presence of an arbitrary world connection on a world manifold, not only of the

Lorentz type.
Motivated by the connection (7.5.14) (see Remark 2.4.2), one can obtain the

canonical lift

a
T = FA a,\ + 1(ykbha - 77 kahb)(T)aahk - hkavyµ)LabAByBaA (7.5.15)

of vector fields T on X onto the spinor bundle Sh [123, 269]. The lift (7.5.15) can

be brought into the form

T{} - 1 (77kbha - ,kahbb )hvVv r"LabABYBaAj

where T{} is the horizontal lift of T by means of the spin Levi-Civita connection

for the tetrad field h, and
O,,-rµ

are the covariant derivatives of T relative to the

Levi-Civita connection [101, 181].
From now on, we will assume that a world manifold X is non-compact and

parallelizable in accordance with Remark 7.2.1. In this case, all Dirac spin structures

are equivalent, i.e., the principal spinor bundles ph and ph' are isomorphic [14,
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119]. This property remains true for all spin structures on X which are generated

by the two-fold universal covering groups (see Remark 7.5.2). Nevertheless, the

associated structures of the bundles of Minkowski spaces MhX and Mh'X (7.2.7)

on the cotangent bundle T*X are not equivalent, and so are the representations -yh

and ryh' (7.5.9) [123, 263]. It follows that every Dirac fermion field must be described

in a pair (sh, h) with a certain tetrad field h, and Dirac fermion fields in the presence

of different tetrad fields fail to be given by sections of the same spinor bundle. This

fact exhibits the physical nature of gravity as a Higgs field. The goal is to construct

a bundle over X whose sections exhaust the whole totality of fermion-gravitation

pairs [123, 272, 273]. Following the general scheme of describing symmetry breaking

in Section 6.5, we will use the fact that the frame bundle LX is the principal bundle

LX -> ET over the tetrad bundle ET (7.2.1) with the structure Lorentz group L.

The group GL4 has the first homotopy group Z2. Therefore, GL4 admits the

universal two-fold covering group GL-4 such that the diagram

GL4 --> GL4

I I
LS z` - L

(7.5.16)

commutes. Let us consider the corresponding two-fold covering bundle LX -i X of

the frame bundle LX [74, 194, 243, 288]. However, the spinor representation of the

group GL4 is infinite dimensional. Therefore, the LX-associated spinor bundle over

X describes infinite-dimensional "world" spinor fields, but not the Dirac ones (see

[150] for details). At the same time, since the fibre bundle

LX -> ET (7.5.17)

is an LS principal bundle over the tetrad bundle ET = LX /Ls, the commutative

diagram

LX -* LX
(7.5.18)

provides a Dirac spin structure on the tetrad bundle ET. One can show that the

spin structure (7.5.18) is unique [123, 124, 272, 273]. This spin structure, called the

universal spin structure, possesses the following property.
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Owing to the commutative diagram (7.5.16), we have the commutative diagram

LX --z-+ LX

1 1 (7.5.19)

Phi LhX

for any tetrad field h [114, 123 , 272, 273]. This means that , given a tetrad field h, the

restriction h*LX of the LS principal bundle (7.5.17) to h(X) C ET is isomorphic to

the LS principal subbundle ph of the fibre bundle LX -* X which is the h-associated

Dirac spin structure.

Let us consider the spinor bundle

S = (LX x V)/LS -+ ET (7.5.20)

associated with the LSprincipal bundle (7.5.17), and the corresponding composite

spinor bundle

S-* ET X, (7.5.21)

which however is not a spinor bundle over X.

Given a tetrad field h, there is the canonical isomorphism

ih : Sh = (ph X V)/L3 -* (h*LX x V)/Ls

of the h-associated spinor bundle Sh (7.5.8) onto the restriction h*S of the spinor

bundle S -+ ET to h(X) C ET (see Proposition 2.7.1). Thence, every global section

sh of the spinor bundle Sh corresponds to the global section ih 0 sh of the com-

posite spinor bundle (7.5.21). Conversely, every global section s of the composite

spinor bundle (7.5.21), which projects onto a tetrad field h, takes its values into the

subbundle ih(Sz) C S (see Proposition 2.7.2).

Let the frame bundle LX - X be provided with a holonomic atlas {US, To(},

and let the principal bundles LX -* ET and LX ET have the associated at-

lases {UE, zE } and {UE, zE = z o z'}, respectively. With these atlases, the composite

spinor bundle S (7.5.21) is equipped with the bundle coordinates (x', o , NA), where

(xA, o ) are coordinates of the tetrad bundle ET such that o are the matrix compo-

nents of the group element (TOC o z6)(a), v E UE, 7rrx(a) E U. For any tetrad field

h, we have (o o h)(x) = ha(x) where ha (x) = Ha o zE o h are the tetrad functions

(7.2.5) with respect to the Lorentz atlas {zE o h} of LhX.
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The spinor bundle S -* ET is the subbundle of the bundle of Clifford algebras

which is generated by the bundle of Minkowski spaces

EM = (LX x M)/L -> ET (7.5.22)

associated with the L-principal bundle LX -> E . Since the fibre bundles LX -+ X

and GL4 -^ GL4/L are trivial , so is the fibre bundle (7.5.22 ). Hence, it is isomorphic

to the product ET x T*X. Then there exists the representation
x

yE : T*X ® S = (LX x (M (9 V))/L$ -* (LX x -y(M (& V))/L6 = S (7.5.23)

given by the coordinate expression

dx' = '(dxa) = Uaya.

Restricted to h(X) C ET, this representation recovers the morphism ryh (7.5.9).

Using the representation yE (7.5.23), one can construct the total Dirac operator

on the composite spinor bundle S as follows . Since the bundles LX -> ET and

ET -+ X are trivial , let us consider a principal connection A (6.5.7) on the LS

principal bundle LX -+ ET given by the local connection form

A = (4abd(xa + AAabd.4) ® Lab,

a A,\ab =_ 2 (^kb5a - 7Ika^µ)o,kKaN'v,

Akab =
2 (77 kboa _ 77 kaab )

(7.5.24)

(7.5.25)

where K is a world connection on X. This connection defines the associated spin

connection

1
AE = dxa ® (aa +

1A\abLabAB YBaA) + (7.5.26)

d0k ®(aµ + 1 AkabLab AByBaA)

on the spinor bundle S --+ ET. The choice of the connection (7.5.24) is motivated by

the fact that, given a tetrad field h, the restriction of the spin connection (7.5.26)

to Sh is exactly the spin connection (7.5.14).
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The connection (7.5.26) yields the first order differential operator D (2.7.15) on

the composite spinor bundle S --+ X which reads

D:JlS->T*X®S,
ET

dx' ® [ya - 2 (A\ ab +
Akab T k)LabABYBI1A =

A 1
- ykaor b)(Qak - u'Kaµv)LabAByB1 aA•dxA ® [Y 4( 77

(7.5.27)

The corresponding restriction Dh (6.5.9) of the operator D (7.5.27) to J1Sh C J1S

recovers the familiar covariant differential on the h-associated spinor bundle Sh -*

X4 relative to the spin connection (7.5.15).
Combining (7.5.23) and (7.5.27) gives the first order differential operator

D=-YET 0 D : J ' S
ET

(7.5.28)

A yB o D= Qa7aBA[yA - 4(7lkbor a - ^ka01 b )(uAk - ^kKaµv)LabAByB],

on the composite spinor bundle S --* X. One can think of D as being the total Dirac

operator on S since, for every tetrad field h, the restriction of D to J1Sh C J1S is

exactly the Dirac operator Dh (7.5.10) on the spinor bundle Sh in the presence of

the background tetrad field h and the spin connection (7.5.14).
Thus, we come to the model of the metric-affine gravity and Dirac fermion fields.

The total configuration space of this model is the jet manifold J'Y of the bundle

product

Y = CK X S (7.5.29)
ET

where CK is the bundle of world connections (7.1.6). This product is coordinated

by (xl', Ua, kµ,,Q, yA)

Let JETY denote the first order jet manifold of the fibre bundle Y --> ET. This

fibre bundle can be endowed with the spin connection

Ay : Y -> JETY P2. JETS,

Ay = dxj' ® A + AaabLabAByBaA) + dak ®(aµ + AµabLabABYBaA), (7.5.30)

where Akab is given by the expression (7.5.25), and

AAab = _ 2
(ykb01 a

_ nkaQb )Qk
µ W



7.5. SPIN CONNECTIONS 253

Using the connection (7.5.30), we obtain the first order differential operator

Dy:J1Y-->T*X®S,
E

Dy = dxA ® [ya - 407kbaµ - 77kaaµ)(aak - a%kaµv ) LabAByB]8A (7.5.31)

and the total Dirac operator

Dy = -yEoD: J1Y-*T*X®S-+S,
E

A
yB o Dy = aa7'aBA[ya - 4

(T7kbaµ - 77a
- o,kkaµv ) LabAByB], (7.5.32)

on the fibre bundle Y -> X. Given a world connection K : X -> CK, the restrictions

of the spin connection Ay (7.5.30), the operator Dy (7.5.31) and the Dirac operator

Dy (7.5.32) to K*Y are exactly the spin connection (7.5.26) and the operators

(7.5.27) and (7.5.28), respectively.
The total Lagrangian on the configuration space J1Y of the metric-affine gravity

and fermion fields is the sum

L = LMA + LD (7.5.33)

of a metric-affine Lagrangian

al') , µv µ v ab
LMA(R1,,\' ,3 , a = aaaby

and Dirac' s Lagrangian

LD = [ay(iD(w), w) - mas(w, w)]u A • • • A a3, w E J1S,

where as = uµdxµ and

ay (v, v') = 2 (v+ry°v' + v'+-y°v)

is the fibre spinor metric onto the fibre bundle Y , (CK X ET). Its coordinate

expression is

LD = 2aq [yA(Y°Y°)AB(yA - 4(77kbaµ
- 77kaabµ)(aak - akkaµv)LabBCYC) -

(Y A - 4(ykbaµ
a

_ ykaaµ )(a^k - akka``v )yCLabCA (Y° Y9)AByB] - (7.5.34)

myA('Y°)AByB}Ja 1, a = det(aµv).
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It is readily observed that

aLD aLD
(7.5.35)

aka +ak„µa =0,

i.e., Dirac's Lagrangian (7.5.34) depends only on the torsion of a world connection.

Note that, since the universal spin structure is unique, the GL4-principal bundle

LX -+ X4 as well as the frame bundle LX admits the canonical lift of any dif-

feomorphism f of the base X [74, 123, 154]. This lift yields the general covariant

transformation of the associated spinor bundle S --+ ET over the general covariant

transformations of the tetrad bundle ET. The corresponding canonical lift onto S

of a vector field on X can be constructed (see [123, 272, 273] for details). The

goal is the energy-momentum conservation law in gauge theory on spinor bundles.

One can show that the corresponding energy-momentum current reduces to the

generalize Komar superpotential (7.4.23) [123, 270]. It should be emphasized that

Dirac fermion fields do not contribute to this superpotential because of the relation

(7.5.35).

7.6 Affine world connections

Being a vector bundle, the tangent bundle TX of a world manifold X has a natural

structure of an affine bundle. Therefore, one can consider affine connections on TX,

called affine world connections. Here we will study them as principal connections.

Let Y -+ X be an affine bundle with a k-dimensional typical fibre V. It is associ-

ated with a principal bundle AY of affine frames in Y, whose structure group is the

general affine group GA(k, R). Then any affine connection on Y -+ X is associated

with a principal connection on AY -+ X. These connections are represented by

global sections of the affine bundle J1AY/GA(k, R) -+ X, and they always exist.

As was mentioned in Section 2.5, every affine connection IF (2.5.1) on Y -+ X

defines a linear connection r (2.5.2) on the underlying vector bundle V --+ X. This

connection r is associated with a linear principal connection on the principal bundle

LY of linear frames in Y, whose structure group is the general linear group GL(k, R).

We have the exact sequence of groups

0 -+ Tk -+ GA(k, R) -+ GL(k, 1, (7.6.1)

where Tk is the group of translations in Rk. It is readily observed that there is the

corresponding principal bundle morphism AY --+ LY over X such that the principal
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connection P on LY is the image of the principal connection IF on AY -+ X under

this morphism in accordance with Theorem 6.1.3.

The exact sequence (7.6.1) admits a splitting GL(k, R) GA(k, R), but this

splitting fails to be canonical (see, e.g., [177]). It depends on the morphism

V3VI--*V-v0EV,

i.e., on the choice of an origin vo of the affine space V. Given vo, the image of

the corresponding monomorphism GL(k, R) -+ GA(k, R) is the stabilizer G(vo) C

GA(k, R) of vo. Different subgroups G(vo) and G(vo) are related with each other as

follows:

G(vo) = T(vo - vo)G(vo)T-1(v0' - vo),

where T(vo - vo) is the translation along the vector (vo - vo) E V.

Remark 7.6.1. Accordingly, the well-known morphism of a k-dimensional affine

space V onto a hypersurface yk+1 = 1 in Rk+1 and the corresponding representation

of elements of GA(k, R) by particular (k + 1) x (k + 1)-matrices also fail to be

canonical. They depend on a point vo E V sent to vector (0, ... , 0, 1) E Rk+1 •

One can say something more if Y -* X is a vector bundle provided with the

natural structure of an affine bundle whose origin is the canonical zero section 0.

In this case, we have the canonical splitting of the exact sequence (7.6.1) such that

GL(k, R) is a subgroup of GA(k, R) and GA(k, R) is the semidirect product of

GL(k, ll8) and the group T(k, R) of translations in Rk. Given a GA(k, R)-principal

bundle AY -+ X, its affine structure group GA(k, R) is always reducible to the

linear subgroup GL(k, R) since the quotient GA(k, III)/GL(k, R) is a vector space

R c provided with the natural affine structure. The corresponding quotient bundle

is isomorphic to the vector bundle Y - X. There is the canonical injection of the

linear frame bundle LY '-+ AY onto the reduced GL(k, R)-principal subbundle of

AY which corresponds to the zero section 6 of Y -+ X. In this case, every principal

connection on the linear frame bundle LY gives rise to a principal connection on

the affine frame bundle in accordance with Theorem 6.5.7. This is equivalent to

the fact that any affine connection r' on a vector bundle Y -+ X defines a linear

connection r on Y -+ X and that every linear connection on Y --+ X can be seen as

an affine one (see Section 2.5). Hence, any affine connection r on the vector bundle

Y -+ X is represented by the sum of the associated linear connection r and a basic



256 CHAPTER 7. SPACE-TIME CONNECTIONS

soldering form a on Y -+ X. Due to the vertical splitting (1.1.15), this soldering

form is given by a global section of the tensor product T*X ® Y.

Let now Y -+ X be the tangent bundle TX -+ X considered as an affine bundle.

Then the relationship between affine and linear world connections on TX is the

repetition of that we have said above. In particular, any affine world connection

K = dx' ® [KK",.(x)x' + Qa (x)]a" (7.6.2)

on TX -+ X is represented by the sum of the associated linear world connection

K = Ka"µ(x)iN'dx' ®a" (7.6.3)

on TX - X and a basic soldering form

a = Qa(x)dxA ®a" (7.6.4)

on Y -+ X, which is the (1, 1)-tensor field on X. For instance, if a = 8x, we have

the Cartan connection (2.5.4).
It is readily observed that the soldered curvature (2.3.8) of any soldering form

(7.6.4) equals zero. Then we obtain from (2.3.11) that the torsion (2.5.3) of the affine

connection K (7.6.2) with respect to a (7.6.4) coincides with that of the associated

linear connection K (7.6.3) and reads

T = 2 Sa",,,dxµ A dx ® ®a",
Ta"µ = Ka"Vaµ - Kµ"„Qa. (7.6.5)

The relation between the curvatures of the affine world connection K (7.6.2) and

the associated linear connection K (7.6.3) is given by the general expression (2.3.12)

where p = 0 and T is (7.6.5).

Remark 7.6.2. On may think on the physical meaning of the tensor field a (7.6.4).

Sometimes , it is mistakenly identified with a tetrad field, but, as we have seen, these

fields have the different mathematical nature (see [161, 263] for a discussion). One

can use as dx' as a non-holonomic coframes in the metric-affine gauge theory with

non-holonomic GL4 gauge transformations (see, e.g., [150]). In the gauge theory of

dislocations in continuous media [164] and the analogous gauge model of the fifth

force, the field a is treated as an elastic distortion [261, 262, 263]). •



Chapter 8

Algebraic connections

In quantum theory, we almost never deal with bundles in their traditional geomet-

ric description as fibrations of manifolds, but with modules and sheaves of their

sections. By this reason, jets and connections should be described in the same alge-

braic terms. This Chapter is devoted to the notion of connections on modules and

sheaves over commutative algebras and rings (see [184]). Such an algebraic notion of

connections is equivalent to the geometric one in the case of smooth vector bundles.

Generalizing this construction to modules and sheaves over graded commutative
algebras, we come to graded connections and superconnections in Chapter 9. The

further generalization is connections on modules over non-commutative algebras.

These are connections in non-commutative geometry studied in Chapter 14.

8.1 Jets of modules

We start from some basic elements of the differential calculus in modules [123, 184,

185] (the reader is referred to [193, 204] for algebraic theory of rings and modules;

see also Section 14.1).

Let 1C be a commutative ring (i.e., a commutative associative unital 7G-algebra)

and A a commutative unital 1C-algebra, i.e., A is both a /C-module and a commu-

tative ring (called sometimes a 1C-ring). For the sake of simplicity, the reader can

think of A as being a ring of real smooth functions on a manifold. Let P and Q be

left A-modules. Right modules are studied in a similar way. The set Hom)c(P, Q)

of 1C-module homomorphisms of P into Q is endowed with the A - A-bimodule

257
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structure by the left and right multiplications

(ao)(p) = ap(p), (¢*a)(p) = d(ap), a E A, p E P. (8.1.1)

However , this is not a central A-bimodule because aq 0 0 * a in general. Let us

denote

Saq = aO -0 *a. (8.1.2)

DEFINITION 8.1.1. An element A E Hom /C (P, Q) is called an s-order linear

differential operator from the A-module P to the A-module Q if

6.110 ...ObagA=0

for arbitrary collections of s + 1 elements of A. It is also called a Q-valued differential

operator on P. Throughout this Chapter, by differential operators are meant linear
differential operators. q

Example 8.1 .1. By virtue of Definition 8.1.1, a first order linear differential oper-

ator A obeys the condition

ba o Sb0)(p) = A(abp) - a0(bp) - bA(ap) + ab0(p) = 0

for all p E P, b,c E A. •

(8.1.3)

The set Diff 8(P, Q) C Hom x(P, Q) of s-order Q-valued differential operators on

P is endowed with the A - A-bimodule structure (8.1.1). It is clear that

Diff 3(P, Q) C Diff k(P, Q), k > s.

At the same time, one must distinguish the A-bimodule Diff 8(P, Q) from the same

set provided separately with the left A-module structure and the right A-module

structure. We denote these modules by Diff s (P, Q) and Diff s (P, Q), respectively.

For example, put P = A and consider the morphism

3D9 : Diff - (A, Q) -' Q,

0, (A) V A(1), 1 E A.

This morphism is an s-order differential operator on the right module Diff -(A, Q),

and a 0-order differential operator on the left module Diff (A, Q).
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THEOREM 8 .1.2. For any differential operator A E Diff s (P, Q), there exists a

unique homomorphism

fo : P - Diff -(A, Q),
[fo(p)](a) = A(ap), Va E A,

such that the following diagram commutes:

fA
P -+ Diff, (A,Q)

Q

The correspondence A H fA defines the isomorphism

Hom A(P, Diff s (A , Q)) = Diff s (P, Q). (8.1.4)

In other words, every differential operator from an A-module P to an A-module Q
is represented by a morphism of P to the module of differential operators from A

to Q. One says that the A-module Diff - (A, Q) is the representative object of the

functor P -> Diff s (P, Q). Therefore, we can concentrate our attention mainly to

Q-valued differential operators on the algebra A.

DEFINITION 8.1.3. A first order differential operator a from A to an A-module Q

is called the Q-valued derivation of the algebra A if it obeys the Leibniz rule

a(aa') = aa(a') + a'a(a), Va, a' E A. (8.1.5)

This is a particular condition (8.1.3). q

Since aa, Va E A, is also a derivation, derivations constitute the submodule

a (A, Q) of the left A-module Diff i (A, Q). At the same time, a*a is not a derivation

in general. Therefore, a(A, Q) is endowed with the structure of a right K-module

only. There exists the right IC-module monomorphism

i : a(A, Q) -p Diff 7 (A, Q). (8.1.6)

It is easily seen that a first order differential operator A belongs to 0 (A, Q) if and

only if 0(1) = 0. Hence, we have the exact sequence of IC-modules

0 , a(A, Q) -- Diff i (A, Q) -* Q -^ 0.
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Remark 8.1.2. Let i : P -* Q be an A-submodule of the A-module Q. Any

P-valued derivation a of A yields the Q-valued derivation i o a of A, and we obtain

the homomorphism of the left A-modules

ali : a (A, P) -> a(A,Q). (8.1.7)

A difficulty arises if P is not an A-submodule of Q just as in the case of the injection

(8.1.6). •

Let us apply the derivation functor (8.1.7) to the injection (8.1.6). The module

a (A, Diff i (A, Q)) consists of the derivations of A with values into the right A-

module Diff i (A, Q). If a E -0(A, Diff i (A, Q)), then 8(a) E Diff i (A, Q), Va E A,

such that

a(aa') = a(a) * a' + a(d) * a, Va, a' E A.

Let us consider the module D (A, a (A, Q) ), where i) (A, Q) is regarded as a left A-

module. Elements a E O(A, a(A, Q)) satisfy the condition

a(aa') = a'a(a) + aa(a'), Va, a' E A.

Then it is easily verified that the intersection

D2 (A Q) = D(A, a(A, Q)) n o(A, Diff i (A, Q))

consists of those elements of a (A, Diff -, (A, Q)) which obey the relation

(a(a))(a') = (a (a'))(a)•

This is a left A-module. We have the obvious monomorphism

a2(A, Q) -> a(A, Diff -,(A, Q))•

Set up inductively

an+1(A, Q)
def

a (A on(A, Q)) n Z) (A , (Diff -, (A, P))n),

where

(8.1.8)

(Diff 1 (Q))k def Duff i (A , • • • , Duff i (A, Duff i (A, Q)) • • •)-
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The monomorphism (8.1.8) is generalized to higher order derivations as

ak(A, Q) - ak-1(A, Diff i (A, Q))• (8.1.9)

Turn now to the modules of jets. Given an A-module P, let us consider the

tensor product A® P of /C-modules provided with the left A-module structure
1C

b(a (9 p) aef (ba) ®p, `db E A.

For any b E A, we introduce the left A-module morphism

(8.1.10)

bb(a (9 p) _ (ba) ®p - a (9 (bp). (8.1.11)

Let pk+1 be the submodule of the left A-module A® P generated by all elements of
JC

the type

bbo o ... o bbk (1 (& p).

DEFINITION 8.1.4. The k-order jet module of the A-module P is defined to be

the quotient jk(P) of A ® P by µk+1. It is a left A-module with respect to the

multiplication

b(a ®p mod 1&1) = ba ®pmod pk+1 (8.1.12)

Besides the left A-module structure induced by (8.1.10), the k-order jet module

3k(P) also admits the left A-module structure given by the multiplication

b* (a ®p mod pk+1) = a ® (bp) mod pk+1 (8.1.13)

It is called the *-left module structure. There is the *-left A-module homomorphism

jk : p -, ^k (P), Jkp = 1®p mod µk+1 (8.1.14)

such that 3k(P) as a left A-module is generated by the elements Jkp, p E P. It is

readily observed that the homomorphism 3k (8.1 .14) is a k-order differential operator

(compare the relation (8.1.3) and the relation (8.1.15) below).
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Remark 8.1.3. If P is a A - A-bimodule, the tensor product A ® P is also provided
x

with the right A-module structure

(a®p)b =a®pb, dbEA,

and so is the jet module 1k(P):

(a (9 p mod µk+l) b = a ® (pb) mod pk+1.

If P is a central bimodule, i.e.,

ap=pa, VaEA, pEP,

the *-left A-module structure (8.1.13) is equivalent to the right A-module structure

(8.1.15). •

The jet modules possess the properties similar to those of jet manifolds. In

particular, since a' C µS, r > s, there is the the inverse system of epimorphisms

x(P) s-1(p) -,... P.

-->Given the repeated jet module S(;jk(P)), there exists the monomorphism ;1,+k (p)

3S(3k(p))•

Example 8 .1.4. The first order jet module 3' (P) consists of elements a®p mod p2,

i.e., elements a ® p modulo the relations

ba o bb(1 (& p) = (8.1.15)

(6a o 6b3') (p) = 10 (abp) - a (9 (bp) - b ®(ap) + ab ®p = 0.

The morphism 7ro :,3'(P) -+ P reads

701 : a& p mod µ2 -+ ap. (8.1.16)

THEOREM 8.1.5. For any differential operator A E Diff s (P, Q) there is a unique

homomorphism f ° : ,3s (P) -+ Q such that the diagram

p '' X (P)

A\/f°
Q
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is commutative. q

Proof. The proof is based on the following fact [185]. Let h E Hom A(A ® P, Q)

and

a:P3p-is®pEA®P,

then

bb(h o a)(p) = h(6b (a (9 p))•

The correspondence A H f ° defines the isomorphism

Hom A ( i8(P), Q) = Diff 9(P, Q),

QED

(8.1.17)

which shows that the jet module 38(P) is the representative object of the functor

Q -p Diff s (P, Q).

Let us consider the particular jet modules 38(A) of the algebra A, denoted simply

by 31. The module 33 can be provided with the structure of a commutative algebra

with respect to the multiplication

(aJsb) • (a'J9b) = aa'J8(bb').

In particular, the algebra 31 consists of the elements a ® b modulo the relations

a®b+b®a=ab®1+1®ab.

It has the left A-module structure

c((a 0 b) modµ2 ) = (ca) ® bmodii2

(8.1.12 ) and the *-left A-module structure

c * ((a (9 b) mod µ2 ) = a ®(cb) modµ2

(8.1.18)

(8.1.19)

(8.1.20)

(8.1.13) which coincides with the right A-module structure (8.1.15) (see Remark

8.1.3). We have the canonical monomorphism of left A-modules

i1:A->31, i1:aHa®1modµ2, (8.1.21)
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and the corresponding projection

^1 -* 31/Imil = (Kerp1)modp2 = f71, (8.1.22)

a®bmod ft 2-*(a®b-ab(9 1)mod IL2.

The quotient 01 (8.1.22) consists of the elements

(a ®b - ab (9 1) mod µ2, da, b E A.

It is provided both with the central A-bimodule structure

c((a ® b - ab (9 1) mod µ2) = (ca ® b - cab ® 1) mod p2, (8.1.23)

((1®ab-b®a)mod p2)c= (10 abc-b(9 ac)modp2 (8.1.24)

and the *-left A-module structure

c*((a®b-ab®1)mod p2)=(a®cb-acb®1)mod p2. (8.1.25)

It is readily observed that the projection (8.1.22) is both the left and *-left module

morphisms . Then we have the *-left module morphism

d' :A +^1 -> 171, (8.1.26)

d':b -1®bmodp2-*(1®b-b(9 1)mod p2,

such that the central A-bimodule 171 is generated by the elements d1(b), b E A, in

accordance with the law

adlb = (a ® b - ab (9 1) mod p2 = (1 ® ab) - b ® a) mod p2 = (d1b)a. (8.1.27)

PROPOSITION 8.1.6. The morphism d1 (8.1.26) is a derivation from A to 171 seen

both as a left A-module and A-bimodule. q

Proof. Using the relations (8.1.18), one obtains in an explicit form that

d' (ba) = (1 ®ba - ba ®1) mod p2 =

(b ®a + a ®b - ba ®1 - ab (9 1) mod p2 = bd1a + ad1b. (8.1.28)

This is a 171-valued first order differential operator. At the same time,

d1(ba) = (1®ba-ba®1+b(9 a-b®a)mod µ2 = (dlb)a+bd1a.
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QED

With the derivation d1 (8.1.26), we get the left and *-left module splitting

31 =A ® D1, ( 8.1.29)

a31(cb) = ail(cb) + ad'(cb). (8.1.30)

Accordingly, there is the exact sequence

0->i71-->31->A- 0

which is split by the monomorphism (8.1.21).

PROPOSITION 8.1.7. There is the isomorphism

31(P) _ Il l ®P,

(8.1.31)

(8.1.32)

where by 31 ® P is meant the tensor product of the right (*-left) A-module 31

(8.1.20) and the left A-module P, i.e.,

[a 0 b mod A2] ®p = [a ®1 mod µ2] ® bp.

Proof. The isomorphism (8.1.32) is given by the assignment

(a (9 bp) mod µ2 H [a ®b mod p2] ®p.

The isomorphism (8.1.29) leads to the isomorphism

31(P)=(A®D1)®P,

(8.1.33)

QED

(a ® bp) mod µ2 <--> [(ab + ad' (b)) mod µ2] ® p,

and to the splitting of left and *-left A-modules

31(P) = (A® P) (D (D1 ® P), (8.1.34)
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Applying the projection 7ro (8.1.16 ) to the splitting (8.1.34), we obtain the exact

sequence of left and *-left A-modules

0 -XD1®P->31(P) 1^+ P -p0, (8.1.35)

0-> [(a(9 b-ab01)modp2] ®p--^ [(c®1+a®b-ab01)mod µ2] ®p

= (c®p+a®bp - ab(9p)mod µ2 ->cp,

similar to the exact sequence (8.1.31). This exact sequence has the canonical split-

ting by the *-left A-module morphism

P3apta®p+d1(a)®p.

However, the exact sequence (8.1.35) needs not be split by a left A-module mor-

phism. Its splitting by a left A-module morphism (see (8.2.1) below) implies a
connection. On can treat the canonical splitting (8.1.21) of the exact sequence

(8.1.31) as being the canonical connection on the algebra A.

In the case of 3S, the isomorphism (8.1.17) takes the form

Hom A(35, Q) = Diff S(A, Q). (8.1.36)

Then Theorem 8.1.5 and Proposition 8.1.6 lead to the isomorphism

HorA(D 1, Q) = a(A, Q). (8.1.37)

In other words, any Q-valued derivation of A is represented by the composition

hod', h E HomA(1)1, Q), due to the property d'(1) = 0.

Example 8 .1.5. If Q = A, the isomorphism (8.1.37) reduces to the duality

relation

HomA (.01, A) = a(A), (8.1.38)

u(a) = u(d'a), a E A,

i.e., the module DA coincides with the left A-dual 1)1* of D'. •

Let us define the modules i)k as the skew tensor products of the IC-modules

PROPOSITION 8.1.8. [185]. There are the isomorphisms

Hom A(!)k, Q) = Dk (A,Q), (8.1.39)

HorA(31Pk), Q) = Ok(Diff i(Q))• (8.1.40)
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The isomorphism (8.1.39) is the higher order extension of the isomorphism

(8.1.37). It shows that the module SD's is a representative object of the derivation
functor Q - ak(A, Q).

The monomorphism (8.1.9) and the isomorphism (8.1.40) imply the homomor-
phism

hk : 31(tDk-1) Dk

and define the operators of exterior differentiation

dk=hkoJ1:Dc_l ,. Dk.

These operators constitute the De Rham complex

dl 1 d2 k dk+10--*A -* D -*... D ....

(8.1.41)

(8.1.42)

Remark 8 . 1.6. Let an A-module P be a 1C-ring such that there is the monomor-
phism A -* P. Point out the essential difference between the jet modules 3k(P) of
P as an A-module and the jet modules 3k of P as a )C-ring. In particular, we have
the canonical monomorphism (8.1.21) of P to.31, but not to 3k(p). •

Let us turn now to the case when A is the ring CO°(X) of smooth functions on

a manifold X.

Remark 8.1.7. Whenever referring to a topology on the ring C°°(X), we will

mean the topology of compact convergence for all derivatives . C°°(X) is a Frechet
ring with respect to this topology . Recall that a Frechet space is a complete locally
convex metrizable topological real vector space (see, e.g., [254]). •

To obtain a geometric realization of the modules over the ring Coo (X), one should

consider the subcategory of the geometric modules.

DEFINITION 8.1.9. The D°(X)-module P is called a geometric module if

n {txP =o,
xEX

where by µx is meant the maximal ideal of functions vanishing at a point x E X. q
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For the sake of brevity, one can say that elements of the geometric modules over

C°°(X) are defined only by their values at points of the manifold X. Every such
a C°°(X)-module P is identified with the module Y(X) of global sections of some

vector bundle Y -* X (which is not necessarily finite-dimensional); P is called the

structure module of the vector bundle Y. The fibre of this bundle over x is the

quotient ]R-module P/µxP.

Remark 8.1.8. A differentiable manifold can be reconstructed as the real spectrum

of its ring of smooth functions. Let Z be a manifold and pz C C°°(Z) the maximal

ideal of functions vanishing at a point z E Z. We have C°°(Z)lµ, = R. The real

spectrum SpecRC°°(Z) of C°°(Z) is called the set of all maximal ideals p of COO(Z)

such that

C°°(Z) - C°°(Z)/p

is an isomorphism (see, e.g., [11]). If the real spectrum SpecRC°°(Z) is provided

with the Zariski topology (which coincides with the Gelfand topology), then the

map

Z E) z'--+ µz E SpecRC°°(Z)

is a homeomorphism. The spectrum and the real spectrum of a graded commutative

rings can also be defined and provided with the corresponding Zariski topology [20].

It should be emphasized that, if X and X' are differentiable manifolds, the

natural morphism

C°°(X) ®C°°(X') -> C°°(X X X'),

f(x) ® f'(x') f (x)f'(x ),

induces an isomorphism of Frechet R-algebras

C°°(X)®C°°(X') = C°°(X X X'), (8.1.43)

where the left-hand side is the completion of C°°(X) ® C°°(X') with respect to

Grothendieck 's topology . Recall that, if E and E' are locally convex vector spaces,

there is a unique locally convex topology on E ® E', called Grothendieck 's topology

such that, for any locally convex vector space F, the continuous linear maps E 0

E' -4F are in natural one-to-one correspondence with the continuous bilinear maps

E x E --* F. This is the finest topology under which the canonical mapping of E x E'
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to E ® E' is continuous [254]. In particular , if E is a topological algebra, one can

write the multiplication operation as the morphism E®E -> E. •

Let us restrict our consideration to the subcategory of locally free finite C°°(X)-

modules, which is equivalent to the category of smooth finite-dimensional vector

bundles on X [184, 303]. In this case , we have the following identifications.

• The module a(C°°(X)) is identified with the C°°(X)-module T(X) of vector
fields on the manifold X.

• The module D coincides with the module 171(X) of 1-forms on X.

• The operator d" (8.1.41) is the familiar exterior differential of exterior forms

on X.

• If Y(X) is the structure module of sections of a vector bundle Y -+ X, the

modules of jets lk(Y(X)) are identified with the modules J"Y(X) of sections
of the jet bundles J'`Y - X.

• The jet functor jk (8.1 . 14) is exactly the ordinary functor of the k-order jet
prolongation . Namely, if Y(X) is a structure module of a vector bundle Y -> X

and s E P, then J'Cs is the k-order jet prolongation of s.

If X is compact, the Serre-Swan theorem states the equivalence between the cate-

gory of projective C°O(X )-modules of finite rank and smooth complex vector bundles

over X [168, 287, 300] (see Theorem 14.1.1 below).

8.2 Connections on modules

To introduce the notion of a connection in the category of A-modules, let us return

to the exact sequence (8.1.35). It has no canonical splitting. Moreover, it needs not

be split in general.

DEFINITION 8.2.1. By a connection on a A-module P is called a left A-module

morphism

r : P -+ ^1(P),

F(ap) = aF(p),

(8.2.1)

(8.2.2)
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which splits the exact sequence (8.1.35). q

This splitting reads

Jlp = 1'(p) + O"(p), (8.2.3)

where V" is the complementary morphism

Or: P-- D1®P,

Vr(p) = 10 p mod i2 - r(p).

(8.2.4)

This complementary morphism makes the sense of a covariant differential on the

module P, but we will follow the tradition to use the terms "covariant differential"

and "connection" on modules and sheaves synonymously. With the relation (8.2.2),
we find that Vr obeys the Leibniz rule

Vr(ap)=da®p+aV'(p)• (8.2.5)

DEFINITION 8.2.2. By a connection on a A-module P is meant any morphism V

(8.2.4) which obeys the Leibniz rule (8.2.5), i.e., V is a (D1 ® P)-valued first order

differential operator on P. q

In view of Definition (8.2.2) and of the isomorphism (8.1.34), it is more conve-

nient to rewrite the exact sequence (8.1.35) into the form

0-->01®P, (A(5 D1)®P- P-- 0. (8.2.6)

Then a connection V on P can be defined as a left A-module splitting of this exact

sequence.
Let us show that, in the case of structure modules of vector bundles , the above

notion of a connection on modules is adequate to a familiar connection on a vector

bundle.

PROPOSITION 8.2.3. If Y --j X is a vector bundle, there exists the exact sequence

of vector bundles over X

0 ^T*X ®Y -+J'Y---> Y--*0, (8.2.7)
x
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where the morphism E is given by the coordinate expression

y'oE=O, yaoE=ya

with respect to the coordinates (xA, V',\ ) on T*X ®Y. q

The proof is based on the inspection of coordinate transformation laws.
Due to the canonical vertical splitting (1.1.15) of VY, the exact sequence (8.2.7)

gives rise to the exact sequence of fibre bundles over Y

T*X®VY ^J1Y->VY-+0,
Y

(8.2.8)

where ya o E = VA with respect to the coordinates (xA, yi, ya ) on T*X ® VY. It
is readily observed that any splitting over Y of the exact sequence (8.2.8) yields a
splitting of the exact sequence (8.2.7), and vice versa. It is clear that any linear
connection I on the vector bundle Y -+ X yields a desired splitting of the exact
sequence (8.2.8)

I':VY=YxY -J'Y,
Y

J1Y = I'(VY) ® Dr(J1Y), (8.2.9)

where Dr is the covariant differential (2.2.7), and vice versa. Since J1Y is both an
affine subbundle of the tensor bundle T*X ® TY and a vector bundle over X, its
elements over x E X are vectors

yiei + dx"(aa + yiei),

written with respect to fibre bases {ei} for the vector bundle Y -+ X and to the
holonomic bases Jai = ei} for VY. Then the corresponding splitting of the exact

sequence (8.2.7) reads

P,iY+1 :y'ei ^-+y'ei(D

(8.2.10)yiei + d? a,\ + yaei) = yiei ®I' E) Dr.

The exact sequence of vector bundles (8.2.7) implies the exact sequence of the

modules of their sections

0->i71(X)®Y(X)->J'Y(X)-+Y(X)-> 0.1 (8.2.11)
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One can derive this result from Theorem 1.1.4. Moreover, every splitting of the

exact sequence (8.2.7) define a splitting the exact sequence (8.2.11), and vice versa.

Given the splitting (8.2.10) of the exact sequence (8.2.7) of vector bundles by means

of a linear connection r, the corresponding splitting of the exact sequence (8.2.11)

is

Y(X) 9 s i--* s®ros E J'Y(X),

s+Jls=s®ros®Vr's,

where V" is the covariant differential (2.2.8) with respect to the connection r. It is

a C°°(X)-module morphism

Vr : Y(X) - 171(X) ®Y(X)

which satisfies the Leibniz rule

V(fs) = df ® s + fV(s), f E C°°(X), s E Y(X),

and splits the exact sequence

0 -+ 171 (x) ® Y(X) (C' (X) ® iD1(X )) ® Y(X) Y(X) -> 0

(8.2.12)

(8.2.13)

(cf. (8.2.6)).
It should be emphasized that, in contrast with the case of vector bundles and

their structure modules, an arbitrary exact sequence of modules need not admit a

splitting, and it may happen that a connection on a module fails to exist.

The morphism (8.2.4) can be extended naturally to the morphism

0:171®P->I2®P.

Then it is readily observed that, in the case of a structure module P = Y(X) of a

vector bundle Y -* X, the morphism

R=V2:P-*172®P

restarts the curvature (2.4.3) of a linear connection.

(8.2.14)

DEFINITION 8.2.4. The morphism R (8.2.14) is called the curvature of a connection

V on a module P. D
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In the case of the ring C°°(X) and a locally free C°°(X)-module S of finite rank,
there exist the isomorphisms

171(X) = Horn Coo(X) (t)(C°°(X)),C°°(X)), (8.2.15)

Homcoo(X) (0(C°°(X)),S) = DI(X) ®S.

With these isomorphisms, we come to other equivalent definitions of a connection

on modules.

DEFINITION 8.2.5. Any morphism

V : S --+ Hom c- (x) (D (Coo (X)), S) (8.2.16)

satisfying the Leibniz rule (8.2.5) is called a connection on a C°°(X)-module S. q

DEFINITION 8.2.6. By a connection on a C°O(X)-module S is meant a C°°(X)-

module morphism

-0(Coo (X)) 1) T i-4 V E Diff i (S, S)

such that the first order differential operators V, obey the rule

OT(fs) = (Tjdf)s+ fVTs.

(8.2.17)

(8.2.18)

Using the expression (2.4.4) for the curvature of a linear connection, one can

define the curvature of the connection (8.2.17) as a 0-order differential operator on

the module S

R(T, T') = [VT, Vi'] -
(8.2.19)

for any two vector fields T, T' E a(Coo (X)). In the case of a structure module of a

vector bundle, we restart the curvature (2.4.4).
If a S is a commutative COO(X)-ring, Definition 8.2.6 can be modified as follows.

DEFINITION 8.2.7. By a connection on C°°(X)-ring S is meant any C°°(X)-module

morphism

a(COO (X)) D T ^--p V E DS 1 (8.2.20)
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which is a connection on S as a C°°(X )-module, i.e., obeys the Leinbniz rule (8.2.18).

0

In Definition 8.2.7, we require additionally of V, to be a derivation of S in order

to maintain its algebra structure . Two such connections VT and V', differ from each

other in a derivation of the ring S which vanishes on C°° (X) C S. The curvature

of the connection (8.2.20 ) is given by the formula (8.2.19).

8.3 Connections on sheaves

There are several equivalent definitions of sheaves [40, 157, 292]. We will start from
the following one. A sheaf on a topological space X is a topological fibre bundle

S -> X whose fibres, called the stalks, are Abelian groups S., provided with the

discrete topology.
A presheaf on a topological space X is defined if an Abelian group Su corresponds

to every open subset U C X (So = 0) and, for any pair of open subsets V C U,

there is the restriction homomorphism

ruV:SU ->SV

such that

rU = Id Su, rW = rwrv, WCVCU.

Every presheaf {Su, rV} on a topological space X yields a sheaf on X whose

stalk, S,, at a point x E X is the direct limit of the Abelian groups Su, X E U, with

respect to the restriction homomorphisms rv. We refer the reader to [217] and also

to Section 11.1 for the general notion of a direct limit. Here, by a direct limit is

meant that, for each open neighbourhood U of a point x, every element s E Su

determines an element s., E S, called the germ of s at x. Two elements s E Su and

s' E SV define the same germ at x if and only if there is an open neighbourhood

W D x such that

rH,s = ru,s'.

Example 8 .3.1. For instance, let X be a topological space, C°(U) the additive

Abelian group of all continuous real functions on U C X, while the homomorphism

rV:C°(U)- C°(V)
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is the restriction of these functions to V C U. Then {C°(U), ru} is a presheaf. Two
real functions s and s' on X define the same germ s, if they coincide on an open

neighbourhood of x. The sheaf Cox generated by the presheaf {C°(U), ru} is called

the sheaf of continuous functions. The sheaf CX of smooth functions on a manifold

X is defined in a similar way. Let us also mention the presheaf of constant real

functions on open subsets of X. The corresponding sheaf is called a constant sheaf.

•

Two different presheaves may generate the same sheaf. Conversely, every sheaf
S defines a presheaf of Abelian groups S ( U) of its local sections . This presheaf is

called the canonical presheaf of the sheaf S. It is easily seen that the sheaf generated

by the canonical presheaf { S(U), rV} of the sheaf S coincides with S. Therefore,

we will identify sometimes sheaves and canonical presheaves. Note that , if a sheaf

S is constructed from a presheaf {Su, rvu}, there is the natural homomorphism

Su -+ S(U) which however is neither a monomorphism nor an epimorphism.
The direct sum, the tensor product and homomorphisms of sheaves on the same

topological space are defined in a natural way.

Let S and S' be sheaves on the same topological space X and Hom (S ju, S' 1u)

the Abelian group of sheaf homomorphisms S Ju-* S' lu for any open subset U C X.

These groups define the sheaf Hom(S, S' ) on X. It should be emphasized that

Hom(S, S')(U) # Hom (S(U), S'(U)). (8.3.1)

Let cp : X -* X' be a continuous map. Given a sheaf S on X, the direct image

cp*S on X' of the sheaf S is given by the assignment X' D U H S(f-1(U)) since

cp-1(U) is an open set in X. To define the inverse image cp*S' on X of a sheaf S' on

X', we correspond to any open set V C X the limit of S'(U) over all open subsets

U C X', V C cp- 1(U), with respect to the inclusion (recall that cp(V) is not open in

Y in general). In particular , if S' = CC, is the sheaf of smooth functions on X in

Example 8.3 . 1, its inverse image cp*CX, is the sheaf of pull-back functions on X.

The notion of a sheaf is extended to sheaves of modules , commutative rings and

graded commutative algebras [146].
Given a sheaf A on a topological space X, the pair (X, A) is called a locally

ringed space if every stalk Ax, X E X, is a local commutative ring, i.e., has a unique

maximal ideal . By a morphism of locally ringed spaces (X, A) -> (X', A') is meant

a pair (cp, -b) of a continuous map co : X --* X' and a sheaf morphism (D : A' -> cp*A.

A morphism (p, (D) is said to be:
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• a monomorphism if co is an injection and F is a surjection,

• an epimorphism if cp is a surjection, while 4 is an injection.

By a sheaf 'OA of derivations of A is meant a subsheaf of endomorphisms of A

such that any section u of DA over an open subset U C X is a derivation of the ring

A(U). It should be emphasized that, because of the inequality (8.3.1), the converse

property is not true in general. A derivation of the ring A(U) needs not be a section

of the sheaf aAIu because it may happen that, given open sets U' C U, there is no

restriction morphism a(A(U)) - D(A(U)).

Let (X, A) be a locally ringed space. A sheaf P on X is called a sheaf of A-

modules if every stalk Px, x E X, is an Ax-module or, equivalently, if P(U) is an

A(U)-module for any open subset U C X. A sheaf of A-modules P is said to be

locally free, if there exists an open neighbourhood U of every point x E X such that

P(U) is a free A(U)-module. If all these free modules are of the same rank, one

says that P is a sheaf of locally free modules of constant rank.

Example 8 .3.2. The sheaf CX of smooth functions on a manifold X in Example

8.3.1 is a sheaf of commutative rings. The stalk of germs of these functions Cxx

at a point x is a local ring, and the pair (X, CC) is a locally ringed space. In

particular, every manifold morphism c : X --> X' yields the pull-back morphism

(cp, 1) of locally ringed spaces (X, CC) -^ (X', Cr), where

-DM') = (P. o (P*)(CO) C P.(Cx ). (8.3.2)

We come to the following alternative definition of a smooth manifold [20].

PROPOSITION 8.3.1. Let X be a topological space, {Uc} an open covering of X,

and Sc a sheaf on US for every U. Let us assume that:

• if US n U£ 0, there is a sheaf isomorphism

Pc£ : SS l usnu( Sc I usnuu;

• these sheaf isomorphisms fulfill the cocycle condition

Pcc o P,t(St I ucnuunui = Pet(St 1 unu,nu.)

for every triple Us, Ug, U,.
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Then there exist a sheaf S on X and sheaf isomorphisms 0( : S lut-> SS such that

OS I uunuu= PSS ° OS I uunuf

PROPOSITION 8.3.2. Let X be a paracompact topological space, and let (X, A)

be a locally ringed space which is locally isomorphic to (RI, CR ). Then X is an
n-dimensional differentiable manifold, and there is a natural isomorphism of locally
ringed spaces (X, A) and (X, CX ). q

Let X x X' be the product of two paracompact topological spaces. For any two
open subsets U C X and U' C X', let us consider the topological tensor product
of rings C°°(U)®C°°(U') (see Remark 8.1.8). These tensor products define a sheaf
of rings on X x X which we denote by CX ®CX,. Due to the metric isomorphism

(8.1.43) written for all U C X and U' C X', we obtain the sheaf isomorphism

CX ®CX' - C'XxX'.

•

(8.3.3)

Example 8 .3.3. Let Y -+ X be a vector bundle. The germs of its sections make

up the sheaf Sy of sections of Y -* X. The stalk Sy,, of this sheaf at a point

x E X consists of the germs at x of sections of Y -> X in a neighbourhood of a

point x. The stalk Sy,, is a module over the ring CX, of the germs at x E X of
smooth functions on X. Hence, Sy is a sheaf of modules over the sheaf CX of rings

with respect to pointwise operations. The canonical presheaf of Sy is isomorphic

to the presheaf of local sections of the vector bundle Y -> X. It is called the

structure sheaf of the vector bundle Y -> X. Similarly to manifolds, a vector

bundle can be characterized by its structure sheaf, locally isomorphic to the sheaf

C0 ®Rl. In order to glue these local sheaves and to yield a globally defined sheaf in

accordance with Proposition 8.3.1, we need a cocycle of transition functions which

is an element of the first cohomology set H1(X, GL(m, R)oo) with coefficients in the

sheaf GL(m, ]Roo of smooth mapping from X into GL(m, R) (see Remark 6.9.2).

Given a structure sheaf S, the fibre YY of a vector bundle at a point x E X is

the quotient Sxl.M,, of the stalk S., by the submodule Mx of germs in S., whose

evaluation vanishes.
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Similarly, the sheaf of sections of any fibre bundle Y -+ X can be defined. It is

a sheaf of sets, which have no any algebraic structure. •

Let (X, A) be a locally ringed space and P a sheaf of A-modules on X. For
any open subset U C X, let us consider the jet module j1(P(U)) of the module

P(U). It consists of the elements of A(U) ® P(U) modulo the pointwise relations

(8.1.15). Hence, there is the restriction morphism 1(P(U)) -+ 31(P(V)) for any

open subsets V C U, and the jet modules .31(P(U)) constitute a presheaf. This

presheaf defines the sheaf 31P of jets of P (or simply the jet sheaf). The jet sheaf

31A of the sheaf A of local rings is introduced in a similar way. Since the relations

(8.1.15) and (8.1.18) on the ring A(U) and modules P(U), a'(P(U)), 31(A(U)) are
pointwise relations for any open subset U C X, they commute with the restriction

morphisms. Therefore, the direct limits of the quotients modulo these relations exist

[217]. Then we have the sheaf .t71A of 1-forms of the sheaf A, the sheaf isomorphism

31(P)_(A(D D1A)®P,

and the exact sequences of sheaves

0---+01A0 P--+^1(P)-+P-+0,

0-+i71A®P--+(A®D'A)®P-+P-+O.

(8.3.4)

(8.3.5)

They reflect the quotient (8.1.22), the isomorphism (8.1.34) and the exact sequences

of modules (8.1.35), (8.2.6), respectively.

Remark 8.3.4. It should be emphasized that, because of the inequality (8.3.1),

the duality relation (8.1.38) is not extended to the sheaves DA and D1A in general,

unless DA and 01 are locally free sheaves of finite rank. If P is a locally free sheaf

of finite rank, so is 31P (see Example 8.1.4). •

Following Definitions 8.2.1, 8.2.2 of a connection on modules , we come to the

following notion of a connection on sheaves.

DEFINITION 8.3.3. Given a locally ringed space (X, A) and a sheaf P of A-modules

on X, a connection on a sheaf P is defined as a splitting of the exact sequence (8.3.4)

or, equivalently , the exact sequence (8.3.5). q

To state the relationship between connections on modules and connections on

sheaves, let us recall some basic facts concerning exact sequences of sheaves.
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Referring to the properties of direct systems [217], we have used that an exact

sequence of presheaves defines an exact sequence of sheaves constructed from these

presheaves. Moreover, if an exact sequence of presheaves is split, we have the corre-

sponding splitting of the above mentioned exact sequence of sheaves. The converse

relation is more intricate.
Let us consider an exact sequence of sheaves

0--S'-+S->S"-->0 (8.3.6)

on a topological space X. As in the case of vector bundles, the sheaf S" in this

exact sequence is necessarily the quotient S/S'. Given an open subset U C X, the

exact sequence (8.3.6) yields the following two exact sequences of Abelian groups:

0 S'(U) S(U) S"(U) (8.3.7)

and

0-+S'(U)->S(U)- S"-0, (8.3.8)

where S" = S(U)/S'(U) does not coincide with the group of sections S"(U) of the

quotient S/S' over U in general. A sheaf S on X is called flabby if, for every pair

U C U' of open subsets of X, the restriction morphism S(U') -> S(U) is surjective.

This is equivalent to the condition that every section s c S(U) can be extended to

a global section s E S(X). It states the following.

PROPOSITION 8.3.4. If the sheaf S' in the exact sequence (8.3.6) is flabby, then

S" = S"(U), and we have the exact sequence

o S'(U) -> S(U) -> S"(U) -> 0 (8.3.9)

for every open subset U C X, i.e., there exists the exact sequence of the canonical

presheaves

0 -> {S'(U)} - {S(U)} -* {S"(U)} -+ 0 (8.3.10)

of sheaves in the exact sequence (8.3.6). q

Let the exact sequence of sheaves (8.3.6) admit a splitting , i.e., S = S' ® S",

then {S (U)} = {S'(U)} ® {S"( U)}, and the canonical presheaves form the exact

sequence (8.3.10 ). Moreover , this exact sequence is split in a suitable manner.
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Thus, we come to the following compatibility of the notion of a connection on

sheaves with that of a connection on modules.

PROPOSITION 8.3.5. If there exists a connection on a sheaf P in Definition 8.3.3,

then there exists a connection on a module P(U) for any open subset U C X.

Conversely, if for any open subsets V C U C X there are connections on the

modules P(U) and P(V) related by the restriction morphism , then the sheaf P

admits a connection. q

Example 8.3.5. Let Y -+ X be a vector bundle. Every linear connection Pon

Y -+ X defines a connection on the structure module Y(X) such that the restriction

r Iu is a connection on the module Y(U) for any open subset U C X. Then we have

a connection on the structure sheaf Yx. Conversely, a connection on the structure

sheaf Yx defines a connection on the module Y(X) and, consequently, a connection

on the vector bundle Y --> X. •

As an immediate consequence of Proposition 8.3.5, we find that the exact se-

quence of sheaves (8.3.5) is split if and only if there exists a sheaf morphism

V:P->D1.A®P, (8.3.11)

satisfying the Leibniz rule

V(fs)=df ®s+fV(s), f EA(U), s E P(U),

for any open subset U E X. It leads to the following equivalent definition of a

connection on sheaves in the spirit of Definition 8.2.2.

DEFINITION 8.3.6. The sheaf morphism (8.3.11) is a connection on the sheaf P. q

Similarly to the case of connections on modules, the curvature of the connection

(8.3.11) on a sheaf P is given by the expression

R=V2:P-*$D3 ®P. (8.3.12)

The exact sequence (8.3.5) needs not be split in general. One can obtain the

criteria of the existence of a connection on a sheaf in terms of cohomology groups.
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Remark 8.3.6. Given the exact sequence of sheaves (8.3.6) on a paracompact

topological space, we have the following exact sequence of the cohomology groups

... -* H` (X; S") -* Hk(X; S') -* Hk(X; S) - Hc(X; S") -* ... (8.3.13)

with coefficients in the sheaves S', S and S" [157].

We omit the definition of cohomology groups with coefficients in a sheaf (see,

e.g., [157]), which is the repetition of the notions of the Cech cohomology groups

with coefficients in a constant sheaf and the cohomology groups with coefficients in

a sheaf of G-valued functions in Section 6.9. Nevertheless, we will need some basic

properties of cohomology groups with coefficients in a sheaf in the sequel.

Note that, given a sheaf S on a topological space X, the cohomology group

H°(X; S) is isomorphic to the group S(X) of sections of the sheaf S over X. If S is

a sheaf of IC-modules, then the cohomology groups H'(X; S) are also K-modules.

A sheaf S on a topological space X is called acyclic if the cohomology groups

Hk'0(X; S) vanish. A flabby sheaf is acyclic.

A sheaf S on a topological space X is said to be soft if every section of S on a

closed subset of X is the restriction of some global section of S. Any soft sheaf on

a paracompact space is acyclic. On a paracompact space, any flabby sheaf is soft.

A sheaf S on a paracompact space is said to be fine if, for each locally finite

open covering U = {Ui}iE7 of X (i.e., every point of X has a neighbourhood which

intersects only with a finite number of elements of this covering), there exists a

system {hi} of endomorphisms hi : S --+ S such that:

• there is a closed subset V C Ui and hi(S:, ) = 0 if x ^ V j;

• > hi is the identity map.
iEI

A fine sheaf is soft and acyclic.

In particular, let S be a sheaf of modules over the sheaf Cox of continuous func-

tions on a paracompact space X. Let it = {Ui}iE7 be a locally finite open covering

of X. Then it has an associated partition of unity foil, i.e.:

(i) ci are real non-negative continuous functions on X,

(ii) suppoi C Ui,

(111) I0i(x)=1forallxEX.
iEI
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The functions ci can be used in order to define the homomorphisms hi : S -* S

as follows. For any open subset U C X, let us put hi (f) = ci f , f c S(U). This

defines an endomorphism hi of the canonical presheaf { S(U)} and, consequently, an

endomorphism of the sheaf S. It is readily observed that these endomorphisms hi

satisfy the definition of a fine sheaf. If X is a smooth manifold and It is an open
covering of X, there exists an associated partition of unity performed by smooth

functions . It follows that the sheaf CC of smooth functions on a manifold X is

fine and acyclic, and so are the sheaves of sections of smooth vector bundles over a

manifold X.

PROPOSITION 8.3.7. [20] . Let f : X -4 X' be a continuous map and S a sheaf on

X. If either:

• f is a closed immersion or

• every point x' E X' has a base of open neighbourhoods {U} such that the

sheaves S If-'(U) are acyclic,

then the cohomology groups H*(X; S) and H*(X'; f*S) are isomorphic. q

Let us consider the exact sequence of sheaves

0->S+S° ^--*S, ^••• (8.3.14)

on a paxacompact topological space X. This sequence is called a resolution of

the sheaf S if the cohomology groups H9(X; Sr) vanish for q > 1 and p > 0. For

instance, it takes place if the sheaves Sp>o are fine. Then the exact sequence (8.3.14)

is said to be the fine resolution of the sheaf S. The exact sequence (8.3.14) yields

the cochain complex

0 --> S(X) h. So(X) -> S1(X) -4... (8.3.15)

which is exact only at S(X). There is the well-known De Rham theorem (see, e.g.,

[157]).

THEOREM 8.3.8. Given the resolution (8.3.14) of a sheaf S on a paracompact space
X, the q-cohomology group of the cochain complex (8.3.15) is isomorphic to the

cohomology group H9(X; S) of X with coefficients in the sheaf S, i.e.,

H9>0(X; S) = Ker h*/Im hq-1, H°(X; S) = Ker h**. (8.3.16)
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For instance, let X be a connected smooth manifold, S = R the constant sheaf

of R-valued functions on X and Sp = DX the sheaves of exterior p-forms on X.

There is the sequence of the fine sheaves

0-*R- D' - D' ->... (8.3.17)

which is exact in accordance with the Poincare lemma, and so is the fine resolution

of the sheaf R on X. The corresponding sequence (8.3.15) is the De Rham complex

(6.8.3). By virtue of Theorem 8.3.8, we have the above mentioned isomorphism of

the Cech and De Rham cohomology groups H9(X;R) = H9 (X). •

Turn now to the exact sequence (8.3.5). Let P be a locally free sheaf of A-

modules. Then we have the exact sequence of sheaves

0 -> Hom(P, D1A (9 P) -> Hom(P, (A ®D'A) (9 P) --> Hom(P, P) -> 0

and the corresponding exact sequence (8.3.13) of the cohomology groups

0 - > H°(X; Hom(P, D'A ®P)) - > H°(X; Hom(P, (A E ) ®P)) -^

H°(X; Hom(P, P)) -> H1(X; Hom(P, D'A (9 P)) -> • • • .

The identity morphism Id : P -^ P belongs obviously to H°(X; Hom(P, P)). Its

image in H1(X; Hom(P, D1A ® P)) is called sometimes the Atiyah class. If this

class vanishes, there exists an element of Hom(P, (A ® 01A) (& P)) whose image is

Id P, i.e., a splitting of the exact sequence (8.3.5).

In particular, let X be a manifold and A = CC the sheaf of smooth functions

on X. The sheaf Z)CX of its derivations is isomorphic to the sheaf of vector fields

on a manifold X. It follows that:

• there is the restriction morphism a(C°°(U)) -> 17 (C°°(V)) for any open sets

VCU,

• OCX is a locally free sheaf of CX-modules of finite rank,

• the sheaves IICC and DX are mutually dual.
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Let P be a locally free sheaf of CX-modules. In this case, Hom(P, 01 (9 P) is

a locally free sheaf of CX-modules. It is fine and acyclic. Its cohomology group

HI(X; Hom(P,D1 (9 P)) vanishes, and the exact sequence

0->i7X®P-^(CX@D')®P->P-- o (8.3.18)

admits a splitting.

In conclusion, let us consider a sheaf S of commutative Q?-rings on a manifold

X. Building on Definition 8.2.7, we come to the following notion of a connection on

a sheaf S of commutative Cx-rings.

DEFINITION 8.3.9. Any morphism

zCX z) T - VTEDS,

which is a connection on S as a sheaf of CX-modules, is called a connection on the

sheaf S of rings. q

Its curvature is given by the expression

R (T,T') = [Vi, Vi'] - v[T,T,],
(8.3.19)

similar to the expression (8.2.19) for the curvature of a connection on modules.



Chapter 9

Superconnections

Elements of the graded calculus and supergeometry are present in many quantum

field models. By this reason, we start our exposition of connections in quantum

field theory from superconnections. Superconnections exemplify the algebraic con-

nections phrased in terms of graded modules and sheaves of graded commutative

algebras. We will refer to the properties of modules and sheaves in the previous
Chapter which are extended to the graded ones [146].

With respect to mathematical prerequisites, the reader is expected to be familiar

with the basics of theory of supersymmetries and supermanifolds (see, e.g., [20, 59,

79]). Nevertheless, Section 9.1 aims to recall some element of the graded tensor

calculus which we will refer to in the sequel. We omit the categorial aspects of the

constructions below, which are not essential for applications.

9.1 Graded tensor calculus

Unless otherwise stated, by a graded structure throughout this Chapter is meant a

7G2-graded structure. We use the notation [.] for the 7G2-graded parity, in contrast

with the above stated notation I . I for the 7G-graded one.

By a graded commutative ring IC is meant a ring which has two subgroups )Co

and K1, called respectively even and odd, such that K = 1Co ® K1 and

CLrC13 = -1 rs
Cl3CLT E K,.+s, ar E ACr, as E ACy, S,T = 0, 1.

A commutative ring is a particular graded commutative ring where )Cl = 0.

285
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A graded 1C-module Q is a 1C-bimodule which has two subgroups Qo and Ql such

that Q = Qo ® Ql and 1CrQs C Qr+s. A graded 1C-module is said to be free if it has

a basis generated by homogeneous elements, i.e., elements which belong to either

Qo or Q1. Each /C-graded module is obviously a 1Co-module. A basis for Q of finite

cardinality is said to be of type (n, m) if it is formed by n even and m odd elements.

In particular , by a graded vector space B = Bo ® B1 is meant a graded

module. A graded vector space is said to be (n, m)-dimensional if dim Bo = n and

dim B1 = m.

A graded commutative 1C-algebra A with a unit is a graded commutative ring

which is also a graded /C-module. The graded tensor product A1® A2 of two graded

commutative IC-algebras Al and A2 is defined as the tensor product of underlying

1C-modules equipped with the multiplication

(al ® a2) . (a' ® a2) = (-1)[a21[ai] (alai (9 a2a2)•

By a graded commutative algebra A throughout is meant a unital graded com-

mutative R-algebra. A graded commutative algebra is said to be of odd rank m

(or simply of rank m) if it is a free algebra generated over R by m odd elements.

A graded commutative Banach algebra is a graded commutative algebra if it is a

Banach algebra and the condition

llao + aill = Ilaoll + llaill

is fulfilled.
Let V be a vector space, and let

A=AV=R®AV
k=1

be its exterior algebra. This is a Z-graded commutative algebra provided with the

Z2-graded structure

Ao =R ®AV, Al = ®zn1V.
k=1 k=1

It is called the Grassmann algebra. Given a basis {ci, i E I} for the vector space V,

the elements of the Grassmann algebra take the form

a= ail...ikc:l . . . c''k (9.1.2),
k=O (il...ik)
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where the sum is over all the collections (i1 • • • ik) of indices such that no two of

them are the permutations of each other. For the sake of simplicity, we will omit the

symbol of the exterior product of elements of a Grassmann algebra. By definition,

a Grassmann algebra admits the splitting

(9.1.3)

where R = Ro ® R1 is the ideal of nilpotents of A. The corresponding projections

o, : A -> R and s : A -> R are called the body and soul maps, respectively

Remark 9.1.1. Note that there is a different definition of a Grassmann algebra

[162], which is equivalent to the above one only in the case of an infinite-dimensional

vector space V [59] (see [45] for the Arens-Michael algebras of Grassmann origin,

which are most general graded commutative algebras suitable for superanalysis, and

Remark 9.3.4 below for supermanifolds over these algebras). The Grassmann algebra

A (9.1.1) of a vector space V is a particular exterior algebra AlcQ of a graded IC-

module Q. The exterior algebra AKQ is the graded commutative /C-algebra defined

as the tensor algebra ®Q modulo the relations

q ® q' = (_1)[q][q'1q ® q.

If IC = R and Qo = 0, Ql = V, we come to the Grassmann algebra (9.1.1). Hereafter,

we will restrict our consideration to Grassmann R-algebras of finite rank. •

A Grassmann algebra of finite rank becomes a graded commutative Banach

algebra if its elements (9.1.2) are endowed with the norm

Ilall = 1 : I ail... ik
k=0 (il...ik)

Let B be a graded vector space. Given a Grassmann algebra A of rank N, the

graded vector space B can be extended to a graded A-module

AB = (AB)o ® (AB)1 = (A0 ® B0 ® Al (g B1) ® (A1 ® Bo ® AO (9 B1),

called the graded A-envelope. The graded envelope

B"1"`= (Ao ®Am)®(Al ®Ao ) (9.1.4)

of the (n, m)-dimensional graded vector space R" ® R"` is a free A-module of type

(n, m). The A0-module

B",m = (Ao ® Am)
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is called an (n, m)-dimensional supervector space. Note that Ao-modules Bnlm and
Bn+m,n+m are isomorphic.

Unless otherwise stated (see the DeWitt topology below), whenever referring to

a topology on a supervector space Bn,m, we will mean the Euclidean topology of

(2N-1 [n + m])-dimensional R-vector space.

Given a superspace BnI' over a Grassmann algebra A, a A-module endomor-

phism of Bnj'n is represented by a square (n + m) x (n + m)-matrix

L=
L1 L2

L3 L4
(9.1.5)

with entries in A. It is called a supermatrix. One says that a supermatrix L is:

• even if L1 and L4 have even entries, while L2 and L3 have odd entries,

• odd if L1 and L4 have odd entries, while L2 and L3 have the even ones.

Endowed with this gradation, the set of supermatrices (9.1.5) is a A-graded algebra.
Unless otherwise stated, by a supermatrix will be meant a homogeneous superma-

trix.

The familiar notion of a trace is extended to supermatrices (9.1.5) as a supertrace

StrL = Tr L1 - (- 1)]L]TrL4.

For instance, if ln^„L is a unit matrix, we have Str( ln^,n) = n - m. A supertranspo-

sition Lst of a supermatrix L is the matrix

Lst = (- -Li (_1)1LILt3

( 1)]L] Lz Lt J

where Lt denotes the ordinary transposition. There are the relations

Str(Lst) = Str L,

(LL )st = (_1)[L]lL']L'5tL3t (9.1.6)

Str(LL') _ (-1)[L]1L'1Str(L'L) or Str([L, L']) = 0. (9.1.7)

In order to extend the notion of a determinant to supermatrices, let us con-

sider invertible supermatrices L (9.1.5) corresponding to even isomorphisms of the

superspace Ba''. Recall that a supermatrix L is invertible if and only if:
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• L1 and L4 are invertible;

• a(L) is invertible, where a is the body morphism.

Invertible supermatrices constitute a group GL(nlm;A), called a general linear

graded group. Then a superdeterminant of L E GL(nlm; A) is defined as

Sdet L = det (L1 - L2L41L3)( det L41)

It satisfies the relations

Sdet(LL') _ (Sdet L) (Sdet L'),

Sdet(Lst) = Sdet L,

Sdet(exp(L)) = exp(Sdet (L)).

9.2 Connections on graded manifolds

Graded manifolds are not supermanifolds in a strict sense (see Axioms 1-4 in Re-

mark 9.3.4 below). At the same time, every graded manifold defines a DeWitt

H°°-supermanifold, and vice versa (see Theorem 9.3.8 below). Principal graded

bundles and connections on these bundles are described similarly to that on princi-

pal superbundles (see Section 9.5). We refer the reader to [20, 28, 183, 285] for a

general theory of graded manifolds. This Section is devoted to connections which

can be introduced on a graded manifold itself due to the fact that graded func-

tions , unlike superfunctions, can be represented by sections of some smooth exterior

bundle.

DEFINITION 9.2.1. By a graded manifold of dimension (n, m) is meant the pair

(Z, A) of an n-dimensional smooth manifold Z and a sheaf A = A0 ® Al of graded

commutative ]R-algebras of rank m such that [20]:

(i) There is the exact sequence of sheaves

0--+R->A °-+CZ --*0, R=AI+(A1)2, (9.2.1)

where CZ is the sheaf of smooth functions on Z.

(ii) R/R2 is a locally free C11-module of finite rank, and A is locally isomorphic

to the exterior bundle Ac (R/R2). 0
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The sheaf A is called a structure sheaf of the graded manifold (Z, A), while

the manifold Z is a body of (Z, A). This terminology is motivated by the above

mentioned correspondence between the graded manifolds and the DeWitt super-

manifolds. Sections of A are called graded functions.

A graded manifold is a graded locally ringed space. By a morphism of graded

manifolds (Z, A) -> (Z'A') is meant their morphism cp : Z -> Z', D : A' -+ cp*A as

locally ringed spaces, where c is an even graded morphism.

By very definition, a graded manifold (Z, A) has the following local structure.

Given a point z E Z, there exists its open neighbourhood U such that

A(U) = C°°(U ) ® AIR. (9.2.2)

It means that the restriction A I u of the structure sheaf A to U is isomorphic to the

sheaf CU ® AR' of sections of some exterior bundle AEU = U X AR' -> U. Then

U is called a splitting domain of the graded manifold (Z, A).

The well-known Batchelor 's theorem [20, 22] shows that such a structure of
graded manifolds is global. The global structure sheaf A of the graded manifold

(Z, A) is glued of the local sheaves CU ® ARm by means of transition functions in

Proposition 8.3.1, which constitute a cocycle of the sheaf Aut (ARm) c, of smooth

mappings from Z to Aut (AIR). Batchelor's theorem is based on the bijection

between the cohomology sets H1(Z; Aut ( ARm)O°) and H1(Z; GL(m, Rm),,,,).

THEOREM 9 . 2.2. Let (Z, A) be a graded manifold. There exists a vector bundle

E -+ Z with an m-dimensional typical fibre V such that the structure sheaf A is

isomorphic to the sheaf

AE=CZ ®AV*

of sections of the exterior bundle

AE*=R®(® AE*),
Z k=1

whose typical fibre is the Grassmann algebra AV* q

(9.2.3)

(9.2.4)

It should be emphasized that Batchelor's isomorphism in Theorem 9.2.2 is not

canonical. One can speak only on one-to-one correspondence between the classes

of isomorphic graded manifolds of odd rank m and the classes of equivalent m-

dimensional vector bundles over the same smooth manifold Z. At the same time,

this isomorphism enables one to obtain some properties of a graded manifold.
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COROLLARY 9.2.3. The structure sheaf A of the graded manifold (Z, A) is isomor-

phic to the sheaf of sections of a 2N-dimensional real vector bundle T -> Z, called

the characteristic vector bundle, with the typical fibre AR' and the structure group

Aut (ARm) such that every splitting domain U of the graded manifold (Z, A) is a

trivialization chart of the vector bundle T -* Z with the corresponding Aut (ARm)-

valued transition functions. The structure group Aut (ARm) of the vector bundle

T -* Z is reducible to the group GL(m, R), and T - Z is isomorphic to the exterior

vector bundle AE* --^ Z in accordance with Theorem 9.2.2. q

COROLLARY 9.2.4. The structure sheaf A of the graded manifold (Z, A) is fine

and, consequently, acyclic (see Remark 8.3.6). q

COROLLARY 9.2.5. The direct product of two graded manifolds (Z, A) and (Z', A')

is the graded manifold whose body is Z x Z, while the structure sheaf A6,4! is

isomorphic to the tensor product

(CZ ®CZ,) ® A(V (D V')* (9.2.5)

(see the isomorphisms (8.3.3) and (9.2.3)). q

Given a splitting domain U, graded functions on U read

m ( )f
= k^

fal...ak (z)Ca1
... Cak 9.2.6

k=0

where fa,...ak(z) are smooth functions on U, {ca} are the fibre basis for E*, and

we omit the symbol of the exterior product of elements c. In particular, the sheaf

epimorphism a in (9.2.1) can be seen as the body morphism. We will call {ca} the

local basis of a graded manifold.

If U' is another splitting domain and Ufl U' 0, we have the transition functions

c" =
pa(zA cb) (9.2.7)

where pa(zA, cb) are graded functions on U fl U'. These are transition functions of

the characteristic bundle T -> Z in Corollary 9.2.3. The corresponding coordinate

transformation law of graded functions (9.2.6) is obvious. If U and U' are trivializa-

tions charts of the same exterior bundle in Theorem 9.2.2, the transition functions

take the form

c'a = Pb(zA)cbj (9.2.8)
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where pb (z) are smooth functions on u fl U'.

Given a graded manifold (Z, A), by the sheaf DA of graded derivations of A is

meant a subsheaf of endomorphisms of the structure sheaf A such that any section

u of DA over an open subset U C Z is a graded derivation of the graded algebra

A(U), i.e.

u(ff') = u(f)f'+ (-1)[u][f]fu(f') (9.2.9)

for the homogeneous elements u E (M) (U) and f, f E A(U).

LEMMA 9.2.6 . [20]. If U' C U are open sets , there is a surjection D(A(U)) -p

a(A(U'))- q

It follows that (OOA)(U) = ZZ(A(U)), i.e., the canonical presheaf of the sheaf of

graded derivations DA is isomorphic to the presheaf of derivations of graded modules

A(U). Sections of DA are called graded vector fields on the graded manifold (Z, A)

(or simply on Z if there is no danger of confusion ). One can show that, given a

splitting domain U and the corresponding trivial vector bundle Eu = U x V, graded

vector fields u on U are represented by sections of the vector bundle

AEU®(Eu®TU) , U

[20, 183]. They take the form

u = UA(JA + uaaa, (9.2.10)

where uA, Ua are local graded functions , {aa} are the dual bases of {ca}, and (zA) are

coordinates on U C Z. The derivations (9.2.10 ) act on graded functions f E AE(U)

(9.2.6) by the rule

u(fa...bCa ... CI) = UAaA(fa...b)Ca ... Cb + ukfa...bakj (Ca ... Cb). (9.2.11)

Remark 9 .2.1. With derivations (9.2.11), one can provide the ring A(U) with the

F'rechet topology such that there is the metric isomorphism (9.2.2). •

Let U' be another splitting domain together with the transition functions (9.2.7).

Then the action rule (9.2.11) implies the corresponding coordinate transformation

law

U /A = UA, u a = u3 C7j pa + UAaApa
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of graded vector fields (where we leave zA = z'A for the sake of simplicity). If U and

U' are trivialization charts of the same vector bundle E in Theorem 9.2.2 together

with the transition functions (9.2.8), we have

uA=uA
ua = udpa +UA8A(Pja)c'2•

It follows that, given Batchelor's isomorphism in Theorem 9.2.2 and the correspond-

ing vector bundle E --> Z, graded vector fields on Z can be represented by sections

of the vector bundle VE -+ Z which is locally isomorphic to the vector bundle

VE lu;z:; AE*®(pr2VE®TZ) Ju, (9.2.12)

and has the transition functions

/A - -1a1 -1ak A
'zil...ik - P il P ik Zal...ak,

/i -ib1 -lbk ^PJMI k! A iv
7

.
1 ••

= p
i1 7k ...bk

+ Tk -
1 )^zbl...bk_laAPbk (9.2.13)

•7k

of the bundle coordinates (za1 ak, Vb1 bk ), k = 0, . . . , m, with respect to the fibre

bases {ca} for E* --> Z and the dual holonomic fibre bases {aa} for the vertical

tangent bundle VE -* E (recall the canonical splitting VE = E x E). These

transition functions fulfill the cocycle relations (1.1.4). There is the exact sequence

over Z of vector bundles

0 -S AE* ® pr2VE -+ VE -* AE* ® T Z --* 0. (9.2.14)

Remark 9.2.2. In view of the local isomorphism (9.2.12), one can think of VE as

a local Ne'eman-Quillen superbundle (see Section 9.7). •

By virtue of Lemma 9.2.6 and Proposition 8.3.1, the sheaf of sections of the vector

bundle VE -p Z is isomorphic to the sheaf ZA. Global sections of VE -- + Z constitute

the A(Z)-module of graded vector fields on Z, which is also a Lie superalgebra with

respect to the bracket

[u, u'] = nu' + (-1)[u11''H+lu'u. (9.2.15)

In particular,

[aA, as] = [OA , aa] = [aa, ab] = 0. (9.2.16)
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Remark 9.2.3. As was mentioned above, derivations of the sheaf CC of smooth

function on a manifold X are sections of the tangent bundle TX --* X. By analogy,

one assumes that graded derivations of the sheaf A of graded functions on a manifold

Z can be represented by sections of some graded tangent bundle (STZ, STA) -4

(Z, A) [54]. Nevertheless, the transformation law (9.2.13) shows that the projection

VE Iu--> pr2VE®TZ
z

is not global , i.e., VE is not an exterior bundle. It means that the sheaf of derivations

DA is not a structure sheaf of a graded manifold (cf. Example 9.3.6 below). •

There are many physical models where a vector bundle E is introduced from the

beginning (see Sections 9.6, 11.3). In this case, we can restrict our consideration to

the sheaf AE (9.2.3) of sections of the exterior bundle (9.2.4) [117]. Accordingly,

its automorphisms reduce to the bundle isomorphisms of E -> Z. We will call

the pair (Z, AE) a simple graded manifold. This is not the terminology of [54]

where this term is applied to all graded manifolds of finite rank in connection with

Batchelor's theorem. The simple graded manifold (Z, AE) is characterized entirely

by the structure module AE(Z) = AE*(Z) of the exterior bundle AE*. Therefore,

AE(Z) is also called the structure module of a simple graded manifold.

Let (Z, AE) and (Z', AE, be simple graded manifolds and ( : E -* E' a linear

bundle morphism over a morphism cp : Z -> Z'. Then every section s* of the dual

bundle E'* -> Z' defines the pull-back section (*s* of the dual bundle E* -> Z by

the law

vzj(*s*(z) = ((vz)JS*(c (z)), `dvz E E.

As a consequence, we obtain the pull-back (*AE' of the sheaf AE' onto Z, which is

a subsheaf of AE. Note that the pair (Z, C*AE' is not a graded manifold in general.

Then the associated morphism of simple graded manifolds

S( = (^o, ^p* o (*) : (Z, AE) -* (Z', AE,) (9.2.17)

can be defined (cf. (8.3.2)). With respect to the local basis {ca} and {c'a} for AE

and AE', the morphism (9.2.17 reads S((c'a) = (n (z)cb.

Turn now to the exact sequence (9.2.14). Its splitting

7' : zA8A I ; ZA(8A + 'YAaa ) (9.2.18)
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is represented by a section

1'=dzA®(aA+ 1Aaaa)

of the vector bundle T*Z ® VE -* Z such that the composition
z

Z T*Z®VE --* T*Z®(AE* (9 TZ) °^T*Z®TZ
z z z z

(9.2.19)

is the canonical form dzA ® OA on Z. Note that the coefficients 5 are odd. The

splitting (9.2.18) transforms every vector field T on Z into a graded vector field

T = TAaA H OT = TA(aA + 'Aaa), (9.2.20)

which is a graded derivation of AE such that

VT (sf) = (Tjds)f+ sV (f), f E AE(U), s E C°°(U), VU C Z.

Then, in accordance with Definition 8.3.9 extended to graded commutative rings,

one can think of the graded derivation OT (9.2.20) and, consequently, of the splitting

(9.2.18) as being a graded connection on the simple graded manifold (Z, AE). In

particular, this connection provides the corresponding decomposition

U = UA aA + Uaaa = UA(aA + 7Aaa) + (ua - uA1'A)aa

of graded vector fields on Z.

Remark 9.2.4. By virtue of the isomorphism (9.2.2), any connection %y on the

graded manifold (Z, A), restricted to a splitting domain U, takes the form (9.2.18).

Given two splitting domains U and U' of (Z, A) with the transition functions (9.2.7),

the connection components ryA obey the transformation law

RYA = 7Aabpa + gApa. (9.2.21)

If U and U' are the trivialization charts of the same vector bundle E in Theorem

9.2.2 together with the transition functions (9.2.8), the transformation law (9.2.21)

takes the form

VA
° Pn (z) Yb + aApa (z)cb• (9.2.22)

If not refer to the particular transformation law (9.2.22), one can think of the graded

connections (9.2.19) on the simple graded manifold (Z, AE) as being connections on
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the simple graded manifold (Z, AE). In view of Remark 9.2.4, rys is also a graded

connection on the graded manifold (Z, A) = (Z, AE), but its linear form (9.2.23) is

not maintained under the transformation law (9.2.21). •

By virtue of Theorem 1.1.4, graded connections (9.2.18) always exist. For in-

stance, every linear connection

')' = dzA ® (C3A + 7Aabvb9a)

on the vector bundle E -+ Z yields the graded connection

7's = dzA ® (OA +')'AabCbaa) (9.2.23)

on (Z, AE) such that, for any vector field r on Z and any graded function f , the

graded derivation VT(f) with respect to the connection (9.2.23) is exactly the covari-

ant derivative of f relative to the linear connection ry. Its is not surprising because

graded connections (9.2.19), in fact, are particular connections on the exterior bun-

dle AE* (9.2.4) which provide derivations of its structure module AE*(Z).

Graded connections %y (9.2.19) on the simple graded manifold (Z, AE) constitute

an affine space modelled over the linear space of sections cp = cpadzA ®8a of the

vector bundle

T*Z®AE*®E 4 Z.
z z

In particular, any graded connection can be represented by a sum of a graded con-

nection preserving the Z-gradation, e.g., a linear connection (9.2.23) and an above

mentioned field W.

The curvature of the graded connection OT (9.2.20) is defined by the expression

(8.3.19):

R(T,T) = [VT, VT/] -

R (-r, T) = T AT B RAB as : AE -4 AE,

RAB = 9A7B - 8B'A + )Aak (YB) - B ak (YA)

It can also be written in the form (8.3.12):

R: AE -> DX ®AE,

R = Z RaBdzA A dzB ®aa.

(9.2.24)

(9.2.25)
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Remark 9.2.5. Let Z -^ X be a fibre bundle coordinated by (x A, zi) and

ry = r + ryaabVbdxA ®aa

a connection on the composite fibre bundle E -> Z -* X which is a linear morphism

over a connection r on Z -> X. Then we have the bundle monomorphism

'Ys : AE* (& TX E) u"aa H w" (aa + raai + ryaabcbaa) E VE

over Z, called a composite graded connection on Z -* X. It is represented by a

section

'Ys = r + ryaabcbdx\ ®aa (9.2.26)

of the fibre bundle T*X ®VE --> Z such that the composition
z

Z Ls* T*X ®VE -> T*X ®(AE* (9 TZ) *T*X ®TZ , T*X (9 TX
z z z z z

is the pull-back onto Z of the canonical form dx' ® as on X. •

Given a graded manifold (Z, A), the dual of the sheaf DA is the sheaf a*A

generated by the A-module morphisms

0: a(A(U)) --> A(U). (9.2.27)

One can think of its sections as being graded exterior 1-forms on the graded manifold

(Z, A).
In the case of a simple graded manifold (Z, AE), graded 1-forms can be repre-

sented by sections of the vector bundle VV --+ Z which is the AE*-dual of VE. This

vector bundle is locally isomorphic to the vector bundle

VV lu;z^ AE* ®(pr2VE* (D T*Z) lu, (9.2.28)

and is characterized by the transition functions

-lai - 1ak -1a
jVai...aka,v7. = P P 'JkP 7,•^^Jk7 7i

zi1..
bi ... -lbk I kl

A = P ii P ik zbl...bkA + (k - 1)^17b1...bk-1jaA/^bk

of the bundle coordinates (za1...akA, Vb1...bk j ) , k = 0, ... , m, with respect to the dual

bases {dzA} for T*Z and {dcb} for pr2V*E = E*. In view of the local isomorphism
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(9.2.28), VV as like as VE can be regarded as a local Ne'eman-Quillen superbundle.

The sheaf of sections of VV -^ Z is isomorphic to the sheaf a*AE. Global sections of

the vector bundle VV -* Z constitute the AE(Z)-module of graded exterior 1-forms

0 = OAdzA + &dca (9.2.29)

on (Z, AE). Then the morphism (9.2.27) can be seen as the interior product

UJO = UAWA+ (- 1)[,1,UaOa- (9.2.30)

Given a splitting domain U of the graded manifold (Z, A), sections of the sheaf

cl*A Iu takes the form (9.2.29). If U' is another splitting domain together with the

transition functions (9.2.7), the graded forms obey the transformation law

6 B 'j

01 =

ac
(z , C ) Ob, OA = bA + aACb(ZB, C2 )q6•a aCla

If U and U' are trivialization charts of the same vector bundle E in Theorem 9.2.2

with the transition functions (9.2.8), we have

^a = P-iaO6e WA = ' A + P laaA(p )ObO

There is the exact sequence

0- AE*®T*Z-+VV->AE*®pr2VE*->0. (9.2.31)

Any graded connection 'Y (9.2.19) yields the splitting of the exact sequence (9.2.31),

and defines the corresponding decomposition of graded 1-forms

0 = OAdzA + OadCa = (OA + cba`Aa)dzA + Oa(dCa - 7AdzA)•

In conclusion, let us recall the basic elements of graded exterior differential cal-

culus [117, 155, 183].

Graded k-forms 0 are defined as sections of the graded exterior products A a*A

of the sheaf D*A such that

0 A a = (_1)I^IhI+[^1[^]a A

In particular,

dxA A dci = -dci A dx", dci A dc' = dc' A dci.

(9.2.32)

(9.2.33)
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The interior product (9.2.30) is extended to higher degree graded exterior forms by

the rule

uJ (o A a) = (uJO) A a + (-1) 101 +[01[u10 A (uNa). (9.2.34)

The graded exterior differential d of graded functions is introduced by the condition
u J df = u(f) for an arbitrary graded vector field u, and is extended uniquely to
higher degree graded forms by the rules

d(oAa)=(do)Aa+(-1)1010A(da), dod=0. (9.2.35)

It takes the coordinate form

do = dzA A aA(0) + dca A aa(9), (9.2.36)

where the left derivatives 9A, aa, act on the coefficients of graded forms by the rule

(9.2.11 ), and they are graded commutative with the forms dzA, dcn. The Poincare

lemma is also extended to graded exterior forms [20, 183]. The Lie derivative of a
graded form ¢ along a graded vector field u is given by the familiar formula

Luq = u) do + d(uj 0),

and possesses the property

Lu(o A 0') = Lu(`V) A 0' + (-1)[u]1010 A Lu(^')•

(9.2.37)

Remark 9.2.6. Graded exterior k-forms can be seen as sections of the exterior

products of the vector bundle VV -> Z. Therefore, the sheaves of graded exterior
k

forms n WA are fine. They constitute the fine resolution

0 R -.'A a*A-..na*A->...

of the constant sheaf R of real functions on the manifold Z, and define the corre-

sponding cochain complex

0 - R - A(Z) ^-•a*A(Z) - X a*A)(Z) • • (9.2.38)

of graded exterior forms on Z, called the graded De Rham complex. Then, by virtue

of Theorem 8.3.8, there is an isomorphism

H9(Z) = H9 (Z, R) = HGR(Z) (9.2.39)

between the De Rham cohomology groups H* (Z) of smooth exterior forms on Z and

the cohomology groups HGR(Z) of the complex (9.2.38), called graded De Rham

cohomology groups [183]. •
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9.3 Connections on supervector bundles

Superconnections are introduced on supervector bundles over G-supermanifolds.

There are two reasons which motivate this choice. Firstly, the category of these

supervector bundles is equivalent to the category of locally free sheaves of finite

rank just as it takes place in the case of smooth vector bundles (e.g., this is not

the case of GH°°-supermanifolds). It enables one to extend the familiar differential

geometric notions to supervector bundles. Secondly, derivations of the structure

sheaf of a G-supermanifold constitute a locally free sheaf. It is important from

the differential geometric point of view (this is not the case of G°°-supermanifolds).

Moreover, this sheaf is a structure sheaf of some G-superbundle (in contrast, with

graded manifolds (see Remark (9.2.3)).
We will start from the notions of a superfunction, a supermanifold and a super-

vector bundle (see [20] for a detailed exposition).

Superfunctions

By analogy with manifolds, supermanifolds are constructed by gluing of open

subsets of supervector spaces B',' by means of transition superfunctions. There

are different classes of superfunctions. Nevertheless, they can be introduced in a

unified manner as follows.

Let Bn,' = Ao ® Ai` be a supervector space, where A is an N-dimensional

Grassmann algebra and N > m. In accordance with the decomposition (9.1.3), any

element q E B''m is split uniquely as

q=x+y= (v(x')+s(x'))e°+y3e1, (9.3.1)

where {e°, e^} is a basis for B',' and v(x') E R, s(x') E 7Zo, yi E 7Z1. By

01 n,m : Bn,m . lR n0
8n,m : Bn,m In,m

are denoted the corresponding body and soul morphisms.

Let A' be an N'-dimensional Grassmann algebra (0 < N' < N), which is treated

as a subalgebra of A, i.e., the basis {ca} for A' can be regarded as a subset of the

basis {ca, cb} for A. Given an open subset U C IRBn, let us consider a A'-valued

graded function

[N''`
f (z) = E

k^
fal...ak (z)Cal ... Cak

k=0

(9.3.2)
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with smooth coefficients fal...ak (z), z E R. The corresponding graded function f (x)
at a point x E (Q"'0 )-1(U) C B1'0 is defined as the formal Taylor series

f(a(x) + s(x)) = f(u(x)) + (9.3.3)

1 1 '" fal...ak(a(^')) S(xtil
) ... S(x0P)] Cal ... Cak

k=O hI p
I aril ... Grip

n=1

Then a graded function F(q) at a point q E (Q",'")-1(U) C B"'"`, by definition, is

given by the sum

N 1
F(x + y) = F- rI fjl...jr ( x) 2J" ... yjr (9.3.4)

r=O

where fjl ._.jr(x) are graded functions (9.3.3). Graded functions (9.3.4) are called
superfunctions on the supervector space B",17. They define the sheaf SN, of graded
commutative algebras of rank N' on B",m.. Let SN, be its subsheaf whose sections
are superfunctions f (x + y) = f (x) (9.3.3) independent of the odd variables yj.
The expression (9.3.4) implies that, for any open subset U of B"'r", there exists the
epimorphism

A : SON, (U) ® AR" - SN'(U), (9.3.5)

A : Y- fjl...jr(x) ® ('J
al ... y.7' )

F- - fil ...j.(x)Yjl ... yAr
r=0 T' r=0 .

having identified AR' with the exterior algebra generated by the (y1, ... , y'"). Then

we have the corresponding sheaf epimorphism

A : SON, ® AR'n ---+ SN,, (9.3.6)

where AR' is the constant sheaf on B",".

PROPOSITION 9.3.1. The sheaf morphism (9.3.6) is injective and, consequently, an

isomorphism if and only if

N - N' > m. (9.3.7)

In this case , the representation of a superfunction F(x + y) by the sum (9.3.4)

is unique.
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Using the representation (9.3.4), one can define derivatives of superfunctions.

Let f (x) E SN,(U) be a graded function on U C B",o. Since f, by definition, is the

Taylor series (9.3.3), its partial derivative along an even coordinate xi is defined in

a natural way as

aif(x) = (aif)(o(x) + s(x)) = aT (u(x)) +
N 1 N 1 ap+1

fai...ak (a(x))S xil ...S xiv Cal ...Cak
k! ! ariaril ... arip ( ) ( )k=O p=1 p

(9.3.8)

This notion of an even derivative is extended to superfunctions F on B",' when the
representation (9.3.4) is not necessarily unique.

The definition of an odd derivative of superfunctions however meets difficulties.

An odd derivative is defined as an image of a Z-graded derivation of order -1 of

the exterior algebra AR' by the morphism (9.3.5), i.e.,

ay®(A (f (9 y)) = A(f ® 9j(y)), y E AR'.

This definition is consistent only if A is an isomorphism, i.e., the relation (9.3.7)

holds. If otherwise , there exists a non-vanishing element f ®y such that A(f ®y) = 0,

while A(f ® aj (y)) 0. For example, this is an element f ® (y1 • • • y'") if N - N' _

M -1.

Example 9.3.1. We will follow below the terminology of [20].

If N' = 0, the sheaf SN, coincides with the sheaf f°° of H°°-superfunctions (first

considered by M.Batchelor [23] and B. DeWitt [79]). In this case, superfunctions

(9.3.4) read

F(x + y) = 1 1 ^ ^ i i ' _̂ r ( p)) S(xii ) ... s(xin )1 yj' ... yj•

r p=o p' J
(9.3.9)

If N' = N, we deal with G°°-superfunctions, introduced by A. Rogers [257]. In

this case, the inequality (9.3.7) does not hold, unless m = 0.

If the condition (9.3.7) is fulfilled, superfunctions are called GH°°-superfunctions.

They include H°°-superfunctions as a particular case.

Superfunctions of the above mentioned types are called smooth superfunctions.
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Let g7-iN, denote the sheaf of GH°°-superfunctions on a supervector space Bn,m

Let us define the sheaf of graded commutative A-algebras

cN' = 9lN' ® A, (9.3.10)

where A is regarded as a graded algebra over A'. The sheaf ccN' (9.3.10) possesses
the following important properties [20].

• There is the evaluation morphism

6: cN' - CB,,,- , (9.3.11)

6:F®aiFa, FEg1lN', aEA,

where CB,,,- = CB,,,,, ® A is the sheaf of continuous A-valued functions on

Bf,'n. This morphism enables one to evaluate germs of sections of 9N,. Its

image is isomorphic to the sheaf g' of G'-superfunctions on B',' .

• For any two integers N' and N" satisfying the condition (9.3.7), there is the

canonical isomorphism of sheaves of graded commutative A-algebras 9N, and

cN". Therefore, we can define a canonical sheaf 9n,m of graded commutative

A-algebras on the supervector space Bf,'". With no loss of generality, one

can think of sections of 9n,m as being the tensor products F ® a of H°°-

superfunctions F (9.3.9) and elements a E A. We call these sections the

G-functions.

• The sheaf ayn,m of graded derivations of 9n,m is locally free over gn,,,,, of

rank (n, m). On every open set U C Bn'm, the gn,m(U)-module acn,m(U) is

generated by the derivations 9/ax', a/ayi which act on cn,m(U) by the rule.

axi (F ®a) = ax ®a, i (F0 a) = a ® a. (9.3.12)
y y

Supermanifolds

Turn now to the notion of a supermanifold.

DEFINITION 9.3.2. A paracompact topological space M is said to be an (n, m)-

dimensional smooth supermanifold if it admits an atlas

T = {Us, 0S}, c( : US -* Bt,m'
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such that the transition functions ¢C o OZ' are supersmooth morphisms. q

Obviously, a smooth supermanifold of dimension (n, m) is also a real smooth

manifold of dimension 2N-1 (n + m).

If transition superfunctions are H°°, G°° or GH°°-superfunctions, one deals with

H°°, G°° or GH°° supermanifolds, respectively. By virtue of Proposition 8.3.2 ex-

tended to graded locally ringed spaces, the preceding definition is equivalent to the

following one.

DEFINITION 9.3.3. A smooth supermanifold is a locally ringed space (M, S) which
is locally isomorphic to (Bn,m, S), where S is one of the sheaves of smooth super-

functions on Bf,m under consideration. The sheaf S is called the structure sheaf of

a supermanifold. q

By a morphism of smooth supermanifolds is meant their morphism (cp, (D) as

locally ringed spaces, where lb is an even graded morphism. In particular, every

morphism cp : M -> M' yields the smooth supermanifold morphism (cp, 4D = cp*).

Thus, a choice of a class of superfunctions on a smooth supermanifold determines a

class of morphisms of this supermanifold.

Note that smooth supermanifolds are effected by serious inconsistencies as fol-

lows.

Since it is impossible to define derivatives of G°°-superfunctions with respect to

odd variables, the sheaf of derivations of the sheaf of G°°-superfunctions is not locally

free and the transition functions of the G°°-tangent bundle are not the Jacobian

matrices (see Example 9.3.6 below). Nevertheless, any G-supermanifold considered

below has an underlying G°°-supermanifold.

In the case of GH°°-supermanifolds, one meets the phenomenon that the space

of values of GH°°-superfunctions changes from point to point since the Grassmann

algebra A of rank N is not a free module with respect to the subalgebra A' of rank

N'. This fact leads to difficulties in the definition of GH°° vector bundles if one

follows the construction of smooth vector bundles in Example 8.3.3.

By these reasons, supervector bundles in the category of G-supermanifolds usu-

ally are considered. With the canonical sheaf of graded commutative A-

algebras on the supervector space B',', one gives the following definition of G-

supermanifolds.
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DEFINITION 9.3.4. An (n, m) dimensional G-supermanifold is a graded locally
A-ringed space (M, GM) satisfying the following conditions:

• M is a paracompact topological space;

• (M, GM) is locally isomorphic to (Bn'm, cjn,m);

• there exists a morphism of sheaves of A-algebras 6: GM -* CAM, where CAM
CmO ® A is sheaf of continuous A-valued functions on M, and S is locally
isomorphic to the evaluation morphism (9.3.11).

O

Example 9 .3.2. The triple (B''',, Gn,,,,, 5), where 6 is the evaluation morphism

(9.3.11), is called a standard supermanifold. •

Remark 9.3.3. Any GH°°-supermanifold (M, GHM) with the structure sheaf

GHM is naturally extended to the G-supermanifold (M, GHM (& A). Every G-
supermanifold defines an underlyingG°°-supermanifold (M, S(GM)), where S(GM) _

GM is the sheaf of Gm-superfunctions on M. •

Morphisms of G-supermanifolds are morphisms of graded locally ringed spaces.
In particular , every morphism (gyp, cp*) of GH°°-supermanifolds

(M,GHM) - (M',GHM,)

is extended trivially to the morphism (cp, (P) of G-supermanifolds

(M, GHM) ®A -+ (M', GHM, (9 A)

where 4 (F ®.A) = cp* (F) ®.A.

As in the case of smooth supermanifolds , the underlying space M of a G-
supermanifold (M, GM) is provided with the structure of a real smooth manifold

of dimension 2N-1(n + m), and morphisms of G-supermanifolds are smooth mor-

phisms of the underlying smooth manifolds . Nevertheless , it may happen that non-
isomorphic G-supermanifold have isomorphic underlying smooth manifolds.

Similarly to the properties of the sheaf agn,,,,, the sheaf ZGM of graded derivations

of GM is locally free , with the local bases {a/axi, O/0y3 }. The supertangent space
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Tq(M, GM) to the G-supermanifold (M, GM) at a point q E M is the graded A-

module of graded derivations GMq -* A. It is isomorphic to the quotient aGMq/(Mq•

aGM9), and its basis is given by the elements

(5^ y f 9 (Sq) ax, (q), \ y^)9 (S9) = 08̂  (q), Vs E Gm,,.

For any/ open subset U C Bn'm, the space gn,,,,,(U) can be provided with the

topology such that it is a graded Frechet algebra. There are isometrical isomor-

phisms

(U) - l°°(U) ® A = C°°(a','(U)) ® A ® AR' = (9.3.13)

C°°(a"'m(U)) ® ABN++n

Remark 9 .3.4. We present briefly the axiomatic approach to supermanifolds which

enables one to obtain, for different choice of a graded commutative algebra, all

the previously known types of supermanifolds. These are R°°-supermanifolds [20,

21, 45]. This approach to supermanifolds develops that of M.Rothstein [258] (see

[20, 21] for a discussion). The R°°-supermanifolds are introduced over the above

mentioned Arens-Michael algebras of Grassmann origin [45], but we omit here the

topological side of their definition though just the topological properties differ R°°-

supermanifolds from R-supermanifolds of M.Rothstein.

Let A be a real graded commutative algebra of the above mentioned type (for

the sake of simplicity, the reader can think of A as being a Grassmann algebra).

A superspace over A is a triple (M, A, 6), where M is a paracompact topological

space, A is a sheaf of A-algebras, and 6 : A -> C,^N is an evaluation morphism to

the sheaf CM' of continuous A-valued functions on M. Sections of A are called R°°-

superfunctions. We define the graded ideal Mq of the stalk Aq, q E M, formed by

the germs of R°°-superfunctions f vanishing at a point q, i.e., such that 6(f)(q) = 0.

An R°°-supermanifold of dimension (n, m) is a superspace (M, A, 6) satisfying

the following four axioms [45].

Axiom 1. The graded A-dual cl*A of the sheaf of derivations is a locally free graded

A-module of rank (n, m). Every point q E M has an open neighbourhood U with

sections x1, • • , xn E A(U)o, y1, • • • , y'" E A(U)1 such that {dx', dy3} is a graded

basis of a*A(U) over A(U).

Axiom 2. Given the above mentioned coordinate chart, the assignment

q - (6(x'), 6(TJ'))
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defines a homeomorphism of U onto an open subset in B",'

Axiom 3 . For every q E M, the ideal Mq is finitely generated.
Axiom 4. For every open subset U C M, the topological algebra A(U) is Hausdorff
and complete.

An R-supermanifold over a graded commutative Banach algebra, satisfying Ax-

iom 4, is an R°°-supermanifold.

A standard supermanifold in Example 9.3.2 is an R°°-supermanifold. Moreover,

in the case of a finite Grassmann algebra A, the category of R°° supermanifolds and

the category of G-supermanifolds are equivalent. •

Let (M, GM) be a G-supermanifold. As was mentioned above, it satisfies Axioms

1-4. Sections u of the sheaf aGM of graded derivations are called supervector fields

on the G-supermanifold (M, GM), while sections 0 of the dual sheaf a*GM are 1-

superforms on (M, GM). Given a coordinate chart (qi) = (xi, yi) on U C M,

supervector fields and 1-superforms read

u = u2Di, 0 = cidg',

where coefficients ui and ¢i are G-functions on U. The graded exterior differential

calculus on supervector fields and superforms obeys the same formulas (9.2.15),

(9.2.30) - (9.2.37) as that for graded vector fields and graded forms.

Let us consider the cohomology of G-supermanifolds. Given a G-supermanifold

(M, GM), let DAM = JD * (9 A be the sheaves of smooth A-valued exterior forms on

M. These sheaves are fine, and constitute the fine resolution

0-+A-*CM®A--+0M®A->...
of the constant sheaf A on M. We have the corresponding De Rham complex of

A-valued exterior forms on M

0-*A-+ CA (M)-'01(M) ^....

By virtue of Theorem 8.3.8, the cohomology groups HA(M) of this complex are

isomorphic to the cohomology groups H*(M; A) with coefficients in the constant

sheaf A on M and, consequently, are related to the De Rham cohomology as follows:

HA (M) = H*(M; A) = H*(M) ® A. (9.3.14)

Thus, the cohomology groups of A-valued forms do not provide us with information

on the G-supermanifold structure of M.
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Let us turn to cohomology of exterior superforms. The sheaves n D*GM of exte-
rior superforms constitute the sequence

0->A-*GM--^ c0*GM --^--.. (9.3.15)

The Poincare lemma is extended to superforms [44], and this sequence is exact.

However, the structure sheaf GM is not acyclic in general. It follows that the exact

sequence (9.3.15) fails to be a resolution of the constant sheaf A on M (this is

not the terminology of [20]), and the homology groups HH(M) of the De Rham

complex of exterior superforms are not equal to the cohomology groups H*(M; A)

and the De Rham cohomology groups H*(M) of the manifold M. In particular, the

cohomology groups Hs*(M) are not topological invariants, but they are invariant

under G-isomorphisms of G-supermanifolds.

PROPOSITION 9.3.5. The structure sheaf cn,m, of the standard G-supermanifold

(Bn'm, gn,n,,) is acyclic, i.e.,

Hk>O (Bn,m;
n,m

The proof is based on the isomorphism (9.3.13) and some cohomological con-

structions [20, 45].

DeWitt supermanifolds

There exists a particular class of supermanifolds, called DeWitt supermanifolds.

Their notion implies introducing in B"'m a topology, called the DeWitt topology,

which is coarser than the Euclidean one. This is the coarsest topology such that

the body projection : B"gym -+ R' is continuous. The open sets in the DeWitt

topology have the form V x R",m, where V are open sets in R'. Obviously, this

topology is not Hausdorff.

DEFINITION 9.3.6. A smooth supermanifold [G-supermanifold, R°°-supermanifold]

is said to be a DeWitt supermanifold if it admits an atlas such that the local mor-

phisms 4s : U( -* B"'m in Definition 9.3.2 [Definition 9.3.4, Axiom 2] are continuous

in the DeWitt topology, i.e., 0s(US) C B1,' are open in the DeWitt topology. q
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In particular , the G°°-supermanifold underlying a DeWitt G-supermanifold is
also a DeWitt supermanifold , and so is the G-extension of a DeWitt GH°°- super-
manifold.

Given an atlas (Us, 0() of a DeWitt supermanifold in accordance with Definition

9.3.6, it is readily observed that its transition functions 0( o 0£ 1 must preserve the
fibration an,m : Bn ,m --+ R" whose fibre (an,m)-1 (z) over z E R '2 is equipped with

the coarsest topology where 0 and (an,m)-1(z) only are open sets. It states the

following fact.

PROPOSITION 9.3.7. Every DeWitt supermanifold is a locally trivial topological
fibre bundle

aM : M -* Z m

over an n-dimensional smooth manifold ZM with the typical fibre Rn,'n. q

(9.3.16)

The base ZM of the fibre bundle (9.3.16) is said to be a body manifold of M,
while the projection aM is called a body map of a DeWitt supermanifold.

There is the important correspondence between the DeWitt H°°-supermanifolds

and the above studied graded manifolds. This correspondence is based on the fol-

lowing facts.

• Given a graded manifold (Z, A), its structure sheaf A, by definition, is locally

isomorphic to the sheaf Cu ® AR' for any suitable U C Z.

• Given a DeWitt H°°-supermanifold (M, H,) and the body map (9.3.16),
Proposition 9.3.1 implies that the direct image a.(H,) on ZM of the sheaf
H,^ is locally isomorphic to the sheaf Cz ® ® AR'. The expression (9.3.9)
shows this isomorphism in an explicit form.

• Moreover, the spaces (M, HM) and (ZM, a(HM )) determine the same element
of H1(ZM; Aut (ARm),).).

It states the following Theorem [20, 23].

THEOREM 9.3.8. Given a DeWitt H°°-supermanifold (M, H°°), the associated pair

(ZM, a.(H,N)) is a graded manifold. Conversely, for any graded manifold (Z, A),

there exists a DeWitt H°°-supermanifold whose body manifold is Z and A is iso-

morphic to a.(HM). q
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COROLLARY 9.3.9. By virtue of Batchelor's Theorem 9.2.2 and Theorem 9.3.8,

there is one-to-one correspondence between the classes of isomorphic DeWitt H°°-

supermanifolds of odd rank m, with a body manifold Z, and the classes of equivalent

m-dimensional vector bundles over Z. q

This result is extended to DeWitt GH°°-, G°°- and G-supermanifolds.

Let us say something more on DeWitt G-supermanifolds, which can be utilized

as base of supervector bundles.

PROPOSITION 9.3.10. The structure sheaf GM of a DeWitt G-supermanifold is

acyclic, and so is any locally free sheaves of GM-modules [20, 45]. q

PROPOSITION 9.3.11. [251]. The cohomology groups HA(M) of the De Rham

complex of exterior superforms on a DeWitt G-supermanifold are isomorphic with

the De Rham cohomology groups (9.3.14) of A-valued exterior forms on the body

manifold ZM, i.e.,

HX(M) = H*(ZM) ® A. (9.3.17)

These results are based on the fact that the structure sheaf GM on M provided

with the DeWitt topology is fine. However, this does not imply automatically that

GM is acyclic since the DeWitt topology is not paracompact. Nevertheless, it follows

that the image Q*(GM) on the body manifold ZM is fine and acyclic. Then combining

Propositions 8.3.7 and 9.3.5 leads to Proposition 9.3.10. In particular, the sheaves of

exterior superforms on a DeWitt G-supermanifold are acyclic. Then they constitute

the resolution of the constant sheaf A on M, and one gains the isomorphisms

HA* (M) = H* (M; A) = H* (M) ®A.

Since the typical fibre of the fibre bundle M ---> ZM is contractible, then H*(M)

H*(ZM) such that the isomorphisms (9.3.17) take place.

Supervector bundles

As was manifested above, let us consider vector bundles in the category of G-

supermanifolds (see [20] for a detailed exposition).
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We will start from the definition of the product of two G-supermanifolds. Let
(Bn'm, cn ,m) and (Br's, g,,,) be two standard supermanifolds in Example 9.3.4. Given
open sets U C Bn,m and V C Br's, we consider the presheaf

U X V -> ggn ,m(U)®yr,s(V), (9.3.18)

where ® denotes the tensor product of modules completed in Grothendieck's topol-

ogy (see Remark 8.1.8). Due to the isomorphism (9.3.13), it is readily observed that

the structure sheaf ggn+r,m+s of the standard supermanifold on Bn+r,'n+s is isomor-

phic to that defined by the presheaf (9.3.18). This construction is generalized to

arbitrary G-supermanifolds as follows.

PROPOSITION 9.3.12 . Let (M, GM) and (M', GM, ) be two G-supermanifolds of

dimensions (n, m) and (r, s), respectively. Their product (M, GM) x (M', GM,) is

defined as the graded locally ringed space (M x M', GM® GM'), where GM®GM, is
the sheaf constructed from the presheaf

U X U' GM(U)®GM'(U'),

6: GM(U)®GM,(U') - C (u)§C (u,) = C MiuixoMiu,i,

for any open subsets U C M and U' C M'. This product is a G-supermanifold of

dimension (n + r, m + s). q

Moreover, there are the epimorphisms

pri : (M, GM) X (M', GM') - (M, GM),

pre : (M, GM) x (M', GM,) -' (M', GM,).

One may define a section , e.g., of the fibration prl over an open subset U C M as

the G-supermanifold morphism

su : (U, GMI u) - (M, GM) x (M', GM')

such that prl o su is the identity morphism of (U,GMIu). Sections su for all open

subsets U C M define a sheaf on M. We are interested in providing this sheaf with

a suitable graded GM-structure. Recall that, in the case of a smooth vector bundle

over a manifold X, the sheaf of its section is a sheaf of CX-modules (see Example

8.3.3).
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For this purpose, let us consider the product

(M, GM) x (Br, s, Yrls), ( 9.3.19)

where BrI, is the graded envelope (9.1.4). It is called a product G-supermanifold.

Since the Ao-modules Bras and Br+3,''+s are isomorphic , B''1 has a natural structure

of an (r + s, r + s)-dimensional G-supermanifold . Because BrI8 is a free graded

A-module of the type (r, s), the sheaf SM of sections of the fibration

(M, GM) x (Brls, (M, GM ) (9.3.20)

has the structure of the sheaf of free graded GM-modules of rank (r, s). Conversely,

given a G-supermanifold (M, Gm) and a sheaf S of free graded GM-modules of

rank (r, s) on M, there exists a product G-supermanifold (9.3.19 ) such that S is

isomorphic to the sheaf of sections of the fibration (9.3.20).

Turn now to the notion of a supervector bundle over G-supermanifolds . Similarly

to smooth vector bundles (see Example 8.3.3), one can require that the category of
supervector bundles over G-supermanifolds to be equivalent to the category of locally

free graded sheaves on G-supermanifolds . Then we can restrict ourselves to locally

trivial G-superbundles with the standard fibre BrI3.

DEFINITION 9.3.13. A supervector bundle over a G-supermanifold (M, Gm) with

the standard fibre (Bras, Cris ) is a pair ((Y, Gy), ir) of a G-supermanifold (Y, Gy)

and a G-epimorphism

7:(Y,Gy)-*(M,GM) (9.3.21)

such that M admits an open covering { U(} with a set of local G-isomorphisms

VGt : (7r-1(U(),GYIr-'(us)) - (UU,GMIus) X ( Brjs,Qris)•

It is clear that sections of the supervector bundle (9.3.21) constitute a sheaf of

locally free graded GM-modules. A converse of this fact is the following [201.

PROPOSITION 9.3.14. For any sheaf S of locally free graded GM-modules of rank

(r, s) on a G-manifold (M, GM), there exists a supervector bundle over (M, GM)

such that S is isomorphic to the sheaf of its sections. q
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Given a sheaf S as in Proposition 9.3.14, called the structure sheaf, the fibre Yq,

q E M, of the above mentioned supervector bundle is the quotient

,. Srjs (M
, .5rls

- BrIs
Sql Mq = MqA( 9 Mq)

of the stalk Sq by the submodule Mq of the germs s c Sq whose evaluation 6(f) (q)

vanishes. This fibre is a graded A-module isomorphic to Brls. It is provided with

the structure of a standard supermanifold.

Remark 9.3.5. The proof of Proposition 9.3.14 uses the fact that, given the tran-

sition functions pcc of the sheaf S, its evaluations

gcc = 6(pcc) (9.3.22)

define the morphisms Uc fl U£ -+ GL(rIs; A) and constitute the cocycle of the sheaf

G°°-morphisms from M to the general linear graded group GL(rIs; A). Thus, we

come to the notion of a G°°-vector bundle. Its definition is the repetition of Def-

inition 9.3.13 if one replaces G-supermanifolds and G-morphisms with the G°°-

ones. Moreover, the G°°-supermanifold underlying a supervector bundle (see Re-

mark 9.3.3) is a G°°-supervector bundle whose transition functions gcg are related

to those of the supervector bundle by the evaluation morphisms (9.3.22), and are

GL(rIs; A)-valued transition functions. •

Since the category of supervector bundles over a G-supermanifold (M, GM) is

equivalent to the category of locally free sheaves of GM-modules, one can define the

usual operations of direct sum, tensor product, etc. of supervector bundles.

Note that any supervector bundle admits the canonical global zero section. Any

section of the supervector bundle 7r (9.3.21), restricted to its a trivialization chart

(U, GM l u) x (Brl s, Gres), (9.3.23)

is represented by a sum s = sa(q)Ea, where {Ea} is the basis for the A-module BrIS,

while sa(q) are G-functions on U. Given another trivialization chart U' of 7r, a

transition function

s 6(q)Eb = sa(q)hba(q)Eb, q E U fl U', (9.3.24)

is given by the (r + s) x (r + s) matrix h whose entries hba(q) are G-functions on

U fl U'. One can think of this matrix as being a section of the supervector bundle

over U fl U with the above mentioned group GL(rIs; A) as a typical fibre.
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Example 9.3.6. Given a G-supermanifold (M, GM), let us consider the locally, free

graded sheaf aGM of graded derivations of GM. In accordance with Proposition

9.3.14, there is a supervector bundle T(M, GM), called supertangent bundle, whose

sheaf of sections is isomorphic to aGM. If (q1, ... , qm+n) and (q'1, . . . , q'm+n) are two

coordinate charts on M, the Jacobian matrix

aq,^zh^ = a ^, i, j = 1,...,n+m,
q

(see the prescription (9.3.12)) provides the transition morphisms for T(M, GM). Of

course, the fibre of the supertangent bundle T(M,GM) at a point q E M is the

above mentioned supertangent space TQ(M, GM).

It should be emphasized that the underlying G°°-vector bundle of the supertan-

gent bundle T (M, GM), called G°°-supertangent bundle, has the transition functions

6(hy) which cannot be written as the Jacobian matrices since the derivatives of G°°-

superfunctions with respect to odd variables are ill-defined and the sheaf aGM is

not locally free. •

Superconnections

Given a supervector bundle 7r (9.3.21) with the structure sheaf S of its sections, a

connection on this supervector bundle is defined as in Definition 8.3.6. The difference

is only that S is a sheaf of graded locally free GM-modules.

As in the case of the exact sequence (8.3.5) in Section 8.3, one can obtain the

exact sequence of sheaves

0--+a*GM ®S-> (GM®cD*GM)®5- S -*O (9.3.25)

as a direct limit of the exact sequence (8.1.35) for the graded GM(U)-modules S(U),

where by modp2 is meant the quotient by the graded relations

6a06b(l®p)=1®(abp)-a®(bp)-(-1)[a][b]b®(ap)+ab®p=0,

a®b+(-1)[a][blb®a= ab®1+1®ab,

where

Sb(a (9 p) = (-1)[a][b]a ® (bp) - (ba) ®p (9.3.26)
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(cf. (8.1.11), (8.1.15) and (8.1.18)). The exact sequence (9.3.25) needs not be split

in general. It admits a splitting if and only if there exists an even sheaf morphism

V:S-*a*GM®S (9.3.27)

satisfying the Leibniz rule

V(fs)=df ®s+fV(s), f E GM(U), s E S(U), (9.3.28)

for any open subset U E M.

DEFINITION 9.3.15. The sheaf morphism (9.3.27) is called a superconnection on

the supervector bundle 7r (9.3.21). q

The curvature of the superconnection (9.3.27) is given by the expression

R=V2:S-*AaM®S, (9.3.29)

similar to the expression (8.3.12).

As in the case of sheaves of Cx-modules, the exact sequence (9.3.25) leads to

the exact sequence of sheaves

0 -+ Hom(S, a*GM (9 S) -> Hom(S, (GM ® r,*GM) (9 S) -> Hom(S, S) ---* 0

and to the corresponding exact sequence of the cohomology groups

0 --* H°(M; Hom(S, D *Gm 0 S)) --> H°(M; Hom(S, (GM (D ?)*Gm) (9 S))

H°(M; Hom(S, S)) -> H1(M; Hom(S, D*GM (9 S)) -* - - -.

The exact sequence (9.3.25) defines the Atiyah class At(7r) E H1(M; Hom(S, a*GM®

S)) of the supervector bundle 7r (9.3.21). If At(7r) vanishes, a superconnection on

this supervector bundle exists (see Section 8.3). Of course, a superconnection exists

if the cohomology group H1(M; Hom(S, a*GM (9 S)) is trivial. In contrast with

smooth vector bundles, the structure sheaf GM of a G-supermanifold is not acyclic in

general , the sheaf Hom(S, t*GM (&S) has non-trivial cohomology, and a supervector

bundle does not admit necessarily a superconnection.

Example 9 .3.7. For instance, the structure sheaf of the standard supermanifold

(Bn'm, CJn,m) is acyclic (see Proposition 9.3.5), and a supervector bundle

(Bn,tn,
gn,m) x (BT Is, yr,s) - (B''m, On,m) (9.3.30)
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has obviously a superconnection, e.g., the trivial superconnection. •

Example 9 .3.8. If (M, GM) is a DeWitt G-supermanifold, its structure sheaf

GM is acyclic, and so is the locally free sheaf Hom(S, i7*GM ® S) (see Proposition

9.3.10). It follows that supervector bundles over DeWitt G-supermanifolds admit

superconnections. •

Example 9.3.7 enables one to gain a local coordinate expression of a superconnec-

tion on a supervector bundle 7r (9.3.21) with the typical fibre B''1' and with the base

G-supermanifold locally isomorphic to the standard supermanifold (B''m, cn,m). Let

U C M (9.3.23) be a trivialization chart of this supervector bundle such that ev-

ery section s of 7r1 u is represented by a sum sa(q)E,,, while the sheaf of superforms

a*GMIU has a local basis {dqi}. Then a superconnection V (9.3.27) restricted to

this trivialization chart can be given by a collection of coefficients

V(Ea) = dq' ®(Vibafb) (9.3.31)

where Viab are G-functions on U. Bearing in mind the Leibniz rule (9.3.28), one

can compute the coefficients of the curvature form (9.3.29) of the superconnection

(9.3.31). We have

R(Ea) = 2dgi Adgj ® RijbaEb,

Rijab =
(-1)[i][jlaVjab - a Viab + (-1)[i](U]+[a]+[k])Vjakpikb _

(- 1)[j]([a)+[k]) ViakVjkb

In a similar way, one can obtain the transformation law of the superconnection

coefficients (9.3.31) under the transition morphisms (9.3.24). In particular, any

trivial supervector bundle admits the trivial superconnection Viba = 0.

9.4 Principal superconnections

In contrast with a supervector bundle, the structure sheaf Gp of a principal super-

bundle (P, Gp) -> (M, GM) is not a sheaf of locally free GM-modules in general.

Therefore , the above technique of connections on modules and sheaves is not applied
to principal superconnections in a straightforward way. Principal superconnections

are introduced on principal superbundles by analogy with principal connections
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on smooth principal bundles [20] (compare, e . g., the exact sequence (6.1.11) with

the exact sequence (9.4.6) below). For the sake of simplicity, let us denote G-

supermanifolds (M, GM) and their morphisms (cp : M -+ N, -b : GN --+ W. (M)) by

M and (P, respectively. Given a point q E M, by q = (q, A) is meant the trivial

G-supermanifold of dimension (0, 0). We will start from the notion of a G-Lie su-

pergroup H. The relations between G - GH°°- and G°°-Lie supergroups follow the

relations between the corresponding classes of superfunctions.

DEFINITION 9.4.1. A G-supermanifold H = (H, ?-l) is said to be a G-Lie supergroup

if there exist the following G-supermanifold morphisms:

• a multiplication m: H X H -> H,

• aunit e:e-+H,

• an inverse S : H -I H,

together with the natural identifications

exH=Hxe=H,

which satisfy

• the associativity

''mo(Idxm)= mo(mxId):HxHxH,HxH->H,

• the unit property

(mo(IxId))(exH)=(mo(Idx€))(Hxe)=Id H,

• the inverse property

(m o (S, Id))(H) _ (in o (Id, S))(H) = E(E).
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Given a point g E H, let us denote by g : e -> H the G-supermanifold morphism

whose image in H is g. Then one can introduce the notions of the left translation

L9 and the right translation Rg as the G-supermanifold morphisms

L9:H=exH9 HxH ^H,

Rg:H=Hxeld,HxH ^H.

Remark 9.4.1. Given a G-Lie supergroup H, the underlying smooth manifold H

is provided with the structure of a real Lie group of dimension 2N-1 (n + m), called

the underlying Lie group. In particular, the actions on the underlying Lie group

H, corresponding to the left and right translations by g, are ordinary left and right

translations by g. •

Let us reformulate the group axioms in Definition 9.4.1 in terms of the structure

sheaf ?-l of the G-Lie supergroup (H, R). We will observe that h has properties of

a sheaf of graded Hopf algebras.

Remark 9.4.2. A real (or complex) vector space A is called a coalgebra if there

exist the morphisms:

• a comultiplication A : A -> A ® A,

• a counit e : A

which satisfy the relations

(A ® Id)A(a) = (Id 0 A)A(a),

(e ® Id)A(a) = (Id ® e)A(a) = a, a E A.

Let A be an associative R-algebra with a unit e, i.e ., an R-ring, where the

multiplication m is written as

m:A®A3a®b-->abEA, a,bEA.

Recall that A ® A is also a R-ring with respect to the operations

(a (9 b) ® (a' ® b' ) H (aa') ® (bb'),

A(a®b)=(Aa)®b= a®(Ab), a, b E A, AE
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A bialgebra (A, m, A, e) is a coalgebra A which is also an R-ring such that

A(e)=e®e, e(e)=1.

A Hopf algebra (A, m, A, e, S) is a bialgebra, endowed with a coinverse S : A -* A

such that

m((S ® Id)A(a)) = m((Id ® S)A(a)) = e(a)e

(see [1] for a survey). •

If (H, N) is a G-Lie supergroup, the structure sheaf 1-l is provided with the sheaf
morphisms:

• a comultiplication m* : H -* m*(N®1-l),

• a counit : N --+ e, (A),

• a coinverse S : 7-l S. H.

Let us denote

k=mo(Idxm)=mo(mxId):HxHxH-+ H.

Then the group axioms in Definition 9.4.1 are equivalent to the relations

((Id (9 m*) o m*) (H) = ((m* (9 Id) o in) (H) = k*(7l®7l®7l),

(m* o (Id (9 e))(N®e*(A)) = (ffi* o (e ® Id))(e*(A)®N) = Id H,

(Id •S*)o'*=(S*•Id)o'm*=e .

Comparing these relations with the axioms of a Hopf algebra in Remark 9.4.2, one

can think of the structure sheaf of a G-Lie group as a sheaf of graded topological

Hopf algebras.

Example 9 .4.3. The general linear graded group GL(nlm; A) is endowed with the

natural structure of H°°-supermanifold of dimension (n2 + m2, 2nm). The matrix

multiplication gives the H°°-morphism

m : GL(nlm; A) x GL(nlm; A) -> GL(nlm; A)

such that F(g, g') H F(gg'). It follows that GL(nlm; A) is an H°°-Lie supergroup.

It is trivially extended to the G-Lie supergroup GL(n I m; A), called the general

linear supergroup. •
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A Lie superalgebra Ij of a G-Lie supergroup H is defined as an algebra of

left-invariant supervector fields on H. Recall that a supervector field u on a G-

supermanifold H is a derivation of its structure sheaf 1-l. It is called left-invariant

if

(Id®u)oiii* = 'ou.

If u and u' are left-invariant supervector fields, so are [u, u'] and au + a'u', a, a' E

A. Hence, left-invariant supervector fields constitute a Lie superalgebra. The Lie

superalgebra Fj can be identified with the supertangent space Te(H). Moreover,

there is the sheaf isomorphism

1-f®h=a1-l, (9.4.1)

i.e., the sheaf of supervector fields on a G -Lie supergroup H is the globally free sheaf

of graded 'H-modules of rank (n, m), generated by left-invariant supervector fields.

The Lie superalgebra of right-invariant supervector fields on H is introduced in a

similar way.
Let us consider the right action of a G-Lie supergroup H on a G-supermanifold

P. This is a G-morphism

p:PxH -*P

such that

po(pxId)=po(Idxm):PxHxH->P,

po(Idx€)(Pxe)=Id P.

The left action of H on P is defined similarly.

Example 9.4.4. Obviously, a G-Lie supergroup acts on itself both on the left and

on the right by the multiplication morphism m.

The general linear supergroup GL(nIm; A) acts linearly on the standard super-

manifold B" l" on the left by the matrix multiplication which is a G-morphism. •

Let P and P' be G-supermanifolds that are acted on by the same _G-Lie su-

pergroup H. A G-supermanifold morphism cp : P --> P is said to be H-invariant

if

cpop=p o((pxId):PxH-fP'.
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DEFINITION 9.4.2. A quotient of an action of a G-Lie supergroup on a G-submanifold

P is a pair (M, ir) of a G-supermanifold M and a G-supermanifold morphism

fr : P -* M such that:

(i) there is the equality

Trop= rofir, :Px (9.4.2)

(ii) for every morphism cp : P -+ M' such that Co o p = cp o prl, there is a

unique morphism g : M -* M' with cp = g o fr.

0

The quotient (M, i) does not necessarily exists. If it exists, there is a monomor-

phism of the structure sheaf GM of M into the direct image ir.Gp. Since the G-Lie

group H acts trivially on M, the image of this monomorphism is a subsheaf of Ir.GP,

invariant under the action of H. Moreover, there is an isomorphism

x
GM = (7r.Gp) (9.4.3)

between GM and the subsheaf of Gp of H-invariant sections. The latter is generated

by sections of Gp on 7r-1(U), U C M, which are H-invariant as G-morphisms

U -+ A, where one takes the trivial action of H on A.

Let us denote the morphism in the equality (9.4.2) by V. It is readily observed,

that the invariant sections of Gp(-7r-1(U)) are exactly the elements which have the

same image under the morphisms

P : Gp(7r-1(U)) - (H®Gp)('9-1(U)),

pri : Gp(7r-1(U)) --* (f®Gp)(t9-1(U))•

Then the isomorphism (9.4.3) leads to the exact sequence of sheaves of A-modules

on M

0 -GM +ir.Gp z9.(GM®7-l). (9.4.4)

DEFINITION 9.4.3. A principal superbundle of a G-Lie supergroup H is defined as

a locally trivial quotient 7r : P -> M, i.e., there exists an open covering {US} of M

together with H-invariant isomorphisms

^:P10C-*UUxH,
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where H acts on

US x H - UU

by the right multiplication. q

(9.4.5)

Remark 9 .4.5. In fact, we need only the condition (i) in Definition 9.4.2 of the

action of H on P and the condition of local triviality of P. •

In an equivalent way, one can think of _a principal superbundle as being glued of

trivial principal superbundles (9.4.5) by H-invariant transition functions

0(^:U(£xH- UC^xH, UU£=UUnU£,

which fulfill the cocycle condition.
As in the case of smooth principal bundles, the following two types of supervector

fields on a principal superbundle are introduced.

DEFINITION 9.4.4. A supervector field u on a principal superbundle P is said to

be invariant if

p o u= (u ® Id) o u: Cp -+ p*(Gp(57-l).

One can associate with every open subset V C M the GM( V)-module of all

H-invariant supervector fields on 7r-1(V), thus defining the sheaf Z)H (7r*Gp) of GM-

modules.

DEFINITION 9.4.5. A fundamental supervector field v associated with an element

v E C7 is defined by the condition

v = (Id (9 v) o p : Gp -* GP®e*(A) = Gp.

Fundamental supervector fields generate the sheaf VGP of Gp-modules of vertical

supervector field on the principal superbundle P, i.e., u o 7r* = 0. Moreover, there

is an isomorphism of sheaves of Gp-modules

Gp®1j F®vHFi33EVGp,
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which is similar to the isomorphism (9.4.1).

Let us consider the sheaf

(7r*VGp)H = 7r*(VGp) n DH(7r*Gp)

on M whose sections are vertical H-invariant supervector fields.

PROPOSITION 9.4.6. [20]. There is the exact sequence of sheaves of GM-modules

0 - (7r*VGp)H -+ aH(7r*Gp) -+ aGM - 0. (9.4.6)

The exact sequence (9.4.6) is similar to the exact sequence (6.1.11) and the

corresponding exact sequence of sheaves of C°°-modules

0 -+ (VGP)X -+ (TGP)X -+ DCX 0

in the case of smooth principal bundles. Accordingly, we come to the following

definition of a superconnection on a principal superbundle.

DEFINITION 9.4.7. A superconnection on a principal superbundle 7r : P -+ M (or

simply a principal superconnection) is defined as a splitting

V : aGM D'(7r*Gp)

of the exact sequence (9.4.6). q

(9.4.7)

In contrast with principal connections on smooth principal bundles, principal

superconnections on a H-principal superbundle need not exist.

A principal superconnection can be described in terms of a b-valued 1-superform

on P

w:?IGP-+Gp®C1=VGp,

called a superconnection form (cf. (6.1.14)). Indeed, every splitting V (9.4.7) defines

the morphism of Gp-modules

Fr*('0Gm) -+ Fr*(DH(7r*Gp)) - aGp

which splits the exact sequence

0-*VGp-ciGp->Fr*(aGM)-+ 0.
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Therefore , there exists the exact sequence

0-*ir'(ZGM)VGP- ciGp -*VGp- 0.

Let us note that , by analogy with associated smooth bundles , one can introduce

associated superbundles and superconnections on these superbundles . In particular,

every supervector bundle of fibre dimension (r, s) is a superbundle associated with

GL(rIs; A)-principal superbundle [20].

9.5 Graded principal bundles

Graded principal bundles and connections on these bundles can be studied simi-

larly to principal superbundles and principal superconnections , though the theory

of graded principal bundles preceded that of principal superbundles [5, 183]. There-

fore, we will touch on only a few elements of the graded bundle technique (see, e.g.

[285] for a detailed exposition).

Let (Z , A) be a graded manifold of dimension (n, m). A useful object in the

graded manifold theory, not mentioned above, is the finite dual A(Z)° of the algebra

A(Z) which consists of elements a of the dual A(Z)' which vanish on an ideal

of A(Z) of finite codimension . This is a graded commutative coalgebra with the

comultiplication

(A°(a))(f (9 f^ ) def
a(ff'), df, f E A(Z),

and the counit

E (a) def
a(1A)•

In particular, A(Z)' includes the evaluation elements Sz such that

Mf) _ (0,M)(z)•

Given an evaluation element 5 , elements u E A(Z)° are called primitive elements

with respect to Sz if they obey the relation

A' (V) = u ®b-, + 5 ® u. (9.5.1)

These elements are derivations of A(Z) at z, i.e.,

u(ff') = (uf)(6 f) + (-l)1U11f1(6zf)(uf')-
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DEFINITION 9.5.1. A graded Lie group (G, G) is defined as a graded manifold

such that G is an ordinary Lie group, the algebra G(G) is a graded Hopf algebra

(A, E, S), and the algebra epimorphism a : G(G) -+ C°°(G) is a morphism of graded
Hopf algebras. q

One can show that G(G)° is also equipped with the structure of a Hopf algebra
with the multiplication law

a*baef (a(& b) oA, da,b E G(G)°. (9.5.2)

With respect to this multiplication, the evaluation elements 69, G E G, constitute

a group 6, * 69, = 699' isomorphic to G. Therefore, they are also called group-like

elements. It is readily observed that the set of primitive elements of 9(G)° with

respect to 5e, i.e., the tangent space Te(G, G) is a Lie superalgebra with respect to

the multiplication (9.5.2). It is called the Lie superalgebra g of the graded Lie group

(G, G).
One says that a graded Lie group (G, G) acts on a graded manifold (Z, A) on

the right if there exists a morphism

(cp,D):(Z,A)x(G,G)-*(Z,A)

such that the corresponding algebra morphism

ID : A(Z) -> A(Z) ®G(G)

defines a structure of a right G(G)-comodule on A(Z), i.e.,

(Id®A)o4) =((D (9 Id)o-P, (Id(9 e)o-1) =Id.

For a right action (cp, I) and for each element a E G(G)°, one can introduce the

linear map

,% = (Id ® a) o 0 : A(Z) --+ A(Z). (9.5.3)

In particular, if a is a primitive element with respect to Se, then 4), E Z A(Z).

Let us consider a right action of (G, G) on itself. If (D = A and a = 69 is a

group-like element, then 1 a (9.5.3) is a homogeneous graded algebra isomorphism

of degree zero which corresponds to the right translation G -* Gg. If a E g, then 1 a

is a derivation of G(G). Given a basis {ui} for g, the derivations 4)u, constitute the
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global basis for 09(G), i.e., ZQ(G) is a free left Q(G)-module. In particular, there is

the decomposition

9(G) _ 9'(G) OR 9"(G),

9'(G) _ If E 9(G) : 'Du(.f) = 0, Vu E go},

Cg"(G) _ If E 9(G) : 4Du(f) = 0, Vu E oil.

Since c'(G) = C°°(G), one finds that every graded Lie group (G, 9) is the sheaf of

sections of some trivial exterior bundle G x gi -* G [5, 36, 183].
Turn now to the notion of a graded principal bundle. A right action (cp, c) of

(G, 9) on (Z, A) is called free if, for each z E Z, the morphism (bz : A(Z) - 9(G)

is such that the dual morphism'I : g(G)° -> A(Z)° is injective.

A right action (cp, 1) of (G, 9) on (Z, A) is called regular if the morphism

(cp x prl) o A : (Z, A) x (G, G) -+ (Z, A) x (Z, A)

defines a closed graded submanifold of (Z, A) x (Z, A).

Remark 9.5.1. Note that (Z', A') is said to be a graded submanifold of (Z, A)

if there exists a morphism (Z', A') -+ (Z, A) such that the corresponding mor-

phism A'(Z')° --> A(Z)° is an inclusion. A graded submanifold is called closed if

dim (Z', A') < dim (Z, A). •

Then we come to the following variant of the well-known theorem on the quotient

of a graded manifold [5, 285].

THEOREM 9.5.2. A right action (cp, 1) of (G, 0) on (Z, A) is regular if and only if

the quotient (Z/G, A/9) is a graded manifold, i.e., there exists an epimorphism of

graded manifolds (Z, A) -> (Z/G, A/0) compatible with the projection Z -* ZIG.

In view of this Theorem , a graded principal bundle (P, A) can be defined as a

locally trivial submersion (P, A) -> (P/G, A/0) with respect to the right regular free

action of (G, 9) on (P, A). In an equivalent way, one can say that a graded principal

bundle is a graded manifold (P, A) together with a free right action of a graded Lie

group (G, G) on (P, A) such that the quotient (PIG, A/9 ) is a graded manifold and

the natural surjection (P, A) -> (PIG, A/0) is a submersion. Obviously, P -> PIG

is an ordinary G-principal bundle.
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A graded principal connection on a graded (G, g)-principal bundle (P, A) -->
(X, B) can be introduced similarly to a superconnection on a principal superbundle.

This is defined as a (G, c)-invariant splitting of the sheaf DA, and is represented by

a g-valued graded connection form on (P, A) [285].

Remark 9.5.2. In an alternative way, one can define graded connections on a
graded bundle (Z, A) -> (X, B) as sections F of the jet graded bundle Jl (Z/X) ,
(Z, A) of sections of (Z, A) -> (X, B) [5], which is also a graded manifold [260].

In the case of a (G, g)-principal graded bundle, these sections I' are required to be

(G, g)-equivariant (cf. Definition 6.1.1). •

9.6 SUSY-extended field theory

Sections 9.4 and 9.5 provided the general mathematical formalism for field models
with supersymmetries (SUSY field models). Here, we show that field theory on a
wide class of fibre bundles Y -> X can be extended in a standard way to SUSY field
theory which is invariant under the Lie supergroup ISp(2 ). In comparison with the
SUSY field theory in Ref. [42, 60 ], this extension is formulated in terms of simple
graded manifolds , and is the direct generalization of the BRS mechanics of E.Gozzi
and M . Reuter [136 , 137, 138, 213]. The SUSY-extended field theory is constructed
as the BRS-generalization of the vertical extension of field theory on the fibre bundle
VY -+ X in Section 4.5 [125]. From the physical viewpoint , it may describe odd
deviations of physical fields

Given a fibre bundle Y -* X and the vertical tangent bundle VY -p X, let
us consider the vertical tangent bundle VVY of VY -+ X and the simple graded
manifold (VY, Avvy) whose body manifold is VY and whose characteristic vector
bundle is VVY -* VY. Its local basis is (c', ), where { ci, c } is the fibre basis
for V*VY, dual of the holonomic fibre basis {ai , ai} for VVY -* VY . Graded
vector fields and graded exterior 1-forms are introduced on VY as sections of the
vector bundles Vvvy and VV vr, respectively. Let us complexify these bundles as
C ® Vvvy and C 0 VVvy. By the BRS operator on graded functions on VY is meant
x x

the complex graded vector field

uQ = ea, + iy' (9.6.1)

It satisfies the nilpotency rule uQ = 0.
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The configuration space of the SUSY-extended field theory is the simple graded

manifold (VJ1Y, Avvily ) whose characteristic vector bundle is the vertical tangent

bundle VVJ1Y -* VJ1Y of VJ1Y -+ X. Its local basis is (ci, c , ca, ca) which

is the fibre basis for V*VJ1Y dual of the holonomic fibre basis {ai, ai> ai , of } for

VV J1Y -> V J1Y. The affine fibration 7r o : V J1Y - VY and the corresponding

vertical tangent morphism V7ro : VVJ1Y --+ VVY yields the associated morphism

of graded manifolds (VJ'Y, Avvjly) -* (VY, Avvy) (9.2.17).

Let us introduce the operator of the total derivative

da =aa+yaai +yaai+ca T. +ca.

With this operator, the coordinate transformation laws of ci and c read

A (9.6.2)c'i=daci , ci=daci.

Then one can treat ca and ca as the jets of ci and c . Note that this is not the notion

of jets of graded bundles in [260]. The transformation laws (9.6.2 ) show that the

BRS operator uQ (9.6.1 ) on VY can give rise to the complex graded vector field

u s i sJQ = UQ + eaai + iya
CA

(9.6.3)

on the VJ1Y (cf. (1.3.10)).

In a similar way, the simple graded manifold with the characteristic vector bundle

VVJkY -> VJkY can be defined. Its local basis is (ci, c , ci, -(5A,), 0 < JAI < k. Let

us introduce the operators

ac -= c8n +ciasa'+ci a^µ+ a -iia +cia^+ci a^µ + (9.6.4)aµ a ^ c- a a i aµ x

da =aa +yaai+ca a-+Za a+• (9.6.5 )aci ac
It is easily verified that

daa^ = a^da, daa^ = a^da. (9.6.6)

As in the BRS mechanics , the main criterion of the SUSY extension of La-

grangian formalism is its invariance under the BRS transformation (9.6.3). The

BRS-invariant extension of the vertical Lagrangian Lv (4.5.1) is the graded n-form

Ls = Lv + iacarLw (9.6.7)
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such that LJ,,QLS = 0. The corresponding Euler-Lagrange equations are defined as

the kernel of the Euler-Lagrange operator

w.£Ls = (dy'S1 + dy'Si + dc= a. + dc' b c)GS A
Sc=

They read

5CS=StG=O,

6"CS = o1Gv + iO &8 = 0,

8c' GS = -i& = 0,

LS = is 6iL = 0,
Sc

(9.6.9a)

(9.6.9b)

(9.6.9c)

(9.6.9d)

where the relations (9.6.6) are used. The equations (9.6.9a) are the Euler-Lagrange

equations for the initial Lagrangian L, while (9.6.9b) - (9.6.9d) can be seen as the

equations for a Jacobi field 8y' = €c' + e F + Zey' modulo terms of order > 2 in the

odd parameters e and -E.

A momentum phase space of the SUSY-extended field theory is the complex-

ified simple graded manifold (VII, Avon) whose body manifold is VII and whose

characteristic vector bundle is VVII -> VII. Its local basis is (c', c , ci , ci ), where

such that ci and c; have the same transformation laws as pi and Pi , respectively.

The corresponding graded vector fields and graded 1-forms are introduced on VII

as sections of the vector bundles C 0 Vvvrj and C ®V;vn, respectively.
X x

In accordance with the above mentioned transformation laws of ci and c2 , the

BRS operator uQ (9.6.1) on VY can give rise to the complex graded vector field

uQ = a, + iyi aj:CW + ipiâ (9.6.10)
^1

on VII (cf. (4.4.1 ). The BRS-invariant extension of the polysymplectic form S2vy

(4.5.6) on VII is the TX -valued graded form

Qs = [dpi n dy' + dpi n dy' + i(dci n dc' - dc' n dci )] n w ®aa,

where (c', -ici ) and (e, ici) are the conjugate pairs. Let 'y be a Hamiltonian con-

nection for a Hamiltonian form H on II. Its double vertical prolongation VVry
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on VVH -* X (see (2.7.18 ) and (4.5.11 )) is a linear morphism over the vertical

connection Vy on VII -* X, and so defines the composite graded connection

(VVy)S = Vy + dxµ ®
^gµC7C° + gµ' aC2 +gµaci +g"i aCi

(9.2.26 ) on VII --> X, whose components g and g are given by the expressions

ga = ",2 '\H, gai = -a^aj'H , ga = acaaf , 9ai = -00tl-l,

aC = ciai + ci aa, ac = Ciai +T' aA.

This composite graded connection satisfies the relation

(VVy)sjIls = -dHs,

and can be regarded as a Hamiltonian graded connection for the Hamiltonian graded

form

Hs = [pidy' + pi dy'' + i(C? dct + do ci )]wx - 1'ISW, (9.6.11)

HS = (av + ia^a^M,

on VII. It is readily observed that this graded form is BRS-invariant, i.e., L;CHs =
0. Thus, it is the desired SUSY extension of the Hamiltonian form H.

In particular , let 17' = F,\ijyj be a linear connection on Y -> X and f is a

Hamiltonian connection (4.1.23) on II -* X for the Hamiltonian form Hr (4.1.13).

Given the splitting (4.1.14) of the Hamiltonian form H, there is the corresponding

splitting of the SUSY-extended Hamiltonian form

'Hs = Hrs + xsr = piFagg'' + y'par'j + i(c;raid + z^rai;c2 )
+(av + iaOc)H-lr

with respect to the composite graded connection (VVr)s (9.2.26) on the fibre bundle

VII -* X.

The Hamiltonian graded form Hs (9.6.11) defines the corresponding SUSY ex-

tension of the Lagrangian LH (4.1.20) as follows. The fibration J1VII -> VII yields

the pull-back of the Hamiltonian graded form Hs (9.6.11) onto J'VII. Let us con-

sider the graded generalization

ho : dci F-* c`'dxµ, dcL ^--* cµidx'
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of the horizontal projection ho (1.3.15 ). Then the graded horizontal density

LSH = ho (Hs) = (LH) s = Lxv + i[ (c2 ca + Vac') - acacf ]w = (9.6.12)

Lxv + i[ci (ca - a! aarc) + (ca - Ca9N ) c^ + c2c; eaaµrl - c c'a,a,l-l]w

on J1VII -+ X is the SUSY extension (9.6.7) of the Lagrangian LH (4.1 . 20). The
Euler-Lagrange equations for LSH coincide with the Hamilton equations for Hs,
and read

ya = aA S = aax> pat = -8i1-1s = -aiN, (9.6.13a)

ya = 9,'\H = (8v + iaaaa)aax,
ca =

uci
axa = -kaax,

Ms
CA=-i acA= 11,

pat = -aihs = -(av + iaca,)ain, (9.6.13b)

cAi =i a-Ci acain,

axs

(9.6.13c)

cat (9.6.13d)

The equations (9.6.13a) are the Hamilton equations for the initial Hamiltonian form

H, while (9.6.13b) - (9.6.13d) describe the Jacobi fields

Syt = eci + e e + 6pz = ECZ + ci e + i^epL .

Let us study the relationship between SUSY -extended Lagrangian and Hamil-
tonian formalisms . Given a Lagrangian L on J'Y, the vertical Legendre map Lv
(4.5.4) yields the corresponding morphism (9.2.17 ) of graded manifolds

SLv : (V J1Y, Avvjiy) , (VII, Avvn)

which is given by the relations (4.5.5) and

Ci = ac7r , ci = 887ri .

Let H be a Hamiltonian form on II. The vertical Hamiltonian map Hv (4.5.14)

yields the morphism of graded manifolds

SHv : (VII, Avvn) -+ (V J'Y, Avvjiy)

given by the relations (4.5.15) and

ca=a^aarc, ca=a^37L
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If a Hamiltonian form H is associated with L, a direct computation shows that the

Hamiltonian graded form HS (9.6.11 ) is weakly associated with the Lagrangian LS
(9.6.7), i.e.,

SLv o SHv o SLv = AV,

LS o SHV = (pica + pica + cias + cias )'HS - HS,aci aci

where the second equality takes place at points of the Lagrangian constraint space

L(J'Y).

The BRS invariance of the SUSY field theory can be extended to the above
mentioned Lie supergroup ISp(2 ) if a fibre bundle Y -* X has affine transition
functions (it is not necessarily an affine bundle ). Almost all field models are of this

type. In this case , the vertical tangent bundle admits the vertical splitting (1.1.13)

with respect to the holonomic coordinates yi on VY whose transition functions are
independent of yi. As a consequence , the transformation laws of the frames {ai}

and {ai} are the same, and so are the transformations laws of the coframes {ci} and
{c }. Then the graded vector fields

a a a
=Ciu-= cai -iyi , UK UT

Q aci aC aci

-c (9.6.14)uc=ci a
TO 5F

are globally defined on VY. The graded vector fields (9.6.1) and (9.6.14) constitute

the above-mentioned Lie superalgebra of the supergroup ISp(2):

[UQ, UQ] = [uQ, uQ] = [uQ, UQ] = [uK, UQ] = [uK, uQ] = 0,

[UK, UQ] = UQ,

[UC, UK] = 2UK,

[UK, UQ] = UQ, [UK , UK] = UC,

[uc, uK] = -2uK.

(9.6.15)

Similarly to (9.6.3), let us consider the jet prolongation of the graded vector fields

(9.6.14) onto VJ1Y. Using the compact notation u = u°aa, we have the formula

J1u = u + 4auaa

and, as a consequence , obtain

J1uQ = uQ + C^ai - iya i ,

a
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J1 UK = UK + C'\ J1uK = UT + C\ {

a a

J1UC = UC = C"\aca - ca p

(9.6.16)

It is readily observed that the SUSY-extended Lagrangian Ls (9.6.7) is invariant

under the transformations (9.6.16). The graded vector fields (9.6.3) and (9.6.16)
make up the Lie superalgebra (9.6.15).

Graded vector fields (9.6.14) can give rise to VII by the formula

u = U - (-1)[y°1Qnb1+[u°])aau6P6 as

apa

(cf. (4.4.1)). We have

uQ=ac- iyz ai-ipi aa,ac aci

is A a _ia -a a--+ +, uK-c cK- c ciac aci aci aP
u

a
+ cz

a
- c

a ai a i cta=^-C c a& acL i ac;

(9.6.17)

A direct computation shows that the BRS-extended Hamiltonian form HS (9.6.11)

is invariant under the transformations (9.6.17). Accordingly, the Lagrangian LSH
(9.6.12) is invariant under the jet prolongation Jliii of the graded vector fields

(9.6.17). The graded vector fields (9.6.10) and (9.6.17) make up the Lie super-

algebra (9.6.15).

With the graded vector fields (9.6.10) and (9.6.17), one can construct the cor-

responding graded currents Tu = ii] H, = uj HS (4.4.7). These are the graded

(n - 1)-forms

Tue = (ctpz - l c^ )wA, T,Q = (c:p; - V zi )wa,

tu" = -ici czwA, TuK = icti cZwA, `1u, = i(Cica - C1ci)wa

on VII. They form the Lie superalgebra (9.6.15) with respect to the product

[Tu, Tu'] = 'I[u,u'1

The following construction is similar to that in the SUSY and BRS mechanics.

Given a function F on the Legendre bundle II, let us consider the operators

Fp = eOF o u'Q o e-O' = iiQ - /3aCF, 0 > 0,

FO =e-3FOUQoeOF =uQ+ 30^F,
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called the SUSY charges, which act on graded functions on VII. These operators

are nilpotent, i.e.,

FpoFp=0, FpoFp= 0. (9.6.18)

By the BRS-invariant extension of a function F is meant the graded function

FS =-(FpoFp+FpoFp).

We have the relations

FpoFs -Fs oFp=0, FgoFS -FS oFp=0.

These relations together with the relations (9.6.18) provide the operators Fp, Fp,

and Fs with the structure of the Lie superalgebra sl(1/1) [56]. In particular, let F

be a local Hamiltonian 7-l in the expression (4.1.7). Then

7-ls=-i(F1oF1+F1oF1)

is exactly the local function Hs in the expression (9.6.11 ). The similar splitting of

a super-Hamiltonian is the corner stone of the SUSY mechanics [65, 191].

9.7 The Ne'eman-Quillen superconnection

In this Section, we consider the class of superconnections introduced by Y.Ne'eman

in the physical literature [233, 234, 235] and by D.Quillen in the mathematical lit-
erature [218, 250]. The fibre bundles that they consider belong neither to above

studied graded manifolds and bundles nor superbundles. Ne'eman-Quillen super-

connections have been applied to computing the Chern character in K-theory (see
below), to non-commutative geometry [237], BRST formalism [195] and some par-

ticle unification models (see below).

Let X be an N-dimensional smooth manifold and AT*X the exterior bundle.

Let E0, and El be two vector bundles over X of dimensions n and m, respectively,

One constructs the vector bundle

Q = AT*X ® E = AT*X ®(Eo ® E1), (9.7.1)
x x x

called hereafter the body of an NQ-superbundle (see Definition 9.7.1 below) or

simply an NQ-superbundle.
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The typical fibre of the NQ-superbundle Q is

V = ARN ® (Bo (D B1), (9.7.2)

where B0 and B1 are the typical fibres of the vector bundles E0 and El respectively.

This typical fibre can be provided with the structure of the superspace B111 over

the Grassmann algebra A = ARN. This is the graded envelope of the graded vector
space B = B0 ® B1, where B0 and B1 are regarded as its even and odd subspaces,

respectively. The NQ-superbundle Q inherits this gradation since transition func-

tions of E0 and El are mutually independent, while the transition functions of T*X
preserve the Z-gradation of the Grassmann algebra AR N.

Nevertheless, the NQ-superbundle (9.7.1) is not a supervector bundle over X

since its transition functions are not A-module morphisms. Obviously, one can

think of the NQ-superbundle Q as the tensor product of the vector bundle E and
the characteristic vector bundle AT*X of the simple graded manifold (X, $D ), where
D* is the sheaf of exterior forms on X. The vector bundle VE of graded vector fields

and the vector bundle VV of graded 1-forms (see Section 9.2) have a local structure
of an NQ-superbundle (see local isomorphisms (9.2.12) and (9.2.28), respectively).

Let us denote by Q(X) and Qx the space of global sections of the NQ-superbundle
Q and the sheaf of its sections, respectively. Of course, Q(X) = Qx(X). The
space Q(X) has the natural structure of a locally free C°°(X)-module, while Qx
is the locally free sheaf of CX -modules of rank 2'(n + m). At the same time,
bearing in mind that (X, JD ) is a graded locally ringed space, one can provide
Q(X) = D *(X) ®E(X) with the structure of the graded locally free D*(X)-module,
while

Qx=CX ®ARV ®B=JDX®B

can be seen as the graded locally free sheaf of £) -modules of rank (n + m). We will
denote Q(X) and Qx endowed with the above mentioned structures by Q(X) and
Qx, respectively.

DEFINITION 9.7.1. The pair Q = (Q,Q(X)) (or the pair (Q,Qx)) is called an
NQ-superbundle. q

Given a trivialization domain U C X of the vector bundle E -> X, let {CA}

and {cti} be fibre bases for the vector bundles E0 and El over U, respectively. Then
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every element q of Q (X) reads

q = gACA + g2Ci,

where qA, qi are local exterior forms on U. An element q is homogeneous, if its
Grassmann degree is

[q] = [q A] = [qt] + 1, [q A] = IgAl mod2, [q'] = IgiI mod2.

Given another trivialization domain U' C X of E, the corresponding transition

functions read

q 'A = PagB, q'1 = p;q3, (9.7.3)

where pA, p,^ are local smooth functions on U fl U'. We call the triple (U; qA, qi) to-

gether with the transition functions (9.7.3) a splitting domain of the NQ-superbundle

Q.
A connection on the the NQ-superbundle (Q, Q(X)) can be defined in accordance

with Definition (8.2.2). It is easily seen that, in the case of the ring 0*(X), the

derivation d1 in Proposition 8.1.6, is exactly the exterior differential d.

DEFINITION 9.7.2. A connection on the NQ-superbundle (Q, Q(X)), called an NQ-

superconnection , is defined as a morphism V Q -* Q which obeys the Leibniz

rule

V (0q) = (do) q + (-1)"1 fp(q), Vq E Q(X), dq E D*(X). (9.7.4)

0

It should be emphasized that an NQ-superconnection is defined as a connection

on D*(X)-module Q(X), but not on the C°°(X)-module Q(X). Therefore, it is not

an ordinary connection on the smooth vector bundle Q --> X.

The Leibniz rule (9.7.4) implies that an NQ-superconnection is an odd morphism.

For instance, if E -+ X is a trivial bundle, we have the trivial NQ-superconnection

V = d. Let ro and r1 be linear connections on the vector bundles Eo and El,

respectively, and 1 o G I'1 a linear connection on E --+ X. Then the covariant

differential Or (2.2.8) relative to the connection r is an NQ-superconnection

Vr(q) = dx' A (aa - F) (q). (9.7.5)
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Given a splitting domain U, this superconnection reads

Or(q) = (dqA - dxa A ro,ABgB )CA + (dq` - dx" A Fia2iq')cj, (9.7.6)

where POAAB, r1Aij are local functions on U with the familiar transformation laws

under the transition morphisms pB and pj' of the vector bundles Eo and El, respec-

tively.

As it follows directly from the Leibniz rule (9.7.4), the NQ-superconnections on
an NQ-superbundle constitute an affine space modelled over the f7*(X)o-module

End(Q(X))1 of odd degree endomorphisms of Q(X ), i.e.,

V' = V + L, (9.7.7)

where L is an odd element of End (Q(X)).

It is easy to see that the 0*(X)-module End(Q(X)) is a C°° (X)-module of
sections of the vector bundle

AT*X®E®E* -+ X.
x x

Given a splitting domain U of the NQ-superbundle Q, every element of End(Q(X))
is represented by a supermatrix function (or simply a supermatrix)

L=
(Li L2

L3 L4/
(9.7.8)

whose entries are local exterior forms on U. The transformation law of this super-

matrix under the transition morphisms (9.7.3) is

L'=PLP 1,

where p is the (n + m ) x (n + m) matrix

(p
o\ (9.7.9)

0p,

whose entries are the transition functions pB and p,.

Due to the relation (9.7.7), any NQ-superconnection on a splitting domain of

the NQ-superbundle Q can be written in the form

V =d+^0,I (9.7.10)
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where 19 is a local odd supermatrix (9.7.9), i.e., entries of 191, 194 are exterior forms

of odd degree, while those of 192i 193 are exterior forms of even degree. Obviously,

the splitting (9.7.10) is not maintained under the transition morphisms (9.7.3), and

we have the transformation law

19' = '&9V1 - dpp -1,

where dp is the supermatrix whose entries are 1 -forms dpB and dpi.

In accordance with Definition 8.2.4, the curvature of the NQ-superconnection V

is the morphism

R=V2:Q-*Q. (9.7.11)

For instance, the curvature of the trivial connection V = d is equal to zero. The

curvature of the connection Vr (9.7.6) is

2Ra'ABdx- n dXµ n gBCA 0
R(g) ( 0 2Rx,ii;dx^ A dx"` A qjci,

(9.7.12)

where R,\,,A
B, Raµii are the curvatures (2.4.2) of the linear connections F0 and IF,,

respectively. Given the local splitting (9.7.10) of an NQ-superconnection V, its

curvature (9.7.11) takes the local form

R = d(19) + 192, (9.7.13)

and has the transformation law R' = pRp1 under the transition morphisms (9.7.3).

It follows that the curvature of an NQ-superconnection is an even endomorphism of

the 17'(X)-module Q(X).

Remark 9.7.1. The notions of an NQ-superbundle and an NQ-superconnection

are extended in a straightforward manner to the case of a complex vector bundle

E -+ X and the exterior algebra C ® 0`(X) of complex exterior forms on X. •

Let us discuss briefly the following two applications of NQ-superconnections.

The first one is concerned with the unification models in particle physics (see

[195, 233, 234, 256]). Let Eo be a vector bundle with a structure group G treated

as a group of internal symmetries in particle physics, e.g., SU(2), while El -+ X

is a linear bundle. Then the typical fibre of the NQ-superbundle Q (9.7.1) is the

superspace B'11. Let A be an associated linear principal connection (6.1.24) on



9.7. THE NE'EMAN-QUILLEN SUPERCONNECTION 339

Eo -- X, i.e., its components Aa are gauge potentials for the group G. Then one

considers the NQ-superconnection which is a sum

V = VA + L

of the superconnection VA(q) (9.7.5) and an even endomorphism

L - O io'

GO 0 ,

where 0 is a scalar field, treated as a Higgs field. The goal is that gauge potentials

and a Higgs field are regarded on the same footing as components of the same NQ-

superconnection. It should be emphasized that the authors of [195, 233, 234] follow

the convention where the supermatrix multiplication reads

A CA'C' _ AAA'+(-1)ID'ICAD' AAC'+(-1)IB'ICAB'

DB D'B') - ((-1)IA'IDAA'+BAD' (-1)1°'IDAC'+BAB')

This matrix multiplication does not satisfy the relations (9.1.6), (9.1.7).
Another application addresses the computation of the Chern character [202, 218,

250]. Given an NQ-superbundle Q (9.7.1), let us consider an NQ-superconnection

V = Vr + tL, (9.7.14)

where Vr is the superconnection (9.7.6), L is an odd element of End (Q(X)), and t
is a real parameter . The curvature (9.7.11) of the connection (9.7.14) reads

R = t2L2 + t[V r, L] + (Vr) 2,

where (Vr)2 is the curvature (9.7.12) of the NQ-superconnection Vr (9.7.6). Then
we have

cht = Str(exp(R)) = F Str((Vr + L)21). (9.7.15)
k-o

This series converges since R is a section of a bundle of finite-dimensional algebras

over X. It is readily observed that

cht=o = ch(Eo) - ch(El), (9.7.16)

where ch(Eo), ch(El) are the Chern characters (6.7.18) of the complex vector bundles

Eo and El (with accuracy to the customary factor i/2ir). This is the Chern character
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of the difference element E0 e El in the K-theory of complex vector bundles on a

manifold X [10, 168] (see the relation (9.8.2) below). The key point is that the De

Rham cohomology classes of the exterior forms cht (9.7.15) and cht=o (9.7.16) are

the same. This fact issues from the following two assertions.

PROPOSITION 9.7.3. Given an NQ -superconnection V and an odd endomorphism
T E End(Q(X)), one has

d(Str(T)) = Str([V,T]). (9.7.17)

0

Proof. Since the relation (9.7.17) is local, one can assume that V is split as in

(9.7.10) and T is a sum of supermatrices of the form 4'kTk where cbk is are exterior

forms, while Tk are constant supermatrices. Bearing in mind the relation (9.1.7),

we have

Str([d + ^&, OkTk]) = Str(dokTk) = d(Str(qbkTk)).

QED

Let T = Rk, where R is the curvature of the NQ-superconnection V. Since
Str([V, Rk]) = 0, we obtain from the relation (9.7.17) that the exterior form Str(Rk)

is closed.

PROPOSITION 9.7.4. [250]. Given the curvature R of an NQ-superconnection V,

the De Rham cohomology class of the exterior form Str(Rk) is independent of the

choice of the NQ-superconnection V. q

The coincidence of the De Rham cohomology classes of the forms cht (9.7.15)

and cht=o (9.7.16) enables one to analyse the Chern character under the different

choice of the supermatrix L and the parameter t in the expression (9.7.14).

9.8 Appendix. K-Theory

The characteristic classes discussed in Section 6.7 enable one to describe the equiv-

alence classes of real or complex vector bundles of the same dimension. Let C(X)

be the set of all equivalence classes of vector bundles over a manifold X. It is a
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commutative monoid with respect to the Whitney sum ®, where the 0-dimensional
vector bundle plays the role of a zero element . The goal is to define the operation
e.

Recall the following algebraic construction. Given a commutative monoid A, let

us consider the quotient K(A) of A x A with respect to the relation (a, b) .:: (a', b')
if there exists an element p E A such that

a+b'+p=b+a'+p.

Then K(A) is group, called the Grothendieck group of the monoid A. There is the
homomorphism k : A -* K(A) such that k(a), a E A, is the equivalence class of
the pair (a, 0) E A x A. The inverse element -k(a) is the equivalence class of the
pair (0, a). Then any element (a, b) of the group K(A) can be represented as the
difference k(a) - k(b), a, b c A. It is easily seen that k(a) = k(b) if and only if there
exists an element p E A such that a + p = b + p.

Let us construct the Grothendieck group of the monoid C(X) of equivalence
classes of vector bundles over a compact manifold X [10, 168]. Let us denote k(E),
E E C(X), simply by [E]. Then [E] = [E'] if an only if there is a vector bundle
F - * X such that E ®F ;:z^ E' ®F.

THEOREM 9.8.1. Let E be a vector bundle over a compact manifold X. There

exists a vector bundle E' such that the Whitney sum E ® E' is a trivial vector

bundle. q

COROLLARY 9.8.2. [E] = [E'] in K(X) if and only if E ® I'n E' ® I- for some

trivial vector bundle Im over X. q

It follows that vector bundles E and E' belong to the same class in K(X) only if
they are of the same dimension, but need not be isomorphic. For example, [TS2] =
[12] = 0 E K(S2), though the tangent bundle TS2 -+ S2 is not trivial. This example

shows that the morphism k : C(X) -> K(X) is not an injection. It is an injection

on equivalence classes of real vector bundles of dimension m > dimX and on the

equivalence classes of complex vector bundles of dimension m > dimX/2.

There is another equivalence relation {E} on the monoid C(X) of equivalence

classes of vector bundles over X. We put {E} = {E'} if and only if there exist

trivial vector bundles Ik and I" such that E ®Ik E' ® I". These equivalence
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classes constitute the group K(X) whose zero element includes all trivial vector

bundles. There is an isomorphism K(X) = 7G ® K(X ). For instance , if X is a point,

K(X) = Z, while k(X) = 0.

THEOREM 9.8.3. Let X and X' be compact manifolds and manifold morphisms

fl : X -+ X' and f2 : X -> X' are homotopic . Then fl and f2 yield the same

morphisms K(X) -+ K(X') and k(X) -> K(X'). q

Let now Kc(X) be the Grothendieck group of complex vector bundles over a

compact manifold X. The Chern character (6.7.18) of these vector bundles defines

the map

ch:Kc(X)-> H2i(X, Q) (9.8.1)
i>O

such that

ch([E] - [E']) = ch(E) - ch(E').

The morphism (9.8.1) leads to the isomorphism

Kc(X) ®Q H2i(X,(Q)
i>O

for complex vector bundles and to the isomorphism

KR(X) ®Q H4i(X, Q)

i>O

(9.8.2)

for real vector bundles.



Chapter 10

Connections in quantum
mechanics

Quantum mechanics is a vast subject which can be studied from many different

point of view. This Chapter is devoted to a few main examples of an application of

connections to quantization of mechanical systems. These are linear connections on
Kahler manifolds in geometric quantization, symplectic connections in the Fedosov

deformation quantization, and Berry connections.

With respect to mathematical prerequisites, the reader is expected to be familiar

with the basics of differential analysis on finite-dimensional complex manifolds (see,

e.g., [177, 303]), geometry of Poisson and symplectic manifolds (see, e.g., [213, 299]),

theory of Hilbert spaces and C*-algebras [82]. By a Hilbert space throughout this
Chapter is meant a complex Hilbert space.

10.1 Kahler manifolds modelled on Hilbert spaces

This Section provides a brief exposition of geometry of Kahler manifolds modelled on

infinite-dimensional Hilbert spaces [61, 228]. These manifolds generalize the well-

known finite-dimensional Kahler manifolds [177, 303], and are particular Banach

manifolds modelled on infinite-dimensional Banach spaces.

Let E be a Hilbert space with a Hermitian form (.I.). Let E be the dual of E

and

E-D x- EE, x(x')=(X'Ix), i EE,

343
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the corresponding antilinear morphism. Let us consider the direct sum E(DE. There

exists its isomorphism, called the complex structure,

J:EED EE) x+y^--six -iy=ix +(iy) EE®E (10.1.1)

such that J2 = -Id. The spaces E and E are eigenspaces of J characterized by the

eigenvalues i and -i, respectively. There is the relation Jx = J.

The notion of holomorphic and antiholomorphic derivatives is extended to Hilbert

spaces as follows.

Let E and H be Hilbert spaces, U C E an open subset, and f : U -* H a

differentiable function between real Banach spaces E and H. It means that, given

a point (o E U, there exists a continuous R-linear map l,zp : E -i H such that

.f (z) _ .f (zo) + lzo (z - zo) + o(z - zo), z E U.

This condition can be reformulated as follows. There exist morphisms

a: E -4 H, a(z) = ZWz) - 2lzo(iz),

b:E-4H, b(z) = 2lzo(z) + Zlzo(2z),

such that

f(z) = f(zo) + a(z - zo) + b(z - zo) + o(z - zo). (10.1.2)

They define the C-linear maps

(azof)(x+y) = a(x), (azo.f)(x+y) = b(y) (10.1.3)

from E ® to H. The C-linear morphism

fzp:E®E->H, fz,, = azuf +a., f, (10.1.4)

is called a derivative of f at a point zo E U. The higher order derivatives are defined

in a similar way. Accordingly, a function f between Hilbert spaces is said to be

• smooth if it is indefinitely differentiable,

• holomorphic if it is differentiable and az f = 0 for all z E E,

• antiholomorphic if it is differentiable and aZ f = 0 for all z E E.
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As in the finite-dimensional case, a holomorphic function is smooth and given by

the Taylor series.
Let us consider a Hilbert manifold P modelled on a Hilbert space E. It has an

atlas of charts (Ut, 0,), where the morphisms z/i, take their values in the Hilbert space
E, while the transition functions O CO, 1 from JU, n US) C E to b((U, n U() C E

are smooth . Moreover , we will suppose that transition functions are holomorphic

and, consequently , P is a holomorphic manifold. Tangent vectors to a holomorphic

manifold P are defined by analogy with those to a finite-dimensional manifold.

Given a point z E P, let us consider the pair (v; (UL, V)J) of a vector v E E and a
chart (U, E) z, 0 ) of the holomorphic manifold P . Two such pairs (v; (Ui, V),)) and

(v'; (US, VC)) are said to be equivalent if

The equivalence classes of the above mentioned pairs make up the holomorphic

tangent space TP to the holomorphic manifold P at a point z E P. This tangent
space is isomorphic to E regarded as a topological vector space . The dual TzP of

TzP is called the antiholomorphic tangent space. The complex tangent space to the

holomorphic manifold P at a point z E P is the direct sum

TP=TP®TzP.

The complex tangent space T is provided with the involution operation

V+u^-->V+u

and the complex structure Jz. Every complex tangent vector 79 E T P is represented

uniquely by a sum V = v + u of its holomorphic and antiholomorphic components.

A complex tangent vector 19 is called real if 19 = I The disjoint union of complex

tangent spaces to the holomorphic manifold P is the complex tangent bundle TP

of P. Its sections are called complex vector fields on P. Complex vector fields on

P constitute the locally free module T(P) over the ring C°°(P) of smooth complex

functions on P.
Accordingly, the dual TzP of the complex tangent space TzP is called the com-

plex cotangent space to the holomorphic manifold P at a point z E P. Complex

cotangent spaces make up the complex cotangent bundle T*P of P. Its sections

are complex 1-forms which constitute the C°°(P)-module V(P). One can consider

tensor products of complex tangent and cotangent bundles over P. In particular,
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complex exterior forms and the exterior differential d acting on these forms are well

defined on the holomorphic manifold P.

Example 10.1.1. The differential df of a smooth function f : P -> C is a complex

1-form on P. Let us denote its holomorphic and antiholomorphic parts by a f and

a f , respectively. Given a complex tangent vector t9z = vz + uz at a point z E P, we

have the relations

(i9zldf) = fz(t9z),

(79zlaf) _ (vzldf) = (azf)(vz),

(79zlaf) _ (uzIdf) = (&f)(uz).

By a Hermitian metric on a holomorphic manifold P is meant a complex bilinear

form g on TP which obeys the conditions:

• g(99z, vz) = 0 if complex tangent vectors 19z, vz E TP are simultaneously

holomorphic or antiholomorphic;

• g(i9z, 79z) > 0 for any non-vanishing complex tangent vector '9z E TzP;

• the bilinear form g,,(.,.) defines a topology in the complex tangent space TzP

which is equivalent to its Hilbert space topology.

As an immediate consequence of this definition, we obtain

9(19z,Uz) = g(19z,vz),

9(Jtz, Jvz) = 9('9z , vz).

Example 10.1.2 . Let P = E be a Hilbert space. The Hermitian form (1.) on E

defines uniquely the following constant Hermitian metric on E ®E:

g: (E &B) x (E®E) - C,

9('91, 792) = (vi I u2) + (v21u1), (10.1.5)

for all complex vectors 79i = vi + ui and "92 = V2 + u2. Conversely, every Hermitian

metric on E provides E with a Hermitian form. 0
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DEFINITION 10.1.1. The pair (P, g) of a holomorphic manifold P and a Hermitian

metric g on P is called a Hermitian manifold. q

Given a Hermitian manifold (P, g), let us define a non-degenerate exterior 2-form

w on P, given by the equality

w(Oz, vz) = g('J'l9z, vz) (10.1.6)

for any point z E P and any pair of complex tangent vectors 19zi vz E TzP. The
exterior form w is called the fundamental form of the Hermitian metric g. It satisfies

the relations

w(19" vz) = w(')z, vz),

w('Jz'19z, •Jzvz) = w(t9z, vz).

DEFINITION 10.1.2. A Hermitian metric g on the holomorphic manifold P is called

a Kahler metric if dw = 0, i.e., its fundamental form is a symplectic form. The

(P, g) is said to be a Kahler manifold. q

Example 10.1.3. Let P = E be a Hilbert space in Example 10.1.2 together with

the Hermitian metric g (10.1.5). The corresponding fundamental form (10.1.6) on

E ® E reads

w('d1,?92) = i(viIn2) - i(v2Iui) (10.1.7)

for all complex vectors 191 = v1 + U1 and 192 = V2 + u2. It is constant on E, and

dw = 0. Therefore, g (10.1.5) is a Kahler metric. •

In accordance with Definition 8.2.2, a connection V on a Hermitian manifold P

is defined as a morphism

V : T(P) -> 01(P) ®T(P)

which obeys the Leibniz rule

V(f19) = df ®19 + f V(79), f E G°°(P), 19 E T(P).

Similarly, a connection is introduced on any C°°(P)-module, e.g., on the structure

module T (P) of a tensor bundle T over the holomorphic manifold P. Let us denote
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the holomorphic and antiholomorphic parts of V by D and D, respectively. Given

a complex vector field 79 = v + u on P, we have the relations

V,9 = D,, + D,9,

D,9=De=Ou,

Di,, = iD,,, DJ,9 = -iD1,.

If f is a smooth complex function on a holomorphic manifold P, then V f = df.

There are the equalities

(Vvf)(19z, vz) = (vvf)(vz,19z),

(DDf)(t9 , vz) = (DDf)(vz,79z),

(DDf)(79.z,v.) = (DDf(vz,'dz),

(DDf)(t9z, vz) = (DDf)(v., 79,z)•

Given a Hermitian manifold (P, g), there always exists a metric connection on

P such that the covariant differential Vg vanishes everywhere on P. We have the

equality

v,yv = v^v

for any pair of complex vector fields 19 and v on P. If (P, g) is a Kahler manifold,

then Vw = 0 and VJ = 0, where J is regarded as a section of the tensor bundle

T*P ®TP.

Example 10.1.4. Let a Hilbert space E be regarded as a Kahler manifold with the

Kahler metric g (10.1.5). The metric connection on E is trivial, and D = 8, D = a.

A Kahler metric g and its fundamental form w on a holomorphic manifold P

define the isomorphisms

9b:TPE) v^-->vjgET*P, (10.1.8)

wb:TPDv'-->vJwET*P. (10.1.9)

Let us denote by go and w1 the inverse isomorphisms T*P -> TP. They have the

properties

g'(0)Jo = g'(0')J0, q,Q E T*P,

w"M10, = -w"(a)J0,
go = Jwa, wp = -Jgo.
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If V is a metric connection on P, then

Vga=0, Ow0 =0,

where gO and wb are regarded as sections of the tensor bundle T*P ® TP.

In particular , every smooth complex function f on the Kahler manifold (P, g)

defines:

• the complex vector field

91(df) = 9l(af) +9a(af), (10.1.10)

where ga (8 f) and g(Of) are its holomorphic and antiholomorphic parts, re-

spectively;

• complex Hamiltonian vector field

wp(df) = -J(9a(df)) = -igO (af)+igb(af). (10.1.11)

In conclusion, let us consider the important example of a projective Hilbert space

PE made up by the complex 1-dimensional subspaces of a Hilbert space E. This

is a holomorphic manifold which possesses the following standard atlas. Given a

non-zero element x E E, let us denote by x a point of PE such that x E x. Then

any normalized element h E E, IIhiI = 1, defines a chart (Uh,h) of the projective

Hilbert space PE such that

Uh = {x E PE : (xlh) 0}, zO)h(x) = (ih) - h. (10.1.12)

The image of Uh in the Hilbert space E is the subspace

Eh = {z E E : (zjh) = 0}. (10.1.13)

Conversely, the inverse image *h1 (z) of any element z E Eh is an element in Uh

such that z + h E Ohl( z). The set of the charts {(Uh, V)h)} is a holomorphic atlas

of the projective Hilbert space PE. In particular , given a point p E PE, one can

choose the centred chart Eh, h E x, such that Vih(x) = 0.

The projective Hilbert space PE admits a unique Hermitian metric g such that

the corresponding distance function on PE is

p(x,x') = Varccos( I (xlx') I), (10.1.14)
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where x, x' are normalized elements of E. This is a Kahler metric, called the Fubini-

Studi metric. Given a local chart (Uh, 1'h), this metric reads

g(^1^^2)
= (V1Iu2) + (V21U1) (zlu2)(V1lz) + (ZIU1)(V2lz)

z E Eh, (10.1.15)
1 + IIz112 (1 + 11x112)2

for any complex tangent vectors 191 = v1 + ul and 192 = v2 + u2 in TZPE. The

corresponding fundamental form is given by the expression

w(191
d2) = i(V1Iu2) - (V2Iu1) - .(zlu2)(V1lz) - (zlul)(V2lz) (10.1.16)

1 + IIzI12 (1 + 11x112)2
Written in the coordinate chart centred at a point z = 0, the expressions (10.1.15)

and (10.1.16) come to the expressions (10.1.5) and (10.1.7), respectively.

10.2 Geometric quantization

There are three main approaches to quantization of Poisson and symplectic systems

of classical mechanics. These are Berezin's quantization, geometric quantization and

deformation quantization.
Let (Z, {., ., }) be a finite-dimensional Poisson manifold. The ring Coo (Z) of real

smooth functions on Z is provided with the structure of a Poisson algebra A(Z)

with respect to the Poisson bracket

(f, f') H If, f'}, f, f' E C°°(Z). (10.2.1)

Recall that, in local canonical coordinates (q`, p2) on Z, the Poisson bracket reads

if, f'} = atifai - azfaif'.
The Poisson algebra A(Z) describes a classical Poisson system. Its quantization

implies an assignment of a Hermitian operator f to each element f E A such that

Dirac's condition

[1, r] = -iii{f, f'} (10.2.2)

holds. The above mentioned Berezin's, geometric and deformation quantizations

suggest different variants of such an assignment.
In our book, we are concerned with geometric quantization and deformation

quantization (see the next Section) which involve different types of connections.
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We refer the reader to [182, 282, 309] for the basics of the geometric quantiza-

tion technique. Our exposition is concentrated to the role of connections in this

technique. We will start from the following particular model.

Let M be an m-dimensional manifold. Its cotangent bundle T*M is endowed
with the canonical symplectic form

S2=dpiAdq', (10.2.3)

written with respect to holonomic coordinates (qi, pi = 4i) on T* M. Let us consider

the trivial bundle

T*M x C - T*M. (10.2.4)

It can be provided with the linear connection

r = dpi ®Y + dq®®(a3 - 27rip3ca,), (10.2.5)

where c is a coordinate of C. The curvature form (2.4.2) of this connection is

R = -27ric5I, (10.2.6)

where we omit a, for the sake of simplicity . Given a function f in the Poisson algebra

A(T*M), let us consider the following first order differential operator on sections s

of the fibre bundle ( 10.2.4):

f (s) = (V,9, - 2iri f )s = (( Y f ( a; + 2iripj ) - a; f Y - 27ri f ) s, (10.2.7)

where V f is the covariant derivative relative to the connection r (10.2.5) along the
Hamiltonian vector field

ldfIQ = -df,
,9f = Of ai - ai fai,

for the function f. Then we obtain Dirac's condition

fog-go f ={f,g} (10.2.8)

for all f, g E A(T*M). This equality is the corollary of the particular form ( 10.2.6)

of the curvature of the connection r.
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Remark 10.2.1. Using standard geometric terms, we will follow Dirac's relation

(10.2.8). To restart Dirac's relation (10.2.2) with physical coefficients, one should

choose the connection

r=dpi ®C3+dq3®(aj + %picac)

and write the operator

f (s) = -ih(Vsf + f S.

Now we generalize the above construction to an arbitrary symplectic manifold

(Z, S2). Let us consider a complex line bundle ( : C --+ Z coordinated by (zn, c).

This is a fibre bundle with the structure group U(1) (see Section 6.7). We denote

by Co its subbundle with the typical fibre Co = C \ {0} and with the same structure

group. Let

r=dzµ®(aµ+rcac) (10.2.9)

be a linear connection on the fibre bundles C -+ Z and Co -+ Z. The corresponding

covariant differential on sections s of these fibre bundles reads

Vs = V sdzµ = (as - r s)dzµ.

Let us consider the complex 1-form

a= -1 do I,N,dz"
27ri ( c

on the fibre bundle Co -* Z. It is readily observed that

1
da = --R,

7rac

where

R = 2 R„µdz" A dz'',

R„µ = (8„Iµ - aµI'„)c,

is the curvature 2-form of the connection r, and

V ,,s = 27ri(uj(s*a))s

(10.2.10)
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for an arbitrary vector field u on Z and any section s of Co -* Z. It follows that

the symplectic manifold Z admits a complex 2-form w such that the pull-back form

(*w on Co coincides with da, i.e.,

da = c*w. (10.2.11)

This form w is given by the coordinate expression

w = - 1 a„ I'µdz" A dzµ.
27ri

It is closed, but not necessarily exact because r dzµ is not a 1-form on Z in general.

Let g be a Hermitian fibre metric in fibre bundles C and Co. This metric is said

to be invariant with respect to a linear connection r (10.2.9) if

uj d(g(s, s' )) = 9(Vus, s') + g(s, Vus')

for an arbitrary vector field u on Z and any sections s, s' of the complex line bundle

C Z.

PROPOSITION 10.2.1. Given a linear connection F on the complex line bundle C,

this fibre bundle admits a F-invariant Hermitian fibre metric g if and only if the

exterior form 27ri(a - a) on Co is exact. Then the metric g is given by the relation

27ri(a - N) = dln(g(c, c)). (10.2.12)

If a connection I' on the complex line bundle C obeys the conditions of Propo-

sition 10.2.1, then the form (F + t) /c is exact, and the 2-form w in the expression

(10.2.11) is real, i.e.,

(*(w - w) = d(a - N) = 0.

It means that w is a presymplectic form on Z.
Let us assume that the complex line bundle C admits a linear connection F

(10.2.9), called an admissible connection, such that w = Sl, i.e., the curvature R of

this connection satisfies the relation (10.2.6). Then, by virtue of Proposition 10.2.1,

there exists a I'-invariant Hermitian fibre metric in C. For instance, if r is the

connection (10.2.5), the corresponding F-invariant fibre metric reads

g(c, c) = cc. (10.2.13)
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Let r be an admissible connection . Following the expression (10.2.7), one can assign

to any function f E A(Z) the differential operator f on sections s of the complex

line bundle C in accordance with the formula

f(s) def(vgr - 27ri f )S, (10.2.14)

called the Kostant-Souriau formula. The operators (10.2.14) obey Dirac's condition

(10.2.8) for all elements f, g of the Poisson algebra A(Z).

A criteria of the existence of an admissible connection is based on the fact that

the Chern form cl (6.7.11) of this connection is

cl 27r F ---R =
SZ. (10.2.15)

Since, this is a representative of an integral cohomology class in the De Rham coho-

mology group H2(Z), the complex line bundle C -> Z over a symplectic manifold

(Z, Sl) has an admissible connection if and only if the symplectic form Sl belongs to

an integral De Rham cohomology class. For instance, the canonical symplectic form

(10.2.3) on T*M is exact, i.e., has the zero De Rham cohomological class.

DEFINITION 10.2.2. A complex line bundle C - Z over a symplectic manifold

(Z, Il) is called a prequantization bundle if its Chern form cl coincides with the

symplectic form Q. q

It should be emphasized that the procedure of constructing the prequantization

bundle is only the first step of geometric quantization . The operators f (10.2.14)

act in the subspace of smooth functions of the Hilbert space L2(Z, AL) of complex

functions on Z, which are square-integrable with respect to the Liouville measure

dµL = (27r)m rl dpi, A dqi, 2m = dim Z. (10.2.16)
:=f

However, this representation of the Poisson algebra A(Z) fails to be satisfactory (cf.

Proposition 10.2.3 below). For instance, we have a non-conventional operator

q = -9 + 27rig7

(10.2.14) assigned to the local function f = qj.
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The second step of geometric quantization consists in the following. Let (Z, Il) be

a symplectic manifold. By a polarization is meant a maximal involutive distribution

T C TZ such that

1l(t9, v) = 0, V't9, v E T, z E Z.

This term also stands for the algebra Tn of sections of the distribution T. We denote

by AT the subalgebra of the Poisson algebra A(Z) which consists of the functions

f such that

[29f,Tn] C Tu.

Elements of this subalgebra only are quantized.

Let the symplectic form S2 on a manifold Z belongs to an integer cohomology

class of the De Rham cohomology group H2(Z). Let C -* Z be the complex line

bundle whose Chern class c1 coincides with the cohomology class of Q. By V we

denote the complex vector bundle of half-densities p over Z whose transformation

law is
iµ

p' = I det
(a") I1/2p

(see [309] for a detailed exposition ). Given an admissible connection r and the
corresponding F-invariant Hermitian metric g in C, the prequantization formula
(10.2.14 ) is extended to sections s 0 p of the fibre bundle C ® D --* Z as follows:

f(s(9 p)=(VVf-2irif )(s®p)=(fs )® p+s®L,9fp, ( 10.2.17)

D,9,(s (9 p) = (Vsfs ) ® p+s®Lsfp,

where

L,9fp = 28N.(Vfp)

is the Lie derivative. It is readily observed that the operators (10.2.17) obey Dirac's

condition (10.2.8). Let us denote by 7-1z the set of sections q of the fibre bundle

C ® D -4 Z such that

17,9q=0, V9ETo.

PROPOSITION 10.2.3. For any function f E AT and an arbitrary section q E HZ ,

the relation

fqE xz (10.2.18)
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holds. q

Thus, we have a representation of the algebra AT in the space HZ. Therefore,

by quantization of a function f E AT is meant the restriction of the operator f

(10.2.17) to Hz.
It should be emphasized that the space Hz does not necessarily exist. If Z is a

compact manifold without a boundary , the Hermitian form

m2

(S1 ® PjIs2 ® P2)

i

_ 2 J g(
si,s2)PiP2 ( 10.2.19)

7rM
Z

brings xz into a pre-Hilbert space . Its completion is called a quantum Hilbert space

HZ, and the operators i f in this Hilbert space are Hermitian.

Now we will consider geometric quantization of holomorphic manifolds, e.g., a

projective Hilbert space. As was shown , a projective Hilbert space admits a standard

complex line bundle , and we have a standard procedure of prequantization of this

space.
Let Z be an m-dimensional holomorphic manifold and C -> Z a complex line

bundle equipped with complex coordinates (c, zi, zi). It means that the coordinate

transition functions on Z obey the condition

azr ayr
k=az"=0.

Let us assume that the complex line bundle C admits a linear connection

r=dz' ®(ai+ricac)+dz'®(ai-I'ticac)

with the curvature form

R = -27riccI,

where ) is a non-degenerate real 2-form on Z. It implies that the manifold Z is

provided with a symplectic structure, given by the symplectic form 11, and with a

r-invariant Hermitian fibre metric g. With respect to the local complex canonical

coordinates (z3, Zj ), the above mentioned symplectic form reads

St = 2i dzi A dzi,
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while the Hermitian metric g is given by the expression (10.2.13). Therefore, geo-

metric quantization of a holomorphic manifold is similar to that of a real symplectic

manifold if complex and real canonical coordinates are connected with each other

by the relations

1 1
Zi = 2 (pi + iq2), z^ = 2 (pi - iq3).

The holomorphic manifold Z has the canonical polarization

T = {v E TZ : Jv = -iv},

whose sections 19 E Tn are complex vector fields V = V at on Z. We use the notation

a ry a

d=a+a, a=dziai, a=dza,.

As in the case of a real symplectic manifold, let us consider the subalgebra AT

of the Poisson algebra A(Z) which consists of smooth complex functions f on Z

such that

['d f, TQ] C Tn,

where

19f =
1

2i (-a;fa3+a3f5,)

is the Hamiltonian vector field for a function f. It is readily observed that holomor-
phic functions on Z do not belong to AT.

To construct the representation space of the algebra AT, we take the sections s

of the complex line bundle C -* Z such that

Vs=0, 19ETo,

i.e., (aj + [' )s = 0, and the holomorphic sections

p = P1...mdzl A ... A dzm

of the cotangent bundle T*(m,O) - * Z. Let

q = s 0 p = sp1...mdzl A ... A dzm (10.2.20)
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be sections of the tensor product C®T*(m,O). Then the operator
z

f(s® p) = Mqf -2irif)(s) ® p+s®L,9fp (10.2.21)

can be assigned to any function f E AT. With respect to local complex canonical

coordinates , this operator reads

\\

(--

l
f(s®P)= 8kf (8k- rk-

27rif)sl ®P+s® >8k(POkf)I.
/ k /

The operators (10.2.21) obey Dirac's condition (10.2.8).

If Z is a compact manifold without a boundary, sections (10.2.20) form a pre-

Hilbert space 7-lz with respect to the scalar product (10.2.19). The operators f

(10.2.21) fulfill the relation (10.2.18), and they are anti-Hermitian in Hz. If Z is

not compact, one chooses the pre-Hilbert space xz of sections q (10.2.20) such that

the expression (10.2.19) is finite. However, the operators f (10.2.21) in this space

fail to be bounded and symmetrical.
We have a standard procedure of geometric quantization if there is an imbedding

of a holomorphic manifold Z to a Hilbert space.

Let Z be an m-dimensional holomorphic manifold provided with a symplectic

form SZ, and C -* Z a complex line bundle over Z. As before, by Hz is meant the

completion of the above mentioned space llz of sections q (10.2.20) which provide

the finite values of the expression (10.2.19). This is a Hilbert space. Let XF =

{(U" s" zk)} be an atlas of the fibre bundle C ®T*(m,O), where zk are local complex

canonical coordinates on Z and s, are holomorphic bases for the complex line bundle

C -> Z such that s,s, = 1. The corresponding fibre bases for C ® T*(m,O) are

s, 0 dz' A • • . Adze". Let us assume that, for all points z1, z2 E Z, there exist sections

ql, q2 E Hz:

gj(zl ) = gj,(zl )s, ®dzi n ... n dzi'', zi E UU, j = 1, 2,

gj (z2 ) = gj c(z2 )s^ ® dz A ... A dz2 , z2 E Uk,

such that

det (gl,(zl) glk(z2) 0. (10.2.22)J\g2c(z1) q2, (Z2)

This condition is independent of a choice of the above mentioned atlas T.
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THEOREM 10 . 2.4. There is the functional

K, (x, z) = K., (x, z) s, ® dxl A ... A dx"`

such that

4,(z) = (4 (•)JK (., z)) = ^T6 f q(x)K^(x, z).

The functional (10.2.23) is a reproducing kernel with the properties:

• & (z, z) > 0,

(10.2.23)

• K., (x, z) = K,. (z, x),

• K.,(x,z) _ (KK(•,z)IK. (•,x))•

It defines the mapping

1C:ZDU, E) z^--*KK(.,z)EHz. (10.2.24)

By the assumption ( 10.2.22), K,(., zl) AK,(., Z2), A E C, whenever zl, z2 E Z. It

follows that the mapping (10.2.24) is an inclusion of Z into the projective Hilbert
space PHz. This inclusion is a manifold imbedding if )C is of constant rank. Let us

denote

& = 1C(z) = K,(., z) E Hz. (10.2.25)

Using the properties of the reproducing kernel (10.2.23), one can observe that the

vectors z, z E Z, constitute a reproducing system which provides the decomposition

of the identity operator in the Hilbert space Hz with respect to the Lionville measure

(10.2.16), i.e., one can think of the vectors (10.2.25) as being coherent states [4, 242].

Thus, we come to projective Hilbert spaces described in the previous Section.

Since a projective Hilbert space admits the canonical complex line bundle (see

(10.2.26) below), we have the following standard procedure of its quantization.

Let E be a Hilbert space and PE the corresponding projective Hilbert space.

For the sake of simplicity, E is assumed to be a separable Hilbert space. Let us

consider the fibre bundle

C = {(z, z) E E x PE : z E z} (10.2.26)
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together with the corresponding projections ( : C -> PE and ir : C --> E. It is

called the universal line bundle . There is its subbundle

Co=E\{O}-*PE, ir:z-*z,

with the typical fibre C \ {0}. Let (Uh, Oh) be a chart (10.1.12) of the projective

Hilbert space PE. Recall that its image in E is the subspace Eh (10.1.13). We pro-

vide this chart with the following coordinate system. Let us take the orthonormal

basis {h, ek}, k = 1, ... , dimE-1, for the Hilbert space E. Then {ek} is an orthonor-

mal basis for its subspace Eh, while the coordinates zh with respect to this basis are

the coordinates on the above mentioned chart of the projective Hilbert space PE.

The projective Hilbert space PE is provided with the Fubini-Studi metric (10.1.15)

and with the corresponding fundamental form w (10.1.16) which reads

bik zjzkw = -i (1 + Ilzll2 (1 + 11x112)2 , 11x112 =
zk-k.

j,k

The universal line bundle ( 10.2.26 ) has the connection

r=dz3 ®(a, +27x1
+ IIzI12A + dzi ®(al21r1 +zIIzI12ca')

which preserves the Hermitian fibre metric ( 10.2.13) in C and satisfies the condition

R = -27ricw.

Now let Z be a holomorphic manifold and IC its inclusion into the projective

Hilbert space PE. Then the above manifested standard procedure of geometric

quantization of Z consists in the following. Let us propose that the pull-back form

1C*w on Z is non-degenerate, i.e., this is a symplectic form. Then one can consider the

pull-back line bundle IC*C over Z. This line bundle admits the pull-back connection

K*r with the curvature form -27ricIC*w, i.e., 1C*C is a prequantization bundle.

10.3 Deformation quantization

There are well-known quantum groups and algebras which are deformations of or-

dinary Lie groups and Lie algebras [171, 176, 209]. The method of deformation of

algebraic structures can also be applied to quantization, called deformation quan-

tization, of the Poisson algebra on a symplectic manifold. Symplectic connections

play an important role in this quantization procedure.
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Let (Z, S1) be a finite-dimensional symplectic manifold and C°°(Z) the ring of

smooth functions on Z which is also the Poisson algebra A(Z) with respect to the

Poisson bracket (10.2.1). By deformation quantization of A(Z) is meant a new

operation of multiplication of functions f * f' and a new commutator {., .}* which

depend on a real parameter -y such that, when -y -+ 0, the operation f * f' reduces

to the usual multiplication of functions, while f., J. comes to the Poisson bracket

[26, 84, 148]. One can think of the parameter -y as being Planck's constant.

We will start from the following general notion of deformation.

DEFINITION 10.3.1 . Let B a C0(Z)-valued R-bilinear form on the R-vector space

C°°(Z). By its formal deformation is meant the formal series

00
B7(.f,.f') _ FyrCC(f,J'), (10.3.1)

r=O

where y > 0 is a real parameter , Co(f, f') = B(f, f'), and C, (f, f') are C°°(Z)-

valued bilinear forms on C' (Z). 11

We will deal with the following two variants of the bilinear form B:

• the familiar pointwise multiplication of functions B(f, f') = f f', whose defor-

mation

00
B.y(f, f') = f *- f' = ff' + yrCC(f, f')

r=1

is associative, but not necessarily commutative;

• the Poisson bracket B(f, f') f, f'}, whose deformation

00B7(f, f') = If, f'}* = If, f'} + E yrSr(f, f')
r=1

has a Lie algebra structure.

(10.3.2)

(10.3.3)

The deformation (10.3.1) is called associative deformation of the R-algebra C0(Z),
while the deformation (10.3.3) is said to be Lie deformation of the Poisson bracket

{., .}.
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Note that every associative deformation f * f' defines the Lie deformation

If, n- = '(f *f'-f'*f)•

An associative deformation must satisfy the condition

00

(10.3.4)

(fl *7 f2) *7 f3 - fl *7 (f2 *7 f3 ) = E 1'kDk (fl, f2, f3) = 0 , (10.3.5)
k=1

Dk(fl, f2, f3) = Cr(Cs(fi, f2), f3) - Cr(fl, Cs(f2, f3)) , ( 10.3.6)
s+r=k, s,r>O

i.e., Dk(fl, f2, f3) = 0 for all k = 1, 2, .... This condition is phrased in terms of the

Hochshild cohomology.

Remark 10.3.1. Recall briefly the notion of the Hochshild cohomology (see, e.g.,

[299]). Let A be an associative R-algebra. One defines p-cochains as p-linear maps

C : ® A -> A, and introduces their homomorphisms

(W) (ao,... , ap) = aoC(al, ... ap) + (10.3.7)
P-1

j:(-
1)i+1C(ao, ... , aiai+l,... , ap ) + (- 1)p+1C(ao, ... , ap+1)ap•

i=0

It is readily observed that a2 = 0. The cohomology of the corresponding cochain

complex is called the Hochshild cohomology. •

Turn to the expression ( 10.3.6). If Ek (fl, f2i f3) denotes the sum of the terms

with indices s , r > 1 in its right-hand side , this expression takes the form

Dk(fl, f2, f3) = Ek(fl, f2, f3) - (OCk)(fl, f2, f3), (10.3.8)

where a is the operator (10.3.7 ). Then one can obtain associative deformation in the

framework of the following recurrence procedure . Let us assume that there are 2-

cochains Ci(f, f'), i < k, such that Di = 0 for all i < k. We need a cochain Ck+l such

that Dk+1 = 0 . It should be emphasized that Ek+1 depends only on Ci<k, and one

can show that, if Di <k = 0, then OEk+1 = 0, i.e., Ek+1 is a 3-cocycle . If this cocycle is

a coboundary, i.e., it belongs to the zero element of the Hochshild cohomology group

HH(C-(Z)), then a desired cochain Ck+1 can be found . Therefore , if the Hochshild

cohomology group HH(C°°(Z)) vanishes, the associative deformation exists. For
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instance, associative deformation exists on a symplectic manifold [78]. Note that,

in order to start the requirency procedure from Dl = 0, one can choose

C, (f, f') = Alf, f'},

where A is a constant (see the Moyal product below).

Similarly, one can examine the existence of the Lie deformation (10.3.3), where

Sr(f, f') + Sr(f', f) = 0.

Any Lie deformation must satisfy the Jacobi identity

{fl, {f2, f3}*}* + jf2, 1f3, fl}*}* + 1f3, {fl, f2}*}* _
00

(10.3.9)

L, Tk(fl, f2, f3) = 0,
k=1

Tk(fl, f2, f3) [Sk(fl, Ss (f2, f3)) + ( 10.3.10)

r+s=k, s,r>O

Sr(f2, Ss(f3, fl)) + Sr(f3, Ss(f1, f2))]

If Qk(fl, f2, f3 ) denotes the sum of the terms with indices s , r > 1 in the right-hand
side of the expression ( 10.3.10 ), this expression takes the form

Sk(fl, f2, f3) = Qk(fl, f2, f3) - (aSk)(fl, f2, f3 ), (10.3.11)

where

(aSk)(fl, f2, 13) = [{fl, Sk(f2,

ff

f3)} + ff2, Sk(f3,

II

fl)} + {f3, Sk(fl, f2)}1 +

[Sk(fl, {f2, f3}) + Sk(f2, {f3, f1}) + Sk(f3, ifl, f2})]

is the coboundary operator (82 = 0) for the Chevalley-Eilenberg cohomology (see

Section 14.2). Therefore, Lie deformation can also be constructed by a recurrence

procedure. Let us assume that there are 2-cochains Sti(f, f'), i < k, such that Ti = 0

for all i < k. We need a cochain Sk+1 such that Tk+1 = 0. The term Qk+1 in the

right-hand side of the expression (10.3.11) depends only on SS<k, and one can show

that, if Tti<k = 0, then Qk+1 is a 3-cocycle. Therefore, if the Chevalley-Eilenberg

cohomology group HHE(C°°(Z)) vanishes, then the Lie deformation exists.

In particular, let Z = R2i' be provided with the coordinates (Q', P;) and the

corresponding canonical symplectic form. Of course, both the Hochshild cohomology
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and the Chevalley-Eilenberg cohomology for this space vanish. Let us consider the

operator

f P f' _ if, f'}, f, f E COO (R2„d).

We have the associative deformation

f * f' = f exp[try P]f', (10.3.12)

called the Moyal product [145, 167]. The Moyal product (10.3.12) defines the cor-

responding Lie deformation ( 10.3.3).

The following construction , called the Fedosov deformation , generalizes the Moyal

product to any symplectic manifold [102 , 103]. The main ingredient in this construc-

tion is a connection on a symplectic manifold.

Let Z be a 2m-dimensional symplectic manifold coordinated by (zA ) and pro-

vided with the symplectic form

SZ = 2 S2"pdz" A dz,3.

DEFINITION 10.3.2. A formal Weyl algebra A. over the tangent space TZ is the

associative algebra with a unit whose elements are the formal sums

a(y,'Y) = E 'ykak ,«1...a y«l
... yar (10.3.13)

2k+r>O

where yµ = zµ are holonomic coordinates on the tangent space TZ. The algebra

Az is provided with the Weyl product

a o a' = exp [_ c3(z) ] a (y, Y)a(y, (10.3.14)ay« ay,p Y) ^v=v' _

( ^7lk ll^«lPl lz) ... Q«kOk (z)
aka 8ka'

k \- 2 I k. 1 aal ... 49"k aal ... adk

11

Of course, this definition is independent of a coordinate system. The disjoint

union of the Weyl algebra Az, z E Z, is the Weyl algebra bundle A -* Z whose

sections read

a(z, y, '1') = E 7
k

ak,«1...«r(z)y
al . . . y«r, (10.3.15)

2k+r>0
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where ak,a,...a,,(z) are sections of the tensor bundles VTZ. The set A of sections

(10.3.15) is also an associative algebra with respect to the fibrewise multiplication

(10.3.14). Its unit element is a(z, y, -y) = 1. The centre Z of the algebra A consists

of the elements

00

a = 'ykak(z),
k=o

(10.3.16)

independent of coordinates yA. There is a filtration A D Al D • • • in the algebra A

with respect to the total degree 2k + r of the terms of the series (10.3.15).
Let us consider the tensor product A ® 0*(Z) whose elements are A-valued

exterior forms on the manifold Z:

a(z, y, dz, 'Y) = E'ykak,.,...a,.,(i,...0. (z)ya' ... ya,dzt A ... A dzQ°, (10.3.17)

called simply A-forms. Their multiplication is defined as the exterior product A

of exterior forms and the Weyl product o (10.3.14) of polynomials in y'. Let the

symbol o also stand for this multiplication. With this multiplication law, the algebra

A ® 0* (Z) has the structure of a graded algebra over the graded commutative ring

0*(Z). The corresponding bracket of two A-forms a, a' (10.3.17) is defined as

[a, a'] = a o a' - (-1)1aia'Ia o a, (10.3.18)

where Jal E A o D1a1(Z), Ja'l E A ® Dla'I(Z). One says that an element a belongs

to the centre of the algebra A ® D*(Z) if its bracket (10.3.18) with any element of

this algebra vanishes. This centre is Z ® D*(Z). There are two projections of an

A-form a(z, y, dz,'y) (10.3.17) to this centre. These are

ao = a(z, 0, dz,'y), aoo = a(z, 0, 0,'y). (10.3.19)

We also have the following two operators acting on A-forms:

6: Ar ®.O9(Z) --. A,.-1®.09+1(Z),

6a=dz'A aa,
y

6* : A,. ® 08(Z) -> AT+1® 0s-1(Z),

Pa = yaa^]a.a
y

These operators possess the properties:
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• the operator 6 is an antiderivative, i.e.,

b(a o a') = (6a) o a' + (-1)l"la o 6a',

and is represented by the bracket

ba = -[? flapyadzQ, a];
ry

• 62 = (6*)2 = 0;

• for any monomial

a = yal ... ya*dzR' A ... A dzO',

we have

(66* + 6*6)a = (r + s)a.

One also introduces the operator

6-1 :.A.,. ® D3(Z) -> A.,+1® DS-1(Z)

which acts on monomials (10.3.20) by the law

6-1a (r + s)-16*a, r + s > 0,
la Sl

b-1a=0, r+s=0.

Then any A-form (10.3.17) has the decomposition

a = (66-1 + 6-16)a + a®.

(10.3.20)

(10.3.21)

Turn now to a connection on the symplectic manifold (Z, S2). It is given by the

tangent-valued form

r = dzx 0 I a + F ,."Y- ^yµ I . (10.3.22)
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The connection F (10.3.22) is called a symplectic connection if it is torsionless and
the covariant differential of the symplectic form relative to this connection vanishes,
i.e.,

VQ,,p = dzAVA1t,,p = dzA(^ Q,,o + rAA,,Q p + I A"`p1 ) = 0.

With respect to the local canonical coordinates where 1 =const., the coefficients

I'Aµ„ = Q,,,r,"v (10.3.23)

of the symplectic connection are symmetric over all indices. A symplectic connec-

tion on a symplectic manifold exists, but is not unique [35, 118, 2981. Coefficients

(10.3.23) of different symplectic connections differ from each other in symmetric
tensor fields QA,,.

Remark 10.3.2. Let us formulate more general result (see [118]). Let w be a

non-degenerate 2-form on a manifold Z and r a linear connection on Z. We denote

rAµv = wµ«rA
a

v, TAµv = 2 (I'Aµv + FAvµ)•

A connection F preserving the 2-form w can be written as the sum

FAµv = 2 (aAwµv - aµwvA - avwAµ) + (TAµv + TvµA - TµvA).

In the case when w is closed (hence, symplectic), this formula takes the form

rAµv = aAwµv + (TAµv + TvpA - TµvA).

If r is a torsionless connection (i.e., a symplectic connection), we have

FAµv = aAwµv + TAµv.

If r and r' are different symplectic connections, then

rAµv - rAµv - TA µv - TA,, = 01A,,

is a symmetric tensor field. A torsionless linear connection preserving a non-

degenerate 2-form w on a manifold Z exists if and only if w is closed, i.e., symplectic.
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A symplectic connection F on the symplectic manifold Z defines a connection

on the graded D*(Z)-algebra A(& D*(Z) of A-forms (10.3.17) by the rule

Va = dzA A VAa.

In local canonical coordinates (za), we have

Va=da+I ZG,a] ,
7

where

d=dz ^'Aa A , G = 21'a,.„yµy"dz".

In accordance with Definition 8.2.20 extended to an algebra over a graded ring, this

connection is a graded derivation

V(aoa') = Vaoa'+ (- 1)IaIao Va'

which obeys the Leibniz rule

V(0 A a) = do Aa+ (-1)'' AVa

for any exterior form 0 E 0"(Z). Its curvature reads

r
V2a=

a
I-R,a'
I

R = 4 Raa,evyµy'dza A dza,

RAaµv = Opg&ao'.

We have the relation

(V6+6V)a

Given a symplectic connection F on the symplectic manifold (Z, S2), let us con-
sider more general connections on the algebra A ® ,O*(Z), namely, connections of

the form

^a = Va + [1T, a] = da + [-- (G + T), a], (10.3.24)



10.3. DEFORMATION QUANTIZATION 369

where r is a A-valued 1-form on Z. The A-form T in the expression (10.3.24) is
not defined uniquely. For the uniqueness of T, we will require that its projection To
(10.3.19 ) to the centre Z 0 17*(Z) vanishes . Then the curvature

tj2a =
a
-R, a

I ly

of the connection V (10.3.24) takes the form

-R = -(R + OT +T2).

The connection (10.3.24) is called an Abelian connection if

02a =0

(10.3.25)

for all elements a of the algebra A ® SJ*(Z), i.e., the curvature form R (10.3.25)
belongs to the centre of this algebra.

PROPOSITION 10.3.3. [102]. For any symplectic connection IF on a symplectic

manifold (Z, 1), there exists an Abelian connection on the algebra A®D*(Z) which

takes the form

V-S+[-,r,.]=V+[z(QaRy°dz3+r),.],

where r is an A-valued 1-form such that ro = 0. q

The curvature form of the connection V (10.3.26) reads

R= 2Sl^py"dzp+R - Sr+Vr+?r2.
7

The connection V is Abelian if

Sr=R+Or+?r2.
'Y

Then h = -S2 is a central form.

LEMMA 10.3.4. The equation (10.3.27) has a unique solution r such that

S-1r = 0.

(10.3.26)

(10.3.27)

(10.3.28)
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Let V (10.3.26) be a desired Abelian connection where r obeys the relations

(10.3.27) and (10.3.28). Let us consider the subalgebra Ao of the algebra A which

consists of the elements a, called flat, such that Va = 0.

THEOREM 10 .3.5. [102]. For any element b E Z (10.3.16), there exists a unique

flat element a(z, y, 'y) E AV such that

o (a) = ao (z, 0,'y) = b.

Then the associative deformation for elements a, a' E Z (10.3.16) on the sym-

plectic manifold Z is defined as

a * a' = a(Q-1(a) o o-1(a'))• (10.3.29)

In particular, let Z = R2' and F be the zero symplectic connection. The corre-

sponding Abelian connection (10.3.26) takes the form

0=-6+d.

It is readily observed that, in this case, the associative deformation (10.3.29) restarts

the Moyal product (10.3.12).

10.4 Quantum time-dependent evolution

We have seen in Section 5.10 that solutions of the Hamilton equations in classi-

cal time-dependent mechanics, by definition, are integral sections of a Hamiltonian

connection, i.e., evolution in classical Hamiltonian mechanics is described as a par-

allel transport along time. Following [9, 160, 244], we will treat an evolution of a

quantum time-dependent system as a parallel transport.

It should be emphasized that, in quantum mechanics, a time plays the role of a

classical parameter. Indeed, all relations between operators in quantum mechanics

are simultaneous, while a computation of a mean value of an operator in a quantum

state does not imply an integration over a time. It follows that, at each moment,

we have a quantum system, but these quantum systems are different at different

instants . Although they may be isomorphic to each other.
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Recall that, in the framework of algebraic quantum theory, a quantum system

is characterized by a C*-algebra A and a positive (hence, continuous) form 0 on A
which defines the representation 7ro of A in a Hilbert space Em with a cyclic vector
^0 such that

0(a) = Va E A,

(see, e.g., [39, 82]). One says that 0(a) is a mean value of the operator a in the state

Therefore, to describe quantum evolution, one should assign a C*-algebra At to

each point t E R, and treat At as a quantum system at the instant t. Thus, we have
a family of instantaneous C*-algebras At, parametrised by the time axis R. Let us
suppose that all C*-algebras At are isomorphic to each other and to some unital C*-

algebra A. Moreover, let they make up a locally trivial smooth Banach fibre bundle

P -+ R with the typical fibre A, whose transition functions are automorphisms of

the C*-algebra A. Smooth sections a of the C*-algebra bundle P --1 R constitute
an involutive algebra with respect to the fibrewise operations. This is also a module

P(R) over the ring C°°(R) of real functions on R. In accordance with Definition

8.2.7, a connection V on the C°°(R)-algebra P(R) assigns to the standard vector
field 8t on ll a derivation

Vt E a(P(R))

which obeys the Leibniz rule

Vt(fa) = atfa+ fVta, a E P(R), f E C°°(IR8).

(10.4.1)

The fibre bundle P -> R is obviously trivial, though it has no canonical trivialization
in general . Given its trivialization P = R x A, the derivation Vt (10.4.1) reads

Vt(a) = [at - S(t)](a), (10.4.2)

where 6(t) at each t E R are derivations of the C*-algebra A, such that

St(ab) = 6t(a)b+a6t(b), St(a*) = 6t (a)*.

We say that a section a(t) of the fibre bundle P -* R is an integral section of

the connection (10.4.2) if

Vt(a) = [at - 6(t)] (a) = 0. 1 (10.4.3)
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One can think of the equation (10.4.3) as being the Heisenberg equation describing

quantum evolution. An integral section a(t) of the connection V is a solution of

this equation. We also say that a(t) is a geodesic curve in A.

In particular, let the derivations 6(t) = 6 be the same for all t E R. If 6 is a

generator of a 1-parameter group g, of automorphisms of the algebra A, then for

any a E A, the curve

a(t) = gt(a), tER, (10.4.4)

in A is a solution of the Heisenberg equation (10.4.3).

There are certain conditions in order that a derivation 6 of a unital C*-algebra
to define a 1-parameter group of its automorphisms [38, 249].

Remark 10.4.1 . Let V be a Banach space. An operator a in V is said to be
bounded if there is A E l[8 such that

llavll < Allvl 1, Vv E V.

The algebra B(V) of bounded operators in a Banach space V is a Banach algebra
with respect to the norm

llall = sup llavll.
^1vI1=1

It is provided with the corresponding norm topology, called the norm operator topol-

ogy. Another topology in B(V), referred to in the sequel, is the strong operator

topology. It is given by the following family of open neighbourhoods of 0 E B(V):

U, ={aEB (V) : I lavl l<e}, VvEV, VE >0.

One also introduces weak, ultra-strong and ultra-weak topologies in B(V) [82]. Note

that the s-topology in [9] is the ultra-strong topology in the terminology of [82].

The algebra B(V) is a topological algebra only with respect to the norm operator

topology because the morphism

B(V)xB(V)-3 (a,b)^--pabeB(V)

is continuous only in this topology. The norm operator topology is finer than the

other above mentioned operator topologies. •
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PROPOSITION 10.4.1. If S is a bounded derivation of a C*-algebra A, then it is a

generator of a 1-parameter group

gr = exp[r6], r E R,

of automorphisms of A, and vice versa. This group is continuous in a norm topology
in Aut (A). Furthermore, for any representation it of A in a Hilbert space E,r, there
exists a self-adjoint bounded operator f in E, such that

7r(6(a)) = i[f, ir(a )], lr(gr (a)) = e:rrtir (a)e-'rrt da E A, r E R. ( 10.4.5)

0

Note that , if the domain of definition D(S) of a derivation S coincides with A,
this derivation is bounded . It follows that , by definition , the derivations St, t E 1[8,
in the connection Vt (10.4 . 2) are bounded . It follows that, if a quantum system is
conservative , i.e., St = S are the same for all t E R, the Heisenberg equation ( 10.4.3)
has a solution ( 10.4.4) through any point of R x A in accordance with Proposition

10.4.1. Proposition 10.4.1 also states that the description of evolution of a quantum
conservative system in terms of the Heisenberg equation and that based on the
Shrodinger equation are equivalent.

However, non-trivial bounded derivations of a C*-algebra do not necessarily exist.
Moreover , if a curve gr is continuous in Aut (A) with respect to the norm operator
topology, it implies that the curve g,.(a) for any a E A is continuous in the C*-
algebra A, but the converse is not true . At the same time, a curve gr is continuous
in Aut (A) with respect to the strong operator topology in Aut (A) if and only if the
curve gr (a) for any a E A is continuous in A.

By this reason , we are also interested in strong-continuous 1-parameter groups
of automorphisms of C*-algebras. We refer the reader to [38, 249] for the sufficient
conditions which a derivation 6 should satisfy in order to be a generator of such

a group. Note only that 6 has a dense domain of definition D(6) in A, and it is
not bounded on D(6 ). If 6 is bounded on D(6), then 6 is extended uniquely to a
bounded derivation of A. It follows that, for a strong-continuous 1-parameter group
of automorphisms of A, the connection Vt (10.4.2 ) is not defined on the whole al-

gebra P (l1 ). In this case , we deal with a generalized connection which is given by
operators of a parallel transport whose generators are not well-defined. It may also
happen that a representation 7r of the C*-algebra A does not carry out the repre-

sentation ( 10.4.5 ) of a strong-continuous 1-parameter group gr of automorphisms of
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A by unitary operators. Therefore, quantum evolution given by strong-continuous

1-parameter groups of automorphisms need not be described by the Shrodinger

equation in general.

Turn to the time-dependent Heisenberg equation (10.4.3). We require that, for

all t E R, the derivations 8(t) are generators of strong-continuous 1-parameter groups

of automorphisms of a C*-algebra. Then the operator of a parallel transport in A

with respect to the connection Vt (10.4.2) over the segment [0, t] can be given by

the time-ordered exponent

[t 11
Gt = T exp Lf 6(t')dt'J . (10.4.6)

0

Hence, for any a E A, we have a solution

a(t) = Gt(a), t E R+,

of the Heisenberg equation ( 10.4.3).

Let now all C*-algebras At of instantaneous quantum systems be isomorphic to
the von Neumann algebra B(E) of bounded operators in some Hilbert space E.
Then we come to quantum evolution phrased in terms of the Shrodinger equation.
Let us consider a locally trivial fibre bundle II - -+ R with the typical fibre E and
smooth transition functions . Smooth sections of the fibre bundle II --+ R constitute
a module II(R) over the ring Ci°O(R) of real functions on R. In accordance with
Definition 8.2.6, a connection V on II(R) assigns to the standard vector field 8t on
R a first order differential operator

Ot E Diffj (II (R), II (R)) (10.4.7)

which obeys the Leibniz rule

Vt(f') = atf'b + fot', V) E II(R), f E C°°(R).

Let us choose a trivialization H = R x E . Then the operator Vt (10.4.7) reads

Ot(V) = (at - iH(t))VG, (10.4.8)

where 'H(t) at all t E R are bounded self-adjoint operators in E.

Note that every bounded self-adjoint operator f in a Hilbert space E defines

the bounded derivation

6(a) = i[H, a], a E B(E), (10.4.9)
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of the algebra B(E). Conversely, every bounded derivation of B(E ) is internal, i.e.,

takes the form ( 10.4.9 ) where f is a self-adjoint element of B(E). Therefore, the
operators-'H(t) in the expression (10.4.8 ) are necessarily bounded and self-adjoint.

We say that a section '(t) of the fibre bundle H --4R is an integral section of

the connection Vt (10.4 . 8) if it satisfies the equation

Vt( ) = (at - i7-l(t))V) = 0. (10.4.10)

One can think of this equation as being the Shrodinger equation for the Hamiltonian

alW .
In particular, let a quantum system be conservative, i.e., the Hamiltonian 7-l(t) _

H in the Shrodinger equation is independent of time. Then, for any point y E E,

we obtain the solution

Vi(t) = e`t*"y, t E R,

of the conservative Shrodinger equation. If the Shrodinger equation (10.4.10) is not

conservative, the operator of a parallel transport in E with respect to the connection

Vt (10.4.8) over the segment [0, t] can be given by the time-ordered exponent

rr t

Gt = T exp l i f 7-l(t')dt' .
l o

Then, for any y E E, we obtain a solution

V(t) = Gty,

(10.4.11)

t E R+, (10.4.12)

of the Shrodinger equation (10.4.10).

Note that the operator Gt (10.4.11) is an element of the group U(E) of unitary

operators in the Hilbert space E. This is a real infinite-dimensional Lie group with

respect to the norm operator topology, whose Lie algebra is the real algebra of all

anti-self-adjoint bounded operators i7-l in E with respect to the bracket [i7-l, i7{'].

The operator Gt (10.4.11), by construction, obeys the equation

atGt - i7-LGt = 0. (10.4.13)

This equation is invariant under right multiplications Gt H Gtg, Vg E U(E). There-

fore, Gt can be seen as the operator of a parallel transport in the trivial principal
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bundle R x U(E). Accordingly, the operator (10.4.6) can be regarded as the opera-

tor of a parallel transport in the trivial group bundle 11 x Aut (A), where the group

Aut (A) acts on itself by the adjoint representation.

In the next Section, the description of quantum evolution as a parallel trans-

port in a principal bundle will be extended to quantum systems depending on a

set of classical time-dependent parameters in order to explain the Berry's phase

phenomenon.

Note that the 1-parameter group Gt defined by the equation (10.4.13) is contin-

uous with respect to the norm operator topology in U(E). Turn to the case when

the curve Gt is continuous with respect to the strong operator topology in B(E).

Then the curves '(t) = Gty, y E E, are also continuous, but not necessarily differ-

entiable in E. Accordingly, a Hamiltonian 7-l(t) in the Shrodinger equation (10.4.10)

is not bounded. Since the group U(E) is not a topological group with respect to

the strong operator topology, the product R x U(R) is neither principal nor smooth

bundle. Therefore, the conventional notion of a connection is not applied to this

fibre bundle. At the same time, one can introduce a generalized connection defined

in terms of parallel transport curves and operators, but not their generators [9].

10.5 Berry connections

We refer the reader to [7, 17, 31, 175, 225, 279, 310] and references therein for the

geometric and topological analysis of the Berry's phase phenomenon in quantum

systems depending on classical time-dependent parameters. In Section 5.12, classical

mechanical systems with time-dependent parameters have been described in terms

of composite fibre bundles and composite connections. Here, this description is

extended to quantum systems.

Let us consider quantum systems depending on a finite number of real classical

parameters given by sections of a smooth parameter bundle E -> R. For the sake

of simplicity, we fix a trivialization E = R x Z, coordinated by (t, am). Although

it may happen that the parameter bundle E -> R has no preferable trivialization,

e.g., if one of parameters is a velocity of a reference frame.

In the previous Section, we have characterized the time as a classical parameter

in quantum mechanics. This characteristic is extended to other classical parameters.

Namely, we assign a C*-algebra Aa to each point a e E of the parameter bundle E,

and treat AQ as a quantum system under fixed values (t, am) of the parameters.
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Remark 10.5.1. Let us emphasize that one should distinguish classical parameters

from coordinates which a wave function can depend on.
Let {Aq} be a set of C*-algebras parameterized by points of a locally compact

topological space Q. Let all C*-algebras A. are isomorphic to each other and to some

C*-algebra A. We consider a locally trivial topological fibre bundle P -* Q whose

typical fibre is the C*-algebra A, i.e., transition functions of this fibre bundle provide

automorphisms of A. The set P(Q) of continuous sections of this fibre bundle is

an involutive algebra with respect to fibrewise operations. This involutive. algebra

exemplifies a locally trivial continuous field of C*-algebras on the topological space

Q [82]. Let us consider a subalgebra A(Q) C P(Q) which consists of sections a of

P -* Q such that IIa(q)II vanishes at infinity of Q. For a E A(Q), put

IIail = sup 11a(q)II < oo. (10.5.1)
qEQ

With this norm, A(Q) is a C*-algebra [82]. It is called a C*-algebra defined by a

continuous field of C*-algebras. For example, every liminal C*-algebra with a Haus-

dorff spectrum A is defined by a continuous field of C*-algebras on A. Recall that

by the spectrum of a C*-algebra is meant the set of its irreducible representations

provided with a certain topology. As is well known, any commutative C*-algebra is

isomorphic to the algebra of complex continuous functions on its spectrum, which

vanish at infinity (see Section 14.1).
Turn to the C*-algebra A(Q). One can consider a quantum system characterized

by this C*-algebra. In this case, elements of the set Q are not classical parameters

as follows. Given an element q E Q, the assignment

A(Q) E) a - a(q) E A (10.5.2)

is a C*-algebra epimorphism. Let it be a representation of A. Then the assignment

(10.5.2) yields a representation p(7r, q) of the C*-algebra A(Q). If 7r is an irreducible

representation of the C*-algebra A, then p(7r, q) is an irreducible representation of

A(Q). Moreover, the irreducible representations p(7r, q) and p(7r, q') of A(Q) are not

equivalent. Indeed, there exists a continuous function f on Q such that f (q) = 1 and

f (q') = 0. Then all elements f a E A(Q) such that Ir(a(q)) 0 belongs to the kernel

of the representation of p(ir, q'), but not to the kernel of the representation p(7r, q).

Thus, there is a bijection (but not a homeomorphism) between the spectrum A(Q) of

the C*-algebra A(Q) and the set Q x A. It follows that one can find representations

of the C*-algebra A(Q) among direct integrals of representations of A with respect
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to some measure on Q. Let p be a positive measure of total mass 1 on the locally

compact space Q , and let 0 be a positive form on A. Then the function q H 0(a(q)),

Va E A(Q), is a p-measurable, while the integral

0(a) = f 0(a(q))p(q)

provides a positive form on the C*-algebra A(Q). Roughly speaking, a computation

of a mean value of an operator a E A(Q) implies an integration with respect to

some measure on Q in general. This is not the case of quantum systems depending

on classical parameters q E Q. •

We will simplify repeatedly our consideration in order to single out a desired

Berry's phase phenomenon. Let us assume that all algebras Av are isomorphic to

the von Neumann algebra B(E) of bounded operators in some Hilbert space E, and

consider a locally trivial Hilbert space bundle 11 -> E with the typical fibre E and

smooth transition functions. Smooth sections of 11 -> E constitute a module II(E)

over the ring C°°(E) of real functions on E. In accordance with Definition 8.2.6, a

connection ti on II(E) assigns to each vector field T on E a first order differential

operator

vT E Diff i (H (E), II (E)) (10.5.3)

which obeys the Leibniz rule

OT(fs) = (TJdf)s+ fVTs, s E II(E ), f E C°°(E).

Let T be a vector field on E such that dtjr = 1. Given a trivialization chart of the

Hilbert space bundle 11 --- ^ E, the operator OT (10.5.3) reads

VT(s) = (at - iH(t, ak))s +Tm'(am - iAm(t, .k))s, (10.5.4)

where f(t, vk), A71(t, 0k) for each a E E are bounded self-adjoint operators in the

Hilbert space E.
Let us consider the composite Hilbert space bundle II -+ E -* R. Similarly to

the case of smooth composite fibre bundles (see Proposition 2.7.1), every section h(t)

of the fibre bundle E -+ R defines the subbundle IIh = h*II --* l1 of the Hilbert space

bundle II - * R whose typical fibre is E. Accordingly, the connection V (10.5.4) on

the C°°(E)-module l1(E) defines the pull-back connection

Vh(O) = [at - i(Am(t, hk(t))athm + n(t, hk(t))]V) (10.5.5)
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on the C°°(R)-module Hh(R) of sections Vi of the fibre bundle 11h -> R (cf. (2.7.11),

(5.12.5)).
As in the previous Section, we say that a section z/b of the fibre bundle 1Ih -> R

is an integral section of the connection (10.5.5) if

oh(') = [at - i(A.(t, hk(t))ahm + H(t, hk(t))] = 0. (10.5.6)

One can think of the equation (10.5.6) as being the Shrodinger equation for a quan-

tum system depending on the parameter function h(t). Its solutions take the form

(10.4.12) where Gt is the time-ordered exponent

r t
Gt = T exp I i f (A,,,.at,hm + N)dt' .

0
(10.5.7)

The term iAm(t, hi(t))athm in the Shrodinger equation (10.5.6) is responsible for

the Berry's phase phenomenon, while f is treated as an ordinary Hamiltonian of a

quantum system. To show the Berry's phase phenomenon clearly, we will continue

to simplify the system under consideration. Given a trivialization of the fibre bundle

11 - ][8 and the above mentioned trivialization E = R x Z of the parameter bundle E,

let us suppose that the components A,,, of the connection 0 (10.5.4) are independent

of t and that the operators 9-l(a) commute with the operators A,,,(a') at all points

of the curve h(t) C E. Then the operator Gt (10.5.7) takes the form

Gt = Texp i f A...(ak)dam • Texp l i f R(t')dt'] . (10.5.8)

h([O,t]) 0

One can think of the first factor in the right-hand side of the expression (10.5.8) as

being the operator of a parallel transport along the curve h([0, t]) C Z with respect

to the pull-back connection

V = i`ti = dam ® (a,,, - iA,,,(t, 0,k)) (10.5.9)

on the fibre bundle II -* Z, defined by the imbedding

i:Zy{0}xZCE.

Note that, since Am are independent of time, one can utilize any imbedding of Z to

{t} x Z. Moreover, the connection V (10.5.9), called the Berry connection, can be
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seen as a connection on some principal fibre bundle P -> Z for the group U(E) of

unitary operators in the Hilbert space E. Let the curve h([0, t]) be closed, while the

holonomy group of the connection V at the point h(t) = h(0) is not trivial. Then

the unitary operator

T exp i f A.(Uk)du' (10.5.10)

h([O,t])

is not the identity. For example, if

iA„a(vk) = iAm(vk)IdE (10.5.11)

is a U(1)-principal connection on Z, then the operator (10.5.10) is the well-known

Berry phase factor

exp i f Am(Uk)do,-

h([0,t] )

If (10.5.11) is a curvature-free connection, Berry's phase is exactly the Aharonov-
Bohm effect on the parameter space Z (see Section 6.6). In this particular case,

Proposition 6.6.1 can be applied to the topological analysis of the Berry's phase

phenomenon.
The following variant of the Berry's phase phenomenon leads us to a principal

bundle for familiar finite-dimensional Lie groups. Let E be a separable Hilbert space

which is the Hilbert sum of n-dimensional eigenspaces of the Hamiltonian 7-1(u), i.e.,

00
E_®Ek,

k=1

Ek = Pk(E),

where Pk are the projection operators, i.e.,

H(U) o Pk = Ak(U)Pk

(in the spirit of the adiabatic hypothesis ). Let the operators Am(z) be time-

independent and preserve the eigenspaces Ek of the Hamiltonian 71, i.e.,

Am(z) _ Ak,(z)Pk, (10.5.12)
k

where Akn(z), z E Z, are self-adjoint operators in Ek. It follows that Am(U) commute

with ?-1(U) at all points of the parameter bundle E -* R . Then , restricted to the
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subspace Ek, the parallel transport operator (10.5.10) is a unitary operator in Ek.

In this case, the Berry connection (10.5.9) on the U(E)-principal bundle P -> Z

can be seen as a composite connection on the composite bundle

P -+ P/U(n) Z,

which is defined by some principal connection on the U(n)-principal bundle P ---

P/U(n) and the trivial connection on the fibre bundle P/U(n) -+ Z. The typical

fibre of P/U(n) -i Z is exactly the classifying space B(U(n) (6.7.3). Moreover,

one can consider the parallel transport along a curve in the bundle P/U(n). In

this case, a state vector Vi(t) acquires a geometric phase factor in addition to the

dynamical phase factor. In particular, if E = R (i.e., classical parameters are absent

and Berry's phase has only the geometric origin) we come to the case of a Berry

connection on the U(n)-principal bundle on the classifying space B(U(n)) (see [31]).

If n = 1, this is the variant of Berry's geometric phase of [7].
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Chapter 11

Connections in BRST formalism

There are different approaches to BRST formalism. We will consider only its ele-

ments where jet manifolds and connections are utilized. In particular, the BRST

operator acting on so-called BRST tensor fields is phrased in terms of generalized

or BRST connections. We will start our exposition from the basics of the calculus

in the infinite order jets extended to odd ghosts, ghost-for-ghosts and antifields.

11.1 The canonical connection on infinite order jets

As was mentioned above, the tangent and cotangent bundles over a fibre bundle

Y -> X admit the canonical horizontal splittings (2.2.3) and (2.2.4), but over the

jet manifold J1Y. Choosing a connection F : Y -4 J'Y, one brings these splittings

into a true horizontal splitting over Y, but this splitting fails to be canonical. Sim-
ilarly, the tangent and cotangent bundles over the k-order jet manifold J'Y have

canonical horizontal splittings (see (11.1.21) and (11.1.22) below ), but these split-

tings are over Jk+lY. One may hope that , in the case of the infinite order jet space

J°°Y, the corresponding canonical splittings are true horizontal splittings over J°°Y

corresponding to the canonical connection on J°°Y. This connection provides the

canonical decomposition of exterior forms on jet manifolds and the corresponding

decomposition d = dH + dv of the exterior differential into horizontal and vertical
parts. These decompositions lead to the variational bicomplex and the algebraic

approach to the calculus in variations (see Section 11.2). This bicomplex extended

to a graded algebra plays an important role in the BRST construction phrased in

terms of jets (see Section 11.3).

383
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We start from higher order jet manifolds of sections of a fibre bundle Y -* X

[123, 179, 212, 274]. They are a natural generalization of the first and second order

jet manifolds . We will follow the notation of Section 1.3. Recall that , given fibred

coordinates (xA, yi ) on a fibre bundle Y -+ X, by A, I A J= r, is meant a collection

of numbers (A,.....\1) modulo permutations . By A + E we denote the collection

A+E _ (Ar...\1Qk...Ul)

modulo permutations , while AE is the union of collections

AE _ (ar ... Alak ... al)

where the indices Ai and vj are not permuted . Recall the symbol (1.3.14) of the

total derivative

d;k' = as + I yA+a8BJAI=0
(11.1.1)

We omit the index (k) in this symbol if there is no danger of confusion. We will use

the notation

aA= aar o...oaa1, dA=da,.o...od,\1, A=(Ar...A1).

The r-order jet manifold jry of sections of a fibre bundle Y -+ X (or simply

the r-order jet manifold of Y -+ X ) is defined as the disjoint union

J''Y Ui's
zEX

(11.1.2)

of the equivalence classes jrs of sections s of Y so that different sections s and s'

belong to the same equivalence class j^s if and only if

Si(x) = s'i(x) aASi(x) = aAS"(x), 0<1A1<r.

In brief, one can say that sections of Y -+ X are identified by the r + 1 terms of

their Taylor series at points of X. The particular choice of a coordinate atlas does

not matter for this definition. Given an atlas of fibred coordinates (xa, yi) of a fibre

bundle Y -+ X, the set (11.1.2) is endowed with an atlas of the adapted coordinates

(x', yA), 0 <1 A 1< r, (11.1.3)

(x A, yA) o 8 = (X A,9ASz(x)),
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together with transition functions

µ ( )y a+n = a x,\ dµyn
. 11.1.4

The coordinates ( 11.1.3 ) bring the set J'Y into a smooth manifold of finite dimension

dimJrY =n+m^(n+i-1)!
2-o i!(n - 1)!

The coordinates ( 11.1.3 ) are compatible with the natural surjections

7rr : JTY --+ J1Y, r > 1,

which form the composite bundle

r-1

7rr : J''Y + Jr 1Y * ... 1 > Y 11 X

7rh o Irk = 7rh, 7rh 0 7rr = 7rr.

A glance at the transition functions ( 11.1.4) when I A 1= r shows that the fibration

7rrr._1 : jry -, Jr-1Y

is an affine bundle modelled over the vector bundle

r T'X ® VY -.' Jr-1Y. (11.1.5)
Jr- 1 y

Remark 11 . 1.1. To introduce higher order jet manifolds, one can use the construc-

tion of the repeated jet manifolds . Let us consider the r-order jet manifold J''JkY

of the jet bundle jky --+ X. It is coordinated by

(X"', YEA), I A I< k, E < r.

There is the canonical monomorphism

ark
: Jr+ky y jrjky

given by the coordinate relations

YEA a ark = yE+A•
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In the calculus in r-order jets, we have the r-order jet prolongation functor such

that, given fibre bundles Y and Y' over X, every fibred morphism 4D : Y -* Y' over

a diffeomorphism f of X admits the r-order jet prolongation to the morphism

J''-t :JYE) jX'si-- jf(,:)(11) 0 sof-1) EJrY' (11.1.6)

of the r-order jet manifolds. The jet prolongation functor is exact. If 4D is an injection

[surjection], so is Jr I. It also preserves an algebraic structure. In particular, if

Y -+ X is a vector bundle, so is JrY -> X. If Y --+ X is an affine bundle modelled

over the vector bundle Y -p X, then JY --> X is an affine bundle modelled over

the vector bundle J''Y -> X.

Every section s of a fibre bundle Y -* X admits the r-order jet prolongation to

the holonomic section

(Jrs)(x) = jrs

of the jet bundle J'Y X.

Every exterior form 0 on the jet manifold JkY gives rise to the pull-back form

Irk+ti*0 on the jet manifold Jk+i Y. Let SJ* = i7*(JkY) be the algebra of exterior

forms on the jet manifold JkY. We have the direct system of R-algebras

D*(X) ^t*(lr) '^o , D (11.1.7)

Sometimes , it is convenient to denote D* 1 = D*(X), f = D*(Y). The subsystem

of (11.1.7) is the direct system

C°° (X) r* * C00(y) "9- 01 ^ '̂. .. Or (11.1.8)

of the R-rings of real smooth functions ilk = C°°(JkY) on the jet manifolds JkY.

Therefore , one can think of (11 . 1.7) and ( 11.1.8) as being the direct systems of

C°° (X )-modules.
Given the k-order jet manifold jky of y -p X, there exists the canonical fibred

morphism

r(k) : JkTY -+ TJ''Y

over jky X JkTX JkY x TX whose coordinate expression is
x x

xa i x' y' ) o r = xA yt ±A (i) E(y`) (iµ)--) 0 <J A J< k
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where the sum is taken over all partitions E + E = A and 0 <1 1. In particular,

we have the canonical isomorphism over JkY:

r(k) : JkVY -* VJkY, ( ' )A = yn o r(k). (11.1.9)

As a consequence, every projectable vector field u = uµaµ + uiai on a fibre bundle

Y -> X has the following k-order jet prolongation to the vector field on JkY:

Jku = r(k) o Jku : jky _ TJkY, (11.1.10)

Jku = u,\a,\ + u`at + uAa", 0 <I A < k,

ua+A = daun - yµ+Aaauµ, 0 <1 A J< k,

(cf. (1.3.10) for k = 1). In particular, the k-order jet lift (11.1.10) of a vertical

vector field on Y -+ X is a vertical vector field on jky --+ X due to the isomorphism

(11.1.9).
A vector field ur on an r-order jet manifold JrY is called projectable if, for any

k < r, there exists a projectable vector field uk on jky such that

Uk o Irk = T7rk our.

A projectable vector field on JrY has the coordinate expression

ur=UAaa+u,a^, 0<IAI <r,

such that ua depends only on the coordinates xµ and every component u^ is inde-

pendent of the coordinates y=' , > JAI.

Let us denote by P' the vector space of projectable vector fields on the jet ma-

nifold JrY. It is easily seen that Pr is a Lie algebra over R and that the morphisms

Tirk, k < r, constitute the inverse system

T7r
° T̂

ao 1 Tai Ta; -2
P

r-1
P^ pr

of these Lie algebras.

(11.1.11)

PROPOSITION 11.1.1. [25, 290]. The k-order jet lift (11.1.10) is the Lie algebra

monomorphism of the Lie algebra P° of projectable vector fields on Y -* X to the

Lie algebra Pk of projectable vector fields on jky such that

T7rk(Jru) = Jku0 7r,. (11.1.12)
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The jet lift Jku (11.1.10) is said to be an integrable vector field on J'Y. Every

projectable vector field Uk on jky is decomposed into the sum

Uk = Jk (Tiro (uk)) + Vk ( 11.1.13)

of the integrable vector field Jk(T-7ro (uk)) and a projectable vector field v, which is

vertical with respect to some fibration JkY -> y.

Similarly to the exact sequences ( 1.1.17a) - (1.1.17b) over J°Y = Y, we have

the exact sequences

0-+VJkYTJkY->TX xJky-> 0, (11.1.14)
x

0JkYxT*XyTJkY->V*JkY->0 ( 11.1.15)
x

of vector bundles over JkY. They do not admit a canonical splitting . Nevertheless,

their pull-backs onto Jk+ly are split canonically due to the following canonical

bundle monomorphisms over JkY:

A(k) : jk+ly --,T*X ® TJkY,
Jky

A(k) = dxa ® dak^, (11.1.16)

°(k) : jk+ly T*JkY ® VJkY,
Jky

9(k) _ ^(dyn - YA+ndx') ®a°, (11.1.17)

where the sum is over all multi-indices A, I A 1G k (cf. (1.3.5), (1.3.6) for k = 1).

The forms

0i
n = dyA

i
-

i
yn+adx' (11.1.18)

are also called the contact forms. The monomorphisms (11.1.16) and (11.1.17) yield

the fibred monomorphisms over Jk+lY

'\(k) : TX x jk+ly _4TJkY x Jk+ly,
X JkY

(11.1.19)

j(k) : V*JkY X yT*JkY x Jk+ly.
JkY JkY

(11.1.20)
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These monomorphisms split the exact sequences (11.1.14) and (11.1.15) over Jk+1Y

and define the canonical horizontal splittings of the pull-backs

^k+l*TJkY = aiki(TX x jk+ly) ® VJky
X jk+ly

xaaa + yna^ = ?dA + E('X - x\ya+A)ai

7r k+l*T*Jky = T*X ® Biki(V'JkY X Jk+ly)
jk+ly ,sky

xAdxA + yt dyn = (xa + yAya+A)dx^ + yi en

(11.1.21)

(11.1.22)

where summations are over all multi-indices I A I < k.

In accordance with the canonical horizontal splitting (11.1.21), the pull-back

uk : Jk+ l y^k
->+djky X

Jk+lukxd TJky x Jk+1
,]ky

onto Jk+lY of any vector field Uk on JkY admits the canonical horizontal splitting

UH + UV
= (uadA

+ ya+Aas ) + E(un - U YA+A)aj, (11.1.23)

where the sums are over all multi-indices JAI < k. By virtue of the canonical

horizontal splitting (11.1.22), every exterior 1-form 0 on JkY admits the canonical

splitting of its pull-back

^k+1* = hoO + (0 - ho(O)), (11.1.24)

where ho is the horizontal projection (1.3.15).

As was mentioned above, the canonical horizontal splittings (11.1.21) - (11.1.24)

are not true horizontal splitting on JkY because they are defined for the pull-backs

from jky onto Jk+lY. One may hope to overcome this difficulty in the case of

infinite order jets.
The direct system (11.1.7) of R-algebras of exterior forms and the inverse system

(11.1.11) of the real Lie algebras of projectable vector fields on jet manifolds are

defined for any finite order r. These sequences admit the limits for r -> oo in the

category of modules and that of Lie algebras, respectively. Intuitively, one can think

of elements of these limits as being the objects defined on the projective limit of the

inverse system

Rl ,,rX y t..° ... t Jr-ly t^=' Jry E- ... (11.1.25)
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of finite order jet manifolds J''Y.

Remark 11.1.2. Recall that, by a projective limit of the inverse system (11.1.25)

is meant a set J°°Y such that, for any k, there exist surjections

-7r°° : J'Y - X, 7ro : J°Y-> Y,

which make up the commutative diagrams

J/°°\Y

1r ^C lr?.

JkY ) J'Y

Irk : J°°Y -> jky (11.1.26)

ik
r

for any admissible k and r < k [217]. •

The projective limit J°°Y of the inverse system (11.1.25) exists. It is called the

infinite order jet space. This space consists of those elements

(.... qi,...,qj,...), qc E JtY, g3EJ'Y,

of the Cartesian product fl jky which satisfy the relations qi = Ira (qj) for all j > i.
k

Thus, elements of the infinite order jet space J°°Y really represent oo-jets j^°s of

local sections of Y --> X. Different sections belong to the same jet j's if and only

if their Taylor series at a point x E X coincide with each other.

Remark 11.1.3. Note that there is a natural surjection of the sheaf Yx of smooth

sections of a fibre bundle Y - X onto the infinite order jet space J°°Y because all

sections s of Y --> X with the same germ sx at x E X belong to the same jet j's,

but a converse is not true. •

Remark 11.1.4. The space J°°Y is also the projective limit of the inverse sub-

system of (11.1.25) which starts from any finite order JY. •

The infinite order jet space J'Y is provided with the weakest topology such

that the surjections (11.1.26) are continuous. The base of open sets of this topology

in J°°Y consists of the inverse images of open subsets of JkY, k = 0,..., under the

mappings (11.1.26). This topology is paracompact, and admits a smooth partition of

unity. The space J°°Y can also be provided with some kind of a manifold structure,

but it fails to be a well-behaved manifold [25, 290, 291]. Nevertheless, a wide class
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of differentiable objects on J°°Y can be introduced in the terms of the differential
calculus in modules in Section 8.1.

The procedure is the following . At first, real smooth functions on J°°Y are
defined . A real function f : J°°Y -* ll is said to be smooth if, for every q E J°°Y,
there exists a neighbourhood U of q and a smooth function f (k) on JkY for some k
such that

f I U= f 'k, ° 7rk 1U

Then the same equality takes place for any r > k. In particular, the pull-back
7r°'* f of any smooth function on J''Y is a smooth function on J°°Y. Smooth func-
tions on J°°Y constitute an R-ring C°°(J°°Y). Vector fields on J°°Y are introduced

as derivations of this ring. They make up the locally free left C°°(J°°Y)-module

a(C°°(J°°Y)). The C°°(J°°Y)-module of exterior 1-forms on J°°Y, in turn, is de-
fined as the dual D*(C°°(J°°Y)) of the module of vector fields.

However, one usually narrows down the class of studied differentiable objects

on J°°Y to the algebraic limits of the inverse system (11.1.11) of Lie algebras of

projectable vector fields and of the direct system (11.1.7) of modules of exterior

forms on finite order jet manifolds J''Y. They constitute subsets of the above

mentioned C°°(J°°Y)-modules of vector fields and exterior forms on the infinite

order jet space.
Let us start from the direct system (11.1.7) of R-modules 0* = )*(JkY) of

exterior forms on finite order jet manifolds JkY. The limit D* of this direct system,00
by definition, obeys the following conditions [217]:

• for any r, there exists an injection 1D -> 07^;

• the diagrams

.iJ* ^k 2J*k ^ T

are commutative for any r and k < r.

Such a direct limit exists. This is the R-module which is the quotient of the direct

sum ®$7k with respect to identification of the pull-back forms
k

77°O*q = 7^ *Q,r ^Ei7T, aED,
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if 0 = irr*a. In other words, i)* consists of all exterior forms on finite order jet

manifolds module the pull-back identification. Therefore, we will denote the image

of .Or in i)^ by .OT and the elements ir,°°*0 of i7* simply by q.

Remark 11.1.5. Obviously, i),*,. is the direct limit of the direct subsystem of

(11.1.7) which starts from any finite order r. •

The R-module i)* possesses the structure of the filtered module as follows [185].
Let us consider the direct system (11.1.8) of the commutative R-rings of smooth
functions on the jet manifolds J''Y. Its direct limit i)' consists of functions on

finite order jet manifolds modulo pull -back identification . Therefore i)' is a subset
of the ring C°°(J°°Y) of all smooth functions on J°°Y. This is the R-ring filtered
by the I[8-rings Dk C i)k+i. Then i)^ has the filtered i)°-module structure given by
the ilk-submodules i)* of 0;0.

DEFINITION 11.1.2. An endomorphism A of DQ is called a filtered morphism if
there exists i E N such that the restriction of A to i)* is the homomorphism of i)*

into D*k+i over the injection ilk i)k+i for all k. 11

THEOREM 11.1.3. [217]. Every direct system of endomorphisms {y } of ilk such

that

7r 'Yi = Yj o 7r

for all j > i has the direct limit -yam in filtered endomorphisms of i)^.. If all ryk are
monomorphisms [epimorphisms], then ry,,. is also a monomorphism [epimorphism].

This result also remains true for the general case of morphism between two different
direct systems. q

COROLLARY 11.1.4. [217]. The operation of taking homology groups of chain and

cochain complexes commutes with the passage to the direct limit. q

The operation of multiplication

0 -> f0, f E C°° (X), 0 E DT,

has the direct limit, and i)* possesses the structure of C°°(X)-algebra. The oper-
ations of the exterior product A and the exterior differential d also have the direct
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. We will denote them by the same symbols A and d, respectively.limits on D*00
They provide D* with the structure of a Z-graded exterior algebra:00

00
^* (9) DM0O 00,

m=0

where D , are the direct limits of the direct systems

Dm(X)
DM !o. om JDm --

L"' JDm
0 -' 1 -' ' r ' r+1

of l1 -modules ,D;." of exterior m-forms on r-order jet manifolds J'Y. Elements of

.Dm are called the exterior m-forms on the infinite order jet space. The familiar

relations of an exterior algebra take place:

00 00 00
d : Di -, ,t7 1,00

dod=O.

As a consequence, we have the following De Rham complex of exterior forms on

the infinite order jet space

00 d,D0 d, (11.1.27)0-,R-,D

Let us consider the cohomology group H m(.D*) of this complex. By virtue of00
Corollary 11.1.4, this is isomorphic to the direct limit of the direct system of homo-

morphisms

Hm(Or) -p Hm(Or+1)

of the cohomology groups Hm(Dr) of the cochain complexes

0 r a , D; d , • • • i7r -, 0, 1 = dim JrY,

i.e., of the De Rham cohomology groups Hm(D*) = Hm(J'Y) of jet manifolds J'Y.

The following assertion completes our consideration of cohomology of the complex

(11.1.27).

PROPOSITION 11.1.5. The De Rham cohomology H*(JrY) of jet manifolds jry

coincide with the De Rham cohomology H* (Y) of the fibre bundle Y -* X [251. q
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The proof is based on the fact that the fibre bundle JrY -+ Jr-1Y is affine, and

it has the same De Rham cohomology than its base. It follows that the cohomology

groups Hm(i)* ), m > 0, of the cochain complex (11.1.27) coincide with the De00
Rham cohomology groups Hm(Y) of Y -+ X.

Though we do not discuss a manifold structure on the infinite order jet space,

the elements of the direct limit O^ can be considered in the coordinate form as

follows. Let U be the domain of a fibred coordinate chart (U; xA, y') of a fibre

bundle Y -+ X. Let Ur = (7,0r)-I (U) be the domain of the corresponding coordinate

chart of the bundle J'Y - Y. One can repeat the above procedure for the modules

D*(Ur) of the exterior forms defined on Ur, and obtain their direct limit 0^.(U).

For every r, we have the R-module homomorphism

iur*:D*.->D*(Ur)

which sends every exterior form on J''Y onto its pull-back on Ur. Then there exists

the R-module homomorphism

iv* D *00 00

such that the diagram

r 00

(Ur .Ooo(U)*) ^^

commutes for any order r [217]. Elements of D* (U) can be written in the familiar00
coordinate form.

Given an atlas {(U; xA, y')} of fibred coordinates of Y --> X, let us consider

the vector space D* (U) of exterior forms on infinite order jets for every coordinate00
chart (U; xj', y') of this atlas. Every element 0 of the space DQ is uniquely defined

by the collection of elements foul of the spaces D^.(U), together with the corre-

sponding coordinate transformation rules. Further on, we will utilize the coordinate

expressions for exterior forms on infinite order jets, without specifying the coordi-

nate domain U. One can say that an object given by a coordinate expression as an

element of each space D* (U) is globally defined if its coordinate form is preserved

under the corresponding coordinate transformations.00
In particular, the basic 1-forms dxl\ and the contact 1-forms 8' (11.1.18) consti-

tute the set of local generating elements of the filtered D2-module i7' of 1-forms on
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J°°Y. Moreover, the basic 1-forms dx' and the contact 1-forms Bk have independent

coordinate transformation laws. It follows that there is the canonical splitting

J D1 = 170J ®171'0c 00 00 (11.1.28)

of D1 in the filtered D'-submodules D and D° generated separately by basic00
and contact forms. One can think of this splitting as being the canonical horizontal
splitting . It is similar both to the horizontal splitting (2.1.9) of the cotangent bundle

of a fibre bundle by means of a connection and the to canonical horizontal splittings
(11.1.24 ) of 1-forms on finite order jet manifolds . Therefore, one can say that the

splitting (11.1.28 ) defines the canonical connection on the infinite order jet space
J°°Y.

The canonical horizontal splitting ( 11.1.28) provides the corresponding splitting
of the space of m-forms

D^=17^ ®D -1®...W 00 ,00

where elements of Dk,s_k are called k-contact forms. Let us denote by hk the k-

contact projection

hk:D0'0-;17 k, k<m00 . (11.1.30)

In particular, we restart the horizontal projection ho (1.3.15) as the canonical pro-

jection

ho:17'-+17O', dm>0.

Accordingly, the exterior differential on 17* is decomposed into the sum

d=dH+dv (11.1.31)

of the horizontal differential dH and the vertical differential dv. These are defined

as follows:

d : 17k,
s -, ,Dk+l ,s ®Dk,s+l

00 00 00
d

k,s k,s+1 k,s def k,sH : 17^ _ D , , dH ^ 1700 = Pr2 o d 1 Dco

d 17k,
s Dk+l,s d Dk ,s def o d Dk,s

v: m -* 00 v^ 0+

for s < n and all k. The operators dH and dv obey the familiar relations

dH(0 A a) = dH(0) A a + (-1)Iml^ A dH(a), 0, 0' E Dom,

dv(cb A a) = dv(0) A v + (-1)I^I^ A dv(a),
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and possess the nilpotency property

dHodH=0, dHodv=0, dvodH+dHodv=0.

Recall also the relation

hood=dHoho.

The horizontal differential can be written in the form

dHq5 = dxj` A da(O),

where

da=da = as +o^lyn+aaiA

(11.1.32)

(11.1.33)

(11.1.34)

are the total derivatives in infinite order jets. It should be emphasized that, though

the sum in the expression (11.1.34) is taken with respect to an infinite number of

collections A, the operator (11.1.34) is well defined since, given any form 0 E D^., the

expression d,,(0) involves only a finite number of the terms a^. The total derivatives

satisfy the relations

dA(¢Av) = d,\ (0) Av+0Ada(o),

da(dq5) = d(da(O)),

[da, da] = 0.

In contrast with the partial derivatives aa, they have the coordinate transformation

law

ax'
da = aXIA dµ.

The reader is referred to Section 1.3 for the explicit expressions for operators dA.

The corresponding explicit expressions for the operators dH and dv read

dHf = dAf dx', dvf = 5'fOn, f E D O

dH(dxµ) = 0,

dH(BX) = dxa ABA+A,

dv(dxi) = 0,

dv(O) = 0, 0 <1 A

Turn now to the notion of a canonical connection on the infinite order jet space

J°°Y. Given a vector field r on X, let us consider the map

V, : DO D f -+ TJ (dHf) E slow. (11.1.35)00
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This is a derivation of the ring £ . Moreover, if 00 is regarded as a C°°(X)-ring,00 00
the map (11.1.35) satisfies the Leibniz rule. Hence, the assignment

O:THTJ dH= Tl\da (11.1.36)

is the canonical connection on the C°O(X)-ring 0' in accordance with Definition00
8.2.7 [219]. Since a derivation is a local operation and J°°Y admits a smooth
partition of unity, the derivations (11.1.35) can be extended to the ring COO(J°°Y) of
smooth functions on the infinite order jet space J'Y. Accordingly, the connection

V (11.1.36) is extended to the canonical connection on the C°°(X)-ring C°°(J°°Y).
Extended to C°°(J°°Y), the derivations (11.1.35), by definition, are vector fields on
the infinite order jet space J°°Y. One can also think of such a vector field V, as

the horizontal lift 7-XB8 '--* Tad , onto J°°Y of a vector field r on X by means of a

canonical connection on the (topological) fibre bundle J°°Y -> X.

The vector fields OT on J°°Y are not projectable, though they projected over

vector fields on X. Projectable vector fields on J°OY (their definition is a repetition

of that for finite order jet manifolds) are elements of the projective limit P°° of the

inverse system (11.1.11). This projective limit exists. Its definition is a repetition

of that of J°°Y. This is a Lie algebra such that the surjections

T7rk-:P°° -^Pk

are Lie algebra morphisms which constitute the commutative diagrams

'P

/

°

\

O

T,r°k° ^l 1 Ti,°.°
Pk Pr

T7rk

for any k and r < k. In brief, we will say that elements of P°° are vector fields on
the infinite order jet space J°°Y.

In particular , let u be a projectable vector field on Y. There exists an element

J°°u E P°° such that

Tir°(J°Ou) = Jku, dk > 0.

One can think of J°°u as being the oo-order jet prolongation of the vector field u on

Y. It is given by the recurrence formula (11.1.10) where 0 < JAI. Then any element

of P°° is decomposed into the sum similar to (11.1.13) where k = oo. Of course, it
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is not the horizontal decomposition . Given a vector field v on J°°Y , projected onto
a vector field r on X, we have its horizontal splitting

V = VH + VV =r AdA + (v - TAdA)

by means of the canonical connection V (11.1.36 ) (cf. (11 . 1.23)). Note that the
component vv of this splitting is not a projectable vector field on J°°Y, but is a
vertical vector field with respect to the fibration J°°Y -- X.

11.2 The variational bicomplex

The role of the horizontal differential dH in the BRST construction consists in the

following. Given the BRST operator s, one introduces the total BRST operator

s + dH and considers the BRST=cohomology modulo dH [18, 19, 37, 152] (see Section

11.4). This Section is devoted to the study of the cohomology of the variational

complex created by the horizontal differential dH (see Theorem 11.2.2 below). As

was mentioned above, this cohomology also provides the algebraic approach to the

calculus in variations (see formula (11.2.15) below).

Remark 11.2.1. We consider the variational complex in the calculus in infinite

order jets [8, 76, 123, 291, 297]. In comparison with the finite order variational

sequence [188, 301], the essential simplification is that, if the order of jets is not

bounded, there is the decomposition (11.1.29) of exterior forms on jet manifolds

into contact and basic forms. •

Using on the nilpotency property (11.1.32) of the horizontal and vertical differ-
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entials dH and dv, one can construct the commutative diagram:

0 0

R li 0

I I I
0 -, DO (X)

0)0°o
d'v ... jDk,o d00

1

I 00dl
dHt (-

1)kdH1

dl dH I (-1)kdHl

0 , Dn
-1(X)

DO,n- 1 dv + ... dv Dk,n-1 dv
0 00

II
di dHI (-1)kdHl

00 00

1 Tot Tkl
0 -> E0 ---+ ... - Ek

I I
0 0

where

,n) def S)k,n/dHpk,n-1).Ek = rk(Dk00 00 00

399

(11.2.1)

(11.2.2)

Since all columns and rows of this diagram are complexes, it is a complex of com-
plexes.

Remark 11.2.2. The operators dH and dv satisfying the relations (11.1.32) define a
bicomplex, but they do not commute. The operators (-1)kdH and dv in the diagram
(11.2.1) mutually commute, and this diagram is called a complex of complexes (see
[204] for the terminology) •

LEMMA 11.2.1. [123, 297]. The quotient Ek, k > 0, (11.2.2) in the bottom row

of the diagram (11.2.1) is isomorphic to the complement rk(irDkn) of the subspace

dH(sDk,n-1) C Dk,n°°. E]
00



400 CHAPTER 11. CONNECTIONS IN BRST FORMALISM

If follows that Tk, k > 0, are the projection maps which have the properties

Tk o Tk = Tk, TkodH=0.

The latter leads to the exact sequence

0 --^ Ker ek _-> D, 1k -el-4 Ek -, 0,00

where ek = Tk o hk. It is a simple exact sequence because

ID, +k = Ker ek ® Ek.00

One can show that d(Ker ek) C Ker ek+1 •

In view of the above results, we can replace the entities f7 k,n , dl, and Tk, k > 0,

in the bottom rows of the diagram (11.2.1) with 70K, d and ek, respectively, and

come to the commutative diagram

0 0 0

1 1 1
-- , Ker h0 --, Ker el d Ker e2 -p

1 1 1
Dn -d --, Dn 1 d , Dn 2 -, ... (11.2.3)00 00 00

h01 e11 e21

d jDO,n -61-+ E1 62 --+ E2 -^ .. .
00

1 1 1
0 0 0

Its first and second rows are the subcomplexes of the De Rham complex. Therefore,

the last row

0 dH 0,1 dH dH O,n00 00 00

is also a cochain complex, i.e.,

ElodH=0, Ek+10Ek=O.

E1 E?, E2 -,... (11.2.4)

(11.2.5)

This complex is called the spectral sequence. Since Ek C ok,n, the cochain mor-00
phisms Ek of the complex (11.2.4) take the form Ek = Tk o d.
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One can obtain the morphisms Ek in an explicit form [24, 123, 297]:

1 kn
Tk=

Tk

where T is the operator, given by the coordinate expression

T(0) = (-1)1AI01 A [dn(ajAjql)], 0 <1 A1,

which acts on contact densities 0 E D . Then we obtain00

Ek=Tkod= 16,

where

6=Tod

is the variational map [24, 123] which possesses the nilpotency property

606=0, 6odH=0.

(11.2.6)

(11.2.7)

(11.2.8)

Since the columns of the diagram (11.2.3) are simple exact sequences, the spectral
sequence (11.2.4) can be regarded as a subcomplex of the cochain complex

0 dH o,n-1 dH o ,n 6 1,n b 2,n0 R DC0 00 00 00 00

It is called the variational sequence.
In particular, let

^B1 /^ w E 01,n
0_O n 00

be a 1-contact density. We obtain

Tl(o) = (-1)I^Idn(0 )8' Aw.

(11.2.9)

(11.2.10)

A glance at this expression shows that the subspace El C 5D consists of 1-contact00
densities e = SSBZ A w which take their values into the tensor bundle

T*Y A (AT*X). (11.2.11)

Let L = Lw E f7" be a horizontal density. Then the cochain morphisms e1 and e2

take the explicit form

E1(Lw) = (-1)JAI dn (a"L)0 ' A W, (11.2.12)

e2(e of A w) = 2 [a3 ^'EjB'^ A 9 + (-1)J^J Bi A dA(8jA'Z0`)] A w,
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where summation is over all multi-indices 0 <1 A 1. They are called the Euler-

Lagrange map and the Helmholtz-Sonin map, respectively. Recall that, in fact, L

is a horizontal density on some finite order jet manifold JY. Therefore, one can

think of L as being an r-order Lagrangian. Then the exterior form

EL = ri(L) = 5(L), (11.2.13)

£L = (-1)IAIdA(8^G)8i nw, 0 <IAI<r,

is called the Euler-Lagrange form associated with the r-order Lagrangian L. This

form can be seen as the 2r-order differential operator

£L : J2'Y -> T*Y A (A" T*X ), (11.2.14)

called the Euler-Lagrange operator associated with L. In particular, if L is a first

order Lagrangian on the jet manifold J1Y, the operator (11.2.14) is exactly the

second order Euler-Lagrange operator (3.2.3).

Furthermore, by virtue of Lemma 11.2.1, we have the canonical decomposition

dL = Tl(dL) + (Id - rl) (dL) = 5(L) + dH (cb), E i7 ',00 (11.2.15)

which is the first variational formula for higher order Lagrangians. In particular, if

r = 1, it recovers the first variational formula (3.2.2) in the case of vertical vector

fieldsuonY --+X.

Using the spectral sequence (11.2.4), one comes to the following variant of the

well-known inverse problem of the calculus of variations. Differential operators which

take their values into the tensor bundle (11.2.11) are called Euler-Lagrange-type

operators. These are elements of the subspace E1 C Dl,n00 . An Euler-Lagrange-type

operator £ is said to be a locally variational operator if

e2(£) = 25(£) = 0.

In accordance with the relations (11.2.5), any dH-exact Lagrangian is variationally

trivial and every Euler-Lagrange operator is locally variational.

The obstruction for a locally variational operator to be an Euler-Lagrange one

lies in the non-zero cohomology group

H"+1 = Ker e2/Im el
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of the complex (11.2.4) at the element El. Since columns of the diagram (11.2.3)

are exact sequences, we have the following exact sequence of the cohomology groups
of its rows denoted by r1i r2 and r3 [204]:

... Hk(r3) -> Hk(r2) --> IIk(rl) Hk+1(r3) ... ,

THEOREM 11.2.2. [76, 297]. If Y = Rt+n -> R', the spectral sequence (11.2.4) is
exact, i.e.,

Ker dH Im dH, Ker El = Im dH, Im Ek = Ker Ek+l .

In view of this theorem, one can say that the complex (11.2.4) and, consequently,
the complex (11.2.9) are locally exact.

COROLLARY 11.2.3. Since the variational sequence (11.2.9) is locally exact, a

horizontal density L E 17Q is variationally trivial if and only if it is dH-exact. It

follows that there is one-to-one correspondence between the equivalence classes of

local horizontal densities L modulo dH-exact forms and the elements of the set
Im E1 = Ker e1. q

COROLLARY 11.2.4. Let us consider the cochain complex

(11.2.16)

It is locally exact at all terms, except the last one. Its cohomology group at this
terms is

i)°,n/dH (i)°,") = E1•0 00 (11.2.17)

0



404 CHAPTER 11. CONNECTIONS IN BRST FORMALISM

11.3 Jets of ghosts and antifields

Besides physical fields, the BRST construction involves ghosts, ghost-for-ghosts and

antifields which are even and odd algebraic quantities. In order to apply the above

jet formalism to the BRST construction, we should provide a geometric description

of odd quantities, e.g., define their jets. Note that, in the framework of the jet

formulation of the BRST theory, antifields can be introduced on the same footing

as fields (see Remark 11.3.2 below).

Let us start from ghosts. In Lagrangian BRST formalism (see, e.g., [130] for a

survey), ghosts are associated with parameters of gauge transformations. We will

restrict our consideration to the case of bosonic fields and even gauge transformations

with a finite number of generators. Then ghosts are odd. This is also the case of

Hamiltonian BRST formalism where ghosts are related to constraints (see, e.g.,

[1531).

Different geometric models of ghosts have been suggested in order to provide a

desired BRST transformation law. For instance, ghosts in the Yang-Mills gauge

theory on a G-principal bundle can be described as forms on the gauge group ma-

nifold Gau(P) (see, e.g., [32, 163, 275]). This description however is not extended

to other gauge theories (see [130] for several examples of gauge models).

Example 11.3.1. Let us consider the above-mentioned gauge theory on a principal

bundle P -> X over a compact manifold X whose structure group G is a compact

semisimple matrix Lie group. A suitable Sobolev completion makes the gauge group

Gau(P) a Banach Lie group (see Section 12.1). Generators of 1-parameter groups

of gauge transformations are G-invariant vector fields on P represented by sections

^ of the Lie algebra bundle VGP. The Sobolev completion of the set of sections of

VGP - * X is the Lie algebra of the gauge group Gau(P). The typical fibre of the dual

VVP of VGP is the Lie coalgebra g*. Given a generator of gauge transformations

e = tr(x)er (6.3.7), the corresponding generator of gauge transformations of the

bundle of principal connections C --+ X is be (6.2.13). Then, if A is a section of

C -+ X, the generator ^G acts on A by the law

^:A=Aadx'®e9HdxA®(aa^r+c AP^9)er=d^+[A,6] =VAe (11.3.1)

(see (6.1.26), (6.1.29)). Accordingly, gauge parameters themselves are transformed

by the coadjoint representation (6.3.8). One can obtain the classical BRST trans-

formations in a naive way by the replacement of gauge parameters in the transfor-



11.3. JETS OF GHOSTS AND ANTIFIELDS 405

mations laws (6.3.8) and (11.3.1) with the ghosts. Namely, let us take the formal
generator

C = Crer (11.3.2)

of gauge transformations and substitute it in the above mentioned expressions. We
obtain

sA = dC + [A, C], sC = -![C,[C, C]

sAr = aACr + ccgA'C9, SCp = - Z cPgCrC9.

This is exactly the desired classical BRST operator in the Yang-Mills gauge theory.
For instance, let {Cr} be the local fibre basis for VGP which is dual of er, then
C (11.3.2) is the canonical section of the tensor bundle VVP ® VGP which defines
the identity automorphisms of VGP and VVP (see Remark 1.1.1). It also coincides
with the ghost field 77 introduced as the Maurer-Cartan form on the gauge group

Gau(P) such that 17(^) = ^, ^ E VGP(X). Then the BRST operator s (11.3.3) can
be defined as the coboundary operator of the Chevalley-Eilenberg cohomology (see

Section 14.2) of the cochain complex whose elements are q-cochains on VGP(X)
which take values in the exterior algebra of the equivariant gi-forms on the principal
bundle P [32, 275, 293]. •

Point out the following two peculiarities of ghosts. (i) Since ghosts are considered

as odd fields on an ordinary smooth manifold X and are characterized by a ghost

number 1, they can be seen as generating elements of a graded algebra. (ii) Example

11.3.1 shows that jets of ghosts should be considered. The following geometric
construction fulfills these conditions.

Let E ---+ X be an m-dimensional vector bundle. Its k-order jet manifold JkE
is also a vector bundle over X. As above, we put J°E = E. Let us consider the
simple graded manifold (X, AJkE) whose structure vector bundle is JkE -* X (see
the notation in Section 9.2). For the sake of simplicity, it will be denoted by JkE.

Its local basis is {CX}, 0 < AlI< k, with the transition functions

C,r d rCa
A+A =- a(p A),

where

(11.3.5)

da = as + Ca aCr
+ Caµ aCr + ..

l+
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are the graded total derivatives (cf. (9.6.5)). In view of the transition functions

(11.3.5), one can think of CX as jets of ghosts. Recall again that CA' are not jets of
graded bundles introduced in [260].

Let

E Z0 J1E E- .... J'-'E 'fr JrE ( ... (11.3.6)

be the inverse system of jet manifolds, and J°°E its projective limit. The natural

projection

7rlr-1 : JrE -* J'-1E

yields the corresponding R-algebra monomorphism of the exterior algebras

-7rrr 1 : AJr-'E* - AJrE*

and the epimorphism

S7rr-1 : JTE -> Jr-'E, r > 0,

(11.3.7)

(11.3.8)

(9.2.17) of graded manifolds. With the morphisms (11.3.7) and (11.3.8), we have

the corresponding direct system of exterior algebras

AE* -+ ... l AJrE* -^ .. .

and the inverse system of the graded manifolds

(7rr_ 7rr_ I*)

J°E t- ... <- Jr-1E f=-

(11.3.9)

(11.3.10)

The direct system (11.3.9) has a direct limit AJ°°E* in filtered endomorphisms. It

consists of the pull-backs of elements of the exterior algebras AJkE*, k = 0,1, ...,

onto J°°E. This direct limit defines the projective limit J°°E of the inverse system

of graded manifolds (11.3.10). One can think of the pair

J°°E = (X, AJ°°E*(X))

as being a graded manifold, while elements of its structure module AJ°°E*(X) are

graded functions on X. Its coefficients are smooth functions on X.



11.3. JETS OF GHOSTS AND ANTIFIELDS 407

In order to introduce exterior forms on this graded manifold, let us consider the
direct system of the filtered AJkE*(X)-algebras Ao*(AJcE*)(X) of graded exterior

forms on graded manifolds JkE with respect to the natural monomorphisms

Aa*(AE*)(X) 4 4... Aa*(AJkE*)(X) ....

Its direct limit Aa* (AJ°°E*)(X ) consists of graded exterior forms on finite-order
graded manifolds modulo these monomorphisms. This direct limit is a locally free

filtered A t (AJE*) ( X)-algebra generated by the elements

(1, &A, Or = dCr - Ca+Adx"), 0 C Al,J

which obey the usual rules for graded exterior forms (see Section 9.2). Similarly to

the decomposition ( 11.1.29), the space AD*(AJ°°E*)(X) of graded k-forms admits

the splitting in the subspaces Ak-i,io*(AJ°°E*)(X) of (k - i )-contact forms. Ac-

cordingly , the graded exterior differential d on the algebra A a* (AJ°°E*) (X) has the

decomposition d = dH + dv, where the graded horizontal differential dH is

dH(0) = dx" A da (0), 0 E Aa*(AJ°°E*)(X).

The graded differentials dH and dv obey the nilpotency property (11.1.32). Since ev-

ery 0 E Aa*(AJ°°E*)(X) is a graded form on some finite order graded manifold, the
expression da(d) contains a finite number of terms. One can consider the horizontal

differential dH as the canonical connection on the algebra Aa*(AJ°°E*)(X).

The algebra Aa*(AJ°°E*)(X) provides everything that one needs for the dif-

ferential calculus in ghosts . Graded forms 0 E AD*(AJ°°E*)(X ) are characterized

by:

• the Z-graded ghost number gh(q) such that

gh(CC) = 1, gh(dCC) = 1, gh(dx") = 0, gh(f) = 0, f E C°°(X);

• the ghost Grassmann parity [0] = gh(¢) mod2;

• the usual form degree 101 and the form Grassmann parity 101 mod2;

• the total ghost number

ghT(O) = gh(O) + Icl.
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Turn now to cohomology of the algebra na*(AJ°°E*)(X). In accordance with

Remark 9.2.6, the graded De Rham cohomology groups of na*(AJ'E*)(X) of finite

order graded manifolds coincide with the De Rham cohomology groups of the ma-
nifold X, and so does their direct limit. By virtue of Theorem 11.1.4, this limit is

the graded De Rham cohomology groups of the algebra na*(AJ°°E*)(X). Theo-

rem 11 . 2.2 can also be extended to this algebra as follows (see [37] and references

therein).

THEOREM 11.3.1. If a graded horizontal (0 < k < n)-form 0 is locally dH-closed,

i.e., dHo = 0, then it is locally dH-exact, i.e., there exists a graded horizontal (k-1)-

form o such that 0 = dHQ. A graded horizontal n-form 0 is locally exact if and only

if

6 = e1(O) = 0,

where El is the Euler-Lagrange map (11.2.12) extended to the graded exterior alge-

bra. q

Besides physical fields (pi of vanishing ghost number and ghosts C', BRST theory

involves ghost-for-ghosts and antifields (see [130] for a survey). In general, an Lth

stage reducible theory contains L generations of ghost-for-ghosts C` , l = 1, . . . , L,

whose ghost numbers and the ghost Grassmann parity are

gh(Cf) = gh(Cr) + 1, [C1'] = ([C'] + 1) mod2.

The odd ghost-for-ghosts can be introduced in the same manner as ghosts by a

choice of the corresponding vector bundle E. Let us denote fields, ghosts, ghost-

for-ghosts by the same collective symbol (DA, A = 1, ... , N. Antifields 4 have the

following ghost numbers and the ghost Grassmann parity:

gh(-Da) = -gh(,DA) - 1, [(pa] = ([.DA] + 1) mod2.

In the jet formalism , antifields 'A can be introduced on the same footing as fields

ODA by a choice of the vector bundle E = Y* dual of the bundle Y for fields (DA.

Note that gauge potentials are sections of the affine bundle C -* X (6.1.8) modeled

over the vector bundle T*X ®VGP. Their odd antifields are modelled on the vector

bundle E = TX ® W.
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The total system of fields and antifields {(a}, called sometimes the classical basis,

is described by the pointwize exterior product

6* = .t)*(J°°EE) A(AD*(AJ°°E,*)(X)) (11.3.11)

over X of the C°°(X)-algebra .t)*(J°°Eo) of even elements of the classical basis

and C'(X)-algebra AJ*(AJ°°El)(X) of its odd elements. The exterior algebra 6*

(11.3.11) is provided with the exterior differential d, which is the sum over X of the
exterior differentials on iD*(J°°Eo) and A *(AJ°°El)(X). The corresponding hori-
zontal differential dH can be treated as the canonical connection on V. Accordingly,

the module 3k of k-forms is decomposed into the subspaces Ok-t,t of (k - i)-contact

forms. Following the terminology accepted in the physical literature, we will call

elements of 6°'* the local forms.

Theorems 11.2.2 and 11.3.1 are true for local forms f E 6". Hence, the complex

0 R , 0° 00,1 -4 ... dH, °.n 6 1,n a

has the cohomology groups

H°(O*) = Il8, Ho<k<n((13*) = 0 , H'2(Q3*) 0.

(11.3.12)

(11.3.13)

Following the usual practice , we use the right derivatives

arf = (_1)[c1([r] +1)0'f f E X3 0,

aS a( '
such that

df (S) = d(alf = arf dS.a( a(
The left derivatives al/a( are the derivatives utilized throughout before. By 6 and

6r are meant the left and the right variational derivatives given by the coefficients

of the Euler-Lagrange map (11 . 2.12).

Let f, f E 6° be graded functions . Due to the local isomorphism

6°E)f'fwE6°'",

their antibracket is defined as

(f f') brf 61f' _ 5rf &f'
AB = S(DA 641)* 64D*A 64D A

(11.3.14)
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We have

gh((f, P ) AB) = gh(f) + gh(f') + 1,

[(f, f')AB] = ([f] + [f'] + 1) mod2.

Remark 11.3.2. It is readily observed that, in fact , the antibracket ( 11.3.14) is

defined on the elements of the cohomology group H"(6*) (11 . 3.13) of the complex

(11.3.12 ). They correspond to local functionals f f up to surface integrals. At the

same time , the antibracket on local functionals implies more intricate geometric

interpretation of antifields [173, 308]. •

The antibracket ( 11.3.14 ) possesses the properties of the graded Poisson bracket

(f, f')AB = - (- 1)([f]+1)([f']+1
)(f', f)AB,

(f, V, J )AB)AB + (-1)([f]+1)([f' ]+[f"])((f^, f")AB, f)AB +

(-1)([Y']+1)([fl+[f'])((f", f ) AB, f')AB = 0,

where the grading degree of f, f and f" is their Grassmann parity plus 1. In

particular (f, f)AB = 0 if f is odd, and

(f, f )AB = 2
s

S(
rf

pA
btf

SSA

if f is even. One can write

(f f')AB
a&slfl (11.3.15)

AB = 6(a w stb>

where wab is the graded SPoisson bivector. It is readily observed that the basis

{(DA, 4A} is canonical for the Poisson structure (11.3.14). With respect to this

basis, the Poisson bivector w reads

A
O SB

W -SBA 0

Let S E 0O,n be an even local density of vanishing ghost number. The equation

= 6S 51S = 11.3.16
(S'

S)AB 2 S,pAS4p A 0 ( )
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is called the classical master equation. Regarding S as a Lagrangian of the classical

basis {(a} of field and antifields, one can think of

brS = 0
(11.3.17)

6(-

as being the equations of motion. The equations (11.3.17) are not independent, but

obey the relations

r

b(a jZb = 0'

ac b1'rS
R6 = w brcbrb. (11.3.18)

It follows that a solution S of the master equation (11.3.16) possesses a gauge

freedom.

A solution S of the master equation (11.3.16) is called a proper solution if the

rank of the Hessian

agars
a(aa(b

at stationary points of 0°, where (11.3.17) holds, is equal to N. The reason is

simple. If S is a proper solution, one can use the above-mentioned gauge freedom
in order to remove all antifields.

We refer the reader to [105, 106, 1301 and references therein for the problem of
existence and uniqueness of a proper solution . Point out only its two properties.

(i) A proper solution S can be expanded in a power series of antifields such that

514,.=o = L,:1

is a Lagrangian of physical fields W'. This expansion can be seen as an expansion
with respect to the antighost number defined according to

antigh(VA) = -gh(,DA) = gh(,DA) + 1, antigh((DA) = 0.

(ii) Let S be a proper solution for the classical basis (IA, 4DA). Let W1 and 'I'2

be two new fields with the ghost numbers gh(tiI'2) = gh(W11) + 1, and let 'I'i and ll'2

be the corresponding antifields. Then S+T1XF2 is a proper solution for the classical

basis (4)A, II'1i T2, (DA,'I'i,'I'2). One calls ('I'1, 1I'2) a trivial variable pair. Trivial

variable pairs can be be added to the classical basis, while maintaining the classical

master equation and its properties. They appear when the gauge-fixing and path

integral quantization is considered.

b S
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Let S be a proper solution of the master equation (11.3.16). The BRST operator

is defined as

Sf = (f,S)AB•

One obtains easily from the properties of the antibracket that:

• s is a nilpotent operator (s2 = 0),

• it is an antiderivation s(f f') = f s f' + (-1) [f', (s f) f',

• gh(sf) = gh(f) + 1.

(11.3.19)

Example 11.3.3. Let us consider the Yang-Mills gauge theory on the bundle of

principal connections C (6.1.8) coordinated by (x", am). It is irreducible. Therefore

its classical basis consists of gauge potentials and ghosts fields I = (am, Cm)

together with antifields VA = (am*, C;,,,). The proper solution of the master equation

is

S = LYM + ar*(Ca + cPgaaCq) + 2CPCr9CrC°,

where LYM is the Yang-Mills Lagrangian (6.3.18). The corresponding BRST oper-

ator on A' and CP takes the form

saa = Cr + cPgaaCg, sCP = -2ccgCrCg, (11.3.20)

sar* = 6, (LYM) + aP*c qCg, sCr = aar 9raaa'* + crgCPCg,

where 6,,. (LYM) is the variational derivative of the Yang-Mills Lagrangian LYM. •

Remark 11.3.4. There is another convention where the BRST operator is defined

as

sf = (-1)[f](f,S)AB•

In contrast with s (11.3.19 ) it is a derivation

s(ff') = (sf)f' + (-1)[f] fs f'.

(11.3.21)



11.4. THE BRST CONNECTION 413

11.4 The BRST connection

To make the expression (11.3.19) for the BRST operator s complete, we should

define this operator on the jets of elements of the classical basis. The definition of

s implies that s(xA) = 0. Therefore, put

s(A' = dA(s().

By means of this rule, the BRST operator s is extended to the subalgebra of local

forms 0°,* such that sdH = -dHS, i.e.,

s(1 Oa1...A,.dxA' A ... A dxar) = r! (-1)''(s0a,...ar)dxA' A ... A dx'^r. (11.4.1)

In particular, with the operator s (11.4.1), the formula (11.3.20) is rewritten as

sa = -dHC - [a, C], sC = -
1
2 [C, C], (11.4.2)

where a = ar dx ' ® er.

The operators s and dH define a bicomplex on the algebra of local forms. This
bicomplex is graded by the form degree and the ghost number such that

0 A 0' = A 0, 0, 0/ E 05°'`. (11.4.3)

Following the standard rule [204], one can construct a complex from this bicomplex

which is characterized by the cochain operator

9 =s+dH, (11.4.4)

and is graded by the total ghost number. The operator (11.4.4) is nilpotent (s2 = 0)

and raises the total ghost number by 1, i.e.,

ghT(§O) = ghT(0) + 1.

It is called the total BRST operator

Let us study the cohomology of the total BRST operator (11.4.4). In the case of

the Yang-Mills gauge theory, this is the so-called local cohomology of the cochain

complex mentioned in Remark 11.3.1 [32, 211] which are phrased in the jet terms

[18, 37]. Let 0r,, E C50n be a local density, i.e., a Lagrangian. It is called locally

BRST-closed if s¢n is a dH-exact form (see Remark 3.4.5), i.e., satisfies the equality

so,,. + dHOn-1 = 0, (11.4.5)



414 CHAPTER 11. CONNECTIONS IN BRST FORMALISM

where On-1 E 6o,n-1 is a local (n - 1)-form. It is readily observed that On is

locally BRST-closed if the action functional f On is BRST-invariant modulo surface

integrals, i.e., On is BRST-invariant in the sense of Remark 3.4.5. A local density

On is said to be locally BRST-exact if

On = son + dHOn_1.

The set H(sl dH) of classes of locally BRST-closed local densities modulo locally

BRST-exact local densities is called the local BRST cohomology [18, 19, 37, 152].

Let us relate the local BRST cohomology to the cohomology of the total BRST

operator s. Applying s to the equality (11.4.5) results in dH(sOn_1) = 0. Hence,

sOn_1 is dH-closed and, consequently, dH-exact in accordance with Theorem 11.3.1.

Therefore, there is a (possibly vanishing) local (n - 2)-form On-2 satisfying the

equation

SOn-1 + dHY'n-2 = 0.

Iterating the arguments, one conclude the existence of a set of local forms Ok, k =

ko, ... , n, satisfying the relations

dHOn = 0, (11.4.6a)

SOk + dHOk_1 = 0, n > k > ko, (11.4.6b)

SOko = 0 (11.4.6c)

for some ko. These equations are called the descent equations [37]. If ko = 0,

the equation (11.4.6c) takes the general form sOo =cont. The descent equations

(11.4.6a) - (11.4.6c) can be compactly written in the form

s^ = 0,
n

Y- Ok. (11.4.7)
k=ko

It follows that any solution of the equation (11.4.5) corresponds to an 9-closed

form, and vice versa. In particular, a solution on of the equation (11.4.5) is locally

BRST-exact if and only if O = sQ+const., i.e., every locally BRST-exact local

form corresponds to an 9-exact local form modulo constant functions. It states the

following.

THEOREM 11.4.1. The local BRST cohomology of local densities On of a fixed total

ghost number ghT(O) = gh(O)+n are isomorphic to the s-cohomology of local forms

O of the same total ghost number ghT(O). q
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Since a proper solution S is expanded in a power series of antifields, the BRST

operator can be decomposed into the sum

s+ry +Esk ( 11.4.8)
k>1

where 8, ry and sk are the operators of antighost numbers -1, 0 and k, respectively.

Since the horizontal differential dH has the vanishing antighost number, the corre-

sponding decomposition of the total BRST operator reads

s=6+y+ >2sk, ry=ry+dH.
k>1

The operator 6, called the Koszul-Tate differential, is nilpotent. It is non-vanishing

only on antifields:

6rLct
6,pA = 0, 6cpi - a pi ,

The operator ry encodes the gauge transformations with parameters replaced by

ghosts:

'ycpi = R; C', Rr = R,Adn. (11.4.9)
k>o

The usefulness of the decomposition (11.4.8) is due to the acyclicity of the

Koszul-Tate differential 6 on local functions at positive antighost numbers, i.e.,

60k = 0 (antigh(ak) = k) implies ¢k = Svk+1 (see [105, 106] for details). One con-

cludes from this fact that an 9-non-exact solution ^ of s^ = 0 contains necessarily

an antifield independent part ^o such that

ry00 ~ 0, 00 ryQ + const., antigh (ao) = 0, (11.4.10)

where : denotes the weak equality, i.e., ao 0 (antigh(ao) = 0) if and only if there

exists a1 (antigh(a1) = 1) such that ao = 6a1. Furthermore, any solution ¢o of

(11.4.10) can be completed to an ii-closed non-exact local form q5 such that different

completions with the same antifield-independent part belong to the same element

of the s-cohomology. Note that

6%y + ry6 = 0, rye = -(6s1 + s16),

i.e.,ry is weakly nilpotent. This establishes the following result.



416 CHAPTER 11. CONNECTIONS IN BRST FORMALISM

PROPOSITION 11.4.2. [37]. The cohomology of s on local forms is isomorphic to

the weak cohomology of 7 on antifield-independent local forms. q

Therefore , we can restrict our consideration to antifield -independent local forms.
Let us assume that there is a locally invertible change of jet coordinates from the

antifield-independent set (Iv ) to the set (Ul, V1, Wi) of non-negative ghost number
such that

'YU' = Vi, 'YW` = R2(W)•

The (Ul, VI) are called trivial pairs. Without loss of generality, one can also assume
that each of U1, V', W' has a definite total ghost number . Typically, U1 are compo-
nents of gauge fields and their jets, while Vl = ryU' (see Examples 11.4.1 and 11.4.2

below).

PROPOSITION 11.4.3. [37]. If ry` o(U, V, W) Pt^ 0, then

W0(U,V,W) '& 0(W) +' a(U,V,W),

i.e., trivial pairs can be eliminated from the weak ry-cohomology. q

Let us denote by T`, C' and QLk those W1 which are of total ghost numbers 0, 1

and k > 1, respectively. The T', called BRST tensor fields, are 0-forms, whereas CL

and QLk decompose in general into a sum of local forms with definite form degrees

CL = CL + AL, (11.4.11)

CL 03°,
gh(CL) = 1, AL E 6°,1,

gh(AL) = 0,
k

QLk
= F_ QLkr

r=O

Qrk
E 0O,r, gh(Qrk) k - r.

Since ry raises the total ghost number by 1, we can write

(11.4.12)

T
T c CLA

A
R

(11 4 13),Lry
L

L aT"
. .

,7CL =
ONCMfMN(T) +QM2ZL (11.4.14)

2

for some functions R, f and Z of tensor fields T.
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The equality (11.4.13) decomposes due to ry = ry + dH and (11.4.11) into

yT` = CLALT, (11.4.15)

dAT` = AAALT, AL = dx'AA. (11.4.16)

Since the relation (11.4.16) holds identically, it implies the splitting

da = va V,ry(dµ - A0,.) + A;,Or, (11.4.17)

and the corresponding splittings of the collections of quantities {ALA } = {va ; Aa}

and {L L } _ { Dm; Or }, where vm Vm = 6a and

Dm = Vm(dµ - ATAr).

Then the equality (11.4.15) is brought into the form

yT` = [CrOr + CmV,t(dµ - AµOr)]T`.

Accordingly, the operator (11.4.13) takes the form

'YT` = (C'mDm + CrOr)Tt.

(11.4.18)

(11.4.19)

In view of this form, the quantities {CN} are called generalized connections or BRST

connections [37, 211].

Th following two examples show that this terminology is connected with the

usual notion of connections used in physical models.

Example 11.4.1. Let us consider again the Yang-Mills theory on a G-principal

bundle. The trivial pairs are given by

{U'} = {aA+a, 0 < IAA }, {V'} = {'U1 }.

The BRST connections are

{CL} = {dxA; Cr = Cr + dxaa,}.

The operators A (11.4.13 ) corresponding to these BRST connections read

rJAL}_{Da= da-aaer;Er

where { Er} are the basis elements for the Lie algebra gl of the group G. A complete
set of BRST tensor fields T° consists of algebraically independent components of the

strength )µ (6.2.19) and its covariant differentials DA, \I,- •



418 CHAPTER 11. CONNECTIONS IN BRST FORMALISM

Example 11 .4.2. In the metric gravitation theory, the BRST transformations of a

metric g,,, are general covariant transformations whose parameters are ghost fields

sgµv = ^''dagµ" + (dµ^'\)ga" + (d"^A)g, .

The BRST transformations of ghost fields read

s6µ = 6"d"6µ•

The trivial pairs {U1, V1} consist of the jets do{A",J of the Christoffel symbols and

%{A',}- The BRST connections are

{CL} = {^' = 6' + dx'; 0, '\= dad" + {a"}^'`}.

The operators A corresponding to these BRST connections read

{OL} = {Da = dA - Aµ},

where Dµ are generators of the group GL(n, R) acting on world indices according

to

µTa = 8XTµ, L T ' = -SAT".

The set of BRST tensor fields contains the metric ga," and the algebraically inde-

pendent components of the curvature RA,,"p and its covariant differentials DAR.> p•
The BRST transformation of a BRST tensor field reads

-yTµ = ^"D"T,, + (dj,,^" + = ^"d"T, + (dµ^")T",

i.e., this a general covariant transformation of T. whose parameters are ghosts ".

0



Chapter 12

Topological field theories

By the topological field theory is meant usually:

• a collection of Grassmann (ghost number) graded fields on a Riemannian ma-
nifold X,

• a nilpotent odd BRST operator Q,

• physical states defined to be Q-homological classes,

• a metric energy-momentum tensor which is Q-exact

(see [30] and references therein for a survey). One characterizes topological field

theories as being either of Witten or Schwartz type. The former is exemplified by
the Donaldson theory, while the latter includes models whose action functionals are

independent of a metric on X, e.g., the Chern-Simons theory.

Here we will concentrate our consideration to the surprising fact that formulas of

the curvature of a connection on the space of principal connections are identical to

the BRST transformations of the geometric sector of the above mentioned Donaldson

theory. As a consequence, the Donaldson invariants play the role of observables in

topological field theory.

12.1 The space of principle connections

As was discussed in Section 6.1, principal connections on a G-principal bundle P ->

X are represented by global sections of the affine bundle C -+ X (6.1.8). They

419
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make up an affine space of principal connections A modelled on the vector space of

sections of the vector bundle C = T*X ® VGP (6.1.9). In gauge theory, principal

connections are treated as gauge potentials. Two gauge potentials are believed to

be physically equivalent if they differ from each other in a vertical automorphism

of the principal bundle P. Therefore, the configuration space of quantum gauge

theory is the quotient A/c, where 9 = Gau(P) is the gauge group in Section 6.3.

To provide this configuration space with a smooth structure, its Sobolev completion

is considered.
Let us recall briefly the notion of a Sobolev space [2, 214, 232]. Given a domain

U C R", let L}(U), 1 < p < oo, be the vector space of all measurable real functions

on U such that

f If (x) I pd-x < oo.
U

It is a Banach space with respect to the

1/p

IIfII, = { f If(x)Ipd"x}
U

norm

Of course, functions are identified in the space if they are equal almost everywhere

in U. Sobolev spaces are defined over an arbitrary domain U C R, and are vector

subspaces of various spaces L'(U).

We will follow the standard notation

ax",...axnn,

where a is an ordered r-tuple of non-negative integers (a1i ... , a,.) and Ial = a1 +

• • • + a,.. Let us define the functional

1/p

IIfIIk,p= 11011fIT , k = 0,{ 1,..., (12.1.1)
laj <k

for any real function f on X for which the right side of (12.1.1) makes sense. The

functional (12.1.1) is a norm on any vector space of such functions. The Sobolev

space fh`,p(U) is defined as the completion of the set

If E Ck(U) : IIfIIk,p < oo}
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with respect to the norm (12.1.1). A Sobolev space is also defined as another space
Wk,p(U) which is proved to be isomorphic to '1-lk'p(U) (see [2] for details). It is
important that the set of smooth functions

f f E C°O(U) : IIf Ilk,p < 00}

is dense in 7{kp(U). Moreover, by a Sobolev space is also meant the closure Wo''(U)
of a set of smooth functions of compact support in 7-lkp(U).

The notion of a Sobolev space can be extended to complex functions and to
an arbitrary real k. The Sobolev space 7"lk,p(U), k E R, consists of those complex
functions and Schwartz distributions f for which the norm

dIIfIIk,p = { f I.f(^)(1 + 2) k/2 Ip^} 1/p, (12.1.2)

where f is the Fourier transform of f, is finite. If k is a non-negative integer, this
definition is equivalent to the previous one generalized to complex functions [232].
We will deal with the case p = 2 and denote 1-lk'2(Rn) = 7-1k. It is a Hilbert space.
In particular, one can demonstrate that H-k, k > 0, is the dual of Hk so that the
elements of 1-1-k are natural distributions. Indeed, let V be the space of smooth
complex functions of compact support on R'. It is provided with the topology
determines by the seminorms

p{ma}(f) = sup I Y- ma (x)aaf (x)I,
xEQ a

where {0a} is a collection of smooth functions such that, on any compact subset

Q C R', only a finite number of these functions differ from zero. The space D
is known as the space of test functions. Its (topological) dual D' is the space of
Schwartz distributions. Let S be the nuclear Schwartz space of smooth functions
rapidly decreasing at infinity. Its dual S' is the space of tempered distributions (also
called generalized functions). There are the inclusions

DCSC...HkC---'H°=L°(Rn)CH-1C...R-kC...S,CD'.

One can define Sobolev spaces of functions on an arbitrary paracompact manifold

X by taking a partition of unity and its associated open covering. The following

Sobolev imbedding theorem takes place [232].

THEOREM 12.1.1 . Let X = Rn or X be compact. Then 7-1k'p (X) C Ca (X) if

k - n/p > 1. In particular , 7-lk C C"(X) if k > n/2. q
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The notion of a Sobolev space can be generalized to sections of a smooth vector

bundle Y --* X if they are of compact support. We will restrict our consideration to

the case of vector bundles Y -* X over a compact (closed) oriented n-dimensional

Riemannian base X. This assumption is satisfied by most Euclidean gauge theories

of physical interest. Given the space Y(X) of global sections of Y -+ X, one defines
its Sobolev completion Y(X)k for a non-negative integer k with respect to the norm

i/2

IISII k = > f dvol i Iaa(pr2 oV)L 0 s)Ie (12.1.3)
L u jal<k

where IF = {UL, 0L} is a bundle atlas of Y over a finite covering {UL} of X and 1. 1,

is a norm with respect to a some fibre metric p in Y. A different choice of an atlas

T and a Riemannian metric on X gives the same Sobolev completion. Note also

that partial derivatives in the expression (12.1.3) can be replaced with covariant

derivatives with respect to a connection on Y.

Now let P -+ X be a principal bundle whose structure group G is a compact

semisimple matrix Lie group. We start from the Sobolev completion of the gauge

group G of vertical automorphisms of P. Recall that g is the group of global sections

of the group bundle PG (6.3.6). This group acts on the space of principal connections

A by the law (6.3.3). One defines its normal subgroup which is the stabilizer

C° ={4D E9 : '(xo) =1}

of some point xo E X chosen once for all. g° is called the pointed gauge group. It

acts freely on the space of principal connections A. Note that 9/9° = G.

One also introduces the effective gauge group Q = 9/Z, where Z is the centre of

the gauge group G. The centre Z coincides with the centre Z(G) of the group G. A

principal connection A on P is called irreducible if its stabilizer cA (i.e., (b(A) = A,

V E 9JA) belongs to Z, and this is the generic case. Let A denote the space of

irreducible connections. The effective gauge group acts freely on A.

Remark 12 .1.1. Let dA be the Nijenhuis differential (6.1.30) and * the Hodge

duality operator with respect to a Riemannian metric on X, extended to g,.-valued

forms 0 E or(X) ® UG(P). Of interest to us later will be the fact that, at an

irreducible connection AEA, there exists the Green function

GA = (*dA * dA)_1



12.1. THE SPACE OF PRINCIPLE CONNECTIONS 423

of the covariant Laplacian

AA = *dA * dA

since there is no non-trivial solution of the equation

dA1;=VAS= 0, VQP(X)

(see (6.1.26)). •

Though Pc --> X is not a vector bundle, the Sobolev completion of the gauge

group G can be constructed as follows [224]. Being a matrix Lie group, G is a subset

of the algebra M(l, C) of l x 1 complex matrices. We introduce the P-associated
fibre bundle

PM = (P x M(l, C))/G

of 1 x l matrices, where G has the adjoint action on M(l, C). This is a vector bundle
provided with the fibre norm

ILI2 = Tr LL', L E M(l, C).

Let PM(X)k be the Sobolev completion of the space of sections of PM. Since

G C PM(X), the Sobolev completion Gk of G is defined as the completion of g
in the induced metric. If k > n/2, then Gk is closed in PM(X)k and the group
operations in Gk are continuous in accordance with Theorem (12.1.1). Thus Gk (and

also Gk, ?;k) are topological groups. Moreover, they are Lie groups. The Lie algebra

of the Lie group Gk is the Sobolev completion of the space of sections of the gauge

algebra bundle VcP (6.1.6) also seen as a subbundle of PM [224].

The Sobolev completion Ak of the space of principal connections is defined as

the affine space modelled over the Sobolev completion C(X)k of the space of sections

of the vector bundle C (6.1.9). Therefore, it is a Hilbert manifold whose tangent

space TAAk at a point A E A is C(X)k. The Sobolev completion Wk of the space

of irreducible connections is a dense open subset of Ak.

We will hold k > 1+n/2. The crucial point is that the group action Gk+1 x Ak

Ak is smooth, and so are the free actions

g

o k+1 x Ak -. Ak, Gk+1 X Ak - > Ak.

Moreover , the quotient Ok = Ak/Gk+l, called the orbit space , is a smooth Hilbert

manifold, while the canonical surjection Ak -+ Ok is a smooth fibre bundle (i.e.,
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locally trivial ). This is a principal fibre bundle with the structure group 9k+1 [224].
Note that the quotient Ak/gk+1 is also a smooth Hilbert manifold , while the topo-
logical space Ak/gk+l admits a stratification into smooth Hilbert manifolds [180]
(see also [113 , 115, 151]).

In quantum gauge theory, the orbit space 0 is well -known to play the role of a
configuration space. However, the mathematical nature of this space is essentially

unknown. In particular , an important problem is the existence of a global section

of the principal bundle Ak -> Ok. If a global section s exists, integration over 0
can be replaced with that over s(O) C A with a suitable weight factor such as the
Faddeev-Popov determinant . One can think of s as being a global gauge . Its non-
existence is referred to as the Gribov ambiguity. The Gribov ambiguity is proved
to take place in a number of gauge models where the principal bundle Ak --> Ok is

non-trivial (see, e.g., [58, 141, 231, 281]).

12.2 Connections on the space of connections

From now on , we believe that all objects requiring Sobolev completions have been

completed in appropriate norms, and omit the index k.
The Hilbert manifold 0 is modelled on the Hilbert space isomorphic to Ker*dA*

for any A E A, where *dA* acts on C(X ). Given the fibre bundle

A --+ 0,

we have the canonical splitting of the tangent spaces

TAA= VAA® Ker*dA*,'

(12.2.1)

(12.2.2)

a=dAGA*dA*a+(Q-dAGA*dA*a).

This splitting defines the canonical connection q on the fibre bundle (12.2.1).

Let us consider the product P x A. It is a Hilbert manifold whose tangent space

at a point (p, A) is TpP x C(X). There is a natural action of the effective gauge

group 9 on P x A which has no fixed points . Therefore

PxA-*(PxA)/g=Q (12.2.3)

is a 9-principal bundle. Since the action of G on P x A commutes with that of

the group G acts on Q, and we also have the G-principal bundle

Q -* Q/G = X x O, 1 ( 12.2.4)
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called the universal bundle [13, 30, 284].

The fibre bundles (12.2.1), (12.2.3) and (12.2.4) lead to the commutative diagram

of fibrations

PxA-> Q

XxA--*XxO

The left column

PxA -+X xA

(12.2.5)

(12.2.6)

of this diagram is a G-principal bundle (similar to the principal bundle PC (6.2.5)).

It is provided with the canonical connection A given by the splitting

xµ8µ + U + v9e9 = xµ (0µ + Aµ(x)e9) + U + (v9 - V'Aµ(x))e9

of the exact sequence

0-4VG(PxA)yTG(PxA)->(PxA) x_T(X xA)
XxA

(12.2.7)

at each point (x, A) E X X A (cf. the universal connection (6.2.4)). Another

connection A on the fibre bundle (12.2.6) is given by the splitting

xµ8µ + a +v9e9 = xµ(8µ + A,(x)e9) + (a - (*dA * U)(x)) + (12.2.8)

(v9 - i Aµ(x))e9 + (*dA * U)(x).

Combining the connections q on (12.2.1) and A on (12.2.6) defines a composite

connection A o (Id X, A) on the composite fibre bundle

PxA -->X x A - X x O. (12.2.9)

In particular, connections A (12.2.7) and (12.2.8) lead to the same composite con-

nection on (12.2.9).

Let us write a connection A on the G-principal bundle (12.2.6) as the TG(P x A)-

valued form A = A + c where A and c are forms on X and A, respectively. We will

say that they are (1,0)- and (0,1)-forms. Likewise one splits the exterior differential

donX xAas

d=d+6, (12.2.10)

52=0, doh+6od=0.
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Then the strength of the connection A (see (6.1.20), (6.1.31)) reads

P = 2dAA = F(2,0) + F(1,1) + F(o,2),

where

F(2,o) _ 2dAA = FA, F(1,1) = 1 (S^A + dAC), -P(0,2 ) = 16,c.
2 2

The corresponding local expressions are

F(1,1) = 6A + dAC,

F(o,2) = SC + 2 [c, c],

where A and c are local connection forms.

imply

(12.2.11)

(12.2.12)

(12.2.13)

Since 62 = 0, (12.2.12) and (12.2.13) also

6F(1,1) = -[c, F(1,1)] - dAF(o,2), (12.2.14)

6F(o,2) = -[c, F(o,2)]. (12.2.15)

Put V) = F(1,1) and 0 = F(o,2). Then the relations (12.2.12) - (12.2.15) are formally

identical to the BRST transformations

6AdAC, (12.2.16)

6c = - 2 [c, c], (12.2.17)

60 = -[c, z/'] - dA¢, (12.2.18)

60 = -[c, 0] (12.2.19)

of fields (A, c, 0, 0) in the geometric sector of the Donaldson theory. These fields

are characterized by the ghost numbers 0, 1, 1 and 2, respectively, which coincide

with their (0, k) form degrees [30].
If the strength components F(1,1) and F(2,2) vanish, the equations (12.2.16) -

(12.2.19) reduce to

SA = -dAC, Sc = -2[c, c]. (12.2.20)

These equations look like the BRST transformations ( 11.4.2 ) of the Yang-Mills

theory (see Section 11.4). If A is the canonical connection ( 12.2.7 ) where c = 0, the

equations ( 12.2.16) - ( 12.2.19 ) take the form

SA = 0, 6z/i = -dAC, 60 = 0.
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They are identical to the BRST transformations used by Witten [307].
The equations ( 12.2.16) - (12.2.19) imply

dTr(F A F) _ (d + 6)Tr(^(FA + + ^) = 0) (12.2.21)

as a consequence of the Bianchi identity

dAF= (d+6)(FA+V) +0)+[A +c, FA+?p +0] = 0. ( 12.2.22)

From the geometric viewpoint , the equality ( 12.2.21) illustrates the fact that gauge
invariant polynomials are closed forms (see Sections 6.7 and 13 . 1). Let us write

2Tr(n(FA+ +0))
=
Y- wi, (12.2.23)
t=o

where wi are i-forms on X with the ghost number 4 - i given by

wo = 2 I A ¢), w1 = Tr(V) A ¢), w2 = Tr(FA A 0 + 10 A 7p),

W3 = Tr(FA A W4 = ZTr(FA A FA).

Then the equality (12.2.21) can be expanded in terms of certain ghost number and

form degree as the descent equations

dw4 = 0, (12.2.24a)

6Wk+dwk_1=0, k=1,...,4, (12.2.24b)

6wo = 0. (12.2.24c)

These equations are similar to the descent equations (11.4.6a) - (11.4.6c)), while
(13.2.13) is the analog of (11.4.7). One can say that wk, k = 1,.. . , 4, are locally
BRST-closed.

Given a k-cycle -y in X, one can construct the exterior (4 - k)-form

Wk(') = f Wk, k = 1,... , 4, (12.2.25)

on the space of reducible connections A. This form is metric independent and gauge
invariant. Due to the equality (12.2.24b), it is BRST-closed

Swk('Y) = - f dwk_1 = - f Wk-1 = 0
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and, therefore, an observable in the topological field theory. Moreover, wk(y) are
BRST-exact since A is contractible. We have locally

TrAF = dTr(A A F- 3%\A),

where A is the local connection form (6.1.17). It follows that the forms wk(y) are

homological in the sense that they only depend on the homology class of y because

Wk(aA) = f dwk = -6 f wk+1 = 0-
A A

Let (yl...... r ) be a collection of ki-cycles in A, and let M be a compact sub-
manifold of A of dimension

m = (4 - k,)•
i=1

Then we obtain the invariant

Z : Hk,(X; 7) x ... x Hk, (X;Z) - R,

Z(Yi,...,Yr)= f wkl('Yi )n...nwkr(yr)
M

The problem lies in the fact that there is no finite-dimensional compact submanifold

M C A of physical interest. Therefore, let us turn to the orbit space O.

Since the connections (12.2.2) and (12.2.7) are principal and the groups G and

acting on P X A commute with each other, the tangent morphism

T(PxA)-->TQ

to the fibration (12.2.3) yields the splitting of TQ which is a principal connection A

on the universal bundle Q --* X x 0 (12.2.4). This connection is characterized by

the following property. Let

s:0DU-*A

be a local gauge. Then the restriction i* Q of the fibre bundle Q to U is isomorphic

to the pull-back bundle (Id X, s)*(P x A), while the connection A coincides locally

with the pull-back connection (Id X, s) *A.

A natural gauge is a background gauge fixing

* (A - Ao) = 0.1 (12.2.26)
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This gauge and the condition

dA*W=0 (12.2.27)

project the topological field theory down from A to 0. The exterior differential 6

of the equation (12.2.26) gives the equation

dAo*(0-dAC)=0

whose solution is the connection

c = (*dAo * dA)-
'dA0V).

The exterior differential 6 of the equation (12.2.27) is

['0,*0]+dA*dAcb=0

which implies that

0 = -GA[b, *'0].

This looks like the strength of the Atiyah-Singer connection on the universal bundle

(12.2.4) [13].

In the topological field theory, one also introduces the condition

'(A) = 0, (12.2.28)

where a is a gauge-invariant differential operator on A. This condition singles out a

moduli subspace M C 0 of the orbit space 0. Let X be a 4-dimensional compact

manifold. Some standard choices for a are

a(A) = Fa = Z (FA - *FA ), (12.2.29)

'(A) = FA, ( 12.2.30)

a(A) = dA * FA. ( 12.2.31)

The corresponding moduli spaces are the moduli spaces of instantones, flat connec-

tions and solutions of the Yang-Mills equations, respectively.
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12.3 Donaldson invariants

Throughout this Section, X is a 4-dimensional compact oriented smooth or topo-

logical manifold , and P - X is a SU(2)-principal bundle.

Remark 12 .3.1. Donaldson invariants are differential, but not topological in-

variants of X [87]. Therefore, let us summarize the well-known peculiarities of

4-dimensional manifolds [88, 110].

• Every topological manifold of less than four dimension has a unique smooth

structure.

• In more than four dimension, the homotopy type and the Pontryagin classes

of a manifold determine the smooth structure (if it exists) up to a finite am-

biguity.

• There are closed topological 4-dimensional manifolds with a countably infinite

number of distinct smooth structures.

• There is an uncountable family of distinct smooth structures on R4, while

8104 has a unique smooth structure.

• There are rational cohomology invariants (exemplified by the Donaldson poly-

nomials below) which distinguish inequivalent smooth structure, in contrast

with the rational Pontryagin classes which are homotopic invariants (see Re-

mark 6.7.1).

The classification problem of smooth structures of 4-dimensional manifolds is

non-algorithmic because of the fundamental group iri (X) [108]. Therefore, interest

is mainly centred around simply connected manifolds where irl(X) = 0. The fun-

damental invariant of a simply connected 4-dimensional topological manifold X is

the intersection form wx. It is a symmetric bilinear form on the cohomology group

H2 (X ; 7G) defined by

wx : H2(X;Z) x H2(X;Z) -* 7G,

wx : ([a], [b] ) '-* ([a] U [b]) [X], (12.3.1)

where [a] U [b] is the cup-product and ([a] U [b])[X] denotes its evaluation on the

fundamental cycle of X which is the generating element of the homology group
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H,, (X; Z) = Z of an oriented manifold X . If X is a smooth manifold, the cup
product is given by (6.8.5), and the intersection form (12.3.1) reads

wx ([a], [b] ) = fan b.
x

The intersection form (12.3.1 ) is non-degenerate and unimodular. It is characterized
by the rank dim H2 (X; Z), which coincides with the second Betti number b2(X) of
X, and by the signature

T(wx) = b2 - b2

which is the number of positive minus the number of negative eigenvalues of wx.
The intersection form wx is called even if all its diagonal entries wx([a], [a]) are even.
If X is a smooth manifold, Hirzebruch's signature theorem [157] expresses T(wx) in
terms of the Pontryagin class of X as

T(wx) = 3pi(X)•

It is called the signature T(X) of the manifold X. Intersection forms are topological,
not only homotopic invariants. Namely, the homeomorphism type of a topological
manifold X is uniquely determined by wx if wX is even, while there are precisely two
non-homeomorphic topological manifolds for a given odd wX [109]. In particular,
there are intersection forms of a 4-dimensional topological manifold which cannot

arise as an intersection form of a smooth manifold. By virtue of well-known Donald-
son's theorem [86], if the intersection form wx of a smooth compact (not necessarily
simply connected) manifold X is negative definite, then

wx (-1) ® ... ® (-1).

The main ingredient in the construction of Donaldson invariants is the map

p. : Hi(X;7G) -* H4-°(O). (12.3.2)

It can be described as follows. Given the universal bundle Q -* X x 0 (12.2.4), let
E be the associated SU(2)-bundle and c2(E)''E H4(0) its second Chern class. In

accordance with the Kiinneth formula (6.8.4), c2(E) is decomposed into terms

ci,4-i E Hi(X) ® H4-`(O), i = 0, ... , 4.
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These terms define the map (12.3.2) as the composition of the homomorphism (6.8.8)

and the De Rham duality (6.8.9). Let A be a principal connection on the universal

bundle (12.2.4), F its curvature and c2(F) the second Chern form (6.7.13). The

above mentioned terms ci,4_i are the De Rham cohomology classes of the (i, 4 -

i)-forms ui3 on X x 0 which make up the decomposition of c2(F) similar to the

decomposition (12.2.23). Then the map (12.3.2) is given by the integration

wi('Y) = f wi,
7

where -y are i-cycles in X. Note that the rational cohomology classes of 0 lie in even

dimensions , and are generated by cohomology classes in two and four dimensions.
Therefore , we restrict our consideration to the map (12.3.2 ) where i = 0, 2, and can
extend it to the map

p : X H2(X;D.) --> H2m(0;Q)

via the cup product in H2m(0; Q). This map provides the injection

4([Y1], ... , [Tm.]) ~' N-(['Y1]) U ... U h([Ty]) (12.3.3)

from the polynomial algebra on H2 (X; 7L) into Heven (0;Q)

Let M be the moduli space of irreducible instantones of the instanton number

k = f c2(FA).

x

Its formal dimension is

dim.M=8k-3(1+b2).

It is readily observed that dim M is even if and only if b2 is odd. Writing b2 = 2p+1,

we have

dim .M = 2m, m = 4k - 3(1 +p).

Polynomials (12.3.3) when evaluated on the homology cycle [M] E H*(O, Q) in

0 are called the Donaldson polynomials. They are expressed into the strength F

of a connection A on the orbit space O. Treating A locally as the pull-back of

a connection on A and using the relations (12.2.26) and (12.2.27), we obtain the
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Donaldson invariants in the topological field theory, though they are very hard to
compute explicitly in general.

Remark 12 .3.2. Note that the instanton moduli space M is usually non-compact.

This difficulty can be overcome for a suitably generic metrics which provide that the

lower dimensional strata of the compactified moduli space .M, k > 1, are of high

enough codimension so as not contribute to the evaluation of compact supported
cohomology classes of 0 on M [30]. •



This page is intentionally left blank



Chapter 13

Anomalies

The anomaly problem lies in violation of conservation laws for quantized fields and

the gauge non-invariance of an effective action and a path integral measure in the

perturbative quantum field theory (see (29] and references therein for a survey). Here

we are only concerned with the geometric origin of anomalies, based on geometry

and topology of spaces of principal connections.

13.1 Gauge anomalies

This Section is devoted to anomalies related to the gauge non-invariance of the
Chern-Simons form.

Let P -> X be a GL(N, C)-principal bundle. Characteristic forms in Section 6.7
exemplify gauge invariant polynomials P(F) in the strength F (6.1.19) of a principal
connection on P -> X, i.e.,

P(F) = P(g(F)), g E 9,

where 9 is the gauge group of vertical automorphisms of P. Gauge invariant polyno-

mials are complex exterior forms of even degree on X. They possess the properties
mentioned in Section 6.7:

• P(F) is a closed form,

• P(F) - P(F') is an exact form, whenever F and F are strength forms of two
distinct principal connections on P.

435
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One can say something more. Any gauge invariant polynomial is a sum of prod-
ucts of gauge invariant polynomials P,,,,(F) of definite degree m in F. Then the
transgression formula [6, 29, 98] takes place

Pm(F) - Pm(F) = dQ2m-i (A, A'), (13.1.1)

1
Q2m_I(A, A') = m f dtP(A - A', Ft), (13.1.2)

0

where Ft is the strength of the homotopic connection

At = A' + t(A - A'), t E [0,1 ]. (13.1.3)

In particular , put A' = 0 on a trivialization chart of P - X (i.e., A' = Ox as a
TaP-valued form). Then we obtain the local transgression formula

Pm(F) = dQ2m-1 (A, F),

together with the Chern-Simons form

1

Q2.-1 (A, F) = m f dtP(A, Ft),
0

(13.1.4)

(13.1.5)

where A is the local connection form (6.1.17) and

At=tA, Ft=tF+(t2-t)A2.

For the sake of simplicity, we omit the symbol A of the exterior product.

Example 13 .1.1. If P(F) = c2(F) is the second Chern form (6.7.13) for an SU(N)-

principle bundle, we have

Tr(F2) = 8 1
I dQ3)

Q3 = Tr(AF - 3A3) = Tr(AdA + 3A3).

•

(13.1.6)

Let us obtain the transgression formula (13.1.1) in terms of the homotopy deriva-

tion [6, 29, 2111. Given the homotopic connection At (13.1.3) and its strength Ft,

the homotopy derivation is defined as the operator

ltAt = 0, ltFt = dtAt = dt(A - A') (13.1.7)
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which acts on polynomials S(At, Ft) in At and Ft and satisfies the antiderivation
rule

it(SS') = it(S)S' + (-1)ISisit(S').

One can verify explicitly that

ltod+dolt=dt=dt®at. (13.1.8)

Remark 13 .1.2. Note that polynomials S(At, Ft) fail to be globally defined, unless
they are gauge invariant polynomials. Therefore, by their argument At is meant the
local connection form (6.1.17). •

Let us introduce the operator

k= f lt.

0
(13.1.9)

It is called the homotopy operator by analogy with the homotopy operator in Remark
4.1.2. We have the Cartan homotopy formula

S(A, F) - S(A', F') = (k o d + d o k)S(At, Ft). (13.1.10)

Applied to gauge invariant polynomials Pm(F), the homotopy operator (13.1.9)
reads

kPm(Ft ) = Q2.-I (A, A')

where the polynomial P(A - A', Ft) in the expression (13.1.2 ) is defined as

mP(A-A',Ft)=Pm(A-A',Ft,...,Ft)+ ( 13.1.11)

Pm(Ft,A-A...... Ft)+...+Pm(Ft,...,A-A').

Since gauge invariant polynomials are closed, the Cartan homotopy formula (13.1.10)

leads to the transgression formula (13.1.1). Choosing locally A' = 0, we obtain the
Chern-Simons form (13.1.5) as

Q2.-I (A, F) = kPm(Ft). 1 ( 13.1.12)
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Let us consider gauge transformations of the Chern-Simons form (13.1.12). In

the case of a matrix structure group G C GL(N, C), gauge transformations of the
local connection form A (6.1.17) and the strength F (6.1.20) read

Ag = g-1Ag + g-ldg = 9-1(A + ug)9, Fg = 9-1Fg• (13.1.13)

Let us choose the homotopic connection At = tA, t E [0, 1]. Then

As = (At)g Fg = (Ft)9

is the homotopy which interpolates continuously between

A0 = 9-1dg = g-lag 9,
Fts 0 = 0

and

Agt=1 = Ag, t=Fg 1 = Fg.

Applied to the Chern-Simons form containing these homotopies, the Cartan homo-

topy formula (13.1.10) reads

Q2m_1(Ag, Fg) - Q2.-1(9- 'dg) = (k o d + d o k)Q2m.-1(Aft, Ft) (13.1.14)

The gauge transformed Chern-Simons form is

1

Q2.-1(A', Fg ) = m f dtP(A9, Ftg),
0

Fig = (Fg ) t = 9-1Ft9 , Ft = tF + (t2 - t)(A + 0,g)2.

Since P (Ag, Fg ) is expressed into the gauge invariant polynomials Pm as (13.1.11),
we have

F'(Ag, Fg) = P(A, Pt).

It follows that

Q2m_1(Ag, Fg) = Q2.-1(A + ug, F)

and, analogously,

(13.1.15)

Q2.-1(At, Fig) = Q2m-1(At + vg, Ft). (13.1.16)
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On the other hand, the relations (13.1.4) and (13.1.12) give

(k o d)Q2m-1(A9, F9) = kPm(Ft) = Q2.-1 (A, F).

If we define

a2m-2 = kQ2m-1(A9, Fe) = kQ2m-1(At + Q9, Ft),

the Cartan homotopy formula (13.1.14) takes the form

Q2m-1(A9, F9) = Q2.-1(A, F) + Q2m-1(9-1d9, 0) + da2m-2

or, by virtue of the relation (13.1.15),

Q2.-1(A + Q9, F) = Q2.-1 (A, F) + Q2.-1 ( 0'-Q, 0) + da2m_2.

(13.1.17)

(13.1.18)

For instance, let Q3 be the Chern-Simons form (13.1.6) in Example 13.1.1. For

m = 2, we have

a2 = kQ3(At + Q9, Ft) = f ltTr[(At + Q9 )Ft - 3 (At + a9 )3] _
0

f dtTr[-tA2 - u9A] = -Tr[o9A]
0

since Tr A2 = 0. Then, keeping only the term linear in Q9, we obtain

da2 = Tr[u9dA]. (13.1.19)

This equation expresses the well-known non-Abelian anomaly in two dimensions

apart from the normalization [29].

The anomaly (13.1.19) characterizes the non-invariance of the Chern-Simons

form (13.1.6) under infinitesimal gauge transformations. Therefore, it can also be

calculated as follows. Let us regard the Chern-Simons form Q3 as a VcP-valued

form on the first order jet manifold PC of the bundle of principal connections C

(see Section 6.2). It reads

Q3 = a aa(,, - 3c19aaaµ)dx« A d? A dxµ, (13.1.20)
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where aP = Tr(EpEr) is the invariant metric on the Lie algebra su(N). Let ^c be

the principal vector field (6.3.9) on the fibre bundle C. It is the generator of a

1-parameter group of gauge transformations of C. We have the Lie derivative

LJl£cQ3 = Tr(d A dHa),

S = eEp, a = aµdx" 0 Er,

It is readily observed that, if Q9 = d, then

dal = A*(LJ1^c,Q3)

for any section A of the fibre bundle C -> X.

Remark 13 .1.3. If dimX = 3, one regards Q3 (13.1.20) as a Lagrangian of the

Chern-Simons topological field model. Being gauge non-invariant, this Lagrangian

is not globally defined. Since LJ1£,,Q3 # 0, neither the Noether current (6.3.21) nor

the energy-momentum current (7.4.22) are conserved in the Chern-Simons model

[123] •

13.2 Global anomalies

In comparison with gauge anomalies in the previous Section, global anomalies are

connected with gauge transformations not in the connected component of the iden-

tity.
We start from the notion of the group cohomology [204]. Let G be a multiplica-

tive group, B a right G-module, and BP, p = 1, ... , Abelian groups of morphisms

BPE)V . xG -+B.

One can introduce the coboundary operator

SP : BP BP+1

(6pbp)(91, ... , 9p+1) = b(92, ... , 9p+1)91 +
p

^(-1)zb'(91,..., 9i9i+1,...gp+i) + (-1 )P+'V(gi,. .., gp).
t=1

(13.2.1)

(13.2.2)

With this coboundary operator, we have the cochain complex

0->B 6-B1 6- B2 --j•••. (13.2.3)
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By B in (13.2.3) is meant the group of constant morphisms

BE) b:G- b,

and

(6°b)(g) = bg - b.

It follows that 0-cocycles in B are G-invariant elements of B. We will denote the

set of these elements by B. The cohomology H*(G; B) of the complex (13.2.3) is

called the group cohomology of the group G with coefficients in the module B. For

instance, H°(G; B) = BG. Note that the Abelian group BP of p-cochains (13.2.1) is

a right G-module with respect to the G-action

g:b'(gi,•••,g,)'-'b(9
i
gig'...,9 - 1 ggg)•

This action is trivial on H*(G; B).

Let H be a normal subgroup of G. One has the exact sequence

0 ->Hl(G/H;BH) '->H'(G;B) -+H'(H;B)G (13.2.4)

H2(G/H; BH) -'-* H2(G; B).

The arrow j in (13.2.4) is the composition of the projection G -> G/H with the

cocycles of the group G/H, while the arrow i is the restriction of the cocycles of G

to H [55].
If G/H is a finite group of order r, there exists a homomorphisms

o' : H* (H; B) -* H*(G; B). (13.2.5)

For instance , o° : BH -* BC reads

gob = bc,
cEG/H

where c is a representative of a coset c E G/H such that c= e E G if c = e E G/H.

We also have

(olb')(g) _ bl(c9^9-1)c.
cEG/H

Recall that cgcg-' E H for Vg E G. An important property of the homomorphism

(13.2.5 ) is that i o o and o o i are both the multiplication by the integer r . It follows
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that ra = 0 for any a E Hk>O ( G/H; BH), i.e., the groups Hk'0(G/H; BH) consist

of cyclic elements.
Turn now to anomalies in quantum field theory . Let P -> X be an SU(N)-

principal bundle over an oriented compact Riemannian manifold X, G the gauge

group and A the space of principal connections on P -> X . As in the previous

Chapter, we believe that all objects requiring Sobolev completions have been com-
pleted in an appropriate way. One can think of an effective functional of quantum

field theory as a complex function S(A) on A, where we omit its dependence on

other fields . If S(A) is not gauge invariant, we have

S(A9) = iW 1(A, g) + S(A), g E G, (13.2.6)

W1(A9,g') -W1(A,g'g)+W1(A,g) = 0,

(see the notation (13.1.13)).

A standard example of a gauge non-invariant effective action is

Tr in D+ = In detD+ = In detD+

where D+ is the Weyl operator and

D+ = i-yµ laµ + 1 A,(' + -Y5)1

(13.2.7)

(13.2.8)

is the Dirac chiral operator perturbatively equivalent to D+. A glance at the expres-

sion (13.2.7) shows that this is exactly the cocycle condition 51W1 = 0 of the group

cohomology of the gauge group 9 with coefficients in the module C(A) of complex

functions on A. The gauge group 9 acts on these functions by the law

(W°g)(A) = W°(A9).

One can think of W1 (A,g) in ( 13.2.6 ) as being a 1-cochain

W1:9E) g^-->W1 (A,g) EC*(A)

of this cohomology . If this cochain is a coboundary

W1 (A, g) = W°(A9) - W°(A),

then one can add to the effective action S(A) the counterterm -W°(A) so that the

renormalized action S(A) - W°(A) is gauge invariant. It follows that anomalies in

pertubative quantum field theory are characterized by elements of the cohomology
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group H1(Q; C(A)), called the anomaly group. If the group 9 is not connected and

9e is the connected component of its identity e, one can examine global anomalies,

i.e., trivial Oe cocycles that extend non-trivially to G [55, 281]. The non-trivial and

Q-invariant 9,-cocycles characterize local anomalies.

As was mentioned above, the action of the gauge group 9 on the space of principal

connections A is not free. Therefore, one usually considers either the effective gauge

group 9 and the space A of irreducible connections or the pointed gauge group 9o

and the space A. We will restrict our consideration to the first case. There is the

composite fibration

A -. A/ge = Ae --> Ae/iro(y') = 0, iro(g) = g1ge. (13.2.9)

Applying the exact sequence (13.2.4) to the case

G = ?7, H = 0e, B = C(A)

and observing that C(A)' = C(Ae), we obtain the anomaly exact sequence

0-*H'(iro(9);C(Ae)) 1H'(?;;C(A)) i'H'(y'e;C(A))C' (13.2.10)

-' H2(7ro(Q); C(Ae))•

Elements of H1(7ro(9); C(Ae)) in this exact sequence characterize global anomalies,

while elements of H1(O,; C(A))^ correspond to local anomalies. The arrow j in the

anomaly sequence (13.2.10) is injective. If H2(iro(g); C(Ae)) is trivial, the arrow i

in (13.2. 10) is surjective. In this case, the anomaly group H1(9; C(A)) is the direct

product of groups of global and local anomalies. If the homotopy group 7rop) is

finite, only cyclic (torsion) elements in the anomaly group can be global anomalies.

To say something more, let us note that the cohomology group H1(9;(C(A))

can be seen as the group of g-isomorphism classes of the trivial complex line bundle

L(A) over A, called the determinant line bundle of the Dirac chiral operator (13.2.8).

This geometric interpretation of H1(9; C(A)) applied to the fibration A -> 0 gives

the exact sequence

0 -* H1(g; C(A)) -* H2(O; Z) -* H2(A; Z) (13.2.11)

[55]. The second arrow in this exact sequence is the injection of H1(O; C(A)) into

the group of equivalence classes of complex line bundles over the orbit space 0 (see

Section 6 .7) due to the identification of elements (A, c) and (As, c + iW 1(A, g)) for
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all g E ?;. The last arrow in (13.2. 11) assign to every complex line bundle over 0

its pull-back onto A. Since A is an affine space, the cohomology of A is trivial and

we find

H'(?;; C(A)) = H2(O; 7L)•

Similarly to the exact sequence (13.2.11), one can construct the exact sequences

corresponding to the fibrations A ---^ Ae and Ae -> 0 (13.2.9). These exact se-

quences read

0 , H1r e; C(A)) -* H2(Ae7 Z) -' H2(A; Z), (13.2.12)

0 - H1(iro(?;);C(Ae)) -* H2(0;D..) -> H2(Ae;Z). (13.2.13)

One can also apply the low-dimensional exact cohomology sequence of the fibre

bundle Al -+ Ae. Since 9e is connected, the Leray spectral sequence [40] gives the

exact sequence

0 -> H1 (X,; Z) H1(A; Z) -> H1 (9,; Z) , H2(Ae; Z) (13.2.14)

-> H2(A; Z).

Since H2(A; Z) = 0, the exact sequences (13.2.12) and (13.2.14) result in

H1(ce;C(A)) = H1(9e;Z) = H2(Ae;Z)•

In particular , the determinant line bundle is trivial and local anomalies are absent if

the corresponding complex line bundle over X. has the vanishing Chern class. This

class is computed by the well-known index theorem [29]. We refer the reader to [55]

for the derailed analysis of the case of G = SU(2).

13.3 BRST anomalies

In Section 13.1, we have studied the anomalies related to the gauge non-invariance of

the Chern-Simons form. This Section is devoted to anomalies caused by the BRST
non-invariance of the Chern-Simons form (see, e.g., [29]). We follow the geometric

treatment of the Faddeev-Popov ghost field as the local connection (0, 1)-form c of

a principal connection A on the principal bundle (12.2.6) over X x A.

Let P --> X be an SU(N)-principal bundle over an oriented compact Riemannian

manifold X and A the space of irreducible principal connections on P -+ X. We
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consider the SU(N)-principal bundle (12.2.6) over X x A and a connection A = A+c
on this principal bundle, where A(x) is a local connection (1, 0)-form and c is a local
connection (0, 1)-form at a point (x, A) (see Section 12.2). Let us assume that the

terms F16 1 and FO,2 of the strength F (12.2.11)of this connection vanish, i.e.,

F=(d+6)(A+c)+(A+c)2= FA.

Then we have the relations (12.2.20):

SA = -dAC, 6C= -

(13.3.1)

(13.3.2)

As was mentioned above, these relations can be treated as the geometric model of

the BRST transformations of gauge theory. One can think of 6 as being the BRST

operator s (11.4.2) with respect to the ghost field c, while the exterior differential d

(12.2.10) is associated with the total BRST operator s` (11.4.4). The BRST operator

6 acts on the exterior forms 0 on X x A, whose (0, 1)-form degree corresponds to

the ghost number. However, the exterior product of these forms, in contrast with

(11.4.3), obeys the rule

and 0 is a derivation on ¢ similarly to the BRST operator (11.3.21), but not (11.3.19).

In BRST theory, the equality (13.3.1), being derived from the relations (13.3.2),

is called the Russian formula [211]. Substituting (13.3.1) in the Bianchi identity

(12.2.22), we also obtain

SFA = [FA, c]. (13.3.3)

As in Section 13.1, let Pm be a gauge invariant polynomial of degree m in the

strength F. We have the corresponding local transgression formula (13.1.4), called
the shifted transgression formula

Pm m(F) = dQ2m-1 (A, - A)

with

(13.3.4)

Q2.-1 (A, F) = m f dtP(A, Ft), ( 13.3.5)
0

Pt =tFA+ (t2-t)A2.
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Applying the Russian formula (13.3.1), one can equate the transgression formula

(13.1.4) with the shifted one (13.3.4)

dQ2m-1 (A + c, FA) = dQ2m-1(A, FA) (13.3.6)

(cf. (13.1.18 )). Let us expand the Chern-Simons form Q2m_1(A+ c, FA) in powers
of the local connection form c as

Q2.-1(A + c, FA) = Q2m-1(c, A, FA) +Q2m-2(c, A, FA) + (13.3.7)

+ Om-1(C),

where the upper index denotes the (1, 0)-form degree and the lower index the (0,1)-
form degree. Substitution of (13.3.7) in (13.3.6 ) leads to the descent equations

Pm(FA) - dQ2m-1 = 0,

b t + d i+l - 0
Q2m-1-i Q2m-2-i

6Qom-1 = 0.

i=0,...,2m-2,

(13.3.8a)

(13.3.8b)

(13.3.8c)

The chain terms Q2m-1-i in these descent equations are treated as BRST anomalies.

We refer the reader to [29] for the list of these anomalies for i = 0, ... , 3. Higher

order chain terms Q2m-i-i, i > 4, have no definite physical interpretation.

Note that the descent equations (13.3.8b) - (13.3.8c) are similar both to the

descent equations (11.4.6b) - (11.4.6c) written for an arbitrary local form in field-

antifield BRST formalism and to the descent equations (12.2.24b) - (12.2.24c) for

the Chern form P2 (F) = c2 (F) of an arbitrary principal connection A. In particular,

it is readily observed that the anomalies Q2m-1_i are locally BRST-closed forms,

and their local BRST cohomology can be considered. At the same time, the descent

equation (13.3.8a) differs from the descent equations (11.4.6a) and (12.2.24a) since,

by virtue of the relation (13.3.6), Q2m-1(A+c, FA) is not a d-closed form. It follows

that the local BRST cohomology of the anomalies Q2m-1-i fails to be connected

with the BRST cohomology with respect to the total BRST operator d in general.
It should be emphasized that we have restricted our consideration above to the

local transgression formula (13.3.4) valid for a trivial principal bundle P -> X. In

the case of a non-trivial bundle P -> X, one can apply the transgression formula

(13.1.1) and put SA' = 0 [29, 211].



Chapter 14

Connections in non-commutative

geometry

There is an extensive literature on non-commutative geometry and its physical ap-

plications (see [63, 205, 246] and references therein). In non-commutative geometry,

one replaces commutative algebras of smooth functions with associative algebras

which are not assumed to be commutative. They are complex involutive algebras as

a rule. This Chapter is devoted to the notion of a connection in non-commutative
geometry. We follow the algebraic notion of connections in Chapter 8, general-

ized to modules over non-commutative rings [63, 90, 91]. The problem is that this

generalization makes different definitions of algebraic connections non-equivalent.

Note that, in non-commutative geometry over quantum groups [94, 245, 246],

connections on quantum principal bundles are defined in terms of pseudotensorial

forms similar to connection forms on principal bundles and principal superconnec-

tions [93, 95].

14.1 Non-commutative algebraic calculus

In this Section , we recall a few basic facts on modules over associative algebras

which are not necessarily commutative.

Let A be an associative unital algebra over a commutative ring K, i.e., a A is a
IC-ring. One considers right [left] A-modules and A-bimodules (or A - A-bimodules

in the terminology of [204] ). A bimodule P over an algebra A is called a central

447
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bimodule if

pa=ap, VpEP, VaEZ(A), (14.1.1)

where Z (A) is the centre of the algebra A. By a centre of a A-bimodile P is called

a /C-submodule Z(P) of P such that

pa aef
ap, dp E Z(P), da E A.

Note that, if A is a commutative algebra, every right [left] module P over A

becomes canonically a central bimodule by putting

pa=ap, b'pEP, VaEA.

At the same time, the bimodule Diff 9(P, Q) of s-order Q-valued differential operators

on a module P in Section 8.1 exemplifies a bimodule which is not central. If A is

a non-commutative algebra, every right [left] A-module P is also a Z(A) - A-

bimodule [A - Z(A)-bimodule] such that the equality (14.1.1) takes place, i.e., it

is a central Z(A)-bimodule. From now on, by a Z(A)-bimodule is meant a central

Z(A)-bimodule. For the sake of brevity, we say that, given an associative algebra A,

right and left A-modules, central A-bimodules and Z(A)-modules are A-modules

of type (1, 0), (0, 1), (1, 1) and (0, 0), respectively, where A0 = Z(A) and Al = A.

Using this notation, let us recall a few basic operations with modules.

• If P and P' are A-modules of the same type (i, j), so is its direct sum P ® P.

• Let P and P' be A-modules of types (i, k) and (k, j), respectively. Their tensor

product P ® P' (see [204]) defines an A-module of type (i, j).

• Given an A-module P of type (i, j), let P* = Horn A; _AS (P, A) be its A-dual.

One can show that P* is the module of type (i + 1, j + 1)mod2 [90]. In

particular, P and P** are A-modules of the same type. There is the natural
homomorphism P --> P**. For instance, if P is a projective module of finite

rank, so is its dual P* and P --+ P** is an isomorphism [204].

There are several equivalent definitions of a projective module. One says that

a right [left] module P is projective if P is a direct summand of a right [left] free

module, i.e., there exists a module Q such that P ® Q is a free module [204].

Accordingly, a module P is projective if and only if P = pS where S is a free
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module and p is an idempotent , i.e., an endomorphism of S such that p2 = p. We
have mentioned projective C°°(X)-modules of finite rank in connection with the
Serre-Swan theorem (see Theorem 14.1.1 below ). Recall that a module is said to be
of finite rank or simply finite if it is a quotient of a finitely generated free module.

Non-commutative geometry deals with unital complex involutive algebras (i.e.,
unital *-algebras ) as a rule. Let A be such an algebra (see [82] ). It should be
emphasized that one cannot use right or left A-modules, but only modules of type
(1, 1) and (0, 0) since the involution of A reverses the order of product in A. A
central A-bimodule P over A is said to be a *-module over a * -algebra A if it is
equipped with an antilinear involution p ^--> p* such that

(apb)* = b*p*a*, Va, b E A, p E P.

A *-module is said to be a finite projective module if it is a finite projective right
[left] module.

Non-commutative geometry is developed in main as a generalization of the cal-
culus in commutative rings of smooth functions.

Let X be a locally compact topological space and A a *-algebra C8(X) of complex
continuous functions on X which vanish at infinity of X. Provided with the norm

IIf II =supIf1, f A,
xEX

(cf. (10.5.1)), this algebra is a C*-algebra [82]. Its spectrum A is homeomorphic to

X. Conversely, any commutative C*-algebra A has a locally compact spectrum A

and, in accordance with the well-known Gelfand-Naimark theorem, it is isomorphic

to the algebra C$(A) of complex continuous functions on A which vanish at infinity

of A [82]. If A is a unital commutative C*-algebra, its spectrum A is compact. Let

now X be a compact manifold. The *-algebra C°°(X) of smooth complex functions

on X is a dense subalgebra of the unital C*-algebra C°(X) of continuous functions on

X. This is not a C*-algebra, but it is a Frechet algebra in its natural locally convex

topology of compact convergence for all derivatives (see Remark 8.1.7). In non-

commutative geometry, one does not use the theory of locally convex algebras (see

[221]), but considers dense unital subalgebras of C*-algebras in a purely algebraic

fashion.

The algebra C°° (X) of smooth real functions on X is a real subalgebra of C°° (X)

which consists of all Hermitian elements of C°°(X). It characterizes the manifold X

in accordance with Remark 8.1.8 (see also [300]). In non-commutative geometry, one
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replaces the algebra of real functions with a Jordan algebra of Hermitian elements

of a unital *-algebra A.

Turn now to *-modules. Let E -+ X be a smooth m-dimensional complex vector

bundle over a compact manifold X. The module E(X) of its global sections is a

*-module over the ring C°°(X) of smooth complex functions on X. It is a projective

module of finite rank. Indeed, let (01i ... , O9) be a smooth partition of unity such

that E is trivial over the sets US D supp OC, together with the transition functions

pct. Then pct _ OtpctOC are smooth (m x m)-matrix-valued functions on X. They

satisfy

PC-p"' = pct, (14.1.2)

and so assemble into a (mq x mq)-matrix p whose entries are smooth complex

functions on X. Because of (14.1.2), we obtain p2 = p. Then any section s of

E --> X is represented by a column (O(si) of smooth complex functions on X such

that ps = s. It follows that s E pC(X)m,9, i.e., E(X) is a projective module. The

above mentioned Serre-Swan theorem [287, 300] provides a converse assertion.

THEOREM 14.1.1. Let P be a finite projective *-module over C°°(X). There exists

a complex smooth vector bundle E over X such that P is isomorphic to the module

E(X) of global sections of E. O

In non-commutative geometry , one therefore thinks of a finite projective *-

module over a dense unital *-subalgebra of a C*-algebra as being a non-commutative

vector bundle.
A *-module P may be provided with a Hermitiam structure. A right Hermitian

form on P is a sesquilinear map (.1.) : P x P -+ A such that [90]:

(i) (palp'b) = a*(pl p')b for a, b E A, p, p' E P;

(11) (pip') = (p'ip)*;

(iii) (apip') = (pia*p') for a E A, p, p' E P;

(iv) (pip), Vp E P, is a positive element of A (i.e., (pip) = qq* for some

element q of A);

(v) (p1p) = 0 forces p = 0.

This definition of a right Hermitian form, excluding the condition (iii), coincides

with the notion of a Hermitian form on a right A-module over a *-algebra A [300].
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14.2 Non-commutative differential calculus

One believes that a non-commutative generalization of differential geometry should

be given by a Z-graded differential algebra which replaces the exterior algebra of

differential forms [210]. This viewpoint is more general than that implicit above

where a non-commutative ring replaces a ring of smooth functions. Throughout

this Chapter, by a gradation is meant a Z-gradation.

Recall that a graded algebra 11* over a commutative ring K is defined as a direct

sum

S2* = ® Q k
k=O

of K-modules S2k, provided with the associative multiplication law such that a • (3 E

121 1+IaI where Ial denotes the degree of an element a E 1111. In particular, 1° is a

unital K-algebra A, while 1k>0 are A-bimodules. A graded algebra S2* is called a

graded differential algebra if it is a cochain complex of IC-modules

0 -,,A 6 -4 Q1 ^b ...

with respect to a coboundary operator 6 such that

6(a . ,d) = 6a • (3 + (-1)1ala • 80.

A graded differential algebra (S2*, 6) with S21 = A is called the differential calculus

over A. If A is a *-algebra, we have additional conditions

(a . /)* = (-1)I«IIRI(3*a*

(ba)* = b(a*).

Remark 14.2.1. The De Rham complex (8.1.42) exemplifies a differential calcu-

lus over a commutative ring. To generalize it to a non-commutative ring A, the

coboundary operator 6 should have the additional properties:

• 1k>O are central A-bimodules,

• elements Sal • . 6ak, ai E Z(A), belong to the centre 2(1k) of the module S2k.

Then, if A is a commutative ring, the commutativity condition (8.1.27) holds.
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Let S2*A be the smallest differential subalgebra of the algebra Si* which contains

A. As an A-algebra, it is generated by the elements 6a, a E A, and consists of finite

linear combinations of monomials of the form

a = ao6a, ... 6ak, ai E A. (14.2.1)

The product of monomials (14.2.1) is defined by the rule

(ao6a1) • (bo6b1) = ao6(albo) • 6b1 - aoal6bo • 6b1.

In particular, 1'A is a A-bimodule generated by elements 6a, a E A. Because of

(6a)b = 6(ab) - a6b,

the. bimodule 12'A can also be seen as a left [right] A-module generated by the

elements 6a, a E A. Note that 6(1) = 0. Accordingly,

QkA = 521.. Q'A
k

are A-bimodules and, simultaneously, left [right ] A-modules generated by monomials

(14.2.1).
The differential subalgebra (S2*A, 6) is a differential calculus over A. It is called

the universal differential calculus because of the following property [62, 169, 192].

Let (Sl'*, 6') be another differential calculus over a unital K-algebra A', and let

p : A -+ A' be an algebra morphism . There exists a unique extension of this

morphism to a morphism of graded differential algebras

pk:ckA, Qik

such that pk+1 0 6 = 6' o pk

Our interest to differential calculi over an algebra A is caused by the fact that, in

commutative geometry , Definition 8.2.2 of an algebraic connection on an A-module

requires the module 171 (8.1.22). If A = C°°(X), this module is the module of 1-

forms on X. To introduce connections in non-commutative geometry , one therefore

should construct the non-commutative version of the module D1. We may follow the

construction of 171 in Section 8.1, but not take the quotient by modµ2 that implies

the commutativity condition (8.1.27).
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Given a unital K-algebra A, let us consider the tensor product A ® A of IC-
/C

modules and the K-module morphism

µ' :A®AE) a® b--+abEA.

Following (8.1.22), we define the K-module

i71 [A] = Ker pl. (14.2.2)

There is the K-module morphism

d:AE) a- (1®a-a®1) Ei71[A] (14.2.3)

(cf. (8.1.26)). Moreover, .t7'[A] is a A-bimodule generated by the elements da,

a c A, with the multiplication law

b(da)c= b®ac-ba®c, a,b,c E A.

The morphism d (14.2.3) possesses the property

d(ab) = (1®ab-ab®1+a(gb-a®b) = (da)b+adb (14.2.4)

(cf. (8.1.28)), i.e., d is a f71[A]-valued derivation of A. Due to this property, SJ1[A]

can be seen as a left A-module generated by the elements da, a E A. At the same

time, if A is a commutative ring, the A-bimodule i51 [A] does not coincide with the

bimodule 01 (8.1.22) because U1[A] is not a central bimodule (see Remark 14.2.1).
To overcome this difficulty, let us consider the Z(A) of derivations of the algebra

A. They obey the rule

u(ab) = u(a)b + au(b), Va, b c A. (14.2.5)

It should be emphasized that the derivation rule (14.2.5) differs from that (9.2.9) of

a graded algebra and from the derivation rule

u(ab) = u(a)b + u(b)a

for a general algebra [193]. By virtue of (14.2.5), derivations of an algebra A con-

stitute a Z(A)-bimodule, but not a left A-module.

The Z(A)-bimodule DA is also a Lie algebra over the commutative ring k with

respect to the Lie bracket

[u, u']=uou -u'ou. (14.2.6)
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The centre Z(A) is stable under DA, i.e.,

u(a)b = bu(a), Va E Z(A), b c A, u c DA,

and one has

[u, au'] = u(a)u' + a[u, u ], da E .Z(A), u, u' E tA. (14.2.7)

If A is a unital *-algebra, the module DA of derivations of A is provided with the

involution u 1-4 u* defined by

u*(a) = (u(a*))*.

Then the Lie bracket (14.2.6) satisfies the reality condition [u, u']* _ [u*, u

Let us consider the Chevalley-Eilenberg cohomology (see [299]) of the Lie alge-

bra DA with respect to its natural representation in A. The corresponding k-cochain

space Qk [A], k = 1, ... , is the A-bimodule of Z(A)-multilinear antisymmetric map-

pings of ZAk to A. In particular, i71 [A] is the A-dual

.D1[A] = DA* (14.2.8)

of the derivation module DA (cf. (8.2.15)). Put k7°[A] = A. The Chevalley-

Eilenberg coboundary operator

d : 47k[A] Ok+1[A]

is given by

1 k

(dcb)(uo,...,uk) = k+1 E(-1)`ut(O(uo,.,u'ii,...,uk))+
=o

1

k + 1 O<r<s<k

where u; means omission of ui. For instance,

(da)(u) = u(a), a E A,

(dO) (uo, ul) = 1(uoMul)) - ulMUO)) - 0([uo, ul])),

(14.2.9)

(14.2.10)

E f71[A]. ( 14.2.11)

It is readily observed that d2 = 0, and we have the Chevalley-Eilenberg cochain

complex of K-modules

0 --->A d *Dk[A] d ,... (14.2.12)
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Furthermore, the Z-graded space

JX [A] = (3) Dk [A]
k=O

(14.2.13)

is provided with the structure of a graded algebra with respect to the multiplication

A combining the product of A with antisymmetrization in the arguments. Notice

that, if A is not commutative, there is nothing like graded commutativity of forms,

i.e.,

0 A 0' (-1)10110'101 A 0

in general . If A is a *-algebra, .D*[A] is also equipped with the involution
def (O(u

1, . .. , uk))*.0*(ul, ... uk) =

Thus, (D*[A],d) is a differential calculus over A, called the Chevalley-Eilenberg
differential calculus.

It is easy to see that, if A = COO (X) is the commutative ring of smooth complex

functions on a compact manifold X, the graded algebra 0 *[C-(X)] is exactly the

complexified exterior algebra C ®0*(X) of exterior forms on X. In this case, the

coboundary operator (14.2.9) coincides with the exterior differential, and (14.2.12)

is the De Rham complex of complex exterior forms on a manifold X. In particular,

the operations

(u10)(ul,... ,Uk-1) = k4(u,ul,...,21k-1)+ u E D A,

Lu (0) = d(uj 0) + u] f (0),
are the non-commutative generalizations of the contraction and the Lie derivative of

differential forms. These facts motivate one to think of elements of .i)1 [A] as being

a non-commutative generalization of differential 1-forms, though this generalization
by no means is unique.

Let 0*[A] be the smallest differential subalgebra of the algebra 0*[A] which

contains A. It is generated by the elements da, a E A, and consists of finite linear
combinations of monomials of the form

0=aodaln•••Adak, a; EA,

(cf. (14.2.1)). In particular , 01[A] is a A-bimodule (14.2.2) generated by da, a E A.

Since the centre Z(A) of A is stable under derivations of A, we have

bda = (da )b, adb = (db)a, a E A, b E Z(A),

daAdb= -dbAda, Va E Z(A).
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Hence, 01[A] is a central bimodule in contrast with the bimodule D1[A] (14.2.2).

By virtue of the relation (14.2.10), we have the isomorphism

c)A=D1[A]* (14.2.14)

of the Z (A)-module DA of derivations of A to the A-dual of the module D1 [A] (cf.

(8.1.38)). Combining the duality relations (14.2.8) and (14.2.14) gives the relation

121[A] = D1[A] **.

The differential subalgebra (D*[A], d) is a universal differential calculus over A.

If A is a commutative ring, then D*[A] is the De Rham complex (8.1.42).

14.3 Universal connections

Let (52*, 6) be a differential calculus over a unital )C- algebra A and P a left [right] A-

module. Similarly to Definition 8.2.2, one can construct the tensor product 521 ® P

[P ® 521] and define a connection on P as follows [ 192, 300].

DEFINITION 14.3.1. A non-commutative connection on a left A-bimodule P with

respect to the differential calculus (1 *, 6) is a K-module morphism

V:P-X521®P

which obeys the Leibniz rule

V(ap) = ba ®p + aV(p).

(14.3.1)

If Q* = SZ*A is a universal differential calculus, the connection (14.3.1) is called

a universal connection [192, 300].

The curvature of the non-commutative connection (14.3.1) is defined as the A-

module morphism

V2:P-->D2[A]®P

(cf. (8.2.14)) [192]. Note also that the morphism (14.3.1) has a natural extension

V:Slk®P,S2k+1®P

V (a (9p) = 6a ®p+(- 1)10'lca ®V(p), a E SZ*,
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[91, 192].

Similarly, a non-commutative connection on a right A-module is defined. How-

ever, a connection on a left [right] module does not necessarily exist. We will refer

to the following theorem (see Section 14.6).

THEOREM 14.3.2. A left [right] universal connection on a left [right] module P of

finite rank exists if and only if P is projective [72, 192]. q

The problem arises when P is a A-bimodule. If A is a commutative ring, left

and right module structures of an A-bimodule are equivalent, and one deals with

either a left or right non-commutative connection on P (see Definition 8.2.2). If P

is a A-bimodule over a non-commutative ring, left and right connections VL and

vR on P should be considered simultaneously. However, the pair (VL, VR) by no

means is a bimodule connection since VL(P) E S21 ® P, whereas VR(P) E P ® 521.

As a palliative, one assumes that there exists a bimodule isomorphism

Q:521 0 P-+ P®521. (14.3.2)

Then a pair (VL, VR) of right and left non-commutative connections on P is called

a o-compatible if

eoQt=VR

[91, 192, 227] (see also [75] for a weaker condition). Nevertheless, this is not a true

bimodule connection (see the condition (14.3.6) below).

Remark 14.3.1. If A is a commutative ring, the isomorphism e (14.1.1) is naturally

the permutation

p:a®p - p®a, WeES21, pEP.

The above mentioned problem of a bimodule connection is not simplified radically

even if P = 521, together with the natural permutations

0®0'Hq5'®0, 0,0'Ec1,

[90, 2271,
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Let now (D *[A], d) be the universal differential calculus over a non-commutative

1C-ring A. Let

V':P->i71[A]®P, (14.3.3)

V L (ap) = da ®p + aV L (p) •

be a left universal connection on a left A-module P (cf. Definition 8.2.2). Due to

the duality relation (14.2.14), there is the 1C-module endomorphism

Vu:PE) p-+ujVL(p)EP (14.3.4)

of P for any derivation u E DA. If VR is a right universal connection on a right

A-module P, the similar endomorphism

VR : P p -+ VL(p) Lu E P (14.3.5)

takes place for any derivation u E DA. Let (VL, VR) be a p-compatible pair of left

and right universal connections on an A-bimodule P. It seems natural to say that

this pair is a bimodule universal connection on P if

ujV L(p) = V R(p) Lu (14.3.6)

for all p E P and u E Z)A. Nevertheless, motivated by the endomorphisms (14.3.4)

- (14.3.5), one can suggest another definition of connections on a bimodule, similar

to Definition 8.2.6.

14.4 The Dubois-Violette connection

Let A be 1C-ring and P an A-module of type (i, j) in accordance with the notation

in Section 14.1.

DEFINITION 14.4.1. By analogy with Definition 8.2.6, a Dubois- Violette connection

on an A-module P of type (i, j) is a Z(A)-bimodule morphism

V: -OADu - V,,,EHomjc(P,P) (14.4.1)

of DA to the Z(A)-bimodule of endomorphisms of the 1C-module P which obey the

Leibniz rule

V (aipaj) = u(ai )paj + aiVu(p)aj + aipu (aj), I Vp E P, Vak E Ak, (14.4.2)
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[90, 227]. q

By virtue of the duality relation (14.2.14) and the expressions (14.3.4) - (14.3.5),

every left [right] universal connection yields a connection (14.4.1) on a left [right]

A-module P. From now on, by a connection in non-commutative geometry is meant

a Dubois-Violette connection in accordance with Definition (14.4.1).

A glance at the expression (14.4.2) shows that, if connections on an A-module

P of type (i, j) exist, they constitute an affine space modelled over the linear space

of Z(A)-bimodule morphisms

a: DA DuF-4 EHorA;_A;(P,P)

of M to the Z(A)-bimodule of endomorphisms

au(aipaj) = aca(p)a„ Vp E P, flak E Ak,

of the A-module P.

Example 14.4.1. If P = A, the morphisms

Du(a) = u(a), Vu E DA, Va E A, (14.4.3)

define a canonical connection on A in accordance with Definition 14.4.1. Then the

Leibniz rule (14.4.2) shows that any connection on a central A-bimodule P is also

a connection on P seen as a Z(A)-bimodule. •

Example 14 .4.2. If P is a A-bimodule and A has only inner derivations

ad b(a) = ba - ab,

the morphisms

Vaab(p) = bp - pb, Vb E A, Vp E P, (14.4.4)

define a canonical connection on P. •

By the curvature R of a connection V (14.4.1) on an A-module P is meant the

Z(A)-module morphism

R : aA x DA E) (u, u') -* Ru,u, E Hom A;_AJ (P, P), (14.4.5)

Ru,u'(p) _ Vu(Vu'(p)) - Vu,(Vu(p)) - V[u,u'1(p), p E P,
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(cf. (8.2.19)) [90]. We have

Rau,a'u' = aa'R,,,u', a, a' E Z(A),

Ru,u'(aipbj) = aiRu,u'(p)bj, ai E Aj, bj E A3.

For instance, the curvature of the connections (14.4.3) and (14.4.4) vanishes.

Let us provide some standard operations with the connections (14.4.1).

(i) Given two modules P and P' of the same type (i, j) and connections V and

V' on them, there is an obvious connection V ® V' on P ® P'.

(ii) Let P be a module of type (i,j) and P* its A-dual. For any connection V

on P, there is a unique dual connection V' on P* such that

u((p,P))= (V (p),p) +(p , V'(p)), PEP, p'EP*, uE DA.

(iii) Let P1 and P2 be A-modules of types (i, k) and (k, j), respectively, and let

V1 and V2 be connections on these modules. For any u E DA, let us consider the

endomorphism

(V1(g V2)u=V ®IdP1+IdP2®V (14.4.6)

of the tensor product P1®P2 of 1C-modules P1 and P2. This endomorphism preserves

the subset of P1 0 P2 generated by elements

pla ®p2 - P1 ®ap2,

with pi E P1, P2 E P2 and a E Ak. Due to this fact, the endomorphisms (14.4.6)

define a connection on the tensor product P1 0 P2 of modules P1 and P2.

(iv) If A is a unital *-algebra, we have only modules of type (1, 1) and (0, 0), i.e.,

*-modules and Z(A)-bimodules. Let P be a module of one of these types. If V is a

connection on P, there exists a conjugate connection V* on P given by the relation

V (p) = (vu' (p*))*. (14.4.7)

A connection V on P is said to be real if V = V*.

Let a *-module P is provided with a Hermitian form (.I.). A connection V on P

is called Hermitian if

d(plp) = (Vu(p)Ip) + (PIVu(p ) , Vu E 0A, p,p E P.
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Similarly, a Hermitian universal connection on a right A-module P over a *-algebra

A is defined. Such a Hermitian connection always exists if P is a projective module

of finite rank [300].

Let now P = ,471 [A]. A connection on A-bimodule ,471 [A] is called a linear
connection [90, 227]. Note that this is not the term for an arbitrary left [right]

connection on 01[A] [91]. If ,471 [A] is a *-module, a linear connection on it is

assumed to be real. Given a linear connection V on 01[A], there is a A-bimodule

homomorphism, called the torsion of the connection V,

T:i71[A]-> 72[A],

(TO) (u, u') = (dO) (u, u') - Vu (0) (u') + Vu, (0) (u),

for allu,u'EcDA ,0E171[A].

14.5 Matrix geometry

(14.4.8)

This Section is devoted to linear connections in matrix geometry when A = Mn is

the algebra of complex (n x n)-matrices [89, 206, 207].

Let {er}, 1 < r < n2-1, be an anti-Hermitiam basis of the Lie algebra su(n). El-
ements Er generate Mn as an algebra, while u,. = ad e,. constitute a basis of the right

Lie algebra Z Mn of derivations of the algebra Mn, together with the commutation

relations

s
ur, uq = Crqu9,

where crq are structure constants of the Lie algebra su(n). Since the centre Z(Mn)

of Mn consists of matrices Al, DM,, is a complex free module of rank n2 - 1.

Let us consider the universal differential calculus (.t7*[Mn], d) over the algebra

Mn, where d is the Chevalley-Eilenberg coboundary operator (14.2.9). There is a

convenient system {BT} of generators of 01[Mn] seen as a left Mn-module. They are

given by the relations

or'(uq) = 591.

Hence, 01 [Mn] is a free left Mn-module of rank n2 - 1. It is readily observed that

elements or belong to the centre of the Mn-bimodule 01[Mn], i.e.,

a9r=Ora, I VaEMn. (14.5.1)
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It also follows that

Or A Bq = _0q A Or. (14.5.2)

The morphism d : M, --> D'[M,,] is given by the formula (14.2.10). It reads

der(uq) = ad Eq(er) = cgr6s,

that is,

dEr = cgrEseq. (14.5.3)

The formula ( 14.2.11 ) leads to the Maurer-Cartan equations

dBr = 2c9SBq
n BS. (14.5.4)

If we define 0 = Erer, the equality (14.5.3) can be rewritten as

da = aO - Oa, Va E MM.

It follows that the M.bimodule D1[M,,,] is generated by the element 0. Since aM,
is a finite free module, one can show that the M,,-bimodule iD1 [M,,,] is isomorphic

to the Mdual D1 [M,,,] of DM,,.
Turn now to connections on the M,,-bimodule i71 [M,,,]. Such a connection V is

given by the relations

Vu=c*u. _- c
r
Vre

Oq'
WPgEMn.Vr(OP)=Wrq (14.5.5)

Bearing in mind the equalities (14.5.1) - (14.5.2), we obtain from the Leibniz rule

(14.4.2) that

aVr(OP) = Vr(OP)a, Va E M.

It follows that elements wPg in the expression (14.5.5) are proportional 1 E Mme, i.e.,

complex numbers. Then the relations

V,(Op) = WpgOq, WPq E C, (14.5.6)

define a linear connection on the M,ti bimodule SD'[M].

Let us consider two examples of linear connections.
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(i) Since all derivations of the algebra Mn, are inner, we have the curvature-free

connection (14.4.4) given by the relations

V'(0P ) = 0.

However, this connection is not torsion-free. The expressions (14.4.8) and (14.5.4)

result in

(TOP)(ur,u9) _ c,'9.

(ii) One can show that, in matrix geometry, there is a unique torsion-free linear

connection

Vr(61') = -CP989.

14.6 Connes' differential calculus

Connes' differential calculus is based on the notion of a spectral triple [63, 192, 205,

300].

DEFINITION 14.6.1. A spectral triple (A, N, D) is given by a *-algebra A C B(N) of

bounded operators on a Hilbert space N, together with an (unbounded) self-adjoint

operator D = D* on N with the following properties:

• the resolvent (D - A)-1, A # R, is a compact operator on N,

• [D,A]EB(H).

The couple (A, D) is also called a K-cycle over A. In many cases, N is a 7G2-

graded Hilbert space equipped with a projector F such that

FD + DF = 0, [a, F] = 0, Va E A,

i.e., A acts on N by even operators, while D is an odd operator. The spectral triple

is called even if such a grading exists and odd otherwise.

Remark 14.6.1. The standard example of a spectral triple is the case of the Dirac

operator D on a compact spin-(spin)-manifold [64, 111, 112, 1651 (see [208] and

references therein for the geometry of spin-manifolds). 9
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Given a spectral triple (A, 7-l, D), let (SI*A, 6) be a universal differential calculus

over the algebra A. Let us construct a representation of the graded differential

algebra Q*A by bounded operators on 1-l when the Chevalley-Eilenberg derivation

6 (14.2.9) of A is replaced with the bracket [D, a], a E A:

7r: St*A - B(7-l),

7r(ao6al ... 6ak )
d f

ao[D, ai ] ... [D ak].

Since

(14.6.1)

[D, a]* = -[D, a*],

we have 7r(O)* = 7r(q5*), 0 E cl*A. At the same time, 7r (14.6.1) fails to be a

representation of the graded differential algebra SZ*A because 7r(¢) = 0 does not

imply that ir(6) = 0. Therefore, one should construct the corresponding quotient

in order to obtain a graded differential algebra of operators on H.

Let J0 be the graded two-sided ideal of Sl*A where

Jo={q5Ef A:7r(O)=0}.

Then it is readily observed that J = Jo + 6Jo is a graded differential two-sided ideal

of cl*A. By Connes' differential calculus is meant the pair (SlDA, d) such that

Q2 A = S *A/J,

d[O] = [s0],
where [0] denotes the class of 0 E S2*A in [ A. It is a differential calculus over

S2DA = A. Its k-cochain submodule I A consists of the classes of operators

ao[D, ai] ... [D, ak], aij E A,
i

modulo the submodule of operators

{ [D, NO] [D, &] ... [D b'k_1] : E [D, b'1] ... [D, l^k_ 1] = 0}.
7 ^

Let now P be a right finite projective module over the *-algebra A. We aim to

study a right connection on P with respect to Connes' differential calculus (Q2 A, d).

As was mentioned above in Theorem 14.3.2 , a right finite projective module has a

connection . Let us construct this connection in an explicit form.



14.6. CONNES' DIFFERENTIAL CALCULUS 465

Given a generic right finite projective module P over a complex ring A, let

p:CN®A->P,

ip:P-*CN®A,
C

be the corresponding projection and injection, where

over C. There is the chain of morphisms

P %CN®A1 cN®S21A -a-, P®I1A,

0 denotes the tensor product
C

(14.6.2)

where the canonical module isomorphism

cN®Sl1A=((CN®A)®c'A

is used. It is readily observed that the composition ( 14.6.2 ) denoted briefly as p o S
is a right universal connection on the module P.

Given the universal connection p o 6 on a right finite projective module P over

a *-algebra A, let us consider the morphism

P p +P®S21A14P®QDA.

It is readily observed that this is a right connection Do on the module P with respect

to Connes' differential calculus. Any other right connection V on on P with respect
to Connes' differential calculus takes the form

O = Do+v = (Id (&,7r) opo6+o, (14.6.3)

where a is an A module morphism

a:P-->P®S2DA.

A components o, of the connection V (14.6.3) is called a non-commutative gauge
field.
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adjoint representation, 151
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energy-momentum tensor, 68
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on a holomorphic manifold, 347

on a module, 269
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projection, 395
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sum connection, 43
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distribution, 23
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Donaldson invariant, 433
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Donaldson's theorem, 431

dual Lie algebra, 151

dual vector bundle, 7
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